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Abstract

Dynamic real-time systems such as embedded sys-

tems operate in environments in which several param-

eters vary at run time. These systems must satisfy

several performance requirements. Resource allocation

on these systems becomes challenging because varia-

tions of run-time parameters may cause violations of

the performance requirements. Performance violations

result in the need for dynamic re-allocation, which is

a costly operation. In this paper, a method for allo-

cating resources such that the allocation can sustain

the system in the light of a continuously changing en-

vironment is developed. We introduce a novel perfor-

mance metric called MAIL (maximum allowable in-

crease in load) to capture the e�ectiveness of a resource

allocation. Given a resource allocation, MAIL quan-

ti�es the amount of additional load that can be sus-

tained by the system without any performance viola-

tions. A Mixed-Integer-Programming-based approach

(MIP) is developed to determine a resource allocation

that has the highest MAIL value. Using simulations,

several sets of experiments are conducted to evaluate

our heuristics in various scenarios of machine and

This research was supported by the DARPA/ITO Quorum

Program through the OÆce of Naval Research under Grant No.

N00014-00-1-0599.

task heterogeneities. The performance of MIP is com-

pared with three other heuristics: Integer-Programming

based, Greedy, and classic Min-Min. Our results show

that MIP performs signi�cantly better when compared

with the other heuristics.

1 Introduction

Dynamic real-time systems such as embedded sys-

tems [6] have recently gained importance in several ap-

plication domains, such as automobile control, avion-

ics, and defense. These systems are comprised of sen-

sors, actuators, and processing nodes that execute var-

ious application tasks. These systems operate in an

environment that continuously changes. The changes

in the environment are re
ected in several parameters

that vary at run-time. The system detects the changes

in the environment through sensors and, after certain

computations, reacts to it via actuators. The system

must react in a timely manner to changes. Violating

this might cause catastrophic e�ects on the system.

System resources, such as computing power and

communication channel bandwidth, must be allocated

eÆciently for the system to react timely to changes

in the environment. Thus, the primary goal of any

resource allocation should be the allocation of suf-
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�cient resources to each task or group of tasks, so

that they complete their execution within the speci-

�ed deadlines. Several algorithms and heuristics (e.g.,

[2, 3, 12, 18, 20]) have been developed to allocate re-

sources using system parameters that are known a pri-

ori. However, they do not consider run-time param-

eter variations (e.g., the amount of input data) that

may cause violations in performance requirements. To

sustain the system in its current status, dynamic re-

allocation is often used to re-assign resources to tasks.

However, determining a new allocation and performing

re-allocation consumes time and resources. Because re-

allocation is usually needed when tasks lack adequate

resources, an overhead is incurred when the system is

least capable to a�ord it. Thus, dynamic re-allocation

is a costly operation with respect to resource utilization

(especially computation time). Allocation algorithms

that do not consider the e�ects of run-time parameter

variations on task execution time may have to pay the

heavy price of early re-allocation.

Task allocation in real-time systems to meet certain

deadlines is known to be an NP-hard problem [11, 14].

The problem becomes more diÆcult when variations in

run-time parameters must also be taken into account.

To evaluate the performance of such an allocation, a

performance metric that captures such variations is

needed. However, quantifying such a metric is diÆ-

cult due to the unpredictable nature of the parameter

variations.

In this paper, we propose a method for allocating

resources such that the allocation can sustain the sys-

tem in the light of continuously changing environment.

In doing so, more system resources are available to ap-

plication tasks for execution, rather than being used

for performing re-allocation. We make the following

contributions in this paper:

� A novel performance metric that is suitable for

evaluating resource allocation in systems that op-

erate in a changing environment is proposed (Sec-

tion 3). A high-level abstraction of the run-time

parameters, their variations, and their e�ects on

performance attributes of the system is used to

determine the \quality" of a given allocation.

� System and application models (Section 4.1 and

4.2) that take into account the variation in run-

time parameters are developed. Based on these

models, the performance metric is formalized in

Section 4.3. An objective function that leads to

a good allocation under some assumptions is dis-

cussed (Section 5.2).

� The performance of our Mixed-Integer-

Programming-based heuristic (MIP) is compared

with three other heuristics (Integer-Programming-

based (IP), Greedy, and Min-Min) [8] in Section 6.

Simulations show that MIP achieves up to two

times performance improvement over the other

heuristics.

The rest of this paper is organized as follows. A brief

discussion of related work is presented in Section 2.

Section 3 describes an abstract representation of the

performance metric. Section 4 discusses the system,

application, and execution models. A formal mathe-

matical formulation of the problem based on the mod-

els is discussed in Section 5. Simulation results are an-

alyzed in Section 6. Concluding remarks are presented

in Section 7.

2 Related Work

Many research e�orts in the literature concentrate

on real-time resource allocation and scheduling prob-

lems in both uniprocessor (e.g., [2, 3, 20]) and mul-

tiprocessor environments (e.g., [5, 9, 13, 17]). Most

of them cannot be directly applied to our work be-

cause our research assumes an environment that in-

cludes multitasking on multiple machines with mul-

titasking communication links, continuously running

applications, and heterogeneous distributed systems.

Also, most of these research e�orts focus on �nding a

feasible allocation or an optimal allocation in the sense

of some static performance metrics. In our research, we

de�ne our performance metric to capture the variation

of run-time parameters.

The work in [4, 10, 16] has a similar application

model for sensors, tasks, and actuators as the model

used in this paper. These research e�orts are di�erent

because in our research the processors and the commu-

nication links can perform multitasking and the appli-

cations that need to be allocated execute continuously.

The system model assumed in our research is simi-

lar to that of the DeSiDeRaTa project (e.g., [19]) in

that both use continuously running applications and

a heterogeneous distributed system. The di�erence is

that, while our work focuses on deriving an eÆcient al-

location of resources to tasks, the DeSiDeRaTa project

focuses on dynamic re-allocation of resources to meet

the real-time constraints.

3 Performance Metric

A dynamic real-time system has several parameters

that vary at run time. A \robust" resource allocation

has to satisfy all the performance constraints of the sys-

tem by considering the impact of run-time parameter
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variations. In this section, we propose a performance

metric that can measure how well-prepared a dynamic

real-time system is for absorbing the run-time varia-

tions in the environment without violating performance

constraints.

Consider a dynamic real-time system with n run-

time parameters that characterize the current status

of the environment. An n-dimensional system state

space where each dimension corresponds to a run-time

parameter can be de�ned. Each point in the state

space, denoted as an operating point, represents a sys-

tem state. This state is determined by the corre-

sponding values of run-time parameters. A set of per-

formance attributes is associated with each operating

point. Given a resource allocation x, these attributes

for each point can be calculated from the correspond-

ing coordinates of that point. The system must satisfy

some speci�ed performance constraints. An operating

point is said to be valid if all these constraints are sat-

is�ed by the performance attributes of this point. For

the sake of discussion, all the valid operating points are

assumed to form a closed and continuous space, called

an operating region. Given a resource allocation and

performance constraints, an operating region can be

de�ned on the state space.

An initial operating point is speci�ed by the initial

values of all run-time parameters. This initial operat-

ing point is the same for all allocations. An allocation

is feasible i� the initial operating point lies within its

operating region. Throughout this section, only fea-

sible allocations are considered. The system transits

from this initial operating point when variations in run-

time parameters occur. When the system transits out

of the operating region of an allocation, a resource re-

allocation is needed. The operating region of this new

allocation must cover the current operating point of

the system. The general goal of our allocation is to de-

lay the �rst re-allocation of resources due to run-time

variations in the environment. Therefore, the goal is

to �nd an allocation whose operating region covers, for

the longest period of time, all the operating points to

which the system may transit during run time.

Let R denote an operating point, with R0 denoting

the initial operating point. Let P (R; x) denote the

vector of performance attributes given an operating

point R and an allocation x. Let dR denote a norm on

the space of values speci�ed by run-time parameters;

and dP , a norm on the space of performance attributes.

Intuitively, the highest value of dP (P (R; x); P (R0; x)),

where R represents a valid operating point, can be

used to measure the \quality" of an allocation x.

However, it is desirable to characterize the \quality"

of an allocation in terms of the variation of the

input parameters (run-time parameters). Thus, a

good allocation should have the highest value of

dR(R;R0), where R represents a valid operating

point. We shall denote this performance metric as the

maximum allowable variation in run-time parameters.

Because every allocation corresponds to an operating

region, it has its own maximum allowable variation

in run-time parameters. The goal of our allocation

problem is thus to �nd an allocation that has the

highest value of this maximum allowable variation in

run-time parameters.

4 Resource Allocation Problem

4.1 System Model

We consider a system consisting of s

multitasking-capable machines, represented by a

set M = fm1; : : : ;msg. Each machine is connected

to a network switch via a full-duplex communication

link. The capacity of the communication links may be

di�erent.

4.2 Application Model

As an example of dynamic real-time systems, we

consider a sensor-actuator network in this paper. Such

a system (shown in Figure 1) consists of sensors, actu-

ators, and processing tasks. The sensors continuously

send information about the environment to the tasks.

These tasks process the data from the sensors and issue

commands to the actuators. Such systems are widely

used in various �elds.

The set of processing tasks in such systems is mod-

eled using the asynchronous data
ow (ASDF) process

network [15]. Each task in the ASDF process network

has associated with it a �ring rule, which determines

when a task starts execution based on the availability

of its inputs. However, the ASDF process network does

not specify any real-time requirements or parameters

that can vary at run time. We extend the ASDF pro-

cess network to capture the variations of run-time pa-

rameters as well as to associate real-time requirements

with a task or a group of tasks.

Let S denote the set of sensors, and T denote the

set of actuators. Sensors and actuators are part of the

system hardware, and thus cannot be allocated. An

ASDF process network, denoted as G(E ;A), where E

is a set of edges and A is a set of nodes, is used to

model the set of processing tasks. A represents the set

of tasks to be allocated, and each edge in E connecting

two nodes represents a directed data 
ow from one task

to the other task.
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A. Load levels

For every processing node that receives data, exactly

one incoming edge is set to be a primary edge (dark,

solid edges in Figure 1). In this study, ASDF process

networks with cycles consisting of primary edges only

are not considered. Let EP be the set of all primary

edges. The amount of data that a task receives from

its primary edge can vary during run time. Load level

of task ai, LL(ai), is a scalar value that represents the

data that task ai receives through its primary edge. Let

vector LL denote the load level of all tasks, with LLinit
denoting the initial load level. Data arriving from non-

primary edges (gray, dashed edges in Figure 1) is used

for information updating (e.g., updating the internal

database of the task). This is considered to consume

some CPU cycles independent of the load level of a

task. A task starts execution only after it receives data

from its primary edge. In the ASDF terminology, the

�ring rule of a task can be stated as: a task �res (starts

execution) only when data is received from the primary

edge.

B. Load level variation

The changes in the load level of a task are re
ected

in the variation of its computation and communication

latencies. An estimated-time-to-compute-function ma-

trix, ETCF , gives a computation latency function for

each task-machine pair (ai, ml) that maps LL(ai) to

an estimated computation time of ai on ml. The size

of the ETCF matrix is jAj� jMj. For this study, each

entry in the ETCF matrix, ETCF [ai;ml], is assumed

to be a linear function of the load level on the primary

edge of task ai, with a positive slope, ETCF [ai;ml]:a,

and a non-negative intercept, ETCF [ai;ml]:b. The

slope determines the rate at which the estimated com-

putation latency varies with respect to the variation

of the load level on the primary edge of the task

during run time. The intercept determines the CPU

time overhead for a task to process the data arriving

from its non-primary edges. Because we are interested

in those cases where the load levels on the primary

edges determine the performance of the system, in this

study, the intercept is assumed to be zero for each

task. An estimated-time-to-c(K)ommunicate-function

matrix, ETKF , gives a function for each task-machine

pair (ai, ml) that maps LL(ai) to an estimated com-

munication time for task ai from machine ml to the

network switch. The size of the ETKF matrix is also

jAj� jMj. Similar to the ETCF matrix, each entry in

the ETKF matrix is assumed to be a linear function

of the load level on the primary edge of a task, with a

positive slope and an intercept that equals zero.

C. Throughput and Latency Requirements

A task ai, where ai 2 A, may be associated

sensors actuators

1

9

6

3

11

8

ASDF process network

primary edge

non-primary edge

sensor and actuator
communication
primary route

2

4
5

7

10

A

B

X

Y

Z

source node

sink node

Figure 1. An example sensor-actuator net-
work.

with a throughput requirement, THREQ[ai]. That

is, the output data rate of task ai is required

not to be slower than its throughput requirement,

THREQ[ai]. Also, a sensor-actuator pair (sl; tm),

where sl 2 S and tm 2 T , may be associated

with an end-to-end latency requirement, LREQ[sl; tm]

That is, the time between the sensor sl sending data

out and the actuator tm receiving a message result-

ing from the processing of that data cannot exceed

LREQ[sl; tm]. Initially, the throughput and end-to-

end latency requirements are speci�ed. We will show

an example that uses the concept of primary edge to

reasonably assign throughput requirements. Note that

the end-to-end latency requirement can be speci�ed for

paths that consist of primary edges only.

D. Example

A source node in the ASDF process network repre-

sents a task that is connected to a sensor by a primary

edge. A sink node represents a task that sends data to

actuators. An actuator can receive data from exactly

one sink node. This is a natural assumption, which

allows an actuator to be controlled by only one task in

order to avoid potential con
icts. Each sensor outputs

data to the corresponding source node(s) at a �xed

rate. This rate can be di�erent for di�erent sensors.

The set of source nodes is represented by Asource, and

the set of sink nodes by Asink . Given a node in A, a

route is de�ned as a set of nodes constituting a path

from a source node to the given node through a series of

primary edges. >From the de�nition of primary edge, it

follows that a route for each node is unique. The route

for a sink node is called a primary route (PR). There
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are exactly jAsink j primary routes (shown enclosed by

boxes in Figure 1). Note that data from a sensor can

reach an actuator through a primary route only. Let

rk denote a primary route, where 1 � k � jAsink j.

The set of all primary routes is represented by R. The

concept of primary routes is related to the \continuous

paths" used in the DeSiDeRaTa project [19].

For each source node as 2 Asource, its through-

put requirement, THREQ[as], is set to be the input

data rate of this source node. This throughput require-

ment is imposed on all the nodes along the routes that

originate from as. Thus, THREQ[ai], the through-

put requirement of task ai, is equal to THREQ[as] if

there is a route from as to ai. Let LREQ be a vector

representing all end-to-end latency requirements such

that LREQ[rk] = LREQ[sl; tm], where rk 2 R and

rk is a primary route between sensor sl and actuator

tm. Similarly, let THREQ be a vector representing all

throughput requirements such that THREQ[ai] is the

throughput requirement of task ai, where ai 2 A.

4.3 Maximum Allowable Increase in Load

As discussed in Section 3, the performance met-

ric of an allocation is given as the highest value of

dR(R;R0), where R represents a vector of run-time

parameters. In our model, each run-time parameter

contributes to the load level of each task. Thus, R is

represented by the load level vector LL. We assume

that there is a run-time parameter, called �, that gov-

erns the increase in the load level of all the tasks. Then,

LL(ai) = (1 + �) � LLinit(ai). Therefore, � can be

used as the norm dR. Thus, the performance metric

of a resource allocation can be de�ned as the maxi-

mum value of � under the condition that there is no

throughput or end-to-end latency violation, denoted as

�max. This speci�c performance metric is called the

maximum allowable increase in load (MAIL).

4.4 Problem Definition

Based on the models described in Sections 4.1 and

4.2, and the performance metric explained in Sec-

tion 4.3, a formal de�nition of the resource allocation

problem can be stated as follows:

Given:

1. A set of machines M

2. A set of sensors, S, and a set of actuators, T

3. An ASDF process network, G(E ;A) and a set of

all primary edges EP

4. ETCF and ETKF matrices

5. Vectors LLinit, LREQ and THREQ

Find:

An allocation of all tasks in A onto machines in M

that has the highest value of MAIL

5 A Mathematical Programming

Formulation

5.1 Latencies and Requirements

A mathematical formulation for the problem based

on our model is described in this section. An objective

function is de�ned, which leads to an optimal MAIL

value under some assumptions. However, the formu-

lation contains non-linear equations. By using a lin-

earization heuristic, the formulation is reduced to a

mixed-integer-programming formulation.

Let X be a matrix that represents an allocation of

tasks onto machines such that

X [ai;ml] =

�
1 if ml is allocated to ai
0 otherwise

where ai 2 A and ml 2 M. A task can be allocated

to only one machine. Consequently, for any task ai,

there is exactly one X [ai;ml] that is equal to 1 for

all ml 2 M. Given an allocation, let nl be the total

number of tasks that execute on machine ml, i.e., nl =P
ai2A

X [ai;ml].

In this paper, each of the CPU and communication

bandwidth of a machine is assumed to be fairly shared

among all the tasks allocated to the machine. Thus,

the latency of a task on a machine is estimated as the

product of its base latency (without sharing) and the

total number of tasks sharing the same machine. Let

ECL denote the estimated-initial-computation-latency

matrix. Each entry in the ECL[ai;ml] matrix is the

estimated computation latency of task ai on machine

ml at the initial load level, when the machine is dedi-

cated to this task. ECL can be calculated from the

ETCF matrix and the LLinit vector. Speci�cally,

ECL[ai;ml] = ETCF [ai;ml]:a�LLinit(ai). The com-

putation latency of task ai for the initial load level,

denoted C(ai), can be calculated as

C(ai) =
X
ml2M

fX [ai;ml]�ECL[ai;ml]� nlg

Similarly, EKL matrix is de�ned as the estimated-

initial-c(K)ommunication-latency matrix. In this pa-

per, a simple communication model is used to simplify
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the calculation of the communication latency. Because

the sensors are part of system hardware and cannot

be allocated, the latency of a sensor sending data to

the network switch is assumed to be independent of

the load level of any task. Similar assumption is made

for the latency of an actuator receiving data from the

network switch. These latencies can be absorbed in

the end-to-end latency requirements of sensor-actuator

pairs. The communication latency of a task is modeled

in two stages: one for sending data to and the other

for receiving data from the network switch. The total

communication latency, K(ai), is

K(ai) = 2�
X

ml2M

fX [ai;ml]�EKL[ai;ml]� nlg

The actual end-to-end latency of a PR rk is

L(rk) =
P

ai2rk
fC(ai) +K(ai)g

Given a primary route rk 2 R, its end-to-end la-

tency requirement is satis�ed when the actual latency

does not exceed its requirement. Mathematically,

L(rk) � LREQ[rk]

Given a task ai, its throughput requirement is sat-

is�ed when both its computation latency and commu-

nication latencies do not exceed the reciprocal of its

throughput requirement. Mathematically,

max (C(ai);K(ai)) �
1

THREQ[ai]

5.2 Objective Function

Let NSC(ai) be the normalized computation slack-

ness of task ai. It is calculated as:

NSC(ai) = 1�
C(ai)

1=THREQ[ai]

Similarly, NSK(ai), the normalized communication

slackness of a task ai is de�ned as:

NSK(ai) = 1�
K(ai)

1=THREQ[ai]

For a route rk 2 R, the normalized slackness is

NSR(rk) = 1�
L(rk)

LREQ[rk]

Conceptually, the normalized slackness represents, as a

percentage, the slack or available room for the latency

of a task or a route to increase, before the through-

put and/or end-to-end latency requirement is violated.

actual latency

i
p0

0pREQ

iREQ

iα0-1

iz

α0pα )( maxα

Figure 2. Variation of the actual latency of
tasks and primary routes with respect to �.

Note that an allocation satis�es all performance re-

quirements i� the normalized slackness for all tasks and

all primary routes is non-negative.

Given an allocation, let

cmin = minf min
rk2R

NSR(rk);

min
ai2A

NSC(ai);

min
ai2A

NSK(ai)g

Claim 1: Given a feasible allocation, cmin = �max

1+�max

Proof: For a given feasible allocation, Figure 2 shows

the variation of the actual computation or commu-

nication latency of all tasks and the actual end-to-

end latency of all primary routes with respect to �.

In Figure 2, actual latency refers to the actual com-

putation or communication latency of a task, or the

actual end-to-end latency of a primary route. Sim-

ilarly, REQi refers to the constraint on task ai or

primary route ri ( 1
THREQ

for a task or LREQ for

a primary route). Note that when � equals -1, the

actual latency of any task or route becomes zero.

The slope of the line that corresponds to the actual

computation latency of task ai can be calculated asP
1�l�jMj

(X [ai;ml] � ETCF [ai;ml]:a � nl). By re-

placing ETCF with ETKF in the previous expres-

sion, we get the slope of the line that corresponds

to the actual communication latency of task ai. The

slope of the line that corresponds to the actual end-

to-end latency of primary route rk can be calculated

as
P

ai2rk
(
P

1�l�jMj
X [ai;ml] � (ETCF [ai;ml]:a +

ETKF [ai;ml]:a)� nl).

Let p represent the total number of lines in Figure 2.

We have p = 2jAj+ jRj. The actual latency for a task

or a primary route increases when � increases (i.e.,

the load level of each task increases). For a task ai
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(primary route ri), let �i be the value of � such that

the actual latency of ai (ri) reaches REQi. Given any

feasible allocation, we have �i � 0; 1 � i � p.

Based on the de�nition of �max (the MAIL value

of an allocation) in Section 4.3, we have �max =

min1�i�pf�ig. Thus, there exists some p0, 1 � p0 � p,

such that �max = �p0 . Note that,

�p0
1 + �p0

=
min1�i�p �i

1 +min1�i�p �i
= min

1�i�p
f

�i

1 + �i
g; �i � 0

From Figure 2, we have �i
1+�i

= zi
REQi

. It follows that

�p0
1 + �p0

= min
1�i�p

f
zi

REQi

g

= cmin

Thus, we have cmin = �max

1+�max
: 2

Claim 2: The allocation that gives the highest value of

cmin among all allocations will also result in the high-

est value of �max.

Proof: From Claim 1, we have cmin = �max

1+�max

. Be-

cause �max is maximized when �max

1+�max
is maximized,

maximizing cmin maximizes �max: 2

Thus, the objective function of our mathematical

formulation is to maximize the value of cmin.

5.3 MIP Approach

Direct mathematical formulation of the problem

contains non-linear equations. Speci�cally, two vari-

ables X [ai;ml] and nl are multiplied together. To lin-

earize the formulation, the number of tasks allocated

onto a machine is pre-selected using a linearization

heuristic. This is speci�ed in a vector N , where N [ml]

is the pre-selected number of tasks on machine ml. A

simple heuristic is used to choose this number based

on the capability of each machine. An example of a

method used to evaluate the capability of a machine in

a heterogeneous system can be found in [8].

The problem can now be formulated using mixed-

integer-programming, as follows.

Given: M;A; EP ; ETCF;ETKF;LLinit;R;

LREQ; THREQ;N

Find: X; c

to

Maximize: c

Subject to: c � NS(rk) ; 8rk 2 R

c � NS(C(ai)) ; 8ai 2 A

c � NS(K(ai)) ; 8ai 2 AX
ml2M

X [ai;ml] = 1 ; 8ai 2 A

X
ai2A

X [ai;ml] = N [ml] ; 8ml 2M

At the end of the optimization, the auxiliary c will be

equal to cmin. Furthermore,X will represent a resource

allocation that gives the highest value of cmin and thus

the highest value of �max.

6 Experimental Results

6.1 Experimental Procedure

A simulator based on the mathematical formula-

tion presented in Section 5 was developed to evaluate

the performance of our resource allocation techniques.

Given an allocation, the simulator calculates the task

execution latencies using the equations presented in

Section 5. The performance attributes are then cal-

culated and compared with the corresponding require-

ments. If all performance requirements are satis�ed,

the normalized slackness values of all tasks and pri-

mary routes are calculated. The MAIL value for this

allocation is given by the minimum among all these

normalized slackness values.

The simulations were divided into two sets based on

the problem size. The �rst set consisted of small prob-

lems that consist of 3-4 machines and 12 tasks. The

second set ranged from 10 to 20 machines and 30 to 60

tasks. We also implemented three other approaches:

Integer Programming-based (referred to as IP in the

following text), Min-Min, and Greedy. IP minimizes

the sum of the end-to-end latencies of all PRs, which

is similar to the objective function presented in [7].

The Greedy heuristic maps tasks in a random order

and each task is mapped onto the machine that gives

the shortest computation and communication latency

based on the mapping information so far. The Min-

Min heuristic is a variation of the algorithm D in [11]

that orders tasks using their computation and commu-

nication latency on the best machines. In all the three

approaches, the computation and communication la-

tencies are calculated while considering multitasking

of tasks. The formulation for IP and pseudo codes for

the Greedy and Min-Min heuristics can be found in [8].

The performance of MIP was compared with all these

three approaches.

For both sets, the ETCF and ETKF matrices were

generated to capture the machine and task hetero-

geneities [1]. Speci�cally, each matrix was character-

ized by two parameters: machine heterogeneity and

task heterogeneity. Both heterogeneities can be mod-

eled as \high" or \low." Gamma distributions were

used to generate the matrices. The four categories of

the matrices and the corresponding input parameters

are shown in Table 1. In the table, � quanti�es the av-

erage value of the slopes in the matrices and V quanti-
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heterogeneity input parameters

A�M �task �machine Vtask Vmachine

Lo-Lo 50 ** 0.1 0.1

Lo-Hi * 30 0.1 0.5

Hi-Lo 50 ** 0.5 0.1

Hi-Hi 50 ** 0.5 0.5

* is computed for each task as a function of �machine and Vmachine

** is computed for each machine as a function of �task and Vtask

Table 1. Characteristics of ETCF and ETKF

matrices.

�es the heterogeneities. Each element in vector LLinit
is generated by sampling a uniform distribution from

10 to 100.

For each task, the average values of its computation

and communication latencies over all machines were

calculated from the ECL and ETK matrices. For each

PR, the sum and the maximum value of these average

values of all nodes along the route were calculated, de-

noted as s and m, respectively. Let �nl be equal to

jAj=jMj. The end-to-end latency requirement of the

PR was then set to s � �nl � f . f is a speci�ed factor

that is used to adjust the tightness of the constraints.

The throughput requirement of each task along the PR

was set to be 1=(m� �nl�f). Due to space limitations,

we emphasized only computation intensive applications

{ the average communication latency for each task is

around 1/100 of its average computation latency.

6.2 Results

For small problem instances, an optimal allocation

that results in the highest MAIL value was found by

enumerating all possible allocations. Because the exe-

cution time for enumeration is quite large for problems

with more than 4 machines, the number of machines

was limited to 4. The number of tasks was �xed at

12 (2 sources, 3 sinks, out-degree � 2). To study the

e�ect of the tightness of constraints, f was set to two

di�erent values (1.5 and 2).

The simulation results are shown in Figure 3. The

ratios of the MAIL values obtained from various ap-

proaches to the optimum MAIL value are presented.

Each bar represents the average value of the ratio over

40 instances (samplings of the gamma distributions

used to generate the ETCF and ETKF matrices),

with a 90% con�dence interval and a 20% (or better)

precision. The con�dence intervals are indicated by

lines at the top of each bar. If any approach fails in

an instance, that instance is excluded from the calcula-

tion of the average ratio and the con�dence interval of
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Figure 3. Simulation results for small prob-
lems.
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the approach. The plots clearly show that on the av-

erage, MIP outperforms the other three approaches for

all matrix characteristics. In the Hi-Lo environment of

Figure 3 (c), the average performance of MIP is 2 times

better than that of Greedy. Also, for the Min-Min and

Greedy approaches, a 5-25% miss rate (the number of

instances that an approach fails normalized with the

total number of instances) was observed in the simula-

tions, and this miss rate increases when the value of f

decreases. Details can be found in [8].

Simulations for large problems also showed similar

trends (see Figure 4). Due to space limitations, results

for only a single value of f (1.4) in Lo-Lo and Hi-Hi

environments are presented. Because it is impractical

to �nd an optimal allocation by enumeration for large

problems, the actual MAIL values for all the four ap-

proaches are shown. Each bar represents the average

MAIL value over 40 instances with a 90% con�dence

interval and a 15% (or better) precision. The con�-

dence intervals are indicated by the lines at the top

of each bar. If any approach fails in an instance, that

instance is excluded from the calculation of the aver-

ageMAIL value and the con�dence interval of the ap-

proach. By �xing the number of machines (tasks) and

varying the number of tasks (machines), two sets of

simulations were performed for large problems.

In the �rst set, the number of tasks was �xed at 40

(7 sources, 7 sinks, out-degree� 7) while the number of

machines ranged from 10 to 20. In the second set, the

number of machines was �xed at 12, while the number

of tasks ranged from 30 (5 sources, 5 sinks, out-degree

� 3) to 60 (10 sources, 10 sinks, out-degree � 3). In all

cases, MIP provided the highest averageMAIL values.

In some cases (e.g., 18 machines and 40 tasks in Fig-

ure 4 (a)), MIP showed a performance improvement of

100% (or better) over the other approaches.

Note in Figure 4 (a), the MAIL value does not in-

crease when the number of machines is increased. This

is because the value of �nl decreases when the number

of machines increases (for a �xed number of tasks) and

consequently, the throughput and end-to-end latency

requirements of the tasks become tighter. Similar ex-

planation holds for the other graphs in Figure 4.

6.3 Performance Comparison

In this section, we compare MIP with the Greedy

and Min-Min heuristics de�ned in Section 6.1 to show

the e�ectiveness of MIP.

Theorem 6.1 For all n � 4, where n is the number

of tasks to be allocated, there are problem instances for

which the Greedy and Min-Min approaches fail to �nd
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Figure 4. Simulation results for large prob-
lems.
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a resource allocation that satis�es all performance re-

quirements, while MIP succeeds (in �nding a feasible

resource allocation).

Detailed proof of Theorem 6.1 can be found in [8]

7 Concluding Remarks

This paper studied a critical problem of eÆciently

allocating resources in dynamic real-time systems such

as embedded hybrid systems. A novel performance

metric that considers the e�ects of run-time param-

eter variations was proposed. Based on the discussion

in Section 3, it would be useful to generalize the formal

performance metric by considering several other vari-

ations in run-time parameters other than load level.

We have made many simplifying assumptions to math-

ematically formulate the problem. Several interesting

variations of the problem can be de�ned in the future.

The performance of the various heuristics depends on

f . We plan to study its impact on the performance of

the proposed heuristics.
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