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ABSTRACT

CHARACTERIZING THE VISIBLE ADDRESS SPACE TO ENABLE EFFICIENT CONTINUOUS IP

GEOLOCATION

Internet Protocol (IP) geolocation is vital for location-dependent applications and many

network research problems. The benefits to applications include enabling content customiza-

tion, proximal server selection, and management of digital rights based on the location of users,

to name a few. The benefits to networking research include providing geographic context use-

ful for several purposes, such as to study the geographic deployment of Internet resources, bind

cloud data to a location, and to study censorship and monitoring, among others.

The measurement-based IP geolocation is widely considered as the state-of-the-art client-

independent approach to estimate the location of an IP address. However, full measurement-

based geolocation is prohibitive when applied continuously to the entire Internet to maintain

up-to-date IP-to-location mappings. Furthermore, many IP address blocks rarely move, making

it unnecessary to perform such full geolocation.

The thesis of this dissertation states that we can enable efficient, continuous IP geolocation

by identifying clusters of co-located IP addresses and their location stability from latency obser-

vations. In this statement, a cluster indicates a group of an arbitrary number of adjacent co-

located IP addresses (a few up to a /16). Location stability indicates a measure of how often an

IP block changes location. We gain efficiency by allowing IP geolocation systems to geolocate

IP addresses as units, and by detecting when a geolocation update is required, optimizations

not explored in prior work. We present several studies to support this thesis statement.

We first present a study to evaluate the reliability of router geolocation in popular geoloca-

tion services, complementing prior work that evaluates end-hosts geolocation in such services.

The results show the limitations of these services and the need for better solutions, motivating

our work to enable more accurate approaches. Second, we present a method to identify clus-
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ters of co-located IP addresses by the similarity in their latency. Identifying such clusters allows

us to geolocate them efficiently as units without compromising accuracy. Third, we present an

efficient delay-based method to identify IP blocks that move over time, allowing us to recognize

when geolocation updates are needed and avoid frequent geolocation of the entire Internet to

maintain up-to-date geolocation. In our final study, we present a method to identify cellular

blocks by their distinctive variation in latency compared to WiFi and wired blocks. Our method

to identify cellular blocks allows a better interpretation of their latency estimates and to study

their geographic properties without the need for proprietary data from operators or users.
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Chapter 1

Introduction

Internet Protocol (IP) geolocation associates an IP address with a real-world location. IP ge-

olocation is vital for many Internet location-dependent applications, as well as several network

research topics. The geographic context that IP geolocation provides can help service providers

to improve their services and their clients’ online experience, and network researchers to un-

derstand various network phenomena.

Providers of Internet services use geographic context in numerous ways to manage and im-

prove their services and to increase user engagement. For example, geo-blocking is widely used

in Video on Demand (VoD) services to limit or block access to content based on users’ loca-

tion [40, 83]. These services are popular with hundreds of millions of subscribers and tens of

billions of dollars revenues [33, 44]. Furthermore, service providers use geographic context to

increase users’ engagement since users are more likely to engage with geographically relevant

content, potentially increasing revenues for online businesses [31, 103]. For instance, depend-

ing on the location of the user, service providers can dynamically customize their online content

such as the language and local contact information, a news agency can display location-related

news to its readers, and a search engine can return more relevant results when a user searches

for a nearby shipping office or a restaurant. Other location-dependent applications include

online fraud prevention, proximal server selection, targeted advertising, and spatial analysis of

users’ data.

IP Geolocation also provides valuable context to networking research. Many projects use

geolocation information for several purposes, such as to study geographic deployment of Inter-

net resources and their utilization [4, 20, 22, 42], study and visualize routing footprints to detect

BGP threats [121], bind cloud data to a location [52, 94], estimate geographic presence of Au-

tonomous Systems (ASes) [132], detect routing paths that experience detour-paths [112], and

to study censorship and monitoring that happens in different countries [92]. All such studies
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rely heavily on IP geolocation, often obtained from public and commercial geolocation ser-

vices [5, 30, 32, 66, 80, 81].

1.1 Problems Addressed

In this section, we present the main problems and gaps we identify and address in this dis-

sertation concerning IP geolocation.

Need to evaluate the reliability of router geolocation in geolocation services: The growing

number of Internet applications and network research topics that benefit from geolocation ser-

vices makes it proper to evaluate the reliability of these services. Quantifying the error margins

and identifying regions where geolocation services fail can substantially improve the quality of

the beneficiary services and the research studies.

Previous work on evaluating geolocation services focused on their overall accuracy [55, 63,

95, 113, 115]. Such work is biased towards evaluating endpoints geolocation since there are far

more endpoints than infrastructure nodes in the Internet. This bias signifies the need for addi-

tional work to evaluate the geolocation of network infrastructure, such as routers, in commonly

used geolocation services.

Need to enable efficient employment of the state-of-the-art geolocation methods: It is es-

sential to enable the state-of-the-art geolocation methods, current or future, to scale up as ser-

vices that maintain up-to-date location mappings for the whole Internet (§2.5). For example,

the advantages of the measurement-based geolocation methods (§2.3) make them a desirable

solution for continuous geolocation. These advantages include accuracy, the ability to esti-

mate the current location with new measurement, provide a measure of confidence in the es-

timated location. Additionally, these methods are mostly user-independent (§2.3). However,

measurement-based methods can be prohibitive to apply for both the source and destination

networks [61], especially when applied frequently to all IP addresses to maintain up-to-date ge-
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olocation for the entire Internet (§2.5). Full and frequent geolocation of the entire Internet is

both expensive and unnecessary.

A better employment of the measurement-based geolocation methods would be to mea-

sure and geolocate only a few representatives from each group of co-located IP addresses, then

assign the inferred location to the whole group. The primary challenge for this approach is

to identify groups of co-located addresses before selecting their representatives. A /24 block

might be an appealing choice. However, this choice might lead to substantial geolocation er-

rors in blocks that span large geographic areas (§2.4). Also, a small unit size such as a /32 or

a /24 block could waste chances of more efficient geolocation for cases of larger groups of co-

located addresses. To avoid geolocation error caused by incorrect co-locality assumptions and

to identify groups of adjacent addresses that we can geolocate as a unit, we need a method to

access the co-locality of IP addresses.

Need to identify blocks that move: Only a fraction of the IP addresses move to a different

location from time to time, for instance, when they are transferred to a different organization,

or reassigned within an organization (Chapter 5). While we can maintain up-to-date location

mappings with frequent geolocation updates for the entire Internet, such an approach would

be expensive and unnecessary since only a fraction of the addresses may move from time to

time.

A geolocation system needs to identify when a range of addresses moves to trigger a re-

geolocation for these addresses. As a result, a geolocation system can maintain up-to-date loca-

tion mappings without needing to perform full re-geolocation. Triggering re-geolocation only

when it is needed helps the efforts to scale up continuous geolocation for the entire Internet.

Need to identify cellular blocks: More and more devices access the Internet through cellu-

lar networks. Cellular blocks are an interesting class of IP blocks to IP geolocation for several

reasons. IP addresses in these blocks show distinctively large variation in latency when probed

repeatedly from a vantage point (§6.3.1), which can affect the results of measurement-based
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geolocation algorithms. Previous work has shown that the IP addresses in cellular networks are

often shared across distinct geographic areas [11,131]. Other work shows that popular geoloca-

tion services poorly geolocate the majority of IP addresses in cellular networks for which they

have location ground truth data [124]. Identifying cellular blocks provides an additional layer

of information, allowing for studying their geographic properties and for better interpretation

of their delay observations.

1.2 Thesis Statement

The thesis of this dissertation states that we can enable efficient, continuous IP geolocation

by identifying clusters of co-located IP addresses and their location stability from latency ob-

servations. In this statement, a cluster indicates a group of an arbitrary number of co-located

adjacent IP addresses (a few up to a /16). Location stability indicates a measure of how often an

IP block changes location. We gain efficiency by allowing IP geolocation systems to geolocate

IP addresses as units, and by detecting when a geolocation update is required. These optimiza-

tions were not explored in prior work. Accurate IP geolocation algorithms that are prohibitive

to apply to the entire Internet can use our optimization techniques to scale up as continuous

services that maintain up-to-date geolocation. We present two studies to support this thesis

statement. In the first supporting study, we present a delay-based method to identify clusters

of co-located IP addresses by the similarity in their latency observations. In the second study,

we present an efficient delay-based method to identify IP blocks that move. We show how these

optimizations reduce the number of targets to geolocate while dictating when geolocation up-

dates are required.

Additionally, we present a study to evaluate router geolocation in popular geolocation ser-

vices, showing their limitations and the need for better solutions, an additional motivation for

our work to enable the more accurate but expensive geolocation solutions. In our final study,

we present another delay-based method that extends our use of latency measurement to char-

acterize IP addresses. This time, we leverage latency observations to detect IP addresses in
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cellular networks by their distinct variation in latency. This method allows for better interpreta-

tion of the latency observations of an interesting category of Internet blocks and to study their

geographic properties without the need for proprietary data from carriers or users.

1.3 Overview of the Dissertation Studies

In §1.1, we presented some open problems and gaps in the IP geolocation body of work. In

this section, we present an overview of the studies proposed in this dissertation to address these

problems and how they support the thesis statement in §1.2.

1.3.1 Evaluating the Reliability of Router Geolocation in Popular Geoloca-

tion Services (Chapter 3)

Location-dependent applications and network research often rely on public and commer-

cial geolocation services, typically provided as IP-to-location databases (§2.1.4). Previous work

on the evaluation of geolocation services is biased towards evaluating endpoints geolocation [55,

63,95,113,115]. This dissertation complements prior evaluation work by focusing on router ge-

olocation in popular geolocation services.

We create a ground truth dataset of 16,586 router interfaces and their city-level locations

using two different approaches, a DNS-based approach and a delay-based approach. We use

our ground truth dataset to evaluate router geolocation accuracy of four geolocation databases

by region. Our results show that the studied geolocation databases are not reliable for router

geolocating and that there is room to improve both their country- and city-level accuracy.

Moreover, using Huffaker et al. domain-specific rules [64] (§2.1.3), we also show, in §3.3.4.2,

that even router IP addresses move from time to time. These results show that we need better

geolocation solutions and motivate our work to enable the more accurate but expensive solu-

tions such as those discussed in §2.5.
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1.3.2 Optimizations for More Accurate Continuous IP Geolocation

Earlier in the introduction, we discussed two optimizations to enable efficient, continuous

IP geolocation that keeps location mappings up-to-date. In this section, we present an overview

of our solutions to achieve these optimizations and how they demonstrate the thesis statement.

1.3.2.1 Identifying Clusters of Co-located IP Addresses (Chapter 4)

The first optimization we propose for efficient IP geolocation is to identify adjacent co-

located IP addresses that we can geolocate as a unit, effectively reducing the number of targets

without affecting accuracy. To achieve this optimization, we devise a delay-based method to

identify adjacent co-located IP addresses by the similarity of their latency estimates.

We formulate this problem as finding similar IP addresses in a multidimensional space of

delay coordinates. Adjacent, nearby IP addresses are expected to have small distances between

them in the delay multidimensional space. We create for each IP address a vector of delay mea-

surements observed from several vantage points. We then cluster IP addresses in a block based

on the similarity of their delay vectors.

We assess the co-locality of IP addresses in a large subset of a latency measurement dataset

collected by Hu et al. [61]. We first used our method to assess a previously common assumption

that all IP addresses within the same /24 IPv4 prefix reside nearby (the co-locality assumption).

Our results show that this assumption is incorrect for a significant fraction of the studied blocks.

For such blocks, assigning one location for all the addresses in the block can lead to geolocation

errors.

We then evaluate our algorithm on larger sets of adjacent IP addresses in 65 /16 university

blocks that we believe are nearby. The results show that our algorithm can effectively identify

arbitrary-size groups of co-located addresses. For most of the sets, the IP addresses are cor-

rectly identified in one cluster, indicating they are in one location. These results support our

thesis statement by showing we can identify large clusters of co-located addresses that we can

geolocate as a unit. Moreover, our method can help avoid geolocation error caused by making

incorrect co-locality assumptions.
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1.3.2.2 Identifying Blocks that Move (Chapter 5)

The second optimization reduces the burden of continuous geolocation by identifying when

a geolocation update is needed, that is when an IP block change location. To achieve this

optimization we propose a lightweight method to identify IP block movement by observing

significant delay changes to /24 blocks from a few vantage points globally distributed. Delay

changes can be a result of different reasons, including transient network congestion and rout-

ing changes. To minimize false positives, we only consider delay changes as strong evidence of

movement when they are persistent and observed by several vantage points at different loca-

tions around the same time.

To quantify how often blocks move, we apply our algorithm to Internet-wide existing ICMP

scan data §5.2.1 from publicly available measurements [97]. The results show that most of the

responsive /24 blocks were RTT-stable over a quarter, 2018q4, suggesting location-stability. (We

identified only 2.1% of the blocks as moving during this quarter.) We validate our approach

by confirming movement through traceroutes and information about Internet registration re-

allocations.

These results show strong evidence that supports the thesis statement. Using an efficient

method that identifies movement of IP blocks from existing ICMP scans, we show that only a

small fraction of the IP blocks require geolocation updates. These results show that our method

can help a geolocation service avoid frequent full re-geolocation to keep up-to-date location

mappings.

1.3.3 Identifying Cellular IP Blocks (Chapter 6)

A large number of devices access the Internet through cellular networks today [37, 120].

Identifying IP blocks used for cellular access allows for a better understanding of network traf-

fic trends and diagnose performance issues, among other applications. For IP geolocation, it is

useful to identify blocks in cellular networks as they represent an interesting as well as a chal-

lenging category to geolocate without proprietary data (§2.6).
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We propose a new method to identify cellular blocks based on active measurements of pub-

lic IP address blocks. We show that we can distinguish between cellular blocks and other block

types (fixed-line and WiFi) by the variance in their latency measurement when probed repeat-

edly from a vantage point. We measured the daily variance in a block’s latency using the in-

terquartile range of RTTs in a day, and then use the median IQR of all daily IQRs over a month

to distinguish block type.

We show that cellular blocks exhibit different median IQR patterns to those of fixed-line and

WiFi blocks. We also found that the median IQRs of fixed-line and WiFi blocks largely overlap,

allowing only a fraction of the WiFi blocks to be identified with high confidence. As a result, we

identified three categories (mixed, WiFi, cellular) of block type with two thresholds of median

IQR, and selected good thresholds based on our labeled data, a form of best-effort ground-truth.

We apply our method to 3.72M /24 blocks and identify around 4.6% as cellular. We validate

part of our algorithm predictions in the wild, showing high accuracy in cellular blocks identifi-

cation.

This study extends our use of delay observations to characterize Internet addresses in ways

that benefit IP geolocation and other networking applications. Cellular blocks show distinctive

latency patterns which may affect the results of delay-based methods. Identifying these blocks

provides a starting point for future work that studies their impact on delay-based methods. Our

work will assist future work that study the geographic properties of cellular blocks and charac-

terize how cellular networking affects the Internet.

1.4 Research Contributions

This dissertation presents four studies to address some challenges related to IP geolocation

and to support the thesis statement. In this section, we list these studies and their main contri-

butions.

The first study presents an evaluation of router geolocation in popular geolocation services,

provided as IP-to-location databases (Chapter 3). We use a set of 1.64M router interfaces ex-
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tracted from CAIDA’s Ark dataset (§3.2.1) to study four popular databases inconsistencies and

coverage. We show that the studied geolocation databases have many inconsistencies, espe-

cially at city-level. To assess the accuracy of the databases, we create a ground truth dataset

using two approaches, a DNS-based approach (§2.1.3) and a delay-based approach that uti-

lizes the RIPE Atlas built-in measurements [105]. Using these two approaches, we create a

ground truth dataset of 16,586 interface IP addresses and their locations with city-level accu-

racy. We evaluate the databases’ country- and city-level accuracy regionally using our ground

truth dataset. Our results show that all studied databases have room to improve their accuracy,

even at country-level. We provide a set of recommendations for using the geolocation databases

to geolocate routers.

Our second study implements and evaluates a delay-based clustering algorithm to identify

co-located adjacent IP addresses (Chapter 4). We first used our algorithm to identify blocks with

endpoints at different locations automatically. We applied the algorithm to analyze 1.41M /24

blocks (118M addresses) and found that a noticeable fraction of these blocks (17%) appear to

have endpoints at multiple locations. We then showed that our algorithm can identify clusters

of co-located IP addresses of arbitrary size. This result shows that we can identify and geolocate

large groups of co-located IP addresses as units, leading to a significant reduction in the number

of targets and network traffic required for geolocation.

The third study defines a new delay-based method to identify IP blocks that move (Chap-

ter 5). We used our method to quantify the fraction of moving blocks over two quarters (2018q4

and 2019q1) of Internet-wide existing ICMP scan data §5.2.1. We show that most of the respon-

sive blocks are RTT-stable, suggesting their location did not change. We identified about 2.1%

of the blocks as moving during 2018q4, and about 1.7% during 2019q1. A geolocation service

can use our method to keep up-to-date geolocation without needing to perform frequent full

re-geolocation for the entire Internet.

Our final study presents a new delay-based method to identify block type, mainly cellular IP

blocks (Chapter 6). We show that we can identify cellular blocks by the variation in their RTT
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observations. We applied our method to most of the public Internet, reporting on about 3.72M

responsive IPv4 /24 blocks data from September 2017, identifying around 169k blocks (4.6%) as

cellular. Our method identified most of the blocks as mixed (fixed-line or WiFi).
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Chapter 2

Background and Related Work

Previous work on IP geolocation focused on proposing methods to identify the locations

of IP addresses, evaluating the accuracy of existing geolocation methods and services, and the

scale-up of measurement-based methods. In this chapter, we discuss the main methods to map

IP addresses to real-world locations in terms of the approach (how the location is identified),

accuracy (prediction vs. actual location), and coverage (addresses covered by the method). We

also talk about the identification of cellular IP blocks, an interesting category to measurement-

based geolocation given cellular blocks’ distinctive latency patterns.

There are different methods to obtain IP-to-location information, including methods that

infer location data from existing databases (§2.1), target-assisted methods (§2.2), and measurement-

based methods (§2.3). In addition to these geolocation methods, we present prior work on eval-

uating the accuracy of IP geolocation services (§2.4). We then present prior work on the scale-up

of measurement-based geolocation to the whole Internet (§2.5). Finally, we discuss prior work

on the detection of blocks in cellular networks (§2.6).

2.1 Location Information from Existing Databases

In this section, we present several methods that infer location information from existing

databases, including registry databases (§2.1.1, §2.1.2, and §2.1.3) and public and commercial

geolocation databases (§2.1.4).

2.1.1 Look-up WHOIS Databases by IP Address

Public WHOIS databases store information about registered users of Internet resources,

such as domain names and IP address blocks. Regional Internet Registries (RIRs) manage the

WHOIS databases. Each RIR is responsible for a different region, as Figure 2.1 depicts (e.g.,

AFRINIC is the RIR for Africa). RIRs are responsible for dividing and delegating Internet address
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Figure 2.1: Regional Internet Registries (RIRs) [65].

blocks in their designated regions to the requesting entities (e.g., companies, organizations, and

Internet service providers (ISPs)).

The process of registering Internet addresses involves maintaining the contact information

of the registrant. The contact information can include location information such as the address

of the registrant. Users can look-up WHOIS databases by IP address to obtain such contact

information. NetGeo [84], and GeoCluster [91] are examples of earlier geolocation methods that

rely on location information from WHOIS databases.

WHOIS databases have complete coverage of the allocated IP address space, but they can

be inaccurate for IP geolocation purposes. The location information inferred from querying a

WHOIS database often reflects the location of the registrant, which can be different from the

location of the network itself. An entire IP prefix might be assigned a single location (e.g., the

location where an organization is headquartered) even though the prefix is partitioned by its

owner for use in different locations. Furthermore, the information in a WHOIS database can be

outdated if an address block is moved without updating the database.

2.1.2 DNS LOC Records

Davis et al. in RFC 1876 [29] proposed adding location information about hosts and net-

works to the Domain Name System (DNS) via a new DNS Resource Record (RR) called LOC,

which can be used to express the latitude, longitude, and altitude information.
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Several geolocation methods tried to take advantage of this location information, including

GeoTrack [91], Gtrace [93], and VisualRoute [126]. The deployment of this experimental pro-

tocol was hampered by the need to modify the LOC records by administrators who have little

incentives to do so [91, 128]. Previous work has shown that most hosts lack LOC records [85].

Moreover, users who submit the information of the LOC records may intentionally provide in-

correct data.

2.1.3 Location Hints within Domain Names

Some IP addresses map to domain names that include location hints. Decoding these loca-

tion hints can reveal the location of such addresses [64, 77]. The Rocketfuel’s undns tool was an

early attempt to infer router location from information embedded in DNS names [6, 118, 119].

This work generated hand-crafted rule sets to parse names by conducting manual inspection

of a list of router names to discover the naming conventions of different ISPs.

Freedman et al. added more name-parsing rules to undns to support more ISPs [43]. They

used the tool to extract the locations of IP addresses as part of their work to study the geo-

graphic characteristics of IP prefixes and their influence on BGP routing tables. Their results

show about 1.4% of /24 blocks or smaller span distances of more than 100 miles. (We discuss

another geolocation method that uses the heuristics of the undns tool in §2.3.4.)

Inferring locations from DNS names can be challenging as network operators in different

organizations may use different naming conventions. To address this challenge, Huffaker et al.

propose a method to identify domain-specific naming rules, DNS-based Router Positioning

(DRoP) [64]. They infer an extensive dictionary that maps location strings such as airport codes

to physical coordinates, then using domain-specific rules they search for and decode location

hints in hostnames to infer their locations. They generated domain-specific rules for 1,398 do-

mains. Their work verifies inferred location hints using active latency measurement. Similarly,

Scheitle et al. extract location hints from DNS names and then verify or disqualify them using

latency measurement [110].
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Related to extracting useful information from DNS names, Luckie et al. implement a method

to identify a router name (router identifier) from hostname strings [78]. Their method depends

on identifying naming conventions used by operators of different suffixes. (A suffix is defined

as the part of a hostname that identifies an administrative domain, such as comcast.net.) Using

training data of router interface IP addresses, router alias resolutions inferred with MIDAR [72]

and Mercator [54], and the hostnames of interfaces, the method automatically generates regu-

lar expressions (regexes) to identify potential router names. A regex is concluded to define the

naming convention for a given suffix if it identifies the same router name for all interfaces asso-

ciated with the same router, such that the name is unique for all routers within the same suffix.

This method identified the naming conventions, with confidence, for about 30.6% of 2,550 suf-

fixes with data extracted from April 2019 CAIDA’s ITDK IPv4 topology. This work can be useful

for router geolocation as it provides another technique to identify interfaces on the same router

that should all be geolocated to one location.

The DNS-based geolocation approach can provide accurate results. However, the scope of

this approach is limited since not all router addresses have DNS names. Furthermore, not all

names have useful geolocation hints.

2.1.4 Public and Commercial Geolocation Databases

IP geolocation services provide a popular, ready-to-use option to geolocate IP addresses.

These services compile IP-to-location mappings as databases available as free [21, 30, 66, 81] or

paid services [5, 32, 67, 80].

Providers of geolocation services often claim to have proprietary techniques to compile

IP-to-location mappings. Lacking verified information about how these providers build their

databases, we speculate that they may use different combinations of methods, such as: (a) pars-

ing DNS names for location hints, (b) collecting data directly from users willing to share their lo-

cation (e.g., via HTML Geolocation API [127] and MaxMind correction requests [82]), (c) collect-

ing WiFi access points information including their MAC addresses and locations in association
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with the devices that connect through them, (d) mining registry data, and (e) measurement-

based geolocation. In §3.5.3.4, we show that one provider appears to benefit from location hints

encoded in DNS names more than other competitors. As future work, we hope to investigate

further how we can identify the methods providers use to compile their databases.

These geolocation services generally provide complete coverage for the IP address space at

varying degrees of accuracy. Regardless of their accuracy, the location information these ser-

vices provide could include geographic coordinates, postal code, city, and country information.

Prior work shows that such geolocation services are unreliable for geolocating end-hosts [49,

63, 75, 95, 113, 115]. We discuss the accuracy of geolocation services in §2.4. We also evaluate

the accuracy of router geolocation in widely-used geolocation services in Chapter 3.

2.2 Target-Assisted Geolocation

In this section, we present two categories of methods that benefit from target hosts’ collabo-

ration. The first one benefits from certain technologies if enabled on target devices, such as the

global positioning system (GPS) on a mobile phone (§2.2.1). The second one collects location

data directly from users who are willing to share that data (§2.2.2).

2.2.1 Utilizing Technology-Enabled Devices

End-user devices may contain technologies useful to geolocate these devices with high ac-

curacy. Global Positioning System (GPS), cell-towers triangulation, and WiFi-based geolocation

are examples geolocation techniques that we can apply to devices that are GPS-enabled or con-

nect via wireless means. These techniques typically require the permission of users to share

their locations or to provide the required data to perform geolocation on their devices.

The GPS approach requires GPS-enabled devices to work. This approach provides the most

precise geolocation, typically within a few meters of the actual location. Cell-towers and WiFi

-based approaches, such as Google Geolocation API [53] and Skyhook [116], require a target

device to be wireless-connected. These approaches perform triangulation based on the signals
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and their strength between the target-host and the cell-towers (or the WiFi access points) [23,

125]. For these techniques to work well, they need the nearest cell-towers IDs or the host’s

visible WiFi access points. Triangulation using cell-towers provides accuracy within hundreds

of meters and within a few tens of meters using WiFi access points [128].

These target-assisted methods are very accurate but have limited coverage. Devices that are

not GPS-enabled or are not connected to a cellular network or a visible WiFi access point at a

known location cannot be geolocated using such techniques.

2.2.2 Crowdsourcing-based Geolocation

Another source of IP-to-location information are users. Users may voluntarily provide their

location information while doing online activities such as shopping. Lee et al. propose a crowd-

sourcing technique that utilizes an Internet-performance measurement-service, Ookla Speedtest,

in Korea [75]. Users who use such performance measurement-services provide information

that includes their location, which can be associated with their IP addresses. To increase the

coverage of their method, they assign location information at an IP prefix level (/24, /25, and

/26 prefixes). To improve confidence in the inferred locations, a majority vote of all locations

gathered for IP addresses in a /24, /25, or a /26 is applied, requiring 80% or more location agree-

ment to assign a location at prefix-level.

OpenIPmap is another project that relies, partially, on crowdsourcing input to map Internet

Infrastructure, such as IXPs, and core routers, to geographic locations [106]. The project allows

users to browse and submit geolocation information about network Infrastructure via a web

application [107].

Reaching large counts of users for location information can be challenging, and many users

are unwilling to provide such information. As a result, achieving high coverage is hard based

only on information from participants in crowdsourcing efforts. Also, users may deliberately or

accidentally provide incorrect location information. As a result, crowdsourcing is likely useful

only as a complementary approach for geolocation.
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2.3 Measurement-based IP Geolocation

Measurement-based IP geolocation relies on network measurements, mainly delay and topol-

ogy, to geolocate an IP address. Delay measurements are mainly used to estimate the distance

between two network nodes. While topology measurements can provide information about the

intermediate nodes between a landmark and the target [70, 73, 129]. Both delay and topology

measurements are mapped to constraints on the target’s physical location.

Some geolocation methods use delay measurements to identify the closest landmark from

the target IP address to associate its location with that of the landmark (§2.3.2). Most methods

map delays to distances and use them to constrain the target location (§2.3.3). We expand our

discussion of the geolocation methods that use delay-to-distance mapping to those that also

incorporate topology (§2.3.4).

The measurement-based geolocation methods have several desirable advantages. First,

previous work has shown that these methods provide good accuracy [56, 70, 128, 129]. Second,

these methods are mostly client-independent; they only require the target address to respond

to measurement. Third, they can be used to provide a current estimation of the target location

with new measurement. Finally, these methods can provide a measure of confidence for their

location estimation.

2.3.1 Terminology

We use the term vantage point (VP) to refer to an Internet host at a known location that can

be used to actively probe other hosts. A vantage point is also referred to as an active landmark or

simply a landmark in the literature. We use both, VP and landmark interchangeably throughout

this chapter. In addition to active landmarks, some methods also use passive landmarks to refer

to Internet hosts at known locations that cannot be used to issue probes to other hosts. We

explicitly specify if a landmark is passive when that is the case, otherwise the term landmark

indicates an active landmark. Active and passive landmarks are used by measurement-based

methods to geolocate a target IP address or simply the target. Often, these methods estimate
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the great-circle distance between two nodes, defined as the shortest distance between the two

nodes on the surface of the Earth.

2.3.2 Nearest Landmark to Target

This section discusses methods that use delay measurements to find the potentially closest

landmark from target. The goal is to associate the location of the target with that of the land-

mark. These methods do not translate delays into distance values, but they use them as an

indication of distance or as signatures that identify co-located hosts as explained next in the

discussion of these methods.

Shortest Ping

To estimate the location of target address, the Shortest Ping method probes the target from

available VPs at different locations to find the VP with the smallest RTT to the target. The loca-

tion of that VP is then assigned to the target IP address.

Several groups utilize Shortest Ping to study certain aspects of measurement-based geolo-

cation. For example, as part of their work to scale up existing geolocation methods, Hu et al. use

Shortest Ping to geolocate the entire IPv4 address space [61]. Also using this method, Eriksson

and Crovella examine how network geometry affects geolocation accuracy [39]. Wang et al. use

a modified version of Shortest Ping as the final stage of their geolocation system (§2.3.3.1) [128].

This method has two obvious limitations. The smallest RTT does not guarantee finding the

closest VP to the target. Fore example, indirect paths and congestion can add to the observed

latency making the VP looks farther than it really is from the target. And even if the algorithm

always find the closest VP to the target, the accuracy is only as good as how far the VP is from

the target. Finding the closest VP that is, for example, 200 km away from the target would likely

results in incorrect city and possibly incorrect country geolocation.
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GeoPing

GeoPing [91] is another method that seeks to identify the VP closest to a target. GeoPing

is motivated by the insight that hosts with similar measured delays from the same reference

points tend to be geographically close. GeoPing constructs an offline delay-map from delay-

vectors of inter-VPs latencies. Each delay-vector contains one active VP position and the latency

measurements from that VP to all other VPs:

(LMX coor di nates,del ayLM1−X ,del ayLM2−X , ...,del ayLMn−X )

The delay-vector can contain measurements to both, active and passive VPs (i.e., landmarks of

known locations). Although passive VPs cannot be used to probe the target, it is possible to

probe them to create additional delay-vectors and add them to the delay-map.

To estimate the location of a new target, a new delay-vector is constructed from latencies

observed by probing the target from all VPs. The delay-vector of the target is then compared

against those in the delay-map to find the VP with most similar delay-vector. The location of

that VP is then assigned to the target.

Like the Shortest Ping method, GeoPing geolocation can be only as good as the closest VP

from target, which could be too far. Moreover, previous work shows that the simpler Shortest

Ping method does better than GeoPing in practice [38, 70].

Pattern-Based Geolocation (PBG) Approach

Pattern-Based Geolocation (PBG) is another single-point geolocation method that looks to

find the closest landmark from the target [114]. PBG models geolocation as a pattern-recognition

problem. Like GeoPing, PBG uses delays as signatures, but it builds these signatures statisti-

cally via Probability Mass Functions (PMFs). The intuition is that geographically close hosts

have similar paths, therefore they also have similar RTT distributions, which can be used as

signatures. PGP is designed specifically to improve the accuracy of geolocating IP addresses
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in metropolitan areas where the authors indicate the delay-distance correlation is weak due to

network congestion and higher queuing delays there.

To geolocate target addresses, the latency measurement is collected from probe nodes to

passive landmarks and to the target to construct their individual PMFs. The target’s PMF is

then compared against those of the passive landmark using Shifted distance divergence metric

to find the most similar one. This metric detects similar but shifted PMFs. Such shifts can be

a result of few extra hops in one route. Finally, the location of the landmark with the highest

similarity score is assigned to the target.

PBG has similar limitations to both Shortest Ping and GeoPing. Being able to find landmarks

close from target is crucial to its accuracy. Statistically constructed signatures may achieve more

robustness, but these signatures are not always strong enough to reveal the closest landmark to

the target. The proposed solution in the paper adds significant amount of traffic.

2.3.3 Geolocation via Delay-to-Distance Mapping

This section discusses methods that map the observed delay between two nodes to a dis-

tance estimation. Mapping techniques include using a predefined conversion factor, such as

the speed of light in fiber (measured to be around 2
3 c where c is the speed of light) to esti-

mated distance from delay. Another mapping technique builds a statistical model for the delay-

distance relationship using measurements from VPs to targets at known locations. The model

can then be used to predict the likelihood of a distance given a delay measurement.

Accurate delay-based estimation of the distance between two nodes can be tricky. Padman-

abhan et al. admitted they were unable to capture delay-distance relationship using a precise

mathematical model [91]. Distortion factors like circuitous paths and network queuing delays

add to the observed delays, which complicates the delay-distance relationship. We next discuss

different approaches that attempt to address delay to distance mapping challenges.
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Figure 2.2: Constrained multilateration using three vantage points.

Constraint-Based Geolocation (CBG)

Constraint-Based Geolocation (CBG) maps a measured delay from a VP to the target into

a region that constrain the target’s location [56]. This region, hereby referred to as location

constraint, is computed by first mapping the delay to a distance, for example using a conversion

factor like the speed of light in fiber. Since delay measurements are often inflated, the estimated

distance can be treated as an upper bound radius of a circle with the VP as its center, and the

target is somewhere within its circumference.

The location constraint can be very large, therefore, we typically need multiple location con-

straints for more accurate geolocation. The intersection of these location constraints represents

an estimation of the target location that satisfies all VPs constraints. Figure 2.2 shows an exam-

ple of one target geolocation using three VPs.

There are several geolocation methods that utilize CBG. Some of these methods attempt to

improve the accuracy of the delay-to-distance mapping, others try to include topology informa-

tion to impose more restrictions on the location of targets. After explaining the basics of CBG

here, we next turn to other CBG-based methods.
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Bestline-Calibration Constraint-Based Geolocation

Gueye et al. are the first to apply the CBG approach to geolocate Internet hosts [56]. We refer

to their method as bestline-CBG to avoid confusion with the basic CBG approach discussed

earlier.

The intuition behind bestline-CBG is that the distortion in the relationship between net-

work measured delay and distance can only be additive. In other words, the estimated distance

between two hosts is equal to the great circle path length between them plus some error dis-

tance. This error is a result of additive delay terms, and the goal of bestline-CBG is to reduce

this error.

In order to reduce the effects of delay-distance distortion factors on the estimated distance

between two nodes, Gueye et al. proposed a landmark self calibration method. The method es-

tablishes a dynamic relationship between distance and network delays for each landmark. This

relationship dictates how a landmark is calibrated to estimate the distance from an observed

delay at a given time.

A landmark Li is calibrated using the remaining landmarks. To establish a delay to distance

relation, Li measure the delay from itself to all other landmarks to create (delay, distance) data

points. The bestline for Li is defined as y = mi x +bi such that it is closest but below all of its

(delay, distance) data points. Each landmark needs to do the same to compute its own best-

line. The bestline serves as a more aggressive delay-to-distance mapping when compared to

the baseline computed as 1
2 ×RT T ×

2
3 c, where 2

3 c is the speed at which bits travel in fiber and c

is the speed of light.

Each landmark uses its bestline to compute the distance constraints from their measured

delays to target. The constraints are then combined via multilateration to estimate a region for

the target location. The size of the estimated region is an indication of the of the confidence in

the geolocation.

There are several limitations that can affect bestline-CBG accuracy. First, sometimes the

landmarks share part of the path toward a target hidden behind a single point. As a result, there
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is insignificant gain from using the resulting constraints and the accuracy would highly depend

on how far the closest landmark is from the target. Second, distance underestimation is possi-

ble due to the bestline calibration. Underestimating the distance by one landmark or more will

result in an empty solution set. Third, the calibration approach is based on inter-landmarks

network conditions at a given point of time. These conditions can quickly change rendering

the calibration as futile. Furthermore, the inter-landmark calibration might not reflect the net-

work conditions toward the target. Empirical results by Katz et al. [70] show no gains of using

bestline-CBG method over a simpler CBG with no calibration.

2.3.3.1 CBG with Web-Based Landmarks

Measurement-based geolocation methods are shown to provide more accuracy as the dis-

tance between landmarks and targets decreases [61]. This can be attributed to less inflation in

delay measurements compared to when landmarks are far away from the target, which makes

delay and distance more correlated. Motivated by this observation, some approaches strive to

find active and passive landmarks as close as possible to targets [61, 128].

One way to find landmarks closer from targets is to exploit Web-based landmarks such as

Web or Mail servers hosted locally by universities, governments, and business entities at known

locations. Structon and street-level geolocation are examples of methods that use web-based

landmarks [58, 128]. The street-level geolocation method uses web-mining in an effort to find

passive landmarks within a region around the target. This region is computed using the CBG

approach.

To find web-based landmarks, the street-level method uses public services to find passive

landmarks related to a set of ZIP codes. The set of ZIP codes is generated systematically based

on the identified target’s CBG region Ci . The extracted passive landmarks are then automat-

ically validates to eliminate the incorrect ones (e.g., hosts that belong to businesses that use

shared hosting services).

The Web-based passive landmarks are first used to tighten the region where the target is

expected to reside in. This is done by estimating their distances to the target and then use
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Figure 2.3: Indirect estimation of the distance between a Web-based passive landmark and a target
host [128].

these distance to estimate a new constrained region Ci−2. To estimate the distance of a passive

landmark to target, like landmark PL to target t depicted as an empty circle and a triangle re-

spectively in Figure 2.3, each vantage point will traceroute both PL and t . The goal is to find

the closest common router in the paths to PL and t . For vantage point v1 this router is R1, and

for v2 it is R2. The latency from the common router is measured to both the passive landmark

and the target. The summation of these two can then be used to estimate the distance between

the landmark and the target. If different vantage points gave different estimations, then the

minimum one is used.

Another possible approach to estimate the delay between the passive landmarks and the

target is to use the King tool created by Gummadi et al. [57]. Gummadi et al. claim that the

majority of hosts are close to their authoritative name servers. Based on that observation the

tool is designed to estimate latency between any two hosts (even if we cannot access them) by

estimating the RTT between their domain name servers using recursive DNS queries. The tool

has its limitations though, for example end hosts that use modems have relatively large last hop

latency.

To confine the location of the target furthermore, more web-based landmarks are identified

within the new region Ci−2. The distances between them and the target are estimated as previ-
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Figure 2.4: Street-level evaluation over academic, residential, and public Internet datasets [128].

ously described. The location of the relatively closest landmark to the target is then assigned to

the target. This final solution is based on the observation that relative distances are preserved

by delay measurements within a small scale.

The Street-level geolocation approach reportedly has the best results among all the geolo-

cation approaches we discuss in this dissertation. A median error of about only 700 meters

is reported. Figure 2.4 shows an evaluation of the approach using three different datasets to

show how this method works in different networks environments; academic, residential, and

the general Internet.

While the street-level method reported results shows high accuracy, the method still has sev-

eral limitations. First, the accuracy of this approach depends on the landmarks density. Second,

it is also less resilient to high variance latency connections close to end users as in the case of

wireless networks. Third, the applicability of this method on a global scale is questionable,

especially in regions that lacks means to enable discovery of useful passive landmarks. For ex-

ample due to the lack of an addressing system equivalent to the postal codes used in the United

States, or the lack of enough Internet resources that can be used as passive landmarks such as

in rural areas. Finally, street-level method involves computation and traffic overhead, and even

if the database of passive landmarks is created in advance, it still needs to be updated regularly.
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2.3.4 Delay-based with Topology Geolocation

End-to-end delay-based geolocation approaches (e.g., bestline-CBG) are negatively affected

by factors that inflate delay measurements such as networks congestion and path circuitous-

ness. The accuracy of such approaches is shown to depend on the proximity of the landmarks

from the target (the closer the better) [61, 70].

The Topology-based Geolocation (TBG) [70] and Octant [129] are two techniques that use

topology information to improve upon end-to-end delay-based approaches. We discuss these

techniques in this section.

Topology-Based Geolocation (TBG)

The Topology-Based Geolocation (TBG) approach uses network delay measurements and

topology information to create a set of location constraints on the target host and the routers

on the path from the landmarks towards the target [70]. Unlike end-to-end delay-based ge-

olocation methods that only solve for the target location, TBG tries to solve simultaneously for

both the target and intermediate routers locations.

Using inter-landmarks and landmarks-to-target traceroute probes, TBG infers per hop de-

lays, end-to-end delays, and topology information. This information is used to globally opti-

mize the topology picture (i.e., the locations of targets and intermediate routers) in accordance

with the observed delays between all network elements.

To solve for targets and intermediate routers locations, TBG models the problem as a graph

that contains targets, routers, and landmarks as nodes. The distance between two network

nodes i and j is denoted as d(i , j ). Based on this model two types of constraints are defined:

• Hard Delay Constrains (Cd ) : d(li , x j ) ≤ ci j

• Soft Link Latency Constraints (Cl ) : d(xi , x j ) = hi j +ei j

Cd indicates that the distance between a landmark li and a target or router x j is bounded by

the distance ci j , the distance that light can traverse in fiber given the measured delay between

the two nodes. Cl indicates that the distance between two adjacent nodes xi and x j is the
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summation of two terms: hi j , the estimated distance between two adjacent nodes based on

their inferred hop latency, and the error ei j resulted from the noise in the measurements.

Given the above constrains, TBG formulates the problem of geolocating targets as an opti-

mization problem. The goal is to solve for the set of routers and targets (X ) locations such that

the observed distances between adjacent intermediate nodes correspond to hop delay mea-

surements. The solution is required to minimize the total summation of the error term ei j for

all link constraints subject to Cd and Cl constraints:

minimize:
∑

i , j∈Cl

∣

∣ei j

∣

∣

subject to: Cd ,Cl

To improve estimations of intermediate routers locations, TBG clusters network interfaces

that belong to the same router (i.e., a router’s IP aliases). Two previously developed techniques

are used to identify such IP aliases: Mercator [54], and Ally [119]. The clustering of a router

interfaces helps observing tighter constrains on its location.

There are two more variations of TBG. The first variation uses passive landmarks to further

constrain the network topology. TBG probes these passive landmarks from the active land-

marks in order to add additional constraints on the location of intermediate routers between

them. The second variation (in addition to using passive landmarks) uses location hints in the

DNS names (§2.1.3). These hints are extracted via DNS parsing rules [119]. Given that the hints

can be ambiguous or even incorrect, TBG validates these hints with latency measurements be-

fore using them.

TBG has several limitations. First, TBG may not work well for targets in networks that lack

sufficient structural constrains. For example a stub network that communicates via one con-

nection point with non-local hosts, especially when such point has a high latency towards tar-

gets within the stub network and all the landmarks are outside the network. Another issue is

that optimizing for intermediate routers locations can lead to a greater error in estimating tar-
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Figure 2.5: Octant positive and negative distance constraints.

get location. This can be a result of attempting to satisfy inflated delay measurements. Finally,

TBG involves traffic and computation time overhead. This is a result of heavy use of traceroute

probes to identify the network structure and to identify a router’s IP aliases, and also due to solv-

ing for all network elements locations. This overhead is more problematic if the approach is to

be applied to the wide public Internet repeatedly to address IP addresses location dynamics.

Octant

Octant is a geolocation framework that depends essentially on delay-to-distance constraints,

but also allows for the inclusion of other types of constraints such as natural geographical con-

straints and demographic constraints [129]. Similar to TBG, Octant use both end-to-end and

per hop delays to construct delay-to-distance constraints.

Octant uses both positive constraints (i.e., where the target is expected to reside) and neg-

ative constraints (i.e., where the target is not expected to reside). As a result, a landmark L will

typically construct a constrained region that has the shape of a ring centered around L as Fig-

ure 2.5 illustrates. The positive and negative constraints for L are denoted by two radius values:

RL , the radius of the outer circle, and rL , the radius of the inner circle.
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Figure 2.6: Octant intermediate routers piecewise localization and the use of intermediate routers as
additional passive landmarks [129].

Unlike TBG’s global optimization approach for locating targets and intermediate routers,

Octant performs piecewise localization of routers on the path to the target. Each router is ge-

olocated based on previous routers location estimations. Additionally, like TBG, Octant uses

the undns tool to infer location hints from DNS names of the intermediate routers [6, 119].

The geolocated intermediate routers are used as secondary passive landmarks to add more

constraints on the target location as depicted in Figure 2.6. Using the inferred delay between

an intermediate router and the target, a delay-to-distance constraint is created based on the

router’s estimated location.

To improve the precision of the distance constraints, Octant applies a dynamic calibration

process for each landmark. Octant measures latencies between a landmark being calibrated

and the remaining landmarks. The data points in Figure 2.7 depicts landmarks known distances

against measured latencies from a landmark L being calibrated. The two solid lines surrounding

all data points compose a convex hull. The upper and lower lines correspond to the RL and rL

values respectively. They correspond to all possible latency values for the calibrated landmark.

These values are picked conservatively based on latency-distance data points. The RL and rL

values are iteratively refined in order to tighten the estimated regions of targets later on. This is

29



Figure 2.7: Octant landmarks calibration using spline line interpolation [129].

done by finding the interpolating spline line such that it minimizes the square error of delay-to-

distance for the data points. A constant, δ, is chosen based on the percent of data points to be

covered by the convex hull. The upper-bound is then computed by multiplying the spline with

δ. The lower-bound constraint is computed by dividing the spline by δ.

As a results of combining positive and negative constraints, Octant’s location estimates are

potentially disjoint regions. These regions are separated by weights that indicate their likeli-

hood. Figure 2.8 compares Octant’s results on a PlanetLab [24] dataset to GeoLim, which refers

to the CBG approach, and to GeoTrack, which uses the closest identifiable router to target as

an estimation for its location. The reported median error for Octant is 35 km, a significant im-

provement over the other techniques.

The Octant framework for geolocation has several limitations. First, landmarks calibra-

tion reflects network conditions between landmarks, but not necessarily the landmark-target

network conditions. Intermediate routers localization extracts information from routers DNS-

names, which might be inaccurate or misleading and could cause errors in inferred typologies.

Zhang et al. [134] report that 20 out of 182 (11%) edges in a Rocketfuel-like network [6] topology

are actually false edges. Besides, this localization has city granularity, this coarse-grained gran-

ularity can subsequentially cause inaccurate constraints. Arif et al. [8] reported significantly
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Figure 2.8: Octant comparison to some previous techniques. Evaluated in North America (50 landmarks
and 104 targets) [129].

higher geolocation error results for their Octant implementation compared to those reported

in [129]. They attributed that to the lack of clear minimum distance bound constraints in their

evaluation dataset, and for not using some of the optimization techniques used by Octant.

TBG and Octant Comparison

Both approaches strive to overcome the problem of end-to-end measurements inflation by

considering intermediate routers and hop latencies. TBG use these information to globally opti-

mize for the locations of targets and intermediate routers such that they comply with observed

network measurements. Octant geolocates intermediate routers, between a landmark and a

target, serially, and uses them as additional (secondary) landmarks. Octant seems to be a more

flexible approach that allows different types of constraints like geographic and demographic

constraints to be incorporated. TBG, on the other hand, proposed to use several interesting

techniques to infer further constraints on the topology picture, including the use and valida-

tion of location hints in DNS names, hop latencies and, the clustering of a router interfaces,

and the use of passive landmarks.
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Approaches such as TBG and Octant involve heavy use of traceroute measurements and

require time to solve for routers and targets locations. Such methods can greatly benefit from

our optimization techniques to reduce the number of IP addresses that need to be measured

and geolocated (Chapter 4 and Chapter 5).

2.3.5 CBG Variations Comparison

Pure end-to-end delay-based approaches such as Shortest Ping, GeoPing, and bestline-CBG

perform well when the landmarks are close from targets. However, their inadequacy to model

circuitousness in routes becomes more prominent as the landmarks are farther away from

the targets, as a result, their accuracy degrades. The accuracy of end-to-end delay-based ap-

proaches also degrades when landmarks share a high latency path towards target. Topology-

based approaches, such as TBG and Octant, attempt to solve these issues by incorporating the

intermediate routers in the process of estimating the target location. The Street-level method at-

tempts to solve these issues by finding and exploiting landmarks closer to the target. While TBG,

Octant, and street-level methods have higher accuracy compared to other end-to-end delay-

based methods, they involve significantly more traffic and computation time. Table 2.1 gives a

summary of the constraint-based variations reviewed in this section. Notice that the median

errors in the table are reported from multiple previous studies when available.

2.4 Evaluating the Accuracy of Geolocation Services

Previous work on IP geolocation includes studies of the accuracy of geolocation services.

These services are typically available as public and commercial geolocation databases (§2.1.4).

In this section, we present several studies that focus on the geolocation accuracy of end-hosts

in geolocation databases.

Several studies show that public and commercial databases have coarse-grained granularity

and are not reliable at the city-level resolution. Some of these studies use delay-based methods

to assess the reliability of the geolocation databases [49,55,56,115] Siwpersad et al. [115] studied
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Table 2.1: Summary of the constraint-based approach variations.

Method Landmarks Use topology Median error (km) Evaluation region Techniques

Bestline-CBG Active No 25
95

W. Europe
US

-Per-landmark bestline cal-
ibration.

Street level Active +
Passive
(Web-based)

No 2.1 US -Extract and use web-based
landmarks.
-Relative latencies at small
scale.

TBG Active +
Passive

Yes 67 N. America -Global optimization of tar-
get and routers locations.
-validation of hop latencies
and location hints.
-Network interfaces clus-
tering.

Octant Active +
Passive

Yes 35 N. America -Positive and negative con-
strains.
-Geographic and demo-
graphic constraints.
-Use routers as landmarks.

the geographic resolution of several geolocation databases. They compare location informa-

tion provided by the databases with locations computed using Constraint-based Geolocation

(CBG) [56]. They concluded that the resolution of the locations in the databases is generally

way coarser compared to the geolocation results of CBG. Also using CBG, Gueye et al. esti-

mated the max distance between endpoints of a block to estimate the block geographic span,

which they conclude can be large [55].

Using a crowdsourcing technique to geolocate IP blocks in South Korea (§2.2.2), Lee et al.

showed that one source of commercial geolocation databases inaccuracy is the assignment of

one location to a whole large IP block [75]. They showed that MaxMind highly depend on

WHOIS registry information. Moreover, they found typos in city names that matches typos

found in in APNIC WHOIS registry. The study also showed that IP blocks locations changed over

time but their geolocation was stable in the databases. In another regional study, Poese et al.

suggested that databases can claim country-level accuracy but not city-level accuracy [95]. They

examined the relationship between prefixes in several databases and those advertised by a large

European ISP. They found that some databases split large ISP blocks into smaller ones for more

accuracy but reported that the splitting did not improve the databases accuracy.
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Other work examined different geolocation databases coherency. Huffaker et al. used ma-

jority vote across several databases to pick the location for a given block of IP addresses. They

evaluated the databases based on majority-based selected location. Shavitt et al. [113] exam-

ined the coherency of geolocation databases using a ground truth dataset of IP addresses with

known Points of Presence (PoP). Based on the assumption that IP addresses within the same

PoP are co-located, they examine if the databases assign the same location for all the IP ad-

dresses in one PoP. Their results show a strong correlation between the databases.

While previous evaluation studies of the geolocation databases assess the overall accuracy

of the geolocation databases, our evaluation work [48] in Chapter 3 focuses on assessing router

geolocation in databases. Our ground truth is not specific to an ISP or region or PoPs as in [95]

and [113]. We also do not use delay measurements as in [55] and [49] to study the geographic

span and co-locality of IP blocks. Compared to [113], our work is different as we use a ground

truth of IP addresses with known locations rather than co-locality information and a majority

center of gravity to infer locations.

2.5 Scale up of Measurement-based IP Geolocation

Measurement-based IP geolocation can be prohibitive to apply to all IP addresses. We need

to use several vantage points (VPs) to impose more constraints on the target location for better

accuracy. We also need multiple latency measurements from each VP for better estimation of

measurement noise. Moreover, the location of IP addresses can change as a result of reassign-

ment to hosts at different locations, thus requiring continuous geolocation updates with new

measurements. However, frequent geolocation of all IP addresses can be expensive, inefficient

and unnecessary. Moreover, it could provoke complaints from the measured networks resulting

in blacklisting of the VPs.

While several studies showed that measurement-based IP geolocation methods can provide

accurate results (§2.3.4), few examined their application to the whole IP address space. Hu et al.
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investigated scaling up a measurement-based method (Shortest Ping) to geolocate the entire

IPv4 address space [61].

The study showed that the vantage points closest to target are the most important for the

geolocation accuracy. The study also showed that selecting a subset of the landmarks based on

their proximity to the targets improves scalability without adding much estimation error. They

propose a vantage points selection algorithm for that purpose.

The vantage points selection algorithm is block oriented. The goal is to select the closest

vantage points to each block of addresses (a /24 in this work). The selection is based on RTTs

measured from all available vantage points to few responsive representative addresses within

the block. The vantage points with the smallest RTTs are selected. Only the selected VPs are then

used to gather measurements from all the addresses within that block. Shortest Ping method is

used to evaluate the VPs selection algorithm.

A ground truth dataset of 18 /24 blocks and their location information is used in the evalua-

tion. Each block has at least 100 responsive addresses. The addresses are geolocated using a set

of 10 selected VPs. The addresses are also geolocated using all of the 400 VPs available. Results

show almost identical estimation errors.

Our work addresses the challenge of scaling up measurement-based geolocation differently.

We look to minimizing the number of targets to geolocate rather than minimizing the number

of vantage points to use. Our IP block co-locality work presented in Chapter 4 uses IP addresses

latency estimates as signatures to identify groups of similar adjacent endpoints. The goal is

allowing automatic identification of clusters of IP addresses that can be geolocated as units.

We also propose a lightweight method to identify if a block has moved from one location to

another, signaling the need to re-run an existing geolocation algorithm (Chapter 5). As a result,

a geolocation system only need to re-run geolocation over the subset of blocks identified as

moving. Unlike delay-based geolocation methods, our method works well with only a handful

of vantage points regardless of their distance from the targets. We do not map latency estimates
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to location constraints. Instead, we use them as fingerprints to dictate location stability. We are

not aware of previous work that focuses on the identification of IP block movement.

2.6 Cellular Block Identification

IP address blocks in cellular networks represent an interesting class for IP geolocation. Pre-

vious work has shown that the IP addresses in cellular networks are frequently shared across

many distinct locations [11, 131]. Other work shows that IP addresses in cellular network are

poorly geolocated, reporting that around 70% of 29k cellular addresses across 50 countries are

geolocated to 100 km or more from their actual ground truth location [124]. We do not know

if these results are still relevant in today’s cellular networks, but identifying these networks is a

good step toward studying their geographic properties.

Several groups used client or operator information to identify cellular networks. Sen et al.

implemented a framework requiring active participation from clients to study the performance

of wide-area wireless networks [111]. To measure cellular networks performance, Nikravesh

et al. used an application installed on users’ mobile devices to collect active measurements [87].

In another performance evaluation work, Sommers et al. used crowdsourcing data from an in-

teractive broadband speed tester (speedtest.net) to study the performance of 802.11 WiFi vs.

cellular technologies [117]. Also relying on client collaboration, Rula et al. used data collected

via two mobile applications installed on a few hundred mobile devices from major carriers in

the US and South Korea [108]. This prior work uses “inside” knowledge to detect cellular net-

works, either from applications or operators. Our work (Chapter 6), identifies cellular IP blocks

from external information (latency), without the need for clients or carriers collaboration. We

do not study the performance of cellular networks in this dissertation, but our method to iden-

tify cellular blocks can help such studies in the future.

Recent work has used CDNs to identify cellular networks and characterize global cellular

usage [109]. They infer the connection type of a device from the Network Information API,

which allows access to information about the network connection a device is using [3]. The
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data is collected by a large CDN monitoring system, which requires customer participation. Our

approach does not require customer cooperation or the installation of any additional software

at the client’s end. We only require the IP addresses to respond to our probes.

Other work leverages information such as the browser and the operating system of devices

accessing collaborating websites to identify their type (e.g., mobile or desktop) [34, 120]. Iden-

tifying mobile devices is useful but does not necessarily indicate a cellular connection since a

device can have multiple interfaces that allow different connection types (e.g., WiFi, cellular,

and Bluetooth).

Closest to our cellular block detection in this dissertation, Elmokashfi et al. studied the de-

lay characteristics of 3 different Norwegian 3G networks [36]. They used multiple VPs to collect

ping measurements. They found that different operators have different delay signatures. More-

over, these signatures are independent of the locations of the monitors. While this work studies

delay characteristics of different cellular providers, it does not use RTT variation to identify cel-

lular blocks. We also apply our approach more widely, to millions of networks and not just three

ISPs.

Padmanabhan et al. analyzed ping latency from ISI Internet surveys [60] and ICMP data

from ZMap [35] to estimate good timeouts for active probing [90]. They observed that ASes with

most high latency addresses are cellular, but they did not provide methods to classify blocks

blindly. Our results corroborate this observation. We also find that cellular networks exhibit

high variation in latency and use that to identify them.

Finally, Cai et al. used full scans of /24 blocks to study IP block usage [12]. They used re-

sponse patterns in edge hosts to identify blocks with low-bitrate access but did not explicitly

identify wireless networks. They also examined block size, showing that /24 blocks are often

used consistently. Our work uses the variation of RTT over time to identify patterns that distin-

guish between access types.
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2.7 Conclusions

This chapter presented background and related work concerning the main approaches used

to map IP addresses to physical locations and other IP geolocation related topics. We discussed

the main proposed methods to identify the location of an IP address, we talked about work on

evaluating the accuracy of existing geolocation methods and services, and touched on work

about scaling up measurement-based methods. Finally, we talked about work related to identi-

fying cellular IP blocks.

In our discussion of prior work, we identified several problems and future work directions

concerning IP geolocation research. We summarize the main identified problems and gaps here

along with pointers to the chapters that address them.

First, previous work that evaluated the geolocation accuracy of geolocation services focused

on the geolocation of end hosts. We complement this work with our study of router geolocation

in public and commercial geolocation services with a regional-breakdown analysis in Chapter 3.

Second, previous work related to IP geolocation did not focus on identifying geographically-

homogeneous groups of IP addresses that we can treat as units. Some work focused on in-

dividual IP addresses, and some assumed that addresses in a block such as a /24 prefix are co-

located. We propose a delay-based method to assess the co-locality assumptions and to identify

arbitrary-size clusters of co-located addresses in Chapter 4. A geolocation system can use our

method to identify IP addresses that we can efficiently geolocate together by a few representa-

tives.

Third, we are not aware of prior work that identifies block movement. We propose a delay-

based algorithm to identify movement in Chapter 5. Furthermore, we discussed, in §2.5, why

measurement-based geolocation can be expensive to implement as a continuous service to the

entire Internet. We show that the methods we propose to assess IP addresses co-locality (Chap-

ter 4) and to detect address block movement (Chapter 5) address this challenge.

Finally, prior work on identifying cellular blocks uses “inside” knowledge to detect cellular

networks, either from applications or operators. Our work in Chapter 6 implements an algo-
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rithm that identifies cellular IP blocks from external information (latency), without the need for

clients or carriers collaboration, a step toward studying their geographic properties and impact

on delay-based methods.
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Chapter 3

Limitations of Router Geolocation in Popular

Geolocation Services

This thesis is about enabling more accurate geolocation methods as continuous services

that scale up to the entire Internet, allowing for more reliable geolocation in comparison to

widely used geolocation services. In this chapter, we present an evaluation of router geolocation

in popular geolocation services as a compelling case for the need for more reliable geolocation

and the need for continuous geolocation to maintain up-to-date IP-to-location mappings.

Internet measurement research frequently needs to map infrastructure components, such

as routers, to their physical locations [22, 42, 52, 92, 112, 121, 132]. Although public and com-

mercial geolocation services (often referred to as geolocation databases) are often used for this

purpose, their accuracy when applied to network infrastructure has not been sufficiently as-

sessed. Prior work focused on evaluating the overall accuracy of geolocation databases, which

is dominated by their performance on end-user IP addresses (§2.4). In this chapter, we eval-

uate the consistency and reliability (coverage and accuracy) of router geolocation with popular

geolocation databases (§3.2.2).

We use a dataset of about 1.64M router-interface IP addresses (or simply router interfaces)

extracted from the CAIDA topology datasets [16] to examine the coverage and consistency of

several databases at country- and city-level resolutions. Where coverage indicates the fraction

of IP addresses with a database-location at a given level—regardless of location correctness—

and consistency is a measure of agreement among databases at a given level. We also create a

ground-truth dataset of 15.6k router interfaces and their country- and city-level locations (§3.3).

We use this dataset to evaluate the databases’ accuracy at both country- and city-level resolu-

tions with regional breakdown analysis. Where the country-level accuracy of a database indi-
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cates the fraction of addresses with the same country as the ground truth, and the city-level

accuracy indicates the fraction of addresses within city-range (§3.4.2) of the ground truth.

Evaluating the reliability (coverage and accuracy) of the studied databases shows that they

can be unreliable to geolocate routers at both country- and city-level resolutions. The database

with the best overall results shows near-perfect coverage at both resolutions (have country and

city geolocation for almost all addresses in the 1.64M router-interfaces dataset (§3.5.1)). How-

ever, this database geolocates only 89.4% of the ground-truth addresses correctly at country-

level, and only 73% at city-level—within 40 km of the answer in the ground truth— (§3.5.3.1).

The other databases are less accurate at both country- and city-level and two of them have sig-

nificantly less coverage at city-level. These results show that the databases could lack extensive

city-level coverage and can be inaccurate for geolocating routers at both country- and city-level,

corroborating previous work on evaluating the overall accuracy of geolocation databases (§2.4).

Moreover, we show that IP addresses assigned to routers can experience location change over

time (§3.3.4.2), suggesting the need for re-geolocation. All of these results motivate our work to

enable continuous, more reliable geolocation (Chapter 4 and Chapter 5).

3.1 Introduction

Networking research that needs to map Internet resources to their location often uses ge-

olocation services for that purpose. Examples of research studies that use geolocation services

include studying the geographic deployment of Internet resources [22], studying routing phe-

nomena to detect BGP threats [121], estimating the geographic presence of Autonomous Sys-

tems [132], detecting routing paths that experience detour-paths [112], and studying censor-

ship and monitoring [92].

These studies rely heavily on the accuracy of geolocation services especially for IP addresses

that are used for Internet infrastructure (e.g., routers, switches). Quantifying error margins and

identifying regions where geolocation services fail can substantially improve the quality of such

studies. Geolocation services are typically available as third-party databases, publicly avail-
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able [30, 66, 81] or paid [32, 67, 80]. Delay-based geolocation, where delay measurements are

mapped to location constraints [56, 70, 91, 128, 129], is another viable option, especially with

more public measurement platforms becoming available [35, 50, 105]. However, many users

might still prefer the available ready to use geolocation databases.

Given the importance of router geolocation in understanding geographic aspects of the In-

ternet infrastructure, our work focuses on router geolocation in both public and commercial

databases. Previous work on evaluating databases focused on their overall accuracy [55, 63, 95,

113, 115]. However, such work is biased towards evaluating endpoints geolocation since there

are far more endpoints than infrastructure in the Internet.

Researchers who use geolocation databases to learn routers’ locations need to know how

reliable are these databases in terms of their country- and city-level coverage (the fraction of

addresses a database has country- and city-level resolutions for, respectively), and their accu-

racy across the world. In this chapter, we study router geolocation in four popular geolocation

databases, two of which are free: MaxMind GeoLite2 [81], and IP2Location DB11.Lite [66], and

two are commercial: MaxMind GeoIP2 [80], and Digital Envoy NetAcuity [32]. We explain why

these databases are selected in §3.2.2.

Our main contributions in this chapter are: (1) we show that the studied databases have

many inconsistencies for router geolocation, especially at city-level. We use a set of 1.64M

router interface addresses extracted from CAIDA’s Ark dataset (§3.2.1) to study all 4 databases

inconsistencies and coverage, (2) we create a ground truth dataset1 of 16,586 router interface

addresses and their locations with city-level accuracy. We create our ground truth using two ap-

proaches, a DNS-based approach proposed by Huffaker et al. [64] and a delay-based approach

that utilizes the RIPE Atlas built-in measurements [105], (3) we use the ground truth dataset to

evaluate the databases’ country- and city-level accuracy regionally. The results show that all the

1Our ground truth data is available via IMPACT: https://www.impactcybertrust.org/dataset_
view?idDataset=792
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databases have room to improve their accuracy, even at country-level; (4) our final contribution

is a set of recommendations for using the geolocation databases to geolocate routers.

3.2 Datasets

This section presents an overview of the CAIDA topology dataset we use to extract our eval-

uation dataset of router interfaces (§3.2.1), and the geolocation databases we evaluate in this

work (§3.2.2).

3.2.1 CAIDA Topology Dataset

We use the CAIDA topology dataset [16] collected using CAIDA’s Ark measurement infras-

tructure. Ark monitors around the world collect traceroute data for randomly selected IP ad-

dresses from all routed /24 IPv4 prefixes. Using one week of the topology dataset starting from

March 9, 2016, we extract a dataset of about 1.64M router interface IP addresses, which map

to an estimated number of 485k distinct routers according to CAIDA’s ITDK alias mapping re-

sults [17]. We treat this dataset at IP-level since the geolocation services are supposed to ge-

olocate all IP addresses regardless of their alias resolution. We refer to this dataset as the Ark-

topo-router dataset. We use this dataset to evaluate the country- and city-level coverage and

consistency across the geolocation databases.

3.2.2 Geolocation Databases

We compare and assess router geolocation reliability in four popular geolocation databases:

MaxMind GeoIP2 (referred to as MaxMind-Paid in this chapter), MaxMind GeoLite2 (referred to

as MaxMind-GeoLite), IP2Location DB11-Lite (referred to as IP2Location-Lite), and Digital Ele-

ment NetAcuity (referred to as NetAcuity). We chose the NetAcuity and MaxMind commercial

databases as they are widely considered among the leaders in the geolocation business [63,113].

On the other hand, comparing the free and commercial versions of MaxMind’s databases pro-

vides a measure of the improvement between the two. Finally, the IP2Location database is
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known for providing city-level resolution for most of the IP address space and it appears often

in geolocation comparative studies.

3.3 Ground Truth Data

Our ground truth data is basically a set of router interface addresses and their locations

at city-level accuracy. We extract our ground truth using two methods as explained next. We

discuss the correctness of the ground truth data in §3.3.4.

3.3.1 DNS-Based Ground Truth Data

To create the first part of our ground-truth, we use the DNS-based geolocation method from

the work of Huffaker et al. [64] (see §2.1.3). The original work generated domain-specific rules

for 1,398 domains, but we only use 7 domains for which the authors have ground truth-rules

from the domains’ operators (ground-truth-domains).

Performing reverse DNS (rDNS) lookups to the Ark-topo-router IP addresses on May 15,

2016 results in 905k IP addresses with hostnames. About 13.5k of these IP addresses belong

to the ground-truth-domains of which we are able to geolocate 11,857 IP addresses as follows:

belwue.de (23 addresses), cogentco.com (6,462), digitalwest.net (29), ntt.net (2,331), peak10.net

(170), seabone.net (1,405), and pnap.net (1,437).

3.3.2 RTT-Proximity Ground Truth Data

We use RIPE Atlas built-in measurements [105] to create our second part of the ground truth.

These measurements are issued by most of the probes toward well known targets, such as DNS

root servers. We use traceroute measurements collected on May 25th, 2016. The measure-

ments are provided in JSON format that specify the measurement origin, target, intermediate

hops and their observed RTTs. Figure 3.1 illustrates our method to identify hops near to a RIPE

Atlas probe based on RTT measurement. Since a 0.5 ms RTT between two locations maps to

a distance of at most 50 km—likely less than that due to inflation in RTT measurement— we
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Figure 3.1: Identifying hops near a probe based on their RTT-proximity.

use 0.5 ms threshold to find all the hops guaranteed to be within 50 km of their probes (shown

within the circle in Figure 3.1). We associate such hops with their probe’s location.

We find 4960 router interface IP addresses that satisfy our 0.5 ms threshold but we only keep

4838 addresses due to the reasons we explain in §3.3.4.3. We refer to the set of 4,838 IP addresses

and their locations as the RTT-proximity ground truth dataset. Note that while some of the

gathered IP addresses could belong to home routers, more than 80% are at least 2 hops away

from their probes indicating otherwise.

3.3.3 Ground Truth Data Regional and Topological Distribution

Table 3.1 shows statistics for our two ground truth datasets including the total number of

addresses (column 2), number of unique countries where the addresses are located (column 3),

number of unique coordinates (column 4), and the number of addresses found in each regional

Internet registry (RIR) (columns 5 to 9). The RIR for each address is learned from querying

Team Cymru WHOIS database [122]. According to CAIDA’S AS rank [15], transit ASes announce

74.5% of addresses in our RTT-inferred ground truth set and 99.9% of addresses in our DNS-

based ground truth set.
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Table 3.1: Location statistics and regional distribution of the DNS-based and RTT-proximity router in-
terface addresses.

Ground Truth Total Countries lat/lon ARIN APNIC AFRINIC LACNIC RIPENCC

DNS-based 11,857 53 238 9,588 560 0 0 1,709
RTT-proximity 4,838 118 1,347 1,123 372 131 52 3,160

3.3.4 Ground Truth Data Correctness

In this section, we validate part of the DNS-based ground truth with RTT data from two

other datasets (§3.3.4.1). Part of our DNS-based data validation examines identifying IP ad-

dresses movement from changes in their DNS names (§3.3.4.2). Finally, to increase the confi-

dence in our RTT-proximity ground truth, we use two methods to disqualify RIPE Atlas probes

that appear to have inaccurate geolocation (§3.3.4.3).

3.3.4.1 DNS-Based Data Correctness

We validate part of the DNS-based dataset using two latency measurement datasets: our

RTT-proximity dataset and another similar dataset provided to us by Giotsas et al. [51]. Despite

the small intersection between the datasets, we see positive signs indicating the correctness of

the DNS-based data as we explain next.

First, we examine the common IP addresses between our RTT-proximity dataset and the

DNS-based dataset. We identify 109 common addresses between the the two ground truth

datasets. These two datasets agree within 10 km on the locations of 105 of the addresses and

within 43 km on the remaining 4 addresses. These results show that the RTT-proximity dataset

confirms the location of all common IP addresses with the DNS-based dataset. Next we exam-

ine common IP addresses between the DNS-based dataset and another RTT-proximity dataset.

Similar to the method we use to create our RTT-proximity ground truth (§3.3.2), Giotsas et al.

looked for RIPE Atlas probes within 1 ms from a set of router interfaces of interest. Associat-

ing each router-interface with the location of the closest probe within 1 ms creates a router-to-

location dataset (we refer to as the 1ms-RTT-proximity dataset). The 1ms-RTT-proximity dataset

has about 20.5k router interfaces, but only 384 are common with our DNS-based dataset. Pair-
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wise comparisons of common IP addresses show that the locations from the DNS-based and

the 1ms-RTT-proximity datasets are within 100 km for 355 addresses (92.45%). Given the 1 ms

threshold used to create the 1ms-RTT-proximity dataset, these locations are fairly compatible;

in fact, the locations of 337 (87.8%) addresses are within 40 km. The 1ms-RTT-proximity dataset

was gathered about 10 months after our DNS-based dataset and some IP addresses could have

moved during this period (§3.3.4.2), but overall, this dataset largely confirms the location of

most of the addresses common with the DNS-based dataset.

3.3.4.2 Identifying Movement from DNS Names

Interestingly, out of the remaining 29 IP addresses with incompatible locations, we find

that 19 addresses are likely reassigned to hosts at different locations. We observe this change

from their rDNS records. For example, the rDNS lookup result for one IP address was ae-

5.r23.dllstx09.us.bb.gin.ntt.net on May 2016 and ae-3.a01.miamfl02.us.bb.gin.ntt.net on Septem-

ber 2017. The location hint in the prior one indicates the location Dallas, TX, while the later

indicates Miami, FL. All 19 addresses would have similar geolocation to that in the 1ms-RTT-

proximity dataset given their updated hostnames, that said, we do not know when exactly the

hostnames have changed and if that happened before creating the 1ms-RTT-proximity set. The

location disagreement for some of the remaining 10 addresses might be a result of reassigning

addresses to hosts at a different location without updating their hostnames leading to mislead-

ing location hints. Few RIPE Atlas probes may also have incorrect geolocation.

Overall, between May 2016 and September 2017, 8,197 (69.1%) of the 11,857 DNS-based

addresses kept the same hostnames, 2,848 (24%) have different hostnames, and 6.9% no longer

have rDNS records. Not all hostnames changes indicate location changes. Geolocating the

2,848 IP addresses with different hostnames using DRoP’s domain-specific ground-truth rules

shows that 1,927 (67.7%) still have the same location, 877 (30.8%) have different location—i.e.,

7.4% of all DNS-based addresses in about 16 months—, and 44 (1.5%) no longer have location

hints that match any of the rules.
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3.3.4.3 RTT-Proximity Data Correctness

The correctness of the RTT-proximity data is dependent on the accuracy of the RIPE Atlas

probes locations, which are mostly crowdsourcing-based. While the probes’ hosts can easily

provide correct city-level locations, it is not guaranteed that they always do. Additionally, a

probe might be moved without updating its public location. RIPE Atlas operators informed

us that they do some manual checking but nothing structural to validate probes’ locations. To

increase the confidence in the RTT-proximity data we use two methods to disqualify probes that

appear to have inaccurate geolocation.

First, we identify and remove all probes assigned default country coordinates. These coor-

dinates are typically near the geographic center of a country [25, 45, 79] and are often located

in unpopulated areas (e.g., N51°00′00′′ E09°00′00′′ in Germany). Such coordinates are often as-

signed to IP addresses due to the lack of specific location information. From the set of 1,387

probes associated with our 0.5 ms threshold data, we find 19 probes within 5 km of their known

country coordinates. Using traceroute measurements we are able to prove that many of these

probes indeed have bad geolocation. We find and remove 109 IP addresses associated with

these probes.

Our second method is based on the insight that multiple probes near the same router should

also be near each other. We call such a group of probes RTT-nearby probes. Given our 0.5 ms

threshold, any two RTT-nearby probes should be within a distance of 100 km. Figure 3.2 illus-

trates an example of two probes within 0.5 ms from the same router and therefore are RTT-

nearby probes. We find 495 addresses in the remaining RTT-proximity data with RTT-nearby

groups of 2 or more probes, out of which, only 12 addresses (2.4%) have RTT-nearby probes

with inconsistent locations. For example, two probes in Mozambique are RTT-nearby to an IP

address but their locations are 867 km apart, which means at least one of them has incorrect

geolocation. We find 3 other RTT-nearby groups that have prominent location inconsistencies.

The 8 remaining addresses have relatively small disagreements of less than 128 km between any

two probes in one RTT-nearby group. One probe in Italy is responsible for 7 of those location
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Figure 3.2: An example of two RTT-nearby probes.

disagreements. Overall, we have 223 different probes that are part of one or more RTT-nearby

groups, out of which, we only disqualify 5 probes (2.2%) and remove 13 interface addresses

associated with them. As a result, the final RTT-proximity dataset has 4,838 addresses.

We match the RTT-proximity and the 1ms-RTT-proximity datasets and find an intersection

of 1,661 addresses. Comparing the locations from the two datasets for each common IP address

shows that 96.8% and 97.4% of the addresses agree within 40 km and 100 km respectively. The

small fraction with location disagreements might be a result of IP addresses reassignment to

hosts at different locations during the time separating the two datasets.

3.4 Methodology

In this chapter, we seek to answer these questions: (a) what is the probability to find an

answer for a router address geolocation query and what would be the resolution of the answer?

(b) how consistent are the answers across different databases at both country- and city-level

resolution? (c) what is the probability that the database answer is correct? We next explain how

we answer these questions.

3.4.1 Databases’ Coverage and Consistency

To evaluate the coverage and consistency of the participating databases, we use the Ark-

topo-router dataset (§3.2.1). To evaluate a database coverage we find the percentage of ad-
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dresses with location information in each database for both country- and city-level. We also

evaluate the pairwise consistency at both resolutions.

While country-level consistency evaluation is as simple as comparing standard ISO alpha-

2 or alpha-3 country codes in databases, the city-level consistency evaluation can be tricky,

in part because different databases may use different city names. Rather than comparing city

names, we compute the distance between one IP address locations (coordinates) in any two

databases and check if it is within city range. Comparing coordinates invokes two questions:

(a) does the database provide correct city-level coordinates for a given city in a location record?

(2) what radius is acceptable as a city range?.

We compare each database coordinates for a given city with the city coordinates from a third

party geographical database called GeoNames [45]. Since multiple cities can have the same

name, we also include the region and country in the matching process. We observe that the dis-

tance between city coordinates from any of the geolocation databases and GeoNames is within

40 km more than 99% of the time, indicating that the databases are indeed assigning city-level

coordinates when a city name exists in the location record.

3.4.2 Same City Coordinates Across Databases

Answering the question about city range is tricky, mainly because different cities can have

drastically different areas. Previous work [113] used 40 km as their city range, while [63,64] used

the same distance as their threshold to identify if two locations are co-located. However, we

note that different databases may assign different coordinates to the same city. We examine

the distance between coordinates assigned to the same city across the databases, and find that

one city coordinates from any two databases are more than 99% of the time within 40 km. We

conclude it is reasonable to consider any two databases’ coordinates within 40 km to be within

the same city circumference.

Figure 3.3 shows the pairwise distribution of distances computed between one city loca-

tion(s) in one database and the same city location(s) in another database. We identify each city
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Figure 3.3: Distribution of distances for same city coordinates across pairs of databases. We observe that
one city coordinates from any two databases is more than 99% of the time within 40 km.

by its name and country code, and the region/state. We compute the distance for all possible

combinations for all the locations we find for a given city in all databases. MaxMind uses same

city names across their paid and free version, hence we only use MaxMind-Paid in this anal-

ysis. From the figure we observe that the vast majority of the location pairs are at a distance

of 40 km or less across databases, we conclude it is reasonable to consider any two databases’

coordinates at such distance or less to be within the same city circumference.

3.4.3 Accuracy of the Databases

Finally, we evaluate the overall accuracy of geolocating routers in databases using our ground

truth of 16,586 interface addresses with city-level accuracy. We also evaluate the accuracy by re-

gion where we breakdown the ground truth addresses by their RIRs and report the results for

each region at country- and city-level (§3.5.3.2).

3.5 Results and Discussion

We first discuss the results of evaluating databases’ coverage (§3.5.1) and consistency (§3.5.2)

at country- and city-level over the Ark-topo-router dataset. We then discuss the results of eval-

uating databases’ coverage and accuracy over the ground truth data (§3.5.3).
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3.5.1 Databases’ Coverage

Using the Ark-topo-router dataset, we analyze databases router geolocation coverage and

consistency at country- and city-level. All the databases are accessed shortly after creating

the Ark-topo-router set to geolocate its addresses. We find that IP2Location-Lite and NetAcuity

both provide near-perfect coverage for all interface addresses in the Ark-topo-router dataset at

both country- and city-level. The MaxMind-GeoLite and MaxMind-Paid databases both cover

about 99.3% of the addresses at country-level, but only 43% and 61.6% of the addresses at the

city-level respectively.

3.5.2 Databases’ Consistency

Pairwise country-level comparison shows that the MaxMind databases agree on the location

of 99.6% of the 1.64M interface IP addresses, while all other pairwise comparisons’ agreements

range between 97.0% and 97.6%. The overall country-level agreement between all databases

is about 95.8% (1.57M addresses). The agreement between the databases might suggest more

confidence in the geolocation results, it might also indicate a common incorrect source of the

geolocation information (e.g., registry data).

We now turn to city-level resolution comparisons. Figure 3.4 shows pairwise comparison

of databases locations (i.e., coordinates) for the Ark-topo-router addresses. For each pair of

databases, we compute the distance between the locations from the two databases for each

IP address. We then plot the distance distribution for all the addresses. Only the addresses

with city-level and (latitude, longitude) coordinates in all databases are included (i.e., around

692k IP addresses). The pairwise comparison of the two MaxMind databases shows mostly

small differences. 470k addresses (68%) have identical coordinates in the two databases and are

truncated from their pairwise distance CDF. But for 11.4% of the addresses, the distance is more

than 40 km, indicating that the IP address is likely geolocated to different cities. Other pairwise

comparisons show more discrepancies where more than 29% of the addresses are geolocated
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Figure 3.4: Databases pairwise distance distributions show at least 29% city-level disagreements for dif-
ferent vendors.

by different databases to locations more than 40 km apart. The CDFs for IP2Location-Lite and

NetAcuity vs. MaxMind-GeoLite are omitted since they are similar to those vs. MaxMind-Paid.

3.5.3 Evaluation Using Ground Truth Data

Using our ground truth of 16,586 interface addresses (§3.3), we evaluate the coverage and

accuracy of all databases at country- and city-level. The databases are accessed again on early

July 2016, to geolocate the ground truth (i.e., about 50 days after creating the DNS-based set).

We observe that 7.4% of our DNS-based set addresses likely moved during a 16 months pe-

riod (§3.3.4.1). The movement is likely much less in 50 days (i.e., one-tenth of the 16 months)

and is unlikely to affect our conclusions.

3.5.3.1 Databases’ Coverage and Accuracy Over the Ground Truth

IP2Location-Lite and NetAcuity show near-perfect country- and city-level coverage for the

IP addresses in the ground truth. MaxMind-GeoLite and MaxMind-Paid have around 95.4%

country-level coverage, and only 30.4% and 41.3% city-level coverage, respectively.

The country-level geolocation accuracy is usually reported at higher than 97% by the ge-

olocation service providers [113] (e.g., MaxMind GeoIP2 reports 99.8% accuracy [79]). How-

ever, our results over ground truth data show less accuracy for router geolocation. NetAcuity
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Figure 3.5: Databases vs. ground truth geolocation error. The number of addresses in each CDF is en-
closed in parenthesis.

outperforms the other databases at only 89.4% accuracy while IP2Location-Lite and MaxMind

databases are comparable with 77.5% to 78.6% accuracy. We discuss country-level accuracy in

more depth when we break down results by RIR next in §3.5.3.2.

Figure 3.5 shows the distribution of the geolocation error for each database vs. the ground

truth for the addresses with city-level geolocation. The vertical red line (at x = 40 km) is our city

range threshold. NetAcuity has clearly better accuracy compared to other databases but still

incorrectly geolocates some interfaces hundreds of kilometers away from their actual locations.

IP2Location-Lite is the least accurate but has much better city-level coverage compared to both

MaxMind databases.

3.5.3.2 Regional Evaluation

To study the accuracy of the databases regionally, we break down the ground truth addresses

by their RIRs. Figure 3.6 shows the country-level accuracy by region. Each column in the graph

shows the number of correctly and incorrectly geolocated addresses for each database. The

percentage over each column shows the fraction of incorrectly geolocated addresses. From the

graph we see that NetAcuity is the most accurate in all regions but there is still room to improve.

We also observe that IP2Location-Lite and the two MaxMind databases’ country-level accuracy

results are comparable in all regions except for APNIC.
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We go one step further and compare country-level accuracy for individual countries. Fig-

ure 3.7 shows the fraction of addresses correctly geolocated for the 20 countries with most

addresses in the ground truth (country code and the number of addresses are depicted on

the x-axis). While all databases show better than 94% accuracy for addresses in the United

States (U.S.) and Russia, their accuracy in most other countries is relatively low, especially the

IP2Location-Lite and the two MaxMind databases, which show surprisingly low accuracy in

western countries, such as France and the Netherlands. IP2Location-Light, MaxMind-GeoLite,

and MaxMind-Paid agree on the (incorrect) location of 2,277 addresses, which corresponds to

around 61%, 64%, and 67% of their incorrectly geolocated addresses respectively. NetAcuity

shows the most reliable results with at least 74% country-level accuracy in all 20 countries.

Finally, we evaluate city-level accuracy by region. Figures (3.8a, 3.8b, 3.8c, 3.8d) respec-

tively show the distribution of geolocation error with breakdown by RIR for the IP2Location-

Lite, MaxMind-GeoLite, MaxMind-Paid, and NetAcuity against the ground truth data. Only

routers with city information in the databases are included (numbers are shown next to each

RIR name). IP2Location-Lite has almost perfect city-level coverage but the accuracy is lacking,

especially for ARIN addresses. Apart from ARIN, MaxMind seems to provide city-level geoloca-

tion only when it has some confidence in it, which could explain their low city-level coverage

and relatively good city-level accuracy. For example, MaxMind-Paid city-level accuracy for the
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Figure 3.7: Databases’ country-level accuracy is unreliable in most countries but NetAcuity is relatively
consistent.

RIPENCC addresses is 78.9% with only 31.3% coverage compared to only 70.9% country-level

accuracy and 93.3% coverage. NetAcuity, again, shows consistent coverage and accuracy re-

sults, but like the other databases, it is less reliable for the ARIN addresses.

3.5.3.3 Poor City-level Accuracy at ARIN

The worst city-level accuracy for all the databases is observed for ARIN addresses. We use

MaxMind-Paid as a case study to understand reasons for such poor accuracy. ARIN has 10,608

addresses (64%) of the ground truth. 2,793 of those addresses are not located in the U.S.—

according to the ground truth data. However, MaxMind-Paid, possibly relying on registry data,

geolocates 1,955 of them (70%) to the U.S. We find that 519 (26.6% of the 1,955 addresses) have

city-level geolocation in MaxMind, most of them (504 addresses) have disagreements greater

than 1,000 km with the ground truth locations.

Total number of ground-truth addresses located in the U.S. is 8,304 (7,815 from ARIN and

489 from other RIRs). Total ARIN addresses located in the U.S. with city-level information is

3,897, of which 2,267 (58.2%) have geolocation error > 40 km—our city-range. About 91% of

them have block-level—/24 block or larger—locations compared to about 78% of the correctly

geolocated addresses at city-level. Block-level location assignments can be responsible for large
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Figure 3.8: Databases vs. ground truth geolocation error breakdown by RIR. Only routers with city infor-
mation are included.

geolocation errors for interface addresses not co-located with the other addresses in their block.

We do not investigate blocks co-locality in this work.

3.5.3.4 Databases vs. Separate Ground Truth Datasets

We evaluate the databases city-level accuracy against the DNS-based and the RTT-proximity

datasets separately to find if they take advantage of the location hints in the hostnames of all

the DNS-based dataset addresses. The RTT-proximity dataset has 1,335 addresses (27.6% of

RTT-proximity data) that do not have DNS names. We do not know how many of the remaining

RTT-proximity addresses have useful city-level location hints in their hostnames. Note that we

include the 109 common addresses between the two datasets only as part of the DNS-based

dataset. Overall, a database that uses DNS-based techniques to decode location hints in host-

names is expected to perform better on the DNS-based ground truth dataset.
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Figure 3.9 depicts the accuracy of the geolocation databases over the two sources of ground

truth. NetAcuity is the only database that shows better city-level accuracy results over the DNS-

based data compared to results over the RTT-proximity data. Considering our city-range thresh-

old of 40 km, NetAcuity has 70.1% overall city-level accuracy over the RTT-proximity data and

a better 74.2% accuracy over the DNS-based data. All other databases do worse over the DNS-

based compared to the RTT-proximity data. MaxMind-Paid, for example, has only 43.9% overall

accuracy over the DNS-based data and 66.5% over the RTT-proximity data. Regionally, NetAcu-

ity shows better accuracy in all regions over the DNS-based data. For example, NetAcuity has

55.1% accuracy for ARIN addresses in the RTT-proximity data, and about 70.6% for ARIN ad-

dresses in the DNS-based data. According to these results, NetAcuity is the only database that

might be using some DNS-based techniques to infer location hints from hostnames.

While the databases results over the RTT-proximity data look more competitive, NetAcu-

ity still outperforms other databases over this dataset considering both accuracy and cover-

age. NetAcuity has a 70.1% city-level accuracy and 99.6% city-level coverage. The closest rival,

MaxMind-Paid, has a comparable 66.5% accuracy but only 50.3% city-level coverage.

3.6 Recommendations

Based on our analysis of the geolocation databases using our datasets described in §3.2, we

present our recommendations for using the databases with two thoughts in mind. First, our

recommendations are mostly meaningful in ARIN and RIPENCC—where most of our ground

truth IP addresses are located—and to a less degree in APNIC regions. Second, NetAcuity might

have benefited from the nature of the DNS-based ground truth data (see §3.5.3.4), but we still

argue that it has the best accuracy and city-level coverage as the results over both ground truth

datasets show. With that in mind, here are the recommendations:

• If using a geolocation database is the only available option, we recommend NetAcuity to

geolocate routers. Note that we think of NetAcuity city-level accuracy of 74.2% over the
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Figure 3.9: Accuracy of the geolocation databases by dataset (DNS-based and RTT-proximity) for IP ad-
dresses in ARIN and RIPENCC. Only addresses with city information in the database are included (num-
bers in parenthesis). Only NetAcuity is consistently doing better over the DNS-based dataset in compar-
ison to the RTT-proximity dataset.

DNS-based data as an upper bound for its overall accuracy. NetAcuity appears to benefit

from the location hints encoded in the hostnames of the DNS-based dataset IP addresses.

• We do not recommend MaxMind databases if high city-level accuracy and coverage are

required. The city-level accuracy is especially bad in the ARIN region. But we do see rela-

tively good city-level results for MaxMind-Paid in RIPENCC and APNIC regions. However,

the city-level coverage is very low.

• The commercial version of MaxMind is recommended over the public version if city-level

accuracy and better coverage are required.

• We do not recommend IP2Location-Lite, the overall accuracy is too low especially at city-

level.
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• If the price is a problem and an overall 78% country-level accuracy is acceptable, the

IP2Location-Lite and both versions of MaxMind were comparable. That said, the accu-

racy can be very low for some countries (see Figure 3.7).

• We recommend users not to trust city-level accuracy in ARIN regardless of the database

used. NetAcuity was the most accurate there, but only 66% of the ground truth interface

addresses there are geolocated to within 40 km of their actual locations.

3.7 Conclusions

This chapter evaluated router geolocation in four widely used geolocation databases. We

examined the consistency and coverage of the databases using a dataset of 1.64M router inter-

face addresses.We showed that the databases generally agree on the country-level (95.8% of the

time), but the databases—from different vendors— show more discrepancy at city-level with

more than 29% pairwise disagreements.

The results presented in §3.5 motivate our work, highlighted in the thesis statement (§1.2),

to enable continuous, more reliable geolocation (Chapter 4 and Chapter 5). We evaluated the

accuracy of the studied databases with a ground truth dataset of 16.6k IP addresses of router

interfaces we geolocated using DNS-based and latency-based methods. The results showed

that the databases can be inaccurate at geolocating routers at both country-level (only 89.4% or

less of ground-truth addresses were correctly geolocated) and city-level (only 73% or less of the

ground-truth addresses were correctly geolocated). Furthermore, the two MaxMind databases

showed low city-level coverage at 43% for the MaxMind-GeoLite and 61% for the MaxMind-

Paid.

Using the domain-specific ground-truth heuristics (§3.3.1), we showed that 7.4% of all DNS-

based addresses appear to have moved over 16 months.This result supports our claim that we

need continuous geolocation to keep up-to-date location mappings (Chapter 5).

This study also presented a breakdown analysis by RIR, showing the databases are less re-

liable at the city-level resolution at ARIN compared to other regions. NetAcuity shows the best

60



combination of coverage and accuracy. MaxMind shows relatively good city-level accuracy in

regions other than ARIN, but it lacks extensive city-level coverage. Overall, these results show

that researchers need to understand the impact of databases’ inaccuracy on their results and

pay extra caution when using them.
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Chapter 4

IP Blocks Co-locality

Our thesis is about enabling state-of-the-art geolocation approaches to scale up as contin-

uous geolocation services to the entire Internet to achieve more reliable, up-to-date geoloca-

tion. Geolocating IP addresses as groups of adjacent IP addresses (e.g., a /24 block) is a com-

mon approach to improve efficiency and enhance the coverage of a geolocation system [62,95].

Many services assume that the addresses within the same /24 prefix (a /24 block) are geograph-

ically proximate—the block co-locality assumption. When this assumption is violated, some

addresses in the block will have poor geolocation accuracy. Moreover, geolocating IP addresses

individually or as small groups such as a /24 block could waste chances of more efficient ge-

olocation for larger groups of co-located addresses (e.g., addresses in a /16 block used within a

campus of an academic institution).

In this chapter, we present a delay-based method to assess the co-locality (geographic prox-

imity) of adjacent IP addresses (§4.3). Our results support our thesis statement, showing that

we can identify clusters of co-located addresses that we can treat as units to enable efficient

geolocation (§4.6) while avoiding geolocation error caused by incorrect co-locality assump-

tions (§4.5).

We first develop a hierarchical clustering method to cluster IP addresses by the similarity

of their Round Trip Times (RTTs) observed from several vantage points (§4.3). We validate this

method with ground truth data in §4.4.3. We use our method to evaluate the block co-locality

assumption over a large dataset of 1.41M /24 Internet blocks (§4.5). We then show we can use

our method to identify arbitrary-size clusters of co-located IP addresses (§4.6).

4.1 Introduction

Achieving good IP geolocation accuracy can be difficult when some blocks of adjacent IP ad-

dresses span large geographic areas [43,115]. The depletion of IPv4 address pools may play part
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in more /24 blocks spanning larger geographic areas [28,104]. On the other hand, identification

of large groups of co-located IP addresses allows for a more efficient, scalable geolocation.

The block co-locality assumption is common among geolocation service providers. For ex-

ample, public geolocation databases such as MaxMind GeoLiteCity [81] and IP2Location LITE-

DB11 [68] adhere to the block co-locality. The entries in these databases identify IP blocks of

various sizes and assign each a specific location. The public IP2Location database has 2.67M

entries covering the entire IPv4 address space (no locations are assigned to special blocks such

as multicast [123]). In these databases, nearly all blocks are /24 or larger; thus, 99% or more of

the /24 blocks are marked as co-located.

Some location-dependent applications also seem to adhere to the /24 co-locality assump-

tion. An architecture proposed by Chen et al. [22] maps a client’s request to a proximal content

server based on prefixes, meaning that all clients within the same prefix are mapped to the same

content server. They suggest the mapping at /20 prefix granularity to minimize the number of

required mappings.

In this chapter, we present a delay-based clustering method to identify co-located IP ad-

dresses (i.e., geographically proximate addresses). We use our method to assess the /24 block

co-locality assumption. We also show how our method can help a geolocation system scale-up

by identifying larger groups of co-located IP addresses to geolocate them as a unit.

We assess IP addresses co-locality based on the observation that geographically co-located,

adjacent hosts will show similar network delays when probed by the same vantage points [91].

Fan et al. used a similar clustering technique to find Front End (FE) servers that belong to one

CDN [42].

To evaluate our method, we leverage a large subset of the dataset collected by Hu et al. [61]

and publicly available [96]. The dataset contains round-trip estimates for every responsive ad-

dress in the IPv4 address space measured from several vantage points (VPs).

To assess the /24 block co-locality assumption, we cluster the IP addresses in each /24 block

into groups by the similarity of their delay observations from multiple VPs. We then identify
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/24 blocks with multiple clusters and show that these clusters violate the block co-locality as-

sumption and likely contain addresses in distinct locations. We also apply our method to IP

addresses within /16 blocks that we believe are constrained in a small geographic area to eval-

uate our method on larger groups of co-located IP addresses.

Our first contribution is to introduce and evaluate a methodology to assess the co-locality

of endpoints in an IP block. We first use the method to assess the /24 blocks co-locality as-

sumption. Our delay-based clustering algorithm automatically identifies blocks that appear

to have endpoints at different locations. We validate the accuracy of this method against two

ground truth datasets (§4.4): first, a set of /24 blocks we selected based on our belief that they

are co-located, and second, an artificially-constructed set of multi-location blocks. We confirm

that 93% of the blocks identified as multi-location blocks in the ground truth datasets are true

positives. Our second contribution is the application of this methodology to analyze 1.41M

/24 blocks (118M addresses). We find that a noticeable fraction of these blocks (17%, or 247k

blocks) appear to have endpoints at multiple locations with an upper bound false positives rate

of 5.4%. Finally, we show that the clustering method can identify large groups of adjacent, co-

located addresses. We evaluate our method over 65 different university groups of IP addresses

that we believe are co-located. Our method correctly identifies the majority of addresses in each

university block as co-located.

4.2 Dataset Description

Our analysis uses the latency estimates from the IP geolocation dataset collected by re-

searchers at ISI [96] extended from prior work by Hu et al. [61]. The original dataset contains

round-trip time measurements for all the allocated and responsive IP addresses in the IPv4 ad-

dress space. The dataset has about 472M IP addresses in just under 3.5M /24 blocks and was

collected from Feb. 2012 to Mar. 2013. The RTTs are measured from about 670 vantage points

(VPs) on PlanetLab [24]. The work used the following algorithm to pick the 10 closest VPs to any

64



/24 block. First, all available VPs probe a few representative IP addresses in a block. The 10 VPs

with shortest RTTs are then selected to probe all IP addresses in that block.

The use of VPs close to the target minimizes interference from congestion and maximizes

the precision of geolocation (something 400 milliseconds away can be anywhere on earth, but

something within few milliseconds is likely in the same city). Also, to reduce congestion noise,

latency was reported as the minimum of 10 measurements. For our work, we use the raw prob-

ing data for all /24 blocks where each block contained at least 10 IP addresses that responded

to all VPs probes. The delay measurements of each IP address are treated as its coordinates in a

multidimensional space. Our dataset comprises of 118.5M IP addresses in 1.41M /24 blocks.

4.3 Identification of Co-located IP Addresses

We develop our methodology to identify co-located IP addresses based on the insight that

geographically co-located IP addresses from the same IP block exhibit relatively similar network

delays when probed from the same vantage points [91]. Unlike most delay-based geolocation

methods, our method does not map VP-to-target observed delays into distance constraints on

the target location (§2.3.3). Instead, we use the observed delay as signatures that identify if

the addresses in an IP block are proximate. We describe our methodology in §4.3.1 and its

limitations in §4.3.2.

4.3.1 Methodology

In order to identify co-located IP addresses, we formulate the problem as finding similar

IP addresses in a multidimensional space of delay coordinates. For each IP address we create

a vector of 10 delay measurements observed from 10 different VPs (§4.2). The use of multiple

VPs has two advantages: (a) provide some protection against noise in the measurements, (b)

provide better delay signatures for the clustering method to identify similar objects.

Co-located IP addresses are expected to have small distances between them in the delay

multidimensional space. So we cluster IP addresses in a block based on the similarity of their
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delay vectors. A block with all of its IP addresses mapped into one cluster is likely a single-

location block, while a block with 2 or more clusters is likely a multi-location block.

To cluster the IP addresses based on the similarity/dissimilarity of their delay vectors, we

use an agglomerative hierarchical clustering algorithm from the R cluster package called agnes.

Given the delay vectors, the algorithm generates a tree-like hierarchical structure, dendrogram,

based on the dissimilarities of the delay vectors. We use the Standardized Euclidean distance

metric to measure the dissimilarities. We use a dynamic tree cut method from the dynamicTree-

Cut package [74] to identify the clusters in the dendrogram. The combination of these methods

satisfies the need to identify clusters automatically without prior knowledge of their number or

size.

As with other agglomerating hierarchical methods, the agnes method generates a bottom-

up hierarchical structure for the input observations. Each observation starts as a cluster by it-

self. In each subsequent step, the closest two clusters not already in the same cluster are merged

into one larger cluster. The process continues until there is only one cluster of all observations.

The height at which two clusters are merged in the tree-like dendrogram is computed as a func-

tion of the dissimilarity between the two merged clusters. The dissimilarity between two clus-

ters can be computed in different ways. In this work, we use the average linkage method, which

computes the distance between two clusters as the average of pairwise dissimilarities between

the objects in the two clusters. The main advantage of using average linkage is to alleviate the

effects of outliers in the delay measurements. For two clusters, say cluster A with na objects and

cluster B with nb objects, the metric is computed using Equation 4.1, where D is the distance

metric used to compute the distance between two objects. We use the Standardized Euclidean

distance metric to balance the depth of the measurements observed from VPs at different dis-

tances from targets.

daver ag e (A,B) =
1

nanb

na
∑

i=1

nb
∑

j=1
D(I P Ai , I PB j ) (4.1)
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A standard method to identify clusters in a dendrogram is to cut it at a fixed height based

on expected results in a given application. This method can work well for many applications,

but in our case, prior work has shown the need for selecting clustering thresholds dynamically

when examining Internet RTT data [42]. To identify clusters automatically for each of our 1.41M

/24 blocks, we use the “Dynamic Hybrid” tree cut method [74] to identify clusters in a dendro-

gram dynamically. This method uses dendrogram-merging information to build the clusters

in a bottom-up fashion. Many of the method’s parameters are set as a fraction of the joining

heights of the dendrogram branches. The one parameter we found most effective is the min-

imum gap parameter, which specifies the minimum joining height to allow two clusters to be

merged. Higher settings of this parameter allow more smaller clusters to be merged. The result

is fewer clusters with significant dissimilarities indicating higher probability of being at differ-

ent locations. We also set the minimum cluster size to 10 to reduce the possibility of getting

small clusters of outliers.

4.3.2 Methodology Limitations

Our delay-based clustering method has the following limitations. First, as with all delay-

based methods, our approach can be affected by measurement inaccuracy caused by transient

network events such as congestion. This problem is alleviated by taking multiple measurements

over time, the use of multiple VPs per block and picking the minimum RTT. In the case of linger-

ing network events, such as a persistent congestion or a routing change, we expect the measure-

ment of adjacent co-located addresses to be affected comparably. As a result, our method will

still be able to identify these addresses as co-located. Second, our methodology does not iden-

tify the geographic locations of the clusters and the actual distance between them. Fortunately,

geographical locations are not required to determine if two IP addresses are co-located as we

propose in our method, just as one can determine the heavier of two objects without knowing

their actual weights.
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4.4 Validating Identification of Multi-Location Blocks

In this section, we validate our method by showing that it accurately finds single- and multi-

location blocks in our ground-truth dataset. We build our ground truth dataset as follows. First,

we identify single-location /24 blocks as described in §4.4.1. Second, we use this data to con-

struct a multi-location ground truth dataset in §4.4.2. Third, we use the constructed ground

truth dataset to validate our methodology in §4.4.3. Finally, we estimate an upper bound of

false positives for the clustering method as described in §4.4.4.

4.4.1 Building a Single-Location Ground Truth Dataset

We build a dataset of /24 blocks that we strongly believe are single-location blocks for two

purposes: (a) to evaluate the clustering method accuracy on single-location blocks, (b) to build

the multi-location ground truth dataset. Our single-location ground truth dataset is composed

of address blocks belonging to selected academic institutions. We opted for academic insti-

tutions because they typically have specific, distinct physical locations with many end-user

computers within a small geographical area. Such institutions often host their own web ser-

vices [128]. Academic institutions are also relatively easy to find on the map, and services such

as Google Maps already have campus outlines and geographic coordinates for them. Finally,

academic institutions tend to be long-lived with more accurate WHOIS entries than average.

These properties make academic blocks attractive candidates for our purposes.

We begin by identifying the locations and /24 IP address blocks containing the websites of

4,650 universities from different locations around the world listed at [2]. We verify that these

blocks are locally hosted at their universities by verifying them against outsourcing. We detect

outsourcing using WHOIS information and filter out outsourced blocks. We looked up the or-

ganization name from WHOIS databases and matched it with the institution name to identify

outsourcing. For example, Duke University’s website—at the time of publishing this work— was

at the IP address (54.191.241.8), which the WHOIS OrgName identifies as Amazon Technologies

Inc., this shows evidence of outsourcing and is therefore removed from our list.
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We cross-checked the remaining blocks from the university dataset with the one we ex-

tracted from the 1.41M blocks (§4.2). We found 560 /24 blocks with valid data (10 IP addresses

or more with measurement from 10 VPs). We used the Google Maps Geocoding API [1] to identify

a university’s physical location (latitude/longitude).

We apply one more filter to satisfy our goal of building a ground truth of synthetic multi-

location blocks from the single-location blocks (§4.4.2). Since we cannot combine blocks probed

by different sets of VPs (§4.4.2), we only include a /24 block in our single-location dataset if at

least one other single-location block is probed by the same set of VPs (termed VP-compatible

blocks). (We relax this restriction in §4.4.4 to experiment with a larger set of single-location /24

blocks.) We found 85 such /24 blocks, which we use as our single-location dataset and to build

the multi-location ground truth dataset as described next in §4.4.2. The filters described above

are rigorous and resulted in rejecting otherwise viable entries in our dataset. However, this only

increased the confidence of the remaining entries since they passed a higher bar.

4.4.2 Building a Multi-Location Ground-Truth Dataset

We built a multi-location ground truth dataset by combining two single-location blocks to

form synthetic multi-location blocks as Table 4.1 shows. We used only 77 out of the 85 single-

location blocks to form the multi-location blocks (§4.4.3). To generate synthetic multi-location

blocks, we find all blocks from the single-location dataset that were probed by the same set of

VPs; we call these VP-compatible blocks. We then computed all two-block combinations in each

set of VP-compatible blocks, combining all measurement data from the two blocks to create a

new synthetic block. Merged blocks may have up to 512 addresses; however, since we had data

from ping-responsive addresses only, merged blocks almost always had fewer addresses, often

less than 256. These synthetic blocks form our ground truth multi-location blocks dataset.

Some of the VP-compatible single-location blocks that we use to build the multi-location

dataset are quite close to each other. We, therefore, identify two subsets in our multi-location

dataset: those composed of almost-co-located blocks (within 13 km of each other), and not-co-
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Table 4.1: Building the synthetic multi-location dataset from single-location blocks.

single-location blocks 85
used to build multi-location blocks 77

synthetic multi-location blocks 120
not-co-located 99
almost-co-located 21

located blocks (35 km apart or more2). We identify 21 almost-co-located synthetic blocks and

99 not-co-located blocks.

4.4.3 Validation

The two ground truth datasets (single- and multi-location) let us evaluate the ability of our

delay-based clustering method to identify co-located blocks and blocks that span multiple ge-

ographic locations. We next describe the results of applying our method on both single- and

multi-location datasets.

We first considered our single-location dataset. Our clustering algorithm classified correctly

91% (77 of 85) of the blocks in our single-location dataset. Seven blocks were identified to have

2 clusters while one block was not clustered. Manual investigation of the 7 blocks with 2 clusters

showed distinct latency distributions for the two clusters. Hostnames and traceroute results did

not show any evidence that the IP addresses in any of these blocks were at different locations.

We still believe that these blocks are co-located, but some addresses experienced different de-

lays, possibly due to wireless connections, where wireless access points are known to add a few

milliseconds to the hosts’ observed RTTs [90].

We next turn to our synthetic, multi-location dataset. First, we discarded synthetic blocks

built from the 7 misclassified single-location blocks since we know those would be identified

as multi-location blocks. We then applied our clustering methodology to the remaining not-

co-located 99 synthetic blocks. Figure 4.1 shows the number of identified clusters and the

corresponding distance between the two combined blocks for each synthetic block. We cor-

2The single-location dataset does not have VP-compatible blocks within 13 km to 35 km from each other.
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rectly identified 88% of these as multi-location blocks. Manually investigating the remaining

12% false negatives, we saw very similar delay measurements for IP addresses in the combined

blocks leading to incorrect identification. Such delay measurements could be a result of a rel-

atively small distance between the combined blocks Other possible reasons are blocks sharing

most of the network hops to the VPs or similar path distances from the VPs. For example, the

VP at the Berlin Institute of Technology observed similar delay measurements to the two syn-

thetic blocks at the University of Göttingen and Jade University of Applied Sciences in Germany.

The VP at Hamburg University of Applied Sciences also observed similar delay measurements

to these two blocks. The clustering method falsely identified these two blocks as co-located.

To examine the most challenging synthetic blocks, we also looked at the 21 proximal almost-

co-located synthetic blocks, where the real-world distance between each block is within 13 km.

One example is the combination of Dongbei University of Finance and Economics and the

Dalian University of Technology in China, which are about 2 km away from each other. De-

spite close physical proximity, our method correctly identifies 38% (8 of 21) of these blocks as

multi-location. Overall, between the single- and multi-location datasets, 93% of the cases iden-

tified as multi-cluster blocks are true positives, which gave us confidence that our methodology

works reasonably well.

4.4.4 Bounding the False Positives

Our clustering method needs to maintain a low false-positive rate to ensure that we do not

overestimate the number of multi-location blocks (false positives). To estimate an upper bound

for the false positive rate, we built another extended set of /24 blocks that are likely co-located.

We leveraged again address blocks in academic institutions. We followed a similar procedure as

with the single-location dataset, but now we picked a set of 100 random universities from the

set of 560 academic institutions we have valid data for (§4.4.1) and that have at least a /16 block

assigned to them and verified not to include web hosting services. We found 3,062 /24 blocks

within the selected 100 /16 blocks that appear in the ISI dataset. Table 4.2 shows the results of
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Figure 4.1: Results of applying the delay-based clustering to 99 2-block combinations. The graph shows
the number of reported clusters for each synthetic block and the corresponding distance between the
combined blocks.

Table 4.2: Results of clustering university /24 address block to identify a false positives upper bound.

number of institutions 100
number of /24 blocks with valid data 3,062 100%

one cluster 2,657 86.8%
two clusters 166 5.4%

not clustered 239 7.8%

running the clustering method on all of these blocks. The results show that 239 blocks (7.8%) are

not clustered since they did not meet our criteria for the minimum number of addresses to form

a cluster, 2,657 blocks (86.77%) have one cluster, and 166 blocks (5.4%) have 2 clusters. Since

any of the blocks identified as multi-location could indeed be multi-location blocks, we regard

the 5.4% as an approximate upper-bound for the false positive rate in our clustering method.

4.5 Co-Locality of /24 Blocks in the Wild

In this section, we present the results of applying our clustering method to 1.41M /24 blocks

in the ISI dataset (§4.5.1). We then present a characterization of the blocks identified as multi-

location (§4.5.2).
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Figure 4.2: Distribution of the number of clusters for all 1.41M /24 blocks in the ISI dataset. About 17%
of the /24 blocks (∼247k) are identified as multi-location.

4.5.1 Identifying Multi-Location /24 Blocks

Figure 4.2 shows the distribution of identified clusters in all 1.41M /24 blocks. About 17%

(∼247k blocks) appear to have endpoints at multiple locations. 82% of the multi-cluster blocks

are grouped into 2 clusters of IP addresses. A small fraction, 0.44%, of the multi-location blocks

are grouped into four or more clusters. Our method failed to cluster 73,792 /24 blocks (5.23%

of all blocks), 98% of which have 20 IP addresses or less. A block is identified as not clustered

when the clustering method can not find any cluster with the required minimum number of IP

addresses that satisfies all clustering criteria. While this is more typical in blocks with a small

number of IP addresses, it can also be true for any block with endpoints that are highly scattered

geographically.

4.5.2 Characterizing Multi-Location /24 Blocks

Our method identified about 247k blocks as multi-location blocks. We found multi-location

blocks in 182 different countries. Table 4.3 lists the top 10 countries sorted by the number of /24

blocks (second column) found in our 1.41M blocks dataset. The third and fourth columns re-

spectively list multi-location /24 blocks identified per country both as an absolute number and

as a percentage of a country total /24 blocks in the dataset. We note different percentages of
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Table 4.3: Top 10 countries sorted on their total number of /24 blocks in the dataset and the correspond-
ing multi-location blocks percentage per country.

Coun-

try

Blocks in

Dataset

Multi-location

Blocks

Multi-location

Blocks %

% of Country Blocks

in Dataset

US 430947 84649 19.64% 6.83%
CN 98016 1507 1.54% 7.45%
DE 81925 34691 42.34% 17.45%
JP 71131 20899 29.38% 8.97%
GB 63609 12339 19.40% 13.24%
KR 60265 10296 17.08% 13.73%
FR 55870 6900 12.35% 17.97%
BR 53050 4772 9.00% 16.57%
RU 37772 2954 7.82% 21.10%
CA 35816 3414 9.53% 12.57%

identified multi-location blocks across different countries. For example, Germany has 42.34%

of its blocks in the dataset identified as multi-location, while only 1.54% of the /24 blocks in

China are labeled as multi-location. The differences in multi-location percentages across coun-

tries may be due to different policies of IP address assignment. We find that a significant portion

of the identified multi-location blocks belong to big ISPs in countries with rich Internet infras-

tructure such as the United States and Western Europe. (See the discussion of Table 4.4 next.)

The fifth column lists each value in column 2 as a percentage of the total blocks assigned to

each country by the corresponding RIR. From the table, we can see our dataset has a reason-

able representation of the IPv4 address space for the top 10 countries, ranging from about 7%

to over 21%.

In Table 4.4, we list the top 10 ISPs and their Autonomous System Numbers (ASNs) sorted by

the number of /24 blocks (third column). The fourth column lists the total number of blocks for

each ISP in the dataset, while the fifth column is simply the ratio of the previous two columns.

From the table, we can see that some ISPs (such as DTAG and ONC NTT) show a high per-

centage of multi-location blocks, while others have much smaller percentages. This difference

reflects different IP assignment policies across ISPs concerning the geographic distribution of

the addresses. It is also worth mentioning that some ISPs dominate the multi-location blocks
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Table 4.4: Top 10 ISPs sorted on their number of multi-location blocks, and their corresponding percent-
ages of ISPs’ total number of blocks in the dataset.

ISP Name ASN Multi-loc.

Blocks

Blocks in

Dataset

Multi-loc.

Blocks %

% ISP Blocks

in Dataset

Coun-

try

DTAG Deutsche
Telekom AG

3320 21,204 36,359 58.3% 25.5% DE

COMCAST-7922 -
Cable Comm

7922 11,804 69,117 17.1% 24.2% US

OCN NTT Comm Corp. 4713 9,204 14,841 62.0% 12.9% JP

ATT-INTERNET4 -
AT&T Serv

7018 8,994 43,656 20.6% 11.8% US

Uninet S.A. de C.V. 8151 7,033 24,269 29.0% 49.0% MX

UUNET - MCI Comm
Services

701 6,881 28,497 24.2% 14.7% US

CENTURYLINK-US-
LEGACY-QWEST

209 6,766 26,197 25.8% 38.8% US

BSKYB-BROADBAND
AS Sky UK Ltd

5607 5,810 10,501 55.3% 40.7% GB

VODANET Vodafone
GmbH

3209 5,665 14,049 40.3% 41.5% DE

TPNET Orange Polska
Spolka

5617 5,561 14,950 37.2% 46.6% PL

in their countries in our dataset. For all the countries listed in Table 4.4, more than 40% of their

multi-location blocks are from few (less than four) ISPs. We leave further investigation of these

phenomena as future work. The sixth column lists each ISP blocks in the dataset (column 4) as

a percentage of the total blocks in its ASN announced prefixes (computed based on data from

http://cyclops.cs.ucla.edu/). From column six, we can see that our dataset has a

reasonable representation for the top 10 ISPs ranging from about 12% to 49%.
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4.6 Identifying Arbitrary-Size Clusters of Co-located Addresses

In this section, we show that our delay-based clustering method can be used as an optimiza-

tion tool for efficient geolocation. We already examined our method over /24 blocks (§4.4.3),

showing that we can identify groups of adjacent, co-located IP addresses within a /24 block.

Next, we show that our method can also identify clusters of arbitrary-size clusters of co-located

IP addresses. We first demonstrate the similarity of latency observations of co-located blocks

in §4.6.1. We then build and describe our evaluation dataset in §4.6.2. Finally, we show the

result of applying the delay-based clustering to the evaluation dataset in §4.6.3.

4.6.1 Similarity of Co-located Blocks Latency

To demonstrate the similarity of RTT-measurement of co-located /24 blocks from the same

organization, we use data from the USC ping dataset (§5.2.1). Figure 4.3 depicts RTT data ex-

tracted for two sample /24 blocks from the 128.125/16 block at the University of Southern Cal-

ifornia (USC). Each line, in either of the graphs, represents the data from one of the 6 vantage

points used to probe a block over the last quarter of 2018 (2018q4). Each data point on any line

represents the 5%ile of one day worth of RTT observations (close to minimum RTT approxima-

tion), where each VP probe a random IP address in the block around 130 times a day with 11

minutes between the measurements.

From the graph, we can see the two blocks have near-identical RTT fingerprints in any day

during 2018q4. Indeed, except for a few less responsive blocks, we can generalize our obser-

vation about the two blocks in Figure 4.3 to 107 other /24 blocks from USC for which we have

latency data. These observations are also valid for several other academic institutions that we

investigated. From these observations, we expect our delay-based clustering method to be able

to identify arbitrary-size clusters of co-located IP addresses from one organization.
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Figure 4.3: Two /24 address blocks with near-identical RTT fingerprints from USC /16 prefix.

4.6.2 Evaluation Dataset

To examine the clustering method over larger groups of IP addresses known to be in one lo-

cation, we again use the blocks from the dataset of 100 universities from §4.4.4. This time, rather

than looking at individual /24 blocks, we look to identify any number of co-located IP addresses

in a university /16 block for which we have valid data. We assume a university is likely to assign

its allocated address range to end-user computers within a defined small geographical area that

the university owns. Using information from the websites of the universities, we confirmed that

the data we are using in this evaluation belongs to universities that have one campus or a few

campuses within the same city.

Since our method clusters IP addresses by the similarity of their latency observations, we

can only apply the method to VP-compatible blocks (i.e., blocks probed by the same set of VPs).

Similar to building the synthetic dataset in §4.4.2, we find all single-location blocks from §4.4.4

that are VP-compatible in each university prefix. We require a university prefix to have at least

two VP-compatible /24 blocks to be included in our evaluation. Often, we find that /24 blocks

of one university are probed by identical or near-identical sets of VPs. For this evaluation, we

picked the largest group of /24 blocks probed by an identical set of VPs for each university. We

find 65 universities with a total of 1,974 /24 blocks that satisfy our criteria. We extract the RTT-

vectors of the IP addresses in each university group, as described in §4.3.1, and use these vectors

as the input for the delay-based clustering method next.
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Figure 4.4: Results of clustering 65 university groups of IP addresses in VP-compatible blocks.

4.6.3 Results

In this section, we examine the clustering method over 65 groups of co-located IP addresses.

We form each group from addresses in two or more VP-compatible /24 blocks (§4.6.2). Given

that the addresses in one group are likely co-located, we expect our method to identify the

addresses in each group as one cluster.

Although our method is not aware which RTT-vectors (of IP addresses) belong to a given

block, almost all RTT-vectors of each /24 block ended up in the same cluster. This result sug-

gests homogeneous use of the IP addresses in those blocks. Figure 4.4 shows the clustering

results for each of the 65 university groups sorted by the number of VP-compatible blocks a

university has (y-axis), while Table 4.5 presents the overall results.

Our method correctly identifies the IP addresses of 56 (86%) of the 65 groups as one cluster

each (columns with dark stripes in Figure 4.4). We identify the addresses in 8 groups in 2 clusters

and one group in 3 clusters, indicating endpoints at different locations. We hypothesize some

of these university blocks are connected via WiFi access points. We show in Chapter 6 that IP

addresses in WiFi blocks can exhibit distinct latency patterns compared to those in fixed-line

blocks. These distinct latency patterns could lead our method to identify such blocks as not-co-

located even when they are nearby. We did not investigate these blocks further. Overall, 1,957

(99.1%) of the /24 blocks in the evaluation dataset are classified in the majority cluster of each
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Table 4.5: Overall results of clustering IP addresses in the university VP-compatible blocks dataset.

institutions that satisfy selection criteria 65 100%
one cluster 56 86%
two or three clusters 9 14%

all institutions /24 blocks with valid data 1,974 100%
in the majority cluster 1,957 99.1%

not in the majority cluster 17 0.9%

university. These results show that our method can identify arbitrary-size groups of co-located

IP addresses with reasonable accuracy. Moreover, these results support our thesis statement

by showing that we can identify groups of co-located addresses by their latency observations,

allowing us to geolocate them efficiently as units.

4.7 Conclusions

We presented a delay-based methodology to assess the co-locality of Internet addresses.

Our method identifies whether or not a set of adjacent addresses are in one location based on

the similarity of their latency estimates observed from several vantage points.

This chapter provides evidence to support part of our thesis statement (§1.2). Our thesis

states that we can identify clusters of co-located IP addresses from latency observations to en-

able efficient geolocation. Using our delay-based clustering method, we showed that we can

identify arbitrary-size clusters of co-located IP addresses—addresses that we can geolocate as

a unit rather than individually—, allowing more efficient geolocation that avoids incorrect co-

locality assumptions. We evaluated our method over IP addresses in 1,974 /24 blocks in 65

university groups, where the addresses in each group are likely in one location. Our method

correctly identified the majority of the addresses in each group as co-located.

We also used our delay-based method to assess the /24 block co-locality assumption. We

examined a large dataset of 1.41M /24 blocks and showed that more than 17% appear to be

multi-location blocks. This outcome disagrees with the common assumption of /24 block co-

locality in many geolocation services, suggesting we need to identify which addresses are in
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one location instead of making such assumptions. We found that the majority of the blocks

identified as multi-location belong to large ISPs in countries with rich Internet connectivity

such as the United States and other countries in Western Europe.

Our work can be part of a system to evaluate geolocation databases such as MaxMind. Such

a system would likely deploy a long-lived active measurement infrastructure and compare re-

sults with both free and commercial geolocation databases. A long-lived system can also track

the movement of IP address blocks as they get traded, which we study in Chapter 5. We believe

that our method can be used to conduct longitudinal studies to identify consistently co-located

groups of IP addresses over time. A geolocation system can use this information to geolocate a

set of co-located IP addresses as a unit by a few of its representatives, effectively trimming the

number of geolocation targets without losing accuracy.

80



Chapter 5

Delay-based Identification of Internet Block

Movement

This thesis focuses on characterizing the IP addresses co-locality and movement using la-

tency measurement to enable efficient IP geolocation that maintains up-to-date IP-to-location

mappings. Chapter 4 presented a method to assess the co-locality of IP addresses, allowing us

to identify co-located addresses that we can geolocate as a unit and avoid geolocation error

that could result from incorrect co-locality assumptions. In this chapter, we turn our focus to

identifying movement of IP address blocks (or address blocks).

Some IP blocks occasionally change their physical location, such as when blocks are trans-

ferred to different organizations, or repurposed within an organization. We expect that the

majority of the Internet blocks do not move since most organizations reside in a well-defined

physical space and tend to keep their assigned addresses within that space. Therefore, full re-

geolocation is inefficient to maintain up-to-date geolocation data when only a fraction of the

Internet blocks requires location updates from time to time.

To support our thesis statement (§1.2), we show that we can leverage latency measurement

to determine the location-stability of address blocks to detect when a geolocation update is

required. Identifying address blocks that move allows an IP geolocation system to trigger re-

geolocation as needed to maintain up-to-date location-mappings and avoid unnecessary, ex-

pensive full re-geolocation of the whole Internet (§2.5).

To detect block movement, we track all ping-responsive IPv4 /24 blocks from a handful of

globally distributed vantage points (§5.2.1). Our method looks for significant and persistent

changes in the latency state of a /24 block observed from multiple vantage points around the

same time as an indication of block movement (§5.3.3). Using the proposed method, we show

that only a small fraction of the responsive Internet blocks occasionally moves (§5.5.1). We
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estimate around 2.1% of the 3.77M /24 blocks we studied have changed location at least once

in the last 3 months of 2018 (2018q4). We validate a random sample of blocks we identify as

moving and confirm 80% (41 of 51) through traceroutes (§5.5.2).

5.1 Introduction

Chapter 2 presented several IP geolocation approaches. Regardless of the geolocation ap-

proach used, the result only provides a snapshot of the current IP-to-location mappings. Some

IP blocks occasionally move to a different location, for example, when transferred to a different

organization, or reassigned within an organization. Previously estimated location of a block

that has moved becomes outdated and needs to be updated. It is possible that IP block move-

ment is now more frequent due to the exhaustion of the registries’ IPv4 address pools that serve

the global demand [88, 104].

The geolocation accuracy can have a significant impact on Internet applications that utilize

geolocation information such as Video on Demand (VoD) services that use geo-blocking to limit

or block access to their content based on users’ location [40, 83]. IP block movement can de-

grade geolocation accuracy if not detected and timely addressed. This chapter looks to identify

Internet block movement to help a geolocation system maintain an up-to-date IP geolocation

without having to perform frequent geolocation for the whole Internet.

A geolocation system needs to identify when a block moves and then update its location.

One may obtain information about block movement from the Regional Internet Registries (RIRs)

transfer reports, which may report IP address range transfers between organizations [7,9]. How-

ever, the reported date of transfer does not necessarily reflect when the block actually appears

in a new location (§5.5.3). More importantly, these reports do not include information about

ISPs internal reassignment of blocks to other locations. Measurement-based geolocation meth-

ods (§2.3) can maintain up-to-date geolocation if applied continuously, but these methods can

be intrusive and inefficient when applied continuously to the entire IP address space.
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The primary goal of this chapter is to define a method to identify when blocks (/24 IPv4

prefixes) move in order to help a geolocation system to maintain up-to-date IP-to-location

mappings without requiring full re-geolocation. The identification of a block movement tells

a geolocation system it is time to re-run geolocation to update the block location. To achieve

this goal, we propose a delay-based method that monitors ping measurement to visible /24

blocks from 6 globally distributed vantage points. We show that these measurements can iden-

tify block movement and are inexpensive enough to run continuously. Our method identifies

movement by observing persistent changes in the latency state of a /24 block from multiple

sites around the same time.

The first contribution of this chapter is defining an efficient method to identify IP block

movement from delay measurements observed via a small number of vantage points. Our sec-

ond contribution is the application of our method to a dataset of 3.77M /24 blocks, showing

that 2.1% of them experienced movement during the last 3 months of 2018.

5.2 Datasets

This work uses a USC ICMP echo-request (ping) data coverage to look for block movement

in about 4M /24 blocks of the responsive Internet (§5.2.1). We then use two datasets from CAIDA

to validate a sample of our block movement findings: the IPv4 Routed /24 Topology Dataset

(§5.2.2), and the Internet Topology Data Kit (§5.2.3).

5.2.1 Latency Information from the USC Internet Outage Data

Our method evaluates delay measurement to /24 IP blocks over time, so we require Internet-

wide data that contains latency estimates. We extract latency estimates from publicly available

measurements taken for Internet outage detection [97] using Trinocular [101]. This data is avail-

able to researchers at no cost; we obtained it from USC.

Trinocular scans IP addresses in about 4 million responsive IPv4 /24 network blocks using

ICMP echo-request messages. (The target list of blocks is updated periodically using long-term
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history data from Internet censuses [41].) Each /24 block is probed every 11 minutes, one or

more probes taking place, often stopping after the first successful probe returns an echo-reply.

Each block is therefore probed about 130 times a day. Successful replies include the round-trip

time; we ignore unsuccessful probes. Scans rotate through different addresses in each block

over time.

Trinocular collects data from six vantage points (VPs) positioned around the world. We use

data from all of the six vantage points collected during October through December of 2018 [99].

The VPs identifiers and locations are: c (center of the U.S in Ft. Collins, Colorado), e (east coast

of the U.S. in Arlington, Virginia), g (Athens, Greece), j (Tokyo, Japan), n (Utrecht, Netherlands),

and w (west coast of the U.S. in Marina del Rey, California).

We estimate block latency each day from its daily observations (§5.3.1). Each attempt tries

up to 15 addresses and reports latency only if one replies. We determine a block’s latency state

status only for days when 3 or more VPs each have 10 or more latency observations, which

we refer to as determination-valid days. About 156k (3.9% of all blocks in the ping dataset) do

not have any determination-valid days and around 41k (1%) have 9 or less such days. In the

remainder of this chapter, we use the remaining 3.77M blocks (95.1% of all blocks) with 10 or

more determination-valid days.

5.2.2 Paths from the CAIDA UCSD IPv4 Routed /24 Topology Dataset

To examine the relationship between observed changes in latency estimates and routing

changes, we use the CAIDA UCSD IPv4 Routed /24 Topology Dataset (henceforth referred to as

CAIDA-topology dataset in this chapter) [14] We use historical traceroute data from the same

period as our ping dataset (§5.2.1).

The CAIDA-topology traceroute measurements are collected using around 152 Ark moni-

tors, globally distributed in 52 countries. These monitors work as a team to probe randomly

selected IP addresses in every routed /24 prefix. Only a single random destination in a /24 pre-

fix is probed every 48 hours by only one of the monitors.
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To get observations from locations near our six vantage points, we first identified active Ark

monitors that are within 50 km of our probes. We found 15 such Ark monitors close to 4 of our

vantage points. We used the closest Ark monitors available for the other two vantage points;

the Ark monitor wbu-us at Boulder, CO for the VPc at Fort Collins, CO, U.S., and sof-bg at Sofia,

Bulgaria for the VPg at Athens, Greece.

Ideally, we would like to compare one monitor’s traceroute measurements soon before and

after a block sees a change in latency. We first identify blocks with changes in their latency

according to §5.3. For a given change, we select one monitor’s measurements if they satisfy

the following criteria: First, the measurements should be from the consistent-RTT periods (i.e.,

periods with no other changes detected in them) before and after the change. Second, only

monitors with at least one measurement before the delay change, and another after it are used.

If a monitor has multiple measurements that satisfy these two criteria, we select the closest in

time to the observed change.

We do not always find relevant traceroute measurements that satisfy our criteria. Each

routed IPv4 /24 prefix in the CAIDA-topology dataset is probed only once every 2 days, by only

one of the Ark monitors, which may or may not be one of the 17 Ark monitors we selected. Ap-

plying the selection methodology to blocks we identify with delay changes shows that around

62% of the changes have relevant traceroute measurement.

5.2.3 Paths from the CAIDA Internet Topology Data Kit

For a more comprehensive routing path comparisons, we augment the measurements of

the CAIDA-topology dataset (§5.2.2) with data from CAIDA’s Macroscopic Internet Topology Data

Kit (ITDK) [13]. We use the ITDK data to map any traceroute hop IP address to its router-level

node, AS, and location. In this chapter, we use the ITDK 2018-03 dataset, the closest public

ITDK dataset in 2018 to our ping dataset.

The ITDK data has two router-level topologies, derived with different alias resolution tools.

We used the one derived with MIDAR [72] and iffinder [71] tools, which CAIDA reports as the
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Figure 5.1: Box plots and 5%ile RTT for sample /24 blocks. Dataset: 2018q4.

more accurate, although with less coverage. The dataset extracts the IP addresses of intermedi-

ate hops that appear in traceroute measurement performed using the Ark infrastructure.

AS assignments are derived using RIPE and RouteViews BGP tables and Regional Inter-

net Registries (RIR) delegations. The geolocation is derived at the router-level using differ-

ent sources that include hostname mapping, information from known Internet eXchange (IX)

point, and MaxMind’s free GeoLite City database. A router is assigned a location only when all

of its identified interfaces are individually geolocated to the same location.

5.3 Methodology: From Block Latency to Block Movement

Our methodology begins by processing observations of block RTT to get a stable estimate

of its latency (§5.3.1). We then show examples of the patterns in these estimates that indicate

block movement, congestion, and routing changes (§5.3.2). Our detection method searches for

these patterns to detect block movement (§5.3.3).
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5.3.1 Stable Estimation of VP-to-Block Latency

To get a stable estimate of block latency we must filter through measurement noise due

to network congestion, route changes, and other transient network effects. We use 5%ile of

all daily RTT observations (or just 5%ile-RTT)—a measure at which 5% of the observations lie

below— as our stable estimator of the block’s latency. This near-minimum estimate of RTT

filters out queuing delay from congestion while avoiding outliers.

Figure 5.1 depicts the box plots of two sample /24 blocks daily RTT observations and their

5%ile (the magenta line). Each plot depicts daily observations for one VP over one month.

Each box shows the interquartile range (IQR), with RTT observations with the lower and upper

quartiles (25%ile and 75%ile) with an interior line showing the median. The lower (and upper)

whiskers show the lowest RTT still within (1.5× IQR) of the lower (or upper) quartile, and circles

show outliers beyond the whiskers.

First, we observe that quartiles are quite tight, suggesting that we can filter outliers. More-

over, most outliers are above the upper whiskers, suggesting that the 5%ile will be close from

minimum RTT and therefore speed-of-the-Internet latency. Having established this estimator,

we report only the 5%ile-RTT in later sections and omit quartiles and outliers.

Second, we can see that these two VPs show different latency fingerprints. For Figure 5.1a,

while RTT observations vary some throughout the day, the daily 5%ile is relatively stable over

time. In §5.5, we show that this 5%ile-RTT stability is common for most blocks. By contrast,

the block in Figure 5.1b also shows 5%ile-RTT stability, but with two modes, values before and

after December 12 each show a different common value, and latency drops by about 78 ms on

the 12th. This change indicates either routing or location change, and in §5.3 we describe our

algorithm to identify blocks movement by detecting such changes across multiple VPs.

5.3.2 Common Patterns in IP-Block Latency

For each day, the 5%ile-RTTs from 6 VPs defines the that block’s latency state (or just block

latency). We look for patterns of change in block latency that indicate block movement. Here we
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Figure 5.2: Example latency states for blocks showing routing change (left) and movement (right).
Dataset: 2018q4.

show sample patterns drawn from blocks in 2018q4. We use the insights from these examples

to define our algorithm in the next section.

Figure 5.2 depicts the 5%ile-RTTs for two sample /24 blocks, where each line represents the

data from one vantage point. For the block in Figure 5.2a, the daily observations are mostly

consistent up to November 29 for all 6 VPs. This RTT-stability suggests the block’s location is

fixed during that period. This pattern is common in most blocks in our ping dataset, as we

show in §5.5. We expect that a change in a block location would affect the observations of

multiple VPs. Only VP j observed a significant change on November 29, suggesting an event

that affected only that VP and not the block (e.g., a routing change on the path from VP j to that

block). We also see other, less significant changes in delay, including VPn on October 8, VPe

on October 16, and VPg on several occasions. Many small changes at different times suggest

routing changes or persistent congestion, not block movement. Our algorithm in §5.3 looks for

persistent, significant latency change to indicate movement and filter out other effects.

Figure 5.2b shows an example of a /24 block with a significant change in the block latency

observed by multiple vantage points on October 18. Some of the vantage points experienced

an RTT increase (VPc , VPe , VP j , and VPw ), while VPg observed a decrease, and VPn observed

an insignificant change. We also note that the new block latency after October 18 is persistent
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through the end of December. This pattern indicates that the block likely moved to a different

location on November 18, 2018.

5.3.3 Identifying Block Movement from Latency Measurements

Building on 5%ile-RTT estimates from 6 VPs, and common patterns to look for, we now

present our algorithm for block movement.

Our algorithm has four steps, each confirming the block is suitable for continued analysis.

First, we determine blocks with sufficient latency observations as determination-valid, then we

look for changes in VP latency, that show VP agreement. Our final check is persistence of the

change. We review each of these steps below.

Our first step is to confirm that the block has determination-valid days. A block’s one day

worth of measurement is determination-valid when, over the course of that day, it has enough

VPs, each with enough observations that we can draw statistically strong conclusions. We re-

quire that each VP have at least 10 latency estimates, so that that VP’s 5%ile is valid (not mislead

by transient network conditions). We require observations from at least 3 VPs, so that we can

confirm movement and not just a route change affecting one path. Since each VP makes about

130 attempts to measure latency and we have 6 VPs, these requirements (of 10 estimates per VP

and 3 VPs) allow for substantial downtime or measurement error.

Our next step is to look for changes in VP-to-block latency. In §5.3.2, we showed stationary

blocks see some variation in daily 5%ile-RTTs. We consider latency from a VP to the block to

have a significant change if the change exceeds some threshold T compared to the long-term

average (one week). We use a threshold of a 9% change in latency, as determined from ROC

analysis from training data (§5.4.3).

We use VP agreement to filter out routing changes. Physical movement usually affects all

VPs, but changes in Internet paths will change latency between a VP and the target block, and

are unlikely to affect all VPs. We consider an agreed-latency-change to occur when there are VP-

block latency changes by at least half of the VPs (3 or more). We do not demand the agreement
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of all VPs as some might not have VP-latency-valid days around the time a change happens.

Moreover, some VPs may see insignificant changes concerning the delay-change threshold cri-

teria.

Finally, we require that the latency change is persistent. IP blocks are unlikely to move fre-

quently or for short periods. Therefore, latency changes caused by a physical block movement

will likely persist more than just a few days. We compute the duration of an agreed-latency-

change as the number of days until we observe another change, or until the VPs agreement

heuristic is broken (i.e., we no longer have 3 or more VPs with significantly different block

latency to that before the agreed-latency-change). In this work, we focus on agreed-latency-

changes that persist for at least one week as a strong indication of block movement.

When a block meets these four criteria we consider it a movement candidate.

5.4 Controlled Experiments with Synthetic Data

To evaluate our method with known ground truth, we next describe how we simulate block

movement (§5.4.1), build a test dataset from synthetic movement of real observations (§5.4.2),

and use this to select optimal parameters for our method (§5.4.3).

5.4.1 Simulation of Block Movement

We simulate block movement by replacing a block’s RTT data in a selected range of days with

data from another block at a different location. (We use only latency, the addresses involved are

unimportant.) We select start and end randomly, with end at least 7 days after start.

Figure 5.3a and Figure 5.3b show 5%ile-RTTs of blocks about 700 km apart (in Fort Collins,

Colorado and Logan, Utah). They show some variation in latency over the observation month,

but neither is identified as moving by our algorithm. In Figure 5.3c, we create a synthetic block

that moves from Colorado (the base data) to Utah from November 28 to December 7 (the shaded

region) by replacing that period of data.
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(a) Block 129.82.44.0/24, Fort Collins, CO.
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(b) Block 129.123.54.0/24, Logan, Utah.
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(c) A synthetic /24 block with movement in the shaded
period.

Figure 5.3: Real blocks (dataset: 2018q4) combined to make a synthetic block with known movement
(dataset: synthetic).

5.4.2 Building a Dataset with Synthetic Movement

Next, we build a dataset with synthetic movement of block. We begin with 60 /24 IP blocks,

each with websites from a different university. We verify that each block appears to be physically

at its university (and not outsourced to a third party) using WHOIS information, and reverse

DNS names, checking that the name indicates the university. We select university blocks be-

cause academic institutions have known locations and often self-host, suggesting their blocks

are at static, known locations.

We select geographically distributed blocks: 8 universities in Africa, 9 in Latin America, 10 in

Asia, 13 in Europe, and 20 in North America. We use the GeoNames geographical database [46],

to identify the geographic location of each block from its university.

91



Table 5.1: Accuracy from method to the university blocks. Dataset: 2018q4.

Delay-change threshold 3% 5% 7% 9% 11% 13% 15%

False Positives 13 4 3 2 1 0 0
True Negatives 47 56 57 58 59 60 60
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Figure 5.4: Distribution of distances in all 1,540 block pairs with known movement. Dataset: synthetic.

Since our goal is to identify blocks that move, we consider all 60 university blocks as negative

instances of this category. We verify the blocks do not cause false positives in our algorithm by

applying movement identification with delay-change thresholds from 3% and 15% (with 2% in-

crements). Table 5.1 shows false positives (FP) and true negatives (TN) per delay-change thresh-

old. We drop a delay-change threshold of 3% as too sensitive, since with it, 13 blocks (21.7%)

are misclassified as moving. Larger thresholds show a few or no false positives. We identify 4

blocks that are false positives at higher thresholds, so we eliminate them from use in synthesis.

Using the remaining, verified 56 blocks, we create all 1,540 possible pairs where we insert

data from one block into another to simulate movement (as in Figure 5.3). Figure 5.4 shows

the distribution of distances of the 1,540 block pairs in the synthetic dataset. Most of the pairs

(85%) show uniform distances from 0 to 12,000 km.
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Table 5.2: Accuracy for different delay-change thresholds from known movement. Dataset: synthetic.

FNs vs distance (km)

Threshold TPs any distance 0-100 101-200 201-300 301-400 401-500
(1540) (7) (11) (12) (8) (19)

5% 1516 24 5 5 5 1 2
7% 1505 35 5 6 5 1 3
9% 1495 45 5 6 7 2 4
11% 1474 66 5 7 8 4 8
13% 1449 91 5 8 11 5 11
15% 1434 106 5 8 11 5 14

5.4.3 ROC Analysis

We now use this synthetic dataset of 1,540 blocks with known movement (§5.4.2) to se-

lect optimal parameters for our algorithms with ROC-curve (Receiver Operating Characteristic)

analysis.

Table 5.2 shows how many blocks move (TPs) or do not have detected movement (the FNs

at any distance) vs. different delay-change thresholds. The table also compares FNs against dis-

tance ranges below 500 km, since short distance movement is more challenging. The number

in parentheses under each range is the count of instances we have in that range. Geographically

closer blocks show smaller differences in latency, and our method performs better as distances

increase. Smaller thresholds seem to have fewer false negatives since they are more sensitive.

We use the ROC-curves to select the delay-change threshold that balances true positive rate

(TPR) with false positive rate (FPR). We compute the TPR and FPR at various thresholds from the

confusion matrix of the analysis of university blocks (Table 5.1) and the synthetic-moving blocks

Table 5.2. Figure 5.5 shows the ROC curve for the TPR against FPR at different thresholds (shown

next to the marks on the graph). We see that a threshold of 9% yields good TPR against FPR

results (97% and 3.3%), allowing for detecting most of the moving blocks while reducing false

positives over the evaluation datasets. We use this threshold in the remainder of this chapter.

We next test the sensitivity of our method and the selected delay-change threshold (9%) on a

more challenging subset of the synthetic blocks. Rather than using all possible 1,540 synthetic

combinations, we perform the ROC-curves on synthetic pairs of distance less than 4,500 km
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Figure 5.5: ROC curve showing true and false positive rates over blocks with known movement. Annota-
tions next to points show the threshold, and the y-axis does not start at zero. Dataset: synthetic.

(comparable to the horizontal width of the African continent or a large country such as the

U.S.). We find 23% of the synthetic blocks (360) that satisfy this criteria.

Table 5.3 shows the true positives and false negatives of applying our method to the 360

synthetic blocks with known movement within 4,500 km. The results are consistent with those

for all 1,540 synthetic blocks (Table 5.2), showing that smaller thresholds are better at detecting

blocks with smaller movement.

Table 5.3: Accuracy at different delay-change thresholds from known movement at continent scale.
Dataset: synthetic.

Threshold TPs FNs

5% 342 18
7% 335 25
9% 328 32
11% 305 55
13% 291 69
15% 281 79

For the ROC-curves analysis, we compute the TPR from the confusion matrix of synthetic-

moving blocks analysis (Table 5.3), and the FPR from the previous analysis of university blocks

(Table 5.1). Figure 5.6 shows the ROC curve for the TPR against FPR at different thresholds

(shown next to the marks on the graph). Although the movement scale of the 360 synthetic
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Figure 5.6: ROC curve showing true and false positive rates over blocks with known movement within a
continent scale. Dataset: synthetic.

blocks is far smaller than that of all the 1,540 blocks, our method still achieves good results that

are consistent with those in Figure 5.5. We see that a threshold of 9% again yields good TPR

against FPR results (91% and 3.3%), confirming our results over all the synthetic blocks.

5.5 Evaluation with Real-World Data

Having defined our methodology with controlled experiments, we now apply our method

to real-world data for about 3.77M /24 blocks to understand the Internet (§5.5.1) and verify

real-world block movement (§5.5.2 and §5.5.3).

5.5.1 Applying our Method in the Wild

We next apply our method to Internet-wide data (§5.2.1) to identify blocks that move. Our

goal is to identify how many blocks move during 2018q4. We do not expect many blocks to

move, since most organizations have a fixed physical location, and assignment of addresses is

often stable.

We summarize our results in Table 5.4, using our method with a delay-change threshold of

9%. We see that 78.7k (2.1% of the 3.77M /24 we consider) move at least once during the last 3

months in 2018. These results show that our algorithm can identify a subset of moving blocks

that IP geolocation services should review, saving 98% of the effort of checking everything.
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Table 5.4: Block movement from Internet-wide data. Dataset: 2018q4: threshold: 9%.

ping-dataset blocks ~4M
determination-valid Blocks 3.77M 100%

consistent 5%ile-RTT 3.33M 88.3%
agreed-latency-change 441k

short 362k 9.6%
indicate movement 78.7k 2.1%

Most of the blocks in our ping dataset showed consistent 5%ile-RTT. About 3.33M (88.3%)

show consistent latencies (no agreed-latency-change) over the in 3 months, meaning at no time

there was a significant latency change agreed upon by 3 or more VPs. Another 362k blocks

(9.6%) see one or more short agreed-latency-changes, but return quickly. These short changes

suggest transient network events such as routing change or congestion, not movement.

5.5.2 Validating Block Movement with Historic Traceroutes

Next, we use the CAIDA-topology (§5.2.2) and ITDK (§5.2.3) datasets to confirm our block

movement findings with router-level path information.

We start by finding relevant traceroute data for a moving block, as described in §5.2.2. We

then use the ITDK dataset to map traceroute hops (interfaces) to routers (for de-aliasing), ASes,

and locations (§5.2.3). We require the AS of the last identified hop to match the AS of the target

block (the AS-criteria for traceroutes).

We consider two traceroute hops to match if they map to the same router. Comparing tracer-

outes from before and after a latency change can show: (a) near-identical routing paths, indi-

cating no movement; (b) change in intermediate routers only, suggesting the latency change is

due to a routing change; (c) change towards the target block, suggesting a block has moved. We

confirm (c) when the penultimate hop changes AS.

We evaluate 100 randomly chosen blocks from the 79k that we identify as moving, and show

the results in Table 5.5. Of those 100 blocks, 60 have traceroutes, and 51 traceroute to the target

AS and so can be used to test work. We find 10 of these 51 have near-identical traceroutes or

show intermediate routing changes—these blocks are likely false positives due to congestion or
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Table 5.5: Validation of block movement with traceroute data. Datasets: 2018q4, ITDK, and CAIDA-
topology.

candidates 79k
random samples 100

no traceroutes 40
with traceroutes 60

misses AS-criteria 9
passes AS-criteria 51 100%

no or int. change 10 20%
near end change 41 80%

country change 26
city change 8
no city data 7

Table 5.6: Validation of block movement with transferred blocks. Datasets: 2018q4 and RIR reports.

ARIN reported transfers 2,416
no latency 2,400
have latency 16

lack before or after 13
lack before 5
lack after 8

have before-and-after 3 100%
confirmed move 2 67%
did not move 1 33%

routing changes. The remaining 41 blocks show traceroutes with different penultimate ASes,

suggesting movement—about 80% show true positives. Geolocation confirms 26 (of 41) map to

changed country and 8 changed city, confirming movement. The remaining 7 changed AS but

we could not confirm movement because they lacked city-level geolocation.

5.5.3 Validating Block Movement with Transferred Blocks

We next examine blocks between Internet regions (defined by RIRs, the Regional Internet

Registries: ARIN, RIPE, APNIC, LACNIC, AfriNIC). We examine the 74 IP ranges (2,416 /24s) that

ARIN reported as inter-RIR transfers in 2018q4 [9]. We have latency data for only 16 /24s in that

set, probably because transfers are often of previously unused blocks [10, 104].

97



 0

 50

 100

 150

 200

 250

Oct 01 Oct 15 Nov 01 Nov 15 Dec 01 Dec 15 Dec 30

5
th

 P
e
rc

e
n
ti

le
 R

T
T
 (

m
s
)

Oct, Nov, and Dec 2018

c e g j n w

(a) Block 185.169.108/24.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Oct 01 Oct 15 Nov 01 Nov 15 Dec 01 Dec 15 Dec 30

5
th

 P
e
rc

e
n
ti

le
 R

T
T
 (

m
s
)

Oct, Nov, and Dec 2018

c e g j n w

(b) Block 69.94.100/24.

Figure 5.7: Latency data for two inter-RIR transferred blocks. Dataset: 2018q4.

Out of the 16 blocks, 13 cease responding to ICMP midway through the quarter, suggesting

they were transferred but have not yet resumed service. Although we expect these blocks are in

the process of moving, our algorithm cannot detect movement until they resume service, so we

do not consider them further. There are many such blocks (130k in the quarter); such blocks

deserve monitoring for when they resume service and we should reevaluate geolocation.

Examining the remaining 3 blocks: our method identifies 2 as moving. Figure 5.7a shows

the 5%ile-RTTs for one of them, block 185.169.108/24. (The other block is 185.169.109/24 and

shows similar results. Both are from BGP prefix 185.169.108/22 and are announced by AS395855.)

The 185.169.108/24 block was transferred from an organization in the Netherlands (under RIPE)

to a recipient in the U.S. (under ARIN). This block responds to ICMP through November 12, goes

silent, and then resumes service November 27. According to ARIN’s report, the transfer was ef-

fective on October 25, 2018. After the block resumes, observed latency does not stabilize until

Dec. 5. We hypothesize that the new block operators were debugging routing over the first week

of December. The 5%RTTs before and after the gap are quite different. The data is consistent

with this block moving to a new location, as found by our algorithm. It is surprising, though,

that it was responsive after the transfer date; perhaps the paperwork preceded routing changes.

The third block is 69.94.100/24, with 5%-ile RTTs shown in Figure 5.7b. This block was trans-

ferred between two different cloud hosting services, but one under ARIN and the other APNIC.

Our algorithm do not show it moved, we see some fluctuation in latency around the reported
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Figure 5.8: ICMP responses for block 69.94.100/24, showing similar behavior over all three months.

transfer date (November 1), but not persistent changes for most of VPs, and no interruption

in service. We hypothesize that this block was transferred with hardware in a data center, so

although the RIR responsible for the address space changed, we believe the block did not move.

To confirm that the block responded identically before and after the transfer date, Figure 5.8

shows the raw ICMP responses we observed. In the figure, each green dot is a positive response,

black are non-responses, and white are addresses that are not probed.

We see that two addresses (last octets 33 and 35) replied consistently through the entire three

months, including times both before and after the RIR transfer. Two other addresses (last octets

1 and 3) stopped on 2018-10-12. Continuous addresses are consistent with the block changing

administrative responsibility, but not actually moving.

This section complements our prior validation with traceroutes (§5.5.2) with validation with

documented change of allocation. Although we have before-and-after data for only 3 blocks,

our data demonstrates movement in two cases and suggests non-movement in the other.

5.5.4 Movement over Time

To confirm the fraction of blocks we identify as moving in 2018q4 is representative and not

an outlier, and to get a measure of the rate of movement over time, we apply our algorithm
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Table 5.7: Block movement from Internet-wide data. Dataset: 2019q1: threshold: 9%.

Ping dataset blocks ∼4M
determination-valid Blocks 3.82M 100%

Consistent 5%ile-RTT 3.49M 91.3%
agreed-latency-change 333k

Short 268k 7.2%
Indicate movement 65k 1.7%

to data from a different quarter, the first quarter of 2019 (2019q1) [100]. We then compare the

results with those of 2018q4 (§5.5.1).

Table 5.7 shows the results for 2019q1. The total number of /24 blocks probed is just a few

hundreds less than 4M. Around 3.82M of these blocks are determination-valid blocks (§5.2.1),

3.59M of which are also determination-valid blocks in the 2018q4 dataset.

We identify about 65k (1.7% of the determination-valid blocks) to have moved during 2019q1,

around 14k blocks fewer compared to 2018q4 (Table 5.4). We find 11k blocks as common movers

from the two quarters. Overall, the results over the two quarters are consistent. We again

observe that most of the blocks are RTT-stable and identify a small fraction of the responsive

blocks as moving.

As future work, we plan to extend our study of block movement using data from additional

quarters. This longitudinal study could help quantify the rate at which blocks move over time,

showing which blocks are location-stable and which are more dynamic.

5.6 Conclusions

We have shown an efficient method that identifies the movement of IP blocks using exist-

ing ICMP scans, based on changes in the latency “fingerprint” from multiple, distributed ob-

servers (§5.3.3). We validate our approach by confirming movement through traceroutes and

information about Internet registration re-allocations.

This chapter provides additional evidence to support our thesis statement (§1.2) that we

can use latency observations to characterize the location-stability of the IP address blocks.

We showed that most of the responsive Internet blocks are RTT-stable, suggesting location-
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stability (§5.5.1). Therefore, a geolocation service does not need a full re-geolocation to keep

up-to-date geolocation. We identified about 2.1% of Internet blocks as moving over a quarter

(2018q4), and 1.7% for another quarter (2019q1), suggesting our approach will help IP geolo-

cation providers to keep their data up-to-date efficiently. As future work, we plan to use our

method to study the location stability of IP blocks over extended periods to dictate the required

frequency of their measurement and location updates.
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Chapter 6

Delay-based Identification of Internet Cellular

Blocks

This thesis proposes methods that leverage latency observations to assess IP addresses co-

locality (Chapter 4) and detect address block movement (Chapter 5) to enable efficient ap-

plication of the state-of-the-art IP geolocation methods. This chapter demonstrates how ad-

dress blocks in cellular networks show distinct latency patterns and present a compelling case

to study as they may present a challenge for delay-based geolocation and other delay-based

methods, such as those proposed in our thesis. Our primary goal in this chapter is to define a

client-independent method to identify cellular blocks, a step toward studying their geographic

properties and effects on delay-based methods in future work.

Mobile handsets today are the dominant devices to access the Internet. Previous work has

shown that addresses in cellular networks can be challenging for geolocation (§2.6). For the

delay-based methods we propose in this thesis, identifying blocks used for cellular access al-

lows a better interpretation of their latency observations and provides an opportunity to study

their co-locality and movement over time, studies we look to do as future work. Identifying cel-

lular blocks also allows studying their traffic trends and impact on the Internet and diagnosing

performance issues.

Previous studies of cellular networks rely on network operators or user collaboration to

identify cellular blocks (§2.6). In this chapter, we propose a delay-based method to identify cel-

lular blocks without requiring such collaboration (§6.3.3). We identify network type by the vari-

ation in RTT in each block of addresses—cellular networks show very large variation, whereas

wired and WiFi show little to modest variation (§6.3). We measure a block’s daily RTT variability

using the Interquartile range (IQR) of the RTT samples and use it to devise a method to distin-

guish between cellular blocks and the other block types.
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6.1 Introduction

The growth in the number of devices connecting to the Internet via cellular wireless tech-

nologies and their corresponding traffic is astounding. A mobility report from Ericsson esti-

mates 7.8 billion mobile subscriptions worldwide in 2017 and projects an increase to 8.9 billion

in 2023 [37]. The report also predicts 3.5 billion cellular IoT connections in 2023, a growth that

would impact many industries and businesses. Since fall 2016, the majority of web accesses are

reportedly from non-desktop devices [120]. Cisco reports that wired devices contributed only

half of the total global IP traffic in 2016, and forecasts the wired fraction to decline to 37% by

2021 as wireless and mobile increases [26].

While these reports estimate wireless growth, or measure web use, we would like to directly

measure cellular wireless use on the Internet. Identifying addresses in the public Internet that

connect via cellular networks can help quantify this trend and its impact on the Internet. Net-

work operators and users may collaborate to identify wireless IP prefixes. However, it is essential

to identify these prefixes independently when such collaboration is not available.

Identification of cellular addresses can benefit Internet service providers, policy makers,

and network researchers. This information can help content providers identify performance

issues and improve their service quality. It also gives policy makers valuable context to under-

stand use of the networks that they regulate. As one example, understanding the relative reli-

ability of wired and wireless networks during disasters can help assess Internet resilience [59].

For researchers who want to characterize the mobile Internet, identifying cellular addresses

is a first step on this goal. Delay-based applications such as measurement-based IP geoloca-

tion [49, 70, 128] can also benefit from cellular identification as knowledge about wireless can

lead to better interpretation of delay observations and thereby improve geolocation.

Independent identification of wireless IP addresses is challenging. Previous studies of wire-

less network performance and traffic assumed prior knowledge of which hosts access the Inter-

net through wireless networks rather than identifying them [87, 108, 111, 117, 131, 133]. Some

of these studies use applications installed on end-user devices, while others use information
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from carriers or operators, approaches that limit the scope of such studies. Others examine

web access by browser type, but only provide aggregate statistics [120]. Prior work has shown

that cellular networks identification needs to be at a level smaller than an autonomous sys-

tem [109]. Our primary goal in this chapter is to define a method to identify cellular IP blocks

without external information from operators or users, that is, using only measurements taken

on the public Internet.

We propose a new method to identify cellular blocks based on active measurements of pub-

lic IP address blocks. We show that we can distinguish between cellular blocks and the other

block types by their Round Trip Time (RTT) patterns when they are probed repeatedly over

time from a vantage point (VP). We show that cellular blocks exhibit RTT patterns different to

those of fixed-line and WiFi blocks . Our approach requires the IP blocks to be responsive to

ping probes but otherwise requires no cooperation from users or operators.

The first contribution in this chapter is to define a new, delay-based method to classify

blocks as cellular, strictly WiFi, or mixed (wired or WiFi). We find robust classification thresh-

olds to distinguish between the three classes merely based on blocks’ daily RTT patterns. Our

method is most successful at identifying cellular blocks since their RTT patterns are the most

distinguished. Our second contribution is to apply this method to most of the public Internet,

reporting on about 3.72M responsive IPv4 /24 blocks data from September 2017. We identify

about 169k blocks (4.6%) as cellular, 23k (0.6%) as strictly WiFi, and a majority of 3.5M (94.8%)

as mixed.

6.2 Datasets

We next describe the datasets we use. Our main source of Internet-wide data are frequent

observations of ICMP latencies, extracted from publicly-provided Internet outage data from

USC [97]. (The same source of latency data we use in Chapter 5.) We develop our algorithms

with best-effort ground truth labeling of about 57k /24 blocks as fixed-line (wired), WiFi, or

cellular. The labeled data includes about 36k fixed-line, 2.8k WiFi, and 18.3k cellular blocks.
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We focus on networks blocks of 256-adjacent IPv4 addresses with the same /24 prefix. Prior

work has suggested many such blocks are often used consistently [12, 130]. A more recent work

has shown that 90% of the 1.97M /24 blocks they examined are homogeneous in terms of topo-

logical proximity [76].

6.2.1 Latency Information from USC Internet Outage Data

In this chapter we present a method to identify network type, with focus on cellular net-

works, by trends in their latency, so we require Internet-wide data that contains frequent latency

estimates. While many groups today conduct censuses of the IPv4 address space, such scans are

often infrequent or lack latency estimates. We extract latency estimates from publicly available

measurements taken for Internet outage detection [98] using Trinocular [101]—we use another

quarter (2017q3) from the dataset we describe in §5.2.1.

Trinocular collects data from six vantage points (VPs) positioned around the world. We use

data from the Colorado vantage point—one of six sites— collected during September 2017 [98].

We find we get similar results regardless of the VP’s site (§6.3.2).

Trinocular can only report latency when some address replies to a ping. We define a latency-

valid day, for a /24 block, as one that has at least 10 observations. Most days of most blocks are

latency-valid. For vantage point c, about 3.72M (98%) of the 3.78M blocks in the September

2017 dataset have at least 10 latency-valid days and about 96% of all blocks have 50 or more

measurements on latency-valid days. We use the 3.72M blocks with 10 or more latency-valid

days in the remainder of this paper.

6.2.2 Supporting Datasets

To provide context for the data we use reverse DNS, AS, and organization data. We use re-

verse DNS data from the Rapid7 dataset [102] taken September 2017, the same month as our

latency data (§6.2.1).

We identify block users with AS routing and confirm organizations from CAIDA’s Prefix-to-

AS mappings dataset [19], derived from RouteViews rv2 collector BGP snapshots data. The BGP
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data is from September 14, 2017 (the same month as our latency data). Since some organiza-

tions use multiple ASes, we identify organizations using AS-to-organization mapping from the

CAIDA AS Organizations Dataset [18].

6.2.3 Labeled Data (Best-Effort Ground Truth)

We evaluate our detection algorithms using labeled data as best-effort, ground-truth. We

label each block as fixed-line, WiFi, or cellular. We call it best-effort because we use only public

information—we are not able to verify each block with its operator. We describe how we identify

each class below.

We use reverse DNS data (§6.2.2) to identify /24 blocks that are likely WiFi in our latency

data (§6.2.1). We identify WiFi addresses as those with any of the keywords “wireless”, “wifi”,

or “wlan” (case insensitive) in the reverse DNS name. Next we identify WiFi-dominant blocks,

ones where the majority of DNS names (at least 128 of the 256 addresses in the /24 prefix) indi-

cate WiFi connection. Being a WiFi-dominant /24 block, according to our definition, strongly

indicates the block is in a WiFi network, but we use AS and organization data for further valida-

tion as we show next.

Using AS and organization data from CAIDA (as described in §6.2.2), we find 708 WiFi-

dominant blocks in 29 universities. Since universities often identify WiFi networks with distinc-

tive DNS names, we accept these blocks as part of our WiFi ground truth. Note that lowering the

threshold to 64 WiFi addresses per block brings in only 13 additional university blocks, so we be-

lieve our threshold is reasonable. We limit our use of the keyword wireless to only blocks within

universities to avoid false positives that can result from DNS names used by cellular operators.

We assume that no universities operate cellular networks on public IP addresses because oper-

ation of cellular networks require government approval and licensing.

In the remaining WiFi-dominant blocks, we identify 1,333 blocks by the keyword wifi. We

only kept 1206 blocks in 71 ASes for which we were able to verify, using information from their

organizations’ websites, that they strictly or partially provide Internet wireless services. We also

106



kept 841 blocks in 21 ASes out of 893 blocks identified by the keyword wlan using the same

criteria. In summary, our WiFi ground truth contains 2,755 /24 blocks.

To identify fixed-line blocks, we begin by identifying 785 universities from around the world

for which we have ping data. We use universities because many have large, public IP address

spaces, and because they often identify WiFi networks with distinctive DNS names. We iden-

tify as fixed-line blocks all those belonging to known university prefixes that are not identified

as WiFi. We identify about 36k /24 blocks as wired (non-WiFi) from 785 different universities

around the world. We identify these blocks by both reverse DNS names and AS routing infor-

mation as described in §6.2.2.

To find cellular blocks for our labeled dataset, we start with a list of 5 known wireless service

carriers in different countries: AT&T Mobility (USA), Verizon (USA), Telia Company (Sweden),

Vodacom (South Africa), and T-Mobile Polska (Poland). We identify the blocks’ IP addresses

association with the ASes and their organization using supplemental data (§6.2.2).

We use reverse DNS data to confirm that blocks associated with these carriers are des-

ignated for cellular services. For example, we find 6.2M reverse DNS records for AT&T mo-

bility IP addresses with the format mobile-x.mycingular.net indicating AT&T mobil-

ity wireless address, whereas most reverse DNS names for the Verizon addresses follow the

form X.myvzw.com indicating Verizon wireless address, where the X often reflects the IPv4

address. For example, the reverse DNS name for IP address 166.148.23.10 is 10.sub-166-

148-23.myvzw.com.

We find ping data for about 18.3k blocks in the USC ping dataset pertaining to the 5 carriers

and have reverse DNS data that confirm they are cellular. For Verizon, the largest of the four

major U.S. cellular network operators as of 2018q2, we identify about 10,786 /24 blocks, AT&T

Mobility (565), Telia Company (1,173), Vodacom (5,659), and T-Mobile Polska (74). We use and

label these blocks as our cellular ground truth data.

We believe our cellular ground data is reasonably representative. Our data comes from 5 dif-

ferent operators in different continents (North America, Europe, and Africa). Additionally, both,
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fourth-generation (4G) and third-generation (3G) telecommunication systems are represented

in our data. For example, the reverse DNS names of most of the Vodacom addresses contain the

string umts.vodacom.co.za indicating 3G, while the majority of users in both U.S. carriers

(Verizon and AT&T) had 4G availability around the time of our data collection [89].

We combine these three labeled datasets of 57k /24 blocks with our latency data to identify

latency of known fixed-line (wired), WiFi, and cellular networks. We use 50% randomly selected

blocks from each type as our training dataset to identify our classification algorithm thresholds,

and the remaining half as the test dataset to evaluate the selected thresholds (§6.3).

6.3 Identifying Block Type from Latency Estimates

We explain next our method to identify cellular blocks from latency measurements of /24

address blocks. We first show how latency can indicate network type for specific blocks in §6.3.1.

We examine our labeled data from §6.2.3 to see the range of responses we observe around the

Internet (§6.3.2). We then use ROC analysis to select proper thresholds for a classification algo-

rithm (§6.3.3). Finally, we validate our thresholds settings using the test labeled data (§6.3.4).

6.3.1 RTT Variation in Known Blocks

We first look at three known blocks to consider how RTT varies when observed over one

month of data. We use fixed-line and WiFi blocks from the University of Southern California,

where we were able to confirm them as ground truth from discussion with their network op-

erators. We select a cellular block from Vodacom, a wireless network operator in South Africa.

We use this block because the AS name identifies a well known mobile network provider, and

the reverse DNS names (e.g., vc-gp-s-41-26-58-1.umts.vodacom.co.za.) indicate

a UTMS (3G) cellular network.

Each day of our latency data contains about 130 latency observations for each block. (There

is no latency reported if there is no reply after 15 tries, so some days have fewer than 130 ob-

servations.) Figure 6.1 shows box plots for each of the 30 days of September 2017 for sample
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(a) Fixed-line block.
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(c) Cellular block.

Figure 6.1: Examples of daily RTT variability for /24 blocks with different Internet access types during
September 2017. Variation in RTT (on y axis in log-scale) for cellular blocks is very different compared to
fixed-line and WiFi blocks.

blocks of each type of network (fixed, WiFi, and cellular), measured from one vantage point in

Colorado. Each box shows the interquartile, with observations from 25%ile to 75%ile, with a

center line showing the median. The whiskers span 90% of RTTs. Circles show outliers defined

as RTTs that lie outside the range of the whiskers. The magenta line shows the 5%ile value. Out

of the 130 observations, this value is nearly always close to the minimum observed RTT over

each day.

These three examples show that daily RTT variation is an indicator of network type, espe-

cially cellular networks. We can measure variation with the Interquartile Range (IQR), the dif-

ference between 25% and 75% observations over the course of a day. Both wireless blocks show

higher daily RTT variation compared to the fixed-line block, and the cellular block has much

larger IQR than the WiFi block. For these examples, the IQR of the fixed-line block ranges from

about 2 ms to 15 ms, and from 21 ms to 175 ms for the WiFi block, and from 682 ms to 1026 ms

for the cellular block. These patterns hold in the face of outliers, which often result due to tran-

sient congestion in the network. Moreover, since our measurements are taken over the course

of 24 hours, this data is robust to medium-term congestion (perhaps due to popular events)

and diurnal effects.
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These examples suggest a method to identify cellular networks from only sparsely collected

latency measurements. Next, we show that cellular networks consistently exhibit larger vari-

ance in latency compared to fixed-line and WiFi networks, and that since we measure variation

in latency (and not absolute latency) this approach is robust to vantage point location.

6.3.2 Consistency of Variance in Latency in Each Block Type

In §6.3.1, we show, using specific blocks, that variance in latency for a cellular block is dis-

tinctly different from fixed-line and WiFi blocks. We next generalize these examples to show

that this trend can usually identify blocks in cellular networks.

In this section, we turn to our labeled data (§6.2.3) and examine how daily variation in RTT

compares across the thousands of blocks from each type of network (fixed-line, WiFi, and cellu-

lar). Following §6.3.1, we use the interquartile range (IQR) of RTT over each day for each block,

but here we distill observations for each block to one number: the median IQR for each block

over the month, or just median IQR.

We define the median IQR of a /24 block as the median (middle-valued) IQR of all reported

IQRs over one month (September 2017). For each block, we evaluate the IQR for each day with

at least 10 latency observations, so each block has up to 30 daily IQRs over the month. (RTT

cannot be observed if no IP address responds to an ICMP echo-request, so we cannot evaluate

latency if the block is temporarily unused, or if there is a network outage.)

Figure 6.2 shows the distribution of the median IQR for randomly selected blocks from each

block type in our best-effort ground-truth dataset (i.e., 50% of each type). We report obser-

vations from three of our six VPs in different locations (Colorado, c; U.S. east coast, e; and

Greece, g).

First, we see that variation in median IQR is a good predictor of cellular networks, showing

that the observations from Figure 6.1 generalize across thousands of blocks in labeled data.

Known cellular networks (Figure 6.2c) show relatively large median IQRs: about 95.6% have

median IQR above 250 ms, compared to only 0.4% of fixed and 4.5% of WiFi blocks.
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(a) Fixed-line.
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(b) WiFi.
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(c) Cellular.

Figure 6.2: Distributions of median IQR for randomly selected blocks (i.e., 50% from each block category
in our labeled datasets). Median IQR increases from fixed to WiFi to cellular blocks and is most distinctive
in cellular blocks.

Second, the median IQRs of the fixed-line and WiFi blocks show significant overlapping. For

example, 76% of fixed-line and 15.5% of WiFi blocks are below 10ms. That said, we also observe

that blocks in WiFi networks show relatively higher variation in latency compared to those in

fixed-line networks. For example, 36% of the WiFi blocks have median IQR of 110ms or higher

compared to only 5% of fixed-line blocks. These results indicate we cannot distinguish between

most of the WiFi and fixed-line blocks by the variation in their latency.

Third, we see that VP location does not affect differences of network type. While the absolute

RTT can be very different from one VP to another, we see that RTT variations are very similar

across all the 3 VPs on two different continents. (We see similar trends from the other three VPs.)

Since the variation results from all VPs are consistent, we use only one of them in the remainder

of this paper (i.e., VP c).

6.3.3 Methodology and Classification Thresholds

Our examples (§6.3.1) suggested we can use variation in RTT to identify blocks in cellular

networks. An examination of large numbers of blocks (§6.3.2) showed that median IQR is dis-

tinct for the cellular networks, but has some overlap. The median IQR is also distinct for about

one third of the labeled WiFi blocks that have relatively high variation in latency compared to

the fixed-line blocks.
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Table 6.1: Rules to classify blocks by their median IQR.

Rule Prediction

median IQR < fwThresh mixed (fixed-line or WiFi)
fwThresh ≤ median IQR < cellThresh WiFi

median IQR ≥ cellThresh cellular

We suggest three root causes in cellular networks result in high IRQ. First, others have ob-

served high wake-up times for wireless networks due to MAC-layer negotiation [90]. Second,

prior work has observed large buffering (bufferbloat) in cellular networks can result in large de-

lay and jitter [47, 69]. Third, Prior work has shown that the IP addresses in cellular networks are

frequently shared across large geographic areas [11,124,131]. These configurations explain why

cellular IQRs are larger than traditional networks.

We next use the labeled data (§6.2.3) to define a classification algorithm (Table 6.1) with

two thresholds based on the median IQR: cellThresh, the threshold above which a network is

identified as cellular, and fwThresh, the threshold below which a network is identified as mixed

(i.e., fixed-line or WiFi), Networks with median IQR between these two thresholds are identified

as strictly WiFi.

We randomly split our labeled data into two halves, one is for training and the other is for

testing. We use the training part to learn the classification thresholds (this section), and the

testing part to evaluate the learned thresholds (§6.3.4).

To select good thresholds, we consider this problem as a form of multi-class supervised

learning. We then simplify our multi-class problem into three two-class classification prob-

lems. For each pair of classes, we use receiver operating characteristic (ROC) curves to select

the thresholds that yield the best true positive rate (TPR) vs. false positive rate (FPR) results

computed using the confusion matrices. Our main goal is to detect cellular blocks with high

accuracy, but we also find a median IQR range that identifies part of the WiFi blocks.

First, we determine a cellThresh that would identify cellular blocks using ROC curve for the

results of cellular vs. fixed-line binary classification (Figure 6.3a) and cellular vs. WiFi (Fig-

ure 6.3b) at different cellThresh values. Figure 6.3a shows that the cellular and fixed-line blocks
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(c) WiFi vs. fixed-line.

Figure 6.3: ROC curves to show the TPR vs. FPR of the classification results over the labeled training
data at different cellThresh (Figure 6.3a and Figure 6.3b) and fwThresh (Figure 6.3c) values shown next
to some of the marks.

are easy to separate. A cellThresh of 130 ms gives a TPR of 98% and a FPR of only 4%. Fig-

ure 6.3b shows that it is also easy to separate cellular and WiFi blocks but at higher thresholds.

A cellThresh of 255 ms would still detect most of the cellular blocks in the training data with a

TPR of 95.4% and a low FPR of 4% (i.e., WiFi blocks identified as cellular). We conclude that a

cellThresh of 255 ms is good to identify most of the cellular blocks with low FPR for both fixed-

line and WiFi types.

Next, we determine the median IQR overlapping range for fixed-line and WiFi blocks. Our

goal is to determine fwThresh according to Table 6.1. Figure 6.3c shows the ROC curve for

WiFi vs. fixed-line classification results at different fwThresh values. We vary fwThresh from

20 ms and up to 200 ms (5 ms increments). We see significant overlapping up to 115 ms, from

there, 35% of the WiFi blocks have higher median IQRs compared to only 4.8% of the fixed-line.

Smaller fwThresh values would identify more WiFi blocks but with FPR greater than 5%. We

set fwThresh to 115 ms, below which blocks are identified as mixed. Blocks with median IQR

between fwThresh and cellThresh (i.e., 255 ms) are classified as strictly WiFi.

6.3.4 Evaluation with the Test Labeled Data

We evaluate our selection of thresholds (§6.3.3) on the withheld test labeled dataset.We find

that the distributions of median IQR (Figure 6.2) show only minor changes when reevaluated
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Figure 6.4: ROC curves of classification results over the test data confirm our findings over the training
data in Figure 6.3a, Figure 6.3b, and Figure 6.3c.

with the test subset (we do not show here due to space). The ROC curves on the withheld eval-

uation subset depicted in Figure 6.4 are also similar to those in Figure 6.3a, Figure 6.3b, and

Figure 6.3c.

The classification results over the test data confirms that our thresholds settings are good for

the test data and give similar results to those over the training data. These result are not surpris-

ing because our approach is relatively stable to a range of parameters (as shown in §6.3.3) and

our goal is to select good parameters rather than strictly optimal. We report the classification

accuracy results in §6.5.1.

6.4 Identifying Block Types in the Wild

We next apply our method to Internet-wide data (§6.2.1). We measure the variation in la-

tency for each block by the median IQR (§6.3.2). We then apply our classification algorithm

(Table 6.1) with the parameters fwThresh set to 115 ms and cellThresh set to 255 ms (§6.3.3).

Table 6.2 summarizes the classification results. The table shows for each class the number

and fraction of blocks we found, as well as the number of unique ASes and organizations that

have some of those blocks. (Organizations and ASes may be counted multiple times if they have

blocks of different types.) We derive the information for blocks ASes and organizations using

our supplemental AS and organization data (§6.2.2). Our classification identify a significant
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Table 6.2: Summary of classification results.

Class /24 blocks % of total #ASes #organizations

Mixed 3,524k 94.83% 40.6k 37.4k
WiFi 23k 0.62% 1.5k 1.4k
Cellular 169k 4.55% 1.1k 1k
all 3,716k 100%

Table 6.3: Top 5 organization with blocks identified as mixed.

Organization /24 blocks ASes (3 at most)

CHINANET-BACKBONE 189.5k 4134
Comcast Cable Communications, LLC 151.6k 7922, 7015, 33491
CNCGROUP Jitong IP network 140.5k 4837, 9929
Korea Telecom 118.2k 4766, 45400
Deutsche Telekom AG 82.1k 3320, 2792, 8204

fraction of the address space as mixed, about 3.5M blocks (94.8%). We identify about 23k (0.6%)

blocks as WiFi, and 169k (4.6%) blocks as cellular.

To understand these results, we identify the top organizations in each classification cate-

gory. Table 6.3 list the top 5 organizations sorted by the number of blocks identified as mixed,

and up to three ASes sorted by the number of blocks we identify for each. As one would expect,

these organizations are all ISPs with a presence in many homes (“eyeball” networks).

Similarly, Table 6.4 lists the top 5 organizations for blocks identified as strictly WiFi. Our

algorithm identifies only 23k (0.6%) of the 3.72M blocks in the USC ping dataset as WiFi. This

result is not surprising as we expect that most blocks with WiFi access would fall in the mixed

category as the results discussed in §6.3.3 suggest.

We classify several satellite ISPs as showing large IQRs (but not as large as cellular networks).

We did not have satellite ISPs in our training data, but the results of classifying blocks from sev-

eral satellite ISPs suggest they will not be confused with cellular. We examined how our method

classified blocks from 9 satellite ISPs—studied in [90]— including Hughes Network (ranked 3rd)

and ViaSat (4th) in Table 6.4. We find 10.37k blocks from the 9 ISPs in our USC ping dataset—

96.5% of them belong to ViaSat, Hughes, and iiNet. We identify 82.4% of the 10.37k blocks as

mixed, 13.5% as strictly WiFi, and only 4.1% as cellular. The results suggest satellite access has
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Table 6.4: Top 5 organization with blocks identified as strictly WiFi.

Organization /24 blocks ASes

CHINANET-BACKBONE 3.58k 4134
CANTV Servicios, Venezuela 1.00k 8048
Hughes Network Systems 0.64k 4812
ViaSat,Inc. 0.63k 7155
Akamai International B.V. 0.57k 20940

Table 6.5: Top 10 organization with blocks identified as cellular.

Organization /24 blocks ASes

Tim Celular S.A. 32k 26615
TELEFÔNICA BRASIL S.A 29.4k 26599
Itissalat Al-MAGHRIB 14.6k 6713
Cellco Partnership DBA Verizon Wireless 10.1k 22394, 6167
TELE2 6.9k 1257
Vodacom 6.2k 29975, 36994
NTT Communications Corp. 4.7k 4713
Telkom SA Ltd. 3.2k 37457, 5713
NTT DOCOMO, INC. 2.8k 9605
Hi3G Access AB 2.7k 44034

a distribution of latency as WiFi and fixed-line, and its effect on identifying cellular blocks is

insignificant.

Finally, Table 6.5 shows the top 10 organizations of blocks identified as cellular. We note

that all of these organization are well known cellular service providers from around the world.

Together, these organizations contribute around 112.6k (66.6%) of all the blocks identified as

cellular. Note that the absolute number of cellular blocks seems small relative to the number

of mobile users (more than 5 billion as of 2017). Most mobile phones use network-address

translation (NAT) and so do not have public IP address most of the time. Prior work has shown

that cellular traffic is concentrated in a small number of /24 blocks attributing that to carrier-

grade NATs (CGNs) presence in cellular networks [109].
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Table 6.6: Labeled test dataset blocks classification results.

Block type #Blocks
Predictions

Mixed Strictly WiFi Cellular

Fixed-line 17,980 17,094 816 70
WiFi 1,378 864 453 61
Cellular 9,129 175 258 8,696

6.5 Validation

We already evaluated our block type identification algorithm over the labeled test dataset

of 28.5K blocks and showed that the classification results are similar to those over the training

dataset (§6.3.4). In §6.5.1, we discuss the accuracy of the classification results with the selected

classification parameters over the test dataset. We also confirm that results are robust to differ-

ent variance metrics in §6.5.2.

6.5.1 Classification Accuracy

Table 6.6 shows our classification predictions for the labeled blocks in the test dataset, while

Table 6.7 shows the TPR and FPR for these results. The results in Table 6.6 demonstrate our

algorithm ability to identify most of the cellular blocks with low number of false positives (70

fixed-line and 61 WiFi). We correctly classify 8,696 (95.3%) of the blocks labeled cellular.

The results over the fixed-line and WiFi test data blocks are consistent with the results over

the training data (§6.3.3) where we expect most of them to fall in the mixed class. Our method

correctly identify 95.1% of fixed-line blocks as mixed and the majority of the WiFi blocks (95.6%)

as mixed (62.7%) or strictly WiFi (32.9%).

Table 6.7 reports the TPR and FPR of the results in Table 6.6. To show our method’s abil-

ity to identify cellular blocks, we compute the TPR and FPR for two categories: (1) fixed-line

and WiFi (i.e., all 19,358 blocks labeled fixed-line or WiFi in the test set), (2) cellular (i.e., 9,129

blocks labeled cellular). For the fixed-line and WiFi category, we count as true positives (TPs)

the blocks labeled fixed-line we identify as mixed, and the WiFi blocks we identify as mixed or

strictly WiFi. We count as false negatives (FNs) the fixed-line blocks we identify as strictly WiFi
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Table 6.7: TPR and FPR for the classification of the test data.

Block type Blocks TPR FPR

Fixed-line and WiFi 19,358 95.1% 4.7%
Cellular 9,129 95.3% 0.7%

or cellular, and the WiFi blocks we identify as cellular. For the cellular category, we count the

cellular blocks we identify as cellular as TPs, and as FNs otherwise. From the table we see that

our method accurately identifies cellular blocks with a TPR of 95.3% and a very low FPR of 0.7%.

Our results are correct (over 95% of ground truth cellular is correctly identified), but we do

not claim the results are complete. We cannot classify blocks for which we have no data, and we

find many blocks of our five carriers do not appear in ping observations because the blocks are

not responsive. (We have data for only about 18.3k blocks, one-third of the 53k assigned to the

carriers and with DNS names indicating cellular use (§6.2.2).) These blocks may be currently

unused, or they may be firewalled.

6.5.2 Sensitivity of Classification to IQR

Given the classification results in the wild, how often would we get a different answer due

to variation in IQR. To show how sensitive is our classification model to the variation in RTT, we

first compute for each block in each class, the median IQR and the first and third quartiles of all

daily IQRs during September 2017. We then plot the results against our classification thresholds

as Figure 6.5 shows.

Figure 6.5 depicts the median IQR (solid lines) and the IQR variation (filled curves) for sam-

ple blocks identified by our method as mixed, strictly WiFi, and cellular. To avoid slow ren-

dering, we downsample the blocks before plotting, taking every fifth cellular, and every 100th

mixed, after sorting by the median IQR. The results are visually the same as the complete data.

We show our fwThresh and cellThresh on the graph indicated by the dashed horizontal lines.

These results show that our ROC analysis of labeled data (§6.3.3) applies to the whole dataset.

The daily IQRs of the blocks identified as cellular show relatively large variation throughout
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Figure 6.5: Median IQR and the daily IQRs variation by block type during September 2017. Blocks iden-
tified as cellular show high variation in daily IQRs but are consistently higher than cellThresh.

September, but are consistently above cellThresh. The daily IQRs of blocks identified as WiFi

and mixed show less variation and are consistently below cellThresh.

6.6 Conclusions

This chapter defined a new method to identify a cellular /24 IP block by variance in its la-

tency measurements (§6.3.3). We measured the daily variance in a block’s latency using the

interquartile range of RTTs in a day and then used the median IQR of all daily IQRs over a

month to distinguish block type. We showed that the variation patterns are consistent over

time for a block. As a result, we do not need such an extended period to observe the variation

trend of a block’s latency measurements. We found that the median IQRs of fixed-line and WiFi

blocks largely overlap, allowing only a fraction of the WiFi blocks to be identified with high con-

fidence. As a result, we identified three categories (mixed, WiFi, cellular) of block type with two

thresholds of median IQR, and selected good thresholds based on our labeled data, a form of

best-effort ground-truth.

We applied our method to 3.72M /24 blocks and found that the majority of them were iden-

tified as mixed (fixed-line and WiFi) (94.8%), 0.6% as WiFi, and 4.6% as cellular. We validated

part of our algorithm predictions, showing high accuracy in cellular blocks identification (§6.5).
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This chapter assists the delay-based methods we propose in this thesis for characterizing IP

addresses co-locality and movement become more accurate by defining a method to automat-

ically identify cellular blocks, a category that presents a challenge to delay-based methods. The

high variation in latency of cellular blocks compared to other types suggests that cellular blocks

present a potential challenge to methods that rely on latency measurement, such as those we

propose in this thesis (Chapter 4 and Chapter 5), and many measurement-based geolocation

methods (§2.3). Our client-independent method for identifying cellular blocks serves as a step

toward studying the impact of these blocks on delay-based methods, providing an opportunity

to improve their accuracy.
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Chapter 7

Future Work and Conclusions

In this chapter, we present possible directions for future work and conclude this thesis.

7.1 Future Work

There are several directions for immediate future work that could strengthen, expand, and

enrich our studies. We next discuss possible future work related to our four studies in this dis-

sertation.

In Chapter 3, we evaluated router geolocation in four public and commercial geolocation

services. There are several directions for future work that can enrich this work. First, this evalu-

ation can be extended to include the geolocation of additional network infrastructure, such as

HTTP servers, DNS servers, and Content Delivery Networks (CDNs) Front-Ends. The work can

be extend furthermore by including more popular services. Given the Internet dynamics and

that geolocation service providers continuously update their services, it is beneficial to reeval-

uate them from time to time. Such evaluation would raise awareness about the limitations

the services may have and perhaps push providers to address them. Second, we hypothesized

about some of the techniques that geolocation service providers might have used to compile

their IP to location mappings. Future work can dig deeper to identify what methods different

providers use to collect location information and identify sources that lead to incorrect geolo-

cation. Finally, a related future work could identify blocks that contain IP addresses of network

infrastructure and study their geographic distribution and track their movement.

In Chapter 4, we devised a delay-based method to assess the co-locality of IP addresses. Part

of the study assessed the frequent assumption that IP addresses in a /24 block are proximate.

There are several future work directions to strengthen this study. First, given the depletion of

the IPv4 address space, it would be interesting to assess the trends in co-locality of /24 blocks.

We think there may be even more blocks with endpoints at different locations as ISPs look to
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address the scarcity of IPv4 addresses with better address space utilization. Second, our study

did not consider the effect that cellular blocks might have on the results. In Chapter 6, we esti-

mated that around 4.6% of 3.72M responsive /24 blocks are cellular. We observed large variation

in the latency of these blocks, which could lead our clustering algorithm to identify their IP ad-

dresses as un-clustered or not-co-located. Future work can quantify cellular blocks identified as

multi-location blocks by our co-locality assessment method from Chapter 4. This future work

direction should also study the geographic distribution of addresses in cellular blocks, which

may indeed be at very different locations [131]. Note that the dataset in §4.2 is not suitable

for our algorithm to identify cellular blocks. (The cellular identification algorithm requires sev-

eral observations throughout the day and over several days, while the dataset in §4.2 reports

only the minimum of 10 measurements to an IP address taken over a short time.) Finally, our

delay-based clustering method can be part of a long-lived system that tracks the stability of IP

addresses co-locality over time. Such a long-lived system can also support a geolocation service

by identifying ranges of IP addresses mapped to the same location when they appear to have

endpoints at different locations.

In Chapter 5, we devised a delay-based algorithm to identify block movement. We applied

our algorithm to identify block movement in two quarters worth of raw probing data, 2018q4

and 2019q1. An immediate future work direction is to expand the study to include more quar-

ters to study trends in block movement over time. This longitudinal study can help quantify the

rate at which blocks move, allowing for identifying which blocks are location-stable and which

are more location-dynamic over time. In §5.5.3 we identified real-world block movement exam-

ples from inter-RIR transfer logs and used them to validate our work. However, most transfers

appear to involve blocks that were unused previously. As a result, we only found a few blocks

with valid ping data before and after being transferred. As future work, we want to identify more

real-world block movement to solidify our validation.

In Chapter 6, we implemented a method to identify cellular blocks by their distinctive vari-

ation in RTT as we probe them over time, without proprietary data from network providers.
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There are several future work directions for a better understanding of this important class of

blocks. First, Prior work, around 10 years old studies, showed that cellular networks’ IP ad-

dresses are frequently shared across many distinct locations [11, 131]. In that direction, future

work can study how different carriers manage their cellular address blocks concerning their

geographic distribution and movement and show if the results of these old studies still hold.

Second, we make the assumption, based on prior work, that cellular /24 blocks are homoge-

neous, meaning it is unlikely that the cellular blocks have IP addresses with mixed access types,

cellular and non-cellular. Future work can confirm if this assumption is valid by studying the

RTT variation of individual addresses in blocks identified as cellular. We expect most of the

addresses to have high IQRs if the assumption is valid.

Besides the above immediate future work closely related to our four studies, our thesis sug-

gests a new scope for these studies. These studies only investigated the IPv4 address space. As

the deployment of IPv6 grows [27, 104], future work can explore the applicability of our pro-

posed delay-based methods (to assess IP addresses co-locality (Chapter 4), detect block move-

ment (Chapter 5), and identify cellular blocks (Chapter 6)) to the IPv6 address space. Given

how large the IPv6 address space size is (2128), we expect different challenges with respect to

determining visibility and collecting measurement to the IPv6 addresses [86].

7.2 Conclusions

More and more network research, as well as Internet service providers and their clients, ben-

efit from IP geolocation. Occasionally, IP address blocks get traded or reassigned or become

available after being unused, suggesting that we need to implement IP geolocation as a contin-

uous service to keep the location of all IP addresses up-to-date. However, frequent geolocation

of all IP addresses is inefficient and unnecessary.

This dissertation hypothesized that we can enable efficient, continuous geolocation by iden-

tifying clusters of co-located IP addresses and their location stability from latency observations.

We started by motivating the thesis statement with an evaluation study of router geolocation
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in popular geolocation services (Chapter 3). To demonstrate this thesis statement, we pre-

sented new optimizations that leverage delay measurement to identify arbitrary-size groups

of co-located addresses (Chapter 4) and to detect when an address block moves (Chapter 5).

These optimizations can be used by a geolocation system to identify which groups of addresses

can be geolocated as a unit, as well as when a geolocation update is needed.

In Chapter 3, we motivated our thesis statement by presenting an evaluation study of router

geolocation in widely-used, public and commercial geolocation services (provided as IP-to-

location databases). We evaluated the accuracy of the databases with a ground truth datasets

we created using DNS-based and latency-based methods. We showed that these services can be

inaccurate for router geolocation at both country- and city-level resolutions, corroborating pre-

vious evaluation studies on the overall reliability of geolocation services (§2.4). Furthermore,

we show that some of these databases lack extensive city-level coverage (§3.5.1). A breakdown

of the ground truth by RIR showed that the databases are less reliable at the city-level resolu-

tion at ARIN region compared to the other regions. Furthermore, using validated heuristics to

identify locations from DNS names, we showed that even IP addresses assigned to routers may

experience location change over time (§3.3.4.2). We concluded that researchers need to pay ex-

tra caution if they need to use these geolocation databases and should investigate the impact

they may have on their results. Our findings in this chapter motivate our work to enable more

reliable geolocation that maintains up-to-date location mappings.

Our study in Chapter 4 demonstrates the part of the thesis statement that we can leverage

latency observation to identify clusters of co-located IP addresses that we can treat as units to

enable efficient geolocation (§4.6). In this chapter, we devised a delay-based method to identify

clusters of adjacent, co-located IP addresses automatically. The method employs hierarchical

clustering that groups together similar IP addresses in a multidimensional space of delay coor-

dinates. We validated the method using single- and multi-location block datasets. We then used

the method to assess the common assumption that IP addresses in a /24 block are co-located.

Applying our method to 1.41M /24 blocks (118M addresses), we found that a noticeable frac-
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tion of these blocks (17%) appear to have endpoints at different locations, with an estimated

upper-bound false-positives rate of 5.4%. This outcome disagrees with the /24 block co-locality

assumption. We then showed that the clustering method could identify larger groups of co-

located IP addresses. We applied the method, individually, to 65 university groups, each with

a different number of co-located /24 locks, 2 to 144, and a total of 1,974 blocks in all groups.

The method correctly identified 56 (86%) of the groups as one cluster of IP addresses each.

Moreover, the majority of the /24 blocks, 1,957 (99.1%), were identified as part of the majority

cluster of each university. Consistently co-located groups can be treated as a unit, leading to

a significant reduction in the number of targets to geolocate and consequently reducing the

measurement load.

Our study in Chapter 5 demonstrates the part of the thesis statement that we can charac-

terize the location stability of IP address blocks using latency observations from a handful of

vantage points. This chapter defined and implemented a delay-based algorithm to identify if a

block has moved by observing persistent, significant changes in the block’s latency from multi-

ple sites around the same time. Using our algorithm over an Internet-wide latency data §5.2.1,

we showed that most blocks, as expected, appear to be stationary. We estimated that around

78.7k /24 blocks (2.1% of blocks with valid data) have moved during 2018q4 and around 65k

blocks (1.7%) during 2019q1. These results show that only a small fraction of the IP blocks re-

quire geolocation updates, and our method allows a geolocation system to identify these blocks.

Our method can be used to quickly identify potential IP block movement to help a geolocation

service keep up-to-date geolocation. Moreover, using our method to study block movement

over time allows for identifying location-stable and location-dynamic IP blocks, thus dictating

the frequency at which different blocks require re-geolocation.

In Chapter 6, we extended our utilization of delay measurement to identify blocks in cellu-

lar networks, an interesting class of blocks for IP geolocation and many other network applica-

tions. Previous work has shown that geolocating addresses in cellular blocks can be challeng-

ing (§2.6). Our method to identify these cellular blocks is a step toward further future work to
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study their geographic properties and impact on delay-based methods, such as those proposed

in this thesis. In this chapter, we implemented a new delay-based method to classify blocks as

cellular, strictly WiFi, or mixed (wired or WiFi) merely based on blocks’ daily RTT patterns. We

measured the daily variance in a block’s latency using the interquartile range of RTTs in a day

and then used the median IQR of all daily IQRs over a month to distinguish block type. Our

method is most successful at identifying cellular blocks since their RTT patterns are the most

distinguished. We applied this method to most of the public Internet, reporting on about 3.72M

responsive IPv4 /24 blocks data from September 2017. We identify about 169k blocks (4.6%) as

cellular, 23k (0.6%) as strictly WiFi, and a majority of 3.5M (94.8%) as mixed. We validated part

of our algorithm predictions in the wild, showing high accuracy in cellular blocks identifica-

tion. Our method can assist future studies that characterize how cellular networking affects the

Internet without proprietary information from network providers.

To sum up, in this dissertation, we have shown we can leverage latency measurement from

a small set of vantage points to characterize the IP addresses in ways useful to IP geolocation

and other network applications. A geolocation system can integrate the proposed delay-based

methods in this dissertation to maintain efficient, up-to-date IP-to-location service. Identifying

co-located groups of IP addresses and the location dynamics of IP blocks will lead to a smarter

measurement collection approach. We only need to measure and geolocate a few represen-

tatives from a consistently co-located collection of addresses. Moreover, we do not need to

measure the stable-location IP addresses as frequently as the dynamic-location ones.
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