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Abstract

This paper consists of two parts, a theoretical followed by an empirical con-

tribution. We first give a new framework for fractional differencing in discrete

time and show how the definition of fractional differencing that is commonly em-

ployed in empirical financial applications arises as a special case. We then use

these methods to estimate the fractional differencing parameter in the return and

volatility for three Comex metal futures contracts. The metal futures are sampled

at very high frequencies - five minute intervals over a nearly eight year period.
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1 Introduction

There is a large and growing theoretical and empirical literature on fractional differencing

which provides a useful tool for parsimoniously modeling the persistence observed in many

financial time series (e.g., Lo (1991); Campbell, Lo and Mackinlay (1997)). Fractional

differencing was introduced in terms of an infinite filter that corresponds to the expansion of

(1−B)d in Granger and Joyeux (1980) and by analogy with the continuous time fractional

white noise in Hosking (1981). The definition in Granger and Joyeux (1980) and Granger

(1980) is a modification of the original definition in Diaz and Osler (1974), which, as noted

by Gray and Zhang (1988), has no general exponential law.

The first part of this paper consists of a theoretical contribution. A new framework

for fractional differencing is defined by introducing some basic concepts in a discrete

time framework. We define an algebra of operators and show it has no zero divisors.

Consequently it can be embedded in a division algebra. All fractional powers of the

summation operator are then naturally defined and the form of fractional differencing

most often utilized in financial applications is a special case of our definition.

The second part of the paper consists of an empirical application. Using wavelet

methods this investigates the estimation of the fractional differencing parameter in the

high frequency return and volatility of three Comex metals futures contracts: gold,

copper and silver. Evidence on fractional integrating dynamics in commodity futures is

relevant for several reasons, including statistical tests of asset pricing models, forecasting,

hedging, and related risk management techniques in In and Kim (2006), Dark (2007) and

Elder and Jin (2009). The existing empirical evidence for fractional differencing in com-

modity futures, however, is mixed. Cheung and Lai (1993) find little evidence of fractional

differencing in gold returns and Crato and Ray (2000) find little or no evidence of fractional

differencing in seventeen commodity futures returns, while Panas (2001) finds evidence of

fractional differencing in two of six metals futures contracts. More recently, Elder and Jin

(2009) find little evidence of fractional differencing in metal futures, but there is evidence

of long memory in about half of agricultural commodity futures, based on daily data over

a thirty year period.

In our empirical application, we estimate the fractional differencing parameter in the
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return and volatility to gold, copper and silver futures that are sampled at five minute in-

tervals over a nearly eight year period from April 1, 2000 through December 31, 2008

yielding more than 65,000 observations. We use four methods to estimate the fractional

differencing parameter. Two methods are based on frequency domain analysis, as devel-

oped in Geweke and Porter-Hudak (1983) (GPH) and Robinson (1995a) (GSP ), and two

methods are based on wavelet analysis, as developed by Wornell and Oppenheim (1992),

Jensen (1999) and Jensen (2000). Our empirical results suggest some evidence of antiper-

sistence in gold and copper returns, and strong evidence of fractional differencing in each

of the volatility series, as measured by absolute returns.

2 Basic Concepts

Zwill denote the group of integers with the discrete topology. Nwill denote the semi-group

of non-negative integers, N = {0, 1, 2, · · · }.We shall consider the set of functions F ={f}
whose support is contained in N. That is, if j < 0 then f(j) = 0. These can be thought of

as infinite sequences: f(0) = a0, f(1) = a1, · · · , f(n) = an, · · · , etc.

Definition 2.1 If f1 ∈ F , and f2 ∈ F , their convolution product f1 ∗ f2 ∈ F , is the

function defined by:

(f1 ∗ f2) (n) =
∞∑
i=0

f1 (n− i) f2 (i) =
∞∑
i=0

an−ibi,

where f1 (i) = ai, and f2 (i) = bi.

Note that f1 ∗ f2 = f2 ∗ f1. If f ∈ F and
∞∑
i=0

|f(i)| < ∞, its Fourier transform is

f̂(y) =
∞∑
n=0

f(n)einy. Then f̂1 ∗ f2(y) = f̂1(y) · f̂2(y) for fi ∈ F and all y ∈ R.

Lemma 2.2 With convolution as multiplication, addition defined by (f1 + f2) (i) = f1 (i)+

f2 (i) , and scalar multiplication defined by (λf1) (i) = λf1 (i) , the functions F form an

associative, commutative algebra with a unit.

Proof. Immediate. The unit is the function: f (0) = 1, and f (i) = 0, if i 6= 0. The zero is

the function f(i) = 0, for all i ∈ N. �

Remark 2.3 Care must be taken not to confuse the constant λ ∈ C, and the constant

function f (i) = λ ∈ F , for all i ∈ Z+.
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Notation 2.4 u ∈ F denotes the function u(i) = 1, for all i ∈ Z+, that is: the sequence

(1, 1, 1, · · · ) .

Remark 2.5

(u ∗ f) (n) =
n∑
i=0

f(i) = Sn.

We shall now prove that if f1, f2 ∈ F , and f1 ∗ f2 = 0, then either f1 = 0, or f2 = 0.

Notation 2.6 Write

(x)(r) = x (x− 1) (x− 2) · · · (x− r + 1) ,

(x)(0) = 1, (0)(r) = 0 for r 6= 0.

Note that if n ∈ Z+ and r > n, then (n)r = 0.

We now prove the discrete form of Lerch’s Theorem:

Theorem 2.7 For f ∈ F , if
M∑
i=0

(i)(n) f(i) = 0, (2.1)

for n = 0, 1, · · ·M, then f (i) = 0, for i = 0, 1, · · ·M.

Proof. As equation (2.1) is true when n = M , and (M)(M) = M ! 6= 0, while (i)(M) = 0

for i < M, we have:

M !f (M) = 0 so f (M) = 0.

Similarly, when n = M − 1, as f (M) = 0,

(M − 1)(M−1) f (M − 1) = 0. Therefore, f (M − 1) = 0,

and so on. Continuing M finite steps we have f (i) = 0 for i = 1, 2, · · ·M.

Finally as (i)(0) = 1,∀i,

M∑
i=0

(i)(0) f(i) = 0⇒ f (0) = 0.

�
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Theorem 2.8 Suppose f ∗ f = 0, that is
M∑
i=0

f (n− i) f(i) = 0 for all n. Then f (n) = 0

for all n.

Proof.

f ∗ f (0) = f (0) f (0) = 0⇒ f (0) = 0.

Suppose f (i) = 0, for i = 1, 2, · · ·N − 1. Consider

f ∗ f (2N) =
2N∑
i=0

f(2N − i)f(i)

= f (N) f (N) = 0.

Therefore implying f (N) = 0.

Consequently, f (i) = 0 for all i by induction. �

Theorem 2.9 if f ∗ g = 0, then f = 0 or g = 0.

Proof. f ∗ g = 0 means for any M ≥ 0

M∑
i=0

f (M − i) g (i) = 0.

Therefore,

M∑
i=0

(M − i) f (M − i) g (i) +
M∑
i=0

if (M − i) g (i)

= M
M∑
i=0

f (M − i) g (i) = 0. (2.2)

Write f ′(i) = if (i) , and g′(i) = ig (i) . Then from (2.2)

f ′ ∗ g + f ∗ g′ = 0.

so

f ∗ g′ ∗ (f ′ ∗ g + f ∗ g′)
= f ∗ g′ ∗ f ′ ∗ g + (f ∗ g′)2

= (f ∗ g) ∗ (f ′ ∗ g′) + (f ∗ g′)2

= 0.
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By hypothesis: f ∗ g = 0. Consequently, we have shown (f ∗ g′)2 = 0. By Theorem 2.8,

(f ∗ g′) = 0. That is, for any M ∈ Z+,

M∑
i=0

f (M − i)× i× g (i) = 0. (2.3)

That is:
M∑
i=0

(i)(1) f (M − i) g (i) = 0.

Therefore, repeating the above argument

M∑
i=0

f (M − i)× i2 × g (i) = 0. (2.4)

Subtracting (2.3) from (2.4) , we have, for M ∈ Z+ :

M∑
i=0

(i)(2) f (M − i) g (i) = 0.

Suppose we have shown for M ∈ Z+ :

M∑
i=0

(i)(n−1) f (M − i) g (i) = 0. (2.5)

Then by the above construction we have

M∑
i=0

i× (i)(n−1) f (M − i) g (i) = 0, (2.6)

Subtracting (n− 1)× (2.5) from (2.6) , we have

M∑
i=0

(i)(n) f (M − i) g (i) = 0. (2.7)

By induction (2.7) is true for all n, and so in particular for n = 0, 1, · · · ,M.

By Theorem 2.7,

f (M − i) g (i) = 0,∀i = 0, 1, · · · ,M. (2.8)
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This is true for any M ∈ N. Suppose g(k) 6= 0 for some k ∈ Z+. Then from (2.8) , we

see f (i) = 0 for all i. Otherwise g (i) = 0, for all i. �

Definition 2.10 From Theorem 2.8 we see that convolution multiplication in F has no

zero divisors, so we can form its formal quotient field Q. The members of Q will be called

operators. F can be embedded in its quotient field. We have seen the unit of the quotient

field is {1} = {1, 0, 0, · · · }. Q is formed by pairs (f, g), where f, g ∈ F .

3 Operators

3.1 The Summation Operator u

As above, consider f ∈ F as a sequence (a0, a1, · · · , ai, · · · ) . The operator u is defined as

the sequence

u = (1, 1, · · · , 1, · · · ) .

Now for any f ∈ F ,

(u ∗ f) (n) = a0 + a1 + · · ·+ an = Sn,

so u is the integral or summation operator.

Powers of u are:

{u} = (1, 1, · · · , 1, · · · ) ,{
u2
}

= u ∗ u = (1, 2, 3, · · · ) ,{
u3
}

= u ∗ u2 = (1, 3, 6, · · · ) ,{
u4
}

= u ∗ u3 = (1, 4, 10, · · · ) ,
· · ·
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If we write Cn
r =

n!

r!(n− r)! , then

{u} =
(
C10 , C

1
0 , · · · , Ci

0, · · ·
)
,{

u2
}

=
(
C11 , C

2
1 , · · · , Ci

1, · · ·
)
,{

u3
}

=
(
C22 , C

3
2 , · · · , Ci

2, · · ·
)
,{

u4
}

=
(
C33 , C

4
3 , · · · , Ci

3, · · ·
)
,

· · ·

So we see for general n ∈ Z+ − {0},

un = {fn (i)} =
{
Cn+i−1
n−1

}
=

{
Γ (n+ i)

i!Γ (n)

}
.

That is, for positive integral n, un is the series:{
1,
n

1!
,
n(n+ 1)

2!
, · · ·

}
.

We can give the following definition:

Definition 3.1 For general r ∈ R, {ur} is the series:{
(r + 1)(i)

i!

}
=

(
1, r,

r(r + 1)

2!
,
r(r + 1)(r + 2)

3!
, · · ·

)
.

and {u0} = (1, 0, 0, · · · ) = {I} is the identity operator, as u0 ∗ f = f ∗ u0 = f, for all

f ∈ F .

3.2 The Difference Operator ∆

Definition 3.2 We define ∆ to be the operator on F , such that, for

f = (f (0) , f (1) , f (2) , · · · , f (n) , · · · ) ∈ F ,
∆ ∗ f(n) = (f(n)− f(n− 1)) .
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That is, ∆ ∗ f is the series

(f(0), f(1)− f(0), f(2)− f(1), · · · ) ∈ F .

So, ∆ is the difference operator.

Theorem 3.3 ∆ = {u−1} .

Proof. By Definition 3.1, {u−1} is the series (1,−1, 0, 0, · · · ) . For any

f = (f (0) , f (1) , f (2) , · · · , f (n) , · · · ) ∈ F ,
u−1 ∗ f = (f(0), f(1)− f(0), f(2)− f(1), · · · ) = ∆ ∗ f.

That is

u−1 ∗ f = ∆ ∗ f, ∀f ∈ F .

So (
u−1 −∆

)
∗ f = 0,∀f ∈ F .

Since F has no zero divisors, we have ∆ = {u−1} . �

Remark 3.4

∆2 ∗ f = (f(0), f(1)− 2f(0), f(2)− 2f(1) + f (0) , · · · ) .

etc.

Definition 3.5 For arbitrary r ∈ R, we define

∆r = u−r =

(
1,−r, −r (−r − 1)

2!
, · · ·

)
.

3.3 The Operators L and L−1

Definition 3.6 L ∈ F , is the function: L (0) = 0, L (1) = 1, and L (k) = 0 for all k > 1.

That is,

L = (0, 1, 0, 0, · · · ) .
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Remark 3.7 For any f = (a0, a1, · · · , ai, · · · ) ∈ F , we have

L ∗ f = (0, a0, a1, · · · , ai, · · · ) .

That is L = L1 is a translation one place to the right, so operator Ln translates n places

to the right. L is sometimes called the lag operator.

Remark 3.8 Note that ∆ = I − L = u−1.

In order to introduce L−1, we must extend our operations from the class F of functions,

(that is the class of f such that f(i) is zero for negative i.), to the class G of functions with

limited support on the left. That is, f ∈ G if there is an n ∈ Z such that f(i) = 0, if i < n.

We note that f is now defined for all i ∈ Z.

Definition 3.9 Given f, g ∈ G,

f ∗ g(n) =
∞∑

i=−∞
f(n− i)g(i).

For each n this is a finite sum, so f ∗ g is well defined and is in G.

Lemma 3.10 For f, g ∈ G, if f(i) = 0 for i < m, and g(i) = 0 for i < n, then f(i)∗g(i) =

0 for i < m+ n.

Definition 3.11 L−1 is the function f ∈ G such that L−1 (−1) = 1, and L−1 (i) = 0,

otherwise. The support of L−1 is {−1}. However,

L−1L = LL−1 = u0 = {I} .

Theorem 3.12 The algebra G has no zero divisors.

Proof. Suppose f, g ∈ G, and f ∗ g = 0, then there is an n, such that f(i) = 0, for i < n,

and there is an m, such that g(i) = 0 for i < m. By the above lemma, f(i) ∗ g(i) = 0 for

i < m+ n. Therefore,

Lm+n ∗ f ∗ g = 0, and is in F .

That is

Ln ∗ f ∗ Lm ∗ g = 0.
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Then either Ln ∗f = 0 or Lm ∗g = 0. But trivially, if Lr ∗h = 0 then h = 0. Consequently

f = 0, or g = 0. �
Thus, we can embed G in its quotient fieldR which contains Q.

Using Fourier transforms:

∆̂(y) = û−1 (y) = 1− eiy,

and

∆̂r(y) = û−r (y) =
(
1− eiy

)r
.

3.4 The Fractional Differencing Parameter

In finance the most popular application of fractional differencing is for an autoregressive

moving-average process. The process x(t) is said to be an autoregressive moving-average

process integrated of order d and denoted ARIMA(p, d, q), (here, p is the order of autore-

gression and q is the order of moving average), then

Φ (L)x (t) = (1− L)−dφ(L)z(t) = ∆−dφ(L)z(t) = udφ(L)z(t), (3.1)

where z(t) is sequence of i.i.d. random variables with zero mean and variance σ2z . Also,

Φ(L) and φ(L) are finite polynomials in the lag operator with roots outside the unit circle.

ud is defined in Definition 3.1.

It is immediately seen that our definition agrees with that in Hosking (1981) and Granger

and Joyeux (1980), or in terms of the gamma function as

(1− L)−d = 1 +

∞∑
j=1

Γ(j + d)

Γ(d)Γ(j + 1)
Lj.

The autocorrelation function of such a process decays hyperbolically for nonzero values

of d when |d| < 1.0. For |d| ≤ 0.5, the process x(t) is both stationary and invertible, while

for 0.5 ≤ d ≤ 1, the process exhibits infinite variance.

It is also a fact that the autocovariances satisfy:

γu = c1u
2d−1, as j →∞, for |c1| <∞, (3.2)

and, assuming that the process has absolute continuous spectral distribution, so that
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it has a spectral function f (λ) , defined as

f (λ) =
1

2π
(γ0 + 2

∑∞
u=1γu cos (λu)) .

It can also be proved that

f (λ) ≈ c2λ
−2d, as λ→ 0+, for 0 < c2 <∞, (3.3)

where the symbol “≈” indicates that the ratio of the left hand side and the right hand

side tends to 1, as j → ∞ in equation (3.2) and as λ → 0+ in equation (3.3). These

conditions are not always equivalent. However, Yong (1974), and Zygmund (1995)

give conditions under which both expressions are equivalent.

In equation (3.1), the general forms of Φ(L) and φ(L) are as following:

Φ(L) = α0 + α1L+ · · ·+ αpL
p, and

φ(L) = β0 + β1L+ · · ·+ βqL
q,

where αi, 0 ≤ i ≤ p, and βj, 0 ≤ j ≤ q, are constants.

Consequently in our notation, equation (3.1) is

(Φ(L) ∗ x) (t) =
(
∆−d ∗ φ(L) ∗ z

)
(t) . (3.4)

Taking Fourier transforms:

Φ̂(y)x̂(y) = (1− eiy)−dφ̂(y)ẑ(y).

as ∆ = 1− L,
∆̂(y) = 1− eiy,

and

Φ̂(y) = α0 + α1e
iy + · · ·+ αpe

ipy.

Now ̂(1− L)
−d

(y) = (1− eiy)−d. Therefore, formally,

log Φ̂(y) + log x̂(y) = −d log(1− eiy) + log φ̂(y) + log ẑ(y),
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so

d =
1

log(1− eiy)

[
log φ̂(y) + log ẑ(y)− log Φ̂(y)− log x̂(y)

]
=

1

log(1− eiy) log
φ̂(y)ẑ(y)

Φ̂(y)x̂(y)
. (3.5)

To implement this expression, parameter estimates for the αi and βi must be obtained

and the Fourier transforms of z and x approximated by finite sums. This will be investigated

in future work. It could be possible that the existing methods of estimating the frac-

tional differencing parameter could be applied to the general framework after some

extension or modification. In the remainder of this paper, we provide an illustration

of fractional differencing in this context by estimating and interpreting the fractional

differencing parameter for financial time series on the futures prices of gold, copper

and silver.

4 Empirical Applications

In this section, we apply two wavelet based and two frequency domain estimators to the

three metals futures, gold, copper and silver. The series are sampled at five minute intervals

from April 1, 2000 through December 31, 2008.

4.1 Estimators of the Fractional Differencing Parameter

We utilize two wavelet-based estimators of the fractional differencing parameter d as de-

scribed by Jensen (1999), Jensen (2000) and Wornell and Oppenheim (1992), and one

frequency domain estimator. The two wavelet-based methods and the frequency domain

estimator applied here are comparable to those employed by Elder and Jin (2007, 2009).

Let ψ(t) be a real valued, square integrable function with finite oscillations that decrease

to zero as t goes to ±∞. That is, let ψ(t) satisfy
∫∞
−∞ ψ(t)dt = 0 and

∫∞
−∞ ψ

2(t)dt = 1.

Then ψ(t) is a wavelet if it also satisfies the admissibility condition described, for exam-

ple, by Percival and Walden (2000). Let ϕ(t) represent the associated orthogonal scaling

function, which spans the spaces between the spaces spanned by the various scales of the

wavelet function. The wavelet coefficients [am,n] that link the wavelet function to the signal

can be obtained by projecting the wavelet and scaling basis functions onto the signal x(t)
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in the following manner,

x(t) =
∑

ncnϕ(t− n) +
∑

m

∑
n2−

m
2 am,nψ(2−mt− n),

where m and n are integer indices for the finite or infinite sum that scale the wavelet in size

(m) and translate the wavelet in time (n).

The estimators of the fractional differencing parameter are derived from the property

that the wavelet coefficients am,n associated with a ARFIMA(p, d, q) process x(t) with

|d| ≤ 0.5 are distributed approximately N(0, 2−2d(M−m)σ2) (Jensen (1999) and Jensen

(2000)). Denoting the variance of the wavelet coefficients at scale m by var(am, .) =

2−2d(M−m)σ2, we can take logs to give

ln var(am, .) = ln σ2 + d ln
[
2−2d(M−m)

]
. (4.1)

A simple estimate of the fractional differencing parameter d can be obtained by apply-

ing OLS on equation (4.1), where var(am, .) is estimated by the sample variance of the

wavelet coefficients at scale index m.

An approximate MLE of the fractional differencing parameter, denoted d̂BWMLE , can

be obtained by exploiting the multivariate normality of the wavelet coefficients of the data

generating process and imposing the constraint that cov (am,n, aj,k) = 0 (Jensen (2000)

and Wornell and Oppenheim (1992)). In particular, let σ2m,n = 2−2d(M−m)σ2, then the

approximate likelihood of the data is

L
(
d, σ2, σ2η

)
=
∏
m

∏
n

1√
2πσ2m,n

exp

(
−
a2m,n
2σ2m,n

)
.

Percival and Walden (2000) suggest trimming the largest and smallest scales prior to

estimating equation (4.1) for the wavelet OLS estimator (WOLS). We trim the smallest

scales in the approximation given by equation (4.1) to alleviate bias due to short-run dy-

namics. We also trim the largest scale, since the variance at the largest scale is estimated

imprecisely. For the wavelet MLE (BWMLE), some authors suggest trimming only the

small scales.

We also consider two frequency domain estimators, that proposed by Geweke and

Porter-Hudak (1983) (denoted GPH) and Robinson’s (1995b) Gaussian semi-parametric

(GSP ) estimator. Intuitively, the frequency domain estimators capture the slope of the

sample spectral density function, while the wavelet estimators exploit the structure of
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the wavelet variance at different scales for long memory processes.

The GPH estimator examines the slope of the sample spectral density near the origin.

More formally, let

I(wj) =
1

2πT

∣∣∣∣ T∑
t=1

(y(t)− ȳ) eitwj
∣∣∣∣2

denote the sample periodogram at the jth Fourier frequency of y(t), wherewj = 2πj/T, j =

1, 2, · · · , J. TheGPH estimator of d is based on anOLS regression of the log periodogram

on the (transformed) log frequency:

ln [I (wj)] = a+ d ln
(

2 sin
(wj

2

))−2
+ εj, for j = 1, 2, · · · , J.

The bandwidth parameter J is often set at T 0.5 to capture the behavior of the peri-

odogram near the origin. The series x(t) may be non-Gaussian, heteroskedastic, but with

d ∈ (−0.5, 0.5) , plus certain other conditions, then d̂GPH is consistent and asymptotically

normal with
√
J
(
d̂GPH − d

)
→ N

(
0,
π2

24

)
(Robinson (1995a), Hurvich, Deo and Brod-

sky (1998) and Kim and Philips (1999), Robinson and Henry (1999)). If 0.5 ≤ d < 1 that

the GPH estimator is consistent, and it is asymptotic normality for 0.5 ≤ d ≤ 0.75. The

usual OLS standard errors are often used for inference (cf. Deo and Hurvich (2001)). We

use the OLS standard errors in our application.

Another prominent frequency domain estimator is the Gaussian semiparametric (GSP )

estimator proposed by Robinson (1995b). The GSP estimator maximizes the approximate

frequency domain likelihood in which discrete averaging is carried out near frequency 0.

In particular, the GSP estimator d̂GSP = arg mindR(d), where R(d) is the concentrated

local Whittle log-likelihood

R(d) = ln

[
1

J

J∑
j=1

w2dj I(wj)

]
− 2d

J

J∑
j=1

lnwj for

(
1

J
+
J

T

)
→ 0.

Robinson (1995b) shows that this estimator is consistent under relatively mild condi-

tions and is more efficient than theGPH estimator for d ∈ (−0.5, 0.5),with
√
J
(
d̂GSP − d

)
→

N

(
0,

1

4

)
. Further extensions of this procedure can be found in Velasco (1999), Ve-

lasco and Robinson (2000), Phillips and Shimotsu (2004), Shimotso and Phillips (2005),

and Abadir et al. (2007). Some of those extensions (for instance, Phillips and Shi-

motsu, 2004) allow for estimation even in nonstationary regions.
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4.2 Data and Empirical Results

Our data consists of three metals futures, gold, copper and silver, which are traded on

Comex, now a division of the New York Mercantile Exchange. The series are sampled

at five minute intervals from April 1, 2000 through December 31, 2008, yielding 65536

observations. The futures prices are nearby futures prices, converted to continuously com-

pounded returns at five minute intervals in basis points, x(t), from the futures prices, p(t),

as x(t) = 10, 000× ln
p(t)

p(t− 1)
. Volatility of the return series is calculated as the absolute

value of the returns.

For the volatility series, it is well established that the autocovariances of ln(x2(t)), x2(t)

and |x(t)|, display similar decay at long lags (cf. Harvey (1998)), justifying the use of semi-

parametric estimators of the fractional differencing parameter on any of these matrixes.

Wright (2002) suggests using absolute returns |x(t)|, based on Monte-Carlo evidence.

Summary statistics on the return and volatility series are presented in Table 1. The

return series have small but significant arithmetic means, on the order of 0.10− 0.20 basis

points per five minute interval. The returns also exhibit the negative skewness and excess

kurtosis typical of financial data, and are correlated at long lags as would be consistent with

fractional integration. The correlation at long lags in absolute returns is notably high, as

evidenced by the Q(20) statistic. The return and volatility series are plotted in Figure 1 at

five minute intervals.

We first test the data for evidence of fractional integration against the null of a unit

root. We use the procedure suggested by Lobato and Velasco (2007), which has been

shown to be robust to unconditional heteroskedasticity in unrestricted forms by Kew

and Harris (2009). The test suggested by Lobato and Velasco (2007) is a simple t-test

that is asymptotically efficient against local alternatives. The test is implemented by a

two-step procedure that relies on a preliminary estimate of the fractional differencing

parameter, which we obtain by the local Whittle method. In the first step, the autore-

gressive parameters are estimated based on the fractionally differenced series. In the

second step, the test equation is estimated, in which the differenced series is regressed

on a filtered and rescaled regressors constructed from the estimated autoregressive

parameters.

The results from this test are reported in Table 2 for the metal return and volatil-

ity series. According to Sephton (2009), the critical value at the 1% significance level

for no trend test is about −2.37 and test statistics many times larger. For both re-
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turns and volatilities, the null of unit root is strongly rejected at the 1% significance

level. This result is particular interesting for the volatility series, which are typically

highly persistent. The results suggest that the persistence is better captured by a long

memory, rather than unit root, process.

The estimates of the fractional differencing parameters are reported in Table 3. For the

return series, there is some evidence of antipersistence in gold and some evidence of persis-

tence in copper. For gold, the GPH estimator for the fractional differencing parameter is

negative and insignificant, while the GSP , WOLS and BWMLE estimators are negative

and significant. TheWOLS estimator is negative and largest in magnitude, consistent with

its large negative bias in Monte-Carlo studies (Jensen (1999), Elder and Jubinski (2010)).

For copper, three of the four estimates (GPH , GSP and BWMLE) are positive and

significant, while theWOLS estimator is again negative, but not significant, which is again

in accordance with the large negative bias of the WOLS estimator. The estimates of the

fractional difference parameter for silver are each negative, although only the WOLS es-

timate is significantly different from zero at conventional levels. Given the large negative

bias of the WOLS estimator, this result is more likely to be spurious.

In sum, there appears to be some modest evidence of antipersistence in gold returns and

persistence in copper returns, according to both the GSP and BWMLE.

For the volatility series, each of the absolute return series displays evidence of very high

persistence. Interestingly, each of the point estimates is greater than 0.5, indicating that the

absolute return series may have infinite variance. The degree of persistence is greatest for

gold return volatility, with the smallest point estimate being greater than 0.8 and the largest

point estimate being greater than 0.9. Silver volatility displays the next highest degree of

persistence, with the largest point estimate of 0.8. The largest point estimate for copper

volatility is less than 0.7.

The very high level of persistence indicated for the volatility series in results in Table 3

is somewhat sensitive to the choice of bandwidth for the GPH and GSP estimators, and

the number of trimmed scales for the wavelet estimators, as well as the choice of volatility

transformation. For example, at a bandwidth of T 0.5, and trimming 8 small scales for

wavelet estimators causes the point estimates to decline substantively, as reported in Table

3. Most of the point estimates in Table 4 are close to 0.5, indicating high persistence.

Different volatility transformations also tend to give somewhat different results. As an

example, the Monte-Carlo results of Wright (2002) show that frequency domain estima-

tors tend to be downward biased when volatilities are calculated based on squared returns,
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rather than absolute returns. Accordingly, point estimates for the fractional differencing

parameter based on squared returns are even lower, as reported in Table 5.

5 Conclusion

In this paper, we define fractional integration and difference in a natural way to facilitate

a clear understanding of the concepts. Our definition is different from the popular used

definition since by introducing convolution as multiplication, all our operators have well

defined powers of any real order.

We then apply four approaches of estimating the fractional differencing parameter to

three metal futures time series. We find that for the return series, there is some evidence

of antipersistence in gold and some evidence of persistence in copper. However, for the

volatility series, we find clear evidence of very high persistence.
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Table 1: Summary Statistics of the Futures Returns and Volatilities. This table presents

summary statistics on metal futures returns and volatilities. Units are basis points per five

minute interval continuously compounded. The sample is April 2000 through December

31, 2007. Returns are calculated from futures prices on nearby contracts. Q(20) represents

the Ljung-Box portmanteau test statistics for up to the 20th order autocorrelation. **, *

indicate statistical significance at the 0.05 and 0.10 levels, respectively.

Series Mean Std Dev Min Max Skew Kurtosis Q(20) on returns

Returns

Gold 0.18** 20.71 -404.07 494.80 -0.10** 42.27** 47.91**

Copper 0.10** 34.90 -1001.18 847.01 -1.59** 83.54** 64.41**

Silver 0.12** 35.24 -823.89 967.54 -0.47** 67.49** 108.86**

Volatilities

Goldv 12.07** 16.83 0.00 494.80 6.27** 79.55** 13,909.68**

Copperv 19.00** 29.27 0.00 1001.18 8.49** 147.39** 14,566.05**

Silverv 19.62** 29.28 0.00 967.54 7.59** 121.72** 18,925.43**
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Table 2: T-statistics for the Wald Test of Unitroot vs. Fractional Integration. This table

reports the t-statistics of the Wald test of the null hypothesis of a unit root against fractional

alternatives introduced by Lobato and Velasco (2007). The Wald test results for both the

return sereis and the volatility series (absolute return) are reported. Using up to 10 lags, the

null hypothesis is rejected at all signifiant levels.

Return Volatility

Lag Gold Copper Silver Goldv Copperv Silverv

0 -241.47 -259.77 -245.75 -220.23 -229.99 -214.43

1 -166.57 -183.00 -174.92 -155.13 -161.26 -155.27

2 -136.25 -148.67 -140.87 -127.47 -132.93 -128.26

3 -118.78 -129.09 -122.11 -111.67 -119.02 -112.10

4 -106.41 -115.37 -109.39 -101.39 -107.35 -102.55

5 -97.38 -105.21 -99.23 -92.71 -98.61 -94.27

6 -89.67 -97.32 -90.99 -84.70 -89.55 -86.63

7 -81.18 -91.04 -82.71 -77.09 -81.82 -79.39

8 -71.19 -85.26 -73.41 -69.39 -74.18 -72.49

9 -59.57 -80.91 -62.95 -61.77 -65.20 -66.08

10 -47.55 -77.94 -51.29 -54.52 -56.09 -59.44
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Table 3: Estimates of Fractional Differencing Prameters. The values in parentheses are

asymptotic t-statistics for the null hypothesis d = 0. d̂GPH represents point estimates

based on the GPH estimator, d̂WOLS represents point estimates based on the wavelet OLS

estimator of Jensen (1999), and d̂BWMLE represents point estimates based on the banded

wavelet MLE estimator of Jensen (2000). **, * indicate statistical significance at the 0.05

and 0.10 levels, respectively.

d̂GPH d̂GSP d̂WOLS d̂BWMLE

Return Series T 0.4 T 0.4 Daub-8 Daub-8

Gold -0.081 -0.111** -0.216 ** -0.121**

(-1.22) (-2.02) (-3.51) (-2.44)

Copper 0.211** 0.122 ** -0.173 0.123**

(2.47) (2.23) (-1.135) (2.58)

Silver -0.008 -0.012 -0.147** -0.014

(-0.12) (-0.22) (-2.86) (-0.29)

Volatility Series

Goldv 0.847** 0.827** 0.695** 0.921**

(12.58) (15.16) (5.21) (11.31)

Copperv 0.568** 0.55** 0.563** 0.662**

(8.01) (10.08) (5.53) (7.38)

Silverv 0.700** 0.716** 0.542** 0.853**

(10.21) (13.12) (3.73) (10.01)
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Table 4: Estimates of Fractional Differencing Parameters. The values in parentheses are

asymptotic t-statistics for the null hypothesis d = 0. d̂GPH represents point estimates based

on the GPH estimator, d̂WOLS represents point estimates based on the wavelet OLS estima-

tor of Jensen (1999), and d̂BWMLE represents point estimates based on the banded wavelet

MLE estimator of Jensen (2000). **, * indicate statistical significance at the 0.05 and 0.10

levels, respectively. The bandwidth for the frequency domain estimators is T 0.5 and the

8 smallest scales are trimmed for the wavelet estimators. The volatility transformation is

absolute returns.

d̂GPH d̂GSP d̂WOLS d̂BWMLE

Volatility Series T 0.5 T 0.5 Daub-8 Daub-8

Goldv 0.531** 0.540** 0.678 ** 0.713**

(13.33) (17.28) (7.13) (15.65)

Copperv 0.623** 0.604 ** 0.557** 0.582**

(15.12) (19.31) (7.76) (11.63)

Silverv 0.550** 0.523** 0.562** 0.687**

(14.15) (16.93) (5.43) (14.45)
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Table 5: Estimates of Fractional Differencing Parameters. The values in parentheses are

asymptotic t-statistics for the null hypothesis d = 0. d̂GPH represents point estimates based

on the GPH estimator, d̂WOLS represents point estimates based on the wavelet OLS estima-

tor of Jensen (1999), and d̂BWMLE represents point estimates based on the banded wavelet

MLE estimator of Jensen (2000). **, * indicate statistical significance at the 0.05 and 0.10

levels, respectively. The bandwidth for the frequency domain estimators is T 0.5 and the

8 smallest scales are trimmed for the wavelet estimators. The volatility transformation is

squared returns.

d̂GPH d̂GSP d̂WOLS d̂BWMLE

Volatility Series T 0.5 T 0.5 Daub-8 Daub-8

Goldv 0.468** 0.474** 0.647 ** 0.664**

(9.82) (15.17) (4.05) (3.36)

Copperv 0.468** 0.449 ** 0.423** 0.399*

(13.56) (14.37) (4.05) (1.89)

Silverv 0.419** 0.417** 0.562** 0.560**

(10.41) (13.34) (3.41) (2.79)
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Figure 1. The Return and Volatility Series for the Three Metal Futures.

Figure 1 presents the return and volatility series for the three metal futures, gold, copper

and silver. The returns are in percentage and volatility of the return series is measured as

the absolute value of the returns. The time frequency of the data is five minutes.
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