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ABSTRACT 

 

 

 

GAP ANALYSIS OF INDIA’S WESTERN GHATS PROTECTED AREA NETWORK: 

INSIGHTS FROM NEW AND UNDERSTUDIED ENDEMIC SPECIES’ DISTRIBUTIONS 

 

 

 
 Protected areas are a crucial tool to meet conservation goals of the 21st century, especially in 

biodiverse regions threatened by land use change. This study makes use of nine years of field data 

collected on over 300 understudied plants and amphibians endemic to the UNESCO-recognized 

biodiversity hotspot of the Western Ghats of India to produce a gap analysis of its protected area network. 

The gap analysis updates previous analyses to reassess network coverage and to improve biodiversity 

distribution estimates. Software for Assisted Habitat Modeling (SAHM) queries possible species 

distribution models (SDMs) and predictor variables for thirty-five of these species sub-grouped by range 

strategies. This generates parsimonious sets of predictor variables as well as performance assessments of 

SDMs, which then populate batch-run distribution Maximum Entropy models (Maxent). These 

distributions are overlain in various ensembles to produce clade and biodiversity specific insights about 

high and low-occurrences areas for these species. Hotspot assessments of the region are generated using 

ensembled distributions and are compared to the current protected area (PA) network to identify gaps in 

coverage for high-occurrences of these species’ distributions. Most high species co-occurrences for both 

amphibian and plant distributions are covered by the PA  network with the exception of three regions for 

amphibians and six regions for plants, two of which overlap between clades. Previous studies largely or 

exclusively used secondary-data for their assessments while the majority of species in this study have 

never been modeled or included in gap analyses. This study’s assessment adds new ecological 

information to individual species and novel contributions to conservation planning in a threatened 

biodiversity hotspot. This study recommends inclusion of the seven identified high-occurrences areas in 
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future conservation efforts for the Western Ghats and prioritization of the two areas identified as gaps in 

protection for both clades.  
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Introduction 

 

 

 

The conservation of nature, its diversity, and its service to human well-being is one of the most important 

goals of this century (IUCN 2017, UNEP 2016, Braat and de Groot 2012). Protected area (PA) 

demarcation is among the most frequently used tools for achieving these goals. Effective PAs have been 

shown to stop or reverse biodiversity and habitat loss, improve access to and consistency of ecosystem 

services, and improve human socio-economic conditions (Costanza et al. 1997, Butchart et al. 2010, 

Ferraro et al. 2011, Geldman et al. 2013). However, in many cases, standardized and systematic 

monitoring to evaluate the impact and effectiveness of PAs in achieving their stated goals is lacking 

(Bottrill et al. 2013). Case studies document PAs as achieving successes as well as being ineffective or 

detrimental for conservation and livelihood goals (Christie 2004, Ostrom et al. 2009, 2011). Among many 

possibilities, the cause of neutral or negative impacts is commonly attributed to lack of policy 

enforcement (e.g. paper parks: Bruner et al. 2001, Gibson et al. 2005) or the failure of PA designs to 

adequately protect core habitats and adapt to changing ecological needs of vulnerable species (Brandon 

and Kent 1992, Butchart et al. 2015).  

Protected area establishment is most effective in conserving biodiversity when it targets areas with 

vulnerable species, defined as those of IUCN threatened-status or worse or as endemic species with 

restricted ranges (Das et al. 2006; Brooks et al. 2002, 2006). Biodiversity hotspot is a term that describes 

areas of high biological diversity and occurrence of vulnerable species (Mace and Lande 1991). Globally, 

thirty-six regions are defined as biodiversity hotspots, yet each site measures and qualifies its biodiversity 

using disparate or incomparable types of data and monitoring methods (Myers et al. 2000). Therefore 

biodiversity hotspots are sometimes critiqued as a metric for setting conservation priorities and should be 

considered as one of many possible pathways for identifying conservation policy and practice (Myers et 

al. 2003, Marchese et al. 2015). Despite these contentions, given limited information and resources, this 

study and others suggest that biodiversity hotspots are reasonable means of guiding conservation action 



2 
 

(Mittermeier et al. 2011). In nearly all cases, protecting these hotspots relies on in situ conservation 

interventions that prioritize areas with the highest occurrences of endemism, threatened species, species-

richness, and/or intact ranges of multi-species habitat (Possingham and Wilson 2005). However, due to 

limitations in primary data, monitoring, variation in policies and enforcement, and/or suboptimal analytic 

methods, many hotspots are known only through very coarse estimations of the distributions of the 

biodiversity that qualifies them as hotspots (Zachos and Habel 2011, Marchese et al. 2015).   

Historically, PA creation has often been based on heavily studied, large bodied or charismatic species or 

geophysical uniquenesses (Isaac et al. 2004, Joppa and Pfaff 2009). Including evidence-based 

distributions of understudied and vulnerable species in prioritization contributes to the goal-setting and 

goal-achieving processes in biodiversity conservation (Kullberg et al. 2015). Gap analysis is both an 

established scientific methodology and a practitioners’ tool that assesses the current state of PA design 

and integrates important data into PA evaluations, policy, and management (Rodriguez et al. 2004). A gap 

analysis uses species distributions to identify geographic areas, or gaps, in a PA network that should be 

targeted for protection (Scott et al. 1993). This type of analysis has been widely used to expand and 

redirect management of PAs domestically and internationally (Jennings 2000, Vimal et al. 2011). 

Selecting which species distributions are used in the gap analysis is determined both by which species are 

relevant to PA conservation goals and the availability of data to estimate those distributions (Angelstam 

2004, USGS Gap Analysis Program report 2013). As new data become available and species are 

discovered, change status of vulnerability, or are identified as important to PA goals, gap analyses must 

be updated to adequately reflect those changes.  

The species selected to conduct a gap analysis dictate the types and degree of inferences able to be made 

about its results (Jennings 2000). Some groups of species can serve as ecological and conservation 

indicators (Dufrene and Legendre 1997). Including indicator species in a gap analysis allows results to be 

extrapolated to produce broader inferences about biodiversity richness and distribution or ecosystem 

function in the study area (Carignan and Villard 2002). For example, some literature suggests endemic 
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plant distributions and richness correlate with overall diversity of vertebrate endemism (Kier et al. 2009). 

Endemic amphibian population status and distributions can also be indicators of wider trends in 

environmental disturbance and function (Stuart et al. 2004, Lewandowski et al. 2010). However, the 

diversity and conservation status of endemics plants and, in particular, endemic amphibians are shown to 

be in steep decline globally and yet they are comparatively understudied (Gibbons et al. 2000, Orme et al. 

2005, Urbina-Cardona 2008). Despite and because they are understudied, further research on these clades 

represents a particularly fruitful opportunity to add to information about their conservation status and 

infer ecological conditions of their habitat. Their inclusion in a gap analysis would also serve the purpose 

of targeting vulnerable species for protection while still providing the deeper ecological insights into the 

health and function of the analyzed PA (Sarkar et al. 2006, Saura and Pascual-Hortal 2007).  

Though including all species of conservation concern in a gap analysis is ideal, it is nearly impossible to 

account for all relevant, present, and transient diversity and its level of vulnerability on a landscape scale, 

even if limited to specific geographies or clades of species (Scott et al. 1993). However, accurately 

predicting and adding representative and ecologically demonstrative species’ distributions to gap analyses 

begins to improve the capacity of conservation efforts to prioritize and effectively target areas in need of 

additional protections (Rodrigues et al. 2003). Species distribution models (SDMs) are one method for 

estimating those species occurrences over space and time (Elith and Leathwick 2009). SDMs use a 

combination of spatial and environmental predictor variables in conjunction with field data recording 

presences and/or absences of species to produce an estimation of habitat suitability across a defined study 

area (Guisan and Zimmermann 2000). Though there are many different SDMs and recognizing that it is 

necessary to discuss caveats and qualifications related to whichever SDM used, they are persistently 

shown to be useful tools in ecologic research and a valuable methodology for identifying and guiding the 

delineation of priority areas for species conservation (Guisan et al. 2006). Accurate and well-tested SDMs 

of representative species produce insightful and important data for conducting and interpreting gap 

analyses (Hernandez et al. 2006).   
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Gap analyses use multiple SDMs overlain as a single map to create heat-maps representative of the 

number of species occurrences per modeled spatial unit. Heat-maps and areas of high species co-

occurrence (hotspots) identified therein are sometimes conflated with statistical hotspot maps. Hotspot 

maps represent statistically calculated high and low occurrences of a variable across space, such as 

species co-occurrence, and in ecologic sciences are often used as a representation for biodiversity richness 

(Myer et al. 2000, 2012). Presence of high biodiversity richness commonly serves as a metric for 

assessing conservation goals, often in the form of total species per area (alpha diversity) or as a 

percentage of distribution covered per unit area (beta and gamma diversity) (Kremen et al. 2008). 

Prioritization analysis builds on gap analysis models by calculating replaceability of areas given an 

established set of conservation goals, such as a goal to preserve 60% of habitat for 60% of total species 

occurring within PA boundaries. Replaceability, or the reciprocal, irreplaceability, is a measure of 

environmental redundancy with respect to groups of species’ distributions that occur within a defined 

ecosystem (Rüble 1935, Brooks et al. 2006, Carawrdine et al. 2007). This method is useful for identifying 

areas that are critical, beneficial, or neutral to meeting conservation goals, and allows policy and practice 

to act in accordance with, or at least with awareness, of those trade-offs. Identify high co-occurrence areas 

of irreplaceable species as well as where those areas are located in relation to PA network coverage is 

crucial to assessing and managing current and future conservation in PAs (Prendergast et al. 1993, Myers 

et al. 2000).    

The sub-continent of India, particularly its Western Ghats region, represents a unique opportunity for 

conservation planners to benefit from a gap analysis. The region faces many potential challenges to 

conservation such as rapid land use changes, a hyper-diverse geography, an understudied PA network, 

and a richness of biodiversity that continues to be discovered through newly documented species and 

genetic testing (UNESCO World Heritage Report 2012, Vijayakumar et al. 2014). The Western Ghats is a 

well-recognized biodiversity hotspot with nearly 3200 species of known vulnerable and endemic species 

distributed over a landscape of dynamically shifting land uses and biomes (Indian Wildlife Institute 
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Annual Report 2016, Table 1). Formal protections within the region have origins in the Government of 

India’s Wildlife Protection Act (WPA) of 1972. The WPA provided an extensive legal framework for the 

conservation of vulnerable species and the authority to create PAs in India. In response to the WPA, the 

Western Ghats escarpment saw a proliferation of PA creation in an effort to preserve its high biodiversity 

and density of endemic and endangered species. However, studies have shown that the placement of 

many of those PAs was heavily influenced by convenience of location rather than evidence-based study, 

and in the process displaced thousands of people leading to additional unintentional land use and land 

cover changes (Gunawardene et al. 2007, Ormsby et al. 2011). In 2006 The Scheduled Tribes and Other 

Traditional Forest Dwellers Act (known as the Forest Rights Act) overrode the WPA’s restricted-use 

mandate by allowing certain tribal ethnicities and subsistence land-users to occupy PAs and harvest 

natural resources therein spurning further land use changes. In 2012 UNESCO declared the region a 

World Heritage site referencing its extensive biological, physical, and cultural properties (UNESCO 

2012). Though UNESCO’s 2012 World Heritage Report advises that the current and potential future 

influences of land use change could negatively affect the integrity of the Western Ghats, their ecologic 

effects have been notably understudied in peer-reviewed literature (Sekar 2016). However, some studies 

have already suggested the reverse diaspora of the Forest Rights Act have had negative influences on 

conservation outcomes within PAs and thereby emphasize the importance of reassessing the PA networks 

in India and the Western Ghats (Pawar, et al. 2007, Gerlach, et al. 2013, Satish et al. 2014). 

Recognizing the Western Ghats are an internationally important area rich in biodiversity, a gap analysis 

was conducted in 2006 (Das et al. 2006).  However, this analysis retrieved or created its species 

distribution estimations only for species that had available secondary data. Thus its focus was primarily 

on mammalian and avifauna species and vegetation cover types. As noted by the authors, the estimations 

used to identify hotspots and gaps in PA network coverage were generated using widely varying 

methodologies and SDMs which may have biased the normalization of input data. In order to standardize 

the analysis, the authors’ species estimations were retrofit to a resolution of 180km² grids cells and thus 
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its results have been subject to scrutiny of scale and precision. In the years since this analysis, continued 

conservation work and scientific studies have found that there are potential weaknesses and limitations in 

both the conservation planning for the Western Ghats region and in the knowledge related to earlier 

conservation efforts and gap analyses. The objectives of this study aim to address these developments and 

produce a primary data-driven, refined set of estimations for species’ distributions relevant to the Western 

Ghats’ conservation goals.   

The objective of the study is to produce new insights and recommendations relating to geographic 

protection for the species of conservation concern in this study endemic to the Western Ghats. This effort 

relies on estimating their distributions and high-occurrence hotspots in context of the current PA network. 

It achieves this goal through accomplishing the following:  

• Create and assess SDMs for 69 frog and 306 plant species endemic to the Western Ghats. 

• Identify areas with high co-occurrence of these species. 

• Spatially assess the overlap of these areas with the existing PA network and identify gaps in 

protection.  

The hypothesis of this study is that the PA network does not adequately cover the distributions of 

vulnerable amphibians and plants in the Western Ghats. This analysis builds on previous studies to assess 

the relationship between the geographic coverage of vulnerable species and the PA network of the 

Western Ghats. Key additions of this gap analysis include the use of nine years of primary data on 

vulnerable indicator species, a spatial resolution of 1km², and a rigorously developed and 

methodologically consistent set of SDMs.  
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Methods 

 

 

 

Study Area 

The Western Ghats is approximately 175,000km² stretching 1,600km north-to-south and 300km east-to-

west along the western escarpment of India’s Deccan Plateau (UNESCO 2012, Figure 1). It contains 

extensive variations in physical geography with elevation ranging from sea level to 2,695 meters above 

sea level and averaging 1,200 meters. Its average annual temperatures are between 18 and 25 degrees 

Celsius, and the average annual precipitation ranges from 80cm in the northeastern reaches to over 800cm 

in the southwestern peninsular cloud forests (Gunawardene et al. 2007, Ramachandra et al. 2012). The 

region encompasses a diverse array of natural features including seven watersheds, one of the world’s 

richest arrays of biodiversity estimated to contain hundreds to thousands of undocumented species 

(Bebber et al. 2007, Subramanian et al. 2015), and an array of biomes spanning montane grasslands, 

temperate forests and drylands, and evergreen subtropical and cloud forest ecosystems (CEPF Western 

Ghats Hotspot Assessment 2016, Indian Wildlife Institute Annual Report 2016).  Its PA network contains 

thirty-nine PAs representing all six levels of IUCN management types and covering approximately 11% 

of the Western Ghats range (Figure 1).  The study area used in SDM predictions is generated using the 

perimeter of the PA network with a half-degree buffer in order to fully encompass the Western Ghats 

extent and potential species ranges (Figure 1).  

Field Data 

Field data for this study consists of over 8,100 presence point locations of 69 frog and 306 plant species 

collected over nine years (2008 – 2017) and fourteen field seasons. The field work was done at the early 

onset of the monsoon (early June) or the waning weeks of the monsoon (late September) in order to 

maximize likelihood of successful field observations. Surveys were conducted by the biogeographical and 

ecology laboratory of the Centre for Ecological Research of Bangalore, India. Sampling surveys span all 

fourteen major massifs of the Western Ghats and represent its major biomes and the range of their 
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associated environmental conditions. Data collection methodology utilized randomized convenience plot 

surveys of 20 to 100 square meters and totaled over 250 sites for frogs and 350 for plants (Figure 2). 

Presence-only point data were collected ranging from 6 to 207 data points per species (Appendix 1, 2). 

Upon collection, species were taxonomically identified to the sub-species level and biogeographically 

assessed for genetic relations (Vijaykumar et al. 2014; Page et al. 2016). In two cases of few presence 

points for allopatric sub-species, data is combined and modeled as a single SDM then manually separated 

into individual sub-species SDMs via GIS and expert understanding (Appendix 3). These allopatric 

species are known to have only recently sub-speciated and would otherwise have been modeled as a 

single species (Vijayakumar et al. 2014). This study would not otherwise include those allopatric species 

with such low presence point data.  

All frog and plant species are sub-grouped by range strategies (Appendix 1, 2); three sub-groups within 

frogs (narrow or widely ranging and montane generalists) and two sub-groups within plants (widely or 

narrowly dispersing). Sub-grouping species enables a more tailored selection of predictors that reflect the 

unique ecologic profiles of the studied species. Criteria for how species are sub-grouped consists of life-

cycle strategies, meta-data collected during field sampling such as elevation and latitudinal bands, and 

known biogeographical speciation patterns (Vijaykumar et al. 2016, Page and Shanker 2018).  

Environmental and Spatial Predictors 

Twenty-nine geospatial layers are either retrieved as prefabricated predictors or are created from remotely 

sensed imager for use as covariates in SDMs (Appendix 4). The Indian National Geographic data base, 

known as Bhuvan, provides preprocessed and mosaicked Landsat 8 imagery, a percent canopy cover 

layer, and forest fraction cover layer (ISRO 2018). The United Nations’ Food and Agricultural 

Organization provides a soil type layer and a nearest-surface-water layer. The raw Landsat 8 imagery 

represents time periods from 2015 through 2017. Each Landsat 8 scene is from the late inter-monsoonal 

months in order to avoid excessive cloud cover. This time period is also typically associated with the 

driest time of year which, after processing, produces conservative estimations of environmental indexes 
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for the study area. Thus, imagery of this time period is purposefully selected since, according to 

background literature, reaching the threshold amount of moisture and vegetative growth is the greatest 

limiting factor for many of the modeled species (Fu et al. 2008, Baldwin et al. 2009). The raw imagery 

and forest fraction layer is used to run an unsupervised classification of the land cover in the study area. 

This process emulates Bhuvan’s methodology and was field validated by the Indian Institute Geospatial 

Lab (Rao et al. 2006). Defined land cover classes include three variants of forest cover (dry, wet, mixed), 

grassy fields, urban, rocky/barren, water surface, built-up and mixed, agricultural, and scrubland. Raw 

imagery is also used to derive a Normalized Difference Vegetation Index (NDVI) and Soil Adjusted 

Vegetation Index (SAVI) (Heute 1988). ASTER satellite imagery is used to create a digital elevation 

model (DEM) and subsequently derived slope and aspect predictor layers (Fischer et al. 2008). All 

nineteen BioClimatic II variables retrieved from the WorldClim database are also used as potential 

predictors. All predictor variable layers are clipped to the study area extent and standardized to a 1km² 

grid-cell resolution.  

Species Distribution Models 

Sub-sets of each of the sub-grouped clades are semi-randomly selected to represent a gradient of species 

with high and low numbers of presence points. These sub-sets, containing five to twelve species, are first 

modeled in Software for Assisted Habitat Modeling (SAHM). All species modeled in SAHM are subject 

to a covariate correlation assessment for all predictors and generates distribution estimations and a range 

of statistical outputs for five SDM algorithms. Results of this SAHM query are tabulated to track which 

predictors are most commonly selected within species subgroups and which SDM algorithms produce the 

highest model performance metrics (Table 2, 3). The resultant sets of parsimonious predictors are used to 

populate Maximum Entropy model (Maxent) SDMs for all species in this study (Table 4).  

Maxent is only one of the SDM models run in the SAHM package. Others included and tested are 

Boosted Regression Trees (BRT), Random Forest (RF), Multivariate Adaptive Regression Splines 

(MARS), and Generalized Linear Model (GLM). BRT and RF are tree-based machine-learning 
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algorithms that allow for multi-dimensional field data to be used. They use statistical modeling fitting for 

each data point in order to identify dominant, dynamic patterns across large data sets and large study areas 

(Johnson et al. 2012). The ‘boosted’ aspect of a BRT differentiates it from a RF in that it uses an iterative 

approach in its model fitting (Elith et al. 2008). The GLM model is among the first to permit presence and 

absence data in its estimations and allows for modeling of nonlinear geographic data in SDMs, but has 

been critiqued as over-fitting the data because of its tendency to throw-out predictors (McCullagh and 

Nelder 1989, Buckland and Elston 1993). MARS like GLM permits presence-absence, but goes a step 

further by splining regression between response variables and predictor data (Friedman 1991, Leathwick 

et al. 2006). MARS’s noted strong suit is its ability to handle presence points collected in heterogeneous 

spatiality and resolution (Moisen and Frescino 2002).  Maxent utilizes a maximum entropy Bayesian 

algorithm and input data-use features to predict niche-likelihood of a species rather than explicit habitat 

suitability (Phillips et al. 2004, Merow et al. 2007; Halvorsen et al. 2015). Maxent is designed to compute 

potential species distributions based on the premise of imperfect data and predictors and is well known for 

its predictive accuracy given limited presence points and heterogeneous study areas (Warren and Seifert 

2011). Common criticisms of Maxent include that the model assumes all predictors carry equal weight 

and that its algorithm constrains data via limiting variance in test-trains (Fitzpatrick et al. 2013, Merow et 

al. 2013). Maxent is reported to be a powerful tool in its simplicity and though sometimes criticized for 

being an overly simple algorithm and blindly relied on by researchers, it is often found to be a useful tool 

for modeling small or disparate data sets to produce scientifically sound species distribution predictions 

(Warren and Seifert 2011, Elith et al. 2011, Philips et al. 2017).  

All five SDM models are run on the predefined sub-sets of species to produce a range of statistical 

outputs with which model performances are compared. In cases of low presence points for species, some 

models, particularly BRT and RF, are not able to compute distribution estimations because their 

algorithms require more input data. SAHM produces evaluations of sensitivity and specificity of predictor 

variables, percentage of modeled area correctly classified (PCC), a true-skill statistic measuring the ratio 
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between Cohen’s kappa and PCC, as well as an receiver operation curve (ROC) plot area-under curve 

(AUC) value. AUC is a commonly relied upon metric that estimates the ability of a model to correctly 

predict its input data given a piece-wise test-split of input data (Wisz et al. 2008, West et al. 2016). These 

evaluation metrics are compared to elicit comparative strength of performances across SDM model 

algorithm per species. Models’ performance is recorded to show the frequency of a model being high-

performing or not within all sub-groups (Appendix 5, 6, 7). Throughout the initial SAHM query, Maxent 

is most frequently shown to be highest performing model and thus is chosen as the primary SDM model 

for this study. Using a single SDM, Maxent for instance, helps to maintain consistency of projections and 

data usage throughout distribution estimations. Within this initial inquiry into model performances, 

SAHM also allows for intra-computational selection of predictor variables by means of a covariate 

correlation matrix. The number of predictors selected is limited to a ratio of 1:3 and 1:12 predictors to 

number of presence points per species in order to prevent over fitting data to predictors (Austin 2007, 

Table 4). Predictors are prioritized in the following way: (1) which predictors explain the most deviance 

in model output, (2) which predictors correlate to other variables, and (3) which predictors are 

ecologically relevant to the species. No predictors are selected with 70% or higher correlation to another 

variable, regardless of percent deviance explained. Individual species results from SAHM’s predictor and 

model selection inquiry are tabularized and used to populate batch-run Maxent models of the sub-grouped 

species.  

Default Maxent parameterizations are used for all species except in cases of species with fewer than 20 

presence points in which case data is jackknifed in order to avoid spatial autocorrelations by resampling 

data without removing data during the test-split training. In these cases the maximum number of iterations 

is increased from 500 to 1000 in order to permit type II errors (false-negative of species occurrence) to 

emerge rather than preserve the model’s computational resources (Halvorsen et al. 2016). Pseudo-

absences are created using randomized spatial sampling and allowed to permutate between 500 and 3000 

(an average of approximately 1000 are used) depending on the number of species presence points and 
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their spatial distribution. The threshold rule to produce a binary map of species presence is set to a 

‘sensitivity equal to specificity’ which selects a threshold of likelihood-presence based on when type I 

and type II errors are balanced. This rule is commonly used within SDM literature and found to produce 

defensible estimations of distributions for both wide ranging and narrow ranging species (Freeman and 

Moisen 2008, Escalante et al. 2013). The SDMs produce both a gradient likelihood map and binary map 

for each species. 

Ensembling and Spatial Analysis  

Species’ binary maps are ensembled with a cell statistic tool by sub-groupings, then by clades, then 

collectively across all species in the study. This yields five additive maps for each of the following sub 

groups: narrowly-ranging frogs, widely-ranging frogs, montane generalist frogs, narrowly-dispersing 

plants, and widely-dispersing plants (Figures 3, 4). Three maps of the following ensembled species 

groups are also created: all modeled frogs, all modeled plants, and all modeled species of frogs and plants 

combined (Figures 5, 6). Each cell of 1km by 1km area within each of these eight maps is thus 

represented by a single whole integer indicating the number of species predicted to occur in the grid cell.  

These eight ensemble maps represent heatmaps of species distributions and are used to conduct an 

overlay analysis (Flather et al. 1997). Each map is assessed for high species co-occurrence by querying 

the study area for cells containing and surrounded by cells containing at least one-third of all possible 

species within each ensemble map. This process is conducted twice. First, it includes the entire study area 

and distribution data within the PA network and then a second time after removing distribution data that 

falls within the boundaries of the PA network (Figures 7, 8). This process reveals the high co-occurrence 

areas both within and outside of the PA network as well as individually either within or outside of 

protected areas (Figure 8). High co-occurrence points within the PA network are noted as being potential 

gaps in coverage. These potential gaps are then evaluated and described for ground assessment by their 

predictor layer metrics and classified by the land use in order to draw inference about their ecologic 

setting. Statistically-optimized hotspot analyses are then conducted on the all-frog and all-plant species 
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ensemble distribution maps (PA network data included) in order to identify statistically significant areas 

of high or low occurrences of species. Results are overlain with heatmap-identified high co-occurrence 

areas in order to compare results and assess the presence of corroborative hotspot existence (Figure 9).     
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Results 

 

 

 

For the majority of species, Maxent is the most consistently high-performing SDM model in SAHM 

(Table 2, 3). Though some more algorithmically complex models performed better in species with a 

higher number of presence points, Maxent is comparable to or out-performed the other models when 

analyzing species with fewer presence points. Specific cases of other models out-performing Maxent 

included results for some of the plant and frog species such as Raorchestes akroparallagii and 

Cinnamomum keralaense, which had both an unusually high number of presence points and were widely 

sampled throughout the study area. However, their presence points also tended to be clustered which 

gives advantage to the independent machine-learning algorithms in BRT and RF. In nearly all cases 

MARS and GLMs performed comparably to or less robustly than Maxent (Appendix 6). Overall, the 

initial SAHM inquiries appear highly effective in selecting predictors per species’ subgroups and indicate 

the effectiveness of Maxent to conduct large-scale estimations on multivariate species and species data.  

Results of the frog species models consistently used the following BioClim variables in the final selection 

for sub-groups: Isothermality (Bio 3), Temperature Seasonality (Bio 4), Maximum Temperature of 

Warmest Month (Bio 5), Annual Precipitation (Bio 12), Precipitation of Driest Month (Bio 14), and 

Precipitation Seasonality (Bio 15). NDVI, elevation, land cover and canopy cover are also commonly 

used across all frog species (Table 2). However, not all variables were used in all sub-groups. For 

instance, low-ranging frog species sub-group models use the Bioclim variables Precipitation of Coldest 

Quarter (Bio 19) and Mean Temperature of Coldest Quarter (Bio 11) rather than Temperature Seasonality 

(Bio 4) and Precipitation of Driest Month (Bio 14). Likewise high-ranging and montane generalist frog 

species used the SAVI and canopy cover variables where low-ranging species did not necessarily. AUCs 

across all frog models averaged 0.823 and tended to show higher AUCs for species with higher numbers 

of presence points (Appendix 6). The high occurrence areas identified fell largely within the previously 

established PAs (Figure 7). However, three areas of high co-occurrence of frogs are located outside of the 
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network near the Munnar and Peermade hillstations and the Ooty Valley (Figure 8). The Ooty Valley is 

the largest geographically and highest (35 species) co-occurrence area of frogs. No high occurrence areas 

of frog are shown north of the state of Vasco di Gama (Latitude 15.39).  

Within the plants’ model results, the BioClim variables of Temperature Seasonality (Bio 4), Max 

Temperature of Warmest Month (Bio 5), Annual Precipitation (Bio 12), Precipitation Seasonality (Bio 

15), and Precipitation of Driest Quarter (Bio 17) are consistently selected for model inclusion. Other 

variables including the annual minimum NDVI, elevation, canopy cover, soil type, and land cover layers 

are also included. Compared to widely-dispersing plants, deviance in distribution estimations of the 

narrowly-dispersing plants are more explained by the canopy cover variable and less so by the slope and 

aspect variables (Table 3). SAVI and the proximity to water variable are not generally included in 

SAHM’s model queries nor do they show significant contributions to explained deviance in model results. 

The ensembled heatmaps of the plant species show more areas of high occurrence outside of PAs than the 

ensemble heatmaps of the frog species do. However, both have high co-occurrence points identified 

within and outside of the PA network. Unlike model results for the sub-grouped frog  species, the widely 

and narrowly-dispersing plants show less distinctive ensembled ranges, likely due to the higher number of 

species included in the narrow versus the wide dispersing species that are modeled (212 narrow vs. 94 

wide-ranging species). The average plant model AUCs are 0.791, slightly lower than that of frogs 

(Appendix 7). The valleys just south of the Periyar National Park and the Kollam district, Kottamala hill 

station region, and the Bandipur forest areas are identified as areas of high co-occurrence of plant species 

outside of the PA network. The Munnar hill station region and Peermade escarpment are identified as 

high species co-occurrence across both frog and plant clades (Figure 9).  

Hotspot analysis shows that all heatmap-identified high co-occurrence areas, for both frogs and plant 

species, occur entirely within statistically-identified hotspots (Figure 9). The core hotspot identified for 

plants covers all high co-occurrence locations. However, unlike frog results, it is predicted to extend 

further northward along the western escarpment of the Western Ghats beyond where high species co-
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occurrence points are identified. The identified frog hotspots appear to be geographically narrower than 

those of plants and are more circumscribed to the identified high species co-occurrences locations. In the 

ensemble maps of both clades, hotspots and high co-occurrence areas heavily favor the southern portion 

of the Western Ghats study area. The hotspot for plants covers nearly all established PAs within the 

network whereas the hotspot for frogs does not extend to PAs north and northeast of the Ooty Valley 

(Figure 9).    
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Discussion 

 

 

 

The value and importance of a gap analysis is to help ensure PA networks are effective in covering areas 

of value to the conservation of rare and endangered species. Results of this study provide that value to the 

Western Ghats stakeholders and support its stated hypothesis that there are gaps in PA coverage of the 

modeled species’ distributions. It identifies areas of high co-occurrence of vulnerable and understudied 

frog and plant species outside of the PA network and finds both corroborating evidence for and 

conclusions different from previous gap analysis for the region. It also reveals large-scale geographic and 

ecologic patterns for the location of these high co-occurrence areas and directs attention to possible 

drivers of low and high species presence. This information is essential to ensuring future PA creation and 

other conservation interventions will target areas relevant to their biodiversity conservation directives. 

Results from achieving the goals and objectives of this study appear to be broadly consistent with 

previous literature while also offering novel insights into conservation status of the modeled clades, the 

dynamics of gap analyses, and a current assessment of the state of the Western Ghats’ PA network.  

Results from the initial SAHM assessments of individual species provide insight into overall habitat 

preferences for the modeled species. Annual precipitation, maximum temperature, and minimum 

vegetation index are shown to be the most explanative in predicting distribution of frog and plant species. 

This result aligns with literature on tropical species SDMs that show such species are better predicted by 

environmental rather than biophysical variables (Bisrat et al. 2002). Elevation and percentage canopy 

cover are also highly explanatory for estimations of the clades modeled in this study, which intuitively 

makes sense from the perspective that changes in these variables correlate to the ecological shifts that 

influence community make-up and thus species presence (Woodford and Williams 1987). These predictor 

results unite the hotspots results, leading to the conclusion that the species modeled in this study favor the 

tropical evergreen forests of the south rather than the more deciduous and xeric regions in the north. This 

perhaps suggests that endemism in the region is correspondent to or somehow supported by the narrow 
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range of tropical environmental extremes in the southern peninsula. Across most species, the land cover 

predictor layer is included in the final distribution models, yet it has a lower importance in explaining 

deviance in the models.  This suggests either that land cover is a somewhat plastic indicator of species’ 

habitat suitability (i.e. multiple land covers can be suitable if other environmental conditions are met) or 

that the land cover layer variable is only a superficial or coarse indicator of distribution. The former 

possibility corroborates the ecological precept that habitat continuity and human-altered landscapes 

influence distribution of most species (Elith and Leathwick 2009, Betts et al. 2014), but is also subject to 

species adaptation and niche spread to other cover types. With respect to the second possibility, that land 

cover is unimportant, some literature suggests that this notion is more likely a modeling caveat such as 

having an insufficiently sophisticated land use/land cover layer or having sampling bias in field data 

(Dormann et al. 2007, Randin et al. 2009, Fourcade et al. 2014).  

Modeled distribution estimations appear to perform well statistically and demonstrate accuracy in the 

context of literature and expert appraisals. Across all frog and plant SDMs, species diversity is 

concentrated in the southern half of the Western Ghats and even more so in the southernmost quarter. 

This is in alignment with previous studies estimating diversity distributions for the study area as reported 

in Sudhakar et al. 2015 and Vattakaven et al. 2016.  The plant models tend to show wider distributions 

generally, a larger hotspot, and more identified co-occurrence areas than the frog models. This possibly 

indicates that the plants naturally occupy wider ranges or could simply be an artifact that there are more 

plant species modeled than frog species. Ecologically, this makes intuitive sense from the perspective of 

plant versus frog habitat needs. For added validation, individual frog and plant SDMs were assessed and 

deemed accurate by independent experts who have field, genetic, and research experience with the 

species’ ecology and IUCN statuses (SP Vijayakumar, KS Shankar, NV Page). With support of their 

appraisal, this study places added confidence in its SDM predictions and its assessments of high co-

occurrence areas and hotspots.  
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Results from the overlay analysis indicate that there are high co-occurrence areas outside of the PA 

network in both frog and plant clades. However, plant species show a slightly larger number and 

geographic range of high co-occurrence points. All high co-occurrence points across all of the studied 

species groupings are found to be within a statistically identified hotspot area in the Western Ghats, 

suggesting consistency in SDM performance and consensus across data and analyses (Vattakaven et al. 

2016). The identified areas of high co-occurrence and hotspots are largely covered by the current PA 

network. This suggests that the past PA network was well designed even though the network was 

established based on data from larger bodied fauna. However, the regions of high co-occurrence identified 

outside of the PA network in this study should lead to the consideration of the expansion of this network. 

The identified areas represent gaps in protection for both individually vulnerable species and regional 

biodiversity, the protection of which is a conservation goal in the Western Ghats’ PA network (UNESCO 

2012). By identifying these areas as valuable to conservation goals and, in particular, identifying salient 

characteristics related to the ecology of these species, land uses within distributions, and the logistics of 

gazzetting these areas, this study begins to address how such gaps may be protected in the future 

(Rodrigues et al. 2004).  

Two gaps, the Munnar and Peermade regions, are identified as hotspots and high co-occurrence areas for 

both frogs and plants and are known coffee and tea production regions. Three other identified areas of 

high co-occurrence of species are also noted as coffee and tea regions, one unique to frog distributions in 

the Ooty Valley and two unique to plants, one in the southern Kollam district and the northern most 

identified gap in protection, the Brahmagiri Valley (Figure 9). It is a notable and curious finding that such 

a high proportion of gaps in the PA network correlate to tea and coffee growing land uses. This leads to 

new questions about the relationship between the modeled species and managed plantation areas and 

moreover, about proper conservation management to protect these high co-occurrence areas. The pattern 

perhaps suggests there are other factors, such as unofficial management, ecologic symbiosis between 

crops and species, or cultural precepts which enable these species to occur and be conserved in high 
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diversity in these areas. Regardless of speculation, these correlations warrant further research into the 

possible conservation benefits for certain types of biodiversity that may be found in traditionally managed 

coffee and tea plantations. 

Results of this study’s gap analysis show both concurrence and some divergence to the gaps in protection 

identified in the previous Das et al. 2006 gap analysis. For instance, Das et al. 2006 and this study identify 

the Badipur Forests as a gap in the PA network coverage for their respective species. However, the Das et 

al. study further identified three more gaps in close proximity to the Badipur Forests which this study did 

not identify. This suggest that these three areas plus the Badipur Forests together, considered as a larger 

unit,  is highly important to preserving overall biodiversity richness in the region and should be further 

investigated. Moreover, corroborating some of the previous results from the gap analysis done by Das et 

al. (2006), this study identifies four of the same areas outside of formal protection. However, this analysis 

also finds high species diversity in areas not identified by the previous gap analysis (Das et al. 2006, 

Figure 10). The three areas identified in this study that are not found in the Das et al. study include two 

locations that are high co-occurrence areas for both frogs and plants. This suggests that depending upon 

which species or characteristics of clades are included, e.g. endemism or vulnerability, different results 

will be derived from a gap analysis. This study thereby encourages the need for a thoughtful, perhaps 

methodological process for selecting which species are relevant and representative to include in gap 

analyses to adequately address a PA network’s conservation goals. Finally, the Das et al. study also 

identifies gaps in protection which have since been integrated into the current PA network and thus are 

not gaps in protection in this study. Therefore this study optimistically presents an example of how gap 

analysis and their resultant recommendations for protection are useful and impactful to their audience.  

Limitations and Future Study 

Incomplete information relevant to conservation goals and lack of sufficient or precise data for vulnerable 

species both limits the capacity to accurately estimate species distributions and limits the ability of gap 
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analyses to direct and prioritize protection of biodiversity. It is therefore important to acknowledge and 

address the caveats of this study in order to understand how results can be interpreted and suggest future 

improvements. Sampling bias in the collection of data for an SDM is known to be detrimental to accurate 

SDM estimations of distributions (Stockwell and Paterson 2002). Though there is no indication of bias in 

data of this study, more can be done to bolster its input components. Additional modeled species, more 

presence data and inclusion of absence points could serve to increase the accuracy with which species and 

co-occurrence distributions are estimated. Additionally, this study utilized only one SDM, Maxent, in the 

final analysis largely due to its high performance in the SAHM subgrouping queries. Though use of a 

single SDM subjects results to persistent weakness of the algorithm, it also facilitates standardization of 

analysis and data-use between species distribution predictions. This study’s SDMs are thereby subject to 

the same caveats and idiosyncrasies in their results and avoid unwieldy comparisons of variable SDMs’ 

limitations and assumptions. There is however literature and some SAHM results within this study that 

indicate some species’ distributions could be better estimated with other SDM model algorithms. Results 

from sub-groups indicate that there are predictor-specific differences in SDMs between species with 

differing distribution strategies, and thus it is likely that some species are modeled without their ideal set 

of predictors; this caveat is true all SDMs created within this study and beyond. Future studies may 

benefit from testing other and more refined variables or further inquiry into predictor-data matching and 

use of alternative SDMs or SDM ensembling methods to predict distributions. Batch-modeling SDMs 

may also contribute to weaknesses in model performance leading to inclusion of non-ecologically 

supported variables. Such models over-use easily obtained climatic or geophysical variables which would 

consequently yield less refined or even inaccurate SDMs (Elith et al. 2011).  More complex or difficult to 

obtain ecological variables may out-perform or improve model performance and therefore should be used.  

One of the ways to address these limitations is through field validation of the SDM predictions. Field 

validation would serve to resolve questions related to type I and II errors in the model predictions, 

increase the data available for computing SDMs, and compare on-the-ground realities of a species’ 

environment with the set of predictor variables used to explain its distribution. Unfortunately, it was 
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beyond the scope of this study to carry out field validation. Future research should integrate field 

assessments to determine the degree to which endemic plant and frog species are indicators of 

environmental disturbance and overall endemic richness (Werner et al. 2007). This process also offers 

opportunity to further investigate the ecology of the species leading to better selected or new spatial and 

predictor variable. Furthermore, field assessments could account for predictions wherein habitat 

suitability is shown to be high but does not necessarily represent the true number of species occurring. 

For example, tea and coffee plantations show high habitat suitability but perhaps species are actually not 

occurring here in the numbers suggested by SDMs. Deriving and including other variables that address 

spatial management of land cover and land use (e.g. agriculture, permaculture, traditional harvest, etc.), 

land ownership and land access right (e.g. land tenure), economic valuations of ecosystem services, etc. 

could also be used to populate and conduct a prioritization analysis. This would results in more holistic 

recommendations for which areas should first be obtained for inclusion in the PA network. A 

prioritization analysis such as this could build on this study’s findings by assessing the pragmatic 

conservation barriers to increasing protection for the identified gaps in the PA network (Margules and 

Pressey 2000). Integrating projections or time-series of variables to elicit predictive model results would 

also be a prudent follow-up analysis in order to assess the sustainability and adaptability of these PAs in 

the face of further land use change and climate change.  
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Conclusions and Recommendations 

 

 

 

This study’s results improve targeting and capacity of applied conservation efforts, increase scientific 

understanding of the Western Ghats’ ecology, and create a platform to study novel permutations in an 

established methodology. Multiple gaps in protection for vulnerable species in the Western Ghats’ PA 

network are identified and insights drawn about their location and environmental characteristics. These 

gaps as well as the individual and combined species’ distributions which enabled their identification, will 

guide managers and policy makers in creation and design of future PAs. This will help to accommodate 

newly identified ranges of species and prioritize areas in order to efficiently achieve stated conservation 

goals regarding biodiversity. Furthermore, the individual species SDMs produced in this study and 

insights gleaned from their production will support new and reassessed status’ for dozen of species in the 

IUCN species list. These new assessments and results from this study will help to target future research 

and surveys of the region’s ecology and conservation efforts. Continued comparison of this study to 

previous and future gap analyses will generate new insights about assessing and prioritizing areas through 

spatial analysis both within the Western Ghats and in the larger body of scientific knowledge. Results of 

this study provide products to an array of stakeholders that can be used to further conservation goals 

locally and worldwide. This study provides a wealth of new information and a rich baseline for future 

research and immediate conservation action.      
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Tables and Figures 

 

 

 

Table 1. Description of Western Ghats Hotspot qualifying characteristics, Indian Wildlife Institute 2016 Annual Report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic of Western Ghats Area (km²) 

Hotspot Original Extent (km²) 189,611 

Hotspot Vegetation Remaining 

(km²) 
43,611 

Endemic Plant Species 3,049 

Endemic Threatened Birds 10 

Endemic Threatened Mammals 14 

Endemic Threatened Amphibians 87 

Extinct Species† 20 

Human Population Density 

(people/km²) 
261 

Area Protected (km²) 26,130 

Area Protected (km²) in Categories 

I-IV* 
21,259 
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Table 2. Sub-set of SAHM modeled frog species with results depicting selected covariates and highest performing model. 

Frog Species N Covariates Selected 
Best Performing 

Models 

Pseudophilautus 

amboli 
38 

Mean of diurnal 

temp range 

Max temp – 

warmest month 

Landuse/land 

cover 

Precip. 

Seasonality 

NDVI 

(minnimum 

annual) 

Canopy cover GLM, RF 

Pseudophilautus 

kani 
42 

Annual temp 

range 

Precip. 

Seasonality 

Precip. warmest 

quarter 
Elevation 

NDVI 

(minnimum 

annual) 

  RF, MAXENT 

Pseudophilautus 

wynaadensis 
105 Temp seasonality  

Max temp – 

warmest month 

Precip. 

Seasonality 

Precip. warmest 

quarter 

NDVI 

(minnimum 

annual) 

Elevation MAXENT, RF 

Raorchestes 

akroparallagii 
14 Temp seasonality  

Max temp – 

warmest month 
Annual Precip. 

Precip. 

Seasonality 

NDVI 

(minnimum 

annual) 

  RF, BRT 

Raorchestes anili 85 Temp seasonality  
Max temp – 

warmest month 
Annual Precip. 

Precip. 

Seasonality 

NDVI 

(minnimum 

annual) 

Canopy cover RF, BRT 

Raorchestes 

beddomii 
78 Temp seasonality  

Max temp – 

warmest month 
Annual Precip. 

Precip. coldest 

driest quarter 

NDVI 

(minnimum 

annual) 

Elevation RF, MAXENT 

Raorchestes 

bobingeri 
40 

Max temp – 

warmest month 
Annual Precip. 

NDVI 

(minnimum 

annual) 

Canopy cover     
MAXENT, 

(MARS) 

Raorchestes griet 92 Isothermality 
Max temp – 

warmest month 

Precip. 

Seasonality 

Precip. coldest 

driest quarter 

Landuse/land 

cover 

NDVI 

(minnimum 

annual) 

MAXENT, GLM* 

Raorchestes 

bobingeri 
29 

Max temp – 

warmest month 

Precip. coldest 

driest quarter 

Precip. warmest 

quarter 

Precip. coldest 

quarter 

NDVI 

(minnimum 

annual)  

  MAXENT, (GLM) 

Raorchestes 

jayarami 
6 Isothermality Temp seasonality  

Mean temp. 

coldest month 

Precip. 

Seasonality 

Precip. coldest 

driest quarter 

Precip. coldest 

quarter 
MAXENT 

Raorchestes 

travancoricus 
44 

Max temp – 

warmest month 

Min temp. 

coldest month 

Precip. wettest 

month 

Precip. coldest 

driest quarter 

Landuse/land 

cover  
  MAXENT (GLM) 

Raorchestes 

dubois 
19 

Annual temp 

range 

Precip. wettest 

month 

Precip. 

Seasonality 

NDVI 

(minnimum 

annual)  

Elevation   MAXENT, MARS 

Raorchestes 

resplendens* 
6 

Max temp – 

warmest month 

Precip. 

Seasonality 

Precip. warmest 

quarter 

Precip. coldest 

quarter 
Elevation   MAXENT 

Raorchestes 

primarumfii 
13 

Precip. driest 

month 

NDVI 

(minnimum 

annual) 

Elevation       MAXENT 

Raorchestes 

sushili 
31 

Precip. 

Seasonality 

Precip. warmest 

quarter 

NDVI 

(minnimum 

annual) 

Elevation     MAXENT  
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Table 3. Sub-set of SAHM modeled plant species with results depicting selected covariates and highest performing model. 

Plant Species N Predictors Selected 

Best 

Performing 

Models 

Aglaia barberi 34 
Max temp – warmest 

month 
Annual Precip. Landuse/land cover Canopy cover 

NDVI (minnimum 

annual) 
    RF, MARS 

Drypetes 

confertiflora 
20 

NDVI (minnimum 

annual)  
Canopy cover Elevation         

MAXENT, 

MARS 

Cinnamomum 

malabatrum 
30 Temp seasonality  Annual Precip. 

NDVI (minnimum 

annual) 
Elevation       MAXENT 

Diospyros ghatensis 28 
Mean of diurnal temp 

range 

Max temp – warmest 

month 

NDVI (minnimum 

annual) 
Canopy cover       

MAXENT, 

GLM 

Diospyros oocarpa 19 Isothermality Annual temp range Annual Precip. 
NDVI (minnimum 

annual) 
      MAXENT 

Eugenia 

macrosepala 
23 Temp seasonality  

NDVI (minnimum 

annual) 
Canopy cover         

GLM, 

MAXENT 

Ficus nervosa 53 
Max temp – warmest 

month 
Annual Precip. Precip. Seasonality Landuse/land cover 

NDVI (minnimum 

annual) 
    

BRT, RF, 

MARS 

Ixora elongata 24 Temp seasonality  Annual Precip. Precip. wettest month Elevation       MAXENT 

Microtropis 

wallichiana 
27 Annual Precip. Landuse/land cover 

NDVI (minnimum 

annual) 
Elevation       GLM, MARS 

Psychotria nigra 87 
Max temp – warmest 

month 
Annual temp range Precip. Seasonality Landuse/land cover Canopy cover 

NDVI 

(minnimum 

annual) 

Elevation BRT, RF 

Atuna indica 9 Temp seasonality  
NDVI (minnimum 

annual) 
          MAXENT 

Epiprinus 

mallotiformis 
17 

Max temp – warmest 

month 
Canopy cover Elevation         

MAXENT, 

GLM 

Gordonia obtusa 14 Landuse/land cover 
NDVI (minnimum 

annual) 
E         MAXENT 

Humboldtia 

brunonis 
21 Temp seasonality  Precip. warmest quarter           

MAXENT, 

GLM 

Olea dioica 46 Isothermality Annual Precip. 
Precip. coldest driest 

quarter 

NDVI (minnimum 

annual) 
Canopy cover Elevation   MARS, BRT 

Memecylon 

pseudogracile 
13 

Max temp – warmest 

month 
Elevation           MAXENT 

Syzygium munronii 27 
Max temp – warmest 

month 
Annual Precip. 

NDVI (minnimum 

annual) 
        

MAXENT, 

GLM 

Thottea shivarajanii 11 Precip. Seasonality Precip. coldest quarter           MAXENT 

Vateria indica 47 Annual temp range Precip. Seasonality 
Precip. warmest 

quarter 

NDVI (minnimum 

annual) 
Canopy cover 

Landuse/land 

cover 
  RF, BRT 

Walsura trifolia 18 
Mean of diurnal temp 

range 

NDVI (minnimum 

annual) 
Elevation         MAXENT 
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Table 4. List of SAHM determined predictor layers used in final SDM Maxent model creation by sub-groups. 

Predictor Layers 
Frogs (low-

ranging) 

Frogs (high-

ranging) 

Frogs (montane 

generalists) 

Plants (low-

dispersing) 

Plants (high-

dispersing) 

BioClim 3: Isothermality  X   X     

BioClim 4: Temperature Seasonality   X X X X 

BioClim 5: Max Temp of Warmest Month X X X X X 

BioClim 12: Annual Precipitation X   X X X 

BioClim 14: Precipitation of Driest Month   X X     

BioClim 15: Precipitation Seasonality X   X X X 

BioClim 17: Precipitation of Driest 

Quarter 
    X X X 

BioClim 18: Precipitation of Warmest 

Quarter 
X X       

BioClim 19: Precipitation of Coldest 

Quarter 
X         

Elevation X X X X X 

NDVI (vegetation index; annual low) X X X X X 

Soil Type       X X 

Slope       X   

Aspect           

Soil-adjusted veg index (SAVI; annual 

low) 
      X   

Percent Canopy Cover  X X   X X 

Land use / Land cover  X   X X X 

Total Predictors Used 10 7 10 12 10 
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Figure 1. Map of India depicting the modeled study area for all SDMs and the Western Ghats protected area network. 
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Figure 2. Left panel: map depicting where field presence data was recorded for plant species within the modeled study areas. Right panel: map 

depicting where field presence data was recorded for frog species within the modeled study areas. Note that all sampling occurred within the 

modeled area and spanned the study area.  
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Figure 3. Ensembled maps of frog species by sub-groupings of the whole study area. Combined distributions of all narrow-ranging species (panel 

A), montane generalist frog species (panel B), wide-ranging frog species (panel C). Note the larger area of high-occurrence in panel C and density 

of species in the southern portion of the study area. 
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Figure 4. (panel A) Combined distributions for all narrowly-dispersing plant species. (panel B) Combined distributions for all widely-dispersing 

plant species. Note the similar shape of high-occurrence along the Ghats’s spine, yet the widely-dispersing plants is somewhat narrower than the 

narrow-dispersing plants, likely an artifact of the higher number of modeled species.   
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Figure 5. Left panel: Ensembled map of all modeled frog species with a high co-occurrence of thirty-five species of sixty-nine possible. Right 

panel: Ensembled map of all modeled plant species with a high co-occurrence of two-hundred twenty-four species of three hundred-six possible. 
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Figure 6. Ensembled map of all modeled frog and plant species’ distributions with a high of two-hundred twenty-five out of three-hundred 

seventy-five. 
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Figure 7. Ensembled maps depicting species co-occurrences within and outside of the protected area network. Green to red indicate low to high 

species co-occurrence within the network. Light to dark blue represents low to high species co-occurrence outside of the network.  
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Figure 8. Heatmap with frog and plant species ensembled and the protected area network overlain. Green and blue circles indicate high species co-

occurrence of plants and frogs respectively, identified outside of the protected area network. 
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Figure 9. (Panel A) Statistical hotspot analysis of all plants with heatmap identified high species co-occurrence locations. (Panel B) Hotspot 

analysis of all modeled frogs with locations of heatmap identified high species co-occurrence areas. Note the hotspot extent’s coverage of the 

protected area network as well as the heatmap identified high species co-occurrence areas. 
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Figure 10. Map of priority conservation areas identified by a previous gap analysis (Das et al. 2006). Different color stars overlay all previous 

study and this study’s identified high species co-occurrence areas. Note the newly identified and matching areas indicating high likelihood of 

conservation value.  
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Appendix 

 

 

 

Appendix 1. Table of sub-grouped frog species with number of presence points. 

 

  

Narrow Ranging Species Presence Points (N) Wide Ranging Species Presence Points (N) Montane-generalist Species Presence Points (N)

Pseudophilautus amboli 38 Raorchestes anili 85 Raorchestes bobingeri 6

Pseudophilautus kani 42 Raorchestes archeos 7 Raorchestes aureus 12

Pseudophilautus wynaadensis 193 Raorchestes archeos(sis) 12 Raorchestes chotta 6

Raorchestes agasthyaensis 24 Raorchestes autochrynchos 8 Raorchestes chromoasynchysi 15

Raorchestes akroparallagii 6 Raorchestes beddomii 85 Raorchestes chromokudre 15

Raorchestes blandus 21 Raorchestes bell thigh 7 Raorchestes chromomuthi 3

Raorchestes charius 19 Raorchestes blandus(sis) 4 Raorchestes chromomuthi (sis) 18

Raorchestes coonoor 18 Raorchestes bombayensis 12 Raorchestes dubois 119

Raorchestes coonoor (sis) 70 Raorchestes chalazodes 19 Raorchestes kadalarensis 29

Raorchestes emeralidi 7 Raorchestes chalazodes (sis) 8 Raorchestes kaikatti 6

Raorchestes flaviocularis 10 Raorchestes chlorosomma 12 Raorchestes kaikatti (sis) 7

Raorchestes graminirupes 34 Raorchestes crustai 15 Raorchestes malampandaram 6

Raorchestes hassanensis 14 Raorchestes echinatus 6 Raorchestes manohari 13

Raorchestes luteolus 42 Raorchestes ghatei 92 Raorchestes nerostagona 58

Raorchestes manohari 13 Raorchestes glandulosus 37 Raorchestes primar 7

Raorchestes marki 65 Raorchestes greit 14 Raorchestes primar (sis) 17

Raorchestes munnarensis 43 Raorchestes griet (sis) 6 Raorchestes primarumfii 24

Raorchestes ochlandrae 21 Raorchestes jayarami 68 Raorchestes sushili 19

Raorchestes ponmudi 77 Raorchestes johnceei 18

Raorchestes pothigai 7 Raorchestes travancoricus 44

Raorchestes primar 13

Raorchestes primarumfii 13

Raorchestes ravii 16

Raorchestes resplendes 72

Raorchestes signatus 8

Raorchestes theuerkaufi 47

Raorchestes tinniens 14

Raorchestes tuberohumerus 72

Raorchestes uthamani 8

Endemic Frog Species Supgroups
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Appendix 2. Table of sub-grouped plant species with number of presence points. 

Endemic Vegetation Species Subgroups 

Narrow-dispersing Sepceis Presence Points (N) Widely-dispersing Species Presence Points (N) 

Actinodaphne angustifolia 24 Aglaia austroindica 7 

Actinodaphne bourdillonii 25 Aglaia barberi 34 

Actinodaphne campanulata 8 Aglaia bourdillonii 9 

Actinodaphne hookerii 7 Cinnamomum keralaense 6 

Actinodaphne lawsonii 8 Cinnamomum macrocarpum 6 

Actinodaphne malabarica 26 Cinnamomum malabatrum 30 

Actinodaphne salicina 9 Cinnamomum sulphuratum 7 

Agasthamalaia pauciflora 18 Diospyros angustifolia 12 

Glycosmis arborea 6 Diospyros assimilis 21 

Aglaia lawii 15 Diospyros barberi 6 

Aglaia malabarica 36 Diospyros bourdillonii 21 

Aglaia perviridis 9 Diospyros candolleana 70 

Aglaia simplicifolia 15 Diospyros foliolosa 8 

Aidia densiflora 6 Diospyros ghatensis 28 

Anacolosa densiflora 7 Diospyros hirsuta 6 

Apollonias arnottii 6 Diospyros humilis 11 

Aporusa bourdillonii 21 Diospyros neilgherrensis 6 

Ardisia missionis 10 Diospyros nilagirica 8 

Ardisia pauciflora 7 Diospyros oocarpa 19 

Ardisia rhomboidea 14 Diospyros paniculata 51 

Ardisia stonei 61 Diospyros pruriens 6 

Arenga wightii 33 Diospyros pyrocarpoides 6 

Artocarpus hirsutus 9 Diospyros saldanhae 41 

Atalantia wightii 9 Diospyros sylvatica 55 

Atuna indica 57 Dipterocarpus bourdilloni 8 

Atuna travancorica 8 Dipterocarpus indicus 56 

Baccaurea courtallensis 15 Drypetes confertiflora 20 

Beilschmiedia dalzelii 8 Drypetes elata 53 

Beilschmiedia wightii 12 Drypetes gardnerii 6 

Bentickia condapanna 8 Drypetes malabarica 10 

Blachia denudata 10 Drypetes oblongifolia 25 

Blachia umbellata 20 Drypetes wightii 13 

Blepharistemma serratum 7 Dysoxylum beddomei 6 

Calophyllum apetalum 18 Dysoxylum binectariferum 18 

Calophyllum austroindicum 8 Dysoxylum malabaricum 57 

Calophyllum polyanthum 10 Eugenia argentia 6 

Canthium travancoricum 8 Eugenia floccosa 6 

Capparis rheedii 33 Eugenia galibidu 9 

Casearia rubescens 7 Eugenia macrosepala 23 

Casearia wynadensis 9 Eugenia rottleriana 6 

Chionanthus courtallensis 21 Eugenia singampattiana 6 

Chionanthus linocieroides 22 Eugenia thwaitesii 26 

Chionanthus mala-elengi 9 Ficus beddomei 10 

Chrysophyllum roxburghii 9 Ficus nervosa 53 

Cleistanthus malabaricus 41 Flacourtia montana 83 

Cleistanthus travancorensis 13 Garcinia gummi-gutta 49 

Croton malabaricus 28 Garcinia indica 30 

Cryptocarya anamalayana 10 Garcinia pictorius 7 

Cryptocarya beddomei 103 Garcinia rubro-echinata 6 

Cryptocarya neilgherrensis 48 Garcinia talbotii 49 

Cryptocarya wightiana 16 Glochidion ellipticum 66 

Cullenia exarillata 6 Glochidion malabaricum 7 

Cyathocalyx zeylanicus 6 Gluta travancorica 14 

Cynometra bourdillonii 6 Ixora brachiata 94 

Cynometra travancorica 21 Ixora elongata 24 

Daphniphyllum neilgherrense 16 Ixora lanceolaria 6 

Dendrocnide sinuata 23 Microtropis latifolia 7 
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Dillenia bracteata 14 Microtropis stocksii 7 

Dimorphocalyx beddomei 8 Microtropis wallichiana 27 

Dimorphocalyx lawianus 7 Psychotria anamallayana 9 

Ehretia canarensis 6 Psychotria dalzellii 27 

Elaeocarpus munronii 17 Psychotria flavida 9 

Elaeocarpus venustus 9 Psychotria nigra 87 

Epiprinus mallotiformis 9 Psychotria truncata 13 

Erythroxylum moonii 6 Pterospermum reticulatum 20 

Erythroxylum obtusifolium 6 Pterospermum rubiginosum 6 

Euonymus angulatus 25 Saprosma corymbosum 6 

Euonymus dichotomus 9 Saprosma indica 16 

Euonymus indicus 8 Schefflera capitata 9 

Euonymus paniculatus 27 Schefflera racemosa 7 

Exoecaria oppositifolia 20 Schefflera rostrata 9 

Glycosmis macrocarpa 9 Semecarpus auriculata 15 

Glyptopetalum grandiflorum 23 Semecarpus travancorica 6 

Gomphandra coriacea 16 Sercandra chloranthoides 17 

Goniothalamus cardiopetalus 7 Spondias indica 7 

Goniothalamus rhynchantherus 6 Syzygium benthamianum 6 

Goniothalamus wightii 7 Syzygium calophyllifolium 7 

Goniothalamus wynaadensis 14 Syzygium codyensis 6 

Gordonia obtusa 8 Syzygium densiflorum 11 

Gymnacranthera farquhariana 6 Syzygium gardneri 116 

Helicia nilagirica 24 Syzygium hemisphericum 48 

Heritiera papilio 74 Syzygium laetum 94 

Holigarna arnottiana 9 Syzygium lanceolatum 8 

Holigarna beddomei 7 Syzygium liniare 8 

Holigarna ferruginea 82 Syzygium mundagam 25 

Holigarna grahamii 39 Syzygium munronii 27 

Holigarna nigra 17 Syzygium palghatense 9 

Homalium zeylanicum 14 Syzygium phillyraeoides 11 

Hopea canarensis 6 Syzygium rubicundum 9 

Hopea erosa 6 Syzygium stocksii 9 

Hopea glabra 36 Syzygium tamilnadensis 9 

Hopea parviflora 43 Syzygium travancoricum 8 

Hopea ponga 9 Syzygium zeylanicum 9 

Hopea racophloea 9 Total N: 2050 

Hopea utilis 21   
Humboldtia brunonis 6   
Humboldtia decurrens 9   
Humboldtia vahliana 10   
Hunteria zeylanica 22   
Hydnocarpus alpina 9   
Hydnocarpus macrocarpa 80   
Hydnocarpus pentandra 37   
Isonandra lanceolata 7   
Isonandra perrottetiana 19   
Kingiodendron pinnatum 145   
Knema attenuata 12   
Lasianthus jackianus 19   
Lepisanthes deficiens 8   
Leptonychia caudata 6   
Ligustrum perrottetii 15   
Litsea bourdillonii 62   
Litsea floribunda 6   
Litsea ghatica 8   
Litsea keralana 61   
Litsea laevigata 7   
Litsea ligustrina 33   
Litsea mysorensis 43   
Litsea oleoides 19   
Litsea stocksii 6   
Litsea travancorica 7   
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Litsea UM 6   
Litsea venulosa 7   
Litsea wightiana 19   
Lophopetalum wightianum 9   
Macaranga indica 37   
Macaranga peltata 6   
Madhuca bourdillonii 6   
Madhuca neriifolia 12   
Mallotus aureo-punctatus 11   
Mallotus beddomei 9   
Mallotus distans 6   
Mallotus rhamnifolius 11   
Mallotus stenanthus 10   
Mammea suriga 54   
Mangifera indica 49   
Mastixia arborea 13   
Maytenus rothiana 52   
Meiogyne pannosa 44   
Meiogyne ramarowii 26   
Melicope lunu-ankenda 7   
Memecylon gracile 24   
Memecylon heyneanum 10   
Memecylon malabaricum 13   
Memecylon pseudogracile 10   
Memecylon randeriana 34   
Memecylon talbotianum 6   
Memecylon terminale 27   
Memecylon umbellatum 23   
Memecylon wightii 9   
Meteoromyrtus wynaadensis 6   
Michelia nilagirica 7   
Miliusa gokhalaei 7   
Miliusa nilagirica 27   
Miliusa sp 9   
Miliusa wightiana 7   
Miliusa wynadica 7   
Mitragyna tubulosa 9   
Mitrephora grandiflora 7   
Myristica dactyloides 9   
Myristica fatua 8   
Myristica malabarica 128   
Nageia wallichiana 9   
Nathopodytes nimmoniana 51   
Neolitsea fischeri 8   
Nothopegia aureo-fulva 22   
Nothopegia beddomei 7   
Nothopegia heyneana 6   
Nothopegia racemosa 89   
Nothopegia travancorica 9   
Octotropis travancorica 43   
Olea dioica 26   
Ormosia travancorica 7   
Orophea erythrocarpa 64   
Orophea shivarajanii 10   
Orophea thomsoni 9   
Orophea zeylanica 7   
Otonephelium stipulaceum 18   
Palaquium bourdillonii 9   
Palaquium ellipticum 50   
Paracroton pendulus 6   
Persea macrantha 108   
Phaeanthus malabaricus 48   
Pinanga dicksonii 103   
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Pittosporum dasycaulon 14   
Poeciloneuron indicum 20   
Polyalthia coffeoides 7   
Polyalthia fragrans 37   
Polyalthia shendurunii 21   
Popowia beddomeana 68   
Prismatomeris tetrandra 7   
Pterygota alata 7   
Reinwardtiodendron anamalaiense 6   
Sageraea grandiflora 19   
Stereospermum colais 82   
Symplocos macrocarpa 18   
Symplocos rosea 10   
Tabernaemontana gamblei 9   
Tabernaemontana heyneana 13   
Tarenna nilagirica 9   

Terminalia travancorensis 37   
Thottea dinghoui 6   
Thottea shivarajanii 10   
Thottea siliquosa 7   
Tricalysia apiocarpa 11   
Tricalysia sphaerocarpa 6   
Turpinia malabarica 7   
Vateria indica 16   
Vepris bilocularis 17   
Vernonia travancorica 47   
Walsura trifolia 47   
Xanthophyllum arnottianum 8   
Xylopia parvifolia 46   

Total N:  4446   
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Appendix 3. Center map: SDM created from combined data from four sub-species: Chromo – kudre, synchysi, muthi, and muthi (sis). The four 

accompanying panels depict the manual separation of the center panel into ranges of sub-species. 
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Appendix 4. List of predictor variables used in SAHM inquiries. Note that not all predictors are used in final model creation – see table 4.  

 

 

 

Predictor Layers Source Date Captured/Calculated Notes

BioCl im 1: Annual  Mean Temperature WorldClim Monthly (September 2017) Retreived

BioCl im 2: Mean Diurnal  Range WorldClim Monthly (September 2017) Retreived

BioCl im 3: Isothermal i ty WorldClim Monthly (September 2017) Retreived

BioCl im 4: Temperature Seasonal i ty WorldClim Monthly (September 2017) Retreived

BioCl im 5: Max Temp of Warmest Month WorldClim Monthly (September 2017) Retreived

BioCl im 6: Min Temp of Coldest Month WorldClim Monthly (September 2017) Retreived

BioCl im 7: Temperature Annual  Range WorldClim Monthly (September 2017) Retreived

 BioCl im 8: Mean Temperature of Wettest Quarter WorldClim Monthly (September 2017) Retreived

 BioCl im 9:  Mean Temp of Driest Quarter WorldClim Monthly (September 2017) Retreived

 BioCl im 10: Mean Temp of Warmest Quarter WorldClim Monthly (September 2017) Retreived

 BioCl im 11: Mean Temp of Coldest Quarter WorldClim Monthly (September 2017) Retreived

BioCl im 12: Annual  Precipi tation WorldClim Monthly (September 2017) Retreived

 BioCl im 13: Precipi tation of Wettest Month WorldClim Monthly (September 2017) Retreived

BioCl im 14: Precipi tation of Driest Month WorldClim Monthly (September 2017) Retreived

BioCl im 15: Precipi tation Seasonal i ty WorldClim Monthly (September 2017) Retreived

 BioCl im 16: Precipi tation of Wettest Quarter WorldClim Monthly (September 2017) Retreived

BioCl im 17: Precipi tation of Driest Quarter WorldClim Monthly (September 2017) Retreived

BioCl im 18: Precipi tation of Warmest Quarter WorldClim Monthly (September 2017) Retreived

BioCl im 19: Precipi tation of Coldest Quarter WorldClim Monthly (September 2017) Retreived

Elevation ASTER imagery April 2017 Remotely Sensed

NDVI (vegetation index; annual  low) Landsat 8 (NASA, USGS) May 2017 Remotely Sensed

Soi l -adjusted veg index (SAVI; annual  low) Landsat 8 (NASA, USGS) May 2017 Remotely Sensed

Soi l  Type UN Food and Agricultural Organization N/A Retreived

Nearness  to Surface Water UN Food and Agricultural Organization N/A Retreived

Slope DEM (ASTER) April 2017 Remotely Sensed

Aspect DEM (ASTER) April 2017 Remotely Sensed

Percent Canopy Cover Bhuvan (ISRO) January -May 2017 Retreived

Percent Canopy Cover Bhuvan (ISRO) January -May 2017 Retreived

Land use / Land cover Bhuvan, Landsat 8 (ISRO, NASA, USGS) March 2016 - May 2017 Raw imagery retrieved, classification analysis
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Appendix 5. Top panels: SAHM outputs depicting a gradient (left) and binary (right) distribution estimation of a wide-ranging species. Lower 

panels:  SAHM outputs depicting a gradient (left) and binary (right) distribution estimation of a low-ranging species. 
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Appendix 6. Statistical model outputs from initial SAHM runs of a sub-set of frog species. Red-filled boxes are wide-ranging, blue-filled boxes are 

narrow-ranging, and green-filled boxes are montane generalist species.  

Frog Species N Percent Correctly Classified AUC True-Skill Statistic Cohen's Kappa Best Performing Model Reported 

Pseudophilautus amboli 38 0.876 0.901 0.762 0.876 GLM 

Pseudophilautus kani 42 0.711 0.834 0.787 0.923 MAXENT 

Pseudophilautus wynaadensis 105 0.746 0.829 0.823 0.534 RF 

Raorchestes akroparallagii 14 0.651 0.952 0.454 0.786 MAXENT 

Raorchestes anili 85 0.164 0.777 0.830 0.565 BRT 

Raorchestes beddomii 78 0.502 0.778 0.543 0.572 RF 

Raorchestes bobingeri 40 0.569 0.678 0.615 0.121 MAXENT 

Raorchestes griet 92 0.666 0.792 0.326 0.205 MARS 

Raorchestes bobingeri 29 0.274 0.777 0.293 0.495 MAXENT 

Raorchestes jayarami 6 0.271 0.705 0.600 0.300 MAXENT 

Raorchestes travancoricus 44 0.809 0.848 0.100 0.373 MAXENT 

Raorchestes dubois 19 1.062 0.857 0.824 0.368 MAXENT 

Raorchestes resplendens* 6 1.083 0.910 -0.017 0.807 MAXENT 

Raorchestes primarumfii 13 0.256 0.863 0.415 0.488 MAXENT 

Raorchestes sushili 31 0.740 0.774 0.651 0.393 MAXENT  
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Appendix 7. Statistical model outputs from initial SAHM runs of a sub-set of plant species. Yellow-filled boxes are wide-ranging and green-filled 

boxes are narrow-ranging species.  

Plant Species N Percent Correctly Classified AUC True-Skill Statistic Cohen's Kappa Best Performing Model Reported 

Aglaia barberi 34 0.669 0.816 0.585 0.379 MARS 

Drypetes confertiflora 20 0.609 0.848 0.276 0.906 MAXENT 

Cinnamomum malabatrum 30 0.764 0.855 0.729 0.563 MAXENT 

Diospyros ghatensis 28 0.831 0.793 0.479 0.818 GLM 

Diospyros oocarpa 19 0.769 0.780 0.212 0.958 MAXENT 

Eugenia macrosepala 23 0.500 0.906 0.654 0.720 GLM 

Ficus nervosa 53 0.684 0.693 0.792 0.698 BRT 

Ixora elongata 24 0.604 0.963 0.305 0.382 MAXENT 

Microtropis wallichiana 27 0.692 0.575 0.600 0.636 MARS 

Psychotria nigra 87 0.708 0.718 -0.061 0.873  RF 

Atuna indica 9 0.581 0.856 0.730 0.436 MAXENT 

Epiprinus mallotiformis 17 0.548 0.637 0.556 0.523 MAXENT 

Gordonia obtusa 14 0.812 0.726 0.274 0.624 MAXENT 

Humboldtia brunonis 21 0.576 0.967 0.922 0.504 MAXENT 

Olea dioica 46 0.771 0.779 0.339 0.458 MARS, BRT 

Memecylon pseudogracile 13 0.791 0.820 0.253 0.363 MAXENT 

Syzygium munronii 27 0.831 0.897 0.242 0.457 MAXENT, GLM 

Thottea shivarajanii 11 0.824 0.835 0.570 0.418 MAXENT 

Vateria indica 47 0.638 0.838 -0.394 0.554 RF 

Walsura trifolia 18 0.565 0.775 0.298 0.459 MAXENT 

 

 

 


