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ABSTRACT OF DISSERTATION

SIGNAL FRACTION ANALYSIS FOR SUBSPACE PROCESSING 

OF HIGH DIMENSIONAL DATA

A general tool for computing subspaces that decomposes data into potentially useful 

features is proposed. The technique is called Signal Fraction Analysis (SFA). The row- 

energy and column-energy optimization problems for signal-to-signal ratios are investi

gated. A generalized singular value problem is presented. This setting is distinguished 

from the Singular Value Decomposition (SVD).

Preprocessing mappings of the data is used in situations where domain specific 

knowledge is available as a guide. We suggest an optimization problem where these 

mapping functions may be adapted using a problem dependent objective function. These 

ideas are illustrated using Wavelet and Fourier filters applied to EEG data. A self- 

contained description of the motivating maximum noise fraction method is included and 

a procedure for estimating the covariance matrix of the noise is described.

We extend SFA by introducing novel constraints and propose two new generalized 

SVD type problems for computing subspace representations. A connection between SFA 

and Canonical Correlation Analysis is maintained. We implement and investigate a 

nonlinear extension to SFA based on a kernel method, i.e., Kernel SFA. Moreover, a 

second algorithm that uses noise adjustment in the data domain prior to kernelization 

is suggested. We include a detailed derivation of the methodology using kernel principal 

component analysis as a prototype. These methods are compared using toy examples 

and the benefits of KSFA are illustrated.
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This work establishes the potential of a SFA beamforming technique via its merger 

with a wide band MC-CDMA system. The details of non-overlapping window adaptive 

realization of SFA are introduced. We discuss the relationship between the SFA and 

DOA estimation via MUSIC. A novel structure for wide band MC-CDMA systems that 

utilizes the benefits of path diversity (inherent in direct sequence CDMA) and frequency 

diversity (inherent in MC-CDMA systems) is introduced. Simulations were performed to 

study the impact of noise perturbations on the performance of SFA. Simulations confirm 

that SFA enhances the performance and separability of interfering users.

KSFA is applied to the classification of EEG data arising in the Brain Computer 

Interface Problem. We use Fourier and Wavelet filters to generate signal fractions as well 

as differencing methods.

Fatemeh Emdad 
Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 
Fall 2007
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Chapter 1

SUBSPACE SIGNAL PROCESSING

1.1 Introduction

Researchers in a variety of fields collect measurements or observe data, and apply 

range of techniques to describe, classify, analyze and draw conclusions from the data. 

Selecting appropriate techniques and understanding their advantages and disadvantages 

is one of the most important steps in data analysis. In particular, large data sets provide 

their own distinct challenges given that many of the general techniques for small data 

sets do not scale to larger problems and often are prohibitively expensive from a compu

tational perspective. The analysis of such data sets has become increasingly important 

given the dramatic price reduction in mass storage devices that has made the existence 

of such large data sets commonplace: at the time of writing of this dissertation a 6GB 

DVD costs about 1 dollar and a 10 Terabyte mass storage device sells for under $10,000.

The ability to collect and analyze high resolution information, both in space and 

time, provides unique opportunities for the discovery of knowledge. For example, elec- 

troencephalographic, or EEG, signals provide a unique, if somewhat noisy, window into 

the world of brain science and have the potential to provide insight into the relationship 

between, e.g., patterns of electrical activity and cognitive development. EEG data sets 

typically involve 32-512 electrodes capturing data at 256Hz-1024Hz and hence provide 

a formidable challenge for interpretation. Given the fact it is relatively inexpensive, a
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typical EEG apparatus may be assembled for under $5,000, the application of EEG is 

increasingly widespread. The rapid emergence of the field of quantitative EEG (QEEG), 

see, e.g., [30] reflects a growing need for algorithm development in this area. Additionally, 

technological developments in the direction of hybrid EEG/MEG as well as EEG/FMRI 

systems indicate the need for algorithms that perform well on larger data sets.

In addition to scientific discovery, methodologies for handling large amounts of in

formation have the potential to lead to significant technological advances, for example, 

in the area of mobile communication. In this setting, receivers are confronted with the 

task of distinguishing a signal of interest from a large number of interfering signals. The 

mathematics of the signal separation problem are introduced in Chapter 2 and new ap

proaches for this problem are presented and applied in the remaining chapters of this 

dissertation.

The inherent structure in data may be classified into three main types: spatial, 

temporal and spatio-temporal. As we shall see in what follows, the distinction between 

these types of data is important in designing an effective analysis technique. For example, 

spatial data might consist of a set of digital images of static patterns such as mushrooms. 

The data classification problem would be to determine if a particular mushroom were 

poisonous based on a digital image. Temporal data could consist of the value of a stock 

as a function of time, or the temperature recorded at a weather station. Spatio-temporal 

data consists of temporally evolving data whose values are known at several, generally 

nearby, points in space. The electrical activity measured on the scalp by an array of 512 

electrodes could be an example for the spatio-temporal data. Each electrode captures 

temporally evolving information over time, while at a fixed time, the pattern captured by 

the ensemble of electrodes is spatial. In Chapter 4 we shall see that the formulation of the 

mathematical subspace approach is directly influenced by the spatial and/or temporal 

structure of the data.

2
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In general, when large data sets are collected for analysis, data reduction becomes 

one of the most important objectives for reducing the computational time and cost. In 

the data reduction problem a large data set is compressed to a smaller set carrying 

almost all the essential information hidden in the big set. Naturally, the term essential 

is problem dependent. Furthermore, observed data is often a mixture of the desired data 

and noise or other undesired signal (e.g., measurement noise or white noise in wireless 

systems). Isolating the information of interest by removing either noise or an undesired 

signal from the data is a key step to providing more accurate analysis, conclusions, and 

indeed performs a better decision making [48, 22], We are particularly interested in this 

data extraction problem in the context of geometric pattern analysis [51], beam forming 

[101], and signal separation [45].

In summary, the economics of mass storage devices coupled with the potential for 

scientific and technological advances have led to a dramatic increase in interest in new 

approaches for handling large and potentially noisy data sets. The geometric nature of 

the data will play a role in the formulation of the subspace methodology.

1.2 The Subspace Approach

The subspace approach to signal and image processing consists of decomposing the 

data into parts that reveal the essential information, or structure, of interest. It is an 

implicit assumption in this approach that standard basis in which the data is collected, 

e.g., an array of pixel values for an image, is generally non-optimal. Consider the case 

where one is interested in analyzing a collection of signals with common characteristics, 

i.e., a family of patterns. In this situation one seeks to exploit the information across the 

family to permit the extraction of novel features within each element of the family.

3
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Often observed data arises from the combination of two (or more) sources of interest. 

For example, we may observe the data matrix X  that is actually the superposition1 of 

two signals, i.e.,

X  = P  + Q.

Alternatively, there is the related problem of observing a set of signals that arise 

from the linear mixing of the original signals 3, i.e.,

X  =  SA.

In this situation the challenge is to recover the signal S  without knowing the (square) 

mixing matrix A, a problem also known as Blind Signal Separation (BSS). In these 

subspace problems, we are concerned with extracting the information associated with 

the underlying individual signals that has been masked by the interference or the mixing 

present in the observed signals.

Yet another situation of significant interest arises when we seek to quantify sim

ilarities and differences between two distinct sets of data. For this problem standard 

subspace methods arising from the consideration of the data as a single set, such as the 

singular value decomposition, fail to characterize, or exploit, the distinction between the 

data sets. In this setting it is desirable to construct a single basis for the two data that 

simultaneously describes each and their differences. In particular, the first few basis vec

tors might describe features of P  absent in Q while the tail of the basis does the reverse. 

Intermediate basis vectors represent both data sets together.

1.3 Signal Fraction Analysis

The central focus of this dissertation is on a method we refer to as signal fraction 

analysis (SFA). As described in Chapter 4, SFA is a general framework for the construc-

1Note th a t this includes the point-wise multiplicative case as well using the identity log X it = log Pa +  
logQii.

4
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tion of an orthonormal basis that maximizes a signal-to-signal ratio in general terms. 

Historically, SFA has its origins in a method known as maximum noise fraction (MNF) 

that was introduced by Green [35], and was reformulated by Lee [58]. MNF was origi

nally developed to de-noise multi-spectral satellite images (see e.g., [92, 14]). A related 

approach, referred to as oriented signal-to-signal ratio, also proposes to separate signals 

by optimizing an energy criterion [12]. A similar technique referred to as Common Spatial 

Patterns, has been proposed for separating patterns in data (see e.g., [27, 82]).

Signal fraction analysis provides a unifying perspective and extension to these meth

ods as described in Chapter 4. This method has been applied to the problem of time- 

series analysis of multivariate time-series (see, e.g., [51, 52, 6, 5]). Furthermore, SFA 

has been shown to be an effective means to solve the blind signal separation problems 

[42, 41], Moreover, SFA is a powerful scheme for data separation in wireless communi

cations [101, 29]. SFA has also proven very useful for the analysis of EEG data in the 

context of task classification in the brain computer interface (BCI) problem [52], and 

artifact removal [53].

Details of the SFA procedure will be developed in this dissertation. Here we remark 

that the signal fraction idea we propose is based on the general notion that a space may 

be split using any empirical or analytical transformation of the data in the optimization 

problem. Knowledge of the problems objective determines the manner in which this 

quotient is defined. Thus, for example, one can employ a signal to noise ratio as in SFA, 

an empirical signal to signal ratio, or a transformed signal to signal ratio.

1.4 A B rief Overview of Subspace M ethods

Here we provide a brief introduction to several well-known subspace methods while 

deferring the mathematical details of these techniques to Chapter 2.

Some of the most popular data analysis techniques for data compression and feature 

extraction are Independent Component Analysis (ICA) [43, 13], Principal Component

5
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Analysis (PCA) [48, 22, 51, 101, 33, 106, 71, 95], Canonical Correlation Analysis (CCA) 

[109], Common Spatial Patterns (CSP) [27, 82], and Maximum Noise Fraction (MNF) 

[34, 92], Each of these methods has its own particular advantages and disadvantages.

ICA is a signal processing technique for data sets expressed as a linear transform of 

statistically independent non-Gaussian components. ICA was introduced in early 1980s 

by J. Herault, C. Jutten, and B. Ans [39, 40, 8]. In 1989, the first international workshop 

on higher spectral analysis was organized and Cardoso [21] presented papers on develop

ing ICA. Applying the ICA method serves to separate these linearly mixed components 

via an optimization problem that maximizes the non-Gaussianity of the linear transform, 

e.g., in terms of kurtosis [45], entropy [45, 25], etc. As a method for signal separation, 

ICA has applications in wireless communications, the cocktail-party problem, feature 

extraction, economics, as well as general signal and image processing problems [45]. ICA 

is optimized for sources that are non-Gaussian, independent and linearly mixed; for ex

ample, it can not completely recover data that is mixed with Gaussian noise. In the 

literature some work has been done to generalize the basic linear ICA to its nonlinear 

form, see e.g., [93, 59, 60].

In contrast to ICA, PCA is a signal processing technique that produces a change 

of basis in which the data is uncorrelated rather than statistically independent. In 

other words, PCA is a technique to find the main directions over which a cloud of data 

is stretched. These directions represent the main information (in terms of maximum 

statistical variance) available in the data. PCA requires the solution of an eigenvalue 

problem to transform the original correlated data set into a number of uncorrelated linear 

combinations of the original data set (eigenvectors) called principal components [33, 106]. 

The associated eigenvalues represent the amount of variance provided by the respective 

principal component (eigenvector) [48], Data reduction in PCA is realized via removing 

principal components (eigenvectors) associated with low eigenvalues.

6
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PCA is a common approach in reducing the dimension of the data; however, in 

many signal processing applications where the data (signal) is the superposition of sig

nal and noise, the optimal PCA basis is not appropriate for extracting signal from noise 

or for separating two signals. In other words, PCA does not always generate components 

of decreasing signal quality, and some components with small eigenvalues may contain 

relevant information rather than just having noise [95]. Indeed in PCA one principal 

component related to a bigger eigenvalue may contain less useful information than an

other principal component associated to a smaller eigenvalue. We call this issue PCA 

eigenvalue ambiguity. Moreover, PCA is sensitive to linear scaling, that is, by changing 

the scale of the data, eigenvalues would change [49].

When the data are irregularly distributed in space, e.g., in the presence of non

linear correlations, the data variance often fails to be an adequate measure of relative 

importance. A nonlinear extension to PCA has been proposed by [86] for such data. 

Subsequently kernel based methods and nonlinear extensions to kernelizable algorithms 

have attracted the attention of many researchers. Kernel PCA (KPCA) is generated via 

mapping the input space (original data set) to feature space (higher dimension space than 

the input space) using kernel functions. Which means, first the input data is transformed 

nonlinearly to the new variables and then usual linear PCA will be applied. KPCA is 

an algorithm that performs nonlinear PCA by carrying out linear PCA after a nonlinear 

transformation. KPCA allows the extraction of nonlinear features carrying information 

about the structure of the data.

1.5 Organization of the D issertation

The organization of this Ph.D. dissertation is as follows: Chapter 1 introduces the 

nature of the data to be investigated and provides a brief introduction to signal fraction 

analysis. In Chapter 2 we provide an overview of commonly used approaches to subspace 

analysis. In Chapter 3, we review Generalized Singular Value Decomposition (GSVD),

7
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and the related CS-Decomposition (CSD). In Chapter 4, we provide a detailed introduc

tion to Signal Fraction Analysis (SFA). We emphasize a general framework that permits 

the connection of this approach with several other subspace techniques in the literature. 

In Chapter 5, we review notion of a kernel method including Kernelize Principal Com

ponent Analysis (KPCA), and propose two different ways to kernelize SFA. We generate 

different toy examples to compare the performance of KPCA and Kernel SFA (KSFA). 

In Chapter 6, we present an application of SFA in signal separation and communication, 

and we merge SFA and MC-CDMA and form the beam pattern for several degrees of 

dispersion. Finally in Chapter 7, we work with the real data sets from the EEG brain sig

nals to classify different tasks applying KPCA and KSFA via /c-nearcst neighbor method, 

and we compare the performance in classification for KPCA and KSFA.
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Chapter 2

M ATHEM ATICAL BA CK G R O U ND  OF SUBSPACE M ETHODOLOGIES

In this chapter, we provide mathematical background techniques related to signal 

fraction analysis including the Singular Value Decomposition (SVD), Principal Compo

nent Analysis (PCA), Independent Component Analysis (ICA) and Canonical Correla

tion Analysis (CCA). We also briefly introduce the multiple signal classification (MUSIC) 

algorithm, and the method of Common Spatial Patterns (CSP).

2.1 The Singular Value D ecom position (SVD)

In this section, we present the well-known SVD, and we show its relationship to the 

eigenvalue/eigenvector decomposition and we define and compare big and small prob

lems. Then we briefly talk about the range and the null space of a matrix based on its 

SVD and the geometry of the subspaces and we introduce the notion of constructing 

projections via optimization criteria.

Singular value decomposition is one of the most traditional and common subspace 

approaches that obtains appropriate subspace from a noisy data set and it is one of the 

best decompositions that could be used for a rectangular matrix representation. SVD 

technique is based on minimizing the least square error, it provides the best low rank 

approximation of a matrix, and it is sensitive to outliers.

Every matrix (real or complex) has the singular value decomposition [94]. Let A  be 

any m  x  n  matrix (A can be a complex matrix as well [94]), x  E R ” and y  E Rm. Here
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for simplicity we assume A  is real and we use T  to denote the transpose of a matrix, 

simply if A  is a complex matrix one should use the Hermitian sign H  instead of T.

The SVD optimization problem can be defined as

(2 . 1)
X̂ O ||X||

where || ■ || defines the 2-norm of a vector [24] which is defined as

n

\\x\\ = = C ^2 \x i\2Y /2 (2 .2)
i= 1

and ||24||(m>n) denotes the induced matrix norm which is the smallest number C  such that 

the inequality (2.3) holds for all vectors x  E R" [94],

||Ar|| < C\\x\\ (2.3)

Solving Equation (2.1) provides the right singular vectors of A  and solving Equation

(2.4) leads to the solutions called the left singular vectors

||A||(n,m) =  m a x ^ ^  (2.4)

In the SVD we work with a single matrix (e.g., A) and we use

A = U ZV T (2.5)

where

E = SA Or
O 2 O 3

(2 .6 )

as the SVD of matrix A 6 R mxn. Here matrices U e R mxm and V  e R nxn are 

orthonormal matrices of left and right singular vectors respectively and E e  js a

diagonal matrix of singular values in descending order. If we suppose that rank(A) =  r 

then the diagonal entries of matrix E has r nonzero, and nonnegative elements. SVD 

provides the low rank approximation of a matrix. For a general case, when we don’t know 

if matrix A is a long matrix or a wide matrix, we can use Equation (2.6) for the singular

10
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value matrix where S a =  diagfa), cq > 0, i = 1, . . .  , r,  S a € R rxr, 0i € R rx(n-r))

O 2  G R (m_r)xr, and 03 E R,(m_r)x(Tl'“r)) and (0l502, and O 3  are zero matrices) [73].

The Singular value decomposition and the eigenvalue/eigenvector decompositions of 

A TA and A A T have a very close relationship. The singular values of matrix A  are the 

square roots of the eigenvalues of the matrix ATA  and A A T. The right singular vectors 

Vk G V  are the same as the eigenvectors of matrix A TA  and the left singular vectors 

Uk G U are the same as the eigenvectors of matrix A A T,

Using

UTA V  = T, = diag(ai,a 2 , . . . ,c rn) (2.7)

we see that the eigenvalue/eigenvector decomposition for A T A E R nxn can be represented

by

At A  =  VY?V t  (2.8)

or

A t A V  = VT? (2.9)

The existence of the SVD has been proved in [94, 51]. In [51] a constructive proof for the 

existence of right and left singular vectors is provided. Here, we should add that since 

A TA and A A T are symmetric matrices, then their eigenvectors exist. Prom the point 

that eigenvectors and singular vectors have a close relationship which has been discussed 

above, the singular vectors of matrix A  exist as well [51].

Big vs. Small problem

In Section 2.1, we established a brief foundation for understanding the relationship 

between SVD and eigenvalue eigenvector problem. In this section we introduce big and 

small problem. In this dissertation we call Equation (2.9) as small problem based on the

11
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size of matrix A TA  which is n x n. Now we find eigenvalue eigenvector decomposition 

for A A t  € R mxm, and since we assumed (m > n ) we refer to

A A t U = UY2 (2.10)

as the big problem.

Range and N ull spaces

In terms of the range and null space of matrix A, we may write these spaces as

R(A) = { y . y ^ A x  = UY V Tx = Ui4>} = R(Ui) (2.11)

and

N(A)  = { x : y  = A x  = U YV Tx  =  0} =  {x : V f x =  0} =  N(V?)  (2.12)

Here, we have partitioned matrices U and V  like U = [f/1,C/2] and V  = [ ,  V ]̂. 

Assume that the rank(A) =  r < n, then we partition U and V  such that U\ is m  x r  

and V\ is r  x n, and (j) = Sa V ^x  (see Equation (2.6) for S a) .  Therefore, the dimension 

of the range of A is r and the dimension of the null space of A  is m  — r.

2.2 Principal Com ponent Analysis (PCA)

Intimately related to the SVD matrix decomposition described above, Principal 

component analysis (PCA) is a powerful classic technique for statistical data analysis, 

feature extraction and data compression. Pearson was the first to introduce PCA tech

nique [81]. Tufts and Kumaresan developed this technique in [96]. Then, Vaccaro, Tufts, 

and Boudreaux-Bartels reviewed it in [97]. PCA transforms the original correlated data 

set into a number of uncorrelated data called principal components [106, 48] which con

tains almost all the information that exists in the original data. These components are 

uncorrelated linear combinations of the original data set. In fact we can say PCA linearly 

de-correlates the data.

12
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PCA technique is realized via generating the eigenvalues and respective eigenvectors 

of the covariance matrix of the original correlated data set. The eigenvectors represent 

a set of uncorrelated variables that determines the directions of maximum variability in 

the data which are called principle components, and the eigenvalues show the amount of 

information provided by the respective principal component [48, 44], Data reduction is 

realized via removing principal components (eigenvectors) associated to low eigenvalues. 

Sometimes, a meaningful specification can be defined for the new (reduced dimension) 

set of the data [22].

Given a set of points X ,  PCA finds the best line that approximates it. PCA and SVD 

are two important approaches in graphics, statistics, computer vision and much more. 

Principal components are uncorrelated linear combinations of the random variables whose 

variances are as large as possible. Then, if X l t X 2, . . .  , X n are n random variables of p 

dimension and X T — \ X \ , X 2 , ■ ■ ■ A n] E R pxn, we can consider the linear combinations 

of them as [48]:

Yi = X Tt[ — luX \  +  I2 1 X 2 +  . . .  +  lniX n i = 1 , . . . ,  n  (2.13)

If we denote the covariance matrix of the random variables by £  =  E ( X TX) ,  then

var(Yi) = iJHU i = (2-14)

and

cov(Yi, Yk) — i f  Ylk k ,i  — l , . . . , n  (2.15)

Principal components are those uncorrelated linear combinations with maximum 

variance, hence maximizing Equation (2.14) subject to unit length for the coefficients

(!j) leads to have the following principal components (for the proof please see [48])

Yi — e j X T =  eu X \  +  e^iX-i +  . . .  eniX n i = l , . . . , n  (2-16)

13
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with its variance equal

variYi) = efSe, =  A* i = l , . . . , n  (2-17)

where, (A^e*), i — is the eigenvalue eigenvector pair of £  — X TX.  As

it is clear, the principal components are uncorrelated and have variances equal to the 

eigenvalues of £  =  X TX.

Therefore, we can summarize the PCA process as follows: first we find the covariance 

matrix of the data, then we compute the eigenvalue/eigenvector decomposition of it 

and we order the eigenvalues in a descending order and based on that we order the 

eigenvectors associated to them to find the principal components. PCA finds the largest 

eigenvector of the signal, and the projections onto these eigenvectors will be used as a new 

representation of the signal and it is important to know that PCA makes no distinction 

between dependent and independent signals.

2.3 Independent Com ponent A nalysis (ICA)

ICA is based on the assumption of having linearly independent non-Gaussian signals 

[39, 40, 8 , 2 1 , 45]. It is one of the best methods for blind source separation (BSS). 

Blind source separation separates original signals (sources) that have been mixed via an 

unknown (blind) mixing matrix.

Let S T — [si, s2, . . . ,  sn], be the source vector and X T = [x\, x2, . . . ,  x„] be the source 

mixture random vector, with mixing matrix A then using the vector- matrix notation 

the mixing model is

X  = A S  (2.18)

In this model just X  is known; S  can not directly be observed and the mixing matrix A 

is also unknown. Elements of S  are statistically independent and non-Gaussian and for 

simplicity we suppose A is a square matrix.

14
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Let us denote the linear combination of elements of X  by y as:

y =  W TX  (2.19)

Therefore, from Equation (2.18) we have:

y = W TX  =  W t A S  =  Z TS  (2.20)

where,

W t A = Z T (2.21)

Here, W  needs to be determined. From Equation (2.20) we see that y is a linear 

combination of the original independent non-Gaussian signals. Using the central limit 

theorem and Equation (2.20), we know that the distribution of the sum of more than 

two independent variables is closer to Gaussian than the original signals. Hence, we are 

looking for a measure of non-Gaussianity to apply on y to find the independent sources.

One of the classical measures of non-Gaussianity is Kurtosis. The Kurtosis of y is

defined as:

kurt(y) = E(y i ) - 3 [ E ( y 2) f  (2.22)

Here, E(.) denotes the expectation. Assuming y with unit variance, the right hand 

side simplifies to

kurt(y) = E(yA) -  3 (2.23)

For Gaussian random variables (bell shape) Kurtosis equals zero, for Sub-Gaussian ran

dom variables (flatter than Gaussian) Kurtosis is negative, and for Sup-Gaussian random 

variables (sharper peak, longer tail) Kurtosis is positive.

Applying the fixed point algorithm to optimize the Kurtosis leads to: (for more 

detail see [45, 44])

Wnew<xE{X{WjldX f )  -  3 WM  (2.24)

Here, we need to find the estimation of the expectation in Equation (2.24) using sample 

mean.

15
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2.4 Canonical Correlation Analysis (CCA)

There are many ways to reduce the dimensionality and perform dimensionality re

duction. CCA is one of those methods and the objective of CCA is mostly two things: 1 ) 

dimension reduction, and 2) extracting similarity. It reduces the dimension of the data, 

because, the dimension of the two bases is equal to or less than the smallest dimension 

of the two data sets. It extracts the similarity since it maximizes the correlation between 

the two data sets and correlation is a measure for similarity [109].

Suppose we have two sets of data, X  and N.  CCA finds two linear transformations, 

that maximize the correlation of X  and N  in the new coordinates. Let us call two sets 

of data X nxp and Nnxp, then consider the linear projections yi = X a  and y2 = Nb. The 

correlation between yx and y2 is given by

_  Eyxy2 aTX TNb
P(yi,y2) —

y/Eyi2Ey22 V aTX TX a V b TN T Nb

Here, a and b are two basis vectors. The canonical correlations can be extracted by

maximizing p(yi,y2)
aTX TNb

max —== r (2.25)
VaTX TX a V b TN TNb

Taking the derivative of the correlation function with respect to a and b and setting 

them to zero respectively leads to

X Tm  = al ^ J l bX TX a  (2.26)
a1 X 1 X a

N T X a  =  W W M N T m  (2'27)

If we first pre-multiply Equation (2.27) by (NTN)~X and then by X TN  we get:

16
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Based on the definition for p(3/i, 3/2 ) and Equation (2.28) we get

X TN ( N TN ) - lN TX a  = {p(y i ,y2))2X TX a (2.29)

If we first pre-multiply Equation (2.26) by (X TX ) 1 and then by N TX  then

N TX { X TX ) ~ 1X TNb
bTN TX a  aTX TNb 
bTN TNb aTX TX a

N TNb (2.30)

Based on the definition for >0 (2/1 , 2/2) and Equation (2.30) we get

N TX ( X TX ) ~ 1X TN b =  {p(yi,y2))2N TNb (2.31)

Therefore, derivation of CCA leads to Equations (2.29) and (2.31).

2.5 M ultiple Signal Classification (M USIC)

In general, besides recovering the desired signal another parameter of interest in 

array signal processing extracted from the raw received data is the direction of arrival.

methods for finding arrival directions is based on multiple signal classification (MUSIC). 

MUSIC algorithm is a signal subspace approach that mainly provides estimates of the 

number of users and the direction of arrival (DOA). Finding DOA via MUSIC algorithm 

leads to solve a GSVD problem (the same GSVD problem for SFA method), and to 

compute the maximum of a function called the DOA spectrum. In many applications 

since the DOA is unknown, one can apply MUSIC method to estimate those directions 

and then apply SFA to estimate the desired signal. Therefore, the study of the merger 

of SFA and MUSIC might open another window to problems that arise in array signal 

processing [89].

The MUSIC algorithm is one of the best methods to find the direction of arrival 

signals. It relies on the property that the signal subspace is orthogonal to the noise

Many methods have been proposed and analyzed for DOA finding. One of the popular

17
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subspace. Let the data model be

X(t )  = A(0)S(t) + n(t) (2.32)

where S(t) is the original signal vector including signals from different sources at time t, 

X ( t )  represents the signal output vector, n( t )  is the additive noise vector at time t  and 

A(9) is the direction of arrival matrix. If we call the i — t h  column of A{0) by a ( 6 i )  then 

aOi  =  [1,  e Jkcos(ei ) ^. .  ^ e u(M-i ) kcos( 8i ) j T  w jie r e )  M  is the number of antenna elements (or 

receivers), k — ^  with d corresponds to the distance between the antenna elements, 

and u  corresponds to the signal wavelength. The vector aOi  specifies the position of the 

i — t h  source with respect to the receiver. Here, the problem can be summarized as 

follows: given the measurements X ( t ) ,  estimate the direction of the arrival vector 0.

For any vector e* in the noise subspace, a 6 i  is orthogonal to e* . If we denote the 

noise subspace by 9? (e*) we have lR(ej)Ta0 j which is equivalent to

a ^ TK(ei) =  0 i = l , . . . , d  (2.33)

Here d is the dimension of the noise subspace. Therefore, if we define

M{a) = Y J\ { 0 ~ i ) T^{ei) |2 (2.34)

Equation (2.34) equals zero and its reciprocal is infinite. Hence the plot of should 

have tall peaks at direction of arrival points. This fact leads to define the MUSIC 

spectrum as the following:

p(e) -  m  <2-35)

Hence maximizing Equation (2.35) provides the peaks that show the direction of arrivals.

2.6 Common Spatial Pattern (CSP)

Another method related to SFA proposed independently is known as common spatial 

patterns (CSP) and addresses the special case of observing two data sets and constructing

18
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a subspace representation for splitting them [27, 82, 103]. The CSP method is based on 

the joint diagonalization of two covariance matrices and was first used on EEG data set 

to extract abnormal components from the clinical EEG [55]. This method is based on 

statistical pattern recognition, in which we maximize the variance of the signal, and at 

the same time, we minimize the variance of the noise (or the other signal) to determine 

the desired signal [27, 83, 55, 54, 32, 36, 107, 82, 75, 104],

The SFA and CSP techniques are related because there is a connection between 

the common spatial patterns (CSP) and the generalized singular value decomposition

(GSVD). They both use the signal to noise ratio (directly or indirectly) to find the

desired signal. The main difference between these two methods is the requirements for 

the desired signal extraction. In SFA we find the signal which has the maximum signal 

to noise ratio and we almost look for the noise free signal, however in CSP method we 

look for the strongest signal with a reasonable SNR by looking at the signal and noise 

difference. In this case the extracted signal might not have the greatest possible signal 

to noise ratio but provide a good approximation of the desired signal with the minimum 

acceptable SNR [107].

We apply the CSP method on the data set X  e Rnxp where X  = S  + N  (the desired 

signal is called S, and undesired signal or noise is N).  Here we define the CSP function 

as:

C S P  = var(X)  — avar(N)  (2.36)

Here, a  is the scalar weighting parameter. The CSP transformation is a linear transfor

mation defined by

Y  = X a  = Sa + Na  (2.37)

where, a is a p x 1 vector. Here, the problem is to determine a in order to maximize the 

CSP for Y  when satisfying the constraint on the length of a ( ||a ]|2 =  1 ). The CSP for
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Y  is:

C S P  = var(Sa) — avar(Na)  (2.38)

Therefore,

C S P  = (E(aTS TSa ) -  E(aTS T)E(Sa)) -

a{E{aTN TN a ) -  E{aTN T)E(Na))  (2.39)

Here, we assume a data set with zero mean (i.e.,E(S) — 0 and E(N)  = 0). Hence since 

expectation is a linear operator we have E(Sa) = E(S)a = 0. Therefore, Equation (2.39) 

corresponds to

C S P  =  E{aTS TSa ) -  aE{aTN TN a ) (2.40)

From X  =  S  +  N  we have:

aTX TX a  = aTS TSa + aTS TNa + aTN TSa +  aTN TNa  (2.41)

Computing aTS TSa  from Equation (2.41) and substituting it into Equation (2.40) results 

in

C S P  -  E{aTX TX a ) -  E(aTS TNa) 

- E { a TN TSa) -  E{aTN TNa)

- a E { a TN TNa)  (2.42)

Assuming the signals independent from each other and from the noise, we get

E{aTS TN a ) =  aTE (S TN)a  -  aTE (S T)E{N)a -  0 (2.43)

and Equation (2.42) simplifies to

C S P  = E(aTX TX a ) -  (1 +  a)E{aTN TNa) (2.44)

20
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Since we don’t have access to the statistical information, we must use the estimation 

of the covariance matrices to compute the CSP. Assuming n large, we can estimate the 

statistical means in Equation (2.44) via the sample mean. In this case, Equation (2.44) 

corresponds to

C S P  =  aTX TX a  -  (1 +  d)aTN TNa  (2.45)

The CSP technique is based on maximizing the signal-noise power difference with 

the unit length constraint on the a [27, 82]. Therefore, to maximize the CSP subject to 

the constraint ||a | | 2 =  1 we have to maximize the criterion function

C(a , j )  =  aTX TX a  -  (1 + d)aTN TNa -  7 ( ||a | | 2 -  1) (2.46)

where $ — a + 1 and 7  is the Lagrange multiplier. This optimization problem is solved 

by taking the derivative of C(a,  7 ) with respect to a and 7 , and setting them to zero 

dC(a, 7 )
da

2(X X a  -  f3N Na  -  7 a) =  0 (2.47)

S C (a ,7 ) 2
d'y

Equation (2.47) results in,

=  ||a|| - 1  =  0 (2.48)

( X TX  -  [3NTN)a = 7 a (2.49)

From S N R  = — 1, and (2.45) we get

C ^ P
S N R  = ^ Ar7, Ar +  0 > j3 fo r  all C S P  > 0 (2.50)

a1 N 1 Na

Equation (2.50) shows that SFA and CSP method are related in a way that if we choose $ 

equal to the minimum acceptable signal to noise ratio, then the eigenvectors associated to 

positive eigenvalues guarantee to have the desirable signal to noise ratio. Thus CSP is a 

method that finds signals with maximum signal power (variance) while having sufficiently 

large signal to noise ratio.
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For example in [107] the authors have presented a novel multivariate analysis tech

nique to see the different activity patterns under specific conditions. They define ’’condition- 

specific response” as the difference between the means of two observed signals under two 

different conditions. In addition they present, ’’generalized indicator functions method” , 

which results in an orthogonal set of signals indicating the presence of condition-specific 

signals.

Their work was in optical imaging which is a challenging problem because of the 

presence of large background noise. In that paper they define f m( t ,X )  as the gray level 

value (single image) at the cortical position X  = (x , y) in the tth frame under experi

mental condition m, where t =  1 , . . . ,  T, assuming m  =  1, . . . ,  M  different conditions. 

They use standard Euclidean dot product as the similarity measurement and define pm (t ) 

and call it ’’response amplitude function” . Then, they decompose pm(t) to background 

amplitude, signal amplitude and noise amplitude, and maximize the variance of signal 

amplitude while minimizing the residual variance in noise amplitude to find the desired 

signal.
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Chapter 3

THE GENERALIZED SING ULAR  VALUE DECO M PO SITIO N

In this chapter, we present the Generalized Singular Value Decomposition (GSVD) 

originally proposed by Van Loan in his Ph.D. [31]. In his work, he shows that GSVD 

can be obtained by factoring two matrices into the products of an orthogonal, a diagonal 

and a nonsingular matrix, respectively. As evidenced by the algorithms presented in 

Chapter 2, the GSVD plays a fundamental role in signal processing. In order to keep 

the presentation self-contained, we present a proof of the GSVD that follows naturally 

from the lesser known CS decomposition (CSD) due to [80], In analogy with the SVD, 

we also make a preliminary distinction between the big problem and the small problem 

for the GSVD, a topic that will be further discussed in Chapter 4.

The GSVD and cosine sine decomposition (CSD) are useful tools in numerical linear 

algebra. The cosine sine decomposition (CSD) technique, is introduced and discussed 

in [91, 80]. Van Loan and Stewart combined the QR factorization and CSD to give 

an algorithm for GSVD computation [91, 64], Sun, Paige, Demmel, Verselic and Li in 

[26, 79] have shown that the CSD is well conditioned [11]. Stewart first developed a 

method for computing the CSD and the GSVD [91], and later on Van Loan based on the 

SVD and QR decomposition presented their more efficient method. One of the problems 

associated with GSVD is the computation of the cross product and/or inversion of a 

matrix which causes the reduction in accuracy in final results. This can be avoided 

by CSD technique. As we shall see, CSD is a special case of the GSVD. In CSD we
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assume that the matrix has orthonormal columns when in GSVD we don’t consider this 

condition.

For the sake of completeness, we now present several proofs of the GSVD.

3.1 Van Loan’s P roof of the GSVD

In this section, we present Van Loan’s original proof of the GSVD [64],

Theorem  3.1.1. Suppose that A £ R mxn, B £ R pxn (m>n ), then there exist orthogonal 

matrices U e R mxm and V e R pxp and an invertible matrix X e R nxn such that

Here q =  min(p,n) , C £ R mxn and S  £ R pxn are diagonal matrices. Applying 

some mathematical manipulation, Equation (3.1) can be expressed as (3.2).

We observe that solving the GSVD problem in (3.1) is the same as solving

to find the generalized singular values and corresponding singular vectors. In matrix 

form we have

V TB X  =  S  = diag(su s2

s 2ATA X  =  Ci2B TB X (3.2)

A t A X  = B TB X ( S TS)~1CTC =  B TB X  a (3.3)

Where, A =  (S TS)~lCTC . 

P ro o f :

From Equation (3.1) we get

A T = X ~ TCTU' (3.4)

and
m  m  rjn i

B T = X - TS TV■Tq T u T (3.5)

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here, for simplicity we use X  T notation for X  lT. Now if we calculate ATA X  and 

B t B X  from Equations (3.4) and (3.5) we have

Ar A X  =  X ~ TCTC (3.6)

and

B t B X  = X - TS TS  (3.7)

Now we find X ~ T in Equation (3.7) and substitute it into Equation (3.6) giving

A t A X S t S  = B t B X C t C  (3.8)

which completes the proof.

3.2 A Variational Proof o f the GSVD

Consider the optimization problem

D(x)  =  max M - f  (3-9)
7 BxjiO \\Bx\\

where X  e  R raxn of all vectors x  e R n and || • || is the 2-norm defined in the previous

chapter. Here, A eR mxn, and B e R pxn. Then the GSVD of (A, B)  are the values of the

objective function in Equation (3.9). To provide the variational proof we differentiate 

the objective function D(x) with respect to x  and set it to zero.

To this end, we differentiate

^  =  x TB TB x   ̂ ^

=  0 (3.11)

with respect to x  as

dD(x)  _  2ATAx(xTB TBx)  -  2BTB x(xTA TAx)  
dx (xTB TB x)2

Equation (3.11) in matrix form results in

A t A X ( X t B t B X )  =  B t  B X ( X t  A t  AX).  (3.12)

25
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For simplicity we define scalars a  and 0  as

a =  X t A t A X (3.13)

0 = x t b t b x (3.14)

Substituting (3.13) and (3.14) into (3.12), we have,

0 A t A X  =  &Bt B X (3.15)

Equation (3.15) defines the generalized singular value decomposition of the matrix pair 

(A,B).  In Equation (3.15), the columns of the matrix X ,  consist of the generalized 

singular vectors and A =  a / 0  where 0  ^  0 is the generalized singular value associated 

to X .  Clearly the GSVD is a more general form of the SVD. If one of the matrices A  or

SVD.

3.3 A CS D ecom position Proof

In this section, we introduce the CS Decomposition (CSD) and show how the GSVD 

may be derived from the CSD. The exposition here primarily follows that in [11]. The 

Cosine Sine, or CS Decomposition (CSD), is a decomposition of an orthonormal matrix, 

and as we shall see is a special case of GSVD [11], The CSD has been proposed for 

finding the distance between subspaces in the sense that the CSD finds the angles between 

subspaces [91].

Theorem  3.3.1. (Theorem CS Decomposition))[33] Suppose that matrix Q &

has orthonormal columns partitioned into two parts Qi 6 R miXn, and Q2 £ R m2Xn, such

that

B  in Equation (3.15) equal to identity matrix, then GSVD turns out to be an ordinary

(3.16)
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where, m i ,  m2 > n  and  Q TQ  =  Q1Q1 +  Q2Q2 =  !• Then, there ex ist orthogonal 

m atrices U e  R m^ m\  V  € R m^ m\  and W  € R nxn, and diagonal m a trices C € R miXn 

and S  E R m2Xn such  tha t

’ 0 ?r[ft]",= [s] (3'17)
where, in Equation (3.17) matrices C and S  are the diagonal matrices [33] satisfying 

CTC + S TS  = I.

Proof:

To show that CTC +  S TS  =  I  we use Equation (3.17) which leads to

QlQi + Q l Q i ^  W (C TC +  S TS ) W 1 (3.18)

and since, Q\ Qi + Q 2 Q2  = I  and matrix W  is an orthogonal matrix therefore if we pre 

and post multiply the right hand side of Equation (3.18) by W ~ x and W ~ T simultaneously 

then

CTC + S TS  = I  (3.19)

The main part of the proof of the CSD begins by first calculating the QR decom

position of the matrix (AT, B T)T, i.e.,

R  (3.20)
' A  ' Qi

B q 2

Now because in Equation (3.20) matrix Q1 

Q 2

is an orthonormal matrix then we

can apply CSD. Then, using Theorem (3.3.1) and Equation (3.17), we get

A = Q\R  =  U C W t R  (3.21)

and

B = Q2R = V S W t R. (3.22)
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In Equations (3.21), and (3.22) if we consider

x - 1 =  W t R (3.23)

then we have proved that

f UTA X  =  C = diag(c1,c2, . . .,c„) . .
\  V TB X  = S  = diag(si,s2, . . . , s q) [ ’

3.4 Theorem  by Paige and Saunders

Paige and Saunders extended Van Loan’s GSVD to treat all possible cases [80].Of 

particular importance is the case where Van Loan’s matrix X  fails to have an inverse.

Theorem  3.4.1. (Paige and Saunders) I f  A E UmXp, B E R nxp, there exist orthonormal 

matrices U E R mXp, V  E R mxp, X  E R nxn and diagonal matrices S  E R pxp, and 

C E R pxp such that:

I  A =  UCYT  (3 25)\ B =  V S Y t  1

where, X ~ x = Y T and Y  E R nxn in Equation (3.28).1

Suppose that rank(A)  =  ra, rank(B) = and rank[A B]T =  rab then in 

Equations (3.26) and (3.27), IA E t and IB E R ^ - r a Y ( r ab-ra) are

unit matrices, O4  E R(P~raY(P~ra\  and 0B E R,h,~r(>)><h,-ri>) are zero matrices, and 

CA € R(ra+rb_roi>)x(r°+r'>_r'>f')) and SB E R(ra+rb~rablx(ra+ri>-rab) reaj diagonal matrices 

[73].

d n  M atlab command,

(3.26)

and

(3.27)
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3.5 B ig versus Small problem

Here, we define and introduce the notion of big problem and the small problem. 

Suppose we have two matrices A  e  R mxn, and B e Rpxn, where m  »  n, then in 

generalized singular value form we have

{ B  =  V S X - 1 ^  A T A X  =  XB TB X  (3-28)

Here, A is the diagonal element in the diagonal matrix A in Equation (3.3). Let us

refer to this problem as small problem because of the size of matrix A TA  which is n x n.

Here, matrices U and V  are orthogonal and X  is nonsingular. In terms of big problem, 

we have

/  x c - 1u t a a t u c - t x t  = I
\  X S - lV TB B TV S ~ TX T =  I

or

A A t  = Z t B B t Z  (3.30)

Here, Z  =  V S~ TCTUT and we refer to Equation (3.30) as the big problem given it is of 

size m  x m.

We shall see in Chapter 4 that the big and small problems arise naturally in different 

contexts of data analysis.

3.6 G eom etry of Subspaces

Following are several facts concerning subspaces associated with the GSVD. For 

additional properties of subspaces associated with the GSVD please see [105]. In what 

follows we assume the Matlab GSVD form, i.e.,

[U, V, X, C, S]=gsvd(A,B, 0 )

29
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w h e r e

A = U C X T

and

B = U S X T.

3.6.1 T heo rem  for th e  row space in general

T heorem  3.6.1. Suppose that we have all conditions in Theorem 3.4-1; here we intend 

to work on the row spaces of matrices A and B. Therefore we work with A Tand B T. 

Using the previous theorem we get:

A = U C X ~ l 
B  =  V S X - 1

(3.31)

2 Which results in

A ^ X = (  n  T/ V  c  ) ( 3 . 3 2 )

and

Where X p 1 =  YPT, and

£ ) M o '  “, ) ( § > ■

c - = i S £  ) <3-34>

and

^  =  ( t S )  (335)

Here € R r'oXro, and Eg € R r',xr(> are diagonal matrices of size rank(A)  =  ra and 

rank(B) = rb [80].

2We should add th a t in M atlab command we have: [U, V, Y, C, 5] =  gsvd(A,  B,  0) th a t we use for the 
column space and we use [Up, Vp, Yp, Cp, 5P] =  gsvd(AT , B T , 0) for the row space.
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3.6.2 Theorem  for the row space w ith three block partitioning

Theorem  3.6.2. Let U = [UUU2,U3], and V  =  [Vi,Va,V3], and Y  =  [YUY2,Y3] be 

compatibly partitioned with the block partitioning of C and S  demonstrated in Theorem

S.f.l ,  then:

• a) span(Y3,Y2SA) =  R(AT)

• b) spaniY^YiSs)  = R ( B T)

• c) span(U2SA,U3) = R(A)

• d) span{Vu V2SB) = R{B)

• e) span(U\) =  R(A)1- 

.  f )  span(V3) = R (B )1

Proof:

a) From Equation (3.32) or A TU — Y C T, and with the partitioning of Y  — 

[Yi ,Y2, Ya] we conclude that:

b) From Equation (3.32) or B TV  =  E 5 T, and the partitioning Y  =  \YX,Y2,Y3] we

c) From A X  = UC, and with the partitioning of U = [Ui, U2, U3\ we conclude that:

(3.36)

conclude that:

(3.37)
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d) From B X  =  VS,  and the partitioning V = [Vi, V2 , V3] we conclude that:

R(B) = [VUV.2 , V3] lV,v2sB,0} (3.39)

To prove parts e) and f) we use the following definition:

R(A)1 = {Zx € R(A)x -,Zf[Y = 0; Y  = A X } (3.40)

and

R{B)X = {Z2 € R{B)X] Z ^ Y  =  0 ;T  =  B X } (3.41)

Therefore, span(£/i) =  i?(^4)x , and span(Va) =  R(B)-1-.

3.6.3 T heo rem  for th e  row space w ith  tw o block p a rtitio n in g

In the previous section, we partitioned the matrices into three block matrices and

in this section we will partition them into two block matrices. Now if we compatibly 

partition Up and Vp with the block partitioning of Cp and Sp using Section 3.6.1, we 

could create the following Theorem.

T heorem  3.6.3. Let Up — [UPl,UP2], and Vp — be compatibly partitioned with

the block partitioning of Cp and Sp in section 3.6.1, then

• a) span(UP2) =  R(A T)

b) span(Vpl) -  R (B T)

• c) span(UPl) =  R(AT)± — Null(A)
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► d) span(VP2) = R{BT)X = Null{B)

Proof

a) From

A T ^ X V - (  u > ° ' \ < C rBT I ' \  0 Vr I \  S.

A TX P = UPCP, and Up = [UP1, UP2] we conclude that

R(AT) ^ [ U P1,UP2} ^ 0Q S° J  = [0 ,t /P2£

b)From
A T \  ( U *  0 \  (  Cp
B T J  P \  0 V p J \ S p

B TX P =  VpSp, and Vp = [VP1, VP2] we conclude that

R (B t ) = [VPi ,VP2} ( E0b o ) = [ F p1Eb,0]

To prove parts c) and d) we use, ^ ^ X p = ^ y  ^ ^ g P

[Upj , Up2 ], Vp — [Vpi, Vp2 ], and

R(A t )x = {Zi € R(A t )x ; Z \ Y  =  0; Y  =  ATX }

and

=  {Z2 € f l (5 T)x ; Z2t T  =  0; Y  = B TX }  

Therefore; Z\ =  UPl and Z2 — VP2.
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C h a p te r  4

SIGNAL FR A CTIO N  ANALYSIS (SFA)

In this chapter, we present Signal Fraction Analysis (SFA) and we establish a foun

dation for Chapter 5 which introduces a nonlinear extension of SFA, i.e., kernel SFA. As 

described in Chapter 1 , SFA is a framework for the construction of bases that maximize 

a signal-to-signal ratio. This work represents an extension of the maximum noise frac

tion (MNF) approach that was introduced for the de-noising of multi-spectral satellite 

images, see e.g., [92, 35]. Related approaches include oriented signal-to-signal ratio [12] 

and Common Spatial Patterns, see, e.g., [27, 82],

Signal fraction analysis provides a unifying perspective that addresses the decom

posing of a data set into constituent features. In part, its strength lies in the generality 

of the approach, the manner in which features can be computed is essentially unlimited. 

In particular, we consider a data matrix X  and two mappings of the data matrix

f  '■ X  Y  = f ( X )

and

g : X ^ Z  = g(X)

The purpose of the mapping /  is to identify characteristics of the data distinct from the 

mapping g. As described below, we are then able to compute a subspace representation 

for the data by solving a GSVD problem. We suggest that such transformations may 

possess energy in either the row or columns of the images and seek bases that reflect this.
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We also propose side constraints to the optimization problem to allow greater control 

over the nature of the subspace representations.

One important characteristics of the SFA transformation, which is not shared with 

the PCA transformation, is the invariability to linear scaling [51, 48]. A disadvantage of 

SFA transformation for noise removal is its need for estimation of noise covariance matrix 

[22, 51]. Different methods of estimating noise covariance have been introduced in the 

literature [35, 61]. In communications, the noise covariance is estimated via transmitting 

a known (pilot) signal [61, 101, 90].

In Section 4.1, we revisit the SVD and motivate the notion of row and column 

energy optimization. In Section 4.2 we derive Signal Fraction Analysis (SFA) and we 

show its connection to generalized singular value decomposition (GSVD). In Section 4.3 

we present the special case of Maximum Noise Fraction and discuss the estimation of 

the noise covariance. In Section 4.4 we consider SFA with constraints. Finally, we show 

a connection between SFA and canonical correlation analysis (CCA) in Section 4.5. We 

conclude with a summary of contributions in Section 4.6

4.1 T he  S ingular Value D ecom position  R ev isited

If we let 0 be a basis vector for 7Z(X) we can define the quantity

We may refer to this term as the column energy of X  associated with <p> and rewrite it as

where we have omitted the scalar 1 /n .

Similarly, if we let ip be a basis vector for the row space %{XT) we can define the 

quan tity

1 = 1

which is just the mean squared projection of the columns of X  onto the basis vector (p.

a c(X, <p) = P>TX X Tcp
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which is just the mean squared projection of the columns of X T =  [ y ^ | . . .  |y ^ ]  onto 

the basis vector ip. We may rewrite this row energy of X  associated with ip as

ar(X,iP) = ipTX TXiP

where we have now omitted the scalar 1 /m .

The singular value decomposition of an m  x n matrix X  is special in that it simulta

neously determines optimal bases for both the row and column spaces. This is achieved 

by maximizing the quadratic form

a((p,ip) = ma xcpTXip

subject to the side constraints that both (p and ip have unit length. Alternatively, the 

solutions to this problem may be computed by maximizing either the row energy ar(X, ip) 

over ip or the column energy ac(X,(p) over (p.

Differentiating the column energy ac(X, (p) with respect to <p produces the necessary 

condition

X X T(p =  Xcp

Alternatively, differentiating the row energy ar(X,ip) with respect to ip produces the 

necessary condition

X TXip = A ip.

We recognize these equations as the eigenvector equations for the left singular vectors $  

and right singular vectors T of X.  As is well-known, \k and $  are linked by the SVD via

$  =  A T S f

where the dagger denotes the pseudo-inverse. Thus, we see that determining $  to max

imize the column energy also produces the tp that maximizes the row energy. While 

these facts are well known to be true in the case of the SVD, similar considerations are 

actually false in the generalized SVD.

36
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Figure 4.1: The top two 1000x500 image matrices were obtained by dividing a 1000 x 1000 
magnified image of wood in half. Similarly, we obtained two images of a sunset in the 
bottom row.
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4.2 Signal Fraction Analysis

In order to identify a best basis associated with two data matrices X  and Y  we 

may propose to determine a basis such that when the column energy of X  is large, then 

the column energy of Y  is small and visa versa. Such a basis is produced by solving 

optimization problem
crc(A, 0) . .

A =  max— ——  (4.1)
4> a c(Y, <f>)

Or in other words, computing the solutions to

a c{Y, <!>®)XXT4>® = ac(X, </>W)YYT(/>® (4.2)

that is to say, the transpose of the standard formulation of the generalized singular vector

problem. This problem has been proposed by [12] where Equation (4.1) is referred to as

the signal-to-signal ratio.

For spatio-temporal patterns there is potential structure along both the columns 

and rows suggesting the alternative optimization problem

7  =  maxa r | y  ^  (4.3)
V ar(Y,xl>)

is important to separate X  and Y  according to row energy. We will see below that 

the optimization problem given by Equation (4.3) is related to a technique proposed for 

removing noise from multi-spectral satellite imagery known as maximum noise fraction 

[35]. Now the solutions to Equation (4.3) must satisfy

ar(Y, rl>®)XTXil>® = ar{X , ^ ) Y TY ^ i) (4.4)

Now, unlike the SVD, the optimization problems given by Equations (4.1) and (4.3) are 

not linked.

As a prelim inary experim ent in investigating the  properties of signal fraction analysis 

we compute the solutions to Equation (4.4) in two different ways and plot the associated
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Figure 4.2: This is a plot of the 500 generalized singular values where we take A  and 
B  in the GSVD problem to be the two different wood images (one class) and where we 
take A  to be wood and B  to be sunset.

generalized singular values in Figure 4.2. In the two class problem the matrix A  consists 

of the wood image (top left Figure 4.1) and the matrix B  consists of the sun image 

(bottom right of Figure 4.1). In the one class problem the matrix A  consists of the wood 

image (top left Figure 4.1) and the matrix B  consists of the wood image (top right of 

Figure 4.1).

4.2.1 E xam ples o f SFA F ilte rin g

Here we briefly consider the more general optimization problem

max ■ (4.5)
^ g { x ) T g{x)i)

where A  is a given data set to be investigated. In many cases, linear transformations such 

as wavelet or Fourier projections onto interesting scales or frequencies will be sufficient 

and that is what we explore in these examples. For example, in Figure 4.3 we have 

mapped an EEG signal via a Fourier transformation to the spectra associated with
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Figure 4.3: Band-pass Fourier filters applied to subject one, task two (math), trial one. 
From top to bottom: raw data, alpha filter, low beta filter, mid-beta filter, high-beta 
filter.

alpha waves, low beta waves, mid-beta waves and high-beta waves. In principle, such 

filtering may have potential benefits in analyzing features in the data.

In Figure 4.4, we see the results of mapping the EEG data to a wavelet and scaling 

subspace (Daubechies wavelet). Here we note that a detail subspace generates a signal 

similar to a derivative and therefore has important ramifications for denoising. Note also 

that one may conceive of adapting /  and g in Equation (4.5) using nonlinear function 

fitting approaches such as Radial Basis Functions.

Basically, the idea now is to solve the generalized singular value problem

s2i A TAipi =  c2B TBi(ji

where, A = f ( X ) and B  =  g(X).  This idea is very general and we need to carry out 

experiments to explore its utility. In the simplest experiment we take A  =  X ,  i.e., the 

data set and B  = W u i.e., the finest wavelet subspace. We may also seek a scale for 

splitting that is especially useful by setting

B  =  Wi
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Figure 4.4: Wavelet transformation of the EEG data associated with the rest task for 
subject one trial one. (a) Scaling subspace projections of channel one. (b) Wavelet 
subspace projections of channel one.
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classification rate using DB10 Task 1 Task 2 Task 3 Task 4
Task 2 0.61
Task 3 0.58 0.74
Task 4 0.77 0.76 0.71
Task 5 0.72 0.78 0 .6 8 0.59

Table 4.1: SFA on classification rate for EEG signals with the Wavelet transformation 
DB10, KNN=1:10

classification rate using DB10 Task 1 Task 2 Task 3 Task 4
Task 2 0.83 d = 4
Task 3 0.77 d =  3 0.89 d = 4
Task 4 0.85 d =  3 0.92 d = 2 0.82 d = 3
Task 5 0.80 d — 2 0.97 d = 2 0.83 d = 4 0 .6 8  d =  2

Table 4.2: KSFA on classification rate for EEG signals with the Wavelet transformation 
DB10, KNN=1:10

with i running over the scales. We may also let

A =  Sj, B = Wj

Table 4.1 shows the classification rate for tasks one to five when applying SFA and 

K-nearest neighbor KNN=T:10. The classification rate is defined as the ratio of the 

number of correctly classified and the total number. Note that here the polynomial is 

of degree one. We also did the experiment with higher polynomial degrees (d = 2,3,4) 

(see Chapter 5 for details on Kernel Signal Fraction Analysis) in Table 4.2 and the 

result shows that mapping the data into higher dimension leads to a considerably better 

classification rates. It seems that this scheme is able to classify tasks two and five (task 2 

is the imagined letter writing and task 5 is geometric object rotation) better than other 

tasks with higher classification rate and polynomial degree of two.

4.3 M aximum  N oise Fraction (M NF)

In this section, we provide a self-contained treatment of MNF [92, 35]. This back

ground discussion is based on the assumption that the signal consists of two additive
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components. Let, X & R nxp, n > p be a multivariate data set, an addition of the de

sired data (signal) S,  and undesired signal (noise) N.  Although the columns of X  were 

multispectral images in [92, 35], they may be signals, such as noisy time series of a 

process.

Therefore, the observed data is represented by

X  = S  + N  (4.6)

Prom Equation (4.6) we have

X TX  =  S TS  + N t N  +  S t N  +  N t S  (4.7)

We define the signal to noise ratio (SNR), the ratio of the signal variance and the noise 

variance. That is,

S N R = V- ^ X  (4.8)
var(N)  v '

In addition, noise fraction is defined as the ratio of noise variance to the total variance. 

That is,

var(N)
»  =  — M  4 9var(X)

The maximum signal fraction transformation is a linear transformation defined by

Y  — X a  = Sa + Na,  (4.10)

where a is a p x l  vector. Here, the problem is to determine a in order to maximize the 

signal to noise ratio for Y.  The S N R  for Y  is:

S N R  = ^ p -  (4.11)
var(Na)

Therefore,

E(aTS TS a ) - E ( a TS T)E(Sa)
E(aTN TN a ) - E ( a TN T)E(Na) [ 1
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Here, we assume a zero mean data set (i.e., E(S)  = E(N)  — 0). Hence, E(Sa) = 

E(S)a = 0. Therefore, Equation (4.12) corresponds to:

o „ n  E ^ f F S a )
S N R  -  E ( a T N T N a )  < 4 ' 1 3 )

Prom Equation (4.7) we have:

aTX TX a  =  aTS TSa  +  aTS TNa  +  aTN TSa  +  aTN TNa  (4.14)

Computing aTS TSa from Equation (4.14) and substituting it in Equation (4.13) results

in

OAr„ E(aTX TXa)  -  E{aTS TNa) -  E(aTN TSa -  E(aTN TNa) , A 1CN
E(aTN TNa)  ( ^

Assuming signals are independent from each other and from the noise, the second term

in the numerator of Equation (4.15) corresponds to:

E(aTS TNa) = aTE ( S TN)a  =  aTE ( S T)E(N)a = 0 (4.16)

Similarly, the third term in the numerator of Equation (4.15) equals to zero, and it

simplifies to

r , „ r  E(gTXTXa)
E(aTN TNa) ( *

Because we don’t have access to the statistical information, we must use the estimation

of the covariance matrices to compute the S NR.  Assuming n is large, we can estimate 

the statistical means in Equation (4.17) via the sample mean. In this case, Equation

(4.17) corresponds to

n T  Y n

The MNF technique is based on maximizing the signal to noise ratio powers. Therefore, 

to maximize the SNR we have to maximize the term

. aTX TX a  /4 „ .
D W  =  WWJTa ( 4 ' 1 9 )

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This optimization problem is solved by taking the derivative of D(a) with respect to a

and setting it to zero

dD(a)  2X TXa{aTN TNa) -  2N TNa(aTX TXa)  _  n fA
~  aTN TNa  “  ( }

Equation (4.20) results in,

X TXa(aTN T Na) = N TNa(aTX TXa).  (4.21)

Here, we define scalars a and (3 as

a  =  aTX TX a  (4.22)

(3 =  aT N T Na  (4.23)

Substituting Equations (4.22) and (4.23) into Equation (4.21), we have,

(3XTX a  = a N TNa  (4.24)

Now, defining

A =  ^  for  /3^0 (4.25)

and from Equation (4.18), we conclude:

A =  S N R  + 1 (4.26)

Thus, substituting Equation (4.25) in Equation (4.24), we obtain the following general

ized singular value problem

X TX a  =  \ N T Na  (4.27)

In Equation (4.27), the parameter a is the generalized singular vector and A is the

generalized singular value associated to a which maintains the connection between MNF

and GSVD.

Therefore, given matrix X ,  we can recover S  by applying MNF under the following 

conditions:
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GSVD

Estimate the 
noise 

Covariance

Figure 4.5: MNF Process.

1 . n must be large enough (i.e.,A is a tall matrix) in order to estimate the statistical 

mean via the sample mean.

2. E(S)  = E ( N ) =  E( X)  =  0 (i.e., the columns of S, N  and X  are assumed to have 

zero mean).

3. Signals are uncorrelated from the noise,(i.e., E ( S TN ) =  E ( N TS ) =  0).

As a summary, the MNF process can be summarized in Figure 4.5.

The generalized singular vectors (a, ’s) are orthonormal with respect to matrix N TN,  

and are orthogonal with respect to matrix X TX ,  (see Appendix A and Appendix B for 

the proof).
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4.3.1 Estim ation of the Noise Covariance M atrix

In the process of MNF, the noise covariance matrix should be known; however, 

in many applications, it is unknown and needs to be estimated. Some of the noise 

covariance estimation techniques have been introduced in the literature [101, 35, 61, 

90, 37]. Little work has been done to address limitations of noise covariance matrix 

estimation techniques.

In [35], Green has used Min/Max Autocorrelation Factors (MAF) technique for noise 

covariance matrix estimation of correlated data. MAF transform finds several orthogo

nal linear combinations of highly correlated data. He has used the covariance between 

neighboring differences to estimate the noise covariance. This technique is particularly 

useful for separating salt and pepper noise (the noise caused by errors in transmission). 

In communications, the noise covariance is estimated via pilot signals or when a sig

nal is not transmitted for a period of time [101, 61, 90, 37]. This method reduces the 

throughput of the communication system via preventing the transmission of data or via 

transmission of pilot signals and can not be applied to all applications.

We have studied the method of estimating the noise covariance matrix in [41] and 

we will go over the estimate for the covariance of the noise via simple differencing (i.e., 

when the noise is estimated as the difference between the current and the neighboring 

data), and we derive the assumptions needed for this scheme in some details.

4.3.2 Differencing m ethod

As we mentioned in Section 4.3 (see Equation (4.27)), to apply the MNF one requires 

the estimation of noise covariance matrix. Green [35] has introduced differencing method 

as an approximation for noise covariance matrix estimation. In this section, we briefly 

discuss the conditions under which the differencing method holds.

Suppose that X  G R nxp, n > p, be a multivariate data set, an addition of the 

desired data (signal), S, and undesired one (noise), N.  Therefore, the observed data can
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be represented by X  = S  +  N.  We denote the difference matrix as d X  in which each 

row i (i.e., dX( i , :)) is the difference between the (i +  1) — t h  row of X  (i.e., X( i  +  1,:)) 

and the i — t h  row of X  (i.e., X ( i , :)). Let denote X  and dX  in their matrix form via 

Equations (4.28) and (4.3.2) respectively and suppose that we can estimate the noise 

covariance using the difference matrix as: N HN  = d X Hd X / 2.

Therefore if

/  X i ( t i )  x 2( t i )  

X \ { t 2) X 2( t 2)

\  Xi{tn) x 2{tn)

X p { h )  \  
x p{t2)

Xp[tn) /

(4.28)

Then,

(  x x { t 2) -  X i { t X)

x\{h)  -  x i(t2)

d X  =

x 2( t 2 ) -  x 2( t i )  

X 2 ( h )  -  x 2( t 2)

X p ( t 2 ) -  X p ( t i )  \  

X p ( t  3) X p ( t 2 )

(4.29)

\  X \ ( t n ) X \ ( t n — 1) X 2( t n ) X 2{ t n — 1) • • ■ ^ p ( t n )  X p ( t n — x) J

where, X  G R nxp, and d X  G Here, as we assumed, we have the additive noise

signal as

(4.30)

Therefore,

X m i d i )  X m { t i —1) Sm {t i )  Sm ( t j _ j )  +  n m ( t j )  Tlm ( t i — 1) (4.31)

To simplify, we calculate matrix d X  including elements of xm(t,) — xm(tj_i) and 

compute matrices dS  and dN  based on elements sm(ti) — sm(ti_1) and nm(L) — nm(L_i) 

respectively when m = 1, . . .  ,p and i = 1, . . . ,  n (see Equation (4.3.2)). Then in terms 

of matrix notation we use d X ~  X t — X t_i, dS  — St — St~ 1 , and dN = Nt — Nt~ 1 where
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X t is the same as X  in Equation (4.28) and X t~\ is the shifted version of X t and the 

same applies to St , St-\ ,  Nt , and Nt-\ .  Therefore

d X  = dS + dN  (4.32)

which leads to

d X Td X  =  dSTdS  +  d NTdN  (4.33)

Here, using dN — Nt -  Nt- 1 , N ^ N t - i  = N f N t and N ^ N t  = N [ N t- i  =  0, from

Equation (4.33) we get

d X Td X  = dSTdS + 2 N j  Nt (4.34)

Assuming the sampling rate is high enough such that St — St~ i concludes dSTdS  w 0  

which leads to

d X Td X  =  2 N j N t (4.35)

This means that we could use the differencing idea for the observed data and apply 

it to estimate the noise covariance matrix.

4.4 SFA w ith Constraints

Ideally we would like to be able to satisfy the column optimization criterion

 ̂ a c{X, (f>)
Xc = max—

* a c(Y,4i)

as well as the row optimization criterion

a r{X,4>)
Xr = — ATTVy a r(Y,ip)

simultaneously, but unlike the SVD, there is no mapping that takes all the solutions of 

the row problem to be solutions to the column problem, or vice versa. One could attempt
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GSVD(a ' , b ') g s v d (a 'a ,b ' b )GSVD(A,B)

GSVD{A A,B A) SVD approximation

Figure 4.6: A comparison of 5 dimensional subspace representations of the 1000 x 500 
magnified wood image.

to define a Lagrangian and balance these maximization problems, i.e., neither solution 

would then be optimal but would in some sense be jointly optimal. Here we consider 

another approach.

In general solutions to

a X X T</> = (3Y Y t 4>

will not be in either of the ranges 1Z{X) or 1Z(Y). Thus, we may explore the possibility 

of solving this problem subject to the constraint, e.g., that p £ R{X) .  To this end, let 

4> = Xz .  Substituting this into our GSVD problem produces

a X X TX z  = P Y Y t X z

Applying X T to both sides results in the column-constrained signal fraction analysis 

problem

a { X TX f z  = P X TY Y T X z  (4.36)
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GSVD(A,B) GSVD(A ,B ) GSVD(ATA.BTB)

"L*J TO*

SVD approximation raw data

Figure 4.7: A comparison of 10 dimensional subspace representations of the 1000 x 500 
magnified wood image.

So now, if X X T was a large problem, then X TX  is now a small problem. Of course 

we could apply the same logic beginning with the row optimization problem. Also, we 

observe that if we let A = X TX  and B  =  Y TX  this problem is a GSVD problem of the 

form

a A TAip = (3BTB^ .

We also note that if X  =  Y  +  Q and Y TQ = 0 then our constrained problem becomes

a { X TX ) 2z = (3 ( Y t Y ) 2z (4.37)

which again can be seen to be of the GSVD form with A  =  X TX  and B  =  Y TY.  Here we 

adopt the shorthand notation GSVD(XTX, Y TY'> to represent this problem statement.

To explore solutions to Equation (4.36) we consider taking the images shown in the 

bottom right of Figure 4.6 as X  and the bottom right of Figure 4.9 as Y . Both of these
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GSVD(A,B) G SVD (A ',B ') GSVD(A A,B B)

GSVD(A A,B A) SVD approximation

Figure 4.8: A comparison of 100 dimensional subspace representations of the 1000 x 500 
magnified wood image.

image matrices are of size 1000 x 500. Using our shorthand notation above, we now 

propose to compare these problems.

GSVD(X,y): Given

X  =  UCZT

and

Y  = V S Z T 

we write the rank k expansions for X  as

=  ukckz l

where we sum the first k terms in the expansion. The rank k approximation for Y  is 

similar

Yk = VkSkZ l  
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Figure 4.9: A comparison of 5 dimensional subspace representations of the 1000 x 500 
magnified sunset image.

but now we are starting with the largest values of 5  and summing backwards. 

GSVD(XT, y T): Now we have

X T =  UCZT

and

r r  =  vszT

where of course these are not the same U, V, C, S, Z  as above. Here we write the rank k 

expansions for X  as

=  (UkU l X T)T

where we sum the first k terms in the expansion and

Yk =  VkSkZ jk

where we are again counting from the largest s*.
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Figure 4.10: A comparison of 10 dimensional subspace representations of the 1000 x 500 
magnified sunset image.

GSVD(XTX , Y TY): Now we have

X TX  = UCZT

and

Y t Y  = V S Z T

Our projection for X  is then again

X k = (UkU £ xT)T

and

=  (vkv ? Y T )T

GSVD(ATTA’, Y t X): This is the same as above.
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In the reconstructions show in Figures 4.4-4.9 we observe several interesting fea

tures. Firstly, as one might predict, the GSVD(X, Y)  compression reveals row struc

ture and the GSVD(XT, y T) thus, emphasizing the difference in these two factoriza

tions and the associated optimization criterion. For low rank approximations we see 

that GSVD(At AT, Y TY ) produces a lower error reconstruction than GSXD(XTX,  Y TX ). 

However, we seek the quality of GSVD(XTA, Y TX )  surpass that of GSYD( XT X , Y TY)  

as the rank of the approximation increases .

4.5 C onnection between SFA and Canonical Correlation Analysis (CCA)

Here we make a connection between Canonical Correlation Analysis (CCA) and 

Signal Fraction Analysis (SFA). CCA is an approach for measuring the linear relationship 

between two multidimensional data sets, and finds two bases, one for each data set. These 

bases are optimal with respect to the correlation between the two variables in the new

GSVD(A.B) GSVD{A ,B )

i< I - ,

ii ' m i

SVD approximation raw data

Figure 4.11: A comparison of 100 dimensional subspace representations of the 1000 x 500 
magnified sunset image.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coordinates. Also we present an example showing that CCA can separate the mixed 

signals.

Suppose we have two sets of data, X  and N . CCA finds two linear transformations, 

that maximize the correlation of X  and N  in the new coordinates. Let us call two sets 

of data X nxp and Nnxp, then consider the linear projections y\ =  X a  and y2  — Nb. The 

correlation between y\ and j/2 is given by

(, E Vi^ 2 aTX TNb
P[yi,V2) ^ E y ^ E y 22 VaTX TX a ^ b TN TNb'

The canonical correlations can be extracted by maximizing p{yi,V2 )

aTX TNb
max ■ - r— (4.38)
“ -6* 0 VaTX TX a V b TN TNb

Taking the derivative of the correlation with respect to a and b and setting them to 

zero respectively leads to
, r T » r ,  aTNTNb^rT7tr

aTN TNa   ̂ ^

N T N a  =  â T Nx bb X T X t  (4 .40)

If we substitute equation (4.40) in (4.39) we get

N T N b  = T
a T N T N a b T X TX b  1 '

Now define

which leads to

aTN TN b a TN TNb , A .
!  ~  aTN TNa bTX TXb  ̂ ^

X TXb  =  A N TNb  (4.43)

Therefore as we see CCA and SFA are related if in CCA we suppose our two data 

sets are X  (signal) and N  (noise).

To illustrate this, we have used the four independent signals (please see Figure 4.12), 

we mixed them randomly (please see Figure 4.13), and we extracted the signals via CCA 

(Figure 4.14), and SFA methods (Figure 4.15).
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Figure 4.12: All four original signals.

We calculated the correlation between the extracted signals via applying the SFA 

and CCA. It appears that these estimations are almost the same (as the theory says 

that as well). The correlation between the original signals and the extracted signals was 

0.9999 which is almost one. Note that the order of the extracted signals from CCA and 

SFA were the same. The spatial distributions of the extracted signals via CCA are very 

similar to those extracted by the SFA method.

4.6 Summary of Contributions

In this chapter we presented Signal Fraction Analysis, a general tool for computing 

subspaces for decomposing data into potentially useful features. We presented the row- 

energy and column-energy optimization problems for signal-to-signal ratios, derived the 

resulting generalized singular value problem and distinguish this setting from the stan

dard SVD. We proposed that preprocessing mappings of the data be used in situations 

where domain specific knowledge is available as a guide. More generally, we suggest an 

optimization problem where these mapping functions may be adapted using a problem 

dependent objective function. We illustrate these ideas using Wavelet and Fourier fil-

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Mixed signals

100 300 400 500200
The Mixed signals

300
The Mixed signals

500100 200 400

100 200 300
The Mixed signals

400 500

500100 200 300 400

Figure 4.13: The mixed signals.
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The signals extracted via CCA
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Figure 4.14: Extracted signals via CCA.
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ters applied to EEG data. We present a self-contained description of the motivating 

maximum noise fraction method and describe a procedure for estimating the covariance 

matrix of the noise. We extend Signal Fraction Analysis by introducing novel constraints 

and solving them. We propose two new GSVD type problems for computing subspace 

representations. Finally, we draw a connection between Signal Fraction Analysis and 

Canonical Correlation Analysis.

The signals extracted via SFA
0.2

- 0.2
100 200 300

extracted via SFA
400 500

The sii
0.2

- 0.2
100 200 300

The signals extracted via SFA
400 500

0.2

- 0.2
100 200

The signals extracted via SFA
300 400 500

0.2

- 0.2
100 200 300 400 500

WANWiANVNAN'

_____________I_____________ l_____________ i_____________ i_____________

Figure 4.15: Extracted signals via SFA.
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C hapter 5

KERNEL SIGNAL FR A CTIO N  ANALYSIS

An important chapter in the history of empirical data analysis began with the in

troduction of the idea of a support vector machine (SVM) for pattern classification 

[98, 99, 100]. SVMs effectively converted an important linear classification algorithm 

based on the computation of dot products to an effective nonlinear algorithm. Moti

vated by these ideas, other algorithms for empirical data analysis based on dot products 

have also been extended to nonlinear versions. Of particular relevance to this work is 

the extension of the basic principal component analysis (PCA) algorithm described in 

Chapter 2 to a nonlinear, or Kernel PCA (KPCA) algorithm. Since we view Signal 

Fraction Analysis (SFA) to be a variation of PCA focused on splitting subspaces asso

ciated with two data sets, it is natural to consider the impact of employing the SVM 

like non-linearization idea to SFA. We note that now a large number of effectively linear 

algorithms have been extended nonlinearly using the SVM suite of ideas, including Ker

nel Fisher Discriminant Analysis (KFDA) [70, 44], Linear Discriminant Analysis (LDA) 

[110], kernel Gram-Schmidt [69], kernel canonical correlation analysis, and Kernel Par

tial Least Square (KPLS) [10, 1, 18, 65]. All these kernel-based methods have permitted 

researchers to provide additional insight into problems where strictly linear transforma

tions are inadequate. Based on these successes we are motivated to extend SFA to kernel 

SFA, or KSFA, in a fashion to be described below.

In this chapter, we present an overview of some of the existing and relevant kernel 

methods, and we propose a new method that performs nonlinear Signal Fraction Analysis
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(SFA) or kernel based SFA useful for the feature extraction and data reduction in case 

of nonlinearly separable data sets and with the help of toy examples we compare kernel 

SFA (KSFA) and KPCA, and we show the advantage of applying KSFA with respect 

to KPCA. In Chapter 7 we see that KSFA can also outperform KPCA on the Brain 

Computer Interface (BCI) Problem.

The outline of this chapter is as follows: In Section 5.1 we present some of the most 

commonly used kernel methods; to motivate our work as well as to provide a basis for 

comparison, in Section 5.2 we outline how PCA generalizes to KPCA. In Section 5.3 we 

generalize SFA to kernel signal fraction analysis, or KSFA. We propose two methods to 

solve the GSVD problem in KSFA in Sections 5.3.1 and 5.3.2. In Section 5.4 we illustrate 

some advantages of KSFA over KPCA on a toy problem.

5.1 O verview  of K ernel M eth o d s

When the data is inherently nonlinear, e.g., when the relationship between two data 

sets cannot be modeled by linear mappings, it is challenging to obtain a satisfactory 

analysis of the data by directly applying linear schemes (here we refer to the linear 

methods like PCA in Section 2.2 and SFA in Section 4.3). The most obvious example is 

the failure of linear discriminant analysis to effectively classify data that is nonlinearly 

separable. In this situation a kernel based extension to such a linear method is highly 

appropriate. Thus we are motivated to generalize these linear methods to nonlinear 

versions where possible.

We illustrate the potential of kernel methods via a now well-known example. Con

sider the data shown in Figure 5.1. The circles label points associated with class I and 

the crosses label points associate with class II. No single straight line can partition the 

data into its two separate classes, hence it is not linearly separable, i.e., it is nonlinearly 

separable. However, if we apply  th e  nonlinear m ap

( x i , x2) G R 2 =4- (x i , x2,xj  +  xf) E R 3 (5.1)

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0

oo15 ooO
o oo

10

5

0

•5

-10

- 1 5 OO

-20
- 1 5 -10 ■5 0 5 10 15

Figure 5.1: Nonlinear separable data. Class I points are labeled with circles and class II 
points are labeled with crosses. Note that no single line can partition the classes.

the data becomes linearly separable in R 3 and now it can be separated via linear hyper

plane; see Figure 5.2. The image space of this mapping is often referred to as a feature 

space since the components of the data now possess features (or coordinate values) that 

allow it to be separated. Obviously, such feature spaces are treated with a certain amount 

of awe.

More generally, we can propose the existence of a mapping function

: x e 4>{x) e (5.2)

of which Equation (5.1) is a special example. More generally, we will be interested in 

the Veronese mapping of degree d which takes an n-tuple (xi , . . . ,  x n) to all monomials 

of degree d [69]. The dimension of the feature space under that action of the Veronese 

mapping is
(d + n)\ 

m ~  d\n\
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Figure 5.2: The result of mapping the data in Figure 5.1 using Equation (5.1). Notice 
that now the data may be separated by an appropriately placed plane.

So, for example, if we are looking at data initially in 10 dimensions, and seek a Veronese 

mapping of degree 5 the dimension of the feature space has 3002 dimensions. Given this 

explosion of dimension this method would seem to have its shortcomings. However, for 

the Veronese mapping (as well as other mapping functions) there is a kernel trick which 

permits the inexpensive computation of dot products in the image space of the mapping 

<j). Specifically,

k(x, y) = {xTy)d (5.3)
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For example the polynomial kernel of degree two for x — (x i , x2) and z = (zi , z2) can be 

calculated via the following:

(x ■ z ) 2 =  (xiZi + x 2z2)2 (5.4)

= x\ z \  +  x\ z \  +  2x \Z\x2z2 (5.5)

=  ( ( x f , x%, y / iE^ ) , ( z f , z%, y /5z^ ) )  (5.6)

=  (5.7)

So this is a scaled version of the Veronese mapping.

The consequence of this observation is profound. Essentially it means that any al

gorithm which is based on the computation of dot products only, may be implemented in 

very high (even infinite) dimensions while invoking only very inexpensive computations. 

So while we envision the action of the general mapping function as illustrated in Figure 

5.3, these points in the image space 4>{x) need never actually be computed. Only the dot 

products are computed via the kernel function, i.e.,

k{(f>(x), <f>(y)) = (j)(x)T4>(y) (5.8)

In pattern recognition we need to have some kind of similarity measurement to be able 

to study new data points and compare patterns. Dot products are known to be a good 

type of similarity measurements [28]. Computing the dot product lets us carry out all the 

geometrical constructions based on angles, lengths and distances. Not surprisingly, many 

interesting algorithms in pattern analysis only require the computation of dot products.

In addition to the Veronese mapping described above, other well-known and com

monly used kernel functions are Gaussian radial basis functions (GRBF),

K { x u x 2) =  e~U ̂ - ^ | | 2 )  ( 5 > 9 )

and neural network kernels

K ( x i , x 2) = tanh(a(xj • x 2) +  b), a , b>  0  (5.10)
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Figure 5.3: Separation of nonlinear mixed data in input space via mapping function.
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For more information about the neural network kernel one might find [20] useful. Thus, in 

summary, a kernel function provides us with a high-dimensional similarity measurement 

[28].

The idea of using a kernel function has been introduced in the field of support vector 

machines (SVM) [99]. Support vector machines use a particular type of function induced 

by a kernel and they are powerful tools for data classification. Classifying data is achieved 

by a linear or nonlinear hyperplane in the input space [99, 23, 17, 19, 67]. Briefly speaking, 

SVMs are linear learning machines that produce a generalization from input space to 

high dimensional feature space. Indeed, we can think of SVM as a linear algorithm in 

high dimensional space (feature space) which does not involve any computations in that 

high dimension; however, all computations to compute the separating hyper plane can 

be performed directly in input space by the use of kernel functions without the need of 

knowing the nonlinear map into feature space (see Equations (5.4) - (5.7)).

Apparently, Aizerman was apparently the first to talk about kernel trick [2]. It is a 

widely used tool today.

5.2 Kernel Principal Com ponent Analysis (K PCA )

Principal component analysis is based on dot product computations and it closely 

related to singular value decomposition (see Section 2.1). In Section 2.1 we showed 

the relationship between SVD and eigenvalue eigenvector problem and since in PCA we 

assume centered data set then the right singular vectors Vk € V  are the same as the 

principal components of the data set Xj’s and the eigenvalues of £  =  X TX  are the same 

as square of the singular values.

PCA is a subspace method that can detect the linear structure of the data. However, 

if the data has a nonlinear structure (e.g., quadratic forms) it is well known that PCA 

is non-optimal. When working with the data set that has nonlinear features it has 

been proposed that to draw more accurate conclusions we should explore kernel PCA,
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or KPCA [71]. KPCA is generated via mapping the input space (original data set) to 

feature space (higher dimension space than the input space) and using the kernel trick.

Let X  E R nxp, n > p be a multivariate centered data set and X T = [:ci, x2, ■ ■ ■, x n], 

PCA diagonalizes the covariance matrix of the data. If we denote the covariance of the 

data by E =  X TX ,  then its eigenvalue-eigenvector decomposition is

T,Vi = \iVi i = l , . . . , p  (5.11)

Where (A,, Wj), i = 1, . . .  ,p is the i-th eigenvalue eigenvector pair for E . Via some 

manipulation we could show that the eigenvectors Vi,V2 , ■ ■. ,vp are the linear combina

tions of the data x \ ,X 2 , . . .  , xn

n

=  i = j  = l , . . . , n  (5.12)
i=i

Where,

8(i,j) (XjiVi^jTlXi (5.13)

The eigenvectors represent a set of uncorrelated variables that determines the directions 

of maximum variability in the data which is called principle components, and eigenvalues 

show the amount of information provided by the respective principal component [71]. In 

most of the time we work with the largest eigenvector (eigenvector that corresponds to 

the largest eigenvalue) to project the data.

Now we propose to illustrate the comparison between PCA and KPCA in feature 

space following [8 6 ].

Given mean subtracted (centered) data set X  € R nXp, n > p the covariance matrix 

of the data can be calculated via

n
£  =  1 / n ^ X i x f  = l / n X TX  (5.14)

i= 1
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Since PCA diagonalizes the covariance matrix S then we have to solve the eigenvalue 

eigenvector equation

Xv = Zv  (5.15)

In Equation (5.15) A is the eigenvalue and v 6  R p is the eigenvector for the covariance 

matrix. If we substitute Equation (5.14) in Equation (5.15) we get

n

Xv =  'Ey — l / n ’y^^XjxJv (5.16)
i= 1

if we left multiply Equation (5.16) by x j  for j  = 1, . . . ,  n we get

n

Xxjv = l / n ' Y 2 xJ x i x f v  (5.17)
i= 1

If we use the dot product notation, (i.e., (x.y) = x Ty ), Equation (5.17) leads to a more 

simplified form like

X(xj ■ v ) =  (xj ■ 'Ey) for  j  = 1, . . . ,  n (5.18)

We formulated the PCA in a way which uses dot product. Equation (5.18) is based 

on dot product which makes it possible to use the kernel methods for generalizing the 

idea (the outer product formulation of the covariance matrix does not lend itself directly 

to being kernelized). At this point we assume that the data has been mapped to a higher 

dimension that is called feature space (i.e., F) via nonlinear mapping f

(j>: R p — > F  (5.19)

although we emphasize that this mapping actually is never computed. We should again 

assume that the new mapped data set 4>{x i) is centered i.e., 1 ^(2^) =  0  (more on

centering in high dimension space can be find in [8 6 ]) therefore the covariance matrix of 

the new data set equals
n

S =  l / n £  <P(x i)4>(xi)T (5.20)
%— 1
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At this point we follow our earlier formulation of PCA and find the eigenvalue and 

eigenvectors for the new covariance matrix of the mapped data set

XV = EC (5.21)

If we pre-multiply Equation (5.21) by <j)(xj) and do the same simplification as we did 

before for PCA

\{4>{xj) ■ V)  =  {<t>{xj) ■ EC) f o r  j  =  1, . . . ,  n (5.22)

From the fact that all eigenvectors V ; correspond to nonzero eigenvalue A; lie in the span 

of the data 4>{xi) i — 1 , . . .  ,p we get [8 6 ]

n

V  = ^  a.i<f)(x i) i = l , . . . , n  (5.23)

If we combine Equations (5.18) and (5.23), we get

n n n

X Oiiifixj) ■ 4>(xi)) =  1/n Y 2  OLi(f{xj) ■ Y 2  <t>(x k))(f{xk) • f (xi))  (5.24)
i= 1 i—1 k= 1

for all j  = 1 , ,  n.

A kernel function K itj projects Xi and Xj in input space into a higher space which 

we call feature space. For example if the mapping function from input space to feature 

space is <p, then

Ki j  =  ^ ( x i f f i x j )  (5.25)

Defining a matrix called kernel matrix K  with the elements K^j  and substituting into 

Equation (5.24) we get

nXKa = K 2a  (5.26)

Here, a  is a column vector of cq’s. Equation (5.26) is the same as

nXa = K a  (5-27)

In Equation (5.27), the relationship between KPCA and dot product is clear.
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Throughout this work we have used polynomial kernels of degree d as defined in 

Equation (5.3). In the toy examples that follow we considered values of d from one 

to four. In the simulations we use contour lines which connect points with the same 

feature value. They are lines of constant projections of the test point onto the principal 

components. The shape of the contour lines depends on the distribution of the data and 

the kernel function.

5.3 Kernel Signal Fraction Analysis (KSFA)

In this section we propose to extend SFA in a manner analogous to the kernel PCA. 

Similarly, we refer to the new method as KSFA. In this section we propose two ways to 

solve the GSVD problem corresponding to KSFA. First, we propose a direct method to 

solve GSVD. The second method pre-processes the data to show that the KSFA problem 

can be solved using KPCA. Toy examples in this section suggest the promise of KSFA 

when compared to KPCA on a noisy data set. We present an application of KSFA to 

BCI in Chapter 7.

5.3.1 D irect KSFA

In this derivation we have assumed that we have both data matrices A  and B  in SFA 

estimated. Since we first propose to apply KSFA to a nonlinear function with additive 

noise we will assume that the matrix A  consists of the data matrix X  and that the matrix 

B  is a high pass filter of the data which we denote dX.  As we learned from section (4.3.2) 

the resulting matrix d X Td X  is an estimate for the covariance matrix of the noise; see 

also (4.3.2). Therefore, we use Equation (5.28)

N h N  = d X Hd X/  2 (5.28)

as the estimate for the noise covariance matrix and our generalized singular value de

com positions tu rn s  to  be like E quation  (5.29)

s \ X T X  a = c2i d X TdXa  (5.29)
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and in cases where s* is not zero

X T X  a =  (A/2 )dXTdXa (5.30)

Where,

c?/s? =  A/2 (5.31)

Solving Equation (5.30), leads to find the generalized singular vectors (a’s) and general

ized singular values (A/2) and provides the estimation of the desired signal (or we could 

say it separates signal from noise). Thus, if

X  =  [xi,x2, . . .  , xp\ (5.32)

and

dX = [dxi, dx2 , . . . ,  dxp] (5.33)

we map Equations (5.32) and (5.33) to feature space by

4>{X) =  [(j){xi), (f){x2) , 4>{xf )) (5.34)

and

dcf)(X) = \d<p{xi), d(f>(x2), • • •, dc()(xF)] (5.35)

Therefore, Equation (5.30) becomes

cf>(X)T(t>(X)b= {t / 2)d<t>{X)T d(f>(X)b (5.36)

Now, defining

K  = ^ { X f ^ X )  
dK = d<f>(X)Td<p(X) 
r] = r / 2  

. b =  ^20i(/){xi)
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the ( i, j)  — th  component of matrix K  and dK  can be written as

k j  =  (<f>(xi) ■ (5 .38)

and

dkij = (d<j>(xi) • d(j>(xj)) (5.39)

Now substituting Equations (5.37), (5.38), (5.39) in (5.36) and pre-multiply both 

sides by (j>[xk), we get

(4>(xk) ■ =

E dcf>(xi)d(f)(xj) /d/ (̂*r )̂) (5.40)

Equation (5.40) in matrix form is

K 2P =  rjKdKp  (5.41)

Equation (5.41) is the same as

K p  = rjdK/3 (5.42)

The above process explains our proposed kernel based SFA (KSFA).

5.3.2 KSFA via N oise Adjustm ent for SFA

In this section, we first adjust or remove the noise before applying the kernel function 

to SFA method [74, 58, 6 8 ].

From Section 4.3 we know to apply SFA transformation one should solve the GSVD

problem that is X TX a  =  AN TNa . Lets denote E =  X TX ,  and Ê v =  N TN] therefore,

the GSVD problem simplifies to

Ea =  AE (5.43)
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We first find the eigenvalue matrix (5 ), and eigenvector matrix (A) for the noise covari

ance matrix T,N = N TN  . Thus, we have

A t En A = B, A t A = I  (5.44)

Then we need to transform our data to a new set of data with the identity matrix as its 

noise covariance matrix. For this we calculate

A = A B - X/2 (5.45)

Thus,

A t En A = I, ATA = B - 1 (5.46)

Now, if we pre-multiply Equation (5.43) by AT and do the change of bases for a via 

a =  >la, we get

A TZAa  =  \ ( A TVNA)a (5.47)

We can simplify the right hand side of Equation (5.46) using Equation (5.47). Hence,

A TT,Aa = A a (5.48)

Now considering the data transformation as

X  =  ATX  (5.49)

and denoting

t  = X TX  (5.50)

we have

Ea =  A a (5.51)
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Therefore, to apply KSFA first we could adjust the noise and then apply the KPCA 

on the transformed data set and find the eigenvalue, eigenvector for the covariance matrix 

of the transformed data set and substitute it in a =  Aa  to find the weights.

Now we formulate and summarize KSFA method based on adjusting the noise. First, 

we estimate the covariance of the noise if it is unknown. Then we find its eigenvalue 

matrix B,  and eigenvector matrix A  to calculate the transformation matrix A

A = A B ~ l / 2 (5.52)

We transform the original data X  to a new data set A  as

X  = ATX  (5.53)

Finally, we apply KPCA to this transformed data. This process provides us a KSFA via 

adjusting noise.

5.4 Toy Exam ples

In this section we use toy examples and apply KPCA and KSFA and we compare 

these two techniques and we show the advantage of applying KSFA. Our first technique 

is KSFA via applying noise adjustment (i.e., whitening the covariance of the noise as 

pre-processing) that we call it KSFA via noise adjustment. To compare the performance 

of KPCA and KSFA we provide a toy example and use polynomial kernels from degree 

one to degree four for both cases KPCA and KSFA in Section 5.4.1. We generated

the contour lines of the constant component values which connect points with the same

feature. Then in Section 5.4.2 we have provided another toy example with sinusoidal 

property.

5.4.1 Quadratic Toy Example

In [86], the  au thors have shown th a t for th e  toy example

y =  x 2 +  N,
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KPCA is capable of extracting interesting features from the data. Here we show that 

for the same toy example KSFA extracts different data features and produces a lower 

reconstruction error than KPCA. We select the x  values to have a uniform distribution 

on the interval [—1 , 1] and the y values to be the squared power of x  plus a centered 

normal noise with standard deviation equal to 0.2. Therefore, we have

y = x 2 +  e (5.54)

where

e ~  N (0 ,0.22) (5.55)

We consider 50 data points. In our work, we ran set of experiments using polynomial 

kernels of degree one to four. The kernel function used in our simulation is

K (x ,y )  = ( x - y ) d fo r  d =  l,2 ,3 ,4 . (5.56)

Figure 5.4 shows the KPCA performance with kernels of degree one (first column

in the left) to degree four (last column in the right). It is clear that the first column 

on the left is like performing a PCA in input space and shows two eigenvalues. Since 

kernelizing is mapping nonlinearly the input space to feature space, the contour lines 

of constant projections on the principal components are nonlinear for kernels of degree 

two and more. The contour lines show the structure of the data. The last row with 

low eigenvalues are related to the noise subspace and shows the amount of information 

that can be used considering that principal component and since the related eigenvalue 

is small we conclude that there is not much information here.

We have used the same toy example to compare KPCA and KSFA via noise adjust

ment performance. One important characteristic of KPCA, like PCA, is data reduction. 

Figures 5.4 and 5.5 show that we even could do further dimension reduction via apply

ing KSFA via noise adjustment over applying KPCA. It is because in Figure 5.5 the
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-1 0 1 - 1 0  1 - 1 0  1 - 1 0  1

Figure 5.4: Toy example for performing KPCA. From left to right the degree of the 
polynomial kernel increases from one to four. From top to bottom the contour lines of 
constant principal components associated to decreasing order of eigenvalues are shown.
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E.val=0.001 E.val=0.001val=0.000 val=0.002

Figure 5.5: Toy example for performing KSFA. From left to right the degree of the 
polynomial kernel increases from one to four. From top to bottom the contour lines 
of constant maximum signal fraction associated to decreasing order of eigenvalues are 
shown.
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eigenvalues in the second and third row are very small showing that these components of 

maximum signal fraction consist of more noise than signal (if we call the data as our sig

nal). Hence, ignoring the second and third component of maximum signal fraction does 

not cause missing much of information. Thus it suggests that just the first maximum 

signal fraction component would be enough to account for most of the information live 

in the original data set. However, in KPCA case we need to use the first two components 

to be able to use as much information as possible. These points result in further reduc

tion via applying KSFA. Therefore, the simulation shows that applying the KSFA has 

potential advantages for separating signals (or signal and noise) over SFA. This result 

very interesting, but possibly not too surprising given SFA’s performance compared to 

PCA’s performance on the signal separation problem.

We also kernelized the SFA method directly without preprocessing the data and we 

did the simulations on toy examples to compare the performance of SFA and KSFA. In 

this case, we use the same toy example introduced in Section 5.4 , and we apply it to 

KPCA and KSFA and we compare these two techniques for polynomial kernel functions 

of degrees one to four. In our toy example, standard PCA and standard SFA lead to two 

nonzero eigenvalues and generalized eigenvalues, respectively (first left column in Figures 

5.6 and 5.7. However, nonlinear PCA and SFA allow more features (PCA components 

and SFA components) to be extracted.

In Figure 5.6, nonlinear PCA contains contour lines of constant feature values show

ing the structure hidden in the data better than in linear PCA case. We see that the 

last components show almost the same behavior for different polynomial degrees. It 

seems that the last principal component associated to the smallest eigenvalue picks up 

the variance caused by the noise (this is more obvious in the case of polynomial of degree 

two; see the second column in Figure 5.6). This means, by ignoring the last component 

we can reduce the noise and do the noise reduction.
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Figure 5.6: Toy example for performing KPCA. From left to right the degree of the 
polynomial kernel increases from one to four. From top to bottom the contour lines of 
constant principal components associated to decreasing order of eigenvalues are shown.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GSVal=0.98876

-1 0 1 
GSVal=0.011236

1

GSVal=0.85939

f•0.51
- 1 0  1 - 1 0  1 
GSVal=0.13275 GSVal=0.22536 

1

GSVAI=0.76413 GSVal=0.51064

-1 0 1 
GSVal=0.46258

0  1 
GSVal=0

-0.5

a

0  mi -  P :  . . :  V-... «*•

GSVal=0GSVal=0

0  1 
GSVal=0

- 1 0  1 - 1 0  1 - 1 0  1 
GSVal=0.0078649 GSVal=0.0056862 GSVal=0.012304 

1
0  p

- 0 .5 *
1 - 1  0  1 - 1  0  1 

GSVal=0.0048203 GSVal=0.007565
1 1 

0.51** 1 0.5
0.5 L — -0. 5

- 1 0  1 - 1 0  1 
GSVal=0 GSVal=0

-1 0 1 
GSVal=0.0069054

1
0.5

0
-0.5

• • 4ft 
• * *» • *

1
0.5

0

• • 
• v» ••

1
0.5

0
-0.5 -0.5 • V •

-1 1 -1
-0.5 

1 -1

Figure 5.7: Toy example for performing KSFA. From left to right the degree of the 
polynomial kernel increases from one to four. From top to bottom the contour lines of 
constant SFA components associated to decreasing order of generalized eigenvalues are 
shown.
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In Figure 5.7, KSFA contains contour lines of constant feature values showing the 

structure hidden in the data better than in linear SFA case. Here again we see that the 

last SFA components have the same behavior for different polynomial degrees, even their 

behavior is similar to the last components in PCA case. These results, on this example, 

suggest the potential for noise reduction in both SFA and PCA and we can obviously 

look at the last components in both Figures 5.6 and 5.7 which are associated with small 

eigenvalues and generalized eigenvalues as components that can be ignored to do the 

noise reduction (or we can connect them to noise subspace extraction).

If we compare the results in Figures 5.6 and 5.7 we see that applying KSFA could 

reduce the noise better using fewer components. It is because first SFA components in 

each polynomial degree contain more signal than noise which is not the case in KPCA. 

Note that, PCA finds the direction of maximum variance in the data which is mixed with 

noise; however, SFA finds the direction of maximum variance in signal and minimum 

variance in noise meaning that SFA picks directions of mostly just signals.

The results show that both KPCA and KSFA are subspace methods that apparently 

can separate the signal subspace and noise subspace, and both methods extract the 

structure of the data. However, comparing Figures 5.6 and 5.7 and looking at the 

eigenvalues and generalized eigenvalues for both methods suggests that KSFA we can 

do a better job in feature extraction.

Looking at the second column in Figures 5.6 and 5.7 shows that two of the contours 

are essentially the same while in KPCA case we see a set of concentric circles for basis 

vector two and in contrast KSFA case shows almost straight lines. These become clear 

in Figures 5.8 and 5.9 (the difference is that one is a parabola and one is the bowl). 

To see the results in three dimensions we also generated the figures for a better way of 

visualizing the problem (Figures 5.8 and 5.9). We viewed the results for another run 

with the three dimensional figures to be able to further interpret the behavior of KPCA 

and KSFA.
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Figure 5.8: Toy example for performing KPCA in 3-D. From left to right the degree of 
the polynomial kernel increases from one to four. From top to bottom the contour lines 
of constant principal components associated to decreasing order of eigenvalues and the 
hyper-plane that captures the structure of the data are shown.
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Figure 5.9: Toy example for performing KSFA in 3-D. From left to right the degree of 
the polynomial kernel increases from one to four. From top to bottom the contour lines 
of constant SFA components associated to decreasing order of generalized eigenvalues 
and the hyper-plane that captures the structure of the data are shown.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figures 5.8 and 5.9, show the results for performing KPCA and KSFA respectively 

on the same toy example that we used previously. In this section for each graph we have 

the contour lines as well as the hyper-planes; the surface of the projections of test points 

in feature space onto the eigenvectors and generalized eigenvectors for KPCA and KSFA 

cases respectively that capture the structure of the data.

From the results in Figures 5.8 and 5.9, we observe the same feature (feature for 

generated data which is a quadratic feature) is captured in KSFA case with polynomial 

degree of two (see the first graph in the second column in Figure 5.9).

The hyper-planes capture the structure of the data in both Figures 5.8 and 5.9 but 

it appears that via KSFA these hyper-planes find the structure of the data in less steps 

(note that the structure of the data was quadratic and the first figure in the second 

column from left in Figure 5.9 shows it all, however it is not that clear in KPCA case) 

when they also capture more signals than noise at the same time, and this is not the case 

in KPCA. Here again we see that the last SFA hyper-planes have almost the same shape 

for different polynomial degrees, even their shapes are similar to the last hyper-planes in 

PCA case.

Even these simplified examples are non-trivial to interpret. In Chapter 7 this com

parison is facilitated by the existence of a problem dependent objective function. The 

next toy example helps us visualize the differences between KPCA and KFSA.

5.4.2 S inusoidal Toy E xam ple

As described above, it is nontrivial to make an objective interpretation of what is 

happening when one kernelizes SFA and PCA. In part this is due to the fact that the 

data is never actually computed in the feature space, and we are left to infer what is 

happening without actually seeing it. However, for low-dimensional examples, (here we 

select the domain to have dimension 2  and the degree of the polynomial to be one to 

four) we can actually compute explicitly what is happening in the range, of feature space.
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The data
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Figure 5.10: The data (x ,s in 7nr) mapped using a Veronese mapping of degree the same 
as the column number.
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The basis resulting from implementing KSFA
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Figure 5.11: The basis resulting from implementing KSFA. The basis vectors correspond 
to the data in Figure 5.10.
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The basis resulting from implementing KPCA
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Figure 5.12: The basis resulting from implementing KPCA. The basis vectors correspond 
to the data in Figure 5.10.
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Now we use the data set generate from 50 points sampled evenly in x between (-1,1)

as

y = sin(7nr) +  N

Our first data matrix X\ consists of 50 rows of these values of (x,y).  For a Veronese 

mapping of degree two each sample is now (x 2, y2, V%xy), hence X2  is a 50 x 3 matrix. For 

the Veronese mapping of degree 3 we have each point mapped to (x3,y 3, y/3x2y, %/3xy2) 

and for degree 4 (x4, yA, V6x2y2, 2 x 3y, 2xy3). The resulting data is shown in Figure 5.10. 

The associated KSFA and KPCA bases are shown in Figures 5.11 and 5.12, respectively. 

In these figures it is striking how the KSFA mode with the highest signal to noise ratio 

picks up the clean data x  raised to the appropriate power. This example illustrates clear 

differences between the behavior of KSFA and KPCA.

5.5 S um m ary  o f C o n trib u tio n s

We have proposed a nonlinear extension to signal fraction analysis based on a kernel 

method, i.e., kernel signal fraction analysis. In addition, we have proposed a second 

algorithm that uses noise adjustment in the data domain before kernelization. We present 

a detailed derivation of the methodology using kernel principal component analysis as a 

prototype. We compare these methods using two toy examples and illustrate the benefits 

of kernel signal fraction analysis.

For example, in [34] Gordon has used an extension on MNF via applying nonlin

ear form of it to time-dependent airborne electromagnetic (AEM) data. He generated 

new bands by raising the original bands to the powers of q — 1 , . . .  , 6 , effectively con

verting the linear MNF transformation to a polynomial filter. In his work, he has used 

the inverse matrix for the signal covariance and applied the eigenvalue decomposition 

to find the linear transform coefficients. He showed that this generalization leads to 

improved performance over the basic linear MNF; however, in general this method can 

be characterized as a narrow extension of MNF while the work proposed here contains 

this approach as a special case.
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C hapter 6

A PPLICATIO N  IN SIGNAL SEPARATION A N D  CO M M UNICATION

In this chapter we investigate some applications of SFA in adaptive beam forming for 

wireless communications. In a wireless communication system the base station commu

nicates with a number of mobiles simultaneously. Hence, in the course of communication 

with a particular mobile the base station not only receives signals from that mobile but 

also from other mobiles. This enhances multi-user-interference (MUI) and degrades the 

performance of wireless systems. Multiple access (MA) schemes have been developed to 

reduce MUI effects by generating a form of orthogonality between signals transmitted 

to (or received from) mobiles. Space division multiple access (SDMA) and code division 

multiple access (CDMA) are two popular multiple access schemes [63].

SDMA is achievable via adaptive smart antennas. It reduces interference effects and 

enhance wireless network capacity by directional-beam antennas [63]. The ultimate goal 

of adaptive antennas is to create an antenna pattern with its main lobe directed toward 

the desired user and its nulls directed toward the interfering users. This is possible via 

beam forming techniques. In a time varying environment, this process is accomplished 

using adaptive beam formers.

Adaptive beam formers are essentially time varying optimal filters that make the 

optimum estimate of the transmitted signal via minimizing interference effects. Adaptive 

beam formers observe the received signal (which is a merger of the desired signal, inter

fering signals and noise) and generate the finest estimate of the desired signal by applying
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weight matrix to the observed data. This weight matrix is computed via optimizing a 

cost function, e.g., signal to noise ratio (in SFA).

In CDMA schemes the orthogonality is generated by assigning orthogonal codes (in 

time or frequency domain) to the users [63]. If the codes are applied in the frequency do

main, it is called multi-carrier CDMA (MC-CDMA). In our work, we merge multi-carrier 

code division multiple access (MC-CDMA) systems and adaptive antenna arrays and we 

apply SFA technique as a beam forming technique to minimize the interference and 

noise effects. Via the merger of SFA and MC-CDMA systems we achieve: 1) A very high 

probability-of-error performance via reducing the interference effects using both beam 

forming scheme and multiple access technique, reducing fading effects using frequency 

diversity inherent in MC-CDMA, and reducing noise effects with SFA technique, and 2) 

A very high capacity via directionality created by antenna arrays and MC-CDMA.

Traditionally, the key to meeting network capacity demands in a wireless environ

ment has been spatial reuse: Split the wireless communication coverage area (e.g., a city) 

into smaller areas called ’’cells” [78, 84, 85, 8 8 ]. The base station (BS) located at the 

center of cell transmits the signals to all users in its cell and receives the signals from all 

these users. Neighboring cells avoid interference with one another via either frequency 

reuse [77, 15, 16, 111] or code reuse [57, 72] scheme (or possibly a combination of both) 

(see figure 6.3). This cellular concept increases power efficiency by reducing the amount 

of power that must be transmitted from BS to users and vise versa. This reduces the 

cost of transmitters (power amplifiers) at both the BS and mobile user.

Adaptive antenna array forms main lobes in the direction of the intended users and 

simultaneously produces nulls at the positions of other users. In this way, users’ signals 

are effectively separated from one another based on each users’ geographic location, and 

this allows for significant gains in network capacity. As evidenced from this discussion, 

adaptive antenna arrays are a technological innovation with a very promising future in 

the world of wireless telecommunications. Adding to the value of the antenna array is
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the fact that it not only provides significant increases in network capacity (measured 

by numbers of users per cell), it can alternatively improve signal quality (measured by 

probability-of-bit-error) via various transmit diversity techniques [4, 56, 76, 38, 108]. The 

main goal of adaptive antennas, i.e., steering the antenna main lobe toward the desired 

user and its nulls toward the interfering users is attainable by employing adaptive BF 

techniques. Adaptive beam formers are essentially time varying optimal filters make the 

best estimate of the transmitted signal by minimizing noise and interference effects in the 

observed signal. In general, the observed signal can be considered as the observed data, 

and adaptive beam formers can be viewed as data analysis techniques. In a wireless 

communication system, adaptive beam formers observe the received signal which is a 

merger of the desired signal, interfering signals and noise and generate the best estimate 

of the desired signal by applying a weight matrix to the observed data. This weight 

matrix is computed by optimizing a cost function.

In this dissertation, we have conducted a study to investigate the capabilities of 

SFA merger with MC-CDMA [multi carrier code division multiple access (MA) scheme] 

[3, 37]. MC-CDMA is emerging as a powerful multiple access protocol [87, 47]. In 

MC-CDMA, each user’s information symbol is transmitted over N  carriers (frequencies) 

simultaneously. To ensure orthogonality of all users’ data streams at the receiver, each 

user assigns a unique spreading sequence to the N  carriers.

In order to apply SFA beam forming technique to detect the signals transmitted 

from the desired user, base station (BS) incorporates an M-element antenna array whose 

elements are connected to a bank of MC-CDMA receivers, specifically designed for that 

user (user j).  The SFA beam former is applied to the output of receivers (here, MC- 

CDMA receivers). The output of SFA beam former would be an estimation of the 

transmitted signal by the desired user (see Figure 6.1. In Figure 6.2 the structure of the 

SFA beam former is shown.
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6.1 SFA and M C -C D M A  m erger

In this section, we represent the performance of SFA via a merger with MC-WCDMA 

systems. Here, we consider an uplink scenario shown in Figure 6.3. In this figure, the BS 

receiver structure has shown for a specific user that is called the desired user (here, user 

j).  Hence, the receiver of this user considers the signals from other users as interfering 

signals. The signals transmitted from users are assumed independent. In order to apply 

SFA BF technique to detect the signals transmitted from the desired user (user j),  BS 

incorporates an M-element antenna array whose elements are connected to a bank of 

MC-CDMA receivers, specifically designed for user j  (see Figure 6.1). The SFA BF 

is applied to the output of receivers. The output of SFA BF is an estimation of the 

transmitted signal by the desired user.

In MC-CDMA, each user’s bit is transmitted simultaneously over N  narrow band 

sub-carriers (frequencies) [102, 3, 37]. Sub-carriers are equally spaced in frequency by 

A /. To ensure that the users are separated at the receiver side, each user applies a 

unique spreading code to the carriers. Assuming BPSK modulation and a multi-path 

channel, the received signal vector r(t) at an M  - element array corresponds to:

K  vk N - l

a £ Vh P%bk[i]$(4>vkk) cos(2tt( / 0 +  n A f ) t  +  </>£) +  n(t) (6.1)
k = 1 "Ufc—1 n=0

Where bk[i] 6  —1,1 is the transmitted bit, / 0 is the carrier frequency, A /  =  1 /T„ ( 

Ts: Symbol time duration) is employed to maintain carrier orthogonality and /3£ € —1,1 

refers to the nth element of the spreading sequence of user k, k E [1, K], where K  = 1+Kj  

is the number of users and K[  refers to the number of interfering users (see Figure 6.1) 

[29]. is the fade amplitude which is a random variable considered equivalent over all 

antenna elements (assuming the elements are located close enough, e.g., the distance 

between these elements is d — A/ 2  ( A =  C/fo  is the wave length and C  is the speed of
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light), independent for different users, for each symbol durations Ts and each path Vk , 

and correlated over frequency components. The correlation coefficient between the pth 

subcarrier fade and the tyth subcarrier fade is characterized by [46]:

1
(6 .2)

In Equation (6.2) (A f ) c is the coherence bandwidth of the channel.

We assume 4 t  is the fade phase of the frequency component n of user k received 

from direction Vk, a uniform i.i.d. random variable between 0 and 2tt. Here after, to 

verify the capabilities of SFA, we assume 41* > he., the fade phase of the desired user, is

Here, is the angle of arrival (AOA) which is the angle between line of arriving signal 

from path Vk of user k and the main axis of the antenna array and assumed to be 

estimated, and is the Gaussian noise vector. At the MC-CDMA receiver of the j th  user, 

a bank of optimum filters permits the signal corresponding to one carrier, n orthogonal 

codes /?" of the j th  user to reduce inter-user interference. Hence the signals at each 

carrier frequency n corresponds to

Signals are combined over frequency components to enhance the performance of the 

carrier. Considering EGC over the frequency components, the received signal array 

corresponds to

tracked and removed. The vector ${41*) e  the array response vector of the fcth

user’s Vk th  direction (path) corresponds to:

(6.3)

N
ffi] =  £ V [ i ] (6.5)
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which is,

N  Vj N  K  Vk

+ £  £  £ + «
n = l  u3- =  l n = l  /c=l,fc^j i>fc =  l

(6 .6 )

The first term in the right hand side of Equation (6 .6 ) is the desired signal, the second

term is the interfering signal, and the last term is the noise. In general, the signal at the

input of SFA beam former is characterized by

f\i\ =  s[i\ +  fj[i\ (6.7)

where
N  Vj

= 5 EEE aT j ■ ^ ? )  ■ M*] (6’8)
n—1 Vj= 1

is the desired signal and

N  K  Vk

W] = E  E  E ( “ fe 1' ^ ( C ) e J'(̂ _^ )/3?/ )̂&fc[i] +  n (6.9)
n=  1 k = l , k ^ j  Vk = l

represents the total interference and noise.

6.2 Structure of non-overlapping window adaptive algorithm

Linear SFA beam former is a linear filter that generates an estimate of the transmit

ted desired signal. The linear filter (i.e., matrix w in Figure 6.2) is generated by solving 

an optimization problem. Here, we consider a non-overlapping window (NLW) adaptive 

realization of SFA (NLW/SFA). NLW/SFA BF incorporates a memory to save a block 

of data in the sliding non-overlapping windows of length T  (see Figure 6.2). The block 

of observed signals from an M-element antenna array (f[i] =  [ri[i],r2 [i],. . .  ,rM[i]]H, 

i € 1 , 2 , . . . ,  T)  within the time duration T  is used to generate and update the linear fil

ter components (i.e., matrix w components), and estimate the transmitted signals within 

the same portion of time.
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As described earlier, the linear SFA optimization problem maximizes the total signal- 

to-signal ratio, and leads to a GSVD problem [31, 91, 80, 64, 26, 62], The GSVD 

problem computes generalized eigenvectors (EVECs) (wm, m E 1 ,2 , . . . ,  M)  and their 

corresponding generalized eigenvalues (EVALs). Each EVAL is proportional to a signal- 

to-noise ratio (SNR). Hence, the computation complexity can be reduced by removing 

small EVALs (related to small SNR) and their corresponding eigenvectors (’’Dimension 

Reduction” box in Figure 6.2). Finally, the estimated desired signals corresponding to 

each eigenvector is combined to generate the final estimation of the desired signal.

As a result, at the output of the memory of Figure 6.2 we have a matrix of data at 

times 1 to T, and over all antenna elements m 6  1 , 2 , . . . , M  that can be represented by:

r = s +  i) (6 .1 0 )

where r E R MxT, and T > M

r =[ f [  l],f[2},...,r[T}} (6.11)

Here r[i] represents the received signal from elements 1 to M  at time i,i E 1,2, . . .  , T  .

The SFA transformation is a linear transformation of the received signal which estimates

the desired signal via maximizing the SNR. The estimation of the desired signal is defined 

by

s =  wT ■ r (6 .1 2 )

In Equation (6.12) wT = [wi,w — 2, . . . , w M]T E R MxM where wm E R M ,m E 

1 , 2 , . . . ,  M  are the weight vectors. These weight vectors are computed by maximizing the 

signal-to-noise ratio. SNR is defined as a ratio of SFA beam former output signal power 

(variance) and SFA beam former output noise power (variance). Assuming r of,s =  r • rT 

and Tn =  T] ■ r]T the GSVAL problem for all values of m  corresponds to

F obs^m ^mfn®ro (6.13)
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In Equation (6.13) Xm is the generalized singular value (GSVAL) and wm is the cor

responding generalized singular vector (GSVEC). In addition, ( \ / T ) Y 0bs € R MxM is 

the observed signal sample covariance matrix over antenna elements, and it is known. 

(1 /T )r„  € R MxM is the noise sample covariance matrix, and it is unknown and should 

be estimated. Equation (6.13) is solved for all (Am,wm) , m  € 1 , . . . , M .  Hence, the 

GSYAL problem for all values of m  corresponds to

r obsu; =  Arnu; (6-14)

where w is introduced in Equation (6 .1 2 ) and A — [A — 1,. . . ,Am] ■ Organizing the 

GSVALs in a decreasing order, the GSVALs and their associated GSVECs are Ai > 

A2 , . . . ,  > Am and w = [w 1 , . . . ,  wm], respectively. Hence, as shown in Figure 6.2, to gen

erate the SFA weight vectors, we should estimate the noise covariance matrix and solve 

the GSVD problem in Equation (6.14). Now, considering Am =  S N R rn +  1 generalized 

vectors associated to the small generalized singular values correspond to small SNRs. 

Hence, in order to reduce the computational complexity, we can reduce the dimension 

of w and change it to wred — [uq,. . .  , wq] , Q < M.  Here, for example, we disregard 

singular vectors corresponding to singular values that are much smaller than the largest 

singular value, i.e., Aj . This process is called the dimension reduction (Figure 6.2). Now, 

we have Q estimations of the desired signal from time 1 to time T  corresponds to

sred =  [s[l],. . .  ,s[T]]qxT (6.15)

where s[i] =  [si[i],. . . ,  sq[*]]t - These replicas of the desired signal estimations are associ

ated with high signal to noise ratios and combined to better estimate the desired signal. 

The combiner output corresponds to

s~d = [sd [!],•• ^SdiT}} (6.16)

where Sd[i} = Y^=  1 zqs ~  <?[*] when i = 1 , . . . ,  T  and z =  \z\ , . . . ,  zq\ is the weight vector 

corresponding to the combiner.
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6.3 Assum ptions in the Simulation

To investigate potentials of SFA beam former we assumed:

1. 7-element antenna array (M =  7)

2. 32-Carrier MC-CDMA (N  = 32)

3. The desired user, and six interfering users are at 0, +3, -4, +5, +50, -40, and +80 

degrees, respectively;

4. Perfect power control for all users and directions, this leads to the same average 

power for the signals received from different directions and different users;

5. T  =100-line memory, each sample corresponds to one transmitted bit (see Figure 

4.5);

6 . Ideal estimation of noise covariance matrix is assumed;

7. Equal gain combining technique in SFA Beam forming is used;

8 . Dispersion angles considered Gaussian with the means in assumption 3, and stan

dard deviations of 0, 2, 10 and 20 degrees. Hence, with the angular positions 

represented in assumption 3, angular standard deviations of 0 and 2 leads to a low 

dispersive channel while angular standard deviations of 1 0  and 2 0  leads to a high 

dispersive channel.

6.4 Simulation results

We apply SFA to adaptive smart antennas in wireless communication and beam 

forming to extract the desired signal from the received signal in different environments. 

We have considered two environments: a) low dispersive environment (see Figure 6.4), 

where the signals sent by users and scattered by the objects in the environment are not
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overlapping and b) high dispersive environment (see Figure 6.5) where the signals from 

different users are overlapping. We have generated the Probability-of-error performance 

curves in both low and high dispersive environments and the effect of length of data 

and perturbation in noise covariance estimation on the performance of wireless system 

is studied in this section.

6.5 Study o f SFA on High and Low Dispersive Environment

Assuming no interfering user the simulation results are shown for an additive white 

Gaussian noise (AWGN) channel (see the curves in the bottom in both Figures 6.7, and

6.6 as well as a fading channel (the curve at the top in Figure 6.7, also see Figure 6.6). 

Since there is no interfering user in these two cases, we call them ideal AWGN and ideal 

fading channels, respectively. In our work, the SFA beam former performance curves are 

compared with these two ideal performance curves.

The other two curves in Figure 6.7 represent SFA simulation results for a low dis

persive environment. It is seen that applying SFA makes the probability-of-error per

formance even slightly better than the performance in an interference free environment 

(the ideal performance curves).

This outcome can be explained as follows. The ideal fading channel performance 

curve shows the results for an interference free fading environment, while the noise effect 

still exists. However, when we apply SFA beam former for a low dispersive channel, it 

highly reduces both the interference and noise. These simulations represent the capability 

of linear SFA beam former to separate the desired user from the interfering users and 

extract its signals perfectly in low dispersive environments.

Figure 6.6 represents the degradation in performance in high dispersive environ

ments. Specifically, we see a considerable reduction in performance as the dispersion 

angle increases. This shows the linear SFA is not capable of separating the desired user 

signal from the interfering users’ signals in these environments.
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Figure 6.4: Low dispersive environment.
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Figure 6.5: High dispersive environment.
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Figure 6.6: probability-of-error performance simulation results.
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Figure 6.8: Comparisons between different lengths of data.

6.6 Study o f the D ata Length

We have also studied the effect of the selection of the number of time components 

on the performance of the receiver. In Figure 6.8 we have generated the performance 

simulation results allowing different widths (L) for the blocks of data. As we mentioned 

previously to convert the statistical means in Equation (4.17) to sample means in Equa

tion (4.18), a large number of samples should be available. The simulations results in 

Figure 6.8 represent a dramatic improvement in the performance as the number of time 

samples increases from 25 to 100. Increasing the number of samples beyond 100 does 

not change the performance considerably. We conclude that the length of 100 is a good 

selection.
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6.7  S tu d y  o f  th e  P ertu rb ation  Effects

We have also studied the perturbation effects in the noise and the observed covari

ance matrices of an SFA beam former merged with an MC-CDMA system in low and 

high dispersive environments.

To study perturbation effects, we define the percentage of perturbation as the ratio 

of the difference between the standard deviation of the true and the perturbed estimation 

of the elements of (noise or observed) covariance matrix, and the standard deviation of 

the true estimation of the elements of noise covariance matrix. Simulations show that a 

perturbation in the order of 10% degrades the performance of SFA/MC-CDMA, while 

the system tolerates minor perturbations in the order of 3%. This characterizes SFA 

beam forming a promising technique implemented in adaptive smart antenna for future 

generations of wireless communications.

We observe that this merger leads to a high probability-of-error performance com

pared to an ideal beam former in low dispersive environments, since SFA beam former 

reduces noise and interference effects at the same time while ideal beam former reduces 

just the interference effect. However, in high dispersive environments a lower probability- 

of-error performance is achievable.

SFA solves a GSVD problem, includes the noise and the observed covariance matri

ces; hence, perturbations in these matrices reduces the performance of this beam former. 

Large percentage of perturbations, e.g., in the order of 10 percent, highly degrades the 

performance of SFA systems.

We simulated the probability-of-error performance curves assuming 0% (ideal esti

mation of the noise or observed covariance matrix), 3% and 10% of perturbation gener

ated via Gaussian noise with variances of 0.001 and 0.01 respectively.

Figures 6.9 and 6.10 also show 3% of perturbation lowers the performance at the 

probability-of-error of 10~3 for 0 and 15 degrees of dispersion, respectively, which is
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relatively small. However, increasing perturbation to 10% and or considering a hybrid 

perturbation, the performance degrades by a large factor. Moreover, Figure 6.9 and 6.10 

represents the simulation results considering a hybrid perturbation of 3% and 10% in the 

observed and the noise signal covariance matrices, respectively. These results show SFA 

performance is highly sensitive to the accuracy of the noise covariance matrix estimation.

When we apply SFA beam former, it highly reduces both the interference and the 

noise effects. Hence, specifically, at low dispersion areas with an ideal estimation of the 

covariance matrices, the performance of SFA beam former is even better than ideal beam 

forming (See Figure 6.9).

This result represents the capability of linear SFA beam former to separate the 

desired user from the interfering users and extracts its signals in relatively low dispersive 

environments when the noise covariance matrix is ideally estimated and the received 

signal covariance matrix is computed with zero perturbation.

6.8 Beam  Pattern for Some Degrees of Dispersion

The probability-of-error performance simulation results generated for 0, 2 and 10 

degrees of dispersion are shown in Figures 6.11, 6.13, and 6.15, respectively. Assuming 

interfering users are ideally nulled, i.e., we completely remove their interfering effects, the 

simulation results are generated for an additive white Gaussian noise (AWGN) channel 

(see the curves in the bottom of figures 6.11, 6.13, and 6.15) as well as a fading channel 

(the next curve at the top the AWGN channel curve). Since there is no interfering user 

in these two cases, we call them ideal AWGN and ideal fading channels, respectively.

The other three curves from top to the bottom in Figures 6.11, 6.13, and 6.15 repre

sent BER simulation results for 10%, 3% and 0% of error in the noise covariance matrix 

estimation, respectively. Their associated beam pattern averaged over 25 samples is 

sketched in Figures 6.12, 6.14, and 6.16. The beam pattern nulls of Figures 6.12, 6.14,
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Figure 6.11: Performance simulation results for 0 degree of dispersion.
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Beam Patterns with DOA Estimation Error for 0 Degree of Dispersion
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Figure 6.12: Beam patterns for 0 degree of dispersion.
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Simulation results for 2 degrees of dispersion
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Figure 6.13: Performance simulation results for 2 degrees of dispersion.
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Figure 6.14: Beam patterns for 2 degrees of dispersion.
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Simulation results for 10 degrees of dispersion
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Figure 6.15: Performance simulation results for 10 degrees of dispersion.
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Beam Patterns with DOA Estimation Error for 10 Degrees of Dispersion
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Figure 6.16: Beam patterns for 10 degrees of dispersion.
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and 6.16 for estimation errors corresponding to 0% and 3% of perturbations are approxi

mately at -40, +50 and +80 degrees, which is the actual direction of the interfering users. 

The interference effect of users located at +3, -4, and +5 degrees is mainly reduced via 

MC-CDMA scheme. It is seen that the noise covariance matrix estimation perturbations 

corresponding to 10% highly degrades the beam pattern and performance. Hence, noise 

covariance estimation errors up to 3% do not have a major effect on the performance, 

which represents that SFA BF technique is relatively robust with respect to this type 

of error. These simulations represent that SFA promises performance and separability 

of interfering users which leads to higher capacity of wireless future generations and key 

applications of wireless systems such as positioning applications.

6.9 S um m ary  o f C o n trib u tio n s

This work introduces the potential of SFA beamforming technique via its merger 

with a wide band MC-CDMA system. We introduced the details of non-overlapping 

window adaptive realization of SFA. We also discussed the relationship between the SFA 

and DOA estimation via MUSIC. SFA and DOA estimation schemes are similar as both 

need the estimation of the noise covariance matrix. We proposed a novel structure for 

wide band MC-CDMA systems that in fact utilizes the benefits of both path diversity 

(inherent in direct sequence CDMA) and frequency diversity (inherent in MC-CDMA 

systems). Simulations were performed to study the impact of perturbations on the per

formance of SFA. Simulations confirm that SFA promises performance and separability 

of interfering users which leads to higher capacity of wireless future generations.
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C hapter 7

KSFA A N D  THE B R A IN  C O M PU TER  INTERFACE PROBLEM

Given the promising results in Chapter 5 of KSFA on toy problems involving inherent 

nonlinearities, we turn our attention to the Brain Computer Interface (BCI) problem to 

assess the extension of SFA to KSFA. The BCI problem has the advantage that it blends 

a real world problem with an objective measure of performance, i.e., the classification 

rate, that will help us assess KSFA. For the purposes of a complete evaluation we also 

include results for PCA and KPCA on the BCI problem.

7.1 The BCI Problem

The Brain Computer Interface problem involves developing approaches that will 

allow a person to control a computer via brain waves in a non-invasive fashion [7]. Cur

rently approaches for the BCI problem involve training subjects using bio-neuro-feedback 

to control their alpha and beta waves which can be readily detected by monitoring elec- 

troencephalographic (EEG) data.

We are interested in using pattern recognition approaches to classify EEG signals 

and to exploit this ability to assist a human to control a computer. Here we work with 

the EEG data set consisting of five tasks

• Resting task

• Imagined letter writing
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• Mental multiplication

• Visualized counting

• Geometric object rotation

Our data sets are collected as matrices X  of size 2500 x 7. Thus, Xy corresponds 

to sample i at electrode j .  To identify the task we will use the notation X ^  where 

H =  Each task has a set of ten trials, i.e., ten different instances where the

subject performed the task. To indicate the trial k for task p we use the notation X l>k. 

In real time each task had a duration of 10 seconds with a sampling rate of 250Hz. For 

more information see [50],

7.2 Signal Fraction M apping

7.2.1 W avelet, Fourier transform ation and KSFA

Generally, most of the signals are functions of time, i.e., time-domain signals, and 

it is necessary to extract features to aid in its analysis. Mathematical transformations 

would change the original data set into a new data set to reveal information hidden in the 

raw data set and make the interpretation and decision making easier. There are different 

transformations that can be applied on the original data set. Commonly used transforms 

include the Fourier transform and wavelet transform [9]. Plotting the time-domain signals 

we obtain the time-amplitude representation which is not always the best representation 

of the signal. In many signals most of the information is hidden in the signal frequency 

content. Frequency is a measure of signal rate change. It means when the signal is 

changing rapidly it has a high frequency, if the changing rate is low it has a low frequency 

and if the signal does not change at all it has a zero frequency. The frequency can be found 

by taking the Fourier transformation of the signal and is measured in cycles/second, or 

in ’’Hertz” . Hence, the Fourier transform gives the frequency components in the signal. 

The wavelet transform is a powerful tool to transform time-domain signals to a time
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scale domain. In this work we merge SFA and wavelet. We first transform the data via 

Harr wavelet transformation and then we apply the SFA technique and we call it wavelet 

based SFA (WBSFA).

The notion of signal fraction analysis is a natural extension to the maximum noise 

(or signal) fraction (SFA) that promises to provide a flexible new means for extracting 

information out of data. As has been shown, signal fraction analysis can separate linearly 

mixed signals. In this setting, the estimation of the covariance matrix of the noise may 

be interpreted as the computation of the covariance matrix of the projection of the data 

onto the finest Haar wavelet subspace. As such, the signal separation may be viewed as 

scale based, i.e., the signals are being split into subspaces of increasing scale. So patterns 

with differing scales may be pulled apart.

Of course the Haar wavelet is only an example of the way data can be projected 

onto subspaces of differential scales. Other wavelets, such as Daubechies wavelets, have 

better approximation properties [66].

It has long been hypothesized that cognitive tasks effect the frequency spectrum of 

EEG signals. With this in mind we create new data matrices Fj that filter the EEG data 

based on frequencies of interest. Transformations that correspond to band pass filters of 

alpha waves, low beta waves, mid beta waves and high beta waves are natural candidates 

for this study.

7.2.2 M ulti-reso lu tio n  Signal F ilte rin g

Given the above discussion, we may construct new ways to split a data set S  by 

going beyond the calculation of the covariance matrix of the noise as

N t N  «  \ d X Td X  (7.1)
£ j

We may view d X  more generally as a mapping of the original data X  into a subspace 

of interest. For example, the Daubechies wavelet Dw can be used via a multi-resolution 

analysis to produce new views of a data set X  at differing scales. We may write
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X  = S1 + W1 (7.2)

where the matrix Si is a view of X  with reduced resolution in time (the transform is 

performed on the columns) and W\ is the detail missing from S\ needed to recover X.  

Continuing,

Sj = Sj+i + Wj+1 (7.3)

Thus the data matrix X  may be decomposed into a sequence of matrices that encode 

the information at reduced scales and details.

7.2.3 D escription o f the Algorithm

Basically the idea now is to solve the generalized singular value problem

s2i A TA ^ i =  c\ B t B ^  (7.4)

where now we construct the column basis via

$  = Aip (7.5)

In the simplest experiment we take A — X ,  i.e., the data set and B = W\. Here W\ 

comes from Equation (7.2).

How the resulting solutions of the GSVD problem should be used for the classifi

cation problem? Well, it appears there are many attractive options. Simplest is gen

eralizing the procedure that we are currently using. We compute the GSVD problem 

on sub-windows of the data for each task. We apply the same procedure to the sub

windows of the test data to be classified. Here we applied KSFA and KPCA and K  

nearest neighbor (KNN) to classify the tasks.
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In our programming our focus is on distinguishing between two different tasks each 

time that we run the program. We consider using five trials of each task, and we use 

the data from the first person. (Note: the original big data set includes the data for 

5 different people; we just use the data from the first person). Therefore we have 5 

data sets each of size 7 x 2500 from task i and 5 data sets of the same size from task j  

associated to the first person’s data (here, i — 2 ,3,4,5, j  =  3,4,5 makes 6 combination 

of different task pairs, we ignored comparing the first task with others for now).

If we want to use the wavelet data to estimate the covariance of the noise we also 

choose the wavelet data sets with 5 trials from each of the tasks for the first person.

We calculated the mean for each defined data set, which means 10 data sets; 5 for 

the task i and 5 for task j .  Then we took the mean subtracted data sets and used them 

for our entire program.

We defined data matrix containing all the 5 trials from task i, and we also defined 

data set containing all the 5 trials of task j .  Therefore they have size 7 x 12500 since 

5 x 2500 =  12500.

We also defined a data matrix containing all 5 trials of the weights from the wavelet 

data sets of task i and defined a data matrix containing all 5 trials of the weights from 

the wavelet data sets of task j  both with size 7 x 12500. We made sliding windows of 

length 64. Therefore we got 195 windows for each data set we made. For each window we 

estimated the covariance of the noise via differencing method when we wanted to use the 

differencing method; and when we wanted to use the wavelet or the Fourier transformed 

data we just partitioned those data sets exactly as we partitioned our data sets into 

windows of 64 length and used them as the estimate of the noise covariance.

We called another program that used these windows as its input to find the kernel 

function (polynomial kernel) of size d = 1, . . .  ,20 where d is the degree of the polynomial 

kernel.
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We computed the parameters for the output of the above program, i.e., each poly

nomial of degree d window. In fact we calculated the eigenvalue, eigenvectors for each 

polynomial of degree d tha t we computed in the previous step for KPCA case. We have 

used the right singular vectors as candidates for classification of the data for KPCA 

case, and used the generalized eigenvectors as candidates for classification of the data 

for KSFA case.

We calculated the generalized eigenvalue, generalized eigenvectors for each polyno

mial of degree d. We stored, in order, all the eigenvectors of all windows into a big matrix 

of size 7 x 1365 for KPCA and KSFA case. (1365 =  7 x 195 note; number of windows 

are 195). Then, we defined the training set and test set as follows:

For all windows, we stored a training set of all generalized eigenvectors. The size 

of this matrix is 7 x 195 since we had 195 windows and we just collect the last mode of 

each window. We repeat all the steps above for all the modes and task j and we call it 

test sets.

Therefore we have 7 training sets for task i and 7 test sets for task j  including 

mode= 1 , . . . ,  7 each time for each window.

We do the same as two steps above for KPCA case using eigenvectors. We collected 

the first half of the above training set and the first half of the test sets into a matrix and 

call it as our final training set. We collected the second half of the above training set 

and the second half of the test sets into a matrix and call it as our final test set. (We do 

this for KPCA and KSFA case separately).

Hence we have made one training set and one test set for KPCA case and another 

training set and test set for KSFA case. For each of these sets we keep the size as 7 x 194.

We classified our data using k-nearest neighbors when k = 1 , . . . ,  10 as follows.

We calculated the Euclidean distance between the training and test sets. Then we 

sorted the distance matrix (with size 194 x 194) in an increasing order and found the 

index for the sorted distance. Then the first row gives us the first nearest neighbor the
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first and second row show the 1st and the second nearest neighbor and so on. We defined 

the label vector as a vector of having zeroes for the first half and having ones for the 

second half. The size of the label vector is 1 x 194.

Then we looked column-wise at the index and we labeled them as follows: if the 

index was less than 194/2 we labeled it 0 and otherwise we labeled it 1. After that we 

checked each column that we labeled with the label vector we defined previously (first 

half zero and next half ones).

Then we calculated the probability of error as well by finding the ratio of the number 

of misclassified windows and the total number. Then we counted the 0 labels we assigned 

for each column and the 1 labels we assigned for each column. If we had assigned more 

zeros than ones for this column we choose the final labeling for this column to be zero and 

if the number of assigned 1 labels were more than zeros we assigned 1 for this column. 

Therefore we are performing a data reduction from a matrix of 194 x 194 to a matrix of 

size 1 x 194. This was the way we made our decision about labeling each window based 

on the KNN number.

Then we compared this new labeled vector for the windows and the original labeling 

which had the first half just zeros and the second half just ones. Note that the classi

fication is correct if the labeling for the windows matches the original labeling. Then 

we counted the number of windows correctly classified and we divided that by the total 

number to get the classification rate.

We determined our classification rates based on the ratio of the numbers of windows 

correctly classified and the total number. We did all these steps for both KPCA and 

KSFA case and we stored the results.

Therefore we made a matrix of 7 x 10 to store the classification rates. Note that 7 

here relates to the 7 modes and 10 relates to the k = 1 , . . . ,  10 KNN (we considered 1st 

nearest neighbor and second nearest neighbor and third, . . . ,  and tenth nearest neighbor).
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After evaluating this 7 x 10 matrix which includes the classification rates for all 

modes 1 to 7 and all knn=l:10, we calculated the maximum of each column and stored 

it in a vector of size 1 x 10, also we stored all the index for that to know for example 

this maximum classification rate is associated to which mode. Then we calculated the 

maximum of these rates (max(max{classificationrates))) to find out among all these 

7 modes and all these KNN nearest neighbors what the best of all classification rate is 

and to which mode it is associated. Then we got the best mode after finding the best 

classification rate.

We also calculated the relative performance for both methods and we compared them 

in Figures 7.10, 7.11, and 7.12. To find the relative performance we found the mean of 

the ratio of each element in the matrix of percent correct classified in the first and second 

set, and we have used the right singular vectors as candidates for classification of the 

data for KPCA case, and the generalized eigenvectors as candidates for classification of 

the data for KSFA case. The flowchart of the algorithm of the work is as in Figure 7.1.

7.2.4 R esults for EEG data set

We compared KSFA and KPCA for when we used different polynomial degrees 

d = 1,2,3,4 to see the percent of test samples correctly classified via applying KNN 

classifier. Figures 7.2 - 7.9 are the results of applying KNN classifier ( k= l , . .. ,10) to the 

data sets taskl (resting task) and task2 (imagined letter writing) (using two trials for 

each task)applying KSFA for polynomial degrees d =  1, . . .  ,4. We could say from these 

figures that in the KPCA case for d=2, 3, 4 the first mode is the mode which does the 

best discrimination between the tasks. However in the KSFA case the best mode is the 

6th mode that best classifies the tasks.

Here we have used the generalized eigenvectors as candidates for classification of the 

data for KSFA case. The classification rates are determined by the ratio of the number 

of windows correctly classified and the total number. Comparing Figures 7.2, 7.3, 7.4,
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Read EEG data of person 1 Cy in R 7’2500

Read EEG transformed data via wavelet transformation Wy in R 7*2500

\  d-1

J  d: kernel 
( polynomial 

20 degree

Mean subtract or unbiased the data

  -   —    ,  j    .................................   . . . ___

Attach 5 trials o f taski and attach 5 trials of taskj R7*12500

Do the same for Wy and define W l and W2

^ M a k e  195 wi idows of size

Make these windows for all big data matrices

Kemelize all windows o fd a ta l.2 , W1,W2

Apply SFA and PCA to data to get matrices of size 7*7
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B 4

;or n= l:

Label: L=[0,0,...,0,1,1,.. ..,1]

Define 7 sets containing of each mode for all windows of kpca and ksfa for 
taski and do the same for taskj

Training set=[Tsl half of each set 1,1s' half of each set j] 
Test set=[2nd half of set 1,2nd half of set j]

Apply knn to training and testing set

D

Find the distance betw een training and test set 194*194

Sort each colum n and find the index
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Find the best knn and mode to classify

Label i if  index < 194/2 
j if  index > 194/2

Compare V with L; find the classification rate

Find the best classification rate out of these 70 rates

Make a 7*10(mode*knn) matrix of classification rate

Make an array: if  the #  o f  zeros in the first k elements o f  the 
above matrix is more than ones then consider the class as zero 
otherwise consider it one

Figure 7.1: The flow chart of the algorithm.
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Percent correct via KSFA mode one to seven and KNN classifier k=1:10 when d=1
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Figure 7.2: The percent classified correctly via KSFA all seven inodes for when K=l:10 
in KNN and when d=l .

Percent correct via KSFA mode one to seven and KNN classifier k= 1:10 when d=2
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Figure 7.3: The percent classified correctly via KSFA all seven modes for when K=l:10 
in KNN and when d=2.
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Percent correct via KSFA mode one to seven and KNN classifier k=1:10 when d=3

Mode 1
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D Mode 5
8  -  Mode
b  -  Mode 7
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Figure 7.4: The percent classified correctly via KSFA all seven modes for when K=l:10 
in KNN and when d=3.

Percent correct via KSFA mode one to seven and KNN classifier k=1:10 when d=4

Mode 1
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Mode 5
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b  -  Mode 7
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Figure 7.5: The percent classified correctly via KSFA all seven modes for when K=l:10 
in KNN and when d=4.
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Percent correct via KPCA mode one to seven and KNN classifier k= 1:10 when d=1

Mode 1
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Mode 5 
Mode

- a  -  Mode 7

1 2 3 4 5 6 7 8 9  10

Figure 7.6: The percent classified correctly via KPCA all seven modes for when K=l:10 
in KNN and when d = l.

Percent correct via KPCA mode one to seven and KNN classifier k=1:10 when d=2

Mode 1
Mode 2

0—  Mode 3
Mode 4
Mode 5
Mode 6
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Figure 7.7: The percent classified correctly via KPCA all seven modes for when K=l:10 
in KNN and when d=2.
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Percent correct via KPCA mode one to seven and KNN classifier k= 1:10 when d=3
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Figure 7.8: The percent classified correctly via KPCA all seven modes for when K=l:10 
in KNN and when d=3.

Percent correct via KPCA mode one to seven and KNN classifier k= 1:10 when d=4 
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Figure 7.9: The percent classified correctly via KPCA all seven modes for when K=l:10 
in KNN and when d=4.
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Relative performance o f KSFA wrt KPCA

d -2
d=3
d=4

1 2 63 4 5 7

Figure 7.10: The relative performance of KSFA with respect to KPCA.

Relative performance of KSFA

4 to 1

0.9

Figure 7.11: The relative performance of KSFA.
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Relative performance of KPCA

4 to 1

0.7

Figure 7.12: The relative performance of KPCA.

7.5 with Figures 7.6, 7.7, 7.8, 7.9 shows that KSFA could do a better job in classification 

than KPCA.

To further investigate the performance we calculated the relative performance for 

all the cases for polynomial degrees d =  1, . . .  ,4 and it shows in Figure 7.10 that the 

KSFA has a better performance than KPCA using the 6th mode. We also calculated 

the relative performance for KSFA for cases d =  2 with respect to d =  1 and d = 3 with 

respect to d = 1 and d = 4 with respect to d =  1 and we evaluated these performances 

for KSFA in Figure 7.11 and for KPCA in Figure 7.12.

Figure 7.13 shows the result of applying KSFA and KPCA and KNN for classifying 

taskl and task2 for 50 trials. Figure 7.13 shows the results for when we used dblO data 

set as our estimate for the noise covariance. Figure 7.14 represents the results when we 

used db4 as the estimation of the noise covariance, Figure 7.15 shows the result for dbl, 

Figure 7.16 shows the result for symlO, and Figure 7.17 shows the result for when we 

used the Fourier transform data set as the candidate for the noise covariance estimation. 

It seems that Figure 7.13 which is for dblO and wl case has the best result among other
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Comparing the best modes for KSFA and KPCA For d=1:50
0.9

KPCA c a s e  
KSFA c a s e

0 .85
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0 .7

0 .65
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Figure 7.13: Comparing the best modes for KSFA and KPCA for d= 1,... ,50 applying 
KNN to classify tasks one and two via dblO.

cases confirming that using dlO data set is a better choice to get a better performance 

in classifying the data.

Based on the Figures 7.18, and 7.19; that compares the wavelet transform with the 

differencing method, we could say that applying Wavelet makes the classification rate 

higher than applying differencing method. These figures show the comparison between 

the two methods differencing and wavelet to find out which rate was the maximum rate 

of classification. Here the first mode was the most discriminating mode.

We also did run the program for Fourier transform and all the five task pairs to 

find out the best mode and the best classification rate. The results were very interesting 

which follow:
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Comparing the best modes for KSFA and KPCA For d=1:50
0.76

KPCA c a s e  
KSFA c a s e0 .74
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0.68
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500 10 20 30 4 0

Figure 7.14: Comparing the best modes for KSFA and KPCA for d= 1,... ,50 applying 
KNN to classify tasks one and two via db4.
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Comparing the best modes for KSFA and KPCA For d=1:50
0.76

KPCA c a s e  
KSFA c a s e0 .74
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Figure 7.15: Comparing the best modes for KSFA and KPCA for d= 1,... ,50 applying 
KNN to classify tasks one and two via dbl.
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Comparing the best modes for KSFA and KPCA For d=1:50
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Figure 7.16: Comparing the best modes for KSFA and KPCA for d= 1,... ,50 applying 
KNN to classify tasks one and two via symlO.
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Comparing the best modes for KSFA and KPCA For d=1:50
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Figure 7.17: Comparing the best modes for KSFA and KPCA for d= 1,... ,50 applying 
KNN to classify tasks one and two via Fourier transform.
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Comparing the best modes for KSFA and KPCA For d=1:50
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Figure 7.18: Comparing the best classification rate and the best modes for KSFA and 
KPCA via applying differencing and wavelet method SI and W l.
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The best classification rate for KSFA for s1 and w1-w8
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Figure 7.19: Comparing the best classification rate for KSFA and KPCA via applying 
differencing and wavelet method (d&10) 51 and W 1 .
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For all pairs of tasks (2,3), (2,4), (2,5), (3,4), (3,5), (4,5) for all alpha, beta, mid

beta, high-beta, and low-beta data sets, the best results came when we wanted to classify 

task 3 (mental multiplication) and task 5 (geometric object rotation). The classification 

rate for all the data sets for these two tasks (task 3 and 5) were about .9278 via applying 

PCA when d =  1 (d is the degree of polynomial), the best PC A mode is 3 and the KNN 

number equals 10.

7.3 Conclusions and Relationship to  Other Work

In this work, we worked on the EEG data sets and applied KSFA and KPCA and 

used KNN to classify different tasks. We used different estimation of the noise co- 

variance, such as the differencing method, and wavelet and Fourier transformations to 

see how they perform and we compared their relative performance. We discovered that 

applying wavelet makes the classification rate higher than differencing and Fourier trans

formation.
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A p p en d ix  A

In this appendix we prove that if

X TX a t =  A iN TN ai (A-l)

and N t N  is a positive definite matrix, then the generalized singular vectors are ortho

normal with respect to N TN, i.e.,

=  { J \ff (A-2)

Moreover, the generalized singular vectors are orthogonal with respect to X TX  i.e.,

aJXTXai =  { (A-3)

Proof

For simplicity we define

A = X TX  (A-4)

and

B = N t N  (A-5)

It is clear tha t A T = A  and B L — B  which means A  and B  are Hermitian. Therefore, 

equation A-l simplifies to

Aa,i — XiBdi (A-6)

Thus we need to prove

= <A‘7>
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and

ajA aj = \ % 7  (A S )iTAa - l  Xj i f  i = j  o i f

Suppose for i ^  j  that A* Xj be two distinct generalized singular values with

corresponding generalized singular vectors a* and a3 respectively. Therefore, for two

cases i and j  when i =7 j  we use A-6 and A-9 respectively

Acij = XjBaj  (A-9)

If we pre-multiply equation A-6 by a j  and equation A-9 by a j  we respectively obtain

a j Acii = XidJ Ba,i (A-10)

afAcij = X j c l J  Bcij (A-ll)

From equation A-10 we get

(aTj A a f f  = {XiaTj B a i f  (A-12)

and since A  and B  are Hermitian A-12 results

a[ Aaj = XidJ Bdj (A-13)

Now subtracting equation A -ll from equation A-13 leads to

(A, — A j)a jB d j — 0 (A-14)

Since the generalized singular values are distinct (i.e., Aj ^  Xj) we conclude that

d jB d j = 0 fo r  i ^ j  (A-15)
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If we substitute A-15 into A-10 we obtain

ajAaj = 0 for i ^ j  (A-16)

Since A  and B  are Hermitian, and B  is positive definite, Equation (A-6) has p 

linearly independent generalized singular vectors (see the proof in Appendix B). Here, 

we indicate the generalized singular vectors by a^, a2, . . . ,  ap. Suppose C is an arbitrary 

vector as a linear combination of these generalized singular vectors

C =  Cicii +  C2 CL2  +  .. ■ +  Cidi +  •••-(- Cpdp (A-17)

If we pre-multiply Equation (A-17) by o f B  we get

a jB C  — C\aJBai +  c2a j Ba2 +  . . .  +  c^af Bat +  . . .  +  cpa jB a p (A-18)

From Equation (A-15) which is the orthogonal property of the generalized singular

vectors with respect to B, it follows that except one term CidjBdi in the right hand side

of A-18, all other terms are zero. Therefore:

a j BC =  CiCtJ Ba,i (A-19)

Moreover, since B  is positive definite then a f Bar A 0. If we solve A-19 for a f Bdt 

we obtain

ajBdi  =  (A-20)
Ci

since C was arbitrary, assuming c* =  a j BC  results in

djB di = 1 (A-21)

In Equation (A-10) if i =  j  we get
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a [  Adi — XidJ Ba,i (A-22)

If we substitute A-21 in A-22 we obtain

a [A a i  =  A i (A-23)

which results in Equations (A-15), (A-16), (A-21), and (A-23) complete the proof.
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A p p en d ix  B

If A  and B  are Hermitian matrices, B  is positive definite, and if ay, a2, . . . ,  av and 

Ai, A2 , . . . ,  Xp are corresponding generalized singular vectors and distinct generalized sin

gular values respectively for Adi =  \B a i  , then ay, a2, . . . ,  ap are linearly independent.

Proof

Suppose that ai, 0 2 , . . . ,  ap are linearly dependent, then in the following linear com

bination of these generalized singular vectors

Cydy +  C2 U2 +  • • • +  CjOj +  . . . +  Cpdp =  0 (B -1)

at least one of the q ’s must be some non-zero. If we suppose that c* ^  0 is the one and 

we pre-multiply equation B -1 by a[B  we get

cydf Bay +  c2a j Ba2 +  . . .  +  CidJ Bdi +  . . .  +  cpa jB a p =  0 (B -2)

From Equation (A-15) we know that all the terms in (B -2) is zero except the term 

CidjBdi. Therefore Equations (B -2) and (A-15) leads to

CidJBdi =  0 (B -3)

Which means ct =  0 that shows the contrary with the assumption that we had for 

linear dependency (i.e., c* ^  0). From this contradiction we conclude that the generalized 

singular vectors a-y, a2, . . . ,  ap are linearly independent.
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