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ABSTRACT

MIXING IN STABLY STRATIFIED TURBULENT FLOWS: IMPROVED

PARAMETERIZATIONS OF DIAPYCNAL MIXING IN OCEANIC FLOWS

Mixing of fluid with different properties across a gravitationally stable density interface, due

to background turbulence is an ubiquitous phenomenon in both natural and engineered flows.

Fundamental understanding and quantitative prediction of turbulent mixing in stratified flows is

a challenging problem, with a broad range of applications including (but not limited to) prediction

of climate, ocean thermohaline circulation, global heat and mass budget, pollutant and nutrients

transport, etc. Large scale geophysical flows such as in the ocean and atmosphere are usually sta-

bly stratified i.e. the density increases in the direction of gravitational force. The stabilizing nature

of the density layers has a tendency to inhibit the vertical motion. In such flows, diapycnal mixing,

i.e. mixing of fluid across the isopycnal surfaces of constant density, plays a crucial role in the flow

dynamics. In numerical models of large scale flows, turbulent mixing is inherently a small scale

phenomenon that is difficult to resolve and is therefore generally parameterized using known bulk

parameters of the flow. In oceans, the mixing of water masses is typically represented through a tur-

bulent (eddy) diffusivity of massKρ. A widely used formulation forKρ in oceanic flows is given as

Kρ = Γε/N2, where ε is the rate of dissipation of turbulent kinetic energy,N =
√

(−g/ρ)(∂ρ/∂z)

is the buoyancy frequency of the background stratification, ρ is the density, Γ = Rf/(1 − Rf ) is

a mixing coefficient and Rf is the mixing efficiency, that is widely (but questionably) assumed to

be constant or sometimes parameterized. However, a robust and universal parameterization for the

mixing efficiency remains elusive to date despite numerous studies on this topic.

This research focuses on improved parameterizations of diapycnal mixing through an integra-

tion of theoretical knowledge with observational and high resolution numerical simulation data.

The main objectives are: (1) to provide a better assessment of field microstructure data and
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methodology for data analysis in order to develop/test appropriate parameterization of the mix-

ing efficiency, (2) to determine the relevant length and velocity scales for diapycnal mixing, (3)

to provide improved parameterization(s) of diapycnal mixing grounded on physical reasoning and

scaling analysis, (4) to provide a practical field method to identify the dynamic state of turbulence

in stably stratified flows from measurable length scales in the ocean.

First, an analysis of field microstructure data collected from different locations in the ocean was

performed to verify existing parameterizations. A key finding is that the mixing efficiency,Rf does

not scale with buoyancy Reynolds number,Reb, as been proposed previously by others. Rather,Rf

depends on the strength of background stratification. In a strongly stratified thermocline, a constant

value for the mixing efficiency is found to be reasonable while for weakly stratified conditions (e.g.

near boundaries) a parameterization is required. A discussion on different methods to estimate the

background shear and stratification from field data is provided. Furthermore, the present state-

of-the-art microstructure instruments measure the small scale dissipation rate of turbulent kinetic

energy ε from one dimensional components by invoking the small scale isotropy assumption that

is strictly valid for high Reynolds number flows. A quantitative assessment of the departure from

isotropy in stably stratified flows is performed and a pragmatic method is proposed to estimate

the true three dimensional dissipation (ε3D) from one dimensional dissipation (ε1D) obtained from

microstructure profilers in the ocean.

Next, a scaling analysis for strongly stratified flow is presented to show that, the true diapycnal

length scale Ld and diapycnal velocity scale wd can be estimated from the measurable Ellison

length scale, LE and a measurable root mean square vertical velocity, w′, using a turbulent Froude

number defined as Fr = ε/Nk, where k is the turbulent kinetic energy. It is shown that the eddy

diffusivity Kρ can be then directly inferred from LE and w′. For weakly stratified flow regimes,

Fr > O(1), Kρ ∼ w′LE and for strongly stratified flow regimes, Fr < O(1), Kρ ∼ w′LE × Fr.

This finding is confirmed with direct numerical simulation (DNS) data for decaying as well as

sheared stratified turbulence. This result indicates that Fr is a relevant non-dimensional parameter

to identify strength of stratification in stably stratified turbulent flows. DNS with particle tracking
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is performed to separate isopycnal and diapycnal displacements of fluid particles, an analysis that

is not possible from an Eulerian approach or from standard field measurements. The Lagrangian

analysis show that LE is indeed an isopycnal length scale.

Furthermore, having established that Fr is the signature parameter which can describe the

state of stratified turbulence, a parameterization of mixing coefficient, Γ (or Rf ) as a function of

turbulent Froude number Fr is developed using scaling arguments of energetics of the flow. Pro-

posed parameterization is then verified using DNS data of decaying, sheared and forced stratified

turbulence. It is shown that for Fr << O(1), Γ ∼ Fr0, for Fr ∼ O(1), Γ ∼ Fr−1 and for

Fr >> O(1), Γ ∼ Fr−2.

Finally, a practically useful method to identify the dynamic state of turbulence in stably strat-

ified flows is developed. Two commonly measurable length scales in the ocean are the Thorpe

overturning length scale, LT and the dimensionally constructed Ozmidov length scale, LO. From

scaling analysis and DNS data of decaying, sheared and forced stratified turbulence a new rela-

tion between Fr and the ratio of the length scales, LT/LO is derived. The new scaling is, for

LT/LO > O(1), Fr ∼ (LT/LO)−2 and for LT/LO < O(1), Fr ∼ (LT/LO)−2/3.
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Chapter 1

Introduction

1.1 Background and motivation
Turbulence is the most common state of fluid motion occurring in both engineering and nature.

The highly intermittent and irregular nature of turbulence makes the study of turbulent flow more

challenging. In fact, turbulence is said to be "one of the most unsolved problems to date in classi-

cal mathematical physics" (Clay Millennium Prize problem). One should note that turbulence is a

property of fluid-flows, not that of fluids. One of the prominent features of turbulence is "mixing"

of fluid particles with different properties through the mechanism of "stirring" which disperses the

fluid particles and the mechanism of "diffusion" which homogenizes the fluid properties (Thorpe,

2005). The complexity of turbulent flow increases further in geophysical flows such as in ocean,

atmosphere and lakes due to the presence of stable stratification. A flow is said to be stably strati-

fied when the density of the fluid increases in the direction of gravitational force (due to decrease

of temperature or increase of concentration of salt or moisture etc.). Stable stratification acts as a

restoring force and inhibits turbulent motions in the direction of stratification due to the buoyancy

force. Hence, the fate of turbulent mixing of momentum and scalar (density, temperature, salinity

etc.) as well as, particle dispersion in geophysical flows are governed by both turbulent energy

and stratification. Fundamental understanding of turbulent mixing and dispersion in the presence

of density stratification is crucial to many applications such as pollutant dispersion models in both

air and water bodies, ocean global circulation models, global climate models, global mass/energy

budget etc. (Fernando, 1991; Gregg, 1987). The overarching goal of this research is to gain better

understanding of turbulent mixing in stratified fluids.

In an un-stratified fluid (such as in river), when disturbed, a fluid particle can move indefinitely

in the vertical direction depending on the amount of energy available. But, in a stratified fluid, work

has to be done against buoyancy forces to move fluid across isopycnal (constant density) surfaces.
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Mixing that involves transfer of fluid across the isopycnal surface (diapycnal direction) is known

as diapycnal mixing which is an irreversible process involving density change. The density acts as

an active scalar and alters the flow dynamics in a stratified fluid. In the ocean, breaking of internal

waves and/or any shear instabilities create turbulence leading to mixing. Mixing happens at the

expense of turbulent kinetic energy and results in increasing the background potential energy. In

spite of vast amount of research on mixing, one of the biggest challenges in physical oceanography

is to quantify how much mixing happens and how to parameterize diapycnal mixing (Gregg et al.,

2018; Ivey et al., 2008). Accurate prediction of diapycnal mixing has broad implications. Some

important applications include:

• Wind driven ocean currents are generally confined to the upper few 100 meters of the ocean.

Ocean currents also flow thousands of meters below the surface. These deep currents are

generally driven by global density gradients created by temperature (thermo) and salinity

(haline) differences. These deep ocean currents are known as the global thermohaline over-

turning circulation or Meridional overturning circulation (MOC) (see figure 1.1a), which

plays an important role in climate and climate variability by storing and transporting heat,

fresh water, and carbon around the globe (Marshall & Speer, 2012). Small scale diapycnal

mixing drives the MOC (Boos et al., 2003). Generally the warm, lighter water moves from

equator to Nordic and Labrador sea as surface flow and sinks by releasing heat to the atmo-

sphere. The cold, heavier water moves as deep water away from the polar region and upwells

towards the equator. Some upwellings are due to wind and confined to shallow depths of up-

per ocean but deep water upwelling is possible only due to diapycnal mixing. Without deep

mixing, the ocean would turn, within a few thousand years, in to a stagnant pool of cold salty

water (Munk & Wunsch, 1998).

• Vertical mixing is the only mechanism to transport heat and nutrients across isopycnal sur-

faces and plays an important role in ocean productivity. Generally nutrient rich water is

available below thermocline and sunlight (Euphotic zone) is available above the thermocline

as shown in figure 1.1b. Due to strong stratification, the thermocline does not allow wind
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driven upwelling. In this sense, small scale vertical mixing is the only way for up welling of

nutrients for the ecosystem to survive (Friederich & Codispoti, 1981).

• The diurnal and seasonal variability of the ocean mixed layer depth (upper tens of meters of

the ocean) controls the temperature and heat content of the mixed layer which is a primary

factor in air-sea exchange of mass and momentum. The depth of mixed layer is not only

a product of wind driven mixing but also is a result of shear driven diapycnal mixing from

below the mixed layer (Brannigan, 2013).

(a) (b)

Figure 1.1: (a) Schematic of global overturning circulation adapted from (Kuhlbrodt et al., 2007). (b)
schematic showing vertical structure of the ocean with nutrients rich deep water (Edgar, 2011).

In geophysical flows such irreversible mixing processes are inherently small scale motions

(having magnitudes order of millimeters over small time scales) compared to the large energy in-

ducing scales. Due to the large range of spatial scales involved in turbulent flows, it is challenging

to study small processes be it using numerical simulations or observations. Whilst with advance-

ment of technology and instruments such as CTD (Conductivity-Temperature-Depth) profilers,

VMP (vertical microstructure profilers) and ADCP (Acoustic Doppler Current Profiler), oceanog-

raphers are able to directly measure small scale turbulence quantities such as the rate of dissipation

of turbulent kinetic energy ε (using VMP) or indirectly infer ε (from CTD), still such measure-

ments are contaminated by noise, use simplifying assumptions (such as isotropy) and lack fine

scale resolutions. The effects of physical processes which are too small or too complex or poorly
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understood are generally parameterized in the large scale models (such as climate models) that

are very sensitive to slightest change in the small scale parameterizations (Richards et al., 2009).

Hence it is desirable (for practical reasons) to link small scale mixing events with bulk flow char-

acteristics which are easier to measure. Existing parameterizations do not account for small scale

mixing with acceptable accuracy. Furthermore, field measurements do not separate the effect of

different forcing mechanisms (e.g., the influence of internal waves) on measured variables. Given

such difficulties, direct numerical simulations (DNS) provide an avenue to investigate fundamental

understanding of reversible and irreversible mixing, separately considering individual effects of

large scale forcing on small scale mixing and hence provide a bridge to close the gap in our current

understanding of the physics of small scale mixing. Despite the considerable amount of work that

has been done to improve small scale parameterizations the problem is far from being resolved.

The best way to improve parameterizations is to understand the physical processes better through

observations and high resolution simulations.

To summarize, the specific issues that motivated the undertaking of this dissertation study are

• Need for better assessment of field data measurements.

• Need for better understanding of mixing in stably stratified flows.

• Need for improved parameterization of turbulent diapycnal mixing based on physical in-

sights.

• Need for providing a recipe to infer mixing in the ocean based on practical methods.

• Need for providing appropriate length scales and velocity scales governing diapycnal diffu-

sivity.

1.2 Objectives
The subject of this dissertation is to investigate the fundamental physics (i.e. small-scale

phenomenology) that governs stratified geophysical flows with an emphasis on making practi-

cal progress towards improved parameterization of diapycnal mixing. The overarching goal of
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this work is to gain a better understanding of stably stratified turbulence by using theory, obser-

vational data and numerical models to study and understand the processes in ocean dynamics.The

objectives of this research are as follows:

1. To provide better assessment of microstructure data to determine mixing efficiency.

Considering the hydrographic and turbulent measurements that are made coincidentally from

a field campaign, there are probably a number of (varying) ways to make inferences on

oceanic mixing, each subjected to its own specific set of assumptions. The first contribution

of this dissertation is an analysis of field data, highlighting different methods to estimate

mixing efficiency as discussed in chapter 3. Small scale mixing is generally parameterized

with known or measurable quantities. Present state-of-the-art instruments do not measure

turbulent quantities with 100% accuracy. For example, the microstructure instrument as-

sumes small scale isotropy (Kolmogorov, 1941) to estimate rates of dissipation of turbulent

kinetic energy (ε). A discussion on the effect of such an assumption and methodology for

possible corrections are presented in chapter 4.

2. To provide better parameterization of mixing efficiency using reasoning and scaling

analysis. In spite of a lot of attempts made to parameterize small scale mixing, universal

parameterization of mixing efficiency is still elusive. This is because of our lack of under-

standing of the physics of small scale mixing and ambiguity of different parameters used

to parameterize mixing. Through scaling analysis we have shown that mixing efficiency in-

deed scales with the turbulent Froude number across the full spectrum of stratification. This

is discussed in chapter 6.

3. To determine fundamental length scale and velocity scales that govern small scale di-

apycnal mixing. In chapter 5, true diapycnal length scale and velocity scales are discussed

that can be obtained from measurable mixing length scale and characteristic turbulent veloc-

ity scale. The separation of isopycnal and diapycnal velocity and length scales are discussed
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in chapter 7 from a Lagrangian perspective. A new parameterization for the diapycnal diffu-

sivity is proposed in chapter 5.

4. To provide an assessment of strength of stratified turbulence in the ocean from mea-

surable length scales. A diagnostic approach to identify the dynamic state of turbulence

in the stratified ocean is presented in chapter 6. This finding will provide oceanographers

with a method to determine strength of stratification in the ocean and accordingly use any

parameterization of mixing efficiency if, required.

1.3 Dissertation layout
This thesis is divided into seven further chapters. The first chapter provides the motivation and

objectives of this research. The contents in the chapters 3, 4, 5, 6 and 7 have been written as journal

manuscripts (that have either been submitted or will be submitted shortly hereafter) such that they

may be read as stand-alone works. As such, some of the concepts presented as introduction and

background in these chapters might be repetitive of some of the concepts presented in the literature

review. The layout of the remainder of this dissertation is as follows.

• Chapter 2 contains a literature review with a brief discussion of governing equations and

background for this study.

• Chapter 3 addresses objective one and provides an assessment of microstructure data analysis

to study diapycnal mixing.

• Chapter 4 addresses the fundamental assumption of microstructure instruments and provides

a method for correction of measured data.

• Chapter 5 presents a novel method to infer diapycnal diffusivity through scaling analysis,

without any parameterization of mixing efficiency.

• Chapter 6 directly addresses objective 3 using direct numerical simulation data where it has

been shown that the turbulent Froude number and mixing efficiency can be obtained from

measurable length scales in the ocean.
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• Chapter 7 addresses the problem of diapycnal diffusivity from a Lagrangian framework

which provides a direct approach to separate reversible and irreversible mixing.

• Finally, chapter 8 presents a brief summary of the key findings and the significant contribu-

tions of the dissertation with a note for possible future works.
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Chapter 2

Background and literature review

2.1 Geophysical flows
Geophysical flows are the naturally occurring large scale fluid flows on Earth and other planets.

The flow dynamics are dominated by the influence of stratification, turbulence and rotation of

planetary system. As our interest of study is about small scale dynamics, the rotational effect of

earth is ignored. The Earth’s atmosphere and the ocean form a coupled system, exchanging heat,

momentum and water at the air-sea interface. On the long term, the convergence/divergence of

oceanic heat transport provides source/sink of heat for the atmosphere and in this way, the ocean

plays significant role in regulating Earth’s climate.

In this chapter, a brief discussion of the stratified ocean and its vertical structure is first pro-

vided. The governing equations and the numerical methods are then discussed followed by the

energetics of small scale diapycnal mixing and its parameterization. A glance at current prac-

tice of ocean turbulence measurements is presented to get an overview of available (measurable)

parameters for parameterization of mixing.

2.1.1 Stratification and internal waves

Most geophysical flows are affected by density stratification. For example in the ocean, the

mean density increases with depth forming a stable stratification. The density of the sea water is

related to temperature and salinity through the equation of state (Gill, 1982). The density differ-

ences in the stratified flow introduce buoyancy forces. If a small particle of water of density ρ is

displaced vertically from its equilibrium position by a distance η, in a uniform density gradient

∂ρ/∂z (where z is the vertical direction), then the density difference between the particle and its

surrounding becomes −η∂ρ/∂z and the particle moves upward with an acceleration (gη)∂ρ/∂z.

If the stratification is unstable, ∂ρ/∂z > 0, the net acceleration is positive and the particle moves
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away from its initial position. On the other hand, if the fluid is stably stratified as in the ocean,

∂ρ/∂z < 0, the particle moves upward, being heavier than surrounding, moves downward, over-

shoots its equilibrium position and again being lighter than the surrounding moves upward due to

buoyancy force. Thus creating a simple harmonic motion described as

∂2η

∂t2
= g

∂ρ

∂z
η. (2.1)

The frequency of this oscillation is given as N2 = −(g/ρ0)∂ρ/∂z, known as buoyancy frequency.

The oscillatory motion created by any disturbance of fluid particles in a stably stratified flow leads

to generation of internal waves in the flow. Internal waves move the isopycnals (surfaces of con-

stant density) up and down. When an internal wave breaks (due to shear instability or convective

instability), turbulence is generated. Identifying irreversible fluxes due to turbulence from the re-

versible fluxes due to internal wave is challenging but necessary for the study of turbulent mixing

in the ocean.

2.1.2 Vertical structure of the ocean

The vertical structure of the ocean is primarily divided in to three parts (figure 2.1). The upper

part, adjacent to atmospheric boundary layer is known as ocean mixed layer. In the mixed layer,

hydrographic properties such as temperature, density, salinity are constant with depth. The water

is almost homogeneous with very weak to no stratification. The mixing in upper mixed layer is

driven by wind currents, convection, Langmuir circulation and many other processes which are

difficult to model. The depth of mixed layer vary spatially and also temporarily. For example the

summer time equatorial mixed layer depth couple tens of meter but winter time arctic mixed layer

depth goes to thousands of meters.

Just below the mixed layer, strongly stratified regime is present where temperature, density and

salinity show a sharp gradient. Most of the internal waves are generated in the thermocline. The

thermocline creates a barrier between upper ocean and deep ocean mixing.
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Figure 2.1: Vertical structure of the ocean showing spatial and seasonal variation of mixed layer depth and
thermocline.

The third part is the deep ocean which extends from below the thermocline to the bottom of the

ocean. Deep ocean is weakly stratified. Wide range of research are done to simulate mixed layer

depth by parameterizing the vertical fluxes using a slab model or bulk model or one dimensional

turbulence model. These models do not provide the true depth since the parameterization of mixing

is not accurate in such one dimensional water column models (Belcher et al., 2012).

2.2 Governing equations
The equations governing fluid flow motions of geophysical flows are derived from the basic

concepts of conservation of mass, conservation momentum and conservation of energy within

the continuum hypothesis framework. The three dimensional governing equations for an incom-

pressible, stratified fluid flow with the Boussinesq approximation are discussed in the following

sub-sections.
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2.2.1 Continuity equation

The mass of a given fluid element is defined as density integrated over the volume of fluid

element. Total mass of fluid of a given system is conserved i.e. the material rate of change of mass

or total derivative of mass following a fluid parcel is zero. Thus the continuity equation (using the

Einstein summation convention1) from Lagrangian perspective is given as:

Dρ

Dt
+ ρ

∂ui
∂xi

= 0, (2.2)

where D/Dt = ∂/∂t+ ui(∂/∂xi) is the material derivative or total derivative. It involves the sum

of local and convective derivatives of an intrinsic property which in this case is the density of the

fluid ρ and ui is velocity field. Using the Eulerian reference frame and the well-known concept of

a control volume, the Continuity equation can be written as:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0. (2.3)

Evoking the incompressibility assumption (which implies that changes in density due to changes

in pressure is negligible), the continuity equation simplifies to

∂ui
∂xi

= 0. (2.4)

Equation (2.4) implies that the velocity field is divergence free or solenoidal.

2.2.2 Momentum or Navier-Stokes Equations

The Conservation of momentum principle given by Newton’s second law of motion states that

the rate of change of momentum of a system is given by the summation of all the forces acting

on the system. Neglecting the effects of the Earth rotation (i.e Rossby number, Ro � 1, note for

at larger scales, the Coriolis terms must be included in the momentum equation to account for the

1i,j=1, 2, 3. u1, u2 and u3 being velocities in x1, x2 and x3 directions respectively.
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apparent forces.), the momentum equation or the so called Navier Stokes equations are given as

Dui
Dt

=
∂ui
∂t

+
∂

∂xi
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j
− gδi3, (2.5)

where ν is molecular kinematic viscosity which is constant, δi3 is Kronecker delta2, p is the pressure

and g is acceleration due to gravity. Both the density and pressure can be decomposed into a

background and fluctuating components as: ρ = ρ0 + ρ′ and p = p0 + p′, where p0 is hydrostatic

pressure (∂p0 = −ρ0g∂z). Substituting these decomposition into equation (2.5) and noting that

ρ′/ρ0 � 1 in most geophysical flows, yields

Dui
Dt

= − ∂p′

ρ0∂xi
+ ν

∂2ui
∂x2j
− g ρ

′

ρ0
δi3. (2.6)

Equation (2.6) implies that density variations are negligible except in the gravity term, an approx-

imation that is referred to as the Boussinesq approximation. Note in equation (2.6), gρ′/ρ0 is the

reduced gravity or buoyancy term.

2.2.3 Scalar transport equation

In stratified flows, the density acts as an active scalar as highlighted by the buoyancy term in

equation (2.6). Hence, the scalar transport equation for the density is dynamically coupled to the

momentum equation and must be solved concurrently. The density transport equation is given as

Dρ

Dt
=
Dρ′

Dt
=
∂ρ′

∂t
+

∂

∂xj
(ρ′uj) = κ

∂2ρ′

∂x2j
, (2.7)

where κ is the molecular diffusivity.

2δij = 1 (if i = j) and δij = 0 (if i 6= j) for i, j = 1, 2 and 3
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2.3 Scales of motion

2.3.1 Global length and time scale

Weather processes and climate variability are analyzed with vast range of spatial and temporal

scales. In order from large to small, these scales are global scale, synoptic scale, meso scale and

microscale based on idea put forward by Orlanski (1975). The events with spatial and temporal

scales for each of these scales are shown in figure 2.2. The length scales and time scales for the big

events like climate are much larger than the length scales and time scales of turbulence. Largest

eddies (L) happen in the range of micro scales. Another scale orders of magnitude smaller than

micro scale is known as fine scale (few of orders of magnitude higher than molecular scale), where

oceanic turbulence measurements are done. The small scale effects are generally parameterized

in the large scale models. Accuracy of large scale models directly depends on the how efficiently

these small scale effects are parameterized.

Figure 2.2: The range of temporal and spatial scales involved in processes of the tropical climate. Image
courtesy of MetEd, The COMET Program, UCAR.
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2.3.2 Scales of turbulence

Turbulent motions occur over wide range of length and time scales. The size of largest eddy,

say, L is generally constrained through the physical boundary of the entire system. The region

occupied by large eddy also contain smaller eddies. Turbulent kinetic energy is supplied to the

turbulent field at the largest eddies. The largest eddy in the flow account for most of the transport

of momentum and energy. The energy is generally cascaded to smaller eddies until viscosity dissi-

pates the kinetic energy to heat or internal energy at the smallest scales. The size of smallest eddy,

say η is generally determined by viscosity. Richardson (1922) summarized the energy cascade as

follows:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lessor whorls,

And so on to viscosity

(in the molecular sense).

Turbulence is generally quantified through a Reynolds number, Re = UL/ν, where L is

characteristic length scale and U is characteristic velocity scale and ν is kinematic viscosity. A

complete universal theory of turbulence is still an open problem despite of the vast amount of

research on this topic. The fundamental understanding in this field is mostly based on statisti-

cal approach with the assumption of homogeneous, stationary and isotropic turbulence which are

obviously gross oversimplifications. The modern turbulence theory is based on Kolmogorov’s hy-

potheses (Kolmogorov, 1941) which essentially highlights the existence of three regimes at very

high Reynolds number equilibrium flows (i.e. statistically stationary). These are namely: the en-

ergy containing range , inertial subrange where the inertial transfer of energy is said to occur and

the dissipation range where energy is dissipated (figure 2.3). The dissipation range and inertial

subrange together are known as the universal equilibrium range where small scale turbulence are

statistically isotropic (statistically invariant under translation). In the universal range, Kolmogorov

hypothesized that the statistics are universally determined by only two parameters, the rate of dis-
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sipation of turbulent kinetic energy, ε and viscosity, ν. Kolmogorov did not take into consideration

the large energy containing scale nor the mechanism of energy cascade. He further postulated that

the energy transfer from large eddies to smallest eddies in the inertial subrange depends only on

ε independent of ν and that the dissipation of energy in dissipative subrange only depends on ν.

Distribution of turbulent kinetic energy among eddies of different sizes are generally described in

wave number space. Length scale of any eddy l is related to wave number k̂ as k̂ = 2π/l. The

energy spectrum scales with ε and k̂. For homogeneous turbulence, the energy spectrum in the

inertial subrange can be easily derived based on dimensional reasoning as

E(k̂) = Cε2/3k̂−5/3, (2.8)

where C ≈ 1.5 is considered to be a universal constant (Sreenivasan, 1995). This is the famous

−5/3 Kolmogorov law and is consider as a signature feature for assessing whether a flow is turbu-

lent or not.

Figure 2.3: Typical energy spectrum for a turbulent flow plotted against wave number (k̂) (Thompson et al.,
2015). URANS, LES and DNS are the numerical methods described in section 2.4

.
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The characteristic small scales (length (η), velocity (uη) and time (τη)) known as Kolmogorov

scales (Pope 2000) are defined as

η ≡ (ν3/ε)1/4, (2.9)

uη ≡ (νε)1/4, (2.10)

τη ≡ (ν/ε)1/2. (2.11)

The turbulent kinetic energy (k) at large scales are generated by mean shear and hence the char-

acteristics velocity scale at large scale is comparable to square root of turbulent kinetic energy.

Turbulent kinetic energy is dissipated at a rate ε from which a time scale can be obtained as the

ratio of turbulent kinetic energy to rate of dissipation of turbulent kinetic energy. Hence the char-

acteristic scales (velocity scale (uk), length scale (Lkε) and time scale (TL)) for the largest eddy

(Durbin & Petterson-Reif, 2011) are defined as

uk ≡ k1/2, (2.12)

Lkε ≡ k3/2/ε, (2.13)

TL ≡ k/ε. (2.14)

A corresponding turbulent Reynolds number can be defined as ReT = k2/(νε). It should be noted

that the precise mechanism(s) by which energy transfer occurs from large scale to small scale is

still unknown. Also, it should be noted that Kolmogorov scales are derived by considering small

scale isotropy without any consideration for the effect of any mean shear, stratification or rotation

that may exist at smaller scales. Excellent reviews on fundamental turbulence theory can be found

in Pope (2000) and Durbin & Petterson-Reif (2011).
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2.3.3 Scales of stratified turbulence

An important length scales in stably stratified geophysical flows is the buoyancy scale defined

as

Lb = (〈w′2〉)1/2/N, (2.15)

where w′ is vertical velocity fluctuation. Lb is indicative of maximum possible vertical displace-

ment for givenN at which all the vertical kinetic energy of an eddy is converted to potential energy

by working against buoyancy force. From dimensional reasoning, analogous to the Corrsin length

scale, Ozmidov (1965) proposed a length scale for stratified flows at which buoyancy effects are

strongly felt by turbulent flows given by

LO =

(
ε

N3

)1/2

. (2.16)

LO is also known as the largest isotropic vertical scale of motion that can exist in a stratified flow.

2.3.4 Scales of turbulent scalar field

Another length scale that is often used as a measure of overturns is the Ellison length scale

(Ellison, 1957) defined as

LE =
〈ρ′2〉1/2

∂〈ρ〉/∂z
, (2.17)

where ∂〈ρ〉/∂z is the background mean gradient of density and 〈ρ′〉 is the root mean square density

fluctuation. In the ocean and lakes, overturn lengths can be calculated from measured density

profiles through a sorting method originally proposed by Thorpe (1977). This kinematic scale

is known as the Thorpe length scale. If an overturn exists, a measured instantaneous density

profile must not be in equilibrium. Thorpe therefore resorted the instantaneous density profile

in an ascending order with depth and calculated the vertical displacement δT associated with each

measured value to a gravitationally stable resorted profile. For a given overturning region, the

Thorpe scale is calculated as root mean square displacement for that region as follows:
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LT = 〈δ2T 〉1/2. (2.18)

For a linearly stratified fluid, the Thorpe length scale and Ellison length scale are considered to be

same (Smyth et al., 2001). However, Cimatoribus et al. (2014) using measurements of temperature

variance from moored thermistor chains, found that the Thorpe scale is likely to be time dependent

and hence a strong correlation between LT and LE was found to hold for sufficiently high time

resolution in deep ocean turbulence.

2.4 Numerical methodology
Analytical solutions of the three dimensional Navier-Stokes equations are impossible due to

the nonlinear nature of the equations. Hence, numerical methods are used to solve the governing

equations for fluid flows. The three main numerical simulations methods for turbulent flows are Di-

rect Numerical Simulations (DNS), Large Eddy Simulations (LES) and Reynolds Average Navier

Stokes (RANS) simulations. DNS resolves all spatial and temporal scales of motion and solves the

whole flow field without need for any small scale parameterizations (figure 2.3). LES uses spatial

averages and solves the flow field for the largest eddies and uses a turbulence model for small

scales. RANS (or URANS: Unsteady-RANS ) uses time average (or ensemble average) to solve

for mean flow field (mean velocity, mean pressure) and uses turbulence closure schemes (figure

2.3). LES system is not discussed in this dissertation. DNS is most accurate and also considered

to be expensive in terms of computational cost and memory of the system. The cost increases

with increasing of Reynolds number of the flow as the scale separation of large length scale and

small length scale increases. RANS is less accurate and least expensive numerical method. DNS

resolves 100% turbulence and RANS uses 100% turbulence modeling. Large scale climate models

and ocean circulation models rely on RANS or LES type simulations. The accuracy of RANS

simulations can be increased with better and improved small scale parameterizations for turbu-

lence closure models. The comparison of these numerical methods in terms of cost and accuracy

is shown in fig 2.3.
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2.4.1 Direct numerical simulation (DNS)

Direct Numerical Simulation (DNS) solves Navier stokes equations (equations 2.4, 2.6, 2.7)

to obtain instantaneous flow fields by resolving all the scales of motion from energy containing

largest eddy length scale l to smallest kolmogorov length scale η at which energy dissipation

occurs in molecular level (figure 2.3). This is conceptually the simplest numerical approach and

more accurate compared to other methods. The ratio of largest to smallest length scale is given as

l/η ≈ Re3/4 where Re is the Reynolds number of the flow. For 3-Dimensional flow l/η ≈ Re9/4.

Hence with increase of Reynolds number of flow, computational cost in terms of CPU memory and

time increases drastically in order to resolve both large and small scales making DNS not feasible

for high Reynolds number flows. In order to make DNS feasible for higher Reynolds number flows

different approaches such as Pseudo-spectral method, low wave number forcing, hyper viscosity

etc. have been implemented. In this research only the pseudo-spectral method is discussed.

Pseudo-spectral method

Pseudo spectral methods (Orszag & Patterson, 1972) are preferred DNS scheme for homoge-

neous isotropic decaying turbulence because of their high accuracy. In this method the solution

domain is a cube of side L and velocity field u(x, t) is represented by finite Fourier series as

u(x, t) =
∑
eiκ.xû(x, t) in N3 wave number space where κ is wave number and N is size of

simulation which determines maximum attainable turbulent Reynolds number for the simulation

by N ∼ 1.6Re3/4 (Pope, 2000). In spectral method with Fast Fourier transform, the non-linear

terms of Navier Stokes equations are solved in physical space and linear terms in wave space to

reduce the computational cost from N6 operations to N3logN operations. Considering all aspects

of pseudo-spectral method Rogallo (1981) developed a DNS code for homogeneous isotropic de-

caying turbulence and Riley, Meltcalfe & Weissman (Riley et al., 1981) then extended Rogallo’s

DNS code for stably stratified homogeneous decaying turbulence. This code is used for the present

study.
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2.4.2 Reynolds average Navier Stokes (RANS) equations

Reynolds Averaged Navier-Stokes (RANS) equations are best suited for engineering applica-

tion due to less computational cost. In this method the instantaneous quantities are decomposed

into mean and turbulent part by Reynolds decomposition (Reynolds, 1895). Reynolds decomposed

instantaneous velocity, pressure and density fields are

ui = 〈Ui〉+ u′i, p = 〈p〉+ p′, ρ = 〈ρ〉+ ρ′, (2.19)

where 〈〉 is ensemble or temporal average and ′ indicate fluctuating quantity. Applying Reynolds

decomposition to governing equations (2.4), (2.6) and (2.7) Reynolds-averaged Navier-Stokes

equations are derived as
∂〈Ui〉
∂xi

= 0, (2.20)

D〈Ui〉
Dt

= − 1

ρ0

∂〈p〉
∂xi
− 〈ρ〉

ρ0
gδi3 +

∂

∂xj

[
ν
∂〈Ui〉
∂xj

− 〈u′iu′j〉
]
, (2.21)

D〈ρ〉
Dt

=
∂

∂xj

[
κ
∂〈ρ〉
∂xj
− 〈u′jρ′〉

]
. (2.22)

These equations are analogues to instantaneous governing equation except for the additional tur-

bulent fluctuation terms −〈u′iu′j〉 and −〈u′jρ′〉 in equations (2.21) and (2.22) known as Reynolds

stress tensor or momentum flux, and turbulent density flux respectively. These two terms include

extra nine unknown variables in three-dimensional RANS equations; six from the Reynolds stress

tensor and three for the turbulent scalar fluxes, creating an in-determinant system of equations

commonly known as the closure problem. Turbulent viscosity hypothesis and gradient diffusion

hypothesis (Pope, 2000) are generally used to solve the closure problem which reduce the number

of unknown variables. According to gradient diffusion hypothesis, the turbulent transport of scalar

flux 〈u′jρ′〉 is down the mean scalar gradient and is given as

− 〈u′jρ′〉 = κt
∂〈ρ〉
∂xj

, (2.23)
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where κt is eddy diffusivity that generally varies between molecular diffusivity of the scalar to few

orders of magnitude higher than molecular diffusivity. According to turbulent viscosity hypothesis

which is analogous to stress-rate of strain relationship of Newtonian fluid, deviatoric Reynolds

stress is given as

− 〈u′iu′j〉+
2

3
kδij = νt

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)
= 2νt〈Sij〉, (2.24)

where νt is eddy viscosity, k = 1/2u′2i is turbulent kinetic energy. Now the closure problem can be

solved by determining eddy viscosity and eddy diffusivity via turbulence modeling. Eddy viscosity

and eddy diffusivity are related by turbulent Prandtl (Schmidt) number

Prt =
νt
κt
. (2.25)

In turbulence modeling generally νt and Prt are modeled and then κt is calculated. Accuracy of

RANS simulations depend on how efficiently these variables are predicted.

2.4.3 Parameterization of turbulence/Turbulent closure models

Vast amount of research have been done on turbulence modeling for unstratified flows. Dif-

ferent turbulent models to model νt range from zero equation model or algebraic model to one

equation models to two equation models (Pope, 2000). A widely used two equation model is stan-

dard k− ε closure model (Jones & Launder, 1972) which solves the transport equation of turbulent

kinetic energy per unit mass k (equation 2.28) and rate of dissipation of turbulent kinetic energy

ε = k/t (equation 2.30 ) for prediction of νt as νt = (1 − Rf )Cµ
k2

ε
, where Rf = −B/P is flux

Richardson number which is ratio of buoyancy flux (B) and production of turbulent kinetic energy

(P) (Detail is discussed in §2.5.1). Cµ is turbulent viscosity parameter which is calibrated from

experimental and DNS data to be 0.09 (Kim et al., 1987). This closure method fails to account for

effect of stratification. For stratified flow eddy viscosity and eddy diffusivity which define mix-

ing and diffusion, need to be parameterized properly to give right level of both momentum and
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scalar mixing. For stably stratified flows turbulent Prandtl number is not constant and accounts

for stratification in terms of gradient Richardson number Rig and usually parameterized for homo-

geneous shear flow (Schumann & Gerz, 1995; Venayagamoorthy & Stretch, 2010) or to account

inhomogeneity of flow (Karimpour & Venayagamoorthy, 2014).

For one dimensional shear flows, the vertical momentum (〈u′w′〉) and scalar fluxes (〈ρ′w′〉) are

modeled with vertical eddy diffusivity of momentum Km and eddy diffusivity of scalar (density),

Kρ with respective mean background gradients as

Km = − 〈u
′w′〉

∂〈u〉/∂z
, (2.26)

Kρ = − 〈ρ
′w′〉

∂〈ρ〉/∂z
. (2.27)

Mixing in the ocean is typically predicted by parameterizing true eddy diffusivity for stratified

turbulence using observational data and numerical simulations.

2.5 Energetics of stratified turbulence
Energetics of turbulence is generally expressed through turbulent kinetic energy (TKE) and

modeled through the TKE budget equation (2.28). Stratification acts as a stabilizing force in a tur-

bulent flow making it less energetic. For a stratified turbulent flow, any fluid disturbance resulting

from turbulent kinetic energy creates buoyant restoring force. There is an energy conversion from

turbulent kinetic energy to potential energy resulting farther from its point of origination. This

controls the energy budget of stratified flows, specially in ocean and atmoshphere where turbu-

lence is often initiated and driven by the breakdown of internal waves (Winters et al., 1995). The

mixing or the change of density of a fluid particle is related to increase in background potential

energy. Following Lorenz’s concept of available potential energy Winters et al. (1995) provided

a conceptual framework describing energetics of density stratified Boussinesq fluid flow which is

summarized in the schematic shown in figure 2.4. In a stably stratified flow, The available poten-

tial energy (APE) is the energy released if the fluids were adiabatically rearranged to the state of
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Figure 2.4: Schematic showing energetics of diapycnal mixing

minimum potential energy. In oceanic flows, the turbulence is generated due to shear instability

or convective instability creating an overturn which increases the available potential energy at the

expense of turbulent kinetic energy. Some portion of turbulent kinetic energy gets dissipated to

internal energy, ε and the rest of kinetic energy is used to create an overturn thereby raising its

potential energy. When the overturn collapses, some of the potential energy gets converted back

to turbulent kinetic energy and in this way there is a portion of energy which relates turbulent ki-

netic energy to available potential energy in a reversible manner through buoyancy flux. A part of

available potential energy is used for mixing of fluid which alters the background potential energy

which is a irreversible process. The energy that is irreversibly converted to background potential

energy is a measure of diapycnal mixing. The equations for the energetics of diapycnal mixing are

described below.

2.5.1 Turbulent Kinetic energy

The turbulent kinetic energy (TKE) is given as the sum of the isotropic Reynolds stress terms

as k = 1
2
(u2i ). The evolution equation of k is obtained from momentum equations of fluctuating
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velocity field by taking their dot product with 1/2ui and is given as follow:

Dk

Dt
=
∂k

∂t
+ 〈Uj〉

∂k

∂xj
= −〈u′iu′j〉

∂〈Ui〉
∂xj

− ν〈∂u
′
i

∂xj

∂u′i
∂xj
〉 − g

ρ0
〈ρ′u′j〉δi3

+ ν
∂2k

∂x2j
+
∂〈ku′j〉
∂xj

− 1

ρ0

∂〈u′ip′〉
∂xj

. (2.28)

The first three terms on the right hand side of equation (2.28) are the production P of TKE, the

rate of dissipation of turbulent kinetic energy ε and the buoyancy flux B respectively, The last

three terms are the molecular viscous transport of TKE, turbulent transport of TKE and the pres-

sure diffusion of TKE, respectively. These terms are in general small compared to the first three

terms in flows where inhomogeneities arising from for example wall effects are negligible. For a

statistically homogeneous turbulent flows the turbulent kinetic energy equation can be written as

∂k

∂t
= P +B − ε. (2.29)

In a decaying turbulent flow (i.e. in the absence of mean shear) there is no production, hence,

∂k/∂t = B − ε. The buoyancy flux term indicates the reversible conversion of turbulent kinetic

into turbulent potential energy (TPE) or vice versa. In stably stratified flows the negative buoyancy

flux indicates that TKE is lost to TPE. It should be noted that some of the TPE is reversible in

the sense that it can reconvert to TKE in a wave dominated environment. Some of the TPE that is

fed via the buoyancy flux will be converted to the background potential energy due to diapycnal

mixing.

2.5.2 Turbulent Potential Energy

The mean turbulent potential energy per unit mass in a stably stratified flow is given as

Ep = −
〈
g

ρo

∫
ρ′dz

〉
= − g

ρo

(
∂〈ρ〉
∂z

)−1
1

2
〈ρ′2〉 = N2

(
∂〈ρ〉
∂z

)−2
1

2
〈ρ′2〉, (2.30)
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where N is the buoyancy frequency with which a fluid parcel oscillates about its equilibrium

position in the background stratification and is defined as N2 = (−g/ρo)(∂〈ρ〉/∂z). Equation

(2.30) is derived by considering the average density fluctuation ρ′ to be a function of vertical

displacement z′ from the stable position along a background density gradient 〈ρ〉/∂z). The density

variance equation can be derived as

∂〈1
2
ρ′2〉
∂t

+〈Ui〉
∂〈1

2
ρ′2〉

∂xj
= −〈u′jρ′〉

∂ρ

∂xj
+κρ

∂2〈1/2ρ′2〉
∂x2j

− ∂〈uj(1/2)ρ′2〉
∂xj

−κρ
〈
∂ρ′

∂xj

∂ρ′

∂xj

〉
. (2.31)

The first term on the right hand side of equation (2.31) is the production of scalar variance and the

last term is the dissipation of density variance εp. The second and third terms are molecular and

turbulent transport terms and can be neglected if the flow is homogeneous. Hence for a homoge-

neous flow, the turbulent potential energy equation can be obtained by multiplying equation (2.31)

with N2(∂〈ρ〉/∂z)−2 to get:

∂EP
∂t

=
g

ρo
〈u′jρ′〉δj3 −N2κρ

〈
∂ρ′

∂xj

∂ρ′

∂xj

〉(
∂〈ρ〉
∂z

)−2
. (2.32)

In equation (2.32) the first term on the right hand side is the buoyancy flux (u′jδj3 represents vertical

velocity fluctuation w′), B = g/ρo〈w′ρ′〉 and the second term is the potential energy dissipation

εPE which is represents the irreversible conversion of turbulent potential energy to background

potential energy and provides a measure of diapycnal mixing. It is evident that the buoyancy

flux term links the turbulent kinetic energy evolution equation (equation 2.28) and the turbulent

potential energy evolution equation (2.32).

2.6 Diapycnal mixing
In a stratified turbulent flow, mixing of fluid with different densities across the isopycnal (con-

stant density ) is termed as diapycnal mixing which is an irreversible process. Diapycnal mixing

is strongly influenced by stratification in geophysical flows as more turbulent kinetic energy is

needed to displace water over a strong density gradient. Small scale turbulent mixing is generally
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represented by a turbulent (eddy) diffusivity. The diapycnal eddy diffusivity of mass is defined as

Kρ =
ερ

∂〈ρ〉/∂z
, (2.33)

is the true measure of irreversible mixing of density (Venayagamoorthy & Stretch, 2010; Winters

& D’Asaro, 1996).

Towards the context of measurement in oceanography with current (state-of-the-art) sensors,

ερ is not a measurable quantity. But with small scale isotropic assumption, ε and rate of dissipation

of thermal variance, χ can be measured in a vertical profile manner in the ocean. To obtain the

vertical eddy diffusivity for oceanic flows, (Osborn, 1980) provided the following equation for

homogeneous stationary turbulence,

Kρ = Γ
ε

N2
, (2.34)

where Γ = Rf/(1 + Rf ) is the mixing coefficient and Rf is mixing efficiency defined in the

following section (2.6.1). From the stationary and homogeneous scalar (temperature) transport

equation, (Osborn & Cox, 1972) defined eddy diffusivity of temperature variance as

KT =
χ

2∂〈T 〉/∂z
. (2.35)

2.6.1 Mixing efficiency

The flux Richardson number Rf , also known as the mixing efficiency is defined as the ra-

tio of buoyancy flux, B = g/ρ0〈ρ′w′〉 and rate of production of turbulent kinetic energy, P =

〈u′w′〉 (d〈U〉/dz) (section 2.5),

Rf = B/P. (2.36)

The above equations are obtained by considering the simplest type of flow i.e., flow is stationary

and homogeneous. Considering inhomogeneity in to flow Ivey & Imberger (1991) defined mixing

efficiency as

Rf = B/B + ε, (2.37)
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where, B + ε represents the net mechanical energy required to sustain turbulent motions which

include advection, production and transport of turbulent kinetic energy (equation 2.28). For an

equilibrium condition or homogeneous case P = B+ε. Both the above definitions of flux Richard-

son number or mixing efficiency contain counter gradient flux. It is not possible to separate the

reversible (flux due to wave action in stratified flows) and irreversible (i.e. mixing: due to pure

turbulent motion in stratified flows) fluxes. Whether the flow is stationary or not, the irreversible

transfer of kinetic energy and density are still (locally) correctly represented by rate of dissipa-

tion of turbulent kinetic energy, ε and rate of dissipation of density variance, ερ. Thus the flux

Richardson number representing irreversible mixing is defined as

Rf =
εPE

εPE + ε
, (2.38)

where, εPE = N2ερ (∂〈ρ〉/∂z)−2 is the rate of dissipation of turbulent potential energy (eqn).

This definition has been suggested by Peltier & Caulfield (2003) and Venayagamoorthy & Stretch

(2010) from independent works. In a recent study, Venayagamoorthy & Koseff (2016) suggested

that there is nearly no difference between any of the above three definitions of mixing efficiency for

a stationary homogeneous shear dominated stratified turbulence defined with gradient Richardson

numberRig 6 0.25. With increase of stratification, irreversible flux Richardson number is the only

positive definite definition representing diapycnal mixing. In the context of this thesis, we imply

that Rf and Γ as irreversible mixing efficiency and irreversible mixing coefficient, respectively,

unless otherwise mentioned. Thus, Γ can also be defined as Γ = εPE/ε. Note that εPE and ε are

true measures of irreversible loss of energy.

2.6.2 Parameterization of Rf or Γ

Γ is typically considered to have a canonical constant value of 0.2 (Rf ≈ 0.17) (Osborn, 1980).

It should be noted that the constancy of Γ has been the subject of extensive debate and a universal

parameterization of Γ still remains elusive (Gregg et al., 2018; Mater & Venayagamoorthy, 2014).

Common non-dimensional parameters used for parameterization of mixing efficiency are, buoy-

27



ancy Reynolds number Reb, gradient Richardson number Rig and turbulent Froude number Fr,

defined as

Reb = ε/νN2, Rig = N2/S2 and Fr = ε/Nk, (2.39)

where, ν is the kinematic viscosity, S is the mean shear and k is the turbulent kinetic energy.

Direct numerical simulation of sheared stratified turbulence sugesst that Γ ∝ Re
−1/2
b forReb >

O(100), corresponding to shear dominated or energetic flow (Salehipour & Peltier, 2015; Shih

et al., 2005). Similar scaling was found by Lozovatsky & Fernando (2012) for atmospheric flow

but for higher range of Reb > O(104). From experimental data Barry et al. (2001) suggested

that Γ ∝ Re
−2/3
b for Reb > 300. Using a Reb − Rig parameter space, Salehipour et al. (2016)

found a non-monotonic relation between Γ and Reb. Such a dependence is not surprising given the

ambiguity inherent in Reb which attempts to capture the competition between inertial, buoyancy

and viscous forces. Hence, for Reb based parameterizations, decrease in mixing coefficient with

increase in Reb can be considered as an artifact of low stratification.

From a scaling analysis, Maffioli et al. (2016) suggested that in the limit of high turbulent

Froude number, Γ = εPE/ε ∼ Fr−2 consistent with other experimental studies of Holford &

Linden (1999); Ivey & Imberger (1991); Linden (1980); Strange & Fernando (2001). However

in the limit of low Fr which represents strongly stratified fluid, Maffioli et al. (2016) found that

Γ approaches a constant value of ∼ 0.3 decreasing from a peak value of ∼ 0.5 at Fr ∼ O(1),

inconsistent with the experimental results where Γ was found to decrease to zero in the limit of

low Fr (Wells et al., 2010). This is because, the experimental data have considered Γ = B/εwhich

is the flux coefficient and Maffioli et al. (2016) considered the true irreversible mixing coefficient.

Here, one should note that, the flux coefficient and the mixing coefficient behave similar only for

weakly stratified flows (Venayagamoorthy & Koseff, 2016).

The irreversible flux Richardson number (or mixing coefficient) is also parameterized as a func-

tion of gradient Richardson number which shows that mixing efficiency increases with Rig in the

shear dominated flow upto a critical value ofRig (∼ 0.25) (Karimpour & Venayagamoorthy, 2014;

Linden, 1984; Venayagamoorthy & Koseff, 2016) and approaches a constant value for high Rig
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regime (Karimpour & Venayagamoorthy, 2014). Though Rig based parameterizations are simple

to use,Rig is an external parameter and hence, restricted to only shear driven turbulence. Consider-

ing the ambiguities inherent in single parameter formulations (Mater & Venayagamoorthy, 2014),

multiparameter frame work has been proposed for parameterization of mixing based on both Reb

and Rig (Lucas & Caulfield, 2017; Salehipour et al., 2016). Again Reb = Fr2Re where Re is the

turbulence Reynolds number (Ivey & Imberger, 1991). In the limit of high Reynolds number flow

(with approximate constant order of Re as in most of the DNS simulations), Reb ∼ f(Fr2). It has

been shown that bulk Richardson number, Rib (approximation of gradient Richardson number),

is related to turbulent Froude number, Rib ∼ Fr−2 as per classical parameterization of mixing

based on idea of Turner (Maffioli et al., 2016). Here, it is worth noting that Fr can be viewed as

a competition of time scales (i.e. the turbulence time scale TL = k/ε to the buoyancy time scale

N−1). Hence, Fr is a dynamic indicator of the local state of turbulence in a stably stratified flow.

However, TL is difficult to measure in the field.

Venayagamoorthy & Stretch (2006) showed that small-scale mixing does not directly depend

on buoyancy time scale N−1 but rather on the turbulent kinetic energy decay time scale TL. They

proposed a model for the Lagrangian mixing term as

κ∇2ρ′(t) = −γ′T−1L ρ′, (2.40)

where γ′ ∼ 0.7. Brethouwer & Lindborg (2009) also suggested that the asymptotic behaviors of

adiabatic dispersion depends on eddy turn over time and not on the buoyancy time N−1 contrary to

the original suggestion of Pearson et al. (1983). But as noted previously, TL is difficult to estimate

in the field mainly due to challenges in estimating the turbulent kinetic energy.

2.7 Turbulence measurement in the ocean
Oceans are highly energetic with ubiquitous turbulence phenomenon with Reynolds number

up to 1010 in the upper ocean and surf zones (Thorpe, 2005). Understanding turbulence in the
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ocean is necessary for modeling of oceanic flows. Measures of the effect of turbulence can be

determined from momentum and/or scalar fluxes. The very first ocean turbulence measurements

were conducted by H. Grant and his research group in 1950 using hot film anemometers which

is only applicable in high turbulence flow regimes. Vertical free falling profilers were first used

in late 1960s (Lueck et al., 2002). Free falling profilers became popular since they are decou-

pled from ship motions and hence from ship induced noise. The basic components of instruments

for oceanic measurements mainly consists of three parts: a sensor or probe to measure required

physical parameter, electronic circuit to collect the signal from probe and store the data and a plat-

form for smooth functioning of the probe in the ocean. Some widely used instruments for oceanic

measurements are the CTD (Conductivity-Temperature-Depth) (figure 2.5a, 2.5b), VMP (Vertical

Microstructure Profiler) (figure 2.5c) and ADCP (Acoustic Doppler Current Profiler) (figure 2.5d).

The CTD and ADCP are usually shipboard (mounted or tethered) instruments while the VMP is

typically a free-falling instrument.

The study of turbulent mixing in the ocean is very important for understanding the global ocean

overturning circulation because of its influence on climate. Most of the turbulence measurements

in the ocean suggest that the vertical eddy diffusivity is approximately 10−5 m2/s (Gregg, 1989),

which is a factor of 10 smaller than the canonical mean vertical eddy diffusivity that maintains

the global thermohaline circulation (Munk, 1966). Recently, Waterhouse et al. (2014) showed

that the global-average diffusivity below 1000 m depth is O(10−4) m2/s based on microstructure

observations.

2.7.1 CTD:

CTD is an acronym for Conductivity, Temperature, and Depth. CTD is a primary instrument

used by oceanographers to measure physical, chemical and biological properties (salinity, temper-

ature, pressure, dissolved oxygen, pH, fluorescence, nitrates water sample etc. ) of sea water to

understand the processes in ocean. Here only physical properties are discussed. (Encyclopedia of

Ocean Sciences, vol. 1, p. 579-588). CTD can be used in several thousand meters of water depth
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(a) (b)

(c) (d)

Figure 2.5: Pictures of commonly used instruments in the field of oceanography. (a): CTD Rosette, (b):
UCTD (c) ADCP and (d): VMP

and withstands water pressure. For ship board CTD deployment and retrieval the ship needs to be

completely stationary. CTD is generally lowered from ship to the maximum desirable depth. Then

while retrieving back water samples are collected through the sampler bottles attached with CTD

as shown in figure 2.5a, and other hydrographic properties are measured with attached sensors at

desired interval of depths. Such setups of the CTD are also known as a CTD Rosette. On the other

hand the use of underway CTD or UCTD (figure 2.5b) has increased in recent due to it being less
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expensive but more importantly because it enables the measurement of conductivity, temperature

and pressure in a moving ship (speed upto 13 knots, the ship speed in general goes up to 20 knots).

The probe is simple to operate and data collections are done more rapidly in time compared to CTD

Rosette. UCTD is generally used to study upper few hundreds of meters of the ocean (Rudnick

& Klinke, 2007). The required data for our study of ocean turbulence measure from CTD for this

study are pressure P , temperature T and salinity S.

2.7.2 ADCP:

Acoustic Doppler Current Profiler (ADCP) measures ocean currents (velocity) using the prin-

ciple of Doppler shift. ADCP has generally 4 (sometimes 5) acoustic transducers that emits and

receives signal from four different directions allowing the instrument to measure current at differ-

ent depth of an entire water column simultaneously (figure 2.5c). ADCPs can be bottom mounted

(anchored to sea floor) with internal data logger or vessel mounted (shipboard). ADCP measures

absolute water current not relative to ship, and can measure ocean current upto 1000 m depth de-

pending type of frequency of the instrument.It measures small scale currents. The ADCP works

by transmitting "pings" of sound at a constant frequency into the water. As the sound waves travel,

they ricochet off particles suspended in the moving water, and reflect back to the instrument. Due

to the Doppler effect, sound waves bounced back from a particle moving away from the profilers

have a slightly lower frequency when they return. Particles moving toward the instrument send

back higher frequency waves. The difference in frequency between the waves the profiler sends

out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate

how fast the particle and the water around it are moving (WHOI ocean instruments). In common

practice the fine scale horizontal velocities are measured using an ADCP.

2.7.3 VMP:

A VMP, which stands for Vertical Microstructure Profiler, is an untethered microstructure pro-

filing system that, after being released, sinks to a pre-defined ocean depth. It collects data on the

way down, through various sensors, meters, and probes, both in the nose cone of the instrument
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and in the main body (figure 2.5d). After the VMP reaches the pre-defined depth, the instrument

releases ballast weights so that it becomes positively buoyant and rises to the ocean surface. It

is equipped with state-of-art microstructure velocity probes (shear probes), high-resolution tem-

perature sensors (thermistors), and high-accuracy CTD sensors such that concurrent measurement

of hydrographic and turbulence data are possible. Vertical microstructure profilers are expensive

compared to CTD profiles. Measurements of turbulence in the deep ocean, particularly close to

the bottom, are extremely sparse because of the difficulty and operational risk of obtaining deep

profiles near the seafloor. A newly developed expendable instrument, the VMP-X (Vertical Mi-

crostructure Profiler Expendable) carries two microstructure shear probes to measure the fluctua-

tions of vertical shear into the dissipation range and can profile down to a depth of 6000 m (Shang

et al., 2017). The shear probe and the thermistors measure small scale rate of dissipation of tur-

bulent kinetic energy ε and rate of thermal dissipation χ respectively, based on the assumption of

small scale isotropy given as

ε =
15

2
ν
〈(∂u′

∂z

)2 〉
, (2.41)

χ = 6κT

〈(∂T ′
∂z

)2 〉
, (2.42)

where, ν is kinematic molecular viscosity and κT molecular thermal diffusivity.

2.8 Lagrangian dispersion and mixing
Study of statistical properties of Lagrangian particle trajectories is imperative if one wants to

understand the phenomenon of mixing and dispersion in fluids. Lagrangian statistics give in-depth

understanding of particle displacement or particle dispersion (Monin et al., 1971; Yeung & Pope,

1989) and particle relative dispersion (Sawford, 2001) in a fluid in motion.

2.8.1 Lagrangian frame work

Lagrangian and Eulerian descriptions are two different approaches or frameworks to describe

fluid motion. In a Lagrangian description, history of a fluid particle is obtained by keeping track
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of the position vector r 3 of the particle for all time t with reference to some initial time t0 with

particle position r0. Hence in a Lagrangian framework, the position of a given particle at any time

is function of the initial conditions. The position vector is given as

r = r(r0, t) where r = r0 when t = t0. (2.43)

Hence, the velocity and acceleration of a fluid particle are simply partial derivatives with time

given by

u =

(
∂r

∂t

)
r0

and a =

(
∂2r

∂t2

)
r0

=

(
∂u

∂t

)
r0

. (2.44)

On the contrary, in an Eulerian description, the fluid motion is studied within a fixed space (control

volume) where fluid particles flow through. Here, the velocity vector u = u(r, t) is therefore a

function of time and of the space where the observation is made. The partial derivative therefore

gives only local rate of change instead of the total rate of change obtained from the Lagrangian

description. Hence, the Eulerian acceleration is given as

a =
Du

Dt
=
∂u

∂t
+ u.∇u. (2.45)

The majority of fluid mechanics problems are solved in an Eulerian framework since analysis using

a Lagrangian framework is challenging and costly due to the need for tracking a large number of

particles. However, Lagrangian analysis is a natural way to study dispersion in fluid flows. In

DNS, the Eulerian velocity field is computed in a fixed domain (i.e. at each grid point in the

computational mesh). Given the Eulerian velocity and any other related quantities such as the

density field, the Lagrangian statistics can be computed by tracking the motions of an ensemble

of fluid particles within the Eulerian velocity field. Lagrangian and Eulerian velocities are equal

only when calculated at a particle position (where advection term in zero). The relationship of

Lagrangian and Eulerian velocity field is given by

3Bold letter signifies vector representation, r(x, y, z)
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u(ro, t) = u(r(r0, t), t). (2.46)

and instantaneous position of fluid particle is

∂r(r0, t)

∂t
= u(r0, t). (2.47)

2.8.2 Particle dispersion

The law of diffusion is about the average particle distribution at any instant of time initially

concentrated at one point and is highly influenced by presence of both turbulence and stable strat-

ification. A particle dispersion study would therefore provide fundamental insights on turbulent

diffusion and ultimately mixing in stably stratified turbulent flows. Turbulent diffusion was stud-

ied mathematically in the seminal work by Taylor considering velocity auto correlation of particle

with time and experimentally by Dobson and Richardson separately using a smoke plume (Taylor,

1921). In a continuous turbulent motion, mean square particle displacement 〈(δr)2〉 or standard

deviation of position of a single particle with uniform mean velocity is directly proportional to

square of time for short time intervals and proportional to time at large times (Taylor, 1921). This

is similar to Einstein’s Brownian motion for molecular diffusion which shows an initial ballistic

region (∼ t2) and a later diffusive region (∼ t).

Csanady (1964) extended the work of Taylor (1921) for single particle dispersion to strati-

fied fluid by considering random stochastic buoyant acceleration instead of pressure gradient and

viscous force which was earlier suggested by Priestley (1959), in order to calculate net vertical

movement of particles in a stably stratified fluid. Lagrangian and Eulerian velocities are the same

for a particular particle position. Keeping this relation in mind mean square vertical displacement

of a particle in stably stratified fluid for time, t→∞ is given as (Csanady, 1964)

〈z2w〉 = 2〈(w′)2〉tτL, (2.48)

where τL > 0, is Lagrangian time scale of turbulence,
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τL =

∫ ∞
0

Rw(t) dt, (2.49)

with the Lagrangian vertical velocity temporal auto-correlation function Rw(t) given as

Rw(t) =
〈w′(t0)w′(t0 + t)〉

〈w′2〉
, (2.50)

wherew′ is vertical velocity fluctuation, 〈z2w〉 is mean square vertical displacement, 〈(w′)2〉 is mean

square vertical velocity fluctuation and t is time. This relation is obtained by considering large time

Lagrangian vertical velocity auto correlation as a Markov process though turbulent diffusion is not

purely a Markov process at least for early time. Some experimental results have shown that vertical

particle dispersion at long time does not grow with time and the auto correlation function can not

be neglected (Britter et al., 1983) and plays dominant role in particle dispersion and equation 2.48

can be written as

〈z2w〉 = 2〈(w′)2〉tτL +

∫ ∞
0

tRw(t) dt. (2.51)

Once the mean square vertical particle dispersion is known, the vertical eddy diffusivity can be

obtained for long time as

Kt ≈ 〈z2w〉/2t or Kt = 〈w2〉τL. (2.52)

Lagrangian velocity auto correlation is an important statistic that can be used to obtain the eddy

diffusivity. Lagrangian integral time scale and Lagrangian velocity auto correlation functions are

difficult to obtain theoretically and their relationships with corresponding Eulerian statistics are

not clearly proven yet. Whether the Lagrangian integral time scale is larger than the Eulerian

integral length scale or smaller is still unclear even for an unstratified turbulent flows (Dosio et al.,

2005). For unstratified turbulent flows suggestions have been given to use Lagrangian integral

length scale LL instead of Lagrangian integral time scale (Xia et al., 2013) since it is easier to

obtain from Lagrangian spatial auto correlation function by keeping track of particle position from

the initial position. In this way eddy diffusivity is given as Kt = (〈w2〉)1/2LL. This suggests that

an appropriate length scale and velocity scale is required for estimation of eddy diffusivity.
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Vertical diffusion can also be inferred from density fluctuation at a point. Pearson et al. (1983)

studied statistically stationary stably stratified homogeneous flow using a stochastic Langevin

model and derived root mean square vertical particle displacement from density transport equa-

tion as

(〈z2w〉)1/2 = (〈w〉/N)(ζ2z + 2γ2Nt)1/2, (2.53)

where, ζ2z is dimensionless parameter that depends on turbulent pressure gradient spectrum, γ

is mixing coefficient which determines particle density change owing to small scale mixing, N

is buoyancy frequency. Pearson et al. (1983) suggested that for intermediate time defined with

buoyancy time Nt, 1 < Nt < γ−2 (when γ << 1), root mean square vertical particle dispersion

is constant ((〈z2w〉)1/2 ' w/N ) and for large time scale exhibits a diffusive regime. Lindborg

& Brethouwer (2008) showed that for stratified flows with decaying turbulence, the mean square

vertical particle displacement approaches constant value of 2(Ep(0) + aE(0))/N2 when t → ∞,

where Ep(0) is initial mean potential energy, E(0) is initial total turbulent energy and a is the

fraction of total initial turbulent energy that has been dissipated. But for stationary turbulence

at long time, the mean square vertical particle dispersion approaches 〈δz2〉 = (4Ep + 2εpt)/N
2

as function of time, where 4Ep/N
2 is the adiabatic dispersion (which does not contribute for net

vertical diffusion), where Ep is mean potential energy and 2εpt/N
2 is diabatic dispersion. The

ratio of adiabatic and diabatic dispersion bear universal constant ratio (3π). Adiabatic dispersion

approaches a plateau at one eddy turn over time and diabatic dispersion dominates at 2 eddy turn

over times and grows linearly with time. Vertical particle dispersion does not depend on buoyancy

time N−1 but rather on the eddy turnover time TL = k/ε. Similar results for linear growth of

vertical particle dispersion for decaying stably stratified turbulence is shown by Venayagamoorthy

& Stretch (2006) and for single and particle pairs in stationary stratified flows has been shown for

passive scalar by Aartrijk et al. (2008). It should be noted that as discussed earlier, TL is difficult

to estimate in the field.
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In a stratified flow, vertical dispersion ceases while horizontal dispersion is quite similar to that

observed in the unstratified counterpart. Further work on particle dispersion is warranted to gain

fundamental insights on turbulent small-scale mixing in stably stratified flows.

2.9 Summary
In this chapter, a discussion on the salient properties of turbulence in stably stratified flows has

been presented to set the stage for the research that will be presented in subsequent chapters. In

particular, the lack of robust parameterizations for mixing has been highlighted.
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Chapter 3

Analysis of oceanic diapycnal mixing from

microstructure measurements4

3.1 Introduction
Turbulent diapycnal mixing is the key component which controls global circulations and dis-

tribution of heat, mass and tracers in the ocean (Munk & Wunsch, 1998). Accurate estimation of

diapycnal diffusivity is essential for understanding global heat and mass budget (Wunsch & Fer-

rari, 2004). One of the primary motivation of ocean microstructure measurements is to estimate

the vertical fluxes of mass, heat and momentum across the isopycnal (constant density surfaces),

associated with turbulent mixing. Commonly measurable turbulent quantities from microstructure

profiles are the rate of dissipation of turbulent kinetic energy, ε and the rate of dissipation of ther-

mal variance χ. As small scales are not directly resolved in numerical models, it is desirable to

parameterize turbulent mixing accurately from these measurable quantities.

Direct measurement of turbulent fluxes are proven to be difficult and hence, the turbulent fluxes

are often parameterized in large scale ocean and climate models by diascalar diffusivities and

corresponding mean gradients. For example, the buoyancy flux is given as 〈ρ′w′〉 = −KρN
2,

where Kρ is the eddy diffusivity of mass and N2 =
√

(g/ρo)(∂〈ρ〉/∂z) is the buoyancy frequency

that represents the background stratification through the mean density gradient ∂〈ρ〉/∂z. The

big challenge in oceanography is to estimate diascalar diffusivity accurately from the data that

are measured with current state-of-the-art instruments. Most of the turbulence measurements in

the ocean suggest that the vertical eddy diffusivity is approximately 10−5 m2/s (Gregg, 1989),

which is a factor of 10 smaller than the canonical mean vertical eddy diffusivity (Munk, 1966)

4The research presented in this chapter is under preparation to be submitted in the Journal of Geophysical Research
under the title "Microstructure measurements: Methodology to infer diapycnal mixing from microstructure data for
oceanic flows" by A. Garanaik and S. K. Venayagamoorthy. The chapter is written in a collective "we" voice to
acknowledge collaboration with Dr. S. K. Venayagamoorthy.
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that is required to maintain the global thermohaline circulation. By compiling 5200 microstructure

profiles, (Waterhouse et al., 2014) suggested that the globally averaged diapycnal diffusivity below

1000 m depth is O(10−4) m2/s and above 1000 m depth is O(10−5) m2/s which are on average

consistent with previously predicted diffusivity and provide an indication of the bulk statistics of

mixing. It has been also noted that, distribution of diapycnal mixing is sparse varying in both

location and depth as well as with time (Kunze et al., 2006). Hence while the bulk statistics can

provide a general overall idea of ocean mixing, they can not describe the governing parameters

of diapycnal mixing. This requires proper diagnostics of diapycnal mixing and its subsequent

parameterization through careful identification of the relevant turbulent regions.

The most commonly used model for diapycnal diffusivity is developed by Osborn (1980) for a

homogeneous and stationary flow which recasts the diapycnal diffusivity as

Kρ = Γ
ε

N2
, (3.1)

where Γ = Rf/(1−Rf ) is a mixing coefficient andRf is the flux Richardson number (also termed

the mixing efficiency) which is a ratio of buoyancy flux (B) to production of turbulent kinetic

energy P , ε is the rate of dissipation of turbulent kinetic energy and N =
√

(−g/ρo)(d〈ρ〉/dz)

is the buoyancy frequency. Γ is typically considered to have a canonical constant value of 0.2

(Rf ≈ 0.17) (Osborn, 1980). It should be noted that the constancy of Γ has been the subject of

extensive debate and a universal parameterization of Γ still remains elusive (Gregg et al., 2018;

Mater & Venayagamoorthy, 2014).

Common parameterizations of Γ are expressed as functions of buoyancy (Gibson) Reynolds

number Reb = ε/νN2, where ν is the kinematic viscosity. With the availability of microstructure

data, the rate of dissipation of turbulent kinetic energy, ε is availabe. The background stratification

is typically extracted from CTD measurements and hence, Reb can be readily computed from

ocean data. This is the basic reason why Reb based parameterization of Γ is popular even though

they have no fidelity as they are not justified on physical grounds. Direct numerical simulation of

sheared stratified turbulence sugggest that Γ ∝ Re
−1/2
b for Reb > O(100), corresponding to shear
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dominated or energetic flow (Salehipour & Peltier, 2015; Shih et al., 2005). Similar scaling was

found by Lozovatsky & Fernando (2012) for atmospheric flow, but for a higher range of Reb >

O(104). From experimental data, Barry et al. (2001) suggested that Γ ∝ Re
−2/3
b for Reb > 300.

Osborn (1980) suggested constant canonical value of Γ is only acceptable for buoyancy driven flow

which is defined as O(1) < Reb < O(100) (Bouffard & Boegman, 2013; Maffioli & Davidson,

2016; Shih et al., 2005). DNS study of Maffioli & Davidson (2016) found Γ can peak upto 0.5 and

approach a constant value of 0.33 for strongly stratified fluid with Reb ∼ O(10). Oakey (1982)

suggested 0.05 < Γ < 0.47 and Moum et al. (1989) suggested 0.12 < Γ < 0.48. Laurent & Smitt

(1999) argued that high mixing efficiency might be related to double diffusion. Parameterization of

Γ as a function of gradient Richardson numberRig = N2/S2, (where S is background mean shear)

shows that mixing efficiency increases withRig in the shear dominated flow upto a critical value of

Rig (∼ 0.25) (Karimpour & Venayagamoorthy, 2014; Linden, 1984; Venayagamoorthy & Koseff,

2016) and approaches a constant value for high Rig regime (Karimpour & Venayagamoorthy,

2014; Venayagamoorthy & Koseff, 2016). The reliability of Rig based parameterization in the

ocean depends on how efficiently the background shear and stratification are computed from the

data.

With these ambiguities of current Parameterizations of mixing, it is not advisable to use a con-

stant mixing efficiency throughout the ocean. The questions to ask is: whether a constant value for

Γ(= 0.2 or Rf = 0.17) is justified in the upper ocean and in deep ocean influenced by topogra-

phy, where water columns are already well mixed with very weak to no stratification? If not, does

the mixing efficiency decrease in a universal way as a function of Re−1/2b from Reb throughout

the ocean? Current parameterizations still use Rf = 1/6 considering that turbulent overturns loose

17% of their energy in raising the dense water (Olbers & Eden, 2013; Polzin, 2009). Because of the

difficulty in accurately estimating mixing efficiency from field measurements and lack of deeper

knowledge of their validity, this maximum value is being used (loosely) for Rf in shear induced

turbulent mixing of stratified flows. Parameterization of mixing efficiency is generally obtained

from controlled experiments and applied to the ocean globally. In this study, we focus on ambigu-
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ities of Reb based parameterization in the microstructure measurements. Field data analysis also

faces challenges on how accurately the data are measured and how effectively data are analyzed.

We also provide a brief discussion on different methodologies for ocean data analysis. In section

3.2, theoretical background is discussed for estimation of Γ from microstructure measurements.

Section 3.3 provides a brief description of data used for this study. Methodology of data analysis

is presented in section 3.4 followed by results and discussions in section 3.5. Concluding remarks

are provided in section 3.6.

3.2 Theoretical background
The evolution equation of temperature variance in a stratified turbulent field is given as

∂〈T ′2〉
∂t

+ 〈Ui〉
∂〈T ′2〉
∂xj

= −2〈u′jT ′〉
∂T

∂xj︸ ︷︷ ︸
P

+κT
∂2〈T ′2〉
∂x2j

−
∂〈u′jT ′2〉
∂xj︸ ︷︷ ︸

T

− 2κT

〈
∂T ′

∂xj

∂T ′

∂xj

〉
︸ ︷︷ ︸

χ

, (3.2)

where 〈〉 represents statistical average, T ′ is the small scale temperature fluctuation, κT is the

molecular diffusivity of heat, u′i is the small scale velocity fluctuation, Ui is the mean velocity

and i, j = 1, 2, 3. The first term on right hand side of the equation 3.2 is the production of

temperature variance (P ). The 2nd and 3rd terms are molecular and turbulent transport terms

(T ) respectively and the last term is the rate of dissipation of temperature variance (χ). For a

homogeneous flow, the transport terms can be neglected. Assuming stationary and equilibrium

flow, equation 3.2 simplifies to P = χ. In the oceanographic context, data acquisitions are done by

vertical profile measurements as stratification is also predominant in the vertical direction. Hence,

for 1D homogeneous, stationary flow

〈w′T ′〉∂T
∂z

= −χ
2
. (3.3)

The vertical temperature flux 〈w′T ′〉 is related to the down-gradient of mean temperature. By

invoking the gradient diffusion hypothesis (Pope, 2000), 〈w′T ′〉 = −KT
∂〈T 〉
∂z

, where KT is the
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vertical eddy (turbulent) diffusivity of heat.

KT =
χ/2

(∂〈T 〉/∂z)2
. (3.4)

The value of χ can be measured in the ocean using vertical microstructure profiler with the as-

sumption of small scale isotropy. Background temperature gradient is obtaind from CTD profiles.

This model was developed by Osborn & Cox (1972) for obtaining turbulent diffusivity in ocean

from measurable quantities. This method suffers, when temperature gradients are very small.

Osborn (1980) derived the model for vertical eddy mass diffusivity (eq: 3.1) from the equation

of evolution of turbulent kinetic energy (k). Turbulent kinetic energy is the sum of the isotropic

Reynolds stress terms as k = 1
2
〈u2i 〉. The evolution equation of k is obtained from the momentum

equations of the fluctuating velocity field u′i,

Dk

Dt
=
∂k

∂t
+ 〈Uj〉

∂k

∂xj
= −〈u′iu′j〉

∂〈Ui〉
∂xj︸ ︷︷ ︸

P

− ν〈∂u
′
i

∂xj

∂u′i
∂xj
〉︸ ︷︷ ︸

ε

− g

ρ0
〈ρ′u′j〉δi3︸ ︷︷ ︸
B

+ ν
∂2k

∂x2j
+
∂〈ku′j〉
∂xj︸ ︷︷ ︸

T

− 1

ρ0

∂〈u′ip′〉
∂xj

, (3.5)

where, ν is the molecular kinematic viscosity, δi3 is Kronecker delta5 and is equal to unity for

vertical momentum equation and zero for horizontal momentum equations. The first three terms

in right hand side of equation (3.5) are production of turbulent kinetic energy P , rate of dissipation

of turbulent kinetic energy ε and buoyancy flux B respectively. The last term is pressure diffusion

which is very small compared to other terms. The 3rd and 4th terms are molecular viscous transport

and turbulent transport respectively. For one dimensional statistically homogeneous and stationary

turbulent flow, equation 3.5 can be simplified to

5δij = 1 (if i = j) and δij = 0 (if i 6= j) for i, j = 1, 2 and 3

43



〈u′w′〉∂U
∂z︸ ︷︷ ︸

P

= −ε− g

ρ0
〈ρ′w′〉︸ ︷︷ ︸
B

. (3.6)

The ratio of buoyancy flux to production is defined as the flux Richardson number, Rf (= B/P ),

also known as the mixing efficiency. By deduction, B/ε = Γ, where Γ = Rf/(1 − Rf ) is con-

sidered as mixing coefficient. Vertical density flux is related to down-gradient of mean density.

Invoking the gradient diffusion hypothesis, eddy diffusivity of mass is defined as

Kρ = − ρ′w′

∂〈ρ〉/∂z
=

B

N2
(3.7)

or

Kρ = Γ
ε

N2
, (3.8)

where N2 = (−g/ρ0)(∂〈ρ〉/∂z) is the buoyancy frequency. Deriving eddy diffusivity of mass in

the manner above way is helpful in oceanography as both ε and N can be measured using vertical

microstructure profiles and CTD respectively. According to Osborn model of diffusivity, Γ = 0.2

or Rf = 0.17.

For a turbulent flow, eddy diffusivity of mass and temperature and the other scalars should

be same as the differences in molecular diffusion are equivalently compensated by differences in

fluctuating gradients. With this concept for a turbulent flow, KT = Kρ. From equations 3.4 and

3.8, Oakey (1982) derived the mixing coefficient Γ as

Γ =
χN2

2ε(∂〈T 〉/∂z)2
. (3.9)

All the parameters of equation 3.9 are measurable in oceanic flows using microstructure profiler

and CTD. Considering the data which have all these parameters measured concurrently, we can

find better assessment of parameterization of Γ from field measurements. The mixing efficiency

can be derived from mixing coefficient as
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Rf =
Γ

1 + Γ
. (3.10)

3.3 Data considered
A variety of sensors are generally used in a research cruise. The Conductivity-Temperature-

Depth (CTD) sensor is the most common type instrument for hydrographic data collection. For

small scale turbulent data measurements, vertical microstructure profiler (VMP) is used with shear

probes (for ε) and thermistors (for χ). For the measurement of oceanic currents, Acoustic Doppler

Current Profilers (ADCP) are employed to measure fine scale horizontal velocities. Detailed de-

scriptions of these instruments were provided in chapter 2.

For the present study, we have considered the microstructure data which has all sensors at-

tached to one instrument to provide us with the hydrographic data (P, S, T ), turbulence data (χ, ε)

and ocean velocity data (u, v) measured concurrently. That means, the vertical microstructure

profiler occupying ADCP, CTD, shear and thermistor probes all together were used for data col-

lection. This approach eliminates any uncertainty associated with time and location mismatch

of measurement which is unavoidable if data are measured with different instruments. The mi-

crostructure data considered for our study are obtained from NSF-funded microstructure database

(https://microstructure.ucsd.edu). This database provides a compilation of various datasets ob-

tained from microstructure profiles provided by data owners (PIs), capable of measuring smallest

scales of oceanic turbulence. Data are archived in NETCDF files at 1m bin resolution which

can be extracted easily using software like MATLAB and PYTHON. The variables saved are

time, depth, pressure, temperature, salinity, latitude, longitude, dissipation rate of turbulent ki-

netic energy ε and if available, dissipation rate of thermal variance χ. Out of all 31 documented

datasets, only, BBTRE96, BBTRE97, EXITS1, EXITS2, EXITS3, GEOTRACES, GRAVILUCK,

MIXET1, MIXET2, NATRE, SPAM1and SPAM2 have hydrographic and turbulent parameters.

From personal communication with PIs, we have BBTRE, NATRE and IWISE data sets with com-

plete required hydrographic data, turbulence data and velocity data. From a research collaboration

with AirSea Interactions in the Northern Indian Ocean (ASIRI), we have glider data with all above
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mentioned variables measured at 0.5 m vertical resolution. ASIRI is an international research ef-

fort (2013 − 17) aimed at understanding and quantifying coupled atmosphereocean dynamics of

the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons (Wijesekera et al., 2016). For

our analysis, we have considered BBTRE, IWISE and BoB data.

IWISE (The Internal Waves In Straits Experiment) was conducted at 250 km wide Luzoin

strait of South China sea. This site is considered to be one of the most energetic internal wave

environment in the world ocean (Laurent et al., 2011). As the salinity was un-pumped in the

CTD for IWISE data set, salinity was obtained from microstructure temperature and a fit for T-S

(temperature-Salinity) was obtained from a separate deployment CTD and it has been shown that

these data can be considered robust for further analysis as described in (Mater et al., 2015). A total

of 67 vertical profiles are considered with an average depth of 1000 m with 9 profiles measuring

till 1600 m depth. Turbulence levels are significantly enhanced in this site. The BBTRE97 (Brazil

Basin Tracer Release Experiment) took place near the Brazil basin north of south Atlantic ocean

in spring 1997. The data consists of 89 profiles out of which 69 profiles are used in this study.

Additional information about the data and experiments can be found in (Polzin et al., 1997). The

3rd data set considered here is collected at the Bay of Bengal of Indian ocean in the year of 2013

as a part of ASIRI experiments (Shroyer et al., 2016). Total of 300 profiles are considered which

ranged up to a depth of the upper 150 m.

3.4 Methodology

3.4.1 Equation of states and T-S plots

The real T-S relationships of the waters of the ocean plotted on the T − S or θ − S (T/θ-

temperature, S-salinity of sea water) diagram serve as the immediate indicator of thermohaline

conditions. The analysis of the T −S relationships, together with the field expressing the equation

of state of sea water, allows taking into account the most important factors that determine the nature

of the transformation and interaction of different waters. The density of sea water is function of

depth, temperature and salinity. Density is not directly obtained from instruments but computed
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from equation of state using Gills method by using GSW Oceanographic Toolbox (McDougall

& Barker, 2011). Oceanic data analysis is conducted with potential temperature and potential

density to reduce the effect of adiabatic expansion/compression due to pressure as the pressure in

the ocean increases with depth. For every 33 feet or 10 m depth of water, the pressure increases

by 1 bar (source: NOAA). Salinity has negligible pressure dependence. For all further analysis

temperature is always potential temperature θ, density is always potential density σ and salinity is

always the measured salinity unless mentioned otherwise. From a T − S plot, it can be found that

density is either a function of temperature or salinity or both. From figure 3.1a and 3.1b, For the

bulk part of the flow depth, show that, σ = f(θ) for IWISE data and σ = f(θ, S) for BBTRE data.

T − S plot of BoB data shows that in upper 20 − 30 m, salinity plays major role in determining

density but for water column below 60 m, density is strictly a function of temperature (figure 3.4).

(a) (b)

Figure 3.1: T-S plot for (a) BBTRE and (b) IWISE with depth in color bar. Density difference from
1000kg/m3 are shown in dashed contour lines.

For the analysis of overturns, potential temperature is generally considered as proxy for poten-

tial density (Mater et al., 2015; Smyth et al., 2001). This is because, the measurements of salinity

are not usually reliable. In such cases, density is obtained from depth, temperature and a constant

salinity. When θ is used instead of σ in the study of overturns, overturns are identified by resorting
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θ profiles, not σ profiles. Thorpe (1977) originally proposed the method for identifying overturn

patches using temperature profiles. But that experiment was conducted in a lake, where the strat-

ifying agent is only temperature not salinity. If a overturn is identified from θ profiles for a water

column where density is influenced by both temperature and salinity, it might lead to different

statistics of patches compared to that obtained from density sorted profiles. For our study, we have

considered the data which have pumped salinity or the salinity from microstructure has been cor-

rected from the corresponding CTD values to provide a better assessment of patch analysis based

on both θ sorting and σ sorting methods.

3.4.2 Bin-wise vs patch-wise analysis

Considering the fact that, hydrographic and turbulent measurements are made coincidentally

from a field campaign, there are probably a number of ways to make inferences on oceanic mixing,

each subjected to its own specific set of assumptions. Data available for the study of ocean mixing

are the rate of dissipation of turbulent kinetic energy ε (from shear microstructure), rate of thermal

dissipation χ (from temperature microstructure), temperature, depth and salinity (from CTD), ve-

locity (from ADCP). A discussion on how these instruments collect data is described in chapter 2.

Here we have outlined two plausible approaches for data analysis. First approach uses is bin-wise

analysis and the second one is based on patch-wise analysis. Data are collected from research

vessels as vertical profiles with some time and space interval between each vertical profile.

Bin-wise method is easier given that, data is measured at certain vertical resolutions, e.g., 1 m

intervals (For all data considered here, vertical resolution is 0.5 m). The profiles are averaged over

some selected depth windows (called bins). The selection criteria for bin size is very subjective and

different studies have used different bin sizes with some acceptable but not universal arguments.

For example, Merrifield et al. (2016) analyzed the values of ε, χ, ∂T/∂z and N2 by taking ensem-

ble average over each 100 m bin for their study of enhanced diapycnal mixing at Drake passage.

The 95% confidence intervals based on bootstrap method were calculated over a 10 or 20m bin as-

suming as an approximated value for Ozmidov length scale (Ozmidov, 1965) which is considered

48



as largest overturning length scale. Here the gradients were obtained for each point of data mea-

surements. To obtain fine scale gradients, Laurent & Smitt (1999) used a slope of a linear fit over

5 m-segment, centered at each 0.5 m interval. The 5 m segment was chosen considering a suit-

able trade off between the need of high vertical resolution and statistically reasonable regression

estimation. In bin-wise method, the back ground gradients are not obtained from the sorted profile

but from some averaging over selected windows which is ambiguous as it might result in negative

buoyancy frequency due to unstable regions. Generally large enough bin size is selected to smear

the effects of unstable regions. Again turbulence in ocean is intermittent or sporadic and turbulent

mixing is patchy (Dunckley et al., 2012). Though a bin-wise approach can provide statistics of

bulk quantities in ocean, this method is not very useful for developing/testing parameterizations of

mixing.

On the other hand, patch-wise analysis provides better insights into the dynamics of the flow.

In this method turbulent patches are determined from Thorpe sorting method (Thorpe, 1977) by

identifying overturn regions. The background gradients of temperature or density are obtained

from adiabatically sorted profiles resulting in statistically stable configuration. An overturn rep-

resents the available potential energy, part of which gets converted to turbulent kinetic energy,

when the overturn collapses. Several studies have been conducted though patch-wise data anal-

ysis. The primary goal for identifying a turbulent patch is to estimate the rate of dissipation of

kinetic energy ε, indirectly from Thorpe length scale, LT (in absence of expensive microstructure

instruments) (Dillon, 1982; Ferron et al., 1998). Recently, it was shown that LT scales with larger

(outer) scales of turbulence and not with the small isotropic scales (Mater et al., 2013). For a

weakly stratified regime, LT scales with Lkε, the inertial length scale, where k is turbulent kinetic

energy. Still, patch-wise analysis has many more applications including identification of age of tur-

bulence (Smyth et al., 2001). Methodology for identifying patches and background stratification

are discussed in following sections.
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Figure 3.2: Example showing identification of a turbulent patch based on density sorted profile.

3.4.3 Identification of turbulent patch- Thorpe resorting method

Turbulent patches in a vertical profile of density are obtained by Thorpe sorting method (Thorpe,

1977), which involves resorting of the instantaneous potential density (σ) profiles to a minimum

available potential energy state such that, the potential density profile becomes gravitationally sta-

ble (σsorted) as shown in figure 3.2(a). For a given depth, Thorpe displacement, dT = zi− zsorted

is calculated from difference between the instantaneous depth zi of data point for potential density

and the sorted depth to which the sample has moved from zi in order to obtain a stable profile. If

there is no unstable region, dT = 0 (see figure 3.2(b)). For an individual overturn, dT is large and

negative at upper boundary of the overturn and gradually increases with depth (depth positive) and

becomes large and positive towards bottom boundary of the overturn. In the example patch shown

in figure 3.2, single overturning region is identified with multiple non zero consecutive dT regions

as on overall whole region is unstable which is shown by cumulative dT (
∑
dT ) in figure 3.2(c).

For individual overturn, the Thorpe overturning scale is obtained from the root mean square of dT

of each point inside the patch and patch length is identified from zero crossing of cumulative dT .

Thorpe length scale is defined as LT = 〈dT 2〉1/2. Here one should notice that the Thorpe length

scale (LT ) is not necessarily equal to the maximum size of the patch (LP ). The following proce-

dures are followed to identify a turbulent patch. The potential temperature and potential density
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are filtered with smoothing algorithm provided by Gargett & Garner (2008) with threshold value

for temperature set at 0.0005 0C and threshold value for density as 0.0001 kg/m3 to eliminate any

instrumental noise (Mater et al., 2015). Thorpe scale threshold is considered as 1 m and LT < 1

m are discarded. The lower 25 percentile of χ data were discarded and if patch average χ or ε are

found to be zero or with not enough data points inside a patch, those patches are not considered for

this study.

3.4.4 Background gradients

For a bin-wise analysis, background gradients are generally obtained by two different methods.

Firstly, gradients are obtained by taking central difference or forward difference of consecutive

data points and then taking ensemble average of gradients over certain user defined depth size or

bin size (Smyth & Moum, 2013). The second method involves selecting a user defined bin size

first and then fitting the data over the bin by a least square method. The slope of the line gives

the gradient (Laurent & Smitt, 1999). In both the methods, uncertainties associated with bin size

can result in different gradient values. For example, Smyth & Moum (2013) computed gradient

Richardson number, Rig = N2/S2 where N is buoyancy frequency and S is shear, by taking

differences of density and velocity values in adjacent 2 m, 4 m, 8 m and 16 m bins and found

different distributions for Rig in the limit of low stratification or in the regime of shear driven flow.

For patch-wise method, the gradients for each individual patch of density and temperature are

the background gradients against which overturning occurs. The patches are obtained from sorted

potential temperature and sorted potential density. Since disturbance occurs against estimation of

Buoyancy frequency N2 which is a measure of stratification, gradients (temperature and density)

must be calculated over a depth range enclosing particular event (Dillon, 1982). For density sorted

turbulent patches, some of the patches have zero temperature gradient or very small (< 10−7)

temperature gradients which are neglected from further calculations.

Density gradients are necessary to find background stratification as buoyancy frequency is

given by mean density gradient. N2 = −g/ρ0 (∂〈ρ〉/∂z). Here we have considered three methods
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to calculate the value of N , namely Nbulk for bulk gradient of patch, N2pt for bulk gradient of

patch and Nls for least square method of gradient of patch depending how the density gradients are

obtained. For N2pt, after obtaining a turbulent patch as described in section 3.4.3, the density at

top and bottom boundary of the patch is found from sorted density profiles. As the overturn works

against a background stratification, calculating background stratification from stable sorted profile

is more reasonable. Obtaining top and bottom boundary value of density, the gradient is calcu-

lated by the difference of these two values over the patch length (Moum, 1996). In Nls method, a

turbulent patch is identified, the density at each point inside the patch are identified and then are

fitted with a least square method, the slope of which is considered as background gradient. Smyth

et al. (2001) suggested the Nbulk method for better representation of bulk background stratification

which is insensitive to patch boundaries (as multiple patches can form a single over turn, figure

3.2 (a)) This method assumes that the Ellison length scale, LE = 〈ρ′2〉1/2/∂〈ρ〉/∂z, where ρ′ is the

density difference between instantaneous profile and adiabatically resorted profile (Ellison, 1957)

and the Thorpe length scale, LT (Thorpe, 1977) are equal such that the bulk density gradient is

obtained as ∂〈ρ〉/∂zbulk = 〈ρ′2〉1/2/LT . There are significant evidences showing LE ≈ LT (Ivey

& Imberger, 1991; Mater et al., 2013).

While sorting a density profile, it is logical to tag corresponding temperature of that point

as these are properties of fluid. Temperature gradients are also obtained similar way to density

gradients using the three corresponding methods over the patch.

One of the parameter to estimate the strength of stratification is gradient Richardson number

defined as Rig = N2/S2. Different methods to obtain background stratification, N , is discussed

above. To our knowledge there is no definite method to obtain velocity gradient to find shear for

the patches. For bin-wise method shear is obtained from differences of velocity over consecutive

points and summation is taken over desired bins. But for patch-wise analysis, finding the mean

shear for a given patch size remains a challenge. Here we have highlighted two methods. First

approach uses a patch-average shear and the second approach uses a patch-across shear as shown

in figure 3.3. The patch average shear, Savg, is obtained by taking average of shear at each point
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Figure 3.3: A schematic showing mechanism of shear.

S2
i , defined as

Savg =

√
1

n

∑
S2
i =

√√√√ 1

n

∑((
∂ui
∂z

)2

+

(
∂vi
∂z

)2
)
, (3.11)

where, ui and vi are the horizontal velocities at each point i in the patch and ∂z represents the

depth between consecutive points and n represents number of points in the patch. The question to

ask is, how average shear over a patch represents a background shear which drives the overturn?

We proposed a different definition of shear by considering that the shear or the velocity gradient

that can drive the overturn should create a couple from the top and bottom velocity. Let u1 and v1

be the velocities at top boundary of the patch and u2 and v2 be the velocities at bottom end of the

patch. The patch length is represented as LP . Now the shear across the patch is defined as

Sacross =

√(
u2− u1

LP

)2

+

(
v2− v1

LP
.

)2

. (3.12)

We have tested all three types of background stratification and two types of shear for different

regimes of ocean in section 3.5.
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Figure 3.4: The left panel is showing T-S plot with depth of measurement in color bar for BoB data with
an inset plot of average vertical profiles of potential temperature θ , potential density σθ and salinity (S).
The middle panel presents the average vertical profile of eddy diffusivity of temperature KT (3.4) and mass
Kρ (3.8). The right panel average vertical profile of mixing efficiency (3.10). Vertical line corresponds to
Rf = 0.17. Here average signifies the average over all measured profiles. For better visualization average
vertical profiles are shown with 5m depth average values.

3.5 Results

3.5.1 Traditional approach: Bin-wise analysis with Γ = 0.2

The tradition way of data analysis in the ocean is conducted thorough bin analysis. Figure

3.4 and 3.5 show the bin-wise turbulent data analysis for BoB data. The vertical profiles are

obtained by ensemble average of all the 300 profiles measured. Gradients are obtained from central

difference method in each profile. The plots (except T − S) show 5 m depth average values for

better visualization. KT and Kρ values are obtained for each data point as per equations 3.4 and

3.8, respectively. Kρ is obtained with Γ = 0.2. The mixing efficiency is obtained from actual data

as per equation 3.9 and shown in plot 3.4.

For the upper ocean (0 − 20 m), the flow is highly energetic as evident from the value of ε in

figure 3.5(a) which is ∼ 10−7 m2/s3. The background ε in ocean is generally considered ∼ 10−10

m2/s3. The stratification in this regime is very low (figure3.5(b)). In this regime, mixing efficiency

Rf is definitely low (0.001) as there is nothing to mix. Γ = 0.2 over predicts the mixing in highly

energetic upper ocean mixed layer. Again below ∼ 50 m, Γ = 0.2 also over predicts the mixing.

In this region even though the stratification is stronger compared to the upper ocean, there is less
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Figure 3.5: (a) Average vertical profiles of χ (0C/s) and ε (m2/s3) (b)the average background stratification.

energy to mix the fluid. Γ = 0.2 can be considered to provide efficient results only for thermocline

regime provided turbulent energy is higher than the background.

Two major conclusions can be derived from these results. firstly, Γ = 0.2 does not predict the

right eddy diffusivity in most part of the ocean. Secondly, bin-wise analysis can present an overall

structure of the ocean but does not identify the physics of overturns on unstable regions.

3.5.2 Patch statistics: temperature sorted vs density sorted

In this section the patch statistics obtained from density sorted profiles are compared with those

obtained from temperature sorted profiles for BBTRE and IWISE data. Figure 3.1a and 3.1b shows

the T −S plots for BBTRE and IWISE data respectively. From visual inspection of these two plots

it is clear that the density in BBTRE site is a function of both salinity and temperature (except

1000 − 1700 m, salinity intrusion) and density in IWISE site can be considered to be a function

of temperature only as the salinity changes are negligible. Hence, these two data sets are selected

for our study to provide an insight into the justification of substitution of potential temperature for

potential density is the patch analysis. This is an important issue, because the water mass overturn

is created if heavy fluid moves up and lighter fluid moves down. Temperature sorted profiles

might not represent an overturn if density of water is compensated by salinity. Figure 3.6 shows

data analysis for patch statistics for IWISE data and figure 3.7 for BBTRE data. For IWISE data,
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Figure 3.6: (a) Density sorted Thorpe length scales for all the profiles of IWISE through out the depth (b)
Temperature sorted Thorpe length scale for all the profiles of IWISE throughout the depth. (c) Histogram
of density sorted LT with patch statistics for IWISE, (d)Histogram of temperature sorted LT with patch
statistics for IWISE.
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of density sorted LT with patch statistics for BBTRE, (d)Histogram of temperature sorted LT with patch
statistics for BBTRE.

density is mostly a function of temperature hence both the sorting methods provide similar patch

statistics. Figure 3.6 shows that the distribution of patches throughout the depth can be considered

collocated. The maximum LT is also same for both approaches which is ∼ 87 m. Now, for the

BBTRE data set, LT obtained from density sorted profiles and temperature sorted profiles show

significant difference in patch statistics as evident from figure 3.7. The big patches in 1000− 1700

m depth of BBTRE data obtained through temperature sorting method are ambiguous. The cause

might be salinity intrusion.

Figure 3.8 shows the relation of Thorpe length scale LT and Patch size LP for both temperature

sorted and density sorted profiles of both the data sets. For the temperature sorted patches, LP =

3LT consistent with literature. But for density sorted patches, LP are much larger than LT . This is
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possible because, the overturn region can consist of multiple small patches where the fluid particles

have to move a shorter distance to achieve an adiabatically stable profile, compared to the size of

the whole overturn. Some data points which show LP < LT in figure 3.7, are discarded further as

we have considered only those patches, for which water moves within the patch in order to obtain a

stable background profile. Also, further analysis, we have considered density sorted patches. Only

data from clearly defined thermocline and deep ocean regions are considered for further analysis

to overcome the effects of wind driven upper ocean and topography influenced bottom ocean data.

The BBTRE data from 1000 − 1700 m are also discarded to eliminate the probability of double

diffusion due to salinity intrusion (Laurent & Smitt, 1999). For a well mixed region (upper ocean

and bottom boundary of ocean) mixing efficiency is low. For double diffusion region, high mixing

efficiency is obtained which is not a result of turbulent mixing. All data considered for this study

do not have double diffusion regions.
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Figure 3.8: A comparative study of Thorpe length LT and patch length LP for corresponding patches for
(a) IWISE data (b) BBTRE data.

3.5.3 Background stratification

In this section, the statistics of background stratification are discussed for all three different

methods of computing N as discussed in section 3.4.4. Figure 3.9 shows the statistics for N2pt,
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Figure 3.9: Statistics of background stratification obtained from different methods for BBTRE thermocline
data.
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Figure 3.10: Statistics of background shear obtained from different methods for BBTRE thermocline data.
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Nbulk and Nls and their comparisons for patches of BBTRE thermocline region. This plot is a

representation of all other data (not shown here). It is evident from figure 3.9 that buoyancy

frequency obtained from N2pt and Nls are in good agreement. N obtained from bulk method

underpredicts the values from other two methods. As N2pt and Nls are no different, we have

considered only N2pt and Nbulk for further analysis.

3.5.4 Background shear

Statistics of the background shear obtained from both the methods described in section 3.4.4

are plotted in figure 3.10 for BBTRE thermocline region for the same patches shown in figure 3.9.

The shear obtained from patch-across and patch-average methods provide completely different

statistics. Hence, the values used to define background shear has significant effect in determining

gradient Richardson numbers.

3.5.5 Ambiguity of Reb based parameterization of mixing efficiency, Rf

In section 3.1, we have provided a brief overview concerning mixing efficiency and its pa-

rameterizations. The commonly used parameterizartin suggest that mixing efficiency decreases

with buoyancy Reynolds number Reb with a relation Rf ∝ Re
−1/2
b , for the energetic regime,

Reb > O(100) and Rf is constant with a value of 0.16 (similar to Osborn model) in the buoy-

ancy driven regime (7 < Reb < 100), (Barry et al., 2001; Maffioli & Davidson, 2016; Shih et al.,

2005). We have shown the statistics of Rf with Reb for the field data in figures 3.11 and 3.12.

We have analysed the mixing efficiency by dividing the vertical profiles into two broad categories,

thermocline and deep ocean region as the ocean energetics are different in these two regimes. Ther-

mocline is generally very strongly stratified than the deep ocean. Here we have considered Nbulk,

corresponding bulk temperature gradient, patch average χ and patch average ε to compute Rf and

Reb for each individual density sorted patches. The scatter plots of all the patches together do

not provide any information. Hence, we have divided the data into small bins and used statistical

arithmetic mean of those bins in the plots. The number of data points in each bin are also shown in

the figure. We have discarded the bin if there are less than 10 points. The statistical average data

60



0 2 4 6
log10Reb

0

0.1

0.2

0.3

0.4

0.5
R

f

Rf=0.17

7

8

9

10

11

12

N
(s

−
1
)

×10-4

0 10 20 30 40
bin #

0

50

100

150

200

# 
of

 p
at

he
s 

in
 e

ac
h 

bi
n

total # of patches=2442
Depth 1800-5000 m 

(a)

0 2 4 6
log10Reb

0

0.05

0.1

0.15

0.2

0.25

0.3

R
f

Rf=0.17

5

6

7

8

9

10

11

12
N
(s

−
1
)

×10-4

0 5 10 15 20 25 30
bin #

0

10

20

30

40

50

# 
of

 p
at

he
s 

in
 e

ac
h 

bi
n

total # of patches=427

Depth 700-1400 m 

(b)

Figure 3.11: Left panel:Variation of mixing efficiency with buoyancy Reynolds number (Reb = ε/νN2) in
deep ocean region for (a) BBTRE data (b) IWISE data.N = Nbulk. The red solid line shows the parame-
terization of Rf as per Shih et al. (2005). Blue boundary lines suggest 95 CI. Right panel:Distribution of
patches over different bins considered to obtain left panel mean data.

are shown with 95% confidence interval obtained through a bootstrap method. Figure 3.11a shows

that for deep ocean region, BBTRE data exhibits a higher value of Rf than 0.17 and figure 3.11b

shows that IWISE data exhibits a lower value of Rf compared to the canonical value 0.17. For

both cases, Rf decreases with Reb but at higher value of Reb (O(103) for BBTRE and O(104) for

IWISE). IWISE site is a highly energetic site and the Reb values are very high which corresponds

to weak stratification and strong turbulence resulting in low values of mixing efficiency. The de-
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Figure 3.12: Left panel: Variation of mixing efficiency with buoyancy Reynolds number (Reb = ε/νN2)
in thermocline region for (a) BBTRE data (b) IWISE data. N = Nbulk. The red solid line shows the param-
eterization of Rf as per Shih et al. (2005). Blue boundary lines suggest 95% CI. Right panel: Distribution
of patches over different bins considered to obtain left panel mean data.

crease of Rf is due to decrease in stratification as evident from figure. Color bar displaying values

of N signifies the strength of stratification. Now for thermocline data, figure 3.12 shows that Rf

is relatively constant and insignificant to change of Reb. We can argue that this might be possible

as thermocline is strongly stratified. If there is any mixing due to breaking of the internal waves,

these regions restratify quickly then maintaining the vertical structure. So, for the patches where

Reb value indicates strong turbulence in thermocline region a constant mixing efficiency of 0.17

might be appropriate but is not limited to 7 < Reb < 100 as suggested by Shih et al. (2005) from

direct numerical simulation data.
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3.5.6 Mixing efficiency and gradient Richardson number

In this section, we have shown variation of mixing efficiency as a function of gradient Richard-

son number. Gradient Richardson number is a non dimensional parameter to determine relative

strength of background stratification and background shear in a shear dominated flow. This is

defined as Rig = N2/S2, where N2 is the buoyancy frequency and S2 is the shear. The exist-

ing parameterizations suggest that for shear dominated regime, (Rig ∼ 0.25), mixing efficiency

increases with Rig. This is justified as when Rig = 0, i.e., there is no stratification, Rf should

go to zero as there is nothing to mix. With increase of stratification Rf gradually increases. The

relation of Rf and Rig for Rig < 0.25 is robust and shown by various studies (Ivey & Imberger,

1991; Karimpour & Venayagamoorthy, 2014; Linden, 1984; Lozovatsky & Fernando, 2012; Ve-

nayagamoorthy & Koseff, 2016). There is no substantial evidence regarding the relation of Rf in

the limit of high Rig. Does high values of Rig represents strongly statified flows, or is it artifact

for low stratification over low shear? From DNS data analysis, Karimpour & Venayagamoorthy

(2014) showed that Rf = 0.25[1 − exp(−7Rig)] such that mixing efficiency increases with Rig

upto a value of 0.25 and then asymptotes to a constant value at Rig∼O(1) similar to other results

(Canuto et al., 2001; Lozovatsky & Fernando, 2012; Mellor & Yamada, 1982). Here we have

presented variation of Rf as a function of Rig for various data where shear is obtained from two

different methods as described in section3.4.4 and are shown in figures 3.13 and 3.14 respectively.

The patch statistics are obtained in similar ways as in figure 3.11 and 3.12. The values of Rf and

Rig are qualitatively similar when the background stratification is obtained by either N2pt or Nbulk

method (figures 3.13 and 3.14).

Figure 3.13a and 3.14a show that Rf increases with Rig in shear dominated regime similar to

other findings, approaches a constant value, and then decreases with Rig for Rig ∼ O(10). The

decrease of mixing efficiency is a result of low stratification as shown by the values of N in color

bar. The constant values are different for both the data sets. This type of trend is possible if shear is

calculated as patch-across shear (Sacross). When shear is calculated by patch-averaging, (Savg), the

trend of Rf and Rig is different as evident from figures 3.13b and 3.14b, where mixing efficiency
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Figure 3.13: Variation of mixing efficiency with gradient Richardson number (Ri = N2/S2) for BBTRE
deep ocean data. (a) Patch-across shear (b) Patch-average shear. Solid circle: N2pt, star: Nbulk. Vertical line
corresponds to Ri = 0.25.
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Figure 3.14: Variation of mixing efficiency with gradient Richardson number (Rig = N2/S2) for IWISE
thermocline data. (a) Patch-across shear (b)Patch-average shear. Solid circle: N2pt, star: Nbulk. The dashed
vertical line corresponds to Rig = 0.25.

shows an increasing trend in full spectrum of Rig. At this stage we can only conclude that the

methodology of data analysis is crucial for parameterizing mixing with field data and can not be

overlooked. We can not conclude with confidence which method of computing Rig is correct.

From a reasoning analysis, shear obtained from Sacross is better justified.

64



3.6 Concluding remarks
In this study, we have used field data for the analysis of mixing efficiency and its parameter-

ization with most commonly used parameters Reb and Rig. We have shown that the traditional

canonical value of constant mixing efficiency does not necessarily hold in different parts of the

ocean. Further it is shown that the Reb based parameterizations are not universal. In order to test

the validity of shear based parameterizations, further study is required with different flow con-

ditions where Rig has a higher range. We have also proposed a new method for obtaining the

background shear of overturning region. Further investigations using a diversified field data sets

along with high resolution direct numerical simulation data of sheared stratified turbulence are

required in order to validate proposed methods for estimation of mean shear.
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Chapter 4

Assessment of small scale anisotropy in stably

stratified turbulent flows using direct numerical

simulations6

4.1 Introduction
Accurate estimation of small scale turbulent mixing is essential for understanding the dynamics

of density stratified geophysical flows such as in the oceans and in the atmosphere. For example,

the small scale fluxes due to mixing impacts the meridional overturning circulation, global cli-

mate, ocean heat budget, ocean productivity etc. The effect of small scale mixing is generally

parameterized in terms of a turbulent (eddy) diffusivity, Kρ in large scale ocean and climate mod-

els and hence such models are highly sensitive to such parameterizations (Richards et al., 2009).

The present study focuses on the small scale dynamics using direct numerical simulations (DNS),

to assess the goodness of isotropy assumption for stratified flows that is widely used in in situ

measurements of turbulent quantities.

Direct measurement of eddy diffusivity is not feasible in the ocean due to internal wave in-

duced fluctuations that are prevalent in stably stratified turbulence. Therefore, the standard prac-

tice in oceanography is to infer the vertical eddy diffusivity, Kρ indirectly from measurable small

scale turbulent quantities such as the rate of dissipation of turbulent kinetic energy (ε), using the

Osborn model (Osborn, 1980), or from the rate of dissipation of scalar (density) variance (ερ),

using the Osborn & Cox model (Osborn & Cox, 1972). The natural question to ask is how accu-

rately are ε and ερ measured in the ocean? This is because, the true value of ε requires nine mean

6The research presented in this chapter is nearing submission to Physics of Fluid under the title "Assessment of
small scale anisotropy in stably stratified turbulent flows using direct numerical simulations" by A. Garanaik and S.
K. Venayagamoorthy. The chapter is written in a collective "we" voice to acknowledge collaboration with Dr. S. K.
Venayagamoorthy.
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square fluctuating velocity gradients and the true value of ερ requires three mean square fluctuating

scalar gradients. Simultaneous measurements of all the components are not possible in the ocean

with current (state-of-the-art) micro-structure sensors. As a consequence, it is common practice

to measure dissipation quantities using one or two spatial gradients of the fluctuating quantities

invoking Kolmogorov’s small scale isotropy hypothesis (§4.2), which is generally applicable to

high Reynolds number flows (Kolmogorov, 1941). So the extension of local isotropic assumption

to oceanic stratified flows where the turbulence is sporadic in nature and the Reynolds numbers are

not always sufficiently high to justify isotropy at small scales, is definitely questionable. The buoy-

ancy forces cause large scale anisotropy in stably stratified turbulent flows and small scales are also

expected to be anisotropic especially at lower Reynolds number flow conditions that are often pos-

sible in the deep ocean. A number of studies, however, have shown evidence of strong anisotropy

in fluctuating strain rates for stratified turbulence from in situ measurements (Gargett et al., 1984;

Yamazaki & Osborn, 1990), laboratory experiments (Fincham et al., 1996; Thoroddsen & Atta,

1992) and numerical simulations (Brethouwer et al., 2007; Godeferd & Staquet, 2003; Smyth &

Moum, 2000) as well as in fluctuating density (scalar) fields (Smyth & Moum, 2000; Sreenivasan,

1991). The small scale anisotropy generally develops faster than the large scale anisotropy in

stratified turbulence (Thoroddsen & Atta, 1992; Wingstedt et al., 2015).

Gargett et al. (1984) suggested a threshold value of buoyancy Reynolds number Reb ≈ 200

above which small scales are isotropic. The buoyancy Reynolds number is defined as Reb =

ε/(νN2), where N is the buoyancy frequency and ν is the kinematic viscosity. From a DNS

of sheared stratified turbulence, Smyth & Moum (2000) also found a similar result that shows

departure from isotropy only forReb < 102. Note that, in the oceanic thermocline,Reb is generally

≤ 200 and hence, the effects of stratification contributing towards small-scale anisotropy cannot

be overlooked. Again, the measurements of Gargett et al. (1984) included only three orthogonal

turbulent velocity components and the local isotropy assumption was in-built in the evaluation of

the frequency response of the instruments (Thoroddsen & Atta, 1992). Though the DNS data used

in Smyth & Moum (2000) has all the nine velocity gradients and all the three scalar gradients, the
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simulations were at lower values of initial Richardson number ≤ 0.12, representative of weakly

stratified flow conditions. DNS data of Itsweire et al. (1993) show that estimates of dissipation

rates obtained from isotropic formulas can be erroneous by a factor of 2− 4 even for 50 < Reb <

650. Using the assumptions of axis-symmetry about vertical axis and semi-isotropic turbulence,

Yamazaki & Osborn (1990) and Thoroddsen & Atta (1992) have estimated rates of dissipation of

turbulent kinetic energy in separate experiments using two cross stream gradients. The modern

vertical microstructure profilers measure the vertical gradients of horizontal velocities (uz and

vz) which are the dominant velocity gradients in a vertically stratified flow (Godeferd & Staquet,

2003). Ward et al. (2014) used a new Air-Sea Interaction profiler with two shear probes orientated

at 900 to each other which can provide simultaneous measurements of two orthogonal components

but such measurements are limited to maximum depth of 100 m.

The hypothesis of local isotropy supposes that all small scale statistics are isotropic. A proper

verification of the local isotropy hypothesis is not possible (as yet) from laboratory experiments

or field measurements due to the limited number of velocity gradients that can be measured. As a

result, different values of Reb have been reported in the literature at which different components

of spatial gradients approach the state of isotropy (Brethouwer et al., 2007; Osborn & Lueck,

1985; Smyth & Moum, 2000; Thoroddsen & Atta, 1992; Yamazaki & Osborn, 1990). Given the

complexity and difficulties associated with measurement of small scales, it is not surprising that

there is no consensus on what is the right parameter of choice for quantifying departure from

isotropy and there is no universal parameterization of degree of isotropy. We note here that, even

though it is convenient to use Reb, it might not be the best parameter to use due to ambiguity of

its physical interpretation (Gargett, 1988; Mater & Venayagamoorthy, 2014). In fact, the turbulent

Froude number is the fundamental parameter which determines the dynamical coupling between

stratification and fluctuating motions (Sarkar, 2003).

To get a clear understanding of departure from isotropy in small scale stratified turbulence, a

high-resolution DNS study of decaying stratified turbulence was conducted. Results are discussed

in terms of the turbulent Froude number defined as Fr = ε/(NEk) where, Ek is the turbulent
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kinetic energy. Theoretical background of small scale isotropy assumption is discussed in §4.2. In

§4.3, we provide a brief description of the numerical simulations. Results are discussed in §4.4

and concluding remarks are given in §4.5.

4.2 Theoretical background of small scale isotropy
In this section, an overview of the small scale isotropy assumption is discussed for estimation of

the rate of dissipation of turbulent kinetic energy and the rate of dissipation of scalar variance. The

concept of small scale or local isotropy postulated by Kolmogorov (1941) is crucial for modern

turbulence theory. According to this hypothesis, in a sufficiently high Reynolds number flow,

the directional information of the large scales are lost during the transfer of energy from large to

small scales and the statistics of small scales are therefore universally isotropic (independent of

coordinate orientations). This implies that the spatial gradients of dissipation quantities are related

to each other and that any one component is sufficient to estimate the exact values of the dissipation

as described below.

The rate of dissipation of turbulent kinetic energy, ε is generally defined as

ε = ν

〈
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)〉
, (4.1)

where the angle bracket, 〈〉 represents the ensemble average, ui is the fluctuating velocity vector, ν

is the kinematic viscosity and i, j = 1, 2, 3. The rate of dissipation of density variance is defined

as,

ερ = κ〈(∂ρ/∂xi)2〉, (4.2)

where ρ is the fluctuating density and κ is the molecular diffusion. It is evident from the above

equations that the exact estimation of ε (4.1) requires nine spatial velocity gradient components

while that of scalar dissipation (4.2) requires three spatial scalar gradients. The following relation-

ships can be established between the mean square turbulent velocity gradients by virtue of local

isotropy (Pope, 2000; Taylor, 1935).
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〈u2x〉 = 〈v2y〉 = 〈w2
z〉. (4.3)

〈u2y〉 = 〈u2z〉 = 2〈u2x〉. (4.4)

〈uyvx〉 = 〈vzwy〉 = 〈uzwx〉 = −1

2
〈u2x〉. (4.5)

Here, the notation ux refers to the gradient of the fluctuating u velocity with respect to the x (hori-

zontal) direction. With the relations described in 4.3, 4.4 and 4.5, the isotropic rate of dissipation of

turbulent kinetic energy εiso can be obtained from any one velocity gradient, as shown in equation

4.6.

εiso/ν = 15〈u2x〉 = 15〈v2y〉 = 15〈w2
z〉 = 7.5〈u2y〉 = 7.5〈u2z〉

= 7.5〈v2x〉 = 7.5〈v2z〉 = 7.5〈w2
x〉 = 7.5〈w2

y〉. (4.6)

Similarly, the isotropic density dissipation rate, ερiso can be obtained from any scalar gradient by

noting that, 〈ρ2x〉 = 〈ρ2y〉 = 〈ρ2z〉 as

ερiso/κ = 3〈ρ2x〉 = 3〈ρ2y〉 = 3〈ρ2z〉. (4.7)

4.3 Direct numerical simulations
Direct Numerical simulation (DNS) provides full description of turbulent flow field ranging

from energy containing large eddy scale (L) to small dissipative Kolmogorov scale (η) without in-

volving any parameterization of small-scale physics. The numerical simulations for our study were

carried out using pseudo-spectral DNS code developed by Riley et al. (1981) for stably stratified

homogeneous turbulent flows. A cubical periodic domain with dimension 2π with 5123 grid points

was considered for all simulations. The turbulent flow was initialized with a Gaussian isotropic

three dimensional solenoidal velocity field and allowed to evolve and decay under the influence

of a constant background stratification. The mean shear was zero for all the simulations and the
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only large scale anisotropy considered was vertical stable stratification. Flow was characterized

with an initial Reynolds number of 1000 defined as Re0 = u0L0/ν, where u0 is the initial velocity

scale and L0 is the initial length scale. Background stratification was characterized with an ini-

tial Richardson number, defined as Ri0 = (NL0/u0)
2, where N is the buoyancy frequency. Four

DNS simulations were performed for the present study with Ri0 = 0.01, 0.1, 1.0 and 10, respec-

tively, for a duration of 5L0/u0 in order to investigate the effects of weakly stratified to strongly

stratified condition on the small scales of turbulence. The value of kmaxη (corresponding to maxi-

mum dissipation) varied from 1.41 to 1.6 for Ri0 = 0.01 to Ri0 = 10 respectively, where kmax is

the maximum wave number. This criteria ensures that the resolution was sufficient to resolve the

smallest scales of dissipation (Yeung et al., 1995). The molecular Prandtl number Pr = ν/κ = 1

for all the simulations to ensure accurate resolution of the dissipative scales of the density (scalar)

field. Similar to the simulations performed by Mater et al. (2013), after the first eddy turnover

period, 1L0/u0, the dissipation peaks and begins to decay. This is interpreted as a signature of

fully developed turbulence. Hence, initial transients prior to this time were ignored in this study.

4.4 Results and discussions

4.4.1 Flow dynamics

In this section, we present an analysis into the energetics of the flow to help understand the

development of anisotropy in strongly stratified flows. Figure 4.1 shows the evolution of kinetic

energy Ek and potential energy Ep for Ri0 = 0.01, 0.1, 1 and 10 with respect to time t, non-

dimentionalized by L0/u0. These results are equivalent to previously published results using DNS

of lower resolutions (Riley et al., 1981; Venayagamoorthy & Stretch, 2006). The initial Ep was

set to zero for all the simulations. Ep gradually increases to a peak value by gaining energy from

Ek and eventually, all energy decays under the influence of stratification. The energy conversion

from Ek to Ep is more for higher stratification. This is because, with increase of stratification the

vertical buoyancy flux dominates the flow by reducing more of turbulent kinetic energy in vertical

direction. For an isotropic or nearly isotropic flow, there is an equal contribution of all the three
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Figure 4.1: (a) The time evolution of kinetic energy, Ek, (dashed line) and potential energy, Ep, (solid
line). (b) The ratio of horizontal kinetic energy to total kinetic energy, Ekh/Ek, (dashed line) and the ratio
of vertical kinetic energy to total kinetic energy, Evk/Ek, (solid line). (c) The ratio of potential energy
to horizontal kinetic energy, Ep/Ehk, (dashed line) and the ratio of potential energy to vertical kinetic
energy, Ep/Evk (solid line) with turbulent Froude number, Fr. The color indicates different values of
initial Richardson number (Ri0).

velocity components towards Ek. This implies that the ratio of vertical kinetic energy Evk to total

kinetic energy Ek is 1/3 and the ratio of horizontal kinetic energy Ehk to Ek is 2/3. Note that

the horizontal kinetic energy includes both horizontal velocity components. The ratio Ehk/Ek and

Evk/Ek are plotted in figure 4.1 (b) for all simulations with respect to non-dimensional time. For

strong vertical stratification, the vertical motions are attenuated due to restoring buoyancy forces

creating anisotropy in stably stratified flows. Hence, the ratio, Evk/Ek decreases and Ehk/Ek

increases with increase of stratification (figure 4.1b). That is, for any instant of time, most of the

turbulent kinetic energy resides in the horizontal directions and the energy distribution is not equal

in all the directions as in the case an isotropic (unstratified) flow. The loss of vertical kinetic energy

contributes towards the increase of the potential energy. Figure 4.1 (c) shows the ratio Ep/Ehk

and Ep/Evk with respect to turbulent Froude number. For weakly stable flows, Fr > O(1), the

conversion of kinetic energy to potential energy is relatively small compared to that of strongly

stable flows, Fr < O(1). Generally, the potential energy is transferred towards small scale more

efficiently than the kinetic energy and higher rate of transfer of potential energy towards small

scale leads to decrease of vertical kinetic energy (Godeferd & Staquet, 2003). With increase of
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Figure 4.2: Snapshot (2D) of instantaneous density instability at eddy turnover time 5 in the X-Z plain (at
Y = π) where, Z is the vertical axis along which linear stratification is imposed. Color from red to blue
indicates heavy to lighter fluid respectively. Stratification increases from left panel to right. Black lines
indicate isopycnals.

stratification, more vertical kinetic energy gets converted to potential energy, which dominates the

smallest dynamical scales and the small scale statistics are expected to be anisotropic. The question

is, under what conditions does the isotropy assumption breaks down for the small scale statistics

in a stratified fluid?

A visualization of fluctuating density field on a vertical plain is shown in figure 4.2, for three

different initial Richardson numbers,Ri0 = 0.01, 1 and 10 representing weak, moderate and strong

stratification respectively, at 5Lo/uo. For low stratification (Ri0 = 0.01) the vertical density pertur-

bation is significant but with increase of stratification the vertical motion diminishes as described

above and the emergence of horizontal layers is apparent.

4.4.2 Anisotropy of rate of dissipation of turbulent kinetic energy (ε)

All the nine individual isotropic dissipation components (4.6) normalized by the true rate of

dissipation of turbulent kinetic energy (4.1) are shown in figure 4.3, as a function of turbulent

Froude number (Fr). The color bar represents the buoyancy Reynolds number (1 < Reb <

105). We have not considered any data with Reb < 1 as in that regime, turbulent motions are

nearly absent and ε is obtained from vertical shearing (Brethouwer et al., 2007). Also, all the

data presented are for tuo/Lo > 1 to exclude the pre-turbulent stage. When the local isotropy
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assumption is valid, the ratio of isotropic dissipation components to the true dissipation should be

approximately unity. As shown in figure 4.3, for Fr > ′(1), the dissipation rates obtained using

the isotropic assumption are close to the true dissipation rate. However, as soon as the stratification

becomes relatively strong, i.e., Fr ∼ O(1), there is a clear signature of departure from isotropy.

Significant departure from isotropy is noticiable in the strongly stable regime (Fr < O(1)). One

can argue that the small scale anisotropy can be a artifact of lower Reynolds number. In our

simulations Re ∼ O(103). Sarkar (2003) also showed that the anisotropy of small dissipative

scales can not be an artifact of low Reynolds number, rather stable stratification is the cause of

dominance of fluctuating vertical shear irrespective of direction of mean shear.

For Fr < O(1), statistically, 〈u2z〉 ≈ 〈v2z〉, 〈u2x〉 ≈ 〈v2y〉, 〈u2y〉 ≈ 〈v2x〉, 〈w2
x〉 ≈ 〈w2

y〉, because

of axis-symmetry about vertical direction in the shear-free vertically stratified turbulence (figure

4.3). These relations of mean square velocity gradients also satisfy the isotropic initial conditions

for inviscid and non-diffusive flow (Rehmann & Hwang, 2005). Our results suggest that the nature

of anisotropy in the small scales depends on the direction about which the gradients of velocity

are determined, i.e., the vertical derivatives over predict the true dissipation and the streamwise

derivatives under predict the true dissipation similar to the results of Godeferd & Staquet (2003).

Rate of dissipation of turbulent kinetic energy obtained by 〈u2z〉 or 〈v2z〉 can overestimate the true

rate of dissipation upto 40% in the limit of Reb ≈ 10 and the over prediction can be by a factor

of 2 for Reb ≈ 1. Similarly, dissipation obtained by 〈u2y〉 can underestimate true dissipation upto

35% and by 〈u2x〉 upto 15% for Reb ≈ 10. Itsweire et al. (1993) found similar results for sheared

stratified flows. Rehmann & Hwang (2005) suggested that the isotropic component 7.5ν〈vz〉 is

better to estimate true ε which predicts the dissipation value within 8% error in sheared and less

than 15% error in shear-free stratified flow. But our results suggest that error associated with

vertical gradient of horizontal velocity is maximum and horizontal gradients of horizontal velocity

(cross-stream gradients) is minimum to estimate true ε in strongly stable regime.
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Figure 4.3: Contributions of each isotropic dissipation components to the true rate of dissipation of turbulent
kinetic energy ε, normalized by ε.

4.4.3 Anisotropy of rate of dissipation of density variance (ερ)

Figure 4.4 shows that the three isotropic density dissipation rates as given by (4.7) normalized

by true rate of dissipation of density variance given by (4.2) as a function of turbulent Froude

number. Similar the results for ε as shown in figure 4.3, it is evident that all the scalar gradients are

nearly isotropic for Fr > 1. Departure from isotropic is significant in strongly stable flows where

Fr < O(1). Due to axis symmetry, 〈ρ2x〉 ≈ 〈ρ2y〉 in strongly stable regime. The vertical gradient

component (3κ〈ρ2z〉) over estimates the true scalar dissipation by 40% and horizontal gradients

of density (3κ〈ρ2x〉 and 3κ〈ρ2y〉) underestimate the true density dissipation by 35% for Reb ≈ 10.

The over estimation of density dissipation could be upto a factor of 2 if the vertical gradient of

density is used to estimate the true density dissipation is commonly done in practice from field

measurements.

4.4.4 Inferring true dissipation from oceanic measurements

It is common to estimate ε from 〈u2z〉 and/or 〈v2z〉 in the field. Figure 4.3 clearly shows that

vertical gradients of horizontal velocity fluctuations over predict the true rate of dissipation. We
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Figure 4.4: Contributions of each isotropic density dissipation components to the true rate of dissipation of
density variance ερ, normalized by ερ.

denote estimates as ε(1D) and the true value using all components of spatial gradients as ε(3D).

The parameters that readily measurable in the ocean are ε1D,Reb(1D). ε(3D) can be inferred from

the above mentioned measurable quantities through a simple empirical relation that is obtained

from the DNS results and shown in equation 4.8.

ε(3D)

ε(1D)
= 1− exp(−alog(Reb)) (4.8)

Here a is the constant which is 1.3 for the present dataset and Reb is the 1D buoyancy Reynolds

number. Figure 4.5 shows the ratio of ε(3D) to ε(1D) as a function of Reb(1D). The color bar

shows the true Fr for reference. It is clear that the isotropy assumption is valid for Reb(1D) &

O(103).

4.5 Concluding remarks
Direct numerical simulations were performed for the assessment of local isotropy of dissipative

scales for stably stratified flows. It is shown that estimation of rate of dissipation of turbulent

kinetic energy (ε) and density variance (ερ) can be obtained using the isotropic assumption for

Fr & O(1). There is a clear departure from isotropy for Fr < O(1) which depicts the strongly

76



100 101 102 103 104 105

Reb(1D)

0

0.2

0.4

0.6

0.8

1

1.2

ǫ
(3
D
)/
ǫ
(1
D
)

F
r

10-1

10-0.5

100

100.5

101

Figure 4.5: Ratio of ε(3D) to ε(1D) varying with Reb(1D). The horizontal line shows that the isotropy
assumption is valid. The dashed line shows the empirical relation as provided in 4.8.

stable flows. The present study does not consider the effect of mean shear which might change the

behavior of each isotropic component, but our finding suggests that turbulent Froude number is the

fundamental parameter which describes the departure from isotropy. We have also suggested that

true dissipation can be obtained from available measured isotropic dissipation using microstructure

instruments through an empirical relation.
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Chapter 5

Some new insights for inferring diapycnal diffusivity

in stably stratified turbulence7

5.1 Introduction
Accurate prediction of diapycnal (irreversible) mixing of density is crucial for the understand-

ing and modeling of many physical processes in the ocean and atmosphere. For example, accurate

parameterization of diapycnal mixing is essential for getting the right overall mass and energy

balances in ocean circulation models and thus has direct implications for climate variability pre-

dictions (Gregg, 1987; Munk & Wunsch, 1998). Despite the prevalence of a number of studies

on this topic, our understanding of small-scale irreversible mixing in stratified turbulence remains

limited due to a number of challenges such as the complexity associated with geophysical flows

and the lack of consensus on the right choice of parameter(s) for quantifying mixing in stratified

flows.

It is common practice to use a turbulent (eddy) diffusivity to quantify diapycnal mixing using

the gradient-diffusion hypothesis (Pope, 2000) as

Kρ = − 〈ρ
′w′〉

d〈ρ〉/dz
, (5.1)

where 〈ρ′w′〉 is the turbulent density flux and d〈ρ〉/dz is the mean (background) density gradient.

For homogeneous and stationary turbulence, the diapycnal diffusivity defined in equation 5.1 can

be written as

Kρ =
ερ

(d〈ρ〉/dz)2
, (5.2)

7The research presented in this chapter is under review in the Journal of Fluid Mechanics under the title "Some new
insights for inferring diapycnal diffusivity in stably stratified turbulence" by A. Garanaik and S. K. Venayagamoorthy.
The chapter is written in a collective "we" voice to acknowledge collaboration with Dr. S. K. Venayagamoorthy.
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where ερ is the rate of dissipation of density variance (a detailed discussion on the derivation can be

found in Venayagamoorthy & Stretch, 2010). Direct measurements of turbulent density fluxes (and

hence diapycnal diffusivity as shown in (5.1)) are difficult in the ocean due to the intermingling

of internal waves with turbulence in strongly stratified flows. As a result, a number of indirect

techniques are commonly used in praxis in oceanography to infer heat and momentum fluxes. For

example, the popular Osborn (1980) model recasts the diapycnal diffusivity given by (5.1) or (5.2)

as

Kρ = Γ
ε

N2
, (5.3)

where Γ = Rf/(1−Rf ) is a mixing coefficient andRf is the flux Richardson number (also termed

the mixing efficiency) which is a ratio of buoyancy flux to production of turbulent kinetic energy, ε

is the rate of dissipation of turbulent kinetic energy andN =
√

(−g/ρo)(d〈ρ〉/dz) is the buoyancy

frequency. In the ocean, ε can be measured directly using a vertical microstructure profiler, N is

obtained using a Conductivity-Temperature-Depth (CTD) profiler, and Γ is typically considered to

have a canonical constant value of 0.2 (Osborn, 1980). It should be noted that the constancy of Γ

has been the subject of extensive debate and numerous studies, and a universal parameterization for

Γ still remains elusive (Mater & Venayagamoorthy, 2014). Furthermore, direct (microstructure)

measurements of ε assume isotropy of small scales which is highly questionable given the strong

anisotropic effects introduced by buoyancy in strongly stratified flows (Itsweire et al., 1993; Smyth

& Moum, 2000). In the absence of microstructure measurements, indirect estimates of ε are com-

monly obtained in practice by assuming a one to one relationship between the Thorpe length scale

LT , which is readily obtained from CTD measurements (Thorpe, 1977) and the Ozmidov length

scale defined as LO = (ε/N3)1/2(Ozmidov, 1965). In a recent study, Mater et al. (2013) found

that LT and LO are equivalent only when the turbulent Froude number (Fr = ε/(Nk), where k is

the turbulent kinetic energy) is of order unity. In the light of these issues, it is clear that there is a

critical need for simple and robust models for diapycnal mixing that are physically based. This is

the primary motivation for the work presented in this paper.
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In a stratified flow, a relevant ‘mixing’ length scale is the Ellison length scale (LE) (Ellison,

1957) defined as

LE =
〈ρ′2〉1/2

∂〈ρ〉/∂z
, (5.4)

where 〈ρ′2〉1/2 is root mean square density fluctuation and ∂〈ρ〉/∂z is the background density

gradient. Similarly, if it is assumed that the appropriate velocity scale is the vertical (fluctuating)

velocity w′, then, it follows from dimensional reasoning that the diapycnal diffusivity should scale

as

Km
ρ ∼ w′LE, (5.5)

where the superscript m is used to differentiate the modeled diffusivity from the true diffusivity

given by (5.2). The question that is immediately apparent is how good is this simple model in

predicting the true diapycnal mixing in a stably stratified turbulent flow? It is reasonable to hy-

pothesize that in a weakly stratified turbulent flow (i.e. for Fr & 1) where buoyancy effects are not

likely to be dominant, this scaling should yield a reasonable prediction for the turbulent diffusivity

given that both LE and w′ are arguably the representative turbulent mixing length and velocity

scales, respectively. On the other hand, in the strongly stratified regime (Fr < 1), the hypothesis

would be that this scaling should breakdown due to the dominance of buoyancy effects. These hy-

potheses are tested using high resolution direct numerical simulation (DNS) data. In what follows,

a brief description of the DNS is first provided in §5.2. This is followed by testing of the simple

scaling given in (5.5) and a theoretical development of a new refined model to (5.5) in §5.3. §5.4

includes introduction of new Reynolds number practical to oceanography. Concluding remarks are

given in §5.5.

5.2 Numerical method
Direct numerical simulations (DNS) of homogeneous stably stratified turbulence were per-

formed as part of this study using the pseudo-spectral code developed by Riley et al. (1981). A

cubical periodic flow domain with dimensions of 2π with 5123 grid points was used for all simula-
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tions. The flow was initialized with a Gaussian isotropic and solenoidal velocity field and allowed

to evolve under the effect of a constant background stratification. Flow was characterized with

an initial Reynolds number of 1000 defined as Re0 = u0L0/ν, where ν is the kinematic viscos-

ity, u0 is the initial velocity scale and L0 is the initial length scale. Background stratification was

characterized with an initial Richardson number, defined as Ri0 = (NL0/u0)
2, where N is the

buoyancy frequency. The molecular Prandtl number Pr = ν/κ = 1 for all simulations in order to

ensure accurate resolution of the smallest scalar (density) scales. For the present study four DNS

runs were performed with Ri0 = 0.01, 0.1, 1.0 and 10.0, respectively, in order to represent weakly

stable to strongly stable flows. However, in order to explore the temporal variance in the flow char-

acteristics, the turbulent Froude number Fr is used in this study. The duration of all simulations

was 5L0/u0. Similar to the simulations performed by Mater et al. (2013), after approximately the

first eddy turnover period, 1L0/u0, the dissipation peaks and begins to decay. This is considered as

a signature of fully developed turbulence. Hence initial transients prior to this time were ignored

in this study.

5.3 Theoretical development of a new model for diapycnal dif-

fusivity
The predicted diapycnal diffusivity Km

ρ given by (5.5) versus the true diapycnal diffusivity Kρ

given by (5.2) are shown in figure 5.1. Note the diffusivities are non-dimensionalized using the

molecular diffusivity κ. The color bar in figure 5.1(a) shows the turbulent Froude number Fr while

that in figure 5.1(b) shows the buoyancy Reynolds number Reb = ε/νN2. Note that Reb (also

sometimes referred to as the turbulence activity parameter) is a commonly used mixing parameter

in oceanography. In this study, all the data presented are for Reb > O(1) and as such molecular

effects are excluded. It can be seen from Figure 5.1(a) that the predicted diffusivities using the

proposed simple model agrees remarkably well with the true diffusivities for Fr & 1. This is more

evident in figure 5.1(b) where the ratio of the predicted to the true diffusivities Km
ρ /Kρ is plotted

as a function of Fr. However, as hypothesized, it is apparent that this simple model begins to
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Figure 5.1: (a) Comparison of nondimensional model eddy diffusivity given by (5.5) with the nondimen-
sional true eddy diffusivity given by (5.2). The dashed line shows the one to one comparison line. (b) Ratio
of proposed eddy diffusivity to true eddy diffusivity as a function of the turbulent Froude number Fr.

breakdown for Fr < 1 and significantly overpredicts (by at least an order of magnitude) the exact

diffusivity especially for Fr � 1. The natural follow-on question is whether there is a physically

based correction to (5.5) that can be used to predict the correct diffusivity in the strongly stable

regime (i.e. Fr < 1)? In what follows, new scaling arguments are presented to resolve this

question.

5.3.1 Diapycnal diffusivity in the regime of strongly stratified turbulence

(Fr < 1)

The diapycnal diffusivity in a stratified turbulent flow as defined in (5.2) can be also be ex-

pressed in terms of the rate of dissipation of turbulent (available) potential energy (εPE) as

Kρ =
ερ

(d〈ρ〉/dz)2
=
εPE
N2

, (5.6)

where εPE = N2ερ(∂〈ρ〉/∂z)−2. At this point, given the form of the simple model proposed in

(5.5), it is both instructive and insightful to recast the diapycnal eddy diffusivity given in (5.6) in

terms of a diapycnal length scale Ld, and a diapycnal velocity scale wd as follows
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Figure 5.2: The ratio of Ellison length scale LE to the diapycnal length scale Ld as a function of the
turbulent Froude number, Fr.

Kρ =
εPE
N2

=
(εPE
N3

)1/2
︸ ︷︷ ︸

Ld

(εPE
N

)1/2
︸ ︷︷ ︸

wd

. (5.7)

Ld is in an analogous form to the Ozmidov length scale LO (previously defined) but it is distinct in

the sense that it is an inner length scale that truly represents the diapycnal mixing length scale in

a stably stratified turbulent flow. In a similar vein, wd represents the velocity scale associated with

irreversible mixing in a stably stratified flow.

In strongly stratified flows, bothLE andw′ are contaminated by adiabatic motions from internal

waves which leads to the significant overprediction of the diapycnal diffusivity (i.e. false mixing)

as shown in figure 5.1. A quantitative assessment of this overprediction is possible by determining

the relationships between the length scales LE and Ld, and velocity scales w′ and wd, respectively.

First, consider the ratio of the Ellison length scale LE to the diapycnal length scale Ld given by

LE
Ld

=
〈ρ′2〉1/2

∂〈ρ〉/∂z

/(εPE
N3

)1/2
, (5.8)
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Figure 5.3: The ratio of vertical velocity fluctuation w′ to the diapycnal velocity wd as a function of the
turbulent Froude number, Fr.

which on simplification gives
LE
Ld

=

(
〈ρ′2〉
ερ

N

)1/2

. (5.9)

The term 〈ρ′2〉/ερ on the right hand side of (5.9) is the density (scalar) decay time scale, Tρ. It is

plausible to assume that in a turbulent flow, Tρ should scale with the turbulent kinetic energy decay

time scale TL = k/ε. It is worth noting here that this assumption has been deemed to be reasonable

in earlier works by Venayagamoorthy & Stretch (2006) and Stretch & Venayagamoorthy (2010).

Hence, (5.9) simplifies further to

LE
Ld
∼ (Fr)−1/2 , for Fr < 1. (5.10)

Equation (5.10) implies that the Ellison length scale needs to be dampened by a factor of (Fr)1/2

in order for it to mimic the true diapycnal (mixing) length scale Ld in the strongly stratified regime

(Fr < 1). The validity of this scaling argument is tested using the DNS data as shown in figure 5.2.

Our DNS data is high resolution decaying turbulence as described in the §5.2. To test the validity
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Figure 5.4: a: similar to fig 5.2, b: similar to fig 5.3 for sheared DNS data of Shih et al. (2005).

of proposed scaling argument for a broader range of flow, we have also tested equation (5.10) for

DNS of sheared stratified turbulence obtained from Shih et al. (2005) in figure 5.4 (a). Their data

set is limited to 0.1 < Fr < 1 with lower resolution but contains mean shear in the flow. Shih et al.

(2005) data show a transition from weakly stratified turbulence and strongly stratified turbulence

at a turbulent Froude number of approximately 0.3.. It is clear from figure 5.2 and figure 5.4 (a)

that (5.10) provides a reasonable correction to LE and thus can be used to obtain estimates of the

true diapycnal length scale Ld for Fr < 1.

Next, consider the ratio w′/wd given by

w′

wd
=

w′

(εPE/N)1/2
, (5.11)

which on simplification gives
w′

wd
=
w′∂〈ρ〉/∂z
(Nερ)

1/2
. (5.12)

Now, in a density stratified fluid, it is reasonable to argue that density perturbations are generated

by the vertical advection of the background density field (for a detailed discussion see Kundu et al.,

2016). Hence, this implies that w′∂〈ρ〉/∂z ∼ ρ′N . Substitution of this relation into (5.12) yields

w′

wd
∼
(
〈ρ′2〉
ερ

N

)1/2

. (5.13)
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Figure 5.5: Comparison of predicted diapycnal diffusivity using the refined model given by (5.15) with the
true diapycnal diffusivity given by (5.2). The dashed line shows the one-to-one comparison line.

The right hand side of (5.13) is identical to its counterpart in (5.9) and hence it follows directly

that

w′

wd
∼ (Fr)−1/2 , for Fr < 1. (5.14)

In a similar manner to the Ellison length scale, (5.14) implies that the vertical velocity scale w′

needs to be dampened by a factor of (Fr)1/2 in order for it to mimic the true diapycnal (mixing)

velocity scale wd in the strongly stratified regime (Fr < 1). The validity of this scaling argument

is again tested using the DNS data as shown in figure 5.3. The scaling argument is also tested for

Shih et al. (2005) data in figure 5.4 (b). It is evident from figure 5.3 and figure 5.4 (b) that (5.14)

provides a remarkably good correction to w′ and hence can be used to obtain estimates of the true

diapycnal velocity scale wd for Fr < 1 which is valid for both decaying and sheared stratified

turbulence.
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Figure 5.6: a:similar to fig 5.1(a), b:similar to fig 5.5 for sheared DNS data of Shih et al. (2005)

5.3.2 New model for diapycnal diffusivity

Given the scaling arguments presented in §5.3.1, it is straightforward to refine the simple model

proposed in (5.5) to predict the true diffusivity across the full spectrum of the Fr number space as

follows:

Km
ρ ∼ w′LE, for Fr ≥ O(1),

Km
ρ ∼ (w′LE)× Fr, for Fr < O(1), (5.15)

Figure 5.5 shows a plot of the modeled diffusivities as predicted by (5.15) versus the true diffu-

sivities given by (5.2) using DNS data. The agreement is remarkable across the whole Fr space.

Figure 5.6 (a) shows a plot similar to figure 5.1 (a) for Shih et al. (2005) data. For this data set we

do not see the one to one collapse of true diffusivity and modeled diffusivity proposed in 5.5 and

shown in figure 5.1, in the limit of weakly stratified turbulence (Fr ∼ 1). This is because the data

of Shih et al. (2005) has a limited Fr range and also the simulations are of low resolution to resolve

full spectrum of flow. Nonetheless, for strongly stratified fluid, the proposed modeled diffusivity

(5.15) with scaling arguments, shows a remarkable agreement with the true diffusivity as shown in
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figure 5.6 (b). This is not surprising given the excellent agreements found for the scaling results

presented in (5.10) and (5.14) as seen in figures 5.2 & 5.4 (a) and 5.3 & 5.4 (b), respectively.

5.4 Towards field application
Modeled diffusivities as predicted by (5.15) are in good agreement with the true diffusivities

as discussed in the previous section. This method neither relies on a parameterization of mixing

efficiency Γ nor needs a correction for small scale rate of dissipation of turbulent kinetic energy,

ε due to anisotropic effects introduced in the strongly stratified fluid, in order to infer diapycnal

diffusivity as in equation 5.3. The proposed model depends on two basic fundamental parameters

for stratified turbulence, w′ and ρ′ or LE . In the ocean, 〈ρ′2〉1/2 and d〈ρ〉/dz are obtained from

instantaneous density profiles measured using CTD. The general practice in oceanography is to

measure horizontal velocities using fine scale instrument like ADCP. Though the measurement

of vertical velocity w′ is scarce, we can not overlook the importance of vertical velocity for ocean

dynamics which directly affects the vertical transport of mass and momentum. Several studies have

been done that focus on the importance and measurement of vertical velocity in the ocean using

natural buoyant floats (D’Asaro 2001) and pressure transducers (Moum, 1990). Thurnherr (2011)

suggested a method to obtain vertical velocity from CTD/LADCP data with an higher accuracy of

0.5 cm/s. It is also shown that small scale dissipation can be parameterized from fine scale vertical

kinetic energy (Thurnherr et al., 2015). In theory, it is thus possible to measure w’ and hence, the

proposed new method can be used to infer diapycnal diffusivity in the ocean if the dynamic state

of the flow can be identified. That is, a diagnostic assessment is required to determine if a given

flow is in the weakly (high Fr) or strongly (low Fr) stratified flow regime.

Estimation of turbulent kinetic energy k in the ocean is challenging and hence the determination

of the Fr is problematic. Here, we propose a method for inferring turbulent Froude number from

measurable quantities. A new Reynolds number based on w′ and LE can be written as:

ReO =
w′LE
ν

. (5.16)
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We denote this as the overturn Reynolds number.

101 102 103

Reo

2

4

6

8

10

F
r R
e b

0.2 + (Reo/50)
2

100

101

102

103

104

105

(a)

100 101 102 103

Re0

0

0.2

0.4

0.6

0.8

1

F
r

0.2 + (Reo/50)
2

R
e b

100.5

101

101.5

102

102.5

(b)

Figure 5.7: Turbulent Froude number as a function of overturn Reynolds number.

A plot for Fr versus ReO for decaying DNS and sheared DNS data is shown in the figure

5.7a and 5.7b, respectively. The range of Fr for decaying turbulence is one order higher that

that in sheared DNS data. We have fitted a curve for decaying DNS data as shown in the figure

5.7a, and tested that fit for the sheared DNS data, in order to provide a relation between these two

non-dimensional parameters such that Fr can be inferred from ReO. According to the fit Fr =

0.2 + (ReO/ReOc)
2, where ReOc = 50 for present data. Figure 5.7a shows that, ReO increases

rapidly for Fr <= 1 and approaches a constant value of order 100 for Fr > 1. This transition

is shown to occur at critical value of ReO (denoted as ReOc), corresponding to Fr ∼ O(1). Of

course, we admit that this proposition needs further verification with high resolution sheared data

and field data which are as yet not available.

5.5 Concluding remarks
Scaling arguments have been presented in this study to propose a new model for the prediction

of diapycnal mixing in stably stratified turbulence. To the best knowledge of the authors, this is the

first time such a model has been proposed using a novel representation of the diapycnal diffusivity

as a product of a diapycnal (mixing) length scale Ld and a diapycnal velocity scale wd as shown
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in (5.7). Comparisons of relevant scaling results that were developed using physical arguments

and the model prediction for the diapyncal diffusivities with the exact diffusivities using high

resolution DNS data (both decaying and sheared stratified turbulence) show remarkable agreement.

A simple and robust scaling result based on the turbulent Froude number Fr for mixing in stably

stratified turbulent flows is evident from the analysis presented in this study. It is expected that these

results will provide a useful platform for developing practical parameterizations for the turbulence

closure problem in large scale numerical models for stratified flows as well as for the inference

of diapycnal mixing from field measurements. However, such extensions require further research

work. We have proposed a practical method for parameterizing the turbulent Fr in terms of an

overturn Reynolds number Re0 to enable the adoption of this new (and robust) model for inferring

diapycnal mixing in the ocean.
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Chapter 6

A practical recipe for parameterization of mixing in

oceanic flows 8

6.1 Introduction
Two major practical challenges for improved prediction of diapycnal mixing in geophysical

flows are: (I) finding the best parameterization for irreversible mixing efficiency and (II) param-

eterizing the mixing efficiency using measurable quantities. The goal of this study is to address

these challenges.

Direct measurements of turbulent density flux (and hence diapycnal diffusivity) is difficult in

the ocean due to the intermingling of internal waves with turbulence in strongly stratified flows.

As a result, a number of indirect techniques are commonly used in praxis in oceanography to infer

heat and momentum fluxes. For example, the popular Osborn (1980) model recasts the diapycnal

diffusivity for a homogeneous and stationary flow as

Kρ = Γ
ε

N2
, (6.1)

where Γ = Rf/(1 − Rf ) is a mixing coefficient and Rf is the mixing efficiency, ε is the rate of

dissipation of turbulent kinetic energy and N =
√

(−g/ρo)(d〈ρ〉/dz) is the buoyancy frequency.

Following the work of Peltier & Caulfield (2003) and Venayagamoorthy & Stretch (2010), Γ and

Rf considered for this study are irreversible mixing coefficient (Γ = εPE/ε) and irreversible mix-

ing efficiency (Rf = εPE/(εPE + ε)), respectively, where εPE is the rate of dissipation of potential

energy. In the light of the discussions presented on mixing efficiency in section 2.6.2 and in chapter

8The research presented in this chapter will be submitted to the Journal of Fluid Mechanics under the title "Utility
of Thorpe and Ozmidov length scales to infer state of turbulence and mixing efficiency in geophysical flows" by A.
Garanaik and S. K. Venayagamoorthy. The chapter is written in a collective "we" voice to acknowledge collaboration
with Dr. S. K. Venayagamoorthy.
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3 it is clear that a robust parameterization for Γ (or Rf ) is lacking and therefore highly desirable. It

should be noted that stably stratified flows can be divided into roughly three flow regimes, depend-

ing on the values of the turbulent Froude number (Fr = ε/Nk, where k is the turbulent kinetic

energy): weakly stratified (Fr >> O(1)), moderately stratified (Fr ∼ O(1)) and strongly strat-

ified (Fr << O(1)) regimes, respectively. A key objective of this research is to determine using

scaling arguments the dependence between the mixing efficiency and the turbulent Froude number

for all three regimes. Here, it is worth noting that Fr can be viewed as a competition of time

scales (i.e. the turbulence time scale TL = k/ε to the buoyancy time scale N−1). Hence, Fr is a

dynamic indicator of the local state of turbulence in a stably stratified flow. However, TL is difficult

to measure in the field. Hence, a second key objective is to formulate a relationship to obtain Fr

from measurable quantities in the field.

In what follows a formulation for the mixing efficiency in stably stratified turbulence is pre-

sented using scaling arguments in section 6.2. A brief description of data considered is given

in section 6.3. Results are discussed including validation of proposed scaling in section 6.4 and

concluding remarks are presented in section 6.5.

6.2 Theoretical analysis
First, scaling arguments to highlight the fundamental relationship between mixing coefficient

(Γ) and turbulent Froude number (Fr), through a consideration of the energetics of the flow is

discussed. Second, it is shown that the turbulent Froude number can be inferred from two most

fundamental and measurable length scales in the oceanic flows namely Ozmidov length (LO) and

Ellison (or alternatively Thorpe, LT ) length scale (LE).

6.2.1 Scaling argument for Γ as a function of Fr

As discussed preveously, the turbulent Froude number, defined as Fr = ε/Nk is the most rel-

evant parameter to describe flow dynamics in a stratified turbulent flow. In the limit of high Fr,

considering a balance between advection and backgroud stratification in the buoyancy equation,

92



Maffioli et al. (2016) have shown that Γ ∼ Fr−2. And in the limit of high Fr, Γ tends to be

constant. Here we have used a different scaling analysis, that considers dominant time scales gov-

erning the fluid flow for weakly stratified, moderately stratified and strongly stratified turbulence

as described below. This is because, the transition between weakly stratified regime and strongly

stratified regime does not happen at one single value. There is an intermediate regime in between

which is moderately stratified, where both stratification and turbulence are important.

6.2.1.1 In the limit of weak stratification Fr >> O(1)

For a weakly stratified fluid or in the limit of high Fr, it is clear that, density acts as a passive

scalar and does not have a significant contribution towards diapycnal mixing (Holford & Linden,

1999). The flow dynamics is mostly influenced/controlled by the turbulent time scale, TL = k/ε.

The vertical displacement of the fluid particle Ldisp ∼ w′TL, wherew′ is the vertical velocity. From

this the density fluctuation ρ′ ∼ w′TL
∂〈ρ〉
∂z

, where ∂〈ρ〉/∂z is the background density gradient.

Hence, the buoyancy flux B = g
ρ
〈ρ′w′〉 ∼ g

ρ
w2TL

∂〈ρ〉
∂z

= w2N2TL, where N2 = g
ρ
∂〈ρ〉
∂z

is the

buoyancy frequency. The turbulent kinetic energy (k) scales as ∼ w2 and the rate of dissipation of

turbulent kinetic energy ε scales as ∼ w2/TL. With this information, the mixing coefficient can be

derived as,

Γ =
B

ε
=
εPE
ε
∼ w2N2T 2

L

w2
∼ (NTL)2 = (Nk/ε)2 = Fr−2. (6.2)

This relation is identical to that found from direct numerical simulations (Maffioli et al., 2016) and

experimental data (Wells et al., 2010) for weakly stratified turbulent flow.

6.2.1.2 In the limit of moderate stratification Fr ∼ O(1)

For a moderately stratified turbulent flow, the buoyancy has already taken effect in the flow

dynamics and at the same time, the effect of turbulence has not completely gone. So both the

buoyancy time scaleN−1 and turbulent time scale TL control the flow dynamics. Vertical displace-

ment of fluid particle Ldisp ∼ w/N and the density fluctuation ρ′ ∼ w′

N
∂〈ρ〉
∂z

. The buoyancy flux

B = g
ρ
〈ρ′w′〉, scales as ∼ g

ρ
w2

N
∂〈ρ〉
∂z

= w2N . The rate of dissipation of turbulent kinetic energy then

scales as ∼ w2/TL. It then follows that,
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Γ =
B

ε
=
εPE
ε
∼ w2N

w2/TL
∼ (NTL)1 = (Nk/ε)1 = Fr−1. (6.3)

6.2.1.3 In the limit of strong stratification Fr << O(1)

In the limit of strong stratification, effect of non dissipative internal waves are strong. Most

of the buoyancy flux occurs in first buoyancy period and most of the energy is dissipated within

one buoyancy time period so that ε ∼ w2/N−1. Following the argument of moderately stratified

case, vertical displacement of fluid particle Ldisp ∼ w/N and ρ′ ∼ w′

N
∂〈ρ〉
∂z

. The buoyancy flux

B = g
ρ
〈ρ′w′〉, scales as ∼ g

ρ
w2

N
∂〈ρ〉
∂z

= w2N . Hence, the mixing efficiency scales as

Γ =
εPE
ε
∼ w2NN−1

w2
= constant ∼ Fr0. (6.4)

Maffioli et al. (2016) have shown that this constant value approaches 0.33. Shih et al. (2005) found

that the constant value of mixing coefficient is 0.2. Our data shows a higher value. Regardless

of the exact value, it appears that mixing efficiency should be a constant in the limit of strong

stratification.

6.2.2 Inferring Fr from Ozmidov and Thorpe length scales

The turbulent Froude number (Fr) is a dynamic parameter that can be used to diagnose the

state of turbulence in a stably stratified flow. It should be noted that the proposed scaling for Γ (as

shown in the section 6.2.1) requires the determination of Fr which is difficult to quantify directly

in the ocean. Here, we propose a novel breakthrough to estimate Fr using measurable length

scales in oceanic flows.

A fundamental length scale that provides a measure of overturning length scale is the well

known Ellison length scale (Ellison, 1957) defined as

LE =
〈ρ′2〉1/2

∂〈ρ〉/∂z
, (6.5)
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where ρ′ is the turbulent density fluctuation, ∂〈ρ〉/∂z is the mean background density gradient and

〈〉 represents ensemble average. Conceptually, LE is obtained from three dimension resorting of

instantaneous density profile to a state of minimum potential energy (Winters et al., 1995), but

in the context of oceanography, instantaneous density is measured by dropping vertical profilers

from a research vessel. In the limit of available one dimensional vertical profiles, statistically LE

represents the largest overturn of the flow and gives an indication of the available potential energy

per unit mass. A similar and relatively simpler kinematic length scale obtained from instantaneous

density profiles is the Thorpe length scale, LT (Thorpe, 1977). In a statistical sense, both LT and

LE represent a measure of the vertical distance traveled by fluid parcels in order to achieve an

equilibrium position through adiabatically resorting. So that, for one dimensional vertical profiles,

both LT and LE should be equivalent. From low resolution DNS, Itsweire et al. (1986) found good

aggrement between LT and LE for weakly stratified flows. From high resolution DNS data we

have also found that LT and LE are in excellent agreement for all the range of stratification similar

to the results of Mater et al. (2013).

Another length scale that is often used to represent the size of eddy in stratified turbulence

was suggested by Ozmidov (1965) through a dimensionally constructed length scale known as

Ozmidov length scale (LO) that is defined as

LO = (ε/N3)1/2, (6.6)

where, N =
(
g
ρ
∂〈ρ〉
∂z

)1/2
is the buoyancy frequency, ε is the rate of dissipation of turbulent kinetic

energy. LO is the length scale at which inertial forces balance the buoyancy forces, in such a way

that LO represents the largest (isotropic) eddy unaffected by buoyancy.

The ratio of these two length scales has been used to denote the age of a turbulent event (Smyth

et al., 2001). Mater et al. (2013) suggested that LT and LO are equivalent only for turbulent

Froude number of order one. Here, we delve further to show that the ratio of LT/LO or more

explicitly, LE/LO is not only a signature of age of turbulence but more importantly, is a quantitative
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representation of the strength of stratification in a turbulent flow similar to the concept of a turbulent

Froude number. A quantitative relationship between LE/LO and Fr can be derived as follows.

The ratio of the Ellison length scale to the Ozmidov length scale can be written as

LE
LO

=
〈ρ′2〉1/2N3/2

(∂〈ρ〉/dz)ε1/2
=
〈ρ′2〉1/2

ε1/2

(
g

ρ

)(
g

ρ

∂〈ρ〉
∂z

)−1/4
=
〈ρ′2〉1/2

ε1/2
g

ρ
N−1/2. (6.7)

In the limit of strong stratification, g
ρ
〈ρ′2〉1/2 represents a gravitational acceleration term which can

be expected to scale with velocity scale k1/2 and time scale N−1, such that

〈ρ′2〉1/2 g
ρ
∼ wN ∼ k1/2N. (6.8)

Thus, for strongly stratified regime Fr < O(1), the length scale ratio can be written as

LE
LO
∼ k1/2N

ε1/2N1/2
= (kN/ε)1/2 = Fr−1/2. (6.9)

This simplifies to

Fr ∼ (LE/LO)−2 ∼ (LT/LO)−2 . (6.10)

Now, for a weakly stratified turbulent flow or in the limit of high Froude number Fr > O(1),

the Thorpe length scale as well as the Ellison length scale should scale with the isotropic turbulent

length scale Lkε = k3/2/ε (Ivey & Imberger, 1991; Luketina & Imberger, 1989; Mater et al., 2013).

Thus,

LE ∼ LT ∼ Lkε = k3/2/ε. (6.11)

With this information, the length scale ratio, LE/LO, for a weakly stratified flow can be written as,

LE
LO
∼ k3/2/ε

ε1/2/N3/2
= (kN/ε)3/2 = Fr−3/2, (6.12)

which translates to

Fr ∼ (LE/LO)−2/3 ∼ (LT/LO)−2/3 . (6.13)
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Given that bothLT andLO are measurable in the ocean using CTD and microstructure profilers,

equations 6.10 and 6.13 provide a novel scaling to estimate Fr for the first time in the field. The

scaling arguments presented for both Γ and Fr are tested using three independent DNS datasets in

what follows.

6.3 Data considered
Direct Numerical simulation (DNS) provides full description of turbulent flow field ranging

from energy containing large eddy scale (L) to small dissipative Kolmogorov scale (η) without

involving any parameterization of small-scale physics. Here we have considered three independent

DNS data sets to test the veracity of our proposed scaling for Γ and Fr for different flow conditions.

The first dataset is from our own simulations of decaying homogeneous stably stratified turbulence.

The second data set represents forced stably stratified turbulence (Maffioli et al., 2016). The third

data set includes effect of shear in DNS of sheared stably stratified turbulence (Shih et al., 2005).

Brief detail of these simulations and datasets are given next.

Decaying DNS: The numerical simulations for our study were carried out using pseudo-spectral

DNS code developed by Riley et al. (1981) for stably stratified homogeneous turbulent flows. A

cubical periodic domain with dimension 2π with 5123 grid points was considered for all simula-

tions. The turbulent flow was initialized with a Gaussian isotropic three dimensional solenoidal

velocity field and allowed to evolve and decay under the influence of a constant background strat-

ification. The mean shear was zero for all the simulations and the only large scale anisotropy

considered was vertical stable stratification. Flow was characterized with an initial Reynolds num-

ber of 1000 defined as Re0 = u0L0/ν, where u0 is the initial velocity scale and L0 is the initial

length scale. Background stratification was characterized with an initial Richardson number, de-

fined as Ri0 = (NL0/u0)
2, where N is the buoyancy frequency. Four DNS simulations were

performed for the present study with Ri0 = 0.01, 0.1, 1.0 and 10, respectively, for a duration of

5L0/u0 in order to investigate the effects of weakly stratified to strongly stratified condition on the

small scales of turbulence. The value of kmaxη (corresponding to maximum dissipation) varied
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from 1.41 to 1.6 for Ri0 = 0.01 to Ri0 = 10 respectively, where kmax is the maximum wave

number. This criteria ensures that the resolution was sufficient to resolve the smallest scales of

dissipation (Yeung et al., 1995). The molecular Prandtl number Pr = ν/κ = 1 for all the simula-

tions to ensure accurate resolution of the dissipative scales of the density (scalar) field. At the first

eddy turnover period, 1L0/u0, the dissipation peaks and begins to decay. This is interpreted as a

signature of fully developed turbulence. Hence, initial transients prior to this time were ignored in

this study.

Forced DNS: These data were obtained from high resolution direct numerical simulations of

linearly stratified fluid with constant buoyancy frequency. A body force is included in the Boussi-

nesq momentum equation to simulate stationary turbulence. They have considered different size

of grid for this study with isotropic forcing for most of the cases and 2D vortical forcing for 5 sim-

ulations to achieve a strongly stratified regime with buoyancy Reynolds number > 10. For details

of simulations refer to Maffioli et al. (2016). Data from 17 simulations are used to test the scaling

results.

Sheared DNS: These data were obtained from direct numerical simulations of Navier-Stokes

equations for homogeneous, sheared, stratified turbulent flows using pseudo-spectral method on a

1283 grid with periodic boundary conditions. Even though the resolution is much smaller than the

resolution of our DNS, we have considered this data set to include the influence of shear which is

very common in geophysical flows. For detail of the code and simulations see, Shih et al. (2005).

A total of 36 simulations are used in the present study. All data considered for our study correspond

to a shear time, St > 6 to ensure that the simulations are fully developed.

6.4 Results

6.4.1 Mixing coefficient (Γ) as a function of turbulent Froude number (Fr)

Figure 6.1 shows the mixing coefficient Γ as a function of turbulent Froude number for decay-

ing and forced DNS data. The buoyancy Reynolds number (Reb) is shown in color bar. Here, two

observations are noteworthy. First, the buoyancy Reynolds number does (Reb) not play any role
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Figure 6.1: Mixing coefficient, Γ as a function of turbulent Froude number Fr. The color bar shows values
of Reb. star: decaying DNS; circle: forced DNS of Maffioli et al. (2016).

in estimating mixing efficiency. Similar arguments have been provided by Maffioli et al. (2016).

If one considers any Fr value, and compare the corresponding Reb and Γ values from both the

datasets, it is clear that different Reb values correspond to similar mixing efficiencies suggesting

that Reb is not a unique parameter to parameterize mixing in a stratified flow and thus it is a highly

ambiguous parameter. That is, for a given Reb, the mixing coefficient can be either high or low

depending on the strength of the stratification as denoted by Fr.

The second key observation is that both decaying and forced DNS data remarkbaly agree with

our scaling results for Γ. Maffioli et al. (2016) have shown the scaling of Γ ∼ Fr−2 in the limit of

high Fr from the governing equations by considering balance between advection and background

stratification. Geophysical flows experience the effects of shear and stratification. Hence, we have

also validated our scaling arguments using sheard DNS data of Shih et al. (2005) in figure 6.2. Even

though the range of data does not cover a broader spectrum of Froude number as in the other two

cases, still the three regimes of the flow are visible from the data with reasonable aggrement with
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Figure 6.2: Mixing coefficient, Γ as a function of turbulent Froude number Fr for sheard DNS of Shih
et al. (2005). The color bar shows values of Reb.

our scaling results. The transition from strong stratification to weak stratification occurs around

Fr = 0.3 similar to Maffioli et al. (2016) which is of order one. Note, for this analysis all data

in the diffusive regime (Shih et al., 2005) are discarded. From these results, it can emphatically

concluded that, the appropriate way to describe mixing efficiency (mixing coefficient) is through a

Fr based parameterization.

In praxis, mixing efficiency is generally parameterized with Reb since Reb is readily computed

from field observations. However, as has been shown, Reb is a fundamentally flawed parameter to

use for this purpose. Regardless, it should be noted that the turbulent Froude number is not easily

measurable in the ocean with current instrumentations and methodologies. Hence, it is important

to find practical approach to estimate Fr in the field.

6.4.2 Thorpe length scale, Ellison length scale and Ozmidov length scale

Figure 6.3 shows that the Thorpe scale and Ellison length scales agree remarkably well across

a broad range of Fr. Similar results have been shown by Mater et al. (2013) and Itsweire et al.
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Figure 6.3: Relation between Thorpe length scale and Ellison length scale from high resolution DNS data
of decaying stably stratified turbulence.

(1993) for lower resolution data. Using 1283 DNS Itsweire et al. (1993) have shown that LT and

LE have near one-to-one relation only for lower stratification and the relation is not quite prominent

for strong stratification. Our simulation of high resolution DNS clearly shows that there is a one-

to-one relation between LT and LE . This implies that LT and LE can be used interchangeably.

Figure 6.4 shows the relation between Thorpe length scale and Ozmidov length scale similar

to Mater et al. (2013), but for higher resolution DNS data. This figure clears that LTandLO are

equal only for turbulent Froude number of order one as indicated in the color bar. In the limit of

strong stratification (low Fr), LT over predicts LO and in the limit of weak stratification, LO is

significantly larger.

6.4.3 Fr as a function of LE/LO: Inferring the state of turbulence

The scaling arguments to find a relation between LE/LO and turbulent Froude number was

discussed in section 6.2.2. The validation results for decaying and forced turbulence are presented

in figure 6.5 and for sheared DNS data in figure 6.6. Both the figures validate the scaling results
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of decaying stably stratified turbulence.
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Figure 6.5: Froude number as a function of LE/LO for decaying and forced DNS data.
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Figure 6.6: Froude number as a function of LE/LO for sheared DNS data.

shown in equations 6.10 and 6.13, respectively. The data indicate that Fr ∼ (LE/LO)−2/3 for

(LE/LO) < O(1) and Fr ∼ (LE/LO)−2 for (LE/LO) > O(1). As indicated earlier the transition

for strong and weak regime of stratification is noticeable at Fr ∼ O(1) (0.3 for data in Shih

et al., 2005) These results are indeed powerful because they show that with LT and LO know, it

is possible (for the first time) to estimate Fr in the field. This in turn permits the use of a more

accurate parameterization to predict Γ which is crucial for obtaining robust estimates of dipaycnal

mixing.

6.5 Concluding remarks
In this chapter, we have first derived new scaling results for Γ as a function of Fr and then

for Fr as a function of LT/LO. We have then used direct numerical simulation data from three

independent researches to validate the scaling results. Three significant findings can be concluded

from above discussions. First, high resolution decaying DNS data and forced DNS (Maffioli et al.,

2016) suggest that Reb is an ambiguous parameter and hence parameterizations of Γ based on

Reb are not useful. Second, with scaling arguments and using high resolution DNS data we have
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shown that the mixing coefficient scales with turbulent Froude number. The functions are different

for three different distinct regions. The third key finding is that the ratio LT/LO is not only a

representation of time of event (younger turbulence or older turbulence), but it represents the state

of the flow i.e. whether the flow is in a strongly stratified regime, or in a weakly stratified regime.

This finding will help oceanographers to infer the state of turbulence and thereby use appropriate

parameterizations for Γ such as the new parameterizations that have been formulated in this study.

To the knowledge of authors, this is the first time such analysis have been provided to identify both

the state of turbulence and quantify the mixing efficiency in an unambiguous manner. The natural

next step is to evaluate the utility of the proposed parameterizations in the field.
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Chapter 7

Lagrangian analysis for diapycnal mixing and

dispersion 9

7.1 Introduction
Lagrangian statistics provide an in-depth understanding of particle dispersion in a fluid in mo-

tion (Sawford, 2001). A particle dispersion study therefore provides fundamental insights on tur-

bulent diffusion and ultimately turbulent mixing in stably stratified turbulent flows. In this study

we have used a Lagrangian framework to study diapycnal mixing by identifying the true diapycnal

length scale and velocity scale.

Most geophysical flows are affected by vertical density stratification. Understanding diapycnal

mixing and diapycnal dispersion in these flows will help to develop effective models of turbulent

dispersion for air quality, nutrients distributions in the ocean, phytoplankton migration, tracers

and climate variability (Gregg, 1987; Holford & Linden, 1999; Peltier & Caulfield, 2003). For an

unstratified turbulent flow, fluid particles can move freely in vertical direction by advection over

unlimited distance depending on the strength of turbulence. This is because the buoyancy force

do not restrict the vertical motion in an unstratified flow. On the contrary, in a stably stratified

fluid, the vertical motion of fluid particles are inhibited by buoyancy forces acting in vertical di-

rection. Without molecular diffusion, the density of particle does not change and the particles

oscillates about their equilibrium position (isopycnal surface). With molecular diffusion, there is

an interchange of density between the particle and the background fluid. Hence if displaced, the

fluid particle settles further away from its original equilibrium position by changing its density

with background and thereby simultaneously altering the background density. Vertical turbulent

9The research presented in this chapter is under preparation to be submitted to the Journal of Fluid Mechanics
under the title "Lagrangian analysis for diapycnal mixing and particle dispersion in stably stratified turbulence" by A.
Garanaik and S. K. Venayagamoorthy. The chapter is written in a collective "we" voice to acknowledge collaboration
with Dr. S. K. Venayagamoorthy.
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dispersion in a stratified flow is a result of two processes, large scale vertical advection through

isopycnal components and small scale molecular mixing through diapycnal components (Pearson

et al., 1983).

In a continuous turbulent motion, mean square particle displacement 〈(δr)2〉 or standard devi-

ation of position of a single particle with uniform mean velocity is directly proportional to square

of time for short time intervals and proportional to time at large times (Taylor, 1921). This is sim-

ilar to Einstein’s Brownian motion (1905) for molecular diffusion which shows an initial ballistic

region (∼ t2) and later diffusive region (∼ t). These concepts of turbulent diffusion have been ex-

tended to stably stratified flows by considering the vertically stabilizing buoyancy force (Csanady,

1964; Weinstock, 1992). Experimental studies are not amenable for collection of Lagrangian data

and hence we rely on DNS simulations. Riley & Patterson (1974) extracted Lagrangian data from

Eulerian fields in DNS for the first time in turbulent flows. Numerical analysis of vertical particle

dispersion in stably stratified turbulent flows have been studied with a Langevin model (Csanady,

1964; Pearson et al., 1983), rapid distortion theory (RTD) for decaying turbulence Kaneda & Ishida

(2000), kinematic simulations for non decaying turbulence (Nicolleau & Vassilicos, 2000), DNS

for decaying turbulence (Kimura & Herring, 1996; Venayagamoorthy & Stretch, 2006), DNS for

stationary stratified turbulence (Aartrijk et al., 2008), DNS for stationary turbulence with hyper

viscosity (Brethouwer & Lindborg, 2009).

The diffusivity coefficient is a function a characteristic velocity scale and a characteristic length

scale. In this work, we have extended the work of Venayagamoorthy & Stretch (2006) using

higher resolution direct numerical simulation to identify appropriate characteristic length scale

and velocity scale from Lagrangian mean square particle displacement analysis. In section 7.2

isopycnal and diapycnal decompositions of the total displacement and velocity are discussed. This

is followed by a brief description of the particle tracking method that is used to obtain Lagrangian

statistics from Eulerian statistics in section 7.3. Results are discussed in section 7.4. Concluding

remarks are presents in section 7.5.
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7.2 Isopycnal and diapycnal components of length and velocity

scales from Lagrangian perspective
Lagrangian mixing is the measure of small scale diapycnal mixing obtained by following fluid

particles. This is quantified by the local divergence of diaycnal density flux. Density perturba-

tion following a fluid particle consists of two parts, isopycnal and diapycnal flux (Csanady, 1964;

Pearson et al., 1983; Venayagamoorthy & Stretch, 2006) and is defined as

d

dt
ρ′〈t〉 = −∂〈ρ〉

∂z
w〈t〉+ κ∇2ρ′〈t〉, (7.1)

where 〈t〉 denotes coordinate following fluid particle, κ is molecular diffusivity, ρ′ density pertur-

bation from mean background density 〈ρ〉. The first term on the right hand side of equation 7.1 is

the isopycnal component which is the vertical advection term that represents stirring or reversible

mixing. The second term on the right hand side is the diapycnal flux, which is the direct measure of

irreversible mixing rate due to density changes of particle with surrounding fluid by molecular dif-

fusion processes (denoted as the Lagrangian mixing by Venayagamoorthy & Stretch, 2006). When

a fluid particle is vertically displaced from its equilibrium position in a stably stratified fluid, two

processes may occur. First, the particle will be advected due to inertial effects and will be restored

back to its original equilibrium position due to buoyancy, a process known as isopycnal dispersion

defined as

zi〈t〉 = −ρ′〈t〉/(∂〈ρ〉/∂z. (7.2)

Second, the particle will attain another level of equilibrium due to changes in its density, a measure

of which is given by the diapycnal displacement defined as

zd〈t〉 = ∆ρ/(∂〈ρ〉/∂z), (7.3)

where ρ′〈t〉 is density perturbation of fluid particle and ∆ρ is change of density of fluid particle.

The change in density of fluid particle (irreversible mixing) is given as
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∆ρ〈t〉 =

∫ t

0

κ∇2ρ′〈t〉. (7.4)

This shows that the total displacement of a single particle is a sum of its isopycnal and diapycnal

components as

z〈t〉 = zi〈t〉+ zd〈t〉 =⇒ ∂z〈t〉/∂t = ∂zi〈t〉/∂t+ ∂zd〈t〉/∂t =⇒ w〈t〉 = wi〈t〉+wd〈t〉. (7.5)

Following the work of Venayagamoorthy & Stretch (2006), dispersion coefficients associated

with total vertical displacement are defined as

kz =
1

2

∂〈z2〉
∂t

= 〈zw〉. (7.6)

(Here, we have removed the notation 〈t〉 for simplicity. The correlation is taken for each particle

and then the ensemble average is determined.)

The Isopycnal dispersion associated with isopycnal displacement is defined as

ki =
1

2

∂〈z2i 〉
∂t

= 〈ziwi〉. (7.7)

Similarly, the diapycnal dispersion coefficient associated with diapycnal displacement is defined

as

kd =
1

2

∂〈z2d〉
∂t

= 〈zdwd〉. (7.8)

The true diapycnal diffisivity is defined as

Kρ =
ερ

(∂〈ρ〉/∂z)2
, (7.9)

where ερ is the rate of dissipation of density variance and ∂〈ρ〉/∂z is the mean background density

gradient. (For a detail derivation see: Venayagamoorthy & Stretch, 2010). The diapycnal disper-
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sion coefficient is generally not equal to diapycnal diffusivity. The diapycnal dispersion coefficient

is equivalent to diapycnal diffusivity only if the fluid particle densities are independent of velocity.

7.3 Methodology
Eulerian simulation: Direct Numerical simulation (DNS) provides full description of turbulent

flow field ranging from energy containing large eddy scale (L) to small dissipative Kolmogorov

scale (η) without involving any parameterization of small-scale physics. The numerical simulations

for our study were carried out using pseudo-spectral DNS code developed by Riley et al. (1981)

for stably stratified homogeneous turbulent flows. A cubical periodic domain with dimension

2π with 2563 grid points was considered for all simulations. The turbulent flow was initialized

with a Gaussian isotropic three dimensional solenoidal velocity field and allowed to evolve and

decay under the influence of a constant background stratification. The mean shear was zero for

all the simulations and the only large scale anisotropy considered was vertical stable stratification.

Flow was characterized with an initial Reynolds number of 625 defined as Re0 = u0L0/ν, where

u0 is the initial velocity scale and L0 is the initial length scale. Background stratification was

characterized with an initial Richardson number, defined as Ri0 = (NL0/u0)
2, where N is the

buoyancy frequency. Six DNS simulations were performed for the present study with Ri0 = 0,

0.01, 0.1, 1.0, 10 and 100, respectively, for a duration of 5L0/u0 in order to investigate the effects of

weakly stratified to strongly stratified conditions on the small scales of turbulence. The molecular

Prandtl number Pr = ν/κ = 1 for all the simulations.

Lagrangian simulation of particle tracking: A particle tracking algorithm was incorporated in

the DNS as described by Venayagamoorthy & Stretch (2006). Knowing the Eulerian velocity field

at each grid point for a 2563 domain, the velocity at any intermediate point or any arbitrary location

(u) was found through a cubic spline interpolation scheme. For our study, 243 particles were used

for obtaining Lagrangian statistics. Knowing the initial position of a particle x0 at t = 0, and

interpolated velocity u from Eulerian field (Lagrangian velocity), the equation of motion for a
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position x at time t, can be derived as dx/dt = u. Using a suitable numerical integration scheme,

the particle position can then be determined.

7.4 Results

7.4.1 Validation of Lagrangian statistics with Eulerian statistics
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Figure 7.1: Validation of Lagrangian statistics and Eulerian statistics for turbulent kinetic energy (TKE,
1/2u2i ) in (a, c and e) and for density flux (〈ρ′w′〉) in (b, d and f). with varying stratification

A comparisons of Lagrangian and Eulerian statistics for turbulent kinetic energy (TKE) and

density flux 〈w′ρ′〉 are provided in figure 7.1. The Eulerian statistics discussed here are volume

averages and the Lagrangian statistics are the ensemble averages of all the particles selected in the

box. The Eulerian statistics are obtained from 2563 DNS simulations. For Lagrangian statistics,

both 83 and 243 particles are considered as shown in the figure 7.1. 243 particles are shown to be

sufficient to mimic the corresponding Eulerian statistics. The simulation of 2563 DNS box with
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Figure 7.2: The mean square of the horizontal displacement (a) 〈∆x2〉, (b) 〈∆y2〉 and (c) vertical displace-
ment 〈∆z2〉 showing ballistic and diffusive region for various Ri0 values.
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Figure 7.3: Sample particle tracks.

83 particle took 35s CPU time on a system with I7, 256 GB RAM with dual processors. On the

same system, 2563 − 123 took 70 s , 2563 − 243 took 430 s, 2563 − 323 took 900 s, 5123 − 83

took 400 s and 5123 − 323 took 2 hr CPU time for a single time step. To obtain 5 turnover times,

(when TKE is expected to decay 90%), we need 5000 time steps with dt = 0.001, which increases

the computational cost for higher number of particles. Thus, the selection of 243 particles in

2563 Eulerian box was finalized for this study by considering a trade off between accuracy and

computational cost.

7.4.2 Lagrangian particle dispersion

The mean square Lagrangian particle displacements for both horizontal 〈∆x2〉, 〈∆y2〉 and

vertical 〈∆z2〉 as a function of eddy time (tu0/L0) are shown in figure 7.2. For unstratified flow
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Ri0 = 0, the mean square vertical displacement grows as ∼ t2 for initial time and as ∼ t for

later time as discussed by Taylor (1921) for ballistic and diffusive regimes respectively (Xia et al.,

2013). For Ri0 >> 0, mean square vertical displacement levels off. Such a behavior is not

evident in the statistics of the horizontal displacements 〈∆x2〉 and 〈∆y2〉. This is because the

imposed stratification is only in vertical direction which inhibits growth of 〈∆z2〉. The mean

square horizontal displacements are seldom affected by vertical stratification. These statistics are

consistent with earlier results (Kaneda & Ishida, 2000; Kimura & Herring, 1996; Venayagamoorthy

& Stretch, 2006). Three dimensional particle tracks (for five arbitrarily selected particles) for

Ri0 = 0.01, 1 and 100 are shown in figure 7.3. The tracks of low Ri0 flows show that the particles

wander with freedom in all three directions. On the other hand, for the strongly stable case Ri0 =

100, the particles are more or less restricted to the horizontal plane with small vertical oscillations.

7.4.3 Isopycnal and diapycnal displacement

The goal of Lagrangian study by tracking the particle position is to distinguish the isopycnal

and diapycnal components of vertical displacement and vertical velocity, which is difficult in Eu-

lerian simulation and in field measurements. In figure 7.4 the mean square vertical displacements

of particles are shown as a function of time for various stratifications.

For an initial time, tu0/LO = 1.5, isopycnal component of displacement dominates. After the

initial transient, diapycnal displacement increases and dominates the total particle displacement

due to diapycnal mixing which becomes significant with increase of stratification. When stratifica-

tion is very strong (e.g. Ri0 = 100), mixing is strongly suppressed and the vertical displacements

strongly inhibited. For strong stratification, the isopycnal component grows initially and then grad-

ually decays with time when the diapycnal component accounts for the total displacement of the

particles. If there were no mixing, then the diapycnal component should be zero.

7.4.4 Isopycnal and diapycnal velocity

Root mean square vertical velocity and its isopycnal and diapycnal components are shown in

figure 7.5 as a function of time for different stratifications. With increase of stratification, the
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line) and root mean square of diapycnal velocity (dotted line) for different initial Richardson numbers.

vertical velocity 〈w2〉1/2 has a characteristic oscillatory behavior consistent with the presence of

internal waves. For low stratification, the diapycnal velocity and isopycnal velocity are are almost

equal. With increase of stratification the maximum value of all the vertical velocities decrease as

expected. The isopycnal and diapycnal velocity separate from each other for strong stratification

as isopycnal component represents the reversible part and diapycnal component represents the

irreversible part of total velocity.
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Figure 7.6: Dispersion coefficients for different initial Richardson number.

7.4.5 Diapycnal dispersion

The dispersion coefficients along with true diapycnal diffusivity (see: section 7.2) are shown

in figure 7.6. The wave effects of isopycnal dispersion are noticeable for higher stratification.

Isopycnal dispersion does not contribute to irreversible mixing. Diapycnal dispersion coefficient

can represent the true diffisivity for weakly stratified flow after the flow is fully developed.

7.4.6 Diapycnal diffusivity from isopycnal length scale and diapycnal veloc-

ity scale

In the context of oceanography, the overturning length scales are represented by Ellison length

scale LE (Ellison, 1957). Here we have shown that this outer length scale is equivalent to isopycnal

displacement. The relation between root mean square isopycnal component of vertical velocity and

a overturning length scale LE is shown in figure 7.7. This shows that the overturning length scale
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Figure 7.7: Relation between root mean square isopycnal displacement with Ellison length scale for differ-
ent initial Richardson numbers Ri0 as shown in the legend.

(an Eulerian statistic) is actually equal to the isopycnal displacement obtained from Lagrangian

statistics.

The ratio of root mean square diapycnal velocity and isopycnal velocity is shown in figure 7.8 as

a function of turbulent Froude number Fr. This indicates that for a low stratification (Fr > O(1)),

the root mean square isopycnal velocity and root mean square diapycnal velocity components are

equivalent (also shown in figure 7.5) but for high stratification (Fr < O(1)), the diapycnal velocity

is smaller than the isopycnal velocity due to presence of internal wave motions.

Figure 7.9(a) shows the relation between true diapycnal diffusivity Kρ obtained from Eulerian

statistics and diapycnal dispersion kd from the Lagrangian statistics. Diapycnal diffusivity from

Lagrangian statistics Kd and diapycnal diffusivity from Eulerian statistics Kρ are presented in

figure 7.9(b). The true diffusivity is represented by the isopycnal length scale and a diapycnal

velocity scale.

7.5 Concluding remarks
In this chapter preliminary results from a Lagrangian analysis of stably stratified turbulence

has been presented. This method helps to isolate the isopycnal components from diapycnal com-

ponents to provide insight into the true length scales and velocity scales for irreversible diapycnal
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mixing. The overturning length scale in oceanography is actually an isopycnal displacement not

diapycnal length scale which contributes towards mixing. The representative velocity scale for

diapycnal mixing is the diapycnal component of velocity scale. Thus the true diapycnal diffusivity

is obtained from ensemble average of the product of isopycnal length scale and diapycnal velocity

scale. The diapycnal dispersion is the statistical average of the product of diapycnal displace-

ment and diapycnal velocity which is equivalent to true diapycnal diffusivity in the limit of low

stratification.
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Chapter 8

Summary and Conclusions

8.1 Key findings
The following is a brief description of the main outcomes of this study:

1. Parameterization of diapycnal mixing from field data analysis suggests that a constant mixing

coefficient, Γ can be used only in thermocline regime which is typically strongly stratified.

The maximum constant value of Γ can be lower or higher than the canonical value depending

on strength of stratification and available turbulent kinetic energy (as indicated by the rate of

dissipation of turbulent kinetic energy ε. Constant mixing coefficient of 0.2, might result in

overprediction of oceanic mixing when stratification is negligible (e.g. in the upper ocean).

There is no unique relationship of Γ or Rf with buoyancy Reynolds number Reb. Similar

result was also found in chapter 6 that clearly shows thatReb is without a doubt an ambiguous

parameter for quantifying the mixing efficiency in stably stratified flows.

2. A new method to identify background shear Sacross of a turbulent patch was proposed. Gra-

dient Richardson numberRig estimated from Sacross suggest that mixing efficiency increases

in a shear dominated regime (Rig < 0.25) similar to other results, and approaches a constant

value at Rig ∼ O(1) and then decreases. The mechanism is unknown and this needs further

investigations. It is highlighted that the methodology used for data analysis is critical and

without knowledge of the underlying physics, any analysis can result in wrong estimates of

oceanic mixing.

3. The state-of-the-art instruments to measure the turbulent quantities operate under certain

assumptions. The microstructure profilers measure small scale quantities such as the rate

of dissipation of turbulent kinetic energy and the rate of dissipation of thermal variance

from single spatial gradients in lieu of all the gradients, by invoking the small scale isotropy
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assumptions. It was found that the small scale isotropy assumption for a less energetic

stratified ocean leads to overprediction of the measurements of turbulent quantities by 200%.

We have provided a correction such that the true dissipation (ε3D) can be obtained from

measured isotropic dissipation (ε1D).

4. Considering scaling analysis based on physical reasoning, it was shown that the true di-

apycnal diffusivity Kd can be obtained from the the root mean square vertical velocity w′

and the famous Ellison length scale LE , which denotes the outer length scale of turbulence.

For strongly stratified flows, these scales are contaminated by internal wave motions and

hence, corrections are needed. It was shown that the true diapycnal velocity can be ob-

tained from the root mean square vertical velocity through a Froude number parameter

as w′/wd ∼ Fr−1/2. Similarly, the diapycnal length scale can be obtained from LE as

LE/Ld ∼ Fr−1/2. In this manner, for a weakly stratified regime, Kd ∼ w′LE and for a

strongly stratified fluid Kd ∼ w′LE × Fr.

5. A new overturn Reynolds number ReO = w′LE/ν is introduced to infer Fr from oceanic

measurements as present state-of-the-art instruments do not measure turbulent kinetic en-

ergy to estimate Fr. It was found that ReO increases in the stratified regime and tends

asymptotically to a constant in the unstratified regime.

6. Scaling analysis and direct numerical simulation of decaying, sheared and forced turbulence

data of stably stratified fluid reveal that the mixing coefficient Γ scales with the turbulent

Froude number Fr. For weakly stratified flow, Γ ∼ Fr−2, for moderate stratification, Γ ∼

Fr−1 and for strongly stratified flow Γ ∼ Fr0.

7. A novel relationship between Fr and measurable Thorpe length scale LT and Ozmidov

length scale LO has been proposed such that LT/LO < O(1) represents weakly stratified

regime and LT/LO > O(1) represents strongly stratified regime. This is an important find-

ing for estimates and parameterization of diapycnal mixing from field measurements. From

120



oceanic measurements, if data are in strongly stratified regime as denoted by LT/LO, con-

stant mixing efficiency should be used. Otherwise a parameterization is needed.

8. From Lagrangian analysis it was shown that the Ellison length scale is an isopycnal length

scale. The diapycnal diffusivity and diapycnal dispersion are equivalent for moderate to

weak stratification. The diapycnal diffusivity is a product of diapycnal velocity scale and an

isopycnal length scale.

8.2 Suggestions for future works
Accurate parameterizations of mixing is an important issue for many applications in engineer-

ing and nature including climate prediction. In this dissertation, some new (promising) methods

for improved inference and parameterization of mixing have been provided. Further research is

needed to evaluate the utility and fidelity of these new methods in the field for a broad range of

flow conditions. In chapter 5, we have proposed a new method to estimate diapycnal diffusivity

from measurable velocity and length scales using DNS data. Further validation of this model is

required using field data. Such a validation will bring light to the significance of this new model for

small scale mixing that uses only fine scale measurements. In chapter 3 we have discussed differ-

ent methods to obtain background stratification and shear. This work needs further investigations

with different oceanic and atmospheric turbulence datasets in order to converge towards a robust

methodology for data analysis. Development of instruments which can measure three dimensional

turbulent quantities in the field would provide an avenue to test the proposed parameterizations us-

ing geophysical flow data. Lagrangian statistics needs further investigation to establish a relation

of diapycnal diffusivity with measurable quantities. In sum, the proposed parameterizations and

methods should be tested extensively in the field and in large scale models to assess their usefulness

for real world applications.
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