A Virtual Object Manipulation Interface for
Automated Assembly Programming

Akihiro Sato*

Anthony A. Maciejewski®

*Production Engineering Development Lab., NEC Corporation,
3-484, Tsukagoshi, Saiwai-ku, Kawasaki, Kanagawa, Japan 210
tPurdue University, 1285 Electrical Engineering Bldg.,
West Lafayette, Indiana 47907-1285

Abstract— This work describes the implementation
of a novel robotic workcell programming interface that
allows an assembly designer to obtain immediate feed-
back regarding the manufacturability of his design.
The interface allows the user to manipulate the three-
dimensional CAD/CAM models of the components and
“assemble” them into the final product. The com-
puter then analyzes the relevant assembly operations and
translates them into low-level commands for the robots
in the specific workcell under consideration. This work
is motivated by the complexity and time-consuming na-
ture of manually programming flexible assembly cells for
the manufacture of different products, particularly when
they involve the cooperation of multiple robot manipu-
lators.

I. INTRODUCTION

The introduction of robots into assembly lines has
resulted in a significant improvement in both the speed
and quality of automated assembly. However, the
goal of using multiple robots and ancillary automation
equipment in flexible workcells that can automatically
adapt to different products produced in small batches
has been largely unrealized. One impediment to the
realization of this goal is the human effort required to
reprogram workeells for different tasks. The advent of
programming languages for manufacturing and automa-
tion [1] along with graphical simulation capabilities [2]
mediated some of these difficulties. Recently, the graph-
ical interaction associated with assembly planning has
been enhanced to provide virtual environments for plan-
ning automated assembly [3]. It is this progression of
interaction with the prospective product design to as-
sess and facilitate its manufacture that motivates the

This work was supported by the NEC Corporation and in part
by the National Science Foundation under grant CDR 8803017 to
the Engineering Research Center for Intelligent Manufacturing
Systems.

work described here.

Since the human designer has the most knowledge
concerning the assembly of a prospective product, the
focus of this work is to glean from him the necessary
knowledge for automating the assembly process. The
goal here is to make the task of providing the desired
assembly information as natural as possible for the hu-
man designer. Therefore, the interface selected is one
which provides a “virtual assembly environment” for the
designer. The user of this system can see their hands
in a three-dimensional relationship with the graphical
CAD/CAM components of the assembly and “assem-
ble” them together. Using this system, the user can
concentrate on the high-level tasks required to com-
plete the assembly and let the computer transform those
commands into the motion of the specific robots in the
workeell.

The principals of this system are illustrated by au-
tomatically assembling a VHS cassette tape (see Fig. 1)
using a SCARA-type robot. To assemble the tape lock-
ing mechanism, the lock release component should be
inserted only after the spring and both the forward
and reverse lock components are in place. Also, the
lock release component must be manipulated to provide
a horizontal force simultaneously against both locking
components, thus compressing the spring, while being
vertically inserted. Note that while this assembly pro-
cedure is trivial to determine for the mechanisms de-
signer, it is exceedingly difficult to determine strictly
from an automated analysis of the mechanism. The
three-dimensional path that the lock release component
must take is thus provided by the physical interaction
of the designer’s hands with the graphical CAD/CAM
models of the entire VHS cassette assembly in a virtual
environment. The sequential set of three-dimensional
paths for the components are then used as desired tra-
jectories for the the robot that is to perform the actual

0-7803-2129-4/94 $3.00 © 1994 IEEE

reverse lock

spring

Fig. 1. This figure shows a VHS cassette tape assembly which
is used as an illustrative example throughout this work.

assembly. The control of the robot’s joints is then auto-
matically calculated by the computer without any user
intervention.

The remainder of this paper is organized as follows.
Section II gives an overview of the entire experimen-
tal testbed. Section III gives a brief description of the
CAD/CAM database used to describe the components
of an assembly and their relationship to one another.
Section IV presents an account of the interaction that
occurs between the designer and the virtual assembly
environment during the specification of a products as-
sembly. A description of how these high-level assem-
bly commands are then converted into specific low-level
robot joint trajectories is provided in section V. Finally,
the conclusions of this work are presented in section VI.

II. OVERVIEW OF EXPERIMENTAL SETUP

The system described here was implemented and
evaluated on the experimental testbed shown in Fig. 2.
The testbed can be functionally divided into two main
components, namely, the virtual assembly environment
and the actual robotic workcell. The virtual assembly
environment provides the interface for the designer to
interact with and evaluate his prospective product de-
sign while the actual robotic assembly workcell provides
a means of validating the efficacy of the assembly oper-
ations generated by the system.

The virtual assembly environment is centered
around a SPARC ZX graphics workstation which
is responsible for generating stereo images of the
CAD/CAM models of the components of the assembly.
These stereo images are viewed by the user through a

pair of liquid crystal eyeglasses that are shuttered at
114 HZ in synchronization with the workstation. The
glasses are also outfitted with ultrasonic sensors in or-
der to track eye position and orientation and thus allow
the system to appropriately modify the images gener-
ated by the workstation in order to improve the three-
dimensional illusion. Interaction with the component
models is provided through an ultrasonic 6D mouse and
the electromagnetic Polhemus Fastrack system, both of
which provide a means of tracking the position and ori-
entation of the user’s hands. The Polhemus system pro-
vides a higher degree of resolution and accuracy, how-
ever, the 6D mouse was required in order to simplify
the specification of discrete event transitions, such as
grabbing or releasing an object, by using its buttons.

The real robotic assembly workcell is centered
around a five-axis Adept-I manipulator that performs
the actual assembly of the components into the finished
product. The Adept-I is outfitted with a vision system,
a tool changer, and a parallel jaw gripper. It is con-
trolled using the standard V+ robot control language
which is downloaded to the robot from the workstation
via a serial link. A PUMA 560 robot which is controlled
in the same manner is also available in the workcell for
evaluating coordinated robot motion in multiple coop-
erating robot workeells.

It is important to note that the virtual assembly
environment with which the designer interacts is com-
pletely independent of the actual physical robot work-
cell that is to perform the assembly. The high-level
assembly operations generated from the user’s interac-
tions with the component models are analogous to high-
level computer language statements that are then com-
piled to machine code for a particular computer. Like-
wise, the system’s software provides the “compilation”
of the high-level assembly operations into the specific
workeell platform regardless of the type or number of
robots present. This feature provides portability of the
high-level assembly commands and allows a compara-
tive evaluation of various different possible platforms
for the actual assembly.

11I. DEscripTiON OF CAD/CAM DATABASE

The majority of the information required by the
virtual assembly environment is available from the com-
ponent models stored in any typical CAD/CAM pack-
age. In particular, the virtual assembly environment
must have geometric information concerning the shape
and locations of every component in the assembly. Since
many assemblies contain multiple instances of the same
component, it is useful to impose a class hierarchy onto
their models. As a particular example, consider the
VHS video cassette shown in Fig. 1. An exploded view

1827

PUMA 560

Fig. 2. This figure shows a photograph of the experimen-
tal testbed for this system. The virtual assembly environment
consists of a SPARC ZX workstation for image generation, 3D
shuttered glasses with head tracking for stereo viewing, and a 6D
mouse and Polhemus Fastrack system for hand tracking and in-
teraction. The robot workcell consists of an Adept-I robot with
a vision system, tool changer, and parallel jaw gripper for per-
forming the actual assembly. The PUMA 560 robot is available
for testing cooperative assembly in multiple robot workcells.

of the CAD/CAM model for this cassette is given in
Fig. 3. Note that there are three identical screws, ie.
they have the same shape, but they are obviously lo-
cated in different positions in the final assembly. Thus
it is logical to specify a class called “screw” which con-
tains the information common to all screws and then
to specify instances of this class for information that
is specific to an individual screw, such as its position.
This class hierarchy of components is illustrated in the
bottom half of Fig. 3.

The information required by the virtual assembly
environment that is common to all classes is primarily
graphical information consisting of component geome-
try and visible material properties required to gener-
ate realistic images. The geometric information is all
specified relative to a unique class coordinate frame but
is possibly parameterized by attributes that are spe-
cific to individual instances of this class. The geometric
information is ultimately transformed into a boundary
representation for rendering the objects, however, it is
primarily stored in a more useful CSG format wherever
possible.

Individual instances of a class naturally inherit all
of the general characteristics of their parent class. How-
ever, specific information such as a component’s posi-
tion and orientation relative to the world coordinate
frame are also required. Note that initial positions and
orientations for different instances of the same class may

zﬁ lock release

reverse lock

forward lock

screw
l screw

classes

Coste) (ke v o T

VHS cassette tape

Fig. 3. The upper part of this figure shows an exploded view
of the CAD/CAM model for the VHS cassette tape. The lower
part shows a tree representing the class hierarchy for selected
components of the VHS cassette tape. (Not all parts are included
in order to simplify the diagram.)

or may not have identical values. For example, if all of
the components for the VHS cassette are provided to
the workeell in a parts kit, then the individual screws
will have different positions. However, if the screws are
introduced to the workcell from a parts feeder, then the
initial position and orientation of all instances will be
identical and could all be initialized as a property of
this class.

It is important to note that there is one other
very important piece of information available from the
CAD/CAM model of an assembly, i.e., the final relative
position and orientation of each component. This is im-
portant because it allows the system to correctly inter-
pret the user’s manipulation of the components within
the virtual assembly environment. In particular, con-
sider a user’s insertion of a pin into a shaft. If the sys-
tem’s interpretation of the assembly operation were to
rely strictly on user input, then the user would have to
insert the pin to precisely the correct depth at precisely
the correct orientation. However, by knowing the ul-
timate destination of the user’s intended insertion, the
actual trajectory provided by the user an be much less
precise because it can be automatically post-processed
by the system as discussed in section V. This provides
the user with a natural manipulation interface without
the fatigue associated with specifying extremely precise
motions.

1828

IV. VIRTUAL OBJECT MANIPULATION

To “assemble” a prospective product, the user
loads the CAD/CAM model of the design into the sys-
tem and then manipulates their graphical models with
his hands. Grasping of the components is performed by
a virtual parallel-jaw gripper whose motion is controlled
by the sensed motion of the user’s right hand. The user
may also directly grasp objects and manipulate them
with his left hand. The process of mating two com-
ponents or sub-assemblies into a single sub-assembly is

"described by the following eight step process where the

objects denoted A and B are grasped with the right and
left hand, respectively.

1. Approach component A

In this step the user identifies for the system the
sequential order in which components are to be as-
sembled by selecting the next component to add
to a current sub-assembly. The actual trajectory
that the user follows to arrive near component A
is not important, only the position and orienta-
tion of the gripper at the approach point is stored
by the system. This point marks the transition
from gross-motion planning, which is automati-
cally done by the system, and fine-motion plan-
ning for which user input is utilized.

2. Grasp component A
Since a component’s shape may be too compli-
cated to automatically determine a suitable grasp
configuration, i.e. one that is stable and collision
free, the system extracts this information from the
human designer.

3. Designate departure point

Here the user lifts the grasped component A to
a point where it is no longer necessary to cap-
ture the user’s motion of the object for fine-motion
planning. The actual path of component A to its
position specified in step 5 will be later automat-
ically determined by the global motion planner
described in the following section.

4. Grasp component B (optional)

The left hand is used to grasp and manipulate
component B. This is simply to allow the user to
specify for the system the preferred orientation of
part B for the assembly process. Ideally, part B
would never need to be manipulated in the actual
workeell but would be placed in the preferred ori-
entation when originally introduced to the work-
cell.

5. Specify approach point (A to B)
This step is similar to step 2 in that the user brings

component A to a point near component B where
the actual user movement will start being stored
in order to assist in fine-motion planning.

6. Assemble component A with B

The user manipulates component A in close prox-
imity or contact with B to arrive at the final mated
configuration. The exact trajectory of the user’s
hands are stored and post-processed to specify the
fine motion of the robot which ultimately per-
forms the assembly. This step concludes with the
user releasing component A.

7. Designate departure point
The system continues to store the trajectory of the
user’s hands as they extract the virtual parallel-
jaw gripper from close proximity with the sub-
assembly (A+B).

In the above process, the approach and departure points
are stored as 4 x 4 homogeneous transformations with
respect to the appropriate local component coordinate
frame with the fine-motion trajectories additionally in-
cluding velocity information.

The above description defines two types of motion,
i.e., fine motion which requires delicate movementsin a
relative localized area (steps 2,3,6, and 7), and gross mo-
tion which is characterized by rather large movements
across the entire virtual workspace (steps 1, 4, and 5).
To deal with the conflicting requirements of these two
types of motion, the system provides two modes of in-
teraction with the objects, namely position or velocity
control.

The position control method is suitable for speci-
fying the fine motion associated with actual assembly
operations because it is intuitive for the user. The com-
ponent that the user is grasping will move in the same
manner as his hand moves thus giving the impression of
really grasping the object. The drawback of this intu-
itive control method is that it is limited by the range of
the user’s physical reach. While increasing the scale fac-
tor between the real and the virtual world can alleviate
this problem to some extent, doing so reduces the intu-
itiveness of the interface as well as the resolution of the
motion. To address these issues, the system switches
to velocity control whenever gross motion across large
regions of the virtual workspace are desired. Here a
constant displacement of the user’s hand will create a
constant velocity of the virtual gripper. It is important
to note that the views generated of the virtual environ-
ment must also be automatically adapted to deal with
these two different modes. In particular, for fine motion
under position control, the view angle is automatically
reduced in order to provide a close up view of the assem-

1829

bly whereas it is automatically increased to ultimately
include the entire workspace for gross motion.

V. RoBoT TRAJECTORY GENERATION

After the user has completed manipulating all of
the components into the final desired assembly, the sys-
tem is left with a sequential profile of alternating fine
and gross motion data. The system must then processes
this data into a form that can be used to control the
robots that are to perform the actual assembly. While
the fine and gross motion data are processed differently,
the output in each case is a set of trajectories in joint
space for each robot in the workcell that can be sent
directly to the robot controller.

A. Fine Motion

The steps required to process the fine motion data
acquired from the human user’s hands into robot joint
angle trajectories will be illustrated through a specific
example. Consider the insertion of the lock release com-
ponent shown in the close-up of Fig. 1. This lock re-
lease component is shown at its approach point in Fig. 4
which is the start of a fine motion phase. The actual
motion data for the assembly operation acquired from
the user is shown in part (a) of the figure. Note that the
general characteristics required for a successful mating
of the various components is clearly visible in the cap-
tured trajectory. In particular, the motion starts with a
lowering of the lock release component in the y direction
from the approach point, followed by a motion in z that
puts it in contact with the forward and release lock com-
ponents thus compressing the spring (see Fig. 1), before
it is completely lowered into its final position. in addi-
tion to these desired characteristics, however, there are
several undesirable artifacts present as well, primarily
due to the jerky and inconsistent motion of the human.

To extract only those characteristics required for a
successful assembly, the raw motion data is first filtered
to remove the high frequency oscillations. The result-
ing trajectory for this example is shown in Fig. 4(b).
The data is then further compressed by capturing only
key features in the trajectory. These key features are
identified by examining the filtered trajectory and de-
termining locations where the rate of change in curva-
ture surpasses a threshold. The resulting key points are
illustrated in Fig. 4(c).

The required trajectory to perform this phase of the
assembly is now available as a discrete set of n homo-
geneous transformations for the gripper that is to carry
the component, denoted z(ko) through (k). From this
representation, it is easy to calculate individual joint set
points for any robot’s controller. In particular, given a

(2)

(b)

0545 023

©

@

Fig. 4. Post processing performed on the fine motion trajectory
obtained from a user’s insertion of the lock release component
(see Fig. 1). The raw data obtained from the user’s hand motion
is shown in (a). Filtering of this data results in the smoothed tra-
jectory (b). Compression by identifying key locations along the
trajectory is illustrated in {c). Appropriate interpolation then
satisfies the physical constraints of the robot performing the as-
sembly (d).

1830

specific robot with a particular limit on its maximum
tool velocity, the key points of the trajectory are con-
verted into a desired hand velocity £(¢). The robot joint
velocities @ required to achieve this trajectory are then
calculated by solving

i=Jé

where J is the manipulator Jacobian for this particular
robot. Integrating 6 and sampling at the control cycle
time of the robot being considered provides the joint
positions 6(t) that are used by most commercial robot
controllers. Additional details of this inverse kinematics
process are provided in [4].

B. Gross Motion

Each fine motion trajectory that is performed is
preceded by a gross motion that positions the robot’s
gripper at the appropriate approach point (see steps 1
and 5 in section IV). The data obtained from the user
of the virtual assembly environment for a gross motion
phase consists only of a starting homogeneous trans-
formation for the gripper S;, and a goal homogeneous
transformation G; corresponding to an approach point.
It is important to appreciate why these gross motion
trajectories are not directly obtained from the motion of
the human user as he moves the virtual gripper through-
out the virtual assembly environment. The first reason
is that the virtual assembly environment is intentionally
made independent of the actual robot workcell that is to
perform the assembly. Thus the user has no knowledge
of any ancillary equipment that may be located within
the real workcell with which collisions must be avoided.
The advantages of this are that the user can intuitively
assemble the product and then later evaluate different
realizations of possible workcells without repeating the
virtual assembly process. Second, it is very difficult for
a human to manually determine a collision-free trajec-
tory for an articulated robot.

To deal with the issue of generating a collision-free
robot joint angle trajectory 6(t) from simply a start and
goal configuration, a global path planning algorithm
based on the approach presented in [5] is used. This
algorithm takes all of the physical objects present in the
workcell of the real robot and transforms them into the
joint space coordinates of the robot, also commonly re-
ferred to as configuration space. The algorithm then an-
alyzes this configuration space to determine which por-
tions of it are connected, this physically represents all
possible collision-free paths within the workcell. Thus
when the algorithm receives a start and goal configura-
tion for a gross motion trajectory, it can simply map
these configurations into their representations in the

robot’s configuration space, validate that these two con-
figurations are actually connected, and then generate a
collision-free joint angle trajectory #(¢) that can be used
by the real robots joint controller.

C. Preview and Robot Control

After processing all of the fine and gross motion
segments, successive joint angle trajectories are concate-
nated into a single continuous collision-free joint motion
profile for each robot that is to cooperate in the assem-
bly process. These robot motion profiles can now be
previewed in a graphical simulation of a virtual work-
cell [4] and potential changes to the workcell such as
adding or changing robots can be quickly evaluated by
only rerunning the trajectory generation software. Once
the designer is satisfied with a specific workcell the sys-
tem automatically translates the desired robot motion
into the robot programming language to perform the
assembly.

VI. CONCLUSION

This article has described a prototype system
which has been implemented to assist design and manu-
facturing engineers in automating the assembly process.
While the interface to the virtual assembly environment
is intuitive, the initial user performance did exhibit no-
ticeable hesitance during the many phases of the assem-
bly process. This is probably attributable to the novelty
of the interface and it is expected that user proficiency
will vastly increase with wide-spread utilization.

REFERENCES

[1] W. A. Gruver, B. L Soroka, J. J. Craig, and T. L.
Turner, “Industrial robot programming languages:
A comparative evaluation,” IEEE Trans. Syst.,
Man, Cybern., SMC-14(4):1-7, July/Aug. 1984.

[2] M. Hornick and B. Ravani, “Computer-aided off-line
planning and programming of robot motion,” Int. J.
Robot. Res., 4(4):18-31, Winter 1986.

[3] T. Takahashi and H. Ogata, “Robotic assembly op-
eration based on task-level teaching in virtual real-
ity,” Proc. 1992 IEEE Int. Conf. Robot. Automat.,
pp. 1083-1088, (Nice, France), May 10-15 1992.

[4] A. A. Maciejewski and C. A. Klein, “SAM—
Animation software for simulating articulated mo-
tion,” Computer Graphics, 9(4):383-391, 1985.

[5] A.A.Maciejewskiand J. J. Fox, “Path planning and

the topology of configuration space,” IEEE Trans.
Robot. Automat., 9(4):444-456, Aug. 1993.

1831

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

