
DISSERTATION 

 

IMPACTS OF COMPOUND PRECIPITATION EXTREMES ON BELOWGROUND DYNAMICS IN A 

MESIC GRASSLAND 

 

Submitted by 

Ingrid Jane Slette 

Graduate Degree Program in Ecology 

 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado  

Fall 2021 

 

 

Doctoral committee: 
 

Advisor: Alan Knapp 
  
 Melinda Smith 
 Colleen Iversen 
 Richard Conant 
 
 
 
 
 



 

 

 

 

 

 

 

 

Copyright by Ingrid Jane Slette 2021 

All Rights Reserved 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii 

ABSTRACT 
 
 
 

IMPACTS OF COMPOUND PRECIPITATION EXTREMES ON BELOWGROUND DYNAMICS IN A 

MESIC GRASSLAND 

 
 

Climate change is altering precipitation regimes globally and is expected to cause more 

frequent and extreme droughts as well as intensification of precipitation patterns (e.g., fewer 

and larger precipitation events) in many regions around the world. Drought has long been a 

phenomenon of interest to ecologists and has been widely studied as a key driver of ecosystem 

dynamics. To study drought, ecologists must define or at least operationalize what constitutes 

drought conditions. How this is accomplished in practice is unclear, so I begin my dissertation 

with a literature review that assessed how ecologists describe and study drought. I found that 

few publications explicitly define drought and that many (~30%) provide little quantification of 

studied droughts at all, simply equating drought with generally dry conditions. This lack of 

description hampers synthesis and our ability to draw broad ecological conclusions about 

drought impacts. I suggest that future publications provide detailed descriptions of drought 

conditions and contextualization within site-specific long-term climatic history, to facilitate 

more rigorous comparisons among studies. 

Our understanding of the ecological impacts of drought is further limited by the fact 

that most previous research has focused on the impacts of single drought events, and it is 

increasingly likely that droughts will be compounded with other precipitation changes (e.g., 

intensified precipitation patterns or previous droughts). To study how the impacts of drought 
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are altered when compounded with other precipitation changes, I imposed a 2-yr extreme 

drought (growing season precipitation reduced 66%) in two different long-term precipitation 

experiments at the Konza Prairie Biological Station- one which had intensified precipitation 

patterns by imposing a treatment of fewer and larger precipitation events with longer 

intervening dry periods for 16 years (chapter 2), and one which had imposed a previous 

extreme drought (chapter 3). I found that though precipitation pattern intensification reduced 

aboveground net primary production (ANPP), it did not alter the response of ANPP to a 

subsequently imposed drought. In contrast, previous exposure to intensified precipitation 

patterns reduced belowground net primary production (BNPP) and muted soil CO2 flux 

responses to rainfall events during drought. In the case of multiple droughts, I found that 

repeated drought decreased root mass production more than twice as much as one drought (-

63% vs. -27%, respectively, relative to controls). Thus, in both experiments, previous exposure 

to precipitation change decreased the resistance of BNPP to a subsequent drought. These 

results suggest that drought impacts might be underestimated if precipitation history and/or 

belowground impacts are not fully considered. Overall, my dissertation results indicate that 

understanding and prediction of ecological drought effects can be improved with more detailed 

and consistent descriptions of drought conditions and greater consideration of past 

precipitation changes and belowground dynamics. 
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CHAPTER 1: INTRODUCTION 
 
 
 

 Globally, more frequent and extreme droughts are expected as climate change alters 

precipitation regimes, with evidence for this already emerging (IPCC 2013; USGCRP 2017; Dai 

2013). Drought has long been a phenomenon of interest to ecologists and has been studied 

extensively and shown to impact myriad ecosystem functions (Slette et al. 2019; Dai 2013; Eziz 

et al. 2017; Gao et al. 2019; Lei et al. 2016; Wu et al. 2011).  

Given that drought will continue to be widely studied as a driver of ecosystem dynamics, 

defining and characterizing drought are important for advancing our understanding of its 

ecological impacts. Climatologists have struggled to define drought and generally agree that a 

widely applicable definition has proven elusive (Redmond, 2002), with some even concluding 

that “... we cannot reasonably expect the existence of any workable generalized objective 

definition of drought” (Lloyd-Hughes, 2014). Even a cursory review of the ecological drought 

literature indicates that a universal definition of drought has eluded ecologists as well. 

Inconsistency in how we define or characterize drought can make it difficult to compare studies 

and ultimately hampers synthesis (Fraser et al., 2013). 

To better understand how ecologists define drought, I reviewed 564 papers published in 

the last 50 years that evaluated ecological impacts of drought. I assessed how droughts were 

defined, described, or characterized in these papers and whether definitions varied by research 

approach or ecosystem type. My goal was to suggest ways in which future studies can better 

describe and quantify drought conditions, to facilitate synthesis and strengthen inferences 

drawn from the collective ecological drought literature. This study is presented in Chapter 2. 
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Much of what we know about the ecological impacts of drought is based on studies of 

single drought events, but it is increasingly likely that droughts will be compounded with other 

precipitation changes. Concurrent with increasing drought frequency and severity, climate 

change is also intensifying precipitation patterns by reducing the number and increasing the 

size of individual rainfall events (Fischer and Knutti 2016; Fowler et al.2021; Huntington 2006; 

IPCC 2013; USGCRP 2017). Thus, it is likely that future droughts will occur against a backdrop of 

intensified precipitation patterns. A shift towards fewer but larger precipitation events and 

longer intervening dry periods can affect numerous ecosystem processes (Fay et al. 2008; 

Knapp et al. 2008; Zeppel et al. 2014), but it remains unknown how altered precipitation 

patterns might affect ecosystem responses to drought, because most research to date has 

focused on these different aspects of precipitation change individually. In addition, as the time 

between droughts decreases with climate change, it will be important to understand how 

ecosystems respond to not only single, but also recurrent drought. Climate anomalies can have 

persistent effects on ecosystems and leave behind a legacy that alters the impacts of 

subsequent of climate events, so ecosystem responses to compound weather events are likely 

not predictable from studies that focus on individual events (Dodd and others 2021; 

Seneviratne and others 2012; Zscheischler and others 2018; Zscheischler and others 2020). 

Several previous studies have found amplifying impacts of compound climate extremes, but 

neutral and mitigating effects have also been reported (Anderegg and others 2020; Backhaus 

and others 2014; Dreesen and others 2014; Hoover and others 2015, 2021; Hughes and others 

2019). Thus, the potential consequences of compounded precipitation changes, ranging from 

increased acclimation to decreased resistance, remain unresolved. 
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I performed my dissertation research in a grassland because grasslands are important 

ecosystems in which to understand the effects of precipitation changes. Grass-dominated 

systems are globally extensive (Dixon and others 2014; White and others 2000), they play a key 

role in the global carbon cycle (Pendall and others 2018; Scurlock and Hall 1998), and they are 

sensitive to changes in precipitation amount and pattern (Felton et al. 2020; Gherardi and Sala 

2015; Heisler-White et al. 2008, 2009; Hoover et al. 2014; Huxman et al. 2004; Knapp et al. 

2002, 2008, 2015, 2020; Li et al. 2019; Lu et al. 2021; Thomey et al. 2011).  

Belowground responses such as belowground net primary production (BNPP) and soil 

CO2 flux are of particular interest in grasslands because these systems allocate a substantial 

portion of total net primary production to roots and store most of their carbon belowground 

(Hui and Jackson 2006; Risser et al. 1981; Silver et al. 2010; Smith et al. 2008; Soussana and 

others 2004). Roots are the primary means by which plants acquire water and nutrients, 

regardless of drought conditions, and are important in ecosystem carbon and nutrient cycling. 

Root production and soil CO2 flux are key factors determining the size of the soil carbon pool, 

which is at least twice as large as the atmospheric carbon pool and plays a key role in global 

carbon cycling and climate regulation (Köchy et al. 2015; Scharlemann et al. 2014). 

Understanding grassland root responses to precipitation change will thus help predict both 

ecosystem- and global-scale changes to carbon dynamics under an increasingly variable climate. 

In chapter 3, I present a study in which I tested how long-term intensification of 

precipitation patterns affected ecosystem responses to a subsequent extreme drought, as well 

as recovery after drought. I imposed an extreme 2-yr drought (66% reduction in growing season 

rainfall) in grassland plots with and without previous long-term exposure to an intensified 
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precipitation regime (fewer and larger rainfall events with longer intervening dry periods for 16 

years) and assessed key carbon cycling processes (e.g., ANPP, BNPP and soil CO2 flux) during 

and after drought. In chapter 4, I report the results of a study focused on assessing root 

responses to single vs. recurrent extreme droughts, and recovery after drought. I imposed an 

extreme drought in plots both with and without previous drought exposure and assessed root 

production and traits during and after drought. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

REFERENCES 
 
 
 

Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J. 2020. Divergent forest sensitivity 
to repeated extreme droughts. Nature Climate Change 10: 1091–1095. 
https://doi.org/10.1038/s41558-020-00919-1 

 
 
Backhaus S, Kreyling J, Grant K, Beierkuhnlein C, Walter J, Jentsch A. 2014. Recurrent Mild 

Drought Events Increase Resistance Toward Extreme Drought Stress. Ecosystems 17: 
1068–1081. https://doi.org/10.1007/s10021-014-9781-5 

 
Dai A. 2013. Increasing drought under global warming in observations and models. Nature 

Climate Change 3: 52–58. https://doi.org/10.1038/nclimate1633 
 
Dixon AP, Faber-Langendoen D, Josse C, Morrison J, Loucks CJ. 2014. Distribution mapping of 

world grassland types. Journal of Biogeography 41(11):2003-2019. 
https://doi.org/10.1111/jbi.12381 

 
Dodd RJ, Chadwick DR, Harris IM, Hines A, Hollis D, Economou T, Gwynn-Jones D, Scullion J, 

Robinson DA, Jones DL. 2021. Spatial co-localisation of extreme weather events: a clear 
and present danger. Ecology Letters 24: 60-72. https://doi.org/10.1111/ele.13620 

 
Dreesen FE, De Boeck HJ, Janssens IA, Nijs I. 2014. Do successive climate extremes weaken the 

resistance of plant communities? An experimental study using plant assemblages. 
Biogeosciences 11: 109–121. https://doi.org/10.5194/bg-11-109-2014 

 
Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J. 2017. Drought effect on plant biomass allocation: A 

meta-analysis. Ecology and Evolution 7: 11002-11010. 
https://doi.org/10.1002/ece3.3630 

 
Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW. 2008. Changes in grassland ecosystem 

function due to extreme rainfall events: implications for responses to climate change. 
Global Change Biology 14: 1600-1608. https://doi.org/10.1111/j.1365-
2486.2008.01605.x 

 
Felton AJ, Slette IJ, Smith MD, Knapp AK. 2020. Precipitation amount and event size interact to 

reduce ecosystem functioning during dry years in a mesic grassland. Global Change 

Biology 26: 658– 668. https://doi.org/10.1111/gcb.14789 
 
Fischer EM, Knutti R. 2016. Observed heavy precipitation increase confirms theory and early 

models. Nature Climate Change 6: 986–991. https://doi.org/10.1038/NCLIMATE3110 
 



 6 

Fowler HJ, Lenderink G, Prein AF, Westra S, Allan RP, Ban N, Barbero R, Berg, P, Blenkinsop S, 
Do HX, Guerreiro S, Haerter JO, Kendon EJ, Lewis E, Schaer C, Sharma A, Villarini G, 
Wasko C, Zhang X. 2021. Anthropogenic intensification of short-duration rainfall 
extremes. Nature Reviews Earth & Environment 2: 107–122. 
https://doi.org/10.1038/s43017-020-00128-6 

 
Fraser LH, Henry HA, Carlyle CN, White SR, Beierkuhnlein C, Cahill JC, Casper BB, Cleland E, 

Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, Smith MD, Sternberg M, 
Turkington R. 2013. Coordinated distributed experiments: an emerging tool for testing 
global hypotheses in ecology and environmental science. Frontiers in Ecology and the 

Environment 11(3): 147–155. https://doi.org/10.1890/110279 
 
Gao J, Zhang L, Tang Z, Wu S. 2019. A synthesis of ecosystem aboveground productivity and its 

process variables under simulated drought stress. Journal of Ecology 107: 2519-2531. 
https://doi.org/10.1111/1365-2745.13218 

 
Gherardi L, Sala O. 2015. Enhanced precipitation variability decreases grass- and increases 

shrub- productivity. Proceedings of the National Academy of Sciences 112: 12735-12740. 
https://doi.org/10.1073/pnas.1506433112 

 
Heisler-White J, Knapp AK, Kelly E. 2008. Increasing precipitation event size increases 

aboveground net primary productivity in a semi-arid grassland. Oecologia 158: 129-140. 
https://doi.org/10.1007/s00442-008-1116-9 

 
Heisler-White J, Blair J, Kelly E, Harmoney K, Knapp AK. 2009. Contingent productivity responses 

to more extreme rainfall regimes across a grassland biome. Global Change Biology 15: 
2894-2904. https://doi.org/10.1111/j.1365-2486.2009.01961.x 

 
Hoover DL, Knapp AK, Smith MD. 2014. Resistance and resilience of a grassland ecosystem to 

climate extremes. Ecology 95: 2646-2656. https://doi.org/10.1890/13-2186.1 
 
Hoover DL, Duniway MC, Belnap J. 2015. Pulse-drought atop press-drought: unexpected plant 

responses and implications for dryland ecosystems. Oecologia 179: 1211–1221. 
https://doi.org/10.1007/s00442-015-3414-3 

 
Hoover DL, Pfennigwerth AA, Duniway MC. 2021. Drought resistance and resilience: The role of 

soil moisture–plant interactions and legacies in a dryland ecosystem. Journal of Ecology 
109: 3280–3294. https://doi.org/10.1111/1365-2745.13681 

 
Hughes TP, Kerry JT, Connolly SR, Baird AH, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, 

Jacobson M, Liu G, Pratchett MS, Skirving W, Torda G. 2019. Ecological memory modifies 
the cumulative impact of recurrent climate extremes. Nature Climate Change 9: 40–43 
https://doi.org/10.1038/s41558-018-0351-2 

 



 7 

Hui D, Jackson RB. 2006. Geographical and interannual variability in biomass partitioning in 
grassland ecosystems: a synthesis of field data. New Phytologist 169: 85–93. 
https://doi.org/10.1111/j.1469-8137.2005.01569.x 

 
Huntington TG. 2006.Evidence for intensification of the global water cycle: review and 

synthesis. Journal of Hydrology 319: 83-95. 
https://doi.org/10.1016/j.jhydrol.2005.07.003 

 
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate change (Eds. 
Stocker TF, Qing D, Plattner G-K, et al.), Cambridge University Press, Cambridge, UK.  

 
Knapp AK, Fay PA, Blair J, Collins S, Smith MD, Carlisle J, Harper D, Danner B, Lett M, McCarron 

J. 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic 
grassland. Science 298: 2202-2205. https://doi.org/10.1126/science.1076347 

 
Knapp AK, Beier C, Briske D, Classen A, Luo Y, Reichstein M, Smith MD, Smith S, Bell J, Fay PA, 

Heisler J, Leavitt S, Sherry R, Smith B, Weng E. 2008. Consequences of more extreme 
precipitation regimes for terrestrial ecosystems. BioScience 58: 811-821. 
https://doi.org/10.1641/B580908 

 
Knapp AK, Carroll CJW, Denton E, La Pierre K, Collins S, Smith MD. 2015. Differential sensitivity 

to regional-scale drought in six central US grasslands. Oecologia 177(4): 949-957. 
https://doi.org/10.1007/s00442-015-3233-6 

 
Knapp AK, Chen A, Griffin-Nolan RJ, Baur LE, Carroll CJW, Gray JE, Hoffman AM, Li X, Post AK, 

Slette IJ, Collins SL, Luo Y, Smith MD. 2020. Resolving the Dust Bowl paradox of 
grassland responses to extreme drought. Proceedings of the National Academy of 

Sciences 117: 22249-22255. www.pnas.org/cgi/doi/10.1073/pnas.1922030117 
 
Köchy M, Hiederer R, Freibauer A. 2015. Global distribution of soil organic carbon—part 1: 

masses and frequency distributions of SOC stocks for the tropics, permafrost regions, 
wetlands, and the world. Soil 1: 351–365. https://doi.org/10.5194/soil-1-351-2015 

 
Lei T, Pang Z, Wang X, Li L, Fu J, Kan G, Zhang X, Ding L, Li J, Huang S, Shao C. 2016. Drought and 

carbon cycling of grassland ecosystems under global change: A review. Water 8: 460. 
https://doi.org/10.3390/w8100460 

 
Li X, Li Y, Chen A, Gao M, Slette IJ, Piao S. 2019. The impact of the 2009/2010 drought on 

vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and 

Forest Meteorology 269: 239-248. https://doi.org/10.1016/j.agrformet.2019.01.036 
 
Lloyd-Hughes B. 2014. The impracticality of a universal drought definition. Theoretical and 

Applied Climatology 117: 607–611. https://doi.org/10.1007/s00704-013-1025-7 



 8 

 
Lu Z, Peng S, Slette IJ, Cheng G, Li X, Chen A. 2021. Soil moisture seasonality alters vegetation 

response to drought in the Mongolian Plateau. Environmental Research Letters 16: 
014050. https://doi.org/10.1088/1748-9326/abd1a2 

 
Pendall E, Bachelet D, Conant RT, El Masri B, Flanagan LB, Knapp AK, Liu J, Liu S, Schaeer, SM 

(2018) Chapter 10: Grasslands. In: Cavallaro N, Shrestha G, Birdsey R, Mayes MA, Najjar 
RG, Reed SC, Romero-Lankao P, Zhu Z (eds.) Second State of the Carbon Cycle Report 
(SOCCR2): A Sustained Assessment Report (pp. 399-427). U.S. Global Change Research 
Program, Washington, DC, USA. https://doi.org/10.7930/SOCCR2.2018.Ch10 

 
Redmond K. 2002. The depiction of drought: A commentary. Bulletin of the American 

Meteorological Society 83(8): 1143-1148. https://doi.org/10.1175/1520-0477-83.8.1143 
 
Risser PG, Birney EC, Blocker HD, May SW, Parton WJ, Wiens JA, editors. 1981. The true prairie 

ecosystem (US/IBP synthesis series, vol. 16). Hutchinson Ross, Stroudsburg. 
 
Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. 2014. Global soil carbon: understanding 

and managing the largest terrestrial carbon pool. Carbon Management 5: 81–91. 
https://doi.org/10.4155/cmt.13.77 

 
Scurlock JM, Hall DO. 1998. The global carbon sink: a grassland perspective. Global Change 

Biology 4: 229–233. https://doi.org/10.1046/j.1365-2486.1998.00151.x 
 
Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, 

McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X. 2012. Changes in 
climate extremes and their impacts on the natural physical environment. Field CB, 
Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, 
Allen SK, Tignor M, Midgley PM, editors. Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I 
and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University 
Press, Cambridge, UK, and New York, NY, USA. p109-230. 

 
Silver WL, Ryals R, Eviner V. 2010. Soil carbon pools in California’s annual grassland ecosystems. 

Rangeland Ecology and Management 63: 128–136. https://doi.org/10.2111/Rem-D-09- 
00106.1 

 
Smith P, Fang CM, Dawson JJC, Moncrie JB. 2008. Impact of global warming on soil organic 

carbon. Advances in Agronomy 97: 1–43. https://doi.org/10.1016/S0065-
2113(07)00001-6 

 
Soussana J-F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D. 2004. 

Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and 

Management 20: 219–230. https://doi.org/10.1111/j.1475-2743.2004.tb00362.x 



 9 

 
Thomey M, Collins S, Vargas R, Johnson J, Brown R, Natvig D, Friggens M. 2011. Effect of 

precipitation variability on net primary production and soil respiration in a Chihuahuan 
Desert grassland. Global Change Biology 17: 1505-1515. https://doi.org/10.1111/j.1365-
2486.2010.02363.x 

 
USGCRP. 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I. 

Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, editors. U.S. 
Global Change Research Program, Washington, DC, USA. 
https://doi.org/10.7930/J0J964J6 

 
White R, Murray S, Rohweder M. 2000. Pilot analysis of global ecosystems: Grassland 

ecosystems. World Resources Institute, Washington, DC, USA. 
 
Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate B. 2011. Responses of terrestrial ecosystems to 

temperature and precipitation change: a meta-analysis of experimental manipulation. 
Global Change Biology 17: 927–942. https://doi.org/10.1111/j.1365-2486.2010.02302.x 

 
Zeppel MJB, Wilks JV, Lewis JD. 2014. Impacts of extreme precipitation and seasonal changes in 

precipitation on plants. Biogeosciences 11: 3083-3093. https://doi.org/10.5194/bg-11-
3083-2014 

 
Zscheischler J, Westra S, Van Den Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, 

Bresch DN, Leonard M, Wahl T, Zhang X. 2018. Future climate risk from compound 
events. Nature Climate Change 8: 469-477. https://doi.org/10.1038/s41558-018-0156-3 

 
Zscheischler J, Martius O, Westra S, Bevacqua E, Raymond C, Horton RM, van den Hurk B, 

AghaKouchak A, Jézéquel A, Mahecha MD, Maraun D, Ramos AM, Ridder NN, Thiery W, 
Vignotto E. 2020. A typology of compound weather and climate events. Nature reviews 

earth & environment 1: 333-347. https://doi.org/10.1038/s43017-020-0060-z 
 
 
 

 

 

 

 

 

 



 10 

CHAPTER 2: HOW ECOLOGISTS DEFINE DROUGHT, AND WHY WE SHOULD DO BETTER1 
 
 
 
Overview 

 Drought, widely studied as an important driver of ecosystem dynamics, is predicted to 

increase in frequency and severity globally. To study drought, ecologists must define or at least 

operationalize what constitutes a drought. How this is accomplished in practice is unclear, 

particularly given that climatologists have long struggled to agree on definitions of drought, 

beyond general variants of “an abnormal deficiency of water”. We conducted a literature 

review of ecological drought studies (564 papers) to assess how ecologists describe and study 

drought. We found that ecologists characterize drought in a wide variety of ways (reduced 

precipitation, low soil moisture, reduced streamflow, etc.), but relatively few publications 

(~32%) explicitly define what are, and are not, drought conditions. More troubling, a surprising 

number of papers (~30%) simply equated “dry conditions” with “drought” and provided little 

characterization of the drought conditions studied. For a subset of these, we calculated 

Standardized Precipitation Evapotranspiration Index values for the reported drought periods. 

We found that while almost 90% of the studies were conducted under conditions quantifiable 

as slightly to extremely drier than average, ~50% were within the range of normal climatic 

variability. We conclude that the current state of the ecological drought literature hinders 

synthesis and our ability to draw broad ecological inferences because drought is often declared 

 
1Slette IJ, Post AK, Awad M, Even T, Punzalan A, Williams S, Smith MD, Knapp AK. 2019. How ecologists define 

drought, and why we should do better. Global Change Biology 25: 3193–3200. 

https://doi.org/10.1111/gcb.14747 
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but is not explicitly defined or well characterized. We suggest that future drought publications 

provide at least one of the following: 1) the climatic context of the drought period based on 

long-term records, 2) standardized climatic index values, 3) published metrics from drought 

monitoring organizations, 4) a quantitative definition of what the authors consider to be 

drought conditions for their system. With more detailed and consistent quantification of 

drought conditions, comparisons among studies can be more rigorous, increasing our 

understanding of the ecological effects of drought.  

Introduction  

 Drought has long been a phenomenon of interest to ecologists, with research articles 

that include “drought” in their title dating back at least to the 1920s (Gorham and Kelly 2018). 

For many biomes, understanding the dynamics of ecosystem structure and function requires 

knowledge of their response to periodic droughts (Smith 2011; Vicente-Serrano et al. 2013). 

Moreover, extreme drought has been associated with regional-scale forest mortality and global 

carbon cycle anomalies (Breshears et al. 2005; Reichstein et al. 2013). While research detailing 

the ecological effects of drought has a long history, interest has increased in the last few 

decades, prompted by climate model forecasts for more frequent, extreme, and spatially 

extensive droughts (IPCC 2013). Indeed, there is evidence that drought impacts on terrestrial 

ecosystems have increased globally over the last century (Du et al. 2018; Schwalm et al. 2017).  

 Given that drought has been and will continue to be a widely studied driver of 

ecosystem dynamics, defining and characterizing this phenomenon are essential for advancing 

our understanding of its ecological impacts. Climatologists have grappled with defining drought 

for decades (both conceptually and operationally, Redmond 2002; Wilhite and Glantz 1985) and 
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have identified many types of drought (meteorological, agricultural, hydrological, 

socioeconomic, etc.). Numerous standardized indices have also been proposed over the years, 

to improve objectivity and consistency in quantifying drought conditions (Zargar et al. 2011), 

and tools have been developed to help provide historical context for drought (e.g., Lemoine et 

al. 2016). Though the World Meteorological Organization (1992) defines drought as a “period of 

abnormally dry weather sufficiently prolonged for the lack of precipitation to cause a serious 

hydrological imbalance”, climatologists generally agree that a widely applicable definition of 

drought has proven elusive (Redmond 2002), with some concluding that “...we cannot 

reasonably expect the existence of any workable generalized objective definition of drought.” 

(Lloyd-Hughes 2014). If climatologists are unable to agree upon a definition for a climatic 

phenomenon that is widely recognized as an important driver of ecosystem function and 

dynamics, how do ecologists define and characterize drought? Ecological drought definitions 

have recently been proposed (e.g., “an episodic deficit in water availability that drives 

ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and triggers 

feedbacks in natural and/or human systems”, Crausbay et al. 2017), as have drought 

vulnerability frameworks (Kovach et al. 2019). However, even a cursory review of the literature 

indicates there is little consistency in how ecologists define drought, conceptually or 

operationally. Such inconsistency can make it difficult to compare studies and ultimately 

hampers synthesis (Fraser et al. 2013). 

 To better understand how ecologists define and characterize drought, we assessed the 

current state (last 50 years) of the ecological drought literature by reviewing 564 papers that 

evaluated the ecological consequences of drought. We specifically addressed the following 
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questions: First, how do ecologists define drought in their research papers? Or, if ecologists do 

not include an explicit definition, how do they describe or characterize the droughts they 

study? Second, does the approach ecologists use to study drought (e.g., experiments vs. 

observations of natural droughts) or the ecosystem type they study (e.g., forests, grasslands, 

streams, etc.) influence how they define or describe drought? Our goal is not to argue that all 

ecologists adopt a particular drought definition, but rather to suggest ways in which future 

studies can better describe and quantify drought conditions in order to facilitate synthesis and 

strengthen inferences drawn from the collective ecological drought literature. 

Methods   

We conducted a literature review (Web of Science, Thomson Reuters, Manhattan, NY, 

USA) of peer-reviewed publications that studied ecological responses to drought. We restricted 

our search to the last 50 years (1969-2018), to limit this assessment to the time period when 

standardized indices for quantifying drought conditions have been available (e.g., Palmer 

Drought Severity Index, PDSI, Palmer 1965). Searching the topics “ecolog*”, “ecosystem*”, and 

“drought*” (refined by: categories= ecology or environmental sciences and document type= 

article) returned 980 papers (as of 22 August 2018). Of these, we deemed 564 publications 

relevant to our review (Table A1.1). To be considered relevant, a research focus on some 

ecological aspect of drought had to be evident (i.e. the authors of the paper clearly indicated 

that they studied drought, drought was a central theme of the study, and, as a result, the 

authors could reasonably be expected to define what was meant by “drought”). We excluded 

papers that, for example, simply stated as background information that a site was drought-

prone or that a species was drought-tolerant, or papers that tangentially speculated on 



 14 

drought-related implications of their research. We included the search term “ecosystem” to 

focus our review on larger-scale studies, as we reasoned that studies with this broad-level 

perspective were more likely to define drought in ways that could be meaningfully applied 

across systems and studies. 

Initially, we classified each publication according to whether the authors explicitly 

defined the term drought. Explicit definitions of drought included those that were specific and 

quantitative: e.g., drought was defined as occurring whenever Standardized Precipitation 

Evapotranspiration Index (SPEI) values were ≤ -1, or when soil water in the top 10 cm was less 

than 10%, as well as those that were more general: e.g., some authors defined drought as 

“periods when soil moisture availability does not meet vegetation’s transpiration demand”, or 

as a “set of exceptional conditions of water shortage” (definitions abridged from papers 

included in our review). Some authors defined drought in their own terms, whereas others 

cited a previously published definition of drought or a declaration of drought conditions from a 

monitoring agency. The common feature was that the authors clearly articulated conditions or 

criteria for distinguishing drought conditions from non-drought conditions. In contrast to these 

papers, many publications did not explicitly define drought: e.g., the authors simply declared 

that a study was performed during (or in response to) drought, but provided no basis for why a 

period was considered a drought, nor any reference to other sources that described the 

severity of the drought.  

We grouped all reviewed publications (those that explicitly defined drought and those 

that did not) into eight categories, based on how the authors defined or described the 

drought(s) studied (Table 2.1). These were (from most to least common): 1) drought used as a 
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synonym for dry; 2) drought used to refer to conditions that differ from normal; 3) drought 

characterized using a standardized index; 4) drought quantified as a reduction in rainfall (% or 

amount); 5) drought characterized by low water flow or water table level; 6) drought as 

evidenced by plant water stress; 7) drought characterized by low soil moisture; or 8) drought 

used as a synonym for an annual dry season. All of the publications included in category 1 

(drought used as synonym for dry) did not fit into any of the other categories. However, several 

of the other publications described drought in multiple ways and were thus included in multiple 

categories.  

We also categorized each study according to the approach taken to study drought 

(observational, experimental, modeling, conceptual/theoretical, or review), and according to 

the ecosystem in which drought was studied (e.g., forest, savannah/woodland, grassland, 

freshwater, wetland, desert, etc.).  

Results and Discussion  

How do ecologists define and describe drought? – Ecologists generally do not define 

drought in their research papers, at least not explicitly. Just 32% of the publications that we 

reviewed explicitly defined drought or cited a definition of drought (Figure 2.1). Thus, a majority 

of papers report research focused on drought without explicitly explaining what constitutes a 

drought. This suggests that many ecologists conceptualize drought very generally, e.g., a 

“prolonged absence or marked deficiency of precipitation” (the simplest definition provided by 

the World Meteorological Organization 1992), and thus felt that no definition was needed. 

Alternatively, drought, similar to many ecological terms, is a pseudocognate (Salt 1979) and 

authors implicitly assume that readers understand it in the same way they themselves do. 
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Regardless of whether or not they define drought explicitly, ecologists conceptualize 

drought in many ways, befitting the breadth of ecological research. Of the eight categories of 

drought descriptions we identified (Table 2.1), ecologists most often use the term drought as a 

synonym for generally dry conditions (~30% of papers, Figure 2.1). In other words, authors state 

they are studying drought without quantifying and/or contextualizing how dry conditions are 

relative to normal (e.g., by reporting standardized index values, or some measure of deviation 

from average conditions). This lack of drought characterization inhibits syntheses of drought 

impacts across studies, and makes reviews and meta-analyses challenging and potentially 

misleading, when studies of droughts that may vary widely in severity are combined (see 

below).  

When ecologists do provide more quantitative detail about a drought studied, they 

most commonly do so within the context of long-term precipitation records for their study site 

or system (e.g., rainfall during the study period was 50% below the long-term mean, Figure 2.1). 

While most of these papers report the degree of deviation from average conditions which 

occurred during the study period, they seldom include thresholds for distinguishing drought 

conditions from dry periods that are part of normal climatic variability.  

Despite the number and variety of standardized indices available for quantifying climatic 

conditions (Zargar et al. 2011), relatively few of the publications reviewed used a standardized 

index to characterize the drought studied (14% overall and 17% of non-experimental studies, 

Figure 2.1). However, the use of standardized indices has generally increased over time (up to 

22% of non-experimental studies published in the last 5 years, data not shown). The most 

commonly used indices were the Palmer Drought Severity Index (PDSI, Palmer 1965) and the 
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Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010). In some 

cases, the authors directly calculated these index values, but many more studies instead 

referenced official drought declarations or a specific category of drought intensity (based on 

index values) published by a monitoring agency (e.g., The U.S. Drought Monitor, Svoboda et al. 

2002, https://droughtmonitor.unl.edu).  

Some ecologists use evidence of plant water stress to support the occurrence of 

drought. Though observed ecophysiological stress may indeed indicate that a drought is 

occurring, we caution against using a response to drought as the primary evidence of drought. 

Highly drought tolerant or resistant ecosystems may show little response to drought conditions.  

Requiring a response to occur would thus preclude the inclusion of such studies in syntheses of 

ecological drought impacts – and this is valuable information lost.  

Finally, some publications equated drought with a predictably dry time of year (i.e., an 

annual dry season). We find this categorization to be particularly problematic. Although dry 

seasons include some of the most general attributes of drought (“insufficient water to meet 

needs”, Redmond 2002), from an ecological perspective, such conditions are within the range 

of normal variability. While some understanding of drought impacts might be inferred from 

research conducted during annually recurring dry seasons, the relevance of such ecological 

insight for abnormally dry conditions is unclear, particularly given forecasts for ecosystems to 

experience drought conditions with no contemporary or historical analog (Williams and Jackson 

2007). Similarly, numerous studies used drought as a synonym for aridity (these publications 

mostly conceptualized drought as generally dry conditions). Like an annual dry season, aridity is 

a characteristic of an ecosystem and it is not clear that studying arid systems during normal 
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climatic conditions offers useful insight into drought responses of either those or more mesic 

ecosystems. 

Do drought definitions/descriptions vary by study method or ecosystem? – Our review 

suggests that ecologists most often take an observational approach to studying drought (Figure 

2.2), regardless of ecosystem type (Figure 2.3). More than half of the studies included in our 

review reported research on natural droughts studied opportunistically. When drought was 

explicitly defined in these studies, it was usually in terms of a standardized index (e.g., PDSI, 

SPEI, Zargar et al. 2011) and/or a declaration of drought by a monitoring agency (e.g., the U.S. 

Drought Monitor). The authors of observational studies also frequently characterized drought 

within the context of a site-specific historical record, usually by comparing precipitation 

amounts during the drought to the long-term mean. However, almost one third of 

observational studies did not describe the nature and extent of drought conditions they studied 

or explain why that time period was considered a drought. In some cases, this could be due to 

ecologists studying droughts that they considered to be “well-known”, e.g., the 2012-2014 

California (USA) drought (Griffin and Anchukaitis 2014). However, large-scale drought can vary 

substantially in space and time, and thus this lack of detailed quantification for specific studies 

hinders generalizations of drought impacts and comparisons among studies.  

Although less common than observational studies, ecologists conduct many drought 

experiments (Figure 2.2). In experiments, the imposed drought is usually defined or described 

in terms of reducing precipitation by a specific percent or amount (often, compared to ambient 

conditions). Experimental droughts are less frequently defined/described in terms of low soil 

moisture, a more direct measure of water availability than incoming precipitation (Vicca et al. 
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2012) and even fewer papers (~10% of drought experiments) provided context for drought 

treatments by comparing them to past droughts or historical precipitation records.  

Ecologists study drought in diverse ecosystem types (Figure 2.3), but we did not find any 

consistent patterns of drought definitions/descriptions varying by ecosystem type among the 

papers that we reviewed. Terrestrial drought impacts are generally studied more in ecosystems 

with short-statured vegetation (e.g., grasslands, deserts, savannas) than tall-statured 

vegetation (e.g., forests) and this is particularly true for experimental drought studies (Figure 

2.3 inset). This emphasis on shorter systems is likely due in part to the logistical and cost 

constraints of deploying such experiments in forests (Asbjornsen et al. 2018; Wullschleger and 

Hanson 2006). Unequal representation among biomes in the ecological drought literature 

underscores the need for more diverse drought studies, particularly in systems that have been 

historically understudied.  

Why should ecologists do better when defining or characterizing drought? – Failure to 

define or characterize drought conditions in the published literature challenges our ability to 

advance ecological understanding. We highlight this by selecting a subset of terrestrial 

observational studies in which drought was poorly characterized (i.e., publications that did not 

include specific information such as a standardized index value or historical context to quantify 

the drought that they studied) but that did include location coordinates and the specific 

timeframe of the drought studied. This allowed us to calculate SPEI values for each of 39 

different droughts using the Global SPEI database (SPEIbase v2.5, Vicente-Serrano et al. 2010; 

Begueria et al. 2010; Begueria et al. 2014). We calculated SPEI during the last month of the 

drought, using the time scale that the authors specified (i.e., for a three-month drought that 
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ended in September 2012, we calculated the three-month SPEI value in September 2012). 

Results indicate that 87% of the droughts studied were characterized by negative SPEI values 

(Figure 2.4, negative SPEI values indicate that conditions are drier than average). However, only 

50% of the droughts studied were characterized by dry conditions outside of the range of 

normal climatic variability (SPEI<−1) for the ecosystem, while the other 50% had SPEI values 

between −1 and +1, a range widely considered to represent normal variability (e.g., Hayes et al. 

1999; Li et al. 2014; Li et al. 2015a; Li et al. 2015b; Potop et al. 2014; Potopova et al. 2015; Yu et 

al. 2014). Surprisingly, 13% of these drought studies occurred during periods that were slightly 

wetter than average, based on our estimated SPEI values. While it is possible that local-scale 

drought or shorter, more intense drought periods were the focus of these studies, these results 

underscore how difficult comparative analyses of the ecological impacts of drought can be 

when drought conditions are not defined and the effects being compared are in response to 

droughts ranging in intensity from extreme to dry periods within the range of normal variability.  

How can we do better? – It is not surprising that ecological studies of drought would 

reflect the challenges that climatologists have confronted in determining what constitutes a 

drought, as well as their disagreement regarding definitions and metrics most appropriate for 

characterizing drought (e.g., Dracup et al. 1980; Keyantash and Dracup 2002; Quiring 2009; 

Wilhite 2000; Wilhite and Glantz 1985). Nonetheless, advances in ecological understanding 

occur not by individual studies but by research consensus and synthesis (Knapp et al. 2004). 

Given the large and rapidly increasing number of drought studies conducted by ecologists, we 

offer the following recommendations to improve our ability to draw inferences from this 

collective research endeavor. 
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The study of naturally occurring drought has been a dominant contributor to the 

ecological literature (observational approach in Figure 2.2), and we urge ecologists to utilize 

standardized indices (e.g., PDSI, SPEI) to characterize these droughts whenever possible. In 

addition to reporting average and minimum index values during the studied drought, authors 

should include or reference the threshold index values used to distinguish drought from normal 

conditions and to determine drought severity. There are numerous online tools available for 

independently calculating index values for a specific location and time (e.g., SPEIbase, Vicente-

Serrano et al. 2010; Begueria et al. 2010; Begueria et al. 2014), and there are published 

threshold values for classifying drought conditions which are widely referenced (e.g., McKee et 

al. 1993). We urge ecologists to make use of these tools and references, to improve 

standardization among studies and expand the inference of their results.  

We realize that standardized indices cannot be used in all situations. While calculating 

SPEI during a natural drought is straightforward, it is difficult to experimentally impose a 

specific SPEI level. For drought experiments, we recommend that imposed treatment levels be 

placed in the context of long-term climatic records (means and variability, Knapp et al. 2017), as 

well as related to ambient conditions. This is particularly important for passive precipitation   

reduction experiments where ambient conditions during the experiment dictate treatment 

levels (see Hoover and Rogers 2016). Moreover, justification for why specific treatments were 

selected to simulate drought should be provided so that drought is defined conceptually, as 

well as operationally. There are online tools available (Lemoine et al. 2016) to help researchers 

select experimental treatments with statistical justification based on historical records (e.g., 

treatments that represent 1-in-10- or 1-in-100-year droughts), or to identify site-specific 
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thresholds of precipitation reduction that must be exceeded to simulate drought of a given 

severity (Knapp et al. 2017). 

Conclusions  

Though we found that relatively few ecologists explicitly defined what they consider to 

be a drought, we are more concerned about the general lack of clear and detailed 

quantification of studied drought conditions. As stated above, our intention is not to propose a 

universal definition of drought or to suggest that all ecologists agree to a single definition. 

Rather, we provide recommendations for describing and quantifying droughts in research 

publications, in a way that will facilitate comparisons and strengthen inferences drawn from the 

collective ecological drought literature. We suggest that future publications clearly report both 

the magnitude and duration of drought within site-specific historical context when possible. We 

also encourage ecologists to describe the droughts that they study using standardized indices, 

long-term climate records, drought declarations from monitoring agencies, and published 

thresholds used to define drought. In light of the growing importance of drought impacts on 

ecosystems and forecasts for more frequent and extreme droughts in the future, it is essential 

that ecologists study and describe this phenomenon thoroughly. If future studies provide more 

consistent and quantitative characterizations of the droughts studied, our understanding of the 

ecological impacts of drought will advance more rapidly within and among ecosystem types.  
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Table 2.1: Summary of the categories used to assess how ecologists describe or define the 
droughts they study. Descriptions and examples are abridged from 564 published papers 
included in our review. Categories are listed in order from most to least commonly used.  

  

Drought 

Category 
Description Example(s) 

"Dry" 

Drought is used as a synonym for 

generally dry conditions; does not fit 

into any of the following categories 

• Limited water availability and high 

temperatures  

• Absence or deficiency of rainfall 

Differs from 

normal 

Drought is quantified in the context of 

site history and refers to conditions 

that differ from normal 

• Precipitation 25% below long-term mean 

• Precipitation <10th percentile of long- 

term record 

Standardized 

index 

Drought is quantified using an index 

(e.g., the Standardized Precipitation 

Evapotranspiration Index [SPEI]) 

• Negative SPEI values 

• SPEI values consistently <−1 

Reduced 

rainfall 

Drought is quantified as a reduction in 

rainfall (% or amount) 

• Ambient rainfall reduced by 66% in 

experimental drought treatment 

Low water 

flow/depth 

Drought is characterized by low water 

flow or depth 

• Stream flow reduced by 50% in 

experimental drought treatment 

• Water depth <5 cm 

Plant water 

stress 

Drought is evidenced by plant water 

stress 

• Predawn leaf water potential <−1.0 MPa 

• Decreased plant water potential 

Low soil 

moisture 

Drought is quantified as low soil 

moisture 

• Soil moisture 30% of maximum water 

holding capacity 

Dry season 
Drought refers to a predictable, 

reoccurring dry time of year 

• The summer dry period in 

Mediterranean climates 
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Figure 2.1: How ecologists describe and, in some cases, define the droughts they study, 
according to the categories identified in Table 2.1. Hatched bars denote the percentage of 
published papers in which authors provided an explicit definition of drought and solid bars 
represent publications that did not explicitly define conditions or criteria that constitute a 
drought. Inset: Total percentage of publications that do or do not explicitly define drought, 
combined across all categories.  
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Figure 2.2: Approaches used to study drought, within each of the categories of drought 
definitions/descriptions identified in Table 2.1. This analysis includes all of the papers that we 
reviewed, regardless of whether or not they explicitly defined drought. Inset: Approaches used 
to study drought combined across all categories. Note that some papers used multiple 
approaches to study drought and multiple categories to describe drought, resulting in the total 
exceeding 100%. 
 

 

 

 

 

 

 

 

 



 26 

 

 

 

 

 

 

 

 

Figure 2.3: Ecosystem types where drought is studied and approaches used to study drought. 
Shown are the six most common ecosystems in which drought is studied and the three most 
common approaches used to study drought. “Savanna” also includes woodlands and 
shrublands. Inset: Drought experiments conducted in terrestrial ecosystems, according to 
vegetation stature. Short includes grasslands, deserts and shrublands, and tall includes forests 

and woodlands.  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Figure 2.4: Variation in SPEI values for 39 natural droughts studied in a subset of reviewed 
papers. Papers were selected because they provided precise dates and locations of droughts 
studied but did not characterize climatic conditions in that time and place well. SPEI values 
were calculated using SPEIbase (see methods) and droughts were grouped into the following 
categories: extremely dry (SPEI ≤ −2), severely dry (−2 < SPEI ≤ −1.5), moderately dry (−1.5 < 
SPEI ≤ −1), and near normal conditions (−1 < SPEI < +1). Droughts in the near normal category 
were then grouped based on the sign of the SPEI value (positive or negative). 
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CHAPTER 3: EFFECTS OF COMPOUDED PRECIPITATION PATTERN INTENSIFICATION AND 

DROUGHT OCCUR BELOWGROUND IN A MESIC GRASSLAND2 

    

 

Overview  

 Climate change is altering precipitation regimes globally, with expectations of intensified 

precipitation patterns (e.g., larger but fewer rainfall events) and more frequent and extreme 

drought. Both aspects of precipitation change can impact ecosystem function individually, but it 

is more likely that they will occur in combination. In a central US mesic grassland, we imposed 

an extreme 2-yr drought (growing season precipitation reduced by 66%) on plots with a long-

term (16-yr) history of exposure to either ambient or intensified precipitation patterns (average 

3-fold increase in event size and 3-fold decrease in event number during the growing season). 

While this intensified pattern did not alter total precipitation amount, it generally led to 

ecosystem responses consistent with a drier environment (e.g., reduced soil moisture, 

aboveground net primary production (ANPP), and soil CO2 flux, but little evidence for altered 

root biomass). Surprisingly, this history of intensified precipitation patterns did not affect the 

response of ANPP to the subsequent extreme drought. In contrast, previous exposure to 

intensified precipitation patterns reduced root production and muted soil CO2 flux responses to 

rainfall events during drought. Reduced root production in plots experiencing compounded 

precipitation extremes was driven not by the dominant C4 grass species, Andropogon gerardii, 

but collectively by the subdominant species in the plant community. Overall, our results reveal 

 
2Slette IJ, Blair JM, Fay PA, Smith MD, Knapp AK. 2021. Effects of Compounded Precipitation Pattern Intensification 

and Drought Occur Belowground in a Mesic Grassland. Ecosystems. https://doi.org/10.1007/s10021-021-00714-9 
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that compound changes in precipitation patterns and amount affected this grassland in ways 

that were less apparent (i.e., belowground) than responses to either change individually and 

significantly reduced ecosystem carbon uptake. 

Introduction 

 Climate change is expected to intensify precipitation regimes by increasing the size of 

individual rainfall events as well as the number and length of anomalously dry periods (i.e., 

droughts), with evidence for these changes already emerging (Dai 2012; Fischer and Knutti 

2016; Huntington 2006; IPCC 2013; USGCRP 2017). For example, much of the world is 

experiencing larger, more intense precipitation events without corresponding increases in total 

precipitation amount (Fischer and Knutti 2016; Fowler et al. 2021; IPCC 2013). A shift towards 

fewer but larger precipitation events and longer durations between events can affect myriad 

ecosystem processes (Fay et al. 2008; Knapp et al. 2008; Zeppel et al. 2014). Concurrently, 

droughts are becoming more frequent and extreme in many regions. Drought, defined as a 

period of marked precipitation deficiency relative to the local long-term average, is a well-

known climate extreme that has been studied extensively (Dai 2012; Eziz et al. 2017; Gao et al.  

2019; Lei et al. 2016; Slette et al. 2019; Wu et al. 2011). Given that both dimensions of 

precipitation change are increasing, it is likely that future droughts will occur against a backdrop 

of intensified precipitation patterns (cf. Harrison et al. 2018). However, most research to date 

has focused on these different aspects of precipitation change individually, and their combined 

effects are thus unresolved. 

 Ecosystem responses to combined weather events, or compound events (Seneviratne et 

al. 2012), are likely not predictable from studies that focus on individual events (Dodd et al.  
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2021; Zscheischler et al. 2018). Instead, one dimension of change might precondition an 

ecosystem and alter its response to another (Zscheischler et al. 2020). That is, a chronic “press” 

change such as long-term intensification of precipitation patterns might alter the impacts of a 

“pulse” event such as a short-term extreme drought. For example, Hoover et al. (2015) found 

that a short-term extreme “pulse drought” had a larger negative impact on plant production 

and mortality when it occurred against a backdrop of a milder and longer-term “press drought”. 

Other previous studies have also found amplifying impacts of compound climate extremes 

more generally, though neutral and mitigating effects have also been reported (Anderegg et al. 

2020; Backhaus et al. 2014; Dreesen et al. 2014; Hoover et al. 2021; Hughes et al. 2019). 

Consensus on the effects of compounded climate changes is therefore lacking. Understanding 

press-pulse interactions, such as how exposure to intensified precipitation patterns might 

precondition ecosystem responses to drought, has important implications for improving 

understanding of carbon cycling in a changing climate. 

 Grasslands are important ecosystems in which to assess compounded effects of 

precipitation changes because they are structurally and functionally controlled by water 

availability (Morgan et al. 2008; Mowll et al. 2015; Sala et al. 1988), they experience high inter- 

and intra-annual precipitation variability (Knapp and Smith 2001), and they are sensitive to 

changes in precipitation amount and pattern (Felton et al. 2020; Gherardi and Sala 2015; 

Heisler-White et al. 2008, 2009; Hoover et al. 2014; Huxman et al. 2004; Knapp et al. 2002, 

2008, 2015, 2020; Li et al. 2019; Lu et al. 2021; Thomey et al. 2011). Grass-dominated systems 

are also globally extensive (Dixon et al. 2014; White et al. 2000) and play a key role in the global 

carbon cycle (Pendall et al. 2018; Scurlock and Hall 1998). Belowground responses such as 
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belowground net primary production (BNPP) and soil CO2 flux are of particular interest here 

because grasslands allocate a substantial portion of total net primary production to roots and 

store most of their carbon belowground (Hui and Jackson 2006; Risser et al. 1981; Silver et al.  

2010; Smith et al. 2008; Soussana et al. 2004). Root production and soil CO2 flux are key factors 

determining the size of the soil carbon pool, which is at least twice as large as the atmospheric 

carbon pool and plays an important role in global carbon cycling and climate regulation (Köchy 

et al. 2015; Scharlemann et al. 2014). While root mass production is useful for comparing 

aboveground vs. belowground NPP and their relative contributions to carbon cycling, the 

capacity of plants to acquire soil resources is likely better reflected by root length than mass 

because length better reflects the volume of soil that plants can access (Casper and Jackson 

1997; Jackson et al. 1996; Wilson 2014). We thus assessed both length and mass production of 

roots. 

 The objective of this study was to assess the ecosystem impacts of compounded 

precipitation changes in a mesic grassland. Specifically, we tested how long-term extreme 

intensification of precipitation patterns might alter ecosystem responses to a subsequent 

extreme drought, as well as recovery after drought. Our research builds on the Rainfall 

Manipulations Plots (RaMPs; Fay et al. 2000) experiment which altered growing season 

precipitation patterns, but not amount, for 16 years. The RaMPs experiment intensified 

precipitation patterns by imposing fewer and larger precipitation events with longer 

intervening dry periods, compared to ambient patterns. Prior results from the RaMPs study 

revealed that the intensified precipitation pattern resulted in drier soils, increased plant water 

stress, reduced aboveground net primary production (ANPP) and soil CO2 flux, altered soil 
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microbial community composition, and altered genotypic structure of the dominant plant 

species compared to ambient precipitation patterns (Avolio and Smith 2013; Avolio et al. 2013; 

Evans and Wallenstein 2012; Fay et al. 2002, 2003, 2011; Harper et al. 2005; Knapp et al. 2002; 

Nippert et al. 2009). We predicted that this history of intensified precipitation patterns would 

exacerbate the impacts of drought, compared to a history of ambient precipitation patterns. To 

test this prediction, we imposed an extreme 2-yr drought (66% reduction in growing season 

rainfall) in grassland plots with and without previous long-term exposure to an intensified 

precipitation regime and assessed key carbon cycling processes (e.g., ANPP, BNPP and soil CO2 

flux) during and after drought.  

Methods 

 Study site – The Konza Prairie Biological Station (KPBS) is a 3,487-ha unplowed tallgrass 

prairie in northeast Kansas, USA (39°05’N, 96°35’W) and is a USA Long-Term Ecological 

Research (LTER) site. The plant community is primarily composed of native C4 grasses (average 

77% of total biomass in the RaMPs experiment over 16 years), dominated by Andropogon 

gerardii and also including Sorghastrum nutans, Sporobolus asper, and Panicum virgatum. The 

rest of the plant community is composed mostly of an array of C4 forb species (mainly Solidago 

canadensis, Aster ericoides, S. missouriensis), with woody species accounting for a very small 

percent of total biomass and cover in the RaMPs experiment (Fay et al. 2001; Knapp et al. 

1998). The climate is temperate with warm, wet summers and cold, dry winters. The mean 

annual temperature is 13°C (Knapp et al. 1998) and the mean annual precipitation is 851 mm, 

almost 70% of which occurs during the growing season. Our experiment was located on deep 

silty clay loam soils in the Tully series (Collins and Calabrese 2012; Ransom et al. 1998). 
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Frequent fires are a historical feature of this grassland and are essential for maintaining grass 

dominance and reducing woody plant encroachment (Briggs et al. 2005; Knapp et al. 1998), and 

our experiment was burned annually in mid-March. 

 The RaMPs experiment design and treatments – The RaMPs experiment included 12 

fixed-location shelters (9 × 14 m) arranged in a randomized complete block design (see Fay et 

al.  2000 for details). Each shelter consisted of a clear (UV transparent) polyethylene roof that 

excluded all precipitation, gutters and storage tanks for rainfall collection, and an overhead 

irrigation system for rainfall application. Each RaMP was isolated belowground to a depth of 1.2 

m via a subsurface barrier. Sampling occurred in a 6 × 6 m area divided into four 2 × 2 m 

subplots. Each RaMP received either the ambient or intensified precipitation pattern from 

1998-2013. In RaMPs receiving the ambient precipitation pattern, collected rainfall was applied 

each time a natural rain event occurred. In RaMPs receiving the intensified precipitation 

pattern, rainfall timing and event size were altered by delaying rainfall applications. The dry 

interval between rainfall events was increased by 50% and all ambient rainfall during the 

lengthened dry interval was collected, stored and applied as a single large event. Thus, the 

ambient and intense treatments received the same amount of rain, but the intense treatment 

received fewer and larger rainfall events with longer intervening dry periods. Manipulations 

occurred only during the growing season (May – September). Rainfall events were defined as 

daily total >5 mm, as smaller amounts are almost entirely intercepted by the canopy (Seastedt 

1985). The intense treatment imposed a statistically extreme precipitation pattern, compared 

to long-term ambient rainfall patterns at the KPBS (Nippert et al. 2006; Smith 2011).  
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 After 16 years of ambient vs. intense precipitation patterns, an extreme drought was 

imposed on all plots. In 2014 and 2015, total growing season precipitation in all RaMPs was 

reduced to ~34% of the 1998-2013 experiment average (following Knapp et al. 2017). Each 

rainfall event was reduced in size by 66% and event timing followed the ambient pattern. 

Similar reductions have imposed statistically extreme droughts at the KPBS in the past (Hoover 

et al. 2014). The size and timing of all rainfall events were the same for all plots, to facilitate 

direct comparisons of how past exposure to intensified precipitation would impact responses to 

a common drought treatment. To assess recovery after drought, all ambient precipitation was 

applied to all RaMPs in 2016 with event size and timing matching the ambient pattern. 

 Field measurements – Key ecosystem processes (e.g., photosynthesis, ANPP, N 

mineralization) at the KPBS are strongly linked to soil moisture in the top ~30 cm below the 

surface (Blair 1997; Briggs and Knapp 1995; Knapp et al. 1993; Nippert and Knapp 2007). Thus, 

soil volumetric water content (VWC) was measured at 15 cm and 30 cm soil depths at 30 min 

intervals in all RaMPs for the duration of the experiment using Time Domain Reflectometry 

(TDR) probes (Fay et al. 2000). 

 Annual ANPP was estimated each year (1998-2016) from end-of-growing-season 

vegetation harvests of 16 total 0.1 m2 quadrats per RaMP (four per subplot) performed by 

clipping all vegetation rooted within the quadrat to the soil surface with scissors. Because the 

site is burned annually and not grazed, the collected biomass represents ANPP. The dominant 

species, A. gerardii, often drives responses in this system (Smith and Knapp 2003), and it was 

separated from subdominant species. All biomass was dried at 60°C for 48 hours and weighed. 
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 The cumulative impact of the ambient vs. intense precipitation treatments on total root 

biomass was estimated by taking four soil cores per RaMP (5 cm diameter, 60 cm deep, one per 

subplot) at the end of the last growing season before the drought. Each core was divided into 

10-cm depth increments. Roots were removed from each increment, washed free of soil, dried 

at 60°C for 48 hours and weighed. Annual BNPP was estimated during the last year of drought 

(2015) and first year after drought (2016) by using root ingrowth cores to estimate fine root 

production. At the start of the growing season (late April), three soil cores (5 cm diameter, 30 

cm deep) were taken from each plot, plus 10 from unaltered grassland adjacent to the RaMP 

(for use as controls) and discarded. This depth captures most root production at our study site 

and other grasslands (Jackson et al. 1996; Nippert et al. 2012; Schenk and Jackson 2002a; Sun et 

al. 1997; Weaver and Darland 1949). A cylindrical mesh basket filled with sieved, root-free soil 

collected adjacent to the RaMPs and packed to approximate field bulk density was placed into 

each core hole (5 cm diameter, 30 cm deep, 2 × 2 mm mesh holes). Any space between the 

ingrowth core and intact soil was filled with sieved, root-free soil. Ingrowth cores were 

removed at the end of the growing season (late September) and stored at 4°C. Each core was 

divided into 10-cm depth increments. Soil was washed off roots by wet sieving (0.5 mm sieve) 

under low water pressure, submerging remaining sample in a shallow bowl of water, picking 

out roots with forceps, and removing attached soil by hand. A. gerardii roots are distinctive 

(Figure A2.1), and they were separated from subdominant species’ roots. Roots were scanned 

using an Epson Perfection photo scanner (Epson America Inc., Long Beach, CA, USA) and scans 

were analyzed for root diameter and length using WinRhizo (Regent Instruments Inc., Québec, 
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Canada). Roots were dried at 60°C for 48 hours and weighed. BNPP was calculated as root mass 

production per m2 ground area. 

 Soil CO2 flux was measured in situ between 10:00 am and 2:00 pm local time 

approximately weekly throughout the 2015 and 2016 growing seasons using a LiCOR 8100A 

portable gas exchange system (LiCOR Inc., Lincoln, NE, USA). Per RaMP, eight polyvinyl chloride 

(PVC) collars (two per subplot) were installed (10 cm diameter × 8 cm tall, buried 6 cm into the 

soil) between plant tillers/stems. Any litter and vegetation within the collar were removed (via 

clipping with scissors or by hand if loose) so that measurements included only CO2 flux from the 

soil. To assess flux responses to rainfall, additional measurements were taken immediately 

before and approximately 24 hours after individual rainfall applications.  

 Statistical analyses – We performed all analyses in R (R Core Team 2018), using plot-

level and annual-scale data. We used the psych package (Revelle 2020) for summary statistics 

(Table A2.1). To determine the impacts of ambient vs. intense treatments during 1998-2013 on 

total, A. gerardii, and subdominant species ANPP and on soil moisture at 15 cm and 30 cm, we 

used linear models (nlme package; Pinheiro et al. 2020) and type 3 sum of squares analyses of 

variance (“ANOVAs”; car package; Fox and Weisberg 2019) to assess the main effects of 

treatment (nested within block) and year, and the year × treatment interaction. We similarly 

assessed the main effect of treatment (nested within block) and depth increment, and the 

treatment × depth increment interaction on root biomass. To determine the impacts of 

ambient vs. intense treatment history during the last year of drought and the first year after 

drought, we used linear models and type 3 sum of squares ANOVAs to assess the main effects 

of treatment history (nested within block) and year, and the year × treatment history 
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interaction (Table A2.2). We analyzed ANPP, BNPP, NPP, and the BNPP: ANPP ratio for all 

species, A. gerardii, and subdominant species in this way, as well as soil moisture at 15 cm and 

30 cm and soil CO2 flux (growing season average, before rainfall events and after rainfall 

events). In the BNPP model, we also included the main effect of depth increment and the 

interactions of depth increment with treatment history and with year. For each dependent 

variable, we used pairwise contrast comparisons (emmeans package; Lenth 2020) to determine 

in which years there were differences between treatments. We considered p values <0.05 

significant. 

Results 

 Ecosystem responses to an intensified precipitation pattern – Results from various time 

periods during the RaMPs experiment have been reported previously (e.g., Avolio et al. 2013; 

Fay et al. 2000, 2002, 2003, 2011; Harper et al. 2005; Knapp et al. 2002), but none from its full 

16-yr duration. We updated a subset of past analyses and here report results from the entire 

experiment. The intense treatment reduced the number of growing season rainfall events 

almost 3-fold (30 ± 2 ambient vs. 12 ± 1 intense) while increasing rainfall event size by a similar 

proportion (13 ± 1 mm ambient vs. 33 ± 2 mm intense; Figure 3.1), on average. Despite no 

differences in total rainfall between treatments, the intense pattern led to drier soils at 15 cm 

during the growing season (22.2 ± 5.9% vwc intense vs. 25.5 ± 4.5% vwc ambient; F=49.5, 

p<0.001) and a 14% reduction in ANPP (675 ± 17 g m-2 intense vs. 737 ± 18 g m-2 ambient; 

F=4.93, p<0.001), averaged over 16 years. A. gerardii composed ~40% of total ANPP on average 

during this time (Figure 3.2). At the end of the experiment, standing crop root biomass did not 
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differ between treatments overall (792 ± 59 g m-2 intense vs. 809 ± 61 g m-2 ambient; F=1.01, 

p=0.32) or in any individual depth increment (Figure A2.2). 

 How an intensified precipitation pattern affected drought responses – Reducing the size 

of each ambient precipitation event by 66% resulted in growing season precipitation amounts 

below the 5th percentile of the RaMPs rainfall record (1998-2013) and the long-term (112-yr) 

KPBS rainfall record (Hoover et al. 2014). Thus, based on site-specific historical precipitation 

amounts, we imposed a statistically extreme drought (Smith 2011). 

 During the last year of the drought (2015), soil moisture did not differ by treatment 

history at either 15 cm (F=1.13, p=0.30) or 30 cm (F=0.46, p=0.50) depths, but it was 55% (15 

cm) and 40% (30 cm) lower than the pre-drought ambient RaMPs average. Similarly, ANPP 

during the last year of the drought did not differ by treatment history (F=0.086, p=0.78), but it 

was 36% lower than the pre-drought ambient RaMPs average. Thus, a history of intensified 

precipitation did not alter the response of ANPP to drought (Figure 3.2). In contrast, BNPP 

during the last year of the drought was lower in historically intense vs. ambient plots (Figure 

3.2; F=7.14, p=0.028). BNPP in historically intense plots was 70% of BNPP in historically ambient 

plots. This was collectively driven by the subdominant species. BNPP of the subdominant 

species in the historically intense plots was 46% of that in the historically ambient plots 

(F=18.19, p=0.0027). Surprisingly, BNPP of the dominant species, A. gerardii, did not differ by 

treatment history (F=2.43, p=0.16). Despite differences in BNPP, NPP (ANPP + BNPP; F=0.64, 

p=0.45) and the overall ratio of BNPP: ANPP did not differ by treatment history (F=2.17, 

p=0.18). However, the ratio of subdominant species BNPP: ANPP in historically intense plots 

was just 50% of that in ambient plots (F=6.09, p=0.039). In the last year of the drought, A. 
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gerardii was 32 and 59% of total BNPP in historically ambient and intense plots, respectively, 

and it was 44 and 48% of total ANPP in ambient and intense plots, respectively (Figure 3.2). 

 Historical precipitation intensification reduced subdominant species BNPP in each depth 

increment (Figure 3.3; 0-10 cm: p=0.046; 10-20 cm: p=0.0099; 20-30 cm: p=0.021) in the last 

year of drought. In addition, there was a significant effect of depth on subdominant species 

BNPP (F=4.37, p=0.022) but not A. gerardii BNPP (F=1.80, p=0.18). That is, A. gerardii BNPP was 

more evenly distributed among depths. In historically intense plots, A. gerardii produced more 

root mass (p=0.040) and a greater proportion of its total root mass (p=0.014) in the deepest 

increment sampled, compared to subdominant species.  

 Similar to BNPP, root length production was lower in historically intense vs. ambient 

plots during the last year of drought (Figure 3.4; F=29.6, p<0.001). This difference was also due 

to responses of subdominant species (F=9.65, p=0.038), not of A. gerardii (F=2.65, p=0.65). A. 

gerardii made up a smaller proportion of total root length vs. mass production (20% vs. 30% 

ambient, 30% vs. 60% intense, respectively), due to its smaller specific root length (SRL; 67.4 ± 

7.7 m g-1) compared to subdominant species (160 ± 16 m g-1; p<0.001; figure S1). There was no 

difference in root tissue density (RTD) of A. gerardii vs. subdominant species (Figure A2.1; 

p=0.25). There was also no effect of treatment history and no difference between drought vs. 

after-drought years on SRL or RTD of A. gerardii or subdominant species (p>0.05). 

 Growing season average soil CO2 flux during drought did not differ by treatment history 

during the last year of drought (Figure 3.5; F=1.34, p=0.28), but short-term flux increases after 

rainfall did. Soil CO2 flux was higher in historically ambient vs. intense plots after rainfall 
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(F=1.93, p=0.044). Thus, a history of intensified precipitation dampened the response of soil 

CO2 flux to rainfall during drought. 

 Recovery after drought – The first year after the drought (2016) was wetter than usual, 

with ambient precipitation almost 40% higher than the pre-drought RaMPs average (Figure 

3.1). In this year, soil moisture did not differ by treatment history at either 15 cm (F=0.013, 

p=0.91) or 30 cm (F=2.96, p=0.13) depths. Total ANPP (F=0.017, p=0.99), A. gerardii ANPP 

(F=0.162, p=0.70), and subdominant species ANPP (F=0.0041, p=0.95) also did not differ by 

treatment history (Figure 3.2). A. gerardii was 50% of total ANPP in both historically ambient 

and intense plots (Figure 3.2). As expected, total ANPP was higher after vs. during drought, 

(ambient: p<0.001; intense: p<0.001) as was ANPP of A. gerardii and of subdominant species. 

Compared to the 16-yr pre-drought ambient RaMPs average, ANPP during the wet recovery 

year was slightly (6%) reduced (F=2.90, p=0.096). However, A. gerardii ANPP was higher (9.5%) 

whereas subdominant species ANPP was lower (26%) than the pre-drought ambient average. 

 After drought, total BNPP (F=0.29, p=0.61), A. gerardii BNPP (F=0.04, p=0.85), and 

subdominant species BNPP (F=0.59, p=0.47) did not differ by treatment history. A. gerardii was 

60% of total BNPP in both historically ambient and intense plots (Figure 3.2). Total BNPP 

(ambient: p=0.049; intense: p=0.025) and A. gerardii BNPP (ambient: p=0.014; intense: 

p=0.048) were higher after vs. during drought, but subdominant BNPP did not differ after vs. 

during drought (ambient: p=0.14; intense: p=0.10; Figure 3.2). The BNPP: ANPP ratio for all 

species and for subdominants was lower after vs. during drought in historically ambient 

(p=0.019, p=0.022, respectively) but not intense plots (p=0.71, p=0.99, respectively), while the 
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BNPP: ANPP ratio for A. gerardii did not differ in either historical treatment (ambient: p=0.18; 

intense: p=0.78).  

 Consistent with BNPP, root length production did not differ by treatment history in the 

first year after drought (Figure 3.4; F=0.35, p=0.58). Total (ambient: p=0.049; intense: p=0.019) 

and A. gerardii (ambient: p=0.014; intense: p=0.045) root length production were higher after 

vs. during drought, but subdominant species root length production was not different after vs. 

during drought (ambient: p=0.86; intense: p=0.064). 

 Finally, growing season average soil CO2 flux did not differ by treatment history in the 

first year after drought (Figure 3.5; F=1.19, p=0.31), and was higher after vs. during drought 

(p<0.001). The short-term flux increase after rainfall did differ by treatment history. Soil CO2 

flux was higher in historically ambient vs. intense precipitation plots after rainfall (F=4.49, 

p=0.037). 

Discussion 

 Long-term exposure of this mesic grassland to an intensified precipitation pattern 

reduced soil moisture and ANPP, as reported previously (Fay et al. 2002, 2003, 2011; Knapp et 

al.  2002). But when exposure to extreme precipitation patterns was compounded with 

extreme drought, there were no legacy effects of past precipitation pattern on ANPP. This 

contrasts sharply with responses belowground, where a history of intensified precipitation 

patterns amplified reductions in BNPP during drought and reduced the size of the soil CO2 flux 

increase following rainfall events both during and after drought. Thus, our findings add to 

growing evidence that grassland belowground responses to precipitation change should not be 

inferred from aboveground responses (Byrne et al. 2013; Carroll et al. 2021; Chou et al. 2008; 
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Post and Knapp 2020; Wilcox et al. 2015, 2017). The negative effect of past exposure to 

intensified precipitation belowground has implications for long-term ecosystem carbon cycling 

and sequestration, given the important role of soils, especially grassland soils, in global carbon 

storage (Hui and Jackson 2006; Köchy et al. 2015; Risser et al. 1981; Scharlemann et al. 2014; 

Silver et al. 2010; Smith et al. 2008; Soussana et al. 2004). Our results thus suggest that, as 

precipitation patterns continue to intensify, the negative impacts of droughts on plant 

production and ecosystem carbon uptake may be underestimated if belowground dynamics are 

not fully considered. 

 While it is possible that BNPP differed between ambient and intense precipitation plots 

prior to drought (this was not quantified), root biomass did not differ between treatments in 

the last year of the experiment (Figures 3.1, A2.2), suggesting that any differences in annual 

root production between treatments were likely small and did not accumulate to affect 

standing root biomass. However, we found that root production did differ between ambient 

and intense treatment plots when precipitation intensification was compounded with drought. 

The negative effect of intensified precipitation on BNPP during drought was due to responses of 

the subdominant species. The BNPP distribution of A. gerardii was deeper than that of 

subdominant species, which likely contributed to the different responses during and after 

drought. Indeed, previous research has linked changes in root distribution within the top ~30 

cm to changes in total plant production even when maximum rooting depth is greater than 30 

cm (Nippert and Holdo 2015). We also found that A. gerardii made up a smaller proportion of 

total root length production vs. root mass production. The lower dominance of A. gerardii root 

length vs. mass was driven by its low SRL. A lower SRL likely indicates “outsourcing” of resource 
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acquisition to mycorrhizae, vs. a “do-it-yourself” acquisition strategy of plants with higher SRL 

(Bergmann et al. 2020). We did not assess mycorrhizal abundance, but past research has shown 

that A. gerardii is highly mycorrhizal dependent (Smith et al. 1999; Wilson and Hartnett 1997, 

1998). It is thus possible that greater mycorrhizal association of A. gerardii vs. subdominant 

species also contributed to their different responses during and after drought. BNPP of 

subdominant species differed between historical ambient vs. intense treatments during 

drought but not after drought, suggesting that the impacts of precipitation pattern 

intensification are relatively short-lived and reversible. The impact of drought might be longer-

lasting, as BNPP of subdominant species remained below control plot levels after drought did 

not increase after drought, even in a wet year. 

 Previous research and theory have suggested that increased proportional allocation 

belowground provides an advantage in dry conditions by increasing water uptake (Bloom et al.  

1985; Chapin et al. 1987; Chou et al. 2008; Milchunas and Lauenroth 2001; Poorter et al. 2012). 

Based on this, we expected to find higher BNPP: ANPP ratios during vs. after drought. However, 

we only found evidence for this in the former ambient precipitation treatment. This response 

was driven by an almost two-fold higher BNPP: ANPP ratio of the subdominant species during 

vs. after drought. That is, whereas BNPP and ANPP of A. gerardii changed by the same relative 

proportion in both historical treatments, subdominant species shifted to produce 

proportionally more root mass vs. shoot mass during drought, but only in historically ambient 

precipitation plots. This could indicate greater plasticity of production allocation in response to 

water availability of subdominant species compared to A. gerardii, or that resources other than 

water (e.g., carbon) were also limiting during drought. The mechanism explaining how a history 
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of intensified precipitation altered the responsiveness of BNPP: ANPP allocation patterns to 

drought remains to be resolved. 

 Intensified precipitation patterns decreased average soil CO2 flux (Harper et al. 2005), 

but when intensified precipitation patterns were compounded with drought, there was no 

effect of past precipitation pattern on growing season average soil CO2 flux. However, previous 

exposure to intensified precipitation patterns did decrease the response of soil CO2 flux to 

individual precipitation events during and after drought. Our results are consistent with well-

documented patterns of soil CO2 flux correlating with soil moisture, e.g., declining during 

drought and increasing after individual rainfall events, with larger increases after larger rain 

events and wetter antecedent conditions (e.g., after vs. during drought; Birch 1958; Bremer et 

al.  1998; Feldman et al. 2021; Fierer and Schimel 2003; Harper et al. 2005; Hoover et al. 2016; 

Liu et al. 2002; Post and Knapp 2020, 2021). Specifically, the muted response of soil CO2 flux to 

precipitation events in historically intense precipitation plots (vs. historically ambient 

precipitation plots) is consistent with previous research reporting that soils from this treatment 

were less responsive to moisture pulses pre-drought (Evans and Wallenstein 2012) and had 

lower microbial respiration following drying and re-wetting (Veach and Zeglin 2020). Thus, this 

difference in the response of soil CO2 flux to soil moisture between intense vs. ambient 

treatments appears to be longer lasting than other pre-drought differences (e.g., lower ANPP in 

intense vs. ambient treatments). This has important implications for ecosystem carbon 

dynamics, given that soil CO2 flux is a large part of the carbon budget in temperate grasslands 

and a substantial proportion of soil CO2 flux occurs after rainfall events (Chen et al. 2008, 2009; 

Gale et al. 1990; Ham et al. 1995; Huxman et al. 2004a, 2004b; Kim et al. 1992; Yan et al. 2014). 
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Our results indicate that grassland ecosystems might release less total CO2 from the soil to 

atmosphere under conditions of increased precipitation pattern intensity and drought. 

 Drought can have a persistent negative effect on grassland ANPP post-drought, though 

positive and insignificant impacts of previous droughts have also been reported (Griffin-Nolan 

et al. 2018; Hoover et al. 2014; Sala et al. 2012). Total ANPP in our study recovered to near the 

pre-drought average one year after drought. This was likely due at least in part to above-

average total precipitation in that year. Regardless, our results are consistent with past 

research identifying the important role of the dominant species in restoring ecosystem function 

after drought. One year after drought, ANPP of A. gerardii was higher than the long-term pre-

drought average, while ANPP of the subdominant species remained below average. Previous 

grassland drought experiments have reported that, aboveground, grasses recover better than 

forbs (included in “subdominant species”) after drought (De Boeck et al. 2018; Hoover et al.  

2014). We expand on this response by showing that BNPP of A. gerardii also recovered more 

than BNPP of subdominant species after drought. 

 In summary, we found that the compound effects of long-term precipitation pattern 

intensification and drought were evident primarily belowground in this mesic grassland. We 

conclude that as precipitation patterns intensify and drought frequency and severity continue 

to increase globally, predicting and modeling changes in global terrestrial carbon cycling will 

require greater understanding of how ecosystems respond to multiple compounded 

precipitation changes, especially belowground. 
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Figure 3.1: Growing season precipitation in each year of the RaMPs experiment (solid line) and 
1998-2013 average (dashed line). From 1998-2013 (non-shaded area), the intense treatment 
received fewer and larger rainfall events. A common drought was imposed on both historical 
treatments in 2014 and 2015 (yellow-shaded area), and all plots received all ambient rainfall in 
2016 (green-shaded area). Insets: 1998-2013 average (+ 1 standard error) growing season 
number of rain events, size of rain events, soil moisture at 15 cm, aboveground net primary 
production (ANPP) and root biomass (2013 only) in ambient and intense precipitation pattern 
treatments. * = significant difference between ambient vs. intense treatments. Photos: The 
RaMPs experiment (left), closer view of a RaMPs experiment shelter (right). 
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Figure 3.2:  Average (+ one standard error) ANPP, BNPP, and ANPP: BNPP ratio of all species, A. 

gerardii, and subdominant species in historically ambient and intense precipitation treatments 
in the last year of drought (2015) and the first year after drought (2016). Horizontal dashed line 
= 1998-2013 RaMPs ambient average ANPP or 2015-16 RaMPs-adjacent ambient average BNPP. 
* = significant difference between historically ambient vs. intense precipitation treatments 

within a year (drought or after-drought). ◀ = significant difference between drought vs. after-
drought years, within historical treatment (ambient or intense).  
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Figure 3.3: Average (+ one standard error) BNPP of A. gerardii and subdominant species by 
depth in historically ambient and intense precipitation treatments during the last year of 
drought. * = significant difference between historical treatments in a depth increment. ▼ = 
significant main effect of depth on BNPP. After drought, there were no significant differences 
between historical treatments in BNPP at any depth, for either A. gerardii or subdominant 
species. 
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Figure 3.4: Average (+ one standard error) root length production of all species, A. gerardii, and 
subdominant species from historically ambient and intense treatments in the last year of 
drought and first year after drought. * = significant difference between historically ambient vs. 

intense precipitation treatments within a year (drought or after-drought). ◀ = significant 
difference between drought vs. after- drought years, within historical precipitation treatment 
(ambient or intense).  
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Figure 3.5: Growing season average (+ one standard error) soil CO2 flux and average (+ one 
standard error) soil CO2 flux approximately 24 hours after rainfall in historically ambient and 
intense treatments in the last year of drought and the first year after drought. Horizontal 
dashed line = pre-drought ambient RaMPs average. * = significant difference between 
historically ambient vs. intense precipitation treatments within a year (drought or after-

drought). ◀ = significant difference between drought vs. after-drought years, within historical 
precipitation treatment (ambient or intense). 
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CHAPTER 4: REPEATED EXTREME DROUGHTS DECREASE ROOT PRODUCITON, BUT NOT 

POTENTIAL FOR POST-DROUGHT RECOVERY, IN A MESIC GRASSLAND 

 
 
Overview  

 Global climate change is expected to cause more frequent extreme droughts in many 

parts of the world. Despite the crucial role of roots in water acquisition and plant survival, our 

understanding of ecosystem vulnerability to drought is primarily based on aboveground 

impacts. As return intervals between droughts decrease, root responses to one drought might 

alter responses to subsequent droughts, but this remains unresolved. Thus, we conducted a 7-

year experiment that imposed extreme drought (growing season precipitation reduced 66%) on 

mesic grassland plots during years 1-2, or years 5-6, or both. All plots received ambient 

precipitation in year 7 and control plots received ambient precipitation in all years. We 

quantified root production during the last two years of the experiment and found that repeated 

drought decreased root mass production more than twice as much as one drought (-63% vs. -

27%, respectively, relative to controls). Thus, previous drought exposure decreased resistance 

to a subsequent drought. This was driven by the subdominant species in the community, not by 

the dominant C4 grass Andropogon gerardii. A. gerardii roots were thicker, denser, and deeper 

than those of the subdominant species across treatments, but root trait values (diameter, 

tissue density, and specific root length) did not differ among treatments. In year 6, root 

production in plots droughted 4 years ago had not recovered (-21% vs. control), but root 

production recovered in all former drought treatments in year 7, when precipitation was above 

average. Our results highlight the complexity of root responses to drought. Repeated droughts 
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can have increasingly large negative effects on root production, which might persist for years, 

but this does not preclude recovery in wet years. Thus, in an increasingly variable climate, the 

sequence of extreme dry and wet years will determine root dynamics, with important 

implications for ecosystem functioning. 

Introduction 

 Globally, more frequent and extreme droughts are expected as climate change alters 

precipitation regimes, with evidence for this already emerging (IPCC 2013; USGCRP 2017; Dai 

2013). Drought, defined as a period of marked precipitation deficiency relative to the local long-

term average, has been studied extensively and shown to impact myriad ecosystem functions 

(Slette et al. 2019; Dai 2013; Eziz et al. 2017; Gao et al. 2019; Lei et al. 2016; Wu et al. 2011). 

But much of what we know is based on aboveground-focused studies of single droughts. As the 

time between droughts decreases, it will be important to understand how ecosystems respond 

to not only single, but also recurrent drought. Legacies from past climate anomalies can 

precondition ecosystems and alter responses to subsequent events, so it is likely that 

ecosystem responses to recurrent drought, or compound events more generally, are not 

predictable from studies of individual events (Hughes et al. 2019; Sala et al. 2012; Seneviratne 

et al. 2012; Zscheischler et al. 2018; Zscheischler et al. 2020). Previous studies of recurrent 

drought are relatively few and suggest that drought history can impact drought responses in 

different ways, depending on the ecosystem and species (Anderegg et al. 2020; Backhaus et al. 

2014; Dreesen et al. 2014; Hoover et al. 2021). Thus, the potential consequences of repeated 

drought, ranging from increased acclimation to decreased resistance, remain unresolved. 
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 Roots are the primary means by which plants acquire water and nutrients, regardless of 

drought conditions, and they are particularly important during drought because of their role in 

sensing and signaling water deficits (Davies and Zhang 1991; Tardieu and Simonneau 1998). 

Thus, as the global hydrological cycle intensifies and climates become more variable (Easterling 

et al. 2000; Huntington 2006; Knapp et al. 2008), resolving how root production responds to 

drought, and recovers post-drought, is essential for understanding ecosystem dynamics. In 

addition, roots play many important roles in ecosystem carbon cycling beyond water uptake, 

providing nutrients via root turnover and contributing greatly to the formation of soil organic 

matter. Root production and turnover are thus key factors determining the size of the soil 

carbon reservoir, which is at least twice the size of the atmospheric carbon reservoir and 

important for global carbon sequestration and climate regulation (Köchy et al. 2015; 

Scharlemann et al 2014). While belowground net primary production (BNPP) is useful for 

comparing aboveground vs. belowground NPP and their relative contributions to carbon 

cycling, the capacity of plants to acquire soil resources may be better reflected by root length 

than mass because length better reflects the volume of soil that plants can access (Casper and 

Jackson 1997; Jackson et al. 1996; Wilson 2014). We thus assessed both length and mass 

production of roots. Despite growing recognition of the importance of root dynamics to 

ecosystem functioning, root responses to drought are less well-studied than aboveground 

responses. A framework for predicting root responses to change and linking those responses to 

broader ecosystem processes could develop from an improved understanding of root traits, 

and studies that include root trait measurements will therefore be particularly useful in 

advancing root ecology (Iversen et al. 2017). We thus also assessed root traits in our study. 
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 Grass-dominated ecosystems allocate a substantial portion of total primary production 

to roots, store most of their carbon belowground (Hui and Jackson 2006; Jones and Donnelly 

2004; Risser et al. 1981; Silver et al. 2010; Smith et al. 2008; Soussana et al. 2004), and are 

globally extensive (Dixon et al. 2014; White et al. 2000). They thus play a key role in the global 

carbon cycle (Pendall et al. 2018; Scurlock and Hall 1998). Most grassland are water-limited, 

climatically variable, and sensitive to precipitation, particularly drought (Felton et al. 2020; 

Knapp and Smith 2001; Knapp et al. 2015, 2020; Li et al. 2019; Morgan et al. 2008; Mowll et al. 

2015; Sala et al. 1988). Understanding grassland root responses to drought thus has important 

implications for predicting both ecosystem- and global-scale changes to carbon dynamics under 

an increasingly variable climate. 

 Here we report the results of a study focused on assessing fine root responses to single 

vs. recurrent extreme droughts, and recovery after drought, in a mesic grassland. Our research 

builds on the Climate Extremes Experiment (CEE; Hoover et al. 2014a) which imposed an 

extreme 2-year drought and focused on quantifying primarily aboveground responses during 

and after drought. Taking advantage of the CEE platform, we imposed another extreme drought 

in plots both with and without previous drought exposure and assessed root production and 

traits during and after drought. We predicted that a history of drought exposure would reduce 

the sensitivity of root production to a second extreme drought, based on the increased relative 

abundance of C4 grasses with high water-use-efficiency (Turner and Knapp 1996) and complete 

recovery of aboveground net primary production (ANPP) after the first extreme drought 

(Hoover et al. 2014a). 

Methods 



 72 

 Study site – The Konza Prairie Biological Station (KPBS) is a 3,487-ha unplowed tallgrass 

prairie in northeast Kansas, USA (39°05’N, 96°35’W) and is a USA Long-Term Ecological 

Research (LTER) site. The plant community is composed primarily of native C4 grasses, 

dominated by Andropogon gerardii (Knapp et al. 1998). The climate is temperate mid-

continental with warm, wet summers and cold, dry winters. The mean annual temperature is 

13°C (Knapp et al. 1998) and the mean annual precipitation is 851 mm, almost 70% of which 

falls during the growing season. The CEE was located in a lowland area with deep, silty clay 

loam soils in the Tully series (Collins and Calabrese 2012; Ransom et al. 1998). Frequent fires 

are a historical feature of this grassland and are key for maintaining grass dominance and 

reducing woody plant encroachment (Briggs et al. 2005; Knapp et al. 1998). The CEE was 

burned annually in mid-March. 

 The CEE design and treatments – The CEE consisted of four shelters (6 × 24 m) 

constructed from greenhouse frames with 10 plots (2 × 2 m) in each shelter (see Hoover et al. 

2014a for details). Each shelter was hydrologically isolated to a depth of 1 m below the soil 

surface via a plastic barrier, and via metal flashing installed aboveground. In 2010 and 2011, 

each rainfall event during the growing season (1 April – 30 August) was reduced in size by ~66% 

in two shelters by covering the frame with evenly spaced strips of clear polycarbonate plastic, 

based on Yahdjian and Sala (2002). The other two shelters received ambient precipitation and 

were covered with deer netting that reduced photosynthetically active radiation by ~10% 

(equivalent to the reduction in the drought shelters) while allowing all rain to pass through. All 

plots received all ambient precipitation in 2012 and 2013. Ambient precipitation plots were 

watered weekly by hand if total rainfall during that week was less than long-term average (in 
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which case the deficit was added). In 2014 and 2015, each rainfall event during the growing 

season was reduced in size by ~66% in half of each shelter by covering half of the frame with 

evenly spaced strips of clear polycarbonate plastic (covering 5 of 10 contiguous plots), and the 

other half was covered with deer netting (Figure 4.1). That is, half of the plots that had been 

droughted and half of the plots that hadn’t been droughted in 2010 and 2011 were droughted 

in 2014 and 2015. This resulted in four treatments: never droughted (Ambien! Ambient), 

droughted only during 2010-11 (Drought! Ambient), droughted only during 2014-15 

(Ambient! Drought), and droughted during both 2010-11 and 2014-15 (Drought!Drought). 

To assess recovery after drought, all plots received ambient precipitation in 2016 (Figure 4.1). 

  Root measurements – We estimated BNPP during the last year of the second drought 

treatment (2015) and the first year after that drought (2016) by using root ingrowth cores to 

estimate fine root production. At the start of each growing season, we took a soil core (5 cm 

diameter, 30 cm deep) from every plot. This depth captures most root production at our site 

and in other grasslands (Weaver & Darland 1949; Schenk & Jackson 2002; Nippert et al. 2012; 

Jackson et al. 1996; Sun et al. 1997), and research has linked differences in root distribution 

within this depth to differences in production even when maximum rooting depth is deeper 

(Nippert and Holdo 2015). We placed a cylindrical mesh basket filled with sieved, root-free soil 

(collected adjacent to the CEE) packed to approximate field density into each core hole and 

filled the space between the ingrowth core and intact soil with sieved, root-free soil. We 

removed the ingrowth cores at the end of the growing season and stored them at 4°C. We cut 

each core into 10-cm depth increments that we processed separately. We washed all roots free 

of soil by wet sieving (0.5 mm sieve) under low water pressure, then submerging remaining 
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sample in a shallow bowl of water, picking out roots with forceps, and removing attached soil 

by hand. Because roots of the dominant plant species, A. gerardii, are visibly distinguishable 

from roots of other species in this plant community (Figure A3.2), we were able to separate 

these from the roots of all other species. We scanned all roots using an Epson Perfection photo 

scanner (Epson America Inc., Long Beach, CA, USA) and analyzed scans for root diameter and 

length using WinRhizo (Regent Instruments Inc., Québec, Canada). We dried roots at 60°C for 

48 hours and weighed them. We calculated BNPP as root mass production per m2 ground area. 

 Statistical analyses – We used annual plot-level data for all analyses, which we 

performed in R (R Core Team 2018). We used the psych package (Revelle 2020) for summary 

statistics (Table A3.1). To determine the impacts of each of the four precipitation treatments 

(Ambient! Ambient, Drought! Ambient, Ambient! Drought, Drought! Drought), during 

each study year (2015 drought and 2016 recovery), we used linear mixed effects models with 

plot (nested within shelter) as a random variable (lme4 package, Bates et al. 2015) and type 3 

sum of squares analyses of variance (“ANOVAs”, car package, Fox and Weisberg 2019) to assess 

the main effects of treatment and year, as well as the year × treatment interaction. We 

analyzed total, A. gerardii, and other species BNPP and root length production in this way. We 

used additional models which included the main effect of depth increment and the interactions 

of depth increment with treatment and with year to assess changes in BNPP depth distribution. 

We used pairwise contrast comparisons with Holm adjustment to determine in which years 

there were differences between treatments and in which treatments there were differences 

between years (emmeans package, Lenth 2021). We considered p values <0.05 indicative of 

significant effects. 
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Results  

 How previous drought exposure affected subsequent drought responses – The 2014 and 

2015 drought (66% reduction in the size of each precipitation event), resulted in growing 

season total precipitation amounts below the 5th percentile of the long-term (112-yr) KPBS 

rainfall record (Hoover et al. 2014a) in each year. Thus, based on site-specific historic 

precipitation amounts, the drought that we imposed was statistically extreme (Slette et al. 

2019; Smith 2011), similar to the CEE drought imposed in 2010-11 (Hoover et al. 2014a). 

A single drought (Ambient! Drought) reduced BNPP by 27% relative to ambient precipitation 

(Ambient! Ambient), and a second drought (Drought! Drought) reduced BNPP by 63%, more 

than double the effect of a single drought (p=0.021, p<0.001, respectively, Figure 4.2). Further, 

BNPP in plots droughted 4 years earlier (Drought! Ambient) was 21% lower than in control 

plots (p=0.044). 

 Reductions in BNPP were most pronounced in shallow soil increments (F=23.3, p<0.01; 

Figures 4.2, A3.1). There was an effect of treatment at 0-10 cm (p=0.002), but not at 10-20 cm 

(p=0.11) or 20-30 cm (p=0.28) below the surface. BNPP in Drought! Drought plots was 

reduced from that in Ambient! Ambient plots by approximately 70%, 60%, and 50% in the 0-

10, 10-20, and 20-30 cm depth increments, respectively. As a result of this change in BNPP 

distribution during drought, BNPP in Drought! Drought plots was equally distributed among 

depths, in contrast to Ambient! Ambient plots, where BNPP declined significantly with depth 

(Figure 4.2). 
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 Treatment effects on BNPP were driven not by A. gerardii, but collectively by the rest of 

the species in the plant community. Though A. gerardii BNPP followed the same pattern as total 

BNPP, there was no effect of treatment (p=0.32) or of depth (p=0.28) on A. gerardii BNPP. 

In contrast to BNPP, root length production did not differ between Ambient! Drought and 

Drought! Drought plots (p=0.33; Figure 4.3). Compared to Ambient! Ambient plots, root 

length production was 52% (p=0.0011) and 63% (p=0.0002) lower in Ambient! Drought and 

Drought! Drought plots, respectively. Thus, while the magnitude of reduction in root mass and 

length production were the same in Drought! Drought plots, root length production was 

reduced more than root mass production in Ambient! Drought plots. Root length production 

in Drought! Ambient plots was reduced from Ambient! Ambient by 30% (slightly more than 

root mass production), but this difference was only marginally significant (p=0.056; Figure 4.3).  

Root diameter, root tissue density (RTD), and specific root length (SRL) all differed between A. 

gerardii vs. other species, across all treatments (p<0.001 for each trait). We did not detect an 

effect of treatment on diameter, RTD, or SRL of A. gerardii or of other species. However, non-

significant increases in SRL in Drought! Drought vs. Ambient! Drought plots and in 

Drought! Ambient vs. Ambient! Ambient plots likely contributed to the differences in 

patterns of root mass vs. length production among treatments (Figure A3.3). 

 Recovery after drought – The first year after the second drought was unusually wet, with 

ambient growing season precipitation almost 30% above the long-term average (Figure 4.4). 

Perhaps as a result of this very wet year, there was no effect of the former treatments on BNPP 

or root length production of either A. gerardii (F=0.559, p=0.65 and F=0.708, p=0.56, 

respectively) or the entire community (F=0.535, p=0.66 and F=2.68, p=0.070, respectively; 
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Figure 4.5). That is, BNPP and root length production in all former drought treatments 

recovered from drought (i.e., did not differ from Ambient! Ambient plots). Compared to the 

previous year (the last year of the second drought), BNPP and root length production were 

significantly higher in all formerly droughted plots during the recovery year, regardless of 

drought history (p=0.0057 A!D, p<0.001 D!D, p=0.020 D!A). BNPP and root length 

production were also higher in Ambient! Ambient plots during this wet year vs. the previous 

average year, but statistical significance was marginal (p=0.059). 

Discussion  

 Our study revealed that recurrent extreme drought, separated by 2 years with average  

precipitation, decreased BNPP by more than twice as much as a single extreme drought. That is, 

the history of previous drought exposure decreased root resistance to subsequent drought. 

Drought impacts in this ecosystem may thus be underestimated if climatic history is not 

considered. Increasingly larger declines in BNPP with repeated droughts could have important 

implications for ecosystem carbon cycling and storage, given the role of root production in soil 

organic matter formation and the role of soils, especially grassland soils, in global carbon 

sequestration (Köchy et al. 2015; Scharlemann et al. 2014; Hui and Jackson 2006; Risser et al. 

1981; Silver et al. 2010; Smith et al. 2008; Soussana et al. 2004). 

 Root length production declined more than root mass production during a single 

drought (52% vs. 27%, respectively), while root length and mass production declined equally 

during a second drought (63%), compared to ambient precipitation plots. Root length 

production is less commonly quantified than mass production, but it is likely a better indicator 

of the capacity of plants to acquire soil resources, as length reflects the volume of soil that 
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plants can access (Wilson 2014; Jackson et al. 1996; Casper and Jackson 1997). Although root 

length is usually related to soil mineral nutrients, the same may apply to soil water, especially 

when plant growth is limited by soil water deficits. Drought impacts on overall ecosystem 

function, beyond just net primary production, might thus be underestimated if only root mass 

production, and not root length production, are quantified. 

 Declines in root production were not driven by the dominant species, A. gerardii, which 

is responsible for most community and ecosystem dynamics aboveground (Smith and Knapp 

2003; Silletti et al. 2004). Instead, responses were due to low drought resistance of the 

subdominant species in the community (Figure 4.2). This suggests an important role of A. 

gerardii, which has relatively high water use efficiency (Turner and Knapp 1996), in maintaining 

ecosystem functioning during extreme drought. These differential responses are consistent 

with results from the first CEE drought, when photosynthesis and production of A. gerardii 

declined less than that of other species (Hoover et al. 2014b). We build upon that finding and 

extend it to belowground production as well. 

 In addition to A. gerardii root production declining less than that of other species during 

drought, A. gerardii roots were thicker, denser, and deeper than those of the subdominant 

species in the community (Figure A3.2).  This trait combination is likely advantageous during 

drought. Indeed, given that shallow BNPP was most negatively affected by drought, a deeper 

BNPP distribution likely increases drought resistance in this grassland. Previous research has 

linked differences in root depth distribution with differences in plant production (Nippert and 

Holdo 2015). Thicker, low-SRL roots are generally thought to indicate greater mycorrhizal 

association and “outsourcing” of resource acquisition to mycorrhizae (Bergmann et al. 2020). 
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We did not assess mycorrhizal abundance in our study, but previous research has shown that A. 

gerardii is indeed strongly mycorrhizal dependent (Wilson and Hartnett 1997, 1998; Smith et al. 

1999), so greater mycorrhizal association of A. gerardii vs. other species might thus have also 

contributed to its greater drought resistance. We did not find any evidence of plasticity in root 

traits. That is, there was no evidence of either A. gerardii or other species altering root traits to 

adapt to drought conditions (Figure A3.3). Thus, though certain traits appear to be beneficial in 

maintaining root production during drought, the species in this community might have little 

capacity to adjust root traits in response to drought. A major goal of trait-based ecology has 

been to link plant traits with key ecosystem functions but establishing such links has been 

challenging. Here we show that root production by a dominant mycorrhizal-dependent C4 grass 

species with lower SRL, wider root diameter, and a deeper root distribution declined less than 

the other species in the community during drought. Species with this trait combination should 

be better able than others to maintain root production under increasing drought frequency and 

severity. 

 After the first extreme drought (2010-11), ANPP in the CEE recovered in just one year 

(Hoover et al. 2014a). In contrast, our results show that BNPP had not fully recovered from that 

extreme drought even four years later (2015; Figure 4.2). Slow recovery of BNPP was thus a less 

apparent (i.e., belowground) but more persistent effect of extreme drought in our experiment. 

Predicted drought impacts might thus be underestimated if belowground dynamics are not fully 

considered. However, BNPP did recover in the year after the second drought (Figure 4.5), likely 

due to above-average ambient precipitation in this year, compared to near-average in the 

previous four years (Figure 4.4). That is, the almost two-thirds reduction in BNPP following two 
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sequential droughts did not preclude rapid post-drought recovery when resource availability 

was high. This raises the intriguing possibility that while average precipitation amounts appear 

to be sufficient for ANPP recovery after extreme drought, BNPP recovery may be more resource 

demanding. Overall, our results add to the growing evidence that precipitation change has 

different impacts on grassland primary production aboveground vs. belowground (Byrne et al. 

2013; Carroll et al. 2021; Chou et al. 2008; Wilcox et al. 2015, 2017; Post and Knapp 2020). It 

will be important to consider this dissimilarity of aboveground and belowground production 

responses when forecasting ecosystem responses to increasing climatic variability. 

 In summary, we found that previous exposure to an extreme drought decreased 

drought resistance of mesic grassland root production. After drought, root production 

recovered to ambient levels only when precipitation was above average. As climatic variability 

increases, causing greater drought frequency and severity as well as more extreme wet years, 

predicting and modeling changes in key aspects of global terrestrial carbon and water cycling 

will require understanding the unique dynamics of roots (in addition to more commonly 

measured aboveground dynamics) and responses during and after not only single but also 

multiple climate extremes. 
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Figure 4.1: Photo and treatment schematic of the Climate Extremes Experiment. Two 2-year 
droughts (growing season precipitation reduced 66%) were imposed in half of all plots in 2010-
11 and 2014-15, separated by 2 years of average ambient precipitation. A=Ambient, D=Drought 
(in 2010-11 and 2014-15). D!A plots were droughted during the first drought, A!D plots were 
droughted during the second drought, D!D plots were droughted during both droughts, A!A 
plots were never droughted. ↓ = year with root measurements. 
 

 

 

 

 

 

 

Figure 4.2: Average BNPP (+ one standard error) in the last year of the second 2-year extreme 
drought, for all treatments (left), and by depth in Ambient! Ambient and Drought! Drought 
treatments (right). The dashed portion of each bar indicates A. gerardii BNPP. Different letters 
indicate significant differences in total BNPP among treatments. There was no effect of either 
treatment or of depth on A. gerardii BNPP (dashed portion of bars), but A. gerardii BNPP was 
higher in A!A vs. D!D plots in the 0-10 cm increment (indicated by *).  
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Figure 4.3: Average root length production (+ one standard error) by treatment in the last year 
of the second 2-year extreme drought. The dashed portion of each bar indicates A. gerardii root 
length production. Different letters indicate significant differences in total root length 
production among treatments. A. gerardii root length production (dashed portion of bars) did 
not differ among treatments. 
 

 

 

 

 

 

 

 

 

Figure 4.4: Growing season precipitation in Ambient (A) and Drought (D) treatments throughout 
the Climate Extremes Experiment, and the long-term site average (horizontal dashed line). 
Ambient precipitation was 30% above average in the first year after the second drought (2016), 
compared to near average in preceding years. We posit that the wet year allowed root 
production to recover in all former drought treatments, despite remaining below ambient 
levels in previous years when precipitation was near average. 
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Figure 4.5: Average BNPP and root length production (+ one standard error) in the first year 
after the second 2-yr extreme drought. Both BNPP and root length production recovered from 
drought in this year, regardless of drought history. That is, none of the former drought 
treatments differed significantly from Ambient! Ambient plots, in terms of BNPP or root 
length production of the entire community or of A. gerardii (dashed portion of each bar). 
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CHAPTER 5: CONCLUSIONS 
 
 
 

As climate change continues to alter multiple aspects of precipitation regimes, it is 

important to understand how compounded precipitation changes will affect key ecosystem 

dynamics (IPCC 2013; Hughes et al. 2019; Seneviratne et al. 2012; Zscheischler et al. 2018; 

Zscheischler et al. 2020). My dissertation research assessed the impacts of drought and how 

they are altered when compounded by previous precipitation change. My findings show that 

predictions of drought impacts can be improved by: more consistent and detailed descriptions 

of drought condition, considering ecosystem precipitation history, and including belowground 

dynamics. 

My review of the recent ecological drought literature revealed that many authors 

provide little detail about studied drought conditions and what does or does not constitute a 

drought, which hampers synthesis and our ability to draw broad ecological conclusions about 

drought impacts. In chapter 2, I present guidelines to improve standardization of how ecological 

phenomena are described among studies, with the goal of improving future synthetic research 

efforts. I suggest that future publications report the magnitude and duration of drought within 

site-specific historical context, and I encourage ecologists to make use of standardized indices, 

long-term climate records, drought declarations from monitoring agencies, and published 

thresholds to define drought. Our understanding of the ecological impacts of drought will 

advance more rapidly within and among ecosystem types if future studies provide more 

consistent and quantitative characterizations of the droughts studied. 
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Concurrently with increasing drought impacts on ecosystems and forecasts for more 

frequent and extreme droughts in the future, precipitation patterns are intensifying such that 

much of the world is experiencing larger, more intense precipitation events (Dai 2012; Fischer 

and Knutti 2016; Fowler et al. 2021; Huntington 2006; IPCC 2013). In the study presented in 

chapter 3, I found that long-term exposure of a mesic grassland to an intensified precipitation 

pattern reduced soil moisture and ANPP but did not alter the response of ANPP to a 

subsequently imposed drought. However, a history of intensified precipitation patterns 

amplified reductions in BNPP during drought and reduced the size of the soil CO2 flux increase 

following rainfall events both during and after drought. From this study, I conclude that as 

precipitation patterns intensify and drought frequency and severity continue to increase 

globally, predicting changes in global terrestrial carbon cycling will require greater 

understanding of how ecosystem belowground dynamics respond to multiple compounded 

precipitation changes. 

 As the frequency, severity, and spatial extent of droughts increases with global climate 

change, it is increasingly likely that ecosystem responses to drought will reflect past as well as 

current drought conditions (Anderegg et al. 2020; Backhaus et al. 2014; Dreesen et al. 2014; 

Hoover et al. 2021; IPCC 2013). In the study presented in chapter 4, I found that recurrent 

extreme drought, separated by 2 years with average precipitation, decreased BNPP by more 

than twice as much as a single extreme drought. That is, the history of previous drought 

exposure decreased resistance to subsequent drought. As climatic variability increases, causing 

greater drought frequency and severity as well as more extreme wet years, predicting changes 

in key aspects of global terrestrial carbon and water cycling will require understanding the 
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unique dynamics of roots (in addition to more commonly measured aboveground dynamics) 

during and after multiple extreme climate events. 

 The findings from both of these studies (chapters 3 and 4) have important implications 

for long-term ecosystem carbon cycling and sequestration. Root production is key in soil 

organic matter formation and soils, especially grassland soils, are key in global carbon storage 

(Hui and Jackson 2006; Köchy et al. 2015; Risser et al. 1981; Scharlemann et al. 2014; Silver et 

al. 2010; Smith et al. 2008; Soussana et al. 2004). Because root production decreased in both 

studies, it is possible that the formation of soil organic matter and eventually the amount of soil 

carbon stored in this ecosystem could decrease with continued precipitation changes. 

 Both studies also add to growing evidence that grassland belowground responses to 

precipitation change should not be inferred from aboveground responses (Byrne et al. 2013; 

Carroll et al. 2021; Chou et al. 2008; Post and Knapp 2020; Wilcox et al. 2015, 2017). In chapter 

3, precipitation history altered the response of BNPP, but not ANPP, to extreme drought. In 

chapter 4, I found that BNPP had not fully recovered from an extreme drought that occurred 

four years previous, but ANPP recovered from that same drought in just one year (Hoover et al. 

2014). Slow recovery of BNPP was thus a more persistent effect of extreme drought than 

responses observed aboveground. It will be important to consider this dissimilarity of 

aboveground and belowground production responses when forecasting ecosystem responses 

to increasing climatic variability. 

 In addition, both studies suggest an important role of the dominant species, A. gerardii, 

in maintaining ecosystem functioning during drought. In both studies, the declines in root 

production during drought were driven not by A. gerardii, but by the subdominant species in 
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the community. I identified several characteristics that distinguished the roots of A. gerardii 

from those of the subdominant species, which could help explain this difference in responses. 

Mainly, that the roots of A. gerardii were thicker and distributed deeper in the soil than those 

of the subdominant species. This suggests that root traits could be useful in understanding and 

predicting ecosystem responses to precipitation change (Iversen et al. 2017). 

 In summary, I found that understanding and predicting ecological impacts of drought 

can be improved by ecologists providing more detailed and consistent descriptions of drought 

conditions in their studies, accounting for precipitation history, and considering changes in 

belowground dynamics. In light of increasing impacts of precipitation changes, it is essential 

that ecologists study and describe these changes thoroughly. 
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APPENDIX 1 
 

 
 
Table A1.1: List of the publications included in my review of how ecologists define drought, and 
how I classified each publication. In the classification column, the initial letter(s) refers to the 
approach(es) used to study drought, abbreviated as the first letter (see Figure 2.2). The 
number(s) refers to the category of drought description, ordered as they are listed in Table 2.1 
(e.g., 1 = “Dry”). The letter(s) after the number(s) refers to the ecosystem(s) in which drought 
was studied, abbreviated as the first one or two letters (see Figure 2.3, N= not included in the 
ecosystem assessment because the ecosystem type was not specified, the study was not 
ecosystem-specific or the ecosystem was not one of the six most common). The publications 
included in the SPEI analysis (Figure 2.4) are indicated by shading. 
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Mediterranean stream during flow fragmentation. Science of The Total Environment, 553, 330–339.  
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the Brazilian semi-arid biome from climate change. Biotropica, 49(5), 753–760.  
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Acuña, V., Muñoz, I., Giorgi, A., Omella, M., Sabater, F., & Sabater, S. (2005). Drought and postdrought recovery 
cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American 
Benthological Society, 24(4), 919–933.  
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Adams, R. A. (2010). Bat reproduction declines when conditions mimic climate change projections for western North 
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APPENDIX 2 
 
 

 

Table A2.1: Average (one standard error) dependent variable values from historically ambient 
and altered precipitation pattern treatments during drought and after drought. 
 

 Drought (2015) After Drought (2016) 
Variable Ambient  Intense  Ambient  Intense  

Soil moisture (% VWC) 

15 cm  

30 cm 

 

11.7 (0.47) 

18.4 (0.97) 

 

11.2 (0.68) 

20.0 (1.4) 

 

21.8 (0.94) 

28.9 (2.1) 

 

21.6 (1.0) 

33.3 (1.3) 

ANPP (g m-2)  

All species  

A. gerardii 

Subdominant species  

 

447 (28)  

198 (12) 

250 (16) 

 

395 (25)  

189 (17) 

206 (23) 

 

693 (25)  

345 (36) 

338 (26) 

 

694 (18)  

324 (46) 

355 (38) 

BNPP (g m-2)  

All species  

A. gerardii  

Subdominant species 

 

206 (9.3) 

66.7 (13) 

140 (11)  

 

158 (16) 

93.5 (9.1) 

64.8 (9.0) 

 

266 (19) 

159 (17) 

98.8 (18) 

 

275 (30) 

161 (25) 

109 (15) 

BNPP: ANPP 

All species  

A. gerardii  

Subdominant species 

 

0.49 (0.04) 

0.35 (0.06) 

0.82 (0.11) 

 

0.37 (0.06) 

0.51 (0.10) 

0.42 (0.10) 

 

0.38 (0.03) 

0.48 (0.06) 

0.40 (0.10) 

 

0.39 (0.05) 

0.57 (0.11) 

0.42 (0.05) 

Root length production (km m-2)  

All species 

A. gerardii 

Subdominant species 

 

15.7 (0.76) 

3.19 (0.30) 

9.32 (1.0) 

 

11.1 (0.40) 

3.49 (0.38) 

5.70 (0.93) 

 

22.4 (1.9) 

10.4 (1.2) 

11.5 (2.3) 

 

20.8 (2.2) 

9.06 (1.6) 

10.8 (2.1) 

Soil CO2 flux (µmol m-2 s-1)  

Growing season average 

24 hours after rainfall 

 

6.50 (0.31) 

7.50 (0.49) 

 

5.81 (0.16) 

5.91 (0.27) 

 

10.5 (0.14) 

13.3 (0.38) 

 

10.0 (0.16) 

11.6 (0.48) 
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Figure A2.1: Average + one standard error specific root length (SRL) and root tissue density 
(RTD) of A. gerardii vs. subdominant species in the community (historical treatments and 
sample years combined, because we did not detect any significant differences between historic 
treatments or between years). * = significant (p<0.05) difference between A. gerardii vs. 
subdominant species. Pictures: washed roots of A. gerardii and subdominant species. 
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Figure A2.2: Average + one standard error standing crop root biomass in the final year of the 
RaMPs ambient vs. intense precipitation treatment by 10-cm depth increment. Inset: Average + 
one standard error total standing crop root biomass in the top 60 cm below the soil surface. 
There were no differences between treatments overall or in any individual depth increments. 
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Table A2.2: Results of statistical analyses of the main effects of historical treatment (ambient or 
intense precipitation pattern), year (2015 drought year and 2016 after-drought year), and the 
treatment × year interaction on dependent variables from our study. 
 
 

Variable Effect Df p-value  

Total ANPP Treatment 1, 18 0.743 

Year 1, 18 <0.001 

Treatment × year 1, 18 0.823 

A. gerardii ANPP Treatment 1, 18 0.837 

Year 1, 18 0.010 

Treatment × year 1, 18 0.623 

Subdominant species ANPP Treatment 1, 18 0.642 

Year 1, 18 0.021 

Treatment × year 1, 18 0.779 

Total BNPP Treatment 1, 18 0.023 

Year 1, 18 0.001 

Treatment × year 1, 18 0.092 

A. gerardii BNPP Treatment 1, 18 0.270 

Year 1, 18 0.010 

Treatment × year 1, 18 0.465 

Subdominant species BNPP Treatment 1, 18 0.006 

Year 1, 18 0.030 

Treatment × year 1, 18 0.017 

Total ANPP: BNPP Treatment 1, 18 0.106 

Year 1, 18 0.726 

Treatment × year 1, 18 0.194 

A. gerardii ANPP: BNPP Treatment 1, 18 0.187 

Year 1, 18 0.664 

Treatment × year 1, 18 0.677 

Subdominant species ANPP: BNPP Treatment 1, 18 0.005 

Year 1, 18 0.965 

Treatment × year 1, 18 0.028 

Total root length production Treatment 1, 18 0.024 

Year 1, 18 <0.001 

Treatment × year 1, 18 0.310 

A. gerardii root length production Treatment 1, 18 0.667 

Year 1, 18 0.027 

Treatment × year 1, 18 0.396 

Subdominant species root length 
production 

Treatment 1, 18 0.314 

Year 1, 18 0.088 

Treatment × year 1, 18 0.321 
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Contrast comparisons assessing differences between ambient vs. intense historical treatments 
within each year of our study (2015 drought year vs. 2016 after-drought year) and differences 
between years within each historical treatment. 
 
 

Variable Effect p-value  

Total ANPP Ambient vs. intense treatment (2015) 0.78 

Ambient vs. intense treatment (2016) 0.99 

2015 vs. 2016 (ambient treatment) <0.001 

2015 vs. 2016 (intense treatment) <0.001 

A. gerardii ANPP Ambient vs. intense treatment (2015) 0.67 

Ambient vs. intense treatment (2016) 0.70 

2015 vs. 2016 (ambient treatment) 0.010 

2015 vs. 2016 (intense treatment) 0.001 

Subdominant species ANPP Ambient vs. intense treatment (2015) 0.59 

Ambient vs. intense treatment (2016) 0.95 

2015 vs. 2016 (ambient treatment) 0.014 

2015 vs. 2016 (intense treatment) 0.044 

Total BNPP Ambient vs. intense treatment (2015) 0.28 

Ambient vs. intense treatment (2016) 0.61 

2015 vs. 2016 (ambient treatment) 0.049 

2015 vs. 2016 (intense treatment) 0.025 

A. gerardii BNPP Ambient vs. intense treatment (2015) 0.16 

Ambient vs. intense treatment (2016) 0.85 

2015 vs. 2016 (ambient treatment) 0.014 

2015 vs. 2016 (intense treatment) 0.048 

Subdominant species BNPP Ambient vs. intense treatment (2015) 0.0027 

Ambient vs. intense treatment (2016) 0.47 

2015 vs. 2016 (ambient treatment) 0.14 

2015 vs. 2016 (intense treatment) 0.10 

Total ANPP: BNPP Ambient vs. intense treatment (2015) 0.18 

Ambient vs. intense treatment (2016) 0.62 

2015 vs. 2016 (ambient treatment) 0.019 

2015 vs. 2016 (intense treatment) 0.71 

A. gerardii ANPP: BNPP Ambient vs. intense treatment (2015) 0.24 

Ambient vs. intense treatment (2016) 0.82 

2015 vs. 2016 (ambient treatment) 0.18 

2015 vs. 2016 (intense treatment) 0.78 

Subdominant species ANPP: BNPP Ambient vs. intense treatment (2015) 0.039 

Ambient vs. intense treatment (2016) 0.62 

2015 vs. 2016 (ambient treatment) 0.022 

2015 vs. 2016 (intense treatment) 0.99 
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Total root length production Ambient vs. intense treatment (2015) <0.001 

Ambient vs. intense treatment (2016) 0.58 

2015 vs. 2016 (ambient treatment) 0.049 

2015 vs. 2016 (intense treatment) 0.019 

A. gerardii root length production 
 

Ambient vs. intense treatment (2015) 0.65 

Ambient vs. intense treatment (2016) 0.81 

2015 vs. 2016 (ambient treatment) 0.014 

2015 vs. 2016 (intense treatment) 0.045 

Subdominant species root length 
production 

Ambient vs. intense treatment (2015) 0.038 

Ambient vs. intense treatment (2016) 0.85 

2015 vs. 2016 (ambient treatment) 0.86 

2015 vs. 2016 (intense treatment) 0.064 
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APPENDIX 3 
 
 
 

 

 

 

 

 

 

 

 

Figure A3.1: Average BNPP (+ one standard error) by depth increment in all treatments during 
the last year of the second 2-year drought. The largest declines in BNPP during drought were in 
the shallowest soil increments. Different letters indicate significant differences among 
treatments within a depth increment. 
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Figure A3.2: Left: Average (+ one standard error) root diameter, specific root length, and root 
tissue density of A. gerardii and of subdominant species. Values are averaged across treatments 
and years because there were no differences among treatments or between years. Compared 
to the rest of the species in the community (collectively), A. gerardii has a larger diameter, 
lower SRL and higher RTD. Different letters indicate significant differences between A. gerardii 
vs. the rest of the species in the community. Right: pictures of washed roots of A. gerardii and 
of subdominant species. 
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Figure A3.3: Average (+ one standard error) root diameter, root tissue density, and specific root 
length of A. gerardii and of subdominant species in all treatments during the last year of the 
second 2-year drought and during the first year after that drought. Root traits were overall 
quite stable. There were no significant effects of year or of treatment on any of these traits. SRL 
of the subdominant species did increase (non-significantly) during the second drought and after 
drought, altering the drought responses of BNPP vs. root length production. 
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Table A3.1: Average (one standard error) dependent variable values from each treatment 
during drought and after drought. 
 
 
 During Drought (2015) After Drought (2016) 

Variable A! A D! A A! D  D! D  A! A  D! A  A! D D! D  

BNPP (g m-2)  

All species  

A. gerardii  

Subdominant 

species 

 

287 (10) 

119 (25) 

159 (23) 

 

226 (22) 

136 (22) 

90 (17) 

 

209 (15) 

105 (20) 

104 (15) 

 

106 (13) 

59 (11) 

47 (7) 

 

370 (27) 

138 (34) 

231 (35) 

 

319 (43) 

189 (21) 

156 (26) 

 

325 (38) 

191 (47) 

134 (32) 

 

321 (21) 

154 (28) 

172 (31) 

Root length 

production (km m-2)  

All species 

A. gerardii 

Subdominant 

species 

 

 

32.5 (3.8) 

8.33 (1.2) 

21.0 (1.4) 

 

 

22.8 (2.7) 

8.11 (2.4) 

14.7 (2.4) 

 

 

15.7 (0.8) 

3.19 (1.0) 

9.32 (1.1) 

 

 

12.2 (1.9) 

5.42 (2.8) 

7.01 (0.9) 

 

 

44.3 (1.9) 

7.48 (2.2) 

36.9 (3.9) 

 

 

38.1 (3.8) 

12.0 (1.1) 

27.8 (3.7) 

 

 

31.7 (3.7) 

10.0 (2.9) 

21.7 (3.4) 

 

 

38.3 (3.1) 

8.82 (1.6) 

29.5 (3.2) 

 
 
 
 
 
 
 


