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ABSTRACT 

SECOND-ORDER SUB-ARRAY CARTESIAN PRODUCT SPLIT-PLOT DESIGN 

Fisher (1926) laid down the fundamental principles of design of experiments:  

factorization, replication, randomization, and local control of error.  In industrial 

experiments, however, departure from these principles is commonplace.  Many industrial 

experiments involve situations in which complete randomization may not be feasible because 

the factor level settings are impractical or inconvenient to change, the resources available to 

complete the experiment in homogenous settings are limited, or both.  Restricted 

randomization due to factor levels that are impractical or inconvenient to change can lead to 

a split-plot experiment.  Restricted randomization due to resource limitation can lead to 

blocking.  Situations that require fitting a second-order model under those conditions lead to 

a second-order block split-plot experiment.  Although response surface methodology has 

experienced a phenomenal growth since Box and Wilson (1951), the departure from standard 

methods to tackle second-order block split-plot design remains, for the most part, unexplored.  

Most graduate textbooks only provide a relatively basic treatise of the subject.  Peer-reviewed 

literature is scarce, has a limited number of examples, and provides guidelines that often are 

too general.  This deficit of information leaves practitioners ill prepared to face the roadblocks 

illuminated by Simpson, Kowalski, and Landman (2004).   

Practical strategies to help practitioners in dealing with the challenges presented by 

second-order block split-plot design are provided, including an end-to-end, innovative 

approach for the construction of a new form of effective and efficient response surface design 

referred to as second-order sub-array Cartesian product split-plot design.  This new form of 

design is an alternative to ineffective split-plot designs that are currently in use by the 

manufacturing and quality control community.  The design is economical, the prediction 

variance of the regression coefficients is low and stable, and the aliasing between the terms 

in the model and effects that are not in the model as well as the correlation between similar 

effects that are not in the model is low.  Based on an assessment using well-accepted key 

design evaluation criterion, it is demonstrated that second-order sub-array Cartesian product 

split-plot designs perform as well or better than historical designs that have been considered 

standards up to this point.  
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1 Introduction 

The quest for understanding is a hallmark in the rise of human civilization.  

Experimentation is the most fundamental method for acquiring that understanding.  It took 

centuries to formulate the synergistic amalgamation of principles and methods that enable 

true experimentation—design of experiments and response surface methodology.  Since the 

development of design of experiments in the 1920’s and subsequent expansion of response 

surface methodology in the 1950’s, the use of these methods has expanded remarkably to 

virtually every industrial, technological, service, and military sector.  Both practitioners and 

scholars undertake tasks of exceptional personal skills and conspire daily to add to the 

response surface methodology’s body of knowledge.  Standing on the shoulders of those 

giants, this research provides a practical application and a foundation for further research 

on a type of design referred to as second-order sub-array Cartesian product split-plot design. 

1.1 Research Perspective 

Fisher (1926) laid down the fundamental principles of design of experiments: 

factorization, randomization, replication, and local control of error.  Factorization consists of 

making deliberate, simultaneous changes to the experimental factors to find the individual 

or mutual effect those factors have on the response variables of interest.  Replication is the 

application of a combination of experimental factors, called treatments, to the experimental 

units, to obtain a valid estimate of the experimental error.  Randomization refers to the 

random assignment of treatments to experimental units and to the random assignment of 

experimental runs to treatments.  Randomization averages out the effects of undesirable 

factors present in the experiment, generally enables the assumption that the experimental 

errors are independent and identically distributed random variables, and leads to an 

unbiased estimate of variance.  Local control of error is an experiment design technique that 

allows for minimizing the influence of nuisance factors on the response by partitioning the 

experimental units into homogeneous subsets called blocks.  Local control improves the 

precision of the comparison of factors of interest and reduces or eliminates the component of 

the variability transmitted from nuisance factors.  Sometimes it is not possible to carry out 

an experiment while adhering simultaneously to all of the principles of design of experiments. 
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Restrictions in randomization involving heterogeneous experimental settings require 

some form of local control of error, or error-control design.  Blocking is both a technique for 

controlling error and a form of restricted randomization.  Blocking improves the precision of 

the comparison between factors by arranging the treatments into groups, or blocks, that have 

similar sources of variability irrelevant to the experiment.  The differences in variability 

between the blocks due to irrelevant sources are identified and removed analytically leaving 

in the experimental error only the differences within treatments in the same block, which 

leads to the interpretation that the blocks are homogenous.  Similarly, the experimental 

settings for split-plot experiments are heterogeneous.  An experimental setting is 

homogenous if it is uniform in nature or composition and the transition between state values 

at any two times depends only on those times.  Conversely, a non-uniform experimental 

setting is heterogeneous.  The error-control design is the layout of the treatments in the 

experiment.  The most common error-control designs for industrial applications are the 

completely randomized design, the randomized complete block design, and the incomplete 

block design.   

Industrial experiments may involve situations in which the complete randomization 

of experimental runs may not be feasible because of factor level settings that are impractical 

or inconvenient to change, limitations in the resources available to complete the experiment 

in homogeneous settings, or both.  For example, some experiments involve combinations of 

materials that are rare-to-find as well as easy-to-find.  Other experiments involve the 

application of some treatments to large experimental units as well as the application of other 

treatments to smaller experimental units.  Similarly, some experiments require the batch 

processing of experimental units for some factors but not for other factors, or the stream 

processing of different experimental units requiring the application of the same treatment.  

Likewise, some experiments involve factors that need to be estimated more precisely than 

other factors, the comparison of equipment, or factor levels that are hard-to-change and factor 

levels that are easy-to-change.  Practitioners refer to all of these situations collectively as 

experiments with hard-to-change factors and easy-to-change factors.  Restricted 

randomization due to factor levels that are impractical or inconvenient to change can lead to 

a split-plot experiment.   
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Split-plot experiments have their origin in agronomic research.  In agronomic 

experiments, some factors like irrigation method are restricted to large areas of land, called 

whole-plots.  Whole-plots are split into smaller areas of land, called sub-plots, which allow 

for the individual application of treatments, such as seed variation.  Factors associated with 

whole-plots are called whole-plot factors while factors associated with sub-plots are called 

sub-plot factors.  Because the whole-plots are split into sub-plots, there is more experimental 

material for the whole-plots than for the sub-plots.   

Like in agronomic experiments, in industrial split-plot experiments the hard-to-

change factors are typically associated with the whole-plots while the easy-to-change factors 

are typically associated with the sub-plots.  In a simple split-plot experiment, the sub-plot 

treatments are randomly assigned to the whole-plot treatments.  Consequently, a split-plot 

experiment can be thought of as a superposition, or nesting, of two experiments—one 

experiment based on the whole-plot treatments and another experiment based on the sub-

plot treatments.  Thus, whole-plots have one type of experimental units while sub-plots have 

another type.  An experimental unit is the smallest unit of material that is independently 

treated with a specific combination of factors.  Experimental units can consist of one or more 

observational units.  An observational unit is a unit of experimental material where the 

measurements are taken.  Clearly, the experimental units for the whole-plots are larger than 

for the sub-plots.  The sub-plots are the observational units for the whole-plots.  Typically, 

applying treatments to the whole-plots is harder than applying treatments to the sub-plots.  

In some cases, setting the factor levels for the whole-plots is an imprecise operation; 

consequently, the whole-plot variance is large compared to the sub-plot variance. 

An experiment is subject to unavoidable variations in both the experimental units and 

the observational units.  The variability between and within experimental units form the 

bases for the experimental error.  Because experimental error comes from replicating the 

experimental units, split-plots have one error term associated with whole-plot treatments 

and one error term associated with sub-plot treatments—the most essential characteristic of 

the split-plot experiment.  The error terms serve to test the significance of the whole-plot 

factors, of the whole-plot by sub-plot interactions, and of the sub-plot factors.  Clearly, there 

are more degrees-of-freedom available for estimating the sub-plot variance, 𝜎2, than for 



 

4 

estimating the whole-plot variance, 𝜎𝛿
2, which implies better statistical power to detect 

significant sub-plot effects than whole-plot effects. 

Yates (1935) outlined the design of split-plot experiments.  Figure 1-1 illustrates a 

variation of the split-plot experiment for two whole-plot factors and two sub-plot factors at 

two levels each.  The design, referred to as a 22𝑥22 block split-plot experiment, involves a 

four-fold randomization schema: (1) the random assignment of blocks to whole-plots; (2) the 

random assignment of whole-plots to sub-plots; (3) the random assignment of sub-plots to 

observational units; and (4) the random selection of observational units. 

In theory, the design is very simple, although it is more complex than a comparable 

completely randomized design.  First, the randomized whole-plot treatments are arranged in 

a randomized complete block structure.  Then, each whole-plot is divided into sub-plots to 

which the sub-treatments are randomly assigned and arranged in a randomized complete 

block structure.  Finally, the observational units are randomly assigned to the sub-plot 

treatments.  A randomized complete block error-control design for both the whole-plot 

treatments and the sub-plot treatments means that each treatment is applied once per block.  

Thus, the second block is a replicate of the first block. 

The design has three residual degrees-of-freedom at the whole-plot level and one 

residual degree-of-freedom for blocks.  If the error-control design for all eight whole-plot 

treatments was a completely randomized design (without blocks), there would be an extra 

degree-of-freedom for estimating 𝜎𝛿
2.  In a split-plot design where the error-control design for 

the whole-plot treatments is a completely randomized design, the experimental units are the 

whole-plots.  Conversely, in a split-plot design where the error-control design for the whole-

plot treatments is a randomized complete block design, the experimental units are the blocks.  

When executing the split-plot experiment, the sub-plot factors are reset between runs at fixed 

settings of the whole-plot factors, and the whole-plot factors are reset within and between 

blocks.  Note that the primary reason to carry out a split-plot experiment is to reduce the 

resetting of the whole-plot factors. 
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Figure 1-1.  Variation of the split-plot experiment 

A mixed linear model consistent with the design in Figure 1-1 is:  

( ) ( ) ( ) ( ) ( ) ( )
kijmn k i j ij k m n mn im in jm jn

y                                (1-1) 

k = 1, 2, 3, …,w ;   i = 1, 2, 3, …, a;   j = 1, 2, 3, …, b;   m = 1, 2, 3, …, c;   n = 1, 2, 3, …, d 

where 

𝛿𝑘 = (𝜂𝛼)𝑘𝑖 + (𝜂𝜏)𝑘𝑗 + (𝜂𝛼𝜏)𝑘𝑖𝑗 

𝜀𝑘𝑖𝑗𝑚𝑛 = (𝜂𝛽)𝑘𝑚 + (𝜂𝜌)𝑘𝑛 + (𝜂𝛽𝜌)𝑘𝑚𝑛 + (𝜂𝛼𝛽)𝑘𝑖𝑚 + (𝜂𝛼𝜌)𝑘𝑖𝑛 + (𝜂𝜏𝛽)𝑘𝑗𝑚 + (𝜂𝜏𝜌)𝑘𝑗𝑛 + 𝜀′𝑘𝑖𝑗𝑚𝑛 

𝛿𝑘 = N(0, 𝜎𝛿
2)  𝜀𝑘𝑖𝑗𝑚𝑛 = N(0, 𝜎2)  𝜀′𝑘𝑖𝑗𝑚𝑛 = N(0, 𝜎𝜖

2 ) 

and 𝑦𝑘𝑖𝑗𝑚𝑛 is the observation corresponding to the effects of the ith level of 𝑧1, jth  level of 𝑧2, 

mth level of 𝑥1, nth level of 𝑥2, and the kth block.  𝜇 is the grand mean and 𝜂 corresponds to 

blocks (or replicates).  ∝𝑖 and 𝜏𝑗 are the fixed effects associated with the whole-plot factors, 

(∝ 𝜏)𝑖𝑗  is the fixed effect due to the two-factor interaction between the whole-plot factors, and 

𝛿𝑘 is the pooled whole-plot error component that represents all of the block by whole-plot 

factors and block by two whole-plot factor interactions.  𝛽𝑚 and 𝜌𝑛 are the fixed effects 

associated with the sub-plot factors and (𝛽𝜌)𝑚𝑛is the fixed effect due to the two-factor 
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interaction between the two sub-plot factors.  The terms (𝛼𝛽)𝑖𝑚, (𝛼𝜌)𝑖𝑛 (𝜏𝛽)𝑗𝑚, and (𝜏𝜌)𝑗𝑛 are 

the two-factor interactions between the whole-plot factors and sub-plot factors, and 𝜀𝑘𝑖𝑗𝑚𝑛  is 

the pooled sub-plot error component that includes the experimental error 𝜀′𝑘𝑖𝑗𝑚𝑛 , the 

interactions between the blocks by sub-plot factors, blocks by two sub-plot factor interactions, 

and all of the block by whole-plot factor by sub-plot factor interactions.  Fixed effect 

interactions higher than second-order (𝛼𝛽𝜌)𝑖𝑚𝑛, (𝜏𝛽𝜌)𝑗𝑚𝑛, (𝛼𝜏𝛽)𝑖𝑗𝑚, (𝛼𝜏𝜌)𝑖𝑗𝑛, and (𝛼𝜏𝛽𝜌)𝑖𝑗𝑚𝑛 

are considered negligible and are not included in the model.  All of the effects are considered 

deviations from the grand mean, there is no correlation between the random effects 

components and the fixed effects components (strict exogeneity assumption), and the two 

pooled random error terms are independent and identically distributed.  Thus, 





1

0
a

i
i

   
1

0
b

j
j




   
1

0
c

m
m




   
1

0
d

n
n




  

1 1

( ) ( ) 0
a b

ij ij
i j

 
 

    
1 1

( ) ( ) 0
c d

mn mn
i j

 
 

    
1 1

( ) ( ) 0
a c

im im
i j

 
 

    

1 1

( ) ( ) 0
a d

in in
i j

 
 

    
1 1

( ) ( ) 0
b c

jm jm
i j

 
 

    
1 1

( ) ( ) 0
b d

jn jn
i j

 
 

    

𝐶𝑜𝑣[𝛿𝑘 , 𝛼𝑖] = 𝐶𝑜𝑣[𝛿𝑘 , 𝜏𝑗] = 𝐶𝑜𝑣[𝛿𝑘 , 𝛽𝑚] = 𝐶𝑜𝑣[𝛿𝑘 , 𝜌𝑛] = 0  

𝐶𝑜𝑣[𝜀, 𝛼𝑖] = 𝐶𝑜𝑣[𝜀, 𝜏𝑗] = 𝐶𝑜𝑣[𝜀, 𝛽𝑚] = 𝐶𝑜𝑣[𝜀, 𝜌𝑛] = 0  

𝐶𝑜𝑣[𝛿𝑘 , (𝛼𝜏)𝑖𝑗] = 𝐶𝑜𝑣[𝜀, (𝛼𝜏)𝑖𝑗] = 0 

𝐶𝑜𝑣[𝛿𝑘 , (𝛽𝜌)𝑚𝑛] = 𝐶𝑜𝑣[𝛿𝑘 , (𝛼𝛽)𝑖𝑚] = 𝐶𝑜𝑣[𝛿𝑘 , (𝛼𝜌)𝑖𝑛] = Cov[𝛿𝑘 , (𝜏𝛽)𝑗𝑚] = 𝐶𝑜𝑣[𝛿𝑘 , (𝜏𝜌)𝑗𝑛] = 0  

𝐶𝑜𝑣[𝜀, (𝛽𝜌)𝑚𝑛] = 𝐶𝑜𝑣[𝜀, (𝛼𝛽)𝑖𝑚] = 𝐶𝑜𝑣[𝜀, (𝛼𝜌)𝑖𝑛] = Cov[𝜀, (𝜏𝛽)𝑗𝑚] = 𝐶𝑜𝑣[𝜀, (𝜏𝜌)𝑗𝑛] = 0  

In general, split-plot experiments provide less information on the whole-plot factors 

relative to a completely randomized experiment—an experiment in which the assignment of 

treatments to experimental or observational units and the run order are completely 

randomized—of the same size.  However, a gain on information on the sub-plots effects and 

the sub-plot by whole-plot interactions compensates the loss of information on the whole-plot.  

Because the estimates involving sub-plot factors are more precise, the sub-plot variance tends 
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to be smaller than the whole-plot variance.  The assumption is that these errors are 

independent and identically distributed normal random variables with constant variance.   

Since each whole-plot contains only one whole-plot treatment (i.e. one combination of 

whole-plot factors), the differences between treatments coincides with the difference between 

whole-plots.  Hence, they are confounded.  Thus, there is only a trivial amount of information 

from between whole-plots comparison while the information within whole-plot comparison is 

unaffected by the confounding.  In experiments with unreplicated whole-plots, only the error 

term associated with the sub-plots can be estimated and it cannot be used to test the 

significance of the whole-plot factors.  Thus, the reduction of error and the valid estimation 

of error are key concepts in split-plot experiments. 

In many industrial experiments, it is necessary to fit a second-order model to the 

observations to reveal the true underlying process conditions or product characteristics.  Box 

and Wilson (1951) catalyzed the application of response surface methodology to industrial 

experiments.  Response surface methodology is a sequential strategy of experimentation that 

incorporates statistical methods to fit a low-order Taylor series approximation to the true 

underlying mechanism.  Because traditional response surface methodology assumes that all 

factors have the same importance or the same value, which leads to completely randomized 

experiments, the following second-order Taylor series approximation is commonly used to fit 

the observations: 

2

0

1 2 1

( )     
   

      
k k k k

i i ji j i ii i ij

i j i i i

E y x x x x    (1-2) 

where y represents the response, the 𝑥′𝑠 represents the independent variables or factors to 

which the observational units are subjected to, the 𝛽′𝑠 represents the regression coefficients 

that are determined empirically, and 𝜀𝑖𝑗 represents the random error component that 

incorporates measurement error, variability from uncontrolled factors, variability in the 

experimental units, general background noise, etc.  The model error is assumed to be an 

independent and identically distributed N(0, 2 ) random variable and the variance 2  is 

assumed constant throughout the experimental region.  For k factors, the number of model 

terms, including the intercept, is: 
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( 1)
1 2

2


  

k k
t k  

In a split-plot experiment, the assumption that all of the factors have the same 

importance or the same value does not hold.  To fit a second-order split-plot model to the 

observations, the Taylor series approximation in Equation (1-2) takes the form: 

2 2

0

1 2 1 1 2 1 1 1

( )        
         

             
p p p p q q q p q q

i i ji j i ii i i i ji j i ji j i ii i

i j i i i i j i i j i i

E y z z z z x x x z x x ...(1-3) 

where now 𝑥𝑞 represents the vector for the q sub-plot factors, 𝑧𝑝 represents the vector for the 

p whole-plot factors, and k = p + q.  The 𝛽′𝑠 represent the regression coefficients for the 

partition of the information matrix that has whole-plot linear terms, 𝜌′𝑠 represent the 

coefficients for the partition that has whole-plot pure quadratic terms, 𝛾′𝑠 represent the 

coefficients for the partition that contains sub-plot linear terms and whole-plot by sub-plot 

interaction terms, and 𝜃′𝑠 represent the coefficients for the partition that contains sub-plot 

quadratic terms.  For p = 2 and q = 2, Equation (1-3) reduces to: 

               

0

2 2

1 1 2 2 12 1 2 11 1 22 2

1 1 2 2 12 1 2 11 1 1 12 1 2 21 2 1 22 2 2

2 2

11 1 22 2

( )

            

            

           



    

      

 

 

    

      



E y

z z z z z z

x x x x z x z x z x z x

x x

 (1-4) 

In industrial applications, a set of experiments are typically carried out sequentially, 

or in blocks, to explore a limited region of interest (region R) that is contained within a larger 

region of operability (region O).  The first block typically consists in running a screening 

experiment to identify the factors and interactions that have large effects on the responses 

of interest and to determine the presence of curvature in the response surface.  Experiment 

designs that are suitable for this phase and generally adequate to fit the first-order model 

include 2k factorial design with center points and 2k-p fractional factorial design with center 

points.  If the curvature is significant, the first-order model may become inadequate to 

represent the response surface and a second or higher-order model is needed.  Then, in the 

subsequent blocks, the screening designs are augmented to produce a new design that 

ultimately produces a response surface model that accurately represents the entire design 
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space and that can be used to determine the combination of factors levels that optimize the 

responses.  Blocking is required to eliminate the effects caused by nuisance factors. 

When using Equation (1-3) to model a response surface, practitioners may confront 

many of the practical issues embedded within the equation that are associated with restricted 

randomization, design alternatives, non-linear effects, sequential assembly, variance 

estimation, confounding, experimental and observational units, heterogeneous experimental 

settings, and enough degrees-of-freedom to estimate all of the model coefficients as well as 

whole-plot and sub-plot variances.  While Myers, Montgomery, and Anderson-Cook (2009) 

provided design evaluation criteria for split-plot design consistent with the standard Box and 

Draper (1975), sometimes the selection of a design over various alternatives is not a 

straightforward process, and the selected design is not adequate for dealing with those issues.  

Hence, there is a need to adapt or create new approaches to dealing with second-order split-

plot design.  Simpson, Kowalski, and Landman (2004) illuminated the issues surrounding 

Equation (1-4) and emphasized the importance of modifying traditional response surface 

methods to fit specific needs while preserving the desirable properties of the response surface 

designs. 

1.2 Motivation 

Simpson, Kowalski, and Landman (2004) studied the effects that four factors had on 

the aerodynamic performance of a NASCAR Winston Cup Chevrolet Monte Carlo stock car 

in a wind tunnel.  The study considered four significant factors: front height, rear height, yaw 

angle, and grille configuration.  The levels for the front height and rear height factors were 

hard-to-change during the experiment while the levels for the yaw angle and grille 

configuration factors were easy-to-change, which lead to a split-plot structure.  The design is 

illustrated in Figure 1-2. 

Figure 1-2 is a projection of a four dimensional hyper-space into a two dimensional 

space.  The axes for the whole-plot factors 𝑧1 and 𝑧2 are represented by the abscissa and 

ordinate.  The axes for the sub-plot factors 𝑥1 and 𝑥2 are ovelayed at every design point in 

𝑧1 and 𝑧2 with the sub-plot center at the design point.  The layout consists of one two-level, 

replicated whole-plot at each of the four factorial points (𝑧1, 𝑧2) = (±1, ±1) augmented with 
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one whole-plot at the whole-plot center (𝑧1, 𝑧2) = (0, 0).  The replicated whole-plots are shown 

as concentric squares or concentric circles.  The sub-plot structure was similar and consisted 

of one sub-plot run at each of the four factorial points (𝑥1, 𝑥2) = (±1, ±1) and one whole-plot 

at the whole-plot center (𝑥1, 𝑥2) = (0, 0).  The center points allowed for testing and isolating 

curvature at both the whole-plot and sub-plot level.  Replication provided degrees-of-freedom 

for estimating both the whole-plot variance and the sub-plot variance.  The model contained 

terms for all linear effects, all two-factor interactions, and for the confounded sub-plot 

quadratic terms 𝛽(𝑥1
2 + 𝑥2

2) and the confounded whole-plot quadratic terms 𝛽(𝑧1
2 + 𝑧2

2).   

 

 

 

 

 

 

Figure 1-2. Split-plot design by Simpson, Kowalski, and Landman (2004) 

Simpson, Kowalski, and Landman (2004) succinctly illuminated the many issues 

surrounding experimentation under restricted randomization: 

 despite of the utility and advantages offered by split-plot experiments, they are 

frequently overlooked because of their complexity; 

 sometimes split-plot experiments are not recognized as such and are inadvertently 

analyzed as if they were carried out as completely randomized experiments, which 

leads to inaccurate models;  

 the selection of the correct error term for testing the significance of the factors and 

their interactions is sometimes unclear, especially when the split-plot design produces 

interactions between the whole-plot factors and the sub-plot factors; 

 the whole-plot and sub-plot factor effects could be aliased, which leads to using 

incorrect error terms for the tests of significance; 
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 some designs are undesirably large, even for a reasonably small number of factors; 

 sometimes the analysis of variance method produces a negative estimate of the 

interaction component that leads to a sub-plot variance component larger than the 

whole-plot variance component; 

 replicating the whole-plot is necessary for estimating the whole-plot error term, which 

may increase the cost of the split-plot experiment relative to a completely randomized 

experiment; 

 a typical approach for reducing the cost of split-plot experiments is to place more 

factors at the whole-plot level, which reduces the power to detect significant effects; 

Although the type of situation presented by Simpson, Kowalski, and Landman (2004) 

was a departure from traditional experiment design, it is commonplace in industrial 

experiments.  Similar situations often require carrying out a sequence of experiments in non-

homogeneous settings, where a block factor needs to account for the variability introduced by 

the non-homogenous settings.  Blocking adds complexity to an already complex problem: 

 an effective blocking structure can increase the number of whole-plots, and therefore, 

the cost of the experiment; 

 the interaction between blocks by whole-plots increases the experimental error; 

 comparisons between blocks have lower precision than comparison within blocks; 

 blocking decreases the number of degrees-of-freedom available to estimate effects, 

which reduces experimental power; and 

 blocks increase the complexity of the design, the complexity of the analysis, and the 

complexity of the interpretation of results; 

The relative growth that second-order split-plot design has experienced since Box and 

Wilson (1951) has been modest relative to the growth that other topics have experienced 

during the same period.  Textbooks such as Montgomery (2004), Myers, Montgomery, and 

Anderson-Cook (2009), Box and Draper (2007), Cochran and Cox (1992), and Hinkelmann 

and Kempthorne (1994) provided a treatise of the subject; however, the treatise is not as 

complete as for other response surface methodology subjects.  The peer-reviewed literature 

for second-order split-plot design, especially with blocking, is scarce, limited in the number 

of examples, and often provides limited guidelines.  This deficit of information leaves 

practitioners ill prepared to face many of the roadblocks illuminated by Simpson, Kowalski, 
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and Landman (2004).  Thus, there is need for alternate approaches in second-order split-plot 

design, with and without blocking, especially for designs that minimize the amount of 

replication required to estimate the error terms at the whole-plot level.  Similarly, there is a 

need to improve on the guidance for the selection of good block split-plot designs.   

1.3 Research Objectives 

The focus of the research was to develop practical strategies to help practitioners 

overcome some of the challenges presented by second-order split-plot design.  Leveraging on 

the work by Simpson, Kowalski, and Landman (2004), the research aimed at: 

 exploring systematic approaches for constructing second-order split-plot designs, with 

and without blocking; 

 identifying or developing suitable second-order split-plot layouts and assessing their 

performance; 

 developing guidance based upon knowledge of better design techniques; 

 identifying adequate criterion to further expand the existing second-order split-plot 

design evaluation criteria; and 

 comparing the performance of split-plot designs produced by the research to the 

performance of standard second-order split-plot designs to build the practitioner’s 

confidence on these designs. 

1.4 Application 

Fisher (1926) introduced split-plot design.  Split-plot design was extremely useful in 

agronomical experiments where the primary concern was first-order effects.  Forms of the 

split-plot design, like Taguchi’s inner and outer array design, found their way into industrial 

experiments.  Taguchi’s inner and outer array designs are highly regarded by the quality and 

manufacturing control community; however, Bisgaard (2000) indicated that they are not 

widely recognized as split-plot experiments and are incorrectly analyzed as if they were 

completely randomized designs often resulting in incorrect models.  Another disadvantage of 

Taguchi’s inner and outer array designs is the size of the design—they are produced by a full 

Cartesian product method and often require a number of runs beyond what would be 

considered practical or economical as shown in chapters 2 and 3.  
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Second-order split-plot designs began to receive significant attention for use in 

industrial experiments at the turn of the century.  As shown in chapter 2, techniques for 

generating second-order split-plot experiments, with and without blocking, are complex and 

very limited.  Vining, Kowalski, and Montgomery (2005), Parker, Kowalski, and Vining 

(2006), and Jones and Nachtsheim (2009) provided attractive designs that have good 

properties and that allow for estimating all of the model coefficients as well as whole-plot and 

sub-plot variances.  As shown earlier in this chapter, blocking adds significant complexity to 

the design and analysis of second-order split-plot experiments.  Only recently, Wang, 

Kowalski, and Vining (2009) and Verma et.al. (2012) considered designs that incorporate 

blocking for second-order split-plot experiments. 

Letsinger, Myers, and Lentner (1996) investigated the effect of five process variables 

on a given (proprietary) response variable.  The variables included two hard-to-change 

variables (temperature 1 and pressure 1) and three easy to-change variables (humidity 1, 

temperature 2, and pressure 2).  A second-order model was expected to explain the 

relationships between the process variables and the response. 

Trinca and Gilmour (2001) studied the application of a second-order split-plot design 

to maximize the yield and purities of two proteins in a protein-extraction process.  The 

practitioners considered five factors: feed position, feed flow rate, gas flow rate, and the 

concentration of two proteins.  The feed position was considered a hard-to-change factor while 

the other four factors were considered easy-to-change factors.   

Vining, Kowalski, and Montgomery (2005) used a second-order split-plot design to 

study the effect of two-hard-to-change factors and two easy-to-change factors on the strength 

of ceramic pipe.  The two hard-to-change factors were two temperatures in different zones of 

a furnace and the two easy-to-change factors were the amount of binder in the formulation 

and the grinding speed.   

Myers, Montgomery, and Anderson-Cook (2009) presented an experiment involving 

four factors that affect the strength of an adhesive used in a medical application.  Two of the 

factors are hard-to-change (whole-plot factors)—cure temperature, percent of resin in the 

adhesive—while the other two factors are easy-to-change (sub-plot factors)—amount of 
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adhesive and cure time.  A second-order model was thought to explain the relationship 

between the factors and the response.   

English, Simpson, Landman, and Parker (2012) characterized the flight performance 

of a small-scale unmanned aerial vehicle developed for commercial and military operations.  

The experiment involved a second-order split-plot design with one hard-to-change factor 

(wing tip height) and two easy-to-change factors (angle-of-attack and yaw angle).   

1.5 Original Contribution 

An end-to-end, innovative approach for the construction of effective and efficient 

second-order block split-plot designs is provided by this research in chapters 3 and 4.  First, 

the treatment design of classical second-order designs is partitioned into second-order sub-

arrays, which are assigned to the treatments of the whole-plot factors and sub-plot factors.  

Then, the Cartesian product method is used to form ordered pairs of whole-plot sub-arrays 

by sub-plot sub-arrays rather than the ordered pairs of full whole-plot arrays by full sub-plot 

arrays produced by the Taguchi method.  Then, the sub-array Cartesian products are 

concatenated into a new observation design that is referred to as second-order sub-array 

Cartesian product split-plot design.  Finally, the sub-array structure is used to provide 

blocking strategies that permit effective and efficient use of resources. 

This new form of second-order split-plot design, produced by this research and 

discussed in detail in chapter 3, is an alternative to split-plot designs like Taguchi’s inner 

and outer array designs.  They exhibit good properties, are practical, easy to construct, easy 

to evaluate, and in many cases they overcome some of the difficulties presented by other types 

of designs.  The independent nature of the whole-plot and sub-plot sub-arrays facilitates the 

handling of split-plot designs as a superposition of two different experiments.  They allow for 

estimating the model coefficients for all first-order, two-factor interactions, and pure second-

order terms.  When the whole-plot and sub-plot sub-arrays are second-order orthogonal 

blocks, the sub-array product is a second-order orthogonal block design, which is an appealing 

feature.  As shown in chapter 3, the designs are economical, and generally require about one-

half of the number of runs required by full Cartesian product designs.  
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Sub-array Cartesian product split-plot designs are high information-quality designs.  

The variance of the regression coefficients is low.  Similarly, the prediction variance of the 

regression coefficients is low and stable.  The aliasing between the terms in the model and 

likely effects that are not in the model as well as the correlation between similar effects that 

are not in the model is low.  Based on an assessment using key design evaluation criterion 

established by Box and Draper (1975) and Myers, Montgomery, and Anderson-Cook (2009), 

it is demonstrated in chapters 3 and 4 that second-order sub-array Cartesian product split-

plot designs perform as well or better than historical designs that have been considered 

standards up to this point.  

1.6 Dissertation Outline 

The scope of this research is limited to design, construction, and blocking strategies 

of conventional second-order split-plot experiments.  The research scope addresses 

experimentation in a region known to contain an optimum or the experimental phase of 

response surface methodology where an experimental region has been found that contains an 

optimum.  The research is not intended to provide a comprehensive treatise on all types of 

split-plot experiments.  The research effort is restricted to experiments with 2 ≤ 𝑝 ≤ 3 whole-

plot factors, 2 ≤ 𝑞 ≤ 4 sub-plot factors, and 𝑘 = 𝑝 + 𝑞 ≤ 7 total factors, which reflect the range 

of factors for most industrial split-plot applications.   

A subset of the vast body of literature related to second-order split-plot design is 

discussed in Chapter 2.  The seminal work by Fisher (1926), Yates (1935), Box and Wilson 

(1951), and by Box and Hunter (1957) is highlighted.  Fundamental concepts of response 

surface methodology, blocking, split-plot design, and design evaluation criteria as well as 

significant contributions in those areas are discussed.  Key contributions to second-order 

split-plot design by Letsinger, Myers, and Lentner (1996), Bisgaard (2000), Vining, Kowalski, 

and Montgomery (2005), Parker, Kowalski, and Vining (2007a, 2007b), and Jones and 

Nachtsheim (2009) are reviewed in more detail.  Individual attention is placed to recent 

research in block second-order split-plot design by Wang, Kowalski, and Vining (2009) and 

by Verma et. al. (2012). 

An innovative and efficient approach, rooted on traditional response surface 

methodology and on the adaptation of the Cartesian product method, to construct split-plot 
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designs is provided in Chapter 3.  The approach is referred to as second-order sub-array 

Cartesian product split-plot design.  The construction of the design is illustrated with sub-

arrays derived from central composite, Box-Behnken, and definitive screening designs.  The 

performance of the design is assessed with criterion by Box and Draper (1975) and Myers, 

Montgomery, and Anderson-Cook (2009)—the pairwise correlation between model terms, the 

fraction of design space versus the unscaled prediction variance, and the unscaled prediction 

variance profile.  Using the same criterion, the performance of the second-order sub-array 

Cartesian product split-plot design is reviewed against the performance of standard designs 

provided by Vining, Kowalski, and Montgomery (2005), Parker, Kowalski, and Vining 

(2007a), and Verma et. al. (2012).   

In Chapter 4, a blocking strategy that allows for effective and efficient use of resources 

in concomitant homogeneous and heterogeneous settings is provided.  The performance of 

the sub-array Cartesian product split-plot block design and the designs provided by Vining, 

Kowalski, and Montgomery (2005), Parker, Kowalski, and Vining (2007a), and Verma et. al. 

(2012) are assessed with the same criterion used in Chapter 3.  A summary is provided in 

Chapter 5.   
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2 Literature Review 

There is a vast body of literature related to response surface methodology, blocking, 

restricted randomization, and design evaluation criteria.  Myers (1999) provided a review of 

and outlined the status of response surface methodology.  Myers et al. (2004) reviewed the 

developments in response surface methodology from 1989 through 2004, including split-plot 

experiments, and synthesized the state-of-the-art and areas for research in robust parameter 

design, response surface designs, multiple responses, generalized linear models, and other 

topics.  The paper presented a brief historical perspective, identified three extensive reviews 

conducted over the last 50 years, and provided an extensive bibliography.  Khuri and 

Mukhopadhyay (2010) surveyed the development of response surface methodology and 

provided research directions.   

The following sections summarize a subset of the body of literature related to this 

research.  In the next section, the most popular response surface designs are discussed.  In 

Section 2.5, some of the features of good response surface designs, of which the stability of 

the prediction variance is of outmost importance, are reviewed   

Towards the end of the section covering split-plot design, the contributions of key 

papers, particularly, papers on the construction, design, and blocking of second-order split-

plot designs are highlighted.  Literature on second-order blocked split-plot designs is rare to 

find, and only three papers were found: Wang, Kowalski, and Vining (2009), Jensen and 

Kowalski (2012), and Verma et. al. (2012).  For detailed information on topics related to this 

research refer to Montgomery (2004), Myers, Montgomery, and Anderson-Cook (2009), Box 

and Draper (2007), Cochran and Box (1992), and Hinkelmann and Kempthorne (1994).   

2.1 Response Surface Design 

Lind (1753) and Pierce and Jastrow (1885) recognized early on the importance of 

replication, randomization, and local control of error.  Lind (1753) studied the systematic 

effects of citrus on scurvy while controlling the influence of external sources of variability 

and while replicating the observations.  Pierce and Jastrow (1885) demonstrated the 

principles of randomization, replication, and blocking in an experiment designed to test the 
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notion of a sensory differential threshold using pressure as the stimuli.  Equally relevant, 

Pierce and Jastrow (1885) controlled the factors that influenced the responses, minimized 

the influence of the nuisance factors, and reset some factors between trials to prevent 

correlation.  Pierce and Jastrow (1885) blocked on one factor and restricted the run order, 

thus, the experiment resembled a block split-plot experiment.   

Fisher (1926) invented design of experiments for agronomic experiments, but through 

the years, it has found applications in many fields particularly in industrial experiments.  

Industrial experiments differ from agronomic experiments in two aspects.  First, the results 

of industrial experiments are available almost immediately as oppose to the results of 

agronomic experiments that can take years.  Thus, there is a sense of immediacy in industrial 

experiments.  Second, industrial experiments can be carried out in sequence where the 

results from each run, or a smaller number of runs, can be used as a “stepping stone” to plan 

the next experiment.  Thus, there is a sense of sequentiality.  Box and Wilson (1951) jump-

started the development of response surface methodology to take advantage of the immediacy 

and sequentiality aspects of industrial experimentation.  Box (1992) outlined sequential 

experimentation and the sequential assembly of designs. 

Gilmour and Trinca (2006) reinforced the importance of the fundamental principles of 

experiment design—randomization, replication, and local control of error—and offered advice 

for situations in which the variability between runs was high.  First, the experiment should 

be design in large stages because the smaller designs are unreliable and changes in the path 

of steepest ascent could be due to errors.  Second, the number of runs in the first stage of 

experimentation should be large to allow for fitting higher order terms without damaging the 

estimation of the linear effects model.  Third, the experimental region should be large since 

the errors are larger and variance is more important than the large bias that lead to a 

decision of using a limited experimental region.  Fourth, blocking is very important to isolate 

unwanted sources of variation.  The algorithm by Gilmour and Trinca (2006) is simple: decide 

on the number of experimental runs, choose treatments with desirable properties for the 

number of runs available, and arrange the experiment in blocks to preserve the properties of 

the treatment designs as much as possible. 
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A common way to express Equation (1-2) in matrix notation is: 

𝒚 = 𝑿𝜷 + 𝜺     (2-1) 

where y represents the N x 1 vector of responses, X represents the N x t model matrix, 𝜷 

represents the t x 1 vector of the regression coefficients, and 𝜺 represents the N x 1 vector of 

random errors.  The random error component incorporates measurement error, variability 

from uncontrolled factors, variability in the experimental units to which the treatments are 

applied to, general background noise, etc.  The error is assumed to be an independent and 

identically distributed N(0, 2 ) random variable and the variance 2  is assumed constant 

throughout the experimental region.  The vector of ordinary least squares estimators of 𝜷 is 

𝜷̂𝑂𝐿𝑆 = (𝑿′𝑿)−1𝑿′𝒚 

and 

𝑉𝑎𝑟(𝜷̂𝑂𝐿𝑆) = 𝜎2(𝑿′𝑿) 

'

N

X X
M   

where 𝑿′𝑿 represents the information matrix, and M represents the moment matrix for a 

design with N points.  

𝜷̂𝑂𝐿𝑆 is an unbiased estimator of 𝜷 if the model is correct.  Montgomery, Peck, and Vining 

(2012) established that 𝜷̂𝑂𝐿𝑆 is the best linear unbiased estimator, which means that 𝜷̂𝑂𝐿𝑆 

has the smallest variance among all unbiased estimators that are linear combinations of the 

data.  Assuming that 𝜺 = 𝑁(0, 𝜎2), 𝜷̂𝑂𝐿𝑆 is also the maximum likelihood estimator of 𝜷.  When 

𝐸(𝜀) = 0 and 𝑉𝐴𝑅(𝜺) = 𝜎2Σ, where  is a known n x n matrix, the ordinary least squares 

estimator of 𝛽̂ is no longer appropriate.  The model is transformed to a new set of observations 

that leads to the generalized least squares estimator, which is: 

𝜷̂𝐺𝐿𝑆 = (𝑿′𝚺−𝟏𝑿)−1𝑿′𝚺−𝟏𝒚 

and  

𝑉𝑎𝑟(𝜷̂𝐺𝐿𝑆) = (𝑿′𝚺−𝟏𝑿)−1 
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Ordinary least squares and generalized least squares are two of many regression 

techniques; however, they serve as example to illustrate the problems associated with using 

a particular technique.  There is not a single best regression method across the board.  The 

best regression method to use is the one that fits the experimental situation.  For more 

details, refer to Montgomery, Peck, and Vining (2012). 

The fundamental purpose of a second-order experiment is to model a response surface 

over the design space to predict changes in the response variables due to changes in inputs 

variables.  Equation (2-1) can be described by the fitted response surface equation: 

𝒚̂(𝑥) = 𝛽0 + 𝐱′𝜷̂ + 𝐱′𝑩𝐱 + 𝜺    (2-2) 

where x represents a point in the design space and B is an k x 1 matrix whose main diagonal 

elements represent the pure quadratic terms and the off-diagonal elements represent one-

half of the interactions (mixed quadratic) terms.  The unscaled prediction variance, which 

clearly is a measure of the stability of the model predictions, at any point x extended to the 

design space is 

𝑉𝑎𝑟[𝒚̂(𝐱)] = 𝜎2𝐱′(𝑿′𝑿)−1𝐱    (2-3) 

Typically, equation (2-3) is standardized, or scaled, by multiplying by 𝑁
𝜎2⁄  to obtain the 

scaled prediction variance: 

𝑁

𝜎2 𝑉𝑎𝑟[𝒚̂(𝐱)] = 𝑁𝐱′(𝑿′𝑿)−1𝐱    (2-4a) 

which is also expressed as: 

𝑉𝑎𝑟[𝒚̂(𝐱)]

𝜎2 = 𝐱′(𝑿′𝑿)−1𝐱     (2-4b) 

Now, contrast the expressions for the completely randomized model above with the 

split-plot model.  The simplest split-plot model in matrix form is given by: 

𝒚 = 𝑿𝜷 + 𝜹 + 𝜺     (2-5) 
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where y represents the vector of responses, X represents the model matrix that includes both 

the whole-plot and the sub-plot terms, 𝜷 represents the vector of regression coefficients, 𝜹 

represents the vector of whole-plot error terms, and ε represents the vector of the sub-plot 

error terms, and 𝛿 + 𝜀~𝑁(0, Σ).  Letting 𝜎2 and 𝜎𝛿
2 represent the sub-plot error variance and 

the whole-plot error variance, and assuming that 𝛿𝑘 = 𝑁(0, 𝜎𝛿
2) and 𝜀𝑖𝑗 = 𝑁(0, 𝜎2) are 

independent, the variance–covariance matrix of  𝛿 + 𝜀 is: 

𝑉𝑎𝑟(𝑦) = 𝚺 = 𝜎2𝐈 + 𝜎𝛿
2𝐉 

where J is a block diagonal matrix of 1bi x 1′bi x 1, I is a block diagonal identity matrix, bi is 

the number of sub-plots within the ith whole-plot.  In situations where there a whole-plots 

each with b sub-plots,   

1

2
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and 𝜂 =
𝜎𝛿

2

𝜎2 is the variance component ratio.  The OLS and GLS estimates of 𝜷 and the 

variance-covariance matrices for each of the estimates are:  

𝜷̂𝑂𝐿𝑆 = (𝑿′𝑿)−1𝑿′𝒚 

𝑉𝑎𝑟(𝜷̂𝑂𝐿𝑆) = (𝑿′𝑿)−1𝑿′𝚺𝐗(𝑿′𝑿)−1 

𝜷̂𝐺𝐿𝑆 = (𝑿′𝚺−𝟏𝑿)−1𝑿′𝚺−𝟏𝒚 

𝑉𝑎𝑟(𝜷̂𝐺𝐿𝑆) = (𝑿′𝚺−𝟏𝑿)−1 



 

22 

-1( ' )

N

X X
M


  

The predicted mean response at any point of interest 𝐱  in the design space expanded to model 

form is location  is: 

𝑦̂(𝐱) = 𝐱′𝜷̂      (2-6) 

and the prediction variance and the scaled prediction variance at 𝐱 is  

𝑉𝑎𝑟[𝑦̂(𝐱)] = 𝐱′(𝑿′𝚺−𝟏𝑿)−1𝐱     (2-7) 

𝑁

𝜎𝛿
2+𝜎2 𝑉𝑎𝑟[𝒚̂(𝐱)] = 𝑁𝐱′(𝑿′𝚺−𝟏𝑿)−1𝐱    (2-8) 

Clearly, the information matrix depends on the ratio of the variance components 𝜂.  

When a split-plot experiment is analyzed as if it was carried out as a completely randomized 

experiment leads to a larger variance, which makes it difficult for the tests of significance to 

find significant effects. 

The OLS estimates is not the best linear unbiased estimator of 𝜷.  The GLS estimate 

is the best linear unbiased estimator if and only if 𝜎2 and 𝜎𝛿
2 are known and if there is no 

OLS-GLS equivalence.  The estimates are equal if and only if a nonsingular matrix F exists 

such that 𝚺𝑿 = 𝑿𝑭.  When the OLS and GLS coefficient estimates are equal, the variance-

covariance matrix for both coefficient estimates is equal.  The equivalence of OLS-GLS 

estimates in the context of second-order split-plot design is discussed in detail later on. 

The most popular response surface designs for fitting second-order models are the 

central composite design and the Box-Behnken design.  Another type is the 3k general 

factorial design, which is generally inadequate for many industrial applications because of 

their size.  The central composite design is the workhorse of response surface methodology.  

Resource constraint often leads to smaller or specialized designs.  Figure 1-1 illustrates the 

central composite, the Box-Behnken, and the 3k design for perspective. 
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Figure 2-1.  Central composite, Box-Behnken, and 3k designs for k = 3 

Central Composite Design 

Box and Wilson (1951) introduced the central composite design.  Central composite 

designs are five level designs, which for k factors consist of a combination of 2k factorial or 

2k p

V

  fractional factorial designs, center points, and axial points located a distance 𝛼 from the 

center of the design.  The 2k or 2k p

V

  designs provide for estimating first-order effects, two-

factor interactions, and lack of fit if there is replication.  The center points provide for 

estimating pure-error, determining the presence of curvature, and for a more uniform 

estimation of the prediction variance.  The axial points provide for estimating second-order 

effects.  To fit a full second-order model with k factors, central composite designs require        

2k + 2k+ k0 design points (k0 is the number of center points) and can estimate (k + 2)(k + 1)/2 

coefficients.  Depending on the number of factors, some central composite designs have 

circular (k = 2), spherical (k = 3), or hyper-spherical (k > 3) symmetry.  Regular central 

composite designs are orthogonal designs—designs that permit estimating all of the model 

parameters independently.   

The distance  from the center of the design determines the features and properties 

of the design.  The distance  is a function of the number of factors, their levels, and the 

desired properties of the design.  The position of the axial points produces spherical designs 

(circumscribed and inscribed central composite designs) or cuboidal designs (face-centered 

central composite designs).  Circumscribed central composite designs are rotatable and 

Central composite design Box-Behnken design 3k design 
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provide accurate estimates over the design space.  A rotatable design is one in which the 

prediction variance is only a function of the distance from the center of the design.  Inscribed 

central composite designs are rotatable and provide accurate estimates over the central 

region of the design space.  The settings of the axial points at a distance  from the center for 

each of the factors produce five-level designs for both the circumscribed and inscribed central 

composite designs.  Face-centered central composite designs are cuboidal designs that 

provide fair to poor estimates over the design space depending on the model.  This type of 

design has the axial points at the center of each face of the cube at a distance = ± 1, and 

produce factor settings at three levels.  These designs are also produced by augmenting a 

factorial or resolution V fractional factorial design with axial points.   

The addition of the axial points in a central composite design doubles the number of 

runs relative to a full factorial.  Because of this increase, it is common for practitioners to 

carry out the experiment in blocks.  Box and Hunter (1957) derived orthogonal blocking 

arrangements for several types of design, including an arrangement to block a central 

composite design in two orthogonal blocks.  The arrangement for the central composite design 

consists of accommodating the 2k or 2k p

V

  and center points in the first block and then 

accommodating the axial points and additional center points in the second block.  Orthogonal 

blocking implies that the block effects do not affect the ability to estimate the model 

coefficients independently.  Clearly, the location of the axial points and the number of center 

points have an effect on orthogonal blocking, which means that the block effects can interfere 

with the estimate of the second-order model coefficients.   

The central composite design can be adapted to split-plot experiments.  In those cases 

k = p + q, where 𝑝 represents the number of whole-plot factors and 𝑞 represents the number 

of sub-plot factors.   

Box-Behnken Design 

Box and Behnken (1960) introduced a family of three-level rotatable or near rotatable 

designs for fitting response surfaces.  The construction technique relies on using balanced 

incomplete block designs and 2k factorial designs.  The design avoids the corners of the design 

space in favor of edge points located at the mid-level (xi = 0) of the factor levels, which results 
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in poor estimation at the factorial point locations.  Thus, Box-Behnken designs are more 

useful for situations in which there is no interest in predicting at the factorial points of the 

cube.  Like for central composite designs, replicated runs at the center points permit a more 

uniform estimation of the prediction variance over the design space.  Some of the four or less 

factor designs are more economical than the central composite designs.   

Practitioners often associate the Box-Behnken design with cuboidal regions because 

of its cubic appearance.  However, the Box-Behnken design was not meant to be a cuboidal 

design, it is a spherical design.  One can easily appreciate that feature by noting that for         

k = 3 the edge points are a distance of 1.414 from the design center.  Because these designs 

are rotatable or near-rotatable, they require sufficient center points to improve their 

prediction accuracy. 

3k Design 

Three-level factorial designs allow the estimation of curvature.  However, there are 

situations where it is impractical to fit a second-order model with a classical design because 

it requires too many treatments, it has complex alias structure, or it cannot accommodate 

constraints associated with block structures, block sizes, or a reduced number of runs.  Other 

situations involve irregular number of treatments, irregular or debarred regions of space, a 

combination of mixture and process variables, restricted randomization, or non-linear 

models.  Designs that overcome those disadvantages are needed. 

Optimal Design 

Keifer (1959, 1961) and Keifer and Wolfwitz (1959) laid the foundation for evaluating 

and comparing designs based on optimal design theory.  In this context, designs are optimal 

if they are “best” with respect to some criterion.  The construction of optimal designs relies 

on an exchange algorithm where, starting from a grid of candidate points and an initial 

design, the algorithm attempts to improve the selected optimality criterion by exchanging 

points on the grid but not on the design with points that are on the design.  These exchanges 

guarantee the selection of a nearly optimal design for one criterion.  The design construction 

could be repeated starting from different initial designs until the near to optimal design is 

selected.  The general approach for constructing a design is: (1) select the model to be fitted; 
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(2) determine the region of operability and constraints; (3) specify the number of runs;             

(4) specify the optimality criterion for evaluation; and (5) specify a number of design points.   

Optimal designs are a good option whenever it is inadequate to use classical designs.  

While they are optimal according to a single criterion for a specified statistical model, they 

could be sub-optimal according to another criterion.  The designs are model dependent and 

may require a model that the user may not have.  The efficiency of these designs depends on 

the number of factors, the number of points, and the maximum standard error for prediction 

over the design space.  Typically, the best design for an application is the design with the 

highest optimality efficiency.  The designs have designations corresponding to the letters of 

the alphabet, such as D-, G-, I-, A-, V-, and E-optimality, to name a few.  The most popular 

are the D-, G-, and I- (or Q-) optimal designs.  Below is a list of some of the objectives: 

 D-optimal - minimize the generalized variance of the regression coefficients; 

 G-optimal - minimize the maximum scaled prediction variance over the design region; 

 I-optimal - minimize the average scaled prediction variance over the design region; 

 A-optimal - minimize the average variance of the regression coefficients; 

 V-optimal - minimize the average prediction variance over a set of specific m points of 

interest in the design region; 

 E-optimal - maximize the minimum eigenvalue of the information matrix 

Small or Saturated Designs 

There are situations in which scarce resources—funds, time, material, manpower, 

equipment—makes it impractical to allow the use of standard designs for fitting second-order 

models, especially when the number of factors k is high.  For those situations, small or 

saturated response surface designs could be attractive.  Some of the most popular small or 

saturated response surface designs and their features are: 

 Hoke (1974) introduced saturated, non-orthogonal, second-order designs based on 

irregular fractions of partially balanced 3k factorial designs (for k > 2).  Hoke designs 

are suitable for cuboidal regions.  For a small number of factors (k < 7), some of the 

designs are near-saturated and permit estimating pure error and lack-of-fit.  Except 

for the quadratic terms, the best Hoke designs (for 2 < k < 10) are comparable to Box 

and Behnken (1960) designs and Hartley (1959) small composite designs based on the 
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determinant and the trace of the information matrix.  Hoke designs have better 

prediction performance and similar sample size than Hartley small composite designs. 

 Doehlert (1970) introduced the uniform shell designs (for k < 11) that have an equally 

spaced distribution of points lying on concentric spherical shells.   

 Roquemore (1976) introduced the hybrid designs, a set of saturated or near saturated 

second-order rotatable or near-rotatable designs for k = 3, 4, 5, and 6.  Hybrid designs 

are competitive with central composite designs based on the scaled prediction 

variance criteria.   

 Box and Draper (1974) developed a class of cuboidal, minimum number of points 

second-order designs to fit the main effects plus interaction model that are optimal for 

k = 2 and 3 but not optimal for k > 3.  

 Hartley (1959) small composite second-order designs are based on the idea that the 

cube portion of the composite design can be as low as a Resolution III fraction if the 

two-factor interactions are not aliased with other two-factor interactions.   

 Westlake (1965) found second-order cuboidal designs for k = 5, 7, and 9 in 22, 40, and 

62 runs expanding the idea from Hartley (1959).  

 Rechtschaffner (1967) added a dummy factor, whose main effect and two-factor 

interactions are assumed to be zero, to saturated fractions of any 2k and 3k factorial 

designs of Resolution V to increases the degrees-of-freedom for estimating pure error 

and preserving the balanced structure of the design. 

 Pesotchinsky (1972) found approximate minimum point D-optimal designs for a small 

number of factors (k < 8).   

 Lucas (1974) constructed saturated D-optimum composite designs using a subset of 

points from the saturated Resolution V of Rechtschaffner (1967).   

 Mitchell and Bayne (1978) used an exchange algorithm to find a k-run design that 

maximizes |X’X| given the number of factors k, a specified model, and a set of 

candidate points.   

 Notz (1982) introduced a class of 3k (for k < 7) minimal point second-order designs 

with asymptotic D-efficiency of 1 relative to the number of factors k and the number 

of minimal points q.   

 Draper (1985) developed cuboidal, near-saturated designs using the Plackett-Burman 

designs for the factorial portion of Hartley’s small composite designs, which are a 
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compromise between a saturated small composite design and a central composite 

design allowing degrees-of-freedom for estimating lack-of-fit.   

 Morris (2000) introduced the augmented-pairs designs, a class of three-level designs 

constructed by combining the levels of every pair of points in a two-level first-order 

design to form the third level.  

 Oehlert and Whitcomb (2005) introduced the Minimum Run Resolution V (MR Res V) 

designs, which are a class of equireplicated, irregular fractions of 2k designs 

constructed using the D-optimality criterion algorithm.  These designs provide 

resolution V designs in fewer runs when regular fraction designs contain significantly 

more degrees-of-freedom than are needed to estimate the model up to two factor 

interactions.  Judged only on a D-optimality criterion, these designs are more efficient 

than many other types of designs. 

 Haines (2006) provided methods, recent developments, and new techniques for 

evaluation non-standard designs such as the San Cristobal design, which uses a 

quadratic response surface to k factors that are restricted to positive or zero.   

 Gilmour (2004) introduced subset designs, a class of three-level response surface 

designs obtained by using subsets of 2k factorial designs at levels of -1 and 1 for each 

combination of k factors while holding the other q – k factors at their middle level.   

Definitive Screening Design 

Jones and Nachtsheim (2011) proposed a class of three-level screening designs for 

numeric k > 5.  Definitive screening designs provide estimates of the main effects that are 

uncorrelated with two-factor interactions and pure quadratic terms.  Because they are three-

level designs, the quadratic effects are estimable.  Definitive screening designs require           

2k + 1 runs.  Two-factor interactions are only partially confounded with other two-factor 

interactions as opposed to Resolution IV screening designs in which two-factor interactions 

are completely confounded with other two-factor interactions.  Pure quadratic effects are not 

completely confounded with interactions.  Jones and Nachtsheim (2011) also provided an 

algorithm to calculate the pairwise correlation coefficient between two model terms. 
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2.2 Error-Control Design 

Sometimes, practitioners cannot complete an experiment under homogenous settings, 

and the variability associated with those settings permeates through the response variables 

and inflates the experimental error.  This could be a problem since a precise comparison 

between and within treatments to detect the effects of the factors of interest requires 

homogeneous experimental units—a key concept introduced by Fisher (1926).  Blocking is a 

form of local control of error.  In a block design, the variability of the experimental units is 

less than the variability of the experimental units before they were grouped into blocks.  A 

block design is complete if each block contains all of the treatments.  Otherwise, they are 

incomplete.  Similarly, a block design is balanced if each block, which represents a level of 

the block factor, has an equal number of experimental units.  Otherwise, they are 

unbalanced.   

Experiment designs have three important components: the treatment design, the 

observation design, and the error-control design.  The treatment design determines the 

combinations of the factor levels to be studied.  The observation design outlines the sequence 

in which the experimental runs are executed and the level at which the observations are 

taken; consequently, it informs the relationship between the experimental units and 

observational units.  The error-control design is the layout of the treatments in the 

experiment.  The most common error-control designs for industrial applications are the 

completely randomized design, the randomized complete block design, and the incomplete 

block design.  In completely randomized designs, the observational units are randomly 

assigned to treatments, and the experimental units are the observational units.  In 

randomized complete block designs and incomplete block designs, the observational units are 

randomly assigned to treatments, the treatments are randomly assigned to blocks, and the 

experimental units are the blocks.   

Randomized complete block designs have several advantages: blocking eliminates 

unwanted sources of variability and decreases the variance, which increases the statistical 

power; they are useful when the block represents only a single source of variability; and they 

can accommodate any number of treatments within the blocks.  Randomized block designs, 
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however, are not adequate when the blocks are non-homogeneous.  An increase in the number 

of factors increases the risk of increasing the variability in the experimental units. 

Khuri (2003) provided a study of response surface models with fixed and random block 

effects.  Khuri (2003) established that blocking increases the prediction variance.  However, 

if the design blocks orthogonally, the blocks do not influence the estimation of the model 

coefficients and the least squares estimators of the regression variables are the same as 

without blocking.   

Box and Hunter (1957) and Khuri (1992) exposed the conditions for orthogonal 

blocking in second-order designs.  Khuri (1992) generalized those conditions using matrix 

notation.   

Condition (1)  
( ) 1

0



ln

ui

u l

x   i = 1, 2,.., k, l = 1, 2,.., b  (2-9) 
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Condition (3)  
2 2

( ) 1 ( ) 1 

 
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ui b ui

u l u l

N x n x  i = 1, …, k, l = 1, 2, …, b  (2-11) 

The first two conditions imply that the sum of products x0, x1, …, xk is zero for each 

block, which means that every block (b) in the design must be a first-order orthogonal block 

design.  The third condition is that the contribution to the sum of squares for each factor in 

each block must be proportional to the block size.  Wang, Kowalski, and Vining (2009) 

extended the second-order orthogonal blocking conditions to second-order split-plot designs.   

2.3 Split-Plot Design 

Split-plot experiments have their origin in agronomic research during a period called 

the “complex experiments” period.  Fisher (1926) introduced the split-plot design and laid the 

foundation for the design of experiments.  Yates (1933) discussed confounding of main effects 

and orthogonality in split-plot experiments.  Fisher (1925) and Fisher (1935) published what 
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became standards for researchers and practitioners of design and analysis of experiments.  

Yates (1937) discussed the structure and analysis of split-plot experiments and pointed out 

their essential characteristics.  Plackett and Burman (1946) published some efficient designs 

to estimate several main effects simultaneously.  The design and analysis of split-plot 

experiments was well understood during this period.  The complex experiments period laid 

the foundation for modern industrial split-plot experiment.  Hinkelmann and Kempthorne 

(1994), Montgomery (2004), Federer and King (2007), and Myers, Montgomery, and 

Anderson-Cook (2009) discussed industrial split-plot experiments in detail.   

Recall that the randomization in a split-plot design leads to a model with two error 

terms.  Bisgaard and de Pinho (2004) showed that the whole-plot factors and their 

interactions have a larger variance than the sub-plot factors and their interactions.  The 

variance of the whole-plot factors and their interactions has two components—one component 

coming from the whole-plot and another coming from the sub-plot.  The variance of the sub-

plot factors and their interactions with other factors has only one component, which is coming 

from the sub-plot.  For any 2k with N runs, p whole-plot factors, q = k – p sub-plot factors, the 

variance for the whole-plot factors and their interaction, 𝜎𝑤𝑝−𝑓𝑎𝑐𝑡𝑜𝑟
2 , and the variance for the 

sub-plot factors and any interaction with them, 𝜎𝑠𝑝−𝑓𝑎𝑐𝑡𝑜𝑟
2  are: 

 2 2 24
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Inadvertent split-plotting 

Wooding (1973), Box (1999), Simpson, Kowalski, and Landman (2004), and Vining 

(2012) all recognized the role of split-plot experiments in industrial experiments, and warned 

us that often they are not recognized as such and are incorrectly analyzed as completely 

randomized designs.  Daniel (1959) referred to this as “inadvertent plot splitting”.  The 

consequences of inadvertent plot splitting are the mixing of the whole-plot error and the sub-

plot error, which inflates the variance of the regression coefficients in the model for the sub-

plot factors and mask the effects of the whole-plot factors, which in turn leads to erroneous 

tests of significance.  Based on the specifics of the design, the tests of significance for second-

order split-plot designs are tests for purely sub-plot effects, tests for effectively whole-plot 

effects, and tests for effects somewhere in between.   
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Hader (1973) compared the distribution of the F-ratio between proper and improper 

randomization schemas and established the “within” mean squared error (MSE) under 

proper randomization is an unbiased estimate of σ2 while under improper randomization the 

value is biased downwards between 11 – 15%.  Likewise, the randomization distribution of 

the F-ratio is appreciably different between the proper and improper randomizations.   

Lucas and Ju (1992) studied completely randomized, completely restricted (two 

equally sized replicates), and partially restricted (four equally sized replicates) run orders 

using a central composite design with three whole-plot factors and one sub-plot factor.  The 

runs were equally divided into two blocks at each level of the whole-plot factors.  They found 

that for restricted randomization, the residual standard deviation was much smaller and all 

regression coefficients except the linear and quadratic coefficients for the whole-plot factors 

have much smaller standard deviations.   

Equally important as the inadvertent split-plotting problem described above, is the 

failure to reset the between consecutive runs that have the same factor levels in a completely 

randomized design.  Ganju and Lucas (1997 and 1999) illustrated how a situation like this 

analyzed as if the levels were reset leads to inappropriate tests of significance.  Ju and Lucas 

(2002) demonstrated that split-plot blocking can provide superior sub-plot parameter 

estimates than completely randomized designs.   

Robust parameter design 

Taguchi (1987) introduced the Taguchi Method, a philosophy that incorporates 

principles for making processes insensitive to noise factors and to the variation of input 

variables.  While the objectives behind this philosophy are well structured, the method does 

not pay attention to randomization and blocking.  Although the philosophy behind the 

Taguchi Method was controversial, it sparked a renewed interest in the 1990’s for new 

approaches to design of experiments.  After being neglected for many years, the design and 

analysis of split-plot experiments for industrial applications became a topic for research. 

Box (1999) and Box and Jones (1992 and 2001) pointed out that industrial split-plot 

designs provide convenient and economical robust designs.  Industrial split-plot designs 

include Taguchi inner and outer array designs, which are often analyzed incorrectly.  Split-
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plot designs can be arranged with either the design effects or the environmental effects 

applied to the whole-plot or sub-plot.  Regardless, all of the design factors by environmental 

factors interactions are estimated with the sub-plot error.  It is extremely importance to 

discover the effects of the environmental factors on the design factors and the nature of their 

interactions.   

Split-plot fractional factorial design – split-plot confounding 

Bisgaard (2000) provided a comprehensive tutorial on fractional factorials in a split-

plot structure using the aliasing structure as criteria for selecting a design instead of 

minimum aberration.  Using split-plot confounding to take advantage of using different sub-

plot designs was a significant contribution and an important step forward for using fractional 

factorials split-plots for industrial applications.   

Split-plot fractional factorial design - minimum aberration  

Minimum aberration designs minimize the number of main effects aliased with low-

order interactions.  Huang, Chen, and Voelkel (1998) constructed minimum aberration split-

plot fractional factorial designs in two ways: (1) construct minimum aberration designs first 

for for the whole-plot and then for the sub-plot; and (2) find an overall minimum aberration 

design using an integer programming technique.  Bingham and Sitter (1999a) used the 

minimum aberration criteria to rank some designs created by combining a fractional factorial 

design at the whole-plot level with a fractional factorial design at the sub-plot level while 

Bingham and Sitter (1999b) provided theoretical results.  Bingham and Sitter (2001) 

exemplified the effect of restricted randomization on the choice of split-plot design for 

industrial applications while Loeppky and Sitter (2002) discussed the analysis of those 

experiments.  Minimum aberration is based on two assumptions: (1) higher-order effects are 

less imortant that lower-order effects; and (2) effects of the same order are equally important.  

Because minimum aberration designs have a large number of whole-plots with a small 

number of sub-plots, they are viewed unfavorably for use in industrial applications. 

D-optimal split-plot design 
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Goos and Vandenbroek (2001) developed an algorithm for constructing D-optimal 

split-plot designs.  Goos (2002) addressed some aspects of block and split-plot optimal 

designs, but did not address second-order block split-plots.  Goos and Vandenbroek (2003) 

constructed D-optimal split-plot designs with specific numbers of whole-plots.  Goos (2006) 

provided an overview of block and split-plot designs and on the evaluation of designs via 

estimation-based and prediction-based criteria.  Goos (2006) illustrated orthogonally blocked 

D-optimal designs and D-optimal split-plot designs for equivalent estimation. Macharia and 

Goos (2010) provided D-Optimal and D-efficient equivalent estimation second-order split-plot 

designs. 

Jones and Nachtsheim (2009) proposed a D-optimal split-plot design algorithm that 

trades replicates at the center points of the whole-plot and sub-plots for sub-plot runs that 

are at the corners of the design region.  Jones and Nachtsheim (2009) provided a 

comprehensive review of split-plot designs; however, they did not address second-order 

blocked split-plot designs.   

Second-order split-plot design – cross designs 

Letsinger, Myers, and Lentner (1996) introduced crossed bi-randomization designs 

and non-crossed bi-randomization designs.  In crossed bi-randomization designs, every 

combination of the whole-plot factors (z) is crossed with every combination of the sub-plot 

factors (x) resulting in identical levels of x in each whole-plot z.  Conversely, non-crossed bi-

randomization designs may contain a different number of sub-plots, or different levels, in 

each whole-plot.  Letsinger, Myers, and Lentner (1996) considered several applications of 

unreplicated second-order split-plot designs and used ordinary least squares (OLS), 

generalized least squares (GLS), iterated reweighted least squares (IRLS), and restricted 

maximum likelihood (REML) to estimate and compare the model regression coefficients.  

REML outperformed the other estimation techniques and OLS was appropriate only when 

the whole-plots were balanced.  Letsinger, Myers, and Lentner (1996) proved that OLS and 

GLS are equivalent if the sub-plot had the same experiment designs but did not prove the 

equivalence with other conditions. 

Vining (2012) explained that for the cases reviewed by Letsinger, Myers, and Lentner 

(1996), REML outperformed the other estimation techniques because the response surface 
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designs were unbalanced.  Because the designs were unbalanced, the OLS and generalized 

least squares estimates were not equivalent; consequently, all of the techniques for 

estimating the model coefficients are better estimators than OLS.  Particularly, GLS is best-

unbiased linear estimator if the whole-plot and sub-plot variances are known.   

Draper and John (1998) and Trinca and Gilmour (2001) recommended REML as 

alternative on how to estimate the variance components.  REML is applicable to every 

possible split-plot design and provides good approximations for a good range of variance 

components; however, the variance component estimates depend on the specified model.  

Conversely, Bisgaard and Steinberg (1997) and Bisgaard (2000) used the equivalence 

between OLS-GLS for their first-order and first-order with interactions models.  Bisgaard 

(2000) achieved OLS-GLS equivalence in partial confounding designs even though not all 

sub-plots had the same experiment design.   

Second-order split-plot design - OLS-GLS equivalent estimation 

Second-order OLS-GLS equivalent estimation split-plots designs have received 

significant attention since 2004.  Vining, Kowalski, and Montgomery (2005) constructed OLS-

GLS equivalent split-plot central composite and Box-Behnken designs, recommended options 

for obtaining balanced designs, and focused on estimating pure-error.  Vining, Kowalski, and 

Montgomery (2005) derived the necessary conditions to achieve OLS-GLS equivalent 

estimates for the regression coefficients and proposed two strategies conducive to achieving 

this condition.  One strategy is to arrange each whole-plot with identical sub-plot designs, 

which typically result in large designs.  The other strategy is to use a second-order orthogonal 

design with an identical number of sub-plot runs, which requires augmenting the design with 

runs at the center point of the design. 

OLS-GLS equivalent estimation designs have some good features.  Their construction 

is independent of a priori knowledge of the variance components.  They can be analyzed using 

GLS algorithms, which are available in most commercial software packages.  They are easy 

to generate.  They provide pure-error estimates of the variance components that are 

independent of the model, which can be used for lack-of-fit tests, but that require an increased 

number of runs to make possible the estimation.  Pure-error estimates are important in the 

early stages of experimentation.  However, many practitioners object to replicating the center 
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points under the precept that center points contribute very little towards building a model.  

Exact tests can be derived for at least some of the coefficients.   

Parker, Kowalski, and Vining (2006) provided a catalog of non-crossed OLS-GLS 

designs for equivalent estimation.  Parker, Kowalski, and Vining (2007a) proposed methods 

for constructing balanced OLS-GLS equivalent estimation minimum whole-plot designs 

based on traditional response surface designs.  The minimum whole-plot method is intended 

to reduce the number of whole-plots to the minimum number required to fit a second-order 

model by redistributing runs that the Vining, Kowalski, and Montgomery (2005) method 

allocate to overall center points to the whole-plot factorial points.  Parker, Kowalski, and 

Vining (2007a) provided a catalog of balanced and unbalanced central composite designs and 

Box-Behnken designs while Parker, Kowalski, and Vining (2007b) provided a catalog of Box 

and Draper, Hoke near saturated, Notz saturated, and hybrid minimum whole-plot designs.  

Vining and Kowalski (2008) established the appropriate error terms for testing pure sub-plot 

effects and effective whole-plot effects.  Sub-plot residuals are though as individual data 

values predicted by the sub-plot model and adjusted by the whole-plot mean.  Vining (2012) 

wrapped it all together. 

The designs by Vining, Kowalski, and Montgomery (2005) have the most exact tests 

relative to minimum whole-plot designs and have unrestricted axial values for both whole 

factors () and sub-plot factors () axial points.  They preserve the OLS-GLS equivalence with 

model reduction and in designs with whole-plots that only have center point runs.  OLS_GLS 

equivalent designs do not perform well relative to the D-optimality criteria due to the 

overabundance of runs at the center points of the whole-plots.  For minimum whole-plot 

designs, the OLS-GLS equivalence depends on  and , and it is not preserved with model 

reduction or for designs that have whole-plots in which all runs are at the center point.   

Second-order block split-plot design 

Wang, Kowalski, and Vining (2009) constructed OLS-GLS equivalent central 

composite block split-plot designs and OLS-GLS equivalent Box-Behnken block split-plot 

designs from the second-order equivalent estimation designs proposed by Vining, Kowalski, 

and Montgomery (2005) as well as from the minimum whole-plot designs proposed by Parker, 

Kowalski, and Vining (2005).  While the designs by Wang, Kowalski, and Vining (2009) have 
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many appealing features and properties, the interaction between whole-plot factors is 

confounded with the block effect in cases when there are only two whole-plot factors.  Wang, 

Kowalski, and Vining (2009) extended the second-order orthogonal blocking conditions to 

second-order split-plot designs.  The conditions are: 
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i = 1, 2, …, p; j = 1, 2, …, q 

where p represents the number of whole-plot factors, q the number of sub-plot factors, zui the 

level of the uth run for the ith whole-plot factor, xui the level of the uth run for the jth sub-

plot factor, li the number of sub-plot runs in the ith block, and N the total number of sub-plot 

runs.  For balanced designs, 𝑙1=𝑙2 = ⋯ = 𝑙 and 𝑙 = 𝑁
𝑏⁄ . 

Jensen and Kowalski (2012) used a central composite design to fit a second-order 

model to the results of a split-plot experiment involving two whole-plot factors and one sub-

plot factor in the presence of blocking.  Blocking was at the sub-plot level.  The design 

satisfied the conditions for OLS-GLS equivalent estimation.  The experiment presented 

unique challenges for estimating the error terms and for checking the model assumptions.  

The parameters estimates were obtained using GLS although they could have been obtained 

using the simpler OLS estimation.   

Verma et.al. (2012) generated candidate split-plot designs and constructed balanced 

second-order block split-plot designs using designs by Dey (2009) and unbalanced second-

order block split-plot designs using designs by Zhang et. al. (2011).  Dey (2009) provided 3k 

designs considering second-order orthogonal blocking.  Zhang et. al. (2011) provided small 

Box-Behnken designs, but did not consider second-order orthogonal blocking.  The block size 

used by Verma et. al. (2012) was two.  The second-order split-plot designs derived from Dey 



 

38 

(2009) satisfied the second-order orthogonal blocking conditions; but the second-order split-

plot designs derived from Zhang et. al. (2011) did not.  The algorithm to construct a second-

order orthogonally blocked design consisted of allocating sub-plots to whole-plots and whole-

plots to blocks, sorting on certain factors and replicating whole-plots to achieve block balance, 

and then adding center points to the whole-plots to obtain a second-order design that blocks 

orthogonally.  While cumbersome, this procedure is consistent with response surface 

methodology best practices. 

Cartesian product split-plot design 

Bisgaard (1992) coined the term Cartesian product to describe the scalar product 

technique that Taguchi (1987) used for crossing the inner factors array and the outer factors 

array in his product array experiments.  The technique is similar the design construction 

technique proposed by Letsinger, Myers, and Lentner (1996), and to the technique using 

design arrays and environmental arrays that was introduced by Box and Jones (1992) for 

robust product design.  Throughout this research, the inner factors array is referred to as the 

sub-plot array and the outer factors array is referred to as the whole-plot array. 

Bisgaard (1992) pointed out that Taguchi’s inner and outer array experiments are 

examples of slit-plot designs although they have not been widely recognized as such.  It was 

not until the turn of the millennium, coincident with Bisgaard (2000) and Box and Jones 

(2001), that split-plot experiments began to gained due recognition as a valuable method for 

industrial experiments.  Bisgaard (2000) and Box and Jones (2001) are re-publications of 

Bisgaard (1992) and Box and Jones (1992).  Figure 2-2 show the relationships between whole-

plot and sub-plot arrays, whole-plot and sub-plot factors, observations, and whole-plots. 
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Figure 2-2. Cartesian product of two whole-plot factors and two sub-plot factors 

Taguchi’s product array experiments are designed to determine the factors that 

influence a response.  The experiments involve crossing 2k-p x 2q-r factorial or fractional 

factorial arrays, thus, they are limited to first-order effects.  Another disadvantage of the 

Taguchi approach is size of the design, which often requires a number of runs beyond what 

seems practical or economical.  However, the fundamental criticism of Taguchi’s product 

array method is that experiments are carried out as split-plots, but analyzed incorrectly as if 

they were completely randomized.  Bisgaard and Sutherland (2003) showed that Taguchi’s 

famous tile experiment was a split-plot design although it was not recognized as such.  They 

reanalyzed it using a standard split-plot approach.   

While incorrectly analyzed, the Taguchi tile experiment was a showcase example for 

the utility of design of experiments.  As discussed by Christenson (2007), Taguchi was an 

understudy of Dr. Edwards Deming, a strong proponent of the techniques developed by Sir 

Ronald Fisher.  In 1953, Taguchi was working at the INA Seito tile manufacturing company.  

The INA Seito plant built a new costly kiln for baking the bricks; however, the heating 

conditions inside the device were not uniform and some of the tile that was placed near the 

kiln wall broke during baking.  The INA Seito plant was at the brink of bankruptcy and 

replacing the kiln was not an option.  Recognizing this issue, Taguchi changed the problem 

from replacing the kiln to re-formulating the clay.  Taguchi identified eight different active 

ingredients in the clay and with 16 runs he demonstrated that a clay formulation with 5% 

more lime resulted in a more robust product.  That experiment became part of the portfolio 
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of big industrial tests that motivated Japan to embrace this methodology and catapulted the 

country to become the leader in product development for years to come.  The rest is history.  

Taguchi’s inner and outer array experiments are highly regarded by the quality and 

manufacturing control community.  Most likely because of their success, they stifled the 

intellectual development of the design and analysis of split-plot experiments. 

In Chapter 3, the Cartesian product to produce a split-plot design from the perspective 

of crossing whole-plot sub-arrays by sub-plot sub-arrays rather than from Taguchi’s 

perspective of crossing whole-plot arrays by sub-plot arrays is provided.  For fitting a second-

order model, it is demonstrated that split-plots built from sub-arrays produce the same 

quality of information than those produced with arrays but they require substantially less 

runs.   

2.4 Design Evaluation Criteria 

The selection of an appropriate experimental design is often affected by factors such 

as the objective of the experiment, the homogeneity of the experimental units, the resources 

available to carry out the experiment, the complexity of the model to be fitted, and the 

capability to estimate internal error.  Practitioners can select the most appropriate design by 

comparing different options over a wide range of characteristics.   

General design evaluation criteria 

Box and Wilson (1951) identified some characteristics of good response surface 

designs.  Box and Hunter (1957), Box and Draper (1959), Box (1968), and more completely 

Box and Draper (1975) further refined and expanded those characteristics, which include: 

1. distribute the information throughout the experimental region; 

2. provide a good fit of the model to the data; 

3. detect lack-of-fit; 

4. allow transformations; 

5. permit the experiment to be carried out in blocks; 

6. allow for the sequential assembly of higher-order designs; 

7. provide an estimation of internal error; 

8. be robust to outliers and the gross violation of normal theory assumptions; 
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9. require a small number of experimental runs; 

10. provide data patterns that allow visual appreciation; 

11. ensure simple calculations; 

12. be robust to errors in control of factor levels; 

13. require a practical number of factor levels; 

14. check the homogeneous variance assumption; 

Some of the characteristics listed above are inclusive.  Box and Hunter (1957) 

interpreted characteristic number 1 as to satisfy four other characteristics (3, 5, 6, 9).  

Montgomery (2004) reduced the list by Box and Draper (1975) but pointed out that a good 

design must provide a good prediction variance profile (𝑉𝑎𝑟[𝑦̂(𝑥)] 𝜎2⁄ ) over the design region.   

Clearly, there are tradeoffs in selecting a response surface design.  The experimental 

situation dictates the relative importance of these characteristics.  While it is not common to 

find a design that simultaneously has all of these characteristics, a good design does not need 

to have them all.  Box and Draper (1975) make clear the inherent danger of relying on only 

a single criterion and recommend choosing a design that balances a number of 

characteristics.  Similarly, Myers et. al. (2004) pointed out that the importance of design 

robustness is underscored by forcing the use of a single criterion.  Anderson-Cook, Borror, 

and Montgomery (2009) discuss the criteria for selecting good designs. 

Myers, Montgomery, and Anderson-Cook (2009) adapted the general guidelines to 

response surface split-plot designs.  Notably, the features do not include the ability to conduct 

an experiment in blocks.  Like for a good response surface design, a good split-plot design 

should balance a number of the characteristics by Myers, Montgomery, and Anderson-Cook 

(2009), which include: 

1. provide a good fit of the model to the data; 

2. allow a precise estimation of the model coefficients; 

3. provide a good prediction over the experimental region 

4. provide an estimation of both whole-plot variance and sub-plot variance; 

5. detect lack-of-fit; 

6. check the homogeneous variance assumption at the whole-plot and sub-plot levels; 

7. consider the cost in setting the whole-plot and sub-plot factors; 
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8. ensure the simplicity of the design; 

9. ensure simple calculations; 

10. be robust to errors in control of factor levels; 

11. be robust to outliers. 

A great tool to compare and evaluate various designs are graphical methods, 

particularly, the use of the scaled prediction variance.  As already discussed, the unscaled 

prediction variance and the scaled prediction variance for a design of size N are: 

𝑉𝑎𝑟[𝒚̂(𝐱)] = 𝜎2𝐱′(𝑿′𝑿)−1𝐱    (2-15) 

𝑁

𝜎2 𝑉𝑎𝑟[𝒚̂(𝐱)] = 𝑁𝐱′(𝑿′𝑿)−1𝐱    (2-16) 

Box and Hunter (1957) noted that criteria based only on the variances of the model 

terms was insufficient for the selection of a second-order design, and concluded that a 

desirable property was a low prediction variance over the design space.  The scaled prediction 

variance measures the precision of the estimated response over the design space.  The 

estimates are a function of the design, the model, and the location of the prediction.  A good 

design has a reasonably stable prediction variance over the design space.  Graphs of the 

unscaled prediction variance are better tools for evaluating designs than single optimality 

criteria, especially if the optimal design has an unstable scaled prediction variance. 

Zahran, Anderson-Cook, and Myers (2003) proposed using fraction of design space 

graphs for assessing the prediction capability of response surface designs.  The fraction of 

design space graph plots the range of the scaled prediction variance against the cumulative 

fraction of the volume of the design space.  Park et.al. (2005) discussed the prediction variance 

properties of second-order designs for cuboidal regions.  Liang, Anderson-Cook, and Robinson 

(2006) adapted fraction of design plots to split-plot designs.   

𝑁

𝜎𝛿
2+𝜎2 𝑉𝑎𝑟[𝒚̂(𝐱)] = 𝑁𝐱′(𝑿′𝚺−𝟏𝑿)−1𝐱    (2-17) 

As it will be seen next, minimizing the maximum scaled prediction variance over the 

design region is consistent with the G-optimality criteria.  Similarly, minimizing the average 

prediction variance over the design region is consistent with I-optimality criteria. 
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Optimality Criteria 

Optimality criterion provides a measure of how good a design is relative to a given 

objective function for a particular model.  The criterion can be classified as information-based, 

distance-based, or compound.  The most popular are D-, G-, Q-criterion. 

D-criterion attempts to minimize the variance of the regression coefficients |(𝐗′𝐗)−1|.  

Since the determinant of (𝐗′𝐗)−1 reflects how well the coefficients are estimated (large 

implying poor estimation), the objective is to minimize it.  The relative D-efficiency of two or 

more experiment designs is: 
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where X1 and X2 represent the X matrices for each design, p represents the number of model 

parameters, 𝜉∗represents the relative efficiency of a particular design over all designs 𝜉.  For 

a split-plot experiment, the D-criterion is:  

-1

D

( ' )
max

N

X X
 

G-criterion attempts to minimize the maximum scaled prediction variance over R: 
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As previously discussed, the scale prediction variance is an important measure when 

assessing the prediction performance of a design.  For p parameters in a model at a location 

x = [x1, x2, …, xN], the G-criterion for a split-plot design is:  
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Q-criterion (also called I- or IV-criterion) attempts to minimize the average scaled 

prediction variance by dividing v(x) by the volume of R: 

1
( )  ( )

R
Min v x dx Min Q

K
  

where 
R

K dx  .  A design that simultaneously minimizes the variances of all coefficients 

minimizes the value of the scaled prediction variance, ( )Q  , averaged over the design region.  

The Q-efficiency for a design   is: 
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For a split-plot experiment, Q-criterion is: 

 

High D-efficiency is an indication of a good estimation of the model coefficients in 

terms of generalized variance.  High G-efficiency is an indication of good prediction capability 

in terms of minimizing the maximum scaled prediction variance in the region of interest.  

High Q-efficiency is an indication of good prediction capability in terms of the minimum 

average scaled prediction variance in the region of interest. 

Cost 

The cost of a completely randomized experiment is usually proportional to the overall 

number of runs because typically, every treatment costs the same amount.  This assumption 

does not hold in a split-plot experiment because a split-plot involves some factors that are 

more costly to change than others are.  Factors that are costly to change are usually assigned 

to the whole-plot factors, thus, the number of whole-plots drives the cost of the experiment.  

Because replication to obtain an estimate of the whole-plot variance drives the size of the 

experiment upwards, practitioners often correlate this increase in overall sample size with 

an increase in cost.  However, the design structure shows that the largest contribution to the 

number of runs stems from changing the settings of the sub-plot factors.  Generally, the cost 

of changing the settings of the whole-plot factors is significantly greater than the cost of 
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changing the settings of the sub-plot factors.  Therefore, it makes sense to judge the cost of a 

split-plot design by both the number of whole-plots and the number of runs within a whole-

plot rather than by the number of total runs alone.   

Bisgaard (2000) used cost as part of a multiple criteria to compare the value of the 

information from the split-plot design against the cost of the runs in a split-plot experiment.  

Parker, Anderson-Cook, Robinson, and Liang (2007) demonstrated an approach  that 

incorporates a cost function for evaluating the performance of competing second-order split-

plot designs, and argued that the number of whole-plots is as important or more than the 

total number of runs.  Additionally, the cost of blocking a split-plot experiment needs to 

factors in the blocking structure, the number of whole-plots, and the types of whole-plots. 

2.5 Summary 

Replication, randomization, and local control of error have played an important role 

in experiments as early as Pierce and Jastrow (1885).  Fisher (1926) embedded those 

principles in the fabric of the design of experiments and introduced the split-plot experiment 

for agronomic research.  Box and Wilson (1951) catalyzed the application of design of 

experiments to industrial experiments and jumped-started the development of response 

surface methodology.  While response surface methodology has experienced a significant 

growth since Box and Wilson (1951), the growth of the design and analysis of second-order 

split-plot experiments, with and without blocking, was not balanced. 

The literature research validated the need for improving industrial second-order split-

plot design, without and with blocking.  There is a vast body of literature related to response 

surface methodology, blocking, restricted randomization, and design evaluation criteria.  

Although there is a vast amount of literature on first-order split-plot design, literature on 

second-order split-plot design, particularly with blocking, is more limited.  Only two peer-

reviewed papers could be found on the topic.  Wang, Kowalski, and Vining (2009) proposed 

OLS-GLS equivalent estimation, orthogonally blocked central composite split-plot designs.  

Verma et. al. (2012) constructed balanced and unbalanced orthogonally blocked second-order 

split-plot designs from candidate designs provided by Dey (2009) and Zhang (2011).   
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Some candidate split-plot designs are too large or inadequate for the region of 

experimentation.  Some of the techniques to generate split-plot designs are ineffective.  Thus, 

there is a tremendous benefit on improving the techniques for generating split-plot designs.  

Simpson, Kowalski, and Landman (2004) emphasized the importance of adapting traditional 

response surface methods to fit specific needs while preserving the desirable properties of the 

response surface designs.  These properties include low variance of the regression 

coefficients, low and stable prediction variance, low correlation (minimum aliasing) between 

the terms in the model and likely effects that are not in the model, and correlation coefficients 

between likely effects that are not in the model.  The following criterion by Box and Draper 

(1975) are key in selecting good response surface designs: 

 Provide a good fit of the model to the data.  Box and Hunter (1957) suggested that this 

criterion satisfies four other criterion from Box and Draper (1975): detect lack-of-fit, 

a small number of runs, sequential assembly to higher order, and blocking.  The only 

criterion adapted by Myers, Montgomery, and Anderson-Cook (2009) was the first.  

The sequential assembly of higher order designs and the ability to carry out the 

experiment in blocks are also considered two important characteristics for this 

research.  Blocking is discussed in Chapter 4. 

 Provide a good prediction over the experimental region.  Criterion to be considered 

include the stability of the prediction variance over the entire design space, the 

prediction variance at the center of the design space, the maximum prediction 

variance, the average prediction variance, and the prediction variance at the 90th 

percentile of the design space. 

 Allow a precise estimation of the model coefficients.  A measure for this criterion is 

the pairwise correlation coefficients between model terms. 

 Provide an estimation of both the whole-plot variance and the sub-plot variance.  The 

whole-plot variance can be estimated by replicating the whole-plots while the sub-plot 

variance can be estimated by pooling the sub-plot center runs.  
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3 Second-Order Sub-Array Cartesian Product 

Split-Plot Design 

A brief summary of the vast body of knowledge related to some aspects of the research 

was provided in Chapter 2:  response surface design, error-control design, split-plot design, 

and design evaluation criteria.  This chapter is dedicated to exploring the systematic 

construction of second-order split-plot designs using an innovative and effective technique 

that is consistent with the philosophy of traditional response surface methodology.   

An adaptation of the Cartesian product method is used to cross specific arrangements 

of whole-plot factors and sub-plot factors, called sub-arrays, that are derived from central 

composite, Box-Behnken, and definitive screening designs to generate a form of split-plot 

design referred to as second-order sub-array Cartesian product split-plot design.  Criterion 

consistent with the design evaluation criteria proposed by Box and Draper (1975) is used to 

evaluate the performance of the design: the pairwise correlation between model terms, the 

fraction of design space versus the unscaled prediction variance, and the unscaled prediction 

variance profile at the center of the design space.  Finally, the performance of the design is 

assessed relative to some of the historical second-order split-plot designs.  Among those 

historical designs are two standards that have served the response surface methodology 

community well: the OLS-GLS equivalent estimation design and the minimum whole-plot 

design.   

3.1 Design Construction and Evaluation 

The general steps for constructing a second-order sub-array Cartesian product split-

plot design are:   

1. Identify the whole-plot factors (z1, z2, …, zp) and the sub-plot factors (x1, x2, …, xq). 

2. Select a second-order design for only the whole-plot factors (𝔻𝑾) and a second-order 

design for only the sub-plot factors (𝔻𝑺).  𝔻𝑾 and 𝔻𝑺 do not need to be the same, and 

should be appropriate for the experiment situation.  Thus, 𝔻𝑾 and 𝔻𝑆 can be any 

combination of central composite designs, Box-Behnken designs, etc.  

3. Assign the whole-plot treatments to the whole-plot array (W) and the sub-plot 

treatments to the sub-plot array (S). 
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4. Partition W into Γ sub-arrays or blocks and S into Θ sub-arrays or blocks. 

5. Use the Cartesian product method to cross the whole-plot sub-arrays and the sub-plot 

sub-arrays.  The Cartesian product is the set of ordered pairs: 

𝐖𝚪 x 𝐒𝚯 = {[(z1, z2, …, zp), (x1, x2, …, xq)]| (z1, z2, …, zp) ∈ 𝐖𝚪 (x1, x2, …, xq) ∈ 𝐒𝚯} 

6. Concatenate the sub-array Cartesian products into a design matrix.   

M = 𝐖𝐢 x 𝐒𝐣 // … // 𝐖𝚪 x 𝐒𝚯} 

7. Arrange the block structure to preserve the properties of the treatment design and 

the observation design. 

Steps one through three are considered the Treatment Design, step four is considered 

the Observation Design, and step five is considered the Error Control Design.  Treatment 

Design and Observation Design are discussed in this chapter.  Error-Control Design is 

discussed in Chapter 4.  The construction, evaluation, and assessment of the sub-array 

second-order Cartesian product split-plot design is illustrated and discussed in terms of the 

number of sub-array partitions, the size of the sub-arrays, the second-order structure of the 

array design (𝔻𝑾 and 𝔻𝑺), the allocation of treatments to the sub-arrays, and the axial 

distances 𝛼 and 𝛽.  The distance from the center of the sub-plot array to the sub-plot axial 

points is denoted by ∝ and the distance from the center of the whole-plot array to the whole-

plot axial points is denote by 𝛽.  Note that ∝ and 𝛽 do not need to be equal.   

One sub-array partition (𝚪 = 𝚯 = 𝟏); p = q = 2 

To illustrate the construction of a design, consider an experiment with p = 2 whole-

plot factors and q = 2 sub-plot factors.  The whole-plot array W0 is the arrangement of the 

whole-plot factors z1 and z2 in a central composite design arrangement (𝔻𝑾).  Similarly, the 

sub-plot array S0 is the arrangement of the sub-plot factors x1 and x2 in a central composite 

design arrangement (𝔻𝑺).  The array arrangements are illustrated in Figure 3-1.  In terms of 

nomenclature, a design array is the same as a one-partition sub-array. 
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Figure 3-1. Whole-plot and sub-plot sub-arrays from central composite designs (Γ = Θ = 1) 

The Cartesian product of the whole-plot by sub-plot sub-arrays in Figure 3-1 is given 

by the product of W0 = {(z1,z2)} = {(-1,-1) (1,-1) (-1,1) (1,1) (-𝛽, 0) (𝛽, 0) (0,-𝛽) (0,𝛽) (0,0)} by            

S0 = {(x1,x2)} = {(-1,-1) (1,-1) (-1,1) (1,1) (-𝛼, 0) (𝛼, 0) (0,-𝛼) (0,𝛼) (0,0)}.  The result is the 81 

ordered pairs {(z1, z2),(x1, x2)} represented by the 4-fold (z1, z2, x1, x2) product in Figure 3-2 and 

Table 3-1.  Because there were only one whole-plot sub-array and one sub-plot sub-array, 

there was no need to partition the sub-array or to concatenate the product of the sub-arrays.  

The split-plot design consists of nine unreplicated, balanced whole-plots with nine 

sub-plot runs.  The whole-plot structure consists of one whole-plot at each of the four factorial 

points (𝑧1, 𝑧2) = (±1, ±1), one whole-plot at each of the four axial points (𝑧1, 𝑧2) = (±𝛽, 0) and 

(𝑧1, 𝑧2) = (0, ±𝛽), and one whole-plot at the whole-plot center (𝑧1, 𝑧2) = (0, 0).  Each whole-plot 

contains one sub-plot run at each of the four factorial points (𝑥1, 𝑥2) = (±1, ±1), one at each of 

the four axial points (𝑥1, 𝑥2) = (±𝛼, 0) and (𝑥1, 𝑥2) = (0, ±𝛼), and one at the sub-plot center 

(𝑥1, 𝑥2) = (0, 0).  Although the design does not provide degress-of-freedom to estimate the 

whole-plot or sub-plot variances, the estimates can be obtained by augmenting the whole-plot 

array with one row (𝑧1, 𝑧2) = (0, 0), which provides a replicate that permits estimating the 

whole-plot variance.  Similarly, estimates of the sub-plot variance can be obtained by 

W0 

𝒛𝟏 𝒛𝟐 

−1 −1

 1 −1

−1    1

   1    1

−𝛽  0

   𝛽    0

0 −𝛽

0 𝛽

0 0

S0 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

−𝛼  0

   𝛼    0

0 −𝛼

0 𝛼

0 0

Whole-plot array Sub-plot array 
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augmenting the sub-plot array with one row (𝑥1, 𝑥2) = (0, 0), which provides a replicate for 

every sub-plot center point that can be pooled to estimate sub-plot variance.  Replicating the 

whole-plot center point (𝑧1, 𝑧2) = (0, 0) provides a modest single degree-of-freedom for testing 

curvature; however, replicating the sub-plot center point (𝑥1, 𝑥2) = (0, 0) at each of the 

factorial and axial points of (𝑧1, 𝑧2) helps isolating the contribution of each quadratic term to 

the non-linearity of the model.  For the resulting design in Table 3-1, 𝑝 = 2, 𝑞 = 2,                     

𝑘 = 𝑝 + 𝑞 = 4, 𝑤 = 9, 𝑠 = 9, and 𝑁 = 𝑤 × 𝑠 = 81. 

When Γ = Θ = 1, the Cartesian product method produces designs with a randomized 

complete block error-control design for both the sub-plot treatments and the whole-plot 

treatments without the need of concatenating the design matrix.  These designs are typically 

large; however, they are practical for situations where a large variation between run to run 

at the sub-plot level exists and a large sample size is affordable.  The whole-plots produced 

by this method are balanced and have identical sub-plots.  A balanced design is one in which 

all treatment combinations have the same number of observations.  Balance minimizes the 

standard error associated with the regression coefficients. 

 

 

 

 

 

 

 

 

 

Figure 3-2. Cartesian product split-plot design for (p = q = 2; Γ = Θ = 1)  
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Table 3-1. Cartesian product split-plot design (p = q = 2; Γ = Θ = 1) 

wi  z1 z2 x1 x2 wi z1 z2 x1 x2 wi z1 z2 x1 x2 

1 

  −1 −1

4 

1 1 −1 −1

7 

0 −𝛽 −1 −1

   1 −1 1 1  1 −1 0 −𝛽  1 −1

  −1    1 1 1 −1    1 0 −𝛽 −1    1

     1    1 1 1    1    1 0 −𝛽    1    1

  −𝛼 0 1 1 −𝛼 0 0 −𝛽 −𝛼 0

     𝛼     0 1 1    𝛼     0 0 −𝛽    𝛼     0

  0 −𝛼 1 1 0 −𝛼 0 −𝛽 0 −𝛼

  0 𝛼 1 1 0 𝛼 0 −𝛽 0 𝛼

  0 0 1 1 0 0 0 −𝛽 0 0

2 

1  −1 −1

5 

−𝛽 0 −1 −1

8

0 𝛽 −1 −1

1   1 −1 −𝛽 0  1 −1 0 𝛽  1 −1

1  −1    1 −𝛽 0 −1    1 0 𝛽 −1    1

1     1    1 −𝛽 0    1    1 0 𝛽    1    1

1  −𝛼 0 −𝛽 0 −𝛼 0 0 𝛽 −𝛼 0

1     𝛼     0 −𝛽 0    𝛼     0 0 𝛽    𝛼     0

1  0 −𝛼 −𝛽 0 0 −𝛼 0 𝛽 0 −𝛼

1  0 𝛼 −𝛽 0 0 𝛼 0 𝛽 0 𝛼

1  0 0 −𝛽 0 0 0 0 𝛽 0 0

3 

 1 −1  −1

6 

𝛽 0 −1 −1

9

0 0 −1 −1

 1  1  −1 𝛽 0  1 −1 0 0  1 −1

 1 −1     1 𝛽 0 −1    1 0 0 −1    1

 1    1     1 𝛽 0    1    1 0 0    1    1

 1 −𝛼 0 𝛽 0 −𝛼 0 0 0 −𝛼 0

 1    𝛼      0 𝛽 0    𝛼     0 0 0    𝛼     0

 1 0  −𝛼 𝛽 0 0 −𝛼 0 0 0 −𝛼

 1 0 𝛼 𝛽 0 0 𝛼 0 0 0 𝛼

 1 0 0 𝛽 0 0 0 0 0 0 0

Because the whole-plots produced by this method are balanced and have identical sub-

plots, the shorthand notation in Table 3-2 is used from this point forward to replace the long 

form in Table 3-1.  In Table 3-2, wi represents the ith whole-plot, 𝒛𝟏𝒎 and 𝒛𝟐𝒏 represent the 

mth and nth levels of the whole-plot factors 𝒛𝟏 and 𝒛𝟐, and S0 represents the complete sub-plot 

array.   

 

 



 

52 

Table 3-2.  Shorthand for the Cartesian product split-plot design from Table 3-1 

 

 

 

 where S0 =   

 

 

 

The performance of the design is explored using three well-known key criterion: the 

pairwise correlation between model terms (Figure 3-3), the fraction of design space versus 

the unscaled prediction variance (Figure 3-4), and the unscaled prediction variance profile 

(Figure 3-5).  The graphs in Figure 3-3 through 3-5 were constructed using the JMP 11 

software by SAS for 𝛼 = 𝛽 = 1.414.  Figure 3-3 illustrates the pairwise correlation between 

model terms.  The cells on the graphs represent the pairwise correlation coefficients between 

model terms as a colored cell with an intensity adjustable between 0 and 1.  The correlation 

coefficient progresses from 0 (in color gray), which indicates that all of the coefficients are 

independent, to a maximum of 1 (in color burgundy), which indicates perfect correlation.  

Ideally, it is desirable to have perfect correlation in the diagonal line of cells and no 

correlation in the off-diagonal cells.  Clearly, the graph shows that there is no complete 

correlation between model terms, whether or not they are determined by the tests of 

significance to have an influence on the response.  The only terms partially correlated are the 

whole-plot pure quadratics with each other (0.64) and the sub-plot pure quadratics with each 

other (0.64).  This type of correlation is trademark of the central composite design, as it will 

be shown later in this chapter, although the coefficient of 0.64 for the sub-plot pure quadratics 

could be a concern for certain industrial applications.  All of the model terms for the main 

effects and the two-factor interactions are clear from correlating with other terms. 

 

wi 𝒛𝟏 𝒛𝟐 S0 

1 −1 −1 S0 

2  1 1 S0 

3 −1    1 S0 

4    1    1 S0 

5 −𝛽 0 S0 

6    𝛽 0 S0 

7 0 −𝛽 S0 

8 0    𝛽 S0 

9   0   0 S0 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

−𝛼  0

   𝛼    0

0 −𝛼

0 𝛼

0 0
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Figure 3-5.  Unscaled prediction variance profile. 

Figure 3.4 shows the unscaled prediction variance as a function of the fraction of 

design space.  There graph shows that the design has a reasonably stable prediction variance, 

although not constant, up to about 90% of the fraction of design space (1.15).  The maximum 

prediction variance is 3.52.  Figure 3-5 shows that the unscaled prediction variance at the 

center of the design space (0, 0, 0, 0) is 1.21.  This design is adequate; however, there are 

many situations in which N = 81 is unaffordable, especially in destructive testing.  The 

average prediction variance is 0.86.   

Consider now the construction of a design with p = 2 and q = 2 but with both the 

whole-plot array W0 and the sub-plot array S0 in the Box-Behnken design arrangements 

(𝔻𝑾 = 𝔻𝑺) shown in Figure 3-6.  Note that they are like the sub-arrays from the central 

Figure 3-3. Pairwise correlation between 

model terms 

Figure 3-4. Prediction variance vs. 

fraction of design space 
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composite design except that 𝛼 = 𝛽 = 1.  This is also the same arrangement obtained for sub-

arrays derived from face centered central composite designs and definitive screening designs.  

This is an interesting feature since it allows the experimenter to think in terms of split-plot 

factor properties rather than in the particular properties of a design.  The performance of the 

design as a function of 𝛼 and 𝛽 is explored later in this chapter in detail.

 

 

 

 

 

 

 

 

Figure 3-6. Whole-plot and sub-plot sub-arrays from Box-Behnken designs (Γ = Θ = 1) 

Thus, this research is directed towards exploring the constructing of more affordable 

designs and evaluating their properties.  A reduction in size can be obtained by partitioning 

the W and S arrays into sub-arrays.  Although there are many possible ways to partition the 

arrays, traditional response surface methodology concepts and best practices are followed to 

narrow down the choices.  One of the best practices followed is the use of center points to get 

degrees-of-freedom to estimate pure error and to test for curvature. 

Two balanced sub-arrays (𝚪 = 𝚯 = 𝟐); p = q = 2 

Figure 3-7 illustrates the partitioning of both the whole-plot array and the sub-plot 

array into two sub-arrays each (Γ = Θ = 2).  Clearly, the sub-array W1 corresponds to the 

factorial points of the whole-plot central composite design augmented with one center point 

W0 

𝒛𝟏 𝒛𝟐 

−1 −1

 1 −1

−1    1

   1    1

−1  0

   1    0

0 −1

0 1

0 0

S0 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

−1  0

   1    0

0 −1

0 1

0 0

Whole-plot array Sub-plot array 



 

55 

and the sub-array W2 corresponds to the axial points of the whole-plot central composite 

design augmented with one center point.  The sub-plot sub-arrays S1 and S2 can be described 

in similar terms. 

 

 

 

 

 

 

 

Figure 3-7. Whole-plot and sub-plot sub-arrays from central composite designs (Γ = Θ = 2) 

Crossing the sub-arrays using the Cartesian product method can produce several 

candidate designs with different characteristics.  Because the interested is in estimating the 

model coefficients for all whole-plot and sub-plot terms, the concatenated design matrix 

requires for each sub-array to be crossed only once, inedependently of the pairing.  Under 

that rule, second-order sub-array Cartesian product split-plot designs can estimate the model 

coefficients for the first-order terms, the first-order with interaction terms, and the pure 

quadratic whole-plot factors, but they do not neccesarily estimate the model coefficients for 

the pure quadratic sub-plot terms.   

Crossing the sub-arrays in Figure 3-7 results in four second-order sub-array Cartesian 

product split-plot designs, of which only two permit the estimation of all model coefficients.  

Those two designs are illustrated in Figure 3-8.  The other two do not permit estimating the 

pure sub-plot quadratic terms and have a stronger correlation between model terms.   

The designs are identified with the notation D(Γ𝔻𝑾p, Θ𝔻𝑺𝑞).  For 𝔻𝑾 and 𝔻𝑺, the 

letters B, C, and D are used to indicate that the sub-arrays were partitioned from a Box-

W1 

𝒛𝟏 𝒛𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

W2 

𝒛𝟏 𝒛𝟐 

−𝛽 0

 𝛽    0

  0 −𝛽

   0    𝛽

0 0

S2 

𝒙𝟏 𝒙𝟐 

−𝛼 0

 𝛼    0

  0 −𝛼

   0    𝛼

0 0

S1 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

Whole-plot sub-arrays Sub-plot sub-arrays 

Allocation 1 
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Behnken array, from a central composite array, or from a definitive screening array, although 

that is not of significance.  Also, for simplicity, the sub-arrays are numbered sequentially 

from this point forward.  Table 3-3 shows the sub-array Cartesian product split-plot design 

D(2C2, 2C2)-1 from Figure 3-8.  Table 3-4 illustrates design D(2C2, 2C2)-2 from the same 

figure.  The parameters for the designs are p= 2, 𝑞 = 2, 𝑘 = 𝑝 + 𝑞 = 4, 𝑤 = 10, 𝑠 = 5, and      

𝑁 = 𝑤 × 𝑠 = 50.   

 

 

 

 

 

 

Figure 3-8.  Second-order sub-array Cartesian product split-plot designs (Γ = Θ = 2) 

In the case of designs derived from central composite design arrays, the whole-plots 

are always balanced and the structure at the sub-plot level is identical.  Because the designs 

are balanced, the variance of the difference between two treatment effects is the same for all 

pairs of treatments.  The whole-plots have the same number of sub-plots.  This feature makes 

easier the task of managing the structure of the whole-plots and sub-plots.  Additionally, the 

analysis of balanced designs is much easier than unbalanced designs.  

The whole-plot main effects, whole-plot by whole-plot interactions, and whole-plot 

pure quadratics effects are associated with the whole-plot effects.  The sub-plot main effects, 

sub-plot by sub-plot interactions, sub-plot by whole-plot interactions, and pure sub-plot 

quadratic effects are associated with the sub-plot effects.  However, it is easy to generate a 

design that has the sub-plot pure quadratics associated with the whole-plot effects if the 

experimental situation requires it.   

D(2C2, 2C2)-1 D(2C2, 2C2)-2 

w = 

10 

N = 

w = 

10 

N = 

W1 x S2 

W2 x S1 

W1 x S1 

W2 x S2 
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Table 3-3.  Second-order sub-array Cartesian product split-plot design D(2C2, 2C2)-1 

 

 

 

 

 

 

 

 

 

Table 3-4.  Second-order sub-array Cartesian product split-plot design D(2C2, 2C2)-2 

 

 

 

 

 

 

 

 

wi 𝒛𝟏 𝒛𝟐 S 

1 −1 −1 S2 

2  1 1 S2 

3 −1    1 S2 

4    1   1 S2 

5 0 0 S2 

6 −𝛽 0 S1 

7    𝛽 0 S1 

8 0 −𝛽 S1 

9 0    𝛽 S1 

10   0   0 S1 

S1 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

S2 

𝒙𝟏 𝒙𝟐 

−𝛼 0

 𝛼    0

  0 −𝛼

   0    𝛼

0 0

wi 𝒛𝟏 𝒛𝟐 S 

1 −1 −1 S1 

2  1 1 S1 

3 −1    1 S1 

4    1   1 S1 

5 0 0 S1 

6 −𝛽 0 S2 

7    𝛽 0 S2 

8 0 −𝛽 S2 

9 0    𝛽 S2 

10   0   0 S2 

S1 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

S2 

𝒙𝟏 𝒙𝟐 

−𝛼 0

 𝛼    0

  0 −𝛼

   0    𝛼

0 0
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Figures 3-9 illustrates the pairwise correlation between model terms as a function of 

𝛼 and 𝛽 for the design in Table 3-3, D(2C2, 2C2)-1.  The design is first-order orthogonal.  

There is no complete confounding.  The only terms partially correlated are the whole-plot 

pure quadratic terms, the sub-plot pure quadratic terms, and in some cases whole-plot pure 

quadratic terms with sub-plot plot pure quadratic terms.  For a given 𝛽 and 𝛼 pair, the 

pairwise correlation parameters are not identical due to the differences in geometries.  The 

number of cells with pairwise correlation coefficients > 0.0 varied between two and six (out 

of a possible 91) and had values between 0.17 and 0.48, which is insignificant.  As it will be 

seen in the next section, this type of confounding is typical, to varying degrees, of central 

composite split-plot designs. 

Figure 3-10 illustrates the unscaled prediction variance as a function of the fraction 

of design space.  The prediction variance is stable through the design space, and fluctuated 

between 0.60 for the design with 𝛼 = 𝛽 = 2.0 and 1.14 for the design with 𝛼 = 𝛽 = 1.0.      

Figure 3-11 illustrates the prediction variance profile.  The unscaled prediction variance at 

the center of the design space varied between 0.46 to 0.68, which is adequate.  Table 3-5 

shows the average prediction variance as a function of 𝛼 and 𝛽.   

Table 3-5. Average unscaled prediction variance D(2C2, 2C2)-1, Figure 3-8 

 0  0

0 0.68 0.62 0.60 

 0.86 0.80 0.76 

0 1.14 1.05 1.0 

Judged solely by the pairwise correlation between model terms (Figure 3-9), the 

design with 𝛼 = 𝛽 = 1.0 demonstrates better characteristics.  However, when judged by the 

prediction variance vs. the fraction of design space (Figure 3-10), the design with  𝛼 = 𝛽 = 2.0 

slightly outperforms the other designs.  Furthermore, when using the unscaled prediction 

variance at the center of the design space (Figure 3-11), the design with 𝛼 = 1.0;  𝛽 = 2.0 and 

the design with 𝛼 = 2.0;  𝛽 = 1.0 exhibit better characteristics. 
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Figure 3-9.  Pairwise correlation between model terms as a function of 𝛼 and 𝛽 for              

D(2C2, 2C2)-1, Figure 3-8 

  

0  0
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
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Figure 3-10. Prediction Variance vs. Fraction of Design Space for D(2C2, 2C2)-1, Figure 3-8 

 

 

 

 

 

 

 

Figure 3-11. Unscaled Prediction Variance Profile for D(2C2, 2C2)-1, Figure 3-8 
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Earlier, it was mentioned that one of the factors that influence the performance of the 

designs are the treatment combinations within the sub-arrays.  For instance, design       

D(2C2, 2C2)-1b in Figure 3-13 was created by exchanging some of the treatments between 

sub-plots sub-arrays S1 and S2 in Figure 3-7 to form S3 and S4 in Figure 3-12(a), and then 

taking the product W1 x S3 // W2 x S4, where the symbol // denotes the vertical concatenation 

of the sub-arrays.  Similarly, D(2C2, 2C2)-1c was created by exchanging some of the 

treatments between W1 and W2 to form W3 and W4 in Figure 3-12(b) and then taking the 

product W3 x S3 // W4 x S4. 

While the prediction variance is unaffected by the re-allocation of treatments, the 

effect of changing the composition of the sub-arrays is more noticeable in the pairwise 

correlation coefficients.  Design D(2C2, 2C2)-1c exhibits partial confounding between sub-

plot main effects, between main effects and two-factor interactions, between pure quadratic 

and first order terms, between pure quadratics and two-factor interactions, and between pure 

quadratics with other pure quadratics.   

Three balanced sub-arrays (𝚪 = 𝚯 = 𝟑); p = q = 2 

The partitioning into three sub-arrays (Γ = Θ = 3) is illustrated in Figure 3-14.  The 

sub-array W5 corresponds to the factorial points of the whole-plot central composite design, 

the sub-array W6 corresponds to the axial points of the whole-plot central composite design, 

and the sub-array W7 corresponds to the whole-plot central composite design center point 

augmented with three additional center points to preserve balance.  The sub-array W5 is 

useful for estimating main effects, two-factor interactions and testing for curvature.  The sub-

array W6 is useful for estimating quadratic effects.  The sub-array W7 is useful for estimating 

whole-plot pure-error. 

Twenty-seven different split-plot designs were produced by applying the design 

construction technique to the sub-arrays illustrated in Figure 3-14.  Of those 27 designs, four 

allow for estimating the model coefficients for all terms.  The layouts for those four designs 

are illustrated in Figure 3-15 (𝛼 = 𝛽 = 1.414) along with the layouts for D(3C2, 3C2)-6 and 

D(3C2, 3C2)-1.  The layout for D(3C2, 3C2)-6 did not produce a design while the layout for 

D(3C2, 3C2)-1 did not allow for estimating the coefficient for 𝑥2
2.   
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The four layouts that produced designs that allow for estimating all of the model terms 

have twelve balanced whole-plots with four sub-plot runs per whole-plot.  Because W7 

contains four whole-plot center points, the designs have four replicated overall center points 

that allow for estimating the whole-plot variance.  The performance of the designs is 

illustrated in Figures 3-16 through 3-18.  The interpretation of the pairwise correlation 

coefficient plots and of the variance prediction graphs is consistent with the interpretation 

already provided.  D(3C2, 3C2)-2, -3, -4, and -5 have identical pairwise correlation coefficients 

between model terms (six correlated terms with a value of 0.20), identical prediction variance 

at the center of the design space (0.94), and identical average prediction variance (0.92)   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12. Re-allocation of whole-plot and sub-plot sub-arrays treatments (Γ = Θ = 2)  

W1 

𝒛𝟏 𝒛𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

W2 

𝒛𝟏 𝒛𝟐 

−𝛽 0

 𝛽    0

  0 −𝛽

   0    𝛽

0 0

S4 

𝒙𝟏 𝒙𝟐 

−1 

    1

   𝛼 0

   0    𝛼

0 0

S3 

𝒙𝟏 𝒙𝟐 

−1    1

 1 −1

−𝛼    0

   0 −𝛼

0 0

W3 

𝒛𝟏 𝒛𝟐 

−1    1

 1 −1

−𝛽    0

   0 −𝛽

0 0

W4 

𝒛𝟏 𝒛𝟐 

−1 

    1

   𝛽 0

   0    𝛽

0 0

S3 

𝒙𝟏 𝒙𝟐 

−1    1

 1 −1

−𝛼    0

   0 −𝛼

0 0

S4 

𝒙𝟏 𝒙𝟐 

−1 

    1

   𝛼 0

   0    𝛼

0 0

Whole-plot sub-arrays Sub-plot sub-arrays 

Whole-plot sub-arrays Sub-plot sub-arrays 

(a) Allocation 2 

(b) Allocation 3 
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Figure 3-13.  Cartesian product split-plot designs with re-allocated factor level treatments 

(p = q = 2; Γ = Θ = 2) 

 

Allocation 1; D(2C2, 2C2)-1a  Allocation 3; D(2C2, 2C2)-1c Allocation 2; D(2C2, 2C2)-1b  

Fraction of design space 

Pairwise correlation between model terms 

Unscaled prediction variance profile 

W1 x S2 

W2 x S1 

W3 x S3 

W4 x S4 

W1 x S3 

W2 x S4 
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Figure 3-14.  Whole-plot and sub-plot sub-arrays from central composite designs (Γ = Θ = 3) 

  

W5 

𝒛𝟏 𝒛𝟐 

−1 −1

 1 −1

−1    1

   1    1

W6 

𝒛𝟏 𝒛𝟐 

−𝛽 0

 𝛽    0

  0 −𝛽

   0    𝛽

W7 

𝒛𝟏 𝒛𝟐 

0 0

0 0

0 0

0 0

S5 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

S6 

𝒙𝟏 𝒙𝟐 

−𝛼 0

 𝛼    0

   0 −𝛼

   0    𝛼

S7 

𝒙𝟏 𝒙𝟐 

0 0

0 0

0 0

0 0

Whole-plot sub-arrays 

Sub-plot sub-arrays 
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Figure 3-15.  Sub-array Cartesian product layouts from balanced sub-arrays (Γ = Θ = 3)  

D(3C2, 3C2)-1 

D(3C2, 3C2)-2 

D(3C2, 3C2)-6 

D(3C2, 3C2)-5 

D(3C2, 3C2)-4 D(3C2, 3C2)-3 

W5 x S5 

W6 x S7 

W7 x S6 

W5 x S6 

W6 x S7 

W7 x S5 

W5 x S7 

W6 x S6 

W7 x S5 

W5 x S7 

W6 x S5 

W7 x S6 

W5 x S5 

W6 x S6 

W7 x S7 

W5 x S6 

W6 x S5 

W7 x S7 

x 4 x 4 

x 4 
x 4 

x 4 x 4 
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Figure 3-16.  Pairwise correlation between model terms for the designs in Figure 3-15 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17.  Prediction variance vs. fraction of design space for the designs in Figure 3-15 

D(3C2, 3C2)-4 

D(3C2, 3C2)-2 and -5 

D(3C2, 3C2)-3 

D(3C2, 3C2)-1 

D(3C2, 3C2)-2, -3, -4, and D(3C2, 3C2)-1 

x2 is not estimable 
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Figure 3-18.  Unscaled prediction variance profile for the designs in Figure 3-15 

 

Two balanced sub-arrays (𝚪 = 𝚯 = 𝟐); p = q ≥ 3 

So far, only cases involving  p = q = 2 have been examined.  For cases where p = q = 3 

or p = q = 4, the forms of the sub-arrays, and consequently, the forms of the second-order sub-

array Cartesian product split-plot designs, are similar to those for p = q = 2 illustrated in 

Figure 3-2.  When both the whole-plot array and the sub-plot array are partitioned into two 

sub-arrays each, four second-order sub-array Cartesian product split-plot designs are 

produced, of which, as in the case of p = q = 2, only two  allow for the estimation of all model 

coefficients.  As k increases, the size of the design increases geometrically.  Figure 3-19 

illustrates the sub-plot arrays for p = q = 3 and Γ = Θ = 2, which results in a design with         

w = 18, s = 9, and N = 162. 

Now, consider exploring the construction of split-plot designs using both orthogonal 

and non-orthogonal sub-arrays derived from Box-Behnken designs.  The corresponding 

layouts for the whole-plot and sub-plot arrays are illustrated in Figures 3-20 and 3-22.   

Figure 3-20 shows the partitioning of both the whole-plot and sub-plot arrays into two 

sub-arrays each.  Note that breaking-up the whole-plot and sub-plot arrays into sub-arrays 

to form the design matrix sometimes results in designs that do not resemble the features of 

the design from which the arrays originated.  This is also true when other techniques are 

used to construct split-plot designs, as will be illustrated in Section 3.2.  In the case of 

orthogonal sub-arrays derived from Box-Behnken designs, sub-arrays W1 and S1 represent 

the factorial points of the 2k design plus one center point although the factorial points of the 

2k design are not present in a Box-Behnken design.  Sub-arrays W11 and S11 correspond to 

the edge points of the Box-Behnken design, which are W2 and S2 with 𝛼 = 𝛽 = 1. 

D(3C2, 3C2)-2, -3, -4, and -5 D(3C2, 3C2)-1 
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     Figure 3-19.  Central composite whole-plot and sub-plot arrays divided in two sub-arrays 

(p = q = 3, Γ = Θ = 2) 

 

 

 

 

 

 

Figure 3-20.  Box-Behnken whole-plot and sub-plot arrays (Γ = Θ = 2) 

Crossing the sub-arrays in Figure 3-20 results in four second-order sub-array 

Cartesian product split-plot designs.  The parameters for the designs are p= 2, 𝑞 = 2,             
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 1 −1

−1    1

   1    1

0 0

W11 

𝒛𝟏 𝒛𝟐 

−1 0

 1    0

  0 −1

   0    1

0 0

S11 

𝒙𝟏 𝒙𝟐 

−1 0

 1    0

  0 −1

   0    1

0 0

S1 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

Whole-plot sub-arrays Sub-plot sub-arrays 

Whole-plot sub-arrays Sub-plot sub-arrays 
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𝑘 = 𝑝 + 𝑞 = 4, 𝑤 = 10, 𝑠 = 5, and 𝑁 = 𝑤 × 𝑠 = 50.  Two of the designs are like D(2C2, 2C2)-1 

and D(2C2, 2C2)-2 but with 𝛼 = 𝛽 = 1, which are illustrated in Figure 3-21.  The properties 

of D(2B2, 2B2)-1 can be appreciated in Figures 3-9 through 3-11 (𝛼 = 𝛽 = 1).  The other two 

designs are not adequate to estimate all of the model terms.  One of those designs can not 

estimate the interaction between the sub-plot factors while the other can only estimate the 

coefficient for the combined quadratic sub-plot factors. 

 

 

 

 

 

 

Figure 3-21.  Box-Behnken sub-array Cartesian product split-plot designs (Γ = Θ = 2) 

 

Three unbalanced sub-arrays (𝚪 = 𝚯 = 𝟑); p = q = 2 

Figure 3-22 illustrates the case where (Γ = Θ = 3) and the replicated points have been 

removed, which creates non-orthogonal, unbalanced sub-arrays.  The standard format for the 

second-order sub-array Cartesian product split-plot design is illustrated in Table 3-6.  The 

design clearly has some disadvantages.  First, there is more correlation between the model 

terms.  Second, the prediction variance is more unstable.  Third, because of the geometrical 

configuration, establishing the relationships for the terms of significance is challenging.  

Hence, there are no practical benefits in using a design like this one.   

 

 

D(2B2, 2B2)-1 D(2B2, 2B2)-2 

w = 10 

N = 50 

w = 10 

N = 50 
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Figure 3-22.  Non-orthogonal, unbalanced sub-arrays derived from Box-Behnken designs 
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𝒛𝟏 𝒛𝟐 

−1 −1

 1 −1

−1    1

   1    1

0 0

W2 

𝒛𝟏 𝒛𝟐 

−1 0

 1 0

   0 0

W3 

𝒛𝟏 𝒛𝟐 

0 −1

0 1

 0 0

S1 

𝒙𝟏 𝒙𝟐 

−1 −1

 1 −1

−1    1

   1    1

   0    0

S2 

𝒙𝟏 𝒙𝟐 

−1 0

 1    0

   0    0

S3 

𝒙𝟏 𝒙𝟐 

0 −1

0 −1

0 0

Non-orthogonal, unbalanced whole-plot sub-arrays 

Non-orthogonal, unbalanced sub-plot sub-arrays 
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Table 3-6. Box-Behnken sub-array Cartesian product split-plot design D(2B2, 2B2)-1 

 

 

 

 

 

 

  

wi  z1 z2 x1 x2 wi z1 z2 x1 x2 wi z1 z2 x1 x2 



   



   

 

 0   

         0   

         0 0 0 

       

 

0  0  

  0 0   0 0 0  0 



1   



0 0−1 −1 0  0 0

1    0 0 1 −1

 

0  0  

1    0 0−1    1 0  0 

1    0 0   1    1 0  0 0

1  0 0 0 00 0



   



   



 0 0    

     0     0    

     00 0     

             

  0 0          



 

72 

3.2 Design Performance Assessment 

In this section, the performance of the second-order sub-array Cartesian product split-

plot design is assessed relative to other historical designs that have provided a significant 

service to the response surface methodology community.  While all of those designs have 

different structures and were developed with different objectives in mind, they are suitable 

alternatives for developing practical second-order block split-plot designs.  Of course, 

selecting adequate treatment and observation designs and the proper error-control design 

needs to be based on the experimental situation.  Those designs include the OLS-GLS 

equivalent estimation designs by Vining, Kowalski, and Montgomery (2005), the minimum 

whole-plot designs by Parker, Vining, and Kowalski (2007a), and the balanced and 

unbalanced second-order orthogonally blocked split-plot designs by Verma et. al. (2012) 

derived from Dey (2009) and Zhang (2011). 

The assessment is straightforward.  In Figures 3-23 through 3-26, the second-order 

sub-array Cartesian product split-plot designs D(2C2, 2C2)-1 and D(3C2, 3C2)-5 are assessed 

relative to the central composite designs provided by Vining, Kowalski, and Montgomery 

(2005) and by Parker, Kowalski, and Vining (2007a).  In Figures 3-27 through 3-30, the 

second-order sub-array Cartesian product split-plot design D(2B2, 2B2)-2 is assessed relative 

to the Box-Behnken designs provided by Vining, Kowalski, and Montgomery (2005) and by 

Parker, Kowalski, and Vining (2007a), the D-optimal design provided by Jones and 

Nachtsheim (2009), and the three-level designs provided by Verma et. al. (2012).  Clearly, the 

design performs well relative to those designs when using the pairwise correlation coefficient 

between model terms and the prediction variance criterion.  Summaries for the comparisons 

between the designs are provided in Tables 3-7 through 3-9.  Note that D(2B2, 2B2)-2 is 

D(2C2, 2C2)-2 but with 𝛼 = 𝛽 = 1. 
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Figure 3-23.  Second-order split-plot designs for spherical regions 

 

 

 

 

D(2C2, 2C2)-1 D(3C2, 3C2)-5 

Vining, Kowalski, and Montgomery (2005) Parker, Kowalski, and Vining (2007a) 

w = 10 

N = 40 

w = 9 

N = 36 

w = 10 

N = 50 

w = 9 

N = 45 
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Figure 3-24.  Pairwise correlation between model terms for the designs in Figure 3-23 

 

 

 

 

 

Vining, Kowalski, and Montgomery (2005) 

D(2C2, 2C2)-1 

Parker, Kowalski, and Vining (2007a) 
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Figure 3-25.  Prediction variance vs. fraction of design space for the designs in Figure 3-23 

 

 

 

 

 

 

Figure 3-26.  Unscaled prediction variance profile for the designs illustrated in Figure 3-23 

Vining, Kowalski, and Montgomery (2005) Parker, Kowalski, and Vining (2007a) 
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Figure 3-27.  Second-order split-plot designs for cuboidal regions  

w = 10 

N = 40 
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N =  48 

w = 10 

N = 50 

w = 9 

N = 45 

Vining, Kowalski, and Montgomery (2005) 
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Parker, Kowalski, and Vining (2007a) 

Jones and Nachtsheim (2009) 
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Figure 3-28.  Pairwise correlation between model terms for the designs in Figure 3-27 

Vining, Kowalski, and Montgomery (2005) 
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Figure 3-29.  Prediction variance vs. fraction of design space for the designs in Figure 3-27 

Vining, Kowalski, and Montgomery (2005) 

Verma et al. (2012) unbalanced whole-plots 
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Parker, Kowalski, and Vining (2007a) 
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Figure 3-30.  Unscaled prediction variance profile for the designs in Figure 3-27 

3.3 Summary 

To design experiments effectively, practitioners need to have a clear understanding of 

the capabilities and limitations of the candidate designs they have available.  Likewise, they 

need to have a clear understanding of the information that the design will produce.  Second-

order sub-array Cartesian product split-plot designs are an alternative that meets those 

needs.   

The independent nature of the whole-plot and sub-plot sub-arrays facilitates the 

handling of split-plot designs as a real superposition of two different experiments.  The 

designs allow for estimating the model coefficients for all first-order, two-factor interactions, 

and pure second-order terms.  When the whole-plot and sub-plot sub-arrays are second-order 

orthogonal blocks, the sub-array product is a second-order orthogonal block design, which is 

an appealing feature.  The designs are economical, and generally require about one-half of 

the number of runs required by full Cartesian product designs.  The designs are particularly 

useful if the shapes of the experimental regions for the whole-plot and sub-plot levels are 

different. 

Verma et al. (2012) balanced whole-plots Verma et al. (2012) unbalanced whole-plots 

D(2B2, 2B2)-2 

Parker, Kowalski, and Vining (2007a) Vining, Kowalski, and Montgomery (2005) 

Jones and Nachtsheim (2009) 
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Generally, second-order sub-array Cartesian product split-plot designs permit 

estimating the model coefficients for all first-order, two-factor interactions, and pure second-

order effects as well as the whole-plot variance and sub-plot variance.  Whole-plot sub-arrays 

and sub-plot sub-arrays are first-order orthogonal, which means that their combinations will 

be first-order orthogonal.  This implies that for a first-order and first-order with interaction 

model the first two conditions of orthogonal blocking are satisfied as long as the average of 

every column within a block is zero.  

There are some disadvantages to the use of the sub-array Cartesian product split-plot 

designs.  First, the Cartesian product is not a vector operation, which makes it impractical 

for matrix operations.  Second, the designs do not provide for the direct estimation of whole-

plot or sub-plot variance.  However, the whole-plot and sub-plot sub-arrays can be easily 

manipulated to produce those estimates by augmenting the sub-plot sub-arrays with       

(𝑥1, 𝑥2) = (0, 0) and by replicating at least one of the whole-plots.  Clearly, a better estimate 

of the whole-plot variance is obtained if a whole-plot is replicated 3 to 5 times.  In cases that 

require blocking, the whole-plot variance is confounded with the block variance.   

The design performs well, as illustrated in Tables 3-7 through 3-9.  The variance of 

the regression coefficients is low.  Similarly, the prediction variance of the regression 

coefficients is low and stable.  The aliasing between the terms in the model and likely effects 

that are not in the model as well as the correlation between similar effects that are not in the 

model is low.   

The performance of the second-order sub-array Cartesian product split-plot design 

was assessed relative to the performance of the central composite designs and Box-Behnken 

designs provided by both Vining, Kowalski, and Montgomery (2005) and Parker, Kowalski, 

and Vining (2007a), and to the three-level designs provided by Verma et. al. (2012).  Based 

on criterion involving prediction variance and pairwise correlation coefficients between model 

terms, it was demonstrated that second-order sub-array Cartesian product split-plot designs 

perform as well or better than designs that have been considered standards up to now.  
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Table 3-7.  Performance assessment summary – whole-plot variance estimation 

 

 

Table 3-8.  Performance assessment summary – standard designs 
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Table 3-9.  Performance assessment summary – minimum whole-plot 
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4 Second-Order Sub-Array Cartesian Product 

Split-Plot Block Design 

In the previous chapter, second-order sub-array Cartesian product split-plot designs 

were constructed with sub-arrays derived from central composite designs, Box-Behnken 

designs, and definitive screening designs.  Their treatment design and observation design 

was examined.  Finally, the performance of the designs was assessed relative to some of the 

historical designs discussed in the literature review that have provided significant service to 

the response surface methodology community.   

In this chapter, the Error-Control Design of second-order sub-array Cartesian product 

split-plot block design is examined and block designs are provided.  A goal of this research is 

to construct second-order block Cartesian product split-plot designs that satisfy as many as 

the Box and Draper (1975) evaluation criteria as possible, especially designs that allow to 

estimate the whole-plot and sub-plot variances and that block orthogonally to minimize the 

influence of the blocks on the estimation of the model parameters.  Then, the performance of 

the designs is assessed relative to the performance of the historical designs used in        

Chapter 3.  

4.1 Design Construction and Evaluation 

In this section, the Error-Control Design for balanced and unbalanced orthogonal 

block second-order sub-array Cartesian product split-plot designs is discussed and their 

characteristics are evaluated.  Recall that the third step in the construction of the second-

order sub-array Cartesian product split-plot designs discussed in Chapter 3 was the partition 

of the whole-plot and sub-plot arrays into sub-arrays or blocks.  Those same blocks now play 

a key role in the overall blocking strategy of the design.  The strategy leads to independent 

error control designs for the whole-plots and sub-plot treatments.  Clearly, the number of 

sub-arrays that can be produced can be exorbitant, so the effort in this research is limited to 

a few cases.  The construction of block split-plot designs using other types of sub-arrays is 

straightforward.   
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Table 4-1 provides the block design that results from replicating the sub-arrays 

illustrated in Figure 3-1 that produce the design in Figure 3-2 and Table 3-1.  Before 

discussing the design in Table 4-1, it should be noted that the design in Table 3-1 is a block 

design itself with a completely randomized error control design for the whole-plot treatments 

and a randomized complete block error control design for the sub-plot treatments.  In that 

situation, the whole-plots look like blocks for the sub-plot factors.  Clearly, the second-order 

sub-array Cartesian product split-plot block design in Table 4-1 has a randomized complete 

block error control design for both the whole-plot treatments and the sub-plot treatments.   

While the design has some good attributes, it is quite large and potentially costly when 

judged by the 16 potential whole-plot factor resets that could be required.  The parameters 

of the design are b = 2, w/b = 9, w/s = 9, and N = 162.  The design affords seven degrees-of-

freedom for estimating a pooled whole-plot variance estimate.  The unscaled prediction 

variance is stable, and is 0.67 at (𝑧1, 𝑧2, 𝑥1, 𝑥2 ) = (0, 0, 0, 0).  The maximum unscaled prediction 

variance is 0.67 and the average unscaled prediction variance is 0.43.  There is no correlation 

between block effects and any model terms.  This randomized complete block error-control 

design is appropriate when there are enough homogeneous experimental units in a block such 

that each treatment can be applied at least once in each block.  The shortcoming of this design 

is that it does not permit the estimation of the whole-plot variance during the first phase of 

experimentation without sacrificing properties such as second-order orthogonal blocking had 

a sequential strategy been required, i.e. run Block 1 first and then Block 2.  To obtain a whole-

plot variance estimation for Block 1, which is needed to determine the significance of the 

whole-plot factors and their interactions, one whole-plot needed to be added, which would 

have sacrificed second-order orthogonal blocking.  If estimating the whole-plot variance 

during for Block 1 was a goal, one center point at (𝑧1, 𝑧2) = (0, 0) can be added to generate an 

extra degree of freedom that affords the opportunity to estimate the whole-plot variance.   
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 Table 4-1.  Balanced complete block sub-array Cartesian product split-plot design            

(𝑝 = 𝑞 = 2), (Γ = Θ = 1) 

 

 

 

 

 

 

 

Now, consider design D(2C2, 2C2)-1 illustrated in Table 3-3, although D(2C2, 2C2)-2 

could have been selected as well.  Two balanced, second-order orthogonal blocks of size w = 5 

and s = 10 are constructed.  Second-order orthogonal block designs meet the Box and Hunter 

(1957) criteria, which Wang, Kowalski, and Vining (2009) expanded to include split-plot 

designs.  One block corresponds to the Cartesian product W1 x S2 and the other block to the 

Cartesian product W2 x S1.  The design is illustrated in Table 4-2 and in Figure 4-1. 

Now, consider the design in Table 4-3 (refer to Table 3-13) for 𝑝 = 𝑞 = 2, Γ = Θ = 3,

and 𝑏 = 3. The blocks correspond to the Cartesian products W1 x S2, W2 x S3, and W3 x S1.  

Based on the pairwise correlation between model terms and the prediction variances depicted 

in Figure 4-1, the design in Table 4-2 outperforms the designs in Tables 4-1 and 4-3.  

Figure 4-1 provides a comparison between second-order sub-array Cartesian product 

split-plot block designs for Γ = Θ = 1, Γ = Θ = 2, and Γ = Θ = 3.  Note the increase in the 

prediction variance at (0, 0, 0, 0) as well as the increase on the unscaled prediction variance 

as a function of fraction of design space.  Similarly, the overall number of cells that have 

pairwise correlation coefficients between model terms greater than zero increases.   

Block 1 Block 2 

wi 𝒛𝟏 𝒛𝟐 S wi 𝒛𝟏 𝒛𝟐 S 

1 −1 −1 S 10 −1 −1 S 

2  1 1 S 11  1 1 S 

3 −1    1 S 12 −1    1 S 

4    1    1 S 12    1    1 S 

5 −𝛽 0 S 14 −𝛽 0 S 

6    𝛽 0 S 15    𝛽 0 S 

7 0 −𝛽 S 16 0 −𝛽 S 

8 0    𝛽 S 17 0    𝛽 S 

9   0   0 S 18   0   0 S 
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Table 4-2.  Balanced second-order block sub-array Cartesian product split-plot design     

(𝑝 = 𝑞 = 2;  Γ = Θ = 2; b = 2) 

 

 

 

 

 

Table 4-3.  Balanced second-order block sub-array Cartesian product split-plot design     

(𝑝 = 𝑞 = 2;  Γ = Θ = 3; b = 3) 

 

 

 

 

4.2 Design Performance Assessment 

In the previous section, examples of second-order sub-array Cartesian product split-

plot block designs for p = q = 2 , b = 2 and b = 3 were provided.  In this section, the performance 

of those designs is assessed relative to historical second-order block split-plot designs.  Those 

designs include the OLS-GLS equivalent estimation designs by Vining, Kowalski, and 

Montgomery (2005) and the minimum whole-plot designs by Parker, Vining, and Kowalski 

(2007a) blocked by Wang, Kowalski, and Vining (2009), and the balanced and unbalanced 

second-order block split-plot designs provided by Dey (2009) and Zhang (2011) and blocked 

by Verma et. al. (2012).  Figures 4-2 through 4-4 show that second-order sub-array Cartesian 

product split-plot designs perform as well or better than those designs.  

Block 1 Block 2 

wi 𝒛𝟏 𝒛𝟐 Si wi 𝒛𝟏 𝒛𝟐 Si 

1 −1 −1 S2 6 −𝛽 0 S1 

2  1 1 S2 7    𝛽 0 S1 

3 −1    1 S2 8 0 −𝛽 S1 

4    1    1 S2 9 0    𝛽 S1 

 5    0    0 S2    10   0   0 S1 

Block 1 Block 2 Block 3 

wi 𝒛𝟏 𝒛𝟐 Si wi 𝒛𝟏 𝒛𝟐 Si wi 𝒛𝟏 𝒛𝟐 Si 

1 −1 −1 S2 5 −𝛽 0 S3   9 0 0 S1 

2  1 1 S2 6    𝛽 0 S3 10 0 0 S1 

3 −1    1 S2 7 0 −𝛽 S3 11 0 0 S1 

4    1    1 S2 8 0    𝛽 S3 12 0 0 S1 
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Figure 4-1.  Attributes of second-order sub-array Cartesian product split-plot block designs 

 

4.3 Summary 

Like the unblocked second-order sub-array Cartesian product split-plot designs, the 

second-order sub-array Cartesian product split-plot block designs perform well when judged 

by unscaled prediction variance and pairwise correlation coefficients between model terms 

criterion as shown in Figure 4-1.  The prediction variance of the regression coefficients is low 

Γ = Θ = 1; b = 2 (Table 4- Γ = Θ = 3; b = 3 (Table 4-Γ = Θ = 2; b = 2 (Table 4-

Fraction of design space 

Pairwise correlation between model terms 

Unscaled prediction variance profile 

Prediction variance = 0.33 Prediction variance = 0.80 Prediction variance = 0.67 
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and stable and the aliasing between the terms in the model and likely effects that are not in 

the model as well as the correlation between similar effects that are not in the model is low.   

Table 4-4. Performance assessment summary – blocked designs 

 

 

 

 

 

 

 

 

The second-order sub-array Cartesian product block split-plot design was assessed 

relative to the designs provided by Vining, Kowalski, and Montgomery (2005) and by Parker, 

Kowalski, and Vining (2007a) as blocked by Wang, Kowalski, and Vining (2009) as well as 

the designs provided by Dey (2009) and by Zhang (2011) as blocked by Verma et. al. (2012).  

Table 4-4 shows that the second-order sub-array Cartesian product block split-plot design 

outperforms the design provided by Dey (2009) as blocked by Verma et. al. (2012) and the 

design provided by Parker, Kowalski, and Vining (2007a) as blocked by Wang, Kowalski, and 

Vining (2009) when judged by the prediction variance and the pairwise correlation 

coefficients between model terms criterion.  The design also outperforms the design provided 

by Zhang (2011) as blocked by Verma et.al. (2012).  The second-order sub-array Cartesian 

product block split-plot design also outperform the design provided by Vining, Kowalski, and 

Montgomery (2005) as blocked by Wang, Kowalski, and Vining (2009) when judged by the 

pairwise correlation between model terms criterion.   
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It is proposed to add two criterion to the split-plot evaluation criteria by Myers, 

Montgomery, and Anderson-Cook (2009): the sequential assembly of higher order split-plot 

designs and the ability to carry out the split-plot experiment in blocks.  Fisher (1926) 

established blocking as a fundamental technique to control the effects of unwanted sources 

of variability.  Unwanted sources of variability introduced by the experimental situation 

affect split-plot experiments as they would affect any experiment and need to be controlled.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  Pairwise correlation between model terms 
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Figure 4-3.  Fraction of design space (unscaled prediction variance) 

 

 

 

 

 

 

Figure 4-4.  Unscaled prediction variance profile  

Wang, Kowalski, and Vining (2009) VKM 

Verma et al. (2012) balanced whole-plots D(2C2, 2C2)-1; Γ = Θ = 2 

Wang, Kowalski, and Vining (2009) PKV 

Wang, Kowalski, and Vining (2009) VKM 

Verma et al. (2012) balanced whole-plots 

Wang, Kowalski, and Vining (2009) PKV 

D(2C2, 2C2)-1; Γ = Θ = 2 
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5 Summary and Conclusions 

Replication, randomization, and local control of error have played an important role 

in experiments as early as Pierce and Jastrow (1885).  Fisher (1926) embedded those 

principles in the fabric of the design of experiments and introduced the split-plot experiment 

for agronomic research.  Split-plot design was extremely useful in agronomical experiments 

where the primary concern was first-order effects.  Forms of the split-plot design, like 

Taguchi’s inner and outer array design, found their way into industrial experiments.  

Taguchi’s inner and outer array designs are highly regarded by the quality and 

manufacturing control community; however, Bisgaard (2000) indicated that they are not 

widely recognized as split-plot experiments and are incorrectly analyzed as if they were 

completely randomized designs often resulting in incorrect models.   

Box and Wilson (1951) catalyzed the application of design of experiments to industrial 

experiments and jumped started the development of response surface methodology.  While 

response surface methodology has experienced significant growth since Box and Wilson 

(1951), the design of second-order split-plot experiments, with and without blocking, started 

receiving significant attention at the turn of the millennium.  Simpson, Kowalski, and 

Landman (2004) illuminated the issues affecting experimentation under restricted 

randomization, which were introduced in Chapter 1 to motivate this research.   

The need for developing or adapting design techniques to second-order split-plot 

design, without and with blocking, was validated by the literature review presented in 

Chapter 2.  While the body of literature related to response surface methodology, blocking, 

restricted randomization, design evaluation criteria, and first-order split-plot design is vast, 

literature on second-order split-plot design, particularly with blocking, is more limited.  Only 

two peer-reviewed papers addressing the topic were found: Wang, Kowalski, and Vining 

(2009) proposed OLS-GLS equivalent estimation, rotatable, orthogonally blocked central 

composite split-plot designs; Verma et. al. (2012) constructed balanced and unbalanced 

orthogonally blocked second-order split-plot designs from historical designs.   

There are several techniques to generate split-plot designs.  One of those methods is 

the Cartesian product method, which is ineffective.  In Chapter 3, an end-to-end, innovative, 
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and effective approach, rooted on traditional response surface methodology, was used to 

construct a derivative of the Cartesian product method referred to as second-order sub-array 

Cartesian product split-plot design.  Guidance on how to construct balanced and unbalanced 

designs derived from central composite, Box-Behnken, and definitive screening designs was 

provided.  In Chapter 4, blocking strategies that allow for effective and efficient use of 

resources in concomitant homogeneous and heterogeneous settings were introduced.  In 

Chapter 4, the addition of two criterion to the split-plot evaluation criteria by Myers, 

Montgomery, and Anderson-Cook (2009) were proposed: the sequential assembly of higher 

order split-plot designs and the ability to carry out split-plot experiment in blocks.   

In chapters 3 and 4, the features of the designs were demonstrated.  The 

characteristics of the designs were evaluated in view of design evaluation criterion by Box 

and Draper (1975) and by Myers, Montgomery, and Anderson-Cook (2009), and their 

performance was assessed relative to other historical designs.  To assess the performance of 

the designs, attention was placed to the stability of the prediction variance over the entire 

design space, the unscaled prediction variance at the center of the design space, the 

maximum unscaled prediction variance, the average unscaled prediction variance, and the 

unscaled prediction variance at the 90th percentile of the design space.  The pairwise 

correlation coefficients between model terms, the ability to estimate both the whole-plot 

variance and the sub-plot variance, and orthogonal blocking were also considered.   

Second-order sub-array Cartesian product split-plot designs have desirable features.  

The response surface designs for the whole-plot and sub-plot sub-arrays are independent 

from each other, which really permits treating the split-plot design as a superposition of two 

different experiments.  When the whole-plot and sub-plot sub-arrays are second-order 

orthogonal, the product is a second-order orthogonal design.  The designs typically have, or 

can be easily augmented to have, a sufficient and economical number of whole-plot and sub-

plot degrees-of-freedom that permit estiimating the whole-plot variance and sub-plot 

variance.  The designs could be particularly useful when the shapes of the experimental 

regions for the whole-plot and sub-plot levels are different.   

Some aspects of the sub-array Cartesian product split-plot designs need further 

research.  A mathematical formulation of the design can facilitate the construction and 
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handling of the design.  Constructing the designs from small designs such as Hoke (1974) 

saturated designs, Roquemore (1976) hybrid designs, and Notz (1982) minimal-point designs 

can provide further insight into the performance of the design.  Since the second-order sub-

array Cartesian split-plot designs can be constructed with only factorial, axial, and center 

point sub-arrays, it will be ideal to expand the number of designs based on combinations of 

those sub-arrays.  Albeit the proposed method shows improvement over some state-of-the-art 

methods, further validation is recommended. 

Second-order sub-array Cartesian product split-plot designs are a departure from 

second-order split-plot state-of-the-art designs.  First, the treatment design of classical 

second-order designs is partitioned into second-order sub-arrays, which are assigned to the 

treatments of the whole-plot factors and sub-plot factors.  Then, the Cartesian product 

method is used to form ordered pairs of whole-plot sub-arrays by sub-plot sub-arrays rather 

than the ordered pairs of full whole-plot arrays by full sub-plot arrays produced by the 

Taguchi method.  Then, the sub-array Cartesian products are concatenated into a new 

observation design.  Finally, the sub-array structure is used to provide blocking strategies 

that permit effective and efficient use of resources. 

The new form of second-order split-plot design produced by this research is an efficient 

and effective alternative to split-plot design methods like the Taguchi’s inner and outer array 

design method.  The designs are economical, and generally require about one-half of the 

number of runs required by full Cartesian product designs.  Most of the second-order sub-

array Cartesian product split-plot designs permit estimating the model coefficients for all 

first-order, all two-factor interactions, and all pure second-order terms unlike product array 

methods where the primary concern is first-order orthogonal effects.  The sub-array structure 

has the desirable feature that the second-order structure of the design typically can be 

revealed just by inspection of the sub-arrays. 

Sub-array Cartesian product split-plot designs are high information-quality designs.  

The designs perform well.  The variance of the regression coefficients is low.  Similarly, the 

prediction variance of the regression coefficients is low and stable.  The aliasing between the 

terms in the model and likely effects that are not in the model as well as the correlation 

between similar effects that are not in the model is low.  Based on an assessment using key 
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design evaluation criterion established by Box and Draper (1975) and Myers, Montgomery, 

and Anderson-Cook (2009), it was demonstrated that second-order sub-array Cartesian 

product split-plot designs perform as well or better than historical designs that have been 

considered standards up to now. 

The design performs well, as illustrated in Table 5-1 through 5-4.  The variance of the 

regression coefficients is low.  Similarly, the prediction variance of the regression coefficients 

is low and stable.  The aliasing between terms in the model and likely effects that are not in 

the model as well as the correlation between similar effects that are not in the model is low.   

The performance of the second-order sub-array Cartesian product split-plot design 

was assessed relative to the performance of the central composite designs and Box-Behnken 

designs provided by both Vining, Kowalski, and Montgomery (2005) and Parker, Kowalski, 

and Vining (2007a), and to the three-level designs provided by Verma et. al. (2012).  Based 

on criterion involving prediction variance and pairwise correlation coefficients between model 

terms, the results in Tables 5-1 through 5-3 demonstrate that second-order sub-array 

Cartesian product split-plot designs perform as well or better than designs that have been 

considered standards up to date.   

The performance of the second-order sub-array Cartesian product block split-plot 

designs were assessed relative to the designs provided by Vining, Kowalski, and Montgomery 

(2005) and Parker, Kowalski, and Vining (2007a) as blocked by Wang, Kowalski, and Vining 

(2009) as well as the designs provided by Dey (2009) and Zhang (2011) as blocked by Verma 

et. al. (2012).  As shown in Table 5-4, second-order sub-array Cartesian product block split-

plot design outperform the design provided by Dey (2009) as blocked by Verma et. al. (2012) 

and the design provided by Parker, Kowalski, and Vining (2007a) as blocked by Wang, 

Kowalski, and Vining (2009) when judged by the prediction variance and the pairwise 

correlation coefficients between model terms criterion.  The second-order sub-array Cartesian 

product split-plot block design also outperforms the design provided by Zhang (2011) as 

blocked by Verma et.al. (2012).  The second-order sub-array Cartesian product block split-

plot design also outperform the design provided by Vining, Kowalski, and Montgomery (2005) 

as blocked by Wang, Kowalski, and Vining (2009) when judged by the pairwise correlation 

between model terms criterion.   
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Table 5-1.  Performance assessment summary – whole-plot variance estimation 

 

 

 

Table 5-2.  Performance assessment summary – standard designs 
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Table 5-3.  Performance assessment summary – minimum whole-plot 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-4. Performance assessment summary – blocked designs 
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