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ABSTRACT OF DISSERTATION 

 SOIL MITE BIODIVERSITY: ITS RELATIONSHIP TO GRASS SPECIES AND 

INFLUENCE ON DECOMPOSITION IN THE KONZA TALLGRASS PRAIRIE 

 

Human activities are responsible for unprecedented extinction rates and global 

change. Species are disappearing faster than we can record their existence and before we 

determine their role in ecosystems. In no other system on Earth are we more uncertain 

about the true diversity of organisms and their roles than in soils. I have examined soil 

mite (Acari) species at the Konza Prairie Biological Station (KPBS), Kansas, USA, an 

uncutivated tallgrass prairie, to determine what mechanisms are responsible for their 

diversity, how alien invasive grasses may impact them, and what role their diversity plays 

in decomposition. 

The hypotheses that soil mite species richness, abundance and taxonomic 

diversity is greater beneath grasses in dicultures (different species) compared to 

monocultures (same species), beneath grasses of higher resource quality (lower C:N) 

compared to lower resource quality, and beneath heterogeneous mixes of grasses (C3 and 

C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) were 

tested using natural occurrences of grass species as treatments. Increased grass diversity 

supported a more species and phylogenetically rich soil mite fauna. This relationship was 

significant at depth but not in the upper soil horizon. Soil mite richness increased non-

linearly with grass species richness suggesting that simple extrapolations of soil faunal 

diversity based on plant species inventories may underestimate the richness of associated 



 iv 

soil mite communities. The proportion of mite size classes in dicultures was considerably 

different than those for monocultures. These data suggest that interspecific root 

competition results in increased mite habitat, abundance and diversity. There was no 

difference in soil mite richness between grass combinations of differing resource quality, 

or resource heterogeneity. 

Soil mites sampled beneath six native and one alien-invasive species of grass 

were similarly abundant, species rich, diverse, and taxonomically distinct. There was no 

evidence that the community composition of soil mites was specific to grass species or 

that a significant number of mite species had affinities for different grass species. The 

soil mite community was weakly related to soil environmental conditions. Only oribatid 

mites were related to, marginally, the species of grass present. The alien invasive grass 

species did not support a successionally younger mite fauna and had no influence on mite 

community structure, possibly because it had not substantially altered the soil 

environment.  

Rates of cotton strip decomposition (percent cotton strip tensile strength loss per 

day, CTSL), and soil mite abundance and species richness were measured at high and low 

fire frequency sites of the KPBS. Likelihood-based and information theoretic approaches 

were used to examine strength of evidence in data for models of CTSL representing the 

Null, Rivet and Redundant hypotheses of biodiversity and ecosystem function (BEF). 

The Null model including temperature, moisture and saturating effects in the total 

abundance of predatory mites (Mesostigmata) had more support in the data than any 

other models. Models representing Rivet and Redundant patterns of BEF settled on 
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parameter values distinct from the Null models but had less support in the data regardless 

of which mite group was being considered. 

A significant trend was observed in the models’ residuals from low fire frequency 

sites; trends not observed in high fire frequency sites. I speculate that annually burned 

sites more closely emulate the agricultural system the models were originally designed 

for than low fire frequency sites, accounting for differences in model performance. 

Biophysical properties on low fire frequency sites such as increased litter cover, different 

soil carbon constituents or a different microbial community may regulate decomposition 

in a manner not accounted for by only soil temperature and moisture driving variables. 

 

Mark George St. John 
Graduate Degree Program in Ecology 

Colorado State University 
Fort Collins, CO 80523 

Summer 2005 
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1. INTRODUCTION 

Most of the species known to science are macroscopic organisms and relatively 

easy to census (May 1988). While the total number of species on Earth is debated (Erwin 

1982, Ødegaard 2000, Novotny et al. 2002), there is no question that the majority are 

microscopic, undocumented and of immense importance to the functioning of Earth’s 

ecosystems (Wilson 1987). Soil systems are particularly poorly studied (Fitter 2005) yet 

contain the highest diversity and abundance of all terrestrial organisms (Giller 1996). 

It is urgent that we tackle the problems of predicting the diversity of soil 

organisms and what role this diversity plays in the functioning of ecosystems. Human 

activities continue to alter Earth’s ecosystems and drive extinction rates to unprecedented 

levels in geological history (Ehrlich and Ehrlich 1981). Not knowing the diversity of soil 

organisms and the role soil species play in terrestrial ecosystems before they are lost 

forever is negligent and potentially disastrous (Wall et al. 2001, Wall 2004). This 

dissertation aims to be one step towards remedying this situation by determining patterns 

and mechanisms responsible for soil faunal diversity and the role of this diversity in 

decomposition processes. 
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I took advantage of a manipulative field experiment at the Konza Prairie 

Biological Station (KPBS), a Long-Term Ecological Research (LTER) site and 

collaborated with taxonomic experts for my research. This allowed me to test hypotheses 

on the relationships between grasses and the diversity of soil mites (a hyper-diverse 

group of soil organisms), and between soil mites and rates of decomposition (a measure 

of ecosystem functioning) in a natural setting without many of the simplifying 

assumptions of a laboratory study. 

1.1. The “enigma” of soil biodiversity 

Soil biota are probably the least tractable of terrestrial organisms to current survey 

methods and to discrimination by taxonomic experts. The identification of individual soil 

organisms to species remains a constraint on understanding soil ecology because soil is 

an opaque medium where in situ identification of the mostly microscopic organisms is 

impractical. Additionally, taxonomic expertise for soil organisms is in decline 

(Ananthakrishnan 2000, Coomans 2002).  

We have only rudimentary knowledge of soil biodiversity in a few ecosystem 

types (Hawksworth and Ritchie 1993, O'Donnell et al. 1994, Brussaard et al. 1997), and it 

is difficult to even make sensible guesses about the true diversity of soil taxa (Lawton et 

al. 1998). Molecular techniques show soil biotic diversity is rich, but, for example, the 

functional roles of the 5000 bacterial types inhabiting 100 g of Norwegian soil remain 

unknown (Torsvik et al. 1990).  

The richness of the soil fauna seems to defy traditional ecological theory, most of 

which is based on studies of aboveground, terrestrial ecosystems. In soils, there appears 

to be an overabundance of omnivores, little niche separation, high redundancy and no 
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consistent relationships with productivity, disturbance or competitive exclusion (Bardgett 

2002, Setälä 2002). However, new evidence indicates that there may be more niche 

separation in the soil fauna than previously believed (Schneider et al. 2004). The spatially 

complex soil environment is believed to be an important mechanism driving soil 

biodiversity to a level greater than that for aboveground (Anderson 1978, Hansen 2000, 

Bardgett 2002). 

1.2. Soil mites 

 There are estimated to be over a million species of mites worldwide, with most of 

these species being soil dwellers (Walter and Proctor 1999). Mites are typically the most 

abundant and diverse arthropods in soil systems (Behan et al. 1978) fulfilling the roles of 

fungivores, saprivores, herbivores, omnivores and predators. Their overwhelming 

diversity and abundance can be an impediment to soil investigations at the species level. 

Additionally, our poor knowledge of each species functional role can be an impediment 

to investigations at the functional level. Yet we know through exclusion and microcosm 

experiments that they have significant influences on decomposition and nutrient cycling 

(Seastedt 1984c). 

 Given the potential importance of soil mites, and other soil fauna, to ecosystem 

processes it is imperative that we determine the mechanisms for their diversity in natural 

systems. Understanding mechanisms will lead to a more predictive science.  

1.3. Above and below ground relationships 

Biotic inventories are presently heavily plant biased. Often when the diversity of a 

region is being assessed, plant richness is measured with the assumption that it is a 

surrogate for other groups of organisms. This assumption has been tested for some 
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animals, such as birds and insects (Currie 1991, Ødegaard 2000, Simonson et al. 2001, 

Novotny et al. 2002); however, it has not been adequately tested for soil organisms. It is 

often presumed that plant species diversity influences the diversity of soil communities, 

but, "there has been no systematic documentation of the effects of reducing resource 

variety on the diversity of soil biota" (Swift and Anderson 1994). My research will 

provide the first evidence for how plants in natural systems, via their richness, quality of 

litter and roots, and heterogeneity of litter and roots, as well as invasiveness, influence 

the diversity of soil mites associated with those plants.  

In Chapter 2 I test the hypotheses that soil mite diversity and abundance is 

positively related to increasing grass richness, resource quality and resource 

heterogeneity. In Chapter 3, I test the hypotheses that soil mite communities are unique to 

grass identity and that an alien invasive grass alters this relationship. These chapters 

address two ways in which aboveground diversity may be a predictor of belowground 

diversity. 

1.4. Soil biodiversity and ecosystem functioning 

An important issue in contemporary ecology is the role of biodiversity in 

ecosystem processes (Loreau et al. 2001, Tilman et al. 2001, Naeem 2002, Naeem et al. 

2002, Naeem and Wright 2003, Symstad et al. 2003, Wall et al. 2004, Fitter 2005). We 

urgently need to understand the ways that species contribute to ecosystem functioning 

because of species extinctions and the frequently deleterious global changes resulting 

from management decisions, habitat fragmentation, and altered climate. In soil, 

biogeochemical cycling is a fundamental ecosystem process, where many of the critical 
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steps (e.g., decomposition, C and N transformation, trace gas generation) are mediated by 

soil organisms (Swift et al. 1979, Swift and Anderson 1994, van der Putten et al. 2004). 

In establishing the relationships between ecosystem processes and contributions 

of soil taxa, the complexities of natural ecosystems make it seemingly prohibitive to 

move beyond patterns of correlation to knowledge of causality. In order to isolate cause 

and effect, the control of ecosystem and soil biotic variables sometimes reduces the 

research design to simplistic laboratory experiments involving few species (Setälä 2002), 

or to a highly imprecise simultaneous elimination of targeted biotic groups (Moore et al. 

1996). I address this in Chapter 4 by testing several hypothetical relationships between 

biodiversity and ecosystem functioning (BEF) against data collected for soil mite 

diversity and rates of decomposition at the KPBS.  

Without accurate information on the roles and determinants of soil biodiversity, 

one cannot manage soil ecosystems, rigorously understand the structure and interactions 

of soil communities, the relationships of soil biology to rates of ecological processes, or 

model ecosystem function in order to predict regional and global environmental change 

scenarios.  

My research goals were to inventory and quantify the taxonomic diversity of soil 

mites at the KBPS, test hypotheses to determine what factors controls their diversity and 

then, determine what relationship, if any, exists between soil mite biodiversity and 

ecosystem processes. 
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2. DOES GRASS SPECIES CO-OCCURRENCE INFLUENCE SOIL MITE 

DIVERSITY? 

2.1. ABSTRACT 

 Few studies have considered whether plant taxa can be used as predictors of 

belowground faunal diversity in natural ecosystems. Soil mite diversity was examined 

beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. The 

hypotheses that soil mite (Acari) species richness, abundance and taxonomic diversity are 

greater (1) beneath grasses in dicultures (different species) compared to monocultures 

(same species), (2) beneath grasses of higher resource quality (lower C:N) compared to 

lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 

grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) were 

tested using natural occurrences of grass species as treatments. This study is the first to 

examine the interaction between above- and belowground diversity in a natural setting 

with species-level resolution of a hyper diverse taxon. 

Results indicate that grasses in diculture supported a more species and 

phylogenetically rich soil mite fauna than for monocultures and that this relationship was 

significant at depth but not in the upper soil horizon. Mite species richness was not 
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linearly related to grass species richness, which suggests that simple extrapolations of soil 

faunal diversity based on plant species inventories may underestimate the richness of 

associated soil mite communities. The distribution of mite size classes in dicultures was 

considerably different than those for monocultures. There was no difference in soil mite 

richness between grass combinations of differing resource quality, or resource 

heterogeneity. 

2.2. INTRODUCTION 

Knowledge of how, or even if, aboveground and belowground diversity are 

related is important to our understanding of biodiversity, conservation, ecology and the 

services ecosystems provide to society (Hooper et al. 2000, Wall et al. 2004, Wardle et al. 

2004). We are experiencing unprecedented global change be it climate, land use or 

species extinctions; yet there is a critical lack of information as to what the implications 

of these changes are to soil organisms and the ecological processes they impact (Wall et 

al. 2004, Fitter 2005). Part of the problem is that the overwhelming diversity and 

abundance of soil organisms requires many experts and intense labor for study in all but 

the most simplified laboratory experiments (Giller 1996, Lawton et al. 1998). Plant 

richness can be a useful indicator of aboveground animal diversity at local scales (Currie 

1991, Simonson et al. 2001); however, whether plant species richness is a determinant of 

belowground species richness has not been tested in a natural ecosystem. The few studies 

addressing this question this were laboratory experiments (De Deyn et al. 2003), field-

plot manipulations (Wardle et al. 1999, De Deyn et al. 2004, Wardle et al. 2004), studies 

of human-created disturbance (Korthals et al. 2001, St. John et al. 2002, Huhta and Niemi 

2003), and/or used higher taxonomic or functional groupings (Wardle et al. 1999, 
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Porazinska et al. 2003). Soil mites were examined rarely, at high taxonomic levels, and 

generally showed no consistent patterns relating to aboveground diversity (Hooper et al. 

2000, Wardle et al. 2004). In response, I investigated the relationship between above- and 

belowground diversity using grass species and soil mites, a hyper diverse taxon in 

uncultivated tall grass prairie. 

Soils communities are primarily detrital-based (Hunt et al. 1987, Coleman and 

Crossley 1996). Their function and composition are implicitly linked to the quantity and 

quality of resources from plant matter aboveground and to the roots of these plants 

(Bardgett and Cook 1998, Jones et al. 1998). Laboratory and field manipulations 

demonstrate that plant richness may be positively related to the diversity of soil litter 

quality or litter types that enter the detrital food web (Anderson 1978, Sulkava and Huhta 

1998). This resource heterogeneity may support a greater diversity of soil fauna through 

both the provision of food substrate and additional microhabitats (Anderson 1978, Berg 

et al. 1998, Hansen 2000, Clapperton et al. 2002). Aboveground plant richness and 

diversity may be considered a surrogate for, or determinant of, belowground faunal 

richness and diversity through mechanisms of altering aspects of resource quantity, 

quality and heterogeneity. 

This hypothesis was tested using grass species’ characteristics and the 

communities of soil mites (Acari) associated with them, at the Konza Prairie Biological 

Research Station (KPBS; 39.1˚ N, 94.6˚ E). The KBPS is part of the last remaining tracts 

of unplowed tallgrass prairie in the U.S. and among the National Science Foundation’s 

network of Long Term Ecological Research (LTER) sites. 
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Mites are the most abundant members of soil arthropod communities, accounting 

for as much as 95% of all individuals (Behan et al. 1978, Seastedt 1984b, Walter and 

Proctor 1999). Mites affect decomposition by feeding on microbes, detritus, as predators, 

omnivores and as plant parasites (Walter 1987, Kethley 1990, Siepel and De Ruiter-

Dijkman 1993, Walter and Proctor 1999). Their global taxonomic richness is estimated to 

exceed 1 million species, with the majority of species thought to be soil dwellers (Walter 

and Proctor 1999). As with many soil mesofauna, feeding habits and functional roles for 

most species are often inferred from studies of closely related species (Marshall et al. 

1987, Wall et al. 2001). 

We tested three hypotheses that soil mite richness and taxonomic distinctness (a 

measure of how unrelated species are to each other) (Warwick and Clarke 1995) are 

determined by 1) grass species richness, 2) grass resource quality, based on 

photosynthetic pathway, and 3) grass resource heterogeneity based on mixtures of 

photosynthetic pathways. Mite species were inventoried from soil sampled between two 

individuals of six pre-determined species of grasses, three C3 and three C4. The 

photosynthetic pathways C3 and C4 represent quality of grass resources, including roots, 

with C3 grasses characterized by lower C:N and lignin content than C4 grasses (Wedin 

and Tilman 1990, Tilman et al. 1997). Several soil quality covariates including C:N of 

soil, roots and shoots, and soil textures were measured from these grass combinations. It 

was determined if juxtaposed grass species in diculture results in a non-additive increase 

(overyielding) of soil mite richness compared with two grass species in monoculture.  
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2.3. MATERIALS AND METHODS 

2.3.1. Study site description 

The KPBS has over 300 documented species of plants in the area and is 

dominated by big bluestem (Andropogon gerardii Vitm.) and little bluestem 

(Schizachyrium scoparium (Michx.) Nash), both C4, perennial grasses (Freeman 1998). 

We chose a watershed (KPBS designation “4B”) that is experimentally burned every four 

years. The last burn occurred the year previous to this study (May of 1998). Its 

intermediate fire frequency is thought to mimic natural wildfire conditions and supports a 

diverse mixture of both C3 and C4 grasses (Collins and Steinauer 1998). For more 

descriptions of the soil characteristics and site see a parallel study, Porazinska et al. 

(2003). 

2.3.2. Sampling design 

On 18 May 1999 four replicate blocks (≈ 20 m × 20 m) were established 

approximately 100 m apart on the upper side of watershed 4B’s slope. Grass species pairs 

in 12 different combinations (Table 2.1) were marked with a pin flag and replicated five 

times within each block. Selection of grass pairs was non-random in order to minimize 

the influence of non-target grass species’ roots; the distance between pairs was never 

more than 10 cm and no shoots of non-target plant species were within a 20 cm diameter. 

The selected grass species were: (A) big bluestem (C4), (B) little bluestem (C4), (C) 

Scribner's panicum (Dichanthelium oligosanthes (Schult.) Gould) (C3), (D) Kentucky 

bluegrass (Poa pratensis L.) (C3), (E) prairie dropseed (Sporobolus heterolepis (A. Gray) 

A. Gray) (C4), and (F) prairie junegrass (Koeleria nitida Nutt.) (C3). Soils for every grass 
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species combination, from one of the randomly selected 5 replicate pin flag locations 

within each block, were sampled with a soil corer (4.8 cm in diameter). 
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Table 2.1. Sampling design for the collection of soil cores and their subsequent use in 
testing the hypotheses for grass richness (H1; monoculture (1) vs. diculture (2)), quality 
(H2; low (C4C4) vs. high (C3C3)) and heterogeneity (H3; low (C3C3 or C4C4) vs. high 
(C3C4)) effects on soil mite richness. 
 

Grass 

Combination1 

Grass 

Richness 

Grass 

Quality 

Grass 

Heterogeneity 

    AA 1 C4 1 

BB 1 C4 1 

CC 1 C3 1 

DD 1 C3 1 

EE 1 C4 1 

FF 1 C3 1 

AB 2 C4 1 

AC 2 C3C4 2 

AD 2 C3C4 2 

BC 2 C3C4 2 

BD 2 C3C4 2 

CD 2 C3 1 

 

Note: Text in italics indicates samples not used for given analyses. 1(A) big bluestem (A. 
gerardii) (C4), (B) little bluestem (S. scoparium) (C4), (C) Scribner's panicum (D. 
oligosanthes) (C3), (D) Kentucky bluegrass (P. pratensis) (C3), (E) prairie dropseed (S. 
heterolepis) (C4), and (F) prairie junegrass (K. nitida) (C3).to two depths (0–5 cm, 5–10 
cm). Two more core samples were each taken from another of the replicate set of pin flag 
locations for grass and soil chemical and physical analyses. Additionally, soil samples 
from beneath the remaining replicate pin flag locations were collected to analyze other 
members of the soil community (Porazinska et al. 2003).
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Table 2.1 shows how the twelve grass species combinations were used to test the 

three hypotheses of this experiment. Grass species richness was defined as the number of 

grass species (one or two; monoculture or diculture) within 10 cm of the soil core. Where 

both individuals of grass were the same species and had a C4 photosynthetic pathway 

(C4C4) resource quality was considered to be low compared to grass pairs of the C3 

photosynthetic pathway (C3C3). Where two grasses of different species and had the same 

photosynthetic pathway (C3C3 or C4C4) resource heterogeneity was considered to be low 

or homogeneous compared with heterogeneous photosynthetic grass pairs (C3C4). 

2.3.3. Soil mites 

Soil samples were carefully wrapped in aluminum foil, placed in coolers and 

transported to the KPBS soil laboratory within 2 hours of sampling. There, 

microarthropods were actively extracted from the soil cores using a high-gradient 

modified Tullgren method (Crossley and Blair 1991) into 95% ethanol and stored until 

identified. All sampled mites from the three suborders Mesostigmata, Oribatida and 

Prostigmata were enumerated and identified, in order of increasing taxonomic resolution, 

to superfamily, family, genus and species based on manuals from the Acarology Summer 

Program (The Ohio State University), numerous published descriptions and texts (Krantz 

1978, Dindal 1990) and the assistance of mite systematists (Valerie M. Behan-Pelletier, 

Evert E. Lindquist and David E. Walter). Only adult mites were used in statistical 

analyses since many groups have polymorphic immature stages that cannot be reliably 

assigned to a species. Adult mites were assigned to the seven functional groups (fg): 

comminuting microbivores-detritivores (grazers and browsers), piercing-sucking 
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microbivores, plant parasites, nematophages, arthropod predators, generalist predators 

and omnivores (Anderson 1975, Walter and Proctor 1999).  

The size of each mite species was determined from average length and widths 

obtained by measuring random subsets of up to 10 adult individuals per mite species for 

total body length and maximum width (exclusive of mouthparts and appendages).  

2.3.4. Grass and soil covariates 

See Porazinska et al. (2003) for procedures used to measure microbial carbon (C) 

and nitrogen (N), soil C and N mineralization rates, root C and N, total soil moisture, C, 

N and organic matter (SOM) and soil texture (percent sand, silt and clay). 

2.3.5. Data analysis 

Statistics were calculated with SAS version 8. Stepwise regressions (maximum 

R2) of measured soil and grass covariates against treatment designations (e.g., C3 vs. C4) 

and mite richness were performed to determine which covariates should be used in 

ANCOVAs. Richness was calculated for each core, for each horizon, and compared using 

repeated measures ANOVA in PROC MIXED where horizon was repeated within core. 

Block (1 to 4) was entered as a random factor while grass richness (1 vs. 2), quality (C3C3 

vs. C4C4) and heterogeneity (C3C3 or C4C4 vs. C3C4) were entered as fixed factors. The 

distribution of mite width classes between mono- and diculture samples was compared 

using a Chi-square test. 

To test for overyielding of mite richness with grass richness, composite samples 

were created from the unions of monoculture samples and compared in a repeated 

measures ANOVA, to the union of two appropriate diculture samples: 

  

€ 

∪ < ∪  
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where X and Y are two different species of grasses and XX, YY and XY represent the 

mite fauna recorded from soil cores taken from between two individuals of grass. This 

was repeated for every possible combination producing unique samples. 

2.4. RESULTS 

Mites were, as expected, numerous (6961 mites total from all cores; average 

density of 84000 mites · m–2 at 0–10 cm depth) and species rich (162 species within 3 soil 

mite taxonomic Suborders Mesostigmata, Oribatida and Prostigmata). All species of 

grass had similar associated mite richness (F5, 33 = 1.59, P = 0.19) and mite abundance 

(F5, 33 = 0.89, P = 0.50).  

See Porazinska et al. (2003) for results of grass and soil chemical analyses. 

Stepwise regression showed significant and positive relationships between initial NO3 

and NH4 and soil mite richness (F2, 53 = 10.74, P < 0.0001). These were not significant 

when entered as covariates in ANCOVAs and were not considered in further analyses.  

2.4.1. H1: Grass species richness influences on soil mite richness 

Grass and mite species richness were positively related at 5–10 cm depth and 0–

10 cm depth at taxonomic levels higher than species (Figures 2.1 and 2.2). Functional 

group richness (F1, 35 = 4.10, P = 0.05) was positively related to grass richness only in the 

lower soil horizon (Figure 2.1). Mites beneath dicultures were more taxonomically 

distinct (Δ*; less related) than in monocultures (F1, 35 = 13.71, P < 0.001; Figure 2.3). 

Mite species richness was greater in the lower soil horizon of juxtaposed 

(XY∪XY) samples compared with similar paired (XX∪YY) samples (F1, 101 = 11.96, P = 

0.0008) indicating that mite richness increased in a non-additive manner with grass 
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Figure 2.1. Taxonomic and functional richness of mites from grass mono- and dicultures, 
split by upper (0–5 cm) and lower (5–10 cm) sampled horizons, at the Konza Prairie 
Biological Station. Mites are grouped according to resolution of identification on the x-
axis (Sp, species; G, genus; F, family; Sf, superfamily; fg, functional group). Significant 
differences between mono- and dicultures are indicated by the number of asterisks (0, P ≥ 
0.1; 1, 0.1 > P > 0.05; 2, 0.05 > P > 0.01; 3, 0.01 > P > 0.001; 4, P < 0.001).
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Figure 2.2. Significance of grass richness effect (mono- vs. diculture) on mite taxonomic 
richness. Significance level = 100 · (1 – P).
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Figure 2.3. Taxonomic distinctness (Δ*) of mites from grass mono- and dicultures, split 
by horizon, and in combination (i.e., recomposed upper and lower horizon samples).
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richness at lower soil horizons but not in the upper soil horizons (F1, 101 = 0.08, P = 

0.7746; Figure 2.4). 

There was an interaction between grass species richness and soil horizon (F1, 72 = 

4.96, P = 0.0291) indicating that total numbers of mites were more equitably distributed 

in the soil profile of dicultures than monocultures (Figure 2.5). 

Mite body length (l) and widths (w) were highly correlated (w = 0.713l – 27.218, 

R2 = 0.88) thus only widths were used for the discussion of mite sizes. The size class 

distribution of mites was distinctly different between mono- and dicultures (Χ2
19 = 132, P 

< 0.001; Figure 2.6). Dicultures supported the highest proportion of smaller mites in the 

50–75 µm width class while the greatest proportion of larger mites in monocultures was 

in the 100–125 µm width class. 

2.4.2. H2: Grass resource quality influences on soil mite richness 

There was no effect of grass resource quality (C3 vs. C4) on mite richness at any 

taxonomic level or functional grouping considered (Figure 2.7). 

2.4.3. H3: Grass resource heterogeneity influences on soil mite richness 

Grass resource heterogeneity (C3C4 vs. C3C3 or C4C4) had no relationship to mite 

richness at any taxonomic level or functional grouping considered (Figure 2.8). 

2.5. DISCUSSION 

The diversity (species richness) of soil mites in tallgrass prairie was positively 

related to the diversity of grass species at the scale of individual grasses. This relationship 

also held for mite taxonomic levels above species, their taxonomic distinctness and 

functional group richness. Additionally, the co-occurrence of grass species overyielded 

mite species richness compared to what would be expected from those grasses in
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Figure 2.4. Species richness of mites from combined juxtaposed samples (XY∪XY) 
compared with combined non-juxtaposed samples (XX∪YY), split by horizon.
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Figure 2.5. Abundance of mites from grass mono- and dicultures, split by horizon.
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Figure 2.6. Proportion of mites of increasing body width in mono- and dicultures.
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Figure 2.7. Mite species richness from low (C4) and high (C3) quality grass samples, split 
by horizon.
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Figure 2.8. Mite species richness from low (C4) and high (C3) quality grass samples, split 
by horizon.
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monoculture, demonstrating that the grass diversity effect on mite richness is non-

additive. These effects were essentially absent in the topmost 0–5 cm soil layer, but 

significant at 5–10 cm depth. The mechanisms for these grass diversity effects are not 

clear since neither grass resource quality nor heterogeneity influenced the soil 

environment or the mite community in a detectable way.  

2.5.1. H1: Grass species richness influences on soil mite richness 

On average there were approximately two more mite species where grass species 

were in diculture than in monoculture at the KPBS (Figures 2.1–4). These findings are 

consistent with studies showing a modest positive relationship between oribatid mite 

species richness and the number of dominant tree species of managed forests (Migge et 

al. 1998), and between nematode and plant species richness in an experimental field 

study (De Deyn et al. 2004). Most studies, however, show no relationship between 

aboveground plant diversity and belowground faunal diversity at the species level 

(Wardle et al. 1999, Korthals et al. 2001, Huhta and Niemi 2003, Salamon et al. 2004). In 

many of these studies the authors note that “time lags” were evident in their results or at 

least possible in their experimental design, hence the effects of plant removals or 

additions on the soil communities may not have been measurable within the time frame 

of these studies. Since no manipulation of plant diversity was performed in our study the 

positive relationship between grass and mite species richness was not an experimental 

artifact. 

This relationship was increasingly strong at higher mite taxonomic levels 

(superfamily > family > genus > species) (Figure 2.2), suggesting that mite species are 

less related to each other beneath dicultures compared to monocultures. Taxonomic 
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distinctness (Δ*) of the soil mite faunas confirmed that mite species were less related, or 

more phylogenetically diverse, in diculture compared with monoculture soils (Figure 

2.3). Thus the richer prairie flora supported both a richer and more phylogenetically 

diverse soil mite fauna. This result has implications for conservation decisions since 

given equal species richness it is generally considered a higher conservation priority to 

conserve for greater phylogenetic diversity (Warwick and Clarke 1995, Faith et al. 2004). 

These findings also support the practice of using floral inventories as biodiversity 

assessment tools (Simonson et al. 2001) for soil organisms.  

However, soil mite species richness may be underestimated by predictions based 

solely on grass richness because the relationship between them is non-additive (Figure 

2.4). The mechanism for this overyielding of mite richness where grass species were 

juxtaposed is unknown. Mite richness is known to be positively related to microhabitat 

diversity (Anderson 1978, Berg et al. 1998, Hansen 2000), and root interspecific 

interactions affect root architecture, the rhizosphere and hence soil mite habitat (Gordon 

and Rice 1992). Thus we hypothesize that there was a greater diversity of habitats for 

mites as a result of root competition where grass species were growing in mixed species 

combinations compared with monocultures (Figures 2.1, 3, 4). Similar results were found 

in a grassland experiment where the abundance and species richness of Collembola were 

found to be positively related to fine root biomass and plant functional group diversity 

(Salamon et al. 2004). 

Also, we found that the influence of grass diversity on soil mite diversity was 

dependent on soil depth (Figures 2.1–4). In the lower soil horizon (5–10 cm) mites were 

consistently richer at all taxonomic levels beneath dicultures compared to monocultures, 
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but differences were not observed in the shallow depths (Figure 2.1). This makes sense in 

light of evidence that prairie grasses in Kansas tend to avoid rooting just below the 

surface, a drought tolerance trait (Qian et al. 1997). Any effects of interspecific 

competition on root architecture, and by extension mite habitat and species richness, will 

be more pronounced where roots are most active.  

Further evidence for this hypothesis was found in the profile of mite abundances 

(Figure 2.5) and body widths (Figure 2.6) by depth. Soils mites are affected by soil pore 

size and distribution (Vreeken-Buijs et al. 1998) and their body widths decrease as pore 

widths decrease with depth in the soil profile (Curry 1971). In our study the proportion of 

mite body widths less than 125 µm was distinctly skewed favoring smaller mites beneath 

dicultures compared to monocultures (Figure 2.6). Also, there was a more equitable 

distribution of mites between the upper and lower horizons of dicultures compared to 

monocultures (Figure 2.5). These results suggest that the soil associated with dicultures 

has a more diverse pore structure at depth and a greater abundance of smaller habitable 

pores than for monocultures; however, this was not measured in the present study. 

Mite species were assigned to seven functional groups in order to compare our 

results with those for taxonomic groupings as well as other studies. Mite functional group 

richness was positively related to grass species richness as well (Figure 2.1). This may 

suggest that functional groups are reasonable surrogates for mite species; however, 

immature and adult mites can have different food sources (Walter 1987, Walter and 

Ikonen 1989, Siepel and De Ruiter-Dijkman 1993) and less than 20% of the North 

American soil mite fauna has been described (even fewer have been adequately studied) 

(Marshall et al. 1987, Walter and Proctor 1999) making generalizations tenuous.  
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In a parallel collaborative study at KPBS the richness of functional groups of 

nematodes and protozoa were not influenced by the richness of grasses (Porazinska et al. 

2003), although other studies have shown nematode and plant diversity to be related at 

the generic level (Korthals et al. 2001). There is a lack of data testing the influence of 

plant diversity on soil mite or arthropod functional diversity but some studies indicate 

that plant identity and functional role (e.g. legumes) are likely to be more important than 

plant diversity per se (Wardle et al. 1999, Setälä 2002, Hedlund et al. 2003, Salamon et 

al. 2004). 

2.5.2. H2: Grass resource quality influences on soil mite richness 

The diversity of aboveground arthropod communities in grasslands was positively 

related to the nutrient status and productivity of the plants on which they feed (Siemann 

1998). However, there was no effect of grass resource quality (C3 vs. C4) on soil mite 

richness (Figure 2.7) at any taxonomic level or functional grouping considered at the 

KPBS. Similarly, in a parallel study, Porazinska et al. (2003) found no effect of grass 

resource quality on the diversity of functional groups of nematodes and protozoa. The 

lack of grass resource quality effect on soil mites was expected since few of grass and 

soil quality metrics were different between C3 or C4 samples (Porazinska et al. 2003, 

Table 2). The carbon to nitrogen ratio of the C3 grasses’ roots and soil was lower than for 

C4 grasses due to elevated nitrogen levels in the C3 grasses’ roots and soil organic matter 

was also lower under C3 compared to C4 grasses.  

It is also possible that timing of sampling may have obscured quality differences 

between C3 and C4 grasses. The “cool season” C3 and “warm season” C4 grasses have 

different phenologies (Hartnett and Fay 1998). Larger differences between C3 and C4 
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grasses may have been observed had sampling taken place several times during the 

season. Also, when compared with forbs, nitrogen fixers and woody plants, the 

differences between C3 and C4 grasses are slight. However, Osler and Beattie (2001) 

found that even though different tree species had strong effects on the soil environment, 

these influences were not enough to affect the composition of soil mite communities. 

Thus it appears that soil and litter fauna are relatively unspecific to the plants and their 

functional aspects when compared to aboveground fauna.  

This is a recurring theme in the soil literature; belowground food webs tend not to 

follow patterns established by observations of aboveground food webs (Setälä 2002). 

Belowground food webs have characteristics that may override differences in resource 

quality such as separate energy channels (i.e., roots, fungal and bacterial; Hunt et al. 

(1987)), the commonness of indirect interactions among the fauna, and the high degree of 

omnivory (Setälä 2002). 

2.5.3. H3: Grass resource heterogeneity influences on soil mite richness 

There was no effect of grass resource heterogeneity (C3C4 vs. C3C3 or C4C4) on 

soil mite richness (Figure 2.8) at any taxonomic level or functional grouping considered. 

This was unexpected given the evidence that heterogeneous mixtures of grass species 

(diculture; Figure 2.1) did support a richer soil mite fauna compared with monocultures 

(Figures 2.1–4). Similarly, Migge et al. (1998) found no influence of tree stand type 

(mixed vs. monoculture) on the diversity of soil oribatid mite communities and Maraun 

and Scheu (2000) found that oribatids were not influenced by the identity or diversity of 

plant resources entering the soil system. This was interpreted as a function of the 

generalist detritivore-fungivore life history of most oribatid mites (Maraun et al. 2003).  
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Other factors, not measured in our study, may play a more important role in 

determining soil mite diversity than plant richness or resource quality and heterogeneity. 

For example Clapperton et al. (2002) found that the abundance and diversity of soil 

microarthropods was positively related to grassland productivity and hence resource 

quantity. Currie (1991) showed that at regional scales richness of aboveground animals 

was highly correlated to potential evapotranspiration, a measure of how much energy is 

entering the ecosystem, and not plant richness. This suggests that at larger scales than we 

investigated, patterns in the richness of soil fauna may be similar to those for some 

aboveground vertebrates. Also potentially important to the diversity of soil mites is the 

influence and interactions of other soil organisms. Huhta and Niemi (2003) concluded 

that the influence of earthworms on soil structure and resources was the most significant 

factor determining the diversity of oribatid mites. Finally, Sulkava and Huhta (1998) 

found that soil faunal diversity was positively related to the spatial heterogeneity of 

resources but not the diversity of resources. That is, different resources in patches 

promoted a richer fauna than the same resource mixed together presumably for reasons of 

competitive exclusion. 

The relationship between above- and belowground diversity in natural systems is 

certainly complex and dependant upon the organisms studied as well as the scale of the 

investigation (Currie 1991, Hooper et al. 2000, Ettema and Wardle 2002, Wardle et al. 

2004). This study adds to the literature by providing valuable data towards understanding 

the patterns of this above- belowground relationship and in identifying mechanisms from 

a field study in a natural system at the species level. This knowledge is invaluable for the 
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prediction of soil biodiversity, its influence on soil processes and for broader 

management considerations. 
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3. ARE SOIL MITE COMMUNITIES SENSITIVE TO THE IDENTITY OF 

NATIVE AND INVASIVE ALIEN GRASSES? 

3.1. ABSTRACT 

Associations between plants and animals in aboveground communities are often 

predictable and specific. The introduction of invasive alien plants into an ecosystem can 

result in dramatic changes in both the plant and animal communities. Yet many studies of 

belowground animal communities suggest they are relatively detached from the plant 

community. The hypotheses that soil mites (Acari) form specific communities associated 

with different native grass species in an unmanipulated, natural ecosystem and that 

invasive alien grasses will impact soil mite community composition in this setting were 

tested.  

Soil mites sampled beneath five native and two alien-invasive species of grass at 

the Konza Prairie Biological Station, Kansas, USA were similarly abundant, species rich, 

diverse, and taxonomically distinct. There was no evidence that the community 

composition of soil mites was specific to grass species as a whole, but the oribatid mite 

sub-community was weakly related to grass identity. No single mite species had affinities 

for a specific grass species. Canonical correspondence analysis (CCA) suggested that the 

soil mite community was weakly related to soil environmental conditions (nitrogen 
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mineralization rate, soil organic matter content and percent clay). Results suggest that soil 

mite communities were more influenced by characteristics of the plant community as a 

whole and its effect on prevailing soil conditions. The most recent invasive alien grass 

did not support a successionally younger mite fauna and neither had influenced mite 

community structure, possibly because they had not substantially altered the soil 

environment.  These results suggest that extrapolations of soil mite diversity based on 

assumptions of plant specificity would not be valid. 

3.2. INTRODUCTION 

The importance of soil organisms to ecosystem functioning and the provision of 

services to society is unquestionable (Wall 2004). Unfortunately, our knowledge of soil 

organisms and their diversity lags far behind what is known for aboveground systems 

(Giller 1996). Vascular plants are relatively easy to census and so they are often used as 

indicators of more cryptic organisms. For example, Erwin’s (1982) much debated 

estimate of 30 million tropical arthropod species was based on assumptions of tree-host 

specificity among arboreal herbivorous beetles. This approach has been questioned 

(Ødegaard 2000, Novotny et al. 2002), and whether plant species are a good indicator of 

soil dwelling species is still contentious (Hooper et al. 2000, Chapter 2). Plants can 

influence soil community structure (Bardgett et al. 1999, Yeates 1999, Osler and Beattie 

2001, De Deyn et al. 2004, Wardle et al. 2004) and vice versa (De Deyn et al. 2003, 

Wardle et al. 2004). Some data on belowground herbivores indicate close host specificity 

(Queneherve et al. 1997, Yeates 1999), but data on non-herbivorous belowground 

communities suggest no host specificity (Osler and Beattie 2001, Porazinska et al. 2003).  

The degree to which the belowground community responds to plant identify, or 

traits, decreases with increasing trophic levels (Korthals et al. 2001, Porazinska et al. 
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2003, Wardle et al. 2003, De Deyn et al. 2004). Soil mites (Acari) are typically removed 

from primary producers by one or more trophic levels (Hunt et al. 1987). Mites in the 

suborder Oribatida have traditionally been considered K-strategist microbivores that feed 

on a wide variety of fungal substrates (Walter and Proctor 1999), but recent evidence 

suggests that the Oribatida may span as many as four trophic levels (Schneider et al. 

2004) including predators of nematodes (Walter 1987). Mesostigmata are a group of 

mites which are mostly r-strategist top predators in the detrital foodweb, although a few 

are obligate fungal feeders (Walter and Proctor 1999). The suborder Prostigmata include 

herbivores, microbivores, predators of nematodes and generalist predators of other 

microarthropods (Walter and Proctor 1999). 

The introduction of invasive alien plants into an ecosystem can cause large 

changes in its structure and function (Mack and D'Antonio 2003) including in soil 

communities (Belnap and Phillips 2001, Ehrenfeld and Scott 2001, Evans et al. 2001). 

The mechanisms of this change involve alteration of the soil physical and chemical 

environment leading to noticeable changes in soil communities (Belnap and Phillips 

2001, Ehrenfeld and Scott 2001, Evans et al. 2001). However, when invasive alien plants 

have little influence on soil parameters there was no discernable effect on the soil faunal 

community (Porazinska et al. 2003). 

The objective for this study was to determine if grass species impact the diversity 

and structure of soil mite communities, using soil mites sampled from beneath five native 

and two invasive alien species of grass at the Konza Prairie Biological Station (KPBS), 

Kansas, USA (39.1° N, 96.6° W). Specifically, the hypotheses that soil mites form 

specific communities associated with different grass species in an unmanipulated, natural 
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ecosystem and that invasive grasses will have an impact on the diversity and structure of 

soil mite community were tested. 

For this purpose a variety of statistical methods were used to obtain a 

comprehensive understanding of patterns in the soil mite communities, similar to Osler 

and Beattie’s (2001) approach. Univariate and multivariate as well as parametric and 

non-parametric statistics including canonical correspondence analysis (CCA) (ter Braak 

1986) and analysis of similarity (ANOSIM) (Clarke 1993) were used. CCA has proven 

itself to be a powerful and robust method for visualizing how species are related to 

ecological gradients, particularly when more than two gradients are involved (Palmer 

1993). ANOSIM is a non-parametric method for determining if two or more communities 

are different. Both of these approaches can yield valuable information in ecological 

studies; but involve identifying and enumerating every individual in the community. 

Hyper-diverse communities, such as soil mites, tend to have sparse matrices (most 

species are only ever sampled once) often leading to low predictive power with CCA and 

ANOSIM and an increased chance of not rejecting the Null Hypothesis when the 

Alternative is true (a Type II statistical error) (Osler 2002). To address this a non-

parametric test based on presence/absence data, probability of association analysis 

(POAA) was used as an alternative means to easily detect the presence of community 

specific associations with treatments (e.g. grass species). 

3.3. MATERIALS AND METHODS 

3.3.1. Study site description 

There are over 300 documented species of plants at the KPBS, though it is 

dominated by big bluestem (Andropogon gerardii Vitm.) and little bluestem 
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(Schizachyrium scoparium (Michx.) Nash), both C4 perennial grasses (Freeman 1998). 

Experimental blocks were chosen at two sites within the KPBS: the native plant site 

(NPS) where invasive alien grasses have not attained a significant presence and the 

invasive plant site (IPS) where the invasive alien grass, Caucasian bluestem (Andropogon 

bladhii Vitm.), has become dominant since being introduced around 1980.  

We chose a watershed (KPBS designation “4B”) which is experimentally burned 

every four years as the NPS, with the last burn occurring the year prior to this study (May 

of 1998). The IPS was a site adjacent a series of ongoing experiments referred to as the 

“Belowground Plots” (Rice et al. 1998). For a detailed description of the NPS and the IPS 

see Porazinska et al. (2003). 

3.3.2. Sampling design 

On 18 May 1999 four replicate blocks (≈ 20 m × 20 m) were established 

approximately 100 m apart on the upper side of the NPS slope. Pairs of grasses for each 

species (Table 3.1) were marked with a pin flag and replicated five times within each 

block. Selection of grass pairs was non-random: the distance between them was never 

more than 10 cm and no non-target species of plants were within a 20 cm diameter in 

order to minimize the influence of non-target plant species’ roots. The selected grass 



 

 37 

Table 3.1. Sampling design and number of samples positive for the presence of five mite 
species1 with significant distributions across grasses. 
 

Grass 

Species2 

Site CeraVirg RhodSp2 StigVere PergCurv SellSp3 

       AA NPS 1 2 0 1 0 

BB NPS 0 1 1 3 2 

CC NPS 1 1 1 0 3 

DD NPS 0 0 1 0 0 

EE NPS 0 0 2 2 1 

FF NPS 2 0 0 0 0 

IAA IPS 3 4 4 0 0 

IGG IPS 4 2 3 0 0 

Probability  0.012 0.023 0.035 0.039 0.039 

Notes: 1(CeraVirg) Ceratozetes virginicus, (RhodSp2) Rhodacarus sp. 2, (StigVere) 
Stigmalychus nr. veretrum, (PergCurv) Pergalumna curva, (SellSp3) Sellnickochthonius 
sp. 3. 2(A) big bluestem (A. gerardii) (C4), (B) little bluestem (S. scoparium) (C4), (C) 
Scribner's panicum (D. oligosanthes) (C3), (D) Kentucky bluegrass (P. pratensis) (C3), 
(E) prairie dropseed (S. heterolepis) (C4), (F) prairie junegrass (K. nitida) (C3) and (G) 
Caucasian bluestem (A. bladhii)
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species were: (A) big bluestem (C4), (B) little bluestem (C4), (C) Scribner's panicum 

(Dichanthelium oligosanthes (Schult.) Gould) (C3), (D) Kentucky bluegrass (Poa 

pratensis L.) (C3), (E) prairie dropseed (Sporobolus heterolepis (A. Gray) A. Gray) (C4), 

and (F) prairie junegrass (Koeleria nitida Nutt.) (C3), all native grasses at Konza except 

for Kentucky bluegrass. At the IPS blocks and grass pairs were selected in a similar 

manner. Here, big bluestem (A) and the invasive alien, (G) Caucasian bluestem were 

selected. 

3.3.3. Soil mites 

Soils for every grass species combination (Table 3.1), from one of the randomly 

selected 5 replicate pin flag locations within each block, were sampled with a soil corer 

(4.8 cm in diameter) to a depth of 10 cm in 5 cm increments (Crossley and Blair 1991). 

Soil samples were carefully wrapped in aluminum foil, placed in coolers and transported 

to the KPBS soil laboratory within 2 hours of sampling. Mites were actively extracted 

from the soil cores using a high-gradient modified Tullgren method (Crossley and Blair 

1991) into 95% ethanol and stored until identified. All mites—Mesostigmata, Oribatida 

and Prostigmata—were enumerated and identified to species based on manuals from the 

Acarology Summer Program (The Ohio State University), Krantz (1978), Dindal (1990), 

numerous published descriptions and the assistance of mite systematists (Evert E. 

Lindquist and David E. Walter). Only adult mites were used in statistical analyses since 

many groups have polymorphic immature stages that cannot be reliably assigned to a 

species. Data for upper and lower core samples were then added together to determine the 

abundance (N), species richness (S) and the inverse of Simpson dominance index (D) of 

mites for each 0–10 cm sample. The inverse of the Simpson dominance index, also 
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known as Hill’s number N2 is a measure of how many species dominate the sample, thus 

high dominance implies low evenness (Hill 1973). Taxonomic distinctness (Δ*), which 

measures how taxonomically un-related species in a community are to each other, was 

calculated according to Warwick and Clarke (1995). 

3.3.4. Grass and soil covariates 

See Porazinska et al. (2003) for procedures used to measure microbial carbon (C) 

and nitrogen (N), soil C and N mineralization rates, root C and N, total soil moisture, C, 

N and organic matter (SOM) and soil texture (percent sand, silt and clay). 

3.3.5. Data analysis 

Statistics were performed and figures generated using R 1.9.1 (R Development 

Core Team, 2004). Comparisons between grass species of log-transformed response 

variables were performed by analysis of variance (ANOVA) using a linear mixed effects 

model (function lme of package nlme) with block entered as a random effect; 

untransformed data are presented in tables and figures as means ± standard error. Post-

hoc comparisons were performed as pairwise t-tests with p-values adjusted for multiple 

comparisons using the fdr method (Benjamini and Hochberg 1995). Contrasts were used 

to compare NPS and IPS (function estimable of package gregmisc) also using fdr 

corrected p-values. A Kruskal-Wallis rank sum test (K-W) was used (function 

kruskal.test), but no post-hoc comparisons, where suitable transformations of the data 

could not be found to satisfy the assumptions of ANOVA (Bartlett’s test for homogeneity 

of variance and inspection of residuals). 

Analysis of similarity (ANOSIM; function anosim of package vegan) was used to 

determine if there were differences in the mite communities between grass species, 
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blocks, or sampling sites (NPS vs. IPS) using Bray-Curtis dissimilarities. Significance of 

results was determined by Monte Carlo permutations (1000) and reported as the 

ANOSIM R statistic that varies between –1 and 1 (highly significant at extremes), with 0 

indicating complete randomness. 

A non-parametric test of the hypothesis that mite species associate with particular 

grass species (probability of association analysis, POAA) was performed using 

presence/absence data. The probabilities of all possible distributions of positive soil cores 

(those with one or more individual mites of a given species) among grass species were 

calculated from multinomial distributions, under the null hypothesis of no association 

between mite and grass species. Mite species with underdispersed distributions (majority 

of positive cores associated with particular grass species) were assigned an alpha level 

equal to the sum of the probabilities of all core distributions with equal or lower 

probability than the observed distribution. This test sacrifices power in ignoring the 

numbers of mites in a core, but has the advantage of being free of assumptions about 

residual errors. The number of mite species with significantly under-dispersed 

distributions (i.e. found more often in cores from one or more grass species than would 

be predicted from all possible outcomes) were totaled and compared to a cumulative 

Poisson distribution (significance level, ∝ = 0.05; total number of events or mite species, 

n; mean, µ = ∝ · n) to see if it was greater than would be expected by chance alone.  

Canonical correspondence analyses (CCA) (ter Braak 1986) was performed 

(function cca of package vegan) using only the soil parameters which were determined to 

differ between grasses by ANOVA or K-W. A logarithmic transformation of the data was 

used to reduce bias of differently scaled parameters (Palmer 1993) and each was checked 
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for normality by inspection of histograms prior to CCA. Species of grass was also entered 

as an environmental factor and the effect of blocks was partialled out as a co-variable. 

Mite species of low occurrence (singletons and doubletons) were removed from the 

dataset prior to analysis. Three separate CCAs were performed for mite species within the 

suborders: Mesostigmata, Oribatida and Prostigmata in addition to a CCA of the entire 

mite community. Significance of results was determined using Monte Carlo permutations 

(1000). CCA plots were not scaled and only environmental vectors with a significance of 

P < 0.1 are shown. 

3.4. RESULTS 

Soil conditions were similar between most grass species, except for prairie 

dropseed (EE, Sporobolus heterolepis) that differed from the other grasses for a few 

parameters (Figure 3.1). Total soil C was different between grass species (F7, 17 = 4.79, P 

= 0.004), with soils beneath prairie dropseed being higher than most, the remaining 

grasses were similar as were the NPS and IPS. Total soil N was also highest beneath 

prairie dropseed, but only soils beneath grasses from the IPS were significantly lower 

than prairie dropseed. The other grasses had similar soil N concentration. Overall, the 

NPS had higher soil N than the IPS. Soil C:N was highest beneath prairie dropseed and 

grasses at the IPS; though this was only marginally significant (χ2
7 = 13.20, P = 0.067). 

Microbial C, N and C:N were similar for all grass species as was the rate of C-

mineralization. N-mineralization rates were related to grass species (χ2
7 = 14.28, P = 

0.046). It appeared to be lowest beneath prairie dropseed and grasses at the IPS; however 

post hoc tests could not be performed to confirm this. There was an effect of grass 
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Figure 3.1. Results of soil analyses from beneath grasses at the NPS (AA–FF) and the 
IPS (IAA, IGG). From left to right, top to bottom, total soil C (% dry soil), total soil N (% 
dry soil), soil C:N, microbial C (µg · g dry soil–1), microbial N (µg · g dry soil–1), 
microbial C:N, C mineralization rate (µg · g dry soil–1 · day–1), N mineralization rate (µg · 
g dry soil–1 · day–1), soil organic matter (% dry soil), sand (%), silt (%) and clay (%). Data 
are represented by closed circles. Means (± standard error) bearing the same letter are not 
significantly different (∝ = 0.05). A star symbol above IPS samples (IAA and IGG) 
indicates differences between NPS and IPS (no star, P ≥ 0.05; open star, 0.05 > P > 0.01; 
solid star, P ≤ 0.01).
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species on SOM (F1, 17 = 4.14, P = 0.0079): it was highest beneath prairie dropseed and 

lowest beneath grasses at the IPS. Soil textures differed in terms of silt (F1, 17 = 2.63, P = 

0.049) and clay (F1, 17 = 4.42, P = 0.006) content. Silt was higher, and clay lower, at the 

NPS compared to the IPS.  

A total of 3361 adult mites comprising 159 species were collected from all 

samples, with an average density of 58043 ± 6187 mites · m–2 in the top 10 cm of soil. All 

species of grass had similar associated mite abundance (N, F1, 17 = 0.24, P = 0.970), mite 

richness (S, F1, 17 = 1.09, P = 0.409), Simpson dominance (D-1, F1, 17 = 0.91, P = 0.521), 

taxonomic distinctness (Δ*, F1, 17 = 1.20, P = 0.352) and ratio of mesostigmatid to 

oribatid species richness (M:O, F1, 17 = 1.45, P = 0.250) (Figure 3.2). No differences were 

found in any of these parameters between the NPS and IPS. 

ANOSIM indicated that mite communities sampled from the same grass species 

were no more similar than those taken from different grass species (R = 0.036, P = 0.312) 

indicating a lack of grass species effect on mite community composition (Figure 3.3). 

Mite communities sampled beneath grasses at the NPS were not distinct from those at the 

IPS (R = –0.02, P = 0.538). Mite communities sampled within the same block, regardless 

of the grass species they were sampled from, were more similar than those sampled from 

other blocks (R = 0.23, P = 0.005). 

POAA indicated that of the 159 mite species sampled, 80 were frequent enough 

(occurred in > 2 samples) to have potentially non-random patterns of occurrence between 

grass species. Of these 80 mite species, only five had significant distributions among the 

grasses (Table 3.1), which were no more than would be expected by chance (µ = 4, P = 

0.215). Ceratozetes virginicus (Oribatida), Rhodacarus sp. 2 (Mesostigmata) and 
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Figure 3.2. From left to right, top to bottom, Soil mite abundance (N, mites · m–2), species 
richness (S), inverse Simpson’s index (D-1), taxonomic distinctness (Δ*) and ratio of 
mesostigmatid to oribatid species richness and abundance from beneath grasses at the 
NPS (AA–FF) and the IPS (IAA, IGG). Symbol descriptions as per Figure 3.1
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Figure 3.3. Dendrogram representing the dissimilarity of mite communities taken from 
beneath grasses at the NPS (AA–FF) and the IPS (IAA, IGG). Number suffix indicates 
blocking structure.
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Stigmalychus nr. veretrum (Prostigmata) were more frequently found at the IPS than at 

the NPS. Pergalumna curva (Oribatida) and Sellnickochthonius sp. 3 (Oribatida) were 

absent from the IPS. Pergalumna curva was sampled six times but never from Scribner’s 

panicum, Kentucky bluegrass or prairie junegrass. Sellnickochthonius sp. 3 was sampled 

six times but never from big bluestem, Kentucky bluegrass or prairie junegrass. 

CCA supported the hypothesis that total mite species community composition is 

related to grass species present, and also certain soil factors (N-mineralization rate, soil 

C, soil N, SOM and clay) at a marginally significant level (F11, 17 = 1.13, P = 0.076). The 

first two canonical axes explained only 14.8% of the total variance in the data indicating 

low explanatory power overall (Figure 3.4). Soil factors significantly correlated (P < 

0.05) with the first two canonical axes were: N-mineralization rate (R2 = 0.51) and clay 

(R2 = 0.21). Soil organic matter was marginally related (P = 0.052) to the first two axes 

(R2 = 0.18). Grass species (centroids; Figure 3.4) were related to the soil environmental 

vectors in a manner expected from results of the ANOVA (Figure 3.1). The first two 

CCA axes (Figure 3.4) confirm there was little association between grass species and 

mite species (as shown by ANOSIM and POAA). 

The mesostigmatid mite community was marginally related to the environment as 

a whole (F11, 13 = 0.91, P = 0.05) but no single environmental variable was significantly 

correlated to the first two canonical axes (Figure 3.5). The oribatid mite community was 

highly related to environmental conditions (F11, 19 = 1.32, P < 0.001; Figure 3.6). 

Environmental factors significantly correlated (P < 0.05) with the first two axes were: 

grass species (R2 = 0.23) and N-mineralization rate (R2 = 0.21). Soil organic matter was 

marginally related to the first two axes (R2 = 0.15, P = 0.092). The prostigmatid mite 
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Figure 3.4. Canonical correspondence analysis ordination plot, first two axes. Open 
circles (!) represent soil samples, mite species are plus symbols (+). Abbreviations for 
grass species (AA–GG) represent centroids for the grasses’ relation to environmental 
factors. Only environmental vectors significant at P < 0.1 are shown.
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Figure 3.5. Canonical correspondence analysis ordination plots for mite species within 
the Suborder Mesostigmata. Figure description as per Figure 3.4.
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Figure 3.6. Canonical correspondence analysis ordination plots for mite species within 
the Suborder Oribatida. Figure description as per Figure 3.4.
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Figure 3.7. Canonical correspondence analysis ordination plots for mite species within 
the Suborder Prostigmata. Figure description as per Figure 3.4.
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community was less related to environmental factors (F11, 19 = 0.99, P = 0.470; Figure 

3.7); however, N-mineralization rate was significantly correlated with the first two axes 

(R2 = 0.37, P < 0.001) and clay was marginally significant (R2 = 0.17, P = 0.058). 

3.5. DISCUSSION 

The soil mite community at the KPBS was insensitive to the specific grass species 

examined. This finding is consistent with that for other soil fauna at the KBPS 

(Porazinska et al. 2003) and soil mites in a wide range of European forests and fallows 

(Migge et al. 1998, Maraun and Scheu 2000), and Australian forests (Osler and Beattie 

2001). The KPBS soil mite fauna was also insensitive to the presence of an recent 

invasive alien grass further demonstrating that soil mites are generally non-specific to the 

identity of grass species present. 

3.5.1. Influence of grass identity on soil mites 

The lack of soil differences between grass species (Figure 3.1) probably accounts 

for the similarities in mite abundance (N), species richness (S), diversity (D) and 

taxonomic distinctness (Δ*) (Figure 3.2). Other studies have found that even significant 

influences of different tree species on the soil environment did not influence metrics of 

associated soil mite communities, and that only the relative abundance of each species 

was affected (Migge et al. 1998, Maraun and Scheu 2000, Osler and Beattie 2001). It is 

possible that the removal of some functional groups of soil organisms may have little 

influence on the abundances of other soil functional groups (Hunt and Wall 2002); 

although it may be that we have not adequately determined the true functional groupings 

of soil animals (Schneider et al. 2004) or identified the functional traits of most 

importance (Heemsbergen et al. 2004). These findings and our data indicate that no one 
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plant or single resource is a dominant determinant of the richness and abundance of the 

soil mite fauna in the habitats studied so far. It is more probable that the quantity of 

resources will influence soil mite abundance and richness (Belnap and Phillips 2001, 

Clapperton et al. 2002) than the identity of resources. For example the presence of 

earthworms was the single most important determinant of oribatid mite abundance and 

richness presumably because they reduce oribatid food resources and habitable soil 

structure (Huhta and Niemi 2003). Commonness of indirect interactions, polyphagy and 

multiple resource channels (root, bacteria, fungi) in soil systems (Hunt et al. 1987, Setälä 

2002) are possible mechanisms for the soil faunal insensitivity to plant identity. 

The multivariate analysis of similarity (ANOSIM) between soil mites 

communities associated with the different grass species at KPBS (Figure 3.3) confirmed 

what the univariate metrics of mite N, S, D and Δ* suggested (Figure 3.2); grass identity 

was not a determinant of mite community structure. Mite communities were significantly 

more similar within the same experimental blocks than they were between grasses of the 

same species suggesting that mechanisms responsible for mite community structure are 

operating at scales larger than the individual grasses. These mechanisms are probably 

resource heterogeneity and patchiness, though we did not measure these directly in our 

study. For example, Sulkava and Huhta (1998) demonstrated that offering heterogeneous 

resources to soil mites in patches rather than mixed together increased species richness 

presumably by allowing different communities of mites to form on the different 

resources, thus avoiding competition. This suggests that the experimental blocks captured 

differing resource mixes, either from the plant community, the soil microbial community, 

or both, and that this promoted different soil mite faunas.  
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This supposition is supported by canonical correspondence analysis; the soil mite 

community was weakly related to soil environmental conditions including N-

mineralization rate, SOM content and percent clay (Figure 3.4). Higher N-mineralization 

rates and SOM may be indicative of more resources for the soil mite community (St. John 

et al. 2002) while soils with a higher clay content may have fewer habitable pores of 

sufficient size for larger mite species (Curry 1971). Separate ordinations of mite species 

within the three Suborders, Mesostigmata, Oribatida and Prostigmata uncovered trends 

that were predictable based on life histories traits of these groups. Oribatida were the 

most influenced by soil environmental conditions and were marginally influenced by the 

species of grass present (Figure 3.6), in contrast, mesostigmatids (Figure 3.5) and 

prostigmatids (Figure 3.7) were not influenced. Though recent evidence suggests that 

there is more niche separation between oribatid species than previously known 

(Schneider et al. 2004), they tend to occupy lower trophic levels than mesostigmatid and 

prostigmatid mites, which may explain why they are most sensitive to environmental 

conditions and grass identity.  

These results agree with other studies suggesting that the influence of plants on 

soil organisms decreases with trophic distance (Korthals et al. 2001, Porazinska et al. 

2003, Wardle et al. 2003, De Deyn et al. 2004). Mesostigmatid mites are generalist 

predators and predictably were less influenced by environmental conditions and grass 

identity than the Oribatida. In comparison, communities of Collembola (fungal feeding 

microarthropods) and oribatid mites demonstrated a significant degree of specificity to 

the identity of plants in the arctic (Coulson et al. 2003). These results also suggest that 

context may play a large role in determining the relationship between aboveground plant 
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identity and the soil community. For example 159 species of mites from several trophic 

levels were identified in the KPBS samples compared with only 13 species of fungal 

feeding microarthropods in the arctic samples.  

There was no evidence that mites formed specific communities with grasses as 

determined by POAA. Of the five mite species with significant distributions no pattern in 

their life histories could be found (Table 3.1). Ceratozetes virginicus and Pergalumna 

curva are oribatids in genera considered to be omnivorous, feeding on plant and fungal 

matter, carrion and opportunistically on nematodes (Walter 1987, Schneider et al. 2004). 

Sellnickochthonius sp. 3, belongs to the oribatid family Brachychthoniidae of which 

almost nothing is known of their food habits except that several species have been 

cultured on unicellular algae (RA Norton personal communication). Stigmalychus nr. 

veretrum is a prostigmatid omnivore feeding mainly on fungal hyphae, spores and soft-

bodied invertebrates including nematodes (DE Walter, personal communication). 

Rhodacarus sp. 2 is a small bodied, predatory mesostigmatid that feeds almost 

exclusively on nematodes (EE Lindquist personal communication). These five mite 

species had non-random distributions because they were more commonly encountered at 

either the NPS or the IPS rather than with any particular grass species (Table 3.1). As 

oribatids are not typically vagile relative to mesostigmatid and prostigmatid mites, 

finding differences in species’ distributions between two similar sites only ~1 km apart is 

not unusual (St. John et al. 2002). Conversely, Stigmalychus nr. veretrum and mites in the 

genus Rhodacarus are effective colonizers (Walter 2001, St. John et al. 2002), and the 

results from POAA may indicate a preference for the IPS over the NPS perhaps relating 

to soil N and texture (Figure 3.1). 
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3.5.2. Invasive alien grass influence on soil mites 

The recent invasive alien grass, Caucasian bluestem (GG), had no influence on 

mite community structure (Figures 3.3–7). We hypothesize that it had not yet altered the 

soil environment sufficiently to significantly influence the mite community (Figure 3.1). 

Similarly, Porazinska et al. (2003) found no influence of Caucasian bluestem on the 

abundances of several trophic groups of nematodes in a parallel study at the KPBS. It is 

probable that the legacy of the pre-invasion grass community is still a major driver of the 

soil environment, fauna and processes where Caucasian bluestem has established 

(Anderson 2000, Burkins et al. 2000, Bardgett et al. 2001). Porazinska et al. (2003) found 

evidence that the microbial community was more diverse under the native Big bluestem 

compared to Caucasian bluestem suggesting that changes in the community structure of 

bacterial or fungal components have begun. Klironomos (2002, 2003) demonstrated that 

successful invasive plants benefit from interactions with arbuscular mycorrhizal fungi 

while being released from the effects of phytopathogenic fungi. It is possible that absence 

of phytopathogenic fungi associated with Caucasian bluestem may explain some of the 

microbial diversity differences that Porazinska et al. (2003) found at the KPBS, but we 

found no evidence that this affected resources for mites (Figure 3.1). Just as aboveground 

herbivore communities may be unaffected by invasive alien plants closely related to the 

native plant being displaced (Frenzel and Brandl 2003), most soil mites may be 

insensitive to the original plant source as long as similar amounts of resources are 

entering the fungal and bacterial pathways. This suggests that invasive alien plants would 

need to cause large scale alterations of the environment before the trophic levels mites 

occupy are impacted (Belnap and Phillips 2001). However, the KPBS mite community 
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may be impacted over time, as there is evidence that Caucasian bluestem has raised the 

C:N ratio of the soil (H. Reed personal communication), which discourages bacterial 

activity and slows community respiration. 

It was expected that given the relatively shorter evolutionary time to form 

associations, compared with native grasses and Kentucky bluegrass, Caucasian bluestem 

would have a significantly poorer and successionally younger associated mite fauna than 

big bluestem; however, this was not the case (Figure 3.2). Using the ratio of 

mesostigmatid to oribatid species as a sensitive indicator of relative successional age for 

a community (St. John et al. 2002) we found no difference in this ratio between 

Caucasian and big bluestem. It appears that at the KPBS Caucasian bluestem has 

displaced the native flora while adopting its soil mite community. This interpretation 

makes sense in light of findings that most KPBS soil mites are insensitive to grass 

identity (Figures 3.3–4). However, given more time Caucasian bluestem may continue to 

alter the soil environment and displace mite species not adapted to the differing resources 

and conditions. 

 Soil mite species were not specific to individual species of grasses at the KBPS, 

but are possibly more influenced by characteristics of the plant community as a whole 

and/or prevailing soil conditions. This lack of congruence between soil mite species 

associations and plant species indicates that any extrapolation of soil mite richness based 

on plant specificity may not yield valid results. 

 



 

 57 

 

 

 

 

 

 

4. SOIL MITE DIVERSITY AND DECOMPOSITION IN A TALLGRASS 

PRAIRIE: A CONTEST AMONG MODELS 

 

4.1. ABSTRACT 

Whether biodiversity relates to ecosystem function, or not, is hotly debated and 

present results are based on data from laboratory or highly manipulated field studies. This 

makes applicability of findings to natural conditions, both above- and belowground, 

difficult. Rates of cotton strip decomposition (% cotton strip tensile strength loss per day, 

CTSL), and soil mite abundance and species richness were measured at high and low fire 

frequency sites in an uncultivated tallgrass prairie, the Konza Prairie Biological Station, 

Kansas, USA. Likelihood-based and information theoretic approaches were used to 

examine strength of evidence in data for models of CTSL representing the Null, Rivet and 

Redundant hypotheses of biodiversity and ecosystem function (BEF). The Null model 

including temperature, moisture and saturating effects in the total abundance of predatory 

mites (Mesostigmata) had more support in the data than any other models (Akaike 

weight, wi = 0.49). Models representing Rivet and Redundant patterns of BEF settled on 
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parameter values distinct from the Null models but had less support in the data regardless 

of which mite group was being considered. 

A significant trend was observed in the models’ residuals from low fire frequency 

sites; trends not observed in high fire frequency sites. Annually burned sites may more 

closely emulate the agricultural system the models were originally designed for than low 

fire frequency sites, accounting for differences in model performance. Biophysical 

properties on low fire frequency sites such as increased litter cover, different soil carbon 

constituents or a different microbial community may regulate decomposition in a manner 

not accounted for by only soil temperature and moisture driving variables. 

 

4.2. INTRODUCTION 

Considering ecosystem function as a product of biodiversity is an emerging 

paradigm in community ecology (Naeem 2002). Several relationships between 

biodiversity and ecosystem function (BEF) have been proposed (Ehrlich and Ehrlich 

1981, Walker 1992, Lawton 1994, Naeem et al. 1995, Giller and O'Donovan 2002, 

Naeem et al. 2002) most centering on three patterns represented by the Null, Rivet, and 

Redundant hypotheses. The Null hypothesis suggests that no BEF relationship exists, and 

that function will be the same for all levels of biodiversity. The Rivet hypothesis says 

each species in a system is responsible for a discrete amount of ecosystem function up 

until full function is achieved. The Redundant hypothesis asserts that a minimal number 

of species are required for ecosystem function and that additional species have little or no 

influence. The inverses of these hypothesis may also represent BEF relationships (Giller 

and O'Donovan 2002). 
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Many experimental and observational approaches to studying BEF are required 

before we can realize a synthetic understanding of patterns and mechanisms (Mikola et 

al. 2002, Diaz et al. 2003). Experimental, laboratory and field tests of BEF have 

demonstrated relationships (Naeem et al. 1996, Tilman et al. 1996, Klironomos et al. 

2000, Lambers et al. 2004, Setälä and McLean 2004), usually at low levels of species 

richness (< 10 species), supporting the Redundant hypothesis. 

Most BEF experiments have measured plant species richness as ‘biodiversity’ and 

net primary productivity (NPP) as the ‘ecosystem function.’ The applicability of 

conclusions from these experiments to belowground systems is questionable (Wardle et 

al. 2000, Setälä 2002, Moore et al. 2003, Wardle et al. 2004) as is the assumption of one 

ecosystem function behaving the same as another. Decomposition has been shown to be 

positively related to the diversity of litter feeding macro-invertebrates (Hättenschwiler 

and Gasser 2005) but few data exist for the more abundant and diverse mesofauna such 

as nematodes an microarthropods (e.g. mites). 

Decomposition in soil systems is most directly controlled by microorganisms (and 

the quality of their food resources) which in turn are largely controlled by microclimatic 

factors (Gonzalez et al. 2001, Gestel et al. 2003). Predictive modeling of litter 

decomposition and nutrient cycling in agricultural soils is possible using only a few 

abiotic inputs such as temperature and moisture (Andrén and Paustian 1987) and may not 

require information on the soil fauna (Andrén et al. 1995, Nannipieri et al. 2003). Yet 

studies in natural systems have attributed 4 to 70 % of decomposition rates to the 

presence of soil mites, in combination with other less abundant microarthropods, due to 

their indirect influence on decomposition (Seastedt 1984c). Hunt et al. (1987) estimated 
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that soil fauna, including protozoa and nematodes, were directly responsible for 37% of 

the mineralized nitrogen in the short grass steppe. 

Belowground BEF studies have either been theoretical (Hunt and Wall 2002), 

simplified microcosm experiments (Cragg and Bardgett 2001, Bradford et al. 2002, Liiri 

et al. 2002, Heemsbergen et al. 2004, Setälä and McLean 2004) or highly manipulated 

field studies (Andrén et al. 1995, Wardle et al. 1999, Zak et al. 2003), and suggest a high 

degree of redundancy in soil organisms with respect to ecosystem functions such as 

decomposition and NPP (Setälä 2002, Nannipieri et al. 2003, Heemsbergen et al. 2004). 

A difficulty for interpretation of these results, however, is that experimental 

manipulations of species richness on ecosystem functioning may be masked by 

influences of the legacies of the species removed (e.g. soil structure, carbon, nitrogen, 

organic matter) (Anderson 2000, Bardgett et al. 2001). BEF experiments in natural soil 

ecosystems, incorporating species richness of soil organisms have not been attempted 

previously. 

Unplowed, but fire manipulated, tallgrass prairie at the Konza Prairie Biological 

Station (KPBS) a Long Term Ecological Research (LTER) site near Manhattan, Kansas 

(39.1˚ N, 94.6˚ E.) was chosen for study. Species richness and abundance of soil mites at 

the KPBS are represented by the three major suborders, Mesostigmata, Oribatida and 

Prostigmata (Chapters 2, 3). We used the species richness of Mesostigmata and Oribatida 

in our models as their life history traits and feeding habits are relatively predictable. Most 

oribatid mites have K-style life history traits and are microbivores and litter shredders 

(Walter and Proctor 1999). Mesostigmatid mites have r-style life history traits and are 

predators of nematodes and/or other microarthropods (Walter and Proctor 1999). 
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The study objective was to determine which of the BEF hypotheses (Null, Rivet, 

Redundant and their inverses) is most likely belowground under natural conditions. 

Models representing the BEF relationships were developed and confronted with 

decomposition rate data from a standardized substrate (cotton strips) as a measure of 

ecosystem function, and soil mite species richness as a measure of biodiversity. Since 

most models of decomposition that include soil fauna typically only consider abundance 

or biomass (Seastedt 1984c, Hunt et al. 1987) similar models were developed using 

abundance instead of species richness. 

4.3. MATERIALS AND METHODS 

4.3.1. Site and climate 

 Monthly mean temperatures at the KPBS range from –2 °C in January to 27 °C in 

July, and 75 % of the annual average precipitation (835 mm) falls during the growing 

season (Hayden 1998). The soils at the KPBS have textures of silty loam or silty clay 

loam and range in clay content from 26–34 % (Ransom et al. 1998, Porazinska et al. 

2003, Chapter 3). These soils are 3–7 % organic carbon in the top 20 cm (Knapp et al. 

1998, Porazinska et al. 2003, Chapter 3) and 60–80% of net primary production is 

allocated belowground (Rice et al. 1998). Extensive data on soil chemistry (Ransom et al. 

1998), C and N dynamics (Blair et al. 1998), soil invertebrates (Seastedt 1984b, a, 

Ransom et al. 1998, Porazinska et al. 2003, Chapter 2, Chapter 3), and plant species 

diversity (Freeman 1998) are available through the KPBS on-line database 

(http://www.konza.ksu.edu/). 

The KPBS has watershed-level manipulations of fire frequency (1-, 2-, 4-, and 20-

year intervals) and grazing activities (Bos bison) (Knapp and Seastedt 1998). Burning 
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regimes modify the diversity of plant communities with the highest plant diversity 

occurring in the watersheds with the longest interval between fires (Collins and Steinauer 

1998).  

In November 2000, three plots approximately 1.5 × 1.5 m were established on 

tully soils (Ransom et al. 1998) of two un-grazed watersheds burned annually (1C, 1D-1, 

1D-2) and three plots on tully soils of two un-grazed watersheds burned every 20 years 

(20B, 20C-1, 20C-2). Plot names were those designated by the KPBS. The leading 1 or 

20 indicates the period of burns in years and the following letter indicates a particular 

watershed replicate. The “-1” or “-2” suffix indicates where two plots, greater than 100 m 

from each other, were established on the same watershed.  

4.3.2. Field measurements 

4.3.2.1. Cotton Strips 

On each sampling date, up to three 8 × 20.5 cm strips of Shirley burial testing 

cloth (Shirley Dyeing & Finishing Ltd, Cheshire, UK) were prepared and inserted to 15 

cm depth into soils of each plot according to standard protocol (Harrison et al. 1988). 

Strips were harvested and new strips inserted approximately every 20 days (range 18–24 

days) in the summer months (June–September) for the years 2000 and 2001. Insertion 

control cotton strips were harvested immediately after insertion to the soil. Harvested 

strips were wrapped in aluminum foil, placed in sealed plastic bags, refrigerated at 4 °C, 

until returned within 24 hrs to the Natural Resource Ecology Laboratory at Colorado 

State University (NREL) for washing. Washed strips were stored at –7 °C until analyzed 

at the end of the experiment. Strips were cut into 20 mm sections by depth and measured 

for tensile strength (kg) on an Instron 4442 (Instron Corporation, Canton, MA, USA). 
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Decomposition of strips was assumed to be 99 % where strips were too decomposed to be 

measured. Percent tensile strength loss per day, CTSL (% · day-1) was calculated as the 

average for all depths (0–15 cm) from both strips, unless only one was intact. Data were 

corrected for number of days the strips were left in the field after regression of CTSL 

against number of days indicated there was a slight positive relationship (data not 

shown). 

4.3.2.2. Soil texture and carbon 

Soil samples from each plot were collected 0.5 m from the cotton strips on 

September 17th, 2000 using a 5 cm diameter core tool to 10 cm depth. Samples were 

emptied into plastic bags, refrigerated at 4 °C until returned within 24 hrs to NREL for 

processing. A 40 g sub-sample was used for determination of sand, slit and clay content 

(Gee and Bauder 1986): sand was determined gravimetrically as particles > 53 µm, clay 

was determined with a hydrometer after suspension in 5 % sodium hexametaphosphate, 

and silt was determined by subtraction. 

Soil C was determined on air-dried soil that were passed through a 2 mm sieve and 

finely ground with a ball-mill. A 0.2 g sub-sample of the finely ground soil was analyzed 

for C on a LECO CHN-1000 elemental analyzer (LECO Corporation, St. Joseph, MI, 

USA). 

4.3.2.3. Soil moisture 

 Approximately once every two to three weeks in the summers of 2000 and 2001 

soil moisture on each plot was measured using Time Domain Reflectometry (TDR) 

probes. Each plot contained two TDR probes (Taylor and Seastedt 1994), connected to a 

Tektronics 1502B cable tester (Tektronics, Inc., Redmond, OR). Individual waveforms 
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were analyzed to determine the dielectric constant. The dielectric constants were then 

used to derive volumetric soil moisture (Topp et al. 1980). If both probes returned 

positive soil moisture values the average was used, negative values were assumed to 

result from instrument error. If no reliable results were recorded then soil moisture values 

were estimated from adjacent plots involved in a related experiment (unpublished data).  

Soil water potentials (MPa), required for use in the competing models (Andrén 

and Paustian 1987), were estimated using Model 4 (Vereecken et al. 1989), since it was 

found to perform well with the fewest parameters—soil moisture, texture, C and bulk 

density. Soil bulk density values for each plot were obtained from KPBS on-line dataset 

NSC01. If no bulk density data were available for a given watershed values from the 

closest adjacent watershed were used. 

4.3.2.4. Temperature 

 Average temperatures for the time each cotton strip was in the field were 

measured with RL100 temperature data loggers (Ryan Instruments, Redmond, WA) at 7 

cm depth. Missing temperature values, resulting from equipment failures, were estimated 

by regressing known temperature values from our plots against soil temperature data 

collected nearby (KPBS on-line data set AWE01). In all cases there was good fit (R2 > 

0.7) between the data sets. Temperatures at sites 1D-1 and 20C-1 were assumed to 

adequately represent conditions for 1D-2 and 20C-2 respectively.  

4.3.2.5. Soil mites 

Soil samples for mite analysis were collected once in September 2000 with a soil 

corer (4.8 cm in diameter) at 5 cm increments to 10 cm depth (Crossley and Blair 1991). 

Two samples were taken from each plot, one within 0.5 m of the cotton strips and another 
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1 m away. Soil samples were carefully wrapped in aluminum foil, placed in coolers and 

transported to the KPBS soil laboratory within 2 hours of sampling. Microarthropods 

were actively extracted from soil cores using a high-gradient modified Tullgren method 

(Crossley and Blair 1991) into 95% ethanol for storage until identifications could be 

performed. All soil mites belonging to the Suborders Mesostigmata and Oribatida were 

enumerated and identified to species based on manuals from the Acarology Summer 

Program (The Ohio State University) as well as numerous published descriptions and the 

assistance of mite systematists (Valerie M. Behan-Pelletier, Evert E. Lindquist and David 

E. Walter). Only adult mites were used in analyses since many groups have polymorphic 

immature stages that cannot be reliably assigned to a species. 

4.3.3. Competing models 

Andrén and Paustian (1987) presented a simple model of barley straw 

decomposition in a barely cropping system. It had excellent fit to observed data (R2 ≈ 

0.99) using only soil temperature and water potential as driving variables and four 

compartments to account for different decomposition rates of the various constituents of 

straw. We used their model but assumed only one compartment and zero-order kinetics of 

decomposition. This was possible since cotton strips are nearly 100 % cellulose, are left 

in the field for short periods of time (days to weeks in grassland systems) (Gestel et al. 

2003) and our main interest was in comparing differences in the decomposition rate 

constant, k, not the prediction of mass loss. 

We modeled the effects (E) of soil temperature (T) and moisture (ψ), and mite 

species richness (S) and abundance (N) as modifiers of the decomposition rate constant 

(k) ranging from 0 to 1 (Andrén and Paustian 1987). Thus k represents the decomposition 
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rate at optimal conditions of the driving variables (i.e., E = 1; Figure 4.1). The models 

were developed in a nested fashion starting with the simplest of Null models with 

temperature and/or moisture influences. We then took the most likely of these and added 

effects of mite species richness in Rivet and Redundant models or mite abundances as an 

alternative in the Linear-N or Asymptotic-N models described below. 

4.3.3.1. Null-temperature model, NullT 

This model predicts that CTSL is entirely dependant on soil temperature:  

 

€ 

CTSL= k ⋅ ET  (1) 

where k is the decomposition constant (%·day-1) and ET is the effect of temperature 

expressed as a Q10 relationship: 

 

€ 

ET = Q10
(Ti −Tmax) 10 (2) 

Ti is the ith soil temperature, Tmax is the highest temperature recorded in the study and Q10 

is a parameter optimized in the model and represents the multiplicative increase in ET for 

every 10 °C increase. Negative effects of freezing were not considered since temperatures 

for the entire study were well above 0 °C (Table 4.1). 

4.3.3.2. Null-moisture model, Nullψ 

The Nullψ model predicts that CTSL will be affected only by soil water potential, 

ψ: 

 

€ 

CTSL= k ⋅ Eψ  (3) 

where Eψ is the effect of soil water potential. Andren and Paustian (1987) assumed Eψ to 

be a log-linear function of ψ. Since the range of ψ values recorded in this study (Table 
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Figure 4.1. BEF model representations. The relationship between species richness (S) and 
its effect (E) on decomposition were modeled by either a 2-stage linear function (top 
panel) for the Rivet (Erivet, Eq. 7) and Inverse Rivet (Erivet

-1, Eq. 8) hypotheses or an 
asymptotic function (bottom panel) for the Redundant (Eredun, Eq. 10) and Inverse 
Redundant (Eredun

-1, Eq. 11) hypotheses. See model descriptions for the definitions of the 
parameters Smax and Emin. Solid and hatched lines in the bottom panel represent the 
function Eredun and Eredun

-1 where the value of βsolid > βhatched (i.e., the solid line represents 
greater redundancy than the hatched line). The horizontal dotted line at E = 1 in both 
panels represents the Null hypothesis of BEF.
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4.1) fell into the range best described by a linear function (Bunnell and Tait 1974, Paul 

and Clark 1996) we felt it justified to use the linear relationship: 

 

€ 

Eψ =1; ψ >ψmaxE

Eψ =
ψ −ψminE

ψmaxE −ψminE
Eψ = 0; ψ <ψminE

 (4) 

ψmaxE and ψminE are boundary values for wet and dry soils respectively, optimized by 

fitting the model to data. Negative effects of high soil moisture (saturation) were not 

considered. 

4.3.3.3. Null-temperature-moisture model, NullTψ 

The NullTψ model builds on Eqs. 1 and 3 by including effects of both soil 

temperature and water potential: 

 

€ 

CTSL= k ⋅ ET ⋅ Eψ  (5) 

4.3.3.4. Rivet and Inverse Rivet models 

The Rivet model builds on Eq. 5 by adding an effect of the soil mite fauna, Erivet: 

 

€ 

CTSL= k ⋅ ET ⋅ Eψ ⋅ Erivet (6) 

where Erivet is a two-stage, linear function with a maximum effect of richness at Smax 

(Figure 4.1). Smax is optimized by fitting the model to data. The effect of species richness, 

S, of the ith sample is given by: 

 

€ 

Erivet=
Si

Smax
; 0≤ Erivet≤1 (7) 

Thus, Smax represents the level of species richness at which the effect of species 

loss from that point will be a steady decline in ecosystem function but above which the 

effect of species addition will be negligible. If the optimized value of Smax falls at or 
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below the lowest value of S measured in the study, this model cannot be distinguished 

from the NullTψ model. The Rivet model was divided into three sub-models: Rivetmeso, 

Rivetorib, and Rivettotal. These sub-models use species richness data for only 

Mesostigmata, Oribatida or both, respectively. 

The Inverse Rivet model is given by substituting: 

 

€ 

Erivet−1 =
Smax− Si

Smax
; Erivet−1 ≥ Emin (8) 

for Erivet. In this model Emin, is the corollary to Smax in Eq. 7 (Fig 1). It is the level above 

which loss of species richness increases ecosystem function but below which increasing 

richness does not reduce ecosystem function any further. If the optimized value of Emin 

reaches 1 than the inverse rivet model can be rejected for being no different from the 

NullTψ model. 

4.3.3.5. Redundant and Inverse Redundant models 

The Redundant model represents the hypothesis that as species richness increases, 

the effect of each added species is a saturating function (Figure 4.1). 

 

€ 

CTSL= k ⋅ ET ⋅ Eψ ⋅ Eredun (9) 

A characteristic of the Redundant pattern is that only a few species are required for a 

given ecosystem function and so we chose an exponential form to best describe this: 

 

€ 

Eredun=1−β−Si  (10) 

The parameter β represents the multiplicative decrease in the influence of each 

additional species and is optimized by fitting the model to data. Thus, β can be used as a 

measure of redundancy. If the optimized value of β is so large that it describes a curve 

that is saturated (Eredun ≈ 1) for all measured values of S then the Redundant model can be 
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rejected for being no different than the NullTψ model. An advantage of Eq. 10 is that it 

also represents the Modified Rivet pattern (Giller and O'Donovan 2002) at lower values 

of β (Figure 4.1); however, the delineation of high and low levels of redundancy can be 

subjective. The Redundant model was divided into three sub-models: Redundantmeso, 

Redundantorib and Redundanttotal. These sub-models use species richness (S) data for only 

oribatids, mesostigmatids or all mites, respectively. 

The Inverse Redundant model is given by substituting: 

 

€ 

Eredun-1 = β−Si  (11) 

for Eredun (Figure 4.1). In this model, larger β values imply that ecosystem function will 

reach a minimum as only a few species are added. Similar to above, this equation can 

also represent the Inverse Modified Rivet pattern at lower values of β. If the optimum 

value of β (by fitting to data) is 1, the Inverse Redundant model cannot be distinguished 

from the NullTψ model.  

4.3.3.6. Abundance models: Linear-N and Asymptotic-N 

Abundance models were identical to the Rivet and Redundant models, except that 

abundances of mites were used instead of species richness. These models are another 

form of the Null pattern of BEF but incorporate more biological information. They 

represent the hypothesis that abundance, not species richness, of mites is important to 

decomposition. Abundance analogues to the Rivet models were Linear-Nmeso, Linear-Norib 

and Linear-N total and Redundant analogues were Asymptotic-Nmeso, Asymptotic-Norib and 

Asymptotic-Ntotal.  
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4.3.4. Statistical analyses 

Statistics and figures were generated using R 1.9.0 (R Development Core Team 

2004). Analysis of variance was used to determine differences in measured soil moisture 

and temperature and CTSL between with plots and fire frequency. 

We used likelihood-based methods and information theoretics (Akaike’s 

Information Criterion, AICC) to quantify the strength of evidence for alternative models 

and to estimate their parameters (Burnham and Anderson 2002). Maximum-likelihood 

estimates of model parameters and AICC values were obtained by non-linear fitting of 

model predictions with observations using Newton’s gradient search method and multiple 

starts in Excel Solver (Microsoft 2002). The model with the lowest AICC score was 

chosen as the most likely given the data (Burnham and Anderson 2002). Subtracting the 

AICC score of the best model, i, from a given model, j, determines the distance a model is 

from the best model, ∆i. Generally, models with ∆i > 3 are not considered valid, models 

with 3 > ∆i > 2 lack support in the data relative to the best model, and those with ∆i < 2 

are considered candidates. Normalized Akaike weights (wi) were also calculated to 

evaluate the differences between a given model and the most likely model (Burnham and 

Anderson 2002). Relative likelihoods, or evidence ratios, of model j given the model i 

were calculated as wi/wj. Unadjusted R2 values of model predictions versus observations 

are presented for comparison to likelihoods, not as a means of discrimination. 

4.4. RESULTS 

No significant differences were found in soil temperature, soil moisture and CTSL 

between study plots and burn treatments (Table 4.1). All three Null models and the best 



 

 72 

Table 4.1. Means of model input data for each study plot. Abundances (m-2) and species richness of Oribatida (orib) and Mesostigmata 
(meso) are the totals for two samples each taken within 1.5 m of the cotton strip sampling plots, September 2001. Soil temperatures 
(°C), water potential (MPa) and cotton strip decomposition rates (% · day-1) are expressed as means (standard deviations in 
parentheses) for the eight sample dates in the summers of 2000 and 2001. No significant differences in T, ψ or CTSL were found 
between plots or burn treatments (α = 0.05). See Appendix Table 5.1 for raw data. 
 

Plot Abundance Species richness Temperature  Water potential Decomposition rate 

 (N) (S) (T) (ψ) (CTSL) 

 orib meso orib meso    

1C 16302 4974 17 7 24.02 (2.92) –0.0204 (0.0215) 3.22 (0.77) 

1D-1 25144 2487 19 5 24.78 (3.14) –0.0296 (0.0327) 2.69 (0.87) 

1D-2 24868 2210 24 4 24.78 (3.14) –0.0289 (0.0328) 2.85 (0.53) 

20B 40341 4420 25 6 22.90 (2.27) –0.0198 (0.0182) 3.08 (0.54) 

20C-1 19065 3868 21 5 24.07 (2.76) –0.0307 (0.0307) 3.00 (0.42) 

20C-2 33157 9118 22 10 24.07 (2.76) –0.0297 (0.0271) 2.99 (0.62) 
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models incorporating effects of mite species richness and abundance models are reported 

in Table 4.2 and Figures 4.2 and 4.4. 

4.4.1. Null pattern models 

The NullT model had the poorest fit of all models, scoring a Δi value of 66 (Table 

4.2, Figure 4.2), and failed to predict a significant amount of variance in the data. The 

Nullψ model scored significantly better than NullT but did not rank as a candidate model 

(Δi = 4.17) or adequately predict CTSL values above 3.16 % · day-1 (Figure 4.2). 

Combining temperature and moisture effects into the NullTψ model was a significant 

improvement on both the NullT and Nullψ models taken separately. Model fit for NullTψ 

increased to R2 = 0.58 and CTSL values above 4 were more accurately predicted. 

However, this model lost in competition (Δi = 2.10) to Asymptotic-Nmeso. 

4.4.2. Rivet, Redundant and abundance models 

The most likely model in the competition, Asymptotic-Nmeso, indicated that cotton 

strip decomposition in the field is related to not only microclimate factors but also the 

abundance of the mostly predatory mesostigmatid mites. This model, using temperature, 

moisture and the abundance of soil mesostigmatid mites as driving variables had the most 

support in the data out of all the competing models considered (wi = 0.49, Table 4.2, 

Figure 4.2). The value of β in this model (1.0009) corresponds with a density of 5197 

mites · m-2 at near maximum effect of the mites Eredun = 0.99 (Figure 4.3).  

Rivettotal, Redundantmeso and Redundanttotal models had some support in the data 

(wi = 0.06–0.11), but none ranked as candidates for consideration relative to the 

mesostigmatid abundance model (Asymptotic-Nmeso) and they were also out-competed by 

the simpler NullTψ model (Table 4.2, Figure 4.2). The Rivettotal model had a maximum- 
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Table 4.2. Results of model optimizations. Maximum-likelihood values of model 
parameters (see model descriptions) are given as well as the distance (Δi) each model is 
from the most likely model (Δi = 0). Only Null models and the most likely of the biotic 
models are shown. All others had Δi values much higher than 4. 
 
Model k Q10 ψminE ψmaxE Smax β Δi 

NullT 3.07 0.82 – – – – 66.02 

Nullψ 3.16 NA –0.1393 –0.0340 – – 4.17 

NullTψ 4.05 1.37 –0.1457 –0.0116 – – 2.10 

Asymptotic-Nmeso 4.44 1.45 –0.1477 –0.0087 – 1.0009 0.00 

Rivettotal 4.22 1.40 –0.1455 –0.0107 26 – 3.07 

Redundantmeso 4.31 1.41 –0.1469 –0.0104 – 1.7573 3.07 

Redundanttotal 4.17 1.38 –0.1458 –0.0116 – 1.1400 4.05 
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Figure 4.2. Observed vs. model predicted values of cotton strip tensile strength loss rate 
(CTSL, % · day-1) for each of the distinct competing models. Open symbols represent 20-
year burn sites, closed symbols are annual burn sites. Dotted lines represent 1:1 values. 
NullTψ was the most likely of the Null models and serves as the basis for (i.e., it is nested 
within) the subsequent models incorporating mite species richness and abundance.
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Figure 4.3. Mean residuals (± S. E.) from the NullTψ (observed–predicted values) vs. 
either the abundance (Asymptotic-Nmeso) or species richness (remaining panes) of 
components of the soil mite fauna. Overlaid curves (solid lines) are the maximum-
likelihood effects functions (E) for the best biotic models with their equations annotated 
to each plot. Dotted lines are at residual = 0.
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likelihood estimate of Smax = 26 suggesting that there was linear, positive effect of species 

richness up to 26 species of oribatid and mesostigmatid mites (Figure 4.3). Because all 

plots sampled had more than 24 species (Table 4.1) few inferences could be drawn from 

this model. Similarly, the Redundanttotal model was optimized at a high maximum-

likelihood value of β = 1.14 implying that there is a modest saturating trend in the 

influence of species richness on decomposition; however, support in the data for the 

model was lacking (Δi = 4.05) as were data for richness values below 24 species (Figure 

4.3). Species richness of the mesostigmatid fauna (Redundantmeso) appeared to be a better 

(Δi = 3.07) indicator of decomposition rate (Figure 4.2–3) than the species richness of 

oribatid and mesostigmatid mites combined. Models representing the Inverse Rivet and 

Inverse Redundant hypotheses optimized at parameter values of Smax and β, respectively, 

that made them indistinguishable from the NullTψ model and thus were rejected. 

4.4.3. Characteristics of most likely models 

Both of the most likely models (NullTψ and Asymptotic-Nmeso) and many of the 

others incorporating Eψ had maximum-likelihood estimates of ψminE and ψmaxE 

approximately –0.15 and –0.01 MPa , respectively. Maximum-likelihood estimates of Q10 

were about 1.5, indicating approximately a 50% increase in CTSL per 10 ºC increase.  

The models’ abilities to predict CTSL varied according to the burn regime of watersheds 

(1 vs. 20 years). Observed vs. predicted values from annually burned watersheds fell well 

along the 1:1 line (Figure 4.2) indicating good model fit to data for most models (R2 = 

0.85 for Asymptotic-Nmeso). Watersheds burned every 20 yrs had considerably more 

scatter about the 1:1 line (R2 = 0.60 for Asymptotic-Nmeso). Inspection of residuals (Figure 

4.4) confirmed that there was no significant trend in the residuals for both burn regimes 
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together, or for annual burns separately, but there was a trend in the residuals from 20 

year burn sites (F1, 22 = 9.11 , P = 0.006). This separation in trends was consistent for all 

models that were capable of explaining reasonable amounts of variance (R2 > 0.3) in the 

data (Figure 4.4). 

4.5. DISCUSSION 

Results of the model competition supported the Null pattern of BEF in this natural 

soil system with the caveat that the abundance of predatory mites was related to cotton 

strip decomposition (Table 4.2, Figure 4.2). Models representing the Rivet (including the 

Modified Rivet), and Redundant hypotheses (and their inverses) were not supported by 

the data. 

These results are consistent with experimental studies showing little influence of 

soil faunal richness on ecosystem functions such as decomposition and NPP (Andrén et 

al. 1995, Cragg and Bardgett 2001, Setälä 2002, Heemsbergen et al. 2004). The indirect 

role of soil mesofauna such as mites and Collembola on decomposition, in contrast to 

aboveground studies where plants and NPP are commonly studied (Naeem et al. 1995, 

Tilman et al. 1996, Lambers et al. 2004), likely explains why their diversity seems 

unimportant to ecosystem functioning. The complexity of relationships between soil 

species directly and indirectly involved in decomposition, as well as the many possible 

trophic interactions involved (Hunt et al. 1987, Moore et al. 1993, de Ruiter et al. 1994, 

Moore et al. 2003), remains a challenge for soil ecologists in making generalizations 

about the role of soil diversity in ecosystem functioning. It is possible that soil systems 

are capable of huge losses in diversity, even the loss of entire functional groups (Hunt 

and Wall 2002) with little effect on ecosystem functioning.
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Figure 4.4. Residuals (observed–predicted values) vs. model predicted values. Open 
symbols represent 20 year burn sites, closed symbols are annual burn sites. Dotted lines 
are at residual = 0. Hatched lines represent significant regressions (α = 0.05) for the 20 
year sites only. No significant trends were found for annual burn sites.
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4.5.1. Competing Models 

The NullTψ model using only temperature and moisture as driving variables had > 

1.5 times more support in the data (evidence ratio) than models representing the Rivet 

and Redundant hypotheses for the total mite community (Table 4.2, Figure 4.2). The 

model considering only soil moisture as a driving variable (Nullψ) produced a decent fit 

to the data (R2 = 0.52), but only managed to do so by predicting an unacceptably low 

value of soil moisture of maximum effect on decomposition (ψmaxE). The model 

effectively maximized the value of the decomposition constant, k, close to the average 

observed decomposition rate (Table 4.2). The NullT model completely lacked support in 

the data (Table 4.2). Had the study included colder seasons, it is likely that the NullT 

model would have performed at least marginally better. 

The models representing the Rivet and Redundant hypotheses for the total mite 

communities (Stotal) did not rank as candidates (∆i = 3.07 and 4.05 respectively; Figure 

4.2). Inspection of their effects functions (Erivet, Eredun) versus species richness, S, 

superimposed on the residuals from the NullTψ model (Figure 4.3) demonstrates a 

limitation of the natural experiment approach we used. Species richness values measured 

in this study were relatively high compared to those used in manipulative studies (Naeem 

et al. 1996, Tilman et al. 1996, Klironomos et al. 2000, Cragg and Bardgett 2001, Liiri et 

al. 2002, Lambers et al. 2004, Setälä and McLean 2004) and there were few to no data in 

the critical range of S near the origin. Since there were no data for sites with Stotal < 24 the 

true shape of the function in the range S = 0 to 24 cannot be predicted and the validity of 

these models would be questionable even if they did perform better in the model 

competition. 



 

 81 

The model representing the Redundant hypothesis among mesostigmatid mites, 

Redundantmeso, performed well but did not rank as a candidate (∆i = 3.07; Figure 4.2). 

The maximum-likelihood value of β, which describes the multiplicative decrease in the 

effect of mesostigmatid species richness on decomposition, was 1.76 implying high 

redundancy in the mesostigmatid fauna (Table 4.2, Figure 4.3). 

The most likely model, Asymptotic-Nmeso, included temperature and moisture as 

abiotic driving variables and abundance of adult mesostigmatid mites as the biotic driving 

variable (Table 4.2, Figure 4.2). The maximum-likelihood estimate of parameter β, which 

describes the multiplicative decrease in the effect of mesostigmatid abundance on 

decomposition corresponded with a density of roughly 5200 mites · m–2 near the 

maximum effect on decomposition (EAsymptotic-Nmeso = 0.99; Figure 4.3). Adult 

mesostigmatid mite densities averaging 4100 and as high as 12700 mites · m–2 have been 

recorded from the Konza Prairie (Chapter 2), which provides validation for the 

mechanisms represented by the Asymptotic-Nmeso model. 

4.5.2. Validity of maximum-likelihood parameter estimates 

 Maximum-likelihood estimates of the soil moisture value of minimum influence 

on decomposition (ψminE, Table 4.2) seem too high compared to expectations of microbial 

performance in the field (Wilson and Griffin 1975, Paul and Clark 1996) but were a 

consequence of the linear model chosen for Eψ. Had we modeled a wider range of 

moistures, a log-linear model would have been more appropriate. Substituting a log-

linear relationship for Eψ (Eq 6c: Andrén and Paustian 1987) in all the competing models 

decreased the maximum-likelihood estimate of ψminE to –1.5. This water potential is 

known as the permanent wilting point of plants, a measure of extremely dry soil 
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conditions and low biological activity. This provided validation that the models presented 

here would perform well over a wider range of soil moistures by using either linear or 

log-linear relationships for Eψ depending on the value of ψ, as suggested by Bunnell and 

Tait (1974). Maximum-likelihood estimates of ψmaxE (Table 4.2) were a good match for 

observations of optimal soil moisture conditions for microbial decomposition (Wilson 

and Griffin 1975, Paul and Clark 1996) lending further support to the mechanisms 

implied by the models. 

Maximum-likelihood estimates of Q10 were about 1.5 (Table 4.2), representing a 

50 % increase in CTSL per 10 ºC increase. These values seem reasonable compared to 

other studies (Andrén and Paustian 1987) especially since the data were collected during 

the hottest months of the year, temperatures were all about optimal (Parton et al. 1993, 

Paul and Clark 1996) and ranged less than 12 ºC over the course of the study (Table 4.1). 

4.5.3. Mite community influences in models 

Both feeding habits and life-history traits of mesostigmatids and oribatids differ 

(Walter and Proctor 1999), thus differences in their importance to decomposition rates 

(Table 4.2) was predictable. Richness and abundance of the Mesostigmata are more likely 

to be closely associated with short-term, high-rates of soil biological activity, of the type 

measured with cotton strip decomposition (Gestel et al. 2003), because they are drawn to 

nematode prey feeding on decomposer bacteria and fungi (Walter 1988, St. John et al. 

2002). 

Laboratory studies have shown that richness of microarthropods in soils, 

including mites, does have an influence on the growth rate of plants (an indirect measure 

of decomposition through nutrient cycling) (Liiri et al. 2002, Setälä 2002), but that this 
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influence is maximized at about 4–6 species (supporting the Redundant hypothesis), and 

it is more important to have all functional groups represented than many species within a 

single functional group. Soil mite species richness in our study was well above six per 

plot (Table 4.1). Thus it is possible that the redundant model is applicable to the total soil 

mite fauna, but we were only able to measure their influence near the asymptote and not 

where the maximal rate of change takes place close to the origin.  

4.5.4. Annual burn vs. 20-year burn 

Plots of residuals versus model predictions demonstrated that sites with low fire 

frequency had a significant trend not accounted for by the models (Figure 4.4) whereas 

annually burned sites were highly predictable (R2 = 0.85) with only temperature, moisture 

and a single biotic driving variable, Nmeso. The competing models may have performed 

better on annually burned sites because they more closely emulate the highly manipulated 

crop systems for which they were originally developed (Andrén and Paustian 1987). It is 

possible that annual burning of sites led to a reduction in the diversity of soil’s 

biophysical properties (Anderson 2000, Bardgett et al. 2001) and that soil temperature 

and moisture, have become overly dominant determinants of decomposition on these 

sites. A more diverse set of biophysical properties possibly buffered the 20 yr burn sites 

against fluctuations in soil temp and moisture, decreasing the performance of the 

competing models for these sites (Figure 4.4). The biophysical properties of importance 

could include increased standing dead biomass, soil carbon, heterogeneity of soil organic 

matter or more abundance and richness of the soil microbial fauna for sites with less 

frequent fires. 
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4.5.5. BEF models not considered 

The BEF models presented here for competition form the basis for many of the 

BEF hypotheses discussed by researchers (Naeem et al. 2002) . This study provides 

evidence for rejecting Rivet and Redundant concepts for soil mite effects on rapid 

decomposition of a cellulose rich source in tallgrass prairie; however, the relatively 

superior performance of the NullTψ model does not discount other possible mechanisms. 

It is possible that the true BEF relationship between mites and decomposition at the 

KPBS is the Idiosyncratic, or Keystone or Discontinuous pattern, but their analysis 

generally require intimate knowledge of each species’ life history characteristics and an 

experimental method to test. 

It has been argued that experimental tests of BEF are invalid due to artifacts of 

their design being confounded in the hypotheses being tested: sampling and removal 

effects (Huston 1997, Mikola et al. 2002, Diaz et al. 2003). Sampling effects are the 

increased probability of including species of large influence as the number of species in a 

treatment increases (Huston 1997, Mikola et al. 2002) while removal effects are those 

that result form the removal of species from a plot rather than the intended effect of 

species reductions (Diaz et al. 2003). Separating real, biological mechanisms from 

sampling and removal effects is difficult. 

A strength of the current study was that by using confrontation modeling based on 

an experiment in a tallgrass prairie, natural levels of diversity were used, avoiding 

complicating removal effects. Confrontation modeling has potential to improve 

interpretation of results from experimental tests of BEF relationships as well. Models 
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representing sampling and removal effects could compete with models of BEF patterns to 

see which is most likely. 

It was anticipated that the NullTψ model would out-compete the Rivet and 

Redundant models because in this experiment the inherent level of species richness could 

be considered to be optimal at each site. That is, species evolved to function optimally in 

these natural conditions, whereas experimental manipulations of species richness attempt 

to model extinction scenarios. However, species richness and abundance in any one area 

fluctuates naturally for a multitude of possible reasons both predictably (e.g. seasonally, 

successionally) and through random events (e.g. extreme weather events). Such natural 

variability may lead to experimentally exploitable ranges biodiversity in natural 

ecosystems. 
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5. APPENDIX A: CHAPTER 4 DATA 

Appendix Table 5.1. Model input data and observed rates of decomposition for each 
study plot. Soil temperatures (°C) are the means calculated for the entire time the cotton 
strip was in the field. Water potential (MPa) were determined from single TDR 
measurements taken close to the harvest date of each cotton strip. Cotton strip 
decomposition rates (% · day-1) are presented as the rate for the time each strip was in the 
field. 
 

Plot Cotton strip 

harvest date 

Temperature Water 

potential 

Decomposition 

rate 

  (T) (ψ) (CTSL) 

1C 20000627 22.91 -0.0069 3.97 

1C 20000719 25.75 -0.0131 3.54 

1C 20000812 26.08 -0.0482 2.94 

1C 20000902 26.97 -0.0591 1.66 

1C 20010606 18.43 -0.0022 2.98 

1C 20010630 21.65 -0.0012 2.99 

1C 20010718 23.98 -0.0156 4.06 

1C 20010808 26.37 -0.0167 3.60 

1D-1 20000627 23.45 -0.0081 3.10 
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1D-1 20000719 26.45 -0.0154 3.26 

1D-1 20000812 23.77 -0.0399 2.59 

1D-1 20000902 24.59 -0.1021 0.72 

1D-1 20010606 19.28 -0.0033 2.42 

1D-1 20010630 23.49 -0.0037 2.80 

1D-1 20010718 27.56 -0.0260 3.51 

1D-1 20010808 29.65 -0.0380 3.12 

1D-2 20000627 23.45 -0.0073 3.62 

1D-2 20000719 26.45 -0.0148 3.66 

1D-2 20000812 23.77 -0.0368 2.86 

1D-2 20000902 24.59 -0.1021 0.85 

1D-2 20010606 19.28 -0.0022 2.78 

1D-2 20010630 23.49 -0.0025 2.91 

1D-2 20010718 27.56 -0.0301 3.17 

1D-2 20010808 29.65 -0.0351 2.99 

20B 20000627 21.90 -0.0072 4.02 

20B 20000719 24.30 -0.0116 3.68 

20B 20000812 23.87 -0.0243 2.90 

20B 20000902 24.28 -0.0595 2.82 

20B 20010606 18.13 -0.0051 3.04 

20B 20010630 21.55 -0.0040 2.91 

20B 20010718 24.36 -0.0255 2.29 

20B 20010808 24.77 -0.0208 2.94 
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20C-1 20000627 21.85 -0.0153 3.15 

20C-1 20000719 24.52 -0.0205 3.38 

20C-1 20000812 25.21 -0.0225 2.80 

20C-1 20000902 25.86 -0.1022 2.21 

20C-1 20010606 18.93 -0.0100 2.94 

20C-1 20010630 22.56 -0.0062 2.72 

20C-1 20010718 26.83 -0.0337 3.37 

20C-1 20010808 26.82 -0.0351 3.40 

20C-2 20000627 21.85 -0.0087 3.92 

20C-2 20000719 24.52 -0.0207 3.10 

20C-2 20000812 25.21 -0.0227 2.93 

20C-2 20000902 25.86 -0.0735 1.79 

20C-2 20010606 18.93 -0.0034 2.88 

20C-2 20010630 22.56 -0.0032 3.00 

20C-2 20010718 26.83 -0.0437 2.78 

20C-2 20010808 26.82 -0.0620 3.56 
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