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ABSTRACT

PART A: A PROBABILISTIC FRAMEWORK FOR ASSESSING VWNERABILITY TO
CLIMATE VARIABILITY AND CHANGE: THE CASE OF THE USWATER SUPPLY
SYSTEM. PART B: DYNAMICS OF SELF-ORGANIZED VEGETATN PATTERNS
Part A: Water use for human needs has increasadatically all over the world, in response

to tremendous population and economic growth. énUnited States alone, water consumption
increased over ten-fold during the twentieth cgntivhile the increase in water use efficiency
mitigated the pressure put on water resourcesgrigiopulation and wealth together with
expected climatic changes are aggravating hydrolagcertainty. Taken together, these forces
are making careful water management ever more im@pbor Thus, a realistic broad-scale
understanding of the vulnerability of water suppystems to shortage must be a component of
any attempt to define the magnitude of the threat is essential in determining appropriate
mitigation and adaptation measures.

In general, the environmental and socio-economicerability of a system depends not only
on its ability to withstand stresses and on thenitade of those stresses but also on the inherent
variability of their hydro-climatic and socio-ecan drivers €.g, water supply capacity, water
demand, precipitation, evapotranspiration, popofati technology, water management
infrastructure, etc.). Thus, in order to quantifyrent and future vulnerability one must do so
probabilistically. Accordingly, we define vulnerdity as the probability that, at a given place and
time, the demand exceeds the supply. Water supmyaluated as fresh water yield as altered by
storage, trans-basin diversions, and other managemmacts and is represented by a time

dependent probability distribution function (PDIFyesh water yield is estimated on an annual



basis as precipitation minus actual evapotranspirdly means of a statistical dynamical water
balance model. The PDF of available water supphgemcompared with the PDF of the desired
water use, yields an estimate of the probability sbbrtage, and thus a measure of the
vulnerability of the water supply system.

The vulnerability of the US water supply systemassessed for 98 basins covering the
contiguous United States and for current and futoralitions, in light of the socioeconomic and
climatic changes projected by nine combination&6M models and IPCC-SRES scenarios for
the 2" century.

Results are presented in general terms for theeed® while a deeper analysis is performed
for a set of selected basins of the Colorado RBasin, California and the High Plains. The latter
set of basins is ranked based on their responseirtent and future changes in the PDFs of
supply and demand as projected by the set of G@G¥& combination selected.

Our findings show that the Southwest and centrdl southern Great Plains are the more
vulnerable areas to future climatic and socio-eatnachanges. In addition, future increases in
the vulnerability of the US water supply will depemore on changes in water yield than on
growth in water demand.

Among the selected basins, the Central Californthtae San Joaquin-Tulare are found to be
the more sensitive to both current and future Wélitg of demand and supply. Large sensitivity
is also found for the entire area of the High Fanalyzed, while in the Colorado River Basin,
the Lower Colorado is the sub-basin with the lasgesceptibility to changes in future supply and
demand. Future GCM/scenarios showed general disagi®t both in terms of vulnerability and
sensitivity of individual basins.

On the whole, the procedure outlined in this framewoffers a versatile and consistent
instrument to assess the vulnerability of physggtems to changes in inherently variable

stressors and can be applied to any environmenthkacio-economic vulnerability analysis. In



addition, it is the only methodology that both amuts the probabilistic character of the drivers
and allows for explicit inclusion of thresholds.

Part B: Vegetation patterns are a common and vefihed characteristic of many arid and
semi-arid landscapes. In this study we explore sohthe physical mechanisms responsible for
the establishment of self-organized, non-randonmetampn patterns that arise at the hillslope
scale in many areas of the world, especially id and semi-arid regions. In doing so we use a
water and energy balance model and provide a fuedthmechanistic understanding of the
dynamics of vegetation pattern formation and dewmlent. Within the modeling, reciprocal
effects of vegetation on the hillslope energy bedarrunoff production and run-on infiltration,
root density, surface albedo and soil moisture eraire analyzed.

In particular, we: 1) present a physically-basedcimagistic description of the processes
leading to vegetation pattern formation; 2) comneulated vegetation coverage at the hillslope
scale with observations; 3) quantify the relatingact of pattern-inducing dynamics on pattern
formation; and 4) describe the relationships betwgegetation patterns and the climatic,
hydraulic and topographic characteristic of theeys

The model is validated by comparing hillslope-scataulations with available observations
for the areas of Niger near Niamey and Somalia Gapowe, where respectively tiger bushes
and banded vegetation patterns are present. Theelmadidation includes comparison of
simulated and observed vegetation coverage asaseflimulated and measured water fluxes,
showing both qualitative and quantitative agreenbemiveen simulations and observations.

The analysis of the system suggests that the miaieraf pattern establishment is climate, in
terms of average annual precipitation and inconsotar radiation. In particular, decreasing
precipitation or, conversely, increasing incomingdiation are responsible for the system
departure from a fully vegetated state with indigtiishable vegetation structures to a sparsely
vegetated state with (self-organized) distinguiihaiatterns. In addition, within the range of
climatic conditions that promote the formation dflforganized vegetation patterns, the

iv



phenomenon is found as mainly driven by surfaceffusroduction and run-on infiltration. On

the other hand, the spatial interactions betwegacadt vegetation groups and the effect of roots
and surface reflectance on soil moisture redidstiobuhave a determinant role on both the
characteristics and stability of the pattern andtlom total biomass that is established on the

domain.
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Chapter 1  Introduction

1.1 General motivation

This dissertation consists of two parts: in Pawépropose a probabilistic approach to assess
the sensitivity and the vulnerability of water slyppystems to climate change, explicitly
addressing the case of the US; in Part B we devalamechanistic, physically based model to
describe the dynamics of the self-organized vegetgiatterns typically emerging at the hillslope
scale in arid and semi-arid environments.

The document is organized as follows: in this ckgghe general motivation, objectives and
the main conclusions of each part are presentett ARH this dissertation is presented in detail in
Chapter 2, while Chapter 3 deals with Part B. Detdamethodology and extended results are

presented in the appendices.

1.2 Part A: General motivation

Water use for human needs has increased dramatédatbver the word, in response to the
tremendous population and economic growth. In th#dd States alone, water consumption has
increased over ten-fold during the twentieth cenf@drown, 2000). The increase in water use
efficiency has only mitigated the enormous pressuné on water resources by the rising
population and the rising incomes. Complicating theture, climatic change is increasing
hydrologic uncertainty. Taken together, these ferae making careful water management ever
more important. Thus, a realistic broad-scale wtdading of the vulnerability of the US water
supply system to shortage must be a componentyofiiempt to define the magnitude of the

threat, and is essential in determining approprigteyation and adaptation measures.



This large scale impact assessment is devotedaioiaing the potential impact of climatic
and socio-economic changes on the water supplemsysf the United States. A probabilistic
framework is here developed in order to estimatepobability that, at a given point in space
and time, the water demand for human activitiegeds the water supply.

Water demands for the conterminous US are calalkitéhe Assessment Subregions (ASRs)
level on an annual basis from 1985 to 2100 takinig consideration historical records of water
withdrawals and future projections of climatic asdcio economic conditions aided by the
analysis of nine combinations of General Circulatitodels (CGMs) and IPCC-SRES scenarios.

Water supply for the conterminous US is estimatedresh water yield as modified by the
effect of storage and surface water redistributian natural streamflow and man-made water
diversions. Water yield is calculated as precijptatinus actual evapotranspiration on a 5x5 km
study grid covering the whole conterminous US byanseof the Eagleson’s model (Eagleson,
1978a-g), a statistical-dynamical representationthef annual water balance. Water vyield is
estimated from 1953 to 2100 making use of histbratianatic records and model projections
based on the above nine combinations of GCM an€BRES scenarios.

The US water supply network existing at the ASRtigpdevel is then identified and
simulated under historical, current and projectgdre climatic and socio-economic scenarios in
order to characterize the vulnerability of the watepply system.

The vulnerability assessments are made for eatteaiine GCM/scenario combinations and
for four target periods (2020, 2040, 2060 and 2088h one based on 20-year simulations
centered at the target year. In addition to itergtdic implications, this large scale impact
analysis can assist and benefit local communiéigsyell as stakeholders and decision-makers.

Results of the vulnerability analysis are provide€hapter 2. The methodology is described

in Appendix A through Appendix D.



1.1.1 Objectives

Within the overall development of the large-scalaleation of vulnerability of the US water
supply system to shortage, a number of specifieativjes were pursued in this dissertation. They

are discussed below.

1.1.1.1 Evaluation of long-term storm statistics at the %% scale grid for the conterminous

us

Stochastic representation of precipitation reginsesften needed for the analysis of water
resources systems and for watershed modeling. Miatipn of the probability density functions
(PDFs) of precipitation events is often necessargrder to simulate rainfall-runoff behavior of
catchments (Grayman and Eagleson 1971) or demstd flood probability distributions (Chan
and Bras 1979).

In this framework, long-term statistical properties storm events are needed to apply
Eagleson’s model for the estimation of water yiéd the conterminous US. In particular,
Eagleson’s model requires the following long-tetor® statistics to be evaluated at the scale at
which the model needs to be applied: mean stormatidu, mean time between storms, mean
interarrival time, mean storm intensity, mean stalepth, mean number of storms, mean annual
precipitation, mean rainy season duration and pet@nof the gamma distribution of storm
depth.

Those parameters were evaluated using the NCDClyheoerords for over 2000 rainfall
stations across the country. Estimation of thenststiatistic was performed both at the annual and

at the monthly time scale. See Appendix A for detai



1.1.1.2 Application of a statistical-dynamical model foethstimation of current and future US

water yield at the 5x5 km scale

Water supply in a given point in space is here gfied as water yield plus inflow from
upstream subjected to the effect of managememnegi@rvoir storage and water diversions. Thus,
estimation of water yield is the first step towatls characterization of water supply at any given
location. Eagleson’s one-dimensional, statistigadadnical water balance model (1978; 1978;
1978; 1978; 1978; 1978; 1978) is here used to astinyield as the difference between
precipitation and actual evapotranspiration. an annual basis, assuming there is no change in
water stored in the surface or in the aquifergltaiater yield also represents the sum of surface
and groundwater runoff.

The water balance model is calibrated by minimizthg mean squared error between
modeled water yield and historical streamflow relsor

Three different historical streamflow datasetsiesed:

- 42-year series of annual streamflow records for @h&tively undisturbed test basins across
the conterminous U.S., provided by the U.S. FdBesvice.

- Reconstructed virgin streamflow for a set of wdieds in the Colorado River Basin,
provided by the Bureau of Reclamation.

- 30-year average reconstructed virgin streamflowmesed for the contiguous U.S. by the

U.S. Geological Survey at the 8-digit basin level.

Calibration is performed at the basin level, eitadest basin or 8-digit basin, or an 8-digit
basin in combination with USBR streamflow recordsorder to perform the calibration, all soil
and climatic parameters needed were averaged batie level from the original datasets.

Once calibrated, the modglrun in order to determine:

- annual water yield for the entire US for the histarperiod 1953-2005;

- annual projections of water yield for the entire fd6the future years 2006-2100.



Detailed results of the calibration procedure arel historical yield estimation are provided

in Appendix A.

1.1.1.3 Analysis of future climatic and socio-economic scirs

The increasing globalization of the world economy #he possibility of substantial climatic
change have created considerable uncertainty dillome US water demand and supply, even for
the near future. A way to capture this uncertaistyo examine a certain number of potential
future storylines, characterized by different cliimaand economic pathways. Climate and
society, however, cannot be considered independens clear that human activities have
repercussions on the environment and climate amdh® other hand, climatic conditions have a
strong impact on society. GCMs offer projectionsutfire water and energy fluxes at large scale
and can incorporate the effect of greenhouse géssiEms due to human activities. On the other
hand, emission pathways are determined by thetsteuof the future society.

For this study, three scenarios (A1B, A2, and B2xh based on a different storyline, were
chosen from the IPCC SRES set (Nakicenovic, Alcatal. 2000). Of the three scenarios used
here, the A2 scenario is the most extreme and B2ethst extreme in terms of atmospheric,CO
concentration, although the projections for Qdthese scenarios do not differ greatly untietat
in the 21st century.

Scenarios are here used in combination with thevimhg GCMs: the Canadian Centre for
Climate Modelling and Analysis Third Generation @tad Global Climate Model Version 3.1
Medium Resolution (CGCM31MR) and the Australian @oomwealth Scientific and Industrial
Research Organisation Mark 3.5 Climate System M{@8IROMK35).

As mentioned above, each climatic projection mustubed jointly with its corresponding
socio-economic scenario in order to make a comgisissessment on future climate, water

supply, water demand and, thus, future vulnergbilit



Downscaling of the climatic GCM output was perfodnay others using the ANUSPLIN
software (Price, McKenney et al. 2006) to a 10-kmd dpr the coterminous US while a simple
inverse distance squared interpolation was execaeplart of this study in order to match the
spatial resolution of this study. Results are aig@ for bias by matching averages of
observations and projections for the period 2000820

Analysis of future climatic projections and futuseater yield for the nine selected

GCM/scenario combinations is supplied in Appendix C

1.1.1.4 Characterization of the US water supply system

Water is a mobile source. It can be usetbcoto meet the demands, moved to satisfy needs
that are further away from the place where it igilable or stored when it is in excess in order to
be used in future circumstances. Ultimately, it @yrmflows from upstream to downstream. It
follows that an estimation of the water availalile &ertain time and location cannot be properly
made by simply calculating the difference betwegstipitation and actual evapotranspiration at
that point. Hence, a thorough characterization afew supply for a large area necessitates an
accurate understanding of the complex water netwridting within the area itself. A substantial
part of this study is devoted to the identificatiand the simulation of such network. The US
water supply network is here characterized at tB& Apatial level and all simulations are carried
out at the annual time step.

The water networks are identified by examining W&ter connections existing between
ASRs via either natural routes or artificial divers. Three main water networks plus a set of 15
isolated ASRs were identified. Each network is espnted as a set of nodes interconnected by
links. Nodes correspond to water inflows, water deds and storages, while links are used to

represent natural or artificial water routes.



Once the physical structure of the US water supmywork was determined, a set of
operating rules was established in order to mimatewmanagement actions and allow network
simulation.

Results of the simulations under all of the nineM#&tenario combinations enabled the
probabilistic characterization of the vulnerability the US water supply system to shortage.

Detailed results are presented in Chapter 2 ane:gig B.

1.1.1.5 Characterization of the future vulnerability of th& water supply system to shortage

Vulnerability of a system is a function of its afyilto respond (i.e., cope with; adapt) to
inherently variable stressors. In this study, gittem uncertainty characterizing both the stressors
and the capacity to withstand them, the necessityquantifying vulnerability under a
probabilistic framework is advocated. In particulaninerability is estimated as the probability
that a critical system threshold, itself a functiohboth the capacity and the stressors of the
system, will be crossed. In the context of the U8eaw supply system, this definition translates
into evaluating the probability of shortage.

We present a probabilistic, physically-based, gpatind temporal characterization of
hydrologic fluxes (e.g., precipitation, evapotrarsion, surface and subsurface runoff), soil
moisture storages, water demands, reservoir stanadj@vater transfers.

By making use of the analyses described in the als@ctions, the vulnerability of water
supply to shortage is estimated for each of thASRs of the conterminous US.

Vulnerability analysis is carried out for the eat2f" century in light of the socioeconomic
and climatic changes projected by the nine comimnatof GCM models and IPCC-SRES
scenarios. Our probabilistic approach allows detgation of the more vulnerable areas of the
US water supply system, along with estimation efgbnsitivity of each of them to changes in the
system stressors. Results are presented bothnis t&r maps of current and future vulnerability

under a given CGM/scenario combination and, mordeitail, as sets of response surfaces for



individual basins. More detail on the procedure andhe general findings is provided in Chapter

2 and Appendix D.

1.1.2 Summary and conclusions

This study presents a general, consistent andrmsgste procedure to assess the impact of
climatic and socio-economic changes on the US waitpply system. We estimate the PDFs of
annual water supply for each of the 98 ASRs makimghe contiguous US by evaluating annual
water yield as modified by the effect of storagd Anth natural and artificial water transfers. We
then evaluate the probability of shortage by conmgathe PDFs of water supply with PDFs of
desired water uses. A subset of IPCC SRES clinaatitt socio-economic scenarios was used in
combination with a set of GCMs to project the vuiility estimates for the entire 2&entury.

Results are presented in general terms for theeed® while a deeper analysis is performed
for a set of selected basins of the Colorado RBaxin, California and the High Plains.

Our approach allows us to examine the responsaalf given basin to potential changes in
the future demand and supply, to identify the ifdlial impact of changes in the moments of the
PDFs of demand and supply and to rank basins aocptd their sensitivity to climatic and
socio-economic changes.

We found that the Southwest and central and sautBeeat Plains are the more vulnerable
areas to future climatic and socio-economic changesaddition, we found that the future
decrease in water yield is the main reason foirttieasing probability of shortage in those areas.
Although climate change is expected to increaseewdemand, in fact, future water use
efficiency improvements will mitigate that impaa that overall increases in desired water use
are expected to be modest in comparison with tfeetedf climatic changes on water yield and
thus on water supply. The reductions in yield, lo@ d¢ther hand, are driven by temperature (and
therefore potential and actual evapotranspiratimtyeases, especially where precipitation

decreases or increases only slightly.



Looking at individual basins, the Central Calif@rand the San Joaquin-Tulare were found
to be among the more sensitive to both currentfatude variability of demand and supply. Large
sensitivity is also found for two selected basifshe High Plains, namely the Niobrara-Platte-
Loup and Kansas, while the Lower Colorado was faenige the sub-basin of the Colorado River
Basin with the larger susceptibility to changeduture supply and demand. However, general
disagreement was found among future scenariosibdtirms of vulnerability and sensitivity of
individual basins.

Although in this study it is applied in the contektwater resources, the procedure outlined in
this framework is general and offers a versatilel aonsistent instrument to assess the

vulnerability of any physical system to changemherently variable stressors.

1.2 Part B: General Motivation

Banded, spotted or labyrinthine vegetation patteame a common and well-defined
characteristic of many arid and semi-arid landssamel develop at a wide range of spatial scales.
Typical scales of individual vegetation patternnedats (i.e., thickness of a band or radius of a
patch of vegetation) can span up to two orders afmitude, ranging from £@o almost 16 m.
While most of the current literature on the topmpmaches the problem of describing and
explaining the dynamics of such patterns from aceptual perspective by building purely
mathematical frameworks reproducing those spatethanisms of facilitation and competition
that are considered responsible for the emergeheselfiorganized structures, we here try to
analyze the phenomenon from a mechanistic perspedti doing so we explore (some of) the
possible physical mechanisms responsible for thabkshment of those self-organized, non-
random vegetation patterns.

We use a water and energy balance model coupldd avgpatial modeling of the mutual
land-vegetation interactions in order to provideuadamental mechanistic understanding of the

dynamics of vegetation pattern formation and dgwalent. The analysis of the climate-soil-



vegetation system is carried out at the hillslopales Average annual precipitation, solar
radiation, temperature, humidity and cloud coveradeng with the statistics of the rainy events
(length, duration, and intensity of storms, lengththe rainy season and number of storms per
year) are the forcings of the system at the hjpislscale. The study domain is then subdivided
into a study grid of NxN pixels. Reciprocal effeofsvegetation on the hillslope thermodynamics,
runoff production and run-on infiltration, root dsty, surface albedo and soil moisture content
are modeled at the pixel level. Vegetation emergeartd development is analyzed by tracking
the vegetal fractional coverage, along with wated anergy fluxes at each pixel of the study

domain.

1.2.1 Hypotheses and objectives

The main assumption of this study is that vegetapatterns emerge as a result of reciprocal
actions - physical, chemical and physiologicak.(ifeedback processes) - between vegetation,
hydrologic and climatic processes, and soil progertin addition, we assume that the spatial
distribution of vegetation depends on the spaiwtibution of water and energy and that, in turn,
vegetation, water and energy are distributed on hifislope in a way that allows optimal
utilization of water and energy by the vegetatiomhe long term.

The overarching objective of this study is to expland identify (some of) the physical
mechanisms responsible for the establishment ofraodom spatial vegetation patterns.

The specific objectives are to:

- develop a physically-based mechanistic understgndih the processes leading to

vegetation pattern formation;

- implement such understanding in a mathematical inatde to replicate the main

physical characteristics of observed vegetatiotepad (shapes, dimensions, etc.),

- individuate the relative impact of each procespattern formation;

10



- capture the relationships between vegetation pattand the climatic, hydraulic and

topographic characteristics of the system.

1.2.2 Summary and conclusions

A set of climate-soil-vegetation systems was sitedat the hillslope scale, showing that our
modeling of the system is able to reproduce thelbgies of patterns commonly referred in the
literature as bands, spots and labyrinths. The imedg validated by comparing simulations with
observed natural patterns in the areas of Niger Ng@mey and Somalia near Garoowe. Our
modeling of the system was able to capture thd thgzamics inducing the formation of patterns
and generated results that are qualitatively arahtifatively compatible with the observations
and the literature.

The analyses of the processes involved in the foomaof patterns suggest that the
phenomenon is primarily driven by run-on infiltati and local mechanisms of
facilitation/competition existing among adjacentge&tion groups. However, even in the
presence of those mechanisms, patterns arise dmén whe climatic conditions, particularly
annual precipitation and solar radiation, are falst®. In particular, we found that, with
decreasing precipitation or, conversely, increasimgpming radiation, the system drifts from
fully vegetated with undistinguishable vegetatitmicgures to self-organized patterns.

In the range of climatic conditions that promote tbrmation of self-organized vegetation
structures, the peculiar spatial features of pastere determined by the peculiar characteristics
of the spatial effects modeled at the pixel le@lr investigations suggest that all the dynamics
considered (run-on infiltration, facilitation/inhiton dynamics between adjacent vegetation
groups, effects of nutrient and litter transpord ateposition, competition for soil moisture
through roots and the effect of spatially inhomagmrs surface reflectance) have an impact on
the spatial configuration of vegetation over thisslipe. Nonetheless, as anticipated before, our

analyses indicate that the phenomenon is mainiyedrby surface runoff production and run-on
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infiltration. No self-organized structures, in fagtere observed in the absence of any surface
runoff production and subsequent run-on infiltratiolhe effects of facilitation/competition
existing between adjacent vegetation groups, raoatsalbedo have also a significant impact and

affect pattern definition and shape, as well addted biomass that establishes in the domain.
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Chapter 2 Vulnerability of the USwater supply to shortage

21 Abstract

The environmental and socio-economic vulnerabitifya system depends not only on its
ability to withstand stresses and on the magnitfdénose stresses but, most important, on the
inherent variability of their hydro-climatic and @o-economic drivers g, water supply
capacity, water demand, precipitation, evapotraaipn, population, technology, water
management infrastructure, etc.). Thus, in ordeguantify current and future vulnerability one
must do so probabilistically. Accordingly, we infece a probabilistic framework for
vulnerability analysis and use it to quantify cutreand future vulnerability of the highly
interconnected water supply system of 98 basinsroy the contiguous United States.

Water supply of each basin consists of fresh wgidd as altered by storage, trans-basin
diversions, and other management impacts and iegepted by a time dependent probability
distribution function (PDF). Fresh water yield estimated as precipitationP) minus
evapotranspirationd) for each point in a fine grid covering the stuahga, and then aggregated
by river basin. The PDF of available water suppipen compared with the PDF of the desired
water use, yields an estimate of the probability sbbrtage, and thus a measure of the
vulnerability of the water supply system.

We determine the projected changes in vulneralalgywell as the relative contributions to
those changes from changes in climatic and so@oauic drivers. Vulnerability was found to
vary in magnitude and spatial distribution depegdin which IPCC emission scenario is chosen
to represent future socio-economic conditions andwtich global climate model is used.

Nevertheless, the southwestern portion of the USudting California in the west and the
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southern Great Plains to the east was consisttmihyd to face the greatest likelihood of future
shortages—these areas being where socioeconomidliaratic changes converge most strongly
to increase pressures on water resources. Althaeglocus here on the water supply system, the
methodology is general. We contend that it sho@dapplied to any environmental and socio-
economic vulnerability analysis, as it is the omhethodology that both accounts for the

probabilistic character of the drivers and alloasdxplicit inclusion of thresholds.

2.2 Introduction

Offstream water use in the United States increased ten-fold during the twentieth century
in response to tremendous population and econonawtly (Brown, 2000). Although water
efficiency has improved in the last few decadesaaesult of technological advances and
management, rising incomes and urbanization pispre on water supply and call for measures
to protect stream water quality and maintain halidaendangered aquatic species (Gillilan and
Brown, 1997). Complicating the picture, climaticadige is increasing hydrologic uncertainty.
Taken together, these forces are making carefidrwanagement ever more important. Thus, a
realistic broad-scale understanding of the vulniétalof the US water supply system to shortage
must be a component of any attempt to define thgnihade of the threat, and it is essential in
determining appropriate mitigation and adaptati@asures.

In general, vulnerability of a system is a functadrthe extent to which it can be damaged by
the impact of an external hazard. The definitiowaherability and the implication that it has on
the approach used to estimate it has been the foicgsveral papers (Blaikie, Cannon et al.
1994),(Kelly and Adger 2000). In its forth assessiméhe Intergovernmental Panel on Climate
Change (IPCC) defined vulnerability as “the degieevhich these systems are susceptible to,
and unable to cope with, adverse impacts” (Schnei@emenov et al. 2007). While this last
definition seems to be widely accepted, it stithdes room for debate concerning the actual

quantification of the “degree of susceptibility &mlverse impacts”. In the context of water
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resources, many studies have estimated the pdtienmgiact of future climate and socio-economic
scenarios on water resources by estimating futtojegtions of a set of water stresses indicators
(Postel 2000),(Vérosmarty, Douglas et al. 2005)eiwwand Alcamo 2011). However, no
generally accepted paradigm to quantify vulnergbiilas been established so far.

In agreement with the IPCC definition, we obseiha, conceptually, the vulnerability of a
system is a function of its ability to responide( cope with; adapt) to inherently variable
stressors. In this study, given the uncertaintyattarizing both the stressors and the capacity to
withstand them, we advocate the necessity of giyardi vulnerability under a probabilistic
framework. In particular, we estimate vulnerabiléyg the probability that a critical system
threshold, itself a function of both the capacity ahe stressors of the system, will be crossed. In
the context of the US water supply system, thisinitefn translates into evaluating the
probability that, at given time and place, watemdad exceeds water supply. In other words, we
define vulnerability as the probability of shortage

In order to estimate the vulnerability of the UStevasupply system to shortage, we
developed a probabilistic, physically based, spatia temporal characterization of hydrologic
fluxes (e.g., precipitation, evapotranspirationsfate and subsurface runoff), soil moisture
storages, water demands, reservoir storage and tnatsfers.

We quantify water supply at a certain location atewyield,Y, plus inflow from upstream
subjected to the effect of management via reserstwrage and water diversions. We used
Eagleson’s (1978a-g) one-dimensional, statistiyaladhical water balance model to estimate
water yield as the difference between precipitati®nand actual evapotranspiratio, We
computed water demands as threshold amounts a&desater use based on historical records of
water withdrawals and on projections of water usweds and water use efficiency rates.
Estimation of future demands include both deterstiniand stochastic (climate depending)
components. We finally simulate the US water suppistem using a hydrologic network model
in order to account for water routing and managdmignreservoir storage and water transfers.
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We estimate the vulnerability of water supply tersage for each of the 98 basins called
Assessment Subregions (ASRs), which are subbasittedl8 Water Resource Regions of the
coterminous US (Figure 2.1). The vulnerability as&é was extended throughout the entiré 21

century in light of projected socioeconomic andneliic changes.

2.3 Fresh water yield

Evaluating fresh water yield, (that is, the sum of surface and sub-surfaceffyn® the first
step towards the estimation of the water supplyteWsupply for each element of the US water
network (that is, each one of the 98 ASRs), in,fecdetermined as fresh water yield plus the
effect of water redistribution (via natural flow drartificial diversions) and storage. In this
framework we use Eagleson’s (1978a-g) one-dimeasiatatistical-dynamical physically-based
annual water balance model to estimate water fli@megach ASR and evaluatéasP-E. The
model uses probability distribution functions (PDFd precipitation, temperature and other
hydrologic variables plus soil hydraulic parametssnput and produces, as output, the PDF of
water fluxes (surface runoff, groundwater runoffagotranspiration), the average soil moisture
content and the vegetation fractional coverage.rbdel was implemented on a 5x5 km grid for
the US and used to determine water fluxes for hesib(1953-2005) and projected future climate

(2006-2100). Results were then aggregated at thia level. See Appendix A for details.

2.3.1 Model description

Eagleson’s model is a physically-based descriptfornater fluxes across the soil-atmosphere
interface—a one-dimensional representation of maoiisture dynamics as forced by a stochastic
climate (Eagleson, 1978a-g). It describes the ioglahip between annual amounts of
precipitation, runoff, infiltration and evapotramsggion as a function of volumetric soil moisture
and soil and vegetation characteristics. The migldlased on the steady-state solution of the

water balance equation:
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ot
where i(t) , e (1) , V() .V, () ,r (t) and,(t) are respectively: the predipita

intensity, the evapotranspiration rate, the volwhevater storage in the surface, the volume of
water storage in the sub-surface, the surface fuatef and the sub-surface runoff rate.

The integration of equation 1 for an arbitrary pdrof time is analytically intractable for
three reasons: (1) the climatic forcing (i.e., p#ation and potential evapotranspiration) is
stochastic; (2) all terms depend on soil moistargent, which is difficult to evaluate or measure;
and (3) the integration requires the evaluatiooasfy-over storages.

However, under the assumption that the hydro-clorgtstem is in equilibrium in the long-
term mean sense, it is possible to obtain an doalysolution of equation (2.1). This solution
implies that the long-term average of the chang®tal soil moisture storage (above and below
the surface) is zero and leads to the followin@lfiformulation of the long-term mean annual
water balance:

E[P.]- E[E ] = E[R, [+ E|R, | (2.2)

where E[P,], E[Er4], E[Rsd and E[Ry4] are respectively: the expected value of annual
precipitation, the expected value of annual evamspiration, the expected value of annual
surface runoff and the expected value of annualrghavater runoff.

We express all terms in equation (2.2) as analyfigactions of soil moisture content, the
characteristics of the stochastic precipitationuinphe potential rate of evapotranspiration, the
physical properties of the soil (e.g., porosityrimsic permeability, pore disconnectedness), and
the properties of the vegetation (plant transmragfficiency and fractional vegetation cover).

Because soil and climate parameters are fixechfogiven control volume, the water balance

equation is a function of two unknowns: the aversgié moisture content,, and the vegetation
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fractional coverageyl. In order to obtain a unique solution, we furthesume that, in the long

term, vegetation operates under conditions of minmmnstress (Eagleson 1978).

2.3.2 Data requirements

Eagleson’s model requires a set of soil and veigetgarameters, as well as climatic input in
the form of long term average statistics of thetriigtion of rainy events. Soil hydraulic
parameters are: total porosity, saturated hydracdieductivity, matric potential at effective
saturation, pore size distribution index, pore distectedness index, and diffusivity index.
Vegetation is characterized by the transpiratidiciehcy. Climate input is represented by annual
values of precipitation and potential evapotrar&jmn and by the average long term statistics of
storm events, namely: storm interarrival time, tibegween storms, number of storms per year,
rainy season duration, storm duration, storm intgnstorm depth and the parameter of the
gamma distribution of storm depth.

The VEMAP dataset (Kittel, Rosenbloom et al. 1988tel, Rosenbloom et al. 1996) was
used to estimate the soil hydraulic parametergrdvides bulk densitygp, and soil texture (i.e.,
percentages of sand, silt and clay) at a 0.5° kregolution for the whole US. A simple inverse
distance squared method was used to convert theats from the original 0.5° spatial resolution
to the 5x5 km grid. Estimates for the followingldoydraulic parameters were obtained from the
VEMAP dataset: pore size distribution indew, residual water conten#;, matric potential at
effective saturation¥/(1), saturated hydraulic conductivit)((Z), pore disconnectedness index,
and diffusivity indexd.

Precipitation data from 2088 hourly data gagesyidem by the National Climatic Data
Center (NCDC), were used to determine the storrists. Long term storm statistics were
evaluated at each gauging station and then extetawdlde entire US at the 5x5 km spatial

resolution.
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Annual climatic data were retrieved from the PRISktabase (Daly, Neilson et al. 1994)
which provides annual values of precipitation, mMmam and maximum temperature, and dew
point temperature at the 5x5 km resolution. Anmatiential evapotranspiration was calculated
using a modification of Penman’s equation by Liea@977).

Transpiration efficiencyk,, is defined as the ratio of potential transpimatio potential
evaporation from bare soil under the condition aflimited water supply. Transpiration
efficiency is specific for each given soil-climategetation system and depends on both the
vegetation species and the environmental conditi@igng the lack of direct measurement or
any reliable estimate available at the scale of analysis, this parameter is estimated during

model calibration rather than evaluated a priori.

2.3.3 Model calibration

Model was calibrated by matching the long term mealoes of historical streamflow and
modeled vyields. The calibration procedure consistedninimizing the mean squared error
between the sequences of annual historical stremmfind modeled vyields. The plant
transpiration efficiency, kwas used as the primary calibration knob.
Model calibration was performed at the basin saalag the following historical datasets on
streamflow:
- 42-year series (1953-1994) of annual streamflovends: for 655 relatively unmolested
test basins across the US, included in the Hydnmdlic Data Network (HCDN) (Slack
and Landwehr 1992; Hydrosphere Data Products 1996).

- 52-year series (1953-2004) of reconstructed nafloats for a set of watersheds in the
Colorado River Basin (CRB), provided by the BureA&eclamation.

- 30-year average reconstructed natural streamflastisnated for the 2,148 cataloging

units (hereafter referred to as 8-digit basinghefUS (Krug, Gebert et al. 1989).
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A map showing the 655 test basins, the 8-digitrisaaind the set of watersheds of the CRB
used for calibration is provided in Figure 2.2.

The 655 test basins were selected as the priméibyatéon dataset because of the length and
the reliability of the records. In those areashef US without test basins, with the exclusion ef th
Colorado River Basin, the model was calibrated akier30-year average flows estimated at the
8-digit basins level. For the Colorado River Badime 8-digit basin information was used in
combination with the streamflow records provided tye USBR. However, although the
information provided by the USBR dataset was carsid more reliable than the 8-digit basin
averages provided by the USGS for the same areaypical drainage area of the USBR dataset
was considerably larger than the typical 8-digisibaln order not to lose spatial detail, the
calibration was performed at the 8-digit basin lekg scaling their average streamflow in such a
way that the cumulative streamflow predicted byheset of 8-digit basins included in a USBR
catchment would match the USBR average for thathoaént. This procedure guarantees to
match observations for those large catchments wkasamflow records are available from

USBR and, simultaneously, to preserve the smatkgessariability at the 8-digit basin.

24 Water storage

Water storage capacity for each ASR was determinedggregating storage capacities of
natural and man-made impoundments. The June 208®reof the National Inventory of Dams
from the US Army Corps of Engineers was the primaoyrce of information of reservoir
storage. Not all of the reservoirs listed in theeimtory were used in determining the aggregate
storage capacity for each ASR. The final set oémesrs selected includes only reservoirs with a
normal surface area of at least 5%kand excludes tailings ponds, cooling ponds, asdruirs
whose only purpose is flood control. The final idtreservoirs consists of 1196 reservoirs. The
aggregate water storage capacities of the ASRserdmgm 0 to over 40 million acre-feet.

Thirteen ASRs have at least 10 million acre-feettofage.
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Storage-surface area relationships were determiaeccach ASR, in order to compute
evaporation from reservoirs. Except for ASRs 140d 4503, these equivalent volume-surface
area relationships were obtained by regionalizgdessions based on the individual relationships
of the included reservoirs. For ASRs 1404 and 13@®ause Lake Powell and Lake Mead
constitute the only significant storages, the @pomding individual surface area-to-storage

relations were directly used.

25 Water useclasses

In this framework we individuated three classesvater use for each ASR: in-stream flow

requirements, trans-ASR water diversions and copsueuses.

2.5.1 In-stream flow requirements

In-stream flow requirements at any point in a basifer to the magnitude and temporal
distribution of flows required to ensure adequaippdy for ecosystems maintenance. Careful
determination of in-stream flow requirements inwsva complicated mix of socio-economic,
biological and environmental factors, which is poactical at the ASR scale. In this study we
adopt the general guidelines delineated by Tenr{a@76), and set the in-stream flow
requirement of each ASR for both current and futwaditions as 10% of the corresponding

average historical streamflow for the period 19984

2.5.2 Water diversions

Trans-ASR diversions represent water diverted foom ASR to another as the result of legal
agreements between the jurisdictions involved. Mifsthe information regarding inter-basin
diversions was taken from two publications of th8GS$ regarding respectively the western
(Petsch 1985) and the eastern (Mooty and Jeffc@28)1US; from these publications we used an
average of the estimates for the three most regeats (1980-82). Those estimates were

supplemented by more recent sources of informatitvere available, specifically for the
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Colorado River Basin and California (Litke and ApA®89; California Department of Water
Resources 1998; Colorado Water Conservation Ba298;1Colorado Water Conservation Board
2010). Data for inter-basin transfers were aggestjay ASR.

While each water agreement usually establisheagtierm average for the amount of water
to be diverted from one basin to another, the hdetmunt of water transferred for each diversion
typically fluctuates over time. Unfortunately, adate documentation on the operating rules used
to determine the actual amount in any one yearusaally unavailable, and in any case tended to
be too detailed to be of practical use in thisdasgale study. For our purposes, therefore, the
amount of water diverted each year was set equtilediistorical average for each trans-ASR
diversion. This amount was kept constant overtiwih or current and future climatic and socio-

economic scenarios.

2.5.3 Consumptive use

Estimates of water withdrawal across the US atirdyfeine scale are available at five-year
intervals from the USGS for the period 1985-2008ll&y, Merk et al. 1988; Solley, Pierce et al.
1993; Solley, Pierce et al. 1998; Hutson, Barbeaile2004; Kenny, Barber et al. 2009). These
data, along with data on water use drivers and e efficiency rates, were used to simulate
past and current conditions and as a basis foegting future levels of desired water withdrawal
(from surface and ground water combined) by ASRngDmptive use proportions from the
USGS for years 1985, 1990, and 1995 were then msednverting estimates of withdrawal to
estimates of consumptive use (water depletion). FEsalting projections of consumptive water
use, called demand here, were produced for sigodaes of water use—domestic and public,
industrial and commercial, thermoelectric, irrigati livestock, and aquaculture—which were
then aggregated to a single estimate of demand.

Demand D) for a given water use category and future year esdimated as:

22



D=al(U[d+AW) (2.3)
whereU is number of demand units such as a person foedtenuse or an irrigated acre for
agricultural use is withdrawal per demand unit, also called a waser efficiency factorAW is
future withdrawal attributable to climatic or otheranges that are largely unrelated to past levels
of water use, and is the portion of withdrawal that is consumptivelyed. Future levels &f
and ® were estimated by extending past trends that lircades have been nonlinear. This
approach assumes that water supply will be no roigéing to growth in demand than it has

been in the recent past.

26 TheUSwater supply system

Estimating annual water yield as the differencevieen precipitation and evapotranspiration
does not provide, by itself, a valid estimatiortiod water effectively available at a certain point
in space. A thorough characterization of water ufgr any area, in fact, must account for the
natural and man-made water networks that redis&iluater on the surface. That makes the US
water supply system a complex and highly intercotet structure that can be represented as a
set of networks consisting of nodes and links.

We identify the water networks existing in the UShe ASR level by analyzing both natural
and artificial flow routes. Two or more ASRs aransidered part of the same network when they
are connected by a sequence of water links, eiifeiral (due to natural upstream to downstream
flow) or artificial (via water diversions). The resulting water supply eystconsists of three
multi-ASR networks and 15 single-ASR systems (Feg2u3). The biggest of the three multi-ASR
networks includes 69 ASRs in the central and westé®. The other two networks include
respectively 10 ASRs in the Northeast and four ABRthe Southeast. Of the 15 single-ASR
systems, eight drain to the ocean, five into Capadd two are closed basins.

Simulations of the US water supply system at th&®A&vel were performed using MODSIM

(Labadie, Pineda et al. 1984)he simulations provide annual values of water §aw any link,
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storage levels in each ASR, water evaporated ftonage, and water assigned to each demand,
all of which depend both on climate and, criticaliy the set of priorities for water allocation.
Ideally, the priorities would represent the thoutsanf detailed agreements about water storage
and allocation that exist across the country. Laghkhformation on many of these agreements,
we implemented the following priorities: (1) insam flow requirements, (2) trans-ASR
diversions, (3) consumptive water uses, and (Brveir storage. These priorities recognize the
importance of guaranteeing a minimal amount of wéie environmental and ecosystem needs
before water is diverted for other uses, and ali@ms-basin diversions to occur before within-
basin diversions. For multi-ASR networks, water deds belonging to the same category were
assigned the same priority regardless of theirtijposin the network. Because storage was
assigned the lowest priority level, water is stoneda given year only after all the demands
reachable by that reservoir are satisfied. Wateredt at the end of one year, minus the

evaporation loss, is available for use the next.y&arther details are provided in Appendix B.

2.7 Futureprojections

The analysis of the future US water system requhesestimation of future water demand
and supply. This, in turn, calls for estimates wiufe water yield, storage and routes of water
redistribution. Projections of future water yieldeng obtained by applying Eagleson’s model
using input climatology from a set of General Ciation Models (GCMs) used in combination

with IPCC SRES socio-economic scenarios. See Appéhfbr details.

2.7.1 Future GCM and scenarios

The increasing globalization of the world economy she possibility of substantial climatic
change have created considerable uncertainty dgbtue US water supply and demand. One
way to capture this uncertainty, adopted by theQP@ to examine various possible future

scenarios. The emissions scenarios examined idtH®CC Assessment differ in population
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growth, economic growth, and energy use (amongrdtiiegs), and thus in greenhouse gas
(GHG) emissions and GQevels.

For this study, three scenarios (A1B, A2, and B2kh based on a different storyline, were
chosen from the IPCC SRES set (Nakicenovic, Alcatal. 2000). Of the three scenarios used
here, the A2 scenario is the most extreme and B2ethst extreme in terms of atmospheric,CO
concentration, although the projections for QDthese scenarios do not differ greatly untietat
in the 2% century.

Scenarios were used in combination with the follmyviGCMs: the Canadian Centre for
Climate Modelling and Analysis Third Generation @md Global Climate Model Version 3.1
Medium Resolution (CGCM31MR) and the Australian @aomwealth Scientific and Industrial
Research Organisation Mark 3.5 Climate System M@8IROMK35).

For each one of the six GCM-scenario combinati@nsjections of monthly precipitation,
minimum and maximum temperatures and potential @vapspiration were obtained for years
2001 to 2100 (Joyce, Price et al. in preparatiohoyce, Price et al. in preparation 2). The GCM
projections were downscaled to a uniform grid ofkh® cells over the conterminous US using
the ANUSPLIN method (Price, McKenney et al. 2006).

The downscaled GCM projections were corrected fiaisds before they were used to
estimate future demands and future water yieldas& in precipitation, temperature and
evapotranspiration were determined as the differdretween downscaled mean projections for
the period 2001-2008 and the corresponding obsenstetrieved from the PRISM datasets.

Predicted changes in annual precipitation are cgritatic both in magnitude and direction
and little agreement is found between different G&dnario combinations. In general, while
local changes can be large, aggregated US prawpitss not expected to change dramatically
over the next decades. The US projections by th€N&lL, for example, predict an increase in
mean precipitation of only 2.3% and 1.8% for sciersaA1B and A2, and a 3.6% decrease for the
B2 scenario by 2060, while predicting decrease2.b%, 10.8% and 14.3% for the respective
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scenarios when only the Colorado River Basin issi@red. Figure 2.4 shows that the mean
precipitation projected by the CGCM/A1B scenariar fine 2%' century is expected to
consistently increase in most of the Northeastiantiexas and decrease in the West. Besides
this large scale behavior, however, coherent pettef changes in precipitation are not easily
identifiable and little coherence if found in theasial distributions of precipitation projected by
the various GCM/scenarios.

When looking at potential evapotranspiration ratds GCM-scenarios agree in projecting
consistent increases all the way to the end otémury. The CSIROMK35 model is the most
extreme and produces increases in the averagetipb®rapotranspiration for the US that exceed
30% by 2060. Changes predicted by CGCM31 modedmidler and suggest increases of 15.8%,
25.9% and 14.1% respectively for the A1B, A2 andd82narios by 2060, where for the CRB

alone the same model predicts increases of 21.5%%?and 18.3%.

2.7.2 Future water yield

Projections for precipitation, temperature and ptéé evapotranspiration given by the six
GCM-scenario combinations were used in the waténca model to estimate future traces of
water yield for the period 2006-2100. Because tiogepted changes in water yield are the direct
result of the projected changes in precipitatiod potential evapotranspiration rates, some of the
trends of future yield can easily be anticipatelde Bverall picture, in fact, shows that water yield
decreases throughout the*2dentury, with an average decrease in yield of %5.81.7% and
17.2% predicted by 2060 by the CGCM31/A1B, A2 arddBenarios. Figure 2.5 shows that the
mean water yield projected for the CGCM/A1B scemasiexpected to consistently decrease in
most of the US with the exception of the Southw@&ktis is apparently in contradiction with the
fact that precipitation is expected to decreasetamgperatures are projected to increase in the
Southwest. However, it can be explained by obsgrthiat knowing only the changes in the mean

values of precipitation and evapotranspiration mat by itself, suffice to anticipate the change

26



in yield. In some circumstances, in fact, the Bigilnoments of their distribution functions affect
strongly the distribution function of yield, leadirto some apparently counterintuitive results.
This is especially the case of the lower Colorad@eRBasin, where the CGCM/A1B predicts an
average increase in yield larger than 20% by 2d&8pite of a decreasing precipitation and an
increasing potential evapotranspiration. This lgogecentage increase (although in its absolute
value corresponds to only a fraction of a cm),aased by the increases in the variance of both
predicted precipitation and potential evapotrargmn. As a result of a larger variance of the
climatic forcing, in fact, the distribution of egtne events can be affected in a measure that leads
to an increase rather than a decrease in the a&vevager yield. This is especially true in arid

climates, as a consequence of the highly skewedbdiBons of precipitation and water yield.

2.7.3 Future demands

The population and income projections of the tHREC scenarios (A1B, A2 and B2) were
updated for the US and disaggregated to the cdengl. The updates utilize the US Census
Bureau’'s (U.S. Bureau of Census 2004) national maddegrowth population projection as an
update of the original A1B scenario estimate for pifpulation - A1B being the scenario that
most clearly represents a continuation of busimssssual in US population growth. The recent
Census Bureau population projection incorporates 2800 Census, which the original A1B
scenario did not. The IPCC projections for scen@di were then updated in relation to the
revised A1B projection by maintaining the propantid differences among the projection paths
for the US of the original IPCC scenarios. Estirmateere disaggregated to the county level
utilizing Census data and a socio-economic praactodel (Zarnoch, Cordell et al. 2008). To
allocate county estimates to ASRs, year 2000 cetrsies data were used to determine the
proportion of a county’s population occurring inckaASR. Details on projections of other

drivers are available from the authors.
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In the absence of climate change, water withdraeffitiency - domestic and public
withdrawal per capita, industrial and commerciahdrawal per dollar of income, thermoelectric
withdrawal per kWh of electricity produced, agricmbl withdrawal per acre irrigated, and
livestock and aquaculture withdrawal per capitaasvprojected to improve in all sectors but
aquaculture. Changes in most drivers of water @specially population and per-capita income -
are expected to increase pressure on water supfiigs projected decreases in irrigated
agriculture in the West will help alleviate presssirCombining these factors, in the absence of
climate change but assuming the A1B scenario iseea population and income, aggregate US
demand is projected to increase by only 5% from52@8 2060 despite a 51% increase in
population.

Climate change is projected to increase demandtamtizdly. For example, with the A1B
scenario, and averaging results from the threeafjloimate models, aggregate US demand is
projected to increase from 2005 to 2060 by 27%oaspared to only 5% without climate change.
Of the 22% difference, 76% is due to increasesgmcaltural irrigation, 10% to increases in
landscape irrigation, and 14% to increases in wawdls at thermoelectric plants to handle the
increase in space cooling demand.

The irrigation changes are computed as a functfochanges in precipitation and potential
evapotranspiration assuming that irrigation fullgets crop water demand, and thermoelectric
changes are computed as function of changes inai@tyse based on the work of Sailor (Sailor
2001; Sailor and Pavlova 2003). Because of the nadinyatic and socioeconomic differences
across the US, ASRs differ considerably in progoteater demand. Based on a multi-model
average, withdrawals from the current period to 2060 period with the A1B scenario are
projected to drop in 11 ASRs, increase by less 2&% in 34 ASRs, increase by from 25% to
50% in 35 ASRs, and increase by more than 50%enréimaining 18 ASRs. All of the ASRs
where withdrawals are projected to drop are in Haest, but ASRs where withdrawals are
projected to increase by more than 50% are scdttbreugh the US (see Figure 2.6).
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2.8 Vulnerability assessment

In general, vulnerability of a system is a functiminthe system’s resilience and robustness
with respect to the inherent variability of the malesign variables. Thus, in order to quantify
vulnerability one must do so probabilistically. Wiefine vulnerability in the manner of
Korchendorfer and Ramirez (1996) and quantify thénerability of the US water supply to
shortage by determining the probability that walemand will exceed water supply. This is done
by using the time-dependent probability distribatfanctions of supplyS) and demandD) and
estimate vulnerability (V) for each ASR as:

v(t) = P{s(t) < D(t)] (2.4)

Probability distributions for D(t) and S(t) are igsited for each ASR for current conditions
and for future projections by simulating the US avasupply system for each GCM-scenario
combination. As a consequence of such definitimerability of water supply to shortage is a
function of not only the mean water supply and desinat a given location, but also of their
respective variance and covariance and, in genafral] the moments of their distributions. In a
context of hydro-climatic and socio-economic vaittigh then, it is not sufficient to quantify the
effects of changes in the mean values of hydroatitrand socio-economic variables of interest,
but most important, it is necessary to quantifydffects of changes in their inherent variability.

PDFs of supply and demand were obtained by sinmgidatie US water supply system from
1953 to 2090. All simulations used reservoirs Hiallf as initial condition on water storage and
considered the period 1953-1985 as transient. @uwénerability was evaluated for each ASR
over the 20-year period of 1986-2005. Future vidhiity was estimated for four 20-year periods
centered at 2020, 2040, 2060 and 2080 assumindhawages in storage, in installed trans-ASR
diversion capacity, in-stream flow requirements amdhe physical structure of the US water

supply network. More details are provided in Appriol
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2.8.1 Current conditions

The climate of the period 1986-2005 was taken asctirent climate. Annual records of
precipitation, temperature and potential evapopmason for the period 1986-2005 were used as
input for the water balance model in order to eaterthe annual water yield, while withdrawal
records were used as explained earlier to deterthaneorresponding water demands.

The analysis of the period 1986-2005 is carriedraitonly to provide an estimate of the
current probability of shortage, but mostly to #et benchmark to which future projections can
be compared.

Defining water surplus, Z, as the difference betwaeater supply and water demand,
vulnerability is the probability that the water glurs is zero or negative. By simply looking at the
first moments of the water surplus PDF, one caitadhat vulnerability increases as the mean of
the surplug:, decreases and as its variantancreases (provided that>0). Taking into account
both effects simultaneously, one may also quaniifiyerability as a function of the ratio of the
mean surplus to the corresponding standard denigfio= uJ/o,, referred to hereafter as the
reliability index. The reliability index quantifida units of the standard deviation how far from
shortage a given location is.

Maps of current vulnerability and reliability rasi@re presented in Figure 2.7 and show that
the water supply system for much of the US westhef Mississippi river is vulnerable under
current hydro-climatic and socio-economic condiiorHowever, only a few areas show
vulnerability values exceeding 0.05 at the ASRescahd they tend to be those that rely heavily

on mining of groundwater.

2.8.2 Future projections: maps and response surfaces

Future vulnerability is evaluated for each of tlhe GCM-scenario combinations for the

target 20-year periods centered around 2020, ZZB8N and 2080.
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In addition to future vulnerability maps of the ieatUS, we present a deeper analysis of ten
selected basins by using climate impact respondac&s. These response surfaces are a useful
tool to represent the first order response of amisystem to changes in two specific triggers (in
our case supply and demand) and allow a widesealysis of the impact that future variations
in those triggers have on the system itself (Weid Alcamo 2011). In this paper, we produce
response surfaces to changes in future averagestamdard deviation of water supply and

demand for selected basins of the High Plains, i@dmRiver Basin and California.

2.8.3 Sensitivity of vulnerability to changes in the ériv

Changes in future vulnerability of water supplysiwortage are not only a function of the
actual changes in future climate and in future deteabut also depend on the sensitivity of
vulnerability to changes in demand and climate. é&sthnding how a given location responds to
potential changes in climatic and socio-economindins is essential for future water
management planning and for the individuation ééative measures of adaptation.

We express the differential vulnerability as folkw

ov ov ov ov ov
dv = du. + dy, + do,+—do, + ————dcovS,D .
G)TA Hs o, Ho dos  ° do, ° dcodS,D) MsD) @9

Expression 5 captures the individual contributiohshe drivers of vulnerability to its total
change and shows that the total change in vulridgyatbépends not only on the actual changes in
demands and supply, but also on the sensitivityuirierability to unit changes in demand and
supply. In turn, those sensitivities are functiofisthe mean, variance and covariance of P, E, and
D.

A map of the sensitivity of vulnerability to charsgim mean supplyys, that is, the change in
vulnerability per unit change in mean supply, for the CGCM/A1B scenario is shown in Figure
2.8. The map shows that western US and, in genalareas exhibiting the lower reliability

index are the most sensitive. A similar behavitsp ahown in Figure 2.8, occurs with respect to
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changes in mean demang, but with opposite sign. Therefore, these argaaddition to being
quite vulnerable under the current conditions, rage prone to large increases in vulnerability
for the same change in S, and D.

Response surfaces showing the sensitivity of valiéty to changes in mean water supply
and mean water demand (given the current standevdhttbns of supply and demand) for
CGCM/A1B scenario are shown in Figure 2.9. Obvigusensitivity to changes in water supply
is always negative, meaning that at the increaseeain water supply the probability of shortage
decreases. However, the magnitude of the sengitivifound to be dependent on both space
(confirming spatial variability observed in Figu?eB) and time, since projected changes in the
triggers (supply and demand) will affect the futwensitivity of each system. Notably, all
selected basins, with the exception of the Littidotado River Basin, the Gila River Basin and
Central California are expected to become moreitbems$o changes in the average water supply
overtime as consequence of the projected demandsapdly. The same happens for the
sensitivity to changes in water demand indicateth& response surfaces in Figure 2.10. It is
interesting to notice that, for each basin, the mtade of the sensitivity to mean demand and
supply (for a given set of standard deviation afndad and supply) has a maximum when the
average demand equals the average supply, asieallyyshown in the appendix. This condition
is crossed or reached by 2080 by several of theetsal basins, namely the Kansas River Basin,
the Lower Colorado River Basin, the San JoaquiraieuRiver Basin and the Central California.
Once the mean demand exceeds the mean supplycttred aulnerability to shortage becomes
larger than 0.5, although the vulnerability itdedicomes less sensitive to further changes in mean
demand and supply.

Changes in the mean of the drivers, however, atetm® only source of changes in
vulnerability; the probability of shortage of easkistem is also impacted by changes in the
variance and co-variance of supply and demand.rGilvat the current average supply exceeds
the average demand for all selected basins (argkneral, for the entire US with the exception
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of the Sevier Lake Basin), as the variance of eithgpply or demand increases so does
vulnerability, as shown in Figure 2.8.

Response surfaces of sensitivity of vulnerabiliychanges in standard deviation of supply
and demand (given the current standard deviatidnhsupply and demand) for CGCM/A1B
scenario are shown in Figure 2.11 and in Figur@.2Because in all the cases considered the
mean supply is larger than the mean demand, thsitisétig of vulnerability to changes in
standard deviations of those two triggers is alwpgsitive, meaning that vulnerability will
increase as a result of a more variable supplyearashd. Unlike the case of sensitivity to mean
supply and demand, the absolute maximum of theoresp functions to changes in standard
deviations does not have an intuitive interpretatidowever, the sensitivity of vulnerability to
changes in standard deviation of water supply (&tethis zero when the standard deviation of
water supply (/demand) is itself zero. Figure Zhaws that the sensitivity of vulnerability to the
standard deviation of water supply is projectedeorease throughout the*2dentury for all the
selected basins, with the exception of the Sanulpakulare and Central California. Sensitivity
to standard deviation of water demand, on the otierd, is expected to decrease in the

Colorado-San Juan, in the Little Colorado, Gilad anthe Sacramento-Lahontan, Figure 2.12.

2.8.4 Vulnerability assessment: the CGCM/A1B scenario

Changes in future vulnerability reflect changeshe probability distribution functions of S
and D. The US maps shown in Figure 2.17 show theevability predicted for the entire US by
CGCM31/A1B scenario for the periods 2020, 2040, 08d 2080. It is noticeable how the
southwestern US and the Great Plains areas arectedjto face the greatest increases in
vulnerability, in addition to being already the asewhere shortages are more likely. Large
increases in vulnerability are expected throughbetentire 21st century for the lower CRB, the
central Great Plains, and the central Californiarge increases are also expected in the Rio

Grande basin, Texas and Utah. Noticeably, all tharsas affected by the larger increase in
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vulnerability are characterized by having a curratliability index less than two. Interestingly,
vulnerability increases overtime in most of the oy, with the highest increases affecting those
areas where the current likelihood of shortageigdr. Decreases in vulnerability, on the other
hand, are quite small and are only expected indimas of the eastern US, Midwest and northern
US.

In an effort to isolate individual contributions ofianges in the distributions of supply and
demand to total vulnerability, we produced mapswshg the effect on vulnerability due to
changes in the mean and in the standard deviati®andD for the CGCM/A1B in Figure 2.18
and Figure 2.19 for the target years 2020, 20460 2hd 2080.

The cumulative effect of changes in mean S antienstandard deviation of S is expected to
increase vulnerability for the central Great Plainsughout the entire Z1century. The Rio
Grande Basin and the Colorado River Basin, on therdhand, are expected to undergo alternate
periods of increasing and decreasing vulnerabdite to changes the PDF of S. A similar
behavior is detected in central California, whelarnges in the PDF of S are expected to
determine an increase in vulnerability for the pesi 2020 and 2060 and a decrease in 2040 and
2080. As for the rest of the country, the contiitmutof changes in the moments of S is projected
to have negligible effect or to lead to decreaseguinerability. Although not shown, the latter
situation is primarily due to smaller variance iater supply projected through the course of the
21 century for the northwest, the northern GreatrRlaithe northern California and Texas.
Storage capacity is not projected to be limitingvakerability increases. In fact, simulations
predict a steady decline in the water levels of thain reservoirs of all the areas where
vulnerability is expected to increase overtime,dating that water scarcity is primarily due to
demand-supply imbalance rather than to insufficgatage capacity.

Unlike the case of the water supply, the effectcbbnges in both mean and standard
deviation of water demand is projected to alwagsdase future vulnerability, with the noticeable
exception of the Sevier Lake and the Rio Grandénbias2020. The effect of water demand
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change is larger in the Southwest, in central Gadifhi and in the southern Great Plains, while
being essentially negligible in the rest of the oyt Changes in vulnerability resulting from
projected changes in tf&andD are of the same magnitude or larger than those @tmanges in
the corresponding means over most of the US, exoepéntral coastal California, in the San
Joaquin river basin and in southern Florida.

A deeper analysis of the individual impact of chesn the mean supply and demand for the
selected basins of the Colorado River Basin, Qalifoand the High Plains is shown through the
response surfaces of Figure 2.13. All selectednbasiith the exception of the Little Colorado
and Gila are expected to become more vulnerabldimesas the result of projected changes in
mean supply and demand. The highest increaseseeted in the Lower Colorado, Kansas and
Central California, where the average demand igepted to exceed the supply respectively by
2060, 2040 and 2020, leading to vulnerability higltean 0.5. When the effect of standard
deviation of supply and demand are consideredherother hand, we notice that the only two
basins where future projections result in progkessiulnerability increases are the Little
Colorado and Kansas. However, while in the cas&afisas that is due to the simultaneous
increase in variability of both supply and demathe, case of the Little Colorado is driven by the
increase in standard deviation of water supply civluffsets the projected decrease in variability
of demand.

We use the volume below the response surfaces)lasd as shown in Figure 2.15, as
indicator of the susceptibility of the selectedibaso changes in PDFs of water supply and
demand. We assume that the greater the volumeeisnbre sensitive the given basin is to future
changes is (Weib and Alcamo 2011). In order to g indicator to directly compare the
response of the selected basins to projected changsupply and demand, the surfaces were
created using ranges of [Q«§-1.5ug], [0.5up, 1.5up], [0.50s, 1.50¢ and [0.5¢p, 1.50p] for
each basin. Volumes below the response surfaces then normalized by their respective
average. As shown in Figure 2.16, the San Joaquiard basin and the Central California are the
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most sensitive basins to changes in current supmiydemand, while the Colorado-Gunnison and
the Colorado-San Juan are the least sensitive. &lzmed sensitivities to changes in mean water
supply and demand are very close to the normalgathitivities to change in the standard
deviation of supply and demand for most of the fmsGila is the basin where the difference
between the normalized current sensitivity to clesngh mean supply and the normalized
sensitivity to changes in standard deviations ehaled and supply is larger; in particular, Gila
presents a sensitivity to changes in the mean wiade and supply considerably larger than the
average of the selected basins (the normalizecermugensitivity is about 1.5), while it is as

sensitive as the average of the selected basioBaioges in standard deviations of demand and

supply.

2.8.5 Vulnerability assessment: GCM and scenario depecelen

The analysis presented so far is based on the C&MBMydro-climatic and socio-economic
projections. Obviously, different pictures of thdure arise when other combinations of GCM
and scenarios are used. Analyzing alternative latesy (that is, alternative GCM/scenarios
projections) is a way to measure the level of uiadely that characterizes those portraits of the
future.

Composite maps of the maximum and minimum valuesubfierability from among the
projections by the CSIRO, and CGCM models undenates A1B, A2 and B2 show that
although there is general agreement that the vegaigply system of the southwestern US is the
most vulnerable to hydro-climatic variability andc-economic changes, there is also a great
deal of disagreement on the magnitude of that vabikty, as observed in Figure 2.20 for 2060.
The disagreement is greatest in the central antheouGreat Plains, the Rio Grande basin, the
lower Colorado River basin, the San Joaquin riasirbin California, and southern Idaho.

Normalized volumes below the response surfacefufare target year and six GCM-SRES

scenario combinations are presented in Figurefdr2dach of the selected basins. Each bar in the
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figure represents the sum of the volumes belowdkponse curves of vulnerability with respect
to changes mean and standard deviation of watgrlysapd demand normalized by the average
of the volumes of the ten basins for current coot. The analysis of Figure 2.21 permits to
appreciate that the future response of individuasis varies significantly among future
scenarios. Central California and Gila (with theeption of the CGCM/B2 scenario projection
for 2020) seem to be the only two cases where #nmys scenarios are in general agreement,
while little general inference can be made fordtieer basins. In an attempt to capture the future
trends of the response of each basin, we calculdiedaverages across the six GCM-SRES
scenarios of the normalized volumes below the mspaurves, as shown in Figure 2.22a. The
figure shows that the San Joaquin-Tulare and ther@eCalifornia are expected to be the more
sensitive basins also in the future. Large increagesensitivity are also expected for the
Niobrara-Platte-Loup and Kansas, while the sensitof the Sacramento-Lahontan and the other
basins of the Colorado River Basin is not proje¢tedhange significantly in the future. The sum
of the volumes below response functions across\®dsr each scenario and each target period is
shown in Figure 2.22b. The scenarios that pretietoverall larger responses are the CSIRO/B2
and the CGCM/A2, especially for the periods 2045@and 2080. The lower responses, on the
other hand are predicted by the CSIRO/A2 and CGCI8/Aalthough the latter is projected to

consistently increase of throughout thé' 2éntury.

29 Summary and conclusions

In this study we developed a procedure to estimateent and future vulnerability of US
water supply to shortage. Vulnerability was evaddabn an annual basis as the probability that
the water supply is insufficient to meet the dembpdimulating the US water supply system at
the spatial level of the 98 ASR that make up thatigaous 48 United States. Current and future
water supplies were estimated by evaluating laeahf water yield plus the contribution of water

transfers and storage, while demands were estimbéesgd on available data of current
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consumptive use and projected climatic and socim@mic scenarios. A sub-set of IPCC SRES
climatic and socio-economic scenarios was usedeterchine the vulnerability of the water
supply for the conterminous US.

We determined the current and future vulnerabilftyhe US water supply to shortage as well
as the sensitivity of vulnerability to changes wrrent and future water supply and demand.
Results are presented in general terms for theedd® while a deeper analysis is performed for a
set of selected basins of the Colorado River Ba&3atifornia and the High Plains. The latter set
of basins is ranked based on their response temuand future changes in PDF of supply and
demand as projected by the set of GCM/scenario o@nbn selected.

In agreement with other large-scale assessmentsl (Heary et al. 1999), our findings show
that the Southwest and central and southern GiaatsPare the more vulnerable areas to future
climatic and socio-economic changes. In additibig &nalysis adds to that prior work in several
ways including an accounting for reservoir storagans-basin diversions and routing of water
among basins, a more comprehensive effort to projeare desired water use, and a probabilistic
approach to vulnerability.

Contrary to a prior global scale conclusion (Vorasty, Green et al. 2000) and in concert
with a recent US study (Roy, L. et al. 2010), welfthat future increases in the vulnerability of
the US water supply will depend more on changesvater yield than on growth in water
demand. This is supported by the fact that water hess leveled off in recent years (Kenny,
Barber et al. 2009) as irrigated area in the West diminished and the efficiency of water
withdrawals in nearly all sectors has improved (B12000). Moreover, although climate change
are expected to increase water demand, future waeefficiency improvements will mitigate
that impact so that overall increases in desireigmusse are expected to be modest in comparison
with the effect of climatic changes on water yialad thus on water supply. The reductions in
yield, on the other hand, are driven by temperat(@ed therefore potential and actual
evapotranspiration) increases, especially whereigitation decreases or increases only slightly.
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Among the selected basins, the Central Californihthe San Joaquin-Tulare were found to
be the more sensitive to both current and futurgabdity of demand and supply. Large
sensitivity is also found for the two selected hasof the High Plains, namely the Niobrara-
Platte-Loup and Kansas, while the Lower Colorads faaund the sub-basin of the Colorado
River Basin with the larger susceptibility to chaagn future supply and demand. A general
disagreement was found among future scenarios ihatrms of vulnerability and response of
individual basins.

On the whole, the procedure outlined in this framewoffers a versatile and consistent
instrument to assess the vulnerability of physisgdtem to changes in inherently variable
stressors and can be applied to any environmenthkacio-economic vulnerability analysis. In
addition, it is the only methodology that accoufus both the probabilistic character of the
drivers and allows for explicit inclusion of thrextis.

The findings of this analysis assume no major mealibns to the physical structure of US
water networks. In addition, in-stream flow requoients and trans-ASR diversions were set
constant, thereby ignoring possible future chamgesirface water redistribution. Indeed, it is the
purpose of this assessment to point to those mtativhere adaptation (i.e. enlarged trans-basin
diversion capacity or, more likely, within-basin temtransfers and enhanced water conservation
efforts) will be most needed. Because all simuregiproject a steady decline in the water levels
of the main Southwestern reservoirs, indicating thater scarcity is primarily due to demand-
supply imbalance rather than to insufficient steragpacity, increasing storage capacity within

existing ASR networks does not appear to be a sstideadaptation strategy.
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Figure 2.1 Water Resource Regions and Assessméré@ans.

B P ey %

) i\l
o ?.‘;"f’ ¥
/ﬂ‘fpﬁf‘!}tﬁfﬁﬁ

375/ Yk Ve

2 ﬂl‘éﬁ%&%
RS
S
AN A

3
!

‘Q
J4

rw‘,', ’$‘
e ‘*‘?z.- -
MR A

Figure 2.2 Map of the 655 test basins (red), 8tdigisins (green) with zoom of the
Colorado River Basin with the watersheds availableJSBR records (light
blue).
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Figure 2.3 Water networks across the conterninoBsatlthe ASR level. Natural links are

indicated with blue lines, artificial links (watdiversions) with green lines. Gray
lines indicate diversions to Mexico.
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Figure 2.4 Changes in mean precipitation (in crojgmted by the CGCM/A1B scenatrio for:

(A) 2020; (B) 2040; (C) 2060; (D) 2080.
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Figure 2.5 Changes in mean water yield (in cm)tier CGCM/ALB scenario for: (A) 2020;
(B) 2040; (C) 2060; (D) 2080.
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Figure 2.6 Changes in mean water demand (in cmjhierCGCM/A1B scenario for: (A)
2020; (B) 2040; (C) 2060; (D) 2080.
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Figure 2.7 Current vulnerability (A) and reliability index (E

(A) (B)

©) (D)

Figure 2.8 Current sensitivity(in cm?) of vulnerability to unit changes in: (A) mean we
supply; (B) mean water demand; (C) standard dewiatif water supply; (D
standard deviation of water demand; for the CGCNBAtenaric
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Figure 2.9
Current status is represented for each surfacéehdywhite marker. Red, blue,

green and black markers indicate respectively 2022040, 2060 and 2080
periods. Maps are relative to the CGCM/A1B scenario
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Chapter 3 A mechanistic approach for the description of formation and
evolution of vegetation patterns

3.1 Abstract

Vegetation patterns are a common and well-defimedacteristic of many arid and semi-arid
landscapes. In this paper we explore some of thesigdl mechanisms responsible for the
establishment of self-organized, non-random vemetatatterns that arise, at the hillslope scale,
in many areas of the world, especially in arid aacthi-arid regions. In doing so, we use a water
balance model and provide a fundamental mechanistderstanding of the dynamics of
vegetation pattern formation and development. Recid effects of vegetation on the hillslope
thermodynamics, runoff production and run-on irdifion, root density, surface albedo and soil
moisture content are analyzed. In particular, we:pfiesent a physically based mechanistic
description of the processes leading to vegetapiattern formation; 2) quantify the relative
impact of each process on pattern formation; arde8ribe the relationships between vegetation

patterns and the climatic, hydraulic and topograghiaracteristics of the system.

3.2 Introduction

The presence of self-organized vegetation pattasnsa common and well-defined
characteristic of many dry landscapes. Indeed, tatige is in general spatially heterogeneous
and its constituent species show spatial distmstithat depart from randomness (Greig-Smith
1979), although only in few cases, where this deparis more marked, the pattern structure is

easily recognizable, Figure 3.1.
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Although in many circumstances the presence of te¢iga patterns is detectable from the
ground, the advent of aerial photography was negéalgilve a more comprehensive view of the
multitude of shapes and scales that the phenomerbibits: banded, spotted or labyrinthine
vegetation patterns are not uncommon in many aridemi-desert areas and can develop at a
wide variety of spatial scales. Typical dimensiofigegetation pattern element (i.e. thickness of
a band or radius of a patch of vegetation) can sypato two orders of magnitude, ranging from
10° to almost 10m (Rietkerk and Van de Koppel 2008).

The identification and characterization of the gdrarnon, as well as the individuation of the
processes responsible for specific types of theseenps (e.g.so-calledtiger bushes) were the
main focus of numerous studies (Worral 1959; G&aigith 1979; Thiéry, d'Herbes et al. 1995;
Dunkerley and Brown 1999).

Initially, studies were mainly focused on qualwatidescriptions and on identifying and
listing the recurrence of certain types of spat@tfigurations (Worral 1960; Boaler and Hodge
1962). However, during the last decades, reseaashheen directed to a more quantitative
characterization (Lefever and Lejeune 1997; D'CalmriLaio et al. 2006). Most of the studies
that attempted a quantitative description of thecesses leading to the formation of vegetation
patterns agree in taking a “synergy versus conmpetitapproach to the problem (Valentin,
d'Herbés et al. 1999; D’'Odorico, Laio et al. 2006)other words, they advocate the idea that the
development of non-random self-organized configanatis the result of short-range synergy and
long-range competition occurring between plants gnoups of plants. According to those
studies, therefore, those spatial interactiongesponsible for inducing the system to drift away
from a spatial configuration characterized by ranjodistributed vegetation, promoting the
formation of non random vegetation structures.

Plants, especially in arid landscapes, help redodeerosion and augment soil permeability;
they also protect each other from winds and dardageio animals and extreme temperatures and
humidity conditions. In some areas, those factacoerage the formation of bands of vegetation
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in mild hillslopes (Bromley, Brouwer et al. 1997) favor the development of the same kind of
pattern in a direction perpendicular to the onénhefprevalent winds, in response to their erosive
action (Leprun 1999). Although hillslope-scale pats can arise in a variety of regions and
climates, scarcity of water seems to be the comemominator of every landscape characterized
by vegetation patterns. For the development ofepadt in fact, it appears to be crucial for the
system to be water limited and not able to suppopgermanent and stable configuration of
complete canopy closure, as underlined in theglitee mentioned above.

Although considerable efforts were made towards aendetailed representation of the
elements playing a role in pattern formation bylidang both deterministic and stochastic
aspects, most of the models proposed to descrébphtbnomenon belong to three categories: 1)
kernel based models (Thiéry, d'Herbés et al. 1B6fgver and Lejeune 1997; D'Odorico, Laio et
al. 2006); 2) advection-diffusion models (HilleR&shbers, Rietkerk et al. 2001; Rietkerk,
Boerlijst et al. 2002); 3) differential flow instdiby models (Klausmeier 1999; Sherrat 2005;
Saco, Willgoose et al. 2007). Although they succeeduilding a conceptual mathematical
framework able to describe the dynamics of vegatgiropagation, soil moisture distribution and
local vegetation interactions, they do not provaleure mechanistic representation of those
dynamics.

The overarching objective of this study is to expland identify (some of) the physical
mechanisms responsible for the establishment ofrandom spatial vegetation patterns that
arise, at the hillslope scale, in many areas ofnbwd, especially in arid and semi-arid regions.

The specific objectives are to: 1) develop a phalbichased mechanistic modeling of the
processes leading to vegetation pattern format®n;implement such modeling within a
framework able to replicate the main physical cbrdstics of observed vegetation patterns
(shapes, dimensions, etc.); 3) individuate the eetsge impact of each process on pattern
formation; and 4) capture the relationships betweegetation patterns and the climatic,
hydraulic and topographic characteristic of theieys
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3.3 Hypotheses

Vegetation patterns refer to the relative non-ramdarrangement of vegetated and bare
patches of soil on the landscape, where non-randssnindicates any spatial distribution of
patches that deviates from a purely spatially randdstribution.

Our first hypothesis is that vegetation patternemrg® as a result of reciprocal actions,
physical, chemical and physiological, (i.e. feedbpcocesses) between vegetation, hydrologic
and climatic processes, and soil properties, aat ttiose feedback processes are amenable to
guantitative description and modeling.

Our second hypothesis is that patterns developusecthe physical processes in action tend
to make certain regions in the neighborhood ofdstiag clump of vegetation more conducive
to the establishment of additional vegetation @).n

Finally, our third hypothesis is that the spati@tidbution of vegetation depends on the
spatial distribution of water and energy. Therefgshysiological and hydrological processes
conducive to local decreases in the available water nutrients will tend to inhibit vegetation
establishment and those conducive to locally mairtg or increasing the water and energy will

tend to promote vegetation establishment.

34 Scaleof analysis

3.4.1 Spatial scale

Vegetation patterns analysis is scale-dependers. ifithviduation of spatial structures, as
well as their geometric characterization, in fat#pends on the spatial resolution at which we
observe the area under analysis. At the finesiutisn, a given area of study is either vegetated
or bare. As the resolution of the observationsaases, however, one will be able to notice that,
over the same hillslope, vegetation is indeed itigted unevenly (aside from the extreme cases

of fully vegetated or bare hillslopes), showingheg density in some areas and lower density in
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others. Thus, the spatial scale of our analysist thascompatible with the scale at which the
phenomenon we want to analyze takes place.

In this study we are interested in analyzing mawpi vegetation agglomerates whose
typical dimensions are of the order of magnitudd®fto 10t m (Figure 3.2). Hence, we need to
be able to characterize spatial structures ofdlzatover a spatial domain representing a hillslope
To this aim, we will further subdivide the studyndain (i.e. our hillslope of study) into a study
subgrid whose pixels will be small enough to resdlvwe spatial configuration of the patterns we
intend to analyze. The areas of the whole domaih @ha single pixel of our study subgrid

measure 1810’ m* and 18-10° n, respectively (Figure 3.3).

3.4.2 Temporal scale

The dynamics of the water and energy fluxes andhef spatial interactions between
vegetation, soil and climate take place at vartime scales. While, on the one hand, water and
energy fluxes show large fluctuations on a dailysobdaily basis, on the other hand, the time
scale of vegetation pattern formation and dynangiaauch longer. In particular, for a given set
of environmental forcings (climate and soil), thencaunt of vegetation that is ultimately
established in a certain area and its spatial gordition are the result of a long-term process of
mutual adaptation. Vegetation patterns, in facgwstow variability over time (i.e., statistical
properties characteristic of patterns do not chaingstically within a year and from year to year),
suggesting that patterns are themselves more isensitthe long-term average characteristics of
the climate-soil system rather that to short-terstudbances. Under the assumption of stationary
climate, therefore, we will use long-term averaimatic and hydraulic conditions, in order to
determine the spatial configurations of vegetatind associated water and energy fluxes that are

in long-term equilibrium with the climate.
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3.5 Methods

We simulate the vegetation-soil-climate dynamics aotwo-dimensional gridded domain
using a model that quantifies the water budget@haith the net absorbed solar radiation and
latent heat of evapotranspiration and that, atsgmme time, is able to reproduce the effect of
spatial interactions between vegetation in neigimgapixels.

Water and energy fluxes occur mainly in the veltdieection, across the interface between
soil and atmosphere. Spatial interactions betwesgetation groups, and mutual interactions
between soil, water fluxes, and vegetation, ondtieer hand, mostly occur in the horizontal
directions. Therefore, the description of theseptedi processes would ideally require a 3D
dynamical model. However, in this work, we modeégh 3D interactions by means of a
combination of a 1D water balance model able tamles the vertical fluxes coupled to a 2D
model able to capture the spatial interactionss Bpiproach is predicated on the assumption that
the iterative sequential application of these twadeis will be substantially equivalent, for our

purposes, to simulating the system using a fullydgBamical model.

3.5.1 Procedure schematization

We model the soil-climate-vegetation system by abi@rizing the spatial configuration of
water fluxes and vegetation density of a hillsloPewr spatial domain represents a hillslope of
given topography, further subdivided into a subgyfdinterconnectedNxN pixels in order to
capture the spatial variability of both fluxes amdjetation coverage.

Because the long-term average vegetation densiycatrtain location in space is the long-
term response of the climate-soil-vegetation systemset of environmental forcings, knowledge
of the spatial configuration of the environmentadcings over a certain domain can be used to
determine the spatial configuration of vegetati@mgity over the same domain. Therefore, the
objective of our modeling is to determine a spataifiguration of fluxes and vegetal density that

simultaneously satisfies the water budgets botheaglobal (i.e. for the entire study domain) and
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the local (i.e. for each pixel) scales, while takinto account lateral interactions (i.e. between
adjacent pixels) between vegetation, climate antl Blowever, while the water and energy
fluxes may be considered known at the hillslopdescat the pixel level they are unknown,
because they are sensitive to and ultimately depertthe vegetal density at the local scale (i.e.,
present at each pixel).

In order to determine the pixel-scale fluxes andetation density that are in equilibrium
with the hillslope-scale conditions, we use anati@e simulation procedure. For a given set of
initial climatic conditions and soil propertiesnpterm averages of annual fluxes of water, solar
radiation and latent heat of evapotranspirationyel as of vegetal density, are estimated at the
pixel level for each one of the pixels of the stuthmain by means of a water balance model.
Once the long-term annual average vertical fluxes \segetal density are estimated at the pixel
level and for the generic iterationthe mutual lateral effects of vegetation anddkiwn adjacent
pixels of the study grid are evaluated. In turiosthlateral interactions will have the net effect o
modifying the forcings and the hydraulic parametsrshe system at each pixel. Evaluation of
lateral effects, therefore, allows the estimatidnan updated set of climatic inputs and soll
parameters that are used to perform the subse(jtemationn+1) water budget at each pixel. A
flow chart of the simulation procedure is providedrigure 3.4.

As shown in the procedure schematization outlimeBigure 3.4, the simulation procedure is
preceded by three preliminary steps (qualitativaggcribed in Figure 3.5): 1) evaluation of the
hillslope-scale vegetal coverage or vegetation ile(btained by solving the long-term average
water balance at each pixel for the same climatcdddorcings and hydraulic properties); 2)
application of an initial random perturbation tee tiiegetal density of each pixel of the study
domain and 3) evaluation of the effect of the Htémteractions from the perturbed vegetation
configuration. The reason for these preliminarpsts simple: in accordance with the hypotheses
of this work, vegetation patterns are the resuliptial mechanisms of facilitation and inhibition
between adjacent groups of vegetation. Therefave, adjacent pixels of our domain must be
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characterized by different vegetal density for tthieraction to have a net effect on each other.
Thus, the application of a random perturbatiomiended to reproduce the small deviance from
the uniform spatial configuration of water fluxesdavegetation density that is necessary to
trigger the lateral interactions responsible far fibrmation of patterns. It is worth underlyingttha

this random perturbation is applied only at th&ahsimulation step.

3.5.2 1D Water budget — Vertical fluxes and forcings

The water budget at any pixel of our study domaimuantified using Eagleson’s annual
water balance model, a one-dimensional representafi soil moisture dynamics as forced by a
stochastic climate (Eagleson, 1978a-g). It dessrihe relationship between annual amounts of
precipitation, runoff, infiltration and evapotrairggion as a function of volumetric soil moisture
and soil and vegetation characteristics (see Apgpehibr details).

Soil hydraulic properties are characterized byftil®wing parameters: total porosity, pore
size distribution index, surface retention capacggturated hydraulic conductivity and matric
potential at effective saturation.

Climatic characteristics are described in termsttf mean storm duration, mean time
between storms, rainy season length, mean and neariaf storm depth, mean annual
precipitation and mean annual potential evapotiigatipn. Vegetation is characterized by the
plant transpiration efficiency, that is, the ratietween the potential rate of evaporation and the
potential rate of transpiration and by the fractilomegetation cover or vegetation density. The
model predicts the long-term averages of the wiiges as well as the long-term soil moisture
content (over a semi-infinite soil column) and v@gen fractional coverage. The model is based
on the following main assumptions:

- the soil-vegetation system is in a long term efuiilim with the climate;

- the value of long-term soil moisture content unahich the balance is closed maximizes

vegetal biomass production under conditions of malivegetation stress.
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3.5.3 2D Spatial feedbacks characterization - Horizorfikakes and interactions

Our main hypothesis is that vegetation at a padiet, (@t each pixel) affects water and energy
fluxes in its neighborhood (i.e., pixel and surrdung pixels). Plants, in fact, affect the physical
structure of the system by perturbing the thermal @erodynamic properties of the canopy layer
as well as the sail structure (i.e., texture, pisypsonnectivity, hydraulic conductivity, etc.).sfa
result of those perturbations, water and energyeBuchange in the neighborhood of the plant,
modifying the environmental conditions in a wayttban promote or inhibit the establishment of
surrounding vegetation.

The climate-soil-vegetation system is very compbnd governed by strong feedbacks
between all elements of the system. In the cortktttis paper, most, if not all, of the forcing and
physical characteristics governing the dynamicsth& climate-soil-vegetation system are in
affected by the spatial configuration of the vetieta However, we focus only on a subset of
factors that we hypothesize are the main driverthefprocess of vegetation patterns formation
and evolution. These factors are: 1) modificatidnthee spatial distribution of soil hydraulic
conductivity by vegetation, 2) infiltration of sade runoff, a phenomenon known as run-on
infiltration, 3) spatial reconfiguration of soilkedo, 4) spatial soil moisture redistribution dae t
roots, and 5) redistribution of nutrients and aaali energy for evapotranspiration.

Although fire, livestock, and other such exterrmices may be the main cause determining
vegetation patterns in some instances, vegetataterps as those shown in Figure 3.1 are
observed even in the absence of such forces. Trerafur work focuses on the feedbacks and

interactions between vegetation, soil, and hydmmxatic processes only.

3.5.3.1 Effect of vegetation on soil hydraulic conductivity

The soil hydraulic characteristics vary dependingtloe presence or absence of vegetation
and on the evolution of vegetation density. Theaotp of plants on soil are, in fact, disparate.

Plants influence erosion and sediment transpottinbiying the effect of wind and slowing the
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surface runoff velocity, therefore constituting area of potential sediment accumulation. In
addition, the superficial soil of a vegetated arganuch richer in litter and organic debiris,

therefore it is richer in nutrients and more porand permeable. Permeability of deeper layers is
also affected by the presence of roots and rottowys, which create preferential routes for

infiltrated water (Boaler and Hodge 1962; BromIBypuwer et al. 1997).

All these effects have been observed in areas ciesized by vegetation patterns, where
vegetated soil exhibits higher permeability thajaeent bare soil, which often has a highly
impermeable superficial crust (Valentin, d'Herbés ab 1999). The range of hydraulic
conductivity of an area characterized by vegetapatierns can be very wide, often spanning
several orders of magnitude and subjected to randamnations within very short distances
(Bromley, Brouwer et al. 1997). Soil permeabilityaasite, therefore, is a function of vegetation
density (see schematization in Figure 3.7a).

We propose to model the saturated hydraulic condtycat time iterationn as a continuous
function of only the fractional vegetation coverddg at the given pixeK and iteratiom-1 as

follows:

i=1

Kox (n) = {izzli)[ai +hb [ﬁM P O.l[ﬂ)[l] [04(i-1),0.1) (M o )]} (3.1)

wherel,;(M) is the indicator function such that

1 asM<b

lam (M) = (3.2)
['b)( ) 0, otherwise

The choice of the coefficients andb; of equation (3.1) is aimed at obtaining a piecewis
continuous function spanning a range of saturatgdraulic conductivities compatible with
literature values and field measurements which ttiersites where vegetation patterns emerge,
are typically found in the interval o 10% cm/s over a range of fractional coverage ranging

between 0 and 1. A random component is superimptseéde value oKgyn) obtained with
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equation (3.1) in order to incorporate the typiGdom spatial variability of soil conductivity
(Bromley, Brouwer et al. 1997). A graph describingsample function for the hydraulic

conductivity is provided in Figure 3.6.

3.5.3.2 Run-on infiltration of surface runoff

A non-uniform spatial distribution of hydraulic adurctivity affects both the vertical water
fluxes at the individual pixel as well as the watgut of downstream pixels through the run-on
process of infiltration of surface runoff. Surfaemoff plays a key factor in the development of
soil and vegetation. Part of the surface runoffipied uphill can pond in small depressions or be
trapped in areas of litter deposition downhill d@nfiltrate (Bromley, Brouwer et al. 1997) (see
also schematization in Figure 3.7b). The amounswface runoff that infiltrates depends on
many factors, such as the soil properties, the ggphy, the overall water input, the
characteristics of the rain event and so on. Theffyproduced accumulates along the hillslope,
causing erosion and sediment transport.

We will consider the surface runoff produced upbflb given area as an addition to the total
water input for that area. Thus, the water balaiagach pixeK at iterationn considers a water
input, Px(n), given by the sum of the long-term average préipin me, at the pixel and the

average surface runofRsy, from the uphill pixely at iteratiom-1.:

P (n) =Mpa + nY_l (3.3)

3.5.4 Effect of vegetation on albedo

Albedo is a measure of the reflectance of a cedarface with respect to solar radiation. The
higher the fraction of incoming radiation that éflected, the less the solar energy available at
that surface. For soil-vegetation system, less rhlegosolar energy means less available energy
for sensible heating and for evaporating waterngeéquently, all else being equal, higher albedo

corresponds to lower potential rate of evapotraasipn.
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Albedo is a characteristic of the reflecting suefand, among other things, depends on soil
moisture and on vegetation characteristics inclydiegetation density. Wetter and more densely
vegetated soils are usually darker and less réefiect (Figure 3.7¢) and, therefore, are
characterized by lower albedo. While albedo mayeHaoth a negative and a positive dependence
on vegetation density depending on the color o€ [sail that characterizes the region of study
(Rechid, Raddatz et al. 2009), its dependence ibmsisture is clearer, wet terrain usually being
less reflective than dry ones (Lobell and Asner28ang, Wang et al. 2005).

Based on this consideration, and following an eiogliformulation developed by Lobell and
Asner, (2002), we express the total albedo of p&glry, of our study domain at iterationas a

decreasing function of the soil moisture contentesitionn-1:

S 1
pTx(n):{pTl_AEﬁe ° -e B]} (3.4)

where pr; is the all-frequency (i.e., total) surface albddosaturated soil, arbitrarily set to
0.25, whileA andB are two coefficients whose value is chosen todspectively 0.11 and 0.3,
following Lobell and Asner, (2002). The previousuatjon accounts explicitly for the
dependence of albedo on soil moisture and impliddt its dependence on vegetation through

the dependence of soil moisture on vegetation tensi

3.5.4.1 Soil moisture redistribution by roots

Roots allow plants to uptake water and nutrientenfithe soil. The root configuration is
unique of each vegetation species and is affegtétidoplant’s age and health, as well as the soll
characteristics, water availability, temperatunagd ather environmental factors. Developing a
sophisticated model encoding all of the aforememtibvariables is a complex task that goes
beyond the scope of this work. Nevertheless, w@gse a basic approach to model the role of
roots in redistributing soil moisture. Our approd&based on the simplifying assumption that the

root characteristics of the vegetation populatimgdomain are uniform and that soil moisture can
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be rerouted out of a pixel into another by theuefice of root networks only if they extend across
the pixel borders (Figure 3.7d). Therefore, weirdefa parameter representing the degree to
which roots extend over the adjacent pixel as #t® of the rooted area and the characteristic

area of the pixel:

— A\oots
&, = Dhoots 35
Acell ( )

This parameter defines a range of root action #owsa us to take into account the process of
subsurface water transfer between adjacent pixetaqted by root systems. By further assuming
that the root distribution is isotropic, we estim#iie net contribution of water input of cl{x-

1,y) to cellY(x,y), Apxy, by means of a function of the following kind:

-1
Ap, (n)={‘(R4 (M, &, B -M, &, EPY)} (3.6)

Equation (3.6) implies that roots spreading actbsesborders of a cell can uptake a fraction
of the water input of the neighboring cell in a wimat is proportional (proportionality being
given by the parametég) to the fractional coverage of the contiguous Isié, andMy and to
their transpiration efficiencie&,y and k,x This, in turn, implicitly assumes that there is no
hydraulic redistribution of soil moisture due todngulic gradients existing between cells and due
to different soil characteristics or the processooft uptake itself. Those effects, however, can be
implicitly included in the coefficientx.

The cumulative effect of roots at pix€lis obtained by applying equation (3.6) to each one
of its four adjacent cells.

The net result of using this approach is to modify water input at two contiguous cells
based on the difference between the spatial digioihs of their root systems, which in turn

depends on their fractional coverage.
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3.5.4.2 Effect of vegetation on local soil nutrients ananspiration efficiency

This entire study is based on the hypothesis thdividual plants act differently from a
community of plants (Callaway, Brooker et al. 2Q0R)e interactions between individual plants
are multifold and may lead to positive and negatesdbacks on vegetation density. While, on
one hand, plants compete for water and nutriemsugh roots and for light through foliage
(Holmgren, Sheffer et al. 1997; Barbier, Couteromle 2008), they can also protect each other
from extreme fluctuations of temperature and hutypjdrom mechanical or herbivore damages,
and can improve soil properties through litter fatimn and nutrient replenishment (Holmgren,
Sheffer et al. 1997; Borgogno, D'Odorico et al. 20Bee also Figure 3.7e).

In this study we do not describe each of thoseaatens individually, but rather model their
cumulative effect on the plants transpiration éficy, k,, following the reasoning that the net
result of facilitation/competition should be to irope/worsen plants water use by
increasing/decreasing the quantity of biomass ¢hat be produced out of a certain amount of
transpired water.

Therefore, we model the plant transpiration efficigk,x(n), at a certain pixeX and iteration
n, as a function of a base value for the transpinagifficiency, K , and the values, at iteratien
1, of the vegetation density at poiXt My, the vegetation density of its adjacent céllg, Mp,

M., Mg, the hillslope-scale vegetation density at théahtime step,m , the surface runoff at

cell X, Ry, the surface runoff of the cells upstream and dikeam, Ry, Rsp and of the average
surface runoff for uniform vegetation density ae thitial step,E . This function has the

following form:

K, (n) = max{os, minfLk, +[(ak,, ), +(ak,, ), + 8k, ), + (8k,, ), + 0k, L] JF - @7)

where:
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(AK/X )1 =a; dVIX—J (3.8)

M

My +Mp + M, +M, -4 M

(ak,,), =a, v (3.9)

(ak,y ), = pii (3.10)
Mpa

(ak,), =2, “n;ARSX (3.11)

(8, ), = o2 (3.12
PA

Equation (3.8) and (3.9) are intended to desctibentay that transpiration efficiency at point
X and iterationn is affected by vegetation poinX and iterationn-1 and vegetation at its
contiguous cells at iterationl.

Since the presence of vegetation in the given pxel in its neighborhoods is assumed to
produce a facilitation effect for further estabtisnt of vegetation, we choose both coefficients
in equations (3.8) and (3.9) to be negative.

Equations (3.10), (3.11) and (3.12), on the othardh reflect the effect of surface runoff
through the processes of erosion and sedimentatioboth soil particles and nutrients. In
particular, the coefficients in equations (3.10§ 48.11) are chosen to be negative, while the
coefficient in equation (3.12) is chosen to be {pasi Those choices are driven by the following

considerations: 1) when a given location (i.e. Pixe subjected to a surface runoRy, larger
than the average surface runoff corresponding tiéorum coverage,% , it is concurrently

subjected to soil erosion and nutrients deprivat®)rwhen a given pixel is subjected to a surface
runoff, Ry, lower than the surface runoff of the upstreanepiyy, it benefits from the partial
deposition of incoming soil particles and nutrieated 3) when a given pixel is subjected to a

surface runoffRy, lower than the downstream pixBl, it is exposed to nutrients and soil loss.
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In order to prevenk, (n) from taking unfeasible values, we bounded it betw@.5 and 1.

3.6 Simulation of the system

The climate-soil-vegetation system was simulatedeurvarious combinations of climatic
forcing, soil parameters and characteristics ofsiatial interaction functions in order to explore
the conditions controlling the mechanism of pattemergence and evolution. We present results
of the simulation of the system on a study domdi®@x50 pixels, representing a hillslope of
about 16 m?. Boundary conditions of the system are: 1) frawlovegetation coverage set to be
equal to the uniform solution (obtained by using ttomain-averaged inputs and equal to the
vegetal coverage of each pixel at the preliminaeyp ®f simulation) for all the borders; 2) water
fluxes equal to the uniform solution ones for thpstoeeam border and the lateral ones; free flow
condition in the downstream boundary, allowing ctatgdrainage downhill.

Given the extremely large number of combinationsfesdsible climatic, hydraulic and
topographic conditions, several properties of thetesn had to be fixed. In particular, unless
differently stated, simulations were carried out ardomain whose hydraulic properties and
climatic forcing are reported in the “base condisibcolumn of Table 3.1. The domain is

Simulations were carried out with the following tabjectives:

- reproduction of vegetation patterns similar to thpeesent in nature;

- identification of the individual roles that the & forcings and the spatial interactions

have on the spatial distribution of vegetation.

3.7 Resultsand discussion

In accordance to our hypotheses, a satisfactoryehmgfof the system should be able to: 1)
simulate the emergence of patterns showing the sgragal characteristics (i.e. stripes, spots,
labyrinths) as the patterns observable in natuygyré@dict the emergence of patterns only for

some combination of climate forcings, soil paramgteand characteristics of the spatial
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interactions, while predicting no pattern in thenaéning cases; the combination of factors
leading to the emergence of patterns should alshhdsame as that observed in nature; and 3)

identify the individual role of the pattern-indugidynamics.

3.7.1 Spatial analysis

In order to be able to compare different typologipatterns and objectively measure the
individual impact of the climatic and hydraulic pegties of the system on pattern emergence and
characteristics, we perform a thorough spatialyaiglof both simulated and natural vegetation
fields. In particular, we explore the following $igé&characteristics of vegetation fields:

- PDFs and conditional PDFs of vegetation coveragleeapixel level.

- Spectral analysis of the vegetation fields.

- Analysis of the number, size and shape of the atigetclusters.

3.7.1.1 PDFs and conditional PDFs of vegetation coverage

PDFs of the vegetation coverage at the pixel leagl be used to evaluate how different a
given vegetation field is from the typical fieldathwould be produced if the number of plants at
each pixel followed a Poisson distribution witherat Assuming that each plant covers a given
area, in fact, the vegetation fractional coverafjeaxch pixel is a one to one function of the
number of plants present at the pixel itself. Hrgs were present at each point in space with the
same probability, each pixel of the domain woulgdena number of plants (and, thus a fractional
coverage) distributed following a Poissdp(istribution. Throughout the whole domain, that
would lead to a normally distributed PDF of thecfianal coverage

In the presence of self-organized structures, thegmce of a clump of vegetation at a certain

point in space has an impact on the vegetatiorbkesttenent in its neighborhood. Therefore,

! This is a consequence of the Central Limit Theorem
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presence of self-organized structures can be addrom the analysis of conditional PDFs of the
fractional coverage. We do so by evaluating the BD¥egetation coverage for all those pixels
having at least one neighbor characterized by atigetcoverage higher than the overall domain
average of the fractional coverage. The same ig donditioning on being in the neighborhood
of a pixel characterized by vegetation coverageetaivan the domain average. In order to detect
spatial anisotropy, conditional PDFs are evaluated the x-direction (by looking at the
vegetation coverage of the two adjacent pixelshenxtdirection), on the y-direction and for all

directions.

3.7.1.2 Spectral analysis of vegetation fields

Spectral analysis of a signal is a mathematicatatjps that decomposes a signal into its
constituent frequencies. In this context, we lobkha spatial field of fractional coveradye and
use the Fourier Transform technique to individubte presence of frequencies in the vegetation

field along the x and y direction of our study dama

3.7.1.3 Analysis of the clusters

In order to examine the characteristics of pattenesexamine a set of spatial features of the
vegetation clusters. We arbitrarily define a clusit vegetation as a clump of adjacent pixels
characterized by having fractional coverage latgan the domain average fractional coverage (a
gualitative example is provided in Figure 3.8).defining a cluster, we connect pixels through
any shared edge (that is, von Neumann neighborHoad;immediate neighbors, no diagonals),
as done by Scanlon (Scanlon, Caylor et al. 2003 ekch cluster defined as above, we calculate
the size (that is, the number of pixels that coraptie cluster), the span along the x and y
directions, the shape ratio (as the ratio betwkerspan along the x direction and the span along

the y direction) and the fraction of area filled (ae ratio between the cluster size and the ptoduc
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between the span along the two directions). We @smulate the total number of clusters present
in the whole domain.

This definition of clusters allows us to compare @egetation clumps with the clumps
resulting from a homogeneous binomial process. Tlmee the clusters of vegetation are
individuated from the original field, we evaluaketcoefficienp as:

NCLUSTERS
Size
_ le F (3.13)

B SiZQ)OMAIN

We then compare the cluster statistics of a binbpriacess with probabilityp, occurring
homogeneously within our domain.

We arbitrarily define a pattern as a clustered tagee configuration whose average cluster
size is higher than the 0.975 quantile of the elusize distribution of the corresponding uniform
binomial process. In addition, based on the stadilstharacteristics of the clumps of vegetation,
we distinguish three types of pattern as follows:

- Spots: a pattern whose shape ratio is within thge®.6-1.6.

- Bands: a pattern whose shape ratio is lower thaoiChigher than 1.6.

- Labyrinths: a pattern whose largest cluster sparsast the 75% of the domain and

whose fraction of area filled is less than 0.75.

The latter subdivision is motivated by the factttijpots are intuitively defined as structures
whose dimensions in the x and y directions arelainfand, thus, characterized by shape ratios
close to 1), while bands are characterized by lggaidominant dimension (either on x or y). As
Labyrinthine fields of vegetation, on the other thaare characterized by few big clumps of
vegetation (thus the reason why we look at thel agam of the bigger cluster) embedding several
patches or stripes of bare soil (thus the reasonweénlook at the area of the cluster effectively

filled with vegetation).
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3.7.2 Simulated patterns versus natural patterns

A set of sample patterns emerging from our simoitetiis provided in Figure 3.9. As shown,
our modeling of the system is able to predict theergence of several types of vegetation
patterns.

Figure 3.10 shows the cluster analysis of the samptterns in Figure 3.9. The definition
provided in the previous section supports the tptale observation of Figure 3.9, confirming
that only the fields in Figure 3.9a, Figure 3.9l &igure 3.9c satisfy our definition of pattern,
while the field in Figure 3.9d has an average elusize that is not distinguishable from a
homogeneous binomial process. Moreover, the patteRigure 3.9a is spotted and has a shape
ratio of 1.18, while the one in Figure 3.9b is beshdavith shape ratio equal to 4.2. Figure 3.9c,
instead, corresponds to a labyrinthine patternumecd) the smallest rectangle that circumscribes
the largest cluster occupies an area equal to 9fl%heodomain and 2) 55% of its area is
vegetated.

Below, we present a quantitative comparison betwsierulated vegetation patterns and
natural patterns observed in two African locatiamsmely an area of Niger near Niamey and a

region of Somalia near Garoowe.

3.7.2.1 Niger

The area situated about 45 km south of Niamey,ctygtal of Niger, is known for the
characteristic vegetation patterns known as tigshbs. The area is characterized by an average
annual precipitation of 56 cm, half of which fadisan intensity higher than 35 mm/h and a third
above 50 mm/h (Bromley, Brouwer et al. 1997). &odravely sandy loam and is highly prone to
crusting in bare areas, while vegetation is comaged in strips of a few tens of meters wide and
a few hundred meters long (Bromley, Brouwer e1887).

The model parameters for the simulations corresptmdthe climatic and hydraulic

characteristics of the area reported in the abitaature and are shown in Table 3.1. In addition,
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soil hydraulic conductivity at each pixel was cddtad as a function of the fractional vegetation
cover at that pixel and was set to span a rangel®¥ to 9.5-1¢ m/s respectively for the crusted
bare soil and a full canopy coverage, as suggéstéiéld measurement (Bromley, Brouwer et al.
1997) and estimations from grain analysis (Casermwve Valentin 1992). Values for the
parameters of equations (3.4) through (3.12) aveiged in Table 3.2.

Google Earth aerial photographs of this region @fel characterized by vegetation patterns
were used to infer field observations. A few randsimdy areas were sampled from the vast
region characterized by the presence of tiger tsiieof which have a surface area of abodt 10
square meters (see Figure 3.11) and present aserifg-regular slope. Each picture was then
processed in order to estimate the vegetationidraatcoverage at every pixel. This was done by
examining the color levels of the pixels of theitiligd pictures using as intervals the null
vegetation coverage, that Ig=0, for those pixels characterized by bare soil lbird. for those
ones characterized by full coverage. Photos, whoiggnal resolution was of about 400x400
pixels, were then further processed in order toch#te resolution of our study grid. This was
done by superimposing our study grid on the origi@to and averaging the fractional coverage
of the set of pixels of the original photo that feithin the bounds of each pixel of our 50x50
grid.

A preliminary qualitative comparison between sintiolas and observations is presented in
Figure 3.11, where three original aerial photosstr@vn together with their digitized vegetation
coverage maps and three sample results from ouwlaions. The figure shows a good
gualitative agreement between natural and simulataterns in terms of typical shape and
dimension of the vegetation structures and in theral spatial configuration of the patterns
within the study domain.

Results of several simulations exhibited a notéwosensitivity of the emerging patterns to
changes in the spatial interaction functions anglirticular to the dependencekpfand hydraulic
conductivity on vegetation. Differences betweerntgrat in Figure 3.11g and Figure 3.11f, for
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example, are due to changes of about 5% in thdicieets of the equation (3.9), while Figure
3.11h was obtained by increasing the soil conditgtiin the interval corresponding to a
fractional cover only in the range of 0.3 to 0.5diyout 10%, while keeping the overall span of
the range fixed between 3160 9.5-10 m/s. In addition, results from simulations carrimat
with the same input parameters showed apprecialitrethce simply as a consequence of the
random perturbation to which they were subjectetth@tpreliminary step of iteration. However,
differences were mainly noticed in the placementhef vegetation structures within the study
domain rather than in their typical shape or dinemns

An analysis of the spatial distribution of watends and soil moisture content is provided in
Figure 3.12. In particular, Figure 3.12a showswaleie of the average effective precipitation at
each pixel, computed as average precipitation ghlegun-on. As shown, many areas receive an
amount of water several times higher than the &abean precipitation from the low permeable
pixels located upstream, in accordance with fididewvation of factors of concentration (ratio
between the effective amount of water received thedactual precipitation) as high as 3 and 4
(Bromley, Brouwer et al. 1997). In addition, thgler values of groundwater runoff observable
in correspondence of the vegetated patches (showkigure 3.12b) confirm that vegetation
favors the infiltration of the hillslope run-on. Hen together, the extra water input from upstream
and the enhanced permeability of the more vegestédrigger a positive feedback for further
vegetal biomass establishment, confirming thatasarfwater redistribution due to ponding and
subsequent infiltration of run-on is one of the mdrivers of pattern formation (Boaler and
Hodge 1962; Casenave and Valentin 1992; ValentiHerthés et al. 1999). Moreover, in
accordance with published results (Borgogno, D'@doet al. 2009), higher values of average
soil moisture content are also observed under a&ggtpatches (especially in their uphill side)
than in the surrounding bare soil (Figure 3.12d)icl, in turn, create suitable conditions for the

sustainment and/or further development of vegeatatio
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In order to characterize quantitatively some of $patial features of the Niger tiger bushes
and compare them with the results of the simulatiome estimated the PDFs of vegetation
coverage. In particular, we evaluated the PDF efwlgetation coverage at the pixel level for
both the simulated and the digitized observed pateln addition, PDFs of the vegetation
coverage were estimated conditioned on the vegatativerage of the neighbor pixel. The latter
was done by calculating the PDF of vegetation cayerfor all those pixels having at least one
neighbor characterized by vegetation coverage highan the mean. The same was done
conditioning on vegetation coverage lower than dbeain average. Conditional PDFs were
calculated for the x-direction (by looking at thegetation coverage of the two adjacent pixels on
the x-direction), on the y-direction and for altetitions.

As shown in Figure 3.13, both observed and simdl&BFs are bimodal, supporting the
observation that vegetation coverage is not nogndhitributed around the mean, as it would be
expected if plants were spatially distributed dsmogeneous point process across the domain.
Bimodality is more evident when the PDF of vegewler is conditioned on the neighbor pixel
having a vegetation cover higher than the domaerage. The latter suggests that the vegetal
coverage of each pixel is more likely to be higttean the average providing that it is in the
neighborhood of a pixel whose cover is also highan the spatial average. The opposite is true
when the condition is on the neighbor pixel havangpverage which is lower than the average. A
slight prevalence of structures in the x-direct{perpendicular to the domain slope) is apparent
from the analysis of the conditional PDFs for ttegtgrn under analysis. This is apparent from
both the qualitative observation of natural andusated structures (Figure 3.11a, Figure 3.11d
and Figure 3.11g) and from the analysis of thectiveal conditional PDF of Figure 3.13.
Looking at the interval 0<M<0.1, in fact, the PDftloe vegetal coverage of pixels being in the
x-direction neighborhood of a pixel with vegetalretage higher than the domain average shows

a lower density than the y-directional conditiofDF. Conversely, for the same interval of
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fractional coverage, higher density is shown fa& BDF of the vegetal coverage of pixels being
in the x-direction neighborhood of a pixel with e¢gl coverage lower than the domain average.

Spectral analysis of the vegetation density fielkM is provided for both natural and
simulated patterns in Figure 3.14. Average of the-dimensional spectral densities, evaluated
for both the x-direction and the y-direction arepded along with the two-dimensional power
spectrum. Peak spectral densities appear in camdgmce with the lower frequencies, capturing
the presence of the large scale structures. Ireaggpt with the analysis of the directional PDFs,
spectral analysis confirms the presence of a shgligotropy in the pattern shape for both the
natural and the simulated case, by detecting aafgree of structures recurring at frequencies
between 2 and 6 (that is, 2 to 6 structures perailofength) along the y-direction.

The analyses of the characteristics of the vegetatiusters of both natural and simulated
vegetation fields, whose results are reported ibleg'3.3, show that two out of three natural
patterns (Figure 3.11d and Figure 3.11e) fall witbur definition of spots, while the pattern in
Figure 3.11f is labyrinthine. Simulated patternswhver, are all spotted, even though the one
shown in Figure 3.11i, whose largest cluster covlees68% of the domain, almost meets the

requirement for being classified as labyrinthine.

3.7.2.2 Somalia

Vegetation stripes are a widespread occurrenceeomaliland plateau (Boaler and Hodge
1962) and in the Puntland area (Borgogno, D'Odoeical. 2009). The area is semi-desert and
characterized by an arid to semi-arid climate pitbcipitation highly variable in space and time
(Muchiri 2007). The area selected is located al3ukm west of Garoowe, the administrative
capital of the Puntland region of Somalia and iarahterized by annual precipitation ranging
between 10 and 20 cm/year mostly occurring in teeod of May-September (Muchiri 2007).
Dominant soils are Gypsisol and Calcisol (Venem@72Gccording to the FAO definition and

are characterized by hydraulic conductivity that ba as low as a few cm/day but can span two
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orders of magnitude. These kinds of soil are aby gusceptible to crusting and cracking (FAO
2001).

A study area of about 5167 located at 7°43'N, 48°02 E and characterized bypfesence
of vegetation strips was selected from the Puntlaregh near Garoowe. In comparison to the
Niger case, overall climate is drier (precipitatimging less than one third that of the Niger case)
and patterns — in this case well-defined stripseupat a slightly larger scale. In accordance with
the climatic and soil information reported aboves simulations of the area used the parameters
shown in Table 3.1 and Table 3.2. Results of theukitions were compared to the observed
patterns, as shown in Figure 3.15 through Figut8.3.

As done for the case of the Niger tiger bushesnapte aerial photograph was processed in
order to obtain estimates of the vegetal coverage %0x50 study grid, and compared with the
simulated results (Figure 3.15). The comparisonwsh@ good qualitative match between
observed and simulated vegetal spatial configuratiddimensions and shape of the bands and of
the inter-band gaps are similar, although the \amet structures emerging from the simulations
look slightly sharper then the observed ones. thtah, orientation of the bands in the direction
perpendicular to the slope is clearer in the sitiuta than in the observations. This is due to the
fact that, although the direction of the naturad amulated slope was set to coincide, the natural
topography presented some irregularities, while gimulations were performed on a regular
slope. Nevertheless, both in the observed anddrsitnulated case, the configuration of vegetal
coverage is characterized by strips of vegetatitewatens of meters wide and extending for the
whole length of the study domain.

Compared to the previously analyzed case of themiger bushes, the directionality of the
Somaliland plateau vegetation patterns is moreceakile, both in the observations and in the
simulations. Moreover, the overall amount of bioméstegrated across the domain) is lower
than in the case of the Niger tiger bushes, adyeasiiceable from the comparison of the PDFs
of the vegetal coverage shown in Figure 3.13 awgarei 3.16. Analysis of the PDFs of Figure

79



3.16 shows also that the presence of multiple madesss evident here than in the case of tiger
bushes when the unconditioned PDF of the vegetateerage is considered. However, multiple
modes become apparent in the conditional PDFs ¢ blwee observed and the simulated
vegetation fields, especially with respect to tlgFRn the x-direction conditioned on neighbor
coverage higher than the domain average. The preseihmultiple modes in the conditional
PDFs and, in general, the fact that the conditi®iaiFs look different than the unconditional one,
implies that the vegetation at a given pixel hasmpact on the vegetation distribution of its
neighborhood. In particular, the fact that the pility of finding a pixel whose fractional
coverage is higher than the average is higheremthighborhood of pixels that are themselves
characterized by coverage higher than the avengggosts the observation that vegetation tends
to form clumps rather than being distributed congherandomly in space. In addition, the fact
that the PDF conditioned on x-direction neighborezage higher than the domain average shows
higher density for values of vegetation in the upped of the domain interval than the other
(conditional and unconditional) PDFs confirms threvalence of strips of vegetation in the x-
direction itself, that is, perpendicular to the domslope.

Spectral analysis (Figure 3.17) supports the caimhs drawn from both the qualitative
analysis and the analysis of the PDFs of the végataoverage, showing the presence of
frequencies between 5 and 10 cycles along the domally along one direction. However,
comparisons between the spectral densities of bisereed and simulated vegetation field also
imply that the prevalence of stripes perpendictdathe main slope is higher in the simulated
field than the observed. Since the only anisotrafect present in our model is topographic
(through the surface runoff production and run-ofiltration), and the shape of the natural
pattern seems to indicate that the governing mesimaaf pattern formation is topographic and
gravitational, we attribute the discrepancy betwebgrervations and simulations to the to the
irregularities of the natural topography of thearyed area with respect to the regular slope used
in the simulated domain.
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Statistical analysis of the vegetation clusterspsehresults are reported in Table 3.3, show

that both natural and simulated patterns are banded

3.7.3 Analysis of the hypothesized pattern-promoting thina

3.7.3.1 Impact of climate forcing

In order to explore the effect of the climate fagcion pattern formation and spatial
characteristics of the vegetation distribution, fystem was simulated by varying the climatic
forcing, while keeping everything else fixed. Allet inputs for these simulations are reported in
the column “base conditions” of Table 3.1 and Tabl2. We investigated the impact of two
climatic components: mean annual precipitation medn annual solar radiation.

Simulations showed that the shape and the presdrnuatterns at the hillslope scale depend
not only on the mean annual precipitation but asdhe parameters of the rainy events (mean
storm duration, mean time between storms, meamstotensity, etc.). Below, we focus our
analysis only on the dependence on the mean apre@pitation.

Figure 3.18 shows the result of the statisticallyais of the vegetation fields obtained by
varying annual precipitation in the range 26 tac8b The variation in mean annual precipitation
was achieved by varying the storm duration only deaving the mean storm intensity
unchanged. All the other parameters of the modsh blimatic and hydraulic were kept at the
values set for the “base conditions”. Figure 3.3Baws that, according to our classification,
patterns of vegetation start to emerge for annteadipitation higher than 32 cm and cease to exist
when precipitation approaches 60 cm per year. il gatterned fields are banded, as shown in
Figure 3.18b, and none presents labyrinthine ckeniatics, as shown in Figure 3.18c and Figure
3.18d. Three sample fields obtained for annualipitation of 70, 48 and 32 cm per year are
presented in Figure 3.19 for a visual interpretat@ the transition from undistinguishable

patterns to self-organized structures.
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The effect of solar radiation is the opposite, tleapatterns start to emerge as the incoming
solar radiation increases, everything else beingle@rigure 3.20 and Figure 3.21). According to
our classification, patterns emerge as solar radiagxceeds 230 W/m As solar radiation
increases, and, therefore, climatic conditions becmore arid (since annual precipitation is kept
fixed), clumps of vegetation decrease in numberiacigéase in average size.

Neither precipitation nor solar radiation is, bseif, sufficient to characterize the aridity of a
given climate. In order to incorporate both pararsttherefore, as Eagleson (1978) we define
potential humidity, PH, as the ratio between thauah precipitation and the domain-averaged
annual potential evapotranspiration and estimagerétationship between PH and the spatial
characteristics of the simulated vegetation fields.

In order to characterize the relationship betweehdnd the spatial characteristics of the
vegetation fields, we use the same fields simuléifdre by varying annual precipitation and
solar radiation. Results of the statistical analydithe vegetation clusters are reported in Figure
3.22. We notice that vegetation patterns arisesétues of PH between 0.2 and 0.3 and that, for
the other climatic and hydraulic conditions chagaeing this set of simulations, all patterns are
banded.

In general, the analysis of Figure 3.18, Figuréd&2d Figure 3.22, supports the observation
that patterns arise in arid and semi-arid area, it in water limited environments, agreeing
with all the available literature on the topic. Reetter climates, in fact, (as here occurs for PH
higher than 0.3) the vertical water input is enotmylsupport a substantial amount of vegetation
even in absence of surface water redistributiomechanisms of facilitation/competition. When
this occurs, the impact of those dynamics of serfawater redistribution and
facilitation/competition becomes comparatively lemportant (that is, the lateral interactions are
overpowered by the vertical water and energy fluwxasd does not induce the emergence of
recognizable patterns. As the conditions becomesradd, that is, for lower values of PH (in our
simulations for 0.2<PH<0.3), the water input frasekal redistribution becomes determinant for
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the amount of vegetation that establishes at ek, pnoreover, the benefits of the facilitation
mechanisms existing in the neighborhood of vegdtaizels become (comparatively to more
humid conditions) more significant and, thus, prtengegetation rearrangement and pattern
formation. For the lowest values of PH, that ig, flee most arid conditions explored in this
analysis, on the other hand, the climate conditamesso adverse to vegetation establishment that
the study hillslope tends to be too scarcely veagdtéor the facilitation/competition dynamics to

take place, ultimately resulting in the absencpatferns.

3.7.3.2 Impact of slope

As reported in the literature, some observed veigetgpatterns tend to migrate uphill
(Worral 1959; Worral 1960; Valentin, d'Herbés et299; Sherrat 2005). Although we do not
explicitly include a time description of the systemolution, our iterative modeling approach has
an implied time evolution. Therefore, we can iniigiormation about the development of the
system over time from its evolution through the eucal iterative process. Once a pattern is
established, in fact, the vegetal density at edghl gan either remain fixed (or not change
significantly in between simulation steps), ordhaundergo changes that — although significant at
the pixel level - do not alter the macroscopic ctice of the pattern itself, as in the case of
vegetation structures that migrate across the domai

In order to analyze this effect, we compared thgetetion field corresponding to the base
conditions at different iteration steps, reportingrigure 3.23 the vegetation coverage at tH& 45
50" 55" and 60 iteration of our simulation procedure. It is eviti¢hat the patterns have been
already established by the"Step of the iteration, shown in Figure 3.23a, trat the stripes
migrate uphill as the simulation progresses. Thggration is induced by the effect of surface run-
on ponding and infiltration in the uphill part die stripes, which in turn creates a favorable
opportunity for the uphill expansion or migratiohtibe vegetation. This claim is supported by the

analysis of the spatial distribution of soil moigand water fluxes (not shown), which confirms
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the presence of wetter soils and higher infiltnatio the uphill portion of the vegetation bands,
which as the simulation progresses, creates a dalemrenvironment for further vegetation
establishment and a positive feedback for the Lpkgansion of the vegetation clumps. The drier
conditions observed in the downhill portion of ttends and created by the fact that most of the
available run-on has already infiltrated, on thbeothand, result in the creation of adverse
conditions that inhibit vegetation establishment.

However, pattern migration was not observed irthadl simulated cases. Several simulations
(not shown) developed patterns that, once estaldljstid not exhibit any tendency to migrate
from their original location. This is attributed the predominance of the local inhibition
dynamics present in the uphill portion of vegetatausters. In those cases, in fact, it has been
observed for the pixels immediately uphill of aroju of vegetation that the inhibition effect due
to the terms in equations (3.10) and (3.11) (whieffect the effect of soil erosion due to the
surface runoff) overpower the facilitation due ftae tpresence of vegetation immediately

downhill.

3.7.3.3 Impact of hydraulic conductivity

Expressing hydraulic conductivity as a functionvefetal coverage is a way to incorporate
the effect of plants on the permeability of thel.sRegions where vegetation patterns occur are
characterized by a soil permeability that is highdyiable in space, being higher in presence of
vegetated soil and lower where the soil is barea{@oand Hodge 1962; Bromley, Brouwer et al.
1997; Valentin, d'Herbes et al. 1999; HilleRisLamshdrietkerk et al. 2001; Saco, Willgoose et
al. 2007).

Here we investigate the impact that a vegetatigpeddent hydraulic conductivity has on
pattern formation. To this aim, we first compare tbllowing three situations:

- hydraulic conductivity determined at each pixelaafinction of vegetation according to

equation (3.1) (base conditions);
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- hydraulic conductivity fixed in space and set egoahe spatial average of the hydraulic

conductivity corresponding to the base conditions;

- hydraulic conductivity at each pixel randomly saetplfrom a uniform distribution

spanning the same range of hydraulic conductivégesm the first case.

As shown in Figure 3.24a, no pattern emerged aseiidt of the system simulation in case
of constant hydraulic conductivity. In the casehgfiraulic conductivity randomly distributed in
space we also observe the absence of well-defimadtwres. However, in this latter case, the
spatial variability of the vegetation coverageighier than the case with constant conductivity (as
apparent in Figure 3.24b) but with a distributidmtt does not present the characteristic
(bimodality, asymmetry) found in the ones wherelwefined patterns were evident (Figure
3.31). In particular, the vegetation that arisesthia case of Figure 3.24b traces the spatial
distribution of the hydraulic conductivity itselpikels with higher conductivity soils are more
vegetated than those where the soil is less petajedi both cases of Figure 3.24a and Figure
3.24b, the absence of feedback between vegetatidnttee hydraulic properties of the soil
prevents well-defined patterns from emerging, ewben all the other spatial effects are in play.
This suggests that the primary driver of the meidmarof pattern formation (for a given set of
climatic conditions) is the capacity of vegetattoraffect the soil properties and, thus, the spatia
distribution of water fluxes.

Although not shown, no patterns were observed m ligpothetical case of perfectly
horizontal hillslope, simulating the extreme coiwglitof absence of redistribution of surface run-
on. This, along with the previous findings, indiwvades in the mechanisms of surface runoff
production and surface run-on infiltration the paity drivers of the phenomenon for a given set
of climatic conditions.

Once it has been established that dependence cduiyconductivity on vegetation density
is necessary for the formation of patterns, we stigate the role played by the shape of the
function in equation (3.1) in the ultimate vegaiatconfiguration. To this purpose, we simulate
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the system with a set of alternative functionshef type in equation (3.1). Those equations were
obtained from the base condition equation (whosarpaters are reported in Table 3.2) by using

the following transformation:

{K M)} =1+ A Binlz )] K (M} aceconders (3.14)

where K(M)}; is the hydraulic conductivity function of simulati i, Ib and ub are
respectively the lower and upper bound of the leaselition function and\ represents a scaling
factor. Such formulation allows us to simulate siystem using hydraulic conductivity functions
that span the same range as that of the base ioonaihile varying the shape of those functions,
as shown in Figure 3.25.

Eight simulations were performed using hydrauliodwctivity functions obtained through
equation (3.14), with coefficienta equal to: -0.4, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3l &¥4. The
statistical analysis of the vegetation clustergwshin Figure 3.26, shows the impact that the
shape of the hydraulic conductivity function hastlom spatial configuration of the vegetation. As
noticeable in Figure 3.26a, patterns emerge ontyAl0.3, and only forA>-0.2are banded
(A=0.3 produces a spotted configuration accordinguo cluster classification criteria). No
labyrinthine configurations were found with the gmad set of conditions. As it is noticeable
from Figure 3.25, the functions obtained throughiagipn (3.14) are not dramatically different
from that of the base conditions, even in the tinotlcases ofA=-0.4 andA=0.4. Nevertheless,
even little differences may have a strong impacttiom system response. This happens, for
example, in the case &&-0.4, where the shape of the hydraulic condustiftinction prevents
patterns from emerging. To explain this behavioroleerve (from Figure 3.31) that the PDF of
the fractional coverage has modedviat0.1 (bare soil patches) ard~0.45 (vegetated clumps),
and that those two values bf correspond to the range for which the slope of Hiperaulic
conductivity function of the base conditions isheg In the base conditions simulation this large

function gradient allows areas wilt=0.4 to be sufficiently permeable to favor wateilirdtion
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and further vegetation establishment, triggerirgygibsitive feedback which ultimately promotes
pattern formation. In the case A£-0.4, instead, the soil permeability required agdr run-on
infiltration would be reached in areas with vegetalver M>0.7, which is too high to be
sustainable, given the climatic and the hydrauligpprties of the system. Other simulations
performed on different sets of climatic and hydi@abnditions support this finding and indicate
that each set of climatic and hydraulic conditioaguire the hydraulic conductivity function to
have a particular shape for the vegetation condiom to be patterned. Specifically, the
hydraulic conductivity function must be such thht:the permeability for low vegetated areas
(e.g-M<0.2) promotes the formation of surface runoff withallowing further establishment of
vegetation (and, thus, positive feedback on peritigatand 2) the vegetated areas (éMp0.4)
are permeable enough to allow run-on infiltratiowd &ustain (for the given climatic conditions)

their vegetal coverage and/or promote further \aget establishment.

3.7.3.4 Impact of local vegetation interactions

The effect of interactions between adjacent cluwipgegetation was modeled, as indicated
before, by allowing the transpiration efficiencytbe vegetation at a certain pixel to depend on
the vegetal density of the nearby pixels (see equgB8.7)). We explored the effect on pattern
formation of this spatial interaction by examinitige evolution of the system in its absence and
comparing it with the results obtained for the baeeditions, which includes it. Figure 3.27
shows that even in the absence of our modelinchefspatial interactions between plants in
adjacent pixels (equation (3.7)), the system ewteavards a patterned configuration. However,
the shape of the pattern and the total amount gétegion arising in the domain are different in
the two cases, as also evident in Figure 3.31. Shigyests that the effect of all those spatial
interactions encoded in equations (3.8) through2(3(protection from temperature and humidity
fluctuations, protection from soil erosion, protentfrom the mechanical damages due to winds

and animals, enhancement of solil fertility throligler formation and nutrient replenishment and
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so on) is important for the ultimate configuratioh patterns and total amount of biomass
produced, although not essential for the emergehtee patterns themselves.

In order to investigate the individual effect oftloefficients of equations (3.8) through
(3.12), we carried out five simulations of the syst each one performed by setting one of the
coefficients o; of equations (3.8) through (3.12) equal to zertati§ical analysis of the
vegetation clusters obtained in those five casesispared to the base conditions, as illustrated
in Figure 3.28. It is noticeable that the simulatmbtained withu,=0, which corresponds to the
absence of facilitation due to surrounding vegetatdoes not lead to the formation of patterns,
whereas the other cases simply affect the shapeiarehsion of the emerging patterns, although

never in a measure that results in the transibapbts or labyrinths.

3.7.3.5 Impact of soil moisture redistribution due to roots

In order to investigate the role of the soil moisttedistribution due to the presence of roots,
we compare the spatial distribution of vegetatibtamed by allowing vegetation from each pixel
to extract water from up to 15% of the area of eathhe four adjacent pixels with the one
resulting from neglecting this effect. Resultstuiftcomparison are presented in Figure 3.29. It is
noticeable that the patterns that arise when tifiécteis neglected are nearly indistinguishable
from the ones arising in the base conditions ddegever, a deeper analysis (Figure 3.31) shows
that the PDF of the vegetation density obtainethéncase where no competition for available soil
moisture due to roots is considered has a lowerenfodthe bare soil interval than the general
case, with an average vegetation (average of tkel pegetation density across the domain)
being roughly equal (0.209 against 0.208). Sineentiagnitude of this effect is way lower than
the cases previously analyzed, the overall commuis that roots effect has a minor promoting

effect on the formation of patterns.
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3.7.3.6 Impact of albedo

Modeling the soil reflectance as a function of swibisture content was aimed at
incorporating the mutual effect that spatially edte water fluxes and vegetation have on the
local energy budget through the local potentiad @it evapotranspiration. Figure 3.30 presents a
comparison between a case in which this effectddeted as proposed in equation (3.4) and the
case in which this effect is totally neglected #mel reflectance is set constant in space and equal
to the average of the values of reflectance of gaadl of the general case. Although a spatially
variable reflectance determines a spatially vagiaiisorbed incident radiation and, thus, affects
the energy budget of the entire hillslope, theguatt obtained in the two cases described above
are qualitatively indistinguishable. The analydighe PDF of vegetal coverage shown in Figure
3.31, however, suggests that the vegetal configuratver the hillslope deviates from the base
condition case. In particular, the fact that the=Ribtained with a constant albedo shows higher
modes (for both low vegetation and high vegetatibah the general case, indicates that a solar
reflectance that increases as soil moisture degsdass a minor negative impact on the formation

of patterns.

3.8 Summary and conclusion

In this study we proposed a mechanistic modelinghoe hydro-thermo-dynamics that, at
the hillslope scale, are responsible for the phemwmn of vegetation pattern formation and
evolution. The model performs the water and enbeggnce of a hillslope and accounts for water
and energy fluxes routing over the study domaine Blynamics inducing the emergence of
vegetation patterns are explicitly identified anddeled and their individual impact on the
phenomenon is quantified.

Our results show that the proposed model is ablgualitatively reproduce the types of
patterns commonly referred in literature as bargimts and labyrinths. The model was

satisfactorily validated by comparing simulationghwobserved natural patterns in the areas of
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Niger near Niamey and Somalia near Garoowe. Ouringds able to capture the local dynamics
inducing the formation of patterns and generatsdlte that are qualitatively and quantitatively
compatible with the observations and the literatnfermation.

The analyses of the processes involved in the filomaof patterns suggest that the
phenomenon is primarily driven by run-on infiltati and local mechanisms of
facilitation/competition existing among adjacentgetation groups. Nonetheless, even in
presence of those mechanisms, patterns arise dmén whe climatic conditions, particularly
annual precipitation and solar radiation, are fatst®. In particular, we found that, with
decreasing precipitation or, conversely, increasimgpming radiation, the system drifts from
fully vegetated with undistinguishable vegetatidrustures to self-organized patterns due to the
equilibrium between short-range facilitation medkan that tend to aggregate vegetation in
clusters, and fight for limited resources that iogpdhe system to sustain more than a given
amount of vegetal biomass. When the behavior ofsffsgem is analyzed as a function of the
potential humidity, which incorporates both theeetf of precipitation and solar radiation, we
found that patterns emerge when the potential hityniddex is within a certain range (that for
our simulated condition was found to be betweena®@ 0.3), while no distinguishable patterns
arise for climatic conditions too arid or too humid

In the range of climatic conditions favorable t@ ttormation of self-organized vegetation
structures, the peculiar spatial features of pastere determined by the characteristics of the
spatial interactions induced by run-on infiltratiofacilitation/inhibition dynamics between
adjacent vegetation groups, effects of nutrient latet transport and deposition, competition for
soil moisture through roots and effect of spatialyhomogeneous surface reflectance.
Nonetheless, our study indicates that the surfacen infiltration is the dominant dynamics. No
self organized structures, in fact, were observethé absence of any surface runoff production
and subsequent run-on infiltration; moreover, th&team was found to be extremely sensitive to
the relationship between vegetation density andpswsmeability. As for the impact of the other
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dynamics, we found that the effect of facilitaticovhpetition due to vegetation interactions, soil
erosion and nutrients transport has the highesa@tnpn the phenomenon and has an influence on
the ultimate shape of patterns; among those dymantie effect of facilitation due to the
presence of surrounding vegetation was found tohbemore significant. Effects of roots and
albedo are comparatively less important but salvéhan impact on pattern definition, evolution

and on the total biomass that establishes on thrauio
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Figure 3.1

Vegetation patterns in Niger (from D’Odorico et 2006. b) Vegetation stripe

in Senegal (from google mag

(e

Figure 3.2

Vegetation patterns typical shapes and dimen:

A)

B)

Figure 3.3

A) schematization of the study domain and studyggdb B) schematization ¢
uneven spatial distribution of vegetation acros study domain. The stuc
domain is representative of a hillslope and has sizabout 1°-10’ m% Each
pixel of the study subgrid will be representativeo area of about °-10” n’.
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Figure 3.4Flowcharbf the procedure of simulation of the -climatevegetation system. Tt
orange blocks represent the first steps of simaratwhile the loop in the blu
blocks represents the standard iterative ¢

A)

Figure 3.5 Qualitative schematization of the preliminary stgbpssimulation procedure: :
uniform vegetal coverage obtained by applying tla¢ewand energy budget w
the given set of soil and climate inputs; b) vetietacoverageafter randomly
perturbing the fractional coverage of each pix@lyvegetation coverage aft
evaluating the spatial effects, updating the sod alimatic parameters at ec
pixel and performing the water and energy but
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Figure 3.6 Sample function showing the relationgbgtween hydraulic conductivity and
vegetation fractional cover.
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Figure 3.7 Qualitative schematization of the interactions ketw soil, climate an
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Figure 3.8 A) A sample vegetation field. B) Clustifield corresponding to the vegetation
field in A.
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Figure 3.9 Sample results of the system simulatiengressed in terms of fractional
vegetation coverageM. A) A spotted pattern. B) A banded pattern. C) A
labyrinthine pattern. D) No pattern.
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Figure 3.10 Statistical analysis of the vegetattiusters for the sample patterns shown in
Figure 3.9. A) Number of clusters and range 0.025"® quantile of the number
of clusters corresponding to a binomial proces$ wie same percentage cover.
B) Mean size of clusters and range 0.025-0.975 tjaaof the mean cluster size
corresponding to a binomial process with the sasregmtage cover. C) Mean
ratio between the span in the x-direction and ffandgn the y-direction of each
cluster; red line represents the boundary betwgatssand bands. D) Mean
fraction of area filled by each cluster. E) Peragptof the domain filled by the
largest cluster; red line represents the minimuaction of area filled for the
field to be considered labyrinthine. F) Fractioraoéa of the largest cluster filled
by vegetation; red line represents the maximuntiva®f the largest cluster that
can be filled for the field to be considered lahthine.
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Figure 3.11 A), B), C) Aerial photographs of natupatterns (Tiger Bushes) in Niger
(13°20°N, 2°04°E). D), E), F) Digitized represeigatof the vegetation covers of
the natural patterns corresponding respectivehAYxoB) and C). G), H), )
Simulated patterns.
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Figure 3.12 A) Ratio between the effective amodmater received and annual precipitation
for the simulated pattern in Figure 3.11g. B) Ldegn groundwater runoff on
the study domain for the simulated pattern in Fegdul1g. C) Long term relative
soil saturation during the rainy season on theystmmain for the simulated
pattern in Figure 3.11g.

99



A)

15

— Global PDF

= PDF/M<mean(M) all cir

~—— PDF/M<mean(M) x-dir
PDF/M<mean(M) y-dir

T T T
— Global PDF
= PDF/M>mean(M) all dir
== PDF/M>mean(M) x-dir
PDFiM>mean(M) y-dir 1

| T ——— |
08 03 04 0.5 06 07 08 08 1
I
C) | D)
% . 5 ‘ ‘
—— [—coarr |
e PDFmezn(M) all i | 0 | s PDF Memeanl all i |
= POFNbmeanh)xdir | A | === PDF M<meanihl) e
| == PONomean()) ydr prs- [ \ | == FOFMemean) i |
= | ‘\ - |
0~ \
5 4
0 4 . ———
0 | 0 01 02 03 04 05 06 07 08 08 !

Figure 3.13

A) PDFs of vegetation coverage forrtariral pattern shown in Figure 3.11a (as
digitized in Figure 3.11d): global PDF (black linepd PDFs of vegetation
coverage conditioned on having a neighbor pixehweégetation coverage higher
than the global average for all directions (bluee)j x-direction (red line) and y-
direction (green line). B) PDFs of vegetation ceggr for the natural pattern
shown in Figure 3.11a (as digitized in Figure 3)igtbbal PDF (black line) and
PDFs of vegetation coverage conditioned on havingeaghbor pixel with
vegetation coverage lower than the global averagalf directions (blue line), x-
direction (red line) and y-direction (green lin€). PDFs of vegetation coverage
for the simulated pattern shown in Figure 3.11gbgl PDF (black line) and
PDFs of vegetation coverage conditioned on havingeaghbor pixel with
vegetation coverage higher than the global avefagell directions (blue line),
x-direction (red line) and y-direction (green lind}) PDFs of vegetation
coverage for the simulated pattern shown in Fidiifelg: global PDF (black
line) and PDFs of vegetation coverage conditionechaving a neighbor pixel
with vegetation coverage lower than the global agerfor all directions (blue
line), x-direction (red line) and y-direction (grekne).
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Figure 3.14 Power spectral densities of the vemetatiensity field; frequencies (in the
horizontal axis) are expressed in terms of numipevavelengths present within
the domain length and width. A) Average of the 1&vpr spectral densities of
the vegetation coverage for the natural pattermvalio Figure 3.11a along the x-
direction (black line) and y-direction (red lindg) Average of the 1D power
spectral densities of the vegetation coverageHersimulated pattern shown in
Figure 3.11g along the x-direction (black line) andirection (red line).

A)

C)

a 5 -] ] o

5 10 15 20 25 30 3/ 4 45 5 1 15 2 2 M 3B 4 4 8

Figure 3.15 A) Aerial photograph of a natural vegien pattern in Somalia (7°43'N,
48°02°E); B) Digitized representation of the vegeta cover of the natural
pattern in A). C) Sample simulated pattern.
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Figure 3.16

A) PDFs of vegetation coverage forrtariral pattern shown in Figure 3.15a (as
digitized in Figure 3.15b): global PDF (black linepd PDFs of vegetation
coverage conditioned on having a neighbor pixehweégetation coverage higher
than the global average for all directions (bluee)j x-direction (red line) and y-
direction (green line). B) PDFs of vegetation ceggr for the natural pattern
shown in Figure 3.15a (as digitized in Figure 3)igtobal PDF (black line) and
PDFs of vegetation coverage conditioned on havingemhbour pixel with
vegetation coverage lower than the global averagalf directions (blue line), x-
direction (red line) and y-direction (green lin€). PDFs of vegetation coverage
for the simulated pattern shown in Figure 3.15abgl PDF (black line) and
PDFs of vegetation coverage conditioned on havingemhbour pixel with
vegetation coverage higher than the global avefagell directions (blue line),
x-direction (red line) and y-direction (green lind}) PDFs of vegetation
coverage for the simulated pattern shown in Fighiba: global PDF (black
line) and PDFs of vegetation coverage conditionedhaving a neighbour pixel
with vegetation coverage lower than the global agerfor all directions (blue
line), x-direction (red line) and y-direction (grekne).
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Figure 3.17 Power spectral densities of the vemetatiensity field; frequencies (in the

horizontal axis) are expressed in terms of numibevavelengths present within
the domain length and width. A) Average of the 1&vpr spectral densities of
the vegetation coverage for the natural pattermvahin Figure 3.15a along the x-
direction (black line) and y-direction (red lindB) Average of the 1D power
spectral densities of the vegetation coverageHersimulated pattern shown in
Figure 3.15c¢ along the x-direction (black line) andirection (red line).
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Figure 3.18  Statistical analysis of the vegetation clusterstlfier fields of vegetation obtain:

by varying annual precipitation. A) Mean size afisters and range 0.C-0.975
quantileof the man cluster size corresponding to a binomial proeéts the
same percentage covB) Mean ratio between the span in tl-direction and the
span in the -direction of each cluster; red line representshiendary betwee
spots and bands. C) Percentaf the domain filled by the largest cluster; |
line represents the minimum fraction of area filfed the field to be considere
labyrinthine. D) Fraction of area of the largesistér filled by vegetation; re
line represents the maximum fraction ce largest cluster that can be filled
the field to be considered labyrinthi
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Figure 3.19

Effect of precipitation on pattern formation. A) 70 cm/yr; B) P=48cmlyr; C
P=32cmlyr.
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Figure 3.20  Statistical analysis of the vegetation clusterstffier fields of vegetation obtain:
by varying average solar radiation. A) Mean sizecloiters and range 0.(-
0.975quantile of the mean cluster size corresponding to a binlopn@ess witt
the same percentage covB) Mean ratio between the span in tl-direction and
the span in the -direction of each cluster; red line represents bandary
between spots and bes. C) Percentage of the domain filled by the lar
cluster; red line represents the minimum fractibarea filled for the field to b
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vegetation; red line represents the rmum fraction of the largest cluster tl
can be filled for the field to be considered labttiine
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Figure 3.21  Effect of solar radiation on pattern formation. 89lar radiation=210 W/?; B)

Solar radiation=250 W/% C) Solar radiation=290 W/m
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Figure 3.22  Statistical analysis of the vegetation clusters tfor fields of vegetation as
function of the ratio between annual precipitatiamd annual potenti
evapotranspiration. A) Mean size of clusters anmyea0.02-0.975 quantile of
the mean cluster sizeorresponding to a binomial process with the s
percentage coveB) Mean ratio between the span in thdisection and the spe
in the ydirection of each cluster; red line representshivendary between spc
and bands. C) Percentage of the domaied by the largest cluster; red li
represents the minimum fraction of area filled tbe field to be considere
labyrinthine. D) Fraction of area of the largesistér filled by vegetation; re
line represents the maximum fraction of the larghsste that can be filled fo
the field to be considered labyrinthi
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Figure 3.23 Pattermigration. The evolution of a pattern is trackedbtigh iteration step:

A) 45; B) 50; C) 55; D) 6t
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Figure 3.24  Effect of hydraulic conductivity on pattern forn@ii A) Uniform hydraulic
conductivity. B) Hydraulic conductivity randomly mable in space. C
Hydraulic conductivity variable ispace as a function of vegetation covel
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Figure 3.25 Hydraulic conductivity function(without the random componerfor the base

conditions (black), compared with the functionsamfx¢d through equatic(3.14)
with coefficients A=0.4 (red) and /0.4 (blue).
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Figure 3.26 Statistical analysis of the veéetatitmters for the fields of vegetation obtainled

with hydraulic conductivity functions modified frothe base conditions through
equation (3.14). Labels A through | on the horiabrixis correspond to values
for coefficient A of equation (3.14) of respectiyel0.4, -0.3, -0.2, -0.1, 0 (that
is, base conditions), 0.1, 0.2, 0.3 and 0.4. A) Msize of clusters and range
0.025-0.975 quantile of the mean cluster size spording to a binomial
process with the same percentage cover. B) Meanlratween the span in the x-
direction and the span in the y-direction of ealster; red line represents the
boundary between spots and bands. C) Percentatiee afomain filled by the
largest cluster; red line represents the minimuactfon of area filled for the
field to be considered labyrinthine. D) Fractionaoéa of the largest cluster filled
by vegetation; red line represents the maximuntifsaof the largest cluster that
can be filled for the field to be considered lahttine.
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Figure 3.27  Effect of local plants interactions on pattern fation. A) No interactions. E
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Figure 3.28 Statistical analysis of the vegetatitusters for the fields of vegetation obtained
by setting one of the coefficients; of equations (3.8) through (3.12) equal to
zero. Labels A through F on the horizontal axigegpond, respectively to: base
conditions,a;=0, 0,=0, a5=0, 0,=0 andas=0. A) Mean size of clusters and range
0.025-0.975 quantile of the mean cluster size spording to a binomial
process with the same percentage cover. B) Meanlratween the span in the x-
direction and the span in the y-direction of ealster; red line represents the
boundary between spots and bands. C) Percentatiee afomain filled by the
largest cluster; red line represents the minimuactfon of area filled for the
field to be considered labyrinthine. D) Fractionaoéa of the largest cluster filled
by vegetation; red line represents the maximuntifsaof the largest cluster that
can be filled for the field to be considered lahttine.
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Figure 3.30

Effect of spatially variable reflectance on patteiormation. A) Uniform

reflectance, that is, constant albedo. B) Spatialliate albedc

111




12 T = T T T i
| Base conditions
i No roots effect
[ No albedo effect
{ Random K1
10+ No kv effect
:!
8 £ | i -
|
Pl i
4+ '1 .
\u
2+ 4
0 ! 1 i ! { .
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8
M

Figure 3.31 PDFs of the vegetation coverage forcdmes of: base conditions (black); no
water redistribution due to roots (red); no spbtialariable albedo (blue);
hydraulic conductivity randomly distributed in spaand independent from the
vegetal coverage (green); no lateral facilitationl @ompetition effects through
transpiration efficiency (cyan).
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Table 3.1

Climate, soil and vegetation propertiethe system.

Niger tiger Somalia Base
bushes bands conditions

Soil
Total soil porosity [-] 0.4 0.42 0.4
Pore size distribution index [-] 0.4 0.42 0.4
Surface retention capacity [cm] 0.1 0.1 0.1
Matric potential at effective saturation [cm] 20 14 25
Climate
Mean storm duration [days] 0.05 0.2 0.2
Mean time between storms [days] 10 10 10
Length of the rainy season [days] 150 150 200
(I;’:Fr):t;lrr]n[(_a]ter of the gamma distribution of storm 0.6 0.6 0.6
Surface temperature [°K] 300 300 300
Screen height temperature [°K] 300 300 300
Specific humidity [-] 0.01 0.01 0.01
Cloud fractional coverage [-] 0.0 0.1 0.1
Surface solar radiation [W/m2] 280 260 270
Mean precipitation [cm] 56 16 40
Vegetation

Base value of transpiration efficiend?, 0.75 0.75 0.75
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Table 3.2

Model parameters.

- Niger tlgBer bushes § Somalia bandd Cor?;fiins
a [cm/s] 3-10 3-10° 3-10° 9-10° 2-10°
a[cm/s] 5.10 5.10° 5.10° 1.10° 4.10°
ag[cm/s] 8-10° 7-10° 7-10° 3-10° 8-10°
a,[cm/s] 3.1¢ 4.10° 4.5.1¢ 1-10* 3.10%
as[cm/s] 6-10¢' 6.5-1¢" 6.8-10" 7-10° 8-10
as[cm/s] 8.1¢" 8.10* 8.5-10" 9.10 9.10%
a;[cm/s] 8.2.1d 8.2.1¢" 8.7-1¢" 9.1.1¢ 9.2.1¢
ag[cm/s) 8.4-1d 8.4-1¢ 8.9-1¢' 9.2.1¢ 9.4-1¢
a[cm/s] 8.6-1d 8.6-10" 9.1.1¢ 9.3.1¢ 9.6-1¢"
ago[cm/s] 8.8-1d 8.8-1¢' 9.3-1¢ 9.4-1¢ 9.8-1¢
by [cm/s] 2-1¢ 2-10% 2-10 1.10° 2-10%
b, [cm/s] 3-10' 2-10° 2-10* 2-10* 4.10"
bs [cm/s] 2.8-16 3.3.10° 3.8-1C° 7-10% 2.2.10°
bs[cm/s] 3-10° 2.5.10° 2.3-10° 6-10° 5-10°
bs [cm/s] 2-1¢ 1.5.10° 1.7:10° 2-10° 1.10°
bs [c/s] 2-10' 2-10° 2-10* 1-10° 2-10°
b, [cm/s] 2-1¢ 2-10% 2-10 1-10* 2-10%
bs [cm/s] 2-1¢ 2-10% 2-10 1-10* 2-10%
be [c/s] 2-10' 2-10° 2-10* 1-10° 2-10°
bio[cm/s] 2-1¢ 2-10% 2-10 1-10* 2-10%
0y -0.01 -0.01 -0.01 -0.03 -0.01
a5 -0.019 -0.02 -0.018 -0.05 -0.02
O3 -0.03 -0.03 -0.03 -0.04 -0.03
Oy -0.03 -0.03 -0.03 -0.04 -0.03
Os -0.09 -0.09 -0.09 -0.08 -0.09
PR 1.5 1.5 1.5 1.25 1.5
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Table 3.3

Cluster analysis for natural and simdlgi@tterns in Niger and Somalia.

Niger Somalia
Natural Simulated Natural|  Simulate

FIGURE 9D 9E oF 9G 9H 9l 12B 12C
Number of clusters 21 20 29 22 30 14 49 24
Average cluster size 42 38 38 37 32 90 15 28
Range 0.025-0.975 quantile
of cluster size for binomiall [1-18] | [1-12] | [1-35] | [1-14]| [1-24]| [1-74] [1-12] [29]
process
Shape ratio 14 15 1.1 1.2 1.4 1.2 1.9 2.6
Percentage of domainfilled o5 | (34 | 78| o057 o014 0.68 0.36 0.15
by the largest cluster
Fraction of area of the
largest cluster filled with 0.51 0.35 0.37 0.42 0.63 0.44 0.21 0.23
vegetation

o
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Appendix A Water yield

A.1 Overview

Water supply begins with water yield. To estimataev yield we adopted a water balance
model proposed by Eagleson (1978a). Eagleson’s Imede mechanistic representation of the
water dynamics occurring across the soil-atmospimegface as a result of a stochastic climatic
input. Input to the model includes soil hydrauliojperties and statistics describing the stochastic
climate (storm statistics), with climate represenby the probability distributions functions of
precipitation and potential evapotranspiration. Tmedel generates probability distribution
functions of water fluxes (actual evapotranspiratisurface runoff and groundwater runoff) as
output. The water balance model was calibratedrderoto match historical streamflow records
(for years 1953-2005) and then applied to all liocet in the U.S. under current and potential
future climatic conditions, providing estimates fature years 2006-2090. Since the model is a
lumped representation of the annual water balaneesubdivided the U.S. territory into a study
grid of 5x5 km cells, and estimated water fluxegach cell.

This chapter is organized as follows: section Ae2atibes the water balance model; section
A.4 is dedicated to the description of the areamdlysis and parameters of the model; section
A.5 describes the model calibration procedure;i@ecA.6 deals with the extension of the
calibrated parameters to the whole conterminous; destion A.7 describes the model input for

future climatic and socio-economic scenarios.
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A.2 Problem Formulation

Eagleson’s model is a one-dimensional representafigoil moisture dynamics as forced by
a stochastic climate (Eagleson, 1978a-g). The madestribes the relationships between annual
amounts of precipitation, runoff, infiltration am/apotranspiration as a function of volumetric
soil moisture and soil and vegetation charactessiThe description is physically based and only
accounts for processes operating in the verticattion, across the soil-atmosphere interface.

The water balance equation for the control voluRig.(A.1) is written as follows:
t, 0 t
[ {. ©-e0-2M.0-v, (t)]} ot = [ +r, 0] (A1)

where i(t), e (t), Vi), V4 (t), rs(t) andr (t) are respectively: storm intensity, the

evapotranspiration rate, volume of water storagthénsurface, volume of water storage in the
ground, surface runoff rate and the groundwateoffurate. Snow, ice and movements of soil
moisture as vapor are not considered.

The integration of (A.1) is very difficult for arrtdtrary period of time, because of several
reasons including: 1) the climatic forcing (i.ere@pitation and potential evapotranspiration) is
stochastic, 2) all terms in (A.1) depend on thé mwisture content, which is difficult to evaluate
or measure, and 3) the integration requires thay-@ver storage be evaluated. In order to obtain
an analytical solution to the water balance equatibis then assumed that the system is in
equilibrium with the climate in its mean value. $hinplies that the long-term mean of moisture
storage (above and below the surface) is condtaatdtjs, the long-term average of the change in
total soil moisture storage is zero, thereby avmjdihe need to compute carry-over storage.
Therefore, taking the expectation of (A.1) under éissumption of system in equilibrium with the

climate leads to:

E[r,]-E[E;, |=E[R, |+ ER, | (A-2)
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whereE[P,], E[Eral, E[Rsd andE[Ry,] are respectively: the expected annual precipitation
the expected annual actual evapotranspiration, ettgected annual surface runoff and the
expected annual groundwater runoff.

Due to the previous assumption, the terms reldbioth to the change in surface and in
ground storage do not longer appear in equatiod)(A.

Each of the water balance terms in (A.2) is a fiomcof soil moisture, the characteristics of
the stochastic precipitation input, the rate ofeptial evapotranspiration, the physical properties
of the sail (e.g., porosity, intrinsic permeabilipore disconnectedness), and the properties of the

vegetation (transpiration potential and fractionegetation cover).

A.3 Model structure and assumptions

The physical system is represented as a soil nieistgnamic process where the precipitation
input is the stochastic variable, while the outjgut set of average annual value of the other
components of the water balance.

As far as precipitation is concerned, the arrivéibgyms are assumed to be manifestation of a
Poisson process of rectangular pulses (Fig. A.23jis Tsimplification enables a satisfying
representation of the precipitation process throfeyh easily treatable parameters. As further
assumptions, storm intensity and the storm duratiom supposed to be independent and
exponentially distributed, while storm depth is siolered gamma distributed.

The soil is assumed to be homogeneous and charaectdry a vegetative coverage operating
in equilibrium with its environment in an unstredssate. Soil moisture dynamics are captured
through a simplified version of the concentrati@pendent diffusion equation (Phillip 1969)
while the soil properties are based on Brooks am@¥°model (Brooks and Corey 1966).

The solution of the water balance equation in trenf(A.2) or in an equivalent formulation

implies the knowledge of all the water fluxes. Aentioned before, water fluxes can be
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expressed as analytical functions the soil moisttoltent, here defined as the relative sail
saturation (equation (A.3)), and a small numbetliofiate, vegetation and soil parameters.

_6-¢
sS=
n -6,

(A.3)

where 6, 6, and n, are respectively: the total volumetric water cantef the soil, the

residual volumetric soil water content and the pityo

Under the assumption of stationary system, thetisolwf equation (A.2) is obtained under
the constraint of uniform soil moisture contentansemi-infinite soil column. To solve the
balance equation, then, Eagleson (1978a-g) proposase a single value of the soil moisture
concentrationsy, that can be defined as a “temporal mean of thgamverage”, Fig. A.3.

With soil and climate parameters fixed for the giveontrol volume, the water balance
equation is essentially a function of the followihgo unknowns: the average soil moisture
concentrationso, and the vegetation fractional coveralye, However, for each set of soil and
climate parameters, there is more than a uniqueleaf &, M) that satisfies (A.2) and closes
the water balance. In this framework, we furthesuase that vegetation operates, on the long
term, under conditions of minimum stress. This ieglas suggested by Eagleson (1978g), that
equation (A.2) will be solved for the couple of lsmioisture content and vegetation coverage

under which soil moisture content is maximized.

A.4 Areaof analysisand data

The U.S. was subdivided into a 5x5 km grid and redppsing the Albers 1966 projection,
leading to a study grid of 630 rows and 994 coluniite water balance model requires the input
of soil, precipitation, and vegetation properties €ach cell of the study grid, as well as the
climatic forcing estimates.

In particular, for spatial unit where the model d®e¢o be applied, it is necessary to evaluate

the following parameters and climatic inputs:
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Soil hydraulic parameters:

- Total porosityn

- Pore size distribution indery

- Matric potential at effective saturatio#2)

- Saturated hydraulic conductivitlf(1)

- Pore disconnectedness index,

- Diffusivity index, d

- Surface retention capacity,

Climatic parameters (long term storm statistics):
- Mean storm duration;

- Mean time between stornts,

- Mean interarrival timet,

- Mean storm intensityn

- Mean storm depthm,

- Mean number of storms per yenr,

- Mean annual precipitatiome,

- Mean rainy season duration,

- Parameter of the gamma distribution of storm ddpth,

Vegeration parameters:

Plants transpiration efficiencl,

Climatic input (forcing of the water balance):

- Joint probability distribution function of annualreggipitation and annual potential
evapotranspiration.

Collection of available soil and climatic datasetss required and in many case adaptation of

the available datasets to the selected grid ofystta$ needed.
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A.4.1 Soil Hydraulic Parameters

The VEMAP soil dataset (Kittel, Rosenbloom et #893; Kittel, Rosenbloom et al. 1996)
was used as the preferred source of parameterstidegdhe hydraulic characteristics of the soil.
It contains 18 parameters for the 0-50 cm and €h&5® cm layers. The VEMAP coverage uses a
0.5x0.5 degree grid covering the conterminous @rfél inlcudes bulk density and texture (i.e.
percentages of sand, silt and clay).

Using the standard assumption that mineral densit®.65 g/cmy, bulk densityp can be

readily converted to total porosity as follows:

P
2.65

n=1- (A.4)

Pore disconnectedness index, residual water contenf, and matric potential at effective
saturation, ¥/(1), are evaluated using a multivariate linear regoesselating them to the
percentages of clay, silt and sand and based odthdSDA textural classes (Kochendorfer
2005), whose parameters are listed in Table 3.1.

Hydraulic conductivity was estimated following thquation derived by Brutsaert (Brutsaert

1967):

K@:aén_{jﬂ m (A5)

p@) ) (m+HLm+2)
where the coefficiers was set equal to 35 éfs (Kochendorfer 2005).

Pore disconnectedness indexand diffusivity indexd, are instead evaluated as follows:

. +m3m) (A.6)
d=c- % -1 (A.7)

The VEMAP data are provided on a 0.5x0.5 degre# @pvering the U.S. That grid contains

5520 cells, with 115 columns and 48 rows, whereasstudy grid contains 994 columns and 630
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rows. In order to extend the results obtained atMEMAP database resolution to our spatial
resolution, a simple inverse distance squared proeewas developed. The procedure consisted
of the following steps:
- The values of latitude and longitude were deterdhifoe the center point of each of the
5520 cells.
- Each cell of the 630x994 grid was assigned theegabf the corresponding cell from the
48x115 grid.
- Remaining blank cells at the 630x994 resolutionenfdled by weighting the 9 nearest

cells of the VEMAP databases according to theiersg distance squared.

A.4.2 Long Term Storm Statistics

Long-term means of hourly storm statistics, chamding the Poisson arrival precipitation
model, were estimated for stations available inNMa&onal Climatic Data Center (NCDC) hourly
dataset. Estimates for the stations were then d&tkio the U.S. at the 5x5-km spatial level of
resolution.

A total of 5264 hourly data gages were availabbenfthe NCDC dataset. The NCDC gages,
however, are spatially and temporally heterogeneteing more numerous in the densely
populated regions of the U.S. and scarce in deseftmountainous areas (Fig. A.5). Record
length was also extremely variable, ranging froto 53 years (Fig. A.4). Furthermore, many of
the NCDC records were characterized by large ansoofinissing or unreliable data (the latter
being records that, according to the NCDC, didpasts an extreme value threshold test and were,
therefore, flagged at the source). Because we ateluthe storm statistics by analyzing the
sequences of storms as they occurred in time, g lamount of missing data could not be

tolerated, for it alters dramatically the shapswth sequence, potentially leading to large errors.
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Of the 5264 stations available, 2088 were eventusglected for further use. We included
only those stations with at least 30 years of hoprécipitation records with no more than 25%
of the data missing. No correction was performedhanextreme values, principally because of
the lack of specific information on which to baseoarection.

Using the complete record of each included statioa,following long-term storm statistics
were evaluated: mean storm duratipnmean time between storntg, mean interarrival time,,
mean storm intensityn, mean storm depthm,, mean number of storms per yeay,, mean
annual precipitatiomp, mean rainy season duratianand parameter of the gamma distribution
of storm depthk.

In agreement with Eagleson’s model (Eagleson, 1®j8atorm sequences are treated as a
series of rectangular pulses. Thus, the total pitation of a given event was obtained by
summing hourly precipitation amounts over the darabf the event. Rainfall intensity was
computed as the total precipitation during an eveitided by the event's duration.
Characterizing storms as rectangular pulses allmasipitation to be represented, in statistical
terms, by a few easily measurable parameters. &agle storm and inter-storm period may be
completely described by the time of arrival of gterm, the storm intensity, the inter-storm time,
and the storm duration. In this approach, stormansity and storm duration are assumed to be
independent and exponentially distributed (Eagle46@8b), whereas the sequence of storms is
assumed to be Poisson distributed.

If storm events are extracted from the precipitatiecords under the assumption that a single
hour with no precipitation is sufficient to separatvents, the resulting sequence of events
typically is not Poisson-distributed. The lack oPaisson distribution indicates that some raw
storms in the data are not really independent ol esher, suggesting that the time period being
used to separate discrete rain events is too simoitsome contiguous rain periods should be

considered as part of the same rainy event ratla@rds independent events (implying that a short
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rainless period between two rainfall events mayeggnt a mere interruption in the continuity of
the event).

To address this issue, the raw sequences of pia@pi data were processed following the
procedure outlined by Restrepo-Posada and Eagld4882). This procedure requires
determining the minimum rainless time span betweenrain events that needs to elapse for the
events to be considered as separate storms. Taithjseach raw sequence of rain events was
subjected to the condition of being first-orderd2onian, that is, to have the mean of inter-arrival
time equal to its standard deviation. The procedses the ratio of the standard deviation to the
mean (that is, the coefficient of variation) ofretoevent inter-arrival time as the criterion for
determining when a first-order Poisson distributisrachieved. The coefficient of variation is
computed first from the original precipitation seque, where a single rainless hour is used to
separate rainfall events. If the resulting coedintiof variation is greater than 1, the minimum
rainless time span between storms is increasediddours, such that events separated by only a
rainless period of one hour are merged togethee. fitncess continues, increasing the time
between storms by one hour each iteration, unél abefficient of variation of the resulting
sequence is as close as possible to 1. The figaksee of storms is then used to evaluate all of

the long-term storm statistics for the given statio

A.4.2.1Spatial Extension of Storm Statistics

To extend the station storm statistics to the ¥ km grid of the U.S., we used on a
regionalization procedure that relies on regresstogm statistics on total precipitation; ordinary
kriging and simple inverse distance methods wetecnosidered because they do not take into
account factors that may deeply influence storrtisties, such as elevation or total precipitation.
Grid cells containing a station were assigned toens statistics (storm depth, duration, inter-
arrival time, time between storms, etc.) of thatieh. For each cell without a station, separately

for each storm statistic, the statistic was regréss average precipitation, with the cases for the
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regression being the stations falling within a giac region of 100-km radius centered at the cell.
The regressions were then used to estimate thes/atithe storm statistics of the cells (Fig.
A.6). Weighted linear regression was used, withvtlegghts being proportional to the square of
the inverse of the distance between the stationthadcell of interest. The values of total

precipitation at the station points were taken ftbe1PRISM dataset (Daly, Neilson et al. 1994).

A.4.3 Vegetation parameters

Application of Eagleson’s water balance model rezpispecification of only one vegetation
parameter, plant transpiration efficiencks. kv is defined as the ratio between potential
evaporation from bare soil and potential transgirafrom vegetated soil, under a condition of
unlimited water supply. As described below, we tég parameter as a primary knob for model
calibration. Therefore, for each cell of the stgplid, the value okvwas estimated in a way that
allows modeled fluxes to match observed ones, ratren being calculated priori. Details

about the estimation &fare provided in the model calibration section below

A.4.4 Climatic Variables (forcing of the water balance)

For the annual implementation of Eagleson’s modaehual joint probability distribution
functions of precipitation and potential evapotgretion were needed; it is from these that it is
possible to determine the probability distributfonctions of the water fluxes. Annual historical
values for precipitation and for minimum, maximuand dew point temperature were taken from
the PRISM database (Daly, Neilson et al. 1994hat5x5 km resolution. Those datasets were
mapped using Albers 1966 projection in order toamaiur existing datasets format.

Historical values for potential evapotranspiratieere derived according to a modification of

Penman’s equation by Linacre (1977):

ETp=[500(T* 0.0006h) ( 106 A+ 16T-'Td]| (/ 86 T) (A.8)
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where T’, h, Td and A represent respectively: the monthly mean temperaitu degrees
Celsius, the elevation in meters, the mean morgthly point temperature in degrees Celsius and

the latitude in degrees.

A5 Model Calibration

The goal of water balance model calibration washawe the model reproduce observed
annual natural water yield as closely as possi@epnly in terms of the long-term mean annual
yield but also in terms of replicating annual obser traces of streamflow. The model was
calibrated by minimizing the mean squared errowbeh modeled water yield and estimates of
historical natural streamflow. Three different bigtal streamflow datasets were used:

- A 42-year series of annual streamflow records &% felatively unmodified test basins

across the U.S. (Hobbins et al. 2001; Slack andlwahr 1992).

- Reconstructed natural streamflow estimates forsy&806-2006 for a set of watersheds

in the Colorado River Basin, provided by the U.8rdau of Reclamation (USBR).

- 30-year average reconstructed natural streamflawtife 8-digit basins of the U.S.

estimated by the U.S. Geological Survey (USGS) gkatial. 1989).

Calibration was performed at the basin (either st basin or 8-digit basin) level, which
required running the water yield model at the bdsirel. The estimation of the parameters
needed to run the model at the basin level waopeed by averaging parameter values across
all 5x5-km cells within a basin.

Recall that the water yield model provides estimatietotal natural water yield, equal to the
sum of surface and subsurface yield. The calibmapimcess is subject to errors if measured or
reconstructed natural flows used for calibrationndb accurately capture the sum of surface and
subsurface flow that would naturally leave the balse it a test basin or 8-digit basin. Such error
can occur where some of the water yield leavesbtémn beneath surface, so that it is not

captured at the stream gauge measuring basin wutfionay also happen if withdrawals within
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the basin are not accounted for. Further, at tiei@rtime step additional error can be caused by

annual fluctuation in the amount of water storedrasindwater.

A.5.1 Calibration of the model over the 655 Test Basins.

The 655 test basins were given first priority foodrl calibration; 8-digit basin data were
used for calibration only outside of the boundaridsthe test basins. The test basins were
preferred because they are relatively unaffectetiusgan intervention, such that streamflow is a
fairly accurate estimate of natural water yielderdby avoiding the need for natural flow
reconstruction.

For each of the test basins a 42-year (1953-199dye1ce of annual streamflow data was
used to calibrate the model, allowing us to compgaeglictions and observations on a year-by-
year basis

Given that the water yield model represents a firsier expansion around an equilibrium
solution (Eagleson, 1978f), calibrating the modela mean annual basis (that is, comparing
observed and predicted observed mean annual ¥ieddjetically would be sufficient to obtain an
acceptable year-by-year fit. However, because @flithitations discussed above, especially the
possibility of annual changes in stored water g@tunnoticed, a year-by-year calibration may
produce an improved fit. As seen below, where anmaanual calibration did not produce
acceptable results, we tested a year-by-year asiblr Two approaches described in the next
two sections, one based on the plant transpiratificiency factor of the Eagleson model and the
other based on a comparison of modeled and measwated yield, were developed to calibrate
the model for areas within the 655 test basinshHesin was individually calibrated using the

procedure that produced the better result.

2 Restricting the test basin calibration data tayéefore 1995 was a matter of convenience, as it
allowed us to take advantage of our previous rebe@.g., Hobbins et al. 2001)
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A.5.1.1Calibration through the plant transpiration efficiey

Adjustment of plant transpiration efficiencly (n the water balance model) was selected a
priori as the principal calibration approach. Altigh in principle the model could have been
calibrated by adjusting any other model parameteseai of parameters, plant transpiration
efficiency was the only parameter for which we hatther a direct measurement nor any reliable
approximation available at the large scale. Further sought to avoid use of sophisticated
multivariate methods of calibration because of timamplexities involved with using such
methods over large spatial scales with many cdldnasites, and because we hoped to keep the
approach as easily tractable as possible. A siiglection method - which is a mathematical
solution-finding method that repeatedly bisectsra@rval and then selects a subinterval in which
the solution must lie for further processing - vimplemented in order to calculate, at the basin
level, the single value dé that allowed a perfect match between average modedder yield
and observed average streamflow.

For a large majority of the test basins (see Fig) A value fokv within the range 0.4 — 1.5
was found that allowed mean predicted annual yieleequal the 42-year average measured
streamflow. In these cases, annual water yielde walculated by running the model wkhset
at the determined level and using annual valugsexfipitation and evapotranspiration as model
inputs. Results were then compared with the obdemnaees of streamflow, as shown in Fig. A.8.
The year-by-year calibration option was examine@nvhn acceptable mean annual valué of
was not obtained. This option allows to vary year-by-year in relation to precipitation
fluctuations. Allowing kv to vary annually with precipitation (essentiallyllowing plant
transpiration to vary) reflects short-term plangjgidbility to climatic conditions. The procedure

consisted of the following steps:
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- find a set of 42 annual values kf that allows the modeled water yield to match the
observed annual streamflow at each year;
- linearly regress the annual valueskpbn the annual precipitation;
- calculate water fluxes at a given yéausing the value afk,)iza+b-(P.);, where(P,); is
the precipitation at yearanda andb are the coefficients of the linear regression leetw
P, andk, illustrated in Fig. A.10.
We adopted the year-by-yelarcalibration procedure if it improved the fit of theodel. For an
example of the improvement achieved using an ahnuaftying kv for calibration, compare Fig.
A.9 with Fig. A.8. Using the year-by-year calibmatj a better match between observed

streamflow and modeled yield was found for a cogrsille number of basins (Fig. A.11).

A.5.1.2Calibration through the effective water yield

For those basins where use of thealibration procedures described above did notwallo
modeled fluxes to match historical observationsal@rnative approach was used that relied on
computation of the ratio of modeled to observedastiflow. For this approach, the transpiration
efficiency factor k) was set to 1 (such that plant potential tran$ipinaequals potential
evaporation). Withk set to 1, all fluxes were computed and the ratittveen modeled mean

annual yield and mean measured streamfdd@was calculated, as follows:

YS= - (Y_A)MOQELED (A.9)

(Stramflo I BSERVED

YSthen was used to scale each year's modeled tetal. yihe effective water yield for yegr
(Ya)iers, Was calculated as:

1
(YA)i EFF (YA )i MODELED BY_E (A.10)
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See Fig. A.12 for an example of the applicatiothif procedure.

As was done with th& approach to calibration, to improve the year-byry@eof the yield
traces and better capture the annual variabilitthefobserved streamflow, we investigated the
possibility of allowingYSto vary annually in relation to precipitation. Aptomal scaling value
was determined by making sure that both the long-teean yield (that is, the yield predicted by
the model if precipitation and potential evapotpration are set at their mean annual values)
and the 42-year average yield (that is, the averdgine 42 annual estimates of yield, each
obtained with the annual values of precipitationl @otential evapotranspiration) converged to
the mean observed streamflow. In summary, thisqohee consisted of finding the valuerpin
equation (A.11) that leads to the sequence of doadkies ofY Sat year, YS, that satisfies the

aforementioned condition.

(YS )i — ((PA)i _mPA)[/7 Moy YS

(A.112)
Mpa
When this procedure was successful, that is, wheanproved the fit between observations

and simulations, effective water yield in the gilEsin in year was calculated as:

1

(YA)i EFF (YA)i MODELED D(Y_S*y (A.12)

For an example of the improvement achieved by aligw'S to vary with precipitation, that
is, using in each yearhe value of that is calculated based on actualijitation, compare Fig.
A.13 with Fig. A.12. This annualized procedure ioyad the fit for many test basins (Fig. A.14).

Results for spatial error distribution are showrFig. A.15 and Fig. A.16. As apparent from
these maps, the largest absolute errors betweenatstl water yield and observed streamflow
occur in the eastern and western U.S., with smali@rs in the central U.S. However, examining
relative as opposed to absolute errors revealfferatit pattern, with many areas of the central

and southern U.S. having errors comparable in niaggmito the average yield.
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A.5.2 Calibration over the 8-digit Basins and Colorado/&i Basins Watersheds

In areas where no test basins were present, thelmas calibrated using 30-year (1951-
1980) average reconstructed natural flows estimbyethe USGS for the 8-digit basins of the
U.S. (Krug et al. 1989). In addition, for the C@do River Basin the 8-digit basin flows were
used in combination with reconstructed natural §astimated by the USBR. Of the USBR flow
estimates, we used data for years 1953-2004.

The natural flow estimates from the USBR were adergid more reliable than the 8-digit
basin averages from the USGS for the same areae ®6rthe flows from the USBR refer to
stations with drainage areas considerably largam the typical 8-digit basin (Fig. A.17). Where
USBR flow estimates were available for a catchntkat included more than one 8-digit basin,
the interior 8-digit basin averages were scaleslich a way that the aggregate streamflow across

the interior 8-digit basins matched the USBR averiag the catchment. The scale factér,was

obtained as follows:

Streamfoma s,
Z(m%a mﬁDB)i

(A.13)

where Streamfloysgs, A Streamflowy,, and A,,; are respectively the average

observed streamflow for the USBR catchment, the afethe USBR catchment, the average
streamflow, and the area of each of the 8-digitrisasontained within the USBR catchment.

Calibration was then performed at the 8-digit basiale by matching the modeled yield with a

corrected 8-digit basin streamfIO\ﬁtreamﬂO\&DB, obtained as follows:

Streamfloi(gB = ¢ [Btreamfloyy, (A.14)

This procedure guarantees that global simulatelds/imatch the observed streamflow at the
scale of the USBR catchments and, simultaneousdy,the lower scale variability at the 8-digit

basin is preserved. Calibration over the 8-dig#ifis, or over the 8-digit basins in combination
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with the USBR streamflow records, was then perfariwdlowing the approach described above
for the test basins, except for the year-by-yegrassions, which were not used with the 8-digit
basins.

This procedure guarantees that global simulatelds/imatch the observed streamflow at the
scale of the USBR catchments and, simultaneousdy,the lower scale variability at the 8-digit
basin is preserved. Calibration over the 8-dig#ifis, or over the 8-digit basins in combination
with the USBR streamflow records, was then perfaroiowing the approach described above
for the test basins, except for the year-by-yegrassions, which were not used with the 8-digit

basins.

A.6 Extension of Calibrated Parametersto the Conter minous U.S.

Once calibration was performed for the entire stadda, the model could be applied at the
5x5 km or any larger spatial scale. To apply thedehcat the 5x5 km scale, each cell was
assigned the values of &r YSthat allowed convergence between average obsetresmirglow
and mean modeled water yield for the basin (eitkstr basin or 8-digit basin) to which the cell
belonged. Ultimately, we found that applying thed®loat the 5x5 km resolution for all of the
different scenarios-GCM combinations was computatly too time-consuming to be
practicable. Therefore, we used the model at tlteogil level only to estimate the average mean
annual yield (Fig. A.19), for comparison with the&sGS mean annual runoff estimates (Fig.
A.18). Estimation of annual historical water yieldd future water yield based on climatic and

socio-economic projections was instead performedea8-digit basin scale.

A.7 Model Input Parametersfor Future Climatic Scenarios

Application of the model to predict future wateeld required estimates of model input
parameters for future years. As explained aboymytiparameters of the model include the soll

hydraulic properties, vegetation properties (esalytvegetation transpiration efficiench), and
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storm statistics. With varying levels of confidenagee assumed that future levels of these
parameters would equal past levels. Regarding @liehgdraulic properties, this assumption is
easily accepted, as the parameters are representdtsoil texture and composition, which are
unlikely to change over this century. Somewhat kegsily accepted, but still in our judgment
reasonable, is the assumption that the plant cosfti k will remain constant over the time
horizon, as it ideally represents the result offilaat evolutionary adaptation to the environment.
On the other hand, storm characteristics may beatgd to change as the climate changes. Our
estimation of storm statistics based on past weathta relied on the assumption of a stationary
climate, which is an assumption that will be insiagly untenable if the climate changes as
indicated by current global climate models. Estiorabf storm statistics for the future, however,
is constrained by the fact that their estimatidieseon hourly precipitation data. As described
above, hourly data were available for past yeau, dstimates of future precipitation were
available only at the monthly time step. Therefaoeteflect future climatic conditions, changes
in the values of storm statistics would need tanferred from changes in monthly climatic data.
Because of the magnitude of uncertainty that wdagdintroduced by such inference, it was
decided to apply the current storm statistics tturis water yield estimation. In summary,
projection of water yield for future climatic andcso-economic scenarios was based on the water
yield model as forced by the future predicted PDiés precipitation and potential

evapotranspiration, but employing historical sedgetation, and storm parameters.
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Fig. A.2 Comparison between the actual behaviouraoffall and the one modelled for

this analysis. In the horizontal axis is reporteel time and in the vertical one the
rain intensity. The parametetst, t, represent respectively the inter-arrival time,
the storm duration and the time between two storms.
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Fig. A.3 Spatial mean of soil moisture content. @anson between the actual behaviour
of the soil moisture concentration and the simgdifimodel adopted in the
analysis.
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Fig. A.4 Distribution of the number of NCDC stat®orproviding hourly data of

precipitation as a function of record length.
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Fig. A5 Spatial distribution of NCDC stations providing hmiyudatasets of precipitatic
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Fig. A.6 Sketch of weighted linear regression used to etalstarm statistics (in this ca

the interarrival time) at 5x5 km resolution. Orartyggs represent stations loca
near the cell under analysis. Dot size represéetsveight given to the station
the regression, the weight being inversely propodidn the station’s distant
from the cell of interest. The orange line is tgression line as estimated by
weighted linear regression. Blue lines represeat fgtocedure to estimate t
value of tte storm statistic of interest (in this case inteval time) for the cel
considered from its value of precipitation as exted from PRIMS dataset at t
5x5 km spatial resolutio
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Test basinshown in green are those where a perfect match wasilge by

Fig. A.7
changing the transpiration efficiency only. Testiba in blue are those whe
such match was not possible only by chanik,.
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Fig. A.8 42-yearsequence of calculated yield and measured strenffiowest basin 41

(northern Wyoming. The estimated sequence is obtained by using lduat
transpiration efficiency which led to convergenavieen mean estimated vyit

and average measured stream.
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calculated yield and measured streamflow for tasirb21, with the calibratic
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42year sequence of calculated yield and measureanstieawv for test basin 4.
(northern Wyoming¢. The estimated sequence is obtained by using iable
plant transpiration efficiency factor as obtainemhf the regressivprocedure.
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Fig. A.11 In blue are indicated those basins where a yealjable plant transpiratic
efficiency leads to a better match between modgduiwand observed streamflc
(for basins where convercce was already achieved only by plant transpire
efficiency calibration, green iFig. A.7). Yellow indicated basins where keep
the plant transpiration efficiey constant (and equal to the value obtained in
1 of calibration process) lead to a better fit witie observed streamflc
sequence (in terms of -year MSE).
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Fig. A.12 42year sequence of calculatyield and measured streamflow for test basin
(coastal central Californi, showing measured streamflow (blue), calculate-
scaled yield (green), and effective (calculated scaled) yield per equation 2.

(pink).
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Fig. A.13 42year sequence of calculated yield and measureanstieawv for test basin 5t
(coastal central Californi, showing measured streamflow (blue) and calcul
yield (pink). Yield is calculated by scaling eaatay's prediction of nnual yield
by a factor equal to the ratio of the ratio meatineded yield to averac
measured streamflow (YS) times the actual valygretipitation

Fig. A.14 Basins in red are those where a yearlyable scaling factor leads to a be
match between model output and observation (fonbaghere convergence w
not achieved only by plants’ transpiration effigtgncalibration and only
fraction of yield is used to match the averageastiftow). Gren indicates basins
where a better match between model and observatiasgound by keeping tt
scaling factor constant from year to y
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Fig. A.15 Square root of the mean squared errowdmt modeled water yield and
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Fig. A.16 Ratio of the square root of MSE to averageamflow for the tests basins.
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Fig. A.18 USGS average runoff at the 8-digit basevel.

142



Legend
Runoff (in.fyr)
| [0-2
[ 124
47
| k&l
e
B -0
B -
| ENS
-7
740

Fig. A.19 Modeled average runoff for the study grid
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Results of multivariate linear regressiminBrooks and Corey parameters (Abu

Tab. A.l
Rizaiza 1991; Kochendorfer 2005).
Coefficients
Parameter Intercept R2
%Sand %Clay
& -0.0295 0.00076 0.00201 0.831
7 14.6 -0.09340 0.45400 0.893
m 0.202 0.00329 -0.00318 0.868

144




Appendix B The USwater supply network

B.1 Overview

Estimating the annual water yield as simply thefedénce between precipitation and
evapotranspiration at the study grid level, or eata basin level, does not provide, by itself, a
valid estimation of the water effectively availaliea certain point in space. Water, in fact, can
be either diverted from a place where it is in esc® another where it is scarce, or stored in loco
for future needs. Ultimately, if not needed, it plynflows from upstream to downstream, where
it is made available for local demands or is lastoceans. This implies that a thorough
characterization of water supply for a large argzhsas the one we are dealing with in this study
cannot omit from an accurate understanding of traptex water network existing within the
area itself.

In this framework, we will subdivide the contiguoUsS. into 98 Assessment Subregions
(ASR) and describe the complex system of water owdsvthat takes place among them. ASRs
were originally delineated by the Water ResourcesirCil for its Second National Water
Assessment (1978) to further subdivide Water ResoRegions (WRR). They are tracked with a
four-digit code and their boundaries do not span1B boundaries or divide the standard four-
digit basins. Therefore, ASRs can be aggregatedbtain estimates for the WRRs and are
generally large enough to support the use of colaw§l data while still allowing analysis of
some large regional differences within WRRs.

In the following sections we will describe the sture of the water networks existing within

the conterminous U.S. at the ASR level (section),BI# location and size of storages (section
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B.3), the types of water demands considered (se®&id) and the set of rules adopted for the

network simulation (section B.6).

B.2 Network Structure

Networks were characterized as systems of nodesected by links. Each ASR, as well as
each demand, storage capacity, and network sipkegenting outflow to oceans), is represented
by a node. Natural and artificial water routes amtimg ASRs are represented by directional
links. Links are also used to connect ASR nodestdmge and demand nodes (see Fig. B.1).

ASRs were considered linked, that is, part of thme network, when it was possible to
individuate a water route between them. A watetaas here defined as a sequence of water
links, either natural (due to natural upstream twistream flow) or artificial (via water
diversions).

ASRs were considered linked, that is, part of themes network, if they were connected by
either a natural flow path (upstream to downstreasr flow) or an artificial diversion (via a
canal, tunnel, or other constructed conveyance)aificial connection between ASRs is called
a trans-ASR diversion. Of the 98 ASRs, 83 are panulti-ASR networks and the remaining 15
are unconnected. The unconnected ASRs drain teeth@r to Canada or are closed basins. Three
multi-ASR networks were delineated, one with 69 ASRat includes most of the central and
western U.S., one with 10 ASRs in the Northeast, ame with 4 ASRs in the Southeast other

(Fig. B.2).

B.3 Storages

To estimate reservoir storage we began with theioNalt Inventory of Dams (NID)
maintained by the U.S. Army Corps of Engineers, mloaded in June 2009.
The database was filtered in order to retain oagervoirs with a normal surface area of at

least 5 krf resulting in 1509 dams and associated reservdhis initial list has then been
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trimmed to retain only one record per reservosuting in 1243 reservoirs. We further removed
reservoirs that were for flood control only, werénimg tailings ponds, or stored power plant
cooling water. In addition, we independently chetkeservoirs that had an unusual normal
surface area to storage volume ratio (a common wasea storage volume of 0), and revised
those values accordingly, resulting in the remosflseveral other reservoirs for which the
research showed that the normal surface area viaw Beknt. Finally, we added one reservoir

that was not on the list. The final list includel96 reservoirs (of this list, we revised the susfac

area of 13 reservoirs and the storage volume oéddrvoirs).

Storages were then aggregated at the ASR levelpingeghat the storage volume of each
given ASR is the sum all of those storages (ambedinal 1196 reservoirs list) that fall within
the ASR borders.

Normal storage capacities were then aggregatetheatASR level, such that the storage
volume of each ASR is the sum all of the storagemes (among the final 1196 reservoirs list)
that fall within the ASR borders. Normal storagdwoes of the ASRs vary from 0 (ASR 1602)
to over 40 million acre-feet (ASR 1005). ThirteeisRs have at least 10 million acre-feet of
storage (Tab. B.).

The amount of stored water lost to evaporation givan year was estimated by computing a
surface area corresponding to the known storagemeland then multiplying that area by an
evaporation rate. Because we aggregated resemvidhsr an ASR, and therefore lost details
specific to each reservoir, global relationshipsenseeded.

The basic approach used to determine ASR resesuoiace area was to develop regional
area-to-volume relations for four large groups @Rs. The groups were formed as groups of
WRRs whose reservoirs exhibited relatively distiagta-to-volume relations. The groups ranged
from those tending to have relatively shallow resgs to those tending to have relatively deep
reservoirs (Fig. B.5). Area-to-volume relations gvetetermined for each group by regressing
normal surface area on normal storage volume acatisseservoirs in the group. For all
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regressions, the constant was fixed at zero. AR&® a group were assigned the area-to-volume
relation of its group. Individual evaporation rates each ASR were set equal to the mean 1953-
2005 potential evapotranspiration rate from a weflase of all cells within the ASR.

A separate approach was used, however, for ASR4 ad4@ 1503. For those two ASRS,
Lakes Powell and Mead, respectively, make up nedrlyf the storage capacity. Detailed surface
area-to-storage relations were available for thesservoirs (Fig. B.4), as were average

evaporation rates.

B.4 Water useclasses

Three classes of water use were included in thevarkt simulations: in-stream flow
requirements, trans-ASR diversions, and consumptiges. Each of these classes was

individually examined for each ASR, as explainethia following sections.

B.4.1 In-stream Flow Requirements

In-stream flow requirements reflect the desireelave some water in the stream for wildlife,
fish, recreational activities, and aesthetic congerddeally, the determination of a required
minimum in-stream flow would be addressed locatyorder to consider properly the biological
and environmental characteristics of each ecosysteaneful consideration of local stream
characteristics is unrealistic at the ASR scalél, laeyond the scope of this study. In place of a
more locally-specified minimum flow, we adopted tfpeneral guideline provided by Tennant
(Tennant 1976), and specified the in-stream flogumement as 10% of the average streamflow.
Average streamflow was computed as the averagé yilal over the years 1953-1985. This
constant amount was applied on an annual basistto durrent and future conditions, without

adjusting for shifts in the average water yield tupotential climate changes.
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B.4.2 Trans-ASR Diversions

Trans-basin diversions, which move water acrostidigides, are common throughout the
U.S. and especially common in arid regions. Tyjyddde amount of water diverted reflects long-
standing legal agreements that specify the operatiles used to determine the diversion amount
in a given year. Diversion amounts generally vaont year to year about a long-term average
amount. Of course, the rules may also change awer Because the operating rules differ from
one diversion to the next and are not easily abkd|aand because of the large number of such
diversions, we adopted a simple procedure for tholy the trans-ASR diversions in the network
simulations, setting each trans-ASR diversion etpal constant amount computed from data on
past diversions.

Most of the information regarding water diversiomas taken from two publications of the
USGS regarding respectively the western (Petsctb)188d the eastern (Mooty and Jeffcoat
1986) U.S. These publications report on transfetsv&en 4-digit basins for 1982 and any prior
years back to 1973 if available. From these dat@avmeputed the average diversion across years
1980-1982. Information from these two sources waspemented by more recent information
for California (California Department of Water Rastes 1998), Colorado (Colorado Water
Conservation Board 1998, 2010; Litke and Appel 198Be Lower Colorado River Basin
(International Boundary and Water Commission 20@4#) other locations from miscellaneous
sources. Data for inter-basin transfers were aggeelgat the ASR level in order to obtain an
updated dataset of trans-ASR water diversions (BdW). The trans-ASR diversion amount was

held constant across all simulation years.

B.4.3 Consumptive Use

Historical records for water consumptive use arailalile at the ASR level for the years
1985-2005 from the USGS databases. These recomgsused to simulate historical and current

conditions and as well as a useful source of inftion to predict future water demands.
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Estimation of future demands relied mostly on tkeapolation of past trends in water use
efficiency and projections of the main socio-ecormand climatic drivers of water use listed in
Tab. B.V. A considerable effort is also devotedestimating the effects of climate change and
future liquid fuel energy goals on future water.use

Trends in water use efficiency and drivers of waisgs were analyzed for the six categories
of water demands reported in Tab. B.VI.

In general consumptive uses are estimated by rivifigpthe estimated withdrawals for each
category of water use by a consumptive use prapogid adjusted by adding a factor that takes
into account potential future consumptive uselaitable to climatic or other changes that are not
reflected in data on past levels of water use. Hewrtdetails are provided in Tom et al

(Forthcoming).

B.5 Water usepriorities

In the simulation of water allocation for the watetworks, the three classes of water use
were assigned distinct priorities. The prioritiestemine the order in which the classes are
satisfied. In times of water abundance, the pragihave no practical impact, as all uses are met,
but in times of water shortage the priorities deiee which uses are met and which are not met
or are only partially met. Note that the five catégs of consumptive water use were treated as a
block, and thus were assigned equal priority. Beeanf this simplification, we are unable to
distinguish among the water use categories in tifnehortage and cannot estimate how the
shortage would affect each separate category. édihoin reality the different water use
categories may not suffer equally in times of shget—the effect of shortage in a given ASR or
sub-basin within an ASR would actually reflect thistribution of water rights or existing water
allocation rules—fully accounting for local watdloaation arrangements was beyond the scope
of this national study. The three classes of wats were assigned priorities in the following

order: in-stream flow requirements, trans-ASR di@rs, and consumptive uses. Reservoir
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storage was given the next lower priority. Thisesrdf priority guarantees a minimal amount of
water for environment and ecosystem needs beforeoter needs are met, and satisfies major
water diversion agreements before meeting locakaheis or storing water.

Note that water uses belonging to the same class assigned the same level of priority
irrespective of their position in the network. Fexample, the in-stream flow constraint was
satisfied in all ASRs within a network before othese classes were met in any ASR of the
network. Thus, spatial position within a networkg(e upstream versus downstream) had no

effect on the priority with which uses were satidfi

B.6 Network ssmulation

Simulation of water allocation within each netwonlas performed using the MODSIM
(Labadie et al. 1984) network simulation packagetwérk simulation provides annual values of
water flows in any network link, storage levels feach ASR, amount of water lost due to
reservoir evaporation, and amount of water assigmeach water use class.

The various aspects, assumptions, specificaticdos,0é the network simulations that have
been described above, which allow simulation ofewadllocation within each network, are
summarized here:

- Each ASR represents a node in the water network.

- Annual total water yield is accumulated over theérerASR and is considered as a water

input at the ASR node.

- Annual water supply for a given ASR is the sum led tinnual water yield, the water
inflow from ASRs located upstream, net water reegifrom other ASR via trans-ASR
diversions, and the water previously stored inABR itself.

- Water uses were grouped into three classes: iamtflow requirements, trans-ASR

diversions, and consumptive uses.
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- Each water use class was assigned a differentitgrior the following order: in-stream
flow requirements, trans-ASR diversions, and corive use.

- If ASR water yield plus contributions from upstreamne insufficient to meet the requests
of the three water classes in the ASR, water stanethe ASR is used if available,
irrespective of the actual location of the reseiwand demands within the ASR.

- Any water in an ASR not needed to satisfy the wHBR or downstream requests of the
three water classes is stored up to the totalavailstorage capacity.

- Water that cannot be stored in the most downstrR8iR is released to a network sink
(an ocean or Canada).

- Water loss due to reservoir evaporation is estichaéite assigning to each reservoir an
area-volume relationship and multiplying aggregatgervoir surface area by an annual
potential evaporation rate for the ASR.

Modeling demand and supply at the ASR level, itudthde noted, will fail to realistically
represent conditions in some localized areas wihirASR. Perhaps the most likely instance of
this scale-dependent failure is where a major denzaea is located in the upper reaches of an
ASR. Such a location would in fact—in the absent@umping water uphill—place the area
upstream of the bulk of the water supply of the A8hough in the simulation the full supply of

the ASR would be available to meet demands withenASR.
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@® ASRnode A ASR Storage @ Consumptiveuse [ In-stream flow requirement

B Network sink Natural water route Trans-ASR diversion

Fig. B.1 Schematization of a network containingeéhASRs and including both natural
and artificial water routes.

Fig. B.2 Water networks across the conterninous Bt$he ASR level. Natural links are
indicated with blue lines, artificial links (watdiversions) with green lines. Grey
lines indicate diversion to Mexico.
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Fig. B.3

Storage volume size distribution of 1196 reser.
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Surfacare«to-storage relationships for Lakes Powell and M

154




Mormial storage {10

2000

(=]
=
o
=}
=3

400 600 80

Surface area (km2)

MWormial storage {1000 ac

2000 4000 6000 2000

Surface area (km2)

Fig.

B.5

Groups of urface area-t@torage relationships for the conterninous

155




Tab. B.I

Normal surface areas and storage volurhesservoirs by ASR.

ASR Number_of Surfacgz area Storage volume Storage ?)/olume
reservoirs (km?) (acre-feet) (km)
101 53 2983 9,161,932 11301
102 11 303 339,694 419
103 1 14 114,000 141
104 4 280 1,450,200 1789
105 14 270 1,069,773 1320
106 1 7 3,500 4
201 14 271 1,914,887 2362
202 9 100 880,684 1086
203 6 70 950,208 1172
204 11 184 1,533,703 1892
205 8 108 731,648 902
206 1 7 33,700 42
207 8 337 4,763,164 5875
301 9 441 2,635,134 3250
302 12 2295 10,745,641 13255
303 14 2024 13,326,110 16437
304 12 228 498,205 615
305 1 15 33,324 41
306 10 781 4,450,780 5490
307 15 847 5,292,915 6529
308 14 400 2,521,472 3110
309 2 145 387,538 478
401 7 185 374,031 461
402 7 1049 2,361,175 2912
404 11 185 255,805 316
405 8 108 105,470 130
406 1 5 17,780 22
407 18 69,500 86
408 17 1711 4,910,008 6056
501 14 199 1,198,789 1479
502 22 610 3,481,610 4294
503 13 123 540,130 666
504 5 44 399,690 493
505 18 615 3,601,434 4442
506 16 185 781,314 964
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507 9 875 6,347,200 7829
601 20 758 6,560,611 8092
602 8 1250 5,422,900 6689
701 19 1161 1,272,053 1569
702 30 1036 2,597,039 3203
703 18 950 1,867,580 2304
704 16 490 1,576,975 1945
705 9 378 1,293,851 1596
801 4 214 803,180 991

802 27 970 4,875,232 6014
803 6 60 85,600 106

901 27 1567 3,115,572 3843
1001 5 194 617,306 761

1002 11 445 4,658,098 5746
1003 3 397 15,502,400 19122
1004 7 269 3,059,354 3774
1005 13 2663 40,713,453 50219
1006 4 646 4,232,535 5221
1007 27 993 4,895,080 6038
1008 6 63 365,996 451

1009 1 29 144,600 178

1010 18 722 3,191,245 3936
1011 10 500 2,926,538 3610
1101 6 694 10,585,000 13056
1102 12 179 1,311,262 1617
1103 8 239 1,098,580 1355
1104 34 1256 4,982,058 6145
1105 17 729 4,309,899 5316
1106 16 667 2,849,744 3515
1107 41 1688 6,626,673 8174
1201 17 5143 23,303,728 28745
1202 28 1524 8,222,684 10143
1203 31 651 3,819,774 4712
1204 19 643 4,206,219 5188
1205 10 582 2,286,848 2821
1302 9 516 5,729,860 7068
1303 2 391 3,692,180 4554
1304 3 114 310,384 383
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1305 3 479 2,698,340 3328
1401 13 375 5,631,191 6946
1402 10 191 3,095,031 3818
1403 4 730 28,874,500 35616
1501 1 8 2,610 3
1502 5 1029 30,508,313 37631
1503 12 205 3,251,572 4011
1601 6 93 774,780 956
1602 0 0 0 0
1603 4 88 260,800 322
1604 7 607 1,587,300 1958
1701 15 1220 11,989,814 14789
1702 26 1694 19,047,780 23495
1703 36 1426 12,754,945 15733
1704 7 223 5,520,957 6810
1705 20 325 6,208,326 5578
1706 9 340 3,320,425 4096
1707 4 61 85,190 105
1801 9 634 4,295,705 5299
1802 31 1454 23,556,700 29057
1803 31 1358 23,171,777 28582
1804 4 46 663,983 819
1805 4 74 1,051,550 1297
1806 12 108 2,273,358 7403
1807 2 30 199,870 247
Total 1196 61590 471,219,056 11301
Tab. B.Il  Surface area-to-storage regression féees@Powell and Mead and potential
evaporation rates.
Intercept Slope Evaporation rat
km2 km2 /Mm3 m/yr
Powell 59 0.01881 1.21
Mead 91 0.01613 1.98




Tab. B.III

Reservoir categories characterizatioross the 18 WRRs.

Group Description WRRs cogll‘?igiint Adjusted R
1 Shallow 4,7,9,16 0.39660 0.83
2 Medium 1 1,6,12 0.14481 0.90
3 Medium2 2,3,5,8,11, 13 0.09032 0.76
4 Deep (wumg;g; owelland | 14 14 15 17,18  0.03868 0.65
4 Deep (with Powell and Mead 10, 14, 15, 17,|18 0.02777 0.68

Tab. B.IV Trans-ASR diversions.

ASR Acre-feet m/ 10
From To
102 103 899 1,109
104 105 1,084 1,337
105 102 580 716
201 202 1,474,267 1,818,427
201 207 56,900 70,183
202 104 617 761
203 201 898,170 1,107,844
204 203 44,311 54,655
204 408 635,644 784,033
206 205 213 263
301 205 6,702 8,267
301 302 12 15
306 303 67,345 83,066
307 306 8,350 10,299
307 308 11,550 14,246
309 308 100,000 123,345
402 401 1,617 1,994
404 704 2,231,913 2,752,943
408 201 7,860 9,695
501 502 23,314 28,757
502 506 63 78
502 601 1,077 1,328
503 502 4,142 5,109
505 506 101 125
506 503 1,477 1,822
507 505 662 817
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507 601 508 627
602 308 3,300 4,070
602 507 492 607
702 402 3,620 4,465
801 602 43 53
801 1104 23,195 28,610
803 802 12,589 15,528
1008 1009 41,400 51,065
1009 703 83 102
1010 1011 697 859
1011 703 617 761
1011 704 309 381
1011 1101 11,607 14,317
1101 1104 7,720 9,523
1102 1007 20,000 24,669
1103 1010 169 208
1103 1104 23 28
1201 803 65,000 80,174
1201 1107 9,397 11,591
1302 1102 834 1,029
1401 1007 7,727 9,530
1401 1601 80,153 98,865
1402 1007 357,453 440,899
1402 1102 143,454 176,943
1402 1302 1,156 1,426
1402 1403 130,509 160,975
1403 1302 93,479 115,301
1501 1503 8,860 10,928
1502 1503 1,906,977 2,352,152
1502 1806 4,441,333 5,478,142
1503 1806 0 0
1502 8599° 1,500,000 1,850,168
1503 8599 124,927 154,091
1603 1601 724 893
1604 1802 4,233 5,222
1702 1703 1,700 2,097
1703 1601 1,233 1,521
1704 1703 6,323 7,799
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1801 1705 21,833 26,930
1801 1802 879,000 1,084,199
1801 1804 33,000 40,704
1802 1803 3,896,000 4,805,503
1802 1804 317,000 391,002
1802 1806 1,571,000 1,937,743
1802 1807 80,000 98,676
1803 1804 616,000 759,802
1803 1805 28,000 34,536
1803 1806 0 0
1807 1806 360,000 444,040
# Mexico.
Tab. B.V Water use drivers.
Population
Income
Electric energy
Irrigated acres
Temperature
Precipitation
Potential evapotranspiration
Tab. B.VI Categories of water uses.

Domestic and Public

Industrial and commercial

Thermoelectric

Irrigation

Livestock

Aquaculture
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Appendix C Future climatic and socio-economic pr ojections

C.1 Overview

Estimating future vulnerability of U.S. water suppb shortage requires projections of water
supply and demand. Climate directly affects bothpbuand demand. In addition, population and
economic conditions directly affect demand. Becdusare climate, population, and economic
conditions are uncertain and may take a varietypaths, we project supply and demand for
alternative scenarios of future conditions. Furtlemate under each scenario is projected using
three different global climate models. The resgltset of nine different possible futures provides
a range of estimates of demand and supply, andftrerof vulnerability. The mixture of results
offers a rough indication of the uncertainty abfutiire conditions.

This study is one of several assessments perforevedy ten years pursuant to the
Renewable Resources Planning Act of 1974 (Langmepréparation-a). The assessments are
commonly known as the RPA assessments. The acifispdtat the assessments will project
demand and supply conditions 50 years into therdutwhich in this case would be to 2060.
However, because the potential effects of climdi@nge on water supply and demand become
more significant in the latter half of the centume extend this assessment to beyond 2060.

In this chapter we give a brief description of fhiejected socio-economic scenarios (section
C.2) and GCM models (section C.3) analyzed in sigly. Projections of future precipitation,
potential evapotranspiration and water yield ashrespectively in sections C.3.2, C.3.3 and

C.3.4.
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C.2 Future Socio-Economic Scenarios

The increasing globalization of the world economy #he possibility of substantial climatic
change have created considerable uncertainty dbture U.S. water supply and demand. One
way to capture this uncertainty, adopted by therfjuvernmental Panel on Climate Change
(IPCC), is to examine various possible future sdesaThe emissions scenarios examined by the
IPCC differ in population growth, economic growtmd energy use, among other things, and
thus in GHG emissions, CGQevels, and climatic changes. As a starting poort the RPA
assessments, three scenarios—A1B, A2, or B2—eaddlzn a different storyline, were chosen
from the IPCC set (Nakicenovic, Alcamo et al. 2000)

The IPCC scenarios are internally consistent ptesgilobal futures that differ in many ways
having to do with fertility rate, technological cige, international trade, income growth, and
energy development. Most importantly for this ahd bther RPA assessments, the scenarios
specify alternative future population, income, aD@: levels, with implications for climatic
variables that can be modeled using GCMs and $pltienscaling methods. The scenarios thus
capture a range of potential futures that may subistily affect future water supply and use in
the U.S.

Of the three scenarios, the A2 scenario is the exiseme and B2 the least extreme in terms
of atmospheric C&concentration. For example, year 21002€@ncentrations are 856 ppm with
the A2 scenario and 621 ppm for the B2 scenarith thie A1B scenario falling roughly midway
between these extremes at 717 ppm (Tab. C.I). Heryétvis important to note that the €0
concentrations of these scenarios do not diffeatyrauntil later in the 2dcentury. The C®
concentrations of the A2 and A1B scenarios are smjilar in 2060 (at 572 and 580 ppm,
respectively), although the B2 concentration beginsrging from the other two in about 2020
(and is 504 ppm in 2060). Clearly, one must extdred purview of the study beyond 2060 to

observer the greatest differences in the scenandgsheir impacts.
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As with CQ concentration, global temperature differences anmtbagscenarios are relatively
small until the latter half of the 2Tentury. The multi-model projected global averagdaze
warming projected by 2060 (relative to 1980-199®)about 2° C for the A1B scenario and 1.9°
C for the A2 scenario (a 2060 estimate for the B&nario was not available) (Tab. C.I).
However, by 2100 the surface warmings of the A1B AR scenarios are projected to be 2.8° C
and 3.6° C, respectively, with an increase of €.48r the B2 scenario.

The population and economic projections of the IP€&¢€narios do not use the most recent
United States Census or recent economic data, lansl @are somewhat dated. The IPCC
projections were updated for the 2010 RPA assedsrbased on more recent information for the
U.S. (Langner in preparation-b) (Tab. C.II). Thepplation projections for the RPA assessment
A1B scenario incorporate the 2000 census and presuicontinuation of past changes in U.S.
population growth level, and the A2 and B2 scenpodpulations were determined in relation to
the revised A1B scenario by maintaining the retatdifferences among the original IPCC
scenarios. Scenario A2 expects a higher populatiowth rate than the A1B scenario and the B2
scenario a lower growth rate (Fig. C.1). Scenardd A&xpects much higher economic growth in

the U.S. than do the other two scenarios (Fig..C.2)

C.3 FutureClimate: General Circulation Models

The scenarios were used in combination with théofiohg General Circulation Models
(GCMs): the Canadian Centre for Climate Modellimgd @Analysis Third Generation Coupled
Global Climate Model Version 3.1, Medium Resoluti@GCM31MR), for the A1B, A2 and B2
scenarios; the Australian Commonwealth Scientifid éndustrial Research Organisation Mark
3.5 Climate System Model (CSIROMKS35) for the A1B2 Aand B2 scenarios; the Japanese
Centre for Climate System Research Model for Inserdlinary Research on Climate Version
3.2, Medium Resolution (MIROC32MR), for scenariodBAand A2; and the United Kingdom

Met Office Hadley climate model (HadCM) for the B2enario (Tab. C.1lI). See Joyce et al. (in
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preparation 2) for details. Monthly estimates afgipitation and temperature were available from
all GCMs for the period 2001 to 2100 at the 5 aroute grid level for the US. The specific
variables were precipitation in millimeters (mm)damean daily minimum and maximum air
temperatures in degrees Celsius (°C). The use edethdistinct and well-established GCMs
ensured that the downscaled scenarios met the Ri@€ia for selecting scenarios for climate
change impacts studies. The criteria include (¥sistency of regional scenarios with global
projections; (2) physical congruence across climatgables; and (3) applicability to impact
assessment, which is facilitated by the downscdégd being reported as change factors that can

be referenced to locally observed climate data.

C.3.1 Downscaling and bias removal methodology

The spatial resolution of GCM output is too largestipport most river basin studies and thus
must be downscaled to a finer scale if it is toused with water basins like ASRs or smaller
watersheds. Further, GCM output commonly contaibsaa, which is recognized by comparing
the GCM estimates for a past period with field-lbaseeasurements for the same period.
Downscaling and bias correction of the GCM datauoed in two steps. The first step,
performed by Joyce et al. (in preparation 1), remliidownscaling the raw GCM simulations
from their original spatial resolutions to the & aminute scale (roughly a 10-km grid). The
second step, performed by the authors of this deatinsonsisted of further downscaling the data
to match the 5-km grid resolution of this study fioitial water yield estimation and to remove
residual bias.

The first step began with converting the monthljuea from the GCM datasets to monthly
change factors, using the means of the simulatedthfyovalues for the 30-year period 1961-
1990, taken from the PRISM data set (Daly et aR4)9 as the baseline. In the case of
temperature variables (monthly mean daily minimurd emaximum air temperature), the change

factor was computed as the arithmetic differencéwéen the monthly value and the
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corresponding 30-year mean (1961-1990) of the dam@erature variable for that month. For
monthly precipitation, the change factor was th@raf the GCM-based monthly value to the
1961-1990 mean for that month. The change facters then interpolated using the ANUSPLIN
software (McKenney et al. 2006; Price et al. 2Q06)reate time series for the period over which
the GCM simulations were carried out, extendin@100. ANUSPLIN produced a fitted spline
"surface" equation for each monthly variable, whigds then used to create gridded data for that
monthly variable at the 10-km grid scale. The bgasliminated by matching the GCM output
with historical observations for a period over whithe two datasets overlap. For precipitation
(P) as an example, the downscaling and bias corregirocedure was as follows, wheye
indicates a year from 2001 to 21QGndicates monthG indicates GCM data and indicates

historical data:

Compute deltas at GCM scaldeltaR , ;= Ry ;= Riger o0

Downscale the deltas to 10-km grid

Compute final values at 10-km scalg; | = B, 16, oo; — deltaR

- Compute ETp from final values.

In the second step, the 10-km data were further ndoaled, using simple spatial
interpolation, to match our 5x5 km water yield grichen the data were corrected to remove a
residual bias, using a recent eight-year pericthadaseline. Specifically, observed precipitation
and temperatures from the PRISM dataset were as@rager the period 2001-2008 and
compared with averaged GCM values for the samegeBiases were estimated by computing
the difference between the 2001-2008 averages gieediby the GCMs and the observed
averages. Potential evapotranspiration in mm pegrwdas computed using a modification of

Penman’s equation by Linacre (1977).
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C.3.2 Future precipitation

Fig. C.3 shows mean annual values of precipitaltiprscenario-GCM combination for the
U.S. for five time periods centered at years 20080, 2040, 2060, and 2080. The 2005 point
represents a mean for the period 2001-2010, andttie points are 20-year means centered at
those years. Average annual precipitation changes 77 cm for 2005 to from 63 to 80 cm in
2060, with most scenario-GCM combinations showiitthel change over time in aggregate
precipitation (Fig. C.3).

Looking at aggregate U.S. precipitation may maskoreal differences. For example, with
the A1B-CGCM combination mean precipitation is pated to consistently increase in most of
the Northeast and in Texas and decrease in the (BigstC.7). Besides this large scale behavior,
however, coherent patterns of changes in predimitare not easily identifiable.

The disagreement about future precipitation foumdrag scenario-GCM combinations at the
aggregate scale (Fig. C.3) is also apparent aA8R scale, as is seen by comparing the maps
shown in Fig. C.7-Fig. C.15. Although the scend@iGM combinations agree that precipitation
will increase in the Northeast, there is little egmnent elsewhere. Some consistent trends,
however, are identifiable for specific scenario-GQ@dmbinations, as seen in the following
examples: for A2-CGCM, an increase in the North dadrease in the South); for B2-CGCM a
decrease in the Central U.S. and in the Southd@s€SIRO a decrease in the Southeast for the
A1B scenario and in the Southeast and Northeagsh®A2 and B2 scenarios; and for MIROC a
large decrease in the Southeast, and decreasepwvbeee else with the exception of the
Northeast. In a few cases precipitation is not etqgeto monotonically increase (or decrease)
throughout the century, but rather alternate frariqals of increase to periods of decrease. This
is expected to happen in the southern East CoathdoA1B-CGCM combination, in the central
Great Plains for A2-GCMC, in the southern GreatirRldor A1B-CSIRO, and in Texas and

eastern California for B2-HADN.

167



C.3.3 Future potential evapotranspiration

Future potential evapotranspiration is deeply @ficed by the temperature projections,
which are expected to rise in all of the scena@@M combinations analyzed. Average (the
midpoint between minimum and maximum temperaturgjual temperature rises from 11.8° C
for 2005 to from 13.5 to 15° C for 2060 dependimgtloe scenario-GCM combination (Fig. C.4).
Annual average potential evapotranspiration, tloeeegfis projected to rise as well, from 3.5 mm
per day for 2005 to from 4.0 to 4.6 mm/d for 20€0g( C.5). Spatial distributions of potential
evapotranspiration increases for all the scenafiddGombinations are presented in Fig. C.16-
Fig. C.24. Noticeably, the only instances of expdalecrease are limited to scattered areas and
isolated periods, the most evident of which is Hast Coast and eastern Great Plains for B2-
CGCM in 2020. The projections from the MIROC modet the most extreme, with increases in
average U.S. potential evapotranspiration that exkc@% by 2060. The MIROC and CSIRO
models predict large increases in the Southegsecesly for the A2 scenario. Changes predicted
by CGC model are less dramatic and suggest incedHsE>.8%, 25.9% and 14.1% respectively
for the A1B, A2 and B2 scenarios by 2060. HoweYer,the Colorado River Basin the CGC
model projects increases in potential evapotraaspim of 21.1%, 25.1% and 18.3%,

respectively.

C.3.4 Future water yield

Projections for precipitation and temperatures (#retefore potential evapotranspiration)
given by the nine GCM-scenario combinations werua the water balance model to estimate
future traces of water wield for the period 200®@0Because the changes in projected water
yield are the direct result of the changes in migtion and potential evapotranspiration rates,
some of the trends of future yield can easily bcgrated. The overall picture, in fact, shows

water yield decreases throughout the 21st centhbiy. (C.6). Using the CGCM model, for
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example, decreases in mean annual yield acrosdJiBe of 15.8%, 21.7% and 17.2% are
expected by 2060 with the A1B, A2 and B2 scenarespectively.

Maps of future water yield for the all GCM-scenacimmbinations are provided in Fig. C.25
through Fig. C.33 and confirm the overall decresessen in Fig. C.6 (note that in the maps, the
scale is truncated at +10 cm and -10 cm). In génd@magnitude of the decrease is larger in the
eastern U.S., although areas of the central antewel.S. are expected to experience the largest
percentage decreases. Besides the case of themoBhst Coast and noticeably in the East for
the B2-CSIRO case, increases in yield are oftealitoed in small areas and only occur for a few
scenario-GCM combinations. Knowing only the chanigethe mean values of precipitation and
potential evapotranspiration may not, by itselffisa to indicate the direction of the change in
yield. In some circumstances, in fact, the highemeants of the distribution functions of
precipitation and potential evapotranspiration regip affect the distribution function of yield,
leading to some apparently counterintuitive resuitss is the case in the lower Colorado River
Basin, where an increase in yield (of over 20% 0@ is projected for the A1B-CGCM future
despite a projected decrease in precipitation aotease in potential evapotranspiration. This
large percentage increase in yield (which, by thg,ws only a fraction of a cm in absolute terms)
is caused by the increases in the variance of IppHdicted precipitation and potential
evapotranspiration. As a result of a larger vaman€ the climatic forcing, the distribution of
extreme events can be affected so as to lead toceemnse rather than a decrease in the average
water yield. This is especially true in arid climst as a consequence of the highly skewed
distributions of precipitation and water yield (eaahat precipitation can increase, above past

levels, during wet times, but cannot drop belowirdy dry times).
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Changes in mean water yield for the C3R®B scenario for: (A) 2020; (B)
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Fig. C.29

Changes in mean water yield for the C3AR20scenario for: (A) 2020; (B

2040; (C) 2060; (D) 2080.
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Changes in mean water yield for the C3B23cenario for: (A) 2020; (B) 2040;

(C) 2060; (D) 2080.
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Fig. C.32 Changes in mean water yield for the MIR&Cscenario for: (A) 2020; (B)
2040; (C) 2060; (D) 2080.
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Changes in mean water yield for the HAB®scenario for: (A) 2020; (B) 2040;
(C) 2060; (D) 2080.
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Tab. C.I Atmospheric Cf£zoncentrations and global mean temperature charighse IPCC

scenarios.
Year Al1B-AIM A2-ASF B2-MESSAGE
Cco* ATP CO; AT CO, AT
1970 325 325 325
1980 337 337 337
1990 353 353 353
2000 369 0.2 369 0.2 369 0.2
2010 391 0.5 390 0.4 388 na
2020 420 0.7 417 0.7 408 na
2030 454 1.0 451 0.9 429 na
2040 491 14 490 1.2 453 na
2050 532 1.7 532 15 478 na
2060 572 2.0 580 1.9 504 na
2070 611 2.2 635 2.3 531 na
2080 649 2.4 698 2.8 559 na
2090 685 2.6 771 3.2 589 na
2100 717 2.8 856 3.6 621 na

aln ppm. Sourcehttp://www.ipcc-data.org/ddc_co2.htnmeference model runs.
bMulti-model °C change from 1980-1999 mean. Souintig://www.ipcc.ch/pdf/assesment-
report/ard/syr/ard_syr_spm.pdiecadal changes were not listed for the B2 s@@nar

Tab. C.Il.  Scenarios of future conditions in the U.S

AlB A2 B2
Population growth Medium High Low
Economic growth High Low-Medium Low
Temperature increase Medium High Low

Tab. C.llIL  Scenario-GCM combinations.

AlB A2 B2
CGCM31 MR CGCM31 MR CGCM31 MR
CSIROMK 35 CSIROMK 35 CSIROMK 35
MIROC32 MR MIROC32 MR HADCM3
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Appendix D Vulnerability Assessment

D.1 Overview

Vulnerability, defined as the probability of watgrortage, was assessed at the ASR level for
current and future climatic and socio-economic dors. An instance of shortage occurs
whenever the water supply in a given ASR is insigfit to meet the demand.

Vulnerability for both current and future conditirwas evaluated by simulating water
allocation within the water networks of the U.Sdilndual water network simulations were
performed for the nine alternative futures. Eachutation started in 1953 and proceeded to year
2090. Vulnerability was measured for five 20-yaaret periods within the 1953-2090 time span.
Current vulnerability was estimated as the prolitgbdf shortage for the period 1986-2005.
Future vulnerability was estimated for four 20-ygariods centered at 2020, 2040, 2060 and
2080.

This chapter is organized as follows: section Dizg a definition of vulnerability as we
intend it in this framework; vulnerability assessnisefor current climatic and socio-economic
conditions and projected future climatic and saionomic conditions are discussed respectively

in sections D.3 and D.4.

D.2  Vulnerability: definition and appr oach

In general, vulnerability of a system is a functaithe extent at which it can be damaged by
the impact of an external hazard. The definitiowaherability and the implication that it has on
the approach used to estimate it has been the foicesveral papers (Blaikie, Cannon et al.

1994),(Kelly and Adger 2000). In its forth assessimméhe Intergovernmental Panel on Climate
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Change (IPCC) defined vulnerability as “the degieevhich these systems are susceptible to,
and unable to cope with, adverse impacts” (Schnei@emenov et al. 2007). While this last
definition seems to be widely accepted, it stithdes room for debate concerning the actual
guantification of the “degree of susceptibility &mlverse impacts”. In the context of water
resources, many studies have estimated the pdtempiact of future climate and socio-economic
scenarios on water resources by estimating futtojegtions of a set of water stresses indicators
(Postel 2000),(Vorosmarty, Douglas et al. 2005)eitwand Alcamo 2011).

In agreement with the IPCC definition, we obseivat,t conceptually, the vulnerability of a
system is a function of its ability to respond i®.[ cope with; adapt to) inherently variable
stressors. However, modeling the ability to respnstresses—via, for example, construction of
new reservoirs or alteration of allocation pri@#i—is a step beyond our goals in this assessment.
Rather, we seek to measure the likelihood that tatlep will be needed, and to objectively
address the uncertainty about the stressors affedtie system. In particular, we estimate
vulnerability as the probability that a criticalstgm threshold, itself a function of both the
capacity and the stressors of the system, willlossed (Korchendorfer and Ramirez 1996). In
the context of the US water supply system, thisinitefn translates into evaluating the
probability that, at given time and place, watemdad exceeds water supply. In other words, we

define vulnerability as the probability of shortage
V =P{S<D|=PfS-D <0 (D.1)
whereSis water supply, anB is water demand. In general, supply is defined as:

S=P-E+|+Q,, (D.2)
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whereP is precipitationE is actual evapotranspiratiohjs the input from upstream (which
may include reservoir releases), &gl is the net trans-basin diversion (the differencevben
diversions into and diversions out of the A3R)

SettingZ equal toS- D, equation (D.1) can be rewritten as:

V =PS<D]|=Pi[S-D <0]=Pr[zZ < 0] (D.3)

or more explicitly:

(Z‘ﬂz )2

0 -
V =Pz <0] :Lmje 2% dz (D.4)
2ol
where:
Hz = Hs — Hp (D.5)
o2 =og%+0?% -2co(S,D) (D.6)

andps, up, os, andop, cov(S, D)are the mean, standard deviation and covarianeeatsr
supply and water demand.

Equation (D.4) is the exact expression for vulngitghin the case ofcorrelated normally
distributedS and D. Or, in the case of non-Gaussian variables, itesponds to a First Order
Second Moment approximation.

Carrying out the integral of equation (D.4) yields,

% Unlike P, which is an exogenous input each y&is an endogenous quantity, because it depends on
storage and delivery decisions made in responteetpriorities determining water allocation wittan
network.Sof an ASR potentially is affected by water stonedhat ASR the previous year. And if the ASR
is part of a multi-ASR networl§ of the ASR potentially also is affected by watez\pously stored in
reservoirs of upstream ASRs. Th&gan only be obtained as an output of the wateirrguhodel. The
estimates oS used here follow the specification in equation @ih | to a given downstream ASR in a
given year including not only all inflows from upsam (which may include releases from upstream
reservoirs) but also releases from reservoirs withé given ASR. Note also that S includes the mthtt
must be used to satisfy the required in-stream flelease from the ASR.
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whereerf() is the Gauss error functitn
Therefore, as is clear from equation (D.7), thenetdbility of water supply to shortage as

defined in equation (D.1) is a function of the mestandard deviation and covariance of supply
and water demand, that iss, up, os, op, COV(S, D) We may then express the total change in
vulnerability, dV, as a function of the individual contributions cfianges in each of those

variables as follows:

v g Mg N gy Y gy O

O oL, 00 a0, dcovS,D)

dcov(S, D)

(D.8)

where each of the partial derivatives representstesitivity of the vulnerability to unit
changes in each of the independent varialdesy, os, op, andcov(S, D) In addition, each of the
five terms of equation (D.8) represents the coutidn to the total change in vulnerability
resulting from the changes j®, up, os, 6p, andcov(S, D) The partial derivatives appearing in
equation (D.8) are obtained differentiating equat{®.7) with respect tqs, pp, os, op, and

cov(S, D) The resulting derivatives are shown below in ¢igna (D.9)-(D.13).

_pstin )
GV - _ 1 [ 202 (D9)
OUs 2mo;
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OV __oslps i) o (D.11)

* The Gauss error function is also known as the atiity integral.
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Although not included here for brevity, the abovalgsis can be easily extended to define

changes in vulnerability as a function of changethe probabilistic characteristics BfE, |, and

Quiv, explicitly’.

D.3 Current Vulnerability of the U.S. water supply to shortage

The climate of the period 1986-2005 is taken taesent thecurrent climate Distribution
functions of precipitation, temperature and potdreivapotranspiration for the period 1986-2005
thus were used as input to the water balance ntod#gtermine the PDF of water yield for the
current climate.

Water demands, as mentioned above, are also chdrack by a stochastic component. The
annual consumptive use of a given ASR is depenidepart on the amount of precipitation as
well as on temperature and potential evapotrangmiraPDFs of water supply and water demand,
therefore, are strongly correlated, because théy derive from the climatic input (precipitation,

temperature and potential evapotranspiration).

® Initially we implemented an alternative approashmeasuring vulnerability, which involved creating
alternative synthetic traces water yield and dem#viel used a multivariate AR(1) model to generage th
synthetic traces based on the statistical projseofi¢he original estimates of precipitation, tengpere,
potential evapotranspiration, and related watddy®imulations using those traces provided altérea
statistically-identical versions of past and futaupply and demand. Combining the supply and demand
results of four synthetic traces with those of dhiginal trace provided a total of 100 years ofitsfor
each 20-year period of interest. This relativelynbersome approach provided estimates of vulnetgbili
very similar to those obtained using the approastdbed here.
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The historical values for climate variables (préeifion, temperatures and potential
evapotranspiration) and for water use allow usdmmute vulnerability estimates for what we
call current conditions

The procedure of water network simulation to esténtarrent vulnerability was as follows:

The ASR network was simulated for a total of 53rgerom 1953 to 2005.
- As initial condition, storages in 1953 were sehalf full.
- Aflat value of water demand, corresponding todkenand in 1985, was used for those
33 years.

- The first 33 years of simulation were consideredtrassient and discarded for any

vulnerability estimation purposes;

The analysis of the period 1986-2005 is here cduwig not only to provide an estimate of the
current probability of shortage, but mostly to #et benchmark to which future projections can
be compared.

Estimates ofis, uo, s, oo, andcov(S, D)for the current period for each ASR were computed
from the annual values &andD produced by the network simulations. For exampédpr a
given ASR is the mean of the 20 years (1986-200%)fcom the multi-year simulation.

Recalling that water surplus, Z, was defined asiifierence between water supply and water
demand, vulnerability is the probability that thater surplus is zero or negative. By simply
looking at the first moments of the water surplidPone can notice that vulnerability increases
as the mean of the surplusdecreases and as its variantgincreases. Taking into account both
effects simultaneously, one may also quantify vidb#ity as a function of the ratio of the mean
surplus to the corresponding standard deviafion,u.,/c,, referred to hereafter as the reliability
index. The reliability index quantifies in units tife standard deviation how far from shortage a
given ASR is.

Maps of current vulnerability and reliability rasi@re presented in Fig. D.1 and show that the
water supply system for much of the US west ofthississippi river is vulnerable under current
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hydro-climatic and socio-economic conditions. Hoewonly a few areas show vulnerability
values exceeding 0.05 at the ASR scale, and tmeyttebe those that rely heavily on mining of

groundwater.

D.4 Futurevulnerability of the U.S. water supply to shortage

Future vulnerability is evaluated for each of tieenGCM-scenario combinations for the

target 20-year periods centered around 2020, ZZBRN and 2080.

D.4.1 Sensitivity of vulnerability to changes in the ériv

Understanding how a given location responds to risiechanges in climatic and socio-
economic conditions is essential for future watenmagement planning. As explained above,
future changes in vulnerability of water supply sbortage are a function not only of the
magnitude of the changes in future supply and tarfudemands, but also of the sensitivity of
vulnerability to unit changes in supply and demadndurn, those sensitivities are functions of the
means, variances and covariances of P, E, and D.

The sensitivity of vulnerability to changes in Rat is, the change in vulnerability per unit
change in mean precipitatiams, for the CGCM/A1B scenario (Fig. D.2a) is largerthe western
US in a region coinciding with the region exhibgineliability the lower reliability index (Fig.
D.2b). A similar behavior occurs with respect taweges in mean demand,, but with opposite
sign (Fig. D.2). Therefore, these areas, in additm being quite vulnerable under the current
conditions, are more prone to large increases limevability for the same change in S, E and D.
In other words, these areas are vulnerable bedhegemean surplugy, is close to zero, and
because they are more sensitive to unit changesesmn surplus. As discussed above, it is not
only changes in the mean of the drivers that affedherability but also changes in their
variances and co-variances. For the CGCM/A1B sagnas the variance of S increases so does

the vulnerability of water supply to shortage owesst of the US (Fig. D.2c). Similar behavior is
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observed with respect to changes in the variané2 (#fig. D.2d). However, as shown above, for
the arid southwestern US, where S is close to Zaopeases in the variance actually lead to
decreases in the vulnerability. This is becausargel variance implies that, although large

surpluses are still rare, their likelihood incregdberefore leading to reductions in vulnerahility

D.4.2 Vulnerability under the CGCM/A1B scenario

Changes in future vulnerability reflect changeshe probability distribution functions of S
and D. Fig. D.5 shows the changes in vulnerabjligdicted for the CGCM31/A1B scenario for
the periods 2020, 2040, 2060, and 2080. It is eabte how the southwestern US and the Great
Plains areas are expected to face the greatesases in vulnerability, in addition to being
already the areas where shortages are more likdlgmatic increases in vulnerability are
expected throughout the entire 21st century forldheer CRB, the central Great Plains, and the
central California. Large increases are also eggeit the Rio Grande basin, Texas and Utah.
Noticeably, all those areas interested by the lairggrease in vulnerability are characterized by
having a current reliability index less than twag(FD.1). Interestingly, vulnerability seems to
monotonically increase overtime in most of the doynespecially in those areas where the
likelihood of shortage is already large. Decreasegulnerability, on the other hand, are quite
small and are only expected in few areas of theepatlS, Midwest and northern US.

It is interesting to observe the separate effettshanges in S and changes in D on resulting
changes in vulnerability. The effects of changeSiar D are each a combination of changes in
the mean and the standard deviation. The combiffedt® of changes in the mean and the
standard deviation of S for the A1B-CGCM future al®wn in Fig. D.3, for changes from the
current period to the four future periods centexegears 2020, 2040, 2060 and 2080. The effects
of changes in the mean and standard deviation egneegented by the first and third term of
equation 6.6, respectively. Similarly for demand). .4 shows the combined effects (i.e., the

sum of the second and fourth terms of equation)j@Bchanges in the mean and in the standard
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deviation of D for A1B-CGCM. Changes in mean andarece of S lead by 2060 to increases in
vulnerability over the central and southern GrdairB and in central California, and to decreases
in the Sacramento basin, the Sierras to the eatheofSan Joaquin Valley, Nevada, parts of
Arizona, parts of Washington and Oregon, the nontlégreat Plains, the Midwest, and the Mid-

Atlantic region (Fig. D.3). Changes in mean andarare of D are projected by 2040 to induce

increases in vulnerability in the Southwest, cdr@aifornia, and the southern Great Plains, and
to have little effect on vulnerability over the re$ the country (Fig. D.4). The increases in D in

many areas of the East, although substantial, &dlyetn the Southeast (see Tom et al., in

preparation), are insufficient to result in mucloishge at the ASR scale.

The cumulative effect of changes in mean S antienstandard deviation of S is expected to
increase vulnerability for the central Great Plaihsughout the entire Z1century. The Rio
Grande Basin and the Colorado River Basin, on therdhand, are expected to undergo alternate
periods of increasing and decreasing vulnerabdite to changes the PDF of S. A similar
behavior is detected in the central California, kehehanges in the PDF of S are expected to
determine an increase in vulnerability for the pesi 2020 and 2060 and a decrease in 2040 and
2080. As for the rest of the country, the contiitmutof changes in the moments of S is projected
to have negligible effect or to lead to decreaseguinerability. Although not shown, the latter
situation is primarily due to smaller variance iater supply projected through the course of the
21 century for the northwest, the northern GreatrBlaihe northern California and Texas.

Unlike the case of the water supply, the effectcbbnges in both mean and standard
deviation of water demand is projected to alwagsaase future vulnerability, with the noticeable
exception of the Sevier Lake and the Rio Grandénb@&s2020. The effect of water demand
change is larger in the Southwest, in central Gadifi and in the southern Great Plains, while
being essentially negligible in the rest of therdop

Finally, changes in vulnerability resulting fromojgcted changes in the S and D are of the
same magnitude or larger than those from changdwigorresponding means over most of the
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US, except in central coastal California, in the Saaquin river basin and in southern Florida

where the opposite is true.

D.4.3 Vulnerability by GCM and Scenario

The A1B-CGCM future represents only one possibtargiset of hydro-climatic and socio-
economic conditions. Analyzing alternative scermgad utilizing alternative CGMs is one way
to characterize the uncertainty that exists abdwt/tiinerability projections.

Fig. D.6 through Fig. D.13 present estimates faurk vulnerability projected for the other
eight alternative futures. Those maps show pictofethe future broadly similar to that of the
A1B-CGCM future. In particular, consistent increase probability of shortage are projected for
all nine futures predominantly in the Great Plaémea and in the Southwest. Nevertheless, the
magnitude of those increases can vary considemaigng the alternative futures, as does the
areal extent of the most vulnerable areas.

The CGCM model generally projects the less dramatieases in vulnerability. The CSIRO
model projects the largest increases in vulnetghili the Eastern U.S., as shown by comparing
its projections with those of the other GCMs forresponding scenarios. The MIROC model (as
well as the HADN for the B2 scenario), on the othand, projects the largest increases in
vulnerability in the Great Plains, in the southeentral U.S., and in the Colorado River Basin.

Among scenarios, the A2 is the one for which al @CMs project the largest increases in
vulnerability. Notable exceptions are the Color&iver Basin for the CGCM and the central

California for the CSIRO, where the highest vulibdigy are projected by the B2 scenario.
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Fig. D.1  Currentulnerability (A) and reliability index (B).
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Fig. D.2 Current sensitivity of vulnerability to unit charg@: (A) mean water suppl
(B) mean wateidemand (C) standard deviation of water supply; (D) staak
deviation of water demand; for the CGCM/Ascenario.
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Fig. D.3 Changes in vulnerability for the CGCM/A%¥Benario due to changes in average
water supply and standard deviation of water sufipty(A) 2020; (B) 2040; (C)
2060; (D) 2080.

05 05

05 0.5

20",
so W 0. 10" w

8o W 04

100" W 90 W 100" w 0 W

Fig. D.4 Changes in vulnerability for the CGCM/A%¥Benario due to changes in average
water demand and standard deviation of water derfand@A) 2020; (B) 2040;
(C) 2060; (D) 2080.
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Fig. D.5 Future vulnerability for the CGCM/A1B sagio for: (A) 2020; (B) 2040; (C)
2060; (D) 2080.
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Fig. D.6 Future vulnerability for the CGCM/A2 sceiaafor: (A) 2020; (B) 2040; (C)
2060; (D) 2080.
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Fig. D.7 Future vulnerability for the CGCM/B2 sceinafor: (A) 2020; (B) 2040; (C)
2060; (D) 2080.
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Fig. D.8 Future vulnerability for the CSIRO/A1B seio for: (A) 2020; (B) 2040; (C)
2060; (D) 2080.
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Fig. D.9 Future vulnerability for the CSIRO/A2 seeio for: (A) 2020; (B) 2040; (C)
2060; (D) 2080.
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Fig. D.10 Future vulnerability for the CSIRO/B2 saeo for: (A) 2020; (B) 2040; (C)
2060; (D) 2080.
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Future vulnerability for the
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Fig. D.12

Future vulnerability for the MIROC/A2 swaio for: (A) 2020; (B) 2040; (C)

2060; (D) 2080.

203




izo’w

110 2 ;
'y 100 W 90 W

80 W 0

110" w

100" W 90 W

Fig. D.13

Future vulnerability for the
2060; (D) 2080.

HADN/B2 samio for: (A) 2020; (B) 2040; (C)

204



Appendix E A Probabilistic Framework for Assessing Vulnerability to Climate

Variability and Change: The Case of the US Water Supply System

E.1 Abstract

We introduce a probabilistic framework for vulngtidy analysis and use it to quantify
current and future wvulnerability of the US waterpgly system. We also determine the
contributions of hydro-climatic and socio-economilcivers to the changes in projected
vulnerability. For all scenarios and global climatedels examined, the US Southwest including
California in the west and the southern Great Blénthe east was consistently found to be the
most vulnerable. For most of the US, the largestrdautions to changes in vulnerability come
from changes in evapotranspiration, followed bysthérom changes in precipitation. Projected
increases in demand have comparatively minor efieacthanges in vulnerability. Changes in
vulnerability from projected changes in the varesof precipitation, evapotranspiration and
demand are of the same magnitude or larger thae thhom changes in the corresponding means

over most of the US, except in central California &n southern Florida.

E.2 Vulnerability

The vulnerability of a system is a function of #@sility to respond toife., cope with, adapt
to) inherently variable stressors. Because the maig of the stresses and the capacity to
withstand them are uncertain, vulnerability shdagdguantified probabilistically and depends on
the joint probability distribution function of capty and stresses. We define vulnerability as the
probability that a critical system threshold, itselfunction of both the capacity and the stressors

of the system, will be crossed (Korchendorfer aathiRez 1996).
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For a water supply system, this probabilistic cbemaimplies that vulnerability depends on
the mean, variance, and co-variance of water sugpty water demand. More importantly, it
implies that to address questions about future gdmrin vulnerability, it is not sufficient to
guantify the effects of changes in the mean valakdydro-climatic and socio-economic
variables of interest—it is necessary also to gbanhe effects of changes in the inherent
variability of those variables (see Appendix D).

We quantify the vulnerability of a water supply t®ma as the probability that water demand
(D) will exceed water supphg. Equivalently, defining water surplug, asS-D, vulnerability is
the probability thaZ is negative. For a given variance of surplus, erdbility increases as the
mean surplug:, decreases; and for a given mean surplus, vuldiyabicreases as surplus
variance g%, increases if the mean surplus is positive, deitreases otherwise. The dependence
of vulnerability on the first two moments of theopebility distribution of surplus may also be
captured in terms of a reliability ratio, the ratibthe mean surplus to the corresponding standard
deviation, = u,/o,. The reliability ratio quantifies in units of tls¢andard deviation how far from
the critical threshold of zero the surplus of aegiVocation is, with locations of smaller reliatyili

ratios being more vulnerable.

E.3 Water Supply and Water Demand

Our approach to estimating water supply and dentzagins with analysis of historical
records and with preparation of two alternative necids of socioeconomic changes and
greenhouse gas emissions corresponding to the HP@ERES Al1B and A2 scenarios
(Nakicenovic, Alcamo et al. 2000; Zarnoch, Coraglal. 2010) Future hydro-climatic variables
for each scenario were obtained from downscalejegiions of three global climate models,
CGCM, CSIRO, and MIROC (Price, McKenney et al. 200&ater supply was estimated as
water yield,Y (the difference between precipitatidd, and actual evapotranspiratioB) plus

inflows subjected to management via reservoir gw@nd diversion. Water yield was estimated
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for 5x5 km cells with a detailed physically based, statistthmamical hydrologic model driven
by hydro-climatic variables (see Appendix A). Walemand was estimated as the net amount of
water depletion that would occur if water supplyrev@o more limiting than it has been in the
recent past, with water depletion (withdrawal mimasurn flow) projected for each of six
categories of water use as a product of a watedusger (€.g, population, irrigated area) and a
water use efficiency factoe(g, domestic withdrawals per capita, irrigation watepth) while
taking into account expected trends in water u§eiefcy as affected by climate change (see
Appendix B). Because comprehensive data on availdlelep aquifer storage were lacking,
groundwater mining was not included in water supply

We estimate the vulnerability of the water suppigtem over the Zicentury for 98 basins,
called Assessment Sub-Regions (ASRs) (U.S. WatsoulRees Council 1978), which make up
the contiguous 48 states of the US. The naturamiliws and existing water diversions between
ASRs result in 18 water networks, three multi-ASRworks (of 69, 10, and four ASRs) and 15
single-ASR networks that drain to the ocean or i@amada, or are closed basins. We use a
hydrologic network model to route water and sinmmlatater management in each network
(Labadie, Pineda et al. 1984). The simulations ideannual values of water flows between
ASRs, reservoir storage and evaporation levelaahm &SR, and water assigned to each demand,
all of which depend both on climate and the follogvpriorities: (1) in-stream flow requirements,
(2) trans-ASR diversions, (3) consumptive watersus@d (4) reservoir storage. These priorities
recognize the importance of guaranteeing a miniambunt of water for environmental and
ecosystem needs before water is diverted for athes, and allow trans-ASR diversions to occur

before within-ASR diversiofisBecause storage is assigned the lowest prioviyer is stored in

® With this set of priorities we ignore detailed cgting rules that could condition some trans-ASR
diversions, perhaps allowing some within-ASR densaodbe met before the trans-ASR diversion is fully
satisfied. For example, our priorities satisfy thi diversion from the Sacramento Basin to souther
California via the State Water Project before |atigérsions in the Sacramento Basin are met.
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a given year only after all the demands reachapla bbeservoir are satisfied. The probability
distribution functions ofS, D and Z and of their corresponding hydro-climatic drivease

estimated from the output of the hydrologic networkdel simulations over the period 1953 to
2090 (see Appendix D). We assess current vulnésalier the period 1986-2005 and future

vulnerability over the four 20-year periods centeaé¢ 2020, 2040, 2060 and 2080.

E.4 Current Vulnerability

The water supply system for much of the US weshefMississippi river is vulnerable under
current hydro-climatic and socio-economic condsidfig. E.1A).However, only a few areas
show vulnerability values exceeding 0.05 at the ASRIé, and they tend to be those that rely
heavily on mining of groundwater. The current l@vels of vulnerability gradually increase in
both degree (probability of shortage) and areamixtespecially in the southwestern US, as seen
for the CGCM/A1B hydro-climatic and socio-economimjection by comparing Fig. E.1A with

Fig. E.2C and Fig. E.2D.

E.5 Sensitivity of Vulnerability to Climate Change

The future change in vulnerability depends on #essivity of vulnerability to unit changes
in the mean and variance Bf E, andD and on the future changesRnE, andD. With respect to
the means, vulnerability decreases as nkeéand supply) increases (Fig. E.2A), and increases
meanE (and demand) increases (Fig. E.2B). The magnitfidkis sensitivity tends to be larger
in those areas of the western US exhibiting rdiigbiatios less than two (Fig. E.1B). These
areas, in addition to being vulnerable under therecii conditions, are more prone to large

changes in vulnerability than other areas for thmes change i, E, S or D. In other words,

" Modeling at the ASR scale will fail to detect solneal shortages, as in the case with Atlanta, hhic
because it is located in the upper reaches of#R As upstream of most of the water available iwithe
ASR itself.
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these areas are vulnerable because their meanisispllose to the critical threshold of zero, and
because they are more sensitive to unit changegam surplus.

As the variances of precipitation and evapotra@aspin increase so does the vulnerability of
water supply over most of the US (Fig. E.2B, C &d However, where mean surplus is
negative, increases in the variancePobr E lead to decreases in vulnerability. Currently this
occurs only in the Sevier Lake basin in Utah. Hogvethe condition is projected to occur in the
future under some GCM/scenario combinations inrtlest arid parts of the Southwest. This
negative sensitivity of vulnerability in the arid@hwest to unit changes in variancePodndE

is also true with respect to changes in the vagaiS andD (see Appendix D).

E.6 FutureVulnerability

Decreases in yield from the current period to 28@0projected for most of the US except in
parts of the Southwest where yield is projectedirtorease (Fig. E.3C). Although both
precipitation (Fig. E.3A) and actual evaporationg(FE.3B) are projected to decrease in the
SouthwestE is projected to decrease more thaim some basins leading to a small increase in
yield. For the rest of the country, bdthandE are projected to increase Hatincreases more,
leading to a decrease in yield. As a result, supplyrojected to decrease for most of the US,
except in isolated basins of the Southwest anddlighern Plains where it is projected to increase
(Fig. E.3E). Water demand is projected to incregeeerally over the entire US, but especially in
the lower Mississippi river basin largely as a tesfigrowth in irrigated agriculture (Fig. E.3D).

Vulnerability is projected to change as a resultcbnges in the probability distribution
functions of supply and demand. Changes in mbafrom the current period to 2060 are
projected to induce increases in vulnerability re tSouthwest, central California, and the
southern Great Plains, and to have essentiallyffieoteover the rest of the country (Fig. E.3G).
Changes in the variance &f are projected to have negligible effects on vwdbdity. The

combined vulnerability changes resulting from chesm mean and variance BfE, and thusS
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lead to increases in vulnerability (Fig. E.3F) otlee central and southern Great Plains and in
central California, and to decreases in the Saantrigasin, Nevada, and Arizona. Although not
shown (see Appendix D), vulnerability is projecteddecrease as a result of decreases in the
variance ofS for most of the US except in the southern GreainBl(Eastern Colorado, Kansas,
Arkansas and Texas), and in New Mexico and Arizéimaally, changes in vulnerability resulting
from projected changes in the variance$pE andD are of the same magnitude or larger than
those from changes in the corresponding meansmwst of the US, except notably in central
coastal California and the San Joaquin river baaih in southern Florida where the opposite is
true (Fig. E.3H).

The above assessment is based on the projectidhe @GCM/A1B combination, and thus
fails to account for any uncertainty about the getipns. Composite maps of the maximum (Fig.
E.4A) and minimum (Fig. E.4B) values of vulnerailfrom among the projections by the
MIROC, CSIRO, and CGCM models under scenarios At& A2 show that although there is
general agreement that the water supply systeimeo$authwestern US is the most vulnerable to
hydro-climatic variability and socio-economic chasgthere is also a great deal of disagreement
about the degree of changes in vulnerability. Tleagieement is greatest in the central and
southern Great Plains, the Rio Grande basin, therlcColorado River basin, the San Joaquin
river basin in California, and southern Idaho. (2¢mendix Dfor further detail on how the

projections differ among the scenario/model comimms.)

E.7 Concluding Remarks

These results assume no modifications to the phlysictucture of US water networks. In
addition, in-stream flow requirements and trans-A8Rersions were set constant, thereby
ignoring possible future changes in surface wagdrstribution. Indeed, it is the purpose of this
assessment to point to those locations where ddaptée.g., enlarged trans-basin diversion

capacity or within-basin water transfers and enbdneater conservation) will be most needed.
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Because all simulations project a steady declinthéinwater levels of the main Southwestern
reservoirs, indicating that water scarcity is pnityadue to demand-supply imbalance rather than
to insufficient storage capacity, increasing steragpacity within existing ASR networks does
not appear to be a successful adaptation strategy.

Contrary to a prior global scale conclusion (Vorasty, Green et al. 2000) and in concert
with a recent US study (Roy, L. et al. 2010), wadfthat future increases in the vulnerability of
the US water supply will depend more on changesvater yield than on growth in water
demand. Total water use in the US has levelednofécent years (Kenny, Barber et al. 2009) as
irrigated area in the West has diminished and theiency of water withdrawals in nearly all
sectors has improved (Brown 2000). Although clinetange will increase water demand, future
water use efficiency improvements will mitigate ttirapact so that overall increases in desired
water use are expected to be modest in comparigibrilve effect of climatic changes on water
yield and thus on water supply.

Our finding of greater vulnerability in the Southst@nd central and southern Great Plains of
the US is in keeping with other large-scale assesssn(Hurd, Leary et al. 1999; Vorbsmarty,
Green et al. 2000; Kenny, Barber et al. 2009). Irtgodly, our work adds an accounting for
reservoir storage, trans-basin diversions and mgutof water among basins; a more
comprehensive effort to project future desired watee; and a probabilistic approach to
vulnerability. This probabilistic methodology cae bpplied to any vulnerability analysis, and is
the only methodology that both accounts for thebphilistic character of the drivers and allows

for explicit inclusion of thresholds.
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A)

B)

Fig. E.1 Current vulnerability (A) and reliabilityatio (B), and future vulnerability
projected for 2040 (C) and 2060 (D) by the CGCM wglaghder the A1B SRES
scenario.

A) B)

Current sensitivity of vulnerability taniti changes in mean precipitation (A),
mean evapotranspiration (B), standard deviation podcipitation (C), and
standard deviation of evapotranspiration (D) f&m
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A)

B)

207y,

110" Wy

100" w 20’ W

Fig. E.3

Projected changes from the current petco@060 in mean precipitation (A),
mean evapotranspiration (B), mean yield (C), meamahd (D), and mean
supply (E) [cm], and changes in vulnerability résigl from changes in supply
(F) and demand (G), projected by the CGCM modeleuride A1B scenario.
Ratio of contribution to total change in vulneréiby changes in the variance
of surplus to those by changes in the mean of gsif().
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100" W 90 W

Composite for 2060 of maximum (A) and imam (B) vulnerability projected
by six GCM/SRES-scenario combinations.
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