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ABSTRACT 

 

AN EXPLORATION OF VIRAL RNA-MEDIATED STRATEGIES TO STALL AND 

REPRESS THE CELLULAR EXORIBONUCLEASE XRN1 

 

The regulation of mRNA decay plays a vital role in determining both the level and 

quality control of cellular gene expression in eukaryotes. Since they are likely 

recognized as foreign/unwanted transcripts, viral RNAs must also successfully navigate 

around the cellular host RNA decay machinery to establish a productive infection. This 

bypass of the cellular RNA decay machinery can be accomplished in many ways, 

including the sequestering of regulatory proteins or inactivating enzymatic components. 

One attractive way for RNA viruses to undermine the cellular RNA decay machinery is 

to target the cellular exoribonuclease XRN1 since this enzyme plays a major role in 

mRNA decay, appears to coordinate transcription rates with RNA decay rates, and is 

localized to the cytoplasm and thus readily accessible to cytoplasmic RNA viruses. 

We have previously shown that many members of Flaviviridae (e.g. Dengue, 

West Nile, Hepatitis C and Bovine Viral Diarrhea viruses) use RNA structures in their 5’ 

or 3’ untranslated regions (UTRs) to stall and repress XRN1. This results in the 

stabilization of viral RNAs while also causing significant dysregulation of cellular RNA 

stability (and thus dysregulation of overall cellular gene expression). In this dissertation 

we first extend this observation to another member of the Flaviviridae, Zika virus, by 

demonstrating that structures in the 3’ UTR of the viral genomic RNA can stall and 

repress XRN1. Significantly, we also demonstrate that the 3’ UTR of the N mRNA of the 
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ambisense segment of Rift Valley Fever virus, as well as two other phleboviruses of the 

Phenuiviridae, also can effectively stall and repress XRN1. This observation establishes 

XRN1 stalling in an additional family of RNA viruses, in this case in the order 

Bunyavirales. We have mapped the region responsible for XRN1 stalling to a G-rich 

core of ~50 nucleotides and provide evidence that the formation of a G-quadruplex is 

contributing to stalling of XRN1.  

In addition to phleboviruses, we also detected RNA regions that stall XRN1 in the 

non-coding regions of two other virus families. The 3’ UTRs of all four ambisense 

transcripts of Junin virus, an arenavirus, stall and repress XRN1. This observation was 

extended to two additional arenaviruses, suggesting that XRN1 stalling may be a 

conserved property of the 3’ UTRs in the Arenaviridae. Finally, we demonstrate that the 

non-coding RNA from beet necrotic yellow vein virus RNA segment 3 is produced by 

XRN1 stalling and requires a conserved sequence called the coremin motif. Collectively, 

these observations establish XRN1 stalling and repression as a major strategy used by 

many virus families to effectively interface with the cellular RNA decay machinery during 

infection. 

We performed two proof of principle studies to extend the significance of the 

observation of XRN1 stalling during RNA virus infections. First, since XRN1 stalling may 

be associated with successful viral gene expression as well as cytopathology, we 

explored whether we could identify a small molecule compound that could interfere with 

the knot-like three helix RNA junction structure that stalls XRN1 in the 3’ UTR of 

flaviviruses. We tested several triptycene-based molecules, compounds that have been 

previously shown to intercalate into three helix junctions and identified four triptycene 
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derivatives that interfere with XRN1 stalling. Lastly, we explored whether there might be 

a cellular exoribonuclease that could navigate through the well-characterized flavivirus 

structure that effectively stalls XRN1. Our efforts focused on the mammalian 

Dom3z/DXO enzyme which contains both 5’ decapping and 5’-3’ exoribonuclease 

activity. Interestingly, recombinant Dom3z/DXO enzyme did not stall on RNAs 

containing the 3’ UTR of either Dengue virus or the Rift Valley Fever Virus N mRNA. 

This may suggest that there is a molecular arms race of sorts between the cell and the 

virus for supremacy of regulating the 5’-3’ decay of RNA during infection.  
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Chapter 1: Introduction 

 This first chapter will be a review of the literature and is broken into four different 

sections. Section I will give an overview of the RNA decay pathway and various factors 

involved in regulating the different pathways. Section II is an overview of how various 

DNA and RNA viruses interact with the cellular RNA decay machinery. Section III gives 

evidence of alternative RNA structures that can stall the XRN family of enzymes. 

Section IV gives insight into the virus families used in this study and why they are good 

candidates to generate RNAs that could stall and repress XRN1. 

   

Section I: Cellular RNA decay machinery 

 In all eukaryotic organisms, the cellular messenger RNA (mRNA) decay 

machinery plays an important role in determining the quality and quantity of gene 

expression. The RNA decay machinery (Figure 1) is critically responsible for the 

removal of unwanted, aberrant, or spent transcripts. This section will give insight on how 

mRNAs are typically degraded.  
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Deadenylation-dependent RNA decay 

An mRNA marked for decay will most likely go down the deadenylation-

dependent mRNA decay pathway. In this pathway, the first step is deadenylation 

(Anderson and Parker, 1998). Deadenylation is the process of shortening of the poly(A) 

tail of the mRNA and is oftentimes the rate-limiting step in the decay of an mRNA 

(Muhlrad and Parker, 1992; Shyu et al., 1989). Several deadenylases can be involved in 

the process, but two enzymes - Carbon catabolite repression 4/negative on TATA-less 

Figure 1. Two major pathways in messenger RNA decay. An mRNA typically has a 5’ 7-
methyl cap (dark blue oval), an open reading frame (ORF), and a 3’ poly(A) tail. mRNA decay 
will usually begin with deadenylation and then proceed down either the 5’-3’ decay pathway 
(which requires decapping for the major exonuclease (XRN1) to gain access to the transcript) or 
the 3’-5’decay pathway (in which decay is mediated by the exosome complex). The blue arrows 
indicate the deadenylation-independent pathway where an endonucleolytic cleavage occurs in 
the body of the transcript and is directly fed into the 5’-3’ or 3’-5’ decay pathway. The gray donut 
represents the Lsm1-7 complex that interacts with the 3’ end of deadenylated mRNAs and helps 
to target the transcript for decapping. 
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(CCR4-NOT)/ CCR4 associated factor (CAF1) (Albert et al., 2000; Chen et al., 2001) 

and poly (A) binding protein-stimulated poly (A) ribonuclease (PAN2-PAN3) (Boeck et 

al., 1996; Brown et al., 1996) - are generally considered to be the major players. 

Additional deadenylases that are involved in poly(A) shortening include the poly(A)-

specific ribonuclease (PARN) (Körner and Wahle, 1997; Li et al., 2001), nocturnin 

(Baggs and Green, 2003; Blanco et al., 2017; Delis et al., 2016; Grönke et al., 2009), 

and most recently the target of EGR1 protein 1 (TOE1, also known as CAF1Z) which is 

responsible for removing a poly(A) tail from small non-coding RNA during 3’ end 

processing (Table1) (Lardelli et al., 2017; Wagner et al., 2007).  

Table 1. Major Deadenylase Enzymes. 

Protein name: Abbreviation: Function: References: 
Poly (A) binding protein-
stimulated poly (A) 
ribonuclease complex 

PAN2-PAN3 
complex Trims poly (A) tails  

(Boeck et al., 
1996; Brown et 
al., 1996) 

Carbon catabolite 
repression 4/negative on 
TATA-less/CCR4 
associated factor 
complex 

CCR4-NOT 
complex 

After timming then 
removes remaining 
adenosine 

(Albert et al., 
2000; Chen et 
al., 2001) 

Target of EGR1 protein 1 TOE1 or CAF1Z Removal of Poly (A) 
tail from small RNAs 

(Lardelli et al., 
2017; Wagner 
et al., 2007) 

Nocturnin NOCT 

poly(A) tail regulation 
of mRNAs associated 
with circadian 
responses 

(Baggs and 
Green, 2003; 
Blanco et al., 
2017) 

Poly (A)-specific 
ribonuclease PARN 

Involved in RNA 
processing and 
deadenylating AU-rich 
mRNAs 

(Berndt et al., 
2012; Helfer et 
al., 2012; 
Ishikawa et al., 
2016; Shukla 
and Parker, 
2017) 
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The CCR4-Not and PAN2-PAN3 complex 

Current models of deadenylation by the PAN2-PAN3 and CCR4-NOT complex 

indicate that poly(A) tail shortening happens in two phases. The first phase requires the 

PAN2-PAN3 complex. PAN2 is the subunit that is thought to be involved in the initial 

trimming of the poly(A) tail (Yamashita et al., 2005) and PAN3 is the cofactor/regulatory 

subunit (Brown et al., 1996; Wolf et al., 2014). PAN3 will form a homodimer that will 

then bind to PAN2 to make the complex complete (Schäfer et al., 2014). In humans 

there are two isoforms of PAN3 (PAN3S and PAN3L) that can respectively either 

promote or suppress PAN2 activity (Chen et al., 2017). PAN3L will diminish the 

deadenylase activity of PAN2 and PAN3S has the opposite effect by stimulating 

deadenylase activity (Chen et al., 2017). Interestingly, the PAN2-PAN3 complex is 

activated by the polyadenylate-binding protein (Pab1) (Boeck et al., 1996), but in vitro 

can be active without it (Schäfer et al., 2014). After the PAN2-PAN3 complex trims the 

poly(A) tail, this allows the CCR4-NOT complex to finish deadenylation in the second 

phase in a more processive fashion.  

Carbon catabolite repression 4/negative on TATA-less (CCR4-NOT)/ CCR4 

associated factor (CAF1) complex is responsible for the majority of deadenylation in 

mammalian cells (Albert et al., 2000). Several RNA binding proteins can recruit the 

CCR4-NOT complex to mRNAs for deadenylation, such as DDX6 (Ozgur et al., 2015), 

Tristetraprolin (TTP) (Fabian et al., 2013; Lykke-Andersen and Wagner, 2005; Sandler 

et al., 2011), BTG (Prévôt et al., 2001; Rouault et al., 1998), Pumilio and fem-3 binding 

factor (PUF) proteins with Nanos (Nos) (Van Etten et al., 2012; Kadyrova et al., 2007; 

Suzuki et al., 2014; Weidmann et al., 2014), and GW182 via specific miRNAs 
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(Chekulaeva et al., 2011; Fabian et al., 2011; Kuzuoğlu‐Öztürk et al., 2016). The CCR4-

NOT complex is composed of eight different subunits (NOT1, NOT2, NOT3, NOT4, 

CCR4, CAF1, CAF40, and MMI1) and all are required for function (Ukleja et al., 2016). 

The CCR4-NOT subunit 1 is the main scaffold of this multi-component complex and 

deletion of this protein will induce apoptosis (Ito et al., 2011; Yamaguchi et al., 2018). 

The Carbon Catabolite Repressor Protein 4 Homolog (also called CCR4 and CNOT6) 

and the CCR4-associated factor 1 (CAF1) (also known CNOT7) have enzymatic roles in 

RNA decay. CNOT6 is the major the 3’ to 5’ catalytically active component (Mittal et al., 

2011). CNOT7 has minor catalytically activity for poly(A) tails (Daugeron et al., 2001; 

Tucker et al., 2001), yet it still appears to be functionally significant in certain instances. 

In dendritic cells, it was shown CNOT7 regulates mRNA transport, local translation, and 

synaptic plasticity of cultured cells. The same study also showed that decrease of 

CNOT7 will lead to impaired cognitive functions (McFleder et al., 2017). A second 

isoform of CNOT7 was identified called CNOT7v2 that is made through alternative 

splicing (Chapat et al., 2017). It has no deadenylase activity and does not bind the BTG 

protein. This isoform can interact with the CCR4-NOT complex and regulate PRMT1-

dependent arginine methylation (Chapat et al., 2017). Furthermore, another example of 

regulation is during germ cell development. The RNA binding protein DND1 is involved 

in recruitment of the CCR4-NOT complex for survival of primordial germ cells (PGCs) 

and loss of DND1 will result in loss of PGCs (Yamaji et al., 2017). In addition, deletion of 

the subunit 3 of the CCR4-NOT complex will lead to lethal cardiomyopathy by 

dysregulation of the key autophagy regulator ATG7 (Yamaguchi et al., 2018). 
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Target of EGR1 protein 1 (TOE1, also known as CAF1Z)  

The target of EGR1 protein 1 (TOE1) was found to have deadenylase activity on 

small non-coding RNAs and is localized in the nucleus but can be shuttled to the 

cytoplasm (Son et al., 2018; Wagner et al., 2007). Recent data suggest that TOE1 is not 

a major player in the main mRNA decay pathway, but rather is involved in the 

biogenesis of small nuclear RNA (snRNA) by trimming adenylated 3’ ends (Lardelli et 

al., 2017). TOE1 will also help prevent the degradation of the immature snRNA (Son et 

al., 2018).  

 

Nocturnin 

Nocturnin is a specialized deadenylase involved in poly(A) tail regulation of 

mRNAs associated with circadian responses (Baggs and Green, 2003; Blanco et al., 

2017; Green and Besharse, 1996). Multiple studies in mice have shown optimal 

expression of nocturnin occurs in a circadian fashion (Garbarino-Pico et al., 2007; 

Kojima et al., 2010; Wang et al., 2001b) and is regulated by the heterodimeric 

transcription factor CLOCK/BMAL (Li et al., 2008). Interestingly, a knockout of nocturnin 

in mice causes resistance to diet-induced obesity, whereas mice over-expressing 

nocturnin are obese (Green et al., 2007). In goldfish, nocturnin has two isoforms - 

nocturnin A increases after feeding while nocturnin B expression remains constant 

(Blanco et al., 2017). In zebrafish, nocturnin B is expressed more in retinal 

photoreceptor layers and is important for regulating retinal circadian rhythmicity (Yang 

et al., 2017). In Arabidopsis thaliana, nocturnin is called AtHesperin (AtHESP) and plays 
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a role in stress responses as knockouts of AtHESP improve light absorption (Delis et 

al., 2016). 

 

Poly (A)-specific ribonuclease (PARN) 

 Poly (A)-specific ribonuclease (PARN) is located in the nucleus but has the 

capability to be shuttled into the cytoplasm (Son et al., 2018). This deadenylase has a 

preference for targeting mRNAs containing AU-rich elements (Helfer et al., 2012; Lin et 

al., 2007). PARN activity can be enhanced by binding the mRNA 5’ cap (Gao et al., 

2000; Niedzwiecka et al., 2016; Nilsson et al., 2007; Virtanen et al., 2013; Wu et al., 

2009). In addition to a potential role in mRNA deadenylation, PARN is also involved in 

the processing of Y RNA (Shukla and Parker, 2017), 18S rRNA (Ishikawa et al., 2016; 

Montellese et al., 2017), snoRNA (Berndt et al., 2012; Dhanraj et al., 2015), telomerase 

RNA component (TERC) (Boyraz et al., 2016; Moon et al., 2015a; Shukla et al., 2016; 

Tummala et al., 2015), and scaRNA (Berndt et al., 2012). PARN also displays 

interesting roles in plant biology. A root-colonizing fungus called Piriformospora indica 

secretes cellotriose which benefits the plant by inducing growth as well as resistance to 

abiotic stress and biotic diseases. This symbiotic relationship is affected when a single 

mutation occurs in the gene encoding PARN (Johnson et al., 2018). In humans, 

mutations in PARN can cause diseases such as familial pulmonary fibrosis, bone 

marrow failure, and hypomyelination (Dhanraj et al., 2015; Newton et al., 2016; 

Tummala et al., 2015). 
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The 3’ to 5’ decay pathway 

The exosome 

One of the routes of RNA decay is the 3’ to 5’ decay pathway. A multi-subunit 

protein complex called the exosome will bind the deadenylated 3’ end of a mRNA and 

start degrading the body of the transcript (Anderson and Parker, 1998; Mitchell et al., 

1997). The exosome has been implicated in processing of small non-coding RNA 

(Allmang et al., 1999), ribosomal maturation (Schuller et al., 2018), and degrading 

aberrant RNAs (Kadaba et al., 2004; Sayani and Chanfreau, 2012). The exosome core 

component is made up of nine non-nucleolytically active subunits and will bind to the 

RRP44 subunit (also known as DIS3), which is the active nuclease (Kowalinski et al., 

2016; Zinder et al., 2016). The six-subunit PH-like ring (RRP46-RRP45, RRP41- 

RRP42, RRP43- MTR3) forms a core structure via three heterodimers that bridges to 

the S1/KH ring (RRP40, RRP4, and CSL4) (Liu et al., 2006). The RRP6 protein will also 

bind to the S1/KH ring to activate the nuclear RNA exosome (Wasmuth and Lima, 2017; 

Zinder et al., 2016). In yeast, the SKI-complex will funnel RNA through the exosome 

(Halbach et al., 2013). RBM7, ZCCHC8 and MTR4 are three other co-factors required 

for effective RNA targeting by the exosome (Puno and Lima, 2018; Wasmuth et al., 

2017). In humans, RRP44 (DIS3) has two alternatively spliced isoforms that are both 

catalytically active (Robinson et al., 2018). Multiple myeloma patient samples, as well as 

other cells from cancer patients, tend to have higher levels of one isoform than the 

other, which could be a possible way to identify the disease since healthy cells have 

similar of levels of both isoforms (Robinson et al., 2018). Once the exosome degrades 

the mRNA to the 5’ cap of the mRNA, a scavenger decapping enzyme (DcpS) will 
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hydrolyze the cap to complete the degradation of the mRNA (Liu et al., 2002, 2008; 

Wang and Kiledjian, 2001). 

 

RNA uridylation 

In humans, DIS3‐like exoribonuclease 2 (DIS3L2) (Malecki et al., 2013) is a 

member of DIS3 family of proteins that is independent from the exosome and targets 

poly(U) tails but can also degrade poly(A) tails (Chang et al., 2013; Lubas et al., 2013; 

Ustianenko et al., 2013). The Lin28-let-7 pathway is responsible for uridylation of the 

pre-let-7 miRNA by recruiting 3′ terminal uridylyl transferases (TUTase), Zcchc11 

(TUT4) and Zcchc6 (TUT7), to inhibit dicer-mediated pre-miRNA processing (Hagan et 

al., 2009; Heo et al., 2008, 2009; Piskounova et al., 2011; Thornton et al., 2012). This 

led to the discovery that TUT/DIS3L2 is a surveillance system for aberrant small non-

coding and ribosomal RNAs (Ishikawa et al., 2018; łabno et al., 2016; Pirouz et al., 

2016; Reimão‐Pinto et al., 2016; Ustianenko et al., 2013, 2016). In humans, mutations 

in DIS3L2 have been associated with Perlman syndrome (Astuti et al., 2012). 

Furthermore, DIS3L2 is essential for regulation of cell growth and division (Higashimoto 

et al., 2013). 

 

The 5’ to 3’ decay pathway 

 The 5’-3’ decay pathway is currently considered to be the major route of mRNA 

decay. After deadenylation, the mRNA will go through decapping to generate an access 
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point for 5’-3’ exoribonucleases to come in and degrade the RNA. Information on 

decapping and several 5’-3’ exoribonucleases is presented below.  

 

Decapping 

 Decapping is an important part of RNA decay and require enhancers such as the 

LSM 1-7 protein complex (Bouveret et al., 2000; Tharun et al., 2000; Vindry et al., 

2017), DCP1 (Beelman et al., 1996; Charenton et al., 2016; Mugridge et al., 2018), 

PATL1 (Pat1) (Fourati et al., 2014; Vindry et al., 2017), DDX6 (Dhh1) (Mas et al., 2006; 

Wurm et al., 2016), LSM14 (Scd6) (Fromm et al., 2012; Miller et al., 2018), and a set of 

EDC proteins (Harigaya et al., 2010; Kshirsagar and Parker, 2004; Mugridge et al., 

2018; Wurm et al., 2016). The decapping enzymes are responsible for hydrolyzing the 

5’ 7-methylguanosine cap by releasing 7-methylguanosine 5′-diphosphate, thus creating 

a monophosphate on the 5’ end of the mRNA (van Dijk et al., 2003; Dunckley and 

Parker, 1999; Lykke-Andersen, 2002; Song et al., 2010; Wang et al., 2002). Two 

characterized enzymes responsible for the decapping reaction, DCP2 and NUDT16, are 

part of the Nudix superfamily of hydrolases (Li et al., 2011; Song et al., 2013). Activation 

of DCP2 requires binding of DCP1 to the N-terminal regulatory domain (NRD) to create 

the DCP1-DCP2 complex (Vindry et al., 2017). These enzymes generally prefer to work 

on a certain set of transcripts. NUDT16, for example, will decap short unmethylated 

dinucleotide capped RNAs (Grzela et al., 2018). This opens the possibility that other 

decapping enzymes exist in the cell. In recent years, several other enzymes have also 

been identified to have decapping activity (NUDT2, NUDT3, NUDT12, NUDT15, 
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NUDT17, and NUDT19) (Song et al., 2010). The relative contribution to decapping of 

cellular transcripts remains to be explored. 

 

5’-3’exoribonuclease XRN1  

 The major decay enzyme in the 5’-3’ decay pathway are members of the XRN 

family of exoribonucleases. Messenger RNAs will be degraded by the XRN family after 

decapping has occurred. Information on several XRNs and graphical amino acid 

alignment (Figure 2) from different organisms is presented below. 

 

Figure 2. Graphical alignment of amino acid sequence of several XRNs from varies of 
species. Amino acid alignment of XRN from different species with Geneious version 11.1.5. 
The black represents similarities between the difference amino acid sequences. Amino acid 
sequences used are Homo sapiens (NCBI accession number: NP_061874), Kluyveromyces 
lactis (NCBI accession number: CAG98788), Saccharomyces cerevisiae XRN1 (NCBI 
accession number: AAA35219), Culex quinquefasciatus (NCBI accession number:EDS29953), 
Drosophila melanogaster (NCBI accession number: CAB43711), Mus musculus (NCBI 
accession number: NP_036046), Arabidopsis thaliana (NCBI accession number: AAG40731), 
and Saccharomyces cerevisiae RAT1 (NCBI accession number: NP_014691). 
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Saccharomyces cerevisiae XRN1 (KEM1, SKI1, SEP1) 

 To date, most information on the 5’-3’ exoribonuclease XRN1 has been obtained 

from studies in Saccharomyces cerevisiae. XRN1 is responsible for degrading 5’ 

monophosphorylated RNA transcripts (Jinek et al., 2011) in the cytoplasm, for example 

the products of decapping (Hsu and Stevens, 1993; Muhlrad et al., 1994). Yeast XRN1 

is a highly processive enzyme that has a practical use in the molecular biology 

laboratory – it is used to remove ribosomal RNAs from total RNA samples for RNA-seq 

studies (He et al., 2010). In addition to its role in mRNA decay, XRN1 is responsible for 

the removal of a wide range of unwanted RNAs in the cell including aberrantly spliced 

mRNAs (Harigaya and Parker, 2012), long non-coding RNAs (e.g. XRN1-sensitive 

unstable transcripts (XUTs) (Van Dijk et al., 2011; Wery et al., 2016, 2018) and tRNA 

introns (Whipple et al., 2011; Wu and Hopper, 2014). Deletion of cytoplasmic XRN1 is 

not lethal in yeast but does have significant physiological ramifications (Heyer et al., 

1995; Kenna et al., 1993) such as reduced growth rate (Larimer and Stevens, 1990), 

microtubule destabilization (Interthal et al., 1995), reduced sporulation (Tishkoff et al., 

1991), and defects in filamentous growth (Kim and Kim, 2002). Lastly, XRN1 also plays 

a role in transcriptional buffering - a communication that occurs in yeast between RNA 

decay rates and RNA synthesis rates to maintain homeostasis of gene expression. 

(Abernathy et al., 2015; Sun et al., 2013). Thus, this enzyme is clearly a key player in 

cell biology. 
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Drosophila XRN1 (Pacman) 

 In Drosophila, the homolog of XRN1 is called Pacman (Till et al., 1998) and it is 

essential for numerous aspects of fly development. Pacman localizes to cytoplasmic 

particles and is required for normal spermatogenesis (Zabolotskaya et al., 2008). 

Pacman is responsible for interacting with the protein called Puckered, a phosphatase 

involved in the JNK (c-Jun N-terminal kinase) pathway (Grima et al., 2008). Puckered is 

critical for thorax development, dorsal closure, and wound healing, therefore mutations 

in Pacman will lead to inability of wound healing in the fly and generation of small thorax 

variants (Grima et al., 2008). Another phenotype seen in Drosophila with mutant 

Pacman is that imaginal discs (wings) are not formed correctly. Four mRNAs that have 

been linked to small imaginal disc formation, insulin-like peptide (Dilp8), neuropeptide-

like precursor 2 (Nplp2) (Jones et al., 2016), pro-apoptotic hid, and reaper mRNA 

(Waldron et al., 2015), are usually degraded by Pacman to tightly regulate their 

abundance during development (Jones et al., 2013b, 2016; Waldron et al., 2015).   

 

Plant XRN4 

 In plants, the active homolog of the XRN1 enzyme is called XRN4 and is found in 

the cytoplasm. Not surprisingly, XRN4 also plays major roles in numerous aspects of 

plant biology. XRN4 is responsible for regulating 25% of the Arabidopsis seedling 

transcriptome (Merret et al., 2013) and is key for the removal of certain mRNAs required 

to establish dormancy or germination (Basbouss-Serhal et al., 2017; Rymarquis et al., 

2011). Knockdown of XRN4 leads to suppression of oleosin isoprotein (OLE1), a major 

membrane protein required to create oil bodies in plants (Hayashi et al., 2012). XRN4 
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has also been implicated in the ethylene response pathway that regulates a wide range 

of developmental processes in plants (Potuschak et al., 2006). The addition of ethylene 

leads to an increase of XRN4, which in turn antagonizes the negative feedback 

regulation of a key transcription factor (EIN3) mediating ethylene-regulated gene 

expression (Olmedo et al., 2006; Potuschak et al., 2006; Souret et al., 2004; Weber et 

al., 2008). Finally, XRN4 has been shown to have antiviral activity in plants. 

Overexpression of XRN4 led to a decrease in pathogen replication during rice stripe and 

tobacco mosaic viral infections (Jiang et al., 2018).  

 

XRN2 (Rat1) and Rai1 

 The cytoplasmic XRN1 enzyme has a counterpart found in the nucleus called 

XRN2 (also known as Rat1 in yeast, XRN2/3 in plants). In yeast, XRN2/Rat1 interacts 

with Rat1p interacting protein 1 (Rai1) (Xue et al., 2000) and this interaction enhances 

XRN2 function because Rai1 has 5’ pyrophosphohydrolase activity (Jiao et al., 2010). 

Rai1 is selective and targets unmethylated cap mRNAs (Chang et al., 2012), thus 

assisting the quality control function of XRN2.  

XRN2/Rai1 are localized near the transcriptional complex in the nucleus and are 

ready for recognition of aberrant mRNA (Davidson et al., 2012). XRN2 plays a key role 

in transcription termination by degrading downstream nascent RNA after the pre-mRNA 

is cleaved by the polyadenylation signal (PAS) endonuclease CPSF73 (Eaton et al., 

2018; El Hage et al., 2008; Kim et al., 2004; Park et al., 2015). XRN2 quickly hops on 

the downstream fragment and is thought to eventually contact RNA polymerase II to 

induce termination in a torpedo-like mechanism (Sansó et al., 2016; West et al., 2004). 
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In addition to its role in mRNA biogenesis and quality control in yeast, XRN2 mutants 

also demonstrate accumulation of pre-5.8S ribosomal RNA (Henry et al., 1994) and pre-

25S ribosomal RNA (Geerlings et al., 2000). Biochemical analyses have shown that 

XRN2 is important for trimming the excess 5’ end of pre-5.8S ribosomal RNA (Axt et al., 

2014; Granneman et al., 2011), which is required for ribosomal RNA biogenesis. 

 

Human XRN1 and Disease 

 In humans, XRN1 has been linked to several diseases such as intranuclear 

inclusion body disease (INIBD) and osteogenic sarcoma. In INIBD, XRN1 is found in 

neuronal and glial nuclear inclusions, co-localizing with ubiquitin (Mori et al., 2018). This 

results in sequestration of this major cellular exoribonuclease, leading to a decrease in 

its activity in the cell and perhaps contributing to the pathogenesis of INIBD. In 

osteogenic sarcoma, several patient samples and cell lines were shown to possess a 

mutation in the human XRN1 gene which leads to downregulation of XRN1 mRNA and 

protein expression (Zhang et al., 2002). Downregulation of XRN1 could lead to 

stabilization of many oncogene mRNAs, resulting in uncontrolled cellular proliferation. 

However clearly establishing cause and effect requires further study.  

 

Other 5’-3’ exoribonucleases 

 Advances in technologies have allowed the discovery of additional 

proteins/enzymes that may be involved in RNA decay. The identification of non-

canonical 5’ caps, for example, has fueled the discovery for the enzymes responsible 
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for their decay (Jiao et al., 2017). The next section will provide a brief overview of two 

recently described enzymes that possess 5’-3’ exoribonuclease activity in mammalian 

cells. 

 

Yeast Dxo1 

 In yeast, a protein called Dxo1 has both decapping activity as well as 5’-3’ 

exoribonuclease activity and is found in the cytoplasm (Chang et al., 2012). The 

decapping activity works on both methylated and unmethylated caps. This implies that if 

5’-end capping occurs in the absence of methyltransferase activity, Dxo1 is likely 

responsible for the removal of these incorrectly capped mRNAs. Unlike its counterpart 

Rai1, Dxo1 does not have 5’ end pyrophosphohydrolase (PPH) activity – thus its 

decapping activity appears to occur through an independent mechanism, (Chang et al., 

2012).    

 

Mammalian DOM3z/DXO  

 The mammalian DOM3z (also known as DXO) is a weak homolog of yeast DXO1 

(Jiao et al., 2013). It is an important protein for 5’ end quality control because it 

recognizes incompletely capped pre-mRNAs and is responsible for their degradation 

(Jiao et al., 2013). Mammalian DOM3z is predominantly found in the nucleus but a 

small amount is present in the cytoplasm. Removal of the DOM3Z nuclear localization 

signal causes the protein to be relocated into the cytoplasm (Picard-Jean et al., 2018). 

Recently, DOM3z was also demonstrated to recognize mRNAs with nicotinamide 
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adenine dinucleotide (NAD+) caps and will degrade these transcripts with non-canonical 

5’ ends (Jiao et al., 2017). In Caenorhabditis elegans, the homolog of mammalian 

DOM3z is called EOL-1 and has been linked to regulating learning in URX sensory 

neurons (Shen et al., 2014). Replacement of EOL-1 with the mammalian DOM3Z can 

also regulate learning in worms.  

 

Deadenylation-independent pathways of mRNA decay 

 Deadenylation-independent pathways of mRNA decay also exist in cells. This 

can occur, for example, if the mRNA is first cleaved by an endonuclease (Müller et al., 

2010) such as the RISC complex (using siRNAs or shRNAs) (Orban and Izaurralde, 

2005), or the gammaherpesvirus SOX protein (Lee et al., 2017a; Richner et al., 2011). 

In other instances, RNAs can be targeted to this pathway by first getting decapped 

without prior deadenylation (Mishima et al., 2012). Once the mRNA is cleaved, it will 

then get degraded by standard exonucleolytic pathways, including XRN1 and/or the 

exosome.  

 

Nonsense-mediated decay (NMD) 

 Nonsense mediated decay (NMD) is important in quality control by triggering 

decay of aberrant mRNAs with a premature termination codon (PTC) (Amrani et al., 

2004). Transcripts that are targeted for NMD often contain one or multiple premature 

termination codons (PTC) (Nagy and Maquat, 1998) and/or long 3’ untranslated regions 

(Peccarelli et al., 2014). Furthermore, enhancement of NMD is based on the position of 



18 
 

the exon-exon junction site from the PTC because it has to be at least 50 to 55 

nucleotides downstream from the PTC (Nagy and Maquat, 1998; Thermann et al., 

1998). Up-frameshift proteins 1, 2, and 3 (UPF1, UPF2, and UPF3) are regulators of 

NMD (Chamieh et al., 2008). SMG1, UPF1, eRF1, and eRF3, also known as the SURF 

complex, is bound to the ribosome and ribosome stalling makes the complex connect 

with the EJC complex (with UPF2 and UPF3) called DECID (Chamieh et al., 2008; Hug 

and Cáceres, 2014). Then UPF1 is phosphorylated by the SMG1/SMG8/SMG9 

complex, causing UPF1 to dissociate from eRF1 and eRF3 (Deniaud et al., 2015; 

Kashima et al., 2006; Ohnishi et al., 2003; Yamashita et al., 2001). Once UPF1 

phosphorylation creates a binding platform to recruit SMG6, SMG5, and SMG7 (Cho et 

al., 2013; Eberle et al., 2009; Okada-Katsuhata et al., 2012), decay of the transcript will 

start with either SMG6-dependent endonucleolytic cleavage or by SMG5-SMG7 

recruitment of exonucleolytic decay factors (e.g. XRN1) and/or deadenylases (Eberle et 

al., 2009; Loh et al., 2013; Okada-Katsuhata et al., 2012). 

 

RNA granules 

Processing body (P body) 

 One major cytoplasmic granular-like structure that is composed of RNA and 

proteins are called processing bodies (P bodies). In a low salt concentration 

environment promotes formation of P bodies occurs by liquid-liquid phase separation 

(LLPS) and exist as liquid droplets (Brangwynne et al., 2009, 2011; Gallo et al., 2008; 

Schutz et al., 2017). While XRN1 was the first protein identified in P bodies (Bashkirov 

et al., 1997), today over 125 proteins have been identified in the P body proteome 
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(Hubstenberger et al., 2017). P body proteins are generally associated with mRNA fate 

determination – i.e. translation, silencing, or decay. Along these lines, P body factor 

relevant to this study include the DCP1/2 complex, LSM1-7, GW182, and DDX6 

(Cougot et al., 2004; Ingelfinger et al., 2002; Sheth and Parker, 2003). Sheth and 

Parker (2003) originally demonstrated that mRNA decay intermediates can be localized 

to P bodies, leading to the model that P bodies are major sites of the 5’-3 mRNA decay.  

More recent data, however, suggest that the vast majority of mRNA decay may actually 

be co-translational (Hu et al., 2009, 2010; Radhakrishnan et al., 2016; Webster et al., 

2018). Thus, P bodies may be more appropriately considered as sites for mRNA 

storage or sequestration of partially degraded mRNA intermediates. Consistent with this 

notion, P bodies also contain translation repressor protein such as DDX6, LSM14A, 

LSM14B, and IGF2BP2 (Aizer et al., 2014; Bhattacharyya et al., 2006; Brengues et al., 

2005; Cougot et al., 2012; Hubstenberger et al., 2017).   

 

Stress granules (SG) 

 In the presence of cellular stress, the number of RNA granules referred to as 

stress granules (SGs) increase dramatically in the cell cytoplasm. SGs typically contain 

translation initiation factors (eIFs) (eIF4E, eIF4G, eIF4A, eIF4B, and eIF3), poly(A) 

binding protein (PABP), 40S ribosomal subunit, and poly (A)+ mRNA (along with a 

variable assortment of other proteins) (Grousl et al., 2009; Kedersha, 2002; Kedersha et 

al., 1999; Kimball et al., 2003; Mazroui et al., 2006; Wheeler et al., 2016). Two RNA 

binding proteins that are important for formation of SGs are T-cell-restricted intracellular 

antigen 1 (TIA-1) and the RasGAP SH3-domain binding protein 1 (G3BP 1) (Gilks et al., 



20 
 

2004; Tourrière et al., 2003). SG formation appears to be important for preventing 

decay of targeted mRNAs while ensuring their translational arrest (Mokas et al., 2009) 

during times of environmental stress. Common stresses that induce SGs include 

oxidative stress (Emara et al., 2012; Kedersha et al., 1999; Shenton et al., 2006), heat 

shock (Gallouzi et al., 2000; Kedersha et al., 1999; Nover et al., 1989), hypoxia (Van 

Der Laan et al., 2012; Lokdarshi et al., 2016), nutrient deprivation (Cassola et al., 2007; 

Jones et al., 2013a), and some viral infections (Khaperskyy et al., 2014; McInerney et 

al., 2005; Raaben et al., 2007).  

There are two main subclasses of stress granules: canonical or noncanonical 

SGs. Canonical SG formation involves the phosphorylation of the translation initiation 

factor eIF2α (Kedersha, 2002; Kedersha et al., 1999; McInerney et al., 2005) but 

noncanonical SG formation occurs independently of eIF2α phosphorylation (Emara et 

al., 2012; Fujimura et al., 2012). Viral infection can trigger SG formation at early times 

post viral entry as a cellular antiviral defense mechanism (Ng et al., 2013; Piotrowska et 

al., 2010; Reineke and Lloyd, 2015; Reineke et al., 2015; Zhai et al., 2018).  

In conclusion, cellular mRNA decay is vital for the removal of unwanted RNAs 

and aberrant RNAs. RNA decay is a tightly controlled process and the CCR4-NOT 

complex, decapping proteins, and the exonucleases (exosome complex and XRN1) are 

the key players. Defects in RNA decay enzymes in the major pathway can cause 

diseases in humans and are often lethal in early development. Thus, the focus of our 

study was on how RNA viruses influence the activity of RNA decay enzymes – in 

particular the XRN1 exoribonuclease. 
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Section II: Viral interactions with the host RNA decay machinery 

 In this section the focus will be on viruses that interact with different aspects of 

the cellular RNA decay machinery. Viruses have evolved to either bypass or alter the 

host RNA decay machinery to establish a productive infection. Mechanistic examples 

include the use of viral endonucleases to reprogram RNA decay, protein sponging to 

dysregulate decay, or direct inactivation of RNA decay enzymes in a viral infection 

(Table 2).  

Table 2. Summary of the viruses discussed in this section. 

Virus name: Virus family: 
Interaction with RNA 
decay 

Reference: 

Viral endonuclease and protease 

 Kaposi's sarcoma-
associated herpesvirus 
(KSHV) and Epstein-Barr 
virus (EBV) 

Herpesviridae 

The viral protein SOX 
cleaves mRNAs, 
which accelerates 
mRNA decay 

(Covarrubias et 
al., 2011; 
Dahlroth et al., 
2009; Lee et 
al., 2017a) 

Herpes simplex virus (HSV) Herpesviridae 

The virion host shut off 
(VHS) protein also 
cleaves mRNAs to 
accelerated RNA 
decay 

(Fenwick and 
Everett, 1990; 
Kwong and 
Frenkel, 1987) 

Influenza A virus (IAV) Orthomyxoviridae 

The viral PA-X protein 
cleaves transcripts 
promoting accelerated 
RNA decay 

(Bavagnoli et 
al., 2015; 
Desmet et al., 
2013; 
Khaperskyy et 
al., 2016) 

Severe acute respiratory 
syndrome (SARs) 
coronavirus 

Coronaviridae 

The viral NSP1 protein 
also cleaves mRNA to 
accelerating RNA 
decay 

(Kamitani et al., 
2006; 
Narayanan et 
al., 2008) 

Poliovirus, foot-and-mouth 
diease virus, coxsackievirus, 
and human rhinovirus 

Picornaviridae 
Several viral 
proteases that cleaves 
RNA decay factors  

(Cathcart and 
Semler, 2014; 
Dougherty et 
al., 2011, 2015) 

Viral cap-snatching from host mRNA 

Orthomyxoviruses Orthomyxoviridae 

The subunit (PA) has 
enzymatic activity to 
host mRNA capped to 
prime its viral 
transcription 

(Dias et al., 
2009; Yuan et 
al., 2009) 
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Arenaviruses Arenaviridae 

The viral RNA 
dependent RNA 
polymerase N terminal 
with the help of viral 
nucleocapsid protein 
cleaves the host 
mRNA to use host cap 
to prime its 
transcription 

(Fernández-
García et al., 
2016; Raju et 
al., 1990) 

Bunyaviruses Order: 
Bunyavirales 

Uses similar 
mechanism as 
arenaviruses 

(Fernández-
García et al., 
2016; Jeeva et 
al., 2017; 
Reguera et al., 
2010) 

Sequestering of host proteins  

Alphaviruses Togaviridae 

Binding of the host 
protein HUR to 
stabilize the viral 
transcript 

(Barnhart et al., 
2013; Garneau 
et al., 2008; 
Sokoloski et al., 
2010) 

Rabies virus (RABV) Rhaboviridae 

The viral glycoprotein 
mRNA binds the host 
protein PCBP2 to 
regulates its stability 

(Palusa et al., 
2012) 

Picornaviruses Picornaviridae 

Utilize host proteins 
PCBP2 and PTB to 
regulate viral 
translation and 
replication 

(Blyn et al., 
1997; Choi et 
al., 2004; 
Gamarnik and 
Andino, 1997) 

Brome mosaic virus (BMV) Bromoviridae 

Binds the LSM 
complex to promote 
viral replication and 
translation 

(Galão et al., 
2010; 
Jungfleisch et 
al., 2015) 

Hepatitis C virus (HCV) Flaviviridae 

Interacts with several 
host proteins (LSM 
complex, DDH1, 
PAT1, PTB and HuR) 

(Ariumi et al., 
2011; Scheller 
et al., 2009; 
Shwetha et al., 
2015) 

West Nile virus (WNV) Flaviviridae 
Recruit P bodies and 
stress granules factors 
to viral replication sites 

(Chahar et al., 
2013; Emara 
and Brinton, 
2007) 

Flock house virus (FHV) Nodaviridae 
Bind host protein LSM 
complex, PAT1, and 
DDH1 

(Giménez-
Barcons et al., 
2013) 

Viral interaction with the nonsense mediated decay pathway 

Alphaviruses Togaviridae 
Host factors UPF1, 
SMG5, and SMG7 
restrict viral replication 

(Balistreri et al., 
2007, 2014; 
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Wernet et al., 
2014) 

Potato virus X (PVX) Alphaflexviridae 
Host factor UPF1 
restricts viral 
replication 

(Garcia et al., 
2014) 

Rous sarcoma virus (RSV) Retroviridae 
Uses a RNA stability 
element to evade the 
NMD pathway 

(Balagopal and 
Beemon, 2017; 
Ge et al., 2016; 
Withers and 
Beemon, 2010) 

Human T-cell leukemia virus 
type-1 (HTLV-1) Retroviridae 

Viral protein TAX 
binds UPF1 prevents 
activation of NMD 
pathway 

(Fiorini et al., 
2018) 

Human immunodeficiency 
virus type 1 (HIV-1) Retroviridae 

Sequesters and utilize 
UPF1 to promote viral 
expression 

(Ajamian et al., 
2008; Rao et 
al., 2018) 

Repression of decay enzyme 

Flaviviruses Flaviviridae 
Uses complex 
structures in the 5’ or 
3’UTR to stall XRN1  

(Moon et al., 
2012, 2015b; 
Pijlman et al., 
2008) 

Red clover necrotic mosaic 
virus Tombusviridae 

Uses the translation-
enhancer element of 
dianthovirus RNA 1 
(TE-DR1) sequence to 
stall XRN1 

(Iwakawa et al., 
2008; 
Steckelberg et 
al., 2018) 

 

Viral endonucleases and proteases 

Gammaherpesvirus nuclease SOX protein 

 Herpesviruses are a part of the Herpesviridae family (Lefkowitz et al., 2018) and 

its DNA genome is maintained in episomes to produce latent or lytic infections. 

Herpesviruses are large, enveloped double-stranded DNA viruses which are 

taxonomically divided into three sub-families: the alpha (α), beta (β), and gamma (γ) 

herpesvirinae (Lefkowitz et al., 2018). Only eight herpesviruses can infect humans. Two 

gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV or HHV8) and 

Epstein-Barr virus (EBV or HHV4), can cause cancer in humans (Dahlroth et al., 2009; 
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Sei et al., 2015). Below is an example of how a gammaherpesvirus interacts with the 

cellular RNA decay machinery.  

All gammaherpesviruses encode a viral nuclease called SOX (for EBV it is called 

BGLF5) that targets host mRNAs for degradation (Dahlroth et al., 2009; Lee et al., 

2017a) and possesses DNase activity (Bagnéris et al., 2011). During an active lytic 

gammaherpesvirus infection, the production of the SOX protein leads to rapid decay of 

cellular mRNA (Covarrubias et al., 2011; Lee et al., 2017a). Transcript cleavage will 

occur at RNA sequences that possess some general conserved features (Gaglia et al., 

2015). SOX cleaves both viral and host transcripts, thus allowing the processive XRN1 

and the exosome to rapidly degrade targeted RNAs (Abernathy et al., 2015; Lee et al., 

2017a). Interestingly, this increase in host cellular mRNA decay causes a change in 

cellular transcription rates that will allows the virus to establish its viral gene expression 

(Abernathy et al., 2015). A couple of host mRNAs, including IL-6 and GADD45B, have 

been identified to escape SOX cleavage due either to the presence of ill-defined 

elements in their 3’ UTRs called SOX resistance element (SRE) (Muller and 

Glaunsinger, 2017) or via protection by the cellular RNA binding protein nucleolin 

(Muller et al., 2015). 

 

Herpes Simplex Virus virion host shutoff (VHS) protein 

 Herpes simplex virus (HSV) is a member of the subfamily Alphaherpesvirinae in 

the Herpesviridae family (Lefkowitz et al., 2018). Two types of HSV members infect 

humans and most of the time infections are asymptomatic. Symptoms associated with 
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lytic HSV infections are painful blisters or cold sores around either the mouth (HSV-1) or 

genital area (HSV-2).  

 HSV encodes an endoribonuclease on the UL41 gene called the virion host 

shutoff (VHS) protein (Fenwick and Everett, 1990; Kwong and Frenkel, 1989; Smibert et 

al., 1992; Taddeo and Roizman, 2006; Taddeo et al., 2006). In HSV infected cells, both 

viral and host mRNAs are destabilized due to the UL41 gene (Kwong and Frenkel, 

1987, 1989; Strom and Frenkel, 1987). Experiments with purified VHS protein confirmed 

that the protein was indeed a powerful endoribonuclease. VHS protein is responsible for 

disrupting host translation by triggering decay of mRNAs (Fenwick and Clark, 1982; 

Fenwick and McMenamin, 1984; Fenwick and Owen, 1988; Fenwick and Walker, 1978; 

Kwong and Frenkel, 1987; Oroskar and Read, 1989; Strom and Frenkel, 1987). Its 

endoribonuclease activity is stimulated by host cell translation factors eIF4B and eIF4H 

(Doepker et al., 2004; Lu et al., 2001; Sarma et al., 2008; Shiflett and Read, 2013). 

Silencing of the host protein eIF4H, for example, will hinder VHS protein nuclease 

activity during infection (Sarma et al., 2008; Shiflett and Read, 2013). In terms of viral 

cofactors, VHS protein accumulation requires VP16 and VP22, but only VP22 is 

required at late times post-infection to simulate VHS activity (Elliott et al., 2018; Korom 

et al., 2008; Taddeo et al., 2007). VHS will cleave single stranded RNA at cytidine and 

uridine or uridine and adenine residues (Taddeo and Roizman, 2006). The host protein 

tristetraprolin recruits the VHS protein to the AU-rich elements (Shu et al., 2015); 

therefore, this means VHS targets AU-rich mRNAs (Taddeo et al., 2006, 2013). VHS 

also causes a disruption of stress granule formation, perhaps simply because there is 
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little mRNA remaining to store during times of stress (Burgess and Mohr, 2018; Finnen 

et al., 2016). 

 

Influenza A Virus PA-X protein 

 Influenza A virus (IAV) is in the genus Alphainfluenzavirus in the family 

Orthomyxoviridae (Lefkowitz et al., 2018). IAV has eight segments that comprise its 

RNA genome and each segment is in the negative sense orientation (Mccauley and 

Mahy, 1983). IAV can infect a vary of mammalian species such as humans (Imai et al., 

2017), dogs (Luo et al., 2018), horses (Sreenivasan et al., 2018), and pigs (Neira et al., 

2018). Reassortment of IAV genomic RNA segments can generate a huge variety of 

IAV strains (Briand et al., 2018; Westgeest et al., 2014; Zhang et al., 2018a). 

Interestingly, IAV is another virus that uses an endonuclease to enhance mRNA decay 

to suppress cellular protein expression and perhaps create a cellular environment more 

conducive to support its own viral mRNAs. 

 Segment 3 of IAV generates the PA mRNA that encodes the PA protein, a 

subunit of the viral RNA-dependent RNA polymerase complex that is responsible for 

cleaving capped RNA from pre-mRNA and small non-coding RNAs (such as U1 and U2 

snRNAs) to be used for viral transcription (Dias et al., 2009; Gu et al., 2015; Hara et al., 

2006; Yuan et al., 2009). PA mRNA contains a second open reading frame called PA-X 

(Jagger et al., 2012; Muramoto et al., 2013) that creates a novel PA-X protein by 

ribosomal frameshifting (Firth et al., 2012). PA-X has endonuclease activity and 

suppresses protein expression by cleaving mRNA from RNA polymerase II transcripts, 

which contributes to host cell shut-off during infection (Bavagnoli et al., 2015; Desmet et 
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al., 2013; Khaperskyy et al., 2016). The N-terminal region of PA-X has endonuclease 

activity and its C-terminal domain is regulatory in nature (Hayashi et al., 2016; Xu et al., 

2016). Furthermore, C-terminal truncated PA-X protein can inhibit IFN-1 mRNA 

expression by promoting its decay and truncated PA-X protein is mainly nuclear 

(Hayashi et al., 2016; Xu et al., 2016). In addition to its endonuclease activity, PA-X 

plays a role in enhancing viral replication by increasing virus polymerase activity and 

pathogenicity by suppressing the immune response early during infection (Lee et al., 

2017b). 

 

Severe acute respiratory syndrome (SARS) coronavirus NSP1 

 Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is a part of the 

genus Betacoronaviruses in the Coronaviridae family (Lefkowitz et al., 2018). SCoV 

infection symptoms include high fever, body aches, and mild respiratory illness (e.g. dry 

cough) which can lead to death in humans (Booth et al., 2003; Lee et al., 2003b). SCoV 

has an endoribonuclease called NSP1 and it is encoded in gene 1. NSP1 was shown to 

suppress host gene expression by promoting decay of mRNAs such as interferon β 

mRNA (Kamitani et al., 2006; Narayanan et al., 2008) by cleaving the transcript, leading 

to degradation of mRNA fragments by XRN1 or the exosome (Gaglia et al., 2012). 

Kamitani et al., (2009) showed that NSP1 inhibits host translation by interacting with the 

host 40S ribosomal subunit and rendering it inactive. The NSP1-40S complex will 

render the mRNA inactive by cleaving the 5’ cap off; therefore, the mRNA cannot be 

translated (Kamitani et al., 2009). Furthermore, NSP1 can target other RNAs that 

contain a different 5’ end such as internal ribosome entry site (IRES) elements. NSP1 
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cleaves picornavirus mRNAs that contain an IRES element in the 5’ UTR three 

nucleotides after the start codon (AUG). SCoV mRNAs are protected from nsp1 

cleavage by the leader sequence that is present on the 5’ UTR of all viral mRNAs 

(Huang et al., 2011). Interaction between the stem loop 1 in the 5’ UTR of SCoV and 

NSP1 is important for cleavage evasion and stabilization SCoV mRNAs (Tanaka et al., 

2012).  

 

Picornavirus 2A and 3C/3CD proteinase  

 Poliovirus, foot-and-mouth disease virus, coxsackievirus B, and human rhinovirus 

are members of the Picornaviridae family (Lefkowitz et al., 2018) and can cause a 

variety of common childhood illnesses. Symptoms include respiratory illness, 

myocarditis, meningitis, and sepsis (which can result in death) (Abedi et al., 2018; Jartti 

et al., 2004; Pires et al., 2017; Thi et al., 2018). The picornavirus genome consists of a 

positive sense, single stranded RNA (Boothroyd et al., 1981; Van Dyke et al., 1982; 

Kitamura et al., 1981; van der Werf et al., 1981).   

Poliovirus, coxsackievirus B, and human rhinovirus (members of the genus 

Enterovirus) infections will cause the relocalization of the host protein AUF1 from the 

nucleus to the cytoplasm (Rozovics et al., 2012; Spurrell et al., 2005; Wong et al., 2013) 

Interestingly, AUF1 relocalization occurs in a viral protease 2A-dependent manner 

(Cathcart et al., 2013). Silencing of AUF1 will actually increase viral translation and 

titers; therefore, AUF1 is an inhibitor of enteroviruses (Cathcart et al., 2013). This 

apparent conundrum of a viral factor relocalizing an antiviral factor to the cellular 

compartment of viral replication can be resolved by considering what happens to AUF1 
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when it shuttles to the cytoplasm. The viral precursor protease 3CD actively cleaves 

AUF1 (Cathcart et al., 2013; Rozovics et al., 2012). Curiously, encephalomyocarditis 

virus (EMCV), which is in the genus Cardiovirus in the Picornaviridae family, does not 

cleave AUF1 but still causes the relocalization from the nucleus to the cytoplasm 

(Cathcart and Semler, 2014). Perhaps as an alternative means is used by the virus to 

inactivate this regulator of mRNA decay. 

AUF1 is of course not the only target of the picornavirus proteases and several 

additional mRNA decay proteins are among the cellular factors targeted by viral 

enzymes. P bodies are absent during poliovirus infection and it was discovered that 

XRN1, PAN3, and DCP1a are targeted for degradation. DCP1a is direct target of the 

poliovirus 3C protease and XRN1 is cleaved by poliovirus 2A protease (Dougherty et 

al., 2011). Furthermore, cleavage of PAN3 leads to the impairment of deadenylation 

(Dougherty et al., 2011). Stress granules (SG) are also disrupted during poliovirus 

infection and this phenomenon is also mediated through the action of viral proteases in 

a dynamic fashion (Fung et al., 2013; Piotrowska et al., 2010; White et al., 2007). 

Picornavirus 2A protease will induce formation of SG by cleaving eIF4GI to sequester 

host mRNAs and not viral RNA, which help facilitate viral translation (Wu et al., 2014; 

Yang et al., 2018). However, once viral 3C protease is expressed, it in turn cleaves 

factors like G3BP, thus disrupting formation of SGs (Dougherty et al., 2015; Fung et al., 

2013; Piotrowska et al., 2010; White et al., 2007; Yang et al., 2018; Ye et al., 2018).  
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Viral cap-snatching from host mRNA 

 Several negative sense RNA viruses use the method of cap-snatching from host 

RNAs to prime transcription of viral mRNAs as a way to trick the host RNA decay 

machinery and produce capped viral mRNAs for translation. The multi-segmented RNA 

viruses that use this as a mechanism are the Arenaviridae, Orthomyxoviridae families, 

and viruses from the order Bunyavirales (Reguera et al., 2016; Sikora et al., 2017). 

 The mechanism of cap snatching was first observed in the Orthomyxoviridae 

family. The Orthomyxoviridae RNA dependent RNA polymerase requires three subunits; 

polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase 

acidic protein (PA) (Hengrung et al., 2015; Pflug et al., 2014; Reich et al., 2014; Shih 

and Krug, 1996). The subunit responsible for binding host 5’ RNA caps is PB2 

(Constantinides et al., 2018; Guilligay et al., 2008; Pautus et al., 2013; Severin et al., 

2016). The PA subunit uses enzymatic activity in its N terminal domain to cleave RNAs 

to release the cap. (Dias et al., 2009; Yuan et al., 2009). Cleavage occurs 10-15 

nucleotides downstream of the 5’ cap and generally happens after a purine residue 

(Beaton and Krug, 1981; Koppstein et al., 2015; Krug et al., 1980; Plotch et al., 1979, 

1981; Rao et al., 2003). PB1 is the main polymerase component and has domains that 

include a nucleotide recognition site for RNA synthesis (Binh et al., 2014). The 

polymerase does not transcribe naked RNA templates but rather relies on an interaction 

between the viral nucleoprotein (NP) of the encapsidated helical RNA segment and the 

PB1/PB2 subunits for function (Biswas et al., 1998). 

Arenaviruses encode one RNA dependent RNA polymerase (L), which also has 

endoribonuclease activity associated with its N-terminal domain that is involved in cap 
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snatching (Cheng and Mir, 2012; Djavani et al., 1997; Lelke et al., 2010; Morin et al., 

2010; Reguera et al., 2016; Singh et al., 1987). The L protein cleaves the host 5’ cap 

along with up to 4 nucleotides for priming transcription (Raju et al., 1990). The C-

terminal domain of the L protein is less conserved and is involved in viral mRNA 

synthesis (Lehmann et al., 2014). The L protein works in conjunction with the 

nucleocapsid (NP) protein in a more active way in cap snatching than was described 

above for the orthomyxoviruses (D’Antuono et al., 2014; Iwasaki et al., 2015; Kerber et 

al., 2011; Lee et al., 2000). NP binds to the 5’ cap of the cytoplasmic cellular mRNA, 

leading to a conformational change in the protein which causes the NP protein to bind 

the L protein to start cap snatching and viral transcription (Fernández-García et al., 

2016). Furthermore, the NP protein was also reported to have nuclease activity involve 

in repressing the interferon response (Qi et al., 2010).  

Lastly, members of the order Bunyavirales also use host 5’ cap snatching for 

priming viral transcription (Reguera et al., 2010, 2016). Bunyavirus RNA dependent 

RNA polymerase is homologous to the N terminal domain of the PA subunit of 

orthomyxovirus and arenavirus enzymes (Reguera et al., 2010). Also, the N terminal 

domain of the bunyavirus polymerase has endonuclease function and will cleave 9-22 

nucleotides downstream from the 5’ cap (Marklewitz et al., 2013; Rothenberger et al., 

2016). The nucleocapsid protein (N) of bunyaviruses has been shown to interact with 

the 5’ cap of host mRNAs by mimicking the cellular cap-binding complex (Jeeva et al., 

2017).  
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Sequestering of host proteins as a strategy to evade the cellular RNA decay 

machinery 

 RNA binding proteins are important for post transcriptional regulation and play a 

major role in the fate of mRNAs. RNA viruses rely heavily on host proteins for many 

aspects of their life cycle due to the limited coding capacity of the viral genome. One 

way for viruses to escape the cellular RNA surveillance system is to disguise the viral 

transcript with host RNA binding proteins.   

Alphaviruses are a part of the Togaviridae family (Lefkowitz et al., 2018) and are 

transmitted by mosquitoes (Menchaca-Armenta et al., 2018; Severini et al., 2018). 

Certain alphaviruses (Venezuelan equine encephalitis (VEEV), western equine 

encephalitis (WEE), eastern equine encephalitis (EEE) chikungunya (CHIKV), Ross 

River (RRV), o’nyong-nyong (ONNV), and Sindbis (SINV) viruses) can infect humans 

and cause symptoms such as fever, rash, headache, or encephalitis. The alphavirus 

genome is a single-stranded, positive sense RNA which is capped and polyadenylated. 

Alphaviruses have three repeat sequence elements (RSE) and a conserved U-rich 

region called the U-Rich Element/Conserved Sequence Element (URE/CSE) near the 

end of their 3’ UTR (Faragher and Dalgarno, 1986; Zhang et al., 2013). The alphavirus 

3’ UTR has the ability to repress deadenylation of viral transcripts via interaction with 

the host HuR protein (Garneau et al., 2008; Sokoloski et al., 2010). HuR is a known 

stabilizing factor of mRNAs that contain an adenylate/uridylate-rich element (ARE) 

which serves as the binding site for the protein (Bakheet et al., 2018; Bolognani et al., 

2012; Vreeland et al., 2014; Zhang and Wang, 2018; Zybura-Broda et al., 2018). 

Normally, HuR is mainly localized in the nucleus, but in an alphavirus infection (or 
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simply in the presence of large amounts of the SINV 3’ UTR in the cytoplasm) HuR is 

relocalized to the cytoplasm (Barnhart et al., 2013). This relocalization affects nuclear 

alternative polyadenylation and splicing (Barnhart et al., 2013). Curiously, this 

mechanism of HuR interaction and relocalization is conserved among all the 

alphaviruses (Dickson et al., 2012; Sokoloski et al., 2010), suggesting that it is 

fundamentally important to virus-host interactions.  

Rabies virus from the genus Lyssavirus in the Rhabdoviridae family in the order 

Mononegavirales order can infect a range of animals including bats (Bourhy et al., 1992; 

Morimoto et al., 1996; Streicker et al., 2010), coyotes/dogs (McQuiston et al., 2001; 

Rohde et al., 1997; Sidwa et al., 2005), foxes (Black and Lawson, 1970; Sidwa et al., 

2005), raccoons (Guerra et al., 2003; Szanto et al., 2008) and skunks (Guerra et al., 

2003; Leslie et al., 2006). Humans generally get infected by the virus via a bite from an 

infected animal (Constantine and Woodall, 1966; Hampson et al., 2015; Tang et al., 

2005) or in rare cases an organ transplant from an infected person (Houff et al., 1979; 

Srinivasan et al., 2005). Rabies virus infection has symptoms such as fever, headache, 

nausea, vomiting, excessive salivation, and difficulty swallowing which lead to death 

(Leach and Johnson, 1939). The rabies virus genome consists of a single stranded 

RNA molecule in the negative sense orientation (Oem et al., 2013; Tang et al., 2014; 

Zhao et al., 2014). Five different messenger RNAs are made of the genomic RNA which 

are capped and polyadenylated (Coslett et al., 1980; Holloway and Obijeski, 1980; 

Wunner et al., 1980). The glycoprotein mRNA contains a short poly (A) tail ranging from 

7 to 13 adenosines (Wu et al., 2007a) and is highly expressed during infection when 

compared to the other four viral mRNAs (Palusa et al., 2012), particularly in the context 
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of the ‘start-stop’ model of polar transcription that occurs on rabies viral RNA templates. 

Palusa et al. (2012) previously showed that stabilization of the glycoprotein mRNA of 

rabies viruses is likely regulated by the binding of the host cell poly(rC) binding protein 2 

(PCBP2). Several known PCBP2 functions include regulating mRNA stability (Chen et 

al., 2018; Holcik and Liebhaber, 1997; Thiele et al., 2004; Weiss and Liebhaber, 1994, 

1995) and translation (Blyn et al., 1997; Gamarnik and Andino, 1997).  

Picornaviruses have also been shown to utilize host cell proteins to promote viral 

translation and RNA replication. The 5’ UTR of picornaviruses contains a cloverleaf 

structure and an internal ribosome entry site (IRES) element (Klinck et al., 1997; 

Nomoto et al., 1977; Witwer et al., 2001). Picornaviruses use host proteins poly (rC) 

binding protein 1/2 (PCBP1/2), and polypyrimidine tract-binding protein (PTB) to 

modulate viral translation and RNA replication (Blyn et al., 1997; Choi et al., 2004; 

Gamarnik and Andino, 1997; Walter et al., 1999). PCBP2 will bind to the 5’ cloverleaf, 

which will protect the 5’ end from 5’ exoribonucleases and stabilize the viral mRNA 

(Kempf and Barton, 2008; Murray et al., 2001). After infection, PTB and PCBP2 will 

promote early viral translation until viral proteins accumulate - especially the viral 

proteases. Picornavirus viral 3C and 3CD proteases will then cleave PCBP2 and PTB to 

modulate the switch from translation to RNA replication on picornavirus RNA templates 

(Back et al., 2002; Chase and Semler, 2014; Perera et al., 2007). Cleaved PCBP2 can 

form a complex with 3CD and mutations that prevent this interaction affect the virus 

infectivity and growth rates (Chase et al., 2014; Parsley et al., 1997; Sean et al., 2009; 

Toyoda et al., 2007). Therefore, host proteins PCBP2 and PTB are important for 

picornaviruses translation and RNA synthesis.  
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Brome mosaic virus (BMV), a member of the Bromoviridae family (Lefkowitz et 

al., 2018), infects plants from the Poaceae family (Lane, 1974). BMV contains three 

positive single-stranded RNA genomic segments and produce one subgenomic RNA 

during infection (Ahlquist and Janda, 1984; Ahlquist et al., 1984; Miller et al., 1985). 

BMV has a tRNA-like structure (TLS) in the 3’ UTR of its genomic segments and 

deletions in the TLS decrease viral replication, translation and encapsidation of viral 

RNA (Barends et al., 2004; Bujarski et al., 1985; Choi and Rao, 2003; Dasgupta and 

Kaesberg, 1977; Joshi et al., 1983; Rietveld et al., 1983). Saccharomyces cerevisiae 

has been used as a model system to study the molecular biology of plants viruses like 

BMV (Janda and Ahlquist, 1993; Price et al., 1996). In yeast, deletion of the LSM1 

protein suppresses BMV replication as well as the generation of the subgenomic RNA 

(Diez et al., 2000). Deletions of other LSM proteins as well as the PAT1 translation/RNA 

stability factor have the same effect (Noueiry et al., 2003). Furthermore, DHH1 (DDX6) 

also has a role in the BMV replication but, curiously, other decapping enhancers (i.e. 

EDC1 and ECD2) have very little effect on BVM replication (Mas et al., 2006). 

Mutational analysis on the BMV RNA 3 3’ UTR revealed that the LSM complex binds to 

the TLS in the 3’ UTR of BMV RNA 3 (Galão et al., 2010) and interacts with the viral 1a 

protein to promote replication and translation of the BMV RNAs (Jungfleisch et al., 

2015).  

Hepatitis C virus (HCV), is a member of the genus Hepacivirus in the Flaviviridae 

family (Lefkowitz et al., 2018). HCV has a positive sense single-stranded RNA genome, 

which is used to produce one polyprotein that is cleaved by viral NS3 (Grakoui et al., 

1993b, 1993a). Interestingly, HCV genomic RNA has been shown to interact with 
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several host proteins to promote viral replication and translation. Scheller et al. (2009) 

showed that silencing of LSM1, DDH1, and PAT1 reduces the amount of HVC replicon 

RNA synthesis as well as the generation of infectious virus particles. HCV was shown to 

bind the LSM1-7 complex in both the viral 5’ and 3’ UTRs (Ariumi et al., 2011; Pager et 

al., 2013; Pérez-Vilaró et al., 2012; Scheller et al., 2009). Therefore, aspects of the RNA 

decay machinery are critical in the biology of an HCV infection. However, the silencing 

of DCP2 and XRN1 does not affect virus production. Another host protein that is 

usurped by HCV is HuR. Knockdown of HuR will reduce HCV replication (Harris et al., 

2006).  Mechanistically, HuR will relocalize to the cytoplasm in an HCV infection and is 

responsible for displacing polypyrimidine tract binding protein (PTB) protein from the 

viral RNA. This is then thought to allow La protein to bind the 3’ UTR, which enhances 

viral replication (Shwetha et al., 2015).  

West Nile virus (WNV) is another member of the Flaviviridae family and has been 

shown to recruit P body components to viral replication sites. After 12 hours post WNV 

infection, it was observed that P bodies are disrupted, and different factors are recruited 

to replication sites. Recruited factors include GW182, LSM1, DDX3, DDX6 and XRN1. 

Furthermore, silencing of LSM1, DDX3, and GW182 impairs viral replication (Chahar et 

al., 2013). Additionally, P body factors are not the only ones recruited and sequestered 

by HCV. T cell intracellular antigen-1 (TIA-1) and the related protein TIAR (stress 

granules factors) are also recruited to replication sites of WNV and DENV-2 (Emara and 

Brinton, 2007). Therefore, disruption of P bodies and stress granules will allow viral 

RNA access to different RNA binding factors and likely prevents activation of targeted 

anti-viral pathways.  
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Flock house virus (FHV), a member of the Nodaviridae family, also utilizes the 

host proteins LSM1-7, PAT1, and DHH1 (Giménez-Barcons et al., 2013) during 

infection. FHV has two positive sense single stranded RNA genomic segments and 

generates one subgenomic RNA from RNA 1 during infection (Guarino et al., 1984; 

Krishna and Schneemann, 1999; Scotti et al., 1983). In yeast, silencing of LSM1, PAT1 

and DHH1 increased the generation of the FHV subgenomic RNA (which is called RNA 

3) and had little effect on RNA1 (Giménez-Barcons et al., 2013).  

 

Viral interaction with the nonsense mediated decay pathway 

Positive sense RNA viruses 

 Several studies have shown the NMD pathway can restrict positive-sense 

viruses, such as Semliki Forest virus (SFV), Sinbis virus (SINV), and Potato virus X 

(PVX), in mammalian cells, insect, and plants (Balistreri et al., 2014; Garcia et al., 2014; 

Wernet et al., 2014). Positive stranded RNA viruses can have premature termination 

codons (PTC), upstream open reading frames (hORF), long 3’ untranslated regions or 

unconventional 5’ or 3’ ends (5’ cap or 3’ poly A tail). The RNA genome of alphaviruses 

contains two open reading frames which encoding for the structural and non-structural 

genes. After the RNA genome is released into the cytoplasm,the non-structural proteins 

(includes the viral polymerase) are translated first from the genomic mRNA. The NMD 

machinery likely views these genomic mRNAs as having a very long 3’ UTR. Once 

there is enough accumulation of the viral non-structual proteins, then a subgenomic 

RNA encoding the structural viral proteins are made from negative sense anti-genomic 

RNA template. Balistreri et al., (2014) performed an siRNA screen on Semliki Forest 
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virus (SFV) and Sindbis virus (SINV) cellular infections to identify potential host cell 

restriction factors and identified three cellular NMD proteins (UPF1, SMG5 and SMG7).  

In the presense of SFV infection, the silencing of UPF1, SMG5, or SMG7 showed 

increase in viral replication (Balistreri et al., 2007, 2014). Silencing of UPF1 in 

Drosophila resulted in a 3.5X increase in SINV particles (Wernet et al., 2014).  

 In plants, the role of UPF1 as a viral restriction factor was shown by studying 

potato virus X (PVX) infection in Arabidopsis and N. benthamiana (Garcia et al., 2014). 

PVX has a positive sense RNA genome which contains multiple internal translation 

termination codons. Overall, PVX is similar to the alphaviruses because it generates 

subgenomic RNAs with one open reading frame during RNA synthesis, which will be the 

template for translation of one viral protein. The viral RNA genome, which contains 

multiple stop codons, is the main target of NMD pathway. Therefore, knockdown of 

UPF1 leads to an increase in viral genome and 3 of the four subgenomic RNAs 

(subgenomic RNA 4 shows no change) (Garcia et al., 2014).  

 

Retroviruses 

 Retroviruses are a part of the Retroviridae family and use reverse transcriptase 

to produce a DNA version of their RNA genomes that is then inserted into the host cell 

chromosomes (Goodman and Spiegelman, 1971; Lefkowitz et al., 2018). Once the viral 

DNA is integrated, it is used to produce one unspliced mRNA and a plethora of spliced 

viral mRNAs (Arrigo and Beemon, 1988). The mRNAs of retroviruses have relatively 

long 3’ UTRs, implying that the transcripts should be targets of NMD. An RNA stability 

element (RSE), located 400 nucleotides downstream from the gag stop codon, was 
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identified in Rous sarcoma virus (RSV) as a structured domain in the retroviral RNA 

required to evade NMD (Barker and Beemon, 1994; Weil and Beemon, 2006; Weil et 

al., 2009; Withers and Beemon, 2010). Mutational analysis done on the RSE shows that 

a minimal sequence of 155 nucleotides is required to evade NMD (Withers and 

Beemon, 2010), including pyrimidine-rich stretches which bind the polypyrimidine tract 

binding protein 1 (PTBP1) (Ge et al., 2016). PTBP1 prevents recruitment of UPF1 - 

thereby promoting stabilization of RSV RNAs (Ge et al., 2016). Recently, a study 

showed that the RSE will inhibit deadenylation as well as impair decapping and 5’-3 

XRN1 mediated decay (Balagopal and Beemon, 2017). 

 Human T-cell leukemia virus type-1 (HTLV-1) employs an alternative strategy by 

using viral proteins TAX and REX to inhibit NMD (Fiorini et al., 2018; Mocquet et al., 

2012; Nakano et al., 2013). TAX binds to the central domain of UPF1, thereby 

decreasing UPF1 binding affinity for RNA (Fiorini et al., 2018) and causing displacement 

of the translation initiation factor INT6/eIL3E from UPF1 to prevent activation of the 

NMD pathway. HTLV-1 REX is another viral protein that inhibits NMD resulting in the 

stabilization of cellular IL-6, MAP3K14, and FYN mRNAs and other known NMD targets 

(Nakano et al., 2013). Overall, HTLV-1-mediated inhibition of the NMD pathway also 

results in the global stabilization of cellular RNAs which are normally regulated by NMD 

(Mocquet et al., 2012).   

 Human immunodeficiency virus type 1 (HIV-1) is another retrovirus that interacts 

with UPF1 (Ajamian et al., 2008, 2015; Rao et al., 2018; Serquina et al., 2013). UPF1 

was identified to be a component of an HIV-1 ribonucleoprotein complex that contains 

the unspliced viral full-length RNA, DDX3, viral protein REV, CRM1, and p62 (Ajamian 
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et al., 2008). In HIV-1 infected cells, depletion of UPF1 reduces viral expression and 

reactivation while overexpression of the NMD factor dramatically increases viral 

expression (Ajamian et al., 2008; Rao et al., 2018). In contrast, overexpression of UPF2 

and SMG6 both decrease viral expression, perhaps by sequestering UPF1 (Ajamian et 

al., 2015; Rao et al., 2018). It has indeed been demonstrated that UPF2 and UPF3aL 

block the binding of the UPF1 on the viral RNA, resulting in a reduction of nucleus-

cytoplasmic transport of full length transcript (Ajamian et al., 2015). Therefore, in 

contrast to other retroviruses, UPF1 is a positive regulator for HIV-1 expression and 

HIV-1 virions made in the absence of UPF1 are also less infectious (Serquina et al., 

2013).  

 

Repression of an RNA decay enzyme 

Flaviviruses 

 Increase in world travel has led to the spread of many infectious pathogens such 

as RNA viruses. One RNA virus family which uses arthropods as vectors are the 

members of the Flaviviridae (e.g. Dengue 1-4 virus, West Nile virus, Zika virus, etc.). 

There are four genera in the Flaviviridae family: Flavivirus, Hepacivirus, Pegivirus, and 

Pestivirus (Lefkowitz et al., 2018). Flaviviruses are enveloped viruses that contain a 

single positive sense, single-stranded, RNA viruses that can cause a range of 

symptoms. These include hemorrhagic fevers, mild fevers, rashes, headaches, and 

myalgia in humans.  

Flaviviruses interface with the RNA decay machinery by stalling and repressing a 

key decay enzyme. Arthropod-borne flaviviruses rely on the highly processive 
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exoribonuclease XRN1 to generate a non-coding RNA called subgenomic flaviviral RNA 

(sfRNA), which has been mapped to viral 3’ UTRs (Funk et al., 2010; Moon et al., 2012; 

Pijlman et al., 2008; Silva et al., 2010). Furthermore, hepaciviruses (HCV) and 

pestiviruses (BVDV) of the Flaviviridae family also stall XRN1 in the 5’ UTR in a region 

associated with the Internal Ribosome Entry Site (IRES) element (Moon et al., 2015b). 

Early studies of sfRNAs indicated that a conserved pseudoknot is important for XRN1 

stalling as deletion of the pseudoknot prevent sfRNA formation (Funk et al., 2010; Silva 

et al., 2010). Chapman et al (2014b), the authors were able to crystalize a 68-nucleotide 

sequence of 3’ UTR of Murray Valley Encephalitis virus (another member of the 

Flaviviridae) that stalls XRN1 and show that the RNA forms a three-helix junction RNA 

structure. The RNA folds into a ring-like structure in which the 5’ end of the RNA passes 

through the middle of ring (Chapman et al., 2014a). Based on structural modeling, the 

viral RNA dependent RNA polymerase will have no problem passing through the 

structure from the 3’-5’ direction, but XRN1 coming from the 5’-3’ direction is stalled by 

the knot-like fold. Recently, an XRN1 stalling region of the 3’ UTR of Zika virus has 

been crystalized and shown to have a similar structure to that of the Murray Valley 

Encephalitis virus element (Akiyama et al., 2016).  

In addition, XRN1 stalling on these viral structures can also cause repression of 

enzymatic activity (Moon et al., 2012, 2015b). It is hypothesized that XRN1 repression 

happens due to slow release of the stalled enzyme from the viral RNA decay 

intermediate. Interestingly, this reversible XRN1 repression affects other enzymes 

throughout the 5’-3’ decay pathway as well. Thus, the accumulation of sf/xr (XRN1-
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Resistant) RNAs leads to the dysregulation of host mRNA stability (Moon et al., 2012, 

2015b).  

 RNA binding proteins a play important role in determining the fate of the mRNA 

and viruses can sponge host RNA binding protein to bypass the RNA decay machinery. 

Not only do flaviviruses generate sfRNAs, but these decay intermediates also appear to 

interact with numerous host cell proteins (Manokaran et al., 2015). To date, several 

RNA binding proteins have been confirmed to interact with sfRNAs of DEN-2 virus. 

These proteins include G3BP1, G3BP2, Caprin1, and TRIM25. The host tripartite motif 

25 (TRIM25) protein requires deubiquitylation by ubiquitin-specific peptidase 15 

(USP15) to activate expression of the retinoic acid–inducible gene 1 (RIG-I) (Pauli et al., 

2014). In a dengue virus infection, the host TRIM25 protein will bind to the sfRNA of 

DEN-2 virus and thus prevent activation of RIG-I expression (Manokaran et al., 2015). 

G3BP1, GCBP2, and Caprin1 are required for activation of the several interferons 

stimulated genes. In a dengue virus infection, the production of sfRNA will sequester 

these three proteins by reducing the activation level of interferon stimulated genes 

(Bidet et al., 2014). sfRNAs have also have been shown to interact with the antiviral 

RNA interference pathway in mosquitoes and mammalian cells (Moon et al., 2015c; 

Schnettler et al., 2012). Schnettler et al. 2012, showed that West Nile virus (WNV) 

sfRNA will prevent dicer from cleaving double stranded RNA and this prevents dicer 

from activating the RNA-induced silencing complex (RISC). Moon et al. 2015c, showed 

that both dicer and Ago2 will associate with the 3’ UTR of Kunjin virus (a WNV variant). 

Non-coding RNA that sponge dicer and Ago are likely contributing to the mild repression 

of the RNAi pathway observed in West Nile virus infected cells and mosquitoes. 
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Tombusviruses 

 Red clover necrotic mosaic virus (RCNMV) from the genus Dianthovirus is a 

member of the Tombusviridae family (Lefkowitz et al., 2018). The genome consists of 

two RNA segments which encode for four proteins: p27, p88, CP, and MP (Okuno et al., 

1983; Stuart et al., 2004). Additionally, the RNA genome has no cap structure or poly(A) 

tail to protect its 5’ or 3’ ends (Mizumoto et al., 2003). Iwakawa et al., (2008) showed 

that the 3’UTR of RNA 1, which contains a translation-enhancer element of dianthovirus 

RNA1 (TE-DR1) -mediated cap-independent translation sequence, can stall XRN1. 

Interestingly, the non-coding RNA decay intermediate is also packaged into the virion 

(Iwakawa et al., 2008). Furthermore, recently the structure of the 3’ UTR that stalls 

XRN1 has been identified to have a fold that is unique relative to the stalling structures 

identified in the 3’ UTR of flaviviruses (Steckelberg et al., 2018).  

 The interface between other members of the Tombusviridae and the XRN family 

of enzymes appears to be more complicated. Several studies have shown knockdown 

of XRN4 leads to the accumulation and recombination of other tombusvirus RNAs (Jaag 

and Nagy, 2009; Peng et al., 2011). In contrast, overexpression of XRN4 was shown to 

enhance Bamboo mosaic virus (BMV) replication and silencing of XRN4 lead to 

decrease in BMV RNAs (Lee et al., 2016). 

In conclusion, evidence is accumulating that all RNA viruses must successfully 

interact with the RNA decay machinery early on in order to establish a productive 

infection. A plethora of strategies and targets appears to be in place – and 

understanding the molecular details of these mechanisms will likely not only provide 
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important insights into viral-host interactions but may also reveal unforeseen aspects of 

the cellular RNA decay machinery itself. 

 

Section III: Evidence of alternative RNA structures that can stall XRN1 

 A main focus of this dissertation is to provide evidence of the range of RNA 

structures that can stall and repress XRN family enzymes. Thus, this section will provide 

an overview of past work into other ways that XRN1 can be stalled on RNA substrates. 

These include poly(G) sequences that were used 20 years ago to help delineate mRNA 

decay pathways in yeast as well as protein-RNA complexes that form a measurable 

impediment to XRN1 movement on the targeted RNA. Finally, XRN1 stalling is not 

something that is restricted to viral RNAs. It is important to note that XRN1 stalling is 

naturally involved in cellular RNA processing events such as 5’ end maturation of 

snoRNAs and ribosomal RNAs. Thus, the view of XRN1 as simply an unstoppable 

‘terminator’ exoribonuclease is clearly not accurate as the enzyme appears to have a 

much more dynamic interplay with select RNA substrates. 

 

Poly(G) insertions in yeast mRNAs stall XRN1 

 The addition of poly guanosine (poly(G)) into the body of a mRNA will produce 

measurable decay intermediates when assessed in Saccharomyces cerevisiae cells or 

when the RNA substrate is incubated with recombinant yeast XRN1 (Poole and 

Stevens, 1997). As alluded to above, the initial mapping of RNA decay pathways 

benefited greatly from poly(G) insertions strategically placed into the 5’ or 3 UTRs of 
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reporter mRNAs (Decker and Parker, 1993; Dunckley and Parker, 1999; Muhlrad and 

Parker, 2005; Poole and Stevens, 1997). For example, the insertion of a poly(G) tract 

into the 3’ UTR of the EDC1 mRNA helped to determine that the decay of this mRNA 

occurs through a deadenylation-independent pathway (Muhlrad and Parker, 2005). 

Insertion of poly(G) stretches, however, failed to reproducibly generate measurable 

mRNA decay intermediates when used in many other eukaryotic systems (Li et al., 

2006; Opyrchal et al., 2005). Thus, the utility of poly(G) to block XRN1 appears to the 

limited and perhaps even transcript-specific or context-specific. Thus, the biological 

relevance of poly(G)-mediated XRN1 stalling was not clear, a point that will be 

addressed by the phlebovirus section of this dissertation. 

 

Protein complexes can also stall XRN1 

The MS2 tagging system has been used to study mRNA localization as well as a 

fundamental component in the tethering of proteins to reporter RNAs to assess function. 

The MS2 tagging system inserts multiple copies of a stem loop structure derived from 

bacteriophage MS2 which binds the MS2 coat protein very specifically and with high 

affinity (Peabody, 1993). Interestingly, the addition of MS2 protein and MS2 protein 

complexes to a mRNA can apparently also influence its degradation in unexpected 

ways.  In 2015, Garcia and Parker showed that the presence of MS2 stem loops in a 

reporter RNA resulted in a measurable accumulation of downstream fragments due to 

the protein/protein complex blocking XRN1 from degrading the portion of the mRNA 

lying 3’ to the MS2 binding sites (Garcia and Parker, 2015). 
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XRN enzymes stall during 5’ end processing of small nucleolar RNAs  

 Small nucleolar RNAs (snoRNAs) are non-coding RNAs required for site-directed 

modifications to RNAs (in particular rRNAs) and are concentrated in the nucleoli or 

Cajal bodies (Wu et al., 2016). The majority of box C/D and H/ACA snoRNAs are made 

from introns of splicing mRNAs and require the use of members of the XRN family of 

enzymes to generate a mature 5’ end. In yeast, mutations in either XRN1 or XRN2 will 

lead to accumulation in the pre-snoRNAs that get relocalized to the cytoplasm to be 

degraded (Lee et al., 2003a). The XRN enzyme trims the 5’ end of pre-snoRNAs to form 

the mature snoRNA (Kiss and Filipowicz, 1995). Dicistronic RNAs (e.g pre-snoR190-

U14) require the Rnt1 endonuclease to cleave the RNA to liberate monocistronic RNAs 

(Grzechnik et al., 2018).   

 

XRN enzymes stall during 5’ end processing of ribosomal RNA  

 The 60S ribosomal RNA is processed from a precursor rRNA (pre-rRNA) which 

contains the 18S, 5.8S, and 25S (yeast)/28S (mammals). XRN2 involvement in 

ribosomal processing has been reported in yeast (Amberg et al., 1992; Fang et al., 

2005; Petfalski et al., 1998), ciliates (Couvillion et al., 2012), plants (Zakrzewska-

Placzek et al., 2010), and mammals (Wang and Pestov, 2011). The sequences in pre-

rRNA not found in mature rRNA are called external transcribed spacer (5’ or 3’ ETS) or 

internal transcribed spacer (ITS1 and ITS2) sequences. XRN2 is responsible for 

removal of the 5’ ETS works in parallel with another 5’-3’ exonuclease RRP17 in 

trimming the 5’ ends (Oeffinger et al., 2009). The ITS1 and 2 are cleaved by the nuclear 

RNase MRP to allow access for the exosome and XRN2 to trim the 3’ and 5’ ends 
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respectively (Fang et al., 2005). In mammals, knockdown of XRN2 causes accumulation 

of the 5.8S and 28S transcripts with extended 5’ ends (Wang and Pestov, 2011). 

Furthermore, when XRN2 is knocked down, then XRN1 can compensate (Fang et al., 

2005; Henry et al., 1994; Johnson, 1997). The mechanism of how XRN2 just trims and 

does not degrade the whole ribosomal RNA has yet to be uncovered. Based on 

observations presented here as well as in the literature noted above, we hypothesize 

that terminal rRNA structure and/or rRNA protein interactions may play a key role. 

 In conclusion, this section shows XRN1 stalling is a natural part of the lifecycle of 

some RNAs and that there appears to be several ways to stall this exoribonuclease. 

Thus, XRN1 stalling is not limited to viral RNAs and insights gained towards 

understanding underlying mechanisms of blocking progression of this normally very 

processive exoribonuclease may have major implications to cellular biology as well as 

virology. 

 

Section IV: Introduction of virus families used in this study   

This section will give an overview of the four different families of viruses used in 

this study with an emphasis on what is known regarding RNA structures in the 3’ 

untranslated region of these viral transcripts.  

 

Overview of Phleboviruses 

Phleboviruses are in the genus Phlebovirus, part of Phenuiviridae family (formally 

Bunyaviridae family) within the order Bunyavirales (Lefkowitz et al., 2018). 
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Phleboviruses are transmitted by sandflies (Badakhshan et al., 2018), ticks (Sakamoto 

et al., 2016), or mosquitoes (Talavera et al., 2018; Vloet et al., 2017). These viruses can 

cause fevers which can be deadly in humans (Nakouné et al., 2016). In livestock, 

phleboviruses can cause high rates of abortions, resulting in significant economic losses 

for the agriculture industry (Mutua et al., 2017; Nakouné et al., 2016; Nderitu et al., 

2011). It is important to understand phleboviruses (as well as all RNA viruses) at the 

molecular level to potentially reveal novel anti-viral targets for rational drug design. The 

three phleboviruses used in this study are Rift Valley fever virus (RVFV), Sandfly 

Naples virus, and Heartland virus.  

 

Phlebovirus gene expression 

 Phleboviruses are enveloped viruses with a genome consisting of three single 

stranded RNA segments named S (small), M (medium), and L (large) (Figure 3). The L 

segment is in the negative sense orientation and encodes for the viral RNA-dependent 

polymerase (Accardi et al., 1993; Elliott et al., 1992; Muller et al., 1992, 1994). The M 

segment is also of negative polarity and encodes the viral glycoprotein (Grò et al., 1997; 

Mochi et al., 1997). Interestingly, the S segment uses an ambisense gene expression 

strategy in which both the genomic and anti-genomic RNA segments are utilized 

independently to produce two different mRNAs encoding either the nucleocapsid protein 

or a non-structural protein (Brennan et al., 2014; Marriott et al., 1989; Muller et al., 

1992; Perrone et al., 2007).  
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Structure in the 3’ UTRs of phlebovirus RNAs  

 The area between the two delineated open-reading frames of the S segment has 

a highly structured area called the intergenic region (Emery and Bishop, 1987; Giorgi et 

al., 1991). The predicted structure of the intergenic region is one huge stem loop that 

serves as to help terminate transcription (Emery and Bishop, 1987). In the intergenic 

region of the S segment contains a conserved set of CGUCG pentanucleotides that 

serves are the termination site for the viral RNA polymerase to generate mRNAs. 

Before this CGUCG sequence contains either a G-rich (3’ UTR of the nucleocapsid 

Figure 3: Diagram of Phlebovirus gene expression. The L segment encodes for 
the RNA-dependent RNA polymerase (L). The M segment encodes for the 
glycoprotein precursor protein (G). The ambisense S segment genome encodes for 
the nucleocapsid (N) in the negative sense orientation and viral anti-genome 
encodes the non-structural (NSs) protein in a positive sense orientation. The 
orange circle represents the 5’ cap and the viral transcripts are not polyadenylated. 
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mRNA) or C-rich sequence (3’ UTR of the nonstructural mRNA) (Brennan et al., 2017; 

Ikegami et al., 2007; Lara et al., 2011). This G-rich region will become a focus of this 

dissertation project as described in the results section. 

 

Overview of Arenaviruses 

 Arenaviruses are a part of the Arenaviridae family (Lefkowitz et al., 2018) and are 

transmitted by rodents (Mariën et al., 2017, 2018). Arenaviruses can be sorted into Old 

World (e.g. Lassa virus, Lujo virus) or New World arenaviruses (e.g. Junin virus, 

Machupo virus, etc.) (Fehling et al., 2012). In humans, arenaviruses can cause 

hemorrhagic fevers which can be deadly (Hass et al., 2004; Hidalgo et al., 2017; Mariën 

et al., 2018). This study will focus on Junin virus as well as two novel snake 

arenaviruses.  

 

Arenaviruses gene expression  

 Arenaviruses are enveloped viruses containing two segments of single-stranded 

genomic RNA (Figure 4). Both segments utilize the ambisense coding strategy in which 

both the viral genome and anti-genome RNA segments are used to produce 

independent mRNAs (Auperin and McCormick, 1989; Singh et al., 1987).The L segment 

generates the mRNA that encodes for the viral RNA-dependent RNA polymerase 

(Lukashevich et al., 1997) and the anti-genomic L segment generates the mRNA that 

encodes for the RING finger Z protein (Cornu et al., 2001; Djavani et al., 1997; Fehling 

et al., 2012). The S genomic RNA segment generates the mRNA that encodes for the 
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nucleocapsid protein (Auperin and McCormick, 1989; Iapalucci et al., 1991) while the S 

anti-genomic segment encodes for the mRNA that generates the precursor glycoprotein 

mRNA (Ghiringhelli et al., 1991; Pinschewer et al., 2003).   

 

Structure in the 3’ untranslated regions of arenavirus RNAs 

 Arenaviruses have an intergenic region, which contains one (Auperin et al., 1984; 

Charrel et al., 2001; López and Franze-Fernández, 2007), two (Ghiringhelli et al., 1991), 

or three (Gonzalez et al., 1996) stable stem loops located between the two open-

reading frames on either the S and L genome segments (Auperin and McCormick, 

1989; Clegg et al., 1991; Iapalucci et al., 1989, 1991; Moncayo et al., 2001; 

Romanowski and Bishop, 1985; Salvato and Shimomaye, 1989; Wilson and Clegg, 

1991). One of the functions of the intergenic region is to serve as a transcription 

termination site/signal (Iapalucci et al., 1991; López and Franze-Fernández, 2007; 

Pinschewer et al., 2005). In several studies, it was observed that partial deletion of the 

Figure 4. Diagram of arenaviruses gene expression. The ambisense L segment encodes 
the RNA-dependent RNA polymerase (L) in the negative sense orientation and the matrix 
protein (Z) from the viral anti-genome in the positive sense orientation. The amibsense S 
segment encodes for the nucleoprotein (NP) in the negative sense orientation and 
glycoprotein precursor (GPC) in the positive sense orientation from the anti-genome.  
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intergenic region caused attenuation of the virus (Golden et al., 2017; Iwasaki et al., 

2016; Pinschewer et al., 2005).  

 

Overview of Coronaviruses 

 Coronaviruses are in the Coronaviridae family within the order Nidovirales 

(Lefkowitz et al., 2018) and can cause a range common respiratory and enteric 

diseases in a variety of mammalians and domestic species. Two emerging 

coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle 

East respiratory syndrome coronavirus (MERS-CoV), cause life-threating diseases in 

humans (Wong et al., 2015; Xiao et al., 2017). MERs-CoV and the 3’ UTR of its mRNAs 

was the focus a part of this study. 

 

Coronaviruses gene expression  

 Coronaviruses contain a single-stranded, positive-sense genomic RNA which is 

capped and polyadenylated (Bouvet et al., 2010; Peng et al., 2016; Spagnolo and 

Hogue, 2000; Wu et al., 2013). The genome can range from 27 to 32 kilobases in size, 

making it the largest RNA virus studied to date (Boursnell et al., 1987; Eleouet et al., 

1995b, 1995a; Lee et al., 1991). The virus generates a number of subgenomic mRNAs 

that contain the same 5’ leader sequence and 3’ UTR but different open reading frames 

(Hsue and Masters, 1997; Sethna et al., 1991; Williams et al., 1999). The genomic RNA 

contains over 10 different open reading frames, two of which are accessed by ribosomal 

frame shifting for the RNA-depend-RNA polymerase (Bredenbeek et al., 1990). The 
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subgenomic RNAs are made during viral replication by discontinuous RNA synthesis 

(Bentley et al., 2013; Dufour et al., 2011; van Marle et al., 1999; Pasternak et al., 2001; 

Sethna et al., 1989; Zúñiga et al., 2004).   

 

A conserved structure in the 3’ UTR of coronavirus mRNAs 

 A conserved pseudoknot and multiple stem-loop with bulges are found the in the 

3’ UTR of coronaviruses (Goebel et al., 2004a). These structures can interact with other 

parts of RNA genome and are essential for viral replication (Goebel et al., 2004a, 

2004b). The pseudoknot structure is only partially stable in solution, as demonstrated 

best using the pseudoknot region from murine hepatitis virus (MHV). Thus, any 

structure associated with the pseudoknot may require viral or host proteins to stabilize it 

(Stammler et al., 2011).  

 

Overview of Benyviruses  

 Many plant viruses can cause significant losses to agriculture. Benyviruses are in 

the genus Benyvirus in the Benyviridae family (Gilmer et al., 2017; Lefkowitz et al., 

2018) and consist of non-enveloped, rod shape particles (Putz, 1981). The particles can 

range in length from 65 to 390 nanometers (Putz, 1981). The best studied virus from the 

Benyviridae is beet necrotic yellow vein viruses (BNYVV) which causes rhizomania 

disease in sugar beets (Heidel et al., 1997). BNYVV is transmitted by a soil protozoan, 

Polymyxa betae (family Plasmodiophoraceae) and a protein called P75 is important for 

transmission (Tamada et al., 1996).  



54 
 

Benyvirus gene expression 

The benyavirus genome consist of two main RNA segments and three optional 

segments (Putz, 1981). The genomic segments are linear, positive-sense, single 

stranded RNAs that are capped and polyadenylated. RNA 1 has one large open reading 

frame encoding for replication-associated proteins. RNA 2 has six open reading frames 

encoding for the coat protein (responsible for coating the RNA), p75 (mentioned above) 

(Tamada et al., 1996), p14 (a post-transcriptional suppressor) (Chiba et al., 2012) and 

other proteins associated with cell-to-cell movement (Crutzen et al., 2009; Gilmer et al., 

1992). RNA 3, the focus of this study, will be reviewed in the next paragraph. RNA 4 

encodes for p31 which increases the transmission rate by Polymyxa betae (D’Alonzo et 

al., 2012). RNA 5 encodes for the p26 protein which may modulate the type of 

symptoms in viral infection (Peltier et al., 2012). 

  

BNYVV subgenomic RNA 3 

 Beet necrotic yellow vein virus (BNYVV) RNA 3 is 1773 nucleotides long and 

contains three open reading frames (p25, N, p4.6). BNYVV RNA 3 is responsible for the 

systemic movement of the virus and thus is a major factor in generating disease 

symptoms in plants (Lauber et al., 1998; Peltier et al., 2012).  Interestingly, Peltier et al., 

2012 showed the accumulation of a subgenomic RNA from RNA 3 in both a natural 

plant infection as well as in yeast transfections. 5’ RACE analysis mapped the proximal 

end of the sub genomic RNA to a conserved sequence called the coremin motif (Peltier 

et al., 2012). The coremin motif is also found in RNA 5 which also generates a 

subgenomic RNA.  
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Project Rationale 

  The cellular RNA decay machinery is important for the recognition and removal 

of ‘unwanted’ RNAs in the cell. Transcripts from RNA viruses certainly fall into the 

‘unwanted’ category, but these viruses clearly have evolved ways to avoid or 

successfully interact with this machinery. Previously in our lab, we have established that 

flavivirus transcripts successfully interface with the RNA decay machinery by targeting 

the major decay enzyme XRN1. Flaviviruses generate a non-coding RNA (sfRNA or 

xrRNA) by the stalling of XRN1, resulting in the incomplete degradation of the genomic 

RNA. Notably, the strategy of XRN1 stalling and repression is conserved throughout the 

Flaviviridae and represents an important aspect of the virus life cycle (Moon et al., 2012, 

2015b; Pijlman et al., 2008). XRN1 stalling in the 3’ UTR of arthropod-borne flaviviruses 

is caused by an RNA structure with a three-helix junction at its core, producing a 

slipknot of sorts that is difficult for enzymes moving in the 5’ to 3’ direction to penetrate 

(Chapman et al., 2014a). Stalling of XRN1 at this structure also results in the slow 

release of XRN1 from the RNA substrate, resulting in a reversible inhibition of 

enzymatic activity (Moon et al., 2012; 2015b). This disruption of XRN1 activity resulting 

in a major dysregulation of mRNA turnover in infected cells.  

 Based on the attractiveness of targeting an accessible cytoplasmic enzyme 

whose repression will have major effects on cellular gene expression, we hypothesized 

that other virus families may have evolved the ability to stall and repress XRN1. To 

investigate this possibility, we focused in this study on several virus families that have 

complex structures in the 3’ UTRs of their transcripts. In the course of this work, we 

investigated the following three hypotheses: 
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(1) Conserved sequences from phleboviruses, arenaviruses, coronaviruses, and 

a benyvirus may stall and repress the cellular exoribonuclease XRN1.  

(2) Small molecules that are known to intercalate into three helix junction 

containing RNA structures may be capable of inhibiting sfRNA generation 

from flavivirus RNAs 

(3) All 5’ to 3’ exonucleases may not be as susceptible as XRN1 to stalling at 

flavivirus 3’ UTR structures.  To test this hypothesis, we focused on the 

mammalian DOM3Z/DXO exoribonuclease. 
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 Chapter 2: Methods 

Plasmids and templates for in vitro transcription 

DNA templates to produce RNAs by in vitro transcription were generated by 

cloning PCR products into pGEM4 (Promega) or pGEMA60 (Garneau et al., 2008) 

vectors. The plasmid to produce the RNA containing the upstream portion of the DENV-

2 3’ UTR was described previously (Moon et al., 2015b) and sequence information is 

listed in Table 4. PCR products from the 3’ UTRs of the RVFV L, G, NSs, and N 

mRNAs, as well as the 3’ UTRs from the Junín Virus GPC, NP, Z, and L mRNAs, were 

obtained from Dr. Brian Gowen (Utah State University). PCR products from the 

arenavirus SN90 Z and SN68 L 3’ UTRs were generated by using primers: 68FW-

AGAGAAGCTTTAGAAGACTAGATCGCCGGG, 68RV-GAGACTGCAG 

GCCCTGAGAAGCCAGCAGCA, 90FW-

AGAGAAGCTTGAGTCTAGAGGTCCTCCAACCCAG, and 90RV-

GAGACTGCAGATCGACGATGACTGAGGGGGA, from plasmids received from Dr. 

Mark Stenglein (Colorado State University) (Stenglein et al., 2012). The MERS-CoV 3’ 

UTR was obtained by RT-PCR from total infected cell RNA (obtained from Tony 

Schountz) using the primers 5’-GCCTGGTCCAATGATTGATGTTA and 5’-

TTTTGCAAATCATCTAATTAGCCTAATCTA. DNA oligonucleotides containing the 3’ 

UTRs of the Sandfly Naples and Heartland virus N mRNA were obtained from 

Integrated DNA technologies (IDT). DNA oligonucleotides containing the 3’ UTRs of 

Zika virus (Wildtype (WT) contains sequence: 10,380…10,807; point mutations were 

inserted to disrupt sfRNA formation – Mutant 1-MUT1- 10,416 - C→G; Mutant 2-MUT2- 

10,496 - C→G; Double Mutant-DM- 10,416 - C→G AND 10,496 - C→G) were obtained 
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from Thermo Fisher Scientific GeneArt. Information on all the sequences of these 

oligonucleotides and PCR products that were generated is listed in Table 4. All but one 

of the PCR products were inserted into pGEMA60 or pGEM-4 at the PstI and HindIII 

sites. This generates an RNA with a 5’ plasmid-derived ‘leader’ sequence of 50 

nucleotides. The RVFV G 3’ UTR was inserted into pGEMA60 at the PstI and SphI sites 

because of an incompatibility with the HindIII restriction site. In addition, the RVFV N 3’ 

UTR PCR products was also subcloned into the NotI site of peGFP-N1 (Clontech). A 

portion of the eGFP 3’ UTR (1402–1520 nucleotides, GenBank: U55762.1) was 

subcloned from peGFP-N1 into the EcoRI and HindIII sites of pGEM4 to generate 

peGFP-UTR. This plasmid was used to generate a probe for northern blotting. Plasmids 

were isolated using the Zymo-PURE Plasmid Maxiprep Kit per the manufacturer’s 

instructions (Zymo Research). Plasmids were all verified by Sanger sequencing. For in 

vitro transcription templates, the plasmids were linearized with restriction enzymes as 

listed in Table 2. 

DNA template used for RNA ladder was amplified by PCR from the pGEM-4 

plasmid as the template. The forward primer in the PCR reaction was the same but the 

reverse primers are different (Table 3). PCR products were gel purified and then mixed. 

This was done by John Anderson. 

Table 3- Primers for RNA ladder template 

Size (bases) Forward Primer 

5’-3’ 

Reverse primer 

5’-3’ 

100 TACACATACGATTTAGGTGA TCGAAATTAATACGACTCAC 

200  ACCGAGCGCAGCGAGTCAGT 

300  GCCTTTTGCTCACATGTTCT 
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400  TCTGACTTGAGCGTCGATTT 

500  AGGTATCCGGTAAGCGGCAG 

750  GAACTCTGTAGCACCGCCTA 

1000  AAATCCCTTAACGTGAGTTT 
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Table 4- Information on all sequences used in this study. 

Name: Virus 
strain: 

NCBI 
Accession 
Number: 

Sequence 5’-3’ Restriction enzymes used for 
linearization of plasmids 

Control-
pGEM 

 X65303.1 1…61 

1…168 

1…390 

Report RNA: HindIII 

Control and competitor RNA: 
Ear1  

Control RNA (Figure 2): Sml1 

Zika 3’ 

UTR 

PRVABC-

59 

KX377337 10,380…10,807 

MUT1- 10,416 - C→G 

MUT2- 10,496 - C→G 

DM- 10,416 - C→G AND 10,496 - C→G 

HindIII 

Zika 5’ 
half of 3’ 
UTR 

PRVABC-
59 

KX377337 10,380…10,551 Ear1 

RVFV L 
3’UTR 

ZH-501 DQ375406 6282…6404 HindIII 

RVFV G 
3’UTR 

ZH-501 DQ380200 3605…3847 SphI 

RVFV 
NSs 3’ 
UTR 

ZH-501 DQ380149 783…936 HindIII 

RVFV N 
3’ UTR 

ZH-501 DQ380149 930…730 HindIII 

Northern probe: EcoRI  



61 
 

Sandfly 
Naples N 
3’ UTR 

 HM566170 1062…984 Ear1 

Heartland 
N 3’ UTR 

TN KJ740146 1020…921 Ear1 

JUNV GP 
3’UTR 

Rumero JN801476 1519…1859 HindIII 

JUNV N 
3’UTR 

Rumero JN801476 1637…1420 HindIII 

JUNV Z 
3’UTR 

Rumero AY619640 349…542 HindIII 

JUNV L 
3’UTR 

Rumero AY619640 492…306 HindIII 

SN90 Z 
3’ UTR 

  AACCCGAGTCTAGAGGTCCTCCAACCCAGGAGGCCACCAA

ACCAACCCCACCCAGCAAACAACCAAACCAACACCCCAGA

CCACCGGGGACGGCGCCGCCGTCCCCGGTGGTCTGGGGTC

ATCGAGGGCAGTCTCGGGACCATGTCCCCCTCAGTCAT 

HindIII 

SN-68 L 
3’ UTR 

  ATCGCCGGGCCACACTCCAGAACCCCCCAGACCGCCGAGG

AGAGCGCTGCTCTCCTCGGCGGTCTGGGTTGTTCCTTGCT

CTTGTCCTTTCCGGGTTTTCTGTTGTTGTCCCTCTGCTCT

GCTGCTGGCTTC 

HindIII 

DENV-2 
5’ half of 
the 3’ 
UTR 

Jamaica/N.
1409 

M20558 10273…10491 Ear1 

BNYVV-
55mer 

Isolate S NC_00351
6 

1222…1278 HindIII 

For competition assay: Ear1 
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MERs-
CoV 3’ 
UTR 

HCoV-
EMC 

NC_01984
3 

29774…30109 HindIII 

For Northern Blot: EcoR1 
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In vitro transcription  

The protocol used for generating RNA from plasmid templates with internally 

radiolabeled nucleotides is as follows: 1 µg linearized plasmid, 1 µL 5X transcription 

buffer (Thermo Fisher Scientific), 0.5 µL RiboLock RNase inhibitor (Thermo Fisher 

Scientific), 1 µL riboNTPs (5 mM ATP, CTP; 0.5 mM GTP, UTP), 1µL 5mM guanosine 

monophosphate (GMP), 4.5 µL α-32P-UTP (800 Ci/mmol), and 1µL SP6 polymerase 

(Thermo Fisher Scientific). Four changes to this standard protocol were done to 

generate radiolabeled probes for northern blots and RNA ladder: the riboNTP 

concentration was changed to 5 mM ATP, CTP, GTP; 0.5 mM UTP, GMP was omitted, 

T7 polymerase was used instead of SP6 polymerase (Thermo Fisher Scientific), and 

1µL of nuclease-free water was added to bring the final reaction volume to 10 µL. To 

generate larger amounts of lightly-radiolabeled RNA for use in competition assays 4 µg 

linearized plasmid, 8 µL 5X transcription buffer, 1 µL RiboLock RNase inhibitor (Thermo 

Fisher Scientific), 4 µL 5 mM GMP, 4µL riboNTPs (5 mM ATP, CTP, UTP; 0.5 mM 

GTP), 8µL 1:25 dilution of α-32P-UTP (800 Ci/mmol), 4 µL SP6 polymerase, and 

nuclease-free water were mixed to generate a final reaction volume of 40 µL. Finally, 

the MEGAscript® SP6 transcription kit (Life Technologies) was used to generate 

unlabeled RNAs for use in the 5’ mapping of RVFV N mRNA 3’ UTR decay 

intermediates. All RNAs were made with guanosine monophosphate as a way for XRN1 

to target these RNAs (Jinek et al., 2011).  

  Reactions were incubated for three hours at 37ºC then extracted using 

phenol/chloroform/isoamyl alcohol (25:24:1) and ethanol precipitated.  RNA pellets were 

washed with 70% ethanol, dried and resuspended in 10 µL RNA loading dye (8M urea, 
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20 mM EDTA, 100 mM Tris-HCl pH 7.6, 0.06% bromophenol blue, and 0.06% xylene 

cyanol) containing urea or for RNA ladder 20 µL nuclease-free water. RNAs were 

heated at 90o for 30 seconds and run on a 5% polyacrylamide gel containing 7M urea.   

Radiolabeled bands were imaged by X-ray film and unlabeled RNA bands was identified 

by UV shadowing. The band containing the RNA was excised, placed into 400 µL high 

salt column buffer (HSCB- 400 mM NaCl, 25 mM Tris-HCl pH 7.6, and 0.1% SDS) and 

eluted overnight at room temperature. The buffer was then placed in a fresh tube, 400 

µL of phenol/chloroform isoamyl alcohol (25:24:1) was added, vortexed, and centrifuged 

for one minute in a microfuge. The top aqueous layer was transferred to a new 

microfuge tube, 1ml of 100% ethanol was added and mixtures were incubated for at 

least 20 minutes in the -80oC freezer. Tubes were then centrifuged for 10 minutes at 

max speed in a microfuge to pellet the RNA. The ethanol supernatant was removed, 

and the pellet was washed in 150 µL 70% ethanol. Following a brief centrifugation, the 

ethanol wash was removed, and the pellet dried for about two minutes at room 

temperature. RNA pellets were resuspended in 11 or 21 µL of nuclease-free water and 

1 µL was taken and put into three mL of ScintiSafe Econo liquid and counted in a liquid 

scintillation counter. RNAs for cell free decay assays were adjusted to 100,000 counts 

per minute (CPM)/uL and competitor RNAs were set to 200 femtomoles per microliter, 

then added to final concentration listed in the reaction below. 

 

Recombinant K. lactis XRN1 and DOM3z protein purification 

BL21 (DE3) cells transformed with pET26b-XRN1 (Chang et al., 2011) were 

obtained from Dr. Jeff Kieft (CU Medical School) and pET28a-DXO(DOM3z) plasmid 
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(Picard-Jean et al., 2018) was obtain from Dr. Brian Geiss (Colorado State University). 

pET28a-DXO was transformed into BL21 cells. An isolated colony was inoculated into 

15 mL of LB containing kanamycin (40 µg/mL) and incubated overnight at 37°C. A 100 

µL aliquot was saved at this step (as well as after all other steps) to run on a SDS-

PAGE gel for quality control assessment at a later time. The remaining culture was 

added to 500 mL of LB containing kanamycin (40 µg/mL) and incubated until the culture 

reached an OD600 = 0.3. At this stage the temperature was lowered to 20°C and 

incubation continued until the OD600 of the culture reached 0.6. Isopropyl β-D-1-

thiogalactopyranoside (IPTG) was then added to the final concentration of 0.4 mM to 

induce recombinant protein expression and the culture was incubated overnight. The 

bacteria were then pelleted at 5,000 rpm (Sorvall Evolution RC / SLA-3000 rotor) for 10 

minutes. The supernatant was carefully decanted, and the pellets resuspended in 10 

mL of lysis buffer (20 mM Tris-Cl pH 7.6, 500 mM NaCl, 2 mM DTT, 10% glycerol, 1 

complete tab of protease inhibitor (Roche)) and transferred to a 50 mL conical tube.   

Using a Sonic Dismembrator Model 100 sonicator set to “7”; the sample was then 

sonicated on ice for three one-minute cycles (30 seconds on / 30 seconds off). The 

lysate was centrifuged (Sorvall Evolution RC / SS-34 rotor) at 16,000 rpm for 20 

minutes at 4ºC and the cleared supernatant transferred into new 50 mL conical tube. 

Then 2 mL of a 50% slurry of nickel beads and 20 mM imidazole was added to the 

sample and the mixture was rotated for two hours at 4ºC to allow the protein to bind to 

the beads. The beads were pelleted by centrifugation at 500 rpm for 10 minutes on a 

table top Fisher Scientific accuSpinTM 3R and the supernatant was discarded. 10 mL of 

wash buffer (20 mM Tris-Cl pH 7.6, 500 mM NaCl, 2 mM DTT, 10% glycerol, and 40 
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mM imidazole) was added, mixed to wash the beads, and the beads were pelleted at 

500 rpm for 10 minutes. This wash procedure was repeated at least four times. After the 

last wash, 2 mL of elution buffer (20 mM Tris-Cl, pH 8.0, 150 mM NaCl, 2 mM DTT, 

10% glycerol, and 200 mM imidazole) was added and rotated for one hour at 4ºC. The 

mixture was centrifuged at 500 rpm for 10 minutes and the supernatant was transferred 

into a 15 mL conical tube on ice. The supernatant containing the recombinant protein 

was dialyzed in the elution buffer without the imidazole and aliquoted and stored at -

80oC. Samples were run on an 8 % SDS-PAGE gel and imaged by coomassie staining 

to evaluate protein purity and quality. 

 

Cell free RNA decay assays 

 RNA decay assays using recombinant XRN1: 2 µL (100,000 cpm/ uL) of 

internally radiolabeled RNA substrate, 1 µL RiboLock RNase inhibitor (Thermo Fisher 

Scientific), 2 µL 10X NEBuffer 3 (1000 mM NaCl, 500 mM Tris-HCl, 100 mM MgCl2, 10 

mM DTT at pH 7.9), and 14 µL of nuclease-free water were mixed to bring the total 

reaction volume to 19 µL. Lastly, 1µL (0.06 µg/µl) of purified recombinant XRN1 was 

added. Reaction mixtures were placed at 37oC and 4 µL aliquots were taken at 

designated time points and placed into 200 µL HSCB to stop the reaction prior to 

phenol/chloroform extraction and ethanol precipitation. 

Recombinant XRN1 RNA decay assays in the presence of RNA competitors or 

triptycene compounds: Reactions were performed as described above with the addition 

of 1800 fmol (RVFV N, JUNV L, SN90, BNYVV-55mer) or 1400 fmol (Zika virus) of 

lightly radiolabeled (for accurate quantification) RNA and 2 µL internally radiolabeled 



67 
 

reporter RNA (100,000 cpm/ µL). Alternatively, triptycenes were added at the 

designated concentrations.  The volume of nuclease-free water was adjusted to 

maintain a final volume of 20 µL.  

Cell-free RNA decay assay – Lithium and Potassium. These reactions were 

performed in a similar fashion as the XRN1 assays described above using 10X 

NEBuffer 3 (500 mM Tris-HCl, 100 mM MgCl2, 10 mM DTT at pH 7.9) without the NaCl. 

The addition of 1 µl of 1M lithium chloride (LiCl) or potassium chloride (KCl) was 

included in the reaction and the nuclease-free water was adjusted to bring to final 

volume to 20µL. 

DOM3Z/DXO RNA decay assays. These reactions were performed in a similar 

fashion as the XRN1 assays described above using 2 µL of 10X IVDA-2 buffer (100 mM 

Tris-HCl, pH 7.6, 1000 mM KOAc, 20 mM MgCl2, 0.50 mM MnCl2, 20 mM DTT, and 20 

mM spermidine) and 1 µL(.07µg/µL) of recombinant mammalian DOM3Z/DXO.  

 Cytoplasmic extract-mediated RNA decay assays: 2µL (100,000 cpm/uL) of 

internally radiolabeled RNA, 2 µL phosphocreatine and adenosine triphosphate (PC-

ATP) (final concentration: 250 mM PC, 12.5mM ATP), 6.5 µL 10% polyvinyl alcohol 

(PVA), 1 µL RiboLock RNase inhibitor (Thermo Fisher Scientific), and 16 µL HeLa 

(protein concentrations about 4.8 µg/µL) or C6/36 extract (protein concentration range 

from 6.2 µg/µL to 8.5 µg/µL) (Ford and Wilusz, 1999; Sokoloski et al., 2008) were 

combined and incubated at 37oC for the indicated times. At each time point, 6 µL was 

removed from the reaction and added to 200 µL HSCB prior to phenol/chloroform 

extraction.  



68 
 

To process samples for analysis, 200 µL of phenol/chloroform/ isoamyl alcohol 

(25:24:1) was added, samples were vortexed, and centrifuged for one minute at max 

speed in a microfuge to separate the phases. 150 µL of the upper aqueous phase was 

carefully transferred into a new 1.5 ml microfuge tube. 350 µL of 100% ethanol and 1 µL 

glycogen (as a carrier to add in RNA precipitation) was added and samples were placed 

at -80oC for at least 20 minutes. RNA was pelleted by centrifugation for 20 minutes at 

max speed, washed with 150 µl 70% ethanol, air dried for about three minutes, and 

resuspended in 8 µL urea RNA loading dye. Reaction samples were run on a 5% 

polyacrylamide gel containing 7M urea. Gels were dried on a slab dyer, exposed to a 

phosphorimage screen, and analyzed using a Typhoon Trio phosphorimager. 

 

5’ mapping of the RVFV n 3’ UTR RNA decay intermediate 

For mapping the 5’ end of decay intermediates, 5 µg of unlabeled RNA substrate 

containing the 3’ UTR of N mRNA of RVFV was incubated with recombinant XRN1 for 

15 minutes at 37°C in reaction conditions as described above. Reactions were stopped 

by addition of 400 µL of HSCB followed by phenol/chloroform extraction and ethanol 

precipitation. RNA products were separated on a 5% polyacrylamide gel containing 7M 

urea and stained for one hour with SYBR Gold Nucleic Acid Gel Stain (Thermo Fisher 

Scientific) at room temperature. The indicated decay intermediate band was purified 

from the gel by soak elution overnight and the RNA was circularized using T4 RNA 

ligase (NEB). Ligation products were reverse-transcribed using a reverse primer (5’-

AGCATGATGGGGAGAAA), and products were then amplified using Pfu Ultra II Fusion 

HS DNA polymerase (Agilent) and cloned into the pGEM T-Easy vector (Promega) for 
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transformation of DH5α cells. Colony screens were performed by PCR with Pfu Ultra II 

Fusion HS DNA polymerase using RVFV-N-specific primers 5’-

AGCCTTAACCTCTAATCA and 5’-CTCCAATCCCAGATGTTGAG to amplify the 

junction region that resulted from ligation of the 3’ and 5’ ends of the original RNA. Ten 

positive clones were sequenced and the 5’ ends were aligned to the RVFV-N 3’ UTR. 

 

Cell culture  

 Human embryonic kidney 293T (HEK293T) were maintained in Dulbecco’s 

Modified Eagle’s medium (DMEM; Mediatech-Corning) supplemented with 10% fetal 

bovine serum (FBS; Peak Serums) and 1% streptomycin/penicillin (Fisher Scientific-

Hyclone) at 37ºC in the presence of 5% CO2. Cells were routinely passage by washing 

the monolayer with cold phosphate buffered saline (PBS; Corning) followed by 

incubation at 37ºC with a 0.25% trypsin solution (Fisher Scientific-Hyclone) until the 

cells detached. Cells and buffer were then transferred to a 15mL conical tube and 

centrifuged at 500 rpm for five minutes. The cell pellet was resuspended in fresh media 

by pipetting and routinely passaged at a 1/10 dilution. 

 

Plasmid transfections 

GFP reporter plasmids were routinely treated for endotoxin removal 

(MiraCLEAN, Mirus Bio) prior to transfection into HEK293T cells with jetPRIME 

(Polyplus) according to the manufacturer’s recommendations using 3 µg eGFP plasmid 

and 1 µg shRNA. Cells were collected 48 hours after transfection.  
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RNA extraction 

Total RNA was extracted from infected/transfected cells using TRIzol reagent 

(Life Technologies) according to the manufacturer’s recommendations. DNase I 

treatment (Thermo Fisher) was performed for 20 minutes at 37°C to remove genomic 

DNA and RNA was recovered by phenol/chloroform/ isoamyl alcohol (25:24:1) 

extraction and ethanol precipitation. Total RNA from transfected cells were isolated by 

column-based RNA purification (Zymo Research). Total RNA yield was measured using 

a Nanodrop instrument (Thermo Fisher). 

 

Northern Blot 

For the detection of stable decay intermediates from eGFP reporter transfections 

or Rift Valley fever virus (MP-12 strain) infected cells, 5 µg of total cellular RNA was 

separated on a 5% polyacrylamide gel containing 7M urea. The electrophoresed RNAs 

were transferred onto a nylon membrane (Hybond-XL; GE Healthcare) using a tank 

transfer unit. The blots were UV cross-linked and pre-washed with high stringency 

buffer (0.1X SSC, 0.1% SDS) for one hour at 60ºC. Blots were then prehybridized for 

one hour at 60ºC in hybridization buffer (50% formamide, 1 mg/mL bovine serum 

albumin, 750 mM sodium chloride, 75 mM sodium citrate, 0.1 mg/mL salmon sperm 

DNA, 1% SDS, 1 mg/mL polyvinylpyrrolidone, 1 mg/mL ficoll). In vitro transcribed, 

internally radiolabeled RNA probes complementary to the 3’ UTR of GFP (which both 

GFP constructs have in common) or the N 3’ UTR of RVFV were gel purified were used 

to detect stable decay intermediates by incubating with the blot in hybridization buffer 

overnight at 60ºC. Blots were washed three times with low stringency wash solution (2X 
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SSC, 0.1% SDS) and three times with stringent wash solution (0.2X SSC, 0.1% SDS) 

for 15 minutes each at 60ºC. Hybridized RNAs were visualized by exposing the blot to 

phosphor screens and imaging on the Typhoon Trio Imager (GE Healthcare). 
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Chapter 3: Results 

Section I: A variety of viruses can stall and repress the cellular exoribonuclease 

XRN1 

 

Zika sfRNA is produced by XRN1-mediated decay 

Previous research has shown members of the Flaviviridae produce subgenomic 

RNAs due to XRN1 stalling in their 5’ untranslated region (UTR) (e.g. Hepatitis C virus 

and Bovine viral diarrhea virus) or 3’ UTR (e.g. Dengue 2 virus, Japanese encephalitis 

virus, West Nile virus) (Moon et al., 2012, 2015b). These stable decay intermediates 

generated from XRN1 stalling in the 3’ UTR are called subgenomic flavivirus RNA 

(sfRNA) (Pijlman et al., 2008). The generation of these 300-500 base sfRNAs is 

responsible for global stabilization of cellular mRNAs, resulting in a significant 

reprogramming of host cell gene expression (Moon et al., 2012, 2015b). Furthermore, 

sfRNAs are also required for efficient virus transmission in mosquitoes (Göertz et al., 

2016; Pompon et al., 2017). Recently, the structure of Murray Valley encephalitis virus 

(another member of the Flaviviridae) sfRNA was determined using X-ray 

crystallography. This study determined that a knot-like three-helix junction structure is 

primarily responsible for XRN1 stalling (Akiyama et al., 2016; Chapman et al., 2014b, 

2014a). Importantly, this structure is conserved throughout the Flaviviridae - therefore 

XRN1 stalling on the 3’ UTR of flaviviruses should also be conserved (Moon et al., 

2012; Pijlman et al., 2008). Thus, we first wanted to formally demonstrate that the 3’ 

UTR of Zika virus was capable of forming sfRNAs due to XRN1 stalling. 
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A definitive approach to demonstrating RNA-mediated XRN1 stalling is to 

reconstitute the activity in a purified system. To demonstrate specific stalling of purified 

XRN1 exoribonuclease on either a non-specific RNA generated from p-GEM4 sequence 

(control lanes) or a positive control RNA (the 5’ half of the 3’ UTR of Dengue-2 virus 

(DENV lanes) (Moon et al., 2012)), was incubated with recombinant XRN1 (rXRN1). As 

seen in Figure 5, two sfRNAs accumulated specifically from the DENV-2 RNAs while 

the exoribonuclease rapidly degraded the control RNAs. XRN1 stalls at two sites in the 

DENV-2 RNA since it contains tandem three helix junction structures (Chapman et al., 

2014b, 2014a) and XRN1 apparently can degrade through the first three helix junction 

structure, likely due to structural heterogeneity. Similar XRN1 read through and stalling 

at downstream structures is also observed in vivo (Pjilman et al, 2008). Collectively, 

these data demonstrate the validity of our in vitro reconstituted XRN1 degradation assay 

as an approach to identify RNA structures that can stall the progression of the 5’-3’ 

exoribonuclease.  
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Figure 5. The 3' UTR of DENV-2 generates stable decay intermediates (sfRNA) by XRN1-

mediated decay. Radiolabeled RNA containing a 5’ monophosphate was incubated with 
recombinant XRN1 for the times indicated. The control RNA was derived from pGEM-4 vector 
sequence and the DENV RNA was derived from the DENV-2 viral 5’ half of the 3’ UTR inserted 
into the polylinker of pGEM-4.  Reaction products were separated on a 5% polyacrylamide gel 
containing urea and visualized by phosphorimaging. The gel shown is representative of >3 
independent experiments.   

 



75 
 

Zika virus is another member of the Flaviviridae that has recently emerged as a 

significant public health concern (Rosenberg et al., 2018; Zanluca et al., 2015). 

Sequence alignment analysis among over a dozen flavivirus genomes indicated a set of 

highly conserved sequences adjacent to the P1, L2 and P3/L3 regions of the structure 

that form key interactions in the three-helix junction structure that stalls XRN1 

(Chapman et al., 2014a). Interestingly, the 3’ UTR of ZIKV also maintains this same 

sequence conservation at appropriately spaced regions in two places at the proximal 

end of its 3’ UTR (sfRNA1:  GUCAG 10384-10388 and UGCxxxCUG 10413- 10420; 

sfRNA2:  GUCAG 10468-10472; UGCxxxCUG 10503-10511) – indicating that ZIKV 

likely generates two sfRNA species by XRN1 stalling. This conservation of sequence 

and predicted structure strongly suggests that two highly stable knot-like structures will 

form consecutively at the proximal side of the 3’ UTR of the ZIKV RNA just like it does in 

other insect-borne arboviruses. In addition, we hypothesize that targeted mutation of the 

conserved sequence blocks will disrupt the structure (as it does for WNV and DENV-2 

sfRNA structures (Chapman et al., 2014a) and result in the lack of sfRNA formation.  

To formally determine if the sfRNAs are generated by XRN1-mediated stalling at 

these two structures in the ZIKV 3’ UTR, internally radiolabeled RNA containing either 

pGEM-4 sequence (control) or viral 3’ UTRs (WT- the full length 3’ UTR of Zika, MUT1- 

has a point mutation that disrupts the first predicted sfRNA structure, MUT2 - has a 

point mutation that disrupts the second sfRNA structure, and DM - has both point 

mutations and thus disrupts both three helix junctions) were incubated with HeLa 

cytoplasmic extract (Figure 6A), recombinant XRN1 (Figure 6B), or C6/36 (made from 

Aedes albopictus) cytoplasmic extract (Figure 6C). As seen in Figure 6, the wild-type 3’ 
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UTR of Zika generated two sfRNAs by XRN1-mediated decay. As predicted, mutants 1 

and 2 RNAs only generated one sfRNA each by XRN1-mediated decay and the double 

mutant did not generate any sfRNAs like the control RNA. As this work was in progress, 

the Kieft lab also demonstrated sfRNA generation by the Zika virus 3’ UTR (Akiyama et 

al., 2016). Collectively, these data demonstrate that Zika virus, like other insect-borne 

flaviviruses, contains structures in its 3’ UTR capable of stalling XRN1. 

  



77 
 

Figure 6. Zika sfRNA is generated by XRN1-mediated decay. Radiolabeled RNAs containing 
pGEM-4 vector-derived sequence (Control),  or the Zika virus 3’ UTR (either WT (wild type), 
MUT1 (which destroys the structure generating the 5’ proximal knot-like structure), MUT2 (which 
destroys the structure generating the second (distal) knot-like structure), or DM (a Double 
Mutant which contains mutations that inhibit formation of both knot-like structures) were 
incubated for the times indicated with either Hela cytoplasmic extract (A), recombinant XRN1 
(B), or C6/36 cytoplasmic extract (C) under conditions to favor 5’-3’ decay. All RNAs contained a 
5’ monophosphate to ensure that they served as effective substrates for XRN1.  Reaction 
products were separated on 5% polyacrylamide gels containing urea and visualized by 
phosphorimaging.    
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Generation of Zika sfRNA represses XRN1  

XRN1 is the major enzyme in the 5’-3’ decay pathway and possesses a highly 

processive exoribonuclease activity. Therefore, when XRN1 stalls on a flaviviral 3’ UTR 

it appears from previous work to be released rather slowly, resulting in a transient but 

measurable repression of the enzyme (Moon et al., 2012; 2015). To determine if the 

sfRNA-generating portion of the 3’ UTR of Zika virus can also repress XRN1, a 

monophosphate radiolabeled reporter RNA (to assess XRN1 activity over time) was 

incubated with recombinant XRN1 in the presence of a 16-fold molar excess of 

monophosphate competitor RNA. The competitor RNAs included a non-specific control, 

the sfRNA-generating portion of the DENV- 2 3’ UTR as a positive control, or the 

sfRNA-generating portion of the 3’ UTR of Zika virus. As seen in Figure 7, both the 

DENV-2 and ZIKV 3’ UTR competitor RNAs repressed XRN1 activity when compared to 

the control. Intriguingly, the ZIKV 3’ UTR did not cause as robust a repression of XRN1 

as the DENV-2 3’ UTR. This may be due to a faster release of the enzyme when it is 

stalled on the ZIKV 3’ UTR compared to when it is stalled on the DENV-2 3’ UTR. The 

ZIKV 3’ UTR double mutant that fails to generate sfRNAs (Figure 6), also failed to 

repress XRN1 (data not shown). Thus, we conclude that the structured 3’ UTR of ZIKV 

stalls and represses XRN1 like the RNAs of other insect-borne flaviviruses tested to 

date. Given the apparent differences in repression rates of XRN1 in reconstitution 

assays noted above, it will be interesting to assess and compare the impact of ZIKV and 

DENV-2-mediated XRN1 stalling on the relative stability of host cell mRNAs during 

infection in future studies. 



79 
 

 

 

Figure 7.Generation of Zika virus sfRNA represses XRN1 activity in a reconstituted system. 
Panel A: A radiolabeled reporter RNA (derived from pGEM-4 vector sequence) was incubated for 
the times indicated with recombinant XRN1 as well as with a 16-fold excess of competitor RNA 
(radiolabeled at a very low specific activity) containing either the Zika viral 5’ half of 3’UTR (Zika 
3’ UTR lanes), the DENV-2 5’ half of 3’ UTR (DENV 3’ UTR lanes) or a control sequence from 
pGEM-4 (Control lanes). Reaction products were resolved on a 5% polyacrylamide gel containing 
urea and visualized by phosphorimaging. Representative data of three independent experiments 
is shown. Panel B: Quantification of the efficiency of XRN1 activity in the presence of the indicated 
competitor RNA.  The results of three independent experiments were used to generate the graph. 
The asterisk represents a p value of < 0.05 at all three time points for the viral 3’ UTR/fragments 
compared to the control as determined using a two-way ANOVA and Holm-Sidak post-hoc 
analysis. 
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The 3’ untranslated region of the N mRNA of Rift Valley fever virus stalls XRN1 

Next, we wanted to expand our search to see if other virus families could stall 

XRN1. Rift Valley fever virus (RVFV) has a tripartite genome containing large (L), 

medium (M), and small (S) segments. The large and medium segments are in the 

negative-sense orientation. The small segment, on the other hand, uses an ambisense 

coding strategy in which both the viral and anti-viral S segments are used to produce 

two different messenger RNAs (Figure 8). Since many regulatory elements are normally 

located in the 3’ UTR, we focused on the end of the open reading frame through the 3’ 

UTR in our studies (Figure 8).   

To determine if the 3’ UTR of the four mRNAs of RVFV can produce stable decay 

intermediates via stalling of the XRN1 exoribonuclease, radiolabeled RNAs containing 

either the pGEM4 sequence or a 3’ UTR from an RVFV mRNA were incubated in HeLa 

extract under conditions that favor 5’-3’ decay. As seen in Figure 9A, only the 3’ UTR of 

the nucleocapsid (N) mRNA of RVFV produced a decay intermediate. To assess 

whether the decay intermediate generated from the RVFV N 3’ UTR was indeed a 

product of XRN1-mediated decay, RNAs were incubated with purified recombinant 

XRN1.  As seen in Figure 9B, only the N 3’ UTR of RVFV produced a decay 

intermediate, whereas the other three 3’ UTRs were completely degrade similar to the 

control transcript. Finally, since RVFV is naturally transmitted by mosquitoes, we 

wanted assess whether the N 3’ UTR was also capable of specifically stalling mosquito 

XRN1. As seen in Figure 9C, the 3’ UTR of N mRNA of RVFV produced a decay 

intermediate in C6/36 cytoplasmic extracts. Lastly, to formally demonstrate that the size 

of the decay intermediate is similar regardless of the source of XRN1, decay 
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intermediates generated by RNA incubation with either cytoplasmic extract or 

recombinant protein were all run on a single 5% polyacrylamide gel containing urea.  As 

seen in Figure 9D, the RVFV decay intermediate is the same size regardless of the 

source of XRN1. Thus, we conclude that the mRNA generated from the ambisense 

genomic segment of RVFV can stall XRN1 and generate a stable decay intermediate in 

reconstituted RNA decay assays. 

Next, we wanted to determine if the RVFV N mRNA decay intermediate could 

also be detected in transfected or infected cells. To test this, the N 3’ UTR of RVFV was 

subcloned into a GFP reporter construct and this construct was used to transfect 

HEK293T cells. In some experiments, a shRNA which targets the open reading of GFP 

was added to decrease the innate stability of the reporter mRNA and more readily allow 

for detection of RNA decay intermediates. As seen in Figure 10A, northern blot analysis 

showed the predicted decay intermediate from XRN1 stalling on the RVFV 3’UTR 

inserted sequence is indeed present in transfected cells. To determine if the N 3’ UTR 

decay intermediate is detectable in an RVFV infection, Vero cells were infected at a 

MOI of 0.01 with the RVFV MP-12 strain and total RNA was collected 48 hour post 

infection. As seen in Figure 10B, northern blot analysis identified a decay intermediate 

of ~85 nucleotides, consistent with the size predicted from cell-free decay assays. 

Collectively, these data identify a novel RVFV N mRNA decay intermediate.  
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Figure 8. The genomes and mRNAs of Rift Valley Fever Virus. Diagrammatic description of 
the mRNAs generated from the three segments of Rift Valley Fever virus, a phlebovirus of the 
Phenuiviridae. The L segment is 6.4 kb; the M is 3.89 kb; and the S segment is 1.69 kb in size. 
Genomic (vRNA) and the antigenomic RNA (Anti-vRNA) from the S segment that serve as 
templates for mRNAs are indicated by the arrows. The 5′ and 3′ designations refer to the ends 
of the genomic or antigenomic RNAs and indicate their orientation as templates from which 
mRNAs are generated. The circles at the 5′ ends of the mRNA represent host cell-derived cap 
structures. The location of the small RNA fragments used in Figure 9 are indicated by the lines 
under the capped mRNAs. 
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Figure 9. The 3' UTR of RVFV nucleocapsid (N) mRNA generates a stable decay 
intermediate by stalling XRN1. Radiolabeled, 5’ monophosphorylated RNAs containing either 
pGEM-4 sequence (Control) or the 3’ UTR of the indicated RVFV mRNA were incubated with 
Hela cytoplasmic extract (A), recombinant XRN1 (B), or C6/36 cytoplasmic extract (C) for the 
times indicated. Reaction products were separated on 5% polyacrylamide gels containing urea 
and visualized by phosphorimaging. In panel D, radiolabeled, 5’ monophosphorylated RNAs 
containing the RVFV N 3’ UTR were incubated with either recombinant XRN1 or the indicated 
cytoplasmic extract as described above.  Reaction products were resolved on a single 5% 
denaturing polyacrylamide gel to compare the relative sizes of the decay intermediates that 
were generated.  All gels are representative of >3 independent experiments. 
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Figure 10.Stable RNA decay intermediates derived from the 3’ UTR of the RVFV N mRNA 
are observable in transfected cells as well as cells infected with the RVFV MP-12 strain. 
Panel A: HEK293T cells were transfected with either an eGFP-expressing plasmid (GFP only 
lanes) or a plasmid expressing an eGFP-encoding mRNA containing the N 3’UTR of RVFV 
(GFP & RVFV N 3’ fragment). To enhance the decay rate of the relatively stable eGFP mRNAs, 
shRNA targeting the eGFP open reading frame was co-transfected into the cells. Panel B: Vero 
cells were infected at an MOI of 0.01 pfu/cell with the strain MP-12 of RVFV in collaboration with 
Nicholas Bergren and Rebekah Kading. To assess for the presence of RNA decay 
intermediates, total RNA was isolated 48 h post-transfection and infection, separated on a 5% 
polyacrylamide gel containing urea, transferred to a membrane, and visualized using radioactive 
probes which hybridize to either a common sequence in the GFP 3’ UTR (Panel A) or to the N 3’ 
UTR of RVFV (Panel B). Results were visualized by phosphorimaging and gels are 
representative of at least three experiments. Arrows on the right of the gels indicate the 
identified decay intermediate. 
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XRN1 stalling is conserved among phleboviruses 

Since XRN1 stalling is conserved among members of the Flaviviridae, we wished 

to determine whether the 3’ UTR of the N mRNA from other phleboviruses also have the 

ability to stall XRN1. To test this, we choose the 3’ UTRs of the N mRNAs of Sandfly 

Naples virus (SFNV) and Heartland virus (HLV). Radiolabeled RNAs containing either a 

control pGEM4-derived sequence or the SFNV or HLV 3’ UTRs were incubated with 

C6/36 cytoplasmic extract (Figure 11, top panel) or recombinant XRN1 (Figure 11, 

bottom panel). As determined by the presence of decay intermediate, both of the 3’ 

UTRs SFNV or HLV N mRNAs have the ability to stall XRN1. These data clearly 

indicate that XRN1 stalling is conserved among multiple phleboviruses.  
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Figure 11. The 3’ UTR of the nucleocapsid (N) mRNA from other phleboviruses can also 
stall XRN1.Radiolabeled, 5’ monophosphorylated RNAs containing either pGEM-4 sequence 
(Control) or viral N 3′ UTRs of the Sandfly Naples virus (Sandfly Naples lanes) or Heartland 
virus (Heartland lanes) were incubated with C6/36 mosquito cell cytoplasmic extract (top panel) 
or recombinant XRN1 (bottom panel) for the times indicated. Reaction products were resolved 
on 5% polyacrylamide gels containing urea and visualized by phosphorimaging. All gels are 
representative of at least 3 independent experiments. 
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The 3’ UTR of the nucleocapsid mRNA of RVFV has the ability to repress XRN1 

Next, we wished to determine if the 3’ UTR of N mRNA of RVFV has the ability to 

repress XRN1 as we have demonstrated with flaviviruses (e.g. Figure 7, above). Using 

a competition assay containing 20-fold molar excess of competitor RNA and following 

the decay efficiency of a radiolabeled reporter RNA by recombinant XRN1. The RVFV N 

3’ RNA fragment was able to repress XRN1 similarly to the sfRNA-generating portion of 

the 3’ UTR of DENV-2 (Figure 12).  
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Figure 12.The N 3’ UTR of RVFV represses XRN1 similarly to the DENV-2 3’ UTR in a 
reconstituted system. A radiolabeled reporter RNA (derived from pGEM-4 vector sequence) 
was incubated for the times indicated with recombinant XRN1 in the presence of a 20-fold molar 
excess of competitor RNA containing either pGEM-4 sequence (Control RNA lanes), the N 3’ 
UTR of RVFV (RVFV N 3’ Fragment lanes) or the 5’ half of the 3’ UTR of DENV-2 (DENV 3’UTR 
lanes). Reaction products were run on a 5% acrylamide gel contain urea and visualized by 
phosphorimaging (top panel). Quantification of three independent experiments is shown in the 
graph (bottom panel). The asterisk represents a p value of < 0.001 at both time points for the 
two viral 3’ UTR competitor RNA fragments compared to the control as determined by a two-
way ANOVA and a Turkey’s multiple comparison test as post-hoc analysis. 
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Mapping the XRN1 stall site of the RVFV decay intermediate 

In order to begin to elucidate the structural requirements for stalling XRN1 on the 

3’ UTR of the RVFV N mRNA, we determined the 5’ end of the decay intermediate to 

map the stall site. RNA containing the 3’ UTR of N mRNA of RVFV was incubated with 

recombinant XRN1 for 15 minutes to maximize the amount of decay intermediate that 

was generated. The decay intermediate was then gel purified, reverse transcribed, the 

junction region was PCR amplified, and cloned into T-easy pGEM vector. Ten 

independent colonies were sent for sequencing of the junction fragment, one colony 

was inclusive. As seen in Figure 13, the RVFV N 3’ UTR decay intermediate is 

predicted to be about 178 nucleotides based on migration relative to an RNA (Figure 13, 

upper). The 5’ stall sites as determined from the nine independent clones are clustered 

in this region of the RNA (Figure 13, bottom). Interestingly, the area around the stall site 

is very G-rich suggesting that a specialized G-quadruplex structure could be involved in 

XRN1 stalling on this RNA substrate. G-quadruplexes are known to be more stable in a 

potassium environment than a lithium environment (Havrila et al., 2017; You et al., 

2017). To determine if the predicted structure is indeed a G-quadruplex, the monovalent 

cations in the XRN1 decay assays were altered. As seen in Figure 14, stalling of XRN1 

by the three-helix junction structure of DENV-2 (which is predicted to fold independently 

of monovalent cations) was similar whether potassium chloride or lithium chloride was 

added to the reaction. The situation with the RVFV N 3’ UTR RNA, however, was 

substantially different. In the presence of lithium chloride – which disfavors G-

quadruplex formation, the amount of stable RVFV N 3’ UTR decay intermediate formed 

was reduced to 36% of the remaining input RNA when compared to the 52% of the 
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remaining input RNA when potassium chloride is added (Figure 14, right). Thus, we 

conclude that it is highly likely the RNA structure contributing to the XRN1 stalling for 

the RVFV decay intermediate involves a G-quadruplex, a novel structure in terms of 

natural viral RNA-mediated XRN1 stalling.  

  



91 
 

 

 

 

Figure 13.Determination of the XRN1 stall sites in the 3’ UTR of the N mRNA of RVFV. Top 
Panel: 5 μg of unlabeled RNA containing the N 3′ UTR of RVFV was incubated with 
recombinant XRN1 for 15 min and reaction products were resolved on a 5% polyacrylamide gel 
containing urea and visualized by SYBR Green staining. The arrow at right indicates the size of 
the stable decay intermediate in nucleotides (nts) as calculated by migration relative to size 
markers from multiple gels. Bottom Panel: RNA decay intermediates from the top panel were 
excised, circularized, and reverse-transcribed to generate cDNA copies.  The 5′–3′ junction 
fragment was cloned, and nine independent plasmids were sequenced. The positions of the 5′ 
end of the decay intermediates (i.e. the XRN1 stall site) in the sequenced clones are indicated 
by the arrows above the sequence of the N 3’ UTR region of RVFV. The larger arrows at two 
sites indicate two independent clones that resulted from XRN1 stalling at those sites. The 
underlined nucleotide is the approximate stall site indicated by sizing of decay intermediates on 
acrylamide gels as described in the top panel. 
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Figure 14. A G-quadruplex structure contributes to XRN1 stalling in N 3’ UTR of RVFV. 
Radiolabeled, 5’ monophosphorylated RNAs containing the 5’ half of 3’ UTR of DENV-2 (DENV 
panel) or the N 3’ UTR of RVFV (RVFV panel) were incubated with recombinant XRN1 in the 
presences of 100 mM of potassium chloride (KCl lanes) or lithium chloride (LiCl lanes) for the 
times indicated. The number below the gels are the quantitative measure of total RNA decay 
(i.e. the amount of the input RNA that remaining on the gel) over time. Reaction products were 
separated on 5% urea polyacrylamide gels and visualized by phosphorimaging. Gels are 
representative of three independent experiments.  
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The 3’ UTRs of arenaviruses also have the ability to stall XRN1 

It was intriguing that the only mRNA 3’ UTR region of the phleboviruses that 

stalled XRN1 was in the major ambisense coding genomic RNA fragment of the viruses.  

We therefore hypothesized that perhaps additional ambisense viral RNAs may be 

capable of stalling XRN1 since they are known to contain stable structural hairpins and 

perhaps other elements in their non-coding regions (Auperin et al., 1986; Clegg et al., 

1991; López and Franze-Fernández, 2007; Wilson and Clegg, 1991). To assess this 

idea, we turned our attention to the other major family of mammalian RNA viruses that 

uses the ambisense coding strategy. The members of the Arenaviridae family are bi-

segmented RNA viruses in which both genomic segments use the ambisense coding 

strategy to encode mRNAs from both the genomic and anti-genomic RNA species 

(Figure 15A).  Furthermore, the intergenic region of these RNA species, which encodes 

the 3’ UTR of the resultant mRNAs, is known to be highly structured (Ghiringhelli et al., 

1991; Iapalucci et al., 1991; Salvato and Shimomaye, 1989). To determine if 3’ UTRs of 

all four mRNAs of a model arenavirus, Junin virus (JUNV), produces XRN1 decay 

intermediates, we incubated radiolabeled RNAs containing each of the 3’ UTRs of the 

viral mRNAs (L, N, Z, or GPC) with recombinant XRN1 (Figure 15B) or HeLa extract 

(Figure 15C). As seen in Figure 15, the 3’ UTRs of all four JUNV mRNAs generated 

stable decay intermediates during XRN1-mediated decay. Therefore, we conclude that 

RNA structures associated with the ambisense coding strategy may also be 

moonlighting as XRN1 stall sites, expanding the biological implications of this strategy 

of viral gene expression. 
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Figure 15. The 3' UTRs of the four independent mRNAs of Junin virus (JUNV) generate 
stable decay intermediates by XRN1-mediated stalling. Panel A:  A diagram of arenavirus 
gene expression. Note that mRNAs are generated in an ambisense strategy from both genomic 
(vRNA) and antigenomic (Anti-vRNA) from both segments.  Panels B and C: Radiolabeled, 5’ 
monophosphorylated RNAs containing pGEM-4 sequence (Control lanes), the DENV-2 3’ UTR 
(DENV lanes in panel B) or a 3’ UTR region from the indicated Junin virus mRNA (GPC, NP, Z 
or L lanes) was incubated with recombinant XRN1 (Panel B) or Hela cytoplasmic extract (Panel 
C) for the times indicated. Reaction products were separated on 5% polyacrylamide gels 
containing urea and visualized by phosphorimaging. All gels are representative of >3 
independent experiments. 
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XRN1 stalling is conserved among arenaviruses 

Since the inclusion of structures that stall XRN1 appear to be conserved in all the 

insect-borne flaviviruses as well as many if not all phleboviruses, we hypothesized that 

the 3’ UTRs of mRNAs from all arenavirus species may share the ability to stall XRN1. 

To address this hypothesis, we isolated the 3’ UTR region from mRNAs of two recently 

described snake arenaviruses (SN-68 L or SN-90 Z) and incubated these transcripts 

with recombinant XRN1 to search for stable decay intermediates. As seen in Figure 16, 

both of the 3’ UTRs of SN-68 L and SN-90 Z snake arenaviruses were able to stall 

XRN1 and to produce decay intermediates. These data strongly suggest that XRN1 

stalling may in fact be a conserved feature throughout the Arenaviridae.  
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Figure 16. 3’ UTRs derived from mRNAs of two novel snake arenaviruses also generate 
stable decay intermediates during XRN1-mediated decay. Radiolabeled, 5’ 
monophosphorylated RNAs containing the 3’ UTR of the L mRNA of SN-68 arenavirus (left 
panel) or the 3’ UTR of the Z mRNA of SN-90 arenavirus (right panel) were incubated with 
recombinant XRN1 for the times indicated. Reaction products were separated on 5% 
polyacrylamide gels containing urea and visualized by phosphorimaging. All gels are 
representative of >3 independent experiments. 
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Arenaviruses can also repress XRN1 activity 

We next wished to determine if stalling in the 3’ UTR of arenavirus mRNAs can 

also repress XRN1, likely due to a relatively slow rate of release of the enzyme from the 

substrate. To address this, we used a radiolabeled reporter RNA to track the activity of 

the recombinant XRN1 enzyme in the presence of 20-fold molar excess of various 

competitor RNAs. As seen Figure 17, the 3’ UTRs of the JUNV L mRNA as well as the 

Z mRNA of the snake arenavirus SN90 were able to repress XRN1 activity when 

compared to the control RNA. The lower efficiency of repression observed with the 

SN90 Z competitor RNA may be related to a faster off rate of the stalled enzyme on this 

transcript. This suggests that the structure(s) in the 3’ UTR of arenavirus mRNAs share 

the ability to both stall and repress XRN1 like was observed with flavivirus and 

phlebovirus 3’UTR structures.   
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Figure 17. The 3’ UTR of the L mRNA of JUNV as well as the 3’ UTR of the Z mRNA of 
SN90 virus repress XRN1 activity in a reconstituted system.  A radiolabeled reporter RNA 
(derived from pGEM-4 sequence) was incubated with recombinant XRN1 in the presence of a 
20-fold molar excess of competitor RNAs containing either the 5’ half of the 3’ UTR of DENV-2, 
the Z 3’ UTR of SN90 virus, the L 3’ UTR of JUNV, or pGEM-4 derived sequences (Control 
RNA) for the times indicated. Reaction products were run on a 5% acrylamide gel containing 
urea and visualized and quantified by phosphorimaging.  Quantification of three independent 
experiments is shown in the graph. The asterisk represents a p value of < 0.001 at both time 
points for all three viral 3’ UTR competitor RNA fragments compared to the control RNA as 
determined by a two-way ANOVA and a Turkey’s multiple comparison test as post-hoc test. 

 

 

  



99 
 

A region of the RNA 3 segment of Beet Necrotic Yellow Vein Virus (BNYVV) can 

stall and repress XRN1 

 So far in this dissertation, we have extended the strategy of RNA-mediated 

XRN1 stalling and repression to two additional families of mammalian RNA viruses. We 

now wished to explore whether some plant RNA viruses may also use a similar strategy 

to interface with the cellular RNA decay machinery. In particular, beet necrotic yellow 

vein virus (BNYVV), a multi-segmented RNA virus which is a part of the genus 

Benyvirus (Lee et al., 2001; Ratti et al., 2009), has recently been determined to produce 

a non-coding RNA with a 5’ end that is generated post-transcriptionally, perhaps 

through the action of XRN1 (Peltier et al., 2012). Interestingly, this non-coding RNA is 

generated from the RNA 3 segment of the virus that is responsible for viral 

dissemination throughout the plant (Flobinus et al., 2016).  A conserved 20 base 

‘coremin’ sequence at the 5’ end of this non-coding RNA has been shown to be 

indispensable for its generation (Peltier et al., 2012). 

To determine if the BNYVV RNA 3 non-coding RNA is indeed generated by 

XRN1, a 55-nucleotide sequence containing the conserved coremin sequence of 

BNYVV (Figure 19, top) was inserted into pGEM4 to produce an RNA containing a 53-

nucleotide leader (to serve as a landing site for XRN1) followed by the BNYVV 

sequence. RNAs were incubated with recombinant XRN1 or C6/36 extract (in conditions 

that favor 5’-3’ decay). As seen in Figure 18, the RNA containing the BNYVV-55mer 

produced a stable decay intermediate by both recombinant XRN1 and in C6/36 extracts, 

consistent with RNA-mediated stalling of XRN1. In order to determine the minimal 

sequence region required for stalling XRN1, we created a set of three deletion variants 
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(Figure 19). While the 55 base B3 variant produced an XRN1 decay intermediate, the 

other variants containing less BNYVV sequence did not (Figure 19). This suggests that 

a 55-base fragment is sufficient to stall XRN1  

 Based on our mammalian virus work and XRN1 stalling, the next logical step was 

to determine if the BNYVV-55mer also has the ability to repress XRN1. XRN1 decay 

assays were run in the presence of 20-fold molar excess of viral 3’ UTR-containing or 

control competitor RNAs. As seen in Figure 20, the BNYVV-55mer was able to repress 

XRN1 in a similar fashion to the well-characterized DENV-2 3’ UTR.  These data 

indicate that select plant RNA viruses also use the strategy of XRN1 stalling/repression 

and that this novel viral RNA-host interaction could contribute to plant virus-induced 

cytopathology.  
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Figure 18. A 55 base fragment derived from the RNA 3 segment of BNYVV generates a 
stable decay intermediate during XRN1-mediated decay. Radiolabeled, 5’ 
monophosphorylated RNA containing either pGEM-4 derived sequence (control lanes) or a 55-
nucleotide fragment from the 3’ UTR of the RNA 3 segment of beet necrotic yellow vein virus 
was incubated with recombinant XRN1 (top panel) or C6/36 cytoplasmic extract (bottom panel) 
for the times indicated. Reaction products were separated on 5% polyacrylamide gels 
containing urea and visualized by phosphorimaging. The decay intermediate generated by 
XRN1 stalling is indicated by the black arrows on the right.  All gels are representative of at least 
three independent experiments. 
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Figure 19. Mutational analysis of the BYNVV RNA fragment indicates a 55-base fragment 
is necessary for XRN1 stalling. Top Panel: The 55-base sequence of BNYVV RNA derived 
from the 3’ UTR of the RNA 3 segment. B-1, B-2 and B-3 variant RNAs begin at position 1222 
and have their 3’ end at the position indicated by the bars. The black arrows indicates the start 
of the 5’ decay fragment begins. Bottom Panel: Radiolabeled, 5’ monophosphorylated RNAs 
containing either control sequences derived from pGEM4 (Control lanes) or the B-1, B-2 and B-
3 sequences indicated above were incubated with recombinant XRN1 for the times indicated. 
Reaction products were resolved on a 5% acrylamide gel containing urea and viewed by 
phosphorimaging. The decay intermediate generated by XRN1 stalling is indicated by the black 
arrow on the right. The gel is representative of at least three independent experiments.  



103 
 

 

 

Figure 20. The BNYVV-55mer RNA represses XRN1 activity. Panel A: A reporter RNA 
(derived from pGEM-4 sequence) was incubated with recombinant XRN1 in the presence of a 
20-fold molar excess of a competitor RNA containing either a viral 3’UTR (the 55-nucleotide 
fragment of the 3’ UTR of BNYVV (BNYVV-55mer lanes) or the 5’ half of the 3’ UTR of DENV-2 
(DENV 3’ UTR lanes), or sequence from pGEM-4 (Control lanes) for the times indicated. 
Reaction products were run on a 5% acrylamide gel containing urea and visualized by 
phosphorimaging. Panel B: Quantification of three independent experiments performed as 
described in Panel A is shown in the graph. The asterisk represents a p value of < 0.001 at all 
three-time points for the viral 3’ UTR competitor RNAs compared to the control RNA competitor 
as determined by a two-way ANOVA and a Turkey’s multiple comparison test as post-hoc test. 
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Coronavirus that contain a conserved pseudoknot in the 3’ UTR does not stall 

XRN1 

Given that RNA structures in the non-coding regions of flaviviruses, 

phleboviruses, arenaviruses and a benyvirus have the ability to stall XRN1, we 

wondered if any conserved viral RNA structure could stall the exoribonuclease. Thus, 

we next tested a conserved, pseudoknot-containing RNA structure in the 3’ UTR of 

coronaviruses mRNAs (Figure 21A). RNAs containing the 3’ UTR of mRNAs made by 

Middle Eastern respiratory syndrome coronavirus (MERS-CoV) were incubated with 

recombinant XRN1 to assess the generation of degradation intermediates. As seen in 

Figure 21B, the MERs-CoV 3’ UTR did not generate any decay intermediates similar to 

the control RNAs. In addition, northern blot analysis on total RNA from MERs-CoV 

infected cells showed no sign of a decay intermediate (Figure 21C). These data suggest 

that not all conserved viral RNA structures can stall XRN1. 
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Figure 21. The 3′ UTR of Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) 
which contains a conserved pseudoknot structure fails to stall XRN1. Panel A: 
diagrammatic representation of the conserved pseudoknot structure present in the 3′ UTR of the 
mRNAs of the Coronaviridae. Panel B: Radiolabeled, 5’ monophosphorylated RNA containing 
pGEM4 sequence (control lanes) or the MERS-CoV 3′ UTR (MERS-CoV 3’ UTR lanes) was 
incubated with recombinant XRN1 for the times indicated. Reaction products were resolved on a 
5% polyacrylamide gel containing urea and visualized by phosphorimaging. Panel C: Vero cells 
were infected at Middle Eastern Respiratory Syndrome Coronavirus in collaboration with Tony 
Schountz. To assess for the presence of RNA decay intermediates, total RNA was isolated 48 h 
post-transfection and infection, separated on a 5% polyacrylamide gel containing urea, 
transferred to a membrane, and visualized using radioactive probes which hybridize to the 3’ 
UTR of MERS-CoV. Data shown are representative of three independent experiments.  
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Section II: Triptycene-based molecules disrupt the ability of the knot like three-

helix junction structure in DEN-2 sfRNA to stall XRN1 

 

 For years, triptycene-based molecules have been used in cancer treatments 

(Perchellet et al., 1999; Wang et al., 2001a, 2006) and sometimes drugs can be 

repurposed. Triptycene-based molecules are created from using triptycene (resembles 

a paddle wheel) as the base and the addition of different chemical groups are added to 

it to create different analogs. The triptycene base is made up of three rings that produce 

a scaffold which has the ability for diversification of up to 14 positions (Barros and 

Chenoweth, 2014). In Figure 22A illustrates the 14 positions addition of different 

functional groups (such as aldehyde, haloalkane, ester, and amide) can diverse binding 

function (Yoon et al., 2016). In Figure 22B is an example of one of the chemical 

structures used in this study.  

X-ray crystallography of the portion of the 3’ UTRs of Murray Valley encephalitis 

virus (MVEV) and Zika virus that stall XRN1 has identified a stabilized three-helix 

junction structure as a key component of the stall site (Akiyama et al., 2016; Chapman 

et al., 2014a). Recent independent studies have shown some triptycene-based 

molecules can specifically bind to three-helix junctions in DNA and RNA (Barros and 

Chenoweth, 2014; Yoon et al., 2016). Thus, we wished to test if these triptycene-based 

molecules (Figure 22B) might be able to disrupt the three-helix junction structure in the 

3’ UTR of flavivirus RNAs and allow XRN1 to effectively degrade the entire mRNA, 

thereby reducing the amount sfRNA produced. We surveyed a set of independent 

triptycene-based compounds (Figure 22B) for their ability to reduce the amount of 
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sfRNA generated by XRN1 off a flavivirus RNA substrate. Radiolabeled RNAs 

containing the 3’ UTR structure of DENV-2 that stalls XRN1 was incubated with 

recombinant enzyme in the presence of a variety of triptycene-based molecules. As 

seen in Figure 23, triptycene 1, 5, 6, and 10 all had an effect on sfRNA generation. 

Thus, we chose these 4 compounds to follow up in more depth to gain insight into their 

mechanism of action. 
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Figure 22. The chemical structure of triptycenes based molecule. Panel A: The basic 
chemical triptycene structure. Panel B: The chemical structure of one of the ten triptycenes 
based molecules used in this study (Images taken from Barros and Chenoweth, 2014). Provide 
by David M. Chenoweth lab (University of Pennsylvania). 
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Figure 23. Select triptycene derivatives disrupt sfRNA generation by XRN1-mediated 
decay. Radiolabeled, 5’ monophosphorylated RNA containing the 5’ half of 3’ UTR of DENV-2 
was incubated with recombinant XRN1 in the presences of 250 µM of 10 triptycene derivatives 
for five minutes. Reaction products were separated on a 5% polyacrylamide gel containing urea 
and visualized by phosphorimaging. The decay intermediates generated by XRN1 stalling are 
indicated by the black arrows on the right.  The gel is representative of at least three 
independent experiments.  
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Some triptycene compounds cause RNAs to partition with the organic phase 

during phenol extraction 

 As seen in Figure 23, the addition of triptycenes 5 and 6 to XRN1 decay assays 

resulted in a dramatic reduction in the amount of input RNA recovered following 

incubation, phenol extraction, and ethanol precipitation. We suspected that in the 

presence of these small molecules, the radiolabeled RNA substrates were either being 

non-selectively degraded or were being pulled into the organic phase via intercalation of 

the triptycene compounds into the RNAs. To determine if the triptycene - RNA 

complexes were being pulled into the organic phase during phenol/chloroform 

extraction, the organic extraction step was omitted following XRN1 treatment and the 

RNA products were directly ethanol precipitated and analyzed by gel electrophoresis. 

As seen in Figure 24, treatment with triptycenes 1, 5, 6, and 10 not only blocked sfRNA 

generation by XRN1, they all now resulted in similar levels of RNA recovery. This 

suggests that in addition to binding and disrupting the three-helix junction structure to 

allow XRN1 read-through, triptycenes 5 and 6 give the RNA-drug complex sufficient 

hydrophobic character to draw the RNA into the organic phase during phenol/chloroform 

extraction.  
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Figure 24. Triptycene 1, 5, 6, and 10 disrupt generation by XRN1-mediated decay. 
Radiolabeled, 5’ monophosphorylated RNA containing the 5’ half of the 3’ UTR of DENV-2 was 
incubated with recombinant XRN1 in the presences of 250 µM of the indicated triptycenes for 
five minutes. Following incubation, the standard phenol extraction clean up step was omitted 
and samples were directly ethanol precipitated and loaded onto the gel. Reaction products were 
separated on 5% polyacrylamide gel containing urea and visualized by phosphorimaging. The 
decay intermediate generated by XRN1 stalling is indicated by the black arrows on the right. 
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Triptycenes 1 and 10 inhibit XRN1 stalling by the knot-like flavivirus 3’ UTR 

structures in a dose-dependent fashion 

Finally, we focused our attention on triptycenes 1 and 10 since they appear to 

disrupt the generation of sfRNA without substantially affecting the extractability of the 

RNA substrate (Figure 23 and 24). To confirm that triptycene 1 can inhibit XRN1-

mediated sfRNA generation, we performed a controlled time course. As seen in Figure 

25A, the addition of triptycene 1 to an XRN1 decay assay slightly reduced overall XRN1 

activity as well as blocked the generation of sfRNA. Next, we titered in the compound to 

determine the effective range of concentrations to inhibit sfRNA generation by XRN1.  

As seen in Figure 25B, 50 µM of triptycene 1 is sufficient to disrupt sfRNA generation 

under our standard in vitro reaction conditions. Similar data were obtained for inhibition 

of sfRNA generation by the triptycene 10 compound (Figure 26). Finally, since all 

experiments to date with this compound used the DENV-2 3’ UTR sfRNA-generating 

RNA fragment as substrate, we wanted to assess whether the triptycene 1 could block 

XRN1 stalling by other flavivirus 3’ UTR structures. As seen in Figure 27, 125 uM 

triptycene 1 effectively blocked the stalling of XRN1 by the Zika virus 3’ UTR. 

Collectively, these data identify triptycenes 1 and 10 as repressors of flavivirus RNA-

mediated XRN1 and suggest that this class of compounds may represent a chemical 

backbone for the future development of broad spectrum anti-flaviviral therapeutics.  
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Figure 25. Triptycene 1 disrupt DENV-2 sfRNA generation by XRN1-mediated decay. 
Panel A: Radiolabeled, 5’ monophosphorylated RNAs containing the pGEM-4 sequence 
(Control lanes) or the 5’ half of the 3’ UTR of DENV-2 (DENV lanes) were incubated with 
recombinant XRN1 in the presence of 250 µM of triptycene 1 (triptycene #1 lanes) for the times 
indicated. Panel B: A titration of triptycene 1 from 0 µM to 250µM was tested in the XRN1 decay 
assay as described in Panel A. Reaction products were separated on 5% polyacrylamide gels 
containing urea and visualized by phosphorimaging.  The rate of the decay was measured as 
the percent of total input RNA remaining on the gel and is indicated under the lanes of both 
panels.  
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Figure 26. Triptycene 10 inhibits overall XRN1 enzymatic activity. Panel A: Radiolabeled, 5’ 
monophosphorylated RNAs containing the pGEM-4 sequence (Control lanes) or the 5’ half of 
the 3’ UTR of DENV-2 (DENV lanes) were incubated with recombinant XRN1 in the presence 
(right side) or absence (left side) of 250µM of triptycene 10 for the times indicated. Panel B: 
Radiolabeled, 5’ monophosphorylated RNA containing the 5’ half of the 3’ UTR of DENV-2 was 
incubated with recombinant XRN1 in the presence of the indicated concentrations of triptycene 
10. Reaction product were separated on 5% polyacrylamide gel containing urea and visualized 
by phosphorimaging.  The rate of the decay was measured as the percent of total input RNA 
remaining on the gel and is indicated under the lanes in both panels. 
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Figure 27. Triptycene 1 also disrupt XRN1-mediated sfRNA generation from the Zika virus 
3' UTR. Radiolabeled, 5’ monophosphorylated RNA containing the 5’ half of the 3’ UTR of Zika 
virus was incubated with recombinant XRN1 in the presence of 125µM of triptycene 1 for the 
times indicated. Reaction products were separated on a 5% polyacrylamide gel containing urea 
and visualized by phosphorimaging. The rate of the decay was measured as the percent of total 
input RNA remaining on the gel and is indicated under the lanes. 
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Section III: The mammalian DOM3z/DXO 5’-3’ exoribonuclease does not appear to 

stall on flavivirus 3’ UTRs like XRN1  

 DOM3z/DXO is a multi-functional enzyme that possesses both decapping as well 

as 5’-3’ exoribonuclease activity (Jiao et al., 2013). The main cellular function identified 

to date for DOM3z/DXO is the decapping and degradation of defective pre-mRNA (Jiao 

et al., 2013, 2017). Recently, DOM3z/DXO has been implicated as a factor that 

specifically targets flaviviral RNAs during infection (Dr. Brian Geiss, personal 

communication). To determine if the mammalian DOM3z/DOX exoribonuclease can 

stall and contribute to the generation of flaviviral sfRNAs, we assessed the activity of the 

purified recombinant enzyme in reconstituted 5’-3’ RNA decay assays as described 

above for XRN1. As seen in Figure 28, DENV-2 or RVFV- N 3’ UTR-containing RNAs 

generated stable decay intermediates with XRN1 as expected from our earlier results.  

Incubation of the same RNAs with DOM3z/DXO, however, failed to generate stable 

decay intermediates from either the DENV-2 or RVFV-N RNA substrates. These data 

suggest that the mammalian DOM3z/DXO enzyme, unlike XRN1, may have the ability 

to degrade through either the knot-like three helix junction or G-quadraplex based 

structures to degrade the RNA.   
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Figure 28. Unlike XRN1, the mammalian DOM3Z/DXO 5'-3' exoribonuclease does not stall 
on structural elements in DENV-2 or RVFV 3' UTRs. Radiolabeled, 5’ monophosphorylated 
RNAs containing the 5’ half of the 3’ UTR of DENV (left side) or N 3’ UTR of RVFV (right side) 
were incubated with either recombinant XRN1 or DOM3Z/DXO for the times indicated. Reaction 
products were separated on 5% polyacrylamide gels containing urea and visualized by 
phosphorimaging. The arrows indicate XRN1-generated decay intermediates.  The rate of the 
decay was measured as the percent of total input RNA remaining on the gel and is indicated 
under the lanes. 
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Chapter 4: Discussion 

Summary of Results 

In this study, we have made seven key observations that represent a significant 

increase in our understanding of the interaction between viral RNAs and the cellular 

RNA decay machinery. First, we were able to reproduce that another member of the 

Flaviviridae, Zika virus, generates two sfRNAs via the stalling and subsequent 

repression of XRN1. Second, the 3’ UTR of the RVFV N mRNA, as well as the N 

mRNAs of two other phleboviruses, generates a decay intermediate due to XRN1 

stalling.  We narrowed the sequence in the 3’ UTR of RVFV N mRNA required for 

stalling of XRN1 to a G-rich region that is capable of forming a possible G-quadruplex 

structure. Third, all four of the 3’ UTRs of the mRNAs generated by the ambisense 

JUNV RNA genome stall XRN1 and produce decay intermediates. This may be a highly 

conserved feature of arenaviruses as we observed similar efficiencies of XRNA 1 

stalling by the 3’ UTRs of mRNAs from two novel snake arenaviruses. Fourth, we also 

established XRN1 stalling as a strategy used by plant RNA viruses. We demonstrated 

that the BNYVV RNA 3 generates a non-coding RNA fragment via XRN1-mediated 

decay. The minimal sequence for the BNYVV was 55nt in our assays, which includes 

the previously established coremin motif. Fifth, we used the pseudoknot region of the 3’ 

UTR of MERS-CoV to demonstrate that there is selectivity in RNA structures that can 

stall XRN1. Thus, not all highly conserved, knot-like structures, have the ability to stall 

XRN1. Sixth, we provided proof-of-principle data to suggest that structures that stall 

XRN1 may be valid targets for small molecule drugs. We identified four potential 

triptycene-based molecules which have the ability to disrupt DENV-2 sfRNA generation 
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by XRN1. Lastly, we provided evidence that all cellular 5’-3’ exoribonucleases may not 

be susceptible to stalling by the viral RNA structures that we identified. The human 

(mammalian) DOM3z/DXO enzyme, for example, fails to produce sfRNA decay 

intermediates from flaviviral 3’ UTRs and efficiently degrades the entire transcript. This 

might be an example of the molecular arms race between the virus and the host as the 

cell may have evolved DOM3z/DXO to at least in part effectively remove viral RNAs 

from the cell. Overall, the work reported here, and previously published literature on 

flavivirus-mediated XRN1 stalling, demonstrates that XRN1 stalling and repression is a 

strategy used by five independent virus families (Phenuiviridae, Arenaviridae, 

Benyviridae, Flaviviridae, and Tombusviridae).   

 

Could XRN1-generated viral RNA fragments be functional small non-coding 

RNAs? 

  Pathogen-specific small non-coding RNAs, transcripts < 200 nucleotides long, 

have been previously identified from both DNA and RNA viruses. Epstein-Barr virus 

(EBV) encodes several ~22 nucleotide (nt) miRNAs which are generated from the 

apoptosis regulator BHRF1 gene along with two clusters within the BART gene (Kang et 

al., 2015; Qiu et al., 2011; Skalsky et al., 2012). Recently, EBV miRNA-BART16 has 

been demonstrated to target the 3’ UTR of viral latent membrane protein (LMP) 1 

mRNA and modulate its expression (Zhang et al., 2018b). This was tested by 

transfecting BART16 mimics into GT38 and GT39 gastric epithelial cell lines which are 

positive for Epstein-Barr virus. Addition of 50 nM of the BART16 mimic caused a 

decrease in the levels of LMP1 mRNA and protein. In addition, EBV also encodes two 
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non-coding RNAs called Epstein-Barr virus Encoded RNA (EBER) 1 and 2 (Lerner et 

al., 1981). EBER 1 (167 nt) and EBER 2 (172 nt) are transcribed by host cell RNA 

polymerase III (Howe and Shu, 1988; Lerner et al., 1981). EBERs have been shown to 

interact with several host protein; the La protein (Lerner et al., 1981), double-stranded 

RNA-activated protein kinase R (PKR) (Clarke et al., 1991), ribosomal protein L22 

(Toczyski et al., 1994), hnRNP-D/AUF1 (Lee et al., 2012), and retinoic acid inducible 

gene I (RIG-I) (Samanta et al., 2008). The EBERs are proposed to form complexes with 

these factors as a way to sequester them and preventthem from properly doing their 

jobs. Deletion of both EBERs resulted in slower transformation potential of B-cells when 

compared to wildtype EBV infection (Yajima et al., 2005). It was shown the EBER 2 is 

important for B-cell growth /transformation and interacts with interleukin 6 (IL-6), but 

additional work is necessary to determine the exact mechanism (Wu et al., 2007b). 

Another DNA virus family, the adenoviruses, encodes for a 160nt non-coding RNA 

called VA1 that is expressed at the late stage of the lytic cycle (Bhat and Thimmappaya, 

1983). Adenovirus utilize the host RNA polymerase III to transcribe VA1 (Jennings and 

Molloy, 1987). VA1 has been shown to inhibit RNA interference (RNAi) by binding Dicer 

(Bennasser et al., 2011; Lu and Cullen, 2004) and well as antagonize the interferon 

response by binding but not activating PKR (Mathews, 1990). Rabies virus (RABV), 

vesicular stomatitis virus (VSV), and many other negative sense RNA viruses produce a 

leader RNA (leRNA) at the beginning of infection whose length ranges from 56 to 58nt 

(Colonno and Banerjee, 1978; Kurilla et al., 1984).  While previous research has 

suggested that the leRNA interacts with the viral unphosphorylated nucleoprotein to 

participate in the transition from transcription to replication in the virus life cycle (Yang et 
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al., 1999). The function of these non-coding leRNAs in virus-cell interactions is currently 

unclear. There is evidence, however, that the leRNAs may be playing a role in the virus-

host interactions.  For example, wildtype RABV does not activate dendritic cells 

because of low levels of the leRNA and instead relies on its glycoprotein to interface 

with the cell (Yang et al., 2015). Several RNA binding proteins have been shown to 

interact with leRNAs, including La (Kurilla et al., 1984; Wilusz et al., 1983) and heat 

shock cognate 70 kDa protein (Hsc 70) (Zhang et al., 2017).   

In this study, we have identified several small non-coding RNAs that are 

generated by XRN1 acting on viral mRNAs (e.g. Figure 9 and Figure 15). Therefore, we 

hypothesize that these stable RNA decay intermediates that accumulate in infected 

cells may represent functional small non-coding RNAs. One possibility that should be 

pursued in future studies is whether these XRN1 decay intermediates are precursor for 

viral microRNAs. Interestingly, Sabin et al., (2013) identified the presence of what they 

termed viral small interfering RNAs (vsiRNA) in RVFV infected cells, but they did not 

identify the mechanism of their biogenesis. However, it should be noted that they used 

C6/36 cells in their study, which are defective in RNAi. Thus, other factors rather than 

conventional RNAi proteins (such as DICER, AGO2, and RNA-induced silencing 

complex (RISC)) must be involved in the production of these putative RVFV vsiRNA 

(Sabin et al., 2013). Since we have shown the presence of a putative RNA decay 

intermediate in both RVFV MP-12 strain infections (Figure 12) as well as in RVFV 

3’UTR containing reporter transfections (Figure 10), these structured RNAs might 

represent precursor molecules for further processing. To test this possibility, we would 

look for RNAs in the 21-22 nucleotide range and then hopefully the sequence could be 
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matched to our RVFV decay intermediate. These RVFV stable RNA decay 

intermediates could be interacting with Dicer or Argonaute proteins (as has been shown 

for flavivirus sfRNAs (Moon et al., 2015c)).  

Another possible function of these small non-coding RNAs is they could serve as 

a sponge for host RNA binding proteins. Since RNA binding proteins play important 

roles in cellular biology, their sponging by stable XRN1 decay intermediates could 

disrupt a variety of cellular functions. Flavivirus sfRNAs have to date been shown to 

bind several host proteins, including G3BP1, G3BP2, Caprin1, and TRIM25 (Bidet et al., 

2014; Manokaran et al., 2015). Interaction with these proteins helps to prevent the 

activation of the interferon response and RIG-I signaling (Bidet et al., 2014; Manokaran 

et al., 2015). Alphavirus RNAs sponge the host protein HuR by dephosphorylation of the 

HuR protein and cause its relocation from the nucleus into the cytoplasm (Dickson et 

al., 2012). This sequestration and relocalization of the HuR RNA binding protein causes 

dramatic changes in host mRNA stability, polyadenylation, and splicing (Barnhart et al., 

2013). Therefore, we hypothesize that the small RNAs we have identified that are 

generated by XRN1 stalling in a variety of viral infections may also serve to sequester 

important cellular RNA binding proteins and disrupt post-transcriptional processes. In a 

preliminary protein pull-down experiment, we were able to identify 32 proteins that 

interact with the RVFV N 3’UTR RNA fragment. We have confirmed one of these 

interactions – the La protein. Future explorations into the interaction and functional 

consequences of host RNA binding protein interactions with stable XRN1 generated 

viral RNA fragments may yield novel insights into viral-host molecular interactions and 

mechanisms of pathogenesis 
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Identification of arenavirus decay intermediates in viral infection 

 There is evidence of subgenomic RNAs that are created in transfected cells with 

a reporter plasmid using arenaviral highly structure intergenic regions. Pinschewer et 

al., (2005) used two reporter constructs containing the 5’ and 3’ UTR (with the intergenic 

region-IGR) of lymphocytic choriomeningitis virus (LCMV) or one without the IGR, to 

study the effects on virus propagation. The IGR construct was observed to create 

subgenomic RNAs, while deletion of the intergenic region (IGR) did not. Furthermore, 

the reporter construct lacking the IGR did not produce virus particles as efficiently as the 

construct with the IGR. Other studies have shown that variants which contain deletions 

of the IGR do not produce virus particles as efficiently, resulting in overall viral 

attenuation (Golden et al., 2017; Iwasaki et al., 2016).  For our study, we used the 3’ 

UTRs of the four mRNAs of the pathogenic Junin virus (JUNV) Romero strain in cell-

free RNA decay assays. This Romero strain is highly regulated by the CDC/NIH due to 

its possible use as a bioweapon because it causes Argentina hemorrhagic fever in 

humans (Borio et al., 2002; Davis, 2004). We demonstrated that multiple members of 

the Arenaviridae (JUNV and two novel snake viruses) generate RNA decay 

intermediates in our cell-free assays (Figure 16 and 15), but have yet to demonstrate 

XRN1 stalling on arenavirus 3’ UTRs in live cells or during infection. In the future, we 

plan to use a reporter construct with the 3’ UTR of the JUNV nucleoprotein mRNA to 

establish if arenavirus 3’ UTRs generate a decay intermediate in cellular transfections. 

Furthermore, we plan to study the effect on host mRNA stability with this reporter 

construct by transfecting it into HEK293T cells with an siRNA or shRNA targeting the 

GFP open reading frame.  
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Possible implications of XRN1 stalling on the pathology/cytopathology of 

arenavirus and bunyavirus infections 

 Several non-coding RNAs are important for the life cycles of DNA (e.g. Epstein-

Barr virus and adenovirus) and RNA viruses. The viral non-coding RNAs studied in this 

project can also impact host-virus interactions by producing symptoms which can be 

linked to its pathology/cytopathology. First, beet necrotic yellow vein virus (BNYVV) 

requires non-coding RNA 3 for dissemination of the virus throughout the plant.  

Additionally, RNA 3 is found in the lesions of the infected plant and is directly associated 

with the accumulation of the non-coding RNA as well as viral-induced pathology (Peltier 

et al., 2012; Ratti et al., 2009). Furthermore, replacement of three nucleotides at the top 

of the predicted stem-loop of the coremin sequence of RNA 3 prevents accumulation of 

the non-coding RNA 3 and this alleviates symptoms on the plant (Peltier et al., 2012). 

Second, we have previously observed in our lab through plaque assays that 

accumulation of the sfRNA is required for cytopathology associated with Kunjin virus 

infection. Mutations in the 3’ UTR that prevent the formation of sfRNA produce very 

small plaques when compared to wildtype. Furthermore, sfRNA is important for 

transmission of the virus in human and mosquitoes cell culture as sfRNA- viral mutants 

are unable to be effectively transmitted (Göertz et al., 2016).  

These two examples discussed in the paragraph above indicate how non-coding 

RNAs can be important for the virus life cycle by showing symptoms on the plant or 

effects on viral replication as seen in plaque assays. Whether the novel non-coding 

RNAs we identified in this project play a functional role remains to be determined in 

future studies.  For arenaviruses, however, it has already been observed that deletions 
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in the intergenic region can affect virus propagation (Pinschewer et al., 2005).  Thus, 

there is some albeit circumstantial evidence to suggest that there may be functional 

roles for these small, XRN1-resistant RNAs. To test this, we could create mutant viruses 

with either deletions or substituted nucleotides in the 3’ UTRs of the arenaviruses or 

phleboviruses and determine if there are changes in viral RNA replication and/or plaque 

formation.  This would be a first step in the identification of possible mechanisms by 

which the small RNAs generated by XRN1 stalling on arenavirus and phlebovirus 

transcripts may have cytopathological effects.   However, interpretation of these data 

may be significantly complicated by the fact that these viruses also perform ‘cap-

snatching’ on cellular mRNAs via targeted endonucleolytic cleavage. Thus, the 

landscape of factors that reprogram mRNA stability in these infections is complex. 

 

XRN1 is important for cellular homeostasis 

 XRN1 has an important role in the regulation of gene expression and silencing of 

this protein in more complex organisms can result in death. Therefore, suppression of 

XRN1 could enhance viral replication by dysregulation of cellular processes. One such 

example is XRN1’s role in activation of apoptosis by activating the reap and hid proteins 

which are important for activation of apoptosis (Waldron et al., 2015). This could be 

linked to how RNA viruses (e.g. flaviviruses, phleboviruses, and arenaviruses) prevent 

XRN1 from properly doing its job thus preventing the activation of apoptosis. To test 

this, we can used infected cellular total RNA to look at the expression of the mRNA of 

these pro-apoptotic factors. Furthermore, in S. pombe and S. cerevisae, deletion of 

XRN1 has been linked to increased cell size and doubling time, which causes the 
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stabilization of cellular mRNAs and this can be seen also in a flavivirus infection 

(Larimer and Stevens, 1990; Moon et al., 2012; Szankasi and Smith, 1996). Therefore, 

there is a strong evidence supporting the idea that XRN1 is important for basic cellular 

process, such as cellular growth and proliferation. Thus, when XRN1 is repressed by 

structured viral RNA this could wreak havoc on a variety of cellular processes.  

 

A conserved coremin motif is in multiple plant virus families 

 The coremin motif is a short, 20 nucleotide sequence paramounts for stalling 

XRN1 in the BNYVV non-coding RNA 3. For BNYVV, it is present in the 3’ UTR of RNA 

3 and in the 3’ UTR of RNA 5 (Peltier et al., 2012). The Bromoviridae and one 

Betaflexiviridae families contain the coremin motif in the 3’ UTRs of their genome. 

Furthermore, both the subgroup II of the genus cucumoviruses (e.g. cucumber mosaic 

virus, peanut stunt virus, and tomato aspermy virus) and the Bromoviridae contain a 

coremin motif in the 3’ UTRs of the viral genome (Thompson et al., 2008). Scaevola 

virus A, is a member of the Betaflexiviridae, that was identified in a metagenomic study 

which also contains a coremin motif found in the 3’ UTR (Wylie et al., 2012). We aligned 

multiple 3’ UTRs to the coremin motif to demonstrate this similarity among the various 

viruses (Figure 29; Peltier et al., 2012). We observed that peanut stunt virus has one 

nucleotide difference in the coremin motif when compared to the others. The most 

represented virus in subgroup II for cucumoviruses is cucumber mosaic virus (CMV). 

CMV has three positive sense RNA genomes and is a part of the Bromoviridae family. It 

would be interesting to test whether RNAs from these other viruses with the coremin 

sequence generate a decay intermediate in our cell-free decay assays. Furthermore, a 
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tRNA-like structure is found downstream from the coremin motif (Joshi et al., 1983). De 

Wispelaere and Rao (2009), showed an RNA (called RNA 5) is produced during CMV 

plant infection and is not the byproduct of replication. They further observed that RNA 5 

is not capped and deletion of the RNA box 1 (coremin motif) alters the generation of 

RNA 5 (de Wispelaere and Rao, 2009). In figure 18, we showed a smaller portion of the 

BNYVV non-coding RNA 3 (a 55nt sequence) does create a decay intermediate, which 

indicates biogenesis of the BNYVV non-coding RNA 3 (which is important for the 

movement of the virus throughout the plant, but the exact mechanism needs further 

study (Flobinus et al., 2016; Peltier et al., 2012)) relies on XRN1. It would be interesting 

to follow this up by first testing if the other viral 3’ UTRs with the coremin motif create 

non-coding RNAs. BNYVV RNA 5 has been shown to produce a non-coding RNA; 

however, it was not as abundant as the one from RNA 3 (Peltier et al., 2012). 

Interestingly, the RNAs from the Bromoviridae which have been shown to use the tRNA-

like structure bind several host proteins (e.g. LSM1-7) and regulate their translation 

(Barends et al., 2004). It could be hypothesized that these plant viruses also produce 

non-coding RNAs that act as sponges for endogenous proteins during plant infection. 

To test this, we could produce wildtype or mutant virus with mutation in 3’ UTR and 

study protein-RNA interactions by UV cross linking using plant extracts. Another way to 

test this is to silence the proteins which have been already establish and check the 

effects on viral translation and replication.  
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Figure 29. Nucleotide alignment of coremin motif to varies plant viruses. Black highlights 
the similarities to the reference sequence: coremin motif. Beet necrotic yellow vein virus 
(BNYVV- RNA 3 accession number: NC_003516; RNA 5 accession number: NC_003513), Beet 
soil-borne mosaic virus (BSBMV- RNA 3 accession number; NC_039224; RNA 4 accession 
number: NC_039227), cucumber mosaic virus (CMV- RNA 1 accession number: AF416899; 
RNA 2 accession number: AF416900; and RNA 3 accession number: AF127976), Peanut stunt 
virus (PSV- RNA 2 accession number: EU570237; RNA 3: EU570238), Tomato aspermy virus 
(TAV- RNA 1 accession number: NC_003837; RNA 2 accession number: NC_003838; and RNA 
3 accession number: NC_003836), and Scaevola virus A ( SVA - accession number: JN127346) 
using Geneious version 11.1.5 (Kearse et al., 2012)  

 

Could endogenous RNA stall and repress XRN1? 

 In the context of viruses, we have shown multiple virus families use XRN1 

stalling and repression as a mechanism. It is also possible for cellular transcripts to 

have XRN1-resistent elements in the untranslated regions. The use of cap-independent 

translation in times of stress has been observed as a way for the cell to maintain 

translation. Park et al., (2005) showed that the endothelium-specific receptor tyrosine 

kinase (called Tie2) is translated under hypoxic conditions using an IRES-mediated 

element. These IRES structures are highly conserved in the non-coding regions and 

variation has been associated with several diseases (Ward and Kellis, 2012). The 

encyclopedia of DNA elements (ENCODE) project has made it possible to track 

disruption to regulatory regions, which are in the non-coding region (e.g. untranslated 

regions) (Davis et al., 2018). In addition, a previous study observed that many 

transcripts have different abundance levels of their 3’ UTRs verses their associated 
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open reading frames (Mercer et al., 2011). A recent study in zebrafish revealed that the 

translation start/stop sites and 3’ UTRs of their mRNA contain higher order secondary 

structure (Kaushik et al., 2018). Furthermore, influenza A virus contains secondary 

structures in the mRNAs that change in the event of a temperature change. This 

dynamic conformational change in RNA structure allows the virus to adapt to the colder 

temperature (Chursov et al., 2012). Thus, considering these finding we could predict 

there are endogenous mRNA with the structures to have the ability to stall XRN1 and 

create non-coding RNAs that have a purpose down the line.  We could test several 

mRNAs that have been established to have IRES element such as the apoptotic 

protease activating factor (Apaf-1) (Coldwell et al., 2000) or the ubiquitous transcription 

factor NF-κB repressing factor (NRF) (Oumard et al., 2000). We could also use the viral 

structures that were crystallized in Figure 30 to predict if endogenous RNAs have 

similar RNA structures. A limitation to studying these endogenous RNAs could be these 

RNAs might be only detected at times of stress.  
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Figure 30. XRN1 resistant RNAs structures crystallized. Panel A: Crystal structure of Murray 
Valley Encephalitis virus sf/xr RNA. The 5’ end is in red and the black arrow indicates where it 
starts. Yellow dots are Mg2+, and light purple is the 3’ end. Panel B: is the ribbon crystal 
structure of Zika virus sf/xr RNA. The blue is the 5’ end and the reddish orange is 3’ end. The 
yellow square represents highlights the ring-like structure in the RNA. Panel C: The model of the 
pseudoknot formation to create the xrRNA of the sweet clover necrotic mosaic virus. The black 
arrows indicate where the 5’ and 3’ ends are located. The red color is the 5’ end and the orange 
is the 3’ end which interacts with the pseudoknot to create a ring like structure. Images were 
taken from Chapman et al. 2014a, MacFadden et al. 2018, and Steckelberg et al. 2018. 

Triptycene-based molecules  

 Small molecules can be used as a source of treatment for certain diseases like 

cancer (Mas-Moruno et al., 2010). Some of these small molecule drugs can be 

repurposed for potential antiviral therapies. Barrros et al., (2016) used a triptycene-

based small molecule to modulate the E. coli temperature sensor mRNA called rpoH, 

which encodes the σ32 protein (a regulator of the heat shock response). The mRNA of 

rpoH uses complex secondary structure to regulate proper translation. At lower 

temperatures, the rpoH mRNA creates several three-helix junctions. Heat shock will 

cause the mRNA secondary structure to change, thus allowing for translation to 

proceed. The addition of the triptycene-based molecule at the lower temperature causes 
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it to bind the rpoH mRNA and prevents the heat shock response from being activated 

(Barros et al., 2016). The identification of tripytcene-based molecules which can bind a 

three-helix junction structure led us to investigate these compounds further. In this study 

we have identified four out of twenty tripytcene-based molecules that have the ability to 

disrupt the generation of sfRNA from the 3’ UTR of DENV-2 or Zika virus. The four 

triptycene-based molecules have the same base and the R-groups are in the same 

positions (carbon 4, 8, and 13). Three out of the four triptycenes have pyrimidine rings 

in their R-groups that could interact with other parts of the three-helix junction (Figure 

31B). We are currently exploring cellular toxicity assessments of these four compounds 

because triptycenes have been used as an anti-cancer drug (Barros and Chenoweth, 

2014). One technical issue that should be kept in mind during studies with triptycenes is 

that some triptycenes appear in our assays to be pulling the RNA/triptycene complex 

into the organic phase during phenol/chloroform extraction. In the future, we would like 

to test the binding affinity of triptycene to the structured RNA. It would also be 

interesting to crystallize the triptycene/RNA complex to understand why one triptycene-

based molecule binds more efficiently than the others. This could open up the possibility 

of producing a triptycene probe by adding a florescent tag to a different carbon, if it does 

not interfere with the binding. The probe could then be used to identity endogenous 

transcripts that have three-helix junction in their 3’ UTRs. Next, several RNA binding 

proteins have been shown to interact with DENV-2 sfRNAs. One possible use of 

triptycenes could be as a competitor to interactions of the native RNA binding proteins 

on the sfRNA. Finally, an additional challenge in these studies is that the synthesis of 

the triptycene-based molecules requires several days and produce low yields.  
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Figure 31. Chemical structure of the four triptycene based molecules we have shown that 
disrupt XRN1 stalling. Panel A: Triptycene with the carbons numbered on the bases. Panel B: 
Diagrammatic representation of the four triptycenes with the ability to disrupt the three helix 
junction in the 3’ UTR of Dengue and Zika virus to allow XRN1 to degrade the RNA. 

 

Differences between the DOM3z/DXO and XRN1 

In this study we used recombinant mammalian DOM3z/DXO and K. lactis XRN1, 

which were purified using the same method (see Experimental Methods section above). 

These recombinant proteins are different sizes; DOM3z/DXO is about 45kDa and XRN1 

is about 130kDa. Additionally, the recombinant DOM3z/DXO protein was cloned with 

the full open reading frame (Picard-Jean et al., 2018), whereas the recombinant K. lactis 

XRN1 is missing 209 amino acids from the C-terminal (Chang et al., 2011). Another 



133 
 

major difference is that DOM3z/DXO has its own decapping ability whereas XRN1 relies 

on the DCP1/2 complex to decap the mRNA which allows exonucleolytic decay to 

proceed (Jiao et al., 2013). The homolog of the mammalian DOM3z/DXO in yeast is 

called DXO1. MacFadden et al., (2018) tested the xrRNA 2 of the Kunjin strain of West 

Nile virus with recombinant yeast DXO1 to check if it will stall in this 3’UTR region like 

XRN1. While DXO1 did generate sfRNA in their assays, it was much less robust than 

the XRN1(MacFadden et al., 2018). Figure 31 illustrates the differences between the 

amino acid sequence alignment of yeast DXO1 and the human DOM3z/DXO using 

Geneious version 11.1.5 (Kearse et al., 2012). These two proteins have only 10 percent 

similarity and differences of 46-amino acids in size. Furthermore, it would be interesting 

to compare the XRN1 catalytic domain with the DOM3x/DXO catalytic domain to tease 

out if these proteins are truly different. This might help explain why the mammalian 

DOM3z/DXO was able to degrade through different structured viral RNAs while XRN1 

was stalled (Figure 28). Future studies will carefully compare the yeast DXO1 and 

mammalian DOM3z in our in vitro assays. This will help us to understand any 

differences of activity on RNAs between these proteins. This future study might also 

reveal how mammalian organisms have evolved to use other 5’-3’ exoribonuclease in 

the battle against RNA viruses, even though the enzymes is not as highly processive as 

XRN1. As seen in Figure 28, mammalian Dom3z/DXO degrades through the 3’ UTR of 

DENV-2 and RVFV N, whereas XRN1 generates a decay intermediate. One limitation in 

our data at this time that we cannot formally rule out is the possibility of nuclease 

contamination (despite the fact that we have observed read-through by Dom3z/DXO 

using multiple independent enzyme preparations.  
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Figure 32. Amino acid sequence alignment between mammalian DOM3z/DXO and yeast 
DXO1. The black highlights the similarities between the sequences. Amino acid sequences 
used are human DOM3z/DXO (NCBI accession number: O77932.2) and yeast DXO1 (NCBI 
accession number: Q063449.1). Alignment was done using Geneious version 11.1.5 (Kearse et 
al., 2012). 

 

In addition, we will also be studying the role of DOM3z/DXO1 role in a viral 

infection, which will be performed in collaboration with Dr. Brian Geiss’ lab.  We plan to 

study how DOM3Z interacts with the flavivirus RNA in the context of viral infection. One 

possibility that recent studies have shown is that DOM3z is localized primarily to the 

nucleus during homeostasis (Amador-Cañizares et al., 2018; Picard-Jean et al., 2018). 

It would be interesting to check if more the DOM3x/DXO protein relocalizes to the 

cytoplasm during a virus infection.   
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APPENDICES 

 

 Appendix 1. The text alignment for the graphical alignment of XRN family from various species. 
Alignment of the amino acid sequence of XRNs from Homo sapiens, Kluyveromyces lactis, 
Saccharomyces cerevisiae XRN1, Culex quinquefasciatus, Drosophila melanogaster, Mus 

musculus, Arabidopsis thaliana, and Saccharomyces cerevisiae RAT1. Alignment was done 
using Geneious version 11.1.5 (Kearse et al., 2012)  

Name Species NCBI accession number 
5'-3' exoribonuclease 1 isoform a Homo sapiens NP_061874 

KLLA0F22385p Kluyveromyces lactis CAG98788 
5'-3' exoribonuclease Saccharomyces cerevisiae AAA35219 

5'-3' exoribonuclease 1 Culex quinquefasciatus EDS29953 
pacman protein Drosophila melanogaster CAB43711 

5'-3' exoribonuclease 1 isoform 1 Mus musculus NP_036046 
XRN4 Arabidopsis thaliana AAG40731 

ssRNA exonuclease RAT1 Saccharomyces cerevisiae NP_014691 
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Appendix 2. Radiolabeled, 5’ monophosphorylated RNAs containing the 5’ half of 3’ UTR of 
DENV-2 were incubated with recombinant XRN1 in the presence of 250 µM of the indicated 
triptycene derivative for two minutes. Reaction products were separated on a 5% 
polyacrylamide gel containing urea and visualized by phosphorimaging. The decay 
intermediates generated by XRN1 stalling are indicated by the black arrow on the right. The gel 
is representative of at least three independent experiments. 

 

 


