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ABSTRACT 

 

PROPERTIES OF Th4+ AND Th3+ FROM RF  

SPECTROSCOPY OF HIGH-L THORIUM RYDBERG IONS 

 

 Several properties of radon-like Th4+ and francium-like Th3+ were determined from 

measurements of high-L Rydberg fine structure in Th3+ and Th2+ ions.  The measurements were 

carried out using the resonant excitation Stark ionization spectroscopy (RESIS) technique to 

detect rf transitions between levels in the same n.  The measured Rydberg fine structures were 

then fit to an effective potential model, and the properties of the ions were extracted.  Properties 

of the 1
0S  ground state of Th4+ extracted from the measurements of the n=37 Th3+ Rydberg fine 

structure were the scalar dipole polarizability, ,0 7.702(6) . .D a u   and the scalar quadrupole 

polarizability, ,0 29.1(1.6) . .Q a u  .  The Th2+ Rydberg fine structure is much more complex since 

the ground state of Th3+ is a 2
5/2F , and the presence of low-lying excited states cause non-

adiabatic effects in the fine structure which are not well described by the effective potential.  To 

extract the properties, non-adiabatic corrections had to be calculated.  The properties of Th3+ 

extracted were the permanent quadrupole moment, 0.5931(14) . .Q a u , the scalar and tensor 

dipole polarizabilities, ,0 15.224(33) . .D a u   and ,2 5.30(11) . .D a u   , the permanent 

hexadecapole moment, 0.69(28) . .a u   , and the reduced dipole and octupole matrix elements 

coupling the ground state to the 6d 2D3/2 state, 2 1 2
5 2 3 26 1 436 2[ ]

/ / . ( ) . .g F M d D a u  and 

2 3 2
5 2 3 26 3 3 1 1[ ]

/ / . ( . ) . .g F M d D a u .  
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Chapter 1: Introduction 

The spectroscopy of high-L Rydberg states using the RESIS technique provides a way of 

measuring the properties of positive ions.  This technique can be used on any positive ion 

without major changes to the experimental set-up and for that reason is very powerful.  The 

study of the radon-like and francium-like thorium reported here was motivated by the importance 

of the chemistry of actinide elements in issues of high national priority, such as storage of waste 

from nuclear power.  The biggest unknown in actinide chemistry is the actinide elements 

themselves which are usually found in ionization states near the Rn-like ion.  Yet little is known 

about these isolated ions.  This makes it difficult to understand how these elements will interact 

with other well-known elements.  The modeling of these ions even in isolation is difficult given 

their high nuclear charge and large number of electrons.  This makes any experimental 

measurement valuable as a test of these challenging calculations. 

This dissertation reports measurements of high-L Rydberg fine structures in Th2+ and 

Th3+ ions using rf spectroscopy.  From these measurements many properties of the Fr-like Th3+ 

ion and Rn-like Th4+ ions, the core ions of these Rydberg systems, were extracted and compared 

with theoretical calculations. Section 1 of this Chapter will present background on high-L 

Rydberg states. The second section will discuss the theoretical model used to describe these 

high-L Rydberg states and additional effects that can contribute to the energies of high-L 

Rydberg states.  A brief overview of the experimental technique is then presented in the third 

section of this chapter.  The fourth section of this chapter discusses the motivation for the Th 

measurements and gives a history on the previous work done in preparation for this study. 
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1.1 High-L Rydberg States 

A high-L Rydberg state is made up of a highly excited electron orbiting around a positive 

ion, Xq+, as seen in Fig. 1.1 [1].  The Rydberg state has a core, Xq+, which can be any positive 

ion.  The Rydberg electron is described by its principal quantum number, n, and its angular 

momentum, L.   

 

Figure 1.1: High-L Rydberg state with the core ion being Xq+.   The Rydberg electron orbiting 
around it is in a high angular momentum state, nL. 
 

If the Rydberg electron remains far away from the core, as in a high angular momentum state, 

then the Rydberg state is very similar to a hydrogen atom or a hydrogenic ion and the Rydberg 

electron’s wave function is an almost purely hydrogenic wave function.  The approximate 

classical inner turning point for the Rydberg electron is given by Eq. 1.1 [1]. 

 
0

( 1)
2

L Lr a
q



 (1.1) 

Eq. 1.1 allows for the calculation of the distance of closest approach for the Rydberg electron to 

the core.  If the inner turning point of the state of interest is near or outside the atomic radius of 

the core ion, it is considered a high-L state.  For example, for Th3+ the Rydberg states studied 

were 7L  , making the inner turning points 09.3r a  .  The estimated atomic radius of Th3+ is 
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01.5rmsr a  [2], thus the states studied are referred to a high-L state since they are outside the 

atomic radius of the core of the Rydberg state.  For the most part, the Rydberg states studied 

using the technique presented in this work are 4L q , but this is just an approximate cut-off of 

the class of Rydberg states that can be described as “high-L”.  

The wave function of a single electron in the hydrogen atom or a hydrogen-like ion with 

principal quantum number n is closely analogous to a family of classical orbits of a common 

major axis.  These classical orbits vary in possible eccentricities, from linear when L=0 to an 

almost circular at maximum L, and all have the same energy since they are subject only to the 

1/ r  Coulomb potential.  The analogous hydrogenic quantum levels are degenerate, except for 

small relativistic corrections. With actual high-L Rydberg states there also exists the possibility 

of additional long-range interactions between the more complex core and the Rydberg electron.  

These long-range interactions break the degeneracy of the hydrogenic energy levels and produce 

a fine structure pattern that is sensitive to the properties of the core, other than its total charge. 

The scale and the shape of the energy levels in the fine structure pattern is determined by 

the properties of the core that control these long-range interactions.  These properties fall into 

two categories. The first category is made up of the permanent electric moments of the core.  The 

permanent electric moments create multipole fields that the Rydberg electron interacts with.  

These moments exist for the core ion with or without the presence of the Rydberg electron.  The 

dominant permanent moment, the permanent electric quadrupole moment, Q, corresponds to a 

2nd rank tensor potential, but other even order moments are also possible as long as 2 cJ  , 

where κ is the rank of the tensor potential.  For example, the ground state of Th3+, studied here, 

with Jc=5/2, may have a permanent hexadecapole moment with 4  .  The second category of 

properties controlling the long-range interaction is made up of induced moments of the core, 



4 
 

characterized by polarizabilities.  The dominant polarizability is the scalar dipole polarizability, 

,0D , but there is a rich variety of other polarizabilities corresponding to various multipole orders 

and tensor orders.  

The two dominant core properties, ,0D  and Q, determine the majority of the fine 

structure pattern, but each affects the fine structure in different way.  The number of energy 

levels for each L in the fine structure pattern will be determined by the number of different ways 

the angular momentum of the core can be aligned with the orbit with the Rydberg electron.  

Quantum mechanically the number of ways this can happen in high-L Rydberg levels is 2Jc+1 , 

where Jc is the total angular momentum of the ground state of the core.  For example a core with 

Jc=5/2 will have six energy levels for each L in the fine structure.   As the orbit of the Rydberg 

electron around the core becomes more circular, i.e. as L increases, the splitting between the 

levels will become smaller; this is due to the interaction between the Rydberg electron and the 

quadrupole moment being proportional to 1/r3.  The ,0D  affects the fine structure pattern in a 

different way than Q.  It does not cause a splitting in the levels for each L, but instead causes a 

shift of the energy level or levels for each L away from their hydrogenic zeroth order values.  

The interaction between the core and Rydberg electron due to ,0D  is proportional to 1/r4 

therefore the shift away from hydrogenic will be larger when the orbit of the Rydberg electron is 

more eccentric (low L) and the shift will approach zero as the orbit becomes nearly circular   

(high L).  
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Figure 1.2: Simulated n=28 Th2+ Rydberg fine structure, L=7 to 10, using the properties of the 
core, Th3+, Jc=5/2, Q=0.54a.u. and αD,0=15.42a.u [3].  EαD,0 represent the energy shift away from 
hydrogenic for each L due to the αD,0 and EQ represent the splitting of the energy levels for each 
L due to Q.  
 

Figure 1.2 illustrates the effect of these dominant properties on the fine structure pattern.  The 

quadrupole moment causes the splitting of the levels for each L and the scalar dipole 

polarizability shifts the center of gravity of the levels away from hydrogenic. In practice, the 

actual fine structure is also sensitive to additional permanent moments and polarizabilities of the 

core. 

Each level in the Rydberg fine structure pattern is described by three quantum numbers: 

n, L and K.  The n is the principal quantum number, and L is the angular momentum of the 
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Rydberg electron.  K is the total angular momentum of the system, exclusive of the Rydberg 

electron spin, representing the vector addition of the L and Jc, 

 cK L J 
  

 (1.2) 

and it ranges in value in integer steps from L+Jc to L-Jc.  Each of the energy levels in the fine 

structure will be labeled by its n, L, and K values when Jc>0.  When Jc=0 the level for each L will 

be labeled by their n and L values alone, since there will only be one level per L.  The 

contribution of the spin of the Rydberg electron is nearly negligible to the fine structure energy. 

A vast majority of excited states in atoms and ions are high angular momentum states, 

4L q , but observations of these states are rare with traditional spectroscopy methods.  Tables 

of atomic energy levels, as seen on the NIST website [4], illustrate this.  The use of absorption 

spectroscopy to observe these high-L states is limited because it is impossible to reach high 

angular momentum states with this technique.  Absorption spectroscopy starts with a ground 

state atom or ion normally a relatively low L state, and excites that state to a higher angular 

momentum state. That excitation is limited by the dipole selection rule ΔL=±1, making it 

impossible to reach the high-L states.  Emission spectroscopy is also limited in its ability to 

observe these higher L states.  The first limitation on emission spectroscopy is the weakness of 

these emissions.  The high-L states are much longer lived then the lower L states making 

radiative decay less probable compared to collisional loss.  The second limitation is that the high 

resolution needed to see the deviation of the fine structure from hydrogenic is difficult to obtain.  

These two limitations on emission spectroscopy make it difficult but not impossible to observe 

the high-L Rydberg states.  Some recent studies of high-L Rydberg states using high resolution 

emission spectroscopy have been reported [5].  Since high-L Rydberg states are difficult to 
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access with traditional spectroscopy methods the measurement of the fine structure of these high-

L states is most efficient with the use of special techniques.   

The work reported here uses the resonant excitation Stark ionization spectroscopy 

(RESIS) technique to measure the fine structure of the high-L Rydberg state, Fig. 1.3.  The 

RESIS technique allows for the creation of the population in a broad range of high-L Rydberg 

states.  The Rydberg states are created by charge exchange.  A beam of the ion of interest, Xq+, 

intercepts a Rydberg target and captures a highly excited electron to become a beam of Rydberg 

states, X+(q-1).  The capture process forms states of all Ls.  Those high-L Rydberg states are then 

excited upward from one n state, nlower, to a much higher n state, nupper for detection.  Since the 

excitation is upward, all high-L states can be detected without being limited by selection rules.  

The excitation is carried out using a laser and this allows for the fine structure of the high-L 

Rydberg state to be resolved.  The central aspects of the RESIS technique are illustrated in Fig. 

1.3.  The RESIS technique is discussed more fully in Section 1.3 and details of the apparatus 

used are discussed in Chapter 2.    

 

 

Figure 1.3: Basic Steps of the RESIS technique. The creation of the Rydberg states through 
charge exchange with a Rydberg target, the Rydberg state is excited between n levels using a 
laser.  The upper n state is then detected by Stark ionization. 
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1.2 The Effective Potential 

The Rydberg states studied consist of two nearly separate systems, a free core ion and a 

hydrogenic electron. The fine structure for high-L Rydberg states produced by the long-range 

interaction between the core and the Rydberg electron can be modeled by an effective potential.  

The work in this dissertation does not derive the effective potential, but an understanding of 

where the effective potential comes from and the assumptions made in its derivations is 

necessary to understand how properties are extracted from fine structure measurements.  The 

approach of using an effective potential to describe the long-range interaction between the core 

and the Rydberg electron was pioneered by Drachman [6] for the Rydberg levels of helium.  

Recently this approach was generalized by Woods [7], providing the theoretical framework 

necessary to study and extract properties from the fine structure of ions with higher Jc.  The 

approach set forth by these works requires two initial assumptions. 

(A1) The Rydberg electron is distinguishable from the electrons contained in the core.  

(A2) The Rydberg electron is always further from the nucleus than any of the core   

electrons. 

If these two assumptions hold true then it is possible to use the approach presented in [6, 7] to 

derive an effective potential to describe the Rydberg state. 

 The first step in modeling the system is to come up with a Hamiltonian for the system.  

The first assumption allows for the full Hamiltonian, H, for the high-L Rydberg states to be 

written as the sum of three parts. The first part, 0
coreH  describes core, which is a just a free ion of 

charge q=Z-N+1.  The second part, 0
RydH  describes the distinguishable Nth electron which is the 

hydrogenic Rydberg electron.  The third part is the potential, V, which describes the interactions 

between the core and the Rydberg electron.  



9 
 

 
0 0
core RydH H H V    (1.3) 

where 

 

21 1
0

1 1

1
2

N N
i

core
i i ji i j

j i

p ZH
r r r

 

 


 
   

  
 

,


 

, (1.4) 

 

 

2
0

2
N

Ryd
N

p qH
r

 


, (1.5) 

 

and 

 

1

1

1 1N

i N i N

NV
r r r






 

  

. (1.6) 

In the Hamiltonian, N is the total number of electrons in the ion, Z is the nuclear charge, and the 

q is the net charge of the core ion, q=Z-(N-1).  Since the Hamiltonian can be broken into parts, 

due to the first assumption, it is also possible to write the zeroth order wave function for the 

system as a product of wave functions for the core and Rydberg electron. 

 
0 0 0

core Ryd   [ ] [ ]

 (1.7) 

The zeroth order wave function for the Rydberg electron is just the wave function of a 

hydrogenic electron, represented by the quantum numbers n, L.  The zeroth order wave function 

for the core is much more complicated and is known only abstractly, but it is described by the 

quantum numbers λ and Jc, where Jc is the core’s total angular momentum and λ is any additional 

quantum numbers necessary to describe the state of the core.  When the core is in the ground 
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electronic state this is denoted as g.  The notation used to represent the wave functions is seen in 

Eq. 1.8. 

 c cJ nL J nL , . (1.8) 

Using the interaction potential V and perturbation theory, the approach set forth by 

Drachman [6] and Woods [7] can now be applied to calculate the energy of Rydberg levels.  In 

many cases the deviation from the zeroth energies can be written as an expectation value of an 

effective potential.  This approach requires the use of three expansions.  

(1) Static Perturbation Theory 

(2) Multipole Expansion  

(3) Adiabatic expansion 

The first expansion used is static perturbation theory 

 
0 1 2[ ] [ ] [ ] ...E E E E     (1.9) 

where the zeroth order energy is the sum of the energy core ion and the energy of the hydrogenic 

Rydberg electron, 

 

2
[0]

2

1( )
2 ( )

core
c

core electron

m qE E gJ
m m n

 
 . (1.10) 

The first order energy has the form 

 
[1] 0 0E V  

 (1.11) 

and the second order energy has the form  

 0 0

20 0
[2]

0 0( ) ( )

V
E

E E 

 


  
. (1.12) 
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The denominator of the second order energy is the energy difference between the Rydberg state 

of interest and an intermediate state. 

The second expansion used is the multipole expansion, which is just a rewriting of the 

potential that describes the interaction between the core the Rydberg electron.  Using assumption 

A2, it is the possible to rewrite the potential as a multipole expansion in terms of spherical tensor 

operators of rank κ, and having the form 

 
1

1

N

N

C rV M
r













[ ]

[ ] ˆ( )

 (1.13) 

where 

 

1

1

N

i i
i

M r C r  




[ ] [ ] ˆ( )
. (1.14) 

[ ] ˆ( )iC r  is a spherical tensor of rank κ in the space of electron i, and îr  represent the angular 

position of that electron.  The M[κ] operator acts only on the wave function of the core.  Because 

of the second assumption, A2, there cannot be any scalar terms, κ=0, since the Rydberg electron 

is farther from the core than any of the N-1 core electrons.  The dipole term is when κ=1, the 

quadrupole term is when κ=2 term, and so on.   

The third expansion is the adiabatic expansion and seen here are the first three terms 

 

2

2 3

1 1 [ ]
...

[ ( , ) ] ( , ) [ ( , )] [ ( , )]
Ryd Ryd

c Ryd c c c

E E
E J E E J E J E J   

 
   

              (1.15) 

where ( , )E J   represents the energy difference between the ground state of the core and some 

excited level 

 ( , ) ( , ) ( , )c c cE J E J E g J        (1.16) 
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and ΔERyd represents the energy difference between two different Rydberg states 

 ( ) ( )RydE E n E n   . (1.17) 

The first term of the adiabatic expansions is called the adiabatic term, the second term is the 1st 

non-adiabatic and third term is the 2nd non-adiabatic.  The adiabatic expansion works best when 

the energy difference between the ground state of the core and some excited state is large.  For 

this reason, the derivation of the effective potential from the second-order perturbation energy 

explicitly excludes any contributions from intermediate levels where the core is not 

electronically excited.  These are considered separately and their effects are usually found to be 

small for high-L states.  These excluded intermediate states represent other Rydberg levels bound 

either to the true ground state of the core ion or possibly to an excited fine structure level of the 

ground electronic state.  

The derivation of the effective potential requires the use of all three of these expansions.  

The contributions to the effective potential from the permanent moments of the core are found as 

a result of the first order perturbation theory.  The first possible permanent moment is the 

quadrupole moment, when κ=2.  The permanent moments are limited to be only even due to the 

restriction of parity, so they only occur when κ is even.  The majority of the effective potential 

comes as result of the application of the second order perturbation theory to the potential and the 

denominator of the second order perturbation energy expanded out by the adiabatic expansion.  

These second order energies result in the polarizabilities seen in the effective potential.  Eq. 1.18 

shows some of the leading terms of the effective potential, whose expectation value would 

describe energy of a specific level in the fine structure of a high-L Rydberg state.   
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where 

 
1 1 1 1
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   2 2
2

2 1
0 0 0

1
22 2

0 0

c
c cJ K

c c c cc

c c c c

L L
LX J C r K L J

J J J JJ L
J J J J



 
         

    
       

( )ˆ( ) ( )
( )

 (1.20) 

 

   3 3 1
3

1 3 2 2 2 2 1 2 2 2 4
4 5 2 1 2 3

c cJ K L
c

c

K L J
X J T r

J L

L L L L L
L L

   
    

 
    

  
   

ˆ( ) ( ) ( )

( ) ( )( )( )
( )( )  (1.21) 

and  
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In the effective potential, r is the radial coordinate of the Rydberg electron, the subscript 

N has been dropped since the positions of the core electrons are not explicitly contained in the 

effective potential.  The interactions in the effective potentials are described by the terms of 

increasing tensor rank and increasing inverse powers of r.  [ ]( )cX J  is a unit κth  rank tensor in 

the space of the core and [ ] ˆ( )C r  is a κth  rank spherical tensor in

 

the space of the Rydberg 

electron.  The specific third rank tensor is used in the Eq. 1.21 is defined by Eq. 1.23. 

  [3][3] [2]ˆ ˆ( ) ( )T r C r L 


 (1.23) 

The first term in the effective potential is referred to as the scalar component and the dominant 

property contained in it is the scalar dipole polarizability, ,0D .  The second term is referred to as 

the vector component, the dominant vector property is the 1st non-adiabatic vector dipole 

polarizability, ,1D , sometimes called the vector hyperpolarizability [8]. The third term in the 

effective potential is the 2nd rank tensor component, the dominant properties contained in this 

term are the permanent quadrupole moment, Q, and the tensor dipole polarizability, ,2D .  The 

3rd rank tensor component, the fourth term in Veff, is the dominated by 1st non-adiabatic 3rd rank 

tensor quadrupole polarizability, ,3Q  and the 1st non-adiabatic 3rd rank tensor dipole- octupole 

polarizability, ,3DO .  The final term in the effective potential is the fourth rank tensor 

component, which is dominated by the permanent hexadecapole of the core, Π.  The properties 
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contained in the effective potential are defined explicitly in terms of matrix elements of the core 

and the excitation energies, for example ,0D  is given by  

 

2[1]

,0
,

2 1
3 2 1 ( , )

c

c c
D

Jc c

gJ M J

J E J




 

 


  
 (1.24) 

The complete definition of all the properties in terms of matrix elements and excitation energies 

is contained in the work of Woods [7].  

Just as the effective potential can be broken into components of increasing tensor rank, so 

can the observed fine structure.  The observed fine structure can be fit to the different tensor 

components.  The variation of the tensor components with L can be used to find the permanent 

moments and polarizabilities.  The number of tensor terms in the effective potential and the 

observed fine structure will depend on the total angular momentum, Jc, of the core ion.  For 

example the effective potential for Th3+ Rydberg states whose core ion is Th4+ will have only a 

scalar component to the fine structure due to the fact  Jc=0.  As the angular momentum of the 

core increases additional tensor components in the effective potential contribute to the fine 

structure, increasing the number of properties that control the fine structure pattern. 

Additional effects 

While the a majority of the Rydberg fine structure pattern is a result of the expectation 

value of the effective potential,  

 
[1]( )eff K eff KE V nL V nL

 (1.25) 

there also exists additional effects that are not in the effective potential that contribute to the fine 

structure.  The derivation of the effective potential from the second-order perturbation energy 

excluded intermediate states that are bound to ground electronic states of the core ion.  All such 
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states can be considered “Rydberg states”.  For example, Th3+ has two states in the ground 

electronic configuration, the 2
5/2F  is the ground state and the 2

7/2F  is an excited state, located 

approximately 14325cm  above the 2
5/2F  [9].  The contribution to the second order perturbation 

energy of the Rydberg state of interest, due to these intermediate states, was excluded in the 

effective potential model.  The second order energies due to these states would have the form   
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E gJ E n E n
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

   
 (1.26) 

where KnL  is the Rydberg state of interest bound to the ground state and Kn L   is the intermediate 

Rydberg state bound to one of states in the ground states electronic configuration.  Of course, the 

sum over the intermediate Rydberg states does not include the Rydberg state of interest, 

( )c KgJ nL .  The coupling potential, V, must be even given the fact that the parity is the same for 

all the states in the ground state electronic configuration.  The lowest order even coupling is 

quadrupole coupling; the 2   term of Eq. 1.13.  Plugging the quadrupole potential, Eq. 1.13, 

into Eq. 1.26 results in Eq. 1.27 
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 (1.27) 

where this second order energy has been rewritten in terms of factors, such 6J and 3J symbols, 

matrix elements that describe the coupling between core states and a sum over intermediate 

Rydberg states [7].  The sum over the intermediate Rydberg state, n , is completed using the 

Dalgarno and Lewis technique [10].  
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 One might think because of the small energy denominators, this shift would be large and 

dominate the energy of the Rydberg state of interest, but in fact the energy shift due to this 

coupling is small.  The small size of the coupling is due in part to the fact that the quadruple 

coupling, 2V , decreases as L increases and in part due to the selection rules governing the 

quadrupole coupling.  The quadrupole coupling scales like 31 L  thus would decrease as L 

increases, as long as the Rydberg state of interest and the intermediate Rydberg state are not 

degenerate in energy.  For quadrupole coupling two selection rules exist, the first limits the L of 

the intermediate Rydberg state, , 2L L L    and the second limits the core states that can couple, 

, 1, 2c c c cJ J J J    .  The energy shift would be largest when the Rydberg state of interest is 

nearly degenerate with the intermediate Rydberg state.  For the quadruple coupling this would 

occur when both the Rydberg state of interest and the intermediate Rydberg state are bound to 

the ground state, and have the same n.  For n n  , since L L   the intermediate state must be  

2L L   .  In this case, a special selection rule, valid for hydrogenic radial functions,  

 
3, , 2 0n L r n L  

  

makes this coupling exactly zero.  Given the decreasing size of the coupling matrix element with 

L and the zero for the degenerate case, the second order quadrupole energy, [2]( )RSE QQ , is a small 

correction in comparison to the energy calculated from the effective potential for the Rydberg 

state of interest [7].  This can be seen for example in the study of high-L Rydberg states of 

nickel, where the energy shift due to the effective potential are on the order of 1 to 10GHz, while 

the corrections necessary due to Eq. 1.27 are on the order of 10MHz or less [11], and decrease 

rapidly with L.  
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 The quadrupole coupling is the leading even coupling term of the potential, but additional 

higher order even terms in the potential can also couple the Rydberg state of interest and the 

intermediate Rydberg states in Eq. 1.26.  These shifts to the energy of the Rydberg state of 

interest would be smaller than quadrupole-quadrupole coupling though since they are 

proportional to higher inverse powers of r.  The Rydberg states could possibly also couple via 

higher order perturbation terms, such as those third or fourth order in V.  These terms contain 

multiple intermediate states so these couplings would not be limited to just the even terms of the 

potential.  The work of Drachman with helium [6] and the work of Woods [7] showed that as 

long as the adiabatic expansion is valid, the contribution from the higher order terms in 

perturbation can be accounted for by calculating the second order energy using the effective 

potential, [2]( )effE V , instead of the full potential  
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where the intermediate states are only “Rydberg states”.  For example, if just three of the 

dominant terms of the effective potential were considered, Eq. 1.29 
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the second order energies in term of effective potential would have six terms. 
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 (1.30) 

The first term, [2] ( )VeffE QQ , is exactly the same result found using Eq. 1.27 to calculate the 

quadrupole coupling with the intermediate states.  The second and third terms proportional to αQ 
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term, [2]
,0( )Veff DE Q  and [2]

,2( )Veff DE Q , would be the result of the quadruple-dipole-dipole 

coupling in the third order perturbation energy using the full potential.  This term is shown 

below, where D and Q denote M[1] and M[2], the dipole and quadrupole moment operators I n the 

space of the core ion.  
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(1.31) 

Careful inspection of this formula shows that part of Eq. 1.31 looks very similar to the 

definitions of either the scalar dipole polarizability or the tensor dipole polarizability.  In fact, if 

the adiabatic approximation is applied to the bracketed energy denominator in Eq. 1.31, it 

reduces exactly to the Qα term in Eq. 1.30.  The final terms of the Eq. 1.30 are proportional to αα 

and are the result of a dipole-dipole-dipole-dipole coupling in the fourth order perturbation 

energy.  Thus by calculating the second order energies using the effective potential instead of the 

full potential, it is possible to account approximately for the contribution from the couplings with 

intermediate Rydberg states in the second, third and fourth order perturbation energies. 

Additional corrections that need to be considered when modeling or interpreting Rydberg 

fine structure are the relativistic effect and magnetic interactions between the core and the 

Rydberg electron of the Rydberg states.  The relativistic effect is due to the “p4” contribution to 

the kinetic energy of the Rydberg electron.  The relativistic correction is given by Eq. 1.32 where 

FS  is the fine structure constant.   
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For each state measured in the Rydberg fine structure, the relativistic correction is calculated and 

applied to the measurements as a correction.  The next class of the effects that contribute to the 

fine structure energies is due to the magnetic interactions between the magnetic moments of the 

core and the Rydberg electron.  The first possible magnetic interaction is due to a possible 

magnetic dipole moment in the core and given by  
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where the gJ is the core’s Landé g factor. The EM1 can only occur when Jc>0, and it will 

contribute to the vector component of the fine structure pattern.  The second possible magnetic 

interaction is due to the magnetic octupole moment of the core; this effect would have the form  
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This magnetic octupole interaction would only occur if Jc>1 and it would be observed in the 3rd 

rank tensor component of the fine structure pattern.  The fine structure observed will then be 

given by  
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For the work reported in this dissertation, the contribution of the spin of the Rydberg electron to 

the energy of the fine structure is neglected, since its effect was not observed.  A complete 

discussion of the interaction involving the Rydberg spin and its contribution to the fine structure 

is discussed in the work of Woods [7]. 

1.3 The RESIS Technique 

The fine structure produced by the interaction between the core ion and the Rydberg 

electron can be measured using the RESIS technique. The RESIS technique is very versatile 
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since it can be used on any positive ion without major changes to the experimental setup. The 

technique uses charge exchange to populate all L states, so there is no limitation on what Ls can 

be measured.  The basic approach of the technique is to produce a beam of the ions of interest 

with a velocity ~0.001c.  That beam then charge captures a highly excited Rydberg electron to 

become a beam of Rydberg states.  Then transitions are excited from one discrete n level to a 

much higher n level. That higher n level is then Stark ionized and detected.  The advantage of 

this technique is since the excitation is upward, there are no selection rules that limit the high-Ls 

that can be observed.   

 The resolution of the fine structure would only be possible if one could scan through a 

frequency range for a given transition between n levels continuously.  The CO2 laser is a 

convenient choice of laser to use to resolve the fine structure.  It offers a large selection of high 

power single frequency laser lines around 10μm.  The CO2 laser used in this experiment has 

approximately 65 laser lines, between ~924cm-1 and ~1085cm-1.  Fig. 1.4 illustrates the available 

frequencies. 
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Figure 1.4: CO2 laser lines available on the Coherent GemSelect50 CO2 laser .  The y-axis gives 
the measured power, and the x-axis gives the wavenumber of the laser line in cm-1. 
 

The CO2 laser line used to excite transitions between n levels is chosen to have a frequency 

similar to the difference in the hydrogenic energy of the two n levels. The difference in 

hydrogenic energies in wavenumber is given by 
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where q is the charge and Rmass is the mass corrected Rydberg and given by  
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with R∞=109737.3157cm-1.  Some examples of thorium transition frequencies and the laser line 

that would be selected to observe a given transition can be seen in Table 1.1. 
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Table 1.1: Examples of thorium transitions observed with the RESIS technique. Column one 
gives the charge, column two gives the transition, and column three gives the hydrogenic energy 
of the transitions.  The fourth column gives the laser line used to observe the transition.  The 
final column gives the range that the laser line can be Doppler tuned.   

 
The frequency seen by the ion beam is then tuned finely by Doppler tuning.  Doppler tuning is 

done by altering the angle of intersection between the CO2 laser and the ion beam, thus changing 

the frequency of the CO2 laser the ion beam sees.  Table 1.1 shows the frequency range a laser 

line can be tuned assuming a beam speed of 0.001c.  This allows for a large frequency range to 

be available to be used for laser excitation of the Rydberg states from one n level to another.  The 

fine tuning of the CO2 laser frequency by Doppler tuning allows for the full frequency range of 

the fine structure pattern to be scanned in steps of approximately 50MHz steps. The result is an 

optical RESIS excitation spectrum; an example of this is seen in Fig. 1.5 for Th3+ Rydberg 

levels.  The optical spectrum allows for the resolution of some of the levels, L=8 to L=11.  The 

fine structure levels for L>11 are not resolved in the optical excitation, these unresolved levels 

around hydrogenic are referred to as the high-L peak.  

EHyd Laser Frequency Tuning Range

q n lower to n upper (cm-1) (cm-1) (cm-1)
3 28 to 66 1033.0072 9P(34) = 1033.4880 1032.5930 to 1034.3830
4 37 to 73 953.0579 10P(10) = 952.8809 952.0557 to 953.7061
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Figure 1.5: A RESIS optical spectrum of Th3+ Rydberg levels n=37 to 73 . This fine structure is 
determined primarily by the αD,0 of Th4+.  The x-axis is the difference of the Doppler tuned laser 
frequency from hydrogenic transition frequency.  The signal marked with asterisks represent 
weaker ΔL=-1 transitions. 
 

The RESIS technique is powerful because it allows observation of high-L states, but this 

technique can be improved.  Improvements to the precision of the RESIS measurements can be 

made by using the RESIS technique as a detector of rf transitions.  The rf RESIS technique 

detects direct rf transitions between levels in the same n with approximately two orders of 

magnitude improvement in the precision compared to the RESIS excitation spectrum.  This rf 

RESIS technique also offers the opportunity to resolve levels with higher L than possible with 

the optical RESIS technique.  Illustrated in Fig. 1.6 is rf resonance for n=37 L=11 to L=12 in 

Th3+ Rydberg levels.  The energy difference between the L=11 and L=12 can be measured to 

sub-MHz precision.  The rf RESIS technique also enabled the resolution of the L=12 position, 

not resolved in the optical excitation spectrum of Fig. 1.5. 
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Figure 1.6: The L=11 to 12 transition in the n=37 Th3+ Rydberg fine structure.  
 

1.4 Motivation and Context 

The two thorium ions studied in this work are the Rn-like Th4+ and the Fr-like Th3+.  Th4+ 

is the most common oxidation state of thorium in actinide chemistry [12], yet no spectroscopy 

data exists on it and no properties have ever been measured.  The measurements of the properties 

of Th4+ using the RESIS technique could provide a check on the theoretical models, and the 

properties themselves might be used to help predict the interaction of the Th4+ ion with other 

ions.  The ground state of Th4+ is a 1S0 , so the Th3+ Rydberg fine structure would have one level 

for each L.  For this reason the study of Th4+ is a relatively simple project.  By contrast, the study 

of Th3+ is much more challenging.  The francium-like ion, Th3+ does not have the 2S1/2 ground 

state as one would expect.  Its ground state is actually a 2F5/2.  The ground state of the Th3+ would 

make the Th2+ Rydberg fine structure have six levels for each L, making the measurement of the 

fine structure one of the most complex measurements completed using the RESIS technique.  
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Unlike Th4+, 24 energy levels of Th3+ have been measured with optical spectroscopy [13], but no 

polarizabilities or permanent moment have been reported.  While Th3+ is not as common in 

actinide chemistry, it is present at times [14].  The Th3+ ion has also been proposed to be used in 

a nuclear clock [15], so any information on the ion could prove to be important to that project.  

The theoretical models of ions such as Th3+ are highly developed, since Th3+ has a single valance 

electron outside a closed shell.  Given the nuclear charge of the Th3+, the measured properties 

would provide a test of these models for a highly relativistic single valence electron ion.  Similar 

measurements of Rn-like U6+ and Fr-like U5+ would also be very valuable, but are not reported in 

this dissertation. 

 To give this work some context, one must understand that the study of the thorium ions 

was the culmination of years of work.  This work started in 2005 when the first proposal to the 

Department of Energy (DOE) to study U and Th ions using the RESIS technique was made.  As 

mentioned previously, the experiments with the actinides would be difficult due to the high 

charge of the ions being studied and the high angular momentum of the francium-like ions.  

Work towards the goal of these measurements took place on two fronts and with two 

apparatuses.  The CSU beam line was used to study singly charged ions with high angular 

momentum, and the second beam line located at J. R. Macdonald Lab (JRML) at Kansas State 

University was used to study multiple charged ions.  At the time of the first proposal a major 

improvement was needed to the JRML apparatus, a new ion source capable of producing ion 

beams of multiple charged uranium and thorium. The existing ion source at KSU could only 

produce beams from gases.  Before the DOE would fund the new ion source, they wanted a proof 

of concept that the fine structure of a multiple charged ion could be measured.  This proof was 
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provided in 2007 with the measurement of the fine structure of Rydberg levels of Kr5+ using the 

old ion source, from which the properties of Kr6+ were extracted and published [16].   

 With this proof the DOE then funded the purchase a new ion source which was delivered 

in January 2008 to JRML.  For the next year the lab underwent remodeling and the new ion 

source was installed and the rest of the RESIS apparatus was reassembled.  The previous 

graduate student, Mark Hanni, oversaw the assembling of the apparatus and the installation of 

the new ion source during his dissertation work [17].  The new ion source was turned on for the 

first time in January 2009.  The ion source and the rest of the apparatus was then tested by 

measuring the fine structure of Rydberg levels of Pb+ and Pb3+ enabling the properties of Pb2+ 

and Pb4+ to be found and published in the spring of 2010 [18].  The work at KSU then turned to 

attempts to study Rn-like U6+.  Unfortunately, that work was not successful, and the reasons for 

its failure are still under study. 

 At the same time as the work at JRML, the work on the CSU beam line was pursuing the 

understanding of the high angular momentum Rydberg states with Jc>1.  In December of 2008 a 

rf study of Rydberg states argon was completed and properties of Ar+ were published [19].  This 

was training on the RESIS technique for both Mark Hanni and myself.  The rf study of argon led 

to an increased understanding of the properties controlling the fine structure pattern of an ion 

with Jc>1, since the ground state of Ar+ has Jc=3/2.  Attention then turned to completing a study 

of Rydberg levels of Ni, providing a measurement of the properties of Ni+ whose ground state 

has Jc=5/2.  The nickel study represented the first time an ion with angular momentum of 5/2 

was studied using the optical RESIS technique [20], the knowledge gained in the study would 

prove invaluable in the study of the Fr-like thorium.  
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Then on March 12, 2010, the first Th4+ beam was produced at JRML using the new ion 

source, and work to find the properties of Th4+ began using the RESIS technique.  Despite the 

apparent similarity between the two Rn-like ions, U6+ and Th4+, this work was immediately 

successful.  Preliminary properties of Th4+ were published in August 2010 [21], less than six 

months after the first thorium beam was produced.  The work then turned to finding the 

properties of Th3+ from the measured Th2+ Rydberg fine structure.  The measurement of this fine 

structure did not take long, but the analysis of the fine structure pattern and the extraction of the 

properties proved challenging.  Preliminary properties of Th3+ were extracted from the data and 

published in June 2011 [3], this work is discussed in Chapter 5 of this dissertation. 

 The work reported in this dissertation is the culmination of years of work with high 

charge and high angular momentum Rydberg states, and it expands on the preliminary work 

done with Th4+ and Th3+ using the optical RESIS technique.  In this work, the rf RESIS 

technique was used to measure their respective Rydberg fine structures with a higher precision 

and resolving more levels than reported in the preliminary studies.  This increased precision and 

resolution allows for an increase in precision of the properties of the thorium ions, providing a 

much more rigorous test of the atomic theory used in their prediction.  This chapter provided 

background on Rydberg states, the theoretical model, and a brief overview of the experimental 

approach. Chapter 2 will discuss the experimental apparatus used in both the optical RESIS 

studies and rf RESIS studies.  The third chapter will present the results of the rf study of n=37 

Th3+ Rydberg fine structure and the Th4+ properties extracted.  Chapter 4 will discuss the results 

of the optical study of Th2+ Rydberg fine structures and the properties of Th3+ found.  The fifth 

chapter will present the rf measurement made of n=28 Th2+ Rydberg fine structure.  Chapter 6 

will then present the analysis of the rf measurements of the n=28 Th2+ Rydberg fine structure.   
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Chapter 2: Experimental Apparatus 

The Resonant Excitation Stark Ionization (RESIS) technique offers the resolution and 

precision necessary to measure high-L Rydberg fine structures for the purpose of extracting core 

ion properties.  The experimental measurements reported in this work were completed on the 

RESIS apparatus located at J. R. MacDonald lab at Kansas State University, a DOE funded 

facility.  This lab has played host to the experimental endeavors of this research program since 

the mid-1990s.  Initially, the existing ECR ion source in Kansas was unable to produce ion 

beams from solids, but funding from the DOE allowed for the ion source to be replaced.  The 

new electron cyclotron resonance source, ECR, is capable of producing beams from solids, thus 

enabling the study of the actinide ions.  The specific beam line used in this work was assembled 

during the dissertation work of Mark Hanni, the previous graduate student heading up the work 

on the KSU apparatus.  Mark Hanni’s dissertation has detailed descriptions and pictures of all the 

components of the beam line used in the RESIS technique [17].  The work reported here required 

only slight modifications of that apparatus.  The modification of the apparatus will be discussed 

in detail, but the remaining beam line will only be discussed in general, since this work did not 

deal with the design or assembly of the components that make up a majority the beam line.  

The schematic of the RESIS apparatus is shown in Fig. 2.1; in the schematic the three key 

steps involved in the RESIS technique are identified and labeled.  The first being the creation of 

the Rydberg states of interest; this is done through the use of the ion source and charge capture 

from the Rb Rydberg target.  The second step involves the excitation of the Rydberg states 

population from one discreet n state to a much higher n state.  This excitation is done with a CO2 

laser in the laser interaction region (LIR).  The final step of the RESIS technique is the detection 

of the excited Rydberg states population through Stark ionization.  The RESIS technique may 
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only involve three overall steps, but the experimental implementation of the RESIS technique is 

a bit more involved as can be seen by Fig. 2.1.  Each of the three key states involves multiple 

experimental steps.  Two forms of the RESIS technique also exist, the basic RESIS technique 

relies only on the CO2 laser to excite transitions between different n states, and this is called the 

optical RESIS technique, which is shown in Fig 2.1.  The optical RESIS technique can be 

improved upon by using that technique as a way to detect rf transitions between levels of the 

same n.  This improved technique is referred to as the rf RESIS technique.  The two techniques 

differ only very slightly in their experimental set-up, therefore the experimental set-up for the 

optical RESIS technique will be discussed first, and then the additional steps needed for the rf 

RESIS technique will be discussed. 
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Figure 2.1: Schematic of the optical RESIS apparatus. The beam line is broken into three major areas.  The first part creates the 
Rydberg states, the second part excites the Rydberg states, and the third part detects the excited Rydberg states.    
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2.1 The optical RESIS technique 

 The RESIS technique is a versatile technique since it can measure the Rydberg fine 

structure for any positive ion that can be produced from an ion source.  The Kansas beam line 

was designed to study multiply charged ions, with charge greater than one. The major 

improvement to the Kansas beam line was the addition of the new ECR ion source.  The ECR is 

made up of a plasma chamber surrounded by strong permanent magnets.  Into that plasma 

chamber a seed gas and microwaves are sent, the seed gas in the case of the work reported here 

was xenon.  The frequency of the microwaves sent into the plasma chamber is 14GHz, which 

matches the cyclotron frequency of the electrons confined by the magnetic field produced by the 

strong permanent magnets surrounding the plasma chamber.  The microwaves heat up the 

electrons in the plasma chamber.  The electrons then ionize the seed gas and produce a plasma of 

positive ions.  Figure 2.2 shows an exterior picture of the ECR with seed gas and microwaves 

feed indicated, pictures of the interior of the ECR ion source are in Mark Hanni’s dissertation.   

 

Figure 2.2: Picture of the ECR ion source during operations.  The orange arrow indicates the 
seed gas feed and the yellow arrow indicates the microwave feed for the ECR.  The entire ECR 
is contained behind plastic since entire ion source is held at high voltage. 
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The back of the plasma chamber is made of up of the sputter cathode.  The sputter cathode has a 

piece of the material of interest bolted to; in the case studied here that material is thorium.  A 

negative potential is placed on the thorium, and the thus the positive ions contained in the plasma 

are attracted.  The positive ions in the plasma bombard the thorium and sputter ions of thorium 

into the plasmas.  Figure 2.3 shows pictures of the sputter cathode with thorium bolted to it, 

before and after use in the ECR.   

 

 

 

Figure 2.3: Pictures of the sputter cathode.  The top picture shows the installation of a fresh piece 
of thorium on the sputter cathode, the bottom picture shows what the thorium looks like after use 
in the ECR.  
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The plasma in the ECR then contains thorium ions and ions from the seed gas xenon.  The entire 

ECR ion source is held at high potential by the acceleration power supply.  In this case that 

potential was approximately 25kV, therefore the ions produced in the plasma of the ECR are 

then accelerated down the beam line since the rest of the beam line is ground.  The ions leaving 

the ion source are not distinguished by their mass or charge.  There is just one beam that contains 

all the ions. 

 As the beam exits the ion source, it passes through some vertical and horizontal steering 

plates that allow fine tuning of the trajectory of the ion beam.  The beam is also focused by the 

first quadrupole doublet lens.  But neither of these components is capable of the resolving the 

beam in terms of the mass or charge, but the resolution of the beam is required in order to select 

the ion interest.  The separation of the beam is accomplished by sending the beam into a 20° 

bending magnet with a 2mm aperture approximately~1m from its output.  The combination of 

those two things allows for the separation of the different ions in the beam.  While all of the ions 

exciting the ion source have been excited by the same potential, terminalV , not all of the ions have 

the same velocity, v .  The velocity of each ion, Eq. 2.1, is dependent on its mass, IonM   and 

charge, q . 

 

terminal2

Ion

qVv
M


 (2.1) 

In the most of the work presented, the velocity of the beam is written as  , which is just the 

ratio of the beam speed to the speed of light, Eq. 2.2. 

 
v
c

 
 (2.2) 
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As the ions in the beam pass through the 20° bending magnet they encounter a force that is equal 

to charge times the velocity of the beam times the magnetic field in the 20° bending magnet.  

 F qvB  (2.3) 

This force alters the trajectory of the different ions in the beam.  The different ions exciting the 

20° bending magnet will be deflected differently. The amount of the angular deflection is 

proportional to the magnetic field in the 20° bending magnet times the square root of the ratio of 

the charge to the mass of the ion, Eq. 2.4  

 
terminal2 Ion

B l q
MV




 

 (2.4) 

where l is the length of the magnet in meters, B is the magnetic field in Tesla, terminalV  is in volts, 

q is in Coulombs and IonM is in kilograms.  

This angular deflection along with the small aperture about 1m from the exit of the 20° 

bending magnet allows for the separation of the singular beam leaving the ion source into beams 

for each ion since the small aperture limits the angular acceptance of the beam line.  Therefore, 

by scanning through the range of magnetic field for 20° bending magnet, a spectrum of all the 

beams coming out of the ECR can be recorded, one such scan in shown in Fig 2.4.   
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Figure 2.4: Scan of the beams coming from the ECR, on the x-axis is the magnetic field in 
Gauss, read from a probe inserted into the 20° bending magnet. On the y-axis is the beam 
current, read just after the 20° bending magnet, in micro-amps. Some of the peaks have been 
labeled with their identifications. 
 
The x-axis of Fig. 2.4 is the magnetic field in Gauss, as read from a Hall probe inserted into the 

20° bending magnet.  The y-axis is the beam current, being read just after the aperture placed 1m 

from the exit of 20° bending magnet.  As can be seen from Fig. 2.4, the 20° bending magnet and 

the aperture are capable of separating the different ions leaving the ECR into beams. The large 

beams are the xenon beams, produced from the seed gas being fed into the ECR; these beams are 

on the order of 1 to 3μA.  The smaller beams are the thorium beams, these beams are less than 

100nA.  

 After the 20° bending magnet, the beam of interest produced by the ECR, referred to as 

Xq+ in Fig. 2.1, has been selected.  The beam is sent through the second doublet quadrupole lens 

to help focus it, this is just before the aperture that assists in the separating of the beams.  At this 
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time the beam is not made up of Rydberg states necessary for the RESIS technique.  The 

production of the Rydberg state is done through charge exchange; the beam of Xq+ intersects a 

Rb Rydberg target.  The Rb Rydberg target is a cloud of highly excited Rb atoms.  When the 

beam intersects this target a small fraction of the ions in the beam will capture a highly excited 

Rydberg electron, thus producing Rydberg states bound to the ion of interest.  For the work here 

only a very basic understanding of the details of the Rb Rydberg target is necessary.  The 

experimental development and previous work with the target is well documented [22, 23].  The 

Rb target is produced by intersecting a thermal beam of Rb with three CW lasers.  The 

intersection of the three lasers with the beam excites the Rb atoms from the ground state to the 

10F state, Fig. 2.5.  The first two excitations from the ground state and to the D state are 

completed using two diode lasers, their respective frequency are given in the Figure 2.5.  The 

first two lasers are combined and propagated together through a Rb vapor cell and then into Rb 

Rydberg target region.  The fluorescence from the Rb vapor cell is used to lock the first two 

lasers to their resonance frequencies.  The third excitation from the D state to the F state is 

completed with a Ti:Sapphire laser, tuned to the frequency given in Fig. 2.5, this laser is 

transported to the target region via an optical fiber.  The third laser is set to intersect the Rb 

plume in the same place as the first two lasers.  When the Ti:Sapphire is on resonance and all 

three lasers are aligned with the Rb beam, the Rb Rydberg target will be produced.  When this 

occurs the Rb Rydberg target emits blue fluorescence.  This florescence can be seen in Fig. 2.6.  

The blue florescence is due to a mirrorless maser transition between the 10F state and the 11D 

state [24].  A complete discussion of the construction of the target region and the optical set-up 

used to produce the target is completed in Mark Hanni’s dissertation [17]. 
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Figure 2.5: Excitation scheme for producing the Rb Rydberg target.  Three CW lasers are used to 
excite the Rb to the 10F state. The wavelength for each of the lasers is given.  
 

 
Figure 2.6: Picture of the blue florescence from the Rb Rydberg target. The trajectory of the 
beam of interest is placed through the Rb Rydberg target.  
 

As the ion beam intersects the Rb Rydberg target as shown in Fig. 2.6, a few percent of 

the beam captures a highly excited Rydberg electron.  The remaining beam does not capture, so 

two beams exist after the target.  The original beam of interest, Xq+, referred to as primary beam 

and the Rydberg beam for the beam of interest, ( 1)( )*qX   , referred to as the charge transfer 
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beam.  The primary beam that did not capture is no longer needed and its presence could result in 

additional background, so it is prevented from entering the remaining experimental apparatus.  

To accomplish this, both beams the pass through a 15° bending magnet.  The beam of Rydberg 

states is selected and the remaining beam that did not capture is deflected from going down the 

rest of the beam line.  The beam of Rydberg states is then prepared before undergoing the RESIS 

excitation between n states, by emptying out the population of the higher n states.  This is done 

by passing the beam of Rydberg states through the repeller region of the beam line, which is 

made up of two Einzel lenses assemblies. The first Einzel lens is referred to as the pre-ionizer.  

Its purpose is to remove higher n states from the Rydberg beam.  The potential of the pre-ionizer 

depends on what RESIS transition is being observed, for example Fig. 1.5 shows the RESIS 

optical spectrum for Th3+ Rydberg states for the n=37 to 73 transition, in that case the repeller 

was set high enough to ionize and remove the population of the upper n, n=73, but not high 

enough to affect the population of the n=37 level.  The field necessary to ionize the lowest Stark 

state of an n state is given by Eq. 2.5 

 

3
9

min 4 (5.14 10 ) /
9
qF x V cm
n


 (2.5) 

and the field necessary to ionize the highest stark state connected to an n is given approximately  

by Eq. 2.6  

 

3
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
 (2.6) 

In practice it was determined that it is best to the set the pre-ionizer to double the field necessary 

to ionize the highest stark state connected to a n state [23].  For the case of the example, n=73, 

the field required in the pre-ionizer would be approximately 5.2kV/cm, the effective distance of 

the pre-ionizer is 2.4cm, thus the power supply for the pre-ionizer needs to be set to at least 
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12.5kV to remove the higher n Rydberg states of concern from the Rydberg beam.  With the 

removal of the higher n states involved in the RESIS excitation from the Rydberg beam, it would 

be expected the detection of the RESIS excitation would be background free.   

The second Einzel lens in the repeller region is referred to as the remixer; its purpose is to 

repopulate the lower-L states population by mixing the populations all the L states together.  The 

lower-L states populations are more likely to decay between their creation in the target and their 

excitation by the CO2 laser since their lifetimes are shorter.  Therefore the remixer is used to mix 

the populations just before the RESIS excitation, increasing the likelihood of observing the 

lower-L states in the RESIS excitation spectrum.  The second Einzel lens also helps to focus the 

beam through the apparatus.  In the experiments reported in this work, the primary use of the 

remixer was to focus the ion beam, not to repopulate lower-L Rydberg states.  The decay of the 

low-L states was not a problem in the studies in this work.  A complete discussion of the use of 

the remixer and its design is discussed in the work of Mark Hanni [17], in that work the 

enhancement the remixer has on lower-L states population is explored.  

With the completion of the creation and preparation of the Rydberg beam of interest the 

beam enters the second the part of the RESIS apparatus, the part responsible for the excitation of 

the Rydberg states from one n level to a much higher n level.  Since the RESIS excitation is 

upward, all L states in the lower n level can be detected without facing the limitations of 

selection rules that other techniques face.  This excitation is accomplished with the use of a 

Doppler tuned CO2 laser in the laser interaction region (LIR).  The CO2 laser is a versatile choice 

of laser for the RESIS excitation, since it has a wide variety of the laser lines as is illustrated in 

Fig. 1.4.  A particular CO2 line is chosen that is near the transition frequency of one of the 

transitions, as defined in Eq. 1.36.  Table 1.1 shows two examples.  By Doppler tuning it is 
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possible to cover an energy range almost continuously, enabling the scanning and mapping out 

of the Rydberg fine structure for a given RESIS excitation transition.  As the laser is Doppler 

tuned through the energy range, the excitation spectrum becomes almost a direct map of the fine 

structure of the lower n level. 

The CO2 laser is Doppler tuned by varying the angle of the intersection between the 

Rydberg ion beam and the CO2 laser, in the laser interaction region, Fig. 2.7.  The CO2 laser 

enters the laser interaction region through a ZnSe window, and reflects off a mirror and intersects 

the ion beam.  The ion beam intersects the CO2 laser twice, the first time the ion beam and the 

CO2 laser are perpendicular to each other, and the second time they intersect at the intersection 

angle, int .  The mirror is mounted on a post that enables it to be rotated.  This rotation of the 

mirror is controlled by the computer through a Labview program, that angle recorded by the 

computer is stage .  The angle of intersection can be varied to allow the Doppler tuning CO2 laser 

frequency through a full range of frequencies. 
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Figure 2.7: Schematic of the laser interaction region (LIR).  The ion beam enters the LIR and the 
intercepts the CO2 laser.  The CO2 laser enters the LIR through a ZnSe window, and reflects off a 
rotatable mirror and intersects the ion beam at the intersection angle, int . 
 

The Doppler tuned frequency of the CO2 laser is given by  

 
int2

(1 cos( ))
1

L
L

vv  


  
  (2.7) 

where Lv  is the Doppler tuned frequency of the CO2 laser the ion bean sees.  To calculate the 

Doppler tuned frequency three things are needed: the frequency of the CO2 laser line, Lv , the 

speed of the ion beam,  , and the intersection angle, int .  The intersection angle, int  is related 

to the angle recorded by the computer, stage , by Eq. 2.8.  In Eq. 2.8,  , is the angle at which the 

CO2 laser beam is perpendicular to the ion beam.  

 int 90 2( )Stage      (2.8) 
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  is determined from the calibration of the angle recorded by the computer with the intersection 

angle of a known Rydberg fine structure pattern.  The speed of the beam is determined from Eq. 

2.1, which requires knowledge of the mass, charge and acceleration voltage for the calculation. 

The determination of both   and the beam speed will be discussed in more detail later in this 

section for the case of a specific example spectrum. 

After the RESIS excitation the beam then passes into the detector region of the RESIS 

apparatus, where the upper state of the RESIS excitation transition is Stark ionized and deflected 

into a channel electron multiplier, CEM.  The Stark ionizer in the detector has been set to ionize 

anything that has been excited to the upper n state in the RESIS transitions.  The Stark ionizer 

used in the experiment is referred to as the long gap stripper.  The Stark ionizer consists of a 

series of five plates, the first four plates, labeled P1 through P4, are spaced 2.5cm apart, and they 

make up the long gap stripper. The sixth and final plate, P5, is separated from the previous plate 

by 0.8cm, and is part of the unused short gap stripper.  This plate is grounded externally.  The 

other two plates labeled in Fig. 2.8 are the entrance plate to the Stark ionizer, which is held at 

ground and the plate that makes up the detector lens, used to focus the Stark ionized beam going 

into the CEM.  
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Figure 2.8: A picture of the Stark ionizer  with the plates labeled.  The center aperture on each of 
the plates is 0.25”.  The stark ionizer is mounted in between three support rods on and 10” 
conflat flange.  Each of the plates receives it potential through MHV feedthroughs, also mounted 
on the 10” conflat flange.  
 

 The detection of the excitation begins with the beam entering the detector region through 

10 inch conflat flange and the beam enters the Stark ionizer through the entrance plate, Fig 2.8, 

which is mounted on the 10 inch conflat flange.  The field necessary to Stark ionize the upper n 

state for detection is calculated using Eq. 2.6, then knowing the gap in long gap stripper the 

potential necessary to produce that field is calculated, Eq. 2.9. 

 max( ) ( / ) (2.5 )LongV Volts F Volts cm cm   (2.9) 

The long gap stripper is made up of four plates, labeled P1 through P4, each of the plates is 

placed at a fraction of the total long potential need for long gap stripper, LongV ,  
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 (2.10) 

the final plate P4 is grounded.  For the case of detections the n=37 to 73 Th3+ Rydberg fine 

structure excitation, the total potential needed to ionize the n=73 was determined to be 

approximately -6000V.  This means that the P1 plate would be placed at -2000V, the P2 plate at -

-4000V and the P3 plate at -6000V.  Figure 2.9 gives a schematic of the plates, a plot of the 

voltage in the stripper versus position in the detector and a plot of the electric field versus the 

position in the detector.  As the Rydberg beam enters the long gap stripper, the beam encounters 

a field that is a third of the field necessary to completely ionize the n=73 level.  In this field, none 

of the n=73 levels should ionize.  As it enters the region between the P3 and P4 plates, it 

encounters a field three times larger, a field large enough to ionize all Stark states in the n=73 

level.  The ions that are ionized experience a change in their kinetic energy that is proportional to 

the change in charge times the total voltage in the long gap stripper.  Therefore, the ionization 

will either accelerate or decelerate the ions ionized depending on the polarity of the voltage in 

the long gap stripper.  For the case of the n=37 to 73 transition for theTh3+ Rydberg fine structure 

the potential was -6000V, thus the ion ionized in the long gap were slowed down by 6keV. 
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Figure 2.9: Schematic of the Stark ionizer, on the top is a drawing of the plates in the Stark 
ionizer.  The middle plot shows the potential each plate is placed at to detect the excitation to the 
n=73 level for the case of the Th3+ Rydberg states.  The bottom plot shows the electric field.  For 
both the plots the x-axis is the position in the detector.    
 

After the Rydberg beam passes through the long gap stripper the beam then passes 

through a lens that helps to focus the beam for detection.  The Rydberg beam is deflected into a 

channel electron multiplier, CEM, by horizontal and vertical defection plates.  The CEM is 

horizontally centered on the output of the Stark ionizer, but vertically it is ~5.9 inches higher, 

therefore the ions leaving the Stark ionizer must be vertically deflected into the CEM.  This 

vertical deflection can separate the different ions that exist in the beam after Stark ionization, 



47 
 

ions that may have different charges and different speeds.  Fig. 2.10 gives a side view of the 

detector region, with some of the rough dimensions given.  

 
Figure 2.10: Side view of the detector region for the RESIS apparatus, all the measurements are 
in inches.  The box shows the location of the Stark ionizer and defection plates inside the 
apparatus, and the arrow point out the location of the channel electron multiplier.  
 

A scan versus the vertical deflection voltage of ions leaving the Stark ionizer and entering the 

CEM is shown in the Fig. 2.11.  The top plot of Fig. 2.11 gives a scan of the voltage coming out 

of the CEM, CEM DC, as a function of vertical deflection voltage.  The bottom plot gives RESIS 

excitation signal as a function of the vertical deflection voltage.  In the case of the scan in Fig. 

2.11 the CO2 laser was sitting on the high-L peak for the n=37 to 73 RESIS transition for the 

Th3+ Rydberg states.  The Th3+ Rydberg states were produced from a 100keV Th4+ beam from 

the ECR, thus the energy of the charge transfer beam will be 100keV.  Both the charge transfer 

beam, (Th3+)* and the primary beam, Th4+, are seen in the scan of the deflection voltage.  The 

presence of the primary beam though is a surprise since that beam was deflected out of the 

apparatus before the RESIS excitation, this beam is therefore referred to as the regenerated 

primary.  The presence of the regenerated primary depends on the presence of the Rb Rydberg 

target, indicating that the regenerated primary is somehow produced from Rydberg ions.   
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Figure 2.11: Profile of the 100keV Th4+ and Th3+ beams entering the CEM , the top plot is the 
output of the CEM voltage as a function of the deflection. The bottom plot gives the RESIS 
excitation as a function of the deflection voltage.  This data is from JAK3-022, during the scan 
for this data the CEM high voltage was 1600V and the long gap stripper was set to -6000V. 
 

The mechanism for the production of the regenerated primary is not known, but its presence 

produces a background in the area of the predicted signal deflection voltage, thus the RESIS 

technique is not background free as hoped.  The location in the vertical deflection voltage of the 

RESIS excitation signal is predicted from the location of the regenerated primary.  The signal 

ions and regenerated primary ions have the same charge; but the signal ions will be slowed down 

by the potential in the long gap.  For the case seen in Fig. 2.11 the long gap stripper was set to     

-6000V, so therefore the beam was slowed down and the vertical deflection necessary to get the 

signal into the CEM was less since the signal ions spend a longer time in the vertical deflection 

field.  The ratio of the kinetic energies for regenerated primary and signal ions will provide the 
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location of the signal on the vertical deflection scan.  For the case seen in Fig. 2.11 this predicted 

location is indicated by the vertical dashed line, which lines up with the location of the observed 

RESIS excitation signal.  The data from Fig. 2.11 showed that the signal on the high-L peak for 

the n=37 to 73 RESIS transition was 83mV.  The CEMDC at the same deflection as the signal 

corrected for the contribution from the signal, the background, is 133mV.  The background is 1.6 

times larger than the high-L signal.  This level of background greatly increase the difficulty of 

seeing the resolved signals in the RESIS excitation spectra, since the resolved signals are more 

than an order of magnitude smaller that the high-L signal.  This background is a limiting factor 

for the RESIS technique.  Currently the source of the background is not understood.  It is clear 

that the background and the regenerated primary beam are somehow due to Rydberg ions since 

both are absent when the Rydberg target is mistuned.  However the mechanism is still a mystery.  

The optical RESIS excitation from the CO2 laser is detected by feeding the output of the 

CEM into a lock-in amplifier.  The lock-in amplifier is referenced to the frequency of the 

chopper for the CO2 laser.  The computer program controlling the rotation of the mirror records 

the signal from the lock-in amplifier as a function of the angle being recorded by the computer, 

stage .  As the intersection angle is varied, different states in the lower n level are excited up to 

the upper n level and detected, thus mapping out the Rydberg fine structure.  Then by knowing 

the speed of the beam and the  , the recorded angle is converted into energy, thus measuring 

the Rydberg fine structure for the ion of interest.  Fig. 2.12 shows the RESIS optical excitation 

spectrum for the n=37 to 73 Th3+ Rydberg fine structure.  The top figure shows spectrum as a 

function of the angle recorded by the computer, stage .  The bottom spectrum gives it as a 

function of the Doppler tuned energy minus the hydrogenic energy for the n=37 to 73 transition 

calculated using Eq. 1.36, the energy deviation from hydrogenic.  The n=37 to 73 transition was 
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observed using the 10P(10) CO2 laser line since its frequency was near the hydrogenic frequency 

for the transition listed in Table 1.1. 
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Figure 2.12: The optical RESIS spectrum for n=37 to 73 for Th3+ Rydberg states. The top plot is 
the gives the RESIS excitation signal as a function of the angle recorded by the computer. The 
bottom plot gives the RESIS excitation signal as function of energy deviation from hydrogenic in 
GHz.  The data on these plots is the average of four runs, MH12-120, 121, 122 and 123.  On both 
of the plots the original signal is in black and signal time ten in red. 

 

The optical RESIS excitation spectrum shown in the Fig. 2.12 shows a large peak around zero 

energy deviation, this peak is “high-L peak” made up of all the L states that are close to 

hydrogenic and are unresolvable from each other.  The smaller peaks seen farther from 

hydrogenic represent individual L states.  The positions of these individual states in the Th3+ 

Rydberg fine structure are used to determine properties of Th4+.  The exact location of these 

individual peaks is dependent on the conversion of the recorded angles into energies. 
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The conversion of the angle recorded by the computer into energy required the precise 

knowledge of the speed of the beam and the   at the time of the scan.  The beam speed is 

determined by the mass, charge and the potential the beam is accelerated by, terminalV .  The power 

supply that provides the acceleration to the ion source was been calibrated in the dissertation 

work of Mark Hanni’s.  The calibration determined the voltage for the terminal potential in terms 

of the dial reading on the high voltage power supply, HVDial  [17]. 

 terminal (2992(3) )V V HVDial    

Therefore, during all data taking the dial setting on the acceleration power supply is noted, so the 

beam speed can be precisely calculated for each of the optical RESIS spectra being measured.   

The calibration of   was also conducted during the work of Mark Hanni [17].    was 

determined by observing a known Rydberg fine structure, the Si+ Rydberg fine structure.  This 

fine structure has been previously studied using the rf RESIS technique and the properties 

controlling the structure are well known [25], therefore the energy of the fine structure levels can 

be calculated with a high level of precision.  Measurements of the calculated Si+ Rydberg fine 

structure with the optical RESIS technique allow for a determination of  , since the laser 

frequency, the beam speed and angle recorded by the computer are known.  This calibration of  

  took place during the time of optical measurements of the Th3+ Rydberg fine structure  [17, 

21] and the measurements of the Th2+ Rydberg fine structure reported in this work.  The 

calibration of   determined  

 

1.08(1)  

  and the value of   was used in the converting of all the recorded angles into energies for the 

optical RESIS spectra shown in this work.  In the converting of the angles into energy the 
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uncertainties in both   and the beam speed will result in uncertainties in the energies of the 

measured fine structure.  

The optical RESIS technique is limited in its ability to resolve the fine structure pattern 

by the width of the individual transitions.  There are two major sources of the width of the 

individual transition in the RESIS optical spectra.  The first source of width is the due to the 

transit time through the CO2 laser.  The width of the transition, in MHz, due to the transit time 

through the Gaussian laser beam is given by Eq. 2.11 where LaserT  is the transit time through the 

laser beam. 

 

2ln(2)
( )Laser

Laser

v MHz
T s 

 
 (2.11) 

Using time dependent perturbation theory it has been determined that the waist of the TEM00 

mode laser beam, not the actual width of the laser beam at the intersection point determines the 

effective transit time through the laser beam [26].  The transit time through the CO2 laser is given 

by Eq. 2.12 

 
0

intsin( )Laser
wT

c 


 (2.12) 

where 0w  is the waist of the CO2.  The CO2 laser used in this work had a waist of 0 0.9w mm .   

For one of the cases studied here, specifically for the transition in Fig. 2.12, where the 

0.000962   and int 80    near the high-L, the width due to the transit time through the CO2 

laser was approximately118MHz .  The second major source of the width for the transitions is 

due the possible angular spread of the ion beam as it travels through the apparatus, the 

contributions of this effect to the width of the RESIS transitions can be calculated using Eq. 2.13 

 intsin( )Beam Lv v       (2.13) 
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where  is the angular spread of the beam.  For the Kansas beam line, experimental work 

showed 0.25    [17].  This means that for the case studied in Fig 2.12 the width due to the 

angular divergence of the beam would be approximately118MHz .  The total width of a 

transition, Totalv , is estimated as the quadrature sum of the width due to the transit time through 

the laser and the width due to the divergence of the beam, Eq. 2.14. 

 
2 2 170Total Laser beamv v v MHz       (2.14) 

Other effects contribute to the width of the observed transitions such as the velocity spread of the 

beam and the broadening to the transitions due to a stray electric field in the laser interaction 

region.  The effect of the velocity spread of the beam is minimal and is therefore neglected.  The 

effect of a stray electric field in the laser interaction region was minimized by minimizing the 

presence of the stray field during data taking.  The additional effects that a stray electric field can 

have on a transition will be discussed in more detail later in this chapter.  Previous work included 

a more detailed discussion of the width of the RESIS optical transitions and a comparison of the 

observed width with the calculated width [17]. 

 The measurement of the fine structure with the optical RESIS technique provides the first 

step in the exploration of the Rydberg fine structure of the ions of interest.  The optical 

measurements allow for the determination of the some of the properties for the ions that control 

the scale and features observed in the Rydberg fine structure patterns.  The optical RESIS 

technique is limited in its ability to resolve the fine structure pattern for overlapping transitions 

and transitions near hydrogenic, given the width of the optical transitions.  The precision of the 

determined locations of the transitions is also limited, in the case of the optical RESIS, 

measurements are limited to 20MHz  on average.  This is due to possible drifts in the CO2 laser 

frequency.  The limitations of the optical measurement limit the determination of the properties 
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of the ion of interest from the measured Rydberg fine structure and the precision of those 

determined properties.  The precision and the resolution of the optical RESIS measurement of 

the Rydberg fine structure can be improved upon by measuring the Rydberg fine structure with 

the rf RESIS technique.   

2.2 The rf RESIS technique 

The rf RESIS technique is an extension of the optical RESIS technique since it relies on 

the optical RESIS technique to detect rf transitions between levels within the same n state.  The 

rf RESIS technique offers the opportunity to improve upon the optical technique since it will 

allow the resolution of the levels not resolvable in the optical RESIS excitation spectra, levels 

near the high-L or the levels that are overlapping.  The precision of the measured fine structure 

pattern can also be improved with the rf RESIS technique.  The energy separation between levels 

can the determined within 0.1MHz  at times.  The rf RESIS technique only requires slight 

modification to the optical beam line set up, the addition of a second laser interaction region 

(LIR) and an rf region, Fig 2.13.  Both of these components are added as additional components 

in the RESIS excitation part of the beam line before the RESIS excitation LIR, now referred to a 

LIR 2 in Fig. 2.13.  Pictures of the rf RESIS apparatus are shown in Fig. 2.14 and 2.15, with Fig. 

2.14 showing the apparatus from the ECR through the Rb Rydberg target region and Fig. 2.15 

showing from the Rb Rydberg target region through the front flange of the detector region.  In 

both of the pictures of the apparatus a scale has been given so the relative size of the beam line 

can be understood. 
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Figure 2.13: Schematic of the rf RESIS apparatus the three major areas of the apparatus are indicated.   
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Figure 2.14: Picture of the first part of the RESIS apparatus, starting with the ECR on the left 
side going through the Rb target region, shown on the right side of the picture. To add scale to 
the picture the side of the box containing the ECR is approximately 19” wide.  

 

 
Figure 2.15: Picture of the second part of the RESIS apparatus, starting with the Rb target region 
on the right side of the picture and ending with the front flange of the detector region on the left 
side of the picture. To add scale to the picture, the box behind the beam line, containing the CO2 
laser is approximately 4’ wide. 
 

The rf RESIS technique uses the optical RESIS technique as a way to detect direct 

transitions between levels of the same n with sub-MHz precision.  The observation of the rf 

resonance between levels can be accomplished with the addition of only the rf region to the beam 
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line apparatus.  The addition of the second laser interaction region will be discussed after the 

basic rf RESIS is understood.  For the discussion of the rf RESIS technique the n=37 Th3+ 

Rydberg fine structure will be used, the RESIS optical excitation spectrum for the n=37 to 73 

Th3+ Rydberg fine structure is shown in the Fig. 1.5 with the individual transitions identified.  

The rf RESIS technique works by detecting changes in the population of the states contributing 

to the RESIS optical excitation spectrum by inducing rf transitions between states in the lower n 

state before the RESIS optical excitation.  This is illustrated in Fig. 2.16. 

 

Figure 2.16: The rf RESIS technique detection scheme (one LIR), the top diagram show the 
population of the states when the rf is off resonance for the n=37 L=11 to L=12 transition. The 
bottom the diagram show the population when the rf is on resonance.  The change in the number 
of ions excited to the n=73 level when the rf is on resonance provides a means to detect the 
transition.   
 

The best way to understand this technique is to see its application to a specific case, 

shown in Fig. 2.16 is the setup required to observe the n=37 L=11 to n=37 L=12 transition in the 
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Th3+ Rydberg fine structure.  The method of creating the Rydberg states is unchanged, the beam 

of the Rydberg states of interest passes first through the rf region and then into the laser 

interaction region (LIR 2).  The laser interaction region is set to a specific intersection angle so a 

specific transition between n=37 level to the n=73 level is excited with the CO2 laser.  For the 

example in Fig. 2.16 the n=37 L=11 is excited to n=73 L=12, this optical RESIS excitation is 

seen at approximately 800MHz in Fig. 1.5.  The optical excitation done in the laser interaction 

region will excite half the population in the n=37 L=11 state to the n=73 L=12.  Recall that the 

population of the n=73 level was removed from the beam during the creation of the Rydberg 

states of interest, therefore no population should exist in the n=73 level before this.  The rf region 

before the laser interaction is then used to induce a transition between states in the n=37, in this 

case the L=11 and the L=12 states.  If the rf region is on resonance with the energy difference 

between the two states and the population of the L=12 exceeds the L=11, the amount of 

population excited to the n=73 level and detected by the CEM will be increased. The detector 

region of the apparatus is unchanged, the upper state is Stark ionized and deflected into to the 

CEM for detection.  During the scan for a rf transition the CO2 laser is not chopped.  Instead the 

rf being sent into the rf region is modulated and the lock-in is set to detect signals at that 

modulation frequency, thereby detecting the difference in the population of the upper state, n=73, 

when a rf transition occurs between states in the lower n=37 fine structure.  The computer 

records the lock-in signal as a function of the frequency of the rf being sent to the rf region using 

a Labview program.  In order for a rf transition between states to occur there must be a 

population difference between the two states, or the population transfer between states will not 

occur and thus no rf transition will be detected 
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To ensure the population difference between the two states an additional laser interaction 

region is added before the rf region, Fig. 2.17.  This laser interaction region is referred to as    

LIR 1 and the laser interaction region after the rf region is referred to as LIR 2.  The placement 

of a laser interaction region before the rf region allows for the RESIS excitations to be used as a 

way to produce a population difference between the levels in the lower state, n=37. 

 

Figure 2.17: Diagram of the population of states during the rf RESIS (two LIRs), measurement 
of the L=11 to L=12 n=37 Th3+Rydberg fine structure interval  
 

In the example in Fig. 2.17 LIR 1 is set to excite the n=37 L=11 to n=73 L=12, this excitation 

decreases the population of the L=11 states in n=37.  When the rf is on resonance some of the 

n=37 L=11 population is replenished by the rf transition between the L=11 and L=12 in n=37.  

When LIR 2 excites the population of the n=37 L=11 state again, the amount excited will be 

increased if the rf region is on resonance with a transition between states.  The observation of the 

n=37 L=11 to 12 rf resonance is shown Fig. 1.6.  The fit of the resonance determined the 
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frequency difference between the L=11 and=12 to within 0.2MHz  and resolved the L=12 

location in the n=37 Th3+ Rydberg fine structure.  In the optical RESIS excitation spectrum Fig. 

1.5, the L=12 state was not resolved from the high-L, the rf RESIS technique resolved its 

location and with a level of precision not possible with the optical RESIS technique. 

 The rf transitions observed in the Rydberg fine structure are limited by the selection rules 

that determine which states can be connected in each n.  The transitions discussed in this section 

are single photon, meaning that the rf transitions in this section can only connect states that the 

differ in angular momentum by one unit.  Therefore, in a single photon transition the angular 

momentum, L, must change by either plus or minus one, 1L   , in addition the total angular 

momentum, K, must either remain unchanged or only change by plus or minus one, 0, 1K   .  

The discussion of possible multi-photon transitions, transitions that connect levels separated by 

more than 1L    in the fine structure levels, is reserved for the next section of this chapter, 

since they do not follow the traditional selection rules. The fine structure of both the thorium 

ions of interest reported in this work relied on both single and multi-photon transitions. 

The beam line in Kansas had to be modified for the rf RESIS technique with the addition 

of the additional laser interaction region and the rf region.  These additions to the beam line 

would not limit the experimental apparatus to one of the RESIS experimental techniques.  The 

apparatus could be used for either the optical RESIS technique or the rf RESIS technique without 

the removal of the additional parts added to the beam line for the rf technique.  The second laser 

interaction was already constructed since work with thorium was not the first rf measurements of 

Rydberg fine structure made by this research group.  This additional laser interaction region is of 

the same design as the laser interaction region already on the beam line.  The addition of the 

second LIR required that the optics for the CO2 laser be reworked.  A beam splitter was added so 
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the beam coming out of the CO2 laser could be split between the two LIRs.  The second 

component necessary for the rf study was the rf region, the rf region used on the Kansas beam 

line was designed and built with the thorium experiments in mind.   

Previous rf experiments used one of the previously built rf regions, both of the those rf 

regions were 50Ω eccentric coaxial transmission lines designed for propagating TEM00 modes.  

The rf regions were designed and built by previous graduate students in the research group.  The 

first rf region was built by Phillip L. Jacobson.  This region is referred to as the PLJ region, has a 

frequency range up to 6GHz , the rf interaction region is 7.9 inches long, and the total length of 

the rf region between the two LIRs is 21.3 inches.  The second rf region was built by Robert A. 

Komara.  This region is referred to as the RAK region, its frequency range is up to 2.4GHz , the 

length of the rf interaction region is 11.8 inches and the total length of the region is 19.7 inches.  

The geometries and the measurements of the dimension of the inner and outer conductor for both 

of the regions is provided in the dissertation work of Erica Snow [27], along with pictures of 

both regions.  The big drawback for both of these rf regions for the thorium studies was their 

total length, the greater the distance between the two LIRS the greater the time Rydberg states 

being studied have to decay.  The lifetimes of the Rydberg states can be estimated from a 

formula developed for hydrogen-like states [28], Eq. 2.15. 
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If the PLJ or RAK regions were used in the measurement of the n=37 Th3+ Rydberg fine 

structure it would be expected that on average 65% of the Rydberg states of interest would decay 

in the time it takes the ion to travel between the first laser excitation and the second laser 

excitation, assuming 25kV terminal potential.  Decreasing the total rf region to 6 inches would 

result in the decrease in the amount of the decay to 34% on average for the states of interest in 
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the n=37 Th3+ Rydberg fine structure, thus the size of the signal for the rf transition would be 

increased.  Another drawback for both PLJ and RAK was that both of the rf regions contained a 

small aperture at the entrance and the exit of the rf interaction region, this led to both of the rf 

regions being susceptible to the stray electric fields as a result of the beam hitting and passing 

near those surfaces. This stray electric field would shift the observed transitions via DC Stark 

shifts, therefore the observed transitions would have to be corrected for that effect. 

For the thorium experiment and the Kansas beam line it was decided that a new rf region 

would be built, that would improve upon the older rf region and the address the drawbacks of the 

previous rf regions.  Looking at the lifetimes of the thorium Rydberg states of interests led to the 

conclusion that the total rf region should be no longer 6 inches.  Even with the drawbacks of the 

earlier regions it was determined that given the experience of our research group with the 50Ω 

coaxial transmission line designed to propagate TEM00 mode, that this type of rf region would be 

best.  A coaxial transmission line is made up of an inner and an outer conductor.  The diameters 

of the each conductors and the offset between them determines the impedance of the line. The 

impedance, Z, of a coaxial transmission line is defined by Eq. 2.16 [29]  

 

1( ) 60cosh ( )Z U 

 (2.16) 

where  
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In Eq. 2.17, D in the diameter of the outer conductor, d is the diameter of the inner conductor and 

c is the distance from the center of the inner conductor to the center of the outer of conductor.  

The impedance wanted for this rf region is 50Ω, therefore Eq. 2.16 was set equal to that and a 
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multitude of dimensions for the inner and outer conductors and offset were explored.  The final 

dimension for the rf region decided upon are given in the Fig. 2.18, the outer conductor would be 

the copper pipe and the inner conductor would be a non-magnetic stainless steel rod.  

 

Figure 2.18: Schematic of inner and outer conductor for the rf region, all the dimension are in 
inches. The top drawing is looking through the rf region and the bottom drawing is a side view.  

 

This geometry, Fig. 2.18, would make theoretical the cutoff frequency for propagation of non 

TEM modes approximately 5.6GHz. Therefore, transitions with frequencies all up to 5.6GHz 

could be observed in the region, this would enable for the full range of frequencies for the 

proposed thorium studies. 

With the selection of the inner and outer conductors, and the offset in between them, 

attention turned to how to build the rf region.  The questions faced in the construction were how 

to mount the inner conductor inside the outer conductor, how to confine the field in the rf region 

but still allow for the ion beam to travel through the region, and how to put the entire rf region at 

vacuum.  The first question answered was how to put the rf region at vacuum.  It was decided 

that the rf region would be mounted inside a 6 inch conflat tube in between the two LIRs. The 
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conflat tube would be only 6 inches long, so the total length of the total rf region needed to 

approximately 6 inches, theoretically the rf region could stick out slightly into each LIRs but not 

much or else it might affect the range the CO2 laser could be Doppler tuned.  The tube would 

have feedthroughs mounted on it to feed the rf into the rf region.   

With an understanding of the physical restriction for the rf region, attention turned to the 

design of the rf region itself and answering the additional questions having to do with its 

construction.  The inner conductor needed to be suspended inside the outer conductor and the 

method of suspension of the conductor would have to not interfere with the path of the ion beam.  

To accomplish this, an end cap was designed that would press fit into the ends of the pipe, the 

outer conductor.  Therefore the rf region was made up initially of 4 major parts, the outer 

conductor, the inner conductor and two end caps, Fig. 2.19.   

 

 
Figure 2.19: Basic schematic of the rf region with no dimension.  Shown are the inner and outer 
conductor, the path the ion beam would take and a rough idea of what the endcaps would look 
like. 
 

The ion beam would have to pass through the endcap, and the endcap would have to confine the 

rf in the rf region.  The design of the end cap was key since it not only suspends the inner 

conductor; it also allows for the inner conductor to have rf fed to it. The design for the endcap is 

shown in the schematics and pictures of the endcap given in Fig. 2.20  
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Figure 2.20: Schematic and pictures of the endcap for the rf region, all dimensions are in inches.  On the left is the side view of the 
endcap and on the right is the view looking down the beam path. 
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The endcap is made up of three parts with all the parts made of non-magnetic materials.  

The first part is the brass pieces that act as a cap on each end of the outer conductor. The brass 

piece is designed so that it will be press fit into the end of the outer conductor.  The brass piece 

has two holes in it, one for the beam to pass through and one to be used to connect and suspend 

the inner conductor.  The inner conductor is suspended and connected to the outside by an SMA 

female-female bulkhead, Amplenol Connex part number 132170, which is mounted on the brass 

cap piece.  The inner conductor has an SMA pin attached to each end of it so that when the 

endcap pieces are press fitted into the ends of the outer conductor, the inner conductor will be 

both suspended inside the outer conductor and the connected to the outside via the SMA 

bulkhead.  The location of the hole for the SMA piece in the cap is so that the inner conductor is 

offset from the outer conductor, matching the conditions shown in Fig. 2.18.  The third piece of 

the endcap is a small piece of ½” diameter copper pipe, that is press fit into the hole used as the 

entrance and exit for the ion beam into the rf region.  This little piece of pipe is there to prevent 

any of the rf in the rf region of leaking out into the rest of the beam line.  This is insured since 

there are no propagating modes in a ½” diameter circular waveguide with 5.6f MHz .  

 Figure 2.21 provides a schematic of the assembled rf region with dimension and the 

pictures of the assembled rf region.  The design and length of the inner conductor was a trial and 

error process.  Different designs of the inner conductor were tried and the reflection in the rf 

region were documented over a frequency range in order to test the designs.  The final design for 

the inner conductor is shown in Fig. 2.21, this design minimized the reflections is the region. 

Given the length of the inner conductor during the assembly of the rf region, an additional piece 

was added to the design; a plastic spacer that would act to prevent the inner conductor from 

coming in contact with the outer part of the SMA bulkhead which is at ground.  
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Figure 2.21: Schematic and picture of the rf region, all units are inches.  Top is a schematic of the different part of the rf region. The 
picture below shows the actual rf region, assembled and along with a picture of the inner conductor.   
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The rf region is mounted in the 6 inch conflat tube that has length of 6 inches.  The tube has two 

SMA feedthroughs mounted on mini-conflat flanges attached so rf can be fed into and out of the 

rf region.  The SMA feedthroughs used are good to 8GHz and each of the feedthroughs is 

connected to the rf region with a small SMA cable.  The tube the rf region is mounted in is also 

shielded with a μ-metal to protect the rf region from the earth’s magnetic field.  Figure 2.22 

shows a picture of the rf region mounted in the tube and a picture of tube mounted between the 

two laser interaction regions with the two feedthroughs shown.  The rf region does stick out of 

the tube slightly but not enough to be a problem for the laser interaction regions.  

 

Figure 2.22: Pictures of the rf region mounted  in the conflat tube and the conflat tube mounted 
on the beam line 
 

The rf being sent to the rf region is produced using an HP 8648B signal generator, the 

generator has a range of the 9kHZ to 2000MHz.  The signal generator is controlled via a Labview 

program on the computer; this program also records the signal being averaged by the lock-in.  

The program allows for a range of frequency to be scanned and records the frequency and the 

detected signal into a file.  The power coming out of the rf region is also monitored with an rf 

power meter and the settings were recorded during data taking.  The frequency range of the 
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function generator producing the rf was extended to 4.5GHz with the use of the multipliers, and 

when more power was necessary to observe transitions an amplifier was used.   

Fig. 2.23 gives a scan of the reflection coefficient for the assembled rf region, terminated 

by 50Ω.  This data shows that the reflection coefficient increases with frequency.  For the rf 

studies presented in this dissertation the largest resonance frequency observed is approximately 

3.5GHz, in that range the total reflection coefficient is ≤0.3, indicating that the refection from 

each end of the rf region is <0.15.  If a large reflected wave existed in the rf region the observed 

resonance frequency could be affected, since the observed resonance experience a Doppler shift 

depending on the whether the ion beam and the electric field in the rf region are traveling parallel 

or anti-parallel.  
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Figure 2.23: Plot of the reflection coefficient of the rf region versus the frequency for the rf 
region. This data was taken in JAK3-023, with the output of the rf region terminated in 50Ω. 
 

As the frequency of the resonance increases so does the size of the Doppler shift experienced by 

the resonance, so if the reflection coefficient was large two resonances might be observed.  One 
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of the resonances would be due to the ion beam and the electric field traveling parallel and one 

due to them traveling anti-parallel, this would therefore be a symptom of a large reflection 

existing in the rf region.  The correction of the observed resonances for the Doppler effect will be 

discussed in the next section of this Chapter.  

In order to observe the rf transitions it was only necessary to have a rough idea of the 

location of the transitions and an idea of the rf power necessary to produce the electric field in 

the rf region for the rf transitions between states.  The location of the rf transitions observed in 

this work were estimated using the preliminary properties for the ions of interest found from the 

optical RESIS studies[3, 21].  The power setting used for the rf being sent into the rf region is 

essential since too much or too little power in the rf region would result in the inability to 

observe a resonance even when at the correct frequency.  The first fine structure studied was the 

n=37 Th3+ Rydberg fine structure.  Once a transition was found the optimum power necessary to 

observe the transition was found by taking a saturation curve.  The saturation curve is done by 

sitting at the center of a resonance and measuring the signal size as a function of rf power 

coming out of the rf region.  An example of such a saturation curve is shown Fig. 2.24.  This 

saturation curve was taken on the n=37 L=12 to 13 transition in the Th3+ Rydberg fine structure.    

The shape of the saturation curve is predicted from the two level problem.  A complete 

formal discussion of the two level problem and the calculation of the probability of making a 

transition between levels is presented in the work of Ramsey [30].  The probability of making a 

transition between two levels at resonance has the form 

 
2sin ( )P A VT    (2.18) 

with VT having units of radians.  The V is the coupling strength of the two states, T is the transit 

time through the rf region and A is the maximum amplitude of the saturation curve. 
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Figure 2.24: Saturation curve for n=37 L=12 to 13 single photon transition, the x-axis is the 
square root of the rf power coming out of the rf region in Watts and the y-axis is the signal at the 
given resonance frequency, 250MHz.  The red line is the fit of the data, the form discussed in the 
text.  The data for this saturation curve came from JAK6-156 and the electric field in the rf 
region was traveling parallel to the ion beam. 
 

The transit time, T, through the rf region can be given by  

 

Length of rf regionT
c


  (2.19) 

where β∙c is the beam speed and the length of the interaction part of the rf region is 

approximately 12.7cm, 5 inches.  Therefore, for the case of the Th3+ Rydberg fine structure 

where β=0.0009620 (assuming a 25kV terminal) the transit time through the rf region was 

0.44μs.  The coupling strength V is given by  

 
( / )

2
rms rfe Z E

V rads s 
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where Erf is the electric field in the rf region, and Zrms is the average Z matrix element for a given 

transition.  The electric field in the rf region has the form cos( )rfE t , it is oscillatory with time.  

The Zrms for a ΔL=+1 transition is given by the Eq. 2.21, defined in term of n, L and q [31].   

 

2 2

0
( 1)3 ( 1)( , , 1)

2 3(2 1)rms
n L LZ n L n L n a

q L
  

  
  (2.21) 

Eq. 2.21 neglects the total angular momentum, K, for the Th3+ Rydberg fine structure this is 

adequate since 0cJ  .  For the case of the Th2+ Rydberg fine structure when 5 / 2cJ  , this it is 

not adequate, and this will be discussed further in the section dealing with the Th2+ Rydberg  fine 

structure measurements.  Looking at Eq. 2.18 it can be seen that the highest probability for 

transition occurring is when VT is equal to 2 .  Therefore to find what the optimum electric 

field for a specific transition, VT is set equal to 2 , which result in Eq. 2.22. 

 2rf
rms

hE
eT Z


 (2.22) 

For the case of the n=37 L=12 to 13 transition the optimum Erf is 0.44V m  since the Zrms 

is 200.1a0 (1.06x10-8m) and the transit time through the rf region is 0.44μs.  During the 

experiment though there is no direct measurement of the electric field in the rf region instead the 

power exiting the rf region is monitored.  The electric field can be written as being proportional 

to the square root of power exiting the rf region.  The fit of the saturation curve, Fig. 2.24, 

determines the optimum power exiting the rf region, P0, to observe the L=12 to 13 transition.  

The saturation curve in Fig. 2.24 was fit to the form 2

0

sin
2

exitPA
P

 
  
 

, from the fit P0 was found 

to be 1.98(7)x10-6 watts.  Knowing the calculated optimum field for the L=12 to 13 transition 
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and the observed optimum power the electric field can be written in terms of the power exiting 

the rf region, Eq. 2.23 

 

1/2
( )(0.44 / )

1.98
exit

rf
P WE V m

W



 
  

  . (2.23) 

Eq. 2.23 gives the conversion between the power and electric field for this new rf region, making 

the future work of searching for transitions easier because the power level to make the 

observation will be known.   

A check of this calculation of the connection between the electric field and the power 

exiting the region is provided by the known impedance of the region.  The power exiting the 

region is the average power and therefore the potential on the inner conductor will be given by 

Eq. 2.24, where 0U  is the amplitude of the rf potential on the inner conductor and exitP W( )  is the 

power reading on the output of the rf region.  

  0 2 50 exitU P W    ( )
 (2.24) 

The electric field is then just the ratio of the potential on the inner conductor divided by the 

effective distance, effD , Eq. 2.25.  
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

 (2.25) 

For the case of the n=37 L=12 to 13, the potential on the inner conductor, 0 0.0141(3)U V , 

would make the effective distance be 3.20(7)cm or 1.26(3)inches.  This effective distance seems 

very plausible given the geometry of the rf region, Fig. 2.18.  

 The designing and building of the rf region for the Kansas beam line was just the first 

step undertaken for the rf studies of the Th2+ and Th3+ Rydberg fine structure.  With the 
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installation of the rf region and the second LIR, months of searching for the transitions necessary 

to the map out the fine structures of interests began.  The transitions necessary to map out the 

fine structures for the two ions of interests will be discussed in a future section of this work.  In 

the case of both the Rydberg fine structure measurements reported here, additional levels of the 

fine structure were measured with multi-photon transitions.  Multi-photon transitions are a 

different category of transitions that can occur between levels of the fine structure, and these 

transitions require special treatment.   

2.3 Multi-photon rf transitions 

Multi-photon transitions are transitions that connect states that differ in angular 

momentum, L, by more than one unit.  These transitions are not allowed under traditional 

selection rules discussed in the previous section.  The observation of the multi-photon transitions 

in the thorium Rydberg fine structure requires a higher power than the single photon transitions 

and these multi-photon transitions are also susceptible to AC shifts.  The calculation of multi-

photon transitions is a time dependent problem, described by a time dependent Hamiltonian.  The 

time dependent Hamiltonian can be transformed to a time independent Hamiltonian when the 

states involved are described by Floquet states.  Then standard techniques of static perturbation 

theory can be used to determine the strength of the coupling of the states involved in the multi-

photon transitions and the AC shifts.  The work of Shirley [32] pioneered use of Floquet states 

and how that enables the replacement of the time dependent Hamiltonian with the time 

independent Hamiltonian.  The time independent Hamiltonian is represented by an infinite 

matrix that is periodic.  This technique of using Floquet states and the time independent 

Hamiltonian to approximate the multi-photon transition has been discussed previously in the 

work with multi-photon transitions in 4He   [33].   
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 The Floquet state for a system such as the one here is given by ,L p  were L is the 

atomic state and p is the photon state.  An rf transition between two pure states occurs when the 

electric field in the rf region is it at the same frequency as the energy difference between the 

states.  The pure states ,L p  act as basis states of an infinite dimensional time independent 

Hamiltonian.  The diagonal term of this time independent Hamiltonian are ( )E L p   .  The 

off-diagonal terms obey the selection rules 1L   , 1p   , and for simplicity they are 

approximated by a constant V.  Since selection rules limit the transition by ΔL=±1 and Δp=±1, it 

would appear that multi photon transitions between pure states are not possible.  But that 

assumption assumes that the states remain pure in the presence of the electric field in the rf 

region.  For example the ability to observe the L=12 to 14 transition in the n=37 Th3+ Rydberg 

fine structure, becomes clear when the transition is described in terms of Floquet states, as seen 

in Fig. 2.25.  In Fig. 2.25, only the dominant Floquet states that contribute to the ability to see the 

two photon transition, L=12 to 14, are shown.  The crossing between Floquet states that enables 

the observation of the two-photon transitions are denoted by dots in Fig. 2.25 marking the 

crossing of the Floquet states, in reality though those are not the locations of crossing but anti-

crossing.  In the presence of an electric field the dot would be the locations where states repelled 

each other, and then when the field is turned off the two states would decouple leaving each of 

the states with population possibly due in part to the other state.    
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Figure 2.25 The multi-photon transition of the L=12 to 14. described in term of Floquet states, 

,L p .  The y-axis is in the energy deviation from the 12,0 in MHz. On the x-axis the two 
photon resonance between the 12, 2 and 14,0 is marked, 168MHz.  The Floquet state for each 
of the , 0L states is denoted by the horizontal line at the energy for each of the states.  The 
Floquet states for each of the ,L p  is denoted by a dashed line.  The crossing of Floquet states 
that observed the selection rules are denoted by dots. The crossing of the 12, 2 and the 14,0 is 
denoted by square. 
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Thus the two photon transitions becomes possible since the states are not pure.  Each of the states 

is a linear combination of the states that can couple to it, observing the selection rules.  When all 

the possible anti-crossings are taken into account, the Floquet states used to determine the power 

necessary and the AC shift for the L=12 to 14 transition would be given by  

 

" 12,0 " 12,0 13, 1 13, 1 11, 1 11, 1

" 14,0 " 14,0 13, 1 13, 1 15, 1 15, 1

" 12, 2 " 12, 2 13, 1 13, 3 11, 1 11, 3

   

   

   

        

        

            (2.26) 

where each of the perturbed eigenstates, " , "L p , is a linear combination of the original basis 

set, observing the selection rules, 1L   , 1p   .  The ε describes the strength of the mixing 

between states.  

Once the makeup of the Floquet states of interest are known in terms of the other states, 

the strength of the coupling, the coefficients ε, can be determined.  This coupling strength can be 

found by looking at the result of the two level time independent problem in quantum mechanics.  

With two levels A and B separated by energy, ω0, it can be found that the perturbed eigenstates 

can be described by  
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and that the perturbed energies are: 
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For Eq. 2.27 and Eq. 2.28 A is above B, and V is the dipole coupling between the two levels 

when 0V  .  Therefore the coupling strength for the states in Eq. 2.26 would be 0V    

with the sign depending on its location in reference to the other states.  In the case of the Eq. 2.26 

the ω0 will be the frequency difference between the basis states near the resonance frequency of 

interest.  For example looking at the 14, 0  and the 13, 1  near the resonance frequency, Fig. 

2.25, it is found that they are separated by approximately 37MHz with the 13, 1  above the 

14, 0 at resonance.  Therefore, the coefficient in front of the basis state 13, 1  in the perturbed 

eigenstate " 14,0 "  in Eq. 2.26 will be 37V   .  Looking near the resonance frequency, the 

energy difference between the Floquet states, ω0, was found for all the couplings in Eq 2.26.  

Then the states in Eq. 2.26 were rewritten with the coefficients to describe their coupling, Eq. 

2.29, where V is the single photon coupling potential, assuming that all the couplings are equal.  

 

" 12,0 " 12,0 13, 1 13, 1 11, 1 11, 1
372.33 36.67 163.59 499.23

" 14,0 " 14,0 13, 1 13, 1 15, 1 15, 1
36.67 298.99 254.84 80.82

" 12, 2 " 12, 2 13, 3 13, 1 11, 3 11, 1
372.33 36.67 163.59 499.25

V V V V

V V V V

V V V V

        

        

          
 (2.29) 

This method is an approximate treatment of the multi-photon resonances since it assumes the 

coupling between levels and transitions, V, is the same with has no dependence on L or m.   

To calculate the power necessary to observe the two photon transition the effective 

matrix element between the " 12, 2 "  and " 14,0 " states has to be calculated, Eq. 2.30.   

 

2 2 2

12, 2 14,0
36.67 36.67 18.34eff

V V VV V
MHz MHz MHz

     
 (2.30) 
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Most the terms used to determine Eq. 2.30 are zero since the coupling of the two states must 

observe the selection rules ΔL=±1 and Δp=±1, but the sum of the nonzero terms resulted in the 

relationship between the effective coupling, Veff, and the single photon coupling, V.  The 

effective coupling strength, effV , between two states has been defined in terms of Zrms in Eq. 2.20 

for a single photon transition, but it is also possible to estimate another way with no dependence 

on L or m.  From the work of the single photon it is known that the highest probability for a 

transition occurring is when 

 2 2VT   (2.31) 

where T is the transit time through the rf region.  For the cases studied here T=0.44μs.  

Substituting T=0.44μs into Eq. 2.31 results in the determination of the coupling strength, Vsat, 

that has no dependence on any quantum numbers, Eq. 2.32. 

 

1 1 0.568
4 4 (0.44 )satV MHz
T s
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  (2.32) 

This coupling is for two states connected by a single photon transition, and it should also be the 

effective coupling necessary to saturate a multi-photon transition.  Therefore by plugging Vsat 

into Eq. 2.30 the single photon coupling strength V needed to saturate the two photon transition 

was estimated to be 3.23MHz. 

 With the estimate of the saturating single photon coupling for the two photon transition, 

the power necessary to observe the two photon transition was determined in terms of the single 

photon power, by looking at the ratio of the two photon power to single photon power which is 

related to the ratio of the coupling strengths squared, Eq. 2.33.  
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The single photon transition in n=37 Th3+ Rydberg fine structure saturated at approximately 

1.98μW, therefore the two photon transition n=37 L=12 to 14 will need approximately 64 μW for 

optimum observation. 

The other concern for the multi-photon transitions is the possibility of AC shifts to the 

transitions by the electric field being produced in the rf region.  The shifting of the levels can 

also be found from the results of the time independent two level problem.  With two states A and 

B separated by ω0 with shift of the one state by another will be 2
0V  with the sign depending 

on the respective locations of the levels.  Therefore, the AC shift of the two photon transitions 

with power can also be calculated using the coefficients of the 12, 0 and 14, 0 states in Eq. 

2.29, the shift rate of each state will just be the sum of the shifts due to each mixture, making  

sure to be careful with the signs.  The shift to the interval will then be difference of the 14, 0  

and 12, 0 shift rates, Eq. 2.34. 

 

2

12 14 ( )
157.15

Vv calculated
MHz


 

 (2.34) 

Table 2.1 summarizes the power necessary and the AC shifts for the multi-photon transition in 

the observed in the n=37 Th3+ Rydberg fine structure in comparison to a single photon transition.  

Using this same approach with Floquet states for the three photon transition, it was possible to 

calculate the power needed for the observation of the, L=12 to 15, and the AC shift rate it would 

experience.  The results of those calculations are shown in Table 2.1.  From Table 2.1 it can be 

seen that the power necessary to observe a multi-photon transition increases as the number of 

photons increase, and that for some cases the AC shifts are sizable and cannot be neglected.  The 

model used to calculate the power and the shifts is a simplistic model that does not take into 

account any of the quantum number of the states involved in the transitions.  This model though 
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at least determines an idea for the power necessary to observe transition and the approximate size 

for the AC shifts for the transitions.  If the shift is sizable and important in determining the 

measured location of a transition, the AC shift can be measured for a transition.  In Chapter 3 the 

measurement of the AC shift for the three photon transition in the n=37 Th3+ Rydberg fine 

structure is discussed and compared with the rate calculated here. The additional multi-photon 

transitions for both the Rydberg fine structures reported in this work extended the measured fine 

structure to the higher L levels which would not have been reachable with single photon 

transitions.  

Table 2.1: Summary of the power and AC shifts for the multi-photon transitions in the Th3+ 
Rydberg fine structure.  The first column identifies the transitions.  The second column gives the 
effective coupling.  The third column gives the AC shift in terms of V, and the fourth column 
gives the V for each of the transition at saturation.  The fifth column gives the saturation power, 
the optimum power for observing the transition of interest, and the final column gives the AC 
shift in MHz if the transition is observed at the saturation power. 

 
 

2.4 Experimental correction for rf transitions 

The observation of the rf transitions, both single photon and multi-photon, have to be 

corrected for shifts of the transition frequency.  The two shifts discussed in this section are the 

Doppler shift and the DC Stark shift.  The Doppler shift will always occur during the observation 

of an rf transition, so this effect will need to be accounted for on every observation made.  The 

L -L ' AC Shift V sat (MHz) Psat(μW) AC shift at Psat

12-13 0 0.57 1.98 0

12-14 3.23 63.6 0.066MHz

12-15 12.49 951 0.680MHz

2

18.34
V

MHz

V

3

3428.38
V
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effV

2
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V
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

2

229.46
V

MHz

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second shift discussed in this section is the DC Stark shift.  This shift is the result of the stray 

electric fields, that may occur either in the laser interaction region or the rf region.  The size of 

the DC stark shift is dependent of the size of the stray electric field and the shift rate of the 

transition of interest.  During data taking every attempt is made to minimize the amount of stray 

electric field in the apparatus so the effect of the DC Stark shift will be minimized.  The effect of 

both of the mechanisms of shifting observed transitions cannot be neglected.  They must be 

understood and corrected for.   

The Doppler shift discussed in this section is in the context of the rf transitions, during 

the observation of the rf transition the ion beam of the Rydberg states of interest is sent through 

the rf region in order to induce rf transition between states of the same n.  The rf transitions are 

induced in the rf region by an electric field that is propagating in the rf region, oscillating at the 

resonance frequency.  The frequency for the electric field in the rf region the ion beam sees 

depends on how the ion and the electric field are traveling with respect to each other.  When the 

electric field and the ion beam are moving in the same direction the frequency of the electric 

field the ion beam sees is lower than the applied frequency.  This effect causes an upward shift in 

the apparent resonance frequency, i.e. the frequency for maximum transitions.  In the case of the 

beam line apparatus it is possible to change the relative direction of propagation between the 

two, by changing the feedthrough the rf is fed into.  

When the ion beam and the rf in the rf region are propagating in the same direction the 

measurement of the rf transition is called co-prop measurement, co propf  , indicating the two co-

propagating together. The co-prop measurements are denoted in the tables by .  When the ion 

beam is traveling in opposite directions the measurement is called counter-prop, counter propf  , 

indicating the two are not propagating in the same direction.   In the table of measurements of the 
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transitions the counter-prop transitions are denoted by .  The size Doppler shift a transition will 

experience is dependent on the frequency and the speed of the ion beam being studied.  The 

Doppler shifted frequency for the observation of each of the directions of propagation is given by 

Eq. 2.35, where 0f  is the un-Doppler shifted frequency of the transition, the actual position of 

the resonance.  
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  (2.35) 

The observed transitions can be corrected for the Doppler shift if the beam speed is known, using 

Eq. 2.35 to determine the un-shifted position of the measured rf intervals.  Another method of 

correcting of the Doppler shift is to observe the transition in each direction of propagation, the 

average of the two directions of propagation will then give un-Doppler shifted location of the 

transition, Eq. 2.36.  

 

2
0 1

2 2
co prop counter prop co prop counter propf f f f

f         
     

     (2.36) 

Most the time the 21  factor out in front of the average of the two directions of propagation, 

Eq. 2.36, is neglected since it is so close to one, given that 0.001   for most of the ions studied 

using the rf RESIS technique.  

Using the average frequency of the two directions of propagation for a transition it is also 

possible to calculate the apparent β for the transition; this can be used as a check on the observed 

Doppler shift.  The shift between the two directions of propagation should be consistent with 

what would be predicted given the speed of the beam as long no sizable reflection exists in the rf 

region.  The calculation of the apparent β is given by Eq. 2.37. 
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The DC Stark shift occurs when coupled states perturb each other in the presence of an 

electric field.  In the experiment discussed in this work this type of shift occurs when a stray 

electric field is present in the rf region.  The possible shift due to the DC Stark effect can be 

calculated and data can be corrected if the magnitude of the electric field is known.  The DC 

Stark shifts occur between L states for a given n, with the selection rule ΔL=±1, so an L state will 

only be perturbed by the L-1 state and L+1state, as seen in Fig. 2.26 

EUpper

ELower

L - 1

L

L + 1

 

Figure 2.26: Level diagram for calculating the DC Stark shift. ΔELower is the energy difference 
between the L-1 state and the L state and the ΔEupper is the energy difference between the L state 
and the L+1 state.  In the presence of an electric field the position of the L state will be perturbed 
by the L-1 state and the L+1 state.  
 

The Stark shift of a state from another state can be calculated, it is just the coupling potential 

squared divided by the energy difference between the states.  The coupling potential between 

two of the levels will be given by  
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 rmsV e Z E  (2.37) 

where Zrms is the Z matrix element and E is the electric field present.  The Zrms was defined 

earlier in this chapter in Eq. 2.21 in term of n, L and q.  In the case discussed here and shown in 

Fig. 2.26, the L state is only shifted by the L+1 state and the L-1 state with the direction of the 

shift depending on whether the perturbing state is above or below the L state.  When the coupled 

state is below the L state, the shift to the L state will be upward and when the coupled state is 

above the L state, the shift to the L state will then be downward.  Therefore, the total shift of the 

L state shown in Fig. 2.26 will be given by 

 

22 ( )( ) UpperLower

Lower Upper

VVDC Stark Shift
E E

 
       (2.39) 

where the LowerV  is the coupling between the L-1 state and the L state and LowerE  is the energy 

difference between those states.  The UpperV  is the coupling between the L state and the L+1 state, 

and UpperE  is the energy difference between those states.  Then by plugging in the appropriate 

coupling potential and converting units it is possible to come up with an expression, Eq. 2.40, 

that describes the shift in MHz of an L state by its neighboring L±1 states and the presence of an 

electric field, E, with units of V/cm.  
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In Eq. 2.40, LowerE  is said to be positive if the L-1 state is lower in energy than the L state, and 

the UpperE  is positive when the L+1 state is higher in energy than the L state, both energy 

differences in Eq. 2.40 have units of MHz.  The correction for the Stark shift can be calculated 
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for individual levels or for rf intervals, in the case of the rf interval the shift must be calculated 

for each level involved in the rf transition and the relative shift determined. 
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Chapter 3: Rf RESIS study to determine properties of Th4+ 

3.1 Background on the Th4+ experiment 

 Radon-like thorium, Th4+, was the first thorium ion of interest to be studied in this 

program.  The optical RESIS study of the Th3+ Rydberg states was completed by the previous 

grad student working on this project, Mark Hanni, and was reported in his dissertation [17] and 

published in Ref. [21].  This preliminary work reported the dominant properties of Th4+ that 

control the Th3+ Rydberg fine structure.  The ground state of Th4+ is 1S0 , with a Jc=0, meaning 

that Th4+ does not have any permanent moments.  All the properties controlling the fine structure 

would be induced moments in the core, i.e. polarizabilities.  The effective potential describing 

Th3+ Rydberg states has only a scalar component, the first term of Eq. 1.18, since the higher 

order tensor ranks are not possible with Jc=0.  The Th3+ Rydberg fine structure produced from a 

scalar effective potential consists of one energy level for each L, with the deviation from the 

hydrogenic energy increasing when moving to lower Ls.  The dominant Th4+ property 

determining the energy difference between Ls is the scalar dipole polarizability.  The study done 

by this research program in 2010 with the optical RESIS technique measured a set of RESIS 

optical spectra for Th3+ Rydberg states.  Three different transitions were measured: the n=37 to 

n′=73, the n=38 to n′=79 and the n=37 to n′=76.  The optical spectra allowed for the resolution of 

the L=7, 8, 9, and 10; all other Ls were not resolvable from the high-L peak or had lifetimes too 

short to allow observation.  An example of one of the spectra is seen in Fig. 1.5.  The uncertainty 

in the fine structure energies from each of the nL to n′L′ transitions was approximately 20MHz.  

To extract the properties of Th4+ the observed energies differences were scaled, plotted and fitted 

to the effective potential model.  The intercept of the scaled energy plot is related to scalar dipole 
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polarizability, and the slope gives information scalar quadrupole polarizability. The preliminary 

optical study found 
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A more detailed discussion of this work is contained the published paper [21] and in the 

dissertation of Mark Hanni [17].  

The published results from the optical RESIS measurement provided the first glimpse 

into the properties of Th4+.  The comparison of the experimental values with theory enabled the 

first test of the theoretical calculations for Th4+.  Some theoretical calculations of the scalar 

dipole polarizability were in very good agreement with the experimental determination, to within 

1.5% [21], while other calculations differenced by more than 30% with the experimental 

determination.  The scalar quadrupole polarizability on the other hand disagreed with the 

calculated value by almost 40% [17].  Prior experience with Si2+ revealed that the determination 

of ,0Q  can be particularly sensitive to the higher order terms in the effective potential [34].  The 

,0Q  is extracted from the initial slope of the plot of the scaled energies.  If higher order terms 

are contributing to the fine structure then there would be curvature in the scaled energy plot, 

which could affect the determination of the initial slope.  The fit of the optical RESIS fine 

structure measurements for possible curvature was limited by the precision of the optical 

measurements and limited range Ls observed. 

In order to increase the precision of the measured properties and clarify the possible 

contribution of higher order terms in the effective potential, more precise measurements of the 

n=37 Th3+ high-L Rydberg fine structure were undertaken using the rf RESIS technique.  The rf 

RESIS technique offers a two order of magnitude improvement in precision over the optical 
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RESIS technique.  The rf fine structure measurements also allow extension of the data to include 

measurements on higher Ls, unresolved in the optical study.  The increased precision in the 

measurement of the energy levels and the additional levels measured allowed for the more 

precise determination of Th4+ properties and the inclusion of the possible of higher order terms in 

the analysis of the measurements.  The rf RESIS measurements were completed in two parts.  

The first part measured the energy intervals between the L=9 to 15 with sub-MHz precision [35].  

The second part of the study increased the precision on the positions of the higher L states, L=14 

and L=15, and extended the data to include the L=8 [36].  This chapter describes the rf 

measurements, the analysis of those measurements to extract Th4+ properties, and the comparison 

of the resulting properties with theory. 
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3.2 Rf measurements of the n=37 Th3+ Rydberg fine structure 

Rf measurements of the n=37 Th3+ high-L Rydberg fine structure were carried out on the 

beam line at JRML, using the apparatus discussed in Chapter 2 of the dissertation.  Illustrated in 

Fig. 3.1 is the n=37 Th3+ Rydberg fine structure, with the observed rf transitions denoted by the 

colored line connecting the levels.  In Fig. 3.1 the zero on the y-axis in this figure is the 

estimated hydrogenic energy for n=37, but only the relative position of the different levels were 

actually measured.   

 

Figure 3.1: The fine structure of the n=37 Th3+ Rydberg levels with the observed rf transitions 
denoted by the colored lines connecting the levels. In purple are the single photon transitions 
observed and in blue are the two and three photon transitions. The y-axis is the energy difference 
from hydrogenic in GHz for a given L level, with the red dashed line representing the hydrogenic 
energy for n=37. 
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The rf transitions used to measure these fine structure intervals fall into one of two categories. 

The first category is the single photon transitions, this kind of transition only allows for the 

measurement of the energy interval over ΔL=1, for example the L= 8 to 9 interval.  The second 

category is the multi-photon transitions, this type of transition can measure the interval over 

ΔL>1, the L=12 to 14 transition is an example of a multi-photon transition.  A total of seven rf 

transitions were used to map out the n=37 Th3+ high-L Rydberg fine structure, five single photon 

transitions and two multi-photon transitions. 

 The rf measurements of this fine structure pattern for the n=37 Th3+ Rydberg states relied 

on the RESIS technique as a way of detection.  Using the resolution in the RESIS excitation 

spectrum n=37 to n′=73, seen in Fig. 1.5, it was possible to detect either the removal of 

population or the addition of population to given L level.  The measurement of the rf transitions 

of the fine structure energy intervals depended on the use of the CO2 laser interaction regions 

(LIRs) to help create and detect population differences.  Table 3.1 gives the different rf intervals 

measured, the n=37 L each LIR was placed on for the detection of each of the rf transitions, the 

initial estimated location of each transitions given the preliminary properties [21], and the final 

measured positions.  The use of the RESIS technique to detect the rf signal is discussed in more 

detail in Chapter 2.  For Th4+ the procedure was to set both LIRS on the lower L of the rf 

transition of interest.  For example, the L=11 to 12 transitions would be seen by placing both 

LIRs on the L=11.  LIR 1 acts to deplete the L=11 population by exciting it from the n=37 level 

to the n′=73 level.  The population of the L=11 state would then be replenished by equalizing the 

L=11 and L=12 population with the rf transition between the two states.   
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Table 3.1: Summary of the measured n=37 fine structure transitions in Th3+. Column one of this 
table gives the n=37 fine structure intervals measured.  Columns two and three gives the n=37 L 
that LIR 1 and LIR 2 were placed on for the detections for a specific interval. Column four gives 
the estimated frequencies for the interval of interest, found with the preliminary properties [21].  
The uncertainty in the simulated intervals was a result of altering the uncertainty in the core 
properties by one standard deviation and seeing how that affected the estimated intervals. The 
final column gives the measured frequencies for the interval determined from the rf study 
reported here along with their uncertainties. 

  
Then LIR 2 would again excite the n=37 L=11 to the n=73 level for detection.  If the rf 

frequency was on resonance with the frequency difference between the L=11 and L=12 then 

more population is excited to the n=73 level.  The rf field in the rf region was modulated and the 

corresponding change in the n=73 population was measured with a lock-in amplifier.  By 

scanning through a possible frequency range for the L=11 to 12 it was possible to measure the 

frequency difference between the two states to sub-MHz precision, an example of such a scan is 

seen in Fig. 3.2.   

L -L ' LIR 1 LIR 2 Estimated Interval(MHz) Measured Interval(MHz)
8-9 8 8 1951(29) 1937.95(17)

9-10 9 9 1010(13) 1008.57(25)
10-11 10 10 561(6) 562.20(10)
11-12 11 11 330(3) 331.35(6)
12-13 12 12 203(2) 204.52(6)
12-14 12 12 333(3) 335.70(7)
12-15 12 12 420(3) 422.79(17)
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Figure 3.2: Observation of the rf transition of the n=37 L=11 to 12 in the Th3+ Rydberg fine 
structure with the electric field in the rf region traveling anti-parallel to the direction of the ion 
beam, co-propagating. This data was taken from lab book JAK2, page 091. The red line 
represents the fit of the data to a four parameter Gaussian to determine its center. 
 

The observation of rf transitions requires knowledge of the general location of the 

transitions and the electric field necessary to induce a specific transitions between states.  The 

estimated location of each of the intervals is given in Table 3.1, calculated using the properties 

determined during the optical study [21].  Section 2 of Chapter 2 discussed the electric field 

necessary to observe a transition and related that to the power being read on the output of the rf 

region, since there is no direct measure of the electric field in the rf region.  The observations of 

the single photon intervals between L=8 and L=13, like the L=11 to 12 seen in Fig 3.2 were 

carried out multiple times using the approximate recommended power in the rf region.  An 

example of each of the transitions can be seen in Appendix A.  The transit time through the rf 

region made the minimum width for a transition approximately 2.3MHz; the largest spin splitting 

expected would be on the L=8 to 9 transition, approximately 2.5MHz.  While the L=8 to 9 
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transition looks broad, there was no sign of resolved spin splitting on that resonance, therefore 

the possibility of spin splitting was neglected when fitting observed resonances.  All the 

observed resonance for the n=37 Th3+ Rydberg fine structure were fit to four parameter 

Gaussians to find their centers.  Each of the intervals was observed in both the co-propagating 

and counter-propagating directions.  Table 3.2 gives all of the observations for the single photon 

transitions.  Each transition was observed between two and seven times with the transitions 

involving the lower Ls only being observed twice.  To determine the final interval for the Th3+ 

Rydberg fine structure it was necessary to combine and average all the data for each interval.  To 

start, the data for each direction of propagation was combined by taking weighted average of the 

measurements if more than one observation occurred.  A straight average of the result for each 

direction of propagation was then made to find the final result for the fine structure interval.  

This is shown in Table 3.2.  The apparent β for each transition was also calculated as a check, 

using Eq. 2.37, to confirm that the observed Doppler shift was consistent with what was 

predicted given the speed of the beam.  For all of the single photon transitions observed, the 

apparent β is consistent with the predicted β=0.0009620 (assuming 25kV terminal potential).  

For each transition in Table 3.2 the Δβ, the difference between the calculated β and the observed 

β, 0.000962apparent     has been shown, and in all cases the observed β is within one 

standard deviation of the calculated. 
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Table 3.2: Measured single photon transitions in the n=37 Th3+ Rydberg fine structure.  This 
table has been broken into sections, one section for each of the single photon transitions intervals 
measured.  Five single photon intervals between L=8 to L=13 were observed.  The first column 
gives the lab book and page of the observation. The second column gives the direction of 
propagation of the rf electric field with respect to the ion beam. When the electric field in the rf 
region is propagating parallel to the ion beam it is said to be co-propagating and denoted by  in 
the table. If the electric field is propagating anti-parallel to the ion beam it is called counter-
propagating and denoted by  in the table.  The final column gives the fitted center of the 
observation, fmeasured, in MHz.  Below the measurements, the final column gives the weighted 
average of each directions of propagation, if more than one measurement exists. The final result, 
the straight average of the two directions of propagation is also given in the final column along 
with the apparent β.  The difference between the apparent β and the calculated β from the 
terminal potential is also given for each transition.  

  

 

  

Lab Book Direction fmeasured(MHz)

Average of 8 passes  1939.68(21)
JAK7-006, 007,008 and 009

Average of 10 passes  1936.22(26)
JAK7-010, 011,012,013,and 014

L =8 to 9

  Apparent β = 0.00089(9)

 AVG of  and   = 1937.95(17)

Δ β = 0.00007(9)

Lab Book Direction fmeasured(MHz)
Average of 7 passes  1009.39(38)
JAK3-008, 009, 010, and 011

Average of 9 passes  1007.74(34)
JAK2-137abc, 138, 139,140,and 141

             Apparent β = 0.00082(25)
Δ β = 0.00014(25)

 AVG of  and   = 1008.57(25)

L =9 to 10
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Table 3.2 continued: 
 

  

 

 

 
 

 

Lab Book Direction fmeasured(MHz)
JAK2-095  562.32(34)
JAK2-095b  563.00(29)
JAK2-096  562.64(17)
JAK2-114c  561.90(26)
JAK2-115  561.52(20)
JAK2-115b  561.94(30)

               Apparent β = 0.00085(18)

L =10 to 11

Weighted AVG of  = 562.67(14)
Weighted AVG of  = 561.72(14)
   AVG of  and   = 562.20(10)

Δβ = 0.00009(18)

Lab Book Direction fmeasured(MHz)
JAK2-035 & 35b  331.96(43)
JAK2-36abc  331.87(26)
JAK2-38 & 38b  331.92(20)
JAK2-084  331.70(23)
JAK2-091  331.62(12)
JAK2-112  330.96(9)

 Weighted AVG of  = 331.73(9)
                     Only  = 330.96(9)
    AVG of  and   = 331.35(6)

           Apparent β = 0.00116(20)
Δβ = -0.00020(20)

L =11 to 12
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Table 3.2 continued: 

 

The measurement of the single photon transitions allowed for the exact energy interval 

for the n=37 L=8 to 13 to be precisely mapped out.  This extended the measured fine structure to 

include two additional Ls not included in the optical study, the L=12 and L=13.  These higher-Ls 

were not well resolved in the optical RESIS excitation spectrum, Fig. 3.3 shows a zoomed in 

look of the resolved structure around the high-L for the n=37 to 73 transitions.  The minimum 

width of the transitions in the n=37 to 73 optical excitation spectrum is on the order of a couple 

hundred MHz.  As the Ls states get closer together in energy they will not be resolved from each 

other.  From Fig. 3.3 it can be seen that the L=10 is well resolved from the high-L, the L=11 is 

partial resolved from the high-L, but all the other higher-Ls are not resolved from the high-L.  

The position of the L=12 excitation was resolved from the high-L by the observation of the L=11 

to 12 rf transition, thus enabling the observation of the L=12 to 13 rf transition. 

Lab Book Direction fmeasured(MHz)
JAK2-093  204.74(8)
JAK2-093b  204.73(6)
JAK2-100  204.56(9)
JAK2-102  204.53(11)
JAK2-109  203.50(9)
JAK7-015  204.20(5)
JAK7-018  204.73(6)

Δβ = 0.00003(32)

Weighted AVG of  = 204.33(12)
 AVG of  and   = 204.52(6)

 Apparent β = 0.00093(32)

L =12 to 13

Weighted AVG of  = 204.71(4)
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Figure 3.3: Zoomed in look of the n=37 to 73 RESIS optical excitation spectrum for Th3+ 
Rydberg states.  The x-axis is the energy deviation from hydrogenic in GHz, and the y-axis in the 
signal.  The plot show the original signal in black and the signal times ten in red. The individual 
transitions are labeled. The dashed line shows the position of the n=27, L=12 excitation, inferred 
from the L=11 to 12 rf signal.   
 

The measurement of the rf transitions using the RESIS technique relies on the ability to set both 

LIRs on one of the L states involved in the rf transition of interest, to detect the population 

change produced from rf transitions.  Moving to higher Ls makes the states closer together, so it 

is no longer possible to optically resolve the two L-levels of the transitions. Thus it is 

problematic to set the LIRs on just one of the L levels to detect the population change.  

Therefore, multi-photon transitions are used to measure the position of higher-Ls with respect to 

the highest L that can be resolved.  The L=12 is able to be partially resolved from the high-L, by 

the L=11 to 12 rf transition, allowing for the detection of the population change to it by the 

multi-photon transitions with the L=14 and the L=15, using two photon and three photon 

transitions respectively.  
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The observation of the multi-photon transitions in the high-L Th3+ Rydberg fine structure 

requires higher power than the single photon transitions, and these transitions are also susceptible 

to AC shift, this is discussed in Section 2 of Chapter 2.  Table 2.1 gave a summary of the power 

necessary and the calculated AC shift for the L=12 to 13 and L=12 to 15 transitions in the n=37 

Th3+ Rydberg fine structure.  Using the estimated power necessary for the two and three photon 

transitions, both transitions were found, examples of both are shown in the Appendix A.  For the 

initial observation of the transitions the power was set within a factor of two of the calculated 

optimum power.  The size of the AC shift for a transition is a function of the amount of power 

being used in the observation.  The AC shifts were calculated using a simplistic model that 

assumed that all the coupling potential between levels is not dependent on L or m.  Table 3.3 

gives the AC shifts at saturation power determined by the model discussed in Chapter 2. 

Table 3.3: Calculated AC shift rates for the multi-photon transitions in the n=37 Th3+ Rydberg 
fine structure. Column one lists the transition, and column two gives the saturation power.  The 
third column gives the AC shift expected at saturation power. The fourth column gives the 
calculated AC shift rate in terms of MHz/mW.  

 
To confirm the size of the AC shifts and the corrections that needed to be applied to the 

multi-photon transition intervals for this effect, it is necessary to measure the actual shift rate of 

at least one of the multi-photon transitions.  Since the three photon transition experiences a larger 

shift, Table 3.3, its shift was measured to confirm the calculation done to predict the AC shift 

rates.  For the three photon, n=37  L=12 to 15, four different power settings were used to observe 

the transition, with the power reading being taken from the rf power exiting the rf region, Pexit.  

With each power setting two measurements were taken, one in each direction of propagation.  

L -L ' Psat(mW) AC shift at Psat Shift Rate (MHz/mW)
12-14 0.064 0.066MHz 1.04
12-15 0.956 0.680MHz 0.72
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The two directions of propagation were then averaged to find the Doppler corrected position of 

the transition for that power setting; this subset of data is in Table 3.4.   

Table 3.4: A sub set of the observations of the n=37 L=12 to 15 in the Th3+ Rydberg fine 
structure.  The transition was observed at four different powers, with each power observed in 
both direction of propagation. The average position for each power was then found to correct for 
the Doppler shift, along with averaging the power for the two observations. 

 
All the data taken to determine the AC shift rate was taken on one day, to limit the influence of 

other factors on the positions of the transitions.  To find the experimental shift rate for the three 

photon transition the average position was plotted as a function of the rf power exiting the rf 

region, Fig 3.4.  The data was then fitted to find the shift rate, both a weighted linear and un-

weighted linear fit of the data was carried out.  An average of the two different fitting methods 

was made to find the shift rate for the n=37 L=12 to 15 transition, the average fit of the data is 

shown by the red line in Fig. 3.4. 

Lab Book Direction Pexit  (mW) fmeasured(MHz) fAVG (MHz)
JAK7-019  0.254 422.87(24) 422.71(16) 
JAK7-030  0.262 422.55(22) PAVG=0.26mW

JAK7-021  0.64 423.81(8) 423.45(5)
JAK7-029  0.66 423.09(6) PAVG=0.65mW

JAK7-022  1.29 424.19(14) 423.81(10)
JAK7-028  1.29 423.43(15) PAVG=1.29mW

JAK7-025  1.72 424.48(33) 424.44(22)
JAK7-026  1.70 424.40(28) PAVG=1.71mW
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Figure 3.4: Extrapolation of the AC shift rate for the n=37 L=12 to 15, three photon transition. 
The x-axis is the power coming out of the rf region in mW and the y-axis is the average location 
of the transitions in MHz.  The data for this plot came from a subset of L=12 to 15 observations, 
shown in Table 3.3.  The fit of the data is the red line on the plot. 
 

The fit of the data showed that the three photon, n=37 L=12 to 15, shift rate was 

0.98(21)MHz/mW.  This measured shift rate is only 1.24 standard deviations away from the 

calculated AC shift rate for this transition, showing the method used to approximate the multi-

photon transitions is adequate.  The two photon transition was then inferred using the 

experimentally determined three photon shift rate and the ratio of the calculated two photon and 

three photon shift rates.  That ratio of the calculated shift rates showed that the two photon shift 

rate should be 1.46 times larger than the three photon shift rate.  The two photon shift rate was 

inferred from multiplying that ratio times the experimentally determined three photon shift rate.  
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Therefore the AC shift rates for both of the multi-photon transitions was determined along with 

their errors and given to be   

 

12 14

12 15

( ) 1.43(31) /
( ) 0.98(21) /

v inferred MHz mW
v measured MHz mW





  
     

with the power reading taken from the exit of the rf region in mW.   

The determination of the AC shift rates for the multi-photon transitions allowed for the 

correction of the observation for their AC shifts.  The observations for the n=37 L=12 to 14 and 

the n=37 L=12 to 15 are given the in Table 3.5 and examples of both are shown in Appendix A.  

In Table 3.5 the observed location of the transitions is given along with the direction of 

propagation and the power used to make the observation.  Using the experimentally determined 

shift rates for each of the transitions, the AC shift for each observation was determined, and the 

observation was corrected for the AC shift.  Both the shift and the corrected position of the 

observation are shown in the Table 3.5.  Then like the single photon transitions, a weighted 

average of each direction of propagation was made, then a straight average of the two directions 

was done to correct for the Doppler shift.  The error on the final result of each of the multi-

photon transitions is the quadrature sum of the uncertainty in the average position of the 

transition and the uncertainty in the AC shift.  The apparent β for each transition was also 

calculated to check that the correct Doppler shift was observed.  For both transitions the apparent 

β was within error of the expected β, as was seen with the single photon as well.  From Table 3.5 

it can also be seen that the correction to the L=12 to 14 transition for the AC shift was on average 

0.16MHz while the correction to the L=12 to 15 transition was 0.74 MHz on average.  
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Table 3.5: Measured multi-photon transitions observed in the n=37 Th3+ Rydberg fine structure.  In this table there is a section for 
each of the multi-photon transitions. The first section is for the two photon L=12 to 14 transition and the second section is for the three 
photon L=12 to 15.   The first column gives the location in the lab book the data was taken from; the second column gives the 
direction of propagation.  The co-propagating direction is denoted by and the counter-propagating direction is denoted by .  The 
third column gives what reading of the power exiting the rf region was during the observation.  The fourth column gives the observed 
position, fmeasured, in MHz of the transitions for the given power and direction of propagation.  The fifth column gives the AC shift in 
MHz experienced by the transition given the amount of power exiting the rf region during the observation and the shift rate of the 
transition.  The final column gives the position of the transition after it has been corrected for the AC shift, fcorrected, in MHz.  The 
weighted average of both directions of propagation was then found for the uncorrected observation, the AC shift and the corrected 
observation.  A straight average of the weighted averages of the two direction of propagation was then taken to find the Doppler 
corrected position of the transition.  The final reported interval is then shown at the bottom along with the apparent β and Δβ, the 
difference between the apparent β and the β calculated from the terminal potential. The error on the final interval is the quadrature sum 
of the error in the AC shift and the error in the corrected average position. 

  

Lab Book Direction Pexit (μW) fmeasured(MHz) AC Shift (MHz) fcorrected(MHz)
JAK2-094  130 336.33(11) 0.19(4) 336.14(11)
JAK2-099  80 335.86(26) 0.11(2) 335.75(26)
JAK2-099b  80 336.44(12) 0.11(2) 336.33(12)
JAK2-101  52 335.33(19) 0.07(2) 335.26(19)
JAK2-110  80 335.52(17) 0.11(2) 335.41(17)
JAK7-016  126 335.50(8) 0.18(4) 335.32(8)
JAK7-017  126 336.10(9) 0.18(4) 335.92(9)

Weighted AVG of  = 336.23(10) 0.16(3) 336.07(10)
Weighted AVG of  = 335.48(7) 0.16(3) 335.33(7)
   AVG of  and   = 335.86(6) 0.16(3) 335.70(6)

Final = 335.70(7)
  Apparent β = 0.00110(18)

 Δβ = -0.00014(18)

L =12 to 14
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Table 3.5 continued: 

 

 

Lab Book Direction Pexit (mW) fmeasured(MHz) AC Shift (MHz)  fcorrected(MHz)
JAK2-094b  0.92 424.63(34) 0.90(20) 424.73(34)
JAK2-097  0.66 424.17(26) 0.65(14) 423.52(26)
JAK2-097b  0.42 423.60(42) 0.41(9) 423.19(42)
JAK2-098  0.26 423.98(34) 0.25(5) 423.73(34)
JAK2-111  0.64 423.19(47) 0.63(14) 422.56(47)
JAK2-116  0.64 423.56(33) 0.63(14) 422.93(33)
JAK7-019  0.25 422.87(24) 0.25(5) 422.62(24)
JAK7-021  0.64 423.81(8) 0.63(14) 423.18(8)
JAK7-022  1.29 424.19(14) 1.26(27) 422.93(14)
JAK7-025  1.72 424.48(33) 1.68(37) 422.80(33)
JAK7-026  1.70 424.40(28) 1.67(36) 422.73(28)
JAK7-028  1.29 423.43(15) 1.26(27) 422.17(15)
JAK7-029  0.66 423.09(6) 0.65(14) 422.44(6)
JAK7-030  0.26 422.55(22) 0.26(6) 422.29(22)

Weighted AVG of  = 423.88(9) 0.74(16) 423.14(9)
Weighted AVG of  = 423.17(7) 0.74(16) 422.43(7)
   AVG of  and   = 423.53(6) 0.74(16) 422.79(6)

Final = 422.79(17)
 Apparent β = 0.00084(13)

  Δβ = 0.00012(13)

L =12 to 15
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With the correction of the AC shift on the multi-photon transitions, the only other 

possible experimental corrections needed to the observed intervals comes from the possible DC 

Stark shift.  This can occur on all the intervals no matter if they are single photon or multi-

photon due to the possible presence of a stray electric field in the rf region during data taking.  

The DC Stark shift and its calculation is discussed in Section 4 of Chapter 2.  Instead of 

calculating the shift to each state for a specific electric field strength, Eq. 2.40 was divided by 

electric field squared allowing for the DC Stark shift rate with units of MHz/((V/cm)2) to be 

calculated for each of the states.  The DC Stark shift rate was calculated for each of the different 

Ls, L=8 to L=15 in n=37 and from those results the shift rates for each of the observed intervals 

was found, shown in Table 3.6.   

Table 3.6:  The n=37 Th3+ Rydberg fine structure DC Stark shift rates.  The first column of this 
table shows the transition and second column gives the observed frequency of the transition.  The 
third column gives the DC stark shift rate for the transition, κ, in MHz/((V/cm)2) 

 

The correcting of the transitions for the possibility of the DC Stark shift requires the knowledge 

of the magnitude of the stray electric field in the rf region during the data taking process. 

Unfortunately, the only way we have of monitoring possible stray field is by their influence on 

the measured interval, as was done in the determination of properties of Si2+ [37], assuming that 

any such field is constant,.  This method of determining the size of the stray electric field will be 

discussed in more detail in the next section. 

L -L ′ Interval (MHz) κ(MHz/(V/cm)2)
8-9 1937.95(17) -13.6

9-10 1008.57(25) -19.9
10-11 562.20(10) -17.9
11-12 331.35(6) -37.5
12-13 204.52(6) -48.6
12-14 335.70(7) -109.3
12-15 422.79(17) -182.9
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3.3 Determination of Th4+ properties 

The measurement of the seven n=37 Th3+ Rydberg fine structure intervals to sub-MHz 

precision presents the opportunity to extract the properties of Th4+ with a level of precision that 

could rigorously test the atomic theory calculations.  The determination of properties of Th4+ 

from the measurement of the Th3+ high-L Rydberg fine structure requires understanding the full 

effective potential, and the other effects that can contribute or affect the measured fine structure 

intervals.  Understanding these other contributions to the Th3+ high-L Rydberg fine structure 

allows for the correction of the measured interval so that it is possible to extract precise 

properties of Th4+ from the measurements. This section discusses the corrections applied to the 

measured intervals and the determination of the properties of Th4+from the corrected intervals. 

The properties of the core of the Th3+ Rydberg state, Th4+ determine the complexity and 

scale of the Th3+ high-L Rydberg fine structure.  Th4+ has a ground state of a 1S0, this means that 

the fine structure is just a scalar fine structure whose scale is controlled by a scalar effective 

potential.  The scalar effective potential is just the scalar component of the effective potential 

shown in Eq. 1.18, which shows only leading terms scalar due to the dominant scalar properties 

[7].  The Th3+ high-L Rydberg fine structure is primarily determined by the expectation value of 

the scalar effective potential, called the first order energy, [1]E , but additional effects not 

included in the effective potential model contribute to the measured fine structure intervals as 

well.  The additional effects not accounted for by the effective potential are the relativistic effect 

and the energy shifts due to coupling to intermediate Rydberg levels, which is referred to as 

[2]( )effVE .  Both effects are discussed in Section 1.2.  The energy of given states in the fine 

structure will therefore be the sum of the expectation value of the effective potential, [1]E , the 

relativistic effect, RelE  and the second order energies, [2] ( )effE V .  The rf measurements, obsE , 
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gives the measured energies difference between L states.  Therefore the observed energy 

intervals will be the result of differences in the expectation value of the effective potential, the 

relativistic correction and the second order energy, Eq. 3.1 

 
[1] [2 ]

RelobsE E E E        (3.1) 

where 

 
[1]

eff effE nL V nL nL V nL   
 (3.2) 

 Rel Rel Rel( , ) ( , )E E n L E n L    (3.3) 

and  

 
[2] [2] [2]( , ) ( , )E E n L E n L    (3.4) 

It is possible to calculate these other effects, the relativistic effect and the second order 

energies so that the measurements can be corrected for them.  The calculation of the relativistic 

corrections for the measured intervals is straight forward and given by Eq. 1.32, requiring only 

the input of the n, L and q for the level of interest.  The correction for the relativistic effect was 

calculated, the correction for the measured intervals ranged in size from approximately 5 to 

14MHz, well outside the uncertainty in the measured intervals.  The correction [2] ( )effE V can 

also be calculated.  The second order energies in terms of Veff, for general Jc has the form of Eq. 

1.28, and for the case in this chapter when Jc=0, the leading term (proportional to 2
,0( )D ), has 

been simplified by Drake and Swainson [38] to be given by the analytic formula, Eq. 3.5, which 

only requires the input of the n, q, and L of the states of interest along with an estimate of the 

scalar dipole polarizability, ,0D .  Higher order terms should be much smaller. 
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(3.5) 
 

The second order energies were calculated using the scalar dipole polarizability from the initial rf 

study [35], ,0 7.720(6)D  .  The second order energies were later recalculated using the scalar 

dipole polarizability reported in this work.  The slight difference in the second ordered energies, 

at most 0.03MHz for the L=8 to 9 interval, did not change the final fitted parameters.  The 

uncertainty in the scalar dipole polarizability also does not result in a large uncertainty in the 

calculation of the second order energies.  At most it produces 0.01MHz uncertainty in the 

calculation of the second order correction for the L=8 to 9 interval.  The effect to all the other 

intervals is less than 0.01MHz.  Values for both of the corrections to the measured intervals are 

shown in Table 3.7.  By applying both corrections to the measured intervals the difference in the 

first order energies, [1]E , were determined for each of the measured intervals, shown in Table 

3.7.   
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Table 3.7: Corrections to the n=37 Th3+ high-L Rydberg fine structure measurements, necessary 
before the properties of Th4+ can be extracted.  Column one gives the measured intervals and 
column two gives the measured frequency of the intervals, ΔEobs in MHz.  Column three gives 
the relativistic correction, ΔERel to the intervals in MHz and column four gives the second order 
correction, ΔE[2], in MHz.  Then column five gives the corrected positions, the first order 
energies, of each of the measured intervals in MHz. 

 
The difference in the first order energies extracted from the fine structure measurements 

can be then directly related to the difference in the expectation value of the scalar effective 

potential.  The dominant Th4+ property is the scalar dipole polarizability, ,0D , whose 

contribution to the first order energies is proportional to 4r  , the difference in the hydrogenic 

expectation value of r-4 [39].  Therefore, by scaling the first order energy differences, [1]E , by 

the 4r   , as shown in Table 3.8 the dominance of the Th4+ scalar dipole polarizability in the 

fine structure pattern can be demonstrated.  The ratio of the [1] 4E r    appears to be quite 

constant as seen in Table 3.8.  

 

 

 

 

 

L -L ' ΔEobs (MHz) ΔERel (MHz) ΔE[2] (MHz) ΔE[1](MHz)
8-9 1937.95(17) 10.96 7.18  1919.81(17)

9-10 1008.57(25) 8.88 1.96 997.73(25)
10-11 562.20(10) 7.33 0.61 554.26(10)
11-12 331.35(6) 6.16 0.21 324.98(6)
12-13 204.52(6) 5.25 0.08 199.19(6)
12-14 335.70(7) 9.77 0.11 325.82(7)
12-15 422.79(17) 13.71 0.12 408.96(17)
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Table 3.8: The scaled first order energy intervals for the n=37 Th3+ Rydberg fine structure 
measurement.  Column one gives the interval measured and column two the gives the first order 
energies of the intervals in atomic units.  The third column gives the difference in the hydrogenic 
expectation value of the r-4 in atomic units.  The column four gives the ratio of the first order 
energy to the difference in the hydrogenic expectation values of r-4.  The fifth column shows the 
ratio of the difference in the hydrogenic expectation of r-6 over r-4. The final column gives the 
DC stark shifts for the intervals scaled by the difference in the hydrogenic expectation value of  
r-4, with units of 21 ( / )V cm . 

 
To see the influence of the additional terms in the effective potential, the ratio of [1] 4E r    is 

plotted versus ratio of 6 4r r   , the ratio of the difference in the hydrogenic expectation 

values of r-6 over r-4, since the next term in the effective potential is proportional to r-6.  The 

polarizability plot, the plot of the ratio [1] 4E r    versus 6 4r r    is shown in Fig. 3.5.  

The error on the points in the polarizability plot are due to the uncertainty in the measured 

interval found in Section 2 of this chapter, for some of the points the error bar is smaller than the 

point itself.   

L -L ' ΔE[1](a.u)        (a.u.)  (V/cm)-2

8-9 2.91778(26)x10-7 7.36382x10-8 3.9623(4) 0.0142 -0.03
9-10 1.51638(38)x10-7 3.86990x10-8 3.9184(10) 0.0090 -0.08

10-11 8.4238(15)x10-8 2.16426x10-8 3.8922(7) 0.0060 -0.20
11-12 4.9391(9)x10-8 1.27367x10-8 3.8779(7) 0.0041 -0.45
12-13 3.0274(9)x10-8 7.36382x10-9 3.8706(12) 0.0030 -0.94
12-14 4.9519(11)x10-8 1.28006x10-8 3.8685(8) 0.0026 -1.30
12-15 6.2155(26)x10-8 1.60700x10-8 3.8678(16) 0.0024 -1.73

6 4r r  4r  [1] 4E r  4r 
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Figure 3.5: Plot of the scaled first order energies for the Th3+ Rydberg fine structure 
measurements. The x-axis is the ratio of the difference in the expectations value of r-6 over r-4. 
The y-axis is the first order energies scaled by the difference in the expectation value of r-4.  The 
error placed on each of the points is the result of the uncertainty in the measured intervals. 
 

Looking closely at the polarizability plot, Fig. 3.5 shows that there appears to be a slight 

upward curvature.  This curvature cannot be explained by the effects of the possible uncorrected 

DC Stark shift as the scaled DC Stark shift rates, seen in Table 3.8, would cause a curvature in 

the data in the opposite direction than the one observed.  This curvature is most likely the result 

higher order terms in the effective potential contributing to the fine structure intervals.  To show 

this the data shown in Fig. 3.5 was fit to the form of Eq. 3.6,  
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where the possibility of the higher order terms has been accounted for by the term proportional  

to 8 4r r   and the Stark shifts have been included by the last term.  In the last term 2
SFE is 

the stray electric field squared, since the shift rates have units of 2( . .) ( / )a u V cm , Table 3.8.  The 

fit of the data to the form of Eq. 3.6 returned these parameters: 
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with the fit of the data being weighted by the uncertainty in each of the data points.  The electric 

field squared determined by the fit was negative, which is physically impossible; the value of the 

electric field squared must be positive.  This demonstrates that the curvature in the data of Fig. 

3.5 is not of the correct sign to be due to DC Stark shifts.  

Therefore the fit was redone and the stray electric field squared was constrained to be 

positive, Fig. 3.6 is the result of such a fit of the data.  The refit found that when with the field 

was constrained to be positive, the quality of the fit was reduced, but the fit indicated that there 

was no stray electric field present in the rf region during the data taking.  When the electric field 

in the fit is set to zero the fit returned these parameters: 
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with their statistical uncertainties given.  The reduced chi-square of the fit is of 1.47, indicating a 

moderately good fit of the data (probability=21%).  
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Figure 3.6: Plot of the scaled first order energies fit to determine properties of Th4+, the data 
from the n=37 high-L Rydberg fine structure measurements was fit to Eq. 3.6, with the electric 
field constrained to be positive. The result of such fit is shown by the red line and intercept on 
the y-axis. The gray dashed line represents just a weighted linear fit of the data, not allowing of 
term proportional to r-8 or the term proportional to 2

SFE  in the fit.  
 

The uncertainty in the electric field determination needs to be considered, since it will produce a 

systematic uncertainty in the fitted parameters in addition to their statistical uncertainty.  To 

determine the uncertainty in the stray electric field, the quality of the fit was studied as a function 

of the assumed stray electric field squared.  Allowing for the possibility of a stray electric field 

squared as large as 0.0010(V/cm)2 increased the reduced chi-square of the fit to 2.15.  This 

corresponds to a factor of three decrease in the probability of the fit of the data.  This decrease in 

the quality of the fit was used as a way of putting a limit on the uncertainty in the stray electric 
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field.  A systematic uncertainty was added to each of the fitted parameters, corresponding to an 

uncertainty in the electric field square, 2
SFE , of 0.0010(V/cm)2.  The resulting fitted parameter 

then have two error bars placed on them  
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where the first number in the parentheses is the statistical uncertainty and the second number is 

the systematic uncertainty in the parameters due to the uncertainty in the possible stray electric 

field.  The systematic uncertainty is comparable in size to the statistical uncertainty in the 

parameters so it cannot be neglected.  The total uncertainty on each of the fitted parameters was 

then taken to be the quadrature sum of the statistical uncertainty and the systematic uncertainty, 

resulting in these final parameters and uncertainties   
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These fitted parameters provide the insight into the Th3+ high-L Rydberg fine structure 

and thereby the properties of Th4+, such as the scalar dipole and quadrupole polarizabilities.  The 

extraction of the scalar dipole and quadrupole polarizabilities of Th4+ from the fitted parameters 

appears to be just a matter of equating the fitted parameters with the properties that contribute to 

each of the parameters.  Eq. 1.18 only gave the leading term of the effective potential, neglecting 

the higher order terms.  The parameters determined here show that consideration of the higher 

order terms in the Th3+ high-L Rydberg fine structure is necessary.  Eq. 3.7 gives the difference 

of the first order energies scaled by the differences in the hydrogenic expectation value of r-4, 

recall the first order energy is expectation value of the effective potential.  
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The first two terms are the familiar leading terms from Eq. 1.18 made up of the dominant scalar 

properties, the scalar dipole polarizability, ,0D , scalar quadrupole polarizability, ,0Q  and 1st 

non-adiabatic dipole polarizability, ,0D .  The additional higher order contributions come from 

the 2nd non-adiabatic order scalar dipole polarizability, ,0D , the adiabatic scalar octupole 

polarizability, αO,0 and the 1st non-adiabatic quadrupole polarizability, ,0Q .  All of these 

properties are defined in terms of matrix elements of the core and excitation energies in the work 

of Woods [7].  The 1st adiabatic contribution from the third-order perturbation energy, δ, is not 

presented in the work of Woods [7], but this term’s importance in the scalar effective potential 

has been seen in the work with the Rydberg fine structure of Si+ [34].   

The extraction of the scalar dipole and quadrupole polarizabilities of Th4+ from the fitted 

parameters appears to be just a matter of equating the fitted parameters, B4, or B6 with the 

coefficients of Eq. 3.7, C4 or C6.  This simplistic equating of the fitted coefficients with the 

properties assumes that the additional higher order terms, proportional to 7 4r r    and 

8 4L(L+1) r r   , neglected in the fitting of the data, are somehow accounted for by the C8 

term.  The work with the determination of the Si2+ properties showed that this assumption about 
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the additional higher order term is incorrect.  These additional higher order terms can alter all the 

fitted parameters [34].  This makes the equating of coefficients in Eq. 3.7 with the fitted 

parameters to determine properties of Th4+ problematic, unless the effects from the higher order 

terms are accounted for.  It is, unfortunately, impractical to extract each Ci coefficient in Eq. 3.7 

independently from the data because their contributions are not linearly independent.  

Table 3.9: The ratio of the hydrogenic expectation values in the n=37 for the Th3+ Rydberg fine 
structure [39].  All values are in a.u. 

 
Table 3.9 provides values of the ratio of the hydrogenic expectation values involved in 

the higher order terms in Eq. 3.7.  To understand different terms in Eq. 3.7 and their effect of the 

polarizability plot, each of the terms were graphed versus the 6 4r r    for the seven data 

points in the study reported here in Fig. 3.7.  Each of the terms was normalized to one for the 

L=8 to 9 point so that all of the curves could be visible on the same plot.  From this plot it can be 

seen that the first two terms of the Eq. 3.7 contribute to the intercept and the slope for the 

polarizability plot.   

 

L -L '
8-9 1.7128x10-3 1.4287x10-2 2.1310x10-4

9-10 8.5781x10-4 6.9317x10-3 8.3319x10-5

10-11 4.6188x10-4 3.6441x10-3 3.6056x10-5

11-12 2.6339x10-4 2.0390x10-3 1.6897x10-5

12-13 1.5738x10-4 1.1993x10-3 8.4448x10-6

12-14 1.3418x10-4 1.0186x10-3 6.8910x10-6

12-15 1.1964x10-4 9.0609x10-4 5.9878x10-6

8 4r r  7 4r r   8 4L(L+1) r r  
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Figure 3.7: Plot of the terms in Eq. 3.7 versus the 6 4r r    for the seven point measured 
in the study.  All the terms were normalized to one for the L=8 to 9 point so that the terms could 
be on the same y-axis.  
 

The three higher order terms would all contribute to the curvature and the initial slope.  The term 

proportional to the 7r   and the term proportional to the 8( ( 1))L L r    appear very similar 

in shape and are intermediate in shape between the term proportional to 8r   and 6r  .  In 

fact, both of these terms can be represented as a linear combination of 4r , 6r  and 8r .  As a 
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result, while all these higher order terms might be contributing to the scaled first order energies, 

the data can be accounted for by just including terms proportional to 8 4r r    in the fit, 

like what was done in Eq. 3.6.  Any contribution of the terms proportional to 7 4r r    

and 8 4( ( 1))L L r r    to the data will influence the choice of fit parameters, and this must 

be considered in interpreting the parameters. 

The effect of these higher order terms were explored in the study of high-L Rydberg 

states of Si+ which determined properties of Si2+ [34].  Following the same approach as the 

silicon study, the size of these additional higher order terms was taken from calculations. Their 

effects on the parameters extracted from the fit of the data were estimated by the parameterizing 

their shape.  The parameterization of the additional higher order terms, 7 4r r    and 

8 4L(L+1) r r   , were carried out by fitting these additional higher order terms to Eq. 3.6, 

in the same ways as the data was fit, with the exclusion of the term responsible for the DC Stark 

shifts.  The fit of the higher order terms used the same weights as the fit of the scaled first order 

energies and the fits of these two additional higher order terms are shown in Fig. 3.8.  



119 
 

<r-6>/<r-4>  

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

 
<r

-7
>/
<

r-4
> 

   
  

(
L(

L+
1)

<r
-8

>/
<

r-4
> 

  

0.000

0.005

0.010

0.015

 <r-7>/<r-4>      

(L(L+1)<r-8>/<r-4>   

 

Figure 3.8: The fit of the higher order terms in theTh3+ Rydberg fine structure for the seven 
points measured in n=37.  The fit for each of set of point is shown by the solid line connecting 
each set of points. Each line is labeled by which higher order term it is.  
 

The parameters determined from the fits of the additional higher order terms will show how each 

of the higher terms contribute to the parameter determined from the fit of the data.  The fit of 

each of the higher order terms to Eq. 3.6 gave the resulting parameters  
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With these results, the fitted parameter from the data, B4, B6 and B8 can be written as a linear 

combination of the expected coefficients, C4, C6 and C8, and the additional higher order terms C7 

and C8,L(L+1), Eq. 3.8. 
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Then by substituting in the appropriate coefficients from Eq. 3.7 into Eq. 3.8, B4, B6 and B8 can 

be written in terms of core properties, including four properties taken from calculations ,0D ,  , 

,0D  and ,0Q . 
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 (3.9) 

This method of parameterizing for the higher order terms allows for the contribution of the 

higher order terms to be accounted for during the determining of the core properties, allowing the 

fitting of the actual data to be done with just the first three terms in Eq. 3.6.   

The extraction of the properties from Eq. 3.9 and the parameters found from the data 

requires knowledge of the some of the additional properties of Th4+.  The extraction of the scalar 
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dipole polarizability, ,0D  and scalar quadrupole polarizability, ,0Q , from the B4 and B6 

parameters both rely on properties that are dependent on the dipole operator.  For the case of 

Th4+ there exist theoretical calculations of the first non-adiabatic scalar dipole polarizability, ,0D  

and the 2nd non-adiabatic scalar dipole polarizability, ,0D .  U. I. Safronova and M. S. Safronova 

used the relativistic random-phase approximation (RRPA) technique to calculate both of these 

properties to an estimated 5% precisions [40].  

 

,0

,0

2.97(15) . .
1.177(59) . .

D

D

a u
a u







   

The quoted 5% uncertainty is the result of their comparison of the calculation of the scalar dipole 

polarizability, ,0D  using the RRPA technique and a more accurate technique, the coupled-

cluster technique, for many different ions [40], but not including Th4+.  The calculation of ,0D

relies on the same matrix elements and excitation energies as the calculation of ,0D  and ,0D .  

But this 5% uncertainty on the RRPA calculation of Th4+ appears to be conservative given the 

fact that the calculated value, ,0 7.75D   proved to be within 1% of the determination of the 

scalar dipole polarizability from preliminary rf measurements [40].   

While there were reported calculations for ,0D  and ,0D , at the beginning of the 

preliminary rf measurements, there were no estimates of δ.  The δ, is the result of the first 

adiabatic contribution to the third order energy and it is defined in terms of dipole and 

quadrupole matrix elements and excitation energies by Eq. 3.10 [34], 
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 (3.10) 

where D


 is the dipole operator , 1M [ ]  and Q


 is the quadrupole operator, 2M [ ] , defined in Eq. 

1.14.  To calculate this parameter, δ, it is necessary to sum over two excited states so the matrix 

elements and the excitation energies between the states are needed.  The denominator of the both 

the terms of δ are the product of energy differences between some excited states and ground 

state, unfortunately no measurements of the positions of any of energy levels of Th4+ involved in 

the calculation exist.  Therefore, to calculate δ it is necessary to have the excitation energies, the 

matrix elements connecting the ground state to the excited states, and the matrix elements that 

interconnect the excited states.  The fifteen lowest excited states are involved in the estimating of 

δ, seven odd Jc=1 excited states and eight even Jc=2 excited states. 

During the preliminary rf study [35] theoretical estimates of the matrix elements needed 

to calculate δ were determined from transition strengths provided by Don Beck [41], but that 

method of determining the matrix elements only gave the magnitude of the matrix elements.  

Therefore using the magnitude of the matrix elements involved, it was possible to only get a 

rough estimate of the δ, 

 0 30 . .a u     

with the large uncertainty due to uncertainty in the signs of the matrix elements.  This rough 

estimate of the δ parameter was used in the analysis of the preliminary rf data, and gave insight 

to the importance of the δ in extracting the ,0Q  from the measurements.  After the completion of 
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the preliminary study it was determined that even if additional rf intervals were measured in the 

n=37 Th3+ high-L Rydberg fine structure, the analysis would be limited by the uncertainty of the 

estimated δ.  Therefore, included in the publication of the preliminary rf results was a plea for the 

assistance in the calculation δ.  Thankfully, M.S. Safronova undertook the calculation of the 

matrix elements and excitation energies necessary to calculate δ, including the sign, some of 

these calculations are reported in Ref. [40] while others were provided privately [42].  Two 

different approaches were used to calculate the necessary matrix elements and excitation 

energies needed to determine δ.  The first approach used the multiconfiguration Dirac-Fock 

(MCDF) technique and that led to δ=16.8 a.u.  The second approach used relativistic many body 

perturbation theory (RMBPT), which determined δ=14.0a.u.  Given the difficulty of the 

calculation of δ, and with no clear indication of one method being more precise, the average of 

the two different approaches, MCDF and RMBPT, was taken as the result.  A conservative 25% 

error was attached to that result to indicate the difficulty of such a calculation. 

 15.4 3.9 . .a u     

Both of these results and the average are within the error bar of the previous estimate δ=0±30a.u. 

used to analyze the preliminary rf measurements [35].  This improved determination of δ was 

used in analysis presented here and in Ref. [36].  

Using the theoretically calculated properties ,0D , ,0D , and δ it is possible to extract the 

scalar dipole and quadrupole polarizabilities, using Eq. 3.9 from the B4 and B6 found from the fit 

of the data.  The scalar dipole polarizability is given by  

 

3 5
,0 4 ,02 2.60(44) 10 6.46(82) 10

7.700(6) 0.0031(5) 0.0010(3)
D DB x x     

     

which results in a determination of  
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 ,0 7.702(6) . .D a u    

The uncertainty of the scalar dipole polarizability is only 0.08% and the net effect of the higher 

order terms proportional ,0D and   is less than the measurement uncertainty. 

 

The scalar quadrupole polarizability is given by  

 

,0 6 ,0 ,02 6 2.46(12) 0.064(2)

13.2(1.3) 17.8(9) 2.9(2) 1.0(3)
Q D DB      

      

which resulted in the determination of  

 ,0 29.1(1.6) . .Q a u    

The uncertainty on the scalar quadrupole polarizability is 5.5%.  This large uncertainty is 

primarily due to the difficulty in determining the initial slope of the polarizability plot.  For the 

scalar quadrupole polarizability the higher order terms also play a significant role in the 

determination of its value.  Their inclusion decreases the extracted value of the scalar quadrupole 

polarizability by 6.5%.  The determination of both of these properties with this level of precision 

provides the most accurate experimental determination of any Th4+ properties to date.  Both the 

scalar dipole polarizability and the scalar quadrupole polarizability shown here were reported in 

Ref. [36].   

 The other parameter determined from the fit of the data, B8, gives information on the 

scalar octupole polarizability of Th4+.  The interpretation of this parameter was not the reported 

in Ref. [36] since it required knowledge of an additional core property that had not been 

estimated at the time of the publication.  The additional property needed to extract the scalar 

octupole polarizability was the first non-adiabatic scalar quadrupole polarizability, for which no 
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theoretical estimates existed.  The work of U. I. Safronova and M. S. Safronova [40] does 

calculate the matrix elements and the energies for the three lowest states and that work also 

estimated the location of the next highest state.  Then using the formula for the first non-

adiabatic scalar quadrupole polarizability presented in the work of Woods [7], it was possible to 

estimate this property.  

 ,0 51(3) . .Q a u    

The uncertainty in this property is primarily due to the fact that the contributions from the 

additional states, other than the first three states, had to be estimated using the scalar quadrupole 

polarizability and the estimated energy of the next highest state.  Plugging the estimate ,0Q  into 

the formula for B8 given in Eq. 3.9 along with the other core properties allows for the scalar 

octupole polarizability to be given by   

 

,0 8 ,0 ,02 6 300(16) 4.2(1.2)

176(66) 306(18) 354(26) 64(24)
O Q DB      

      

which results in this determination of the scalar octupole polarizability   

 ,0 192(77) . .O a u    

This value for the scalar octupole polarizability is 2.5 sigma away from zero, and represents the 

first time that scalar octupole polarizability has been extracted from experimental measurements 

for Th4+.  

 As the previous discussion indicated, the three Th4+ polarizabilities, ,0D , ,0Q , and ,0O , 

extracted from the measurements are all dependent at some level on the calculation of other 

properties. Even though the extracted properties are primarily dependent on the fitted 

parameterization of the experimental measurements (B4, B6, and B8) theoretical estimates of 
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other core properties are needed to extract the final values of the polarizabilities.  To clarify this 

interdependence, Table 3.10 lists the polarizabilities and summarizes the measured and 

calculated values that enter into their determinations.  Examination of Table 3.10 shows that the 

values obtained for the dipole polarizability is only minimally dependent on the calculated 

properties, but both the quadrupole and octupole polarizabilities have substantial contributions 

from calculated properties.   

Table 3.10: Summary of the dependence of the three adiabatic polarizabilities of Th4+ extracted 
from this study on the measured parameters (B4, B6, and B8) and the calculated Th4+ properties. 
Column one lists the reported polarizability and indicates its quoted precision.  Column two 
shows the relevant measured parameters and it quoted precision.  Column three shows the 
percentage contribution of the measured parameters to the final result for the polarizability.  
Column four lists the calculated properties used to obtain the final result and indicates its 
assumed precision.  Column five shows the percentage contribution of each calculated property 
to the final result.  

 

The calculated properties ,0D  and ,0D  depend on the distribution of the dipole excitation 

strengths and their estimated precision (5%) is likely very conservative given the 1% agreement 

for ,0D  obtained with the same theoretical method.  Their influence on the extracted values of 

Property Measured Contribution from Calculated Property Contribution from 
(precision)  (precision) Measured  (precision) Calculated

(0.08%) B4 (0.072%) 99.974(78)% (5%) 0.040(6)%
(25%) -0.013(4)%

(5.5%) B6 (10.2%) 45.4(4.5)% (5%) 61.2(3.1)%
(5%) -10.0(7)%
(25%) 3.4(1.0)%

(40%) B8 (37%) 92(34)% (6%) 159(9)%
(5%) -184(14)%
(25%) 33(13)%

,0D

,0Q

,0O

,0D

,0D

,0D







,0D

,0Q
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,0Q  and ,0O  is substantial but they have only slight influence on the quoted uncertainties of 

these extracted properties. The calculated quantity   plays a similar role for both ,0Q  and ,0O .  

Its estimated 25% uncertainty is based on the level of agreement between the two calculations, as 

discussed.  The calculated property ,0Q  is important for extracting the value of the octupole 

polarizability ,0O , but it contributes little to its uncertainty.  

3.4 Summary of Th4+ properties 

Before August 2010, there existed no independent experimental measurements of any 

kind for Th4+ properties.  The experimental work reported here in this dissertation on the 

determination of the properties of Th4+ is the culmination of years of the experimental work on 

the measurement of the high-L Th3+ Rydberg fine structure for the purpose of extracting 

properties of Th4+.  The results for all experimental and theoretical determinations of the scalar 

dipole polarizability, scalar quadrupole polarizability, and the scalar octupole polarizability of 

the Th4+ are shown in Table 3.11.  All the experimental determinations of the properties, seen in 

Table 3.11, are the result of RESIS measurement, either optical or rf.  The comparison of these 

experimentally determined properties of Th4+ offer a benchmark test of the atomic theory used to 

calculate properties for ions like Th4+. 

The precision of the scalar dipole polarizability, 0.08%, offers the most rigorous test of 

any of the atomic theoretical calculations of Th4+ to date.  The 4C FSCC calculation of the scalar 

dipole polarizability is within 0.2% of the experimental value reported in this work [43].  The 4C  

FSCC acronym is not clearly defined in the Ref. [43].  The relativistic random phase 

approximation (RRPA) of the scalar dipole polarizability is within 0.6% current experimental 

value [40] and the Relativistic Coupled Cluster including single, double and partial triple 

excitation (RCCSD(T)) calculation comes out within 0.04% of the experimental value.   
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Table 3.11: The experimentally and theoretically determined properties of Th4+. Column one 
gives the property being compared, either the scalar dipole polarizability, αD,0 or scalar 
quadrupole polarizability, αQ,0.  The second column reports all experimental determination of 
these two properties.  The third column reports all the theoretical determination of these two 
properties. All properties are in atomic units. 

 
aThis work, reported in Reference [36], with the exception of the  

   octupole polarizability* 
bReference [35] 
cReference [21] 
dRCCSD(T), Schwerdfeger and Borschevsky [44] 
e4C FSCC, Réal, Vallet, Clavaguéra and Dognon [43] 
fRRPA, M.S. Safronova and U.I. Safronova [40] 
gDHF, Safronova and U.I. Safronova [40] 
hFraga, Karwowski, and Saxena [2] 
 

The experimental scalar dipole polarizability differs from the relativistic Dirac-Hartree-Fock 

(DHF) by 16% [40] and the non-relativistic Hartree-Fock [2] by 33%, indicating how difficult 

such calculations can be for a system such as Th4+.  There are only two theoretical calculations of 

the scalar quadrupole polarizability and the comparison with theory is limited by the 5.5% 

Property Experiment (a.u.) Theory (a.u.)
αD,0 7.702(6)a

7.699d

7.720(7)b 7.716e

7.61(6)c 7.75f

8.96g

10.26h

αQ,0 29.1(1.6)a 28.82f

21.5(3.9)b 24.54g

47(11)c

αO,0 192(77)a* 192.5f

148.5g
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precision of the experimental.  The theoretical calculation of the scalar quadrupole polarizability 

with RRPA comes out within 1% of the experimental value, while the DHF result differs by 

more than 15% [40].  Both of the theoretical calculations of the scalar octupole polarizability are 

within the error of the experimental determined value, with the value from the RRPA calculation 

closer than the value determined from DHF calculation [40].  

While the scalar dipole polarizability was determined very precisely, the precision of the 

scalar quadrupole polarizability is only moderate.  This is mostly due to the precision of the 

initial slope, B6, determined from the polarizability plot.  The precision of the B6 might be 

improved if an additional transition, the L=7 to 8 in n=37, was measured adding an additional 

point to the polarizability plot, but that might prove experimentally challenging.  This additional 

fine structure measurement would also allow the possible improvement of the precision of the 

fitted curvature of the data; therefore the precision of the scalar octupole polarizability might be 

improved as well, but only if the precision of the theoretical properties used in the extraction of 

the properties from the fitted parameter were also improved. The measurement of the properties 

of Th4+ present in this work provide a benchmark test for the theoretical calculation of systems 

such as Th4+ and it is hoped that additional calculations of the properties of Th4+ will be 

conducted and tested against the results presented here.  
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Chapter 4: Th3+ experiment-optical study  

4.1 Background on the Th3+ experiment 

Francium-like thorium, Th3+, was the second thorium ion of interest for this program of 

study.  The fine structure for the high-L Th2+ Rydberg states is much more complicated than the 

fine structure for the high-L Th3+ Rydberg states explored in the previous chapter, since the 

ground state of Th3+ is 2
5/2F  with Jc=5/2.  Instead of the one energy level for each L seen in the 

previous chapter with the Rydberg fine structure of Th3+, the Rydberg fine structure of Th2+ has 

six levels for each L.  Each energy level will be denoted by its L and K values.  The scale and the 

separation between the energy levels in this complex Rydberg fine structure will be determined 

by not only polarizabilities but also permanent moments of the core, Th3+.  For example, Fig. 4.1 

shows the simulated fine structure of high-L Th2+ Rydberg levels in n=28, for L=9 to 12.  The 

splitting of the six levels for each L in the simulation, Fig. 4.1, is determined primarily by the 

permanent quadrupole moment of Th3+ and the shifting of the center of gravity of the levels for 

each L away from hydrogenic determined primarily by the scalar dipole polarizability.  Unlike 

the Rydberg fine structure of Th3+ seen in the previous chapter , the fine structure explored in this 

Chapter will have a scalar, vector, 2nd rank tensor, 3rd rank tensor and 4th rank tensor component, 

all of the component seen in the effective potential, Eq. 1.18.   
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Figure 4.1: Simulated fine structure for n=28 Th2+ Rydberg states L=9 to 12.  This structure was 
simulated assuming the theoretical estimates of the permanent quadrupole moment and the scalar 
dipole polarizability. The y-axis has unit of the GHz.  
 

The only other time that an ion with Jc=5/2 has been studied with the RESIS technique is 

the recent study of nickel [11].  To gain experience with this type of fine structure pattern, Ni+ 

with ground state 2
5/2D  was studied with both optical [20] and rf RESIS [11].  The study of 

nickel was crucial to expanding knowledge of Rydberg fine structure, without which the study of 

the Th2+ Rydberg fine structure would most likely not have been possible.  Like the study of the 

Th4+ ion, the study of the Th3+ ion began with the optical RESIS study, so that preliminary 

properties of Th3+ could be determined.  The results of the optical study are reported in this 

chapter.  Chapter 5 deals with measurements of the Th2+ Rydberg fine structure with the rf 

RESIS technique and Chapter 6 with the extraction of the properties of Th3+.   
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4.2 Optical measurements of the Th2+ Rydberg fine structure 

The optical RESIS technique was used for the initial study of the Th2+ Rydberg fine 

structure.  This work is discussed in this chapter and has also been reported in Ref.[3].  Chapter 2 

discussed the technique and gave details of the experimental apparatus.  The application of this 

technique to measure the Rydberg fine structure of Th2+ required no major changes to the optical 

RESIS apparatus.  At the time of Th2+ Rydberg fine structure measurement, the Th3+ Rydberg 

fine structure was also being measured, so the ECR already had thorium installed and was 

producing thorium beams.  The observation of the Th2+ Rydberg fine structure required that the 

Th3+ beam coming out of the ECR be selected and tuned down the beam line instead of the Th4+.  

Chapter 2 gave details on the different components of the experimental apparatus used in the 

observation of the optical RESIS.  The setting of some components, the repeller and detector, 

had to change for the observation of the specific Th2+ Rydberg fine structure, but the changes 

were predicted by the discussion of the technique presented in Chapter 2.   

 The selection of a specific RESIS optical excitation for observation is limited by the CO2 

laser frequency range and upper n state that the detector can detect.  The CO2 laser used in this 

study has 65 different laser lines near 10μm, the transition selected for observation has to have a 

hydrogenic frequency near a laser line frequency.  The laser line selected for the RESIS 

excitation must not be shared by another detectable RESIS excitation; otherwise the observed 

fine structure might be confused with the fine structure from another transition.  The transitions 

selected for observation also had to be able to be detected by the detector.  The voltage on the 

long gap Stark ionizer cannot exceed the voltage limit of the feedthroughs used, approximately 

7000V.  Therefore the nupper must be greater than n=57.  The voltage on the Stark ionizer also 

needs to be high enough so that the location of the signal is as far from the regenerated primary 
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in the deflection voltage as possible, so that the background caused by the regenerated primary is 

minimized.  With the consideration of the laser and the detector in mind, three transitions for the 

observation of the Th2+ Rydberg fine structure were selected: the n=27 to 60, the n=28 to 66 and 

the n=29 to 72.  The hydrogenic frequency of the three different transitions and the respective 

laser line used for their observation is given in Table 4.1.   

Table 4.1: Transitions used to observed the Th2+ Rydberg fine structure, column one lists the 
specific transitions.  Column two gives the hydrogenic transition frequency for the transition in 
cm-1.  The third column gives the laser line selected for the observation of the transition, along 
with the frequency of the laser line in cm-1. The fourth column gives the voltage necessary for 
the long gap stripper to detected the transition, calculated using Eq. 2.9  

 

 

The observation of the three spectra are in the MH series of lab books, since Mark Hanni was the 

senior graduate student on the apparatus at the time of the data taking, he was not responsible for 

the actual data taking or the analysis of the spectra seen in this section though. The three spectra 

can be seen in MH-12 and MH-13, each of the spectra was observed multiple times.  The 

multiple observations of each spectrum were then averaged and combined at the completion of 

data taking.  

The spectra are observed as a function of the angle recorded by the computer, which is 

converted into the angle of the intersection between the ion beam and the CO2 laser using Eq. 2.8 

and the calibrated value of   given in Chapter 2.  The intersection angle is then converted into 

an energy using Eq. 2.7, this conversion requires the speed of the ion beam being studied and the 

frequency of the laser line being used, Table 4.1.  Chapter 2 gives the calibration of the dial 

n lower- n upper E hyd (cm-1) Laser Frequency (cm-1) VLong(V)
27-60 1080.4358 9R(24) = 1081.0874 5949
28-66 1033.0072 9P(24) = 1033.4880 4063
29-72 983.8404 10R(34) = 984.3832 2869
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reading of the high voltage power supply used to accelerate the beams, for the three spectra 

observed here the high voltage dial was set to  

 8.335HVDial    

this corresponds to a terminal potential of  

 terminal 24938(25)V V   

and a beam speed in terms of β of  

 0.0008320(4)  .  

Using this beam speed and the calibration of the   all three spectra were plotted as a function of 

the energy deviation from hydrogenic, the Doppler tuned frequency of the laser minus the 

hydrogenic frequency in GHz.  Fig. 4.2 shows all three spectra.  The original signal in each 

spectra is shown with black points, the blue is signal time five and the red is the signal times 

twenty.  The large peak around hydrogenic in all three spectra is the high-L, made up all the 

unresolved levels around hydrogenic.  Unlike the high-L seen in the optical Th3+ Rydberg fine 

structure spectrum, Fig. 1.5, the high-L in all three of the Th2+ Rydberg fine structure spectra has 

a “dip” right at hydrogenic, splitting the high-L into two parts.  
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Figure 4.2: RESIS optical spectra for high-L Th2+ Rydberg levels , three different transitions were observed.  The x-axis is the energy 
deviation from hydrogenic in GHz, in black is the original signal, blue is signal time five and red is signal times twenty. 
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This splitting of the high-L has never before been observed on any of the different multiple 

charged ions studied using the RESIS technique, but Th3+ is the first multiple charged ion studied 

that has a permanent quadrupole moment.  Therefore the “dip” feature could be used as a way to 

put limits on the possible size of the Th3+ permanent quadrupole moment.  All three of the 

spectra also have resolved structure on the right side of the high-L, these structure are of varying 

size and separations.  The observed spectra were made up of an average of multiple runs in order 

to get the adequate signal to noise to observe the resolved fine structure in the each of the 

spectra.  The observation of these three spectra with the optical RESIS technique was just the 

first step required to determine properties of Th3+.   

4.3 Deciphering the Th2+ Rydberg fine structure 

 In order to extract properties of Th3+ from the measurements the Th2+ RESIS spectra, the 

pattern of resolved structures must be understood and specific states identified.  To gain 

understanding of the features that could be expected in the Th2+ high-L Rydberg fine structures, 

each of the observed transition fine structures were simulated using the two dominant terms in 

the effective potential, Eq 1.18, the scalar dipole polarizability and the permanent quadrupole 

moment.  Theoretical estimates of the scalar dipole polarizability [45], ,0 15.1 . .D a u   and the 

permanent quadrupole [46], 0.62 . .Q a u , were used as a starting point for these simulations.  

The dominant type of transition observed in a high-L Rydberg fine structures observed with the 

optical RESIS technique is 1L L    and 1K K   , therefore the fine structure for both the 

lower and upper state must be simulated.  The energy deviation from hydrogenic is the energy of 

the upper state minus the energy of the lower state.  The result of the initial simulation for each 

of the observed spectra, using the estimated properties, is shown in Fig. 4.3, with the x-axis 

being the energy deviation from hydrogenic in GHz.  The simulated signal size is seen in black, 
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the blue is the simulated signal times five and the red is the simulated signal times twenty.  The 

“dip” feature in each of the observed spectra is reproduced in each of the simulated spectra and 

the simulation also includes many resolved features with varying sizes and separations on the 

right side of the high-L feature.  The reproduction of the dip in the high-L can only occur if the 

number of L states in the simulation is limited.  This seems plausible given that the probability of 

exciting transitions between nlower  and nupper decreases as L increases since the probability of the 

excitation is dependent on the Z matrix element connecting the states, Eq. 2.3 in Reference [17].  

In the case of the simulation included in this chapter of the three RESIS optical only L≤17 were 

included.  All three of the simulated spectra look very similar, with the deviation of the resolved 

features from hydrogenic decreasing like 31 n .  These similarities between the spectra are not 

observed in the actual observed spectra, Fig. 4.2.  Those spectra show clear difference, especially 

if one looks between the 8 and 13GHz range, the number of peaks in that range is different for 

each the spectra.  The spacing and grouping of the five peaks in the 4.5 to 8 GHz range is also 

different for each of the observed spectra.  Close inspection of the three of the observed spectra, 

Fig. 4.2, shows that the spectra are clearly different.  These differences cannot be explained by 

any additional terms in the effective potential model or changes to any of the core properties in 

the effective potential used to simulate the spectra, these differences must therefore be caused by 

something not accounted for in the effective potential model. 
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Figure 4.3: Simulated RESIS optical spectra using the theoretical estimated scalar dipole polarizability and quadrupole moment and 
assuming the adequacy of the effective potential model. The x-axis is the energy deviation from hydrogenic in GHz, the black is the 
simulated signal size, the blue is the simulated signal times five and the red is the simulated signal times twenty. 
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Once it was seen that the effective potential model was not adequately describing the 

observed fine structure, attention was turned to the derivation of the effective potential and 

possible effects that might be left out of it.  The effective potential is derived using three 

different expansions, the first is static perturbation theory, Eq. 1.9, the second is the multipole 

expansion of the potential describing the interaction of the Rydberg electron and the core ion, 

Eq. 1.13, and the third expansion is the adiabatic expansion, Eq. 1.15.  Looking at the measured 

excited levels of Th3+ [9, 13] it was found that there are two states, the 2
3/2D and the 2

3/2D , that 

lie very close to the ground state.  The adiabatic expansion, Eq. 1.15, used to derive the effective 

potential requires that the core excitation energy, ( , )cE J   be much greater than the Rydberg 

energy difference, RydE .  For the case of the two low-lying D states this requirement is not met.  

This leads to the failure of the adiabatic expansion, and thus the failure of the effective potential 

to adequately describe interactions with excited states containing those two low-lying D states.  

The failure of the adiabatic expansion will not affect all the terms of the effective 

potential since some components of the effective potential are derived without it.  The permanent 

moments are the result of the first order perturbation energies of the potential which do not 

contain energy denominators and therefore do not rely on the adiabatic expansion.  A majority of 

the effective potential, the polarizabilities, are the result of the second order perturbation 

energies, Eq. 4.1,  

 

2 2
5/2 5/2[2]

5 , ; ' , ; ' , ; 5 , ;
( )

( , ) ( ) ( )c

c c

n L J c

F nL K V J n L K J n L K V F nL K
E nLK

E J E n E n

 

   

     
 

   


 (4.1) 

where V is the potential, Eq. 1.13 and the intermediate core states is denoted cJ  , and the 

intermediate Rydberg level is identified by 'n L .  The application of the adiabatic expansion to 

the second order energy, Eq. 4.1 allows the second order energy to be rewritten as a sum of 
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terms, In Eq. 4.2, the first term is the adiabatic term, the second term is the 1st non-adiabatic 

term, and the third term is the 2nd non-adiabatic term.  

 
[2] [2] [2] [2]

Ad 1st NonAd 2ndNonAd( ) ( ) ( ) ( ) ...E V E V E V E V     (4.2) 

If the adiabatic expansion is valid, the use the adiabatic expansion to expand out the denominator 

allows for the second order energies to be rewritten in terms of core properties and expectation 

values of r.  A test for whether the adiabatic expansion is valid is to see if the 1st non-adiabatic 

term is much smaller than the adiabatic term, by looking at the ratio of the 1st non-adiabatic term 

to the adiabatic term.  The ground state is primarily connected to the 2
3/2D  and the 2

5/2D  via the 

dipole coupling therefore the ratio 1st non adiabatic second order energy to the adiabatic second 

order energy for dipole coupling will be the focus of the discussion.  The ratio of the 1st non-

adiabatic second order energy to the adiabatic second order energy is given by Eq. 4.3  

 

[2]
1st NonAd

[2]
Ad ( )

nLL

c

E E
E E J




   (4.3) 

where nLLE  is the average Rydberg energy difference between the Rydberg state of interest and 

intermediate Rydberg state.  The average Rydberg energy difference for dipole coupling is given 

by Eq. 4.4. It simplifies to a multiple of the ratio of expectation values of r-6 to r-4 using the 

relations presented in the work of Woods [7]. 
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This ratio of the 1st non-adiabatic to the adiabatic second order energy, [2] [2]
1st NonAd AdE E  was 

calculated for n=28 for both cases, 1L L    as a test of the validity of the adiabatic expansion, 

and the results are shown in Table 4.2 for both the of the excited core states, 2
3/2D  and 2

5/2D .   

Table 4.2: The ratio of the [2]
1st NonAdE  to [2]

AdE  for the case of the 2
3/2D  and 2

5/2D for the 1L L    
in n=28, L=8 to 13.  Column one gives the L, column two gives the ratio for the 1L L    term 
and column three gives the ratio for 1L L    term.  The top half of the table is for the 2

3/2D  
state and the bottom part of the table is for the 2

5/2D  state. 

 

From Table 4.2 it can be seen that for both the 2
3/2D  and 2

5/2D , the 1st non-adiabatic 

second order energy is comparable in size to the adiabatic second order energy for L=8.  This 

indicates that the average Rydberg energy difference is the same order of magnitude as the 

excitation energies for the two low-lying D core states, and thus the failure of the adiabatic 

expansion for that L.  The ratio does decrease as L increases.  This is due to the fact that the 

averaged Rydberg energy difference decreases since it is proportional to the ratio expectation 

values r-6 over r-4.  The convergence of this ratio with increasing L indicates that as L increases 

L Ratio (L '=L +1) Ratio (L '=L -1)
2D 3/2

8 1.37 -0.75
9 0.93 -0.54
10 0.66 -0.40
11 0.48 -0.31
12 0.36 -0.24
13 0.27 -0.19

2D 5/2

8 0.87 -0.48
9 0.59 -0.34
10 0.42 -0.26
11 0.30 -0.20
12 0.23 -0.15
13 0.17 -0.12
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the use of the adiabatic expansion will be become valid.  This means that for the lower Ls the 

contribution to E[2] from states containing the 2
3/2D  and 2

5/2D  core states will not be well 

described by the effective potential, but if the L is high enough the effective potential will be 

adequate.  This explains why the high-L features look similar but the resolved structure did not 

when comparing observed spectra, Fig. 4.2, with the spectra simulated that assumed the 

adequacy of the effective potential model, Fig. 4.3.   

Figure 4.4 shows the respective Rydberg series for each of the three core states of 

interest, the ground state and the two low-lying D states.  For reference the location of the n=28 

in the Rydberg series of the ground state is denoted by a dashed black line, in Fig. 4.4.  The 

excitation energy of the 2
3/2D  is 19193.2461(9)cm  and 2

5/2D  is 114486.4017(9)cm  [9].  The 

n=28 Rydberg state bound to the 2
5/2F  is in between the n′=9 and n′=10 intermediate Rydberg 

states bound to the 2
3/2D  and in between the n′=7 and n′=8 bound to the 2

5/2D .  These nearby 

intermediate Rydberg states will couple with the Rydberg states being studied, resulting in the 

Rydberg states of interest being perturbed.  The strength of the coupling is dependent on the 

separation between the states.  For example the n=28 Rydberg state bound to the 2
5/2F will 

couple more strongly to the n′=10 than the n′=11 bound to the 2
3/2D .  Since the coupling 

between the states connecting the 2
5/2F  and either the 2

3/2D  or the 2
5/2D  is primarily due to the 

dipole term in the multipole expansion the change in L between the L of the Rydberg state bound 

to the ground state and the intermediate Rydberg state, L  , that is bound to either the 2
3/2D  or 

the 2
5/2D  can only be 1 .   
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Figure 4.4:  The Rydberg series bound to the 2

5/2F , 2
3/2D , and the 2

5/2D  , the y-axis is the energy 
in cm-1.  

The presence of the low-lying core states, the 2
3/2D  and the 2

5/2D , introduces non-

adiabatic effects into the observed Rydberg fine structure in the lower L levels.  These non-

adiabatic effects would not be the same for each of the transition spectra, since they depend on 

the specific nL of the transition.  Both the lower and upper n of the RESIS excitation transitions 

will be affected by the low-lying D states.  The contributions of these two low-lying core states 

to the observed energy cannot be described by the effective potential derived using the adiabatic 
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expansion, therefore they must be dealt with another way.  For all other excited states of Th3+, 

the requirement for the use of the adiabatic expansion is met so the use of the adiabatic 

expansion is valid.  The contribution from other excited states will then be accurately described 

by an effective potential model but the contributions from the two low-lying core states must be 

treated separately.  The failure of the adiabatic expansion has occurred before in the study of 

Rydberg levels of the Barium by Gallagher et al. [47] and Snow et al. [48].  In the barium study 

there were low lying states that produced non-adiabatic effects that had to be taken into account 

[48] in order to extract the properties of Ba+.  Using a similar approach with Th2+ Rydberg levels, 

the effective potential model can be corrected for effects of the 2
3/2D  and 2

5/2D  levels. 

The contributions of the 2
3/2D  and 2

5/2D  to the Th2+ Rydberg fine structure can be 

determined by calculating the full second order perturbation energy from intermediate states 

where either the 2
3/2D  or 2

5/2D  are the intermediate core states in Eq. 4.1, without using the 

adiabatic expansion.  The 2
3/2D  and 2

5/2D excited states can only connect to the ground state of 

Th3+, 2
5/2F , via odd terms in the multipole expansion of the full potential, Eq. 1.13.  The first odd 

term of the multipole expansion is when 1  , the dipole term, which is given by  

 

[1]
[1]

2

ˆ( )C rV M
r


 (4.5) 

where the [1]M  is the dipole operator that acts on wave function of the core.  This dipole term in 

the multipole expansion is responsible for the different types of the dipole polarizabilities in the 

effective potential, such as the scalar dipole polarizability, the tensor dipole polarizability and the 

1st non-adiabatic dipole polarizability to name a few.  Plugging the dipole term of the potential 

into Eq. 4.1 second order perturbation energies involving the intermediate 2
3/2D  and 2

5/2D  states 
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can be found, Eq. 4.6 and 4.7, in terms of reduced matrix elements, 3J symbols, and 6J symbols 

[7]. 

 

2 2
2[2] 2 2 [1] 2

3/2 5/2 3/2

2 2

2
3/2

5 2 1
( ) 5 6 (2 1)(2 1)

1 3 2 0 0 0

(6 ) ( ) ( )

n L

K L L L
E D F M D L L

L

nL r n L n L r nL

E D E n E n

 

 

             

   


  



 (4.6) 

 

 

2 2
2[2] 2 2 [1] 2

5/2 5/2 5/2

2 2

2
5/2

5 2 1
( ) 5 6 (2 1)(2 1)

1 5 2 0 0 0

(6 ) ( ) ( )

n L

K L L L
E D F M D L L

L

nL r n L n L r nL

E D E n E n

 

 

             

   


  



 (4.7) 

In the case of the both Eq. 4.6 and 4.7 everything can be calculated up to a constant, the matrix 

elements connecting the ground state to the excited state of interest.  For a dipole transition the 

sum over L  has only two term, 1L L   , with the L  being the angular momentum of the 

intermediate Rydberg electron.  The sum over n  can be carried out numerically using the 

Dalgarno-Lewis method [10], and can be calculated very accurately since the excitation energies 

for both the 2
3/2D  and 2

5/2D  have been precisely measured [9]. 

 

2 1
3/2

2 1
5/2

(6 ) 9193.2461(9)

(6 ) 14486.4017(9)

E D cm
E D cm





 

    

The only thing unknown in Eq. 4.6 and 4.7 is the matrix element that connects the ground state 

to the excited state, so initially a unit matrix element was used to get a sense of the size and 

behavior of the second perturbation order energies due to the intermediate 2
3/2D  and 2

5/2D states.  
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These energies must be calculated for each specific nLK  state of interest in the Th2+ Rydberg 

fine structure pattern. 

 The energy of a specific nLK  level in the Th2+ Rydberg fine structure, ( )ModE nLK , will 

be the sum the of the expectation value of a modified effective potential, [1]( )Mod
effE V  and two 

explicitly calculated second order perturbation energies due to the intermediate 2
3/2D and 2

5/2D  

states, Eq. 4.8,  

 

2
[1] 2 [1] 2 [2]

5/2 3/2 3/2

2
2 [1] 2 [2]

5/2 5/2 5/2

( ) ( ) 5 6 ( )*

5 6 ( )*

Mod Mod
effE nLK E V F M D E D

F M D E D

 


 (4.8) 

where [2]
3/2( ) *E D  and [2]

5/2( )*E D denote the calculation of the second order energies with unit 

matrix elements.  Since the second order perturbation energies were calculated with unit matrix 

elements in Eq. 4.8 a factor was placed in the front of each to allow for their adjustments, that 

factor is the dipole matrix element squared that couples each the ground state to the excited 

states.  The modified effective potential, Mod
effV , Eq. 4.9, contains properties that have 

contributions from the 2
3/2D  and 2

5/2D states missing.  

 

[2] [2]
,0 ,2
4 3 4

ˆ( ) ( ) ...
5 2 2 5 22 2
5 2 0 5 2

Mod Mod
D DMod c

eff
X J C rQV

r r r
   

               (4.9) 

To simulate the energy deviation from hydrogenic for the transitions seen in the observed RESIS 

excitation spectra, the energies of both the lower states, nLK  , and the upper states, n L K    must 

be calculated.  For the RESIS excitation the dominant transition to observe is 1L L    and 

1K K   , therefore the energy deviation from hydrogenic will be given by  

 

( ) ( ) ( )Mod ModE nLK n L K E n L K E nLK          (4.10)
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where the ( )ModE nLK  denotes the energy of the lower states and ( )ModE n L K    denotes the 

energy of the upper state, both given by Eq. 4.8.  Both ( )ModE nLK and ( )ModE n L K   are defined 

in terms of core properties, expectation values and matrix elements by Eq. 4.8.  For both the 

lower and upper states the full second order perturbation energies due to the 2
3/2D and 2

5/2D  had 

to be calculated for every state to be included in a simulation of the spectra.   

Initial simulations of the spectra were constructed assuming the theoretical estimates of 

the properties of Th3+ [45, 46],  

 

,0 ,2

2 [1] 2
5/2 3/2

2 [1] 2
5/2 3/2

0.62 . . 8.58 . . 0.47 . .

5 6 1.530 . .

5 6 0.412 . .

Mod Mod
D DQ a u a u a u

F M D a u

F M D a u

    



    

where ,0
Mod
D  is the modified scalar dipole polarizability and ,2

Mod
D  is the  modified  tensor dipole 

polarizability, both excluding contributions from the 2
3/2D  and 2

5/2D .  The simulations of the 

spectra using the theoretical estimates of the five key core parameters did not match the observed 

spectra very well.  So using the key features of the observed spectra limits for the five parameters 

were determined.  The five parameters were then varied inside those limits until the simulated 

spectra reasonably matched for all three of the observed spectra.  Then using the simulations of 

the Th2+ Rydberg fine structures as a guide, preliminary identifications of the transitions in the 

resolved structure were made, Fig 4.5.  Each letter represents a specific (L, K) state, a total of 

eight different (L, K) states were identified in the spectra.   

A total of fourteen specific transitions were clearly identified in the three observed 

spectra, labeled by the letters without parentheses in Fig. 4.5, the letters with parentheses are 

estimated locations of transitions.  
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     (L, K)
a) 10, 8.5
b)  9, 10.5
c)  8, 9.5
d)  8, 5.5
e)  8, 7.5
f)   8, 8.5
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h)  7, 9.5
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Figure 4.5: RESIS optical spectra of Th2+ Rydberg fine structure with preliminary identification of transitions each letter represents  a 
different (L, K) state. The letters without parentheses were included in the fit to determined properties of Th3+. 
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The transitions identified, without parentheses, were transitions that were well resolved from 

others, thereby representing a single excitation.  It was these transitions that were fit to determine 

properties of Th3+.  Each of the identified transitions was then fit with a Gaussian to determine its 

fitted position in the spectra, a list of identified transitions and the positions of the transitions is 

given in Table 4.3, the transitions are labeled by the (L, K).  The uncertainty on each of the 

positions is due to the uncertainty of the fit of the peak for each of the transitions.  The 

uncertainty in the energies due to uncertainty of the beam speed and the   used to convert the 

angle recorded by the computer into energy will be dealt with separately, since those 

uncertainties are correlated.  

Before the transitions in Table 4.3 could be fit to determined properties of Th3+, the 

energies of the identified transitions had to be corrected for effect not included in the effective 

potential model, effects discussed in Chapter 1.  The relativistic effect, Eq. 1.32 and the second 

order energy due to the exclusion of the ground electronic states from the derivation of the 

effective potential, Eq. 1.28, were calculated for each of the states identified.   For the Th2+ 

Rydberg fine structure measurements, it was determined that the second order energies due to 

coupling to intermediate Rydberg levels were negligible, therefore the observations were only 

corrected for the relativistic effect, Eq. 4.11. 

 Rel( ) obsE nLK n L K E E       (4.11) 

The correction for the relativistic effect is shown in Table 4.3.  The corrected positions were then 

fit to Eq. 4.8 to determine the dominant properties controlling Th2+ Rydberg fine structure, the fit 

was weighted by the uncertainty in the positions of each of the identified transitions.  
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Table 4.3:  Summary of the observed and fitted positions of the identified Th2+ Rydberg fine structure transitions.  Column one lists 
the transitions, column two gives the identifier used to label the transition in Fig. 4.5.  The third column gives the observed position of 
the transitions, column five gives the relativistic correction was applied, and the sixth column gives the corrected position of the 
transitions.  The seventh column gives the predicted positions of the transitions, determined from fitting corrected positions to Eq. 4.8.  
The final column gives the difference between the fitted positions and the corrected observed positions.  All energies are in MHz. 

Transition Fig 4.5 E obs(MHz) ΔE Rel E obs-ΔE Rel Fitted positions Difference
(L , K ) Identifier (MHz) (MHz) (MHz) (MHz) (MHz)

n =27 to 60
(10,8.5) a 3288(8) 44 3244 3295 51
(9,10.5) b 4428(16) 50 4378 4325 -53
(8,9.5) c 7514(8) 59 7455 7588 133
(8, 5.5) d 8932(17) 59 8873 8848 -25
(8,7.5) e 10874(9) 59 10815 10762 -53
(7, 8.5) g 13617(9) 69 13548 13501 -47

n =28 to 66
(10, 8.5) a 3133(8) 41 3092 3077 -15
(9, 10.5) b 4030(8) 47 3983 3924 -59
(8, 9.5) c 6905(17) 54 6851 6791 -60

n =29 to 72
(10, 8.5) a 2903(7) 38 2865 2891 26
(8,9.5) c 6320(16) 50 6270 6262 -8
(8, 8.5) f 8851(8) 50 8801 8815 14
(7, 8.5) g 11691(8) 59 11632 11643 11
(7, 9.5) h 4695(8) 59 4636 4634 -2
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Table 4.3 gives the fitted positions of the transitions; the fit determined below properties 

for the Th3+.   

 

,0 ,2

2 [1] 2
5/2 3/2

2 [1] 2
5/2 3/2

0.54(4) . . 9.67(15) . . 1.5(1.3) . .

5 6 1.435(10) . .

5 6 0.414(24) . .

Mod Mod
D DQ a u a u a u

F M D a u

F M D a u

   



  
 

The error on each of the properties is the statistical uncertainty in the parameters. The uncertainty 

in the properties, due to the uncertainty in the beam speed and  , was negligible.  Table 4.3 

gives the differences between the predicted positions for the transitions and the observed 

corrected positions; the average of the absolute value of the differences is 40MHz.  The deviation 

between the predicted and the observed corrected positions is most likely due to a combination 

of small errors in the beam speed or the determination of  , drifts in the CO2 laser frequency 

(≤30MHz) or beam trajectory, small stray electric fields, and contributions from additional terms 

of the effective potential.  Additional core properties of Th3+ were included in the fit on a trial 

basis, such as the permanent hexadecapole moment,  , and the scalar quadrupole polarizability, 

,0Q , but the quality of the fit failed to be improved and there were no significant changes to the 

five parameters included in the original fit.  Table 4.4 gives a breakdown of the contributions of 

the different components of Eq. 4.8 to the total predicted position for each of the transitions 

assuming the properties given above.  This breakdown shows that the contributions from the 

low-lying core D states to the observed Rydberg fine structure energies are very significant, the 

same order of magnitude as the contributions from the quadrupole moment and the scalar dipole 

polarizability.  
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Table 4.4: Predicted Th2+ RESIS transition frequencies  using the properties of Th3+ determined from the fit of the optical RESIS data.  
The quantity tabulated represents the difference from the hydrogenic transition frequency. The first column identifies the transition 
with (L, K) of the lower state.  The second through fourth column gives the contributions from the scalar dipole polarizability, the 
permanent quadrupole moment and the tensor dipole polarizability respectively to the total fitted energy.  The fifth and sixth columns 
give the contributions from the low-lying D states. The final column fives the total predicted energy determined from the. All energies 
are in MHz. 

 

Transition Predicted positions
(L , K ) Q (MHz) (MHz) (MHz)

n =27 to 60
(10,8.5) 1389 -169 -9 2038 46 3295
(9,10.5) 2327 1218 81 600 98 4325
(8,9.5) 4123 1807 152 1075 431 7588
(8, 5.5) 4123 -4468 -375 9346 222 8848
(8,7.5) 4123 2216 186 3663 574 10762
(7, 8.5) 7839 2825 309 1411 1117 13501

n =28 to 66
(10, 8.5) 1264 -153 -8 1932 42 3077
(9, 10.5) 2114 1104 73 543 90 3924
(8, 9.5) 3740 1638 138 821 455 6791

n =29 to 72
(10, 8.5) 1150 -138 -7 1849 38 2891
(8,9.5) 3396 1486 125 749 506 6262
(8, 8.5) 3396 2706 228 1784 701 8815
(7, 8.5) 6443 2320 253 1163 1465 11643
(7, 9.5) 6443 -3676 -402 2216 53 4634 

                       (MHz)
[2] 2

3/2(6 )E D [2] 2
5/2(6 )E D

[1]( )Mod
effE V

,0
Mod
D ,2

Mod
D
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These measurements provided the first experimental determinations of any Th3+ 

properties, despite the failure of the effective potential model to adequately describe the data.  

The Th3+ properties determined from the optical RESIS study were the result of fitting fourteen 

transitions in three different spectra.  Fitting of that data set did not allow for the complete 

determination of all of the Th3+ properties possible in the full effective potential, Eq. 1.18.  

Nevertheless, the reported properties and matrix elements for Th3+ offer the first opportunity to 

test the theoretical calculation of the properties.  To compare all the determined properties with 

the theory, the total scalar dipole polarizability and tensor dipole polarizability had to be 

calculated, including the contribution from the 2
3/2D  and 2

5/2D  core states.  Both the scalar 

dipole polarizability and the tensor dipole polarizability are defined in terms of the matrix 

elements, excitation energies and constants [7]; so it is therefore possible to calculate the 2
3/2D  

and 2
5/2D  contributions to both.  For example the scalar dipole polarizability is given by Eq. 

1.24, which only requires the dipole matrix elements that connect the ground state to the excited 

state, which was found from the fit of the data, and the excitation energy energies, which have 

been precisely measured.  Therefore, using the determined matrix element and excitation 

energies it was possible to find and report the total scalar dipole polarizability, ,0D  and the total 

tensor dipole polarizability, ,2D .  

 

3/2 5/2

3/2 5/2

,0 ,0 ,0 ,0

,2 ,2 ,2 ,2

9.67(15) 5.46(8) 0.29(3) 15.42(17)
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D DMod
D D D D

D DMod
D D D D
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   

      

          

Table 4.5 shows the results of the optical RESIS study.  These results were reported in Ref. [3], 

and in that reference they were compared with the theoretical estimates.  This dissertation will 

reserve that discussion until Chapter 6, so that both the result of the optical study and rf study 

can be compared with theory.  
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Table 4.5: Th3+ properties determined from the optical RESIS study of Th2+ Rydberg fine 
structures, these properties were reported in Ref. [3].  All properties are in atomic units. 

 

As a final test of the properties determined from the fit of the optical RESIS data for the 

Th2+ Rydberg fine structure, they were used to simulate all three spectra to see if more transitions 

could be identified.  The simulation of the three spectra is shown in Fig. 4.6, with the x-axis of 

the simulation being the energy deviation from hydrogenic in GHz with the simulated signal 

represented by the black line.  The simulated signal times five is the blue line and times twenty is 

the red line in Fig. 4.6.  For the most part the simulation of each of the spectra is consistent with 

the observed spectra, with only slight differences between the simulation and the observation 

around the 5 to 6 GHz range.  The features in the high-L are clearly reproduced in the simulation 

and the simulations enabled the identification of additional transitions.  In Fig. 4.7, the observed 

spectra are shown with the transitions labeled by their ( , )L K  values.  The transitions with the 

labels in green indicate transitions included in the fit to determine the properties of Th3+.  The 

transitions with black labels are inferred identifications given the simulation of the spectra from 
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the determined Th3+ properties.  All the transitions in the observed spectra have been given 

probable identifications with no transition left unidentified or unexplained, showing that the 

properties determined from the fit of the data are able to reproduce all three of the observed 

spectra. 
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Figure 4.6: Simulated RESIS optical spectra using the determined Th3+ properties and matrix elements [3].  The x-axis is the energy 
deviation from hydrogenic in GHz.  The simulated signal is seen in black, the simulated signal time five is seen in blue and the 
simulated signal times twenty is seen in red. 
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Figure 4.7: RESIS optical spectra for high-L Th2+ Rydberg levels with the transitions identified, the x-axis is the energy deviation 
from hydrogenic in GHz.  The black is the original signal, blue signal time five and red signal times twenty.  The transitions are 
labeled by (L, K) with the labels in green denoting transitions used in the fit to determine properties [3].  The transitions denoted by 
black labels are inferred identification given the simulated positions of the transition from the determined properties.
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Chapter 5: Rf measurments of n=28 Th2+ Rydberg states 

5.1 Why make rf measurements of the Th2+ Rydberg fine structure?  

The optical study of Th2+ Rydberg structure was limited in ability to resolve the fine 

structure.  A total of fourteen individual transitions in the three optical spectra shown in the 

previous chapter were identified and fit to determine properties of Th3+.  The rf RESIS technique 

is capable of resolving parts of the Rydberg fine structure pattern not resolvable with the optical 

technique and providing measurements of much higher precision.  The rf study also has other 

advantages.  For example, the rf measurement depends only on the structure of the lower n state 

in the RESIS transition, so it is not complicated by questions of structure or perturbations in the 

upper state.  All of these advantages were illustrated in the rf study of Th3+ Rydberg levels 

described in Chapter 3. 

The rf study of the Th2+ Rydberg fine structure is a much more complex project, but it 

offers the opportunity to learn more about Th3+ and more fully explore the effective potential 

model used to extract the properties of Th3+ from the Th2+ Rydberg fine structure.  In the case of 

the Th2+ Rydberg fine structure, the optical study showed that the effective potential model was 

not adequate in the interpretation the Th2+ Rydberg fine structure without corrections for the low-

lying D states.  By improving on the optical measurement the effects of the low-lying D states on 

the Rydberg fine structure could be explored and the method of correcting the effective potential 

for these effects could be put to the test.  With a goal of improving upon the optical RESIS 

measurements, an rf study of the n=28 Th2+ Rydberg fine structure was undertaken.  The 

experimental results are presented in this chapter.   
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5.2 Measuring the n=28 Th2+ Rydberg fine structure with rf transitions 

Using the apparatus at JRML, discussed in detail in Chapter 2 of this work, rf 

measurement of the n=28 Th2+ high-L Rydberg fine structure were undertaken.  The lower n=28 

state was chosen for closer study due the resolution of the n=28 to 66 spectrum seen in Fig. 4.7.  

Several transitions were better resolved in that spectrum than the other two observed spectra 

shown in that figure, specifically L=10 K=8.5 and L=9 K=10.5.  In order for an rf study to 

proceed the states of interests must be resolved in the optical excitation spectrum, since the rf 

transitions are detected by detecting changes in the amount of population that is excited by the 

RESIS excitation.  This study was started by assuming all the identifications in the n=28 to 66 

spectrum in Fig. 4.7 were correct.  The optical n=28-66 excitation spectrum clearly resolved 

some of the L=8, L=9 and L=10 states but due to frequency range of the rf generator being used 

to make the rf measurements, the fine structure measured would only be able to include states 

with L>8.  

 Figure 5.1 shows the fine structure of n=28, L=9 to L=12, simulated using the results of 

the optical study of the Th2+ Rydberg fine structure.  The y-axis of Fig 5.1 gives the energy 

difference from hydrogenic in GHz for each level.  The levels in the fine structure pattern are 

labeled by their L, K and series value, denoted by ( , , )L K series .  At other times in the text the 

levels are just labeled by ( , )L K  alone, because the series value is just another way of writing the 

K value.  There are six different series given the Jc of Th3+.  Series value ranges from 5 2L   to 

5 2L  , just like the K value.  Two different colors of lines in Fig. 5.1 denote the locations of 

each of the levels.  The levels denoted with black lines indicate levels that are resolved and 

identified in the optical spectrum, Fig. 4.7.  The levels denoted with grey lines are levels whose 
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positions are not optically resolved in the optical spectrum.  The location of the some of these 

levels were discovered with the assistance of the rf transitions. 

En
er

gy
 (G

H
z)

-7

-6

-5

-4

-3

-2

-1

0

(9, 8.5, L-1/2)

(9, 7.5, L-3/2)

(9, 9.5, L+1/2)

(9, 6.5, L-5/2)

(9, 10.5, L+3/2)

(9, 11.5, L+5/2)

(10, 12.5, L+5/2)

(12, 14.5, L+5/2)
(11, 13.5, L+5/2)

(10, 7.5, L-5/2)

(10, 11.5, L+3/2)

(10, 8.5, L-3/2)

(10, 10.5, L+1/2)

(10, 9.5, L-1/2)

(11, 8.5, L-5/2)

(11, 9.5, L-3/2)
(11, 12.5, L+3/2)

(11, 10.5, L-1/2)

(11, 11.5, L+1/2)

(12, 9.5, L-5/2)

(12, 10.5, L-3/2)
(12,13.5, L+3/2)

(12, 11.5, L-1/2)

(12, 12.5, L-1/2)

n=28

 

Figure 5.1: Th2+ Rydberg level diagram for n=28 L=9 to 12, simulated using the result of the 
optical study.  The y-axis is the energy in GHz, each level in the fine structure is labeled by its 
( , , )L K series values.  Levels denoted in grey are not resolved in the optical n=28-66 excitation 
spectrum, levels denoted with black lines are resolved.  
 

The mapping out of the fine structure pattern relies on the interconnecting of the all the 

levels in the fine structure with rf transitions.  Determining this fine structure pattern with the 

RESIS rf technique is very challenging due the number of levels involved in the fine structure 
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pattern and the fact that a majority of the transitions in the n=28 to 66 optical spectrum are not 

well resolved.  In order for the rf study of the Th2+ Rydberg fine structure to be successful, the 

fine structure needed to be measured in a minimum of three Ls with the positions of as many of 

the six levels as possible for each L determined.  The measurement of this complex fine structure 

relies on both single and two photon transitions to interconnect all of the states.  The single 

photon transitions are limited by two selection rules, the first one is 1L L    and the second is 

, 1K K K   .  The most likely transitions to occur for a state is 1L L    and 1K K   , this 

type of transition connects states in the same series.  The next most likely single photon 

transition is the 1L L    and K K  , this type of transition can interconnect levels of different 

series.  The third type of transition used in the measuring the n=28 fine structure was two photon 

transition following the selection rule 2L L    and 2K K   .  This allowed for the measured 

fine structure pattern to be expanded to include levels in higher L, that were not reachable with 

single photon transitions.  Each of these different types of rf transitions require different levels of 

power to make observations of the transitions.  The discussion of the power level used in the 

observation will be reserved until later.  

The measuring of such a complex fine structure can be overwhelming, so to begin with 

the fine structure of each individual series was focused on and measured.  The levels in the L-5/2 

series are denoted by the black lines in Fig. 5.2.  The blue lines interconnecting the states 

indicate the transitions necessary to interconnect the levels, dashed lines representing single 

photon transitions, and the solid line representing a two photon transition. The four states in the 

L-5/2 series are the L=9 K=6.5, the L=10 K=7.5, the L=11 K=8.5 and the L=12 K=9.5.   
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Figure 5.2: Diagram of the L-5/2 transitions in the n=28 Th2+ Rydberg fine structure.  The blue 
lines represent single photon (dashed) and two photon (solid) transitions. 
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Figure 5.3: Measuring the L-5/2 series in the n=28 Th2+ Rydberg fine structure. The bottom graph is the optical excitation spectrum 
for the n=28-66 transition, the locations of each of the excitation used to observe rf transitions is denoted by a solid vertical. The 
dashed vertical lines indicate the estimated position of levels that are not optically resolved.  The blue lines that connect the vertical 
lines indicate rf transitions used to connect the levels. The graphs on top give examples of each of the rf transitions that interconnect 
the states in the L-5/2 series in n=28.  
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The measurement of the L-5/2 series, began by locating the L=9 K=6.5 in the n=28-66 optical 

spectrum, located at approximately 5.5GHz in Fig 5.3, where it is resolved from the states near 

it.  Both LIRs were placed on the L=9 K=6.5 optical excitation.  LIR 1 acted to deplete the L=9 

K=6.5 population in n=28 by exciting it up to the n=66 level.  LIR 2 was used to excite the L=9 

K=6.5 population again to n=66 level after the L=9 K=6.5 population had been replenished by a 

rf transition in the rf region.  If the rf is on resonance with the L=9 K= 6.5 to L=10 K=7.5 energy 

difference, population from the L=10 K=7.5 will transfer to the L=9 K=6.5 causing the excitation 

of more population to n=66 level by the LIR 2.  The increase in the population of the n=66 level 

is detected as the signal, since the field in the rf region is modulated and resulting modulation of 

the n=66 population is measured.  The frequency of the L=9 K=6.5 to L=10 K=7.5 resonance was 

estimated from the optical study [3] to be at approximately 3486±55MHz and the actual L=9 

K=6.5 to L=10 K=7.5 transition was found at a Doppler-corrected frequency 3492.42±0.11MHz.  

The observation of the signal is seen in Fig. 5.3.  In the observation of this transition there is a 

slight peak on the left side of the resonance, located at approximately 3490MHz.  The small peak 

is due to an unusually larger reflection coefficient in the  rf system.  The presence of the 

additional peak was considered when fitting the resonance.  

To measure the next rf transition in the L-5/2 series, the L=10 K=7.5 had to be located in 

the n=28-66 optical spectrum so that both LIRs could be placed on it.  This state is not optically 

resolved in the n=28-66 spectrum.  The location of the L=10 K=7.5 in the optical spectrum has 

been simulated using the properties determined from the optical study, the simulation accounts 

for the fine structure of both the lower n and upper n state.  The measurement of the rf transition 

provides the energy differences between the L=9 K=6.5 to L=10 K=7.5 in the n=28, so it also 

provides an estimate of the location of the L=10 K=7.5 in the optical excitation spectrum.  This 
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estimation would lack the contribution of the n=66 fine structure to the location of the optical 

excitation of the L=10 K=7.5 in the optical spectrum though.  The combination of the rf 

transition and the simulation of the location from the properties determined from the optical 

study were both used to identify an estimated location of the L=10 K=7.5 excitation in the n=28-

66 optical spectrum, at approximately 2GHz in Fig. 5.3.  The L=9 K=6.5 to L=10 K=7.5 rf 

transition itself was then used to confirm the location of L=10 K= 7.5 optical excitation.  To do 

this the L=9 K=6.5 to L=10 K=7.5 rf resonance was first measured with both LIRS on the L=9 

K=6.5.  LIR 2 was then moved off the L=9 K=6.5 making the rf signal go away since LIR 2 can 

no longer detect the population change to the L=9 K=6.5 when the second LIR is tuned off the 

optical excitation.  LIR 2 was then scanned across the estimated location of the L=10 K=7.5 in 

the optical spectrum, to detect the depletion of the L=10 K=7.5 by the rf transition.  A negative 

signal was observed when LIR 2 was at the exact location of the L=10 K=7.5 in the optical 

spectrum.  The first LIR was then moved the same amount to sit on the L=10 K=7.5 and the 

search for the L=10 K=7.5 to L=11 K=8.5 rf resonance began.  The L=10 K=7.5 to L=11 K=8.5 rf 

resonance was estimated at around 1775±27MHz, and it was discovered to be at approximately 

1763.64±0.08MHz.  These two single photon transitions interconnected three Ls in the L-5/2 

series.  To add an additional L to this series it was necessary to do a two photon transition 

between the L=10 K=7.5 and the L=12 K=9.5 since even with the knowledge gained in the 

optical study and the L=10 K=7.5 to L=11 K=8.5 rf resonance, it was not possible to resolve the 

location of the L=11 K=8.5 in the optical excitation spectrum.  The estimated location of the 

L=11 K=8.5 in the optical spectrum is overlapping with the high-L, as can be seen in Fig. 5.3.  

The estimated location of the L=11 K=8.5 has been denoted by dashed line at approximately 300 

to 400MHz on the optical excitation spectrum.  A two photon transition connecting the L=10 
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K=7.5 to L=12 K=9.5 was estimated to be at 2192±54MHz, and it was observed at a Doppler-

corrected frequency of 2168.86±0.07MHz. These three transitions interconnect four Ls in the 

n=28 fine structure and establish the positions of three levels that were not resolved in the optical 

study.  

Using the same techniques used with the L-5/2 series, four more series were measured 

and mapped out in the n=28 Th2+ Rydberg fine structure.  The observation of each of the other 

series is summarized with two figures and one table for each series.  For each series one figure 

identifies the transitions involved in the series on a diagram of the n=28 fine structure, another 

figure that identifies the transitions in relation to the optical spectrum and shows examples of the 

observed rf transitions.  A table for each of the series gives a list of the transitions involved in 

each series, the estimated locations of the transitions and the measured Doppler-corrected 

frequencies.  The second series, the L-3/2 series, is shown in Fig. 5.4, Fig. 5.5 and Table 5.1.  

The transitions for the third series, the L-1/2 series, are shown in Fig.5.6, Fig. 5.7 and Table 5.2.  

The fourth series, the L+1/2 series, is presented in Fig. 5.8, Fig. 5.9 and Table 5.3.  The fifth 

series, the L+3/2 series, is shown in Fig. 5.10, Fig. 5.11 and Table 5.4. 
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Figure 5.4: Diagram of the L-3/2 transitions in the n=28 Th2+ Rydberg fine structure.  The blue 
lines represent single photon (dashed) and two photon (solid) transitions. 
 

Table 5.1: List of the transitions in the L-3/2 series.  Column one identifies the transition, column 
two gives the estimated location for the transition and the third column gives the Doppler-
corrected frequency for the transition.   

 

 

Estimated Measured
(L ,K ) to (L ',K ') Interval (MHz) Interval (MHz)
(9,7.5) to (10,8.5) 3117(30) 3126.56(11)
(10,8.5) to (11,9.5) 1669(16) 1663.47(8)
(10,8.5) to (12,10.5) 2273(22) 2262.15(11)
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Figure 5.5: Measuring the L-3/2 series in the n=28 Th2+ Rydberg fine structure. The bottom graph is the optical excitation spectrum 
for the n=28-66 transition, the locations of each of the excitation used to observe rf transitions is denoted by a solid vertical. The 
dashed vertical lines indicate the estimated position of levels that are not optically resolved enough to be used to observe an rf 
transition.  The blue lines that connect the vertical lines indicate rf transitions used to connect the levels. The graphs on top give 
examples of each of the rf transitions that interconnect the states in the L-3/2 series in n=28. 
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Figure 5.6: Diagram of the L-1/2 transitions in the n=28 Th2+ Rydberg fine structure.  The blue 
lines represent single photon (dashed) and two photon (solid) transitions. 
 

Table 5.2: List of the transitions in the L-1/2 series.  Column one identifies the transition, column 
two gives the estimated location for the transition and the third column gives the Doppler-
corrected frequency for the transition.   

 

 

Estimated Measured
(L ,K ) to (L ',K ') Interval (MHz) Interval (MHz)
(9,8.5) to (10,9.5) 2689(78) 2683.02(16)
(10,9.5) to (11,10.5) 1511(47) 1504.90(11)
(10,9.5) to (12,11.5) 2230(75) 2221.73(12)
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Figure 5.7: Measuring the L-1/2 series in the n=28 Th2+ Rydberg fine structure. The bottom graph is the optical excitation spectrum 
for the n=28-66 transition, the locations of each of the excitation used to observe rf transitions is denoted by a solid vertical. The 
dashed vertical lines indicate the estimated position of levels that are not optically resolved enough to be used to observe an rf 
transition.  The blue lines that connect the vertical lines indicate rf transitions used to connect the levels. The graphs on top give 
examples of each of the rf transitions that interconnect the states in the L-1/2 series in n=28. 
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Figure 5.8: Diagram of the L+1/2 transitions in the n=28 Th2+ Rydberg fine structure.  The blue 
lines represent single photon (dashed) and two photon (solid) transitions. 
 

Table 5.3: List of the transitions in the L+1/2 series.  Column one identifies the transition, 
column two gives the estimated location for the transition and the third column gives the 
Doppler-corrected frequency for the transition.   

 

 

Estimated Measured
(L ,K ) to (L ',K ') Interval (MHz) Interval (MHz)
(9,9.5) to (10,10.5) 2166(93) 2257.30(25)
(10,10.5) to (11,11.5) 1264(56) 1270.18(13)
(10,10.5) to (12,12.5) 1981(91) 1989.52(5)
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Figure 5.9: Measuring the L+1/2 series in the n=28 Th2+ Rydberg fine structure. The bottom graph is the optical excitation spectrum 
for the n=28-66 transition, the locations of each of the excitation used to observe rf transitions is denoted by a solid vertical. The 
dashed vertical lines indicate the estimated position of levels that are not optically resolved enough to be used to observe an rf 
transition.  The blue lines that connect the vertical lines indicate rf transitions used to connect the levels. The graphs on top give 
examples of each of the rf transitions that interconnect the states in the L+1/2 series in n=28. 
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Figure 5.10: Diagram of the L+3/2 transitions in the n=28 Th2+ Rydberg fine structure.  The blue 
lines represent single photon (dashed) and two photon (solid) transitions. 
 

Table 5.4: List of the transitions in the L+3/2 series.  Column one identifies the transition, 
column two gives the estimated location for the transition and the third column gives the 
Doppler-corrected frequency for the transition.   

Estimated Measured
(L ,K ) to (L ',K ') Interval (MHz) Interval (MHz)
(9,10.5) to (10,11.5) 1505(59) 1501.69(7)
(10,11.5) to (11,12.5) 884(34) 884.60(6)
(10,11.5) to (12,13.5) 1431(56) 1433.91(10)
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Figure 5.11: Measuring the L+3/2 series in the n=28 Th2+ Rydberg fine structure. The bottom graph is the optical excitation spectrum 
for the n=28-66 transition, the locations of each of the excitation used to observe rf transitions is denoted by a solid vertical. The 
dashed vertical lines indicate the estimated position of levels that are not optically resolved enough to be used to observe an rf 
transition.  The blue lines that connect the vertical lines indicate rf transitions used to connect the levels. The graphs on top give 
examples of each of the rf transitions that interconnect the states in the L+3/2 series in n=28. 
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The sixth series, the L+5/2 series, which includes the L=9 K=11.5, the L=10 K=12.5, the 

L=11 K=13.5, and the L=12 K=14.5 was not measured since none of the transitions in that series 

were optically resolved in the n=28-66 excitation spectrum, Fig. 5.12.  The estimated location of 

each of the levels is given in Fig 5.12 and also the estimated frequency difference between the 

levels. The L=9 K=11.5 is located very close to the high-L structure and is located in an area with 

an estimated five other transitions so its location cannot be clearly determined. The absence of 

this series from the data pattern is unfortunate, but it will not significantly limit the analysis of 

the measured fine structure pattern.  The measurements of the five series only gives the relative 

location of the four states in each series with respective to the other states in the series. 
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Figure 5.12: The L+5/2 series in n=28 Th2+ Rydberg fine structure, none of the optical excitation in this series are resolved. The 
locations of the states in this series are denoted by the vertical line dashed lines.  The blue lines interconnecting the states represent the 
estimated frequency difference between the states in n=28.   
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To complete the mapping out of the fine structure it was necessary to interconnect the five series 

so that the locations of all twenty states are determined relative to each other.  This 

interconnecting of the series is completed by observing four 1L L    K K   transitions.  The 

four selected transitions used to interconnect the series are listed and shown in Fig. 5.13.  The 

observation of the four interconnecting transitions relied on the transitions in the optical 

excitation spectrum that have already been identified, resolved, and used to the observed other rf 

transitions. 

 With the completion of the four K K   transitions and the measurement of the five 

series, a total nineteen rf transitions were measured interconnecting twenty of the twenty-four 

levels in n=28 L=9 to 12.  Figure 5.14 shows all the rf transitions measured.  Examples of all 

nineteen of the rf transitions measured can be seen in Appendix B.  Five of the six levels for L=9, 

10, 11, and 12 were located, providing a much more complete measurement of the Th2+ Rydberg 

fine structure pattern than the reported optical RESIS measurements [3].  The third section of this 

chapter will provide a table for each of the observed transitions and discuss the relative positions 

of the levels, for now the discussion will turn to some of the details about what was needed in 

order to observe the transitions 

.  
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Figure 5.13: The K′=K transitions that interconnect the series in the n=28 Th2+ Rydberg fine structure. Four transitions connect the five 
series, an example of each is shown. 
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Figure 5.14: The fine structure of the n=28 Th2+ Rydberg levels observed with rf transitions each level in the fine structure is labeled 
by ( , , )L K series .  The y-axis is the energy deviation from hydrogenic in GHz.  The lines interconnecting the levels represent the rf 
transitions used to measure the relative positions of all the levels, a complete list of the transitions is seen in the box on the diagram.  
The grey dashed lines represent the  1L L    1K K    intervals, the blue lines are the 1L L    K K  transitions. 
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 In order to complete the observation of the nineteen rf transitions, located and observed 

in the n=28 Th2+ Rydberg fines structure, it was necessary to have estimates of all the transitions 

frequencies and the estimates of the correct power for the observations.  Table 5.5 gives a list of 

the transitions observed and the optical excitation transition each of the LIRs was set on for the 

observations.  The final two columns of Table 5.5 give the estimated frequency of the transition 

and the observed frequency.   

Table 5.5: List of the observed n=28 rf transitions used to measure the Th2+ Rydberg fine 
structure.  Column one gives the transition and then column two and three gives the optical 
signal LIR one and two were placed on in order to detect the rf resonance.  Column four gives 
the estimated frequency of the rf resonance in MHz. The final column gives the positions of the 
measured interval for the transitions in MHz.  

 

Estimated Measured
(L ,K ) to (L ',K ') LIR 1 LIR 2 Interval (MHz) Interval (MHz)
(9,6.5) to (10,7.5) (9,6.5) (9,6.5) 3486(35) 3492.42(11)
(9,7.5) to (10,8.5) (9,7.5) (9,7.5) 3117(30) 3126.56(11)
(9,8.5) to (10,9.5) (9,8.5) (9,8.5) 2689(78) 2683.02(16)
(9,9.5) to (10,10.5) (9,9.5) (9,9.5) 2166(93) 2257.30(25)
(9,10.5) to (10,11.5) (9,10.5) (9,10.5) 1505(59) 1501.69(7)

(10,7.5) to (11,8.5) (10,7.5) (10,7.5) 1775(27) 1763.64(8)
(10,8.5) to (11,9.5) (10,8.5) (10,8.5) 1669(16) 1663.47(8)
(10,9.5) to (11,10.5) (10,9.5) (10,9.5) 1511(47) 1504.90(11)
(10,10.5) to (11,11.5) (10,10.5) (10,10.5) 1264(56) 1270.18(13)
(10,11.5) to (11,12.5) (10,11.5) (10,11.5) 884(34) 884.60(6)

(9,10.5) to (10,10.5) (9,10.5) (9,10.5) 423(23) 388.52(11)
(10,8.5) to (11,8.5) (10,8.5) (10,8.5) 2909(155) 2982.60(12)
(10,9.5) to (11,9.5) (10,9.5) (10,9.5) 2288(138) 2328.73(19)
(10,10.5) to (11,10.5) (10,10.5) (10,10.5) 1400(81) 1427.10(10)

(10,7.5) to (12,9.5) (10,7.5) (10,7.5) 2192(54) 2168.86(7)
(10,8.5) to (12,10.5) (10,8.5) (10,8.5) 2273(22) 2262.15(11)
(10,9.5) to (12,11.5) (10,9.5) (10,9.5) 2230(75) 2221.73(12)
(10,10.5) to (12,12.5) (10,10.5) (10,10.5) 1981(91) 1989.52(5)
(10,11.5) to (12,13.5) (10,11.5) (10,11.5) 1431(56) 1433.91(10)
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The frequencies of the transitions were simulated from the properties found during the optical 

study [3].  In the end all of the rf transitions were observed within 100MHz of the predicted 

frequency of the transitions, and the rf measurements confirmed the preliminary identification of 

all of the transitions in the optical spectrum.  The amount of power required in the rf region to 

product an electric field adequate to induce the transition between the two states of interest was 

estimated using the approach presented in Chapter 2, Eq. 2.22 and Eq. 2.23.  Initially the K 

dependence in the transitions was neglected when estimating the rf power necessary to observe 

these transitions.  The optimum electric field, Eq. 2.22, was calculated using the average Z 

matrix element, Eq. 2.21, which does not include K dependence.  The transit time through the rf 

region is 0.51 s  given 0.0008320   for the 75keV Th3+ beam.  Therefore, for a L=10 to 11 

transition in the Th2+ Rydberg fine structure, the estimated optimum electric field was found to 

be 0.51V m  with 0150.6rmsZ a .  The optimum electric field was then rewritten in terms as 

power exiting the rf region using Eq. 2.23, determining the optimum power to observe L=10 to 

11 transitions 62.64(10) 10exitP W  .  All the single photon ' 1K K   transitions observed 

should require approximately the same power since the average Z matrix elements without K 

dependence for a L=9 to 10 transition and a L=10 to 11 transition differ by less than 2%. 

To determine whether this estimate of the power necessary to observe the single photon rf 

transition in the Th2+ Rydberg fine structure was correct, a saturation curve was taken on the first 

discovered rf transition.  The data for the saturation curve was taken on the L=10 K=8.5 to L=11 

K=9.5 rf transition, which is a 1K K    transition.  The saturation curve was completed by 

sitting at the experimentally determined resonance frequency for the L=10 K=8.5 to L=11 K=9.5 

transition and measuring the observed signal as a function of the power exiting the rf region in 

Watts.  The resulting saturation curve is seen in Fig. 5.15, with the x-axis being the square root 
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of the power reading on the exit of the rf region in Watts.  The saturation curve was fit to the 

function 2

0
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Figure 5.15: Saturation curve for the n=28 L=10, K=8.5 to L=11, K=9.5  in the Th2+ Rydberg fine 
structure. The x-axis is the square root of the power coming out of rf region in W and the y-axis 
is the signal size at the resonance frequency of 1665MHz with the electric filed in the rf region 
traveling parallel to the direction of the ion beam. Each point is the average of several points, 
with the error the standard deviation of the mean of those points.  The fit of the data, shown by 
the red line, is discussed in the text.  This data came from JAK3-040. 
 
The fit of the saturation curve is the red line in Fig 5.15, from which the optimum power to 

observe the L=10 K=8.5 to L=11 K=9.5 transition was determined to be 6
0 2.6(2) 10P W  .  

The result of the fit of the saturation curve is completely consistent with the power predicted by 

calculating the optimum electric field, assuming no K dependence in the average Z matrix 

element, rmsZ , for a 1K K   . 
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Not all the single photon transitions will require the same amount of power for 

observation, since the K dependence in the average Z matrix elements cannot be neglected. 

Therefore the magnitude of the average Z matrix elements for both the 1K K    and K K   

transitions with 1L L    had to be calculated, shown respectively by Eq. 5.1 and 5.2. 
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The power necessary to make a transition between states is related to the inverse of the average Z 

matrix element squared. The average Z matrix elements, rmsZ , for all the 1K K    transitions 

observed are approximately the same, differ only within a few percent.  Therefore, the same 

power level determined by the saturation curve, Fig. 5.15, was used to take all the measurements 

of the 1K K    transitions observed.  The average Z matrix element, rmsZ , for a K K   

transition is approximately five to six times smaller than the average Z matrix element for 

1K K    transitions, indicating that the K K   transitions will need additional power to be 

observed.  The ratio the power needed for a K K   to the power needed for a 1K K    

transition is just the average Z matrix element for the K K   divided by the average Z matrix 

element for 1K K    squared, Eq. 5.3.   
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For the case of Th2+ Rydberg fine structure where 5 2cJ  , the K K   transitions observed 

needed on average thirty times more power than their 1K K    counterparts.  The need for 

increased power to observe the K K   transitions was confirmed by taking a saturation curve on 

the L=10 K=8.5 to L=11 K=8.5 transition, Fig. 5.16.  The fitting of the saturation curve for the 

L=10 K=8.5 to L=11 K=8.5 to 2

0

sin
2

exitPA
P

 
  
 

 showed that the optimum power to observe the 

K K   transitions was 6
0 ( ) 73(11) 10P K K W    .  This is slightly under the predicted power 

necessary if one uses the ratio, Eq. 5.3.  For this specific transition the optimum power was 

determined from the saturation curve, Fig. 5.15, to be 6
0 ( 1) 2.6(2) 10P K K W     .  The 

predicted power for this specific K K   transition was 6( ) 106(8) 10predictP K K W    , which 

differs from the observed by 633(14) 10 W .  This difference is slight when you consider the 

quality of the data in both of the saturation curves, Fig. 5.15 and 5.16.  The observation of all the 

single photon transitions were done at the approximate estimated powers for the s 
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Figure 5.16: Saturation curve for the n=28 L=10, K=8.5 to L=11, K=8.5 in the Th2+ Rydberg fine 
structure.  The x-axis is the is the square root of the power exiting the rf region in W. The y-axis 
is the average signal while sitting at the resonance frequency, the fit of the data is shown by the 
red line. This data is from JAK5-023. 
 

The calculation of the power necessary to observe multi-photon transitions is different, as 

was discussed in Chapter 2.  Traditionally, multi-photon transitions would not be allowed due to 

selections rules that only allow for transitions between states that observe the selection rule, 

1L L   .  But as discussed in the case of the Th3+ Rydberg fine structure in Chapter 2 multi-

photon transitions can occur due to the coupling of the population of different levels with others.  

For the case of the Th2+ Rydberg fine structure, the transitions observed were 2L L    and 

2K K   .  The ability to observe multi-photon transitions requires careful consideration of the 
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power level needed to make the transitions and understanding that the transitions are susceptible 

to AC shifts that must be corrected for.  The calculation of the power and the shift rates for the 

two photon transitions is a time dependent problem.  Using the approach discussed in Chapter 2, 

states involved in the two photon transitions were described in terms of Floquet states and the 

time dependent problem was simplified into a time independent problem[32].  This technique of 

simplifying the time dependent problem into a time independent problem is an approximation, 

but this approximation has proven to be adequate with the description of multi-photon transitions 

in He+ [33] and the multi-photon transitions in the Th3+ Rydberg fine structure discussed in 

Chapter 3.  Therefore, using this approximation technique discussed in Chapter 2, estimates of 

the power necessary to observe each transition were made along with estimates of the AC shift 

each transition might experience at its saturating power, Table 5.6. 
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Table 5.6: The calculated power and AC shifts for the two photon transitions in the n=28 Th2+ Rydberg fine structure, in reference to a 
single photon transitions, shown in the first row.  The first column gives the transitions, the second column gives the effective 
coupling and the third column gives the AC shift in term of V.  The fourth column gives the V for each of the transitions in MHz.  The 
fifth column gives saturation power necessary to observe the transition and the final column gives the AC shift the transition would 
experience if it was observed at the saturation power, in MHz.  

 

(L, K) -(L ', K ′) AC Shift V(MHz) Psat(μW) AC shift at Psat

(10,8.5)-(11,9.5) 0 0.49 2.6 0

(10,7.5)-(12,9.5) 12.92 1808 0.11MHz

(10,8.5)-(12,10.5) 11.42 1412 0.10MHz

(10,9.5)-(12,11.5) 9.83 1046 0.09MHz

(10,10.5)-(12,12.5) 8.21 730 0.08MHz

(10,11.5)-(12,13.5) 6.41 445 0.06MHz

V

effV

2

1529.05
V

MHz
2

340.07
V

MHz


2

266.16
V

MHz
 2

1316.48
V
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

2

137.70
V

MHz


2

83.80
V
MHz

 2

666.01
V

MHz


2

196.99
V

MHz
 2

1132.04
V

MHz


2

889.92
V

MHz

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The power necessary to observe the two photon transitions is between 0.4mW and 

1.8mW depending on which transition is being studied.  The predicted AC shifts in Table 5.6 

assumes they are observed at their saturation power, all the two photon transitions were observed 

with power that was within a factor of two of the saturation power and thus all the corrections to 

the AC shifts were small.  Looking at all the observations and the power at which they were 

observed, the largest AC shift experience for the five two photon transitions would be 

approximately 0.2MHz.  The corrections to the two photon intervals are small and not very 

significant to the measured two photon interval.  The size of the shift rates and their 

insignificance to the measured interval led to the correcting of the measured intervals with the 

calculated shift rates, none of the shift rates were measured.  It would be experimentally very 

hard to measure shift rates this small, and the model of approximating these shift rates appears to 

be quite adequate.  Therefore, each observation of a two photon transition will be corrected by its 

respective shift rate, Eq. 5.4, given in terms of MHz/mW.   
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  
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The uncertainty in each of the AC shift rates is due to the uncertainty in the single photon 

saturation power determined from the fit of Fig. 5.15. 

5.3 Results of the n=28 Th2+ Rydberg fine structure rf measurements 

A total of nineteen rf transitions made up the mapping out of the n=28 L=9 to 12 fine 

structure.  Each of these transitions was observed multiple times and the resulting observations 

were fit and combined by averaging them.  Single photon transitions makeup the majority of the 

measurements, with a total of fourteen out of the nineteen transitions being of that type.  The 

single photon transitions were observed in both directions of propagations, with each transition 

observed between two and five times.  None of the single photon transitions showed evidence of 

resolved spin splitting, so the resonances were fit to a single four parameter Gaussian to 

determine their centers.  The data for each transition was combined by taking a weighted average 

of the data for each direction of propagation, if more than one measurement existed.  The 

weighted averages of the two directions of propagation were combined by taking a straight 

average to give the un-Doppler shifted locations.  Table 5.7 shows the measurements for each of 

the single photon transitions, the averages for each direction of propagation for each transition, 

and the resulting Doppler corrected position of each of the single photon transitions.  The 

apparent β for each transition was also calculated and compared with the β calculated from using 

the terminal potential, 0.0008320  .  On average the observed β were consistent calculated β, 

within 1.3 sigma.  
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Table 5.7: Single photon transitions observed in the n=28 Th2+ Rydberg fine structure, a total of 
fourteen transitions. This table has been broken into fourteen sections, with one transition in each 
section, with each section labeled by its specific transitions and its transition type, 1K K    or 
K K  .  In each section the first column shows the lab book and page of the observation.  The 
second column gives the direction of propagation of the rf electric field for the observation.  The 
 denotes the rf electric propagating parallel to ion bean and  denotes the electric field 
propagating anti-parallel to the ion beam. The final column gives the fitted center of each of the 
observations, fmeasured, in MHz.  Underneath all of the measurements in each section is the 
weighted average for each of the directions of propagation, when multiple measurements exist 
and the final straight average of the two directions of propagation. The apparent β from the 
observed Doppler shift was also calculated for each transition.  The difference between the 
apparent β and the β calculated from the terminal potential, Δβ is shown below the apparent β. 
 

 
 

 

 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK6-085,86 & 87  3495.33(18)
JAK6-096  3489.51(30)
JAK7-111  3489.51(12)

L =9 K =6.5 to L ′=10 K ′=7.5

 Only  = 3495.33(18)
Weighted Avg  = 3489.51(11)

   AVG of  and   = 3492.42(11)

Apparent β = 0.00083(3)
Δβ = 0.0000(3) 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK6-069  3128.31(72)
JAK6-070  3129.03(15)
JAK6-071  3129.03(18)
JAK6-072  3124.11(18)

L =9 K =7.5 to L ′=10 K ′=8.5

 Weighted AVG  = 3129.01(11)
Only   = 3124.11(18)

   AVG of  and   = 3126.56(11)

Apparent β = 0.00078(3)
Δβ = 0.0005(3) 



191 
 

Table 5.7 continued 

 

 

 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK6-005  2685.16(16)
JAK6-006  2681.28(11)
JAK6-063 & 66  2684.84(18)
JAK7-105  2680.72(24)

L =9 K =8.5 to L ′=10 K ′=9.5

 Weighted AVG  = 2685.02(16)
Weighted AVG  = 2681.02(28)

   AVG of  and   = 2683.02(16)

Apparent β = 0.00075(6)
Δβ = 0.0008(6) 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK5-153  2259.04(36)
JAK5-154  2255.56(36)

L =9 K =9.5 to L ′=10 K ′=10.5

   AVG of  and   = 2257.30(25)

Apparent β = 0.00077(11)
Δβ = 0.0006(11) 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK5-135  1502.82(9)
JAK5-138  1500.45(16)
JAK7-085  1502.84(20)
JAK7-089  1500.66(16)

Weighted AVG  = 1500.56(11)
   AVG of  and   = 1501.69(7)

Apparent β = 0.00075(5)
Δβ = 0.0008(5) 

L =9 K =10.5 to L ′=10 K ′=11.5

 Weighted AVG  = 1502.82(8)
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Table 5.7 continued 

 

 

 

 

 

 

 

 

K' =K
Lab Book Direction fmeasured(MHz)
JAK5-136  388.53(10)
JAK5-137  388.30(12)
JAK7-086  389.11(20)
JAK7-086b  389.19(31)
JAK7-088  388.41(16)

Weighted AVG  = 388.34(10)
   AVG of  and   = 388.52(11)

Apparent β = 0.00045(27)
Δβ = 0.00038(27) 

L =9 K =10.5 to L ′=10 K ′=10.5

 Weighted AVG  = 388.69(19)

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK6-091 & 91b  1764.81(9)
JAK6-095  1762.58(16)
JAK7-113  1762.29(16)
JAK7-114  1764.95(18)

Weighted AVG  = 1762.44(14)
   AVG of  and   = 1763.64(8)

Apparent β = 0.00068(5)
Δβ = 0.00015(5) 

L =10 K =7.5 to L ′=11 K ′=8.5

 Weighted AVG  = 1764.84(8)
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Table 5.7 continued 

 

 

 

 

 

 

 

 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK5-111  1664.76(8)
JAK5-113  1662.23(20)
JAK7-076  1662.23(14)
JAK7-082  1664.44(18)

Weighted AVG  = 1662.23(11)
   AVG of  and   = 1663.47(8)

Apparent β = 0.00075(5)
Δβ = 0.00008(5) 

L =10 K =8.5 to L ′=11 K ′=9.5

  Weighted AVG  = 1664.71(11)

K' =K
Lab Book Direction fmeasured(MHz)
JAK5-117  2985.04(6)
JAK5-116  2980.34(14)
JAK7-074  2985.22(10)
JAK7-075  2979.90(14)

Weighted AVG  = 2980.12(22)
   AVG of  and   = 2982.60(12)

Apparent β = 0.00083(4)
Δβ = 0.00000(4) 

 Weighted AVG  = 2985.08(8)

L =10 K =8.5 to L ′=11 K ′=8.5
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Table 5.7 continued 

 

 

 

 

 

 

 

 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK5-087  1506.05(13)
JAK5-090  1503.51(14)
JAK7-051  1505.95(21)
JAK7-054  1503.93(11)

Weighted AVG  = 1503.77(20)
   AVG of  and   = 1504.90(11)

Apparent β = 0.00075(8)
Δβ = 0.00008(8) 

L =10 K =9.5 to L ′=11 K ′=10.5

 Weighted AVG  = 1506.02(11)

K' =K
Lab Book Direction fmeasured(MHz)
JAK5-102  2330.40(18)
JAK5-103  2326.72(14)
JAK7-071  2327.50(20)
JAK7-072  2330.50(10)

Weighted AVG  = 2326.98(38)
   AVG of  and   = 2328.73(19)

Apparent β = 0.00075(8)
Δβ = 0.00008(8) 

L =10 K =9.5 to L ′=11 K ′=9.5

 Weighted AVG  = 2330.48(8)
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Table 5.7 continued 

 

 

 

 

 

 

 

 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK5-086  1271.21(13)
JAK5-089  1269.23(14)
JAK7-049  1270.83(9)
JAK7-055  1269.58(14)

Weighted AVG  = 1269.41(18)
   AVG of  and   = 1270.18(13)

Apparent β = 0.00061(10)
Δβ = 0.00022(10) 

L =10 K =10.5 to L ′=11 K ′=11.5

 Weighted AVG  = 1270.95(18)

K' =K
Lab Book Direction fmeasured(MHz)
JAK5-088  1427.86(19)
JAK5-091  1426.11(27)
JAK5-091b  1425.89(12)
JAK7-052  1428.19(12)
JAK7-053  1426.31(13)

Weighted AVG  = 1426.09(14)
   AVG of  and   = 1427.10(10)

Apparent β = 0.00070(7)
Δβ = 0.00013(7) 

L =10 K =10.5 to L ′=11 K ′=10.5

 Weighted AVG  = 1428.10(15)
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Table 5.7 continued 

 

The measurement of the fourteen single photon transitions mapped out the relative 

location of a total fifteen levels in the n=28 Th2+ Rydberg fine structure with sub-MHz precision. 

These measurements of the single photon resonances confirmed the preliminary identification of 

all resolved structures in the n=28-66 optical spectrum, Fig. 4.7, as being correct.  The 

measurements of these single photon resonances also helped to solidify the accuracy of the 

predicted rf resonances, simulated from the five preliminary parameters of Th3+ reported [3].  

Nine out of fourteen of the single photon resonances came out within ±20 MHz of their 

estimated positions, Table 5.5, and the remaining five transitions were found within 100 MHz of 

their predicted locations.   

Measurements of the n=28 Th2+ Rydberg fine structure were expanded to include an 

additional L, the L=12, by the observation of the two photon transitions between the L=10 states 

and the L=12 states.  Table 5.8 has a section for each of the five two photon transitions, with 

column one providing the lab book and page of the observation. Column two provides the 

propagation direction of the observation, and column three gives the power at which the 

K' =K +1
Lab Book Direction fmeasured(MHz)
JAK5-143  885.05(9)
JAK5-140  883.86(11)
JAK7-093  883.92(8)
JAK7-094  885.37(5)

Weighted AVG  = 883.90(6)
   AVG of  and   = 884.60(6)

Apparent β = 0.00079(7)
Δβ = 0.00004(7) 

L =10 K =11.5 to L ′=11 K ′=12.5

 Weighted AVG  = 885.29(12)
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transition was observed.  As with the single photon resonance none of the two photon resonances 

showed any evidence of spin splitting, so the resonances were fit to single four parameter 

Gaussians to determine their center, the resulting fitted center for each observation is given in 

column four of Table 5.8.  Column five gives the calculated AC shift corrections for the 

observation, determined from the calculated shift rates, Eq. 5.4 and the power reading during the 

observations, column three. The final column of Table 5.8 gives the corrected positions for each 

of the observations.  The data for each transition was then averaged to find its final Doppler 

corrected positions.  First a weighted average of the data for each direction of propagation was 

made. Then a straight average of the two directions of propagation determined the Doppler 

corrected positions.  The apparent β for each transition was also calculated and compared with 

the β determined by the terminal potential. The difference between the calculated β and the 

apparent β was determined, Δβ, on average the apparent β was consistent with the β calculated 

from the terminal potential.   
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Table 5.8: Two photon transitions observed in the n=28 Th2+ Rydberg fine structure, this table has a separate section for each of the 
five two photon transitions observed with each section labeled for the specific transition.  Column one gives the lab book and page of 
the observation.  Column two give the direction propagation of the observation, with  indicating the rf electric field  propagating 
parallel to the ion beam and  indicating the rf electric field propagating anti-parallel to the ion beam.  Column three gives the power 
reading on the exit of the rf region during the observation in mW.  Column four gives the fitted center of the observation in MHz.  The 
fifth column gives the AC shift given the power at which the observation occurred and the calculated shift rate.  Column six gives the 
AC corrected position of the observation in MHz.  The weighted average of the data for each direction propagation is also shown for 
each transitions and the straight average of the result for each direction of propagation determined the Doppler corrected final 
positions of each of the rf intervals.  The apparent β for each of the transitions was also found.  The apparent β was then compared to 
the β found from assuming the terminal potential, Δβ. 
 

 

 

 

 

Lab Book Direction Pexit (mW) fmeasured(MHz) AC Shift (MHz) fcorrected(MHz)
JAK6-093  2.00 2170.90(10) 0.12(1) 2170.78(10)
JAK6-094  1.90 2167.20(10) 0.12(1) 2167.08(10)
JAK7-112  3.00 2166.98(18) 0.18(2) 2166.80(18)
JAK7-115  3.00 2170.80(12) 0.18(2) 2170.62(12)

Weighted AVG of  = 2170.86(8) 0.15(1) 2170.71(8)
Weighted AVG of  = 2167.15(12) 0.13(1) 2167.01(12)
   AVG of  and   = 2169.01(7) 0.14(1) 2168.86(7)

L =10, K =7.5 to L ′=12, K ′= 9.5

Final = 2168.86(7)
  Apparent β = 0.00085(3) 
             Δβ = -0.00002(3)
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Table 5.8 continue 

 

 

Lab Book Direction Pexit (mW) fmeasured(MHz) AC Shift (MHz) fcorrected(MHz)
JAK5-112  2.60 2264.20(14) 0.18(1) 2264.02(14)
JAK5-114  2.60 2260.54(14) 0.18(1) 2260.36(14)
JAK7-077  2.10 2259.99(30) 0.15(1) 2259.84(30)
JAK7-081  2.20 2264.18(16) 0.15(1) 2264.03(16)

Weighted AVG of  = 2264.19(11) 0.17(1) 2264.02(11)
Weighted AVG of  = 2260.44(20) 0.17(1) 2260.27(20)
   AVG of  and   = 2262.32(11) 0.17(1) 2262.15(11)

L =10, K =8.5 to L ′=12, K ′= 10.5

Final = 2262.15(11)
  Apparent β = 0.00083(5) 

             Δβ = 0.00000(5)

Lab Book Direction Pexit (mW) fmeasured(MHz) AC Shift (MHz) fcorrected(MHz)
JAK5-107  2.10 2223.38(22) 0.17(1) 2223.21(22)
JAK5-108  1.86 2220.38(16) 0.15(1) 2220.23(16)
JAK7-069  1.64 2223.66(16) 0.13(1) 2223.53(16)
JAK7-070  1.64 2220.02(14) 0.13(1) 2219.89(14)

Weighted AVG of  =  2223.56(15) 0.14(1) 2223.42(15)
Weighted AVG of  =  2220.18(18) 0.16(1) 2220.04(18)
   AVG of  and   =  2221.87(12) 0.15(1) 2221.73(12)

             Δβ = 0.00007(5)

L =10, K =9.5 to L ′=12, K ′= 11.5

Final = 2221.73(12)
  Apparent β = 0.00076(5) 
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Table 5.8 continue 

 

Lab Book Direction Pexit (mW) fmeasured(MHz) AC Shift (MHz) fcorrected(MHz)
JAK5-104  0.96 1988.12(12) 0.10(1) 1988.02(12)
JAK5-105  0.92 1991.16(10) 0.10(1) 1991.06(10)
JAK7-056  0.90 1988.00(10) 0.09(1) 1987.91(10)
JAK7-058  0.91 1991.20(10) 0.09(1) 1991.10(10)

Weighted AVG of  = 1991.18(7) 0.10(1) 1991.08(7)
Weighted AVG of  = 1988.05(8) 0.09(1) 1987.96(8)
   AVG of  and   = 1989.62(5) 0.10(1) 1989.52(5)

L =10, K =10.5 to L ′=12, K ′= 12.5

Final = 1989.52(5)
  Apparent β = 0.00078(3) 

             Δβ = 0.00005(3)

Lab Book Direction Pexit (mW) fmeasured(MHz) AC Shift (MHz) fcorrected(MHz)
JAK5-141  0.92 1432.30(20) 0.13(1) 1432.17(20)
JAK5-142  0.93 1435.24(20) 0.13(1) 1435.11(20)
JAK7-092  0.72 1432.82(8) 0.10(1) 1432.72(8)
JAK7-095  0.71 1435.30(10) 0.10(1) 1435.20(10)

Weighted AVG of  = 1435.29(9) 0.11(1) 1435.18(9)
Weighted AVG of  = 1432.75(18) 0.10(1) 1432.60(18)
   AVG of  and   = 1432.02(10) 0.11(1) 1433.91(10)

  Apparent β = 0.00089(7) 
             Δβ = -0.00006(7)

L =10, K =11.5 to L ′=12, K ′= 13.5

Final = 1433.91(10)
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With the measurement of the five two photon transitions, the fine structure pattern in the 

n=28 was expanded to include the relative positions of twenty out of the twenty-four levels in 

L=9 to 12.  Examples of all nineteen of the rf transitions measured can be seen in Appendix B.  

Five of the six levels for L=9, 10, 11, and 12 were located, providing a much more complete 

measurement of the Th2+ Rydberg fine structure pattern than the reported optical RESIS 

measurements [3].  Before the analysis of the fine structure could begin, an additional 

experimental uncertainty in the measured fine structure rf intervals must be accounted for.  The 

possible presence of a stray electric field in the rf region during the data taking and the effect it 

would have on the measured intervals.  All nineteen of the measured rf transition intervals to 

varying degrees are susceptible to DC Stark shifts induced by the possible presence of a stray 

electric field in the rf region.  To gain understanding in the possible size of shifts that could be 

present, the DC Stark shift rates were calculated for each n=28 levels in L=9, 10, 11 and 12, 

Table 5.9, with units of 2/ ( / )MHz V cm .  The calculation of the DC stark shift rates in Table 5.9 

used the same approach as in Chapter 2, Eq. 2.40, neglecting the K dependence.  Each ( , )L K  

state is dominantly shifted by two states, the ( 1, 1)L K  state and the ( 1, 1)L K   state.  Using 

Eq. 2.40, the DC Stark shift rate for each ( , )L K  state was calculated with the lower state being 

the ( 1, 1)L K   state and upper state being the ( 1, 1)L K   state.  These calculations of the DC 

Stark shifts of the n=28 Th2+ Rydberg states allowed for the determination of which states would 

be sensitive to stray electric fields.  From these shift rates it was determined that shifts on the 

order of 1 MHz could be expected if the stray field was as large as 0.10 /V cm .  In order to 

determine the size of the stray electric field in the rf region, a transition who has been previously 

studied was observed.  The location and DC Stark shift rate is well known, so therefore any shift 
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in positions of the transition can detect the presence and size of the stray electric field in the rf 

region. 

Table 5.9: DC Stark shift rates for the n=28 Th2+ Rydberg fine structure levels. Column one 
gives the L and K of the n=28 states and column two gives the DC Stark shift rate, κ, in 
MHz/(V/cm)2.  The states with asterisks on them were states not observed in the Th2+ Rydberg 
fine structure reported in this section, but the shift rates for the states were calculated for 
completeness.  

 

(L , K ) κ(MHz/(V/cm)2)

(9, 6.5) -0.66
(9, 7.5) -2.66
(9, 8.5) -4.84
(9, 9.5) -6.77
(9, 10.5) -12.36
(9, 11.5)* -29.68
(10, 7.5) -10.04
(10, 8.5) -10.20
(10, 9.5) -10.34
(10, 10.5) -12.20
(10,11.5) -16.39
(10, 12.5)* -56.79
(11, 8.5) -67.10
(11, 9.5) -37.34
(11, 10.5) -25.14
(11,11.5) -20.42
(11, 12.5) -23.05
(11, 13.5)* -111.85
(12, 9.5) -137.03
(12, 10.5) -44.68
(12,11.5) -27.43
(12, 12.5) -24.09
(12, 13.5) -31.92
(12, 14.5)* -247.78
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During the data taking process for the transitions presented in this section, the L=12 to 14 

transition in n=37 Th3+ Rydberg fine structure was periodically monitored and used as an electric 

field diagnostic.  The location of the L=12 to 14 transition, reported in Table 3.5, was determined 

with sub-MHz precision and the analysis of the Th3+ Rydberg levels reported in Chapter 3 

showed that the observation of the Th3+ Rydberg fine structure levels occurred at virtually zero 

field.  All the periodic measurements of the location of the L=12 to 14 transition taken during the 

data collection of the Th2+ Rydberg fine structure in this chapter were all consistent within error 

of the position determined in Chapter 3.  This indicated that the measurements of the Th2+ 

Rydberg fine structure occurred at zero field.  The uncertainty on the zero field determination for 

the Th3+ Rydberg fine structure data, in Chapter 3, was 20.001( )V cm , so to be conservative the 

same uncertainty was assigned to be the uncertainty on the electric field during the measurement 

in this chapter.  If this uncertainty in the electric field was large it would have to be accounted for 

as an additional experimental uncertainty, and it would need to be applied to either the rf 

transitions or the relative positions of the levels. In the case of this study, the uncertainty in the 

stray electric field is small, and resulting uncertainty in the relative position of the levels due to 

this effect would be at most 0.14MHz for the L=12 K=9.5 and smaller for all other states.  Given 

the size of the possible uncertainty in the relative position due to the stray electric, this effect on 

the n=28 Th2+ Rydberg fine structure was neglected  

With this additional experimental uncertainty in the observed rf transition understood, the 

relative positions of the twenty levels involved in the nineteen rf transitions measured were 

determined.  The location of the L=12 K=9.5 was assumed to be zero, and using the measured rf 

transitions the relative locations of all the levels were determined.  In Table 5.10, column one 

gives the identity of the states in spectroscopy notation and column two gives just the ( , )L K  of 
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the state; the notation used in this work to identify the states. The third column gives the relative 

positions of the states in MHz.  The error on each of the relative positions of each of the levels in 

the n=28 Th2+ Rydberg fine structure are the result of propagating the uncertainty in the rf 

transitions through.  The results in the Table 5.10 are the final experimental results of the n=28 

Th2+ study, in the remaining parts of this dissertation these experimental determined positions are 

analyzed, the properties of the Th3+ are extracted, and the resulting properties are compared with 

theoretical estimates of the properties.  It should be noted that when these experimental results 

are published, it may prove possible to analyze them with alternative theoretical methods, as has 

been done for the structure of neon Rydberg levels [8].  
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Table 5.10: The relative positions of the states measured in the n=28 Th2+ Rydberg fine structure 
with the zero position being the location of the n=28, L=12, K=9.5.  Column one labels the states 
using spectroscopic notation, KnL  . Column two labels the state in the convention used in this 
work.  Column three gives the position relative to the n=28, L=12, K=9.5 in MHz and the 
uncertainty in the position  

 

nL K (L , K ) E obs  (MHz)
28M6.5 (9, 6.5) -5661.28(13)
28M7.5 (9, 7.5) -6514.38(16)
28M8.5 (9, 8.5) -6736.10(31)
28M9.5 (9, 9.5) -6232.58(39)
28M10.5 (9, 10.5) -4363.80(32)
28M11.5 (9, 11.5) --
28N7.5 (10, 7.5) -2168.86(7)
28N8.5 (10, 8.5) -3387.82(16)
28N9.5 (10, 9.5) -4053.08(26)
28N10.5 (10, 10.5) -3975.28(30)
28N11.5 (10,11.5) -2862.11(33)
28N12.5 (10, 12.5) --
28O8.5 (11, 8.5) -405.22(11)
28O9.5 (11, 9.5) -1724.35(18)
28O10.5 (11, 10.5) -2548.18(28)
28O11.5 (11,11.5) -2705.10(33)
28O12.5 (11, 12.5) -1977.51(33)
28O13.5 (11, 13.5) --
28Q9.5 (12, 9.5) 0.00
28Q10.5 (12, 10.5) -1125.67(19)
28Q11.5 (12,11.5) -1831.35(29)
28Q12.5 (12, 12.5) -1985.76(30)
28Q13.5 (12, 13.5) -1428.20(34)
28Q14.5 (12, 14.5) --
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Chapter 6: Interpretation of the n=28 Th2+ Rydberg fine structure 

6.1 Model for fitting the fine structure 

The rf measurements of the n=28 Th2+ Rydberg fine structure described in Chapter 5 

promise an improved determination of the properties of Th3+.  The previous conclusions based 

on the optical measurements in Chapter 4 were limited by the measurement precision (±20MHz) 

and the number of levels clearly identified (fourteen).  These limitations in the optical study data 

set only allowed for the five dominant parameters of Th3+ to be determined [3] and did not allow 

for the exploration any of the other additional properties that might be controlling the Th2+ 

Rydberg fine structure pattern.  The rf measurements reported in Chapter 5 determined the 

relative positions of five levels each in L=9, 10, 11, and 12, a total of twenty of the twenty-four 

levels in n=28, with sub-MHz precision.  This more complete and much more precise data set 

enables a more comprehensive analysis and a clearer determination of the properties of Th3+.   

If the effective potential described all the interactions between the core and the Rydberg 

electron, then the measured fine structure pattern could be fit directly to an effective potential.  

Just as the effective potential has tensor components, so does the observed fine structure, so the 

first step to extracting the properties of Th3+ from the data would be to extract the fitted structure 

parameters, bA , seen in Eq. 6.1 from the data.   
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The fitted structure parameters are referred to by their tensor ranks, for example the 0A  is the 

scalar component, the 1A  is the vector component, 2A  is the 2nd rank tensor component, 3A  is 

the 3rd rank tensor component, and 4A  is the 4th rank tensor component.  The levels for each L 

would be fit to determine the structure parameters for each L, and then those fitted parameters for 

each L would be scaled by the appropriate hydrogenic expectation values of r and equated with 

the core properties contributing to each of the fitted structure parameters.  Normally, prior to this 

step, the observed energies would be corrected for two relatively minor effects, RelE , the 

relativistic correction and [2]( )effE V , a correction due to the coupling to other Rydberg levels,  

Eq. 6.2.  

 
2

Relcorrected obs effE E E E V   [ ]( )  (6.2) 

This type of fitting of a fine structure pattern was used in the study of the properties of Ni+ from 

rf measurements of the n=9 Ni Rydberg fine structure [11].  There it was found that the model, 

Eq. 6.1, was adequate since Ni+ contained no low-lying excited states. 

As discussed in Chapter 4, the optical study, Th3+ is not well described by the effective 

potential model alone due to the fact that there are two low-lying D states.  These low-lying D 

states produce non-adiabatic effects that are not described by the adiabatic effective potential 

model.  Therefore two additional terms had to be added to the model used to fit the observed 

transitions in the optical study, Eq. 6.3.  
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These two additional terms were the full second order dipole-dipole energies due to each of the 

low-lying D states.  The modified effective potential, Mod
effV , in Eq. 6.3 excludes contributions 

these two states in the core properties.  Given the limitation of the optical study, only the 

dominant terms in the modified effective potential model and the matrix elements for the low-

lying D states were determined from the fit of the optical data to Eq. 6.4.  

 

[2] [2]
,0 ,24 3 4

2
2 [1] 2 [2] 2

5/2 3/2 3/2

2
2 [1] 2 [2] 2

5/2 5/2 5/2

ˆ( ) ( )
5 2 2 5 22 2
5 2 0 5 2

5 6 ( )*

5 6 ( )*

Mod Mod
D D c

corrected nL nL nL

X J C rE r Q r r

F M D E D

F M D E D

     
            



  (6.4) 

That fit of the optical data confirmed the large size of the contributions to the fine 

structure from the low-lying D states.  Those contributions were the same order of magnitude as 

the contributions from ,0
Mod
D and Q , as illustrated in Table 4.4.  The fit of the optical data also 

showed that the ratio of the dipole matrix element coupling the ground state to the low-lying D 

states was consistent with the ratio predicted by LS coupling and that the shifts due to the 2
5/2D  

were much smaller than the 2
3/2D  shifts.  If LS coupling scheme is assumed, the dipole matrix 

element between the ground state and the 2
5/2D  can be written in terms of the dipole matrix 

element between the ground state and the 2
3/2D , Eq. 6.5.   
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This means that both of the dipole matrix elements are not required in Eq. 6.4.  It would have 

been sufficient given the precision of the measurements to write both of the full second order 
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dipole-dipole energies in terms of the dipole matrix element coupling the 2
3/2D  and the ground 

state.  

The model used to fit the rf data will certainly have to include large non-adiabatic 

contributions from the low-lying D states, as was done in the optical study.  With the much 

richer data pattern, it should be possible to explore the possibility of the contributions from other 

properties not consider in the optical study.  To accomplish this one would think that the data 

should be fit to a model like Eq. 6.1, with additional terms added to account for the large non-

adiabatic effects, Eq. 6.6.  The additional terms that would account for the non-adiabatic effects 

would be the full second order dipole-dipole energies due to the low-lying D states. 
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 (6.6) 

Fitting the measured fine structure to Eq. 6.6 with the structure parameters for each L determined 

independently requires that the structure parameters and the matrix element be independent from 

each other.  They are not.  The full second order dipole-dipole energies for each L can be fit 

perfectly to scalar, vector, and 2nd rank tensor structure parameters, but the resulting structure 

parameters do not scale in the fashion predicted by the effective potential model since they are 

highly non-adiabatic.  The fact that the second order energies included in Eq. 6.6 can be broken 

into structure parameter that are also contained in the model makes it impossible to fit the fine 
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structure to both the structure parameters and matrix element since they are not linearly 

independent. . 

 To break the linear dependence between the structure parameters and the matrix element 

controlling the second order dipole-dipole energies it is necessary to constrain the structure 

parameter to scale in the fashion predicted by the effective potential model.  This is 

accomplished by writing the structure parameters in the Eq. 6.6 explicitly in terms of 

expectations values and the properties of Th3+, Eq. 6.7 through Eq. 6.11. 
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and 
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For example, the scalar structure parameter is predicted from the effective potential model to be 

primarily controlled by the contribution of the scalar dipole polarizability which is proportional 

to r-4 and the next term contributing to the scalar parameter is proportional to r-6.  It is expected 

that the contribution from the higher order terms in each of the structure parameters would be 

smaller than the leading terms, this assumption will be tested during the fit of the measured fine 

structure. With these restrictions in place it is possible to fit for the matrix element and the 
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properties of Th3+ since they will be independent from each other.   The fit of the fine structure to 

this improved model would return properties and the matrix element directly.  This type of model 

is very similar to the model used to fit the optical data for the Th3+ study, Eq. 6.4.  

Before the rf measured fine structure was fit the to this model the possibility of additional 

effects that could be contributing to the fine structure were considered.  These additional effects 

were neglected in the optical study due to the precision of the optical measurements.  Given the 

precision of the rf measurements, these neglected effects had to be reconsidered.  These 

additional effects were either added to the model used to fit the data or applied as corrections to 

the measured fine structure.  The additional terms that had to be added to the model used to fit 

the data were the full second order octupole-dipole energies for the low-lying D states.  For the 

case of the 2
3 2/D  in L=9 these second order octupole-dipole energies were estimated to be as 

large as 100MHz.  The calculation of the full second order octupole-dipole energies will be 

discussed in Section 6.2c.  The addition of the full second order octupole-dipole energies to the 

model for the fine structure is seen in Eq. 6.12.  The matrix elements controlling the respective 

second order energies in Eq. 6.12 are written out in the front of the second order energies, so 

they might be parameters in the fit of the fine structure. 
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 Before the measured fine structure was fit to this model to determine coefficients and 

matrix elements, the measured fine structure had to be corrected for effects not accounted for by 

this model, Eq. 6.13.  

 
2 2 2

Rel 2 3 2
[ ] [ ]

, /( ) ( ) ( )Corrected obs eff D correctionE E E E V E shift E D      (6.13) 

The first three correction applied are “traditional” corrections for the studies of Rydberg fine 

structures.  The first correction is the relativistic correction, RelE , the calculation of this 

corrections is straight forward and is presented in Eq. 1.32.  The second correction is 2[ ]( )effE V  

which corrects for the coupling between Rydberg levels.  The 2[ ]( )effE V  correction was discussed 

in the general in the Section 1.2, but a more detailed discussion of its calculation for the case of 

Th3+ is discussed in the Section 6.2c.  The third correction, 2,( )DE shift , is necessary due to 
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tensor coupling between levels with of the same n in the Rydberg fine structure, this correction is 

discussed in Section 6.2d.  The last correction that needs to be applied to the measured fine 

structure in Eq. 6.13 is 2 2
3 2

[ ]
/( )correctionE D .  The 2 2

3 2
[ ]

/( )correctionE D  correction accounts for the neglect 

of the fine structure of the intermediate Rydberg states when calculating the full second order 

dipole-dipole energies due to the low-lying 2
3 2/D  .  This correction is discussed in Section 6.2a 

at the same time as the calculation of the full second order dipole-dipole energies. 

The remaining sections in this chapter will discuss the calculation of the corrections, the 

application of the corrections and the extraction of the properties from the measured fine 

structure.  Section 6.2 will discuss in detail the calculation of all additional terms for the model, 

Eq. 6.12 and the all corrections applied to the measured fine structure, Eq. 6.13.  Section 6.3 will 

show the application of the corrections to the observed fine structure and the fitting of the fine 

structure to the model.  Section 6.4 will compare the values of the properties extracted from the 

fit with the results from the optical study and the theoretical calculations. 

6.2 Effects contributing to the Th2+ Rydberg fine structure 

6.2a Dipole coupling with the low-lying D states 

The dominance of the second order energies due to the dipole-dipole coupling with the 

two low-lying D states in the model for the Th2+ Rydberg fine structure requires that careful 

attention be paid to these calculations.  The calculation of the full second order energies for 

dipole-dipole coupling with the 2
3/2D  and 2

5/2D  was discussed in the Chapter 4.  The second 

order dipole-dipole energies for the 2
3/2D  and 2

3/2D  were given respectively by Eq. 4.6 and Eq. 

4.7, and repeated here in Eq. 6.14 and 6.15 respectively for convenience.  
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Everything in Eq. 6.14 and 6.15 is known except the dipole matrix elements that connect the 

ground state to either the 2
3/2D  or 2

5/2D .  Table 6.1 gives the total second order dipole-dipole 

energies for the [2] 2
3/2( )E D  and the [2] 2

5/2( )E D  for each of the specific states measured in the rf 

study.  These energies were calculated assuming the theoretical values of the dipole matrix 

elements [45].  
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From Table 6.1 it can be seen that the second order energies for both core states are not 

small, even in L=12, thus confirming yet again the necessity of including them in the model used 

to the fit the data.  Also when these corrections are calculated with their theoretical matrix 

elements it can be seen that contributions due to the 2
3/2D  are much larger than the contributions 

due to the 2
5/2D .  Even though the 2

5/2D  second order dipole-dipole energies are smaller than the 
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2
3/2D  second order dipole energies, they cannot be neglected.  A simplification to the model can 

be made though, as mentioned in the first section of this chapter.   

 

Table 6.1: The second order dipole-dipole energies for the n=28 Th2+ Rydberg states due to the 
2

3/2D  and the 2
5/2D  in MHz.  The first column identifies the states (L, K). The second columns 

gives the second order energy for the 2
3/2D  and column three gives the second order energy for 

the 2
5/2D .  Both second order energies were calculated assuming theoretical matrix elements, 

1.530a.u. for the 2
3/2D  dipole matrix element and 0.412a.u. for the 2

5/2D  dipole matrix element. 

 

(L , K ) E[2](2D3/2) E[2](2D5/2)
(9, 6.5) -7420.58 -37.48
(9, 7.5) -4947.05 -83.17
(9, 8.5) -2820.68 -113.20
(9, 9.5) -1295.33 -119.40
(9, 10.5) -654.73 -92.66
(9, 11.5) -1212.46 -22.91
(10, 7.5) -3458.32 -18.82
(10, 8.5) -2282.49 -43.80
(10, 9.5) -1310.04 -59.99
(10, 10.5) -654.86 -63.49
(10, 11.5) -442.85 -49.98
(10, 12.5) -811.90 -14.73
(11, 8.5) -1342.74 -10.89
(11, 9.5) -878.89 -26.17
(11, 10.5) -519.89 -35.93
(11, 11.5) -311.85 -38.04
(11, 12.5) -305.27 -30.15
(11, 13.5) -555.04 -9.72
(12, 9.5) -748.71 -6.78
(12, 10.5) -486.66 -16.69
(12, 11.5) -292.89 -22.93
(12, 12.5) -192.83 -24.26
(12, 13.5) -214.12 -19.30
(12, 14.5) -386.61 -6.58
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If LS coupling scheme is assumed the dipole matrix element between the ground state and the 

2
5/2D  can be written in terms of the dipole matrix element between the ground state and the 

2
3/2D , Eq. 6.5, shown here again for convenience.   
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The optical study determined both of the matrix elements [3].  The ratio of the experimentally 

determined matrix elements is consistent within 1.3σ with the ratio predicted from the LS 

coupling.  It is very unlikely that the ratio between these two matrix elements varies by as much 

5% from the LS coupling ratio.  (The theoretical matrix elements agree with the LS ratio to 

within 1.5%.)  Given the relatively small size of the calculated contribution from the 2
5/2D state, 

it should be sufficiently accurate to assume that the matrix elements ratio matches the LS 

coupling predication.  Therefore, in the model used to fit the fine structure the 2
5/2D  dipole 

matrix element will be rewritten in term of the 2
3/2D  dipole matrix element, Eq. 6.12, allowing 

for one less parameter in the fit of the fine structure.  This assumption of LS coupling will be 

checked when the fit of the fine structure is carried out.  

The numerical precision of the calculated second order dipole-dipole energies, Table 6.1 

is an important consideration since these are a dominant contribution to the fine structure.  The 

calculation of both the of the second order energies for the 2
3/2D  and the 2

5/2D , presented in Eq. 

6.14 and Eq. 6.15 respectively, both contain a sum over the intermediate Rydberg state of the 

form  
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where nL denote the Rydberg state of interest and n L   is the intermediate Rydberg states.  In the 

case of the 2
3/2D  and 2

5/2D  second order energies the possible values of L  are only 1L  . The 

calculation of that sum over the intermediate Rydberg state is conducted numerically through a 

Fortran program, fnLZ , developed by previous members of this research group [49] to implement 

the Dalgarno Lewis [10] approach to completing the sum over the intermediate Rydberg state,  

n , including both discrete and continuum states.  The Dalgarno Lewis approach rewrites that 

infinite sum as a differential equation.  The fnLZ program then numerically solves that differential 

equation.  The fnLZ program is used in the calculation of all second order energies.  Therefore 

understanding the accuracy of the fnLZ program is important to understanding possible 

uncertainties in calculation of corrections that will be applied to the measured fine structure.   

In order test the fnLZ program it is necessary to be able to complete the sum over the 

intermediate Rydberg states in a different way that would allow for a comparison and check of 

the fnLZ result.  If the adiabatic expansion was valid it would be possible to carry out the sum 

over the intermediate Rydberg state without the use of fnLZ, since Eq. 6.16 can be rewritten as Eq. 

6.17 with the application of the adiabatic expansion.   
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Then using the completeness relation and the other relations related to the radial functions seen 

in Ref. [7] the three terms in Eq. 6.17 can be rewritten in terms of expectations values, and 
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factors that are dependent on L, L′ and the excitation energy of the excited core state, ( )cE J  , 

Eq. 6.18.  If the adiabatic expansion was valid for the excited core state of interest then the result 

of the fnLZ program should closely match the result of calculating the sum using Eq. 6.18.   
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For the case of the 2
3/2D  and the n=28 fine structure, Table 4.2 showed that for low L levels in 

n=28 the adiabatic expansion would not be valid but as L increases the use of the adiabatic 

expansion would become valid.  Therefore, if fnLZ was used to calculate the sum, Eq. 6.16, for 

the 2
3/2D  for a range of L, it  would be expected that the value of the sum calculated using three 

terms of the adiabatic expansion would approach the fnLZ value when L increases, enabling a test 

of the fnLZ program.  Table 6.2 gives the results of such a test.  From the table it can be seen that 

as a L increases the values of the sum calculated using fnLZ and Eq. 6.18 converge and match to 

five digits.  This test of fnLZ also illustrates the inadequacy of the use of the adiabatic expansion 

for low L states in n=28, since the fnLZ result differs so dramatically from the value of the sum 

completed using Eq. 6.18.  To determine the uncertainty on each of the fnLZ sums a secondary 

test of fnLZ was conducted.  If the core excitation energy is large it is expected that the sum 

completed using fnLZ and the sum completed using Eq. 6.18 would match over the complete 
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range of L.  Therefore to test fnLZ, the core excitation energy in Eq. 6.16 was changed to 

11,000,000cm  and the sum was then completed using both the fnLZ program and Eq. 6.18 over 

the entire range of L.  The results of completing the sum both ways are seen in Table 6.3 for L=9 

to L=27 in n=28.  The test of the fnLZ program shows good agreement with the completion of the 

sum using Eq. 6.18 with the difference between the two methods occurring either in the sixth or 

seventh digit.  There did not appear to be correlation in the deviation of the two methods with L 

so to be conservative an error of two was placed on the sixth digit on each of the fnLZ sum results 

used, three times the average difference of the results shown in Table 6.3 for the two methods. 

From these two tests it was determined that the uncertainty in the calculated second order dipole-

dipole energies would be on at most 0.02MHz, for the  largest second order dipole-dipole 

energies for the 2
3/2D  in L=9 .  This uncertainty is much smaller than the experimental 

uncertainty in the measured positions of the levels, so it was neglected. 
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Table 6.2: Comparing the sum over intermediate Rydberg state using fnLZ or Eq. 6.18 to calculate 
the Eq. 6.16 for n=28 q=3.  In the table all numbers are times 1010  and are in atomic units.    

 

fnLZ result Three Terms fnLZ result Three terms 
9 9918.62 29602.4 54601.9 32479.8
10 6613.03 11651.7 25596.6 16271.0
11 4504.49 5934.40 9985.79 9005.77
12 3127.95 3568.68 5590.14 5368.22
13 2210.53 2355.87 3447.03 3384.98
14 1587.47 1638.17 2249.21 2229.62
15 1156.93 1175.47 1527.14 1520.41
16 854.598 861.652 1068.84 1066.38
17 639.114 641.889 766.483 765.537
18 483.389 484.510 560.789 560.412
19 369.394 369.857 417.279 417.124
20 284.944 285.138 315.001 314.936
21 221.685 221.767 240.765 240.738
22 173.809 173.843 186.021 186.010
23 137.228 137.242 145.083 145.078
24 109.028 109.034 114.087 114.086
25 87.1106 87.1127 90.3595 90.3585
26 69.9455 69.9462 72.0130 72.0126
27 56.4073 56.4074 57.7006 57.7004

L ′=L -1L ′=L +1
ΔE

co
re

=9
19

3.
24

61
cm

-1

L
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Table 6.3: Comparing the sum over intermediate Rydberg state using fnLZ or Eq. 6.18 to calculate 
the Eq. 6.16 for n=28 q=3.  The excitation energy used was 11,000,000cm .  In the table all 
numbers are times 1110  and are in atomic units.    

 

With the numerical accuracy of the calculated second order dipole-dipole energies 

confirmed, the last thing to check on the calculated second order dipole-dipole energies is an 

assumption made in their calculation.  The assumption inherent in Eq. 6.14 and 6.15 is that the 

fine structure energy of the intermediate Rydberg state can be neglected and just the hydrogenic 

energy of the of the intermediate state, ( )E n , can be used in the denominator of the calculation 

of the full second order energies.  Fig 4.4 shows the Rydberg series connected to each D states, 

and from this it can be seen that the n=28 Rydberg level bound to the ground state of Th3+ is near 

fnLZ result Three Terms fnLZ result Three terms 
9 1518.085 1518.091 1538.669 1538.668
10 912.1792 912.1793 921.0895 921.0882
11 572.9688 572.9683 577.1171 577.1163
12 373.4156 373.4154 375.4657 375.4655
13 251.0372 251.0375 252.1019 252.1023
14 173.2893 173.2893 173.8658 173.8658
15 122.3725 122.3724 122.6959 122.6958
16 88.13738 88.13755 88.32422 88.32438
17 64.58258 64.58250 64.69331 64.69323
18 48.04316 48.04312 48.11021 48.11017
19 36.21881 36.21871 36.26014 36.26005
20 27.62821 27.62818 27.65407 27.65404
21 21.29651 21.29649 21.31288 21.31286
22 16.56874 16.56874 16.57919 16.57919
23 12.99699 12.99697 13.00370 13.00368
24 10.26967 10.26969 10.27398 10.27401
25 8.167028 8.167001 8.169792 8.169765
26 6.531522 6.531507 6.533278 6.533263
27 5.249143 5.249130 5.250240 5.250227

L ′=L +1 L ′=L -1
ΔE

co
re

=1
,0

00
,0

00
cm

-1

L
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the n′=9 and n′=10 Rydberg states bound to the 2
3/2D  and the n′=8 Rydberg state from the 2

5/2D .  

For intermediate states that are close to the n=28 states the energy difference in the denominator 

of the second order dipole energy, Eq. 6.14 and 6.15, is small.  Therefore if the energy of the 

intermediate state deviates much from hydrogenic, it could change the contribution from that 

intermediate state.  During the optical study the fine structure of the intermediate states was 

neglected, but due to the sub-MHz precision of the rf measurements it cannot be neglected here.  

The size of the fine structure of the intermediate Rydberg state and its proximity to the 

n=28 Th2+ Rydberg state bound to the 2
5/2F  will determine the size of the correction needed to 

the full second order energies for the 2
3/2D  and the 2

5/2D .  Since the n′ values of the intermediate 

states closest to the n=28 are n′=8, 9, and 10 and these contain only 9L   levels, the lower L 

states in n=28 will be most susceptible these corrections since the L values of the intermediate 

state, L , can only be 1L  .  For each L′ in the 2
3/2D  fine structure there will be four levels since

3/ 2cJ  , while for the 2
5/2D  there will be six levels for each L′.  The size of the fine structure of 

the intermediate Rydberg states will be determined by the values of the core properties for each 

of the excited states.  At this time there are not any measurements of any of the properties for the 

excited states.  Therefore, to determine the size of the corrections theoretical properties for the 

excited 2
3/2D  and 2

5/2D  were used to simulate the intermediate fine structure.  For the case of the 

of the low-lying 2
3/2D  state the properties were provided during private communications with 

both M. S. Safronova [42] and U. I. Safronova [46], with the exception of the Landé g factor, Jg .  

The Landé g factor was calculated from the definition presented in the work of Bethe and 

Salpeter [31].  
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The properties used in the simulations of the intermediate fine structure bound to the low-lying 

2
3/2D  are:  
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The large uncertainty placed on the scalar dipole polarizabilities for the 2
3/2D  is due to the fact 

that the a large part of the property is due to the dipole coupling between the 2
3/2D  and the 2

5/2F .  

The optical study of the Th2+ Rydberg fine structure showed that the dipole coupling of the 2
5/2F  

and the 2
3/2D  is not well represented by the effective potential and the scalar dipole polarizability 

due to the proximity of the states to each other.  This will also hold true for the scalar dipole 

polarizability for the excited 2
3/2D  state, therefore a large correction and uncertainty has been 

applied to its value, 0 9 0 4 5, . ( . )D   .  Using these values the fine structure of the intermediate 

state was then simulated to determine whether it would produce a significant difference in the 

energy denominator of the second order energies compared to the energy denominator calculated 

assuming the hydrogenic energy for the intermediate state.   

Given the n′L′ of the intermediate state of interest and the estimated properties for the  

2
3/2D  excited core state it was found that some of the fine structure patterns for the intermediate 

states would span up to 110cm  around hydrogenic and thus changing the energy denominator 

of the second order energies for some intermediate states by one to two percent.  The 

contributions to the second order energies for some of these intermediate states are on the order 

of 10GHz, thus the change of a few percent could prove very important in the interpretation of rf 

measurements with sub-MHz precision.  An example of this is seen in Fig. 6.1, the n=28 bound 



224 
 

to the 2
5/2F  is separated from the 10n   bound to the 2

3/2D  by 576.62cm-1.  The fine structure of 

the 10 8n L    states spans approximately 18.5cm , and thus would change the energy 

denominator of the second order energies for intermediate states with 10 8n L    by as much 

as 1.5%. 

 

Figure 6.1: Example of the fine structure for an intermediate state 10 8n L    bound to the 
2

3/2D .  The n=28 bound to 2
5/2F , is separated from the 10n   bound to the 2

3/2D  by 576.62cm-1. 
The energies in this figure are not to scale. 
 

To correct the second order energies for the neglect of the intermediate fine structure the 

contribution to the second order energies due to specific intermediate Rydberg states near the 

n=28 state of interest in Fig. 4.4, were calculated two ways.  The first way assumed the 

hydrogenic energy for the energy of the intermediate state, [2] ( )Hyd cE J   and the second way used 

the simulated fine structure energy of the intermediate state, [2] ( )Fine cE J  , in addition to the 
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hydrogenic energy.  The difference between these two calculations provided the amount the full 

second order energy would shift due to the fine structure of the intermediate state. 

 
[2] [2] [2]( ) ( ) ( )Correction c Fine c Hyd cE J E J E J          (6.19) 

This calculation was completed for all the n=28 states of interest and for the intermediate states 

bound to the D states that are near the n=28 bound to the ground state.  It would be for these 

states that the energy difference between ( )E n  and ( )E n  would be smallest, and therefore, they 

would be most sensitive to the possible change in the energy of intermediate state due to its 

possible fine structure.  The calculation of the corrections to the full second order energies for 

the 2
3/2D  focused on the 9 11n   , since those states are the nearest to the n=28 Rydberg state 

bound to 2
5/2F .  Table 6.4 gives the shift to each component of the second order energies for 

9 11n    and 1L L   , the absence of a number for a specific intermediate state indicates the 

nonexistence of that specific intermediate state.  Thus certainty on each of the calculated shifts is 

the result of the uncertainty in the scalar dipole polarizability for the 2
3/2D , the uncertainty in 

each of the shift is propagated into the total shift for each states listed in the table.  

For the case of the 2
3/2D  second order energies the corrections were only calculated for 

the intermediate states 9 11n    due to the fact that the corrections to the second order energies 

become smaller as n′ increases.  As n′ increases, the intermediate Rydberg state becomes farther 

from the n=28 state bound to the ground state, Fig. 4.4, and the size of the intermediate fine 

structure also decreases like 31 n  making the corrections to the second order energies smaller.  
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Table 6.4: Corrections to the second order dipole-dipole energies  due to the fine structure of the intermediate state bound to the 2
3/2D  

excited states.  These corrections were calculated assuming the theoretical value of the dipole matrix element coupling the 2
3/2D  and 

the ground state, 1.53a.u.  All energies are in MHz. 
n '=9 n '=9 n '=10 n '=10 n '=11 n '=11

L K  L '=L +1  L '=L -1  L '=L +1 L '=L -1 L '=L +1 L '=L -1
9 6.5 - 5.65(62) - 64.31(8.11) - 3.52(44) 73.48 (8.15)
9 7.5 - -1.76(43) - -20.01(5.79) - -1.07(30) -22.84 (5.81)
9 8.5 - -1.54(24) - -17.33(3.17) 0.00 -0.94(16) -19.81 (3.18)
9 9.5 - 0.56(9) - 6.46(1.10) 0.00 0.35(6) 7.37 (1.11)
9 10.5 - - - - 0.00 - 0.00 (0.00)
9 11.5 - - - - 0.00 - 0.00 (0.00)
10 7.5 - - - 10.57(1.08) - 0.99(9) 11.56 (1.08)
10 8.5 - - - -3.76(73) - -0.35(6) -4.11 (0.73)
10 9.5 - - - -3.08(39) - -0.28(3) -3.36 (0.39)
10 10.5 - - - 1.04(14) - 0.10(1) 1.14 (0.14)
10 11.5 - - - - - -
10 12.5 - - - - - -
11 8.5 - - - - - 0.16(1) 0.16 (0.01)
11 9.5 - - - - - -0.06(1) -0.06 (0.01)
11 10.5 - - - - - -0.05(1) -0.05 (0.01)
11 11.5 - - - - - 0.02(1) 0.02 (0.01)
11 12.5 - - - - - -
11 13.5 - - - - - -
12 9.5 - - - - - -
12 10.5 - - - - - -
12 11.5 - - - - - -
12 12.5 - - - - - -
12 13.5 - - - - - -
12 14.5 - - - - - - -

-
-
-

-
-
-
-

(MHz)

-
-

[2] 2
3/2( )CorrectionE D
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The size of the corrections also decreases with L, this is due to the fact in that higher Ls require 

intermediate states with higher n′, which are farther from the n=28 states and have smaller fine 

structures. Given the fact that this correction to the second order dipole-dipole energies for the 

2
3/2D  contains an uncertainty, it will be kept separate and not applied to the calculated full 

second order dipole-dipole energies for the 2
3/2D .  This correction will instead be applied to the 

measured fine structure, and the uncertainty in it will be propagated into the positions of the 

levels.  

The fine structures of the intermediate states bound to the 2
5/2D  were also studied to 

determine the effect of their neglect on the full second order dipole energies for the 2
5/2D .  To 

get a sense whether they were important just the permanent quadrupole moment for the 2
5/2D  was 

used to simulate the fine structure of the intermediate states of interest, 2.02 . .Q a u  [46].  For 

the case of the 2
5 2/D , the nearest intermediate state to n=28 is the n′=8, the highest L′ contained 

in that state is L′=7, which does not contribute to any of the second order energies of interest, 

since they have 9L  .  Given the quantum numbers and size of the fine structure of the states 

bound to the 2
5 2/D  that are near the n=28 bound to the ground state, the corrections to the 2

5 2/D  

second order energies would be small.  Table 6.5 gives the shift of the second order energies for 

the 2
5 2/D , for n=28 L=9 due to the n′=9 L′=8 intermediate state, the closest intermediate state.  

The shift of the 2
5 2/D  second order energies, 

[2] 2
5/2( )CorrectionE D , were calculated assuming the 

theoretical dipole matrix element [45] between the ground state and the 2
5 2/D .  The corrections 

for states with 9L  would be even smaller than these corrections for the L=9 states, since the 

intermediate states involved would have an even higher n′ value and thus would be father away 

from the n=28 state bound to the ground state.  These corrections were considered negligible. 
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Table 6.5: The shift of the 2
5 2/D  second order energies, the first column identities the L and  the 

second column identifies the K.  The final column gives the shift assuming the theoretical dipole 
matrix element, 0.412a.u., for the coupling of the 2

5 2/D  and the ground state.  All energies are in 
MHz. 

 

6.2b Octupole coupling with the low-lying D states 

The full second order energies due to the dipole-dipole coupling with the low lying states 

proved to be very important to the deciphering of the Th2+ Rydberg fine structure, but these 

second order energies only accounted for the dipole-dipole coupling between the ground state 

and the two low-lying excited D states.  The ground state and the two low-lying D states can also 

couple via higher order odd terms in the multipole expansion.  The effects of these coupling were 

neglected in the optical study, but given the increased precision of the rf measurements these 

higher order coupling must be considered.  The next two coupling that can occur between the 

low-lying states and the ground state are octupole-dipole coupling and octupole-octupole 

coupling.  The effect of these coupling would be smaller than the dominant dipole-dipole 

coupling, but just like the dipole-dipole coupling these higher order coupling would be 

susceptible to the failure of the adiabatic expansion for the low lying 2
3 2/D  and 2

5 2/D  states.  The 

effective potential model derived using the adiabatic expansion would fail to describe these 

coupling to the low-lying D states.   

L K (MHz)
9 6.5 0.00
9 7.5 -0.03
9 8.5 -0.05
9 9.5 -0.03
9 10.5 0.03
9 11.5 -

[2] 2
5/2( )CorrectionE D
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 Therefore, the full second order energies due to these couplings for both of the low-lying 

states had to be calculated to determine their importance.  The second order energies due to the 

octupole-dipole coupling are given by Eq. 6.20, for the two different low lying states, the 2
3/2D  

and the 2
5/2D  [7].  

 

[2]

4 2
[3] [1]

3 1
( ) 2 (2 1)(2 1)

3 1 0 0 0 0 0 0

( ) ( ) ( )
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
 

(6.20) 

Everything in Eq. 6.20 can be calculated up to a constant, the product of the dipole and octupole 

matrix elements that connect the ground state to the excited state of interest.  The sum over the 

intermediate Rydberg state, n , was completed using the fnLZ program.  

The size and importance of these second order energies depends on the size of the matrix 

elements, theoretical estimates of both the dipole and octupole matrix elements for the low-lying 

2
3/2D  and 2

5/2D  were used in the calculation of the full second order energies initially.  The 

dipole matrix elements for the two low-lying states have been calculated [45] to be  

 

2 [1] 2
5/2 3/2

2 [1] 2
5/2 5/2

5 6 1.530 . .

5 6 0.412 . .

F M D a u

F M D a u

 


.

  
The magnitudes of the octupole matrix element were provided in private communication with 

M.S. Safronova [42], but the sign of each of the octupole matrix elements was determined 

relative to the dipole matrix elements connecting the same states by assuming a LS coupling 

scheme for the D and F states. 
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2 [3] 2
5/2 3/2

2 [3] 2
5/2 5/2

5 6 8.394 . .

5 6 7.043 . .

F M D a u

F M D a u



 
  

The full second order energies due the octupole-dipole coupling for the two low-lying state, 

[2] 2
3/2( )ODE D  and [2] 2

5/2( )ODE D , were calculated assuming the theoretical matrix elements.  The 

results of the calculations for both of the low-lying core states are provided in Table 6.6.  For the 

2
3/2D these second order octupole-dipole energies are large, at times almost 70MHz in L=9, but 

they decrease in size to be approximately 2MHz for L=12.  While for the other low-lying state, 

the 2
5/2D , the second order octupole-dipole energies are less than 5MHz for L=9 and decrease to 

be less than 1MHz for L=12.  Given the size of both of the second order octupole-dipole energies 

in L=9, neither can be neglected when fitting the observed rf fine structure for core properties.  

For that reason the second order octupole-dipole energies were added to the model being used to 

fit the measured fine structure, Eq. 6.12.  

 In the model being used to fit the fine structure both of the octupole matrix elements that 

coupling the ground state to the low-lying D states have been included.  The optical study of 

Th3+ showed that the ratio of the dipole matrix elements that couple the ground state to the low-

lying D state was consistent with the ratio predicted by LS coupling.  This allowed for the model 

being used to fit the data to be simplified to include one less parameter by writing both the 

second order energies due to dipole coupling in terms of just one of the dipole matrix elements.  

Similarly it is possible to write the octupole matrix elements for the low-lying D states in terms 

of each other if LS coupling is assumed.  
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Table 6.6: The full second order energies due the octupole-dipole coupling  between the ground 
state and the one of the low-lying D states. The theoretical values for the both the dipole and 
octupole matrix elements were used in the calculation here.  For the 2

3/2D  the dipole matrix 
element was -1.530a.u. and the octupole matrix element was 8.394a.u.  For the 2

5/2D  the dipole 
matrix element was 0.412a.u. and the octupole matrix element was -7.043a.u.  All energies are in 
MHz. 

 

Therefore the product of the dipole and the octupole matrix elements for the 2
3 2/D  can be related 

to the product of the dipole and the octupole matrix elements for the 2
5 2/D , Eq. 6.21.   

2 [1] 2 2 [3] 2
5/2 3/2 5/2 3/22 [1] 2 2 [3] 2

5/2 5/2 5/2 5/2

5 6 5 6
5 6 5 6

21

F M D F M D
F M D F M D 

 (6.21) 

L K
9 6.5 -69.43 -3.41
9 7.5 69.43 -1.59
9 8.5 23.77 3.53
9 9.5 -32.74 4.14
9 10.5 10.52 -2.13
9 11.5 -5.98 -1.10

10 7.5 -22.13 -1.08
10 8.5 23.01 -0.59
10 9.5 6.68 1.15
10 10.5 -10.73 1.43
10 11.5 4.71 -0.59
10 12.5 -2.73 -0.48
11 8.5 -5.42 -0.41
11 9.5 5.82 -0.25
11 10.5 1.13 0.46
11 11.5 -2.70 0.58
11 12.5 2.23 -0.20
11 13.5 -1.31 -0.22
12 9.5 -2.05 -0.18
12 10.5 2.26 -0.11
12 11.5 0.30 0.20
12 12.5 -1.03 0.26
12 13.5 1.10 -0.08
12 14.5 -0.66 -0.11

[2] 2
3/2( )ODE D [2] 2

5/2( )ODE D
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This will allow for one of the octupole matrix element for the 2
3 2/D to be included in the fit of the 

fine structure as a parameter to be determined by the fit.  

The full second order octupole-octupole energies were also calculated and determined to 

be negligible when compared to the dipole-octupole second order energies.  For the 2
3/2D , the 

octupole-octupole second order energies were only approximately 0.2MHz in L=9 and become 

even smaller as L increases.  The second order octupole-octupole energies for the 2
5/2D  would be 

even smaller.  The combined second order octupole-octupole energies for both excited core 

states would be within the uncertainty in the relative positions of the measured fine structure 

levels.  Therefore they were neglected. 

6.2c Second order in the effective potential 

The second order energy in terms of the effective potential is necessary is due to the 

exclusion of intermediate states in which the core remains in its ground electronic configuration 

during the derivation of the effective potential.  Since these excluded intermediates levels can be 

considered to be “Rydberg levels,” this traditional correction can also be described as accounting 

for the energy shifts due to coupling to other Rydberg levels.  In Th3+ there are two states in the 

ground electronic state, the ground state, the 2
5/2F  and one excited level, the 2

7 /2F , located 

14325.394(12)cm  above the 2
5/2F  [9].  A discussion of these second order energies is included 

in Section 1.2 and in the work of Woods [7].  These works showed that they can be calculated 

for these Rydberg levels using the effective potential.  The energy shifts are given by plugging 

the leading terms of the effective potential, Eq. 1.29 into Eq. 1.28.  For the case of Th3+, the 

second order energies in the effective potential has six terms, Eq. 1.30, repeated here for 

convenience.  
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Each of the terms in the Eq. 1.30 has to be evaluated separately and the size of the each of the 

terms is dependent on the core properties contained in each of the terms.  The calculation of 

these corrections therefore has to be an iterative process, since the size of the correction is 

dependent on the properties of Th3+.  Initially the properties determined from the optical study 

were used, but the analysis of the rf results was iterated allowing for the properties determined 

from the rf data to be used in the determine the second order energies due to the excluded ground 

states.  The iterative process was continued until there were no further changes to the determined 

core properties.  

The first three terms in Eq. 1.30 are limited by selections rules 0cJ   and 0L  due to 

the presence of the scalar dipole polarizability in each of the terms.  This means that for the first 

three terms the intermediate core state in the second order energy is the 2
5/2F  ground state, and 

the 2
7 /2F  state does not play a role.  The second order energy due to the scalar dipole 

polarizability, [2]
,0 ,0( )D DE   , Eq. 6.22 depends on the scalar dipole polarizability and the sum of 

the radial matrix elements of the Rydberg state of interest, n , and the intermediate Rydberg state, 

n .  This sum was carried out numerically using the fnLZ program. 
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 (6.22) 

This particular term in [2]( )effE V  has also been calculated analytically by Drake and Swainson 

[38] with the result given in Eq. 3.5.  Similarly the second and third term of Eq. 1.30 can be 

calculated in terms of the core properties and sums over intermediate Rydberg states.  The 
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second order energy due to the scalar dipole polarizability and the tensor dipole polarizability is 

given by Eq. 6.23 and the second order energy due to the quadrupole moment and the scalar 

dipole polarizability is given by Eq.6.24.  
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 (6.23) 
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 (6.24) 

Both the second and third term of the second order energy, Eq. 6.23 and Eq. 6.24 depend on the 

K  of the state of interest, requiring that this correction be calculated for each individual state 

separately.   

The remaining three terms in [2]( )effE V  have to account for the possibility that either the 

2
5/2F or the 2

7 /2F  can be the intermediate core state.  These remaining three terms of the second 

order energies are governed by the selections rules that , 2L L L    and 7 / 2cJ    or 5 / 2 .  

Therefore the sum in each of the energies will not only be over n , it will also be over L  and 

cJ  .  The second order energy due to the permanent quadrupole moment is given by Eq. 6.25 

where [2]
c cgJ M gJ  is the reduced quadrupole moment matrix between core states and 

( )cE gJ   is the excitation energy of the core state of interest.  The permanent quadrupole 

moment is not used directly. 
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 (6.25) 

For the case of the 5 / 2cJ    the excitation energy 2 1
5/2( ) 0.0E g F cm   and the reduced 

quadrupole matrix element, the diagonal reduced quadrupole matrix element, is related to the 

permanent quadrupole moment by Eq. 6.26.  

 

2 [2] 2
5/2 5/2

212
5 / 2 2 5 / 2 5
5 / 2 0 5 / 2

Qg F M g F Q 
 
    (6.26) 

For 7 / 2cJ    the excitation is 2 1
7/2( ) 4325.394(12)E g F cm   [9] and assuming LS coupling 

quadrupole matrix element, the off diagonal reduced quadrupole matrix element is given by, Eq. 

6.27.  

 

2 [2] 2 2 [2] 2
5/2 7/2 5/2 5/2

1 14
6 5

g F M g F g F M g F Q 

 (6.27) 

The remaining two terms in [2]( )effE V  contain either the tensor dipole polarizability and 

permanent quadrupole moment, Eq. 6.28 or the tensor dipole polarizability alone, Eq. 6.29.  For 

both of these terms the intermediate states can be either  7 / 2cJ    or 5/ 2  but careful attention 

must be paid to the permanent quadrupole moment and tensor dipole polarizability since their 

value is dependent on the identity of the intermediate state.  As seen in the work with the second 

order quadrupole energy, Eq. 6.25, the value of the reduced quadrupole matrix depended on 

whether was 7 / 2cJ   or 5 / 2cJ   , called the respectively the off diagonal or diagonal 
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reduced quadrupole matrix element.  In the second order energies involving the tensor dipole 

polarizability a similar thing will occur, the tensor dipole polarizability will have two values 

depending on whether it is the diagonal ( 5 / 2cJ   ) or off-diagonal ( 7 / 2cJ   ). 
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 (6.28) 
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 (6.29) 

The diagonal tensor dipole polarizability, 2
,2 5/2( )D F  is just the tensor dipole polarizability of 

Th3+, ,2D  and the diagonal permanent quadrupole moment 2
5/2( )Q F  is just the permanent 

quadrupole moment of Th3+, Q .   

The determination of the off diagonal tensor dipole polarizability requires more 

knowledge of the states contributing to the tensor dipole polarizability of Th3+.  For the case of 

Th3+ theoretical estimates of the tensor dipole polarizability [45] show that almost all tensor 

dipole polarizability is due to the low-lying 2
3/2D state, the total dipole polarizability is estimated 

at ,2 6.166D    with 6.206  of that due to the 2
3/2D  state.  Using Eq. 77 from Ref. [7], which 

simplifies to Eq. 6.30 for this case, it is possible to come up with a theoretical estimate of the off 

diagonal tensor dipole polarizability.  
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This estimate of the off diagonal tensor dipole polarizability required theoretical estimates of the 

reduced dipole matrix elements [45] and knowledge of the excitation energies [13].  Table 8 in 

Ref. [45] gave a list of states contributing to the diagonal dipole polarizability, therefore this 

table was used as a guide in calculation the off diagonal dipole polarizability.  This calculation 

showed that the 2
3/2D  state, which is responsible for almost all of the tensor dipole polarizability 

of Th3+, does not contribute to the off diagonal tensor dipole polarizability since the 2
3/2D  cannot 

be a dipole coupled to the 2
7 /2F .  The main state contributing to the off-diagonal tensor dipole 

polarizability is the 2
5/2D .  The contribution of all other excited states to the off diagonal dipole 

polarizability is minimal, two orders of magnitude smaller than the contribution from the 2
5/2D  

state, so their contributions were neglected.  The off diagonal tensor dipole polarizability was 

therefore calculated using the theoretical matrix element coupling the ground state to the 2
5/2D , 

presented in Ref. [45], with the sign of the matrix element determined from assuming LS 

coupling. This resulted in the determination of 2
,2 7/2( ) 1.6 1.6D F     with the error placed on 

the parameter reflecting the reliance on theoretical matrix elements and the fact that the 2
5/2D  is 

a state may not be well described by the adiabatic model.  

The calculation of all six terms in [2]( )effE V  was carried out for all of states in the n=28 

Th2+ Rydberg fine structure, L=9 to 12, the results of which are shown in Table 6.7.  The values 

shown are the final results of the iterative process described earlier, i.e. they were calculated 

using the core parameter determined from the rf measurements.  The theoretical estimate of the 
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off diagonal tensor dipole polarizability was used without adjustment in the fitting process.  In 

addition each of these calculated terms in [2]( )effE V  relied on a combination of 3J symbols, 6J 

symbols and the sums over the intermediate Rydberg states.  The sums over the intermediate 

Rydberg states were carried out using the fnLZ program, which is effectively exact for this 

purpose.  The [2]
,0 ,0( )D DE    term was also calculated using Eq. 3.5, which is an analytic formula 

for this term, the difference in the two different calculation of this term was in the fifth digit, 

further confirming the accuracy of the fnLZ program used to carry out the sum over n′.  Table 6.7 

shows each of the components in the [2]( )effE V  and the contributions to the [2]( )effE V from each 

intermediate core states for each of the states.  From this table it can be seen that the largest 

[2]( )effE V  correction is in the L=9 states is on the order of one to ten MHz and decreases to less 

than one MHz in the L=12 states.  Table 6.7 also show that the contribution to the total [2]( )effE V  

due to the terms having to do with the off diagonal tensor dipole polarizability is less than one 

MHz for the L=9 states and less than a tenth of MHz. for the L=12 states.  
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Table 6.7: The second order energies in the effective potential for the Th2+ Rydberg fine 
structure broken down into components.  Column one identifies the state by (L, K), column two 
gives the intermediate core state and column three through eight gives the second order energy 
for each of the different components. Column nine gives the total second order energy. All 
energies are in MHz. 

 

(L, K) αD,0αD,0 QαD,0 QQ αD,0αD,2 QαD,2 αD,2αD,2 Total 
2F5/2 -4.52 5.69 -0.17 -1.86 0.28 -0.05
2F7/2 -0.35 -0.11 -0.01
2F5/2 -4.52 0.57 3.72 -0.19 -2.05 0.33
2F7/2 -0.34 -0.09 -0.01
2F5/2 -4.52 -3.02 2.98 0.99 -1.66 0.29
2F7/2 0.31 0.17 0.02
2F5/2 -4.52 -4.26 -0.51 1.39 0.23 0.00
2F7/2 1.12 0.50 0.05
2F5/2 -4.52 -2.21 -3.72 0.72 1.89 -0.26
2F7/2 1.26 0.57 0.06
2F5/2 -4.52 4.14 -3.25 -1.35 1.76 -0.25
2F7/2 -0.57 -0.20 -0.02
2F5/2 -1.47 2.25 0.04 -0.59 0.06 -0.01
2F7/2 -0.20 -0.06 0.00
2F5/2 -1.47 0.16 2.03 -0.04 -0.90 0.12
2F7/2 -0.11 -0.02 0.00
2F5/2 -1.47 -1.26 1.53 0.33 -0.68 0.09
2F7/2 0.38 0.13 0.01
2F5/2 -1.47 -1.71 -0.35 0.45 0.14 0.00
2F7/2 0.94 0.31 0.02
2F5/2 -1.47 -0.85 -2.01 0.22 0.82 -0.09
2F7/2 0.99 0.32 0.03
2F5/2 -1.47 1.69 -1.73 -0.44 0.76 -0.09
2F7/2 -0.34 -0.10 -0.01

(9, 6.5) -1.09

(9, 7.5) -2.57

(9, 8.5) -4.45

(9, 9.5) -5.99

(9, 10.5) -6.22

(9, 11.5) -4.25

(10, 7.5) 0.02

(10, 8.5) -0.23

(10, 9.5) -0.93

(10, 10.5) -1.68

(10,11.5) -2.03

(10, 12.5) -1.73
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Table 6.7 continue 

 

(L, K) αD,0αD,0 QαD,0 QQ αD,0αD,2 QαD,2 αD,2αD,2 Total 
2F5/2 -0.53 0.97 0.09 -0.21 0.00 0.00
2F7/2 -0.10 -0.02 0.00

(11, 9.5) 2F5/2 -0.53 0.05 1.17 -0.01 -0.42 0.04
2F7/2 0.00 -0.01 0.00 0.00

(11, 10.5) 2F5/2 -0.53 -0.56 0.84 0.12 -0.30 0.03
2F7/2 0.32 0.08 0.01

(11,11.5) 2F5/2 -0.53 -0.74 -0.24 0.16 0.08 0.00
2F7/2 0.68 0.17 0.01

(11, 12.5) 2F5/2 -0.53 -0.35 -1.15 0.08 0.39 -0.04
2F7/2 0.70 0.18 0.01

(11, 13.5) 2F5/2 -0.53 0.75 -0.97 -0.16 0.35 -0.03
2F7/2 -0.19 -0.05 0.00
2F5/2 -0.21 0.45 0.08 -0.08 -0.01 0.00
2F7/2 -0.05 -0.01 0.00
2F5/2 -0.21 0.01 0.70 0.00 -0.21 0.02
2F7/2 0.01 0.00 0.00
2F5/2 -0.21 -0.27 0.48 0.05 -0.14 0.01
2F7/2 0.18 0.04 0.00
2F5/2 -0.21 -0.35 -0.16 0.06 0.04 0.00
2F7/2 0.36 0.08 0.00
2F5/2 -0.21 -0.16 -0.69 0.03 0.19 -0.01
2F7/2 0.36 0.08 0.00
2F5/2 -0.21 0.35 -0.57 -0.06 0.17 -0.01
2F7/2 -0.09 -0.02 0.00

0.01

(11, 8.5) 0.19

0.30

-0.41

-0.71

-0.83

(12, 9.5) 0.18

(12, 13.5) -0.40

(12, 14.5) -0.44

(12, 10.5) 0.32

(12,11.5) 0.14

(12, 12.5) -0.16
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 The only problem with calculating the [2]( )effE V  this way is that it assumes that all the 

states contributing to the properties, such as the scalar and tensor dipole polarizabilities, are valid 

in the adiabatic expansion.  The result of the optical study of the Th2+ Rydberg fine structure 

study, Table 4.5, showed that the almost all of the tensor dipole polarizability and a third of the 

scalar dipole polarizability is due to the 2
3/2D .  The 2

3/2D  is low-lying and not adequately 

described by the adiabatic expansion, therefore the calculation of the [2]( )effE V  using the 

properties of Th3+ most likely underestimates the contributes from the 2
3/2D .  Close examination 

of Table 6.7 shows that the three dominant terms in the [2]( )effE V  are the QQ , the 0,DQ  and the 

0 0, ,D D  .  The QQ term of [2]( )effE V  is not dependent on the properties that are susceptible to the 

failure of the adiabatic expansion so the calculation of this term shown in Table 6.7 is correct.  

The calculation of the other two dominant terms, the 0,DQ  and the 0 0, ,D D  , in Table 6.7 are 

suspect given that the scalar dipole polarizability contains a large contribution from the 2
3/2D .   

The total scalar dipole polarizability, ( )D,0α Total , can be thought of in two parts, the part 

due to the low-lying 2
3/2D , 2

3/2( )D,0α D  and the part due to everything else, ( )D,0α Else .  

 
2

3/2( ) ( ) ( )D,0 D,0 D,0α Total α Else α D   (6.31) 

If the scalar dipole polarizability is thought of this way then the [2]
,0( )DE Q  will have two terms 

and the [2]
,0 ,0( )D DE    will have three terms.  Only terms containing 2

3/2( )D,0α D  will be affected 

by the failure of the adiabatic expansion for the low-lying 2
3/2D .  Table 6.8 shows the 

breakdown for the terms in [2]
,0( )DE Q  and [2]

,0 ,0( )D DE   , assuming the adiabatic expansion is 

adequate.  
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Table 6.8: The breakdown of the [2]
,0 ,0( )D DE    and [2]

,0( )DE Q  assuming the adequacy of the adiabatic expansion.  All units are 
MHz.  

 

L K
9 6.5 -1.84 -2.09 -0.59 3.63 2.06
9 7.5 -1.84 -2.09 -0.59 0.36 0.21
9 8.5 -1.84 -2.09 -0.59 -1.93 -1.09
9 9.5 -1.84 -2.09 -0.59 -2.72 -1.54
9 10.5 -1.84 -2.09 -0.59 -1.41 -0.80
9 11.5 -1.84 -2.09 -0.59 2.64 1.50
10 7.5 -0.60 -0.68 -0.19 1.44 0.81
10 8.5 -0.60 -0.68 -0.19 0.10 0.06
10 9.5 -0.60 -0.68 -0.19 -0.80 -0.45
10 10.5 -0.60 -0.68 -0.19 -1.09 -0.62
10 11.5 -0.60 -0.68 -0.19 -0.54 -0.31
10 12.5 -0.60 -0.68 -0.19 1.08 0.61
11 8.5 -0.21 -0.24 -0.07 0.62 0.35
11 9.5 -0.21 -0.24 -0.07 0.03 0.02
11 10.5 -0.21 -0.24 -0.07 -0.36 -0.20
11 11.5 -0.21 -0.24 -0.07 -0.47 -0.27
11 12.5 -0.21 -0.24 -0.07 -0.23 -0.13
11 13.5 -0.21 -0.24 -0.07 0.48 0.27
12 9.5 -0.08 -0.09 -0.03 0.29 0.16
12 10.5 -0.08 -0.09 -0.03 0.01 0.01
12 11.5 -0.08 -0.09 -0.03 -0.17 -0.10
12 12.5 -0.08 -0.09 -0.03 -0.22 -0.13
12 13.5 -0.08 -0.09 -0.03 -0.10 -0.06
12 14.5 -0.08 -0.09 -0.03 0.23 0.13

2( )D,0α Else ( )D,0Qα Else 2
3/2( )D,0Qα D2

3/2( ) ( )D,0 D,0α Else α D 2 2
3/2( )D,0α D
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To completely understand the effect of the failure of the adiabatic expansion on the terms 

in [2]( )effE V , dependent on 2
3/2( )D,0α D , these coupling would need to be calculated without use 

of the adiabatic expansion.  The full coupling could then be compared to the coupling determined 

assuming the adiabatic expansion.  The full scalar dipole-dipole coupling is given by Eq. 6.32 

and the adiabatic scalar dipole coupling is given by Eq. 6.33.   
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4( ) D,0
scalar dipole

α
V adiabatic nL r n L

2
 

 (6.33) 

Eq. 6.32 contains a sum over n′ that would simplify to Eq. 6.33 if the adiabatic expansion was 

applied to Eq. 6.32 and completeness relations were used [7]. 

 Figure 6.2 gives the ratio of the full coupling to the adiabatic coupling for a range of n″. 

A modified form of the fnLZ program was used to complete the sum in the Eq. 6.32 so that the 

couplings could be compared.  This comparison showed that the adiabatic coupling might 

underestimate the actual coupling by a factor between one and five depending on the n″.  
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Figure 6.2: Ratio of the full coupling to the adiabatic coupling plotted versus n″.  Each of the line 
represents the ratio for a different L. On this plot is the ratio for L=9, 10, 11 and 12 is shown.  
 

This means that the contributions from specific n″ to [2]
,0( )DE Q  due to the 2

3/2D  might be 

underestimated by up to a factor of one to five depending on which n″.  Since  the contributions 

of a specific n″ to [2]
,0 ,0( )D DE    is related to the coupling squared this means that for a specific 

n″ the contributions to [2]
,0 ,0( )D DE    might be underestimated by as much as a factor of one to 

twenty-five depending on n″.  As L increases the discrepancy between Eq. 6.32 and Eq. 6.33 

becomes smaller, for n″=40 the ratio between the two is smaller than two for all Ls.  These 

calculations can be used to improve upon the calculations of the term in [2]( )effE V  that depends 

on the scalar dipole polarizability due to the low-lying 2
3/2D  state.  
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To start with the [2]
,0 ,0( )D DE    was recalculated, since the scalar dipole polarizability has 

two parts there will be three term in this calculation.  

 

       [2] 2 [2] 2 [2] 2 [2] 2 2
3/2 3/2( ) ( ) ( ) ( ) ( )D,0 D,0 D,0 D,0 D,0E α Total E α Else E α Else α D E α D  

  The first term will not be affected by the failure of the adiabatic expansion.  The other two terms 

will be affected though since they are dependent on the scalar dipole polarizability from the low-

lying 2
3/2D  state.  Using the full scalar dipole coupling, Eq. 6.32 it is possible to recalculate 

those terms without using the adiabatic expansion for n″ up to 40.  To estimate the contributions 

from the states above n″=40 the ratio between the full coupling, Eq. 6.32, and the adiabatic 

coupling, Eq. 6.33, was examined for n″ up to 40.  It was assumed that this ratio remained 

constant for n″>40.  The adiabatic contribution for n″>40 was then multiplied by the estimated 

factor between the full coupling and the adiabatic coupling and added to the part from the 

discrete sum of n″ up to 40.  The ration between the full coupling and the adiabatic coupling was 

estimated from Fig. 6.2, by estimating the value it seems to be converging to.  A conservative 

error was placed on each of factors equal to the half of its deviation from one.  For example, 

from Fig. 6.2, the ratio for L=9 was estimated to be 1.8(4).  For L=9,  [2] 2 2
3/2( )D,0E α D  was 

estimated from the discrete sum of states up to n″=40 using the full coupling to be 5.22MHz as 

shown in Table 6.9.  The adiabatic contribution from states above n″=40 was 1 53. MHz , so to 

account for the states higher than 40 the adiabatic result was multiplied by factor 1.8(4) squared 

and added to the part from the discrete sum, as shown in Table 6.9.  The factor was squared since 

 [2] 2 2
3/2( )D,0E α D  depends on the full scalar dipole coupling squared.  

Following this procedure each of the terms in [2]
,0 ,0( )D DE    and [2]

,0( )DE Q  affected by 

the failure of the adiabatic expansion were recalculated.  The breakdown of each of the 
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recalculated terms contributing to [2]
,0 ,0( )D DE    and [2]

,0( )DE Q  is shown in Table 6.10.  When 

this compared to the result in Table in 6.8 it can be seen that the result are only slightly different 

than what was found from assuming the adequacy of the adiabatic expansion. 

 

Table 6.9: The calculation of  [2] 2 2
3/2( )D,0E α D  with the full coupling , the first column gives the 

L. The second column gives the contribution summing states up to n″=40, the third column gives 
the contribution from states n″>40, assuming the adiabatic expansion.  The fourth column gives 
the estimated factor between the full coupling and the adiabatic coupling for n″>40.  The fifth 
column gives the total  [2] 2 2

3/2( )D,0E α D  and its uncertainty.  The unit on all of the energies is 
MHz.  

 
Given the effect on the dominant terms of the [2]( )effE V  it was deemed unnecessary to recalculate 

the remaining terms in [2]( )effE V  that depend on the properties that have contribution from the 

low-lying 2
3/2D  state.  The other low-lying state, the 2

5/2D  , was also neglected due to the fact 

the effect of that state would be even smaller than the effect of the 2
3/2D .  The total values of

[2]( )effE V  used to correct the measured fine structure are shown in the Table 6.11.  The 

uncertainty in each is the result of the quadrature sum of the uncertainties in each recalculations 

of [2]
,0 ,0( )D DE    and [2]

,0( )DE Q .  

Adiabatic 
contribution 

L  up to n ″=40  from states n ″>40 Factor (Full coupling)
9 5.217 -1.528 1.8(4) 0.27(1.96)

10 1.406 -0.468 1.50(25) 0.35(32)

11 0.168 -0.156 1.10(5) -0.02(2)

12 0.052 -0.050 1.030(15) -0.002(2)

 [2] 2 2
3/2( )D,0E α D  [2] 2 2

3/2( )D,0E α D
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Table 6.10: The breakdown of the corrected [2]
,0 ,0( )D DE    and [2]

,0( )DE Q  correcting for the inadequacy of the adiabatic expansion.  
All units are MHz.  

L K
9 6.5 -1.84 -2.03(2.16) 0.27(1.96) 3.63 1.42(2.60)
9 7.5 -1.84 -2.03(2.16) 0.27(1.96) 0.36 0.14(26)
9 8.5 -1.84 -2.03(2.16) 0.27(1.96) -1.93 -0.75(1.38)
9 9.5 -1.84 -2.03(2.16) 0.27(1.96) -2.72 -1.06(1.95)
9 10.5 -1.84 -2.03(2.16) 0.27(1.96) -1.41 -0.55(1.01)
9 11.5 -1.84 -2.03(2.16) 0.27(1.96) 2.64 1.03(1.89)
10 7.5 -0.60 -0.35(41) 0.35(32) 1.44 0.18(60)
10 8.5 -0.60 -0.35(41) 0.35(32) 0.10 0.01(4)
10 9.5 -0.60 -0.35(41) 0.35(32) -0.80 -0.10(33)
10 10.5 -0.60 -0.35(41) 0.35(32) -1.09 -0.14(45)
10 11.5 -0.60 -0.35(41) 0.35(32) -0.54 -0.07(22)
10 12.5 -0.60 -0.35(41) 0.35(32) 1.08 0.13(45)
11 8.5 -0.21 -0.18(3) -0.02(2) 0.62 0.22(5)
11 9.5 -0.21 -0.18(3) -0.02(2) 0.03 0.011(2)
11 10.5 -0.21 -0.18(3) -0.02(2) -0.36 -0.13(3)
11 11.5 -0.21 -0.18(3) -0.02(2) -0.47 -0.17(3)
11 12.5 -0.21 -0.18(3) -0.02(2) -0.23 -0.08(2)
11 13.5 -0.21 -0.18(3) -0.02(2) 0.48 0.17(4)
12 9.5 -0.08 -0.054(3) -0.002(2) 0.29 0.062(6)
12 10.5 -0.08 -0.054(3) -0.002(2) 0.01 0.002(2)
12 11.5 -0.08 -0.054(3) -0.002(2) -0.17 -0.037(3)
12 12.5 -0.08 -0.054(3) -0.002(2) -0.22 -0.048(4)
12 13.5 -0.08 -0.054(3) -0.002(2) -0.10 -0.022(2)
12 14.5 -0.08 -0.054(3) -0.002(2) 0.23 0.049(4)

2( )D,0α Else ( )D,0Qα Else 2
3/ 2( )D,0Q α D2

3/2( ) ( )D,0 D,0α Else α D 2 2
3/2( )D,0α D
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Table 6.11: The total values of  [2]( )effE V  applied to the measured fine structure as a correction. 

The first and second column identifies the state.  The the third column gives the total [2]( )effE V  

with its uncertainty for each state. The unit of [2]( )effE V is MHz.  

 

6.2d Tensor coupling  

 An additional effect that can contribute to the fine structure is tensor coupling between 

states of the same n.  This contribution to the fine structure was not calculated in the optical 

measurements, but preliminary rf measurements show the importance of accounting for this 

L K
9 6.5 -0.82 (3.90)
9 7.5 -1.72 (2.92)
9 8.5 -3.20 (3.22)
9 9.5 -4.59 (3.50)
9 10.5 -5.06 (3.08)
9 11.5 -3.81 (3.47)
10 7.5 0.26 (0.79)
10 8.5 0.60 (0.53)
10 9.5 0.30 (0.62)
10 10.5 -0.32 (0.69)
10 11.5 -0.92 (0.57)
10 12.5 -1.33 (0.69)
11 8.5 0.17 (0.06)
11 9.5 0.40 (0.03)
11 10.5 0.20 (0.04)
11 11.5 -0.19 (0.05)
11 12.5 -0.55 (0.04)
11 13.5 -0.82 (0.05)
12 9.5 0.14 (0.01)
12 10.5 0.38 (0.00)
12 11.5 0.27 (0.00)
12 12.5 -0.02 (0.01)
12 13.5 -0.30 (0.00)
12 14.5 -0.46 (0.01)

[2]( )effE V
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effect.  In the search for the rf transitions in the n=28 Th2+ Rydberg fine structure it was found 

that the L=9 K=9.5 to L=10 K=10.5 rf transitions was ninety-three MHz higher than the predicted 

location.  Examination of the estimated Th2+ Rydberg fine structure showed that the L=7 K=9.5 

was very close to the L=9 K=9.5, within approximately six hundred MHz, suggesting that these 

two states were coupling and shifting each other.  The coupling between these two states would 

need to observe the selection rules 0n   and 2L  .  Therefore, the most likely candidate for 

the cause of this coupling is due tensor coupling between the states.  The primary source of 

tensor coupling is due to the tensor dipole polarizability, since the quadrupole coupling is zero 

due to the selection rule satisfied by hydrogenic radial functions, 3, , 2 0n L r n L   .  The 

coupling strength between the two states can therefore be estimated by the tensor dipole 

polarizability term of the effective potential, Eq. 6.34. 

 

[2] [2]
,2
4

ˆ( ) ( )
22
0

D c

c c

c c

X J C rV
J Jr
J J

 
  

 
    (6.34) 

The shift of the state by this tensor dipole polarizability coupling, ,2( )DE shift , would be the 

coupling strength between the two states squared divided by the energy difference between the 

two states, Eq. 6.35. 

 

2

,2( ) K K
D

nL V nL
E shift

E





  (6.35) 

The sign of the shift is determined by the relative locations of the two states and the size of the 

shift is dependent on the size of the tensor dipole polarizability and the separation of the two 

states.  To determine the size of the possible shift of the L=9 K=9.5 state from the L=7 K=9.5, 

Eq. 6.34 was used to estimate the coupling strength between the two states, 215MHz, using the 
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theoretical estimate of the total tensor dipole polarizability, ,2 6.22D    [45].  Given the energy 

separation between the two states is approximately six hundred MHz, Eq. 6.35 determines the 

shift of the L=9 K=9.5 state by the L=7 K=9.5 to be seventy-seven MHz, which is close to the 

observed ninety-three MHz.  The L=7 K=9.5 would shift the L=9 K=9.5 downward, increasing 

the L=9 K=9.5 to L=10 K=10.5 rf interval, which is what was observed.  The only problem with 

this calculation is the use of Eq. 6.34 to determine the coupling strength between the states.  The 

theoretical estimates of the tensor dipole polarizability [45] showed that all of the tensor dipole 

polarizability is due to the low-lying 2
3/2D  state, which is not adequately described by the 

effective potential.  Therefore the use of the tensor dipole polarizability term of the effective 

potential, Eq. 6.34, to estimate the coupling strength between the two states is most likely not 

valid and could lead to an underestimate of the coupling occurring between the two states.   

Therefore, a different approach to calculate the coupling potential between two states in 

the n=28 fine structure had to be used.  One that did not rely on anything derived using the 

adiabatic expansion.  The tensor dipole coupling between two states was derived without the use 

of the adiabatic expansion, starting with Eq. 6.36  

 

[1] [1]
[1] [1]

2 2

( ) ( ) ( )
c

c K c K c K c K

n L c
J

C CgJ nL M J n L J n L M gJ nL
r r

V
E J E n E n



 

 
 

         

 
    

 (6.36) 

which simplifies into Eq. 6.37 using [50]. 
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The specific case of the tensor coupling that is occurring in the our rf measurements is n n  , 

5 / 2c cJ J   , and 1L L    2L L     Since almost all of the tensor dipole polarizability is 

due to the 2
3/2D , the intermediate core state was taken to be the 2

3/2D , 3/ 2cJ   .  In Eq. 6.37 

everything can be calculated up to a constant, the dipole matrix element that couples the ground 

state, 2
5/2F , to the low-lying, 2

3/2D  state.  As with the other correction that rely on the matrix 

elements between the ground state and the low-lying states, initially the theoretical value of the 

dipole matrix element was used in the calculation of this coupling potential.  A modified version 

of fnLZ was used to complete the sum in Eq. 6.37, given the previous testing of the fnLZ program 

the possibility of an uncertainty in the sum was the neglected. 

With the tensor coupling known, the shift of each energy level due to the tensor coupling 

was calculated as the tensor coupling squared divided the energy difference between the two 

states, Eq. 6.35.  The major source of the uncertainty in these calculated shifts is the uncertainty 

in the positions of the levels with respect to each other.  The positions of only some of the levels 

have been measured experimentally with sub-MHz precision, the five out of six levels in the 

L=9, 10, 11, and 12.  Therefore the relative positions of some of levels was reliant on a 

simulation of the n=28 Th2+ Rydberg fine structure, to be conservative an error was placed on 

each of the simulated energy intervals of 100MHz.  Table 6.12 shows the shift to each of the 

measured states in MHz due to the tensor coupling.   

These shifts were calculated assuming the calculated dipole matrix element coupling the 

ground state and the 2
3/2D .  The sign of the shift is determined by the relative position of the 

levels with respect to each other.  Unlike the other correction due to the low-lying states this 

shifts is proportional to the fourth power of the dipole matrix element between the ground state 

and the 2
3/2D .  The uncertainty placed on each of the shifts will have to be taken in to account 
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during the fitting of the measured fine structure.  The calculated shift of the n=28, L=9 K=9.5 

level using the theoretical estimate of the dipole matrix element [45], is -169(26)MHz.  This 

substantially larger than the estimate derived from use of the adiabatic value of the tensor dipole 

polarizability, -77MHz and also larger than the apparent -93MHz shift of the (9, 9.5) to  

(10, 10.5) rf resonance compared to the initial estimate based on the optical results.  

 

Table 6.12: The shifts due to the tensor coupling of states in the n=28 Rydberg fine structure. 
The theoretical value of the 2

3/2D  matrix element was assumed during the calculation, 1.53a.u. 
The energies are in MHz. 

 

L K
9 6.5 3.95 (0.04)
9 7.5 10.11 (0.10)
9 8.5 17.76 (0.25)
9 9.5 -169.22 (26.23)
9 10.5 -3.98 (0.02)
9 11.5 3.27 (0.21)

10 7.5 1.20 (0.01)
10 8.5 3.59 (0.05)
10 9.5 8.57 (0.26)
10 10.5 -15.13 (0.97)
10 11.5 -2.48 (0.02)
10 12.5 1.17 (0.08)
11 8.5 0.43 (0.00)
11 9.5 1.32 (0.00)
11 10.5 3.82 (0.03)
11 11.5 -3.74 (0.23)
11 12.5 -1.69 (0.24)
11 13.5 0.52 (0.04)
12 9.5 0.24 (0.00)
12 10.5 0.75 (0.00)
12 11.5 2.39 (0.03)
12 12.5 -1.45 (0.10)
12 13.5 -1.25 (0.28)
12 14.5 0.25 (0.02)

E (αD,2 shift) (MHz)
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6.3 Extraction of properties of Th3+ 

The fitting of the Th2+ Rydberg fine structure offers the opportunity to the gain more 

knowledge on Th3+.  This process of fitting the measured fine structure and extracting the 

properties of Th3+ had to take into account all of the effects mentioned in Section 6.2.  These 

effects were either added to the model being used to fit the data or applied as corrections to the 

measured fine structure.  The model being used to fit the Th2+ fine structure was discussed in 

Section 6.1, this model is shown in Eq. 6.38 with a few slight modifications.   
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   (6.38) 

The first modification was that the LS coupling for the case of the octupole matrix elements in 

addition to the dipole matrix elements for the low-lying D states was assumed.  Therefore, the 

product of the dipole and octupole matrix element for the 2
5 2/D  in terms of the product of the 

dipole and octupole matrix element for the 2
3 2/D , Eq. 6.21, for the second order octupole-dipole 

second order energies.  The second modification was the addition of the constant, C, to the 

model.  This constant is to account for the fact the rf measurements of the fine structure 
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determine only the relative energies.  In Chapter 5 one of the states, the L=12 K=9.5, was used as 

the zero position and the locations of all of the states were found in reference to that using the rf 

transitions measured.  The addition of the constant, C, corrects for the fact that the measured fine 

structure is not measured with reference to hydrogenic.  In Eq. 6.38 the full second order 

energies due to the low-lying D states are denoted with asterisks to indicate that the correction 

were calculated assuming unit values for each of the matrix elements.  This allows for the matrix 

elements controlling the second order energies to be included as parameters in the fit of the 

measured fine structure.   

The structure parameters were defined in term of properties of the Th3+ in Section 6.1, 

Eq. 6.7 through Eq. 6.11, but for convenience they are rewritten here.  This rewriting of the of 

the structure parameters also allows for them to written in terms of coefficients for which the fine 

structure will be fit for.  Those fitted coefficients, the Bs with the subscripts, will then be equated 

with the properties of Th3+, Eq. 6.39 through Eq. 6.43.   
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The hydrogenic expectation values of the different powers of r are defined in the work of 

Bockasten [39] and given in Table 6.13 for the Ls of interest here.  The tensor products are 

defined in Eq. 1.19 through Eq. 1.22, and for the structure measured here the resulting tensor 

products are presented in Table 6.14, for all values of K in L=9 to 12.    

Table 6.13: The hydrogenic expectation values of the different powers of r  used in fitting the 
Th2+ Rydberg fine structure.  All values are in MHz.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L < r -3>nL < r -4>nL < r -5>nL < r -6>nL

9 9465.106 458.970 25.255 1.491
10 7006.637 275.105 12.240 0.583
11 5331.137 172.523 6.322 0.247
12 4150.085 112.313 3.440 0.112
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Table 6.14: The tensor products used in the fitting of the Th2+ Rydberg fine structure.  For the 
case of the Th2+ Rydberg fine structure 5/ 2cJ   and for the case studied here L=9 to 12, the 
tensor products for all K values was calculated even though only five of the six levels for each L 
were measured.   

 

Before the observed fine structure was fit to the model in Eq. 6.38, effects not included in 

the model had to be applied as correction to the observed fine structure levels.  For the case of 

the Th2+ Rydberg fine structure each of the corrections contained in Eq. 6.13 had to be calculated 

L K
9 6.5 -25.0 -0.58824 0.7060 0.6471
9 7.5 -17.5 -0.05882 -0.5648 -1.2941
9 8.5 -9.0 0.31261 -0.6334 0.2773
9 9.5 0.5 0.44034 0.1262 1.0756
9 10.5 11.0 0.22857 0.7731 -0.9193
9 11.5 22.5 -0.42857 -0.3741 0.2236

10 7.5 -27.5 -0.57895 0.7580 0.6130
10 8.5 -19.0 -0.04211 -0.6478 -1.2817
10 9.5 -9.5 0.32311 -0.6819 0.3295
10 10.5 1.0 0.43844 0.1717 1.0503
10 11.5 12.5 0.21739 0.8539 -0.9391
10 12.5 25.0 -0.43478 -0.4269 0.2348
11 8.5 -30.0 -0.57143 0.8105 0.5865
11 9.5 -20.5 -0.02857 -0.7295 -1.2707
11 10.5 -10.0 0.33143 -0.7295 0.3714
11 11.5 1.5 0.43657 0.2170 1.0286
11 12.5 14.0 0.20800 0.9340 -0.9556
11 13.5 27.5 -0.44000 -0.4801 0.2444
12 9.5 -32.5 -0.56522 0.8634 0.5652
12 10.5 -22.0 -0.01739 -0.8103 -1.2609
12 11.5 -10.5 0.33816 -0.7763 0.4058
12 12.5 2.0 0.43478 0.2621 1.0097
12 13.5 15.5 0.20000 1.0135 -0.9693
12 14.5 30.0 -0.44444 -0.5334 0.2529
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and applied to the observed energies before the observed data was fit to the model in Eq. 6.38. 

Eq. 6.13 is repeated here for convenience. 

 
2 2 2

Rel 2 3 2
[ ] [ ]

, /( ) ( ) ( )Corrected obs eff D correctionE E E E V E shift E D       

All the correction contained in Eq. 6.13 were discussed in the Section 6.2 with the exception of 

the relativistic correction, RelE . The relativistic correction is given by Eq. 1.32 and the 

calculation of this correction is straight forward requiring only the charge, n, and L of the state of 

interest.  The remaining corrections depend on either properties of Th3+ or the matrix elements 

coupling the low-lying 2
3 2/D  to the ground states.  The calculation and application of all of the 

corrections to the measured fine structure is an iterative process.  Initially, the results of the 

optical study provided guidance on the choice of properties and dipole matrix elements used in 

the calculation of the corrections.  The data corrected with those corrections was fit and new 

properties were determined.  The process of correcting the rf measurements and the fitting rf 

measurements was repeated until there was no longer any changes in the properties determined 

from the fit and used to calculate the corrections.  In this work just the last iteration of the 

correcting and fitting of the data is shown and discussed, but in practice this process took 

multiple iterations for the parameters to be determined and converge to the values used to 

calculate of the correction here.  The calculation of the corrections here assumed that the 

properties of Th3+ were  

 

,0 ,20.59 . . 15.2 . . 5.3 . .D DQ a u a u a u    

  and the 2
3/2D  dipole matrix element was  

 
2 [1] 2

5/2 3/25 6 1.44 . .F M D a u
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The correction calculated from theses parameters are given in the Table 6.15.  This table also 

gives the total of the corrections to be applied to each of the states in the fine structure.  Three 

out of the four corrections that had to be applied to the measured fine structure contained 

uncertainties.  The sources of the uncertainties were discussed in Section 6.2.  The uncertainty on 

the total of the corrections for each states is the quadrature sum of uncertainties in the each 

individual corrections, this is also listed in the table. The application of these corrections to the 

measured fine structure is shown in Table 6.16.  The first two columns identify the n=28 level by 

its L and K value.  The third column reports the relative positions of each of the levels measured 

and the uncertainty in the experimentally determined position.  Recall that the rf study measured 

the relative positions of the levels with respect to each other and not to hydrogenic, therefore the 

positions of one of the levels is assumed zero and the positions of all other levels are determined 

with respect to it.  The position of the L=12 K=9.5 was arbitrarily taken as the zero positions. 

The uncertainty in that position was taken to be the average uncertainty of the all other L=12 

states, to avoid excessive weight to that position in the fit  Column four gives the total of the 

corrections applied to the measured fine structure and the uncertainty in those corrections. The 

final column of Table 6.16 shows the resulting positions of the levels after the subtraction of the 

corrections.  The uncertainty in the corrected level is the quadrature sum of experimental error 

and the uncertainty in the correction applied.  In the lower L states the total uncertainty in the 

corrected positions is dominated by the uncertainty in the corrections.  It will be these corrected 

positions that will be fit to determine the parameters from which the properties of Th3+ can be 

determined.  
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Table 6.15: Calculated corrections for the n=28 Th2+ Rydberg fine structure.  All of the 
corrections have units of MHz. The first column gives the L and the second column gives the K 
of the state. The second column gives the relativistic correction, RelE , and the third column gives 
the second order in Veff, [2]( )effE V . The fourth column gives the correction for the tensor coupling 

of states within the n=28 fine structure, ,2( )DE shift  and the fifth column gives 2 2
3 2

[ ]
/( )correctionE D .  

The final column gives the total of the corrections that need to be applied to the measured fine 
structure, CorrectionsE .  

 
 

L K
9 6.5 -50.73 -0.82 (3.90) 3.10 (0.03) 65.09 (7.22) 16.64 (8.21)
9 7.5 -50.73 -1.72 (2.92) 7.94 (0.08) -20.23 (5.14) -64.75 (5.92)
9 8.5 -50.73 -3.20 (3.22) 13.93 (0.20) -17.55 (2.82) -57.54 (4.28)
9 9.5 -50.73 -4.59 (3.50) -132.78 (20.58) 6.53 (0.98) -181.58 (20.90)
9 10.5 -50.73 -5.06 (3.08) -3.12 (0.02) 0.00 (0.00) -58.91 (3.08)
9 11.5 -50.73 -3.81 (3.47) 2.57 (0.16) 0.00 (0.00) -51.97 (3.48)

10 7.5 -44.25 0.26 (0.79) 0.94 (0.01) 10.24 (0.96) -32.81 (1.24)
10 8.5 -44.25 0.60 (0.53) 2.82 (0.04) -3.64 (0.64) -44.48 (0.83)
10 9.5 -44.25 0.30 (0.62) 6.72 (0.20) -2.98 (0.35) -40.20 (0.74)
10 10.5 -44.25 -0.32 (0.69) -11.87 (0.76) 1.01 (0.12) -55.43 (1.04)
10 11.5 -44.25 -0.92 (0.57) -1.95 (0.02) 0.00 (0.00) -47.11 (0.57)
10 12.5 -44.25 -1.33 (0.69) 0.92 (0.06) 0.00 (0.00) -44.66 (0.69)
11 8.5 -38.90 0.17 (0.06) 0.33 (0.00) 0.14 (0.01) -38.25 (0.06)
11 9.5 -38.90 0.40 (0.03) 1.04 (0.00) -0.05 (0.01) -37.51 (0.03)
11 10.5 -38.90 0.20 (0.04) 3.00 (0.02) -0.04 (0.01) -35.73 (0.05)
11 11.5 -38.90 -0.19 (0.05) -2.93 (0.18) 0.02 (0.01) -42.00 (0.19)
11 12.5 -38.90 -0.55 (0.04) -1.33 (0.19) 0.00 (0.00) -40.78 (0.19)
11 13.5 -38.90 -0.82 (0.05) 0.40 (0.03) 0.00 (0.00) -39.31 (0.06)
12 9.5 -34.40 0.14 (0.01) 0.19 (0.00) 0.00 (0.00) -34.07 (0.01)
12 10.5 -34.40 0.38 (0.00) 0.59 (0.00) 0.00 (0.00) -33.43 (0.00)
12 11.5 -34.40 0.27 (0.00) 1.87 (0.02) 0.00 (0.00) -32.26 (0.02)
12 12.5 -34.40 -0.02 (0.01) -1.14 (0.08) 0.00 (0.00) -35.56 (0.08)
12 13.5 -34.40 -0.30 (0.00) -0.98 (0.22) 0.00 (0.00) -35.67 (0.22)
12 14.5 -34.40 -0.46 (0.01) 0.19 (0.02) 0.00 (0.00) -34.66 (0.02)

E CorrectionsE Rel E [2](V eff)
[2] 2

3/2( )correctionE D,2( )DE shift



260 
 

Table 6.16: The corrections to measured n=28 Th2+ fine structure.  The first column gives the L, 
the second column gives the K.  The third column gives the relative position of the state. The 
fourth column gives the total correction that need to be applied and the fifth column gives the 
corrected position.  All the energies are in MHz. 

 
 

 

 

 

L K
9 6.5 -5661.28 (0.13) 16.64 (8.21) -5677.92 (8.21)
9 7.5 -6514.38 (0.19) -64.75 (5.92) -6449.63 (5.92)
9 8.5 -6736.10 (0.31) -57.54 (4.28) -6678.56 (4.29)
9 9.5 -6232.58 (0.39) -181.58 (20.90) -6051.00 (20.90)
9 10.5 -4363.80 (0.32) -58.91 (3.08) -4304.89 (3.10)
9 11.5 -51.97 (3.48)
10 7.5 -2168.86 (0.07) -32.81 (1.24) -2136.05 (1.25)
10 8.5 -3387.82 (0.16) -44.48 (0.83) -3343.34 (0.84)
10 9.5 -4053.08 (0.26) -40.20 (0.74) -4012.88 (0.78)
10 10.5 -3975.28 (0.30) -55.43 (1.04) -3919.85 (1.08)
10 11.5 -2862.11 (0.33) -47.11 (0.57) -2815.00 (0.66)
10 12.5 -44.66 (0.69)
11 8.5 -405.22 (0.11) -38.25 (0.06) -366.97 (0.12)
11 9.5 -1724.35 (0.18) -37.51 (0.03) -1686.84 (0.18)
11 10.5 -2548.18 (0.28) -35.73 (0.05) -2512.45 (0.29)
11 11.5 -2705.10 (0.33) -42.00 (0.19) -2663.10 (0.38)
11 12.5 -1977.51 (0.33) -40.78 (0.19) -1936.73 (0.38)
11 13.5 -39.31 (0.06)
12 9.5 0.00 (0.28) -34.07 (0.01) 34.07 (0.28)
12 10.5 -1125.67 (0.19) -33.43 (0.00) -1092.24 (0.19)
12 11.5 -1831.35 (0.29) -32.26 (0.02) -1799.09 (0.29)
12 12.5 -1985.76 (0.30) -35.56 (0.08) -1950.20 (0.31)
12 13.5 -1428.20 (0.34) -35.67 (0.22) -1392.53 (0.41)
12 14.5 -34.66 (0.02)-- --

--

--

--

E obs E correct ions E corrected

--

--

--
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 The corrected positions were then fit to Eq. 6.38, with the fit weighted by the 

uncertainties in the corrected positions.  The fit of the twenty levels was to twelve parameters 

and the parameters returned from the fit are listed here with their uncertainties.  
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During the fitting process the assumption of the LS coupling between the two dipole matrix 

elements for the low-lying D states was checked.  The ratio of the dipole matrix elements 

squared was varied up to 10% from the ratio determined from LS coupling.  This variation did 

not result in any changes to any parameters outside of their error bars.  The quality of the fit of 

the fine structure can be understood if the fitted parameters are used to simulate the fine 

structure.  These parameters, the fitted coefficients and the matrix elements, represent just 

another way of describing the corrected relative locations of the twenty levels measured in L=9 

to 12.  By plugging the parameters determined by the fit back into the model, Eq. 6.38, a 

complete simulation of the n=28 L=9 to 12 is completed.  The simulation also predicts the 

location of the sixth level in each L, who’s position was not measured.  By using these 

parameters to simulate the structure, Table 6.17, it is possible to see where the difference 
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between the predicted and the observed occur.  In Table 6.17, the simulated fine structure, 

predictedE   has been shown broken down by into components, the first two columns of the table 

identifies the L and K value of the each of the states.  The third column give the part of the fine 

structure due to the effective potential, the B and C coefficients found from the fit.  The 

contributions from both of the second order dipole energies are shown in column four.  They 

were calculated using the determined dipole matrix element.  The fifth column gives 

contributions from both of the second order octupole-dipole energies calculated using the dipole 

and octupole matrix element determined for the 2
3/2D .  The corrections applied to the measured 

fine structure from Table 6.16 are shown in the sixth column.  By adding together column three 

through six the simulation of the predicted fine structure is completed and shown in column 

seven.  The error on the predicted location is the uncertainty from the corrections.  Column nine 

gives the experimentally observed positions of each of the levels along with their experimental 

uncertainties.  The final column of Table 6.17 gives the difference between the observed energies 

and the predicted energies.  Looking at Table 6.17 it can be seen that almost all of the fine 

structure is due to the effective potential and the second order dipole energies for the low-lying D 

states.  In L=11 and L=12 the predicted positions are within the experimental uncertainty for the 

levels.  In L=9 an L=10 only three of the observed levels differ from the predicted by more than 

the uncertainty in the corrections.   

Table 6.18 lists the contributions to the Mod
effV  from the dominant coefficients 

determined during the fit of the fine structure.  The sum of the contribution from the additional 

coefficients included in the fit are listed under the column labeled Other in Table 6.18.  The 

column labeled C accounts for the offset of the level used as the zero position for the relative fine 

structure, the L=12 K=9.5, not being at hydrogenic.  
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Table 6.17: The breakdown of the n=28 Th2+ Rydberg fine structure simulated from the parameters determinded from the fit of the 
fine structure.  All energies are in MHz. 

L K E Corrections E obs -E Predicted

9 6.5 936.1 -6564.7 -26.6 16.6 -5638.6 (8.21) -5661.3 (0.13) -22.7
9 7.5 -2045.5 -4426.9 24.9 -64.8 -6512.3 (5.92) -6514.4 (0.19) -2.1
9 8.5 -4109.1 -2581.2 9.9 -57.5 -6737.8 (4.28) -6736.1 (0.31) 1.7
9 9.5 -4816.7 -1243.8 -10.5 -181.6 -6252.6 (20.90) -6232.6 (0.39) 20.1
9 10.5 -3654.5 -656.7 3.1 -58.9 -4367.1 (3.08) -4363.8 (0.32) 3.3
9 11.5 19.4 -1087.2 -2.6 -52.0 -1122.3 (3.48)

10 7.5 931.5 -3060.6 -8.5 -32.8 -2170.4 (1.24) -2168.9 (0.07) 1.5
10 8.5 -1304.5 -2047.2 8.2 -44.5 -3388.0 (0.83) -3387.8 (0.16) 0.1
10 9.5 -2810.1 -1205.2 2.9 -40.2 -4052.7 (0.74) -4053.1 (0.26) -0.4
10 10.5 -3285.3 -631.5 -3.4 -55.4 -3975.7 (1.04) -3975.3 (0.30) 0.4
10 11.5 -2382.9 -433.2 1.5 -47.1 -2861.6 (0.57) -2862.1 (0.33) -0.5
10 12.5 317.7 -727.5 -1.2 -44.7 -455.6 (0.69)
11 8.5 826.6 -1191.4 -2.1 -38.3 -405.2 (0.06) -405.2 (0.11) 0.0
11 9.5 -892.6 -796.4 2.0 -37.5 -1724.4 (0.03) -1724.4 (0.18) 0.1
11 10.5 -2024.1 -488.8 0.6 -35.7 -2548.1 (0.05) -2548.2 (0.28) -0.1
11 11.5 -2355.0 -307.5 -0.8 -42.0 -2705.3 (0.19) -2705.1 (0.33) 0.2
11 12.5 -1642.5 -294.9 0.7 -40.8 -1977.4 (0.19) -1977.5 (0.33) -0.1
11 13.5 399.7 -497.0 -0.6 -39.3 -137.2 (0.06)
12 9.5 699.9 -665.0 -0.8 -34.1 0.0 (0.01) 0.0 (0.28) 0.0
12 10.5 -650.1 -442.9 0.8 -33.4 -1125.7 (0.00) -1125.7 (0.19) 0.0
12 11.5 -1521.6 -277.7 0.2 -32.3 -1831.4 (0.02) -1831.4 (0.29) 0.0
12 12.5 -1759.1 -190.8 -0.3 -35.6 -1985.7 (0.08) -1985.8 (0.30) 0.0
12 13.5 -1187.9 -205.2 0.4 -35.7 -1428.4 (0.22) -1428.2 (0.34) 0.2
12 14.5 393.5 -346.0 -0.3 -34.7 12.5 (0.02)

E Predicted E obs

[2] 2
3/2

[2] 2
5/2

( )&

( )

E D
E D

[2] 2
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Table 6.18: Breakdown of the part of the fine structure due to the effective potential in terms of the dominant coefficients determinded 
from the fit of the fine structure.  All energies are in MHz.   

L K C B 04 B 24 B 23 B 45 B 13 Other
9 6.5 -157.5 -2181.3 -16.3 3302.2 11.2 7.8 -30.0 936.1
9 7.5 -157.5 -2181.3 -1.6 330.2 -22.5 5.5 -18.2 -2045.5
9 8.5 -157.5 -2181.3 8.7 -1754.9 4.8 2.8 -31.7 -4109.1
9 9.5 -157.5 -2181.3 12.2 -2471.9 18.7 -0.2 -36.8 -4816.7
9 10.5 -157.5 -2181.3 6.3 -1283.1 -16.0 -3.4 -19.5 -3654.5
9 11.5 -157.5 -2181.3 -11.9 2405.9 3.9 -7.1 -32.7 19.4

10 7.5 -157.5 -1307.4 -9.6 2405.9 5.2 6.4 -11.3 931.5
10 8.5 -157.5 -1307.4 -0.7 175.0 -10.8 4.4 -7.4 -1304.5
10 9.5 -157.5 -1307.4 5.4 -1342.7 2.8 2.2 -12.8 -2810.1
10 10.5 -157.5 -1307.4 7.3 -1822.0 8.8 -0.2 -14.2 -3285.3
10 11.5 -157.5 -1307.4 3.6 -903.4 -7.9 -2.9 -7.3 -2382.9
10 12.5 -157.5 -1307.4 -7.2 1806.8 2.0 -5.8 -13.0 317.7
11 8.5 -157.5 -819.9 -6.0 1806.8 2.6 5.3 -4.6 826.6
11 9.5 -157.5 -819.9 -0.3 90.3 -5.5 3.6 -3.3 -892.6
11 10.5 -157.5 -819.9 3.5 -1047.9 1.6 1.8 -5.6 -2024.1
11 11.5 -157.5 -819.9 4.6 -1380.4 4.5 -0.3 -6.0 -2355.0
11 12.5 -157.5 -819.9 2.2 -657.7 -4.2 -2.5 -2.9 -1642.5
11 13.5 -157.5 -819.9 -4.6 1391.2 1.1 -4.9 -5.7 399.7
12 9.5 -157.5 -533.8 -3.8 1391.2 1.3 4.5 -2.0 699.9
12 10.5 -157.5 -533.8 -0.1 42.8 -3.0 3.0 -1.6 -650.1
12 11.5 -157.5 -533.8 2.3 -832.4 1.0 1.4 -2.6 -1521.6
12 12.5 -157.5 -533.8 3.0 -1070.2 2.4 -0.3 -2.7 -1759.1
12 13.5 -157.5 -533.8 1.4 -492.3 -2.3 -2.1 -1.2 -1187.9
12 14.5 -157.5 -533.8 -3.0 1094.0 0.6 -4.1 -2.6 393.5

Mod
effV
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With an understanding of the quality of the fit of the fine structure and the major 

coefficients that contribute to the fine structure having been determined, it was time to equate the 

coefficients found during the fit with properties of Th3+.  The extracting of the properties of Th3+ 

from the coefficients began with the scalar component of the fine structure, Eq. 6.39.  In the fit of 

the fine structures two leading component that contribute to the scalar component were found.  

The coefficients returned from the fit were the 04B  and the 06B .  From Eq. 6.39 it can be seen 

that the 04B  enables the determining of the scalar dipole polarizability, 0,
Mod
D , excluding 

contributions from the low-lying D states. 
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This result gives the scalar dipole polarizability excluding contributions from the low-lying D 

states to within half a percent.  The 06B  gives information on both the scalar quadrupole 

polarizability, 0,Q  and the 1st non-adiabatic scalar dipole polarizability, 0,
Mod
D , excluding 

contributions from the low-lying D states.  
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Without information on the 1st non-adiabatic scalar dipole polarizability it is not possible to the 

extract the scalar quadrupole polarizability.  The sum of the two properties was determined with 

an uncertainty of 37%, so it could still be useful in the test of the theoretical calculations of the 

Th3+. 

 The next component that contributes to the fine structure is the vector component.  In the 

fit of the data the first two terms of the effective potential that contribute to the vector component 

were fit for.  The first term of the vector component is due to a the magnetic dipole moment of 
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the core, where Jg  is the Landé g factor, the next term is due the 1st non-adiabatic vector dipole 

polarizability, ,1D , called at times the vector hyperpolarizability [8].  The 1st non-adiabatic 

vector dipole polarizability found here will exclude contribution from the low-lying D states.  

The equating of the coefficients found with Eq. 6.40 results in these properties: 
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The Landé g factor found is within 1σ of the value predicted for Th3+.  For a 2

5/2F state Jg  is 

predicted to be 6/ 7 , given that Jg  is defined to be  
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  (6.44) 

by Bethe and Salpeter [31].  Previously rf measurement of both argon [19] and neon [51] 

Rydberg fine structure determined experimental values of the Landé g factor that were 

completely consistent with the Jg  predicted from Eq. 6.44.  The 1st non-adiabatic vector dipole 

polarizability determined from the fit of the fine structure is consistent with zero.  

The 2nd rank tensor component of the fine structure gives information on the permanent 

quadrupole moment of Th3+ and the tensor dipole polarizability, Eq. 6.41.  The 23B  is directly 

related to the permanent quadrupole moment.  

 23 0 5931 14. ( ) . .B Q Q a u      

This determination of the permanent quadrupole moment has an uncertainty of only a quarter of 

a percent.   
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The 24B  is just negative one half of the tensor dipole.  
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The tensor dipole polarizability excluding contributions from the low-lying D states is almost 

consistent with zero.  The contributions due to the low-lying D states will be calculated 

separately.  

 The study of Th3+ marks only the second ion for which the 3rd rank tensor component has 

been determined.  Experimentally the only other study that explored the possibility of the 

presence of the 3rd rank tensor component in the Rydberg fine structure is the rf study of the n=9 

nickel Rydberg fine structure [11].  The leading 3rd rank tensor term is due to a possible magnetic 

octupole moment of the core, 3MC , this term would be  proportional to r-5.  The nickel study saw 

no evidence for 3MC .  For the case of Th3+, there is no a theoretical estimate or evidence for a 

magnetic octupole in Th3+ [42].  The equating of the coefficient found from the fit of the data 

showed at  3MC  consistent with zero. 
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  The next term that would contribute to 3rd rank tensor term would be proportional to r-8, since it 

would be so much smaller than the leading term it was not considered in the fit.  

The fourth rank tensor component is controlled by two coefficients, the 45B  and the 46B .  

The 45B  is directly related to the permanent hexadecapole moment of Th3+, from the fit it was 

determined that the permanent hexadecapole moment was nonzero. 
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The study of nickel was the only other fine structure studied that determined a permanent 

hexadecapole moment [11].  The result here is 2.5σ away from zero.  The 46B  determined from 

the fit is related to higher order 4th rank tensor terms, specifically the 4th rank quadrupole 

polarizability and the 4th rank octupole-dipole polarizability excluding contribution form the low-

lying D states.  The coefficient determined from the fit of the data is consistent with zero, so all 

that can be said about this term is it contribution to the fine structure is minimal.  
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In addition to the properties of Th3+ the fit of the measured fine structure also determined 

the dipole matrix element that couples the ground states to the low-lying 2
3/2D  state 
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  This matrix element was determined to a precision of two tenths of a percent.  While the dipole 

matrix element that couples the ground states to the low-lying 2
5/2D  matrix element was not 

included in the fit, a value for this dipole matrix element can be extracted from the relation of the 

2
3/2D  dipole matrix element and the 2

5/2D  dipole matrix element.  Assuming LS coupling regime 

results, Eq. 6.5, allows for the determination of the 2
5/2D  dipole matrix element 

 

2 1 2
5 2 5 25 6 0 384 1[ ]

/ / . ( ) . .F M D a u

   Both of these dipole matrix elements are important if polarizabilities are to be corrected 

to include the contribution from the D states.  The properties determined from the fit had the 

contributions from the low-lying states excluded.  The properties that have to be corrected are the 

scalar and tensor dipole polarizabilities, since both of the low-lying D states can dipole couple to 

the ground state and both of those properties are due to dipole coupling.  This means the values 
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determined from fitting the data will have to be corrected to account for the effect that both of 

the low-lying states have on those properties.  The properties have been explicitly written out in 

term of matrix elements and excitation energies in the work of the Woods [7].  The definition of 

the dipole polarizability is given in Eq. 1.24 as an example.  For the 2
3/2D  and 2

5/2D the 

contributions to the scalar dipole polarizability would have the form of Eq. 6.43 and Eq. 6.44 

respectively.  

 

2
2 [1] 2

5/2 3/22
,0 3/2 2

3/2

5 61( )
9 ( )D

F M D
D

E D
 

  (6.43) 

 

2
2 [1] 2

5/2 5/22
,0 5/2 2

5/2

5 61( )
9 ( )D

F M D
D

E D
 

  (6.44) 

The matrix elements have been determined by the fit of the fine structure and the excitation 

energies for these two low-lying states were measured precisely [9] to be  

 

2
3/2

2
5/2

( ) 0.041887511(4) . .
( ) 0.066004903(4) . .

E D a u
E D a u

 

  .  

Therefore the contributions from both of the low lying states to the scalar dipole polarizability 

can be determined thus allowing for the total dipole polarizability, ,0D , of Th3+ to be reported as 

be the sum of the scalar dipole polarizability found from the fit and the contributions from the 

two low-lying D states. 

 

2 2
,0 ,0 ,0 3/2 ,0 5/2

,0

( ) ( )
9.51(3) 5.466(14) 0.2478(5)

15.224(33) . .

Mod
D D D D

D

D D

a u

   



  

  

    

This determines the scalar dipole polarizability to a precision of better than a quarter of a 

percent. 
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Similarly, contributions of the low-lying states to the tensor dipole polarizability were 

calculated.  The tensor dipole polarizability for each of the low lying states was written out in 

term of the respective dipole matrix elements and excitation energies, Eq. 6.45 and Eq. 6.46 [7]. 

 

2
2 [1] 2

5/2 3/22
,2 3/2 2

3/2

5 61( )
9 ( )D

F M D
D

E D
  

  (6.45) 

 

2
2 [1] 2

5/2 5/22
,2 5/2 2

5/2

5 68( )
63 ( )D

F M D
D

E D
 

  (6.46) 

The total dipole polarizability was then taken as the sum of the tensor dipole polarizability 

determined from the fit and the contributions from each of the low-lying D states. 

 

2 2
,2 ,2 ,2 3/2 ,2 5/2

,2

( ) ( )
0.12(11) 5.466(14) 0.2832(7)

5.30(11) . .

Mod
D D D D

D

D D

a u

   



  

   

    

Almost all of the tensor dipole polarizability is due to the low-lying 2
3/2D  level.  The total tensor 

dipole polarizability is determined to a precision of the 2.1%, with the majority of the uncertainty 

due to the tensor dipole polarizability determined excluding contributions from the low-lying D 

states.  

6.4 Summary of Th3+ Properties 

The optical and the rf measurements presented in this work offered the first experimental 

determination of the properties of Fr-like Th3+.  Both the optical measurement and the rf 

measurements were discussed in this work, and the resulting properties are shown in Table 6.19.  

Column two gives the result of the rf study and column threes gives the results of the optical 

study.  The first property given is the scalar dipole polarizability, both excluding and including 

the contributions from the low-lying states.  The second property is the permanent quadrupole 
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moment, and the third property given is the tensor dipole polarizability, both excluding and 

including the contributions from the low-lying D states.  The fourth property listed is the 

permanent hexadecapole.  The final two properties of Th3+ listed are the dipole and octupole 

matrix elements that couples the ground state to the low-lying 2
3/2D  states.  The dipole matrix 

element that couples the ground states and the low-lying 2
5/2D  state is not listed since it was not 

found independently in the rf study.  
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Table 6.19: The measured and calculated properties of Th3+. Column one gives the properties. The second column gives the results 
extracted from the rf measurements of the n=28 Th2+ Rydberg fine structure.  Column three gives the result from the optical RESIS 
study of the Th2+ Rydberg fine structure. The final three columns give the current theoretical results for the properties. The units on all 
the properties in the table are atomic units. 

 
[a] Reference [3] 
[b]RMBPT(SD) method from Reference [45] 
[c]RMBPT(SD) method, private communications with U.I. Safronova [46] 
[d]RMBPT(SD) method, private communications with M.S. Safronova [42] 
[e]DF method, private communications with U.I. Safronova [46] 
[f]DF method from Reference [45] 
[g]DF+2+3 method from Reference [45] 
 
 

Property This Work (a.u.) Optical a (a.u.) Theory(SD) (a.u.) Theory(DF) (a.u.) Theory(DF+2+3) (a.u.)
9.51(3) 9.67(15) 8.582b --  8.562g

15.224(33) 15.42(17) 15.073b -- 13.523g

Q 0.5931(14) 0.54(4) 0.62c  0.91e --

-0.12(11) 1.5(1.3) 0.054b --  -0.014g

-5.30(11) -3.6(1.3) -6.166b -- -4.763g

Π -0.69(28) -- -0.76d -- --

1.436(2) 1.435(10) 1.530b 2.428f  1.337g

3.3(1.1) -- 8.394d -- --

0,
Mod

Dα

0,Dα

2,
Mod

Dα

2,Dα

2 1 2
5 2 3 25 6[ ]

/ /F M D

2 3 2
5 2 3 25 6[ ]

/ /F M D
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Overall the two experimental measurements of all the properties appear to be in good 

agreement.  The optical and rf used slightly different methods of fitting and extract the properties 

of Th3+ from their measurements.  The comparisons of the two experimental studies shows that 

overall the properties determined from these two studies agree.  The scalar dipole polarizability 

from both of the studies are consistent within error of each other. The result of the rf study for 

the scalar dipole polarizability is more precise than the optical study.  In the rf study the 

quadrupole moment was determined more than order of magnitude more precisely than the 

optical study, the two result are only 1.3σ from each other.  For the tensor dipole polarizability, 

the rf measurements improved on the precision of the optical determination and the tensor dipole 

polarizability determined from each of the experimental studies agrees to within 1.3σ.  The rf 

study also determined the 2
3/2D  dipole matrix element a factor of 5 more precisely then the 

optical, the resulting matrix element from both studies are completely consistent. 

The third column of Table 6.19 provides the current theoretical calculation for the 

properties of Th3+ using relativistic many-body perturbation theory (RMBPT) with single and 

double excitation (SD) technique [45].  The permanent quadrupole moment calculated from a 

matrix element found with the RMBPT(SD) only differs from the quadrupole moment found in 

the rf study by 4.5%.  The hexadecapole moment found from the rf study is consistent within 

error of the value estimated from the theoretical matrix element [42].  The 2
3/2D  dipole matrix 

element determined from the study is approximately 6.5% smaller than the matrix element 

calculated with this first technique.  The scalar dipole polarizability excluding the D states 

contributions differs from the calculated by 11%.  The octupole matrix element for the 2
3/2D  

found from the data is 4.7σ away from the value calculated using this technique.  Given these 

differences, it is surprising the total calculated scalar dipole polarizability is within 1% of the 
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total scalar dipole polarizability determined from the fit of the rf data.  In contrast the total tensor 

dipole polarizability differs from estimated tensor dipole polarizability calculated with 

RMBPT(SD) by approximately 16%, even though many of the same states that contribute to the 

scalar dipole polarizability also contribute to tensor dipole polarizability.   

 The fourth column of Table 6.19 gives the Dirac-Fock (DF) estimates of the permanent 

quadrupole moment [46] and the 2
3/2D  dipole matrix element [45].  This technique was not used 

to calculate any of the other core properties.  The actual permanent quadrupole moment found 

from the rf study is 2/3 the predicted from the DF estimate.  Similarly the 2
3/2D  dipole matrix 

element found from the rf study is only 59% of the DF estimates.  The DF technique even though 

it is fully relativistic is not able to accurately predict properties of the Th3+ ion precisely.  It 

appears give an order of magnitude estimate. The final column gives the improved Dirac-Fock 

calculation [45], including second and third order corrections and referred to as DF+2+3.  In the 

case of this technique all of the estimated properties are smaller than the properties observed in 

the rf study, the 2
3/2D  dipole matrix element 7.4% smaller, the scalar dipole polarizability 13% 

smaller and the tensor dipole polarizability 11% smaller.  The inclusion of the correction factors 

to the DF model did improve its predictions, but they still differ from the rf determined 

properties by 10 to 20%.  The comparison of all three of these theoretical approaches to the 

measured experimental properties illustrates the difficulty of calculating properties for such a 

relativistic ion.  The experimental measurements from this work will help to test the theoretical 

models as they are developed. 

The Th3+ ion provided a steep challenge to the theoretical model of Rydberg fine 

structures [7] due to the low-lying 2
3/2D  and 2

5/2D  core states.  The effective potential used in 

this work was corrected for the low-lying core levels in a manner that is transparent and therefore 
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could be applied in the future to other ions that suffer from some of the same problems as Th3+.  

The properties determined from the rf study confirmed the results of the optical study and 

increased the level of precision of the determined properties.  The rf study could be improved if 

more rf measurements were completed in higher L levels, or if another n studied, one less 

sensitive to the low-lying states was studied.  The result of both of the optical and rf study of 

Th3+ provided value of the properties of Th3+ which can be used to rigorously test the theoretical 

models of the complex Th3+ ion.  Hopefully, these properties will be utilized to test the current 

models and provide valuable insight for future models. 

 



276 
 

Chapter 7: Summary 

 This dissertation reports the results of the rf RESIS studies of both Rn-like and Fr-like 

thorium ions.  The study of both of the thorium ions was the culmination of years of work, 

exploring high charge and high angular momentum Rydberg states.  The properties of Th4+ 

reported in Chapter 3 and subsequently published in Ref. [36], expanded on the limited 

knowledge of the Th4+ ion.  The optical study to determined properties of Th3+ is reported in 

Chapter 4 and published in Ref. [3].  The optical study of the properties Th3+ was improved on 

with an rf RESIS study of the n=28 Th2+ Rydberg fine structure.  The experimental results of that 

study were presented in Chapter 5 and the properties extracted from those experimental 

measurements using the effective potential model were presented Chapter 6.  The measured Th3+ 

and Th4+ properties provide information on ions that are common in actinide chemistry, but for 

which little had been measured.  The determined properties also enable the testing of the 

complex theoretical models used to calculate properties of ions such as thorium. 

The results of the studies of the both of the thorium ions presented in this dissertations 

not only expanded on the knowledge of the ions of interest, but it also expands on the knowledge 

of the experimental technique and the effective potential model used to extract the properties 

from the measurement of Rydberg fine structures.  The rf RESIS technique helps to resolve fine 

structure levels that were not resolved in the optical RESIS studies of both of the ions.  The rf 

studies also measured the fine structure of both ions with a higher level of precision than the 

optical studies.  The increase in the number of levels measured and the precision of the 

measurements allowed for a more in-depth study of the ions with the effective potential model.  

The study to determine the properties of Th4+ showed the importance of higher order terms in the 

effective potential and the role they play in extraction process.  The study the Th2+ Rydberg fine 
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structure showed the dominant effect low-lying core states have on the Rydberg fine structure 

and the corrections necessary to the effective potential model to account for their effect.  The 

effect of the low-lying states in Th3+ provided a challenge for the effective potential model [7].  

The necessary modifications of the effective potential model to account for the effects of the 

low-lying core states were a major theme in the analysis of the data.  Hopefully, in the future 

other models might also be tested on the Th2+ Rydberg fine structure measurements [8].  The 

comparison of the properties of Th3+ using different models might prove informative. 

The thorium ions studied in this work were just two of the four ions proposed for study.  The 

radon-like and francium-like uranium, U6+ and U5+, were also proposed to be studied using the 

RESIS technique.  The study of the U6+ would be similar to the study of Th4+ since it too has 1S0 

ground states.  The study to determine the properties of U5+ would be much easier than the study 

to determine the properties of Th3+.  U5+ contains no low-lying excited core states, therefore the 

measured U4+ Rydberg fine structure could be fit directly to the effective potential without most 

of the corrections necessary in the Th3+ study.  The undertaking of both of the uranium studies 

began before the first study of thorium.  The current observations of the optical excitation spectra 

for each uranium ions contain only the high-L peak, with no sign of resolved levels in the fine 

structures.  At this time the reason for the inability to observed resolved fine structure is not 

understood, but the effort to understand it continues.  The success with the thorium study show 

that if resolved structure can be observed, the properties of the uranium ion can be determined. 
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Appendix A: Observations of the n=37 Th3+ Rydberg Fine structure  

Frequency(MHz)

1932 1934 1936 1938 1940 1942 1944 1946

Si
gn

al
 (a

rb
. u

ni
ts

)

-0.05

0.00

0.05

0.10

0.15

 

Figure A.1: Th3+ n=37 L=8 to 9 line shape, seen in the co-propagating direction and the 
observation is the average of JAK7-006, 007, 008, and 009. 
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Figure A.2: Th3+ n=37 L=9 to 10 line shape, seen in the counter propagating direction and the 
average of JAK2-137abc, 138, 139, 140, and 141 
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Figure A.3: Th3+ n=37 L=10 to 11 line shape, seen in the counter- propagating direction, data 
from JAK2-115.  
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Figure A.4: Th3+ n=37 L=11 to 12 line shape, seen in the co-propagating direction and data from 
JAK2-091.  
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Figure A.5: Th3+ n=37 L=12 to 13 line shape, seen in the co-propagating direction with data from 
JAK2-093b. 
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Figure A.6: Th3+ n=37 L=12 to 14 line shape, seen in the co-propagating direction with 130μW 
coming out of the rf region, observation from JAK2-094. 
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Figure A.7: Th3+ n=37 L=12 to 15 line shape, seen in the co-propagating direction with 0.92mW 
coming out of the rf region, observation from JAK2-094b. 
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Appendix B: Observations of the n=28 Th2+ Rydberg Fine structure  
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Figure B.1: Th2+ n=28 L=9, K=6.5 to L′=10, K′=7.5 line shape, seen in the co-propagating 
direction with data from JAK6-085, 086 and 087. 
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Figure B.2: Th2+ n=28 L=9, K=7.5 to L′=10, K′=8.5 line shape, seen in the co-propagating 
direction with data from JAK6-070. 
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Figure B.3: Th2+ n=28 L=9, K=8.5 to L′=10, K′=9.5 line shape, seen in the co-propagating 
direction with data from JAK6-066. 
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Figure B.4: Th2+ n=28 L=9, K=9.5 to L′=10, K′=10.5 line shape, seen in the co-propagating 
direction with data from JAK5-153.  
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Figure B.5: Th2+ n=28 L=9, K=10.5 to L′=10, K′=11.5 line shape, seen in the co-propagating 
direction with data from JAK5-135.  
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Figure B.6: Th2+ n=28 L=9, K=10.5 to L′=10, K′=10.5 line shape, seen in the co-propagating 
direction with data from JAK5-136.  
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Figure B.7: Th2+ n=28 L=10, K=7.5 to L′=11, K′=8.5 line shape, seen in the co-propagating 
direction with data from JAK6-091 and 091b.  
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Figure B.8: Th2+ n=28 L=10, K=8.5 to L′=11, K′=9.5 line shape, seen in the co-propagating 
direction with data from JAK5-111.  
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Figure B.9: Th2+ n=28 L=10, K=8.5 to L′=11, K′=8.5 line shape, seen in the co-propagating 
direction with data from JAK5-117.  
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Figure B.10: Th2+ n=28 L=10, K=9.5 to L′=11, K′=10.5 line shape, seen in the co-propagating 
direction with data from JAK5-087. 
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Figure B.11: Th2+ n=28 L=10, K=9.5 to L′=11, K′=9.5 line shape, seen in the counter-
propagating direction with data from JAK7-071. 
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Figure B.12: Th2+ n=28 L=10, K=10.5 to L′=11, K′=11.5 line shape, seen in the co-propagating 
direction with data from JAK5-086. 

 



292 
 

Frequency (MHz)

1422 1424 1426 1428 1430 1432 1434

Si
gn

al
 (a

rb
. u

ni
ts

)

-0.05

0.00

0.05

0.10

0.15

 

Figure B.13: Th2+ n=28 L=10, K=10.5 to L′=11, K′=10.5 line shape, seen in the co-propagating 
direction with data from JAK7-052. 
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Figure B.14: Th2+ n=28 L=10, K=11.5 to L′=11, K′=12.5 line shape, seen in the co-propagating 
direction with data from JAK7-094. 
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Figure B.15: Th2+ n=28 L=10, K=7.5 to L′=12, K′=9.5 line shape, seen in the co-propagating 
direction with data from JAK6-093. The power exiting the rf region was 2.0mW. 
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Figure B.16: Th2+ n=28 L=10, K=8.5 to L′=12, K′=10.5 line shape, seen in the co-propagating 
direction with data from JAK5-112. The power exiting the rf region was 2.6mW. 
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Figure B.17: Th2+ n=28 L=10, K=9.5 to L′=12, K′=11.5 line shape, seen in the co-propagating 
direction with data from JAK7-069. The power exiting the rf region was 1.64mW 
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Figure B.18: Th2+ n=28 L=10, K=10.5 to L′=12, K′=12.5 line shape, seen in the co-propagating 
direction with data from JAK5-105. The power exiting the rf region was 0.96mW 
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Figure B.19: Th2+ n=28 L=10, K=11.5 to L′=12, K′=13.5 line shape, seen in the co-propagating 
direction with data from JAK7-095. The power exiting the rf region was 0.71 
 


