
THESIS

MODULAR DECOMPOSITION OF UNDIRECTED GRAPHS

Submitted by

Adrian E. Esparza

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2020

Master’s Committee:

Advisor: Ross McConnell

Sangmi Pallickara

Alexander Hulpke

Copyright by Adrian E. Esparza 2020

All Rights Reserved

ABSTRACT

MODULAR DECOMPOSITION OF UNDIRECTED GRAPHS

Graphs found in nature tend to have structure and interesting compositions that allow for com-

pression of the information and thoughtful analysis of the relationships between vertices. Modular

decomposition has been studied since 1967 [1]. Modular decomposition breaks a graph down into

smaller components that, from the outside, are inseparable. In doing so, modules provide great po-

tential to better study problems from genetics to compression. This paper describes the implemen-

tation of a practical algorithm to take a graph and decompose it into it modules in O(n+m log(n))

time. In the implementation of this algorithm, each sub-problem was solved using object ori-

ented design principles to allow a reader to extract the individual objects and turn them to other

problems of practical interest. The purpose of this paper is to provide the reader with the tools

to easily compute: modular decomposition of an undirected graph, partition an undirected graph,

depth first search on a directed partially complemented graph, and stack operations with a com-

plement stack. The provided implementation of these problems all compute within the time bound

discussed above, or even faster for several of the sub problems.

ii

ACKNOWLEDGEMENTS

I would like to thank my family for their ceaseless support. I would also like to thank my

advisor Ross McConnell for his guidance and help. The Shindlebowers for treating me like family

and caring for my dog. My friends Dave Bessen, Cole Frederick, and Gareth Halladay for ever

more unflagging support. In addition a special recognition for Sophia Fantus for brilliant proof

reading. Know that this work would not have been possible with out all of you. Thank you and

congratulations on work well done.

iii

DEDICATION

I would like to dedicate this thesis to my family, good job getting it done team Esparza.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

LIST OF FIGURES . vi

Chapter 1 Introduction . 1

Chapter 2 Preliminaries . 2

Chapter 3 Modules . 4

Chapter 4 Applications . 10

4.1 Compact representation of a graph . 10

4.2 Max weight independent set . 11

4.3 Cographs . 12

4.4 Transitive Orientation . 14

4.5 Max Clique and Min coloring in comparability graphs. 17

4.6 Related graph classes . 17

Chapter 5 The Algorithm . 19

5.1 Overview . 19

5.2 Finding the maximal modules that do not contain x 21

5.2.1 Strategy for an efficient implementation 22

5.2.2 Finding M in practice . 24

5.3 Finding Modules containing x in G′ . 25

5.3.1 Finding the Strongly Connected Components 27

5.3.2 Building MD(G′) . 30

5.4 Recurse . 31

Bibliography . 32

v

LIST OF FIGURES

3.1 X represents a module, Y represents a potential module spoiled by f 4

3.2 The factor is the subgraph induced by X , and the quotient is the original graph with X
collapsed to a point. 5

3.3 A graph with several modules within it along with its modular decomposition. 6

4.1 A C5 and steps demonstrating the forcing relation, and how it shows a C5 is not tran-

sitively orientable and thus not a comparability graph. 14

vi

Chapter 1

Introduction

According to Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell [2], modules have been

studied since 1967 [1]. Modules represent interesting structures within graphs. A module is some

nonempty set X of vertices in a graph G = (V,E), such that ∀u ∈ (V −X), u is either a neighbor

of every vertex in X , or a non neighbor of every vertex in X . A spoiler for X is a vertex u ∈ V −X ,

such that X contains both neighbors and non neighbors of u. X is a module if, and only if, it has

no spoilers.

The lack of spoilers is what make modules novel structures for study. For example, optimiza-

tion problems that are hard in the general case, can be solved in linear time on graphs with a non

trivial modular decomposition. The beginning of this thesis will cover related research into mod-

ules, problems that have linear time solutions, and graph classes that modules can help identify.

The rest of the thesis covers an O(n+m log(n)) algorithm used to find the modular decomposition

of a graph as well as describing our implementation of a program that runs said algorithm.

In chapter 2, we will discuss general graph terms and definitions that will be used throughout

the paper. In chapter 3, we will examine the reasons modules are interesting to other types of

graph theory problems. In chapter 4, we will describe how, in using modular decomposition,

it is possible to find linear time solutions to max weight independent set, transitive orientation,

and detecting interval graphs [3]. In chapter 5, we will consider an algorithm for computing

the modular decomposition of a graph in O(n + m log(n)) time [4]. In parallel to describing

the algorithm, we will describe an implementation of said algorithm with explanations for design

decisions.

1

Chapter 2

Preliminaries

A directed graph is represented by a set of vertices V , and a set E of ordered pairs of vertices,

known as edges. An undirected graph is a special case of a directed graph, where (x, y) ∈ E ⇐⇒

(y, x) ∈ E. In an undirected graph, the symmetric pair {(x, y), (y, x)} can be denoted as an

undirected edge xy. For simplicity, in this thesis, a graph will refer to an undirected graph, unless

otherwise indicated. The variables n and m will be reserved for representing the size of the sets V

and E, respectively.

A subgraph of G is a graph G′ = (V ′, E ′), where V ′ ⊆ V and E ′ is some subset of E, such

that every edge in E ′ has both its endpoints in V ′. An induced subgraph is a graph G′ = (V ′, E ′),

where V ′ ⊆ V and ∀a, b ∈ V ′, (a, b) ∈ E ′ iff (a, b) ∈ E. In this thesis, G[X] shall represent

the subgraph of G induced by X , where X represents a set of vertices in G. Unless otherwise

indicated, all subgraphs referenced in this paper shall be induced subgraphs.

When (x, y) is a directed edge, y is adjacent to x. For a given vertex x, the neighborhood of x

N(x) will denote {y ∈ V : (x, y) ∈ E}. That is, N(x) will represent the set of vertices in E that

x is adjacent to. A complement, G = (V,E) of a graph G = (V,E) retains all the vertices of the

original graph, but the edges in G are non edges in G and the non edges in G are edges in G. That

is, ∀a, b ∈ V , (a, b) ∈ E iff (a, b) /∈ E.

Two sets X and Y are properly overlapping if their intersection is non empty, but neither

is contained within the each other. Written formally, if X, Y are properly overlapping sets then

|X ∩ Y | > 0 and |X ∩ Y | < |X| and |X ∩ Y | < |Y |. A partition of a set X is a family

{X1, X2, ..., Xk} of subsets of X , such that every element in X is a member of exactly one set Xi

in the family.

A disjoint union of two graphs takes two graphs, G = (V,E) and G′ = (V ′, E ′), which share

no vertices, and creates a new graph H = ({V + V ′}, {E + E ′}). A path exists between vertices

x and y if there exists a set Z of edges in E, such that starting with x it is possible to traverse the

2

edges of Z and reach y. A cycle exists when there is a set of edge that can be traversed from some

vertex x which leads back to x. A DAG is a directed graph with the condition that no cycles exist,

also known as a directed acyclic graph. A set of vertices where a path exists between any two

vertices of the set is known as a strongly connected component.

A clique C within a graph is a maximal set of vertices, such that ∀v, w ∈ C : v 6= w, (v, w) ∈

E. The set of cliques in a graph is denoted CG. The notation, CG(x) , denotes the set of cliques

which contain some vertex x, and CG(x̄) denotes the cliques which do not contain x. A valid

coloring of a graph is the assignment of colors to vertices of the graph, such that no two vertices of

the same color are adjacent to one another. For a graph G = (V,E), |V | is clearly an upper bound

on the number of colors needed for a valid coloring, by assigning each vertex a unique color. A

min coloring is the minimum number of colors necessary for a valid coloring. It is trivial to show

that the size of a max clique is a lower bound on a min coloring.

Proof. By contradiction. Consider that a coloring assigns the same color to two vertices in the

clique. By the definition of a clique, those two vertices are adjacent; therefore, the min coloring is

not valid.

Opposite a clique is a kernel, a maximal independent set of vertices in G. For some kernel,

K, ∀v, w ∈ K, (v, w) /∈ E. The set of kernels in a graph is denoted KG, while KG(x)(KG(x̄))

represents the kernels in G that contain(do not contain) some vertex x. A graph is said to have

the clique-kernel inter-section property (or CK-property) iff every clique of G has one vertex in

common with every kernel of G.

There is a class of optimization problems called NP-hard, for which no polynomial time so-

lution is known. A polynomial time solution for any problem in this class would solve the long

standing P=NP problem.

3

Chapter 3

Modules

Figure 3.1: X represents a module, Y represents a potential module spoiled by f

The set V and its one-element subsets are clearly modules; these are known as the trivial

modules of G. In figure 3.1, X is a nontrivial module because it has no spoilers. Conversely, the

set Y is not a module, as it represents a set of vertices for which f is a spoiler. Vertex f has edges

to g and h, but no edge to e.

A graph can be "factored" into quotients and factors, such that the original graph is uniquely

obtainable from the derived quotients and factors. The left side of figure 3.2 gives an example of

both a factor of G and an induced subgraph G[X]. The right side of figure 3.2 represents a quotient

of G, G/{V −X,X}, where X is collapsed to a single point whose neighbors are the neighbors of

the elements of X in V −X . Alternatively, as X represents a module, the quotient can be said to

be an induced subgraph of G, where the set inducing the subgraph is {V −X, any vertex in X }.

As X is a module, this process is invertible: G[X] may be substituted back in for X in the quotient

and the neighbors of X in V −X will be neighbors of each element of X .

Lemma 3.0.1. Let G be a graph and X be a module of G. A subset Y of X is a module of G[X]

iff it is a module of G

Proof. Y ⊂ X is a module of G[X] =⇒ Y is a module in G: Suppose Y is a module of

G[X] and it therefore has no spoilers in X − Y . As X is a module of G, there exist no spoilers for

4

Figure 3.2: The factor is the subgraph induced by X , and the quotient is the original graph with X collapsed

to a point.

Y in V −X , which means there are no spoilers in V − Y . Since no spoilers for Y exist outside of

Y , Y must be a module in G.

Y ⊂ X is a module in G =⇒ Y is a module of G[X]: Suppose Y is a module of G and

therefore has no spoilers in V − Y . As Y is a proper subset of X , the set X − Y is non empty, and

contained entirely within V − Y . No spoilers for Y exist in V − Y , so no spoilers for Y exist in

X − Y , meaning Y is a module in G[X].

Since modules in a subgraph induced by another module are still modules in the larger graph,

the process of finding them can be applied recursively when the factors have nontrivial modules.

In the event that a graph has no nontrivial modules, it is said to be prime. As an example a P4, a

path on four vertices is a prime graph.

If a graph is prime, its factors are the the individual vertices and its quotient is exactly the

original graph. Conversely, if a graph is not prime, it is possible for its factors and quotient to be

smaller, hinting towards a recursive solution. One potential pitfall is the number of modules in a

graph can be exponential. Fortunately, there is a unique way to find a recursive decomposition of

the graph that implicitly represents all ways of decomposing the graph recursively. Equivalently,

it implicitly represents all modules of a graph. This recursive decomposition is called the modular

decomposition, and an implementation of an algorithm for finding it is the subject of this thesis.

While it has been proven that there is a linear algorithm for finding the modular decomposition

of a graph [3], this work focuses on the implementation of a O(n+m log(n)) [2].

Let the modular decomposition of a graph G(V,E) be a rooted tree, where every node is a

module. The root will be a node representing V and the trivial module of the entire graph.

5

Figure 3.3: A graph with several modules within it along with its modular decomposition.

Algorithm 1: Algorithm for representing a graph by its modular decomposition.

Input: Sets V , E representing a graph.

Result: MD(G) = A rooted tree representing the modular decomposition of G.

if |V | = 1 then

It is just a one-node tree and a trivial module. Return V

else if Case 1: If G is disconnected then

The children of V are the connected components.

else if Case 2: The complement of G is disconnected. then

The children of V are the connected components of the complement.

else

Case 3: None of the above. Then the maximal modules that are proper subsets of V

are a partition of V , a fact proved below. These are the children of the root.
The sub-tree rooted at each child X of V is obtained by recursion on G[X].

Looking at the cases from the algorithm above there are three potential cases for internal nodes

to fall into.

• Parallel nodes (case 1)

• Series nodes (case 2)

• Prime nodes (case 3)

There are small quotients whose modular decomposition is ambiguous, namely when the quo-

tient is a graph with two vertices. When considering the modules that represent these quotients

assume them to be non prime. The fact that these modules must be either disconnected or com-

pletely connected will allow them to be classified as parallel or series nodes, respectively.

6

Lemma 3.0.2. If X and Y are properly overlapping modules in G then X ∪ Y , X ∩ Y , X − Y

and Y −X are also modules in G.

Proof. X ∪ Y is a module in G: Let z ∈ V − {X ∪ Y }. Since X is a module in G, if z has

no edge to an element in X , it has no edge to any element in X . Since X properly overlaps with

Y , there exists some element y of Y that is also in X . As z has no edge to anything in X , z has

no edge to y. Since Y is also a module in G, and z lacks an edge to some element of Y , z has no

edges to anything in Y . By symmetry, if z has an edge to X , it has edges to everything in X and

therefore everything in Y , X ∪ Y is a module in G.

X ∩ Y is a module in G: For z ∈ V − {X ∪ Y }, z could not act as a spoiler for {X ∩ Y }

without spoiling both X and Y . Therefore, consider that z is an element of V − {X − Y }. X and

Y are modules of G. By definition, there can exist no spoilers to a module outside of a module.

There can be no spoilers in X − Y for {X ∩ Y }, otherwise X would contain a spoiler for Y and

Y would not be a module. By a similar argument there can be no spoiler in Y −X for {X ∩ Y },

therefore X ∩ Y is a module within G[X ∪ Y] and within G at large.

X−Y and Y −X are modules in G: As discussed above, {X∩Y } is a module and therefore

every element within it shares the same neighborhood for elements outside of the module. Since

{X ∩ Y } is a contained within Y , it must also share the same neighborhood as elements in Y .

The non empty set {Y −X} contains no spoilers for X , and is also contained within the module

Y . Since {X ∩ Y } and {Y − X} are contained within the same module, they must share the

same neighbors outside of the module; therefore, {X ∩ Y } contains no spoiler for {X − Y }, and

{X − Y } is a module in G. By the symmetric argument, {Y −X} is a module in G.

Lemma 3.0.2 allows for the exponential number of modules, as discussed earlier. Yet, the

cases described above also allow for these modules to be implicitly represented in the modular

decomposition. In Case 1, where the graph is disconnected, every subset of G is a module. In the

modular decomposition of G, the root of G would be a parallel node and all subsets of its children

would be modules. Similarly, in Case 2, the root of G would be a series node and, all subsets of

its children, would be modules.

7

Since the leaves are already single element sets, and therefore trivial modules, the only modules

left to represent in the modular decomposition must be in the prime nodes.

Lemma 3.0.3. If a Node X is prime, then the maximal modules that are proper subsets of X are a

partition of X

Proof by contradiction. Every element in V exists in at least one partition class of P: Assume

some element y in X does not appear in any partition class of P . Since even a single element sets

can be maximal modules, we know that y must still exist in some maximal module Z. Therefore,

Z ∪ {y} is a maximal module of X , and not represented by a partition class in P . Since our

definition is that maximal modules are in a single partition class, Z should not have been a partition

class; rather, Z∪{y} is a partition class in P and {y} is indeed stored in at least one partition class.

Every element in X exists in only one partition class of P: Assume some element x is

contained within two partition classes, Y and Z. These both represent maximal modules of X

and, therefore, cannot be expanded any more. Accordingly, they must properly overlap. By lemma

3.0.2, the union Y ∪ Z is a module. It contains both Y and Z as proper subsets and is a maximal

module in X . Since Y ∪ Z is a maximal module, neither Y nor Z is maximal, contradiction.

Theorem 3.0.4. The modules of G are the nodes of MD(G) and the unions of children of serial

and parallel nodes.

Proof. Case 1: Parallel nodes represent disconnected quotients, where the connected components

are modules represented as the children of the root. Since the quotient is disconnected, there

are clearly no spoilers to a module formed by any union of children described in lemma 3.0.2.

Therefore, every module of G is either a union of children or contained in a child. By symmetry

of edges vs. non-edges, the same thing will apply in Case 2.

In Case 3, by Lemma 3.0.3, every module of G is either V or is contained in one of the children

of the root.

By Theorem 3.0.4, we can represent the modules of G in O(n) space. Each node X is rep-

resented with an O(1) data structure x that has a pointer to a list of its children. Each leaf has

8

an identifier that tells which node of G it is a member of. To return the set X represented by a

node x, it suffices to collect the identifiers of the leaf descendants of X , using a call to depth-first

search. As each node of the tree has at least two children, this takes O(|X|) time. This represents

explicitly that X is a module of G. In addition, each internal node is labeled according to whether

it is a series, parallel, or prime node. If it is a series or parallel node, this represents implicitly the

unions of children are modules of G. Since every node has at least two children, and the tree has n

leaves, the number of internal nodes is at most n− 1.

9

Chapter 4

Applications

4.1 Compact representation of a graph

In order to allow the modular decomposition to represent not just the modules of a graph G,

but also G itself, it suffices to label each node X with its quotient. The quotient is is obtained

from G[X] by contracting each child of X to a point. If the child is a leaf, it suffices to let its only

member represent this point.

For example, in figure 3.3, the right child of the root is {g, h, i, j, k, l}. After replacing {i, j}

with a node x and {j, l} with a node y, we obtain a quotient H = (g, h, x, y, {gh, hx, xy}).

Note, however, that the quotient at each series node is just a complete graph and, at each

parallel node, is just an empty graph. There is no need to represent this explicitly; it is represented

implicitly by the label of the node as a parallel or series node. Only the prime nodes need to have

the quotient explicitly represented. Let us call this the labeled modular decomposition.

Lemma 4.1.1. The quotient label at a prime node is a prime graph.

Proof. Assume that within the quotient G = (V,E) there exists a non trivial module X . The set

of vertices contained within X share the same neighborhood in {V −X}. At this point, V or V is

disconnected, the node cannot be prime, contradiction.

G can be obtained from this labeling of the modular decomposition by working by induction

from the leaves toward the root. The leaves are trivial modules. For every internal node represent-

ing some module X in G, G[X] is obtained by taking its factors G[Y] and plugging them into the

quotient. In the construction of G[X], the purpose of the labels become obvious. Each of the three

internal nodes contains information for how its children are related to one another. In the case of

a parallel node, G[X] is disconnected and no edges need to be added among the children of X . A

series node, is disconnected in the complement, so when constructing G[X] add edges between all

10

children of X . Prime nodes contain the quotient of the G[X], explicitly describing the relationship

between the children of X . Add all edges as appropriate and recurse up the tree.

Because an edge in a quotient can represent many edges in G, this representation can achieve

considerable savings in the space required to represent G. However, in the worst case, G is a prime

graph, the labeled modular decomposition has just one internal node, V , and its quotient is G itself,

resulting in no space savings. For some classes of graphs without prime modules, such as cographs

discussed below in 4.3, this provides a better worst-case bound on space.

4.2 Max weight independent set

As discussed above, some classes of optimization problems are NP-hard; in the general case,

there is little hope for a polynomial time solution. Two such problems are finding a maximum

independent set, and a maximum-weight independent set. However, if a graph has nontrivial mod-

ules, the modular decomposition given by the following algorithm, which finds the weight of a

maximum weight independent set, can be faster than solving the problem by brute-force on G.

The algorithm takes a graph G whose vertices are labeled with weights and returns the weight

of a maximum-weight independent set.

Find the labeled modular decomposition of G.

Recursively, find the weight of the maximum-weight independent set of G[X] for each child

X of V .

1. If the graph is disconnected, the max weight independent set is the sum of the weights of all

children; return this weight.

2. If the graphs complement is disconnected, the max weight independent set is equal to the

max value of its children; return this weight.

3. If V is a prime node, let the weight of each node x of the quotient be the weight of a

maximum independent set of G[X], for the child X represented by x. Return the weight of

the maximum-weight independent set of the quotient when it is weighted in this way.

11

Step three indicates that the graph G is prime and is the only case where the calculation is nontriv-

ial. This reduces the problem of finding the max weight independent set on a graph to finding it on

the prime graphs in its labeled modular decomposition.

That caveat means that just like in the example of compression, prime modules are a subgraph

that prevents modular decomposition from solving this quickly, in the general case.

4.3 Cographs

Cographs also called Complement Reducible Graphs have been discovered independently over

the years in various mathematics problems.

Lemma 4.3.1. A definition of a cograph from Corneil [5]:

1. A single vertex.

2. The vertex disjoint union of cographs.

3. The complement of a cograph.

In a cograph, a pair of vertices {x, y} are considered twins if they are a module. Twins are

considered strong if they are adjacent and weak otherwise.

Given this definition, consider how these graphs are constructed, and how their construction

ensures modules and might allow a modular decomposition tree to represent them. A single vertex

is a module. The vertex disjoint union of graphs creates a parallel module where every vertex

set and every union of vertex sets is a module. Those modules’ membership is unaffected by

complementing G, with the only change to MD(G) being that parallel modules will become series

and vice versa.

Thus, we only have the case of prime nodes in the modular decomposition to be mapped to

structures in cographs.

Theorem 4.3.2. The following are equivalent statements for every cograph G [5].

1. G is a cograph.

12

2. Any nontrivial subgraph of G has at least one pair of siblings.

3. Any subgraph of G has the CK-property.

4. G does not have a P4 as an induced subgraph.

5. The complement of any nontrivial connected subgraph of G is disconnected.

Lemma 4.3.3. A graph is a cograph iff it contains no prime modules. By 4.3.2.2, there can be no

prime modules in a cograph.

Proof. A graph is a cograph −→ it contains no prime modules: Let G represent a cograph and P

represent a non trivial subgraph of G, which is prime. By 4.3.2.2, P contains at least one pair

of siblings. These siblings will share exactly the same neighborhood as one another, they can be

factored out of the modular decomposition of P . Thus, P contains some non trivial module, and

cannot be prime.

A graph contains no prime modules −→ it is a cograph: If a graph G lacks any prime modules

in its modular decomposition then every non trivial module within it must contain at least one pair

of siblings. By 4.3.2.2 above, it must be a cograph.

Therefore, in order to be a cograph, a graph can have no prime graphs. As discussed in section

4.1, graphs with no prime modules are easily compressed using their modular decomposition. In

fact, cographs can be represented in O(n) space by leveraging their modular decomposition. To

reconstruct the graph G, start recursively at the leaves and move up the tree. As each of the leaves

is trivially a module, let us show that, given the children of an internal node, that module in the

graph can be reconstructed.

Given some internal node X , the children of X will be connected according to the label of X .

If X is a parallel node, then its children are disconnected, and no edges need to be added to the

graph. If X is a series node, then the complement of X was disconnected in the original graph.

Add edges between every pair of children of X . Recurse up the tree.

Lemma 4.3.4. Every quotient of a prime module must have a P4 as an induced subgraph. [6]

13

Since point 4 in theorem 4.3.2 states that no cograph has a P4 as an induced subgraph and

lemma 4.3.4 indicates that every prime graph has an induced P4. We know for certain that case

three of 1, the one instance where keeping an explicit list of edges in the quotient is necessary, will

never be hit in the case of a cograph.

As sections 4.1 and 4.2 described above, graphs lacking prime subgraphs do allow some prob-

lems to be solved much better than the general case. Other examples include a linear time O(n+m)

algorithm for finding a transitive orientation [3]. The implications of being able to find a transitive

orientation in linear time will be discussed below in 4.4.

4.4 Transitive Orientation

A directed graph is transitive if, whenever (x, y) and (y, z) are directed edges, so is (x, z). A

graph is a comparability graph if it is possible to orient it so that the resulting digraph is transitive.

However, not all graphs are comparability graphs. Looking at the definition of a transitive graph,

it should be clear that if {x, y} are adjacent and {y, z} are adjacent, there is a forcing relationship

between the directed edges in the transitive graph. This binary relation Γ, called gamma, operates

on the edges of an undirected graph G = (V,E) :

(a, b) Γ (c, d) iff















either a = c and (b, d) /∈ E

or b = d and (a, c) /∈ E

(4.1)

Figure 4.1: A C5 and steps demonstrating the forcing relation, and how it shows a C5 is not transitively

orientable and thus not a comparability graph.

14

Figure 4.1 shows a C5, a cycle on five vertices, and assigns an orientation to the edge between

(a, b); namely, it removes the edge (b, a) that existed in the undirected graph. Using the forcing

relation, we can now say that (a, e) is forced, since {b, e} are non adjacent. Conversely, (b, c)

cannot exist in the transitive orientation because {a, c} are non adjacent, forcing (c, b). Finally,

(d, e) is forced by (a, e), and (c, d) is forced by (c, b). But, since {c, e} are non adjacent, this is not

a transitive orientation.

The set of edges forced by an orientation of an edge ab is called an implication class. Simply,

by selecting any edge in an implication class, all of the other edges in that class are forced, directly

or otherwise.

This Γ relation interacts with modules in a rather elegant way. If we say that an edge is con-

tained within a module iff both endpoints are within the module, we can refer to it as an interior

edge.

Lemma 4.4.1. If (a, b) is an edge interior to the module, then everything it indirectly forces is also

interior to the module.

Proof. By contradiction. Suppose X is a module, let (a, b) be an interior edge to X that forces

some edge (b, c) not interior to X . The element c must clearly not be contained within X or (b, c)

would be an interior edge. Since c is outside of the module, and (a, b) forces (b, c), there can exist

no edge between a and c. Therefore, c is a spoiler for X , contradiction.

By a similar proof, it is easy to show that an edge external to a module X cannot force an edge

internal to X . Now that it is clear that the Γ relation stops at the boundaries of a module, let us

consider how it appears within modules. In a parallel module, there are no edges between any of

the children of the quotient. No edges means the Γ relation has nothing to force. It also means that

in the transitive orientation, these vertices have no constraints on their relation to one another, and

can be arranged in any path so long as there are no cycles in the digraph. The quotient of a series

module forms a clique. Since every element in the quotient is adjacent to every other element,

again there is nothing for the Γ relation to do and, again, you may arrange the elements in any path

so long as there are no cycles in the digraph.

15

Finally, we come to the prime module. In a prime module, X , both the subgraph induced by X

and its complement, are connected. Here, the Γ relation has room to act, and simplifies the work

of finding a transitive orientation of the quotient.

Lemma 4.4.2. If a module is prime, any implication class of its quotient spans every vertex in the

quotient.

Proof. By contradiction. Assume for some prime module X , whose quotient is Y and an impli-

cation class A, {a, b, c} ∈ X , and the span of A includes {a, b}, but not {c}. Since X is a prime

module, neither Y nor its complement are disconnected. There exists at least one vertex in Y with

an edge to c, and another with a non edge to c. Without loss of generality, let a have an edge to

c, and b have a non edge to c. Since a, b ∈ A, there must be a forcing relation which implies the

direction of edges on a path from a to b. Vertex c has an edge to one and not the other, which

means that it is also forced by the same relation, meaning {c} ∈ A contradiction.

Lemma 4.4.3. If the quotient of a prime module has a transitive orientation, there are only two

possible orientations, one being the inverse of the other.

Proof. See Theorem 5.4 from Golumbic’s work, ’Algorithmic Graph Theory and Perfect Graphs’

[7]. The theorem proves that the quotient of a prime module will have either one or two implica-

tion classes. In the case of a single implication class, every edge forces every other, meaning ab

indirectly forces ba. Since no transitive orientation can have both those edges, this case shows that

no transitive orientation can exist for this graph. In the case of two implication classes, A and A′,

each class spans the graph, and represents the inverse of the other, ab ∈ A and ba ∈ A′.

Referring back to the C5 in figure 4.1, it should be noted that it is a prime graph. A subraph

induced by removing any vertex yields a P4 which, as discussed in 4.3.4 and above, means that

there exist prime graphs which are not transitively orientable.

However, at this point, all is not lost. Recall from 4.4.3 that if a transitive orientation exists

for a prime graph, then there are only two. Each directed edge exists in exactly one of the two

orientations. It is possible to simply select the orientation of any edge and allow it to force the rest.

16

Thus far we have demonstrated that the forcing relation cannot extend past module boundaries

and shown how to transitively orient each of the three types of modules. Finally, before we can

say that modular decomposition reduces the problem of transitive orientation down to transitively

orienting the quotients of a graph, we must show how the modules interact with one another.

Lemma 4.4.4. Between two children in the modular decomposition all edges of vertices in those

children go in one direction. [8]

4.5 Max Clique and Min coloring in comparability graphs.

It is possible to find a transitive orientation of a comparability graph in O(n + m) time [3].

Given a transitive orientation, use depth first search to find a topological sort of the graph in linear

time [9]. By induction from right to left, label each vertex with the length of the longest path that

begins at it.

This labeling is a proper coloring of the graph. It is simple to see that no two vertices, x and

y with the same label, will be have an edge between them. If such xy ∈ E, then in the transitive

orientation either (x, y) or (y, x) will be a member. Therefore, either x or y will be the start of a

longer path, giving it a different label.

In addition, the number of labels represents the size of the maximum clique. Recall that in the

transitive orientation, whenever (x, y) and (y, z) exist, then (x, z) must also exist. Therefore, any

path in the transitive orientation represents a clique. The longest path must also be the maximum

clique, since if there were a larger one, it would have had a longer path.

4.6 Related graph classes

Based on the work of Ross M. McConnell and Jeremy P. Spinrad [3], comparability graphs and

their transitive orientation can be found in linear time. This work has more implications for other

classes of graphs than we have examined thus far. For starters, the complement of an interval graph

is a comparability graph. Interval graphs have well studied impacts on scheduling theory, resource

17

allocation problems, and DNA mapping [10]. In section 4.3, we discussed that cographs have no

prime modules which allows them to be stored in O(n) space, as discussed in section 4.1.

In addition, bipartite, permutation, and threshold graphs are all subclasses of comparability

graphs, using modular decomposition these graph classes can all be detected in linear time.

18

Chapter 5

The Algorithm

5.1 Overview

The algorithm implemented was first described by Elias Dahlhause, Jens Gustedt, and Ross M.

McConnell, in their paper, ’Partially Complemented Representations of Digraphs’ [4]. In the paper,

they discuss and prove an O(n+m log(n)) algorithm for finding the modular decomposition of an

undirected graph. Their work builds on the fact that the modular decomposition of some graph G

is exactly the modular decomposition of Ḡ with the labels of series and parallel nodes swapped.

The work of this thesis has been to study said algorithm and implement it in Java. It is believed

that no concrete implementation of the algorithm existed prior to this. As a result, the work of

transcribing the theory described in ’Partially Complemented Representations of Digraphs’ into

code, was a novel project.

To begin understanding the algorithm, let us consider the restricted problem of a graph whose

modular decomposition contains no degenerate nodes. This means the modular decomposition is

composed of only prime nodes internally, with leaves representing individual vertices. Let x be an

arbitrary vertex of G and let M be the set of maximal modules of G = (V,E) that do not contain

x. Clearly the elements of M are the siblings of the ancestors of x in MD(G). In addition, P =

{{x}} ∪M is a partition of V , so G′=G/P is well defined. The first step of the algorithm is to

find M, through a process called vertex partitioning.

It is important to note that MD(G′) is MD(G), where the only internal nodes are ancestors of x.

Therefore, every module in MD(G′) must contain x. Every other internal node of MD(G), siblings

of ancestors of x, have been turned into leaves. Therefore, finding the ancestors of {x} in MD(G)

reduces to finding the ancestors of {x} in MD(G′).

Let V ′ be the vertices of G′. To find the ancestors of x in G′, we define a directed graph D

on V ′, such that, for y, z 6= x, there is a directed edge from y to z, if y can distinguish between

19

z and x. That is, z forces y into any module containing z and x because, if left out, y would act

as a spoiler for such a module. No module of G′ that contains x in this directed graph can have a

directed edge in D coming into it from an outside vertex. Conversely, let S be a set of vertices that

contains x and has no incoming directed edges in D. It is easily seen that S.

Lemma 5.1.1. A set S of vertices of G′ is a module of G′ iff it has no incoming directed edges in

D.

With this, we can reduce the problem of finding the ancestors of {x} in MD(G′) and, hence,

in MD(G), to finding the sets of vertices in D that have no incoming directed edges. This reduces

to finding the strongly-connected components of D. As described in Cormen [11], the strongly

connected components of a directed graph have a natural topological sort. Every set of vertices of

G′, that has no incoming directed edges in D, is clearly a union of strongly connected components.

Since the modules of G′ that contain x are nested, this topological sort is unique, and these sets are

prefixes of this topological sort.

This gives MD(G′) and the portions of MD(G) that are not contained in children of ancestors

of {x}. The missing parts of MD(G) are subtrees rooted at the leaves of MD(G′). The algorithm

finds the subtrees by recursing on the subgraphs of G that those modules induce. The returned

trees can then be attached to the corresponding leaves of MD(G′), to give MD(G).

When we relax the assumption that all internal nodes are prime, the algorithm needs only minor

changes. When Y is a degenerate node of MD(G), the union of the children of Y , other than the

one that contains x, is a maximal module of G that does not contain x. In MD(G′), the entire set of

them becomes a single leaf. In the event that Y has three or more children, after all the recursive

calls return, they will appear as a path rooted at Y rather then children of Y . It is required that we

collapse the ’children’ of the recursive tree into children of Y . Therefore, after all recursive calls

return we iterate over the tree and when we see a serial node that is a child of another serial node

we make them siblings. Likewise for parallel nodes.

20

5.2 Finding the maximal modules that do not contain x

Let us define a method Split(X , P), which takes in a partition class, X , a set of partition classes,

P , and returns a refinement of P and X . This refinement will split each Pi ∈ P into the maximal

subsets that are indistinguishable to any vertex in X . Any module in P will remain entirely within

some Pk since it can have no spoilers in X . We can also split X using P to the same result, dividing

the partition class X into a set of partition classes X , each indistinguishable to every vertex in P .

If some new partition class is created from P or X , we can run split using that partition class

as described in algorithm 2, repeatedly calling split using newly created partition classes until it is

impossible for any partition class to split any other. At this point, we know that every module in

P is still contained entirely within some Pk. In the event that two maximal modules are contained

within some Pi, they would need to be indistinguishable to every vertex outside of Pi, otherwise,

they would have been split. However, if they can not be split by any exterior vertex, then neither

is a maximal module, and the partition class is a single maximal module. We can see that once no

partition class can be split by any other, each is exactly a maximal module in the graph.

Therefore, in order to find the maximal modules in G, which do not contain x, we can start the

process by running Split({x}, V − {x}). Once it is impossible for a Split operation to yield any

further refinement we know that the partition returned, M will be comprised of maximal modules,

each contained within their own partition class.

As stated, this is not sufficient to meet our time bound. Consider an undirected graph, where

vertices are sorted into a line and for vertex has an edge to every vertex that is not adjacent to it

in the line. If our split algorithm begins on one end of this line, with X containing the first n − 1

vertices, each partition will only split a single vertex from the largest partition. Another dilemma

is the number of edges that need to be considered for every iteration of split. The running time of

split is proportional to the degree of edges of X; since we must find all the edges in X that have

external endpoints in P , every edge with an endpoint in X must be examined. This provides us

with a worst case time bound of O(nm) for using split.

Lemma 5.2.1. Split runs in time proportional to the sum of degrees of the vertices in X .

21

Proof. Split requires an ordered list of vertices across the cut between X and P . Labeling every

vertex in X can be done in time proportional to the size of X . Using a radix sort we can order

the vertices in X by their assigned labels in linear time [12]. Now we can go over the edge lists

of every vertex in X collecting edges with an endpoint in P into a sorted list. If P is stored as a

doubly linked list we can create new partitions and add them to the list in constant time.

In order to split X using edges from P we reuse the edges already collected. Assign labels to

the endpoints in P and repeat the process in the other direction. We end up labeling 2|X| vertices

and going over the edge lists of vertices contained in X .

5.2.1 Strategy for an efficient implementation

Using the method Split, we can derive information on the maximal modules that do not include

x, our set M. However, as described, using split without conditions on its inputs takes too long

to be practical for our purposes. Enter Vertex Partitioning, a quicker process of using partition

classes to partition the graph, with a single vertex as the seed to start the process. The key to

Vertex Partitioning is in how it selects the next partition class X that will be used to split the other

partition classes. In our analysis of Split, one problem that arose was the possibility of choosing

a large partition class. As Split runs in time proportional to the degree of the edges in X , by

lemma 5.2.1, selecting a large partition class might mean we revisit the same vertices over and

over, iterating over their edges repeatedly. By selecting a partition class which contains no more

than half the vertices contained in the partition, along with the recursive nature of the algorithm,

we can ensure no vertex is visited more then a logarithmic number of times.

This is key to meeting our time bound, as the algorithm uses split and still has to iterate over

all the edges in a partition class. Guaranteeing that no edge is visited more then O(log(n)) times is

much better then the alternative O(n). A partition class is ripe if it contains at most half the ver-

tices in the partition. Any partition class marked as ripe can be used to split the rest of the partition.

22

Algorithm 2: Partition (G, P), Vertex partitioning

Input: Graph G and a partition P of G

Result: Partition P containing partition classes P1 through Pi

if |P | = 1 then

Return P

else

Let X be a member of P that is not larger than all others combined.

Let M be the edges of G in X × (V (G)−X)

P ′ = Split(X , P)

G = (G−M)

Let Q be the classes of P ′ contained in X

Let Q′ be the classes of P ′ contained in P −X

Return: Partition(G|X , Q) ∪Partition(G-X,Q’)

The proof that a ripe set exists is straightforward. If |P| > 1 then there must always be some

Pk : |Pk| ≤ |P|/2. We have already covered that the partition classes in P do not overlap.

Since the partition classes do not overlap, if ∃Pj, Pk ∈ P : |Pj| > |P|/2 and |Pk| > |P|/2 then

|Pj|+ |Pk| > |P|, contradiction.

After this, the Split function defines Q, and Q′ as distinct partitions to be operated on separately.

This recursion into smaller problems is the other part of guaranteeing that this step takes, at most,

O(m log(n)) time. Picking a partition class, at most half the size of the problem, would not be

useful if we were not also reducing the size of the problem at the same time.

In addition, removing edges from X to P prevents future iterations from having to worry about

edges that can no longer split any partition class. Every edge from Q to Q′ has already been used

to split partition classes. Because of that, no further refinement of the partition classes of Q′ can

ever be split by edges from Q. Once a vertex y ∈ Pi has been used to refine a partition class X ,

it has separated all of its neighbors and non neighbors in X , into neighbors X ′ and non neighbors

X ′′. Now y cannot distinguish any of the vertices in X ′ since they are all neighbors. Regardless

23

of how many sets X ′ is subdivided into via further refinements by other vertices, the set of those

partition classes is indistinguishable to y.

Once the Vertex Partition algorithm has completed, what is left is a set of partition classes

that cannot be separated by each other, with the members of any particular partition class being

indistinguishable to x. In short, the algorithm returns the set M described in 5.1. What is left is to

use this information to find all the modules that do contain x.

5.2.2 Finding M in practice

Implementing partition proved to be one of the more challenging aspects of this work. As

described in McConnell and Spinrad [13], there are several important things to track. Each vertex

requires an integer id to support ordering, provided by its index in the original undirected graph,

as described above. In addition, for each vertex x we will need to be able to find which partition

contains x in constant time. This lookup was implemented as a list of size |V |, where index i

contains a pointer to the partition, which contains vi.

Each partition class Pi is modeled as a list of vertex pointers, and tracks its current size and

the size of Pi the last time its members were used to partition a partition class. It also contains

a pointer for another partition class labeled prime, which is used during the partition step. It is

possible that not all of the non neighbors in Pi being moved are sequential; instead of moving

them to a new partition class in the greater partition piecemeal, they are staged into this prime

partition class. Once all the edges with the same endpoint in the partitioning class have been

visited, every partition class with a prime list is split in order, putting the prime list ahead of it

in the partition class. In addition, each partition class stores a listNode object, that contains meta

information, such as whether the list is ripe for partitioning and which partition contains it.

Due to the need to add new partition classes in front of the partition class that generated them,

each partition is modeled as a doubly linked list of lists, which contains the individual partition

classes. Concurrent with the list of partitions classes is a list of ripePartitions, which has pointers

to the partition classes which are ripe.

24

To start, the program simply peels some vertex x off the list of all vertices and uses it to begin

partitioning. Rather then explicitly recurse into sub problems, as described in algorithm 2, the code

removes edges from a mutable list of edges generated when building the graph. When removing an

edge, each symmetric edge is also removed to guarantee that no time is wasted trying to partition

sets that are indistinguishable to a vertex.

As partition classes become ripe, they are added to the list of ripe partitions classes. Due to not

recursing into sub problems, the definition of ripe here is slightly modified. Rather than any set,

which is less than half the size of the total problem, partitions classes are listed as ripe if they are, at

most, half the size they were when they were last used to partition. In this way, we can guarantee

that that adjacency list of each vertex is accessed, at most, a logarithmic number of times. The

program pulls off the front of the ripe list until no more ripe partition classes are present. This

condition concludes the first part of the algorithm. At this point, M is exactly equal to the returned

partitionSet object, and every partition class contained within is a maximal module.

5.3 Finding Modules containing x in G′

This phase of the algorithm relies on a property of component graphs. The component graph of

some graph G is defined as GSCC = (V SCC , ESCC). Given G has strongly connected components

C1, C2, ..., Ck, the vertex set V SCC is v1, v2, ..., vk, and it contains a vertex vi for each strongly

connected component Ci of G. There is an edge (vi, vj) ∈ ESCC iff G contains a directed edge

(x, y) for some x ∈ Ci and some y ∈ Cj [11].

We now have a set M of modules, which do not contain the original partitioning vertex x and

x. Let us consider a new graph, G′ = G/{M ∪ {x}}. As described above, MD(G′) is exactly

MD(G), where the only internal nodes are modules which contain x. We derive a directed graph

D from G′. This graph, D, will have the property that every set of vertices with no incoming edges

will be a module in MD(G′). Thus, in order to find the modules of MD(G′), we need only find the

strongly connected components of D and a topological sort of the component graph.

25

The strongly connected components, SCC, can be found in linear time. As described in Cormen

[11], a two pass algorithm exists, which runs DFS on D and DT . DFS can be run in linear time,

as it visits each vertex and every edge once for a time bound of O(V + E). The SCCs described

in lemma 5.1.1 will be prefixes of the topological sort of D. If D can be generated in less than the

O(m log(n)) time it took to find M, we are close to making the time bound of O(n+m log(n)).

In order to generate D, we complement every neighbor of x in G′. This does two things:

the first is to assign a directed edge from every y : (y, x) ∈ E ′ to each of its non neighbors.

Fortunately, it is not necessary to explicitly complement each neighbor of x; simply marking them

as complemented is sufficient. Otherwise, for every neighbor of x, we would need to make V

operations, a cost of potentially V 2 operations total.

The second benefit of complementing neighbors of x is that now any vertex that had edges into

a module containing x now has no such edges. Recall that any edge into such a module would

require an edge to every element in the module, after complementing none of these edges exist.

Regardless of the relationship between modules in MD(G′), no module with x in it can have an

incoming edges in D. Since edges can still flow out of these sets, we have a series of nested

strongly connected components which represent the ancestors of x in MD(G′).

Implementing the Conversion

Implementing the D in Java was fairly straight forward. Representative vertices from the quo-

tient are copied into a set of new directed vertices. This move allows us to remove edges internal

to the module that will not have any impact in the subsequent steps. Here, we also only iterate

over the edge list of vertices that were ripe at one point. If a partition class was never added to the

ripeList, the list of partition classes that were ripe at some point in the algorithm, we never had a

chance to look at its edges, and so do not have a credit to do so now.

The significant concern in terms of the time bound was how to complement the neighbors of x.

As discussed, having to explicitly enumerate all the new edges and remove the old ones takes |V |

time for every neighbor of x. Due to this constraint, every vertex has a flag indicating whether it has

26

been complemented. In this way, we can complement all the neighbors of x in time proportional

to the degree of x.

5.3.1 Finding the Strongly Connected Components

Given the digraph D, there are a significant number of options for finding strongly connected

components. One concern is that any algorithm will need to work on a partially complemented

D. As discussed, the two pass SCC algorithm, described by Cormen [11], was selected due to its

simplicity.

The two pass SCC algorithm, henceforth referred to as 2-SCC, runs a depth first search on the

graph, then a depth first search on the transpose DT . The second pass is run using the finishing

times of vertices from the first pass as the order it visits vertices in the transpose. 2-SCC does not

take into consideration the complementation of vertices, because it is not relevant to the algorithm.

Here, that concern is shifted to the DFS step. So long as there exists an algorithm that can run

DFS on a partially complemented graph, 2-SCC can use the results to find the strongly connected

components.

However, it remains to be proven that calculating DT can be done efficiently. It is possible to

create the transpose of an uncomplemented graph in linear time by visiting each vertex once and

reversing all outgoing edges. However, D has vertices which are labeled as complemented, but

never had these edges explicitly created. Creating these edges explicitly in the transpose presents

the same problem as before, increasing the time bound to O(V 2). Fortunately, the solution to

running DFS on a partially complemented digraph works, with minor modification, on a partially

complemented transpose. So we create DT by transposing only the explicit edges in D, leaving

the complemented vertices marked as complemented. This leaves us with linear time solutions

for generating D and DT , and running DFS on them both. Finding M is the largest factor in

determining running time at O(m log(n)).

27

DFS on Partially Complemented Graphs

The work of Dahlhaus, Gustedt, and McConnel [2] describes a Set Complement Stack data

structure which can be used to run a variety of algorithms on partially complemented graphs. In

their work on "Partially Complemented Representations of Digraphs" [4], they describe the utility

of set complement stacks in DFS, BFS, topological sorts, and finding the longest path in a DAG.

The Set Complement Stack data structure, hence referred to as SCS, contains a set of Com-

plement Stacks which are described in the same papers. SCS provides an amortized linear time

solution for basic stack operations on partially complemented graphs. Pop and push, as well as

two operations called cpush and eliminate, are used to this end. ’Cpush’ stands for complement

push, and is the key we used to run DFS on a partially complemented digraph. Due to SCS being

a set of complement stacks, the eliminate operation is used to remove an element from whichever

stack it is in. For proofs of the credit invariants and correctness of SCS please see [2] or [4].

The SCS contains four internal lists:

• L: which contains elements not yet pushed onto another list.

• A: which contains elements whose most recent operation was a push.

• T: which contains the elements most recently moved during a cpush.

• B: which contains elements whose last operation was a cpush, but not the latest to be moved

during a cpush.

In addition, SCS maintains an internal timer, and stores the time an element was moved onto

stacks A or B, as well as a time for when elements were moved en mass to T. Using these tools,

we can initialize all the elements of the directed graph into L. When a vertex is popped off of the

stack, SCS will perform either a push or a cpush depending on whether the vertex is complemented

moving the appropriate neighbors or non neighbors. On a push, each element will store the time

they were pushed; this will match up with the discovery time of the element that was most recently

popped and is responsible for the push.

28

On a cpush by vertex vi, each neighbor of vi is staged to a new list, A’ for the elements of A,

B’ for B, and so on. Once all the neighbors have been moved to prime lists, all of original lists

are composed of only non neighbors of vi. Now they can all be combined and added to T without

having to interact with each non neighbor individually, and with a variable tracking the last time

a cpush operation occured we can keep track of the the push time for every element in T. In this

way we can move all non neighbors in time proportional to the degree of vi. The pointers for the

original lists will move to the lists maintained with the prime labels, with the exception of T’.

These neighbors of vi are moved to the top of B and will have the old time label of T applied to

each of them.

With SCS, running DFS on D is now straight forward; simply start DFS by popping a vertex,

and send either a push or cpush as appropriate. When popping vertex vi from the stack, it will

identify when it was last pushed, indicating which vertex was responsible for pushing it on the

stack.

Implementing 2-SCC using SCS

Since cpush and eliminate are the only differences between SCS and a regular stack, we ab-

stracted calls to the SCS behind a more normal interface for stacks that include only pop(), pop(int

id), and push(GraphNode node). The pop(int id) is used to ensure that the next node on the discov-

ered list is popped. This is important on the second pass of DFS which uses DT , and the finishing

times from the first pass. Since the SCS structure can be comprised of multiple stacks internally,

it may not be obvious which stack currently contains a particular vertex. In order to initialize the

list, the vertices are passed via the constructor, leaving the push method to push the neighbors of a

vertex rather than pushing the passed vertex.

Finally, while using a single complement stack works for the first pass of DFS, in order to

run on the partially complemented transpose, we must use an actual set of complement stacks.

Because we did not explicitly create the partially complemented graph, the transpose poses a slight

dilemma. In D, each vi neighbor of x is partially complemented, turning all non neighbors into

neighbors and vice versa. Yet, they are set through a flag rather than adding an edge. In the

29

transpose, the previous non neighbors of vi now require an edge to vi, even though as far as the

vertex is concerned it has no relationship with vi.

We move the complemented vertices into their own complement stack. Leaving us with two

stacks in the SCS, CS1 and CS2, for uncomplemented and complemented vertices of DT , respec-

tively. When performing a pop of a vertex from CS1, we push its neighbors in CS1 normally, and

cpush its neighbors in CS2. If it is unclear why this works, consider that every vertex in CS2 has

added a conceptual edge from each of its non neighbors in G to itself. Therefore, by performing a

cpush with each element from CS1 we can use the CS structure to move the correct vertices to the

top of the stack for discovery. The vertices on the CS2 stack operate the same way. The vertices

that had explicit edges to them added them when the transpose was created, so these vertices use

push on the CS1 stack. Also, just as before, they use cpush on the CS2 stack for precisely the same

reasons.

After both runs of DFS, the strongly connected components of the quotient will have been

revealed and we can build the the modular decomposition tree of G′.

5.3.2 Building MD(G′)

As discussed above, the strongly connected components returned by 2-SCC will represent the

internal nodes in MD(G′). Each SCC will represent a maximal module that does contain x. The

first component returned will represent x’s parent. The subsequent SCCs in the hierarchy will be

the remaining ancestors of x in ascending order.

The issues here are degenerate modules. There are only two cases for these modules when

represented in the quotient. The subgraph induced by the module is disconnected, meaning every

vertex will have been combined into a single partition class in M. As discussed above, these will

not be correctly marked as siblings until after the recursive step returns. The same is true for the

subgraph induced by module whose complement is disconnected.

30

5.4 Recurse

At this point in the algorithm, every maximal module not containing x, and every module which

does contain it, has been found and put into their correct place in the modular decomposition. In

order to fill out the rest of the tree, we recurse into the partition class in M, build up the trees

that represent those modules, and hang them off of the leaves of MD(G′). As described in section

5.2, in the case of degenerate nodes, all the children of a degenerate node will appear as a single

maximal module when building MD(G′).

When hanging the results of these recursions onto the tree, a module marked as serial may

have a path of serial nodes hanging off it. So when building the tree, we recurse up, and collapse

these like labeled degenerate nodes to become siblings. Moving up the tree as necessary, until no

degenerate node is the child of a similarly labeled node. Doing the same for parallel nodes. This

final traversal need only visit each node in the tree once. Since no module can have less than two

children, we can bound the number of internal nodes in the modular decomposition tree of G to, at

most, 2V + 1. This means it can be safely traversed in linear time.

31

Bibliography

[1] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hun-

garica, 18(1):25–66, Mar 1967.

[2] Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell. Efficient and practical modular de-

composition. In SODA, 1997.

[3] Ross M. McConnell and Jeremy P. Spinrad. Linear-time transitive orientation. In Proceedings

of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’97, pages 19–

25, Philadelphia, PA, USA, 1997. Society for Industrial and Applied Mathematics.

[4] Elias Dahlhaus, Jens Gustedt, and Ross Mcconnell. Partially complemented representations

of digraphs. Discrete Mathematics Theoretical Computer Science, 5, 12 2002.

[5] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. Complement reducible graphs. Discrete

Applied Mathematics, 3(3):163 – 174, 1981.

[6] David P. Sumner. Graphs indecomposable with respect to the x-join. Discrete Mathematics,

6(3):281 – 298, 1973.

[7] Martin Charles Golumbic. Chapter 5 - comparability graphs. In Martin Charles Golumbic,

editor, Algorithmic Graph Theory and Perfect Graphs, pages 105 – 148. Academic Press,

1980.

[8] Rolf Möhring. Algorithmic Aspects of Comparability Graphs and Interval Graphs, pages

41–101. 01 1985.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

32

[10] Peisen Zhang, Eric A. Schon, Stuart G. Fischer, Eftihia Cayanis, Janie Weiss, Susan Kistler,

and Philip E. Bourne. An algorithm based on graph theory for the assembly of contigs in

physical mapping of DNA. Bioinformatics, 10(3):309–317, 06 1994.

[11] T.H. Cormen. Introduction to Algorithms, 3rd Edition:. MIT Press, 2009.

[12] Alfred V. Aho, John E. Hopcroft, and Jeffrey Ullman. Data Structures and Algorithms.

Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1983.

[13] Ross M. Mcconnell and Jeremy P. Spinrad. Ordered vertex partitioning. In Discrete Math

and Theoretical and Computer Science, page 2000, 2000.

33

	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Preliminaries
	Modules
	Applications
	Compact representation of a graph
	Max weight independent set
	Cographs
	Transitive Orientation
	Max Clique and Min coloring in comparability graphs.
	Related graph classes

	The Algorithm
	Overview
	Finding the maximal modules that do not contain x
	Strategy for an efficient implementation
	Finding M in practice

	Finding Modules containing x in G'
	Finding the Strongly Connected Components
	Building MD(G')

	Recurse

	Bibliography

