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ABSTRACT

A GEOMETRIC DATA ANALYSIS APPROACH TO DIMENSION REDUCTION IN

MACHINE LEARNING AND DATA MINING IN MEDICAL AND BIOLOGICAL SENSING

Geometric data analysis seeks to uncover and leverage structure in data for tasks in machine

learning when data is visualized as points in some dimensional, abstract space. This dissertation

considers data which is high dimensional with respect to varied notions of dimension. Algorithms

developed herein seek to reduce or estimate dimension while preserving the ability to perform a

specific task in detection, identification, or classification. In some of the applications the only

property considered important to be preserved under dimension reduction is the ability to perform

the indicated machine learning task while in others strictly geometric relationships between data

points are required to be preserved or minimized. First presented is the development of a numerical

representation of images of rare circulating cells in immunofluorescent images. This representation

is paired with a support vector machine and is able to identify differentiating cell structure between

cell populations under consideration. Moreover, this differentiating information can be visualized

through inversion of the representation and was found to be consistent with classification criterion

used by clinically trained pathologists. Considered second is the task of identification and tracking

of aerosolized bioagents via a multispectral lidar system. A nonnegative matrix factorization prob-

lem arised out of this data mining task which can be solved in several ways including a `1-norm

regularized, convex but nondifferentiable optimization problem. Exisiting methodologies achieve

excellent results when internal matrix factor dimension is known but fail or can be computationally

prohibitive when this dimension is not known. A modified optimization problem is proposed that

may help reveal the appropriate internal factoring dimension based on the sparsity of averages of

nonnegative values. Third, we present an algorithmic framework for reducing dimension in the

linear mixing model. The mean-squared error of a statistical estimator of a component of the lin-
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ear mixing model can be considered as a function of the rank of different estimating matrices. We

seek to minimize mean squared error as a function of the rank of the appropriate estimating matrix

and yield interesting order determination rules and improved results, relative to full rank coun-

terparts, in applications in matched subspace detection and generalized modal analysis. Finally,

the culminating work of this dissertation explores the existence of nearly isometric, dimension

reducing mappings between special manifolds characterized by different dimensions. Understand-

ing the analogous problem between Euclidean spaces provides insights into potential challenges

and pitfalls one could encounter in proving the existence of such mappings. Most significant of

the contributions is the statement and proof of a theorem establishing a connection between pack-

ing problems on Grassmannian manifolds and nearly isometric mappings between Grassmannians.

The frameworks and algorithms constructed and developed in this doctoral research consider mul-

tiple manifestations of the notion of dimension. Across applications arising from varied areas of

medical and biological sensing we have shown there to be great benefits to taking a geometric

perspective on challenges in machine learning and data mining.
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Chapter 1
Introduction

What is data? Upon Googling the word there are a few different definitions that appear. The

first definition is “facts and statistics collected for reference or analysis.” Second, a definition

arising from the field of computing pops up: “the quantities, characters, or symbols on which op-

erations are performed by a computer, being stored and transmitted in the form of electrical signals

and recorded on magnetic, optical, or mechanical recording media.” Also for our consideration is

the more philosphical definition:“things known or assumed as facts, making the basis of reasoning

or calculation.” As mathematicians, we often think about data from a perspective involving all

three of the above definitions. Data is a collection of numerical representations which can be ana-

lyzed using mathematical techniques to reveal facts and patterns on which reasonable, and useful,

models can be built.

Mathematicians can use numerical representations to visualize almost anything as a point in an

abstract space. For example, a standard color image that people are familiar with can be thought

of as a collection of points in a 3-dimensional space. That is to say a standard color image can

be thought of as a collection of points with three coordinates: (x, y, z). Each pixel corresponds

to a single point and the value of each coordinate is determined by the percent of red, green, and

blue, respectively, in the pixel. By considering data as points existing in different spaces we can

look for mathematical relationships between these points to better understand the data and extract

information from it.

There are many different types of mathematical relationships one can consider. The methods of

this doctoral research are rooted in looking for geometric relationships in data when considered as

points in some space. Geometric Data Analysis (GDA) refers to the identification and exploitation

of geometric structure in data to aid in machine learning tasks and knowledge discovery. Pattern

analysis/recognition, computer vision, and manifold learning can all be considered as subsets of

this overarching research area. When most people hear the word “geometry” they often start to

picture triangles, squares, and circles that they may have encountered in a high school geome-
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try course. The mathematical abstraction of these “shapes” is actually described using topology.

Throughout this duration the term geometric will be used to describe the understanding of the am-

bient space/environment in which data exists. Questions aiming at understanding the structure of

the space (e.g. “Is there a manifold underlying the data?”), relationships between data points (e.g.

“Is most of the data close together in the space or scattered throughout?”), and dimension (e.g.

“Are all the dimensions/coordinates of the data needed to perform the task of interest?”) are all

questions we consider to be geometric in nature. Questions regarding dimension are the focus of

the research contained in this dissertation.

Techniques from GDA are frequently applied to big data. The expression “big data” has be-

come a hot topic across many disciplines. From health care data including gene expression data,

digital images from various medical imaging modalities, and patient history with lab results to

commercial data including purchase history and internet click data, the need for techniques to

mine “big data” has grown rapidly. There are two standard ways of describing the big-ness of data.

First, the “big” can refer to the number of samples. Second, the “big” can refer to the dimensional-

ity of the data. For example, many medical data sets like genomic data often have a small number

of samples but with many different values attributed to each sample; small sample size but large

dimension creating a “big data” set.

The “curse of dimensionality” refers to the challenges researchers face when working with data

that is big with respect to dimension. These challenges manifest in a multitude of ways including

data storage, insufficient sample sizes for statistical inference, data visualization and interpretation,

and computational tractability. In order to combat the curse of dimensionality people look to

the subfield of dimensionality reduction within the field of GDA. Dimensionality reduction can

refer to techniques for visualizing data in lower dimensional spaces, transformations mapping data

into a lower dimensional space to perform machine learning tasks, or identification of important

dimensions (aka feature selection). The applications of this doctoral research are woven together

by the thread of dimensionality reduction.
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The core work comprising this dissertation is covered in Chapters 2-5 with one chapter ded-

icated to each of four different projects. Chapter 2 contains a project which used dimensionality

reduction to identify and visualize differentiating structure between cell populations of interest.

Chapter 4 describes a structured approach for dimensionality reduction by controlling bias and

variance in statistical estimators by reducing the rank of matrices which produce the desired esti-

mators. In Chapter 3 the challenge of nonnegative matrix factorization in the context of Frequency

Agile Lidar (FAL) is described and a method for identifying a critical dimension is proposed.

Lastly, in Chapter 5 the problem of producing nearly distance preserving maps between Grass-

mannian manifolds characterized by different/reduced dimensions is studied. A brief summary of

each of these four projects concludes this introduction.

Feature Selection Based Visualization in Cancer Cell Detection: The task underlying this

research was to develop a rotationally invariant feature vector for images of cells generated by

immunofluoresent microscopy that would allow for classification of cell populations of interest.

By exploiting the rotational invariance of the Fourier transform, we were able to generate a rep-

resentation that produced high classification rates. Feature selection was performed by generating

multiple classification models and looking at the relative weights of each feature across the mod-

els. Features that were frequently assigned high weights were selected. Through this feature

selection and by leveraging the design of the feature vectors it was possible to reconstruct images

of individual cells only using the selected features [1]. In this way, visualization of differentiating

structure between cell types was obtained and these results could be interpreted and compared to

manual pathologist classification criteria. Visualization through dimensionality reduction, in this

case, was able to make direct connections between human and automated classification which is

crucial for the broader acceptance of computer aided diagnostics in our society. This project was

an analysis of data produced as a result of the masters work [2] and appeared as [1] in the journal

“Computerized Medical Imaging and Graphics.”

Nonegative Matrix Factorization Dimension Estimation in Frequency Agile Lidar: Fre-

quency Agile Lidar (FAL) aims to passively detect and identify aerosolized bio-agents. The use of
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aersolized bio-agents, like anthrax, in terrorism is considered to be a serious threat. Aerosolized

particles are an optimal size for absorption into the lungs and many bio-agents capable of being

aerosolized have no effective treatments or antidotes. The FAL system was designed to obtain

measurements of the power of backscattered light of different frequency lasers based on the as-

sumption that different aerosols will have characteristic spectral feature vectors (we say feature

vector instead of signature as there are no established spectral signature libraries for aerosols). In

2012, a nonnegative matrix factorization problem was posed for this data that decomposes the FAL

data into the product of two matrices; one containing information about the feature vector of each

aerosol and another containing concentration information of each aerosol as a function of range

[3]. The nonnegative matrix factorization problem from 2012 was based on minimizing the sum

of squared error plus two `1-norm regularization terms: each of the matrix factors are `1−norm

regularized. While conducting visiting graduate research at MIT Lincoln Laboratory, it was de-

termined that modification of the objective function to exclude one of the `1−norm regularization

terms, that of the feature vector matrix, yielded more desirable results. Additionally, we considered

an extension of this problem wherein the goal was to determine the internal factoring dimension

of the FAL model, i.e. the true number of aerosols present in the data. This internal dimension

determination problem is a significant roadblock in this system becoming a online tool but is also

present in many versions of the nonnegative matrix factorization problem. An approach to deter-

mine this dimension is presented which is based on the introduction of an additional regularization

term penalizing for the `1−norm of a vector containing matrix row averages.

Reduced Dimension Estimators in Signal Processing Applications: A prominent tool in

signal processing, due to its simple yet widely applicaple form, is the linear mixing model. In its

general form, the linear mixing model assumes that data can be written as a linear combination of

a known signal space, structured interference, and white noise. Previous attempts to apply dimen-

sionality reduction to the linear mixing model have been done in two ways. First, some approaches

focus on reducing the dimension of the data directly (mapping it to a lower dimensional space) and

then applying existing algorithms within the new space. Second, looking for rank reduced matrices
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to produce estimators have been considered when you are looking for optimality (as measured by

some function) for a fixed reduced rank. Unlike these approaches, which have an ad hoc flavor

to them, we developed a structured framework for dimensionality reduction based on reducing the

dimension of estimators of components of the linear mixing model. The mean-squared error of

a given estimator is formulated as a function of the rank of a particular estimating matrix and is

minimized over all possible ranks. The resultant objective function yields strict and interpretable

order determination rules for producing reduced dimension estimators by controling bias and vari-

ance through rank reduction. Consequently, unlike previous approaches which may in fact yield

superior performance for a fixed reduced rank, our approach determines which rank is optimal

for our particular performance metric. Application of this framework for classification of ground

cover from hyperspectral imaging won a best paper award at the Workshop on Hyperspectral Imag-

ing and Signal Processing: Evolutions in Remote Sensing conference [4]. New results using the

framework in the context of generalized modal analysis is in preparation for resubmission to IEEE

Transactions on Signal Processing[5]. In both applications, significant improvement in perfor-

mance is achieved using a reduced dimension estimator as determined by our order determination

rules.

Nearly Isometric, Dimension-Reducing Mappings Between Grassmannian Manifolds: A

geometric property of data that people are often interested in preserving during dimension re-

duction is the set of pairwise distances between data points. Maps that preserve these pairwise

distances exactly are called isometric mappings. Alternatively, we call a mapping nearly isomet-

ric when the distances are preserved up to a user specified distortion factor. A lot of theory has

been developed related to the existence of these maps and how much you can reduce the dimen-

sion if you seek to preserve distances. Preservation of pairwise distances connects to the desire to

have well posed mappings and prevention of collapsing data. One of the most well known lem-

mas related to the existence of these maps is the Johnson-Lindenstrauss Lemma [6]. This lemma

guarantees the existence of a nearly isometric embedding into a Euclidean space of a (reduced)

dimension as a function of the dimension of the distortion factor and the number of points in the
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data set. A statistically based proof of the Johnson-Lindenstrauss Lemma was presented in [7] and

has been recreated with added detail and explanation for the reader.

The final topic of this dissertation is an exploration and development of theory for the exis-

tence of such mappings where the data is not sampled from a Euclidean space but rather a special

manifold. In particular, let Gr(N,K) be the Grassmannian manifold corresponding to the set of

all K-dimensional linear subspaces of RN . Given a sampling of points from Gr(N,K) can we

find nearly isometric mappings (with respect to metrics on the manifold) to Gr(N, k) with k < K,

Gr(n,K) with n < N , or Gr(n, k) with n < N and k < K? If we are successful in producing

such mappings, the potential applications that could benefit from this approach are wide and varied.

For example, a set of medical values acquired at multiple times for a single patient can associate a

subspace to the patient. Thus, comparison of different patients can be performed on Gr(N,K) for

some N,K. Mapping into a Grassmannian manifold characterized by lower values could provide

insight into both critical times and critical medical values/measurements. Outside the biomedical

arena, the two dimensions characterizing a Grassmannian manifold could be interpreted as spatial

and temporal resolutions and reducing these dimensions could be considered resolution reduction.

Exploratory computational results are presented and the development of the theory is structured

as sequences of analagous statements to exisiting related proofs an problems. Of particular sig-

nificance is establishment of a connection between the Grassmannian packing problem and nearly

distance preserving maps as well as a proof of a theorem that could be critical in developing a

proof, by construction, of a nearly distance preserving map through modification of an algorithm

presented in [8].
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Chapter 2
Fourier-Ring Descriptor to Characterize Rare Circulating Cells
from Images Generated Using Immunofluorescence Microscopy

This chapter contains a continuation and analysis of work begun for my Master’s thesis [2].

Detailed derivations and introductions to properties of the Fourier transform, which play a critical

role in the numerical representation of the cells, can be found therein. What follows is a slightly

modified version of the paper produced from this work entitled “Fourier-Ring Descriptors to Char-

acterize Rare Circulating Cells from Images Generated Using Immunofluorescence Microscopy”

that appeared in the journal Computerized Medical Imaging and Graphics[1].

This work highlights the use of dimensionality reduction via feature selection for interpretation

of results and enrichment of cross disciplinary communications. Features, at their core, are numer-

ical values used to represent an object. Sometimes these numerical values are highly interpretable

(e.g. representing a person’s face by a set of measurements like the distance between their eyes),

but are more often built based on abstract mathematical properties (i.e. texture, curvature, gradi-

ents, etc.). In the age of big data, when we talk about “big-ness” with respect to dimension, we

assign a very large number of features to each object under consideration. While this allows highly

accurate, and often complex, models to be built, these models lack one very desirable property: in-

terpretability. How does one interpret a model that computes a complex, non-linear combination of

thousands of abstract values? The answer is simple: you don’t. As mathematicians this can seem

completely reasonable. However, as a patient receiving a diagnosis from such a model this may

not seem as reasonable. The use of mathematics in biomedical applications, including computer

aided diagnostics, must keep this in mind at all times.

Using Fourier-Ring Descriptors (FRDs) as a numerical representation of cells, we built several

linear models to separate out the populations of cells of interest. Features were determined to be

important if they were leveraged in all instances of the models that were trained. This reduced

the number of features (feature selection) that were considered in the final model. Although these

features were generated based on mathematical theory, they are interpretable and moreover can be
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inverted to visualize what a cell would look like based on the selected subset of features. Selected

feature based visualization allowed for fruitful cross discipline discussion and instilled confidence

in the model based on its interpretability and agreement with expert pathologist based decision

making processes.

The remainder of this chapter is formatted in agreement with [1]. Section 2.1 provides the

bological context and motivation for the problem considered. Section 2.2 describes the materi-

als, including data acquisition, and methods involved in the experiment described in Section 2.3.

Neccessary theory and calculations are presented in Section 2.4. The results of the experiment

described as well as a discussion of these results are provided in Sections 2.5 and 2.6, respectively.

2.1 Background

Counts of Circulating Tumor Cells (CTCs) have been correlated with outcomes in patients with

tumors of epithelial origin including breast cancer, colorectal cancer, non-small cell lung cancer,

and prostate cancer [9, 10, 11, 12, 13]. For these reasons, research has grown over the last decade.

Clinically useful CTC counts have almost exclusively been generated using CellSearchTM [14],

which is an FDA approved enumeration method that relies on sample enrichment prior to analysis.

Recent research has shown, however, that enrichment prior to analysis results in lower counts of

CTCs and the potential loss of entire classes of disease-derived rare cells [15]. This deficiency

diminishes the CTC count accuracy and hence lessens its impact as a diagnostic tool. On the

other hand, newer methods that do not enrich prior to analysis have shown the potential to identify

a larger and maybe more complete set of candidate cells but require significant computational

analysis as well as human verification. In particular, the class of data generated without enrichment

provides for the ability to optimize computational methods because of the large amount of data

available, over twelve million cells per CTC test. Therefore, there is motivation to improve the

level of automation of detection of CTCs on data generated without enrichment. Increasing the

automation of detection of CTCs in this setting is the aim of the research presented here.
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Over the last 20 years there has been a steady increase in the number of research papers pub-

lished surrounding morphological cell image analysis [16]. It has been asserted that the five most

significant roles of morphological cell analysis in medical imaging are malignant cell identifica-

tion and cancer detection, following morphological changes during a cell cycle, cell classification,

changes in morphology due to treatments, and morphometrical studies [16]. These roles are all

strongly related to identifying a set of features that allow us to categorize candidate cells into these

rules.

Cellular features are generally related to the geometry of the cell and properties of the interior of

the cell, and carry a high-level of interpretability. A review of shape representations and description

techniques for general images can be found in [17]. Geometric features of cells commonly include

area, radii, perimeter, circularity, eccentricity, and irregularity [16, 18]. Internal features of a cell

include the intensity, texture, and regularity of the nucleus. The combination of these geometrical

and internal features have been employed in many pathological tasks, especially related to human

epithelial cells [19, 20]. These features can be extracted from images and also visually inspected

by a pathologist. However, due to the subjectivity involved in visual inspection, there has been

an increase in the efforts to quantify these features using computers and to employ additional

computer methods to support pathologists. A layout of one such image-guided decision support

function is described in [21].

The set of features described above work well in many pathologist tasks, however interpretable

features can have significant drawbacks. A major drawback is the reliance on segmentation. Ge-

ometric features are only as accurate as the ability to identify the comprehensive boundary of the

cell. There have been several methods proposed for improving the automated segmentation of cell

events in blood and tissue [22, 23, 24]. A second drawback can be the limitation of these features

to differentiate cells. For example, there have not been successful classification methods for dif-

ferentiating between CTCs in patients of different clinical status using these interpretable features

alone. Additional discussion of technical and mathematical challenges of automated screening of

epithelial cells can be found in [25]. Features that are generated without concern for interpretabil-
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ity and are mathematical in nature sit in the realm of bioinformatics and are referred to as low-level

features. Low-level feature methods have been employed in various cell classification tasks and

perform with varying degrees of success. A comparison of different feature types together with

varying classifiers is discussed in [26].

We have identified a set of low-level features that contain strongly differentiating structural in-

formation to separate CTC events of interest from white blood cells as well as identify distinct sub

populations. Fourier-Ring descriptors (FRDs) extract features from cells by combining techniques

from bioinformatics and computer vision. Additionally, FRDs contain interpretable information as

well as indirectly containing many geometric features.

In the following sections we will first present the data acquisition process together with the

composition of the data. Then, we will describe methods that we have considered, and highlight

some of their challenges. Next, we will present our image representation technique and our classi-

fication structure for classifying a cell.

2.2 Material and Methods

2.2 Materials

Our analysis has been performed on images generated using the high definition circulating tu-

mor cell (HD-CTC) assay developed by the Scripps Physical Sciences in Oncology Center (Scripps

PSOC) as described in [15]. First, we will briefly describe how the data is acquired. Next, we will

explain the current two-phase semi-automated algorithm employed at the Scripps PSOC to detect

cells of interest. Last, we will define the types of cell populations included in the data set analyzed

herein.

2.2 Data acquisition.

The assay developed at the Scripps PSOC produces images using automated fluorescence

microscopy. Data evaluated in this paper was generated using three immunofluorescent stains:

Alexa555 and pan cytokeratin to highlight epithelial cells, Alexa647 conjugated to an anti-CD45
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antibody for WBC detection, and DAPI(385nm) to stain for a nucleus. What separates this assay

from many others is the lack of sample enrichment prior to imaging. Images are taken of the entire

slide at 10X resolution by an inverted microscope. A set of images corresponding to a slide con-

tains approximately three million nucleated cells, of which less than 0.01 percent are cells of high

interest. Cells of high interest are currently detected using a two part semi-automated algorithm.

2.2 Phase I: Automated Detection.

Phase one of the current algorithm is computer automated and utilizes the medical imaging

software ImageJ [27]. Cell centers are determined by detecting on the nuclear image channel and

computing a center of mass described in [15]. A set of candidate cells of interest are output, based

primarily on the intensity of the cytokeratin and CD-45 channels for any measured cell compared

to all cells on the slide. Candidate cells are then passed to a technician or pathologist to manually

classify.

2.2 Phase II of detection employed at Scripps PSOC: Manual Classification.

The second phase of the algorithm consists of the manual classification of candidate events of

interest into one of six groups. The four groups of cells of interest are defined as follows:

1. CTC-Candidate. Cells that appear to have a high likelihood of being a CTC. Characterized

by bright cytokeratin stain, an intact nucleus, and no CD-45 signal. Cells must be morpho-

logically distinct from surrounding WBCs. This morphological difference typically mani-

fests as a larger nucleus than the neighboring WBCs. These events will then be evaluated by

a pathologist to confirm or reject this classification.

2. CTC-small. There exists a population of cells that has appropriate levels of cytokeratin ex-

pression to be considered a CTC but has an insufficient nuclear size relative to its surround-

ing white blood cells (WBCs). This population is considered to be a marginal population of

CTCs.
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3. CTC-dim. This population accounts for cells which have insufficient levels of cytokeratin

expression to be considered CTCs but do have a nuclei that are significantly larger than

neighboring cells. This population is considered to be a marginal population of CTCs.

4. CTC-Ap. A last marginal population of CTCs comprised of cells that appear to be apoptotic

by identification of nuclear fragmentation or cytoplasmic blebbing.

The two remaining populations of cells are WBCs and imaging noise. This naming scheme is

consistent with the cell populations presented in [11]. It is the goal of ongoing research to automate

this phase of classification using the methods and experimental design presented here.

2.2 Composition of the data set.

The analysis herein was performed on a data set of cells which were hand selected for work

done in [2]. This data set consists of one thousand cells: five hundred cells of interest and five

hundred white blood cells. The five hundred cells of interest contains two hundred CTC-Candidate

and one hundred each of CTC-Ap, CTC-dim, and CTC-Small. Cells in the data set were taken from

39 patients with diagnosed lung, breast, and prostate cancers (25 Lung, 7 breast, 7 prostate). This

data set is by no means comprehensive, however, it does provide a proof-of-concept to advance

this avenue of research.

2.2 Methods

We accomplish this classification by identifying a set of low-level features that can structurally

differentiate between cell populations of interest. We will present the challenges of the discussed

classification tasks and present our solution.

In the current assay used by the Scripps PSOC a single slide is imaged at 10X resolution.

Although a technician can manually classify a cell at 10X resolution, the low resolution fails to

capture textural variation within each cell channel. This lack of texture, in turn, makes the imple-

mentation of gradient-based feature extraction methods impractical. It is impractical to increase

the resolution of the images since an n-fold increase in resolution increases the number of images
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generated from each channel by a factor of n2. Additionally, low resolution results in s single cell

comprising a small area within an image. The small size of the object makes the extraction of

patch-based features unnecessary. Alternatively, treating the image of a single cell as a sole patch

requires accurate segmentation of the cell. However, because of the frequency of cell overlap and

noise from staining in the cytokeratin channel and CD-45 channel it is challenging to determine

comprehensive cell boundaries. Furthermore, the cells themselves carry associated challenges.

First, a representation technique which is interpretable and captures characteristics of the cells

(including size of the nucleus, levels of cytokeratin expression, circularity, and uniformity of the

nucleus, for example), is ideal. Next, a cell has no “correct" orientation which makes it imperative

to have an image representation which is rotationally invariant.

Concentric circles have been proposed to handle this issue of rotational invariance in other

tasks. Circles have been employed to detect objects in multiple rotations of complex colored

images [28]. Additionally, in [29] we see the use of concentric rings combined with wavelet trans-

forms for pattern matching. In the method described in [29], a single representative value for

each ring is computed, then a wavelet transform of the series of representative values is computed.

More recently we see another method involving the sampling of image values along concentric

rings, which was developed with pathological tasks in mind [30]. Although the method being

applied to these pathological tasks has performed very well, it requires an exhaustive codebook

search method for pattern matching [31]. Thus, we have chosen to combine the desirable compo-

nents of each method and employ concentric rings together with a transformation while not overly

restricting the quantity of information taken from each ring.

The Fourier-Ring Descriptor (FRD) is based on the Fourier transformations of concentric rings

about the nucleus of a cell. FRDs treat the image of a cell as a single patch, have limited reliance

on segmentation, are rotationally invariant, and the features can be visualized and carry a high level

of interpretability. Our solution does not require comprehensive cell boundaries in all channels,

but rather only the computation of the center of mass of the cell nucleus. Due to the nuclear

channel being the cleanest of the monochrome images, this greatly reduces the reliance on whole
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cell segmentation. Also, the amplitude spectrum of a Fourier transform is rotationally invariant,

and thus the amplitude spectrum of the Fourier transform of a ring is also rotationally invariant1.

Furthermore, by using concentric rings about the nucleus of the cell we are able to obtain size and

morphological information for a cell based on the presence, or lack there of, of features on rings

of particular radii. Details of the generation of FRD follow in the Experimental section.

2.3 Experimental

There are two components of our experiment that will be discussed in this section. First, we will

discuss our image representation, the Fourier-Ring Descriptor, in detail. Next, we will discuss our

classification structure and how we implement the structure together with our image representation

technique.

2.3 Fourier-Ring Descriptor

The Fourier-Ring Descriptor (FRD) is an image representation technique based on the Fourier

transform of concentric rings constructed about the center of the nucleus of the cell. We first

determine a cell center by computing a center-of-mass for each nucleus that is detected in the

DAPI image channel using the medical image processing software ImageJ [27]. Once we have

identified the center of a cell, we begin to construct concentric rings that are centered on the cell

center.

We use sixteen concentric rings to generate our image representation. The number of rings was

determined by experimentation as discussed in [2]. The steps to generate our image representation

are as follows:

i) We sample a number of evenly-spaced points along a ring of a given radius. An example of

the location of these points on a ring of radius six pixels is shown in Figure 2.3.1(c).

1Additional information about the rotational invariance can be found in the Theory/Calculations section
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(a) (b) (c)

(d)

(e)

Figure 2.3.1: (a) Shows a composite image of a CTC-Candidate. (b) Shows the monochromatic cytokeratin
channel image of the CTC-Candidate in (a).(c) Shows the monochromatic cytokeratin channel image of a
circulating tumor cell with the ring of radius six pixels, oriented around the center of the nucleus of the cell,
is overlaid in blue. The locations of the sampled points are evenly spaced along the indicated ring and are
shown in red. There are 48 points sampled along this ring. (d) Shows a plot of the interpolated image values
at the sampling points along the ring of radius six pixels shown (c). Each red point shows an interpolated
image value. The image values can be between 0 and 255 as they are taken from 8−bit JPEGs. Lastly, (e) is
the amplitude spectrum of the Fourier transform of the curve shown in (d).
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ii) Image values at each of the points shown in Figure 2.3.1(c) are interpolated. This set of

interpolated image values determines a periodic curve as shown in Figure 2.3.1(d).

iii) Given the periodic curve of image values, we then perform a Discrete Fourier Transform

(DFT) of the image values and keep the magnitude of the Fourier transform. An example of

the amplitude spectrum of a single ring is shown in Figure 2.3.1(e).

iv) The process of sampling points along a ring and computing the DFT of the interpolated

image values at the sampled points is repeated for the sixteen different concentric rings in

a single monochrome image channel. Examples of the amplitude spectrums for the sixteen

different rings in a channel can be seen in Figures 2.3.2, 2.3.3, and 2.3.4.

v) The amplitude spectrums of all rings from a single channel are then concatenated into a

single vector according to increasing radius. This process is then repeated in the remain-

ing image channels and the concatenated amplitude spectrums from within a channel are

concatenated with the other channels in the following order: Cytokeratin, CD-45, DAPI.

The number of points sampled along a ring is scaled linearly in accordance with the increase in

circumference. Eight points were selected for the ring of radius one based on the maximum number

of distinct pixels a ring of radius one could encounter. Image values at the sampled locations are

determined using cubic interpolation which causes highly-associated values across neighboring

rings, but this redundancy is minimized by enforcing sparse feature selection in the classifier.

Given that we start with eight sampled points on the inner most ring and scale linearly over the

sixteen rings, we obtain a total of 1088 features from a single image channel, and a total of 3264

features over all three channels. Each feature of the FRD corresponds to the magnitude of a single

frequency along a specific ring.

2.3 Classification Structure

The data analyzed for this paper contains five populations of cells. There are white blood

cells, CTC-candidates, CTC-Aps, CTC-dims, and CTC-small. We refer to CTC-candidates, CTC-
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Figure 2.3.2: The top figure shows all 16 rings in the cytokeratin channel for the closest-to-average CTC-
Candidate in our data set while the bottom figure shows all 16 rings for the farthest-from-average CTC-
Candidate in our data set. The y − axis is the log of the amplitude and the x − axis corresponds to the
wavenumber. A image value curve with m points will generate an amplitude spectrum for m frequencies
and we recall for the ring of radius r there will be 8r image values sampled. The radius increases left to
right and top to bottom.
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Figure 2.3.3: The top figure shows all 16 rings in the CD-45 channel for the closest-to-average CTC-
Candidate in our data set while the bottom figure shows all 16 rings for the farthest-from-average CTC-
Candidate in our data set. The y − axis is the log of the amplitude and the x − axis corresponds to the
wavenumber. A image value curve with m points will generate an amplitude spectrum for m frequencies
and we recall for the ring of radius r there will be 8r image values sampled. The radius increases left to
right and top to bottom.
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Figure 2.3.4: The top figure shows all 16 rings in the DAPI channel for the closest-to-average CTC-
Candidate in our data set while the bottom figure shows all 16 rings for the farthest-from-average CTC-
Candidate in our data set. The y − axis is the log of the amplitude and the x − axis corresponds to the
wavenumber. A image value curve with m points will generate an amplitude spectrum for m frequencies
and we recall for the ring of radius r there will be 8r image values sampled. The radius increases left to
right and top to bottom.
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Figure 2.3.5: Schematic of the decision tree classification structure we are building based on strongly-
differentiating structural features of cells. The answer to each question is determined by a support vector
machine classifier.

Aps, CTC-dims, and CTC-smalls as populations of interest. As previously described, we consider

CTC-Aps, CTC-dims, and CTC-smalls to be marginal populations of CTC-candidates. Initially we

want to be able to separate the populations of interest from white blood cells. Separation of white

blood cells from populations of interest can first be whittled-down using empirical property values

obtained by the Scripps PSOC. Once the population of cells we are looking at has been reduced

we can implement a decision tree classification structure. In this decision tree we first want to say

with confidence whether or not a given cell is interesting. Once it has been identified as interesting

we then ask whether or not the cell is a CTC-Candidate, our most important population of interest.

We then proceed to subdivide the populations according to the schematic shown in Figure 2.3.5.

We have chosen to use a decision function determined by an l1 regularized, l2 loss function

linear support vector machine classifier as implemented by LIBLINEAR [32]. A discussion of the

decision function can be found in Section ??. By implementing an l1 regularized support vector

machine we force sparsity of features required for classification. It is desirable for us to encourage

sparsity both to limit the number of features we must interpret as well as to account for the potential
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Figure 2.4.1: This figure shows the result of rotating a cell 60 degrees counterclockwise from the original
orientation of the cell. The image on the left the cell in its original orientation on the slide image with the
ring of radius 8 pixels overlaid while the right image is the numerically rotated image of the original cell
generated using bicubic interpolation, also with the ring of radius 8 pixels overlaid.

of over-sampling in the generation of the FRD. By using a support vector machine classifier, we

have a way of communicating our confidence in the classification of an event. Cells which are

closer to a separating hyperplane may be misclassified while cells far away from the hyperplane

may be extremal cases within their class.

2.4 Theory/Calculations

In this section we will address two concepts. First, we have stated that the FRD method is

rotationally invariant. We will provide a graphical proof of the rotational invariance of a single

FRD which can then be extended to show the invariance of the entire descriptor. Next, we will

discuss the type of the decision function that we have implemented at each step in our decision tree

classification structure. A description of the optimization problem to be solved and the parameters

and variables involved are also included.

2.4 Rotational Invariance of FRDs

Here we present graphical proof of the rotational invariance of the amplitude spectrum of the

Fourier transform in the context of our application. A rigorous proof of the rotational invariance

of the Fourier transform can be found in [33] or [2].
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Figure 2.4.2: These figures demonstrate the rotational invariance of the amplitude spectrum. On the top we
see the set of image values interpolated along the ring of radius 8 pixels for both the rotated and unrotated
versions of the cell. The bottom figure shows the log of the amplitude spectrums for each of the two sets of
image values.
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Figure 2.4.1 provides us with two images: the first of a cell represented in the cytokeratin chan-

nel in its original orientation on the slide image, the second shows the same cell in the cytokeratin

channel rotated 60 degrees counterclockwise. For this didactic example, we employed a numerical

rotation function that utilizes bicubic interpolation. Next, in Figure 2.4.2(a), we see the curves of

interpolated image values along the ring of radius 8 pixels for both the rotated and unrotated ver-

sions of the cell. We see that the two image value curves are simply shifted versions of one another,

minus slight numerical error. Furthermore, in Figure 2.4.2(b) we see the amplitude spectrums of

the two image value curves. From Figure 2.4.2(b), we see that the two amplitude spectrums are

nearly identical minus the effect of numerical artifacts present from the rotation. The combination

of Figures 2.4.1 and 2.4.2 demonstrates that a single FRD generated for a cell is invariant to the

orientation of the cell on the slide. The full FRD representation of a cell amounts to stacking the

amplitude spectrums for each of the rings inside a channel and then concatenating the channels.

Thus, for two orientations of the cell we have shown that the amplitude spectrum for each ring is

rotationally invariant and consequently the stacking of those amplitude spectrums will result in the

same channel representation for a cell no matter the rotation.

2.4 Decision Function

A linear support vector machine (SVM) aims to define a decision function based on a hyper-

plane that separates data into two half spaces. Data is classified by which side of the separating

hyperplane a datum falls on. We define the separating hyperplane by the equation y(x) = wTx+b.

In a classification task involving two classes of data with the standard ±1 labeling, the classifica-

tion of a novel data point x̂ is determined by

D(x̂) =

 x̂ ∈ C+ if wT x̂+ b ≥ 0

x̂ ∈ C− if wT x̂+ b ≤ 0

where C+ corresponds to the class of positive samples and C+ corresponds to the class of negative

samples.
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In all of the classification tasks reported here we have implemented the linear, l1 regularized,

l2 loss function SVM as implemented by LIBLINEAR [32]. The l1 regularized, l2 loss function

linear SVM is defined by minimizing

min
w
‖w‖1 + C

n∑
i=1

max(0, 1− yiwTxi)2. (2.4.1)

In the cost function shown in (1) there are several terms to be defined. First, w is defined to be the

normal vector to the linear separating surface. Next, xi is a data point with corresponding label

yi. When trying to separate two groups of data, the standard convention is to label one class as +1

and the other with -1. Lastly, in (1) we see the variable C which is a parameter that determines the

contribution of the loss function to the cost function. All accuracies presented here in have been

generated using C= 1
2
. We refer to this formulation as an “l2 loss function SVM" based on the

second component of the cost function referred to as the loss function. A loss function penalizes

for generating a hyperplane that misclassifies events. In particular, an l2 loss function penalizes

more for points that are strongly misclassified and less for those that hover near the hyperplane.

This formulation of an SVM is referred to as l1 regularized because of computing the 1-norm on

the vector w inside the cost function. Using the 1-norm of w encourages sparsity in the normal

vector. This, in turn, promotes sparsity of features used in a classification task due to the definition

of the decision function.

2.5 Results

Our results can be divided into two categories: quantitative and qualitative. In our quantitative

results section we will discuss the accuracy of the different decision functions for each branch

of our previously-discussed decision tree. Next, in the qualitative results section we will provide

reconstructions of cells using features selected by the decision functions in 95% of trials for a given

classification task.
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2.5 Quantitative Results

In accordance with the decision tree structure outlined in the Classification Structure section,

we need to determine decision functions that can first differentiate between white blood cells

(WBCs) and events of interest (EOI). Next, we want to be able to separate the EOI into CTC-

Candidate and all marginal populations. Third, we want to separate CTC-dim from CTC-Ap and

CTC-Small within the marginal populations. Last, we want to separate CTC-Small from CTC-Ap.

In Table 2.1 we see that we obtain the accuracy for each decision function in the classification

tree to be 99.52 ± 0.48%, 92.16 ± 2.70%, 89.76 ± 3.89%, and 82.48 ± 5.11% respectively. The

classification tasks become more challenging and have larger standard deviations the farther down

the decision tree we move. Of particular interest is the classification task separating CTC-Ap from

CTC-Small which suggests higher levels of overlap between these two populations which concures

with the Scipps PSOC visually determined definitions of these two cell populations. Given this re-

sult, we decided to also explore all other pairwise classification tasks, the results of which are also

shown in Table 2.1. A discussion of these results and their connection to pathologist experience is

included in the discussion section.

Also shown in Table 2.1 are the number of features that were selected as important for clas-

sification by enforcing sparsity in 95% of the trials run. In each trial the data for each class in

the classification task is randomly partitioned to have 75% used for training and the remaining

25% for testing, as well as matching the size of the two groups. There does not appear to be a

connection between the accuracy of a given classification task and the number of features selected

in 95% of the trials. Table 2.1 also highlights an important fact about the CTC-Ap cells. All of

the pairwise classification tasks separating CTC-Aps from another cell of interest have the lowest

pairwise classification accuracies. This reflects the biological property of this class. CTC-Aps are

cells undergoing apoptosis. Apoptosis involves many stages and consequently has the largest vari-

ation within the populations of interest as the cells likey represent different events in the apoptotic

cascade.
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In evaluating the significance of the information provided in Table 2.1, it is important to ac-

knowledge what the number of reoccurring features means. A large number of reoccurring features

means that the classification task is more robust to the training set, while a small set of overlapping

features means there is more variation in the classifiers. The features that do reoccur with high fre-

quency, however, provide information as to what are consistently important features. To evaluate

what these results reveal, we have broken down the distribution of the reoccurring features across

each channel for each channel for all classification tasks in Tables 2.2, 2.3, and 2.4. In these tables,

we have separated a cell into four regions. First, the inner region refers to the area contained within

the first four rings, a circle of radius 4 pixels oriented about the cell center. Second, the inner-center

of a cell corresponds to the area after the fourth ring up to, and including, the eighth ring. Next,

the outer-center of the cell is the area after the eighth ring up to, and including, the twelfth ring.

Last, we refer to the area after the twelfth ring up to, and including, the sixteenth as the outer cell.

Table 2.2 highlights some very interesting observations. First, from the first row we note that

the distinguishing information between CTC-Candidates and other cells of interest, in the cytok-

eratin channel, is contained outside of the the inner-region of the cell. A second observation from

this table is that in all of the pairwise classification tasks including CTC-Candidates, the outer-

regions (outer-central and outer) contain a higher number of important features for distinguishing

CTC-Candidates than the inner-regions. Third, we notice that the pairwise classification tasks in-

volving CTC-Ap have the highest number of cytokeratin features, and that they occur in significant

quantity in all of the cell regions. Fourth, we see that no classification task involving CTC-dim as

an individual population have a frequently reoccurring cytokeratin feature in the inner-cell. Next,

we note that the distribution of reoccurring features are nearly identical for the CTC-Candidate

versus CTC-Ap and CTC-Candidate versus CTC-small classification tasks. Additionally, we see

that the last four rows of the table contain the smallest number of cytokeratin features reoccurring.

From Table 2.3 we can draw additional conclusions. Of particular note is the non-trivial nature

of this table. This table shows that, despite what we initially thought, the CD-45 channel plays a

role in many of the classification tasks involving cells of interest. For example, in the row describ-

26



ing CTC-Ap vs. CTC-Small we see the highest number of CD-45 features. This could suggest one

of several hypotheses. First, since CD-45 is a characteristic of white blood cells, does the presence

of outer-region CD-45 features suggest frequent overlap with white blood cells for one of the two

populations? Second, does the presence of the CD-45 suggest that our method is capturing fea-

tures that support the knowledge that apoptotic cells non-specifically bind to antibodies as dying

cells may have more epitopes exposed? Third, are there existing sub-populations of these cells of

interest which express non-trivially in the CD-45 channel?

Finally, we consider the significance of DAPI features, as shown in Table 2.4. Similar to Table

2.2, we can immediately note the small number of features located in the inner-cell. Next, we note

that when separating CTC-Candidates from all other cells of interest, or from either CTC-Ap or

CTC-Small in pairwise classification, the bulk of the reoccurring features occur in the inner-central

region of the cell. Also, we observe that CTC-dim versus all other marginal and versus CTC-Small

show heavily weighted central-regions of the cells. Furthermore, we see that the outer-region of

the cell, in the DAPI channel, is the most heavily weighted region in three classification tasks:

CTC-Candidate vs. CTC-dim, CTC-Ap vs. CTC-dim, and CTC-Ap vs, CTC-Small.

The above observations reinforce many of the characteristics currently considered in manual

classification. CTC-Candidates, for example, are identified, in part, by the intensity of cytokeratin,

size, and cytokeratin which encompasses the over sized nucleus. This is reflected in the signifi-

cance of the inner-central DAPI features together with the heavily weighted outer-region cytoker-

atin features. Additionally, CTC-dims are characterized by their large nucleus and low cytokeratin

expression. Thus, in the the CTC-Candidate versus CTC-dim classification the presence of heavily

weighted outer-region DAPI and cytokeratin features is in agreement with manual classification. A

CTC-Candidate will have have cytokeratin in the outer-region of the cell but limited DAPI, while

a CTC-dim will have limited cytokeratin expression overall but strong DAPI expression in the

outer-region of the cell. These reflections of characterizations used in manual classification show

that FRDs capture both interpretable, significant and biologically relevant structural information

pertaining to different classification tasks.
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Table 2.1: The first column of the table states the classification task of interest. Each classification task
was run 25 times where 75% of the data of each class was randomly selected and used for training, while
the remaining 25% was used for testing. In the event that the size of the classes differ, we randomly select
samples from the larger class to match the size of the smaller class and then separate into 75/25 partitions.
The second column shows the number of features (NOF), out of 3264, that are selected as important for the
classification task in 95% of the trials for the given task. The final column gives the overall accuracy on a
given classification task.

Classification Task No. of Features Accuracy
WBC vs Events of Interest 85 99.52± 0.48
CTC-Candidate vs. All other 122 92.16±2.70
CTC-Candidate vs. CTC-Ap 63 92.64±3.35
CTC-Candidate vs. CTC-dim 84 93.76±2.79
CTC-Candidate vs. CTC-Small 63 93.20±3.16
CTC-Ap vs. All Other 44 81.20 ± 5.26
CTC-Ap vs. CTC-dim 110 89.50±3.60
CTC-Ap vs. CTC-Small 167 82.48±5.11
CTC-dim vs. All Other 75 86.40 ±4.32
CTC-dim vs. Other Marginal 55 89.76±3.89
CTC-dim vs. CTC-Small 76 96.00±2.77
CTC-Small vs. All Other 48 87.12±5.42

Table 2.2: This table shows the break down of the location of the reoccurring features in a given classifica-
tion task within the cytokeratin channel as a fraction of the total number of reoccurring features. Inner refers
to occurring within the first four rings. Inner-central refers to occurring within the fifth through eighth rings.
Outer-central refers to occurring within the ninth to twelfth rings. Lastly, outer refers to occurring within
the thirteenth to sixteenth rings.

Classification Task Inner Inner-Central Outer-Central Outer
CTC-Candidate vs. All other 1/122 13/122 16/122 22/122
CTC-Candidate vs. CTC-Ap 0/63 4/63 11/63 10/63
CTC-Candidate vs. CTC-dim 0/84 5/84 19/84 12/84
CTC-Candidate vs. CTC-Small 0/63 3/63 12/63 7/63
CTC-Ap vs. All Other 3/44 9/44 8/44 4/44
CTC-Ap vs. CTC-dim 10/110 29/110 25/110 13/110
CTC-Ap vs. CTC-Small 12/167 24/167 16/167 15/167
CTC-dim vs. All Other 0/75 8/75 6/75 5/75
CTC-dim vs. Other Marginal 0/55 5/55 3/55 4/55
CTC-dim vs. CTC-Small 0/76 1/76 8/76 8/76
CTC-Small vs. All Other 2/48 6/48 2/48 7/48
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Table 2.3: This table shows the break down of the location of the reoccurring features in a given classifica-
tion task within the CD-45 channel as a fraction of the total number of reoccurring features. Inner refers to
occurring within the first four rings. Inner-central refers to occurring within the fifth through eighth rings.
Outer-central refers to occurring within the ninth to twelfth rings. Lastly, outer refers to occurring within
the thirteenth to sixteenth rings.

Classification Task Inner Inner-Central Outer-Central Outer
CTC-Candidate vs. All other 4/122 6/122 11/122 16/122
CTC-Candidate vs. CTC-Ap 3/63 4/63 4/63 5/63
CTC-Candidate vs. CTC-dim 4/84 4/84 5/84 6/84
CTC-Candidate vs. CTC-Small 2/63 4/63 4/63 7/63
CTC-Ap vs. All Other 0/44 0/44 5/44 1/44
CTC-Ap vs. CTC-dim 0/110 0/110 5/110 5/110
CTC-Ap vs. CTC-Small 0/167 9/167 16/167 15/167
CTC-dim vs. All Other 0/75 0/75 4/75 9/75
CTC-dim vs. Other Marginal 0/55 0/55 2/55 4/55
CTC-dim vs. CTC-Small 0/76 0/76 5/76 17/76
CTC-Small vs. All Other 1/48 0/48 1/48 8/48

2.5 Qualitative Results

Given the high accuracy of each of our decision functions, and the insights afforded to us by de-

termining reoccurring features, we want to visualize the reoccurring features and observe if these

visualizations could be interpreted by pathologists in a meaningful way. For each classification

task there were 25 trials run. In each trial, the data was randomly-partitioned for training and test-

ing using the standard 75/25 partitioning. Within each trial, a decision function was built using the

LIBLINEAR l1 regularized, l2 loss function linear support vector machine. In each trial, a subset

of the features are selected as important for the given classification task. After running the trials

we can identify the features that are selected in 95% of the trials, the number of which can be seen

in Table 2.1. The design of the FRD allows us to invert the descriptor and visualize individual fea-

tures or observe a single cell reconstructed using a specific set of features. We have reconstructed

specific cells using the set of features selected in 95% of trials for various classification tasks. In

this way we can visualize our results and further understand the differentiating structure for an

indicated classification task.

We define two different cells of each class. The cell with the prefix “closest" refers to the cell of

a given class which had the FRD closest to the average FRD across that class. Similarly, we define
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Table 2.4: This table shows the break down of the location of the reoccurring features in a given classifica-
tion task within the DAPI channel as a fraction of the total number of reoccurring features. Inner refers to
occurring within the first four rings. Inner-central refers to occurring within the fifth through eighth rings.
Outer-central refers to occurring within the ninth to twelfth rings. Lastly, outer refers to occurring within
the thirteenth to sixteenth rings.

Classification Task Inner Inner-Central Outer-Central Outer
CTC-Candidate vs. All other 1/122 18/122 7/122 7/122
CTC-Candidate vs. CTC-Ap 1/63 14/63 3/63 4/63
CTC-Candidate vs. CTC-dim 0/84 8/84 6/84 15/84
CTC-Candidate vs. CTC-Small 0/63 17/63 3/63 4/63
CTC-Ap vs. All Other 0/44 8/44 1/44 5/44
CTC-Ap vs. CTC-dim 1/110 3/110 7/110 12/110
CTC-Ap vs. CTC-Small 0/167 17/167 8/167 35/167
CTC-dim vs. All Other 3/75 11/75 18/75 11/75
CTC-dim vs. Other Marginal 2/55 14/55 14/55 7/55
CTC-dim vs. CTC-Small 0/76 13/76 13/76 1/76
CTC-Small vs. All Other 6/48 3/48 9/48 3/48

the prefix “farthest" to mean the cell of class who’s FRD was the farthest from the average FRD

across that class. We determine the closest and farthest from average FRD using the Euclidean

distance measure. The following figures show the reconstructions of the closest and farthest from

average cells of each class involved in the indicated classification task. In Figures 2.5.1, 2.5.2,

2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.7, 2.5.8, 2.5.9, 2.5.10, and 2.5.11 we see reconstructions of cells using

features from different classification tasks. For each of these figures, the image directly below a

labeled cell image is the reconstruction of the labeled cell for the given feature set. Additionally,

all images have been shown on using a color axis bounded between 0 and 255. Thus, though some

of the images may appear dim the intensity of the colors in the reconstruction are not artifacts but

rather capture important differences.

First, contained in Figure 2.5.1 we see reconstructions of representatives of each cell type us-

ing the reoccurring features from the CTC-Candidate versus all other cells of interest classification

task. We see, in this figure, that CTC-Candidates are distinguished from the other cells of inter-

est based on the uniformity and thickness of cytokeratin in the central-cell together with greater

amounts of inner-central DAPI present. Within this figure we can also observe the similarities be-

tween the reconstructions for each of the farthest-from-average cells. The similarities between the
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farthest-from-average cells for these cell types illustrate the high-level of variation in the current

labeling of data. Furthermore, we observe the lack of features/structure from the inner cell. This

lack of inner structure suggests that at the given resolution, the central cell/center of the nucleus

contains limited structurally differentiating information. Biologically, this is significant since re-

search has shown that there is differentiating information contained in the nuclei and that at the

current resolution this information is not being be captured.

Next, Figure 2.5.2 captures discriminating information between CTC-Candidates and CTC-

Aps. Based on the reconstructions shown, we can infer that CTC-Candidates can be separated

from CTC-Aps based on a more uniform and intense nucleus, more uniform cytokeratin extending

into the outer-center region of the cell, and a less circular shape. The first inference is based on the

bright inner cell DAPI. Our second inference is based on the purple hue of the outer regions of the

closest-to-average CTC-Candidate, as purple suggests the presence of both DAPI and cytokeratin.

Additionally, the purple in the closest-to-average CTC-Candidate appears uniform in its intensity

suggesting uniformity in the two contributing channels.

According to Figure 2.5.3 the combination of outer-central cytokeratin expression and outer

DAPI expression contribute to the differential structure between CTC-Candidates and CTC-dims.

Visually, the category of CTC-dim is more uniform than many of the others, but still contains size

variation in the nucleus of the cells. Thus, since CTC-dims typically have larger nuclei than CTC-

Candidates, the presence of outer cell DAPI features for discrimination is in agreement with visual

classification criterion.

Figure 2.5.4 illustrates the differentiating structure between CTC-Candidates and CTC-Smalls.

Of note in this figure are the inner-central cytokeratin features and outer DAPI features. CTC-

Smalls are biologically classified based on their high cytokeratin expression, but small nucleus and

overall cell size. Thus, the presence of DAPI in the outer cell highlights the size variation between

these two cell populations, as does the location of the cytokeratin which would not extend beyond

the inner-central rings in a cell of small size. We also note, in this figure, the presence of outer
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Closest CTC-Candidate Farthest CTC-Candidate Closest CTC-Ap Farthest CTC-Ap 

Closest CTC-dim Farthest CTC-dim Closest CTC-Small Farthest CTC-Small 

Figure 2.5.1: This figure provides a visualization of the differential structure used to separate CTC-
Candidates from all other cells of interest.

DAPI features in the CTC-Small shown can be attributed to the closeness of the the neighboring

cells in both the closest-to-average and farthest-from-average cells.

The visualizations shown in Figure 2.5.5 make the low performance of the CTC-Ap versus all

other cells of interest classification task very understandable. From Table 2.1 we see that the CTC-

Ap one-versus-all classification task has the lowest accuracy of all one-versus-all tasks. Visually,

there appears to be much less structurally differentiating information contained in this classifica-

tion task. Both the closest-to-average and farthest-from-average cells of each cell type are very

similar to those of the CTC-Aps. As mentioned in the qualitative results section, CTC-Aps are

cells undergoing apoptosis. This figure suggests that the labeling of CTC-Aps, based on visual

inspection, likely has captured cells of the other cell populations which may be undergoing apop-

32



Closest CTC-Candidate Farthest CTC-Candidate Closest CTC-Ap Farthest CTC-Ap 

Figure 2.5.2: This figure provides a visualization of the differential structure used to separate CTC-
Candidates from CTC-Aps.

Closest CTC-Candidate Farthest CTC-Candidate Farthest CTC-dim Closest CTC-dim 

Figure 2.5.3: This figure provides a visualization of the differential structure used to separate CTC-
Candidates from CTC-dims.

Closest CTC-Candidate Farthest CTC-Candidate Closest CTC-Small Farthest CTC-Small 

Figure 2.5.4: This figure provides a visualization of the differential structure used to separate CTC-
Candidates from CTC-Smalls.
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tosis. Additionally, we note that this classification task had the fewest number of reoccurring

features suggesting that the classifier is highly dependent on the set of cells used for training. A

consequence of the small number of reoccurring features is a less complete reconstruction.

Despite the lack of differential structure for separating CTC-Aps from all other cells of interest,

there is differential structure in the remaining CTC-Ap pairwise classifications. For example, in

Figure 2.5.6 we see that inner cytokeratin and non-uniform outer DAPI are involved in separating

CTC-Aps from CTC-dims. In fact, this classification task is the only task with apparent cytok-

eratin in the inner cell. Next, in Figure 2.5.7 we again see the differential structure returning to

the outer regions of the cell to differentiate between CTC-Aps and CTC-Smalls. Although there

is a weaker level of separation between CTC-Aps and CTC-Smalls, according to Table 2.1, by

observing the reconstructions, there are clear differences between the cell populations involved.

These differences are especially pronounced between the farthest-from-average cells, although the

farthest-from-average CTC-Small closely resembles the closest-to-average CTC-Ap. In many of

the classification tasks shown, we see greater similarity between the farthest-from-average cells of

different types. Biologically, the patters of similarity in the CTC-Ap versus CTC-Small classifica-

tion task could suggest a greater overlap of these two populations.

Moving to Figure 2.5.8 we see our first case of a heavily-weighted inner DAPI, and the DAPI

channel being used almost exclusively, for separating cell populations. Figure 2.5.8 shows recon-

structions based on the classification task of separating CTC-dims from all other cell populations.

Observing the reconstructions we see DAPI features, the other channel features are overwhelmed,

and note the size, circularity, and uniformity of the DAPI in the CTC-dim reconstructions. The

other populations of interest, however, have more asymmetry and smaller areas of intense DAPI

expression. Again, this mirrors the characterization used in visual classification in which a CTC-

dim is characterized largely by the size of the nucleus and limited to nonexistent cytokeratin.

The remaining classification tasks for distinguishing CTC-dims from other populations are

visualized in Figures 2.5.9 and 2.5.10. In both the classification task separating CTC-dims from

the remaining marginal populations and separating CTC-dims from CTC-Smalls, we again see the
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Closest CTC-Candidate Farthest CTC-Candidate Closest CTC-Ap Farthest CTC-Ap 

Closest CTC-dim Farthest CTC-dim Closest CTC-Small Farthest CTC-Small 

Figure 2.5.5: This figure provides a visualization of the differential structure used to separate CTC-Aps
from all other cells of interest.

Closest CTC-Ap Farthest CTC-Ap Farthest CTC-dim Closest CTC-dim 

Figure 2.5.6: This figure provides a visualization of the differential structure used to separate CTC-Aps
from CTC-dims.
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Closest CTC-Ap Farthest CTC-Ap Closest CTC-Small Farthest CTC-Small 

Figure 2.5.7: This figure provides a visualization of the differential structure used to separate CTC-Aps
from CTC-Smalls.

Closest CTC-Candidate Farthest CTC-Candidate Closest CTC-Ap Farthest CTC-Ap 

Closest CTC-dim Farthest CTC-dim Closest CTC-Small Farthest CTC-Small 

Figure 2.5.8: This figure provides a visualization of the differential structure used to separate CTC-dims
from all other cells of interest.
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Farthest CTC-dim Closest CTC-dim Closest CTC-Small Farthest CTC-Small 

Closest CTC-Ap Farthest CTC-Ap 

Figure 2.5.9: This figure provides a visualization of the differential structure used to separate CTC-dims
from other marginal cell populations.

majority of the features coming from the DAPI channel. Also, we again see that the reconstructions

of CTC-dims show a larger region of uniform DAPI intensity which are more uniform and circular

than the reconstructions of the other cells.

Finally, we consider Figure 2.5.11 which contains the reconstructions of all cells using the reoc-

curring features selected to separate CTC-Smalls from all other cells of interest. This classification

task also uses the second fewest number of reoccurring features for reconstruction, suggesting, like

CTC-Ap versus all other cells of interest, that the classifier is highly dependent on the training set.

We do, however, see that the inner and inner-central DAPI and cytokeratin play a role in differen-

tiating between the cells. Thus, we are again capturing the size information of the CTC-Smalls.

37



Farthest CTC-dim Closest CTC-Small Farthest CTC-Small Closest CTC-dim 

Figure 2.5.10: This figure provides a visualization of the differential structure used to separate CTC-dims
from all CTC-Small.

Closest CTC-Candidate Farthest CTC-Candidate Closest CTC-Ap Farthest CTC-Ap 

Closest CTC-dim Farthest CTC-dim Closest CTC-Small Farthest CTC-Small 

Figure 2.5.11: This figure provides a visualization of the differential structure used to separate CTC-Smalls
from all other cells of interest.
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The culmination of these visualizations allow us to describe the features that are consistently

evaluated at each branch of our decision tree. First, we classify according to the features shown in

Figure 2.5.1. Next, we classify based on the features shown in Figure 2.5.9. Finally, we separate

based on the features shown in Figure 2.5.7. This amounts to first looking at the combination of

central cell cytokertain and inner cell DAPI, then looking for at the uniformity, size, and circularity

of the DAPI features from the inner cell to the outer-central cell, and then finally looking at the

combination of outer-central to outer DAPI features and outer-central cytokeratin.

The variation across reconstructions of a single cell show that there is strongly differentiating

structure within a cell that changes depending on the classification the reconstruction is based

on. By observing the various reconstructions we can highlight tasks where there is more or less

differentiating structure. Again, this knowledge allows us to understand the classifications and

define hard lines between what we look for in a cell in order to belong to a certain cell population.

While many of our features can be connected to features that are currently used in visual classi-

fication, there are several benefits to computer automated classification. First, in addition to being

objective an automated classification method, when properly optimized, could reduce valuable la-

bor hours needed to evaluate a single patient sample. Second, due to the construction of the FRD,

we are evaluating information extracted from a pixel level which cannot be accomplished by the

human eye. Thus, by using an automated method, we have the ability to use all available informa-

tion in a cell to classify all events. Finally, and most importantly, by using a numerical approach to

classification we are able to express the unbiased confidence of our classification of a single event.

Using a support vector machine classifier, we determine the class of a cell in a training set based on

the sign of the decision function value. For data which is linearly separable, the decision values of

one class will all be greater than or equal to one, while all of the decision values of the other class

will be less than or equal to one. Thus, for data points in the training set, the larger the magnitude

of the decision function value, the greater our confidence in the classification of the event. For ex-

ample, in Figure 2.5.12 we see a plot of the decision function values for all the points in a training

set for one trial of the CTC-Candidate versus all other cells of interest classifier. In this example
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Figure 2.5.12: This figure shows a plot of the decision function values for the samples in the training set for
one trial of the CTC-Candidate versus all other cells of interest classification task.
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we consider the points that have been visually classified as CTC-Candidates to be the positive (red)

class, while the cells which have been visually classified as other cells of interest are the negative

(blue) class. Therefore, any point with a decision value greater than zero has been classified by our

classifier as a CTC-Candidate, and any with a decision value less than zero has been classified as

another type of cell of interest. For any point with a decision value magnitude greater than one, we

have confidence in the classification (more confidence the larger the magnitude). However, points

with decision values between one and negative one, we are less confident in the classification. In

this way we can quantify the confidence of a cell’s classification, which cannot easily be routinely

accomplished using visual classification. The results here show that perhaps some cells visually

classified into certain cell populations may actually fit better within a different cell population.

To conclude, from the images provided, one can readily observe a significant amount of vari-

ation within a single cell class. This is important to be able to quantify for several reasons. Of

primary concern is ongoing research connecting quantities of circulating tumor cells to cancer sta-

tus. If these correlations between quantity of circulating tumor cells and cancer status are based

on highly subjective classifications, then there will be doubt as to the validity of those claims.

However, if using these visualization techniques and classification methods allow us to not only

confidently classify, but also capture all cell types of interest, then we will have confidence in any

connections that we may find in the future. While the variation we observe is over a small dataset,

it allows us to understand the challenges in generating a set of classifiers that can be readily ap-

plied to many patient samples across various cancer types. In supervised learning methods, it is

very important to select the right set of data to train your classifiers. From these results, we see that

we will need to systematically scale our training set to produce a more universal set of classifiers

both within a cancer type and across all cancers.

2.6 Discussion

The current methods for CTC isolation and characterization are both representative of tradi-

tional pathology practice of visual evaluation but also lend themselves to sophisticated and rigor-
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ous mathematical frameworks as the data sets are all digital by nature. Human inspection, while of

high quality, will always be qualitative and limited to certain scales of data sets leading to a self-

evident risk of false negatives. The FRD method, when applied to large datasets, could provide

more confidence around having more completely interrogated a patient’s sample. There are signif-

icant advantages in using computational methods in that patterns can be identified more rapidly.

For example, no single parameter currently exists that would distinguish CTCs originating from

different organs but a large scale computational approach might indeed be able to do so. How-

ever, the more detailed and comprehensive method described herein may lend further insight into

distinguishing cancer types and stages of disease.

The Fourier-Ring Descriptor (FRD) methods developed in this paper are the first that we know

of that exploit the rotational structure of cells identified in peripheral blood samples from patients

with metastatic breast, prostate and lung cancer cells. We have used these FRDs, along with a linear

support vector machine decision tree classifier to exploit the size variations and morphological

distinctions among the cell populations to obtain reasonable and quantifiable accuracy benchmarks.

While we are not proposing that this automated technique be used in place of visual inspection

in making clinical decisions, we do see our methods as offering clinically relevant quantifiable

support in their decision processes. Hence, we view this as a first step in developing a useful

computer-vision based clinical support tool for the active monitoring of cancer patients based on

peripheral blood samples.
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Chapter 3
Nonnegative Matrix Factorization Using the Split Bregman Al-
gorithm and an Application in Frequency Agile Lidar

During the first half of 2015 I was a visiting researcher at MIT Lincoln Laboratory under Dr.

Dimitris Manolakis of the Sensor Technology Group. Unlike the other projects presented so far,

this project was motivated by a specific application: Frequency Agile Lidar (FAL). The FAL system

was designed as a laser radar (lidar) system that could be used to identify and track aerosolized

bio-agents.

In 2012 [34] presented an approach to analyze the data obtained by the FAL system that was

successful in identification and tracking of aerosolized agents. An evaluation of the approach pro-

posed in [34] (which relies heavily on a preprocessing algorithm presented in [35]) was requested

by the laboratory so that it could objectively determine if continued investment in the system was

advisable.

A background introduction to FAL as well as to the Split Bregman algorithm (the primary

tool used in producing the information on which identification and tracking are performed) are

presented in Sections 3.1 and 3.2, respectively. Next, in Section 3.3 the nonnegative matrix fac-

torization problem is described. Nonnegative matrix factorization arises within the context of FAL

and is solvable using the Split Bregman Algorithm. The issue of internal dimension identification

within nonnegative matrix factorization, connecting this application to the mathematical theme of

this doctoral research, is explained in Section 3.5.2. In Section 3.4 the Split Bregman algorithm is

applied to FAL to produce results similar to those in [34]. This chapter concludes with a discussion

section, Section 3.5, that presents two novel insights. Section 3.5.1 is a discussion of the results

of the application of Split Bregman to FAL which contains the results of a modification of the

method proposed in [34] which produces superior results. We return to the issue of dimension in

Section 3.5.2 with the proposal of another modification of an objective function that might enable

estimation of the internal factoring dimension.
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3.1 Frequency Agile Lidar

Bio-toxins, viruses, and bacteria can be used as dangerous weapons of terror in an aerosolized

form. Aerosolized molecules of size 1 − 5µm are typically used because of how readily they are

absorbed into the lungs. As a consequence, agencies would like to be able to rapidly detect, locate,

and identify (discriminate various agents) biological agents to provide warning of threats. One

method for reaching these objectives is to use elastic backscatter lidar. From a lidar system one

can compute the concentration of an aerosol at a given range and the backscatter cross section

of the aerosol at a particular wavelength. Concentration can be used to track an aerosol cloud

while the backscatter cross section, at multiple wavelengths, can be used too identify the aerosol.

We describe one such standoff lidar system designed to meet the goals of detection, location, and

identification of aerosols: the frequency agile lidar (FAL).

Figure 3.1.1 provides a schematic of the FAL system. A FAL system is based on a finely

tunable CO2 laser that can be rapidly tuned to 60, the number of distinct molecular states, different

frequencies. The range of wavelengths to which the laser can be tuned classifies the system as

a long wave infrared lidar. FAL is a form of elastic backscatter lidar meaning that the photons

measured at the receiving detector are photons of the same wavelength of the transmitted laser

scattered by the aerosol molecules at an angle of 180 degrees (back along the line of transmission).

In many ways FAL can be thought of as a blind differential absorption lidar. Essentially, the

system is designed based on the assumption that each aerosol has a Rayleigh backscatter cross-

section signature. The optical devices used in the FAL system are there to reduce beam divergence

of the transmitted photons as well as to ensure that all transmitted energy is enclosed in the receiver

field of view.
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Figure 3.1.1: A schematic of the FAL system.
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In all data evaluated, 19 different wavelengths are leveraged (although 60 are available). A

burst is a fixed pattern of these 19 individual pulses. At each burst index one cycle of the pattern is

transmitted (a portion of the transmitted waveform is deflected for measurement) and the backscat-

ter from each pulse is measured. Some important specifications of the system are summarized in

the following list:

• Pulsed CO2 laser,

• Automated tuning to 60 discrete wavelengths between 9.2µm and 10.7µm,

• Uses a pseudo-resonant galvanometer with a flat copper mirror that is aligned with a fixed

grating for the automatic tuning of wavelength (selection based on angular position of mirror

w.r.t. fixed grating),

• Max number of pulses per burst is 20 (multi-pulse bursts),

• Wavelength/pulse switching time τλ = 5ms

• τB depends on number of pulses in burst

• Output pulses are 120ns full-width half-max spikes followed by nitrogen tails.

An example of two different bursts, from real data, are shown in Figure 3.1.2. Figure 3.1.2 aptly

shows that the maximum transmitted energy of each wavelength is not uniform across pulses, as

well as variations in the nitrogen tails of each pulse. For this reason, as well the presence of

electromagnetic interference and other artifacts, steps of preprocessing of the data must occur on a

pulse-by-pulse basis.

Moreover, in Figure 3.1.3 is an example of a transmitted and received waveform for a single

pulse within a burst corresponding to aerosol being present. The jumping of the received wave-

form, highlighted in Figure 3.1.4, at the far left is electromagnetic interference due to the lack of

calibration in the system. Additionally, the first little bump in the received waveform occurring at

the same range index of the transmitted waveform peak, highlighted in Figure 3.1.5, is a conse-

quence of transmitted photons backscattering off of optical equipment into the detector. This is the
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Figure 3.1.2: Example of two transmitted bursts.

result of an inability to isolate the received and transmitted waveform. The bump near the right

end of the received waveform, highlighted in Figure 3.1.6, corresponds to the backscatter from the

aerosol cloud. Notice the similarity in shape between the transmitted waveform and this bump;

the heavy tail. The heavy tail, highlighted in Figure 3.1.7, is referred to as the heavy nitrogen tail

of a CO2 laser. The extended duration of the transmitted pulse results in a need to deconvolve

the transmitted waveform shape from the received waveform. Finally, the received waveform does

not fall exactly to zero over the range measured which is due to characteristics of the lidar system

parameters and setup.

3.1 The Lidar Equation

Mie scattering is the scattering of photons off of particles of a size larger than the wavelength

of the photons being scattered. Rayleigh scattering is for particles of a smaller size than the wave-
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Figure 3.1.3: Example of raw data for a single pulse in a burst index corresponding to presence of aerosol.

EMI	
  Ar'facts	
  in	
  Received	
  Signal	
  

Figure 3.1.4: Example of raw data for a single pulse in a burst index in with a positive presence of aerosol.
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Figure 3.1.5: The shaded region highlights the artifact that appears as a consequence of inability to isolate
the transmitted and received data.
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Figure 3.1.6: The shaded region highlights the portion of the received, raw waveform that comes from
backscatter off the aerosol cloud.

49



Long	
  Nitrogen	
  Tail	
  

Figure 3.1.7: The shaded region highlights the long nitrogen tail of the CO2 laser which is the primary
cause for deconvolution in preprocessing.

length being scattered. Since aerosolized molecules are often 1−5µm in size, and the wavelengths

used in FAL span 9.2 − 10.7µm, we are looking at Reighly scattering. The lidar equation relates

characteristic parameters of a molecule to the measured power per steradian. We write the lidar

equation as

P (R, λ) = (
P0

R2
)(
τAc

2
)(T (λ))(β(λ)) exp

−2

R∫
0

α(r)dr

 (3.1.1)

where

• R and λ are distance and wavelength, respectively

• P0 is the laser power, so the P0/R
2 term accounts for intensity falling off over distance.

• τ is the duration of the pulse, A is the area of the receiver, c is the speed of light, and τAc/2

is the volume of the area receiving backscatter from.

• T (λ) is the optical efficiency of the Lidar at a given wavelength
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• β(R) is the backscatter coefficient and β(R) = βatm(R) + βaer(R).

• α(R) is the extinction coefficient and α(R) = αatm(R) + αare(R).

The following are key assumptions made by Warren, et al:

1. Natural atmosphere and aerosol only sources of backscatter,

2. Optically thin plume (αaer = 0),

3. Natural atmosphere transmission must be known,

4. Know the time-steps/ burst indices which are aerosol free (i = 1, ..., Tb),

5. The backscatter coefficient of aerosol (βaer) can be written as the product of the efficiency of

backscatter/ backscatter cross section and the concentration/ number density of the aerosol.

Under these assumptions we can break the lidar equation into two pieces: one coming from the

atmosphere, and another coming from the aerosol. This yields the following modified version of

the lidar equation

P (R, λ) =

(
P0

R2
)(
τAc

2
)(T (λ))(βatm(R, λ)) exp

−2

R∫
0

αatm(r, λ)dr

 (3.1.2)

+

(
P0

R2
)(
τAc

2
)(T (λ))(βaer(R, λ)) exp

−2

R∫
0

αatm(r, λ)dr

 . (3.1.3)

The term shown in Equation 3.1.2 comes from the atmosphere while the term shown as Equation

3.1.3 is from the aerosol. The forms of the lidar equation we have presented so far use the standard

notation from within the physics community and we note that it is dissimilar to the notation used

by Warren, et al. This form of the lidar equation is used at each of the different wavelengths.

3.1 Pre-Processing of the FAL data

In order to utilize the lidar equation to determine the backscatter cross section for a given wave-

length of a given aerosol and the concentration of the aerosol, we first need remove artifacts in the
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data by preprocessing. We describe and implement the preprocessing as proposed in [35] and refer

the reader to that paper for additional detail. Additionally, preprocessing examples are generated

primarily through the use of preprocessing code provided by the authors of [35]. Preprocessing

consists of 3 (or 4) steps. Those steps are as follows

1. Create zero baseline using the tail of a pulse,

2. Remove electromagnetic interference artifacts in data (optional),

3. Subtraction of the mean of the natural atmosphere (obtained by averaging the received wave-

forms over all aerosol-free time-steps), This amounts to estimating the term in Equation

3.1.2.

4. Deconvolve the transmitted waveform from the received waveform using a Wiener-Helstrom

Filter.

Each of these preprocessing steps will be described separately in in the remainder of this section.

Zero Baselining

Zero baselining is done on a pulse-by-pulse basis for both the transmitted and received waveforms,

separately. Baselining is done to make averaging meaningful. The zero baseline is obtained by

averaging the values at the tail end of each pulse and uniformly subtracting this value from all of

the measured values for that pulse. An example of the result of baselining can be seen in Figure

3.1.8.

Remove Electromagnetic Interference Artifacts

This is an optional step that is not implemented by Warren, et al. This step consists of identifying

where the transmit signal is sent out and removing data from before this point. This effectively

removes much of the variance of the data based on these artifacts. In the next step, background

mean subtracting, if these artifacts are not removed or lessened, there will be greater variance in the

data being fed into deconvolution. The authors of [35] avoid this by truncating the data based on

user specified distances of interest . One such way to lessen the effect of the interference artifacts
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Figure 3.1.8: Result of zero baselining on a received waveform for a single pulse in a burst containing
aerosol.

is to base truncation on the derivative of the transmitted waveform. For example, on a pulse-by-

pulse basis we can look at the average pairwise change in the transmitted waveform and determine

the starting index based on the first jump greater than three standard deviations above the mean

jump. Since the delay to triggering the laser is different depending on the pulse we can zero pad

to equal length vectors across pulses. Zero padding is made an appropriate option based on the

zero-baselining.

We note that when implementing author provided code, a minimum distance of interest equal

to 0km versus 0.5km produces a drastic difference in the final processing algorithm outputs. The

thickness of the band corresponding to the response from the aerosol shown in Figure 3.1.10 is

much narrower than that of Figure 3.1.12. This corresponds to a greater location uncertainty of

the cloud when you are interested in the near field of view. Furthermore, we see a larger range of

values occurring in the data before deconvolution when we are interested in the near field. This is
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Figure 3.1.9: An example of all data for a single burst before deconvolution with a minimum range of
interest of 0.5km.

a consequence of the averaging of the EMI artifacts. Examples of the differences in data before

deconvolution can be seen in Figures 3.1.9 and 3.1.11.

Mean Natural Atmosphere Subtraction

The preprocessing occurring at this step requires knowledge of the burst indices corresponding to

no aerosol present and will use the zero baselined, and artifact free if user has chosen to remove

these artifacts, data for a single wavelength/pulse over all background burst indices. For a single

wavelength, the zero baselined received waveforms over all background burst indices will be aver-

aged to estimate the term in the lidar equation coming from the atmosphere, Equation 3.1.2. This

average will then be subtracted off of that pulse from all bursts. An example of the result of mean

natural atmosphere subtraction can be seen in Figure 3.1.13.

As you can see in Figure 3.1.13, after the subtraction we now have an estimate for the lidar

response specifically from the aerosol that has been convolved with the transmitted waveform for

that pulse. We feel it important to note that mean natural atmosphere subtraction is a centering of
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Figure 3.1.10: An example of a complete data matrix for a single burst after the completion of pulse-by-
pulse deconvolution with a minimum range of interest of 0.5km.

the data with respect to the clutter mean, but it does not completely remove it as the atmosphere is

not static.

Wiener Filter Deconvolution

A Wiener filter is used to deconvolve the transmitted waveform for a pulse from the zero baselined,

mean natural atmosphere subtracted data. Weiner filter deconvolution requires knowledge of the

power spectral density (PSD) of both the noise and the signal. The noise PSD can be estimated

from pulses in background bursts. However, the signal PSD is estimated based on an assumption of

Gaussianity and ad hoc parameter selection. The rationale for this seems to be unclear and/or not in

alignment with the associated phenomenology. Furthermore, some of the techniques implemented

in the provided code are nonstandard for the proposed method of deconvolution. An example of a

deconvolved waveform is shown in Figure 3.1.14.
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Figure 3.1.11: An example of all data for a single burst before deconvolution with a minimum range of
interest of 0.0km.

3.1 Data After Preprocessing

After preprocessing of the data we have something equivalent to a noisy version of the lidar

equation aerosol term, Equation 3.1.3. Deconvolution of the data is used to register the data. The

effectiveness of this is highlighted in Figure 3.1.9 and Figure 3.1.10 which show a data matrix

before and after deconvolution, respectively. Data after deconvolution, shown in Figure 3.1.10 is

the starting input data for the processing pipelines. Furthermore, we can see the form of the data

after deconvolution for a single pulse within a burst in Figure 3.1.14.

Based on the assumptions of the model we have that the lidar response, at a given wavelength,

to the aerosol will be proportional to the backscatter coefficient of the aerosol at that wavelength.

Both processing approaches assume that this constant of proportionality is equal to 1. Under

this assumption being placed on the constant of proportionality the mathematical model for the

preprocessed data becomes

G = ρC + ν,
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Figure 3.1.12: An example of a complete data matrix for a single burst after the completion of pulse-by-
pulse deconvolution with a minimum range of interest of 0.0km.

where

• ρ is the matrix of aerosol feature vectors as columns,

• C is the matrix of aerosol concentrations as a function of range as rows,

• and ν is a noise matrix.

Figure 3.1.15 shows a more detailed schematic of the mathematical model for the preprocessed

data. A consequence of the constant of proportionality assumption is that all units of measurement

become arbitrary and one cannot establish a clear mapping between the scales of the values that

would be obtained in a properly calibrated laboratory environment.

At a high level, the entire process of from system to end goals can be represented as in Figure

3.1.16. We will be discussing the final box in the system: processing of the data.
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Figure 3.1.13: Example of an artifact free, zero baselined, mean natural atmosphere subtracted received
pulse for a burst with aerosol present.

3.2 Split Bregman Algorithm

The Split Bregman algorithm [36] is an ingenuitive combination of classical techniques from

convex optimization. As such, it is also a method for convex optimization. The approach is based

on splitting variables by introduction of auxiliary variables as well as alternating primal and dual

variable updates. The method has been shown to be very efficient under a variety of conditions.

In Figure 3.2.1 we can see how the Split Bregman algorithm fits into the greater landscape

of convex optimization. In the network shown, red nodes correspond to classical methods while

blue nodes correspond to more modern approaches. The color of the line connecting two nodes

is associated to a piece of literature existing establishing a connection between those nodes. This

network aims to highlight the rich and complex connections between many of the approaches

to solving convex optimization problems. Figure 3.2.2 shows only the connections of the Split

Bregman node from the larger network.

Split Bregman shows its greatest utility for problems of the following form:
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Figure 3.1.14: A single deconvolved pulse from within a burst using a starting distance of interest equal to
0.5km. Produced using Warren’s code.
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Figure 3.1.15: A representation of the mathematical model. We define M as the number of wavelengths, N
as the number of range cells, and L as the number of aerosols.
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•  pt
ij : Transmitted voltage/photons as a function of time 

at a fixed burst and wavelength.	


•  pr

ij : Received voltage/backscattered photons as a 
function of time/range at a fixed burst and wavelength.	



•  G : Preprocessed data estimate of the lidar response 
from the aerosols as a function of range, for all 
wavelengths, at a single burst.	



•  C : Matrix of concentration vectors (as a function of 
range) of all aerosols for a fixed burst. Used for 
tracking aerosol.	



•  ρ : Matrix of backscatter coefficient vectors (as a 
function of wavelength) of all aerosols for a fixed burst. 
Feature vectors used for aerosol discrimination and 
detection are taken from this matrix.	



Figure 3.1.16
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Figure 3.2.1: A network illustrating how Split Bregman fits into the larger landscape of convex optimization
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Figure 3.2.2: A Split Bregman centric network of convex optimization methods.
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minimize
u

f(φ(u)) + g(u),

where

1. φ(u) convex and differentiable,

2. f convex and non-differentiable, and

3. g convex and differentiable.

In many of the well known applications of Split Bregman, f is a 1-norm or the BV-norm, though

the framework has been successfully adapted to other formulations.

The Split Bregman algorithm begins with the unconstrained problem

minimize
u

f(φ(u)) + g(u).

From this unconstrained problem a new constrained problem is created through introduction of a

new variable as

minimize
u,y

f(y) + g(u) subject to φ(u) = y.

Once we have a constrained optimization problem we can create the augmented Lagrangian

L(u, y, b) = f(y) + g(u) +
λ

2
||φ(u)− y − b||22.

Next we alternate between primal and dual variable updates according to

yn+1 = argmin
y

L(un, y, bn),

un+1 = argmin
u

L(u, yn+1, bn),

bn+1 = bn + yn+1 − φ(un+1).
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As previously stated, many of the well known applications of Split Bregman involve a 1-norm

or BV-norm. Our discussion will focus on the former. Two well known problems that arise in

signal processing that can be solved by Split Bregman are basis pursuit (also known as LASSO)

and sparse nonnegative matrix factorization. The basis pursuit problem can be stated as

minimize
s

1

2
||Ks− f ||22 + µ||s||1,

where K is a known matrix, f is a vector of data, and s is the signal you wish to recover. Alterna-

tively, sparse nonnegative matrix factorization is formulated as

minimize
A,B

1

2
||AB − F ||2F + µA|A|+ µB|B|,

where A,B are unknown sparse matrices, F is a matrix of data, and we wish to recover both A

and B.

The shift to using 1-norm regularization in such problems, as opposed to the classical 2-norm

regularization, is generally motivated by three things:

1. forces sparsity,

2. variable selection, and

3. allows easier interpretation.

In order to understand how these desirable traits are obtained, we look to Figure 3.2.3. Fig-

ure 3.2.3 shows the set up of a 2-norm regularized regression problem on the left and a 1-norm

regularized regression problem on the right. The shaded regions correspond to the feasible region

based on the norm of the vector. A 2-norm feasible region is smooth due while the 1-norm feasible

region has four discontinuities. The ellipses are level sets of the objective function and the optimal

solution (the red dot) occurs at the first point where a level set is tangent to the feasible region. It

is clear to see that there is a higher likelihood, overall, for the level sets of a variety of objective

functions will hit at a sparse solution (in this case having one zero) for the 1-norm feasible region.
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Figure 3.2.3: Comparison of 2-norm and 1-norm regression.

Additionally, one can see why often a 2-norm regularized problem has small but non-zero variable

values.

It is important to note that despite the desirable attributes of 1-norm regularization, there are

some short comings to consider. Throughout the literature it has been shown that 1-norm regu-

larization performs more poorly on data sets that contain groups of correlated variables [37, 38].

In the case of variable correlation, 1-norm regularized problems will generally select a single fea-

ture from the group while 2-norm regularization will give equal importance to each feature in that

group. This particular characteristic will be mentioned again in the context of a real world appli-

cation in a later section. We conclude this section by presenting a toy example solved by Split

Bregman.

3.2 Toy Example: Basis Pursuit

Basis pursuit has the end goal of recovering a one dimensional signal when the matrix linear

transformation matrix associated to the linear system is known. We will begin with a true signal
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Figure 3.2.4: The true and distorted signals for the basis pursuit toy problem.

s(x) that is the sum of two Gaussians:

s(x) = exp[−(x+ 0.1)2

0.001
] + exp[−(x− 0.1)2

0.001
].

Next we will simulate a linear system by blurring the true signal with a Toeplitz matrix given by

Knm = r|n−m|, r = 0.99.

Finally, we complete the simulation of a linear system by adding random white noise, with standard

deviation chosen to be 0.004, to obtain our final observed/distorted signal f(x). Our goal will be

to recover s(x) from f(x). Figure 3.2.4 shows a plot of both s(x) and f(x).

The basis pursuit optimization problem is written as

minimize
s

1

2
||Ks− f ||22 + µ||s||1.
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Split Bregman aims to solve the equivalent constrained optimization problem

minimize
s,d

1

2
||Ks− f ||22 + µ||d||1

subject to s = d,

which has a scaled dual form augmented Lagrangian defined to be

L(s, d, b) =
1

2
||Ks− f ||22 + µ||d||1 +

λ

2
||s− d+ b||22.

Following the steps previously stated for Split Bregman, we complete the updates of each variable

according to

sk+1 = argmin
s

1

2
||Ks− f ||22 +

λ

2
||s− dk + bk||22,

dk+1 = argmin
d

µ||d||1 +
λ

2
||sk+1 − d+ bk||22,

bk+1 = bk + sK+1 − dk+1.

The update for the variable s is based on an unconstrained minimization of a differentiable

function. Consequently, we can differentiate and set equal to zero to find the closed form solution

for the update to be

sk+1 = (KtK + λI)−1(KTf + λ(dk − bk)).

Next, we notice that the update for the variable d can be efficiently solved using the shrinkage

operator. As a result we determine the update of d to be given by

dk+1 = shrinkage(sk+1 + bk, µ/λ).

Finally, we can update the dual variable b using a standard gradient ascent method to produce

updates of the form
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Figure 3.2.5: The true and recovered signals for the toy basis pursuit example

bk+1 = bk + sk+1 − dk+1.

Notice that there are two parameters involved in this system. The first parameter, µ, determines

how strongly we seek to force sparsity on our recovered signal. Alternatively, the second parameter,

λ, is associated with the dual variable and effectively controls the fidelity of our auxiliary variable

to its corresponding original variable. Essentially, λ governs how much of an approximate solution

to the true solution we will accept. In the context of our experiment we set µ, λ = 0.015. Lastly,

we need to implement a stopping criterion. For a stopping criterion given by sk+1 − sk < 0.001,

and the parameter values shown, we obtain the recovered signal shown in Figure 3.2.5.

3.3 Nonnegative Matrix Factorization

The setup for our Nonnegative Matrix Factorization (NMF) problem assumes that we have a

known data matrix, F, generated as product of 2 nonnegative matrices (A, B) plus white noise, as

shown in Figure 3.3.1. In this context, nonnegativity refers specifically to the entries in the matrix
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Figure 3.3.1: Schematic of how the blind matrix factorization toy data is generated.

factors A and B being nonnegative. The data matrix F may not always be nonnegative due to the

presence of noise. NMF seeks to recover A and B from the data matrix F.

Like standard numerical factorization, matrix factorization is not unique. In order to produce

a “good” factorization, additional information is needed. For example, if you are told to factor

the number 24 into two factors you could return one of several answers: 1x24, 2x12, 3x8, or 4x6.

Each factorization produces the same final answer. If instead you are asked to factor 24 into two

factors and additionally require that one factor has a magnitude equal to 3, you now only have

the factorization 3x8 (which is equivalent to 8x3 given that multiplication is commutative). In

matrix factorization, a standard approach to get at a unique solution is to implement an analogous

magnitude constraint on one of the matrix factors. This is commonly done by either fixing the

matrix norm of one factor to be equal to 1 or to require the rows (or columns) of one matrix factor

to all be of unit length. Matrix multiplication is not commutative, but even with the added norm

constraint the produced factorization is only unique up to permutation of the rows and columns of

the two matrix factors.

To determine the semi-unique matrix factors to the problem described above, we can formulate

the following optimization problem

minimize
Aij≥0,Bij≥0,||Bi||2=1

1

2
||AB− F||2F

to produce a nonnegative factorization. In this formulation, the objective function consists only

of the reconstruction error as measured by the matrix Frobenius norm. Explicitly, ||M||2F =
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trace(MTM). In some cases you may have intuition or phenomenological support for additional

structure in your matrix factors. A common type of structure that occurs is sparsity: the notion

that many entries in your matrix factors should not just be nonnegative, but exactly equal to zero.

A desire to have sparse matrix factors can be mathematically implemented by modifying the ob-

jective function by adding matrix 1-norm regularization terms to promote general matrix sparsity.

With this in mind, the optimization problem can be written as

minimize
Aij≥0,Bij≥0,||Bi||22=1

1

2
||AB− F||2F + µA|A|1 + µB|B|1,

where µA and µB are the parameters weighting the importance of sparsity in the two matrix factors.

Sparse nonnegative matrix factorization has been studied extensively as it arises in many dif-

ferent applications. There are multiple techniques to solve this exact problem as well as a handful

of slightly different formulations driving at the same problem. However, there is one issue that

is rarely explicitly addressed. In the numerical factorization analogy the problem was posed as

“factor 24 into two factors, one with magnitude 3” to arrive at the factorization 3x8. What if the

specification for two factors is omitted? Again there is no unique solution even if only integer

factors are considered! The analogous challenge in matrix factorization manifests as the shared

dimension of the matrix factors: the internal factoring dimension.

Given a generic M×N matrix, it can forcibly be factored into an M×L and L×N matrix factor

pair, for any L. We refer to this L as the internal factoring dimension. In some (limited) appli-

cations where the system producing the data is known perfectly and the internal dimension has

a specific interpretation, one might know L ahead of time. How does one choose the correct L

when not working with data arising in this ideal scenario? A heuristic approach might be to find

the “optimal” factors for L=1, 2,... and so on and pick the optimal L based on a chosen metric

(like matrix reconstruction error). This feels ad hoc and minimally satisfactory. Consequently, we

propose an approach to address this issue in Section 3.5.2.
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3.3 Split Bregman for Sparse Nonnegative Matrix Factorization

As a generic example, consider the sparse nonnegative matrix factorization as described. Let

F be the MxN data matrix, A be the MxL matrix factor, and B be the LxN matrix factor, with

bothA andB sparse, and let L be known. For well-posedness we add the magnitude constraint to

the matrixB as ||Bi||2 = 1. With this added constraint our optimization problem becomes

minimize
A,B,||Bi||2=1

1

2
||AB − F ||2F + µA|A|1 + µB|B|1,

where µA and µB are the parameters enforcing sparsity on the two matrices. Our first step for

implementing Split Bregman is to write the equivalent constrained optimization problem

minimize
A,B,a,b||bi||2=1

1

2
||AB − F ||2F + µA|a|1 + µB|b|1

subject to a = A

b = B.

This constrained problem has augmented Lagrangian given by

L(a, b,A,B, cA, cB) =
1

2
||AB−F ||2F+µA|a|1+µB|b|1+

λA
2
||a−A+cA||2F+

λB
2
||b−B+cB||2F .

Next, we compute the following updates

70



an+1 =argmin
a

L(a, bn,An,Bn, cnA, c
n
B),

bn+1 = argmin
b,||bi||2=1

L(an+1, b,An,Bn, cnA, c
n
B),

An+1 =argmin
A

L(an+1, bn+1,A,Bn, cnA, c
n
B),

Bn+1 =argmin
B

L(an+1, bn+1,An+1,B, cnA, c
n
B),

cn+1
A =cnA +An+1 − an+1,

cn+1
B =cnB +Bn+1 − bn+1.

We note that there is more than one order in which the user can choose to update the variables

although only one is shown.

Updating a and b can be done using the matrix shrinkage operator and then, for b, normalizing

with respect to the matrix norm. Resultantly, we have

an+1 = shrinkage(An + cnA −
µA
λA

),

bn+1 = shrinkage
(Bn + cnB −

µB
λB

)

||(Bn + cnB −
µB
λB

)||F
.

The updates for bothA andB are solutions to unconstrained minimizations of differentiable func-

tions and consequently have closed form solutions given by

An+1 = (F (Bn)T + λa(a
n+1 − cnA))(((Bn)(Bn)T + λAI)−1,

Bn+1 = (((An+1)T (An+1) + λBI)−1((An+1)TF + λB(bn+1 − cnB)).

Finally, the updates of the dual variables cA and cB are still completed using gradient ascent.
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3.4 Split Bregman Applied to FAL

3.4 Writing the FAL Model for Split Bregman

Based on the mathematical model describing FAL, our goal becomes to estimate ρ and C at

each burst while minimizing the sum of square error, ||G − ρC||22. The columns of ρ will act

as backscatter feature vectors to be used for the purpose of identification of aerosols, while the

rows of C will be used for tracking each aerosol over time. We follow the problem formulation

proposed in [34] for 1-norm regularized optimization2. The resultant optimization problem is

minimize
||ρi||2=1,ρij≥0,Cij≥0

µρ|ρ|1 + µC |C|1 +
1

2
||G− ρC||2F ,

where G is the preprocessed data from a single burst. An example of G is the matrix shown in

Figure 3.1.10. The non-negativity constraints on ρ andC come from the physical interpretation of

the matrices: it does not make sense to have negative concentration or a negative backscatter cross

section. This optimization problem is nonnegative matrix factorization and it can be efficiently

solved using the Split Bregman algorithm.

As we have previously seen, the first step to implementation of the Split Bregman algorithm is

to create the equivalent constrained optimization problem given by

minimize
ρ,C,r,c,||ri||2=1,rij≥0,cij≥0

µρ|ρ|1 + µC |C|1 +
1

2
||G− ρC||2F

subject to r = ρ

c = C.

The corresponding augmented Lagrangian is

2Implementation of the Split Bregman algorithm to produce results is based on code written by the author of this
document and can be made available upon request.
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L(r,ρ, br, c,C, bc) = µρ|r|+ µC |c|+
1

2
||G− ρC||2F +

λρ
2
||r − ρ− br||2F +

λC
2
||c−C − bC ||2F .

From the augmented Lagrangian we have the following updates

Cn+1 =argmin
C

L(rn,ρn, bnr , c
n,C, bnc ),

cn+1 =argmin
c,cij≥0

L(rn,ρn, bnr , c,C
n+1, bnc ),

bn+1
C =bnC +Cn+1 − cn+1,

ρn+1 =argmin
ρ

L(rn,ρ, bnr , c
n+1,Cn+1, bn+1

c ),

rn+1 = argmin
r,rij≥0,||ri||2=1

L(r,ρn+1, bnr , c
n+1,Cn+1, bn+1

c ),

bn+1
ρ =bnρ + ρn+1 − rn+1.

Updating C is, as we have seen before, an unconstrained minimization of a differentiable

function yielding a closed form for the update given by

Cn+1 = (((ρn)T (ρn) + λCI)−1((ρn)TG+ λC(cn − bnC)).

Due to the non-negativity constraint on c we can compute the update as the maximum of the

shrinkage operator and zero to yield

cn+1 = max(Cn+1 + bnC −
µC
λC

, 0).

The update of the dual variable bC comes, again, from gradient ascent. Using the same rationale

as for the updates of C and its associated variables, we obtain the updates for the ρ associated

variables to be
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ρn+1 = (G(Cn+1)T + λρ(r
n − bnr ))(((Cn+1)(Cn+1)T + λρI)−1,

rn+1
i =

(max(ρn+1 + bnr −
µC
λC
, 0))i

||(max(ρn+1 + bnr −
µC
λC
, 0))i||2

.

Pseudocode for can be seen in [34]. Note that there is an error in the formula for the update of ρ

in [34].

3.4 FAL Factorization Results

In the data we have, there are several data cubes containing a single labeled aerosol release with

known background and release burst indices. Although only one release is labeled, there are in fact

three releases per cube. Seven of the data cubes contain two non-overlapping labeled aerosols with

known background and release burst indices. Due to the aerosols not overlapping in burst we can

use a model in which only one aerosol is present at a time, i.e. L = 1.

Figure 3.4.1 shows the quality of data reconstruction for both the Split Bregman and Kalman

filter approaches applied to a single data cube containing one labeled release of the bio-toxin

simulant Ovalbumin. The order of magnitude of the residuals for both methods is 10−2 resulting

in errors up to 10% of the size of the original scale. However, we note that the overall error for the

Split Bregman approach [34] is smaller than that of the originally proposed Kalman filter approach

in [35]. Unless otherwise stated, results were generated using parameter values set at

• λρ = λC = 0.05,

• µC = µρ = λ2
ρ,

• with a minimum range of interest equal to 0.05km.

In Figure 3.4.2 we see all of the concentration and corresponding feature vectors for an entire

data cube containing a single labeled release of Ovalbumin. We notice several things about these

results. First, the angle of the aerosol cloud in the concentration image is consistent with the fact

that aerosol is released at the end of a tunnel and blown, by a fan, towards the near end of the tunnel.

Second, the appearance of concentration does not occur until later than the labeled starting burst
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Figure 3.4.1: The top image is data from a single burst containing aerosol. Middle left image is the recon-
struction of the data obtained from the output of Split Bregman while the middle right image is the residuals
of the reconstruction on the left. Lower left image is the reconstruction of the data obtained from the output
of the Kalman filtering processing while the lower right image is the residuals of the reconstruction on the
left.
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Figure 3.4.2: The image on the left contains all the concentration vectors for a single data cube with a
labeled Ovalbumin release during the bursts bounded by the red box. On the right is an image of all of the
feature vectors produced by Split Bregman. Burst index increases from top to bottom and range increases
from left to right.

index and it also disappears before the terminating burst index. The high concentrations which

show up at later bursts could be an additional unlabeled release, but this cannot be confirmed

as this data cube only had one of three releases labeled. Additionally, we can see that when the

concentration is nonzero over a set of bursts (an aerosol cloud is present) the feature vectors become

more uniform over the corresponding group of bursts.

There were a total of four data cubes, obtained on three different days, which had labeled

releases of Ovalbumin. Selecting all of the feature vectors produced at labeled bursts from the four

data cubes allows us to discuss the variance of a feature vector. In Figure 3.4.3 we see the 95%

confidence interval for an Ovalbumin feature vector taken from the four different data cubes. A

great deal of the variance of the feature vectors can be attributed to the fact that the output of Split

Bregman seems to consistently start detecting presence late and terminates too early.

Moreover, if we perform Split Bregman on a data cube with two labeled releases, results of

which are shown in Figure 3.4.4, suggest that the feature vectors detected during the two differ-

ent labeled releases do in fact contain differentiating information. The quantity of differentiating

information will be presented in the Discussion section.
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Figure 3.4.3: The 95% confidence interval for an Ovalbumin feature vector.

Figure 3.4.4: The image on the left contains all the concentration vectors for a single data cube with a
labeled Ovalbumin release (bounded by the red box) and a labeled Smoke release (bounded by the magenta
box). On the right is an image of all of the feature vectors produced by Split Bregman. Burst index increases
from top to bottom and range increases from left to right.
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The results of Split Bregman on the FAL unmixing problem show great potential, but is not

free from its own challenges. For example, the quality of the preprocessed data will effect the

performance of the algorithm. Additionally, the method is highly sensitive to parameter value

selection. Due to the updates which depend on the parameters (r and c particularly), it is possible

to end up with non numerical solutions. These are important challenges to keep in mind as areas

with room for improvement in future work.

3.5 Discussion

3.5 Modification of Split Bregman Applied to FAL

This discussion piece primarily focuses on the choice of regularization norms being used in the

optimization problem. While the phenomenology of the model suggests that concentration should

be sparse with respect to range at a given burst (due to the localization of an aerosol cloud), there is

no such argument to support the claim of sparsity in the backscatter feature vector. Each molecule

will have some nonzero backscatter cross section for each of the wavelengths.

Solving

minimize
||ρi||2=1,ρij≥0,Cij≥0

µρ|ρ|1 + µC |C|1 +
1

2
||G− ρC||2F (3.5.1)

using the Split Bregman algorithm for a single data cube containing one labeled release of

Ovalbumin produces the results shown in Figure 3.5.1.

Since we have labeled burst indices for background, Ovalbumin, and Smoke, we can plot all of

the one dimensional feature vectors from labeled bursts according to their label, shown in Figure

3.5.2. We see that the greatest variance occurs in the background feature vectors. Additionally, we

see that there appears to be strong similarities in the shape of a feature vector within an aerosol

class (Ovalbumin or Smoke) and across class differences. The significance of the across class

differences is highlighted in Figure 3.5.3. There is enough differentiating information contained

in the feature vectors to obtain separation of the classes in the space spanned by the first three
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Figure 3.5.1: The image on the left contains all the concentration vectors for a single data cube with labeled
Ovalbumin and Smoke releases. On the right is an image of all of the feature vectors produced by 1-norm
regularized Split Bregman. Burst index increases from top to bottom and range increases from left to right.

principal components of the data cube’s feature vectors. We note that with each of the aerosols you

see one primary direction in which there is nontrivial variance.

Use of the 1-norm for regularization of ρ introduces the need for one auxiliary variable, which

in turn puts into action a constraint and corresponding dual variable and fidelity parameter. Thus,

by considering a 2-norm regularization of ρ we reduce the complexity of the model from six

variables and four parameters to four variables and three parameters. The optimization problem

for a 2-norm regularized ρ is given by

minimize
||ρi||2=1,ρij≥0,Cij≥0

µρ||ρ||2 + µC |C|1 +
1

2
||G− ρC||2F . (3.5.2)

Split Bregman can still be used to solve this optimization problem. We take this opportunity

to note that 2-norm regularization on ρ can be considered redundant. Since the normalization (for

well posedness) is placed on ρ via row-wise 2-norm normalization, the 2-norm regularization term

in the objective function is in actuality an additive constant. With this acknowledged, the imple-

mentation and results presented were produced with this redundancy in place. This choice was

made so that our initial objective function was consistent with the form of the objective function

used by [39] which will be discussed as a point of comparison. Throughout the the remainder of
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Figure 3.5.2: All the feature vectors from labeled bursts grouped according to label as produced by 1-norm
regularized Split Bregman.

this chapter if l2 is present in a figure title, or caption, it refers to results from using Split Bregman

to solve Equation 3.5.2. Similarly, l1 indicates results generated from using Split Bregman to solve

Equation 3.5.1. The expressions “1-norm Split Bregman” and “l1” are used interchangeably, as are

“2-norm Split Bregman” and “l2.”

With only one non differentiable term in the objective function we only need to introduce one

auxiliary variable to produce the constrained problem

minimize
C,c,||ρi||22=1,ρij≥0,cij≥0

µρ
2
||ρ||2F + µC |C|1 +

1

2
||G− ρC||2F

subject to c = C,

with corresponding augmented Lagrangian

L(ρ, c,C, bc) =
µρ
2
||ρ||22 + µC |c|+

1

2
||G− ρC||2F +

λC
2
||c−C − bC ||2F .
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Figure 3.5.3: All labeled feature vectors projected onto the space spanned by the first three principal com-
ponents of the full data cube feature vector set as produced by 1-norm regularized Split Bregman.

From the augmented Lagrangian we have the following updates

Cn+1 =argmin
C

L(rn,ρn, bnr , c
n,C, bnc ),

cn+1 =argmin
c,cij≥0

L(rn,ρn, bnr , c,C
n+1, bnc ),

bn+1
C =bnC +Cn+1 − cn+1,

ρn+1 =argmin
ρ

L(rn,ρ, bnr , c
n+1,Cn+1, bn+1

c ).

The updates for the first three variables are the same as for the 1-norm regularized problem, while

now the update for ρ has a closed form given by

ρn+1
i = ((G(Cn+1)T )(µρI + (Cn+1)(Cn+1)T )−1)i.
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Figure 3.5.4: The image on the left contains all the concentration vectors for a single data cube with labeled
Ovalbumin and Smoke releases. On the right is an image of all of the feature vectors produced by 2-norm
regularized Split Bregman. Burst index increases from top to bottom and range increases from left to right.

Using the same value for the three parameters as were used in the 1-norm regularized problem,

we produce the results shown in Figure 3.5.4. Figure 3.5.5 shows the magnitude of the difference

between the concentration estimates and feature vectors produced the two different approaches.

As an added benefit, we see a decrease in computational time: l1 regularization takes about 12

seconds to solve for a single data cube, while l2 regularization takes about 3 seconds.

The feature vectors produced by the 2-norm regularized algorithm plotted and grouped accord-

ing to label are shown in Figure 3.5.6. Notice that there is an apparent decrease in the within class

variance in Figure 3.5.6 compared to Figure 3.5.2. This reduction in variance is shown, also, in

the three dimensional PCA of the 2-norm feature vectors shown in Figure 3.5.7. Although the

separation of the aerosol classes from the background class is weaker in Figure 3.5.7, the separa-

tion between the aerosol classes is still clear. This begs the question whether it is appropriate to

perform the detection based on the feature vector or the concentration. If you want to detect based

on the feature vector, as proposed in [34], the 1-norm regularized feature vectors have stronger

separability but at the expense of greater variance.

Running both the 1-norm and 2-norm regularization of feature vectors on multiple data cubes

and plotting the two dimensional PCA of feature vectors suggests the superiority of the 2-norm

approach. Principal components were determined based on the feature vectors of the entire data
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Figure 3.5.5: The image on the left contains the magnitude of the difference between the 1-norm and 2-
norm concentration vectors on the same data cube with labeled Ovalbumin and Smoke releases. On the right
is an image of all of the magnitude of the difference between the 1-norm and 2-norm feature vectors. Burst
index increases from top to bottom and range increases from left to right.

Figure 3.5.6: All the feature vectors from labeled bursts grouped according to label as produced by 2-norm
regularized Split Bregman.
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Figure 3.5.7: All labeled feature vectors projected onto the space spanned by the first three principal com-
ponents of the full data cube feature vector set as produced by 2-norm regularized Split Bregman.

cube, but only feature vectors corresponding to concentrations larger than the upper bound of the

99% confidence interval of the background concentration were plotted. Figures 3.5.8,3.5.9, and

3.5.10 are examples of the 2-norm Split Bregman feature vectors reducing the variance, relative

to the 1-norm feature vectors, within obvious clusters. Alternatively, Figure 3.5.11 is an example

of a data cube on which the number of distinct clusters differs between the 1-norm and 2-norm

feature vectors. Finally, Figure 3.5.12 shows an example of a data cube in which neither approach

produced strong separation in the two dimensional case. However, it could be argued that there

is a more obvious breaking point between two clusters for the feature vectors from the 2-norm

approach.

Visualization of the feature vectors in two dimensions based on a concentration threshold sug-

gests that the 2-norm regularization of feature vectors is advantageous. We do not mean to sug-

gest that detection should be done based on concentration since determining a threshold requires

previous knowledge of background burst indices and is consequently impractical for an online
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Figure 3.5.8: The left image is the 2-D PCA projection of background concentration selected feature vectors
from the 1-norm Split Bregman. On the right, is the 2-D PCA projection of background concentration
selected feature vectors from the 2-norm Split Bregman.

Figure 3.5.9: The left image is the 2-D PCA projection of background concentration selected feature vectors
from the 1-norm Split Bregman. On the right, is the 2-D PCA projection of background concentration
selected feature vectors from the 2-norm Split Bregman.

Figure 3.5.10: The left image is the 2-D PCA projection of background concentration selected feature vec-
tors from the 1-norm Split Bregman. On the right, is the 2-D PCA projection of background concentration
selected feature vectors from the 2-norm Split Bregman.
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Figure 3.5.11: The left image is the 2-D PCA projection of background concentration selected feature vec-
tors from the 1-norm Split Bregman. On the right, is the 2-D PCA projection of background concentration
selected feature vectors from the 2-norm Split Bregman.

Figure 3.5.12: The left image is the 2-D PCA projection of background concentration selected feature vec-
tors from the 1-norm Split Bregman. On the right, is the 2-D PCA projection of background concentration
selected feature vectors from the 2-norm Split Bregman.

Figure 3.5.13: The image on the left contains all the concentration vectors for a single data cube with
labeled Ovalbumin and Smoke releases. On the right is an image of all of the feature vectors produced by
the non-negative matrix factorization method described in [39]. Burst index increases from top to bottom
and range increases from left to right.
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algorithm. Identification has successfully been done based on the feature vectors in [34, 40]. Al-

though the background is not strongly separated from the other classes for all data cubes in lower

dimensions, this does not imply a lack of separability in the ambient space of feature vectors.

It is important to note that Split Bregman is not the unique method for solving this problem.

As we have previously stated, the problem is essentially a sparse non-negative matrix factoriza-

tion (NMF) problem. The area of NMF has grown and there are many methods which could be

applicable. For example, another method proposed in [39] also has one 1-norm regularized factor

and one 2-norm regularized factor. Additionally, the method in [39] only requires at most two

parameter values based on the desired level of sparseness. Implementing the code provided in the

paper one can obtain the concentrations and feature vectors shown in Figure 3.5.13. In order to

implement this method we first remove all negative values from the data matrix (which are there

as an artifact of the side lobes after deconvolution). Moreover, we choose that we do not want

to enforce any level of sparsity on the feature vectors while we would like a sparsity level of 0.8

for the concentration (as defined in [39]). Finally, we note a difference in the color scale between

this method and the Split Bregman approach. Our Split Bregman approach regularizes the feature

vector matrix, while the NMF method regularizes the concentration matrix.

The Split Bregman approach seems to be superior in several ways when the output is compared

to that of the [39] method. For example, the feature vectors have lower variance and there is

less concentration showing up in the beginning background bursts. However, the concentration

vectors from Split Bregman show less movement of the aerosol than the concentrations shown in

Figure 3.5.13. We do not claim optimality in either case, but rather wish to highlight that multiple

approaches to the problem could be taken each with their own challenges and assets.

Another area for potential improvement would be to use elastic net regularization on the con-

centration. Concentration should be sparse over range, but it is also correlated over range within

the aerosol cloud. As we have stated, 1-norm regularization tends to suppress all but one of the

variables from within a correlated group of variables [37, 38]. Since aerosol clouds at a near range
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pose a great threat, it is important to take necessary measures to ensure the most accurate ranges

for aerosol presence.

3.5 Internal Dimension Identification via Average Vector Sparsity

The first approach leverages the nonnegativity constraint through the addition of another reg-

ularization term in the objective function. Consider a nonnegative matrix A. If the average value

of a row of A is zero then necessarily all the elements of the row must be zero to honor the non-

negativity constraint. As a result, if we consider the vector α that contains the row averages for

A, by promoting sparsity in α extraneous dimensions might be identified. This could be paired

with general matrix sparsity as in the previous formulation. The constrained optimization problem

becomes

minimize
A,B,||Bi||22=1

1

2
||AB− F||2F + µA|A|1 + µB|B|1 + µα|α|1 + µβ|β|1

subject to α =
1

M
11xMA

Aij ≥ 0

Bij ≥ 0,

αj ≥ 0,

where A is the M×L matrix factor, B is the L×N matrix factor, and µA, µB, and µα are user speci-

fied parameters. Not all regularization terms should necessarily be present in general. For example,

if there is phenomenological support only for the sparsity of A then µB should be zero. Addition-

ally, while the formulation above regularizes based on the vector of row averages of A, this could

alternatively be done for the vector of column averages for B if the matrix norm constraints were

switched to A. The regularization term for α can be present in the absence of generalized matrix

sparsity terms so long as the nonnegativity constraint is present for A.

The premise of this approach requires knowledge of an upper bound for the internal factoring

dimension. The tighter the upper bound, the better one expects this approach to perform. Results
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on synthetic data will be discussed. A potential draw back to this method is that there are several

user specified parameter values involved in determining the optimal solution.

Split Bregman has been successfully used to solve the sparse nonnegative matrix factorization

problem with internal factoring dimension known (insert citation). It can also be employed to solve

our amended version. Split Bregman is implemented as follows. First, we begin with our initial

optimization problem.

minimize
1

2
||AB− F||2F + µA|A|1 + µB|B|1 + µα|α|1 + µβ|β|1

subject to α =
1

M
11xMA

Aij ≥ 0

Bij ≥ 0

αj ≥ 0

||Bi||22 = 1.

We then write the equivalent constrained optimization problem with the introduction of two auxil-

iary variables a and b.

minimize
1

2
||AB− F||2F + µA|a|1 + µB|b|1 + µα|α|1 + µβ|β|1

subject to α =
1

M
11xMA

a = A, aij ≥ 0

b = B, bij ≥ 0

αj ≥ 0 and ||bi||22 = 1.

Next, we compute the scaled form augmented Lagrangian for this constrained problem as
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L(a,b,α,A,B, cA, cB, cα) =
1

2
||AB− F||2F + µA|a|1 + µB|b|1 + µα|α|

+
λA
2
||a−A− cA||2F +

λB
2
||b−B− cB||2F

+
λα
2
||α− 1

M
11xMA− cα||2F .

Continuing the implementation of the algorithm involves splitting variables and alternating be-

tween primal and dual variable updates. That is to say, we update a single variable at a time while

keeping all others fixed. Consequently, we seek the following updates:

an+1 =argmin
a

L(a,bn,αn,An,Bn, cnA, c
n
B, c

n
α),

bn+1 = argmin
b,||bi||22=1

L(an+1,b,αn,An,Bn, cnA, c
n
B, c

n
α),

αn+1 =argmin
α

L(an+1,bn+1,α,An,Bn, cnA, c
n
B, c

n
α),

An+1 =argmin
A

L(an+1,bn+1,αn+1,A,Bn, cnA, c
n
B, c

n
α),

Bn+1 =argmin
B

L(an+1,bn+1,αn+1,An+1,B, cnA, c
n
B, c

n
α),

cn+1
A =cnA + An+1 − an+1,

cn+1
B =cnB + Bn+1 − bn+1,

cn+1
α =cnα +

1

M
11xMAn+1 −αn+1.

The variables, cA, cB, and cα are dual variables and are updated using gradient ascent. The vari-

ables a, b, andα are updated using the shrinkage operator (together with a normalization step for

the rows of b) as follows:

an+1 = shrinkage(An + cnA −
µA
λA

1MxL),

αn+1 = shrinkage(
1

M
11xMAn + cnα −

µα
λα

1Lx1),

bn+1
i = shrinkage

(
(Bn + cnB −

µB
λB

1LxN)i

||(Bn + cnB −
µB
λB

1LxN)i||2

)
.
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Variable B has a closed form update equal to

Bn+1 = (((An+1)T (An+1) + λBIL)−1((An+1)TF + λB(bn+1 − cnB)).

Finally, the update of variable A doesn’t have a closed form because of the introduction of α and

is instead computed using gradient descent based on

dL

dA
= −λα(a−A− cA) + ABBT − FBT − λα

M
1Mx1(α− 1

M
11xMA− cα).

This algorithmic approach to solving the proposed optimization problem is computationally quick

and often requires a relatively small number of iterations for a fixed set of weighting parameter

values. The one glaring drawback to the approach is the need for 6 user specified parameter

values and consequently the need for a search of a six dimensional parameter space for optimal

values when training data is available. Our second approach trades the need for user specification

of parameters for a more computationally expensive solver. Finally, we note that the number of

parameters is reduced by two, or four, when there is no sparsity expected in one, or both, of the

individual matrix factors. This is to say, our proposed approach is still viable and logically sound

in the case of general nonnegative matrix factorization.
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Chapter 4
Reduced Rank Oblique Projections and Oblique Pseudo Inverses
for Controlling Bias and Variance in Estimators

Presented here is a framework for dimension reduction by controlling the bias-variance trade

in estimators for components of the linear mixing model (LMM). Optimally reduced rank matrices

produce estimators of components of the LMM which belong to lower dimensional spaces than

those produced via full rank variations. The LMM assumes that each observation can be written

as a linear combination of signal and noise and is a prevalent tool used in signal processing and

regression analysis [41, 42, 43, 44, 45, 46, 47, 48, 49]. Left multiplication of measurements of the

LMM by particular full-rank matrices allows unbiased estimation of components of the LMM. We

consider multiplication by reduced rank matrices resulting in a trade off between bias and variance.

The LMM has been used to consider detection problems in hyperspectral images [41, 42, 43,

44], linear block encoding [50, 51], polynomial regression [49], and modal analysis [52, 53, 54].

Polynomial regression and modal analysis are two other important examples of a LMM. In one case

polynomials of known degree determine the mixing matrix, and in the other, complex exponential

modes determine the mixing. Dimensionality reduction has been applied within the context of the

LMM as a preprocessing step but not from the perspective of reducing the dimension of estimators.

That is to say, dimensionality reduction has been applied to the high dimensional data that is

modeled by the LMM but not to the dimension of components of the LMM. Unlike the application

of dimensionality reduction to the data directly, reducing the dimension of component estimators

produces strict, interpretable order determination rules dependent on parameter values that are

naturally bounded for real data.

Considered herein is the LMM which includes two types of noise: structured interference and

white noise. Corrupted receiver channel(s) is an example of structured interference. In many

applications considered, the white noise comes from sensor and equipment noise while the struc-

tured interference comes from the setting of the experiment or something external to the sensing

equipment.
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The geometric setting of and background for the linear mixing model is described in Section

4.1. Section 4.3 presents our approach for producing reduced dimension estimators for components

of the linear mixing model: namely the signal mode weight vector and signal component of the

data. Focus is placed on the derivation of an objective function for determining estimators of

optimal rank. The derived framework is applied to two applications. The first application involves

the use of hyperspectral imaging for ground cover identification and is presented in Section 4.4.

Also described in Section 4.4 is generalized modal analysis. Experimental designs and results are

presented in Section ??. Finally, we discuss the implications of our findings in Section ??. Work

presented here is an extension of the work [4] which had a narrowed scope focusing exclusively

on the formulation of a reduced dimension matched subspace detector based on a specific reduced

dimension estimator. The extended version of [4] is currently in preparation for submission.

4.1 Background

The linear mixing model can be written as

y = Hθ + Sφ+ n (4.1.1)

where the columns of H are a basis for the signal subspace, 〈H〉, H ∈ Cb×h, θ ∈ Ch is the vector

of signal mode weights, the columns of S ∈ Cb×s, are a basis for the interference subspace 〈S〉,

φ ∈ Cs is the vector of interference mode weights, and n is white noise with covariance matrix

β2I. We assume that θ and φ are random vectors with known covariance matrices. Additionally,

we assume that H and S have the trivial intersection. It is useful to discuss the geometry of the

linear mixing model. The signal, x = Hθ ∈ Cb is the component of the data contained in the h

dimensional signal subspace of Cb spanned by the columns of H. The interference w = Sφ ∈ Cb

is the data contained in the s dimensional interference subspace of Cb spanned by the columns of

S. Consequently, the sum x + w = Hθ+ Sφ ∈ Cb is a vector in the h+ s dimensional subspace of

Cb spanned by the combined column spaces of H and S. The direct sum of the two spaces will be
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denoted as 〈H〉 ⊕ 〈S〉. The orthogonal projection of y onto the space 〈H〉 ⊕ 〈S〉 is denoted PHS

where

PHS = [H,S][[H,S]H [H,S]]−1[H,S]H

and [H,S] indicates a block matrix composed of the signal and interference basis matrices. Since

we are assuming that x + w ∈ 〈H〉 ⊕ 〈S〉 we have that PHS(x + w) = x + w.

The orthogonal projection PHS can be decomposed as

PHS = P⊥S + PG

where P⊥S is the orthogonal projection onto the orthogonal complement space of 〈S〉 and PG is

the orthogonal projection onto 〈G〉 where G = P⊥SH is the subspace of 〈H〉 contained in the

orthogonal complement space of 〈S〉 (henceforth to be referred to as 〈S⊥〉). Alternatively, we can

resolve the orthogonal projection PHS as

PHS = EH,S + ES,H

where EH,S is the oblique projection onto 〈H〉 in the direction of 〈S〉 and ESH is the oblique

projection onto 〈S〉 in the direction of 〈H〉. A diagram of the decomposition of ambient data

space, as well as the connections between the different projections of an observation, is given in

Figure 4.1.1.

4.2 Related Work

While understanding the geometry of the space of the LMM is informative, in practice one is

likely to be interested in estimating specific components of the LMM. For example, the relative

weights of the different signal dimensions (θ) are often of interest. Under the LMM, the expected

coherence matrix of the observed data y for the assumptions E[θθH ] = Rθθ, E[φφH ] = Rφφ, and

E[nnH ] = β2I is
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Figure 4.1.1: A diagram of the decomposition of the ambient space of data including their geometric
relationships.

Ryy = E[yyH ] = HRθθH
H + SRφφS

H + β2I

where E[∗] indicates expectation. In general we will use the notation Rab = E[abH ].

We define X to be the component of the LMM that we seek to estimate, and use x̂ to be an

estimator of x. We assume that x̂ can be produced by multiplying the observed data y by some

matrix Q. That is, x̂ = Qy. In this setting we call Q a linear estimator. Furthermore, we define

the error of this estimator to be n̂ = x − x̂. When one seeks to minimize the mean squared error

over all possible linear estimators, the matrix Q which achieves that minimum error is called the

Linear Minimum Mean-Squared Error (LMMSE) estimator. It has been shown that the LMMSE

estimator for x is produced whenQ = RxyR
−1
yy [55].

For the case where x = θ then the LMMSE estimator is Q = RθθH
HR−1

yy . The estimator for

θ resulting by from left multiplication by this operator (θ̂ = RθθH
HR−1

yy y) is an unconditionally

unbiased estimator of θ. However, despite minimizing the mean squared error, the LMMSE esti-

mator is conditionally biased. That is to say, given θ0, E[θ̂|θ0] = RθθH
HR−1

yy Hθ0 6= θ0. This may

be an undesirable statistical property. An alternative estimator for θ results from left multiplication

by L = LHS = (HHP⊥SH)−1HHP⊥S . In the literature this matrix is called the oblique pseudo

inverse. Multiplication by L produces an estimator that is both unconditionally and conditionally

unbiased.
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This alternative estimator will produce a larger mean squared error (except in the case where

the sensor noise tends to zero), but may have more desirable statistical properties depending on

user preferences. Analogously, a conditionally and unconditionally unbiased estimator for Hθ can

be produced by left multiplication by the oblique projection onto the signal space in the direction

of the interference space given by E = EHS = H(HHP⊥SH)−1HHP⊥S . Again, this matrix differs

from the LMMSE operator but does not suffer from be conditionally biased. Additional details

can be found in [48]. The framework presented in the next section uses reduced rank versions of

the matrices L and E produce biased estimators in the case where the mean squared error of the

estimator can be reduced by systematically introducing bias in exchange for lower variance.

Reduced rank matrices have been considered in the literature as a means to produce reduced

dimension estimators. In the existing literature the question posed is of the form “ for a given r

how can we produce the best estimator of dimension r?” Equivalently, “ for a given r how do we

construct the best rank r version of our linear estimator?” To answer these questions authors try

control some aspect of the error covariance matrix,

E[n̂n̂H ] = E[(x− x̂)(x− x̂)H ] = E[(x−Qy)(x−Qy)H ] = Z.

When a rank r, where r < rank(Q), version of Q is used to produce an estimator the error

covariance matrix is altered. Let the r dimensional estimator of x produced by the rank r version

ofQ be denoted x̂r with x̂r = Qry. The error covariance matrix for the dimension r estimator is

E[(x−Qry)(x−Qry)H ] = Z + (Q−Qr)Ryy(Q−Qr)
H = Z +Kr.

The approaches in [55] and [56] yield rules for producing rank r variations of Q that minimize

tr(Kr) or det(Kr), respectively. This is done by minimizing over all rank r versions of Q and in

both cases the optimal rank r version is constructed by truncating the singular value decomposition

of a particular matrix.
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Our proposed framework differs from the existing literature in a few keys ways. First, in

the works discussed they consider rank r versions of the LMMSE estimator for the component

of interest. As we previously metioned, there are other linear estimators that yield larger mean

squared errors but have more desirable statistical properties. In our approach we consider reduced

rank versions of the oblique pseudo-inverse and oblique projection, which differ from the LMMSE

estimators, to yield reduced dimension versions of θ and Hθ. Additionally, we seek to minimize

the mean squared error of the estimator as a function of the rank explicitly. Instead of finding the

best rank r version of our estimator, we minimize the mean squared error over all possible ranks.

This allows us to simultaneously identify the optimal rank of our estimator as well as produce order

determination rules for the construction of the optimal rank matrix. Finally, unlike the exisiting

methods, the reduced rank versions of our estimators can achieve lower mean squared errors than

their full rank counterparts. This is not the case when you consider a reduced rank variation of the

LMMSE estimator.

4.3 Reduced Dimension Estimators

Suppose that you have multi-dimensional signal and interference subspaces. Multiplying the

measurement, y, by a specific matrix allows one to estimate the signal mode weight vector θ or to

estimate the signal component Hθ, as described in the previous section. Structured rank reduction

on the multiplying matrix allows one to produce a reduced dimension estimator for θ, or Hθ, that

takes into consideration the statistical properties of the estimator. The objective functions are based

on minimization of the mean squared error of the reduced rank estimator. Minimization of the

mean square error of the estimator yields a conditionally and unconditionally unbiased estimator

whose variance can be controlled with dimension reduction by systematically introducing bias.

Following are the derivations of the objective functions for optimal rank determination as well as

the associated order determination rule for each component of interest.
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4.3 Optimal Dimension Determination for Signal Mode Weight Vector Estimation

Begin by assuming that the observed data can be modeled by the linear mixing model of Equa-

tion 4.1.1. Consider the matrix L = LHS = (HHP⊥SH)−1HHP⊥S ∈ Ch×b. We refer to this matrix

as the oblique pseudoinverse. It has two useful properties which will be exploited. First, LH = I

and secondly that LS = 0.

Multiplying on both sides of the linear mixing model by L we obtain

θ̂ = Ly = LHθ + LSφ+ Ln = θ + Ln,

where Ln is now colored noise. Consequently, we see that θ̂ is an unbiased estimator of θ. The

conditional error covariance matrix for this unbiased estimator is

V = E[(θ̂ − θ)(θ̂ − θ)H|θ] = β2LLH = β2(HHP⊥SH)−1

when E[nnH ] = β2I. The corresponding variance is

V = tr[V] = β2tr[LLH ] = β2tr[(HHP⊥SH)−1]

for this unbiased estimator. Recall that for an unbiased estimator the mean squared error is equal

to the variance. The matrix L may be given a thin Singular Value Decomposition (SVD),

L = UΣVH , Σ = diag[σ1, σ2, ..., σh], σ1 ≥ σ2 ≥ ... ≥ σh. Consequently, the corresponding

unbiased estimator error covariance matrix has eigenvalue decomposition β2LLH = β2UΣ2UH ,

and the σi determine a concentration ellipse. The matrix LLH = (HHP⊥SH)−1, so the eigenvalues

of LLH are the inverses of the eigenvalues of (HHP⊥SH), which we write as

σ2
i =

1

evh−i+1(HHP⊥SH)

=
1

evh−i+1(GHG)
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where G = P⊥SH and evk(∗) indicates the k-th largest eigenvalue of the matrix. When the sub-

spaces 〈H〉 and 〈S〉 are close, then some eigenvalues of the Grammian GHG will be small, some

eigenvalues of LLH will be large, some principal axes of LLH will be lengthy, and the mean

squared error of the unbiased estimator (the variance) will be large. Perhaps it can be reduced by

introducing bias. This concept is often referred to as the bias-variance trade. It is in this problem

that we find the motivation for dimension reduction. Let Lr be a reduced rank variant of L.

Multiplying the measurement by Lr, instead of L we produce a reduced dimension estimator, θ̂r,

defined as

θ̂r = Lry = LrHθ + LrSφ+ Lrn.

The estimator θ̂r is no longer unbiased, and the variance of θ̂r is no longer V. This motivates the

question, how do we determine an optimal r?

We propose to determine an optimal r by minimizing the mean square error (MSE) of the

estimator θ̂r. Recall that MSE(θ̂r) = E[||θ̂r − θ||22] where E[∗] is expectation. First, define the

mean square error as a function of our reduced dimension estimator by g(r) = MSE(θ̂r) :

g(r) = tr(E[((Lr − L)Hθ + LrSφ+ Lrn)

×((Lr − L)Hθ + LrSφ+ Lrn)H ]).

Using the linearity of expectation, and making the assumption that the sensor noise is independent

of both the signal and the interference (causing all terms containing a product of the sensor noise

and signal or interference to be zero), we can write

g(r) = tr(Lr − L)HE[θθH ]HH(Lr − L)H+

(Lr − L)HE[θφH ]SHLH
r + LrSE[φθH ]HH(Lr − L)H

+ LrSE[φφH ]SHLH
r + E[LrnnHLH

r ]).

99



The random variables are θ, φ, and n. Furthermore, assume that E[θθH ] = λ2
θI, E[φφH ] = λ2

φI,

E[φθH ] = 0, and E[nnH ] = β2I. Let L = UΣVH =
∑

1≤i≤p uiσiv
H
i be the thin singular

value decomposition of L, which is a symmetric square root of LLH . Our reduced rank version

of L is based on a specific subset of the singular values. Let Ir be the indexing set for the r

singular values we will keep, Īr be the indexing set for the h − r (where h is the rank of L)

singular values we discard. This allows us to write Lr = UΣrV
H =

∑
Ir

uiσiv
H
i . Furthermore,

Lr − L = −UΣr̄V
H = −

∑
Īr

uiσiv
H
i . Rewriting g(r), we obtain

g(r) = tr(λ2
θ(Lr − L)HHH(Lr − L)H + λ2

φLrSSHLH
r + β2LrL

H
r )

= λ2
θtr(UΣr̄V

HHHHVΣr̄U
H) + λ2

φtr(UΣrV
HSSHVΣrU

H)

+ β2tr(UΣrV
HVΣrU

H)

= λ2
θtr(Σr̄V

HHHHVΣr̄) + λ2
φtr(ΣrV

HSSHVΣr) + β2tr(ΣrΣr).

In terms of the indexing sets we have

g(r) = tr(
∑
Īr

∑
Īr

uiσiv
H
i Hλ2

θIH
Hvjσju

H
j

+
∑
Ir

∑
Ir

uiσiv
H
i Sλ2

φIS
Hvjσju

H
j

+ β2
∑
Ir

∑
Ir

uiσiv
H
i vHj σju

H
j ).

Equivalently, using the linearity and invariance to cyclic permutations of the trace operation to-

gether with the orthonormality of U and V (allowing us to write in terms of single sums not

double sums),

g(r) = λ2
θ

∑
Īr

σ2
i v

H
i HHHvi (4.3.1)

+ λ2
φ

∑
Ir

σ2
i v

H
i SSHvi + β2

∑
Ir

σ2
i , (4.3.2)
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where vi denotes the ith column of V.

In the current form, the objective function appears to be a function of the three parameters λ2
θ,

λ2
φ, and β2.However, it can be written as a function with a single parameter once some observations

have been made. Firstly, we recall that LH = I. Using the SVD of L (as we have previously

defined it) we have

Ih =LHHHLH = UΣVHHHHVΣHUH

=⇒ σ2
i v

H
i HHHvHi = 1.

Similarly, using LS = 0 and the SVD of L we have

0h = LSSHLH = UΣVHSSHVΣHUH

=⇒ σ2
i v

H
i SSHvHi = 0.

Consequently, we can rewrite Equation 4.3.1 as

g(r) = λ2
θ

∑
Īr

1 + β2
∑
Ir

σ2
i = λ2

θ|Īr|+ β2
∑
Ir

σ2
i (4.3.3)

where σ2
i is the ith component of noise gain an |Īr| is the cardinality of the indexing set for the

dimensions to be discarded. Here the first term in the objective function is the only remaining term

measuring the bias of the reduced dimension estimator while the second measures the variance

of the estimator. The λ2
θ in Equation 4.3.3 came from the assumption that E[θθH ] = λ2

θI. If this

assumption is changed to E[θθH ] = Λ = diag[Λ1, ...,Λh], then the objective function is instead

g(r) =
∑
Īr

Λ2
i + β2

∑
Ir

σ2
i , (4.3.4)

where Λ2
i is the signal power in the ith signal mode. To exclude mode i is to sustain bias squared

Λi, but to retain it is to pay with variance β2σi. So a mode is retained when the signal power
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is greater than the noise power. For further intuition, notice again that the eigenvalues of LLH

correspond to the major axes of the error covariance matrix of the full rank matrix, so, the order

fitting rule is to retain dimension i when

Λ2
i >

β2

evh−i+1(HHP⊥SH)
.

This inequality results directly from the indexing sets for the two terms in g(r). An index is kept

when β2σ2
i increases g(r) less than the corresponding Λ2

i .

Using the form of the objective function in Equation 4.3.3 a counter intuitive ordering rule is

revealed: the ‘optimal’ rank one solution (when λ2
θ is fixed) involves keeping only the last singular

vector of the oblique pseudo inverse, i.e. the direction capturing minimal, not maximal, variance.

This fact was first observed empirically based on solving the combinatorial optimization problem

and seeing an inherited structure between optimal indexing sets at each rank. Additionally, this is

intuitively supported when interpreting this as keeping the error direction of minimal magnitude.

4.3 Optimal Dimension Determination for Signal Component Estimation

We begin by making assumptions consistent with the previous section. However, we now

consider the matrix

E = EHS = H(HHP⊥SH)−1HHP⊥S ,

the oblique projection onto 〈H〉 in the direction of 〈S〉. Two useful properties of E are that EH =

H and ES = 0.

Multiplying on both sides of the linear mixing model by E we obtain

Ĥθ = Ey = EHθ + ESφ+ En

= Hθ + En,
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where En is now colored noise. Consequently, we see that Ĥθ is an unbiased estimator of Hθ, the

signal component of the data. The conditional mean-squared error of this estimator is the variance

V = β2tr[EEH ]. As in the case of estimating the signal mode weight vector, we seek to balance

the bias and variance to determine an optimal reduced dimension estimate. Let Er be a reduced

rank variant of E. Multiplying the linear mixing model by Er, instead of E we produce a reduced

dimension estimator, Ĥθr, defined as

Ĥθr = Ery = ErHθ + ErSφ+ Ern.

The MSE of the estimator Ĥθr, that we seek to minimize, is written as z(r) = MSE(Ĥθr) =

E[||Ĥθr −Hθ||22]. Expanding, we write

z(r) = tr(E[((Er − E)Hθ + ErSφ+ Ern)

× ((Er − E)Hθ + ErSφ+ Ern)H ]).

As in Section 4.3.1 we expand using the distribution properties of the Hermitian transpose, linearity

of expectation, and make the assumption that the sensor noise is independent of both the signal and

the interference. Now consider the thin singular value decomposition of E. In order to simplify

notation we use U, Σ, and V again for the singular value decomposition. For the remainder of

this derivation we write E = UΣVH . Similar to Section 4.3.1, the reduced rank version of E is

based on a specific subset of the singular values/vectors. This allows us to write Er = UΣrV
H .

Again we have, Er − E = −UΣr̄V
H where the Ir and Īr indicate the dimensions being retained

and discarded, respectively.

Using again the linearity and invariance to cyclic permutations of the trace operation together

with the orthonormality of U and V, we arrive at

z(r) = λ2
θ

∑
Īr

σ2
i v

H
i HHHvi + λ2

φ

∑
Ir

σ2
i v

H
i SSHvi + β2

∑
Ir

σ2
i , (4.3.5)
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where Ir is the indexing set for the r singular values we will keep, Īr is the indexing set for the

h− r (where h is the rank of E) singular values we discard, and vi denotes the ith column of V.

Further simplifications can be made using two properties of E. First, using ES = 0 and the

SVD of E we have

0b = LSSHLH = UΣVHSSHVΣHUH

=⇒ σ2
i v

H
i SSHvHi = 0.

Second, recall that EH = H. Using the SVD of E we also have

HHH =EHHHEH = UΣVHHHHVΣHUH

UHHHHU =ΣVHHHHVΣH

Consequently, we can rewrite Equation 4.3.5 as

z(r) = λ2
θ

∑
Īr

uHi HHHui + β2
∑
Ir

σ2
i . (4.3.6)

Relaxing the assumption that E[θθH ] = λ2
θI to E[θθH ] = Λ, with Λ a diagonal matrix, we have

z(r) =
∑
Īr

Λ2
iu

H
i HHHui + β2

∑
Ir

σ2
i , (4.3.7)

where Λ2
i is the signal power in the ith channel. Therefore, the order determination rule is that a

dimension is retained when

Λiu
H
i HHHui > β2σ2

i .

When the power of the signal in the i-th mode is larger than the noise gain, a dimension is kept.

An interesting observation can further be made about this order determination rule. Consider the

principal angles β between the subspaces 〈H〉 and 〈S〉. It was shown in [48] that the singular values
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of E are equal to the the inverse of the sine of the principal angles;

σi =
1

sin βi

where βi is the i-th principal angle and σi is the i-th singular value of E. Consequently, the order

determination rule can be equivalently written as

Λiu
H
i HHHui >

β2

sin2 βi
. (4.3.8)

When the βi tends towards π/2 this amounts to a comparison between the signal power in the i-th

left singular vector and the white noise power only, not the noise gain.

4.4 Applications

We consider two applications: generalized modal analysis and matched subspace detection in

hyperspectral imaging. The application in generalized modal analysis describes a fully synthetic

data set in which all needed parameters are known and consequently the benefit of performing

dimension reduction can be truly quantitatively evaluated. Ground cover identification from hy-

perspectral imaging provides a real world problem in which the true parameter values needed for

optimization are unknown and are instead chosen in an ad hoc fashion. The results of applying the

presented framework to both applications yields marked improvment.

4.4 Generalized Modal Analysis

In order to quantitatively demonstrate the benefit of our framework we explore the application

of the LMM to modal analysis. One can consider the signal space discussed in previous sections as

a set of basis vectors/ modes of a decomposition. There are many ways in which one can decom-

pose observed data. Differences between these decompositions largely depends on the assumptions

placed on H in the LMM. For example, if the columns of H are generated by rationally related fre-
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quencies (harmonics) we are in the setting of a discrete Fourier decomposition. Assuming that the

rows of H correspond to monomials (up to a fixed degree) corresponds to polynomial regression.

For experiments presented, we assume the signal mixing matrix is known and is a Vandermonde

matrix structured from a set of random complex generators chosen from the complex unit circle.

Explicitly, H = [h1, ...,hM ] ∈ CN×M where hm = [1 eiθm e(2)iθm ... e(N−1)iθm ] and θm is the mth

mode frequency for mode hm. Additionally, we consider an interference space that is “close” to

the signal space. Often when the signal and interference spaces are close (small principal angles)

the performance of many algorithms falls off. A basis for the interference is assumed to be known

while the amplitudes of the interference modes are unknown. These assumptions allow us to

create a synthetic data set with the ability to exactly construct E and L and evaluate the benefit of

a reduced rank approach. We further note that the presented framework for dimension reduction in

this generalized modal analysis framework differs from standard techniques in that it accounts for

the presence of both structured interference and white noise in the data we seek to decompose.

4.4 Matched Subspace Detection: Hyperspectral Ground Cover Detection

The linear mixing model is a widely used tool in applied hyperspectral signal detection. It as-

sumes that each pixel can be written as a linear combination of signal and noise [41, 42, 43, 44]. A

standard model for the noise contribution consists of a combination of structured noise/interference

coming from characteristics of the imaging environment in addition to unstructured/random noise

attributable to the imaging equipment and system. We address a geometrically motivated varia-

tion of the linear mixing model for the detection of chemicals in hyperspectral images using an

approximate oblique pseudo-inverse technique.

We propose a framework for dimension reduction in matched subspace detection [45] based

on reduced dimension estimators of the signal mode weight vector presented above. Consider the

signal detection problem in hyperspectral imaging. In this setting, each data point corresponds to a

single pixel consisting of values from b hyperspectral bands, i.e., y ∈ Cb. The goal is to determine

an appropriate statistical model of the observed data. The null hypothesis models the data as a
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linear combination of structured noise and white noise. The alternative hypothesis models the data

as a linear combination of signal, structured noise, and noise. Detection of the signal component

in an individual pixel is based on a hypothesis test of these null and alternative hypotheses. For

the derivation of the generalized likelihood ratio test comparing these two hypotheses, we refer the

reader to [46, 47, 57].

To better understand the form of the generalized likelihood ratio, it is useful to again recall the

geometry of the linear mixing model. We assume x = Hθ ∈ Cb is the portion of the data contained

in the h-dimensional subspace of Cb spanned by the columns of H. We will denote this subspace

by 〈H〉. Similarly, w = Sφ ∈ Cb is the portion of our data contained in the s-dimensional subspace

of Cb spanned by the columns of S denoted by 〈S〉. Consequently, the sum x+w = Hθ+Sφ ∈ Cb

is a vector in the h+ s dimensional subspace of Cb spanned by the combined column spaces of H

and S. This direct sum of the two spaces will be denoted as 〈HS〉. The orthogonal projection of y

onto the subspace 〈H,S〉 is denoted PHS where

PHS = [H,S][[H,S]H [H,S]]−1[H,S]H .

Since we are assuming that x + w ∈ 〈HS〉 we have that PHS(x + w) = x + w.

The orthogonal projection PHS can be decomposed as

PHS = P⊥S + PG

where P⊥S is the orthogonal projection onto the orthogonal complement space of 〈S〉 and PG is

the orthogonal projection onto 〈G〉 where G = P⊥SH is the subspace of 〈H〉 contained in the

orthogonal complement space of 〈S〉 (henceforth to be referred to as 〈S⊥〉).

Using this decomposition, and other projection identities found in [45, 47], the likelihood ratio

can be written as
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L(y) =
yHP⊥SPGP⊥Sy

yHP⊥Sy
=

yHLH(HHP⊥SH)Ly

yHP⊥Sy
(4.4.1)

=
θ̂HHHP⊥SHθ̂

yHP⊥Sy
(4.4.2)

where L = LHS = (HHP⊥SH)−1HHP⊥S . and θ̂ = Ly. This form of likelihood measure will be

manipulated in the course of the research presented here. The value of this likelihood ratio is used

as a detection score as shown in [57] and measures the relative coherence of the observed data

to a space orthogonal to the interference. In the scenario where noise properties are adaptively

determined from the data, the detector is commonly referred to as ACE (Adaptive Coherence

Estimator) and has been shown to have many desirable properties [46, 47].

Recall the score of Equation 4.4.1:

Lr(y) =
yHP⊥SPGP⊥Sy

yHP⊥Sy

=
yHP⊥S (P⊥SH(HHP⊥SP⊥SH)−1HHP⊥S )P⊥Sy

yHP⊥Sy

=
yHLH(HHP⊥SH)Ly

yHP⊥Sy

=
θ̂H(HHP⊥SH)θ̂

yHP⊥Sy
.

This series of equations shows that our original detection score can be written in terms of the esti-

mated signal mode weights θ̂. Since it is this value that we are estimating by multiplying through

by the reduced rank L, it is logical to make the score depend on our reduced dimension estimate

by replacing θ̂ with θ̂r. The resulting score given by

Lr(y) =
θ̂Hr HHP⊥SHθ̂r

yHP⊥Sy
(4.4.3)

will be referred to as ACE-Theta.

The final piece needed to compute the detection score is the matrix P⊥S . If it is assumed that

the sampled covariance matrix, W, is full rank and can be written as
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Figure 4.5.1: This figure shows the mode frequencies for the modes of the signal space (i.e. generators for
the Vandermonde signal mixing matrix).

W = Sα2
φIS

H + β2I,

then the Woodbury matrix identity [58] provides a rationale for using the inverse of the covariance

matrix as an estimate for P⊥S [48, 59].

4.5 Experiments and Results

4.5 Generalized Modal Analysis

The signal basis matrix is modeled as a Vandermonde matrix formed by randomly chosen

complex generators all on the unit circle. We provide a single, but representative, exemplar of a

signal space which we pair with a structured interference space that is constructed such that the

largest principal angle between H and S is π/10. The fifteen generators for the exemplar signal

subspace are shown in Figure 4.5.1. We have chosen the ambient space to be a C40 resulting in

H ∈ C40×15. For the structured interference which is close to the signal space, we have made the

interference space 10 dimensional (S ∈ C40×10).
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Figure 4.5.2: This figure shows the principal angles (in radians) between the signal space 〈H〉 and the
interference space 〈S〉.

For the provided exemplar pair (H and S), one thousand random realizations of the signal mode

weights (θ ∈ C15×1) and the interference amplitudes (φ ∈ C10×1) are generated for each noise level.

Thus, an ensemble of realizations is produced for each level of white noise (the noise vectors are

randomly chosen once and then scaled by different values to produce different input signal to

noise ratios (SNRs)). Reconstruction error, measured as the normalized mean squared error, is

averaged over the 1000 realizations comprising the ensemble at a each noise level. Normalized

mean-squared error is computed as

MSE(Ĥθ) =
||Ĥθ −Hθ||22
||Hθ||22

and are plotted against 10 log10 SNR. Similarly, we consider the normalized mean-squared error

for the signal mode weight vector θ. The principal angles between the signal and interfer-

ence spaces for the experiment are shown in Figure 4.5.2. In the experiment λ2
θ = 1 and β2 (in
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Figure 4.5.3: This figure shows the reconstruction error for the signal mode weight vector as a function of
the input signal to noise ratio (SNR) in DB.

Equations 4.3.4 and 4.3.7) are known and these values are used together with our presented order

determination rules shown in Section 4.3.1.

Notice that for estimation of both the signal mode weights and the signal component there

are input SNRs where interesting rank reductions are chosen. Below a certain SNR the optimal

matrix is the rank zero matrix populated with all zeros and above a certain SNR full rank becomes

optimal. When considering Figure 4.5.4 it is useful to think about Equation 4.3.8. Recall, the

order determination rule for the signal component compares the signal power in a given mode to

the white noise variance scaled by a function of the principal angles that increase as the angles get

smaller. Thus, when we see that dimensions get thrown out for lower SNRs it is due to the fact that

the signal power is lower than the scaled white noise variance.

As the white noise variance gets smaller (larger SNR), and the principal angles are near orthog-

onal, the condition for a dimension to be retained is that the signal power exceeds the white noise

variance is more easily satisfied than when the principal angles are small.
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Figure 4.5.4: This figure shows the reconstruction error for the signal component as a function of the signal
to noise ratio (SNR).

4.5 Matched Subspace Detection: Hyperspectral Ground Cover Detection

In order to test our approach, we consider two benchmark hyperspectral data sets: Indian

Pines and Salinas [60, 61]. Two experiments were performed for each detection task. In the

first experiment λ2 = 1, in Equation 4.3.4 and a single Principal Component (PC) from each

subclass was used to generate a basis for the signal space. For the second experiment λ = 105 in

Equation 4.3.4 and two PCs were taken from each subclass to form the basis of our signal space.

For example, the class of “corn” contains the three subclasses “corn,” “corn-notill,” and “corn-

midtill.” For a “corn” detector, we obtain a signal basis by taking the first PC (or first two PCs) of

each subclass to create a three (or six) dimensional signal space for “corn”. The subclasses of each

broader class are all listed in Figure 4.5.5. Figure 4.5.5 shows the score images for both ACE and

ACE-Theta for the second experiment.

Table 4.1 shows the performance of both standard ACE and ACE-Theta as measured by the

Area Under the Curve (AUC) as the metric of performance. Additionally, the optimal rank, as
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ACE ACE-Theta Ground Truth

Corn
(corn-notill, 

corn-mintill, 

corn)

Lettuce
(lettuce-4wk,

lettuce-5wk,

lettuce-6wk,

lettuce-7wk)

Soybean
(soybean-

notill, 

soybean-

mintill, 

soybean-

clean)

Vineyard
(vineyard-

untrained, 

vineyard-

vertical 

trelis)

Figure 4.5.5: Images of ACE and ACE-Theta detection scores for each classification task.
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Table 4.1: Performance of ACE and ACE-Theta on each classification task where the AUC is reported.
For rows 2-5, λ2 = 1 and a single PC from each subclass is used to form a signal space basis. Rows 6-9
λ2 = 105 and two PCs from each subclass generate the signal space basis.

ACE-Theta ACE Opt. Rank
Corn Detector 0.9432 0.9212 1
Soybean Detector 0.9451 0.9124 1
Lettuce Detector 0.9611 0.9767 1
Vineyard Detector 0.9628 0.9631 1
Corn Detector 0.9437 0.8983 4
Soybean Detector 0.9221 0.8691 4
Lettuce Detector 0.9595 0.9578 5
Vineyard Detector 0.9583 0.9389 3

determined by minimizing Equation 4.3.4, is reported. The highest AUC for each experiment is in

bold. We can see that for all of the detection tasks in the second experiment ACE-Theta achieves a

higher AUC while in the first experiment ACE-Theta is superior in two of the detection tasks and

nearly comparable in the remaining two tasks.

Dimensionality reduction on the signal mode weight vector based on minimization of the bias

squared plus variance over all possible ranks yields an order determination rule relating the noise

gain to the signal to noise ratio in different signal modes. Specifically, the order determination rule

captures the subspace dimensions in which the noise gain is lower than the signal to noise ratio in

the corresponding signal mode.

4.6 Discussion

Our motivation for developing these order determination rules was to improve the performance

of matched subspace detection like ACE [47] for hyperspectral imaging. In most hyperspectral ap-

plications observed data does not come with ground-truth signal and interference mixing matrices.

Consequently, to comprehensively evaluate the benefits of our framework we also present results

on a synthetic data set in which all parameter values for optimization are known.
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Many applications of the LMM suffer when the signal and interference spaces are “close”

together. The synthetic data set, representing generalized modal analysis, was generated to evaluate

the performance of our framework was constructed to satisfy this property: all the principal angles

between our interference and signal spaces are less than π/10. In the experiments performed all

components of the linear mixing model are known, as are the critical values for implementing the

order determination rules presented.

Reduced dimension estimators for components of the linear mixing model based on minimiza-

tion of the bias-squared plus variance over all possible ranks yields order determination rules relat-

ing the noise gain to the signal-to-noise ratio in different signal modes. These order determination

rules are dependent on parameter values that have an intuitive interpretation and are bounded in

the context of real data. An experiment illustrative of modal analysis highlights the improvement

in reconstruction when the order determination rules are employed. Reconstruction errors for both

signal component and signal mode weight estimation are reduced in the majority of trials over a

range of input signal-to-noise ratios that could realistically arise in data acquisition.

To illustrate the methodology on a real world problem we consider detection of four different

ground covers: corn, soybean, lettuce, and vineyard. We observe that the detection based on the

reduced dimension estimator can achieve superior results relative to the full dimension detector.

Strong performance differences between standard matched subspace detector and a dimension re-

duced matched subspace detector occurred in the experiment with higher dimensional signal spaces

suggesting validity to structured dimension reduction in this setting.

Future work, and other real world applications, will require development of techniques for

estimating these parameters and components in the absence of prior knowledge.
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Chapter 5
Towards Nearly Isometric Maps Between Grassmannian Mani-
folds

Dimension reduction can be appealing for a wide variety of reasons that have been previously

discussed. While there are many reasons a user might desire to reduce the dimension of their data,

it should not be done without careful considerations. An important consideration is whether or not

information is being lost as the dimension is changed. One way that information is lost is through

collapsing. Data collapses when two (or more) points are mapped to the same point in the reduced

dimensional space. Consider, for example, two patients represented by vectors of the form [hair

color, eye color, age, gender]. The first patient is represented by [red, blue, 28, female] and the

second patient by [red, blue, 28, male]. When all coordinates are considered the two patients are

distinct points but if we project the patients onto the first three coordinates they are mapped to the

same point, [red, blue, 28].

Another way to think about data collapse is in terms of the pairwise distances between points

under a mapping. Two distinct points, x and y, in a space will have a distance between them that

is positive, d(x,y) > 0. If those two distinct points are mapped to the same point, z, in a reduced

dimension space by the function f , then d(f(x), f(y)) = d(z, z) = 0. Specifically, d(x,y) 6=

d(f(x), f(y)), i.e. the pairwise distance is not preserved under the mapping. Mappings that

exactly preserve all pairwise distances are called isometric mappings. Alternatively, maps which

nearly preserve all pairwise distances are called nearly isometric mappings. Nearly isometric

mappings have been extensively studied for maps between Euclidean spaces. In the final project

of this dissertation we consider nearly isometric mappings of data existing on a Grassmannian

manifold.

The Grassmannian Gr(N,K) is the manifold parameterization where each point corresponds

to a K−dimensional linear subspace of RN . There are many applications that lend themselves to

problem formulations on a Grassmannian manifold. One example we hope to explore in future

work is that of mental task identification via ElectroEncephaloGram (EEG). In EEG voltage is
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recorded over time at multiple locations in the brain. The number of time steps at which voltage

is recorded could correspond to N while the number of locations where voltage is being recorded

could determine K. The data acquired while performing one mental task would yield a single

point on the Grassmannian. Clustering could then be performed on the manifold using distances

computed in that space. The result of being able to map these points to a lower dimensional

manifold (Gr(N, k) with k < K, Gr(n,K) with n < N , or Gr(N,K) with n < N and k < K)

would suggest which time increments are important or which brain nodes are more significant.

This is just one of many applications that could be well suited to a Grassmannian framework.

Neccessary background and definitions related to Grassmannian manifolds and probability the-

ory can be found in Section 5.1. Section 5.2 states and recreates a statistically based proof of a

well known result called the Johnson-Lindenstrauss Lemma which pertains to nearly isometric

mappings between Euclidean spaces. In Section 5.3 results related to isometric mappings of data

existing on a Grassmannian into Euclidean space are presented and discussed in terms of when

they can be considered dimension reduction. The existence of nearly isometric, dimension reduc-

ing maps between Grassmannians characterized by different dimensions is conjectured in Section

5.4. Also in this section two potential approaches for proving the conjecture are presented. The

first approach is based on creating analagous statistical statements for Grassmannians as are used in

the statistical proof of the Johnson-Lindenstrauss Lemma that is presented. The second approach,

which we find to be more mathematically compelling and more promising connects nearly isomet-

ric mappings to a well known packing problem. Finally, the chapter concludes with a discussion

of potential applications and insights in Section 5.5.

5.1 Background

The proof of the Johnson-Lindenstrauss lemma that is reproduced in this chapter relies heavily

on statistics and linear algebra. Our proposed approach for creating an analogous lemma and

proof for isometric, dimension reducing maps between Grassmannians also rely on the tools. This

background section contains some general definitions and proofs that the reader is assumed to be
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comfortable with in the later sections of this chapter. Theorems and proofs that are more complex

and specifically required for the larger proofs discussed are contained in sections they are first

relevant to. An informed reader can refer back to this section for notation as needed and not need

to read it in its entirety. Definitions were taken predominantly from [62, 63, 64, 65].

5.1 Grassmannian Definitions and Theorems

Definition 5.1.1 (Group). A group is a set X together with an operation (often called the group

action) ?, denoted (X , ?), such that

(a) for all x, y ∈ X , x ? y ∈ X ,

(b) there exists an element 1 ∈ X such that 1 ? x = x ? 1 = x for all x ∈ X ,

(c) and for all x ∈ X there exists an element x−1 ∈ X such that x ? x−1 = x−1 ? x = 1.

Definition 5.1.2 (Real Lie Group). A real Lie group is a group that is also a finite-dimensional,

real smooth manifold in which the group operations of multiplication and inversion are smooth

maps.

Definition 5.1.3 (Topological Space). A topological space is a pair denoted (X , τ) where X is a

set and τ is a collection of subsets of X such that

(a) ∅,X ∈ τ (where ∅ indicates the empty set),

(b) arbitrary (finite or infinite) unions of elements in τ are also elements of τ ,

(c) and finite intersections of elements in τ are also elements of τ.

The elements of τ are called open sets and the collection τ of open sets is called the topology. An

open set that contains x ∈ X is called an open neighborhood of x.

Definition 5.1.4 (Continuous Function with Respect to Topology). A function f between two

topological spaces X and Y , f : X → Y , is continuous if for evey open set V ⊆ Y the inverse

image of V (f−1(V ) = {x ∈ X s.t. f(x) ∈ V }) is open in X (f−1(V ) ⊆ X).
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Definition 5.1.5 (Topological Group). A topological group is a group together with a topology on

the group who’s group action is continuous with respect to the topology.

Definition 5.1.6 (Compact Topological Space). A compact topological space is a topological space

such that every open cover of the topological space has a finite subcover.

Definition 5.1.7 (Metric). LetM be a set. A function d : M×M → R is called a metric if for

any x, y, z ∈M it satisfies

(a) d(x, y) ≥ 0,

(b) d(x, y) = 0⇔ x = y,

(c) d(x, y) = d(y, x), and

(d) d(x, y) ≤ d(x, z) + d(z, y).

Definition 5.1.8 (Hausdorff Space). A Hausdorff space is a topological space (X , τ) satisying that

for distint points x, y ∈ X there exist open neighborhoods of x and y whose intersection is empty.

Definition 5.1.9 (Locally Compact Group). A locally compact group is topological group where

the underlying topology is locally compact and Hausdorff.

Definition 5.1.10 (Grassmannian ManifoldGr(N,K)). The real Grassmannian manifoldGr(N,K)

is a space which parameterizes linear subspaces of dimensioinK of RN . Each point V onGr(N,K)

corresponds to a linear K−dimensional subspace of RN ,V ∈ RN×K . Gr(N,K) is a smooth man-

ifold of dimension K(N −K). Frequently Gr(N,K) is defined as a quotient space by

Gr(N,K) =
O(N)

O(K)×O(N −K)
.

Moreover, Gr(N,K) is a metric space when endowed with the distance function d(V,U) =

||PV − PU || for points V,U ∈ Gr(N,K) with corresponding projection matrices PV and PU ,

respectively.
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Definition 5.1.11 (Principal Angles). Let U and V be two linear subspaces of RN of dimensions

KU and KV , respectively. Assume, without loss of generality that KU ≤ KV . There exists a

sequence of KU angles θ1 ≤ θ2 ≤ · · · ≤ θKU
≤ π

2
called the principal angles between U and V.

The first principal angle is defined by

θ1 = min

{
arccos

(
|uTv|
||u||2||v||2

)
such that u ∈ U,v ∈ V

}
.

The remaining principal angles are then defined recursively by

θi = min

{
arccos

(
|uTv|
||u||2||v||2

)
s.t. u ∈ U,v ∈ V,u ⊥ uj,v ⊥ vj ∀j ∈ {1, . . . , i− 1}

}
.

Theorem 5.1.1 (SVD to Compute Principal Angles). Let A ∈ RN×a and B ∈ RN×b be real

matrices whose column spaces form orthonormal bases for 〈A〉 and 〈B〉, respectively. Assume,

without loss of generality that a ≤ b. Let the SVD of ATB be UΣVT where U and V are

orthogonal matrices and Σ is an a × b diagonal matrix with diag(Σ) = [σ1, . . . , σa]
T . Then

cos(θi) = σi where θi is the ith principal angle between 〈A〉 and 〈B〉.

Definition 5.1.12 (Chordal Distance on the Grassmannian). Let U,V ∈ Gr(N,K). The chordal

distance between U and V is defined as

dc(U,V) =
√

sin2(θ1) + . . . sin2(θK)

where θi is the ith principal angle between U and V.

Theorem 5.1.2 (Chordal Distance from Frobenius Norm of Difference in Projection Matrices). Let

U,V ∈ Gr(N,K) and let {θ1, . . . , θK} be theK principal angles between U and V.Without loss

of generality, assume that the coolumns of U and V form orthonormal bases for their respective

spaces. Then the following two statements hold:

1. d2
c(U,V) = 1

2
||PU −PV ||2F where PU and PV are the orthogonal projection matrices onto

U and V, respectively,
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2. and d2
c(U,V) = K − ||UTV||2F .

5.1 Probability Definitions and Theorems

Definition 5.1.13 (σ−algebra). Let X be a set and let P (X ) denote its power set (the set of all

possible subsets of X ). A subset Σ ⊂ P (X ) is called a σ−algebra over X if it satisfies

(a) X ∈ Σ (where ∅ indicates the empty set),

(b) Σ is closed under complements (i.e. if σ ∈ Σ then X/σ ∈ Σ),

(c) and Σ is closed under finite unions.

Elements of a σ−algebra are called measurable sets. An odered pair (X ,Σ) where X and Σ is a

σ−algebra over X is called a measurable space.

Definition 5.1.14 (Borel Set). Let (X , τ) be a topological space. Any set in the topological space

that can be formed from open sets (elements of τ ) via the operations of (1) countable union, (2)

countable intersection, and (3) relative complements is called a Borel set.

Definition 5.1.15 (Borel Algebra). The Borel algebra is the collection of all the Borel sets of

(X , τ). The Borel algebra is a σ−algebra and is the smallest σ−algebra containing all the elements

of τ (containing all the open sets as defined by the topology).

Definition 5.1.16 (Measure). Let (X ,Σ) be a measurable space. Let µ : Σ→ (0,∞). We say µ is

measure on (X ,Σ) if

(a) for all σ ∈ Σ we have µ(σ) ≥ 0,

(b) µ(∅) = 0,

(c) for all countable collections {σi}∞i=1 of pairwise disjoint measurable sets, σi ∩ σj = ∅ ∀i, j,

µ
( ∞
∪
i=1
σi

)
=
∞∑
i=1

µ(σi).
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Remark. The Borel algebra is the smallest σ−algebra that makes all open sets measureable.

Definition 5.1.17 (Left(Right)-Translation-Invariant). Let (X , τ, ?) be a locally compact Hausdorff

topological group. Let Σ be the Borel algebra of (X , τ). If x ∈ X and σ ∈ Σ we define the left

(right) translate of σ as

Left Translate = xσ = {x ? s s.t. s ∈ σ}

Right Translate = σx = {s ? x s.t. s ∈ σ}

A measure µ on Σ is called left(right)-translation-invariant if for all σ ∈ Σ and all x ∈ X then

µ(σ) = µ(xσ) (µ(σ) = µ(σx)).

Theorem 5.1.3 (Haar’s Theorem). There is a unique (up to a multiplicative constant), nontrivial

measure µ on the Borel subsets of (X , τ) satisfying

(a) µ is left-translation-invariant,

(b) the measure µ is finite on every compact set,

(c) µ(σ) = inf{µ(σ̃) s.t.σ ⊂ σ̃, σ̃ open},

(d) and µ(σ) = sup{µ(σ̃) s.t. σ̃ ⊂ σ, σ̃ compact}.

Such a measure is called a left Haar measure. The definition for the right Haar measure is similar

and it is important to note that the left and right Haar measures need not coincide.

Definition 5.1.18 (Probability Space). A probability space is a triplet denoted (X , τ, µ). We refer

to X as the sample space and is the set of all possible outcomes. Σ is a σ−algebra of X and µ is a

probability measure (a measure whose integral over Σ equals to one).

Definition 5.1.19 (Uniform Distribution with Respect to Haar Measure). Let (X ,Σ, µ) be a prob-

ability space where Σ is the Borel algebra over X and µ is the left Haar probability measure on

Σ. The uniform distribution with respect to Haar measure assigns equal probability to each Borel

subset. Every element in Σ is equally likely under the Haar probability measure.
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Remark. Although in some senses a uniform distribution is somewhat intuitive when we simplify

it to “every outcome is equally likely,” methods for generating pseudo random events according to

a uniform distribution can be far from trivial to prove. Another useful interpretation of a uniform

distribution is a distribution such that the chance of an event is unchanged by left transformation

(whatever appropriate invariant transformation).

Theorem 5.1.4 (Uniform Random Points on Gr(N,K) (Theorem 2.2.2 in [65])). The following

statements are in regard to uniform random points on Gr(N,K) :

(a) If U is uniformly distributed on Gr(N,K) so is HUHT for any H ∈ O(N) which is inde-

pendent of U, and hence we have that E[U] = K
N

IN .

(b) Let H be uniformly distributed on O(N) and let U0 be a point on Gr(N,K) (represented by

its projection matrix PU0), constant or independent of H. Then the random matrix HPU0H
T

is uniformly distributed on O(N).

(c) PU = UUT is uniform on Gr(N,K) if and only if U = V(VTV)−1/2 for V ∈ RN×K with

all of the elements of V independent and identically distributed according to the standard

normal N(0, 1).

Remark. In [65], as well as in many other papers and texts, points on Gr(N,K) are frequently

represented by the orthogonal projection onto the space spanned by the point. This allows partic-

ular properties of projection matrices to be leveraged or exploited. The three components of the

above Theorem will be leveraged heavily in our contributions towards proving the existence of

dimension reducing maps between Grassmannians.

5.2 Johnson-Lindenstrauss Lemma

The statement of the Johnson-Lindenstrauss Lemma (JLL) as it applies to mappings over R is

as follows:
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Lemma 5.2.1 (Johnson-Lindenstrauss). For any 0 < ε < 1 and any integer m, let n be a positive

integer such that

n ≥ 4(
ε2

2
− ε3

3
)−1 ln(m).

Then, for any set V of m points in RN , there is a map f : RN → Rn such that for all u, v ∈ V

(1− ε)||u− v||22 ≤ ||f(u)− f(v)||22 ≤ (1 + ε)||u− v||22.

This lemma falls out of the original paper by Johnson and Lindenstrauss on extensions of

Lipschitz-continuous maps into Hilbert space [6]. The proof recreated here follows that of Das-

gupta and Gupta [7] but contains more complete algebraic manipulations and commentary on the

theory behind many of the algebraic statements.

5.2 Proofs of Theorems and Lemmas Used in Statistical Proof of JLL

The following subsections will prove several key facts used in the proof of the JLL. These facts

include the expected length of the projection of a unit length random vector from an ambient space

into a lower dimensional space, Markov’s Inequality, a pertinent lemma. Key ideas from statistics

will be addressed as they are needed.

5.2 Expected Length of a Random Vector Under Projection

The JLL, as stated, boils down to wanting to predict the length of the image of a unit vector in

the domain, RN , in the new space Rn. In [7], they state the challenge as “Estimating the length of

a unit vector in Rn when it is projected onto a random K−dimensional subspace." Primarily, the

tools involved in this proof of the JLL come from statistics, and in particular the chi-squared dis-

tribution. To make use of this particular distribution requires the use of the Euclidean norm in the

statement of the problem. In order to attack this problem, the authors of [7] state that distributions

of the length of a fixed unit vector in RN after being projected onto a random K−dimensional sub-
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space, and the length of a random vector in RN projected onto a fixed K−dimensional subspace,

are equivalent, and therefore it is sufficient to consider the latter distribution.

The statement that the length of the projection of a fixed unit vector (without loss of gener-

ality assumed to be the first standard basis vector) onto a random K−dimensional subspace is

equivalent to the length of the projection of a random unit vector onto a fixed K−dimensional

subspace (without loss of generality assumed to be the subspace spanned by the first K standard

basis vectors) is made in every reproduction of the proof given in [6].

We take the opportunity to formally prove the statement.

Theorem 5.2.2. The following distributions are equivalent:

(a) Length of projection of a fixed unit length vector in RN , y ∈ RN , onto a uniform random

(with respect to Haar measure) K−dimensional subspace, V ∈ RN×K .

(b) Length of the projection of a uniform random unit vector (with respect to Haar measure) in

RN , y ∈ RN such that ||y||2 = 1, onto a fixed K−dimensional subspace, V ∈ RN×K .

Proof. Consider a fixed unit vector in RN . Without loss of generality, let the fixed unit vector

under consideration be the first standard basis vector of of RN , y = e1 = [1, 0, . . . , 0]T . Let V be

a basis for a fixed K−dimensional subspace. Without loss of generality, we let V be the subspace

spanned by the first K standard basis vectors in RN ,

V =

[
e1 e2 . . . eK

]

=

 IK

0N−K,K

 .
Let U be a random element of the orthogonal group, U ∈ O(N). A uniform random (with respect

to the Haar measure) unit vector in RN can be generated as y0 = UTy. Similarly, a uniform

random (with respect to the Haar measure) K−dimensional subspace can be generated as V0 =

UV. Recall, the projection onto the column space of A can be written as PA = A(ATA)−1AT .
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Consider the length of the fixed vector y projected onto the random K−dimensional subspace V0.

We yield the following sequence of equalities

||PV0y||22 = (PV0y)T (PV0y)

= yTPT
V0

PV0y = yTPV0y = yT (V0(VT
0 V0)−1VT

0 )y

= yT (UV((UV)T (UV))−1(UV)T )y

= yT (UV(VTUTUV)−1VTUTy.

From the assumption that U ∈ O(N) we have that UUT = UTU = IN . Using this fact we have

||PV0y||22 = yT (UV(VTV)−1VTUT )y

= yTUPV UTy = yTUPT
V PV UTy = (UTy)TPT

V PV (UTy)

= yT0 PT
V PV y0

= (PV y0)T (PV y0)

= ||PV y0||22.

The value ||PV y0||22 is the length of projection of the uniform random unit vector y0 onto the fixed

K−dimensional subspace spanned by V. Thus, we have that the distributions of the lengths are

equivalent.

Once the equivalence of these two statements is proved, it is sufficient to consider the expected

value of the length of the projection of the uniform random unit vector onto its first K coordinates.

In the proof of the previous theorem we used the fact that a uniform random unit vector in RN

can be generated by left multiplication of a fixed unit vector by a random element of O(N). An

alternative way of producing a uniform random unit vector in RN is by populating a vector with

random entries drawn from the standard normal distribution, N(0, 1), and normalizing it to have

unit length. For the proof of the JLL in [7] the uniform random unit vector is generated using the

second approach. Generation of the random unit vector in this fashion allows us to make and prove
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the following theorem about the expected length of a random vector after projection onto its first

K coordinates.

Theorem 5.2.3 (Expected Length of a Random Unit Vector After Projection). Let y be a uniform

random unit vector in RN . IfL is the length of the projection of y onto its first K coordinates, then

E[L] = K/N.

Proof. Let x = [x1, x2, ..., xN ]T be a random vector in RN , where each xi is drawn from N(0, 1),

the standard normal distribution with mean zero and deviation 1. Now, let y = 1
‖x‖2x. Hence, y

can also be considered a uniform random unit vector in RN . A uniform random unit vector can

also be thought of as a random point on the surface of the N − 1 dimensional sphere. Recalling

that each xi is drawn from N(0, 1) implies that x2
i is drawn from a Chi-Squared distribution with

one degree of freedom, x2
i ∼ χ2(1). From this we have that E[x2

i ] = 1 for all i. Using the linearity

of expectation we have that

E[||x||22] = E[x2
1 + x2

2 + ...+ x2
N ] = E[x2

1] + E[x2
2] + · · ·+ E[x2

N ]

=
N∑
i=1

E[x2
i ] = NE[x2

i ] = N

Now consider z to be the projection of y onto its first K coordinates,

z = [y1, y2, . . . , yK ]T

= [
x1

||x||2
,
x2

||x||2
, . . . ,

xK
||x||2

]T .

Let L be the squared length of z, L = ||z||22. Then we have

E[L] = E[||Z||22] = E[
x2

1 + x2
2 + · · ·+ x2

K

||x||22
]

= E[
x2

1 + x2
2 + · · ·+ x2

K

x2
1 + x2

2 + · · ·+ x2
N

]
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It can be shown that if xi are independently identically distributed, sk =
∑k

i=1 xi, andm < n, then

E[sm/sn] = m/n. Consequently,

E[L] = E[
x2

1 + x2
2 + · · ·+ x2

K

x2
1 + x2

2 + · · ·+ x2
N

] =
K

N
.

5.2 Markov’s Inequality

A key component of the proof in [7] is Markov’s Inequality (MI). This inequality relates the

probability of a random variable exceeding a value to the expected value of the random variable.

The statement of the the inequality as well as its proof follow.

Theorem 5.2.4 (Markov’s Inequality). LetX be a random variable belonging to some probablility

distribution, and X, a ≥ 0. Then, P [X ≥ a] ≤ 1
a
E[X], where E[X] is the expected value of the

variable X.

Proof. In order to prove MI we first define the indicator function. For any event E, let IE be the

indicator function of E defined as

IE =

{
1 if E occurs

0 if E does not occur
.

Consequently, we can define

Ix≥a =

{
1 if x ≥ a

0 if x < a
.

One can show that aIx≥a ≤ x. First, if Ix≥a = 0, then we have that aIx≥a = a ·0 = 0 ≤ x. Second,

Ix≥a = 1, then we have that aIx≥a = a · 1 = a ≤ x, since in order for Ix≥a = 1 we have that

a ≤ x. Additionally, we recall that expectation is a linear operator. Consequently, from aIx≥a ≤ x

we have E[aIx≥a] ≤ E[x]. Furthermore,
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E[aIx≥a] = aE[Ix≥a]

= a(1 · P [x ≥ a] + 0 · P [x < a])

= aP [x ≥ a]

Thus, E[aIx≥a] ≤ E[x] implies that aP [x ≥ a] ≤ E[x] and finally that

P [x ≥ a] ≤ E[x]

a
.

5.2 Bounding Probability Using the Moment Generating Function

The proof of JLL in [7] heavily relies on a lemma presented in the paper. Primarily, this lemma

bounds the probability of a Chi-Squared distribution exceeding a particular value by leveraging MI

and the closed form of the moment generating function of a Chi-Squared distribution. The lemma

is stated and proved as two pieces. The complete statement is provided and a proof of one piece

is shown in detail and the second piece (which is proved using similar construction) is left to the

reader.

Lemma 5.2.5 (Lemma 1 [7]). Let K < N and let L be as as previously defined (i.e. the length of

a uniform random unit vector in RN after projection onto its first K coordinates).

(a) If β < 1, then

P [L ≤ β(K/N)] ≤ β
K
2 (1 +

(1− β)K

N −K
)
N−K

2

≤ exp(
K

2
(1− β + ln(β))).

(b) If β > 1, then
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P [L ≥ β(K/N)] ≤ β
K
2 (1 +

(1− β)K

N −K
)
N−K

2

≤ exp(
K

2
(1− β + ln(β))).

Proof. We will proceed by proving Lemma 1(a). The proof of Lemma 1(b) is very similar. Let

β < 1. We begin by rewriting P [L ≤ β(K/N)] as follows

P [L ≥ β(K/N)] = P [N(x2
1 + x2

2 + ...+ x2
k) ≤ βK(x2

1 + x2
2 + ...+ x2

N)]

= P [βK(x2
1 + x2

2 + ...+ x2
N)−N(x2

1 + x2
2 + ...+ x2

K) ≥ 0].

We now use a property from probability theory which allows us to write

= P [et(βK(x21+x22+...+x2N )−N(x21+x22+...+x2K)) ≥ et·0]

= P [et(βK(x21+x22+...+x2N )−N(x21+x22+...+x2K)) ≥ 1],

for all t > 0.

Using MI we have

P [et(βK(x21+x22+...+x2N )−N(x21+x22+...+x2K)) ≥ 1] ≤ E[et(βK(x21+x22+...+x2N )−N(x21+x22+...+x2K))].

Next, recalling that xi are all drawn from the same normal distribution and rules of exponents, we

have that

P [et(βK(x21+x22+...+x2N )−N(x21+x22+...+x2K)) ≥ 1] ≤ E[et(βK)X2

]N−KE[et(βK−N)X2

]K ,

where X is a single random normal variable, and X2 is equivalent to a chi-squared distribution

with one degree of freedom. Further, the expected value of a distribution is equivalent to the first

moment where the moment generating function for a random variable X is defined as
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MX = E[etX ],

for t < 1
2
. The moment for a chi-squared distribution with k degrees of freedom is given by

Mχ2
K

= (1− 2t)−
K
2 .

Consequently, we have

E[et(βK)X2

]N−K = ((1− 2tKβ)−
1
2 )N−K

E[et(βK−N)X2

]K = ((1− 2t(Kβ −N))−
1
2 )K ,

whenever (1 − 2tKβ) < 1
2

and (1 − 2t(Kβ − N)) < 1
2
. We note that the first bound implies the

second and so we only consider the first constraint. Combining all of these concepts we have that

P [L ≤ β(K/N)] ≤ (1− 2tKβ)−
N−K

2 (1− 2t(Kβ −N))−
K
2 .

Let

g(t) = (1− 2tKβ)−
N−K

2 (1− 2t(Kβ −N))−
K
2 .

We want to bound P [L ≤ β(K/N)] tightly, so we consider the following optimization problem

minimize g(t)

subject to 0 < t < (1− 2tKβ).

Minimizing g(t) is equivalent to maximizing

f(t) = (1− 2tKβ)N−K(1− 2t(Kβ −N))K

since g(t) = 1/
√
f(t). To find a maximum we first compute the derivative. We find that f ′(t) =

A ·B when we define
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A = −2K(1− 2t(Kβ −N))K−1(1− 2tKβ)N−K−1

B = −N + βN − 2tKβ2N + 2tβN2.

Solving f ′(t) = 0 amounts to solving B = 0 which occurs when

t∗ =
1− β

2β(N − βK)
.

Thus, the maximal value of f(t) is, after much algebraic simplification,

f(t∗) = (
N −K
N − βK

)N−K(
1

β
)K .

Resultantly, the minimum value of g(t) is

g(t∗) =
1√
f(t∗)

= βK/2(1 +
K(1− β)

N −K
)
N−K

2 .

Furthermore, we recall that

lim
n→+∞

(1 +
x

n
)n = e(x).

Using this fact, we obtain that

βK/2(1 +
K(1− β)

N −K
)
N−K

2 ≤ β
K
2 exp(

K

2
(1− β))

= exp(
K

2
(1− β + ln(β))).

Thus, we have shown that

P [L ≥ β(K/N)] ≤ exp(
K

2
(1− β + ln(β))),

which is Lemma 5.2.5(a).
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5.2 Proof of the Johnson-Lindenstrauss Lemma

We are now prepared to prove the JLL.

Lemma 5.2.6 (Johnson-Lindenstrauss). For any 0 < ε < 1 and any integer m, let n be a positive

integer such that

n ≥ 4(
ε2

2
− ε3

3
)−1 ln(m).

Then, for any set V of m points in RN , there is a map f : RN → Rn such that for all u, v ∈ V

(1− ε)||u− v||22 ≤ ||f(u)− f(v)||22 ≤ (1 + ε)||u− v||22.

Proof. We consider the non-trivial case where K < N. Let ε be a value such that 0 < ε < 1. Let

m be an integer, and let K be a positive integer such that

K ≥ 4(
ε2

2
− ε3

3
)−1 ln(m).

Further, let V be a set of m points in RN . Let S be a random K−dimensional subspace. We let v′i

be the projection of vi ∈ V into S. Set L = ||v′i − v′j||22 and µ = K
N
||v′i − v′j||22. Then, from Lemma

5.2.5(a) we have that

P [L ≤ (1− ε)µ] ≤ exp(
K

2
(1− (1− ε) + ln(1− ε))).

We now recall the Taylor series expansion for ln(1− ε) centered at zero, to obtain

ln(1− ε) ≈ ln(1)− 1(ε)− ε2

2
+ . . .

≤ −ε− ε2

2
.

Consequently, we obtain the following set of inequalities
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P [L ≤ (1− ε)µ] ≤ exp(
K

2
(1− (1− ε) + ln(1− ε)))

≤ exp(
K

2
(1− (1− ε) + (−ε− ε2

2
)))

= exp(−Kε
2

4
)

≤ exp(−2 ln(m)) ≤ 1

m2
.

Similarly, we have from Lemma 5.2.5(b) that

P [L ≥ (1 + ε)µ] ≤ exp(
K

2
(1− (1 + ε) + ln(1 + ε))).

Recalling the Taylor series expansion of ln(1 + ε) centered at zero we have that

ln(1 + ε) ≈ ln(1) + 1(ε)− ε2

2
+
ε3

3
...

≤ ε− ε2

2
+
ε3

3
.

This affects the following the chain of inequalities

P [L ≥ (1 + ε)µ] ≤ exp(
K

2
(1− (1 + ε) + ln(1 + ε)))

≤ exp(
K

2
(1− (1 + ε) + (+ε− ε2

2
+
ε3

3
)))

= exp(
K

2
(−ε

2

2
+
ε3

3
))

≤ exp(−2 ln(m)) ≤ 1

m2
.

By the above calculations, if we choose some mapping f such that f(vi) =
√

N
K

(v′i) we have that

for some pair i, j the chance that
||f(vi)− f(vj)||22
||vi − vj||22

does not fall in the range [1− ε, 1+ ε] is at most 2/m2. There are
(
m
2

)
possible pairs from m points.

Thus, by the trivial union bound, the chance that a single pair is stretched or shrunken by a factor
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not in [1− ε, 1 + ε] is at most (
m

2

)
× 2

m2
= (1− 1

m
).

Hence, f has the desired property with probability at least 1/m, and so by picking a random

projection O(m) times we can boost the success to any desired level.

5.2 Subspace Johnson-Lindenstrauss

There has been some research into a variation of Johnson-Lindenstrauss that can be considered

to be a subspace variation of the JLL [66, 67]. In these variations the set of m points in RN are

assumed to be linearly independent and are considered as an m−dimensional linear subspace of

RN . These papers assume the existence of a distance preserving map on the initial set of points.

Probability statements are then made about the chance that all pairwise distances are preserved

when an additional point, contained in the m−dimensional subspace, is added and the map is ap-

plied to the new point. Moreover, bounds for selecting reasonable isometry constants are produced

and defined in terms of other parameters.

This is a fundamentally different challenge than the one we present and are interested in. Of

interest to us is the existence of a mapping that preserves the distances between different subspaces

not the just the points contained inside of a single subspace. Moreover, this problem performs

all comptations in real space while we seek to leverage the structure of the Grassmannians and

preserve distances as they would be computed in that space.

5.3 Isometric and Nearly Isometric Mappings of Gr(N,K) into RD

Isometric, and nearly isometric, mappings of Grassmannians into Euclidean spaces have been

considered over the years. The most cited paper discussing the mapping of Grassmannians into Eu-

clidean spaces isometrically in [68]. It culminates in a beautiful theoretical result (Theorem 5.3.1)

and is accompanied by many computational results. Another approach has been taken by others

which leverages the popular Multi-Dimensional Scaling algorithm of [69]. One such example is

135



found in the work in [70] in which hyperspectral images are mapped first to a Grassmannian and

then isometrically into Euclidean space.

While there is certainly compelling mathematics in these approaches, we are interested in maps

that we will define as dimensionally reductive.

Definition 5.3.1 (Dimensionally Reductive Map). Let f : X → Y be a mapping of data existing

in the space X into the space Y. We say f is dimensionally reductive if dim(X) < dim(Y ).

Explicitly, if f : Gr(N,K) → Y where Y is a new manifold or space, the map f will be

said to be dimensionally reductive if dim(Y ) ≤ dim(Gr(N,K)) = K(N − K). Furthermore,

an isometric, dimensionally reductive map is one satisfying that it is dimensionally reductive and

exactly preserves all pairwise distances.

Theorem 5.3.1 (Theorem 2 [68]). The representation of K−planes in RN (let V ∈ Gr(N,K)) by

their projection matrices (PV ) gives an isometric embedding (with respect to chordal distance) of

Gr(N,K) into a sphere of radius
√
K(N −K)/N in RD, D =

(
N+1

2

)
− 1.

In order to consider this isometric embedding to be dimension reductive we would need

D =

(
N + 1

2

)
− 1 =

N2 +N

2
− 1 < K(N −K).

Since K < N we have that D will never be less than K(N −K) and consequently the embedding

will never be isometric and dimensionally reductive by our definition. However, it is important to

notice that this mapping does not rely on the number of points we start with.

One might consider mapping into RD whereD is defined as in Theorem 5.3.1 and then applying

the JLL to produce a nearly isometric, dimensionally reductive map. In order for this composition

of maps to be considered dimensionally reductive the dimension resulting from the JLL would

need to be less than the dimension of the original Gr(N,K), i.e.

4(
ε2

2
− ε3

3
)−1 ln(M) < K(N −K) < D =

(
N + 1

2

)
− 1
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for distortion factor ε and M data points on Gr(N,K).

From the neccessity that the above properties hold to be dimensionally reductive an expression

for the number of points that could yield a dimensionally reductive map for a fixed distortion factor

ε can be found. Requiring that the above property hold induces the following series of inequalities

4(
ε2

2
− ε3

3
)−1 ln(M) < K(N −K)

=⇒ ln(M) <
K(N −K)

4
(
ε2

2
− ε3

3
)

=⇒M < exp(
K(N −K)

4
(
ε2

2
− ε3

3
)).

Moreover, M > 2 for all problems of interest so we have

ln(2) < ln(M) <
K(N −K)

4
(
ε2

2
− ε3

3
)

=⇒ ln(2) < exp(
K(N −K)

4
(
ε2

2
− ε3

3
))

=⇒ 4 ln(2)

K(N −K)
<
ε2

2
− ε3

3

=⇒ 24 ln(2)

K(N −K)
< ε2 − ε3.

Recalling that 0 < ε < 1 we have ε2 − ε3 < ε and we can produce a loose lower bound on the

distortion factor needed to obtain a nearly isometric, dimensionally reductive map by

24 ln(2)

K(N −K)
< ε.

Frequently, 1/2 is considered a threshold for a reasonable distortion factor. Taking this into con-

sideration, together with the fact that 24 ln(2) ≈ 16 we find that dimension reduction is reasonably

feasible if 16
K(N−K)

< 1/2. Finally, we find that for more than 2 points from Gr(N,K) and an

isometry constant less than 1/2 we need, approximately, 8 < K(N −K).
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Figure 5.4.1: Schematic illustrating the effect of a dimension reducing map between Grassmannians where
N is being reduced and K stays constant, f : Gr(N,K)→ Gr(n,K), n < N.
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Figure 5.4.2: Schematic illustrating the effect of a dimension reducing map between Grassmannians where
K is being reduced and N stays constant, f : Gr(N,K)→ Gr(N, k), k < K.
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Figure 5.4.3: Schematic illustrating the effect of a dimension reducing map between Grassmannians where
both N and K are reduced, f : Gr(N,K)→ Gr(n, k), n < N and k < K.

5.4 Johnson-Lindenstrauss for Grassmannians

Considered here are nearly isometric mappings between Grassmannians characterized by dif-

ferent dimensions. Unlike the previous section these mappings map directly from Gr(N,K) into

Gr(N, k), Gr(n,K), or Gr(n, k) with n < N and k < K. One way to interpret the two char-

acterizing dimensions of a Grassmannian manifold is as two different resolutions. For example,

N could be considered a spatial resolution and K could be a temporal resolution. Successfully

mapping to a Grassmannian where at least one of N and K has been reduced while preserving

distances would suggest that particular spatial (or temporal) dimensions are extraneous. Figures

5.4.1, 5.4.2, and 5.4.3 provide sample schematics for the case where spatial resolution, temporal

resolution, or both resolutions are reduced, respectively. Although the schematics truncate the last

dimensions of each type, this is just an example and the extraneous dimensions may be distributed

throughout.
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5.4 Statement of the Conjecture

Conjecture 5.4.1 (Grassmannian Johnson-Lindenstrauss). Let 0 < ε < 1 and V be a set of m

points on Gr(N,K), V = V1, . . . ,Vm such that Vi ∈ Gr(N,K). Assume that 〈Vi〉 ∩ 〈Vj〉 = ∅

for all i and j. Furthermore, we denote the chordal distance between two points Vi and Vj by

dc(Vi,Vj).

(a) There exists a map f : Gr(N,K)→ Gr(n,K) with n < N such that

(1− ε)dc(Vi,Vj) ≤ dc(f(Vi), f(Vj)) ≤ dc(Vi,Vj)(1 + ε)

for all i, j whenever n > s(N,K, ε,m) for some function s.

(b) There exists a map g : Gr(N,K)→ Gr(N, k) with k < K such that

(1− ε)dc(Vi,Vj) ≤ dc(g(Vi), g(Vj)) ≤ dc(Vi,Vj)(1 + ε)

for all i, j whenever k > t(N,K, ε,m) for some function t.

(c) There exists a map h : Gr(N,K)→ Gr(n, k) with n < N and k < K such that

(1− ε)dc(Vi,Vj) ≤ dc(h(Vi), h(Vj)) ≤ dc(Vi,Vj)(1 + ε)

for all i, j whenever n > w(N,K, ε,m) and k > z(N,K, ε,m) for some pair of functions

w, z.

5.4 Towards Existence: Statistical Approach

Our first course of action was to recreate the statistically based proof for the standard Johnson-

Lindenstrauss Lemma. In order to take this approach a few key statistical and probabilistic state-

ments/tools used in the approach would need to be made in terms of the Grassmannian as the

domain of the distributions. This section is comprised of many of these statements. Some are
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proved and many are presented as conjectures with or without ideas about how they might be

proved or substeps that would be needed. Also presented are some of the challenges that arise as a

consequence of the domain space no longer being Euclidean.

Theorem 5.4.1. The following distributions are equivalent:

(a) The distribution of the Frobenius norm of a fixed K−plane in RN projected onto a uniform

random (with respect to Haar measure) n−dimensional subspace of RN .

(b) The distribution of the Frobenius norm of a uniform random (with respect to Haar measure)

K−plane in RN projected onto a fixed n−dimensional subspace of RN .

Proof. Let the fixed K−dimensional subspace of RN having an orthonormal basis making up the

columns of the matrix U. Without loss of generality, let the fixed subspace under consideration be

the first K standard basis vector of of RN ,

U =

[
e1 e2 . . . eK

]

=

 IK

0N−K,K

 .
Let V be a basis for a fixed n−dimensional subspace of RN . Without loss of generality, we let V

be the subspace spanned by the first n standard basis vectors in RN ,

V =

[
e1 e2 . . . en

]

=

 In

0N−n,n

 .
Let A be a random element of the orthogonal group, A ∈ O(N). A uniform random (with respect

to the Haar measure) K−dimensional subspace of RN can be generated as U0 = ATU. Similarly,

a uniform random (with respect to the Haar measure) n−dimensional subspace can be generated
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as V0 = AV. Recall, the projection onto the column space of a matrix B can be written as PB =

B(BTB)−1BT . Consider the Frobenius norm of a fixedK− dimensional subspace projected onto

the random n−dimensional subspace V0. We yield the following sequence of equalities

||PV0U||2F = tr((PV0U)T (PV0U))

= tr(UTPT
V0

PV0U) = tr(UTPV0U) = tr(UT (V0(VT
0 V0)−1VT

0 )U)

= tr(UT (AV((AV)T (AV))−1(AV)T )U)

= tr(UT (AV(VTATAV)−1VTATU).

From the assumption that A ∈ O(N) we have that AAT = ATA = IN . Using this fact we have

||PV0U||2F = tr(UT (AV(VTV)−1VTAT )U)

= tr(UTAPV ATU) = tr(UTAPT
V PV ATU) = tr((ATU)TPT

V PV (ATU)))

= tr(UT
0 PT

V PV U0)

= tr((PV U0)T (PV U0))

= ||PV U0||2F .

The value ||PV U0||2F is the Frobenius norm of the projection of the uniform randomK−dimensional

subspace U0 onto the fixed n−dimensional subspace spanned by V. Thus, we have that the distri-

butions of the Frobenius norms are equivalent.

Conjecture 5.4.2. The following distributions are equivalent:

(a) The distribution of the Frobenius norm of a fixed K−plane in RN projected onto a uniform

random (with respect to Haar measure) k−dimensional subspace of RK .

(b) The distribution of the Frobenius norm of a uniform random (with respect to Haar measure)

K−plane in RN projected onto a fixed k−dimensional subspace of RK .

142



Proof. Would this become a statement about frames or random sets? Some pieces that I think

would need to be shown are stated in the following conjecture and theorem.

Theorem 5.4.2 (Block Projection Matrix). Let M be an integer. If PU is an m × m projection

matrix, then the matrix  PU 0m,M−m

0M−m,m 0M−m


is also a projection matrix.

Proof. Recall that in order for the matrixM to be a projection matrix it must satisfyMM = M .

Let

M =

 PU 0m,M−m

0M−m,m 0M−m

 .
We then have

MM =

 PU 0m,M−m

0M−m,m 0M−m


 PU 0m,M−m

0M−m,m 0M−m


=

 PUPU 0m,M−m

0M−m,m 0M−m


=

 PU 0m,M−m

0M−m,m 0M−m


= M .

Thus, the defined block matrix is also a projection matrix.

Conjecture 5.4.3. Let W be a uniform random (with respect to Haar measure) k−dimensional

subspace of RK and let PW ∈ RK×K be the projection onto the space spanned by 〈W 〉. Further-

more, let V be an N ×K matrix. Right multiplication of V by
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P̃W =

 PW 0K,N−K

0N−K,K 0N−K


is equivalent to a projection onto a random subset of its columns.

In the JLL proof in [7] they are able to just consider the length of the projection of a fixed vector

in RN because the difference between any two points in RN can be represented by a single vector

corresponding to their difference vector. Also, because the mapping f is linear (a projection) they

have that if w = v − u then f(w) = f(v − u) = f(v) − f(u). The analagous statement does

not hold when we represent two fixed points on Gr(N,K) by their projection matrices. Explicitly,

let V and U be fixed points on Gr(N,K), V, U ∈ RN×K . Clearly we have that W = V −U ∈

RN×K and thatW ∈ Gr(N,K).However, consider the projection matrices PV = V(VTV)−1VT

and PU = U(UTU)−1UT . Now consider the projection matrix onto W . By definition we have

that

PW = W (W TW )−1W T

= (V −U)((V −U)T (V −U))−1(V −U)T

= (V −U)((VT −UT )(V −U))−1(VT −UT )

= (V −U)(VTV −VTU−UTV + UTU)−1(VT −UT )

6= V(VTV)−1VT −U(UTU)−1UT

=⇒ PW 6= PV −PU .

Consequently, we cannot recreate the Euclidean JLL proof in [7] in exactly the same manner.

Need to remember that if U is a random subspace and PU is the projection onto the subspace

spanned by 〈U〉 and Vi,Vj are points on Gr(N,K), then PU(Vi − Vj) = PUVi − PUVj. If

we want to use the fact that we can compute the chordal distance as the Frobenius norm of the

difference of projection matrix representations, then we are looking for a bound relating ||PVi −

PVj ||2F and ||PṼi
−PṼj

||2F with Ṽi = PUVi and Ṽj = PUVj.
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Another challenge is that in general ||PVi − PVj ||2F 6= ||PUi
− PUj

||2F where Ui is the re-

sult of projecting Vi onto some space. Given the challenges related to handling the projection

representation of points on Gr(N,K), we are led to consider an alternative approach.

5.4 Towards Existence: A Packing Problem

There are two common ways of representing a configuration of points on the Grassman-

nian. Let V = {V1,V2, ....Vm} be a set of m points on Gr(N,K), Vi ∈ Gr(N,K) for all i.

The convention used by [68] and [65], as well as others, is to associate each point with its or-

thogonal projection matrix PVi . As discussed in the previous section, this is often done because

d2
c(Vi,Vj) = ||PVi − PVj ||2F resulting in easy distance computations. Alternatively, in [8] a con-

figuration can be represented by concatenating the subspaces V̄ = [V1 V2 . . .Vm]T . Looking at

the Grammian G = V̄V̄T produces a block matrix from which the off diagonal elements can

readily produce the principal angles, and consequently pairwise distances, between the subspaces.

As a result of the previously mentioned challenges of handling the projection representations of

the points, an alternative approach would be to look for properties of the SVD of the off diagonal

block matrices. This is similar to the approach taken in [8]. In [8] the problem of interest is that of

packing subspaces on a Grassmann manifold. Consider the set V = {V1,V2, ....Vm} of m points

on Gr(N,K), Vi ∈ Gr(N,K) for all i. The packing diameter of a configuration of the points is

given by packchord(V) = min
i 6=j

dC(Vi,Vj). The generic packing problem on the Grassmannian seeks

to identify a configuration of m points that maximizes the packing diameter of the set of points.

Determining an optimal solution to a max-min problem can be far from trivial. An alternative

approach is to identify if there is a feasible configuration where the packing diameter is greater

than or equal to a dummy variable and then increment the dummy variable.

It is reasonable to assume that the scenario in which the minimum pairwise distance is being

maximized is highly connected to the setting where pairwise distances might be strongly distorted.

For this reason, let us look more closely at the Grammian matrix produced by concatenation, let

V̄ = [V1 V2 . . .Vm]T and define the Grammian to be G = V̄V̄T . Again, G is a block matrix
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where Gij = VT
i Vj. The dimensions of G are mN × mN where you can think of it as an

m × m block matrix with blocks of size N × N. Each of the blocks has rank K. In [8] they

recall from linear algebra that a positive semidefinite block matrix, with identity matrices as the

diagonal blocks can be factored into a particularly useful form via eigenvalue decomposition. By

construction the matrix G is positive semidefinite and can be factored as XTX where X is a

K ×mN configuration matrix. That is, the columns of X form orthogonal bases for m different

K dimensional subspaces of RN . Given that the SVD of the off diagonal blocks of G produce the

principal angles, we can also generate the chordal distances between points from these off diagonal

blocks.

Returning to the packing problem, instead of trying to solve the max-min problem directly, con-

sider ρ > 0 and repose the problem as looking for a configuration of subspaces, V̄, on Gr(N,K)

satisfying that packchord(V̄) ≥ ρ. A configuration satisfying this is said to be feasible. The value of

ρ is incremented until a feasible configuration cannot be found. The paper [8] presents an algorithm

for finding a feasible configuration for a given ρ and we refer the interested reader to the paper for

exact details. We now begin a discussion about ways to modify this problem formulation to help

move in the direction of proving the existence of a nearly isometric map between Grassmanni-

ans. For the remainder of our discussion we will denote the packing distance of a configuration of

points V̄ on Gr(N,K) by packN,K(V̄) (or δN,K when convenience dictates) and assume that the

packing distance is computed with respect to the chordal distance.

For the first case let us consider the case where we fix N and reduce the dimension of the

subspace, K.

Theorem 5.4.3 (Nearly Distance Preserving and Packing Distance). Let V̄ be a configuration of

points on Gr(N,K). Consider a map f : Gr(N,K)→ Gr(n, k) satisfying

1. |packN,K(V̄)− packn,k(f(V̄))| ≤ ε1/3,

2. max
i 6=j
{|packN,K(V̄)− dc(Vi,Vj)|} ≤ ε2/3, and

3. max
i 6=j
{|packn,k(f(V̄))− dc(f(Vi), f(Vj))|} ≤ ε3/3.
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If ε = max{ε1, ε2, ε3}, packN,K(V̄)) ≥ 1, and (ε)(packN,K(V̄)) < 1, then this map is nearly

distance preserving for ε.

Proof. Let V̄ be a configuration of points on Gr(N,K). Consider a map f : Gr(N,K) →

Gr(n, k) satisfying

3|packN,K(V̄)− packn,k(f(V̄))| ≤ ε1.

Additionally, let

3(max
i 6=j
{|packN,K(V̄)− dc(Vi,Vj)|}) ≤ ε2

and

3(max
i 6=j
{|packn,k(f(V̄))− dc(f(Vi), f(Vj))|}) ≤ ε3.

We further let ε = max{ε1, ε2, ε3}. Lastly, let δN,K = packN,K(V̄) and δn,k = packn,k(f(V̄)).

Assume that δN,K ≥ 1 and that εδN,K < 1. We then have

|dc(f(Vi), f(Vj))− dc(Vi,Vj)| = |dc(f(Vi), f(Vj))− δn,k + δn,k − δN,K + δN,K − dc(Vi,Vj)|

≤ |dc(f(Vi), f(Vj))− δn,k|+ |δn,k − δN,K |+ |δN,K − dc(Vi,Vj)|

≤ ε2/3 + ε1/3 + ε3/3 ≤ ε

for all i 6= j. Since δN,K ≥ 1 we have

|dc(f(Vi), f(Vj))− dc(Vi,Vj)| ≤ εδN,K .

From the fact that δN,K ≤ dc(Vi,Vj)for all i 6= j we have εδN,K ≤ εdC(Vi,Vj) for all i 6= j.

Consequently,

|dc(f(Vi), f(Vj))− dc(Vi,Vj)| ≤ εdc(Vi,Vj)

−εdc(Vi,Vj) ≤ dc(f(Vi), f(Vj))− dc(Vi,Vj) ≤ εdc(Vi,Vj)

(1− ε)dc(Vi,Vj) ≤ dc(f(Vi), f(Vj)) ≤ dc(Vi,Vj)(1 + ε).
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Thus, the map is nearly distance preserving for ε

This proof goes through whether n < N andK is fixed, k < K andN is fixed, or if n < N and

k < K. Undoubtably the ε’s in the proofs will depend on these dimensions. We will use δN,K to

denote the packing distance of the original configuration V̄ and δn,k to be the packing distance of

the configuration under the map f. How is this connected to the packing problem? For a particular

configuration on Gr(N,K) we can readily compute the packing distance. Thus for a collection of

points we can determine whether or not the second property is satisfied. We are then looking for a

configuration of points in the image space whose packing distance is bounded based on property

one. Finally, the third property may be able to be interpreted as a spectral condition (a function of

the singular values). Through formalization of these ideas as added constraints, we may be able to

use the algorithm in [8] to search for a feasible configuration satisfying these conditions (as well

as a couple others).

If we can find a feasible configuration then we, by construction, have proven the existence of

a nearly distance preserving map. We need to consider the answers to a few different questions.

First, what do the assumptions mean and can they be simplified? Second, what are the conditions

that result from the assumptions? Third, what are the conditions arising from the image space of

the theorized mapping? Once these three questions are answered, the formulation of a feasible

configuration based optimization problem can be completed.

Notably, there are several non trivial assumptions being made to make the proof go through.

Is there a way to simply the assumptions used? Starting from perhaps the most unlikely of the

assumptions to be satisfied: εδN,K < 1. Equivalently, ε ≤ 1/δN,K . Since we take ε to be equal to

the maximum of {ε1, ε2, ε3} the following three properties must be satisfied

1. |δn,k − δN,K | = |δN,K − δn,k| ≤ ε1/3 ≤ ε/3 ≤ 1/3δN,K ,

2. max
i 6=j
{|dc(Vi,Vj)− δN,K |} = max

i 6=j
{|δN,K − dc(Vi,Vj)|} ≤ ε2/3 ≤ ε/3 ≤ 1/3δN,K , and

3. max
i 6=j
{|δn,k − dc(f(Vi), f(Vj))|} ≤ ε3/3 ≤ ε/3 ≤ 1/3δN,K .
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In some sense, the first property might be the most intuitively connected to being distance preserv-

ing. You are considering the smallest pairwise distance in the original space and comparing it to

the smallest pairwise distance in the image space. However, what is different about it is that in

distance preserving maps we are comparing the distances between two points in the domain to the

distance between the images of the same points. Without adding additional requirements to the

function f there is no reason to assume that the packing diameter in the image space is attained by

the images of the points achieving the packing diameter in the original space.

Unlike the first property, the second and third properties pertain to distances in one space

(domain or image) only. In fact, both properties can be thought of as a deviation or variation of

pairwise distances relative to the minimim pairwise distance in that space. This seems to suggest a

constraint involving the variance of the distance matrix for the configuration we seek in the image

space. The deviation constraint will either be satisfied or it won’t, for a given epsilon, for the

starting configuration. If it isn’t satisfied then there will be no optimization to be performed using

the combination of our proposed approach and that of Strohmer.

Closely tied to the first assumption is the assumption that δN,K ≥ 1. What does this mean?

The minimum chordal distance between any two points in the initial configuration must be greater

than or equal to one. This immediately yields that, for our construction, ε1, ε2, and ε3 are bounded

above by 1/3. This simplification makes the movement towards formalization of an optimization

problem much simpler. The computational results shown in the next section give some sense of

how realistic this is for random samplings of Grassmannians and using canonical projections as

our function mapping between the Grassmannians.

If using some combination of approaches a suitable configuration of points can be found in the

image space, it is shows the existence of a map f with the property we seek. There some properties

that f might have that would be ideal. Particularly, if f were a canonical projection or could be a

random projection. The following section will present the results of several numerical experiments

exploring how distances change under canonical projections. These experiments were performed

to see if we can reveal characteristics that might push us further towards the existence.
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5.4 Computational Results

In [7] they generate a random point on the unit sphere and then use canonical projections to

go through their proof. As we were initially inspired by their approach, we conducted a similar

experiment. We began by generating a uniform random (with respect to Haar measure) set of points

on Gr(N,K). In our experiments we choose N × K × 5 points on Gr(N,K). These points are

generated as described in the background section using the procedure described in [65]. That is to

say that we generate a random matrix who’s entries are drawn from the standard normal distribution

and then perform a QR decomposition and use the orthogonal basis produced to represent a single

point on the Grassmannian.

Once the set of points has been generated we consider three scenarios:

1. fix the ambient dimension (N ) and reduce the subspace dimension (K),

2. fix the subspace dimension and reduce the ambient dimension, or

3. reduce both the subspace dimension and the ambient dimension.

Dimension reduction is achieved by projecting onto the first subset of the columns to reduce the

subspace dimenion or the first subset of rows to reduce the ambient dimension. As the dimension

(either N or K) is reduced, we generate an orthonormal basis for the point in the new space. On

each new Grassmannian we compute several values. For all the experiments performed distances

are measured using the chordal distance. Under each projection we compute several values. In-

cluded in this set of values are the largest and smallest principal angles between each pair of points,

the packing distance of the new configuration, the maximum deviation from the packing distance

for each configuration relative to its packing distance, and also the difference between the current

configuration’s packing distance and the packing distance of the original configuration.

Figures 5.4.4, 5.4.5, 5.4.6, 5.4.8, 5.4.9, 5.4.7, 5.4.10, 5.4.11, and 5.4.6 contain plots for an

initial configuration consisting of 1000 uniform random points on Gr(20, 10). In Figures 5.4.4,

5.4.5, 5.4.6, 5.4.8, 5.4.9, and 5.4.7 only one dimension is changed at a time. For these figures the

top subfigure shows the effect of varying the subspace dimension (K) while the bottom subfigures
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show the impact of varying the ambient dimension (N ). The surfaces shown in Figures 5.4.10,

5.4.11, and 5.4.6 demonstrate the effect of reducing both dimensions.

The distribution of the largest principal angle between pairs of points as the dimensions are

reduced are shown in Figures 5.4.8 while the distribution of the smallest principal angle is shown

in Figure 5.4.9. For each pair of points (i.e. pair of subspaces) the largest or smallest principal

angle is recorded. The set of angles is then histogrammed and normalized based on the number

of unique pairs of points. Principal angles take on values in [0, π/2) and this interval was broken

into 10 evenly spaced bins and the recorded angles were histogrammed accordingly. Along the

horizontal axis the angle size increases from left to right. The vertical axis indicates the dimension

being changed and it decreases from N − 1 (or K − 1) to K + 1 (or 1) from bottom to top. The

value of the pixel in the image indicates the percentage of the principal angles of interest that fell

in the range of values indicated along the x−axis.

The distributions of the largest principal angle between subspaces also appears to present a

trend. The peak of the distribution shifts left (towards a smaller angle), the peak takes on a smaller

value, and the width of the distribution increases as either the subspace or the ambient dimension is

reduced. As the dimensions are reduced the distribution of the largest angle appears to tend towards

uniformity. Alternatively, the distributions of the smallest principal angle change very differently

from the those of the largest and the trends are different as the subspace or ambient dimension

are changed. Whether the subspace or ambient dimension is reduced, the width of the distribution

appears to be constant as does the value of the peak. Unlike the largest principal angle, the peak

of the distribution of smallest angles moves to the left (smaller angle) as the ambient dimension is

reduced but to the right (a larger angle) as the subspace dimension is reduced.

The distribution of the largest principal angle has been studied in [71] but to our knowledge

there has been no formal exploration as to how these distributions change under dimension reduc-

tion. All of these results reflect what someone familiar with, or with a developed intuition, would

expect as the dimension is changed. As the subspace dimension is reduced via canonical projec-

tion, columns are being removed and the points which we at first a uniform sampling of Gr(N,K)
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are now a uniform sampling ofGr(N, k). The expectation is that random subspaces will be orthog-

onal in at least one dimension assuming that the ambient dimension is sufficiently large. When the

ambient dimension is reduced there is less space for the subspaces to be distributed over and as

the subspaces get closer together one expects overlap and consequently a smaller smallest angle

between the spaces.

In Figure 5.4.7 we see the percentage of the pairwise distances that are preserved for isometry

values ranging from 0 to 1. Along the horizontal axis is the isometry value (ε in the JLL). The

vertical axis indicates the dimension being changed and it decreases from N − 1 (or K − 1) to

K + 1 (or 1) from bottom to top. The value of the pixel in the image indicates the percentage of

pairwise distances that were preserved up to the isometry constant relative to the distances of the

original configuration. A bright yellow value indicates that 100% of the pairwise distances were

preserved. Notice that as one dimension is changed, the majority of times nearly all the distances

are preserved.

A horizontal red line was added to Figures 5.4.5 and 5.4.6 to indicate the largest upper bound

for the corresponding criterion in Theorem 5.4.3. In both cases this value is 1/3. Figure 5.4.5

shows how max
i 6=j
{|dc(f(Vi), f(Vj)) − δn,k changes as either the subspace or ambient dimension

is reduced. The difference between the packing distance of the configuration in the reduced di-

mension space and the original packing distance, |δn,k − δN,K |, is shown in Figure 5.4.6. Actual

packing distances are shown in Figure 5.4.4.

We see that the packing distance changes in a nonincreasing manner as either the subspace or

ambient dimension are reduced. Notice that they also appear to decrease at a similar rate. The

behavior seen in Figure 5.4.4 is seen again in Figure 5.4.6. Also of note in Figure 5.4.6 is that there

is a range of dimensions for which canonical projections satisfy the first condition of Theorem

5.4.3. However, as we see in Figure 5.4.5, the third condition of Theorem 5.4.3 is never met via

our canonical projections. Furthermore, the maximum deviation away from the packing distance

is roughly constant as the ambient dimenion decreases but is almost nonincreasing as the subspace
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dimension is reduced. This suggests that it may be easier to focus, at least in the immediate future,

on maps which only reduce K.

Trends seen in the results produced when one dimension is fixed and the other is reduced

also occur when both dimensions are reduced. This can be seen in surfaces in Figures 5.4.10,

5.4.11, and 5.4.12. The red line indicating Theorem 5.4.3 criteria being met now manifest as the

red planes in these figures. The surface in Figure 5.4.12 reveals that there is a set of reduced

dimension configurations that satisfy the first condition of the theorem. Again, we see that there

are no reduced dimension configurations produced via canonical projections that satify the third

condition of the theorem. From Figure 5.4.12 one might hypothesize that there is a relationship

between n and k which result in the determining whether the first condition is met. As a point of

interest, one might also be curious about whether or not the number of subspaces also contributes

to this bound.

To explore these ideas we look to the same surface plots generated for the following exper-

iments: 200 uniform random points on Gr(20, 10), 500 points on Gr(20, 5), and 200 points on

Gr(20, 5). The pair of surface plots of interest for each of these experiments are shown in Figures

5.4.13 and 5.4.14, Figures 5.4.15 and 5.4.16, and Figures 5.4.17 and 5.4.18, respectively. Across

these additional experiments we see a few trends appearing. First, for none of the executed com-

binations is the deviation constraint, in the current space, met. However, the constraint is closer

to being met when there are fewer subspaces involved in the configuration. Second, the region of

ambient and subspace dimensions which satisfy the second constraint are larger for smaller num-

bers of points in the configuration. Computational results suggest that with further investigation a

function of the dimension of the ambient space, the dimension of the subspace, and the number of

points is likely to exist that would determine whether or not the packing distance based criterion

can be met and hence if we can construct a nearly distance preserving map.
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Figure 5.4.4: Packing distance of the configurations as the subspace or ambient dimension are changed with
the initial configuration generated as a uniform random sample of 1000 points on Gr(20, 10).

Figure 5.4.5: Maximum deviation away from the packing distance of the configuration, in the current space,
as the subspace or ambient dimension are changed. The initial configuration is a uniform random sample
of 1000 points on Gr(20, 10). The red horizontal line marks the largest upperbound that would satisfy the
theorem’s criteria.
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Figure 5.4.6: Change in the packing distance of the configuration in its current space relative to the packing
distance of the original configuration as the subspace or ambient dimension are changed. The initial config-
uration is a uniform random sample of 1000 points on Gr(20, 10). The red horizontal line marks the largest
upperbound that would satisfy the theorem’s criteria.

Figure 5.4.7: Percentage of pairwise distances that are preserved for different isometry values (ε) as the
subspace or ambient dimension are changed. The initial configuration is a uniform random sample of 1000
points on Gr(20, 10).
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Figure 5.4.8: Distribution of the largest principal angle between points in the configuration as the subspace
or ambient dimension are changed. The initial configuration is a uniform random sample of 1000 points on
Gr(20, 10).

Figure 5.4.9: Distribution of the smallest principal angle between points in the configuration as the subspace
or ambient dimension are changed. The initial configuration is a uniform random sample of 1000 points on
Gr(20, 10).
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Figure 5.4.10: Packing distance of the configurations as both the subspace and ambient dimension are
changed. The initial configuration is a uniform random sample of 1000 points on Gr(20, 10).

Figure 5.4.11: Maximum deviation away from the packing distance of the configuration, in the current
space, as both the subspace and ambient dimension are changed. The initial configuration is a uniform
random sample of 1000 points on Gr(20, 10). The red horizontal plane marks the largest upperbound that
would satisfy the theorem’s criteria.
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Figure 5.4.12: Change in the packing distance of the configuration in its current space relative to the packing
distance of the original configuration as both the subspace and ambient dimension are changed. The initial
configuration is a uniform random sample of 1000 points on Gr(20, 10). The red horizontal plane marks
the largest upperbound that would satisfy the theorem’s criteria.

Figure 5.4.13: Maximum deviation away from the packing distance of the configuration, in the current
space, as both the subspace and ambient dimension are changed. The initial configuration is a uniform
random sample of 200 points on Gr(20, 10). The red horizontal plane marks the largest upperbound that
would satisfy the theorem’s criteria.
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Figure 5.4.14: Change in the packing distance of the configuration in its current space relative to the packing
distance of the original configuration as both the subspace and ambient dimension are changed. The initial
configuration is a uniform random sample of 200 points on Gr(20, 10). The red horizontal plane marks the
largest upperbound that would satisfy the theorem’s criteria.

Figure 5.4.15: Maximum deviation away from the packing distance of the configuration, in the current
space, as both the subspace and ambient dimension are changed. The initial configuration is a uniform
random sample of 500 points on Gr(20, 5). The red horizontal plane marks the largest upperbound that
would satisfy the theorem’s criteria.
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Figure 5.4.16: Change in the packing distance of the configuration in its current space relative to the packing
distance of the original configuration as both the subspace and ambient dimension are changed. The initial
configuration is a uniform random sample of 500 points on Gr(20, 5). The red horizontal plane marks the
largest upperbound that would satisfy the theorem’s criteria.

Figure 5.4.17: Maximum deviation away from the packing distance of the configuration, in the current
space, as both the subspace and ambient dimension are changed. The initial configuration is a uniform
random sample of 200 points on Gr(20, 5). The red horizontal plane marks the largest upperbound that
would satisfy the theorem’s criteria.
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Figure 5.4.18: Change in the packing distance of the configuration in its current space relative to the packing
distance of the original configuration as both the subspace and ambient dimension are changed. The initial
configuration is a uniform random sample of 200 points on Gr(20, 5). The red horizontal plane marks the
largest upperbound that would satisfy the theorem’s criteria.

5.5 Discussion

Although we have not concretely proved the existence of a nearly isometric mapping between

Grassmannians characterized by different dimensions, we have taken the first steps (down mul-

tiple paths) that may lead to such a proof. Of particular promise is the approach tying together

the formulation of a Grassmannian packing problem to nearly distance preserving maps. While

the approach is promising, the formalizing of an optimization problem that would find a suitable

configuration is not trivial. Nor is it obvious how one might implement some of the neccessary

constraints. In the paper [8] there are six properties that a matrix needs to satisfy to be able to be

factored into a feasible configuration onGr(N,K). IfG is that matrix whose factorization realizes

a feasible configuration of m points on Gr(N,K) whose packing distance is greater than ρ, then

G must satisfy

1. G is Hermitian,

161



2. each diagonal block ofG must be an identity matrix,

3. each off diagonal blockGij must satisfy ||Gij||F ≤
√
K − ρ,

4. G must be positive semidefinite,

5. rank(G) ≤ m, and

6. tr(G) = NK.

For the problem we consider the matrix G as corresponding to a configuration on Gr(n, k). The

first, second, and fourth constraints would be unchanged. The third property would be modified

to account for the criteria needed to satisfy |packN,K(V̄) − packn,k(f(V̄))| ≤ ε1/3. The rank

constraint would become an equality constraint and the trace constraint would be modified to

tr(G) = nk. Finally, an additional constraint (likely spectral) would need to be added to ensure

max
i 6=j
{|packn,k(f(V̄))− dc(f(Vi), f(Vj))|} ≤ 1/3.

Unlike the packing problem, we only need to find a feasible configuration once because our pack-

ing distance is strictly bounded.

Our computational results hint strongly at trends between the change of values of interest and

a reduction in either, or both, subspace or ambient dimension. The results suggest that there is a

region of combinations of reduced ambient and subspace dimensions that can satisfy one of the

needed criteria for our Theorem 5.4.3 under canonical projections. However, the results highlight

the difficulty in finding configurations (at least via canonical projections) that satisfy the devia-

tion about the packing distance constraints. These computational experiments will be extended

to a larger set of combinations of ambient and subspace dimensions in ongoing and future work.

Exploration of alternative mappings between Grassmannians are still needed. Additionally, explo-

ration of whether or not Theorem 5.4.3’s criteria are more easily satisfied by computing distances

using an alternative distance measure on the Grassmannian will be computed. Alternative distance
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measures were also considered in [8] and produced different formulations of the optimization prob-

lem we propose to modify for our purposes.
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Chapter 6
Conclusion

A desire to perform dimensionality reduction can be prompted by many things. Some common

motivations for dimensionality reduction come in the form of feature selection, data visualization,

building interpretable models, computational time, and data storage. In medical and biological

sensing there are often a very large number of variables or measurements available and dimen-

sionality reduction becomes particularly important due to the human factor. Humans can only

interpret models that consider a relatively small number of variables at a time (feature selection)

and are unlikely to trust their health to uninterpretable models. Moreover, in a world filled with

“math-phobia” an ability to visualize data and models also contributes to earning a human user’s

trust.

While there are many reasons one may want to perform dimensionality reduction, it should not

be done without careful consideration. There are several methods for dimensionality reduction that

involve ad hocly chosen thresholds, parameters, or ranks and can be implemented as a black box.

Such approaches may be useful in specific applications but it can be difficult to determine when

they will be beneficial. Each of the methods developed in this dissertation have a lesser dependence

on ad hoc choices and more readily lend themselves to thorough mathematical analysis. The meth-

ods are developed with the intention of preserving mathematical relationships between: numerical

relationships (like pairwise distance) or class/task based relationships (being able to distinguish or

identify group membership).

Using the mathematical properties of the Fourier transform we were able to develop a rota-

tionally invariant, vector representation of rare circulating cells of interest. By building multiple

models, each of which used a 1−norm regularization to promote feature selection, and looking at

features that were consistently given large weights across the models we were able to identify a

small set of features that could be inverted to aid in visualization of differentiating structure be-

tween cell types. The ability to visualize the information on which automated classification was

being performed allowed for fruitful interdisciplinary dialogue. As a result of this dialogue we
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were able to interpret the model we built and validate that the model is consistent with classifi-

cation criteria used by an expert pathologist. Unlike a human expert, our purely mathematical

classification does not suffer from fatigue and is consequently more trust worthy in some regard.

Across an application in ground cover classification and an application in generalized modal

analysis, we saw improved results achieved using reduced dimension estimators. Reduced dimen-

sion estimators were produced by controlling the bias and variance of the estimators when written

as a function of the rank of particular matrices. A rich theoretical foundation gave way to rigid

but interpretable order determination rules for identifying the optimal rank as well as which di-

mensions should be retained to produce the optimal rank. Determining optimal (by some measure)

reduced rank matrices had previously been considered. However, to our knowledge these frame-

works focus on how to produce the optimal reduced rank matrix for a specific rank. They do not

explicitly formulate rules that simultaneously identify what reduced rank is optimal and how to

produce that optimal rank version of the matrix.

Frequency Agile Lidar is a multispectral laser radar system that was designed to aid in the

tracking and detection of aerosolized bio-agents. Algorithms were implemented in 2012 that ana-

lyze the data acquired using this system. These algorithms begin with a complex, ad hoc parameter

dependent, multi stage preprocessing. Cleaned data is then analyzed using a non-negative matrix

factorization problem that can be solved using the popular convex optimization technique known as

Split Bregman. There are two glaring problems that prevent this system from being usable on-line.

One of the hangups is that the preprocessing requires knowledge of data acquired in the absence

of aerosol. The more significant challenge that prevents the on-line use of the system is that the

algorithm assumes that the internal factoring dimension in the non-negative matrix factorization

problem is known. In the context of this problem the internal factoring dimension is interpreted as

the number of aerosols present. Although we have not completely solved this problem, we have

proposed a solution that could (in theory) determine the internal factoring dimension and produce

a superior factorization. In addition to addressing one of the on-line challenges through the intro-

duction of a novel 1−norm regularized term in the objective function we found that removal of one
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of the previously existing 1−norm regularization terms from the objective function improved the

results of factorization. These improvements included decreased within class variance of feature

vectors used for classification as well as increased serparation between classes of feature vectors.

The culminating work of this dissertation considered nearly distance preserving maps between

Grassmannian manifolds. Of particular interest are maps that both nearly preserve pairwise dis-

tances as well as reduce the dimension of the Grassmannian. A detailed reproduction of a statistical

proof of the well known Johnson-Lindenstrauss Lemma is presented. The Johnson-Lindenstrauss

Lemma states the existence of nearly distance preserving maps between Euclidean spaces when

the dimension of the image space is bounded as a function of the number of points and a distortion

factor. It was this lemma that provided the inspiration for our exploration. We first considered an

analagous statistical approach to the proof in Euclidean space. Next, and more significantly, we

established a connection between packing distances and nearly distance preserving maps. More-

over, we proposed modifications to an exisiting algorithm that addresses the Grassmannian packing

problem that if solvable would prove, by construction, the existence of a nearly distance preserving,

dimension reducing map. Computational experiments presented provide insight into the feasibility

of different assumptions of our theorem being met. Although no concrete application was consid-

ered, potential applications were proposed and will be considered in future work.

All of the projects comprising this dissertation are connected through the mathematical concept

of dimension though it manifests differently in each project. Challenges related to estimating di-

mension and reducing dimension will only become more relevant as we continue moving forward

in the age of big data. These challenges are interesting from an application based standpoint and

the math theoretic perspective. This dissertation is bookended by projects that evolved from each

of these perspectives. In the first project we were motivated by a specific task in automated classi-

fication and then used existing techniques in dimensionality reduction and properties of our novel

representation to visualize and interpret a successful mathematical model. The final project was

inspired purely by mathematical theory but we believe it will be widely applicable to tasks rang-
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ing from mental task identification to identification of important spatial or temporal dimensions in

video data.

Dimensionality reduction has shown itself to be a versitile and useful tool across many fields

and a large array of applications. Some methods for dimensionality reduction are used like a black

box without consideration as to whether or not the mathematical/geometric assumptions are being

met. Other methods rely heavily on ad hocly chosen parameter values. Further development of

new algorithms that aim to preserve mathematical relationships in data with minimal dependence

on ad hoc parameters, like those in this dissertation, is needed. As more types of mathematical

relationships are considered the breadth of data sets which can benefit from dimensionality reduc-

tion will increase. These benefits include improved classification accuracies, increased detection

rates, decreased computational time, and reduction in storage space needed.

What is data? Previously we defined data as a collection of numerical representations which

can be analyzed using mathematical techniques to reveal facts and patterns on which reasonable,

and useful, models can be built. We leave the reader now with a less esoteric and more ethereal

definition. Pythagoras is credited with the statement “All is number.” From this perspective a data

set is merely a subset of everything. Mathematics is the language of everything and contains the

tools needed to translate these subsets into information which can be understood.
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