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A network for recursive extraction of canonical coordinates
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Abstract

A network structure for canonical coordinate decomposition is presented. The network consists of two single-layer linear subnetworks that

together extract the canonical coordinates of two data channels. The connection weights of the networks are trained by a stochastic gradient

descent learning algorithm. Each subnetwork features a hierarchical set of lateral connections among its outputs. The lateral connections

perform a deflation process that subtracts the contributions of the already extracted coordinates from the input data subspace. This structure

allows for adding new nodes for extracting additional canonical coordinates without the need for retraining the previous nodes. The

performance of the network is evaluated on a synthesized data set.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Canonical correlation analysis (Hotelling, 1936; Ander-

son, 1958) provides a minimal description of the

correlation between two data channels by concentrating

the linear dependence of the channels into a small set of

canonical variables. Canonical correlations are maximal

invariants to uncoupled linear transformations of two-

channel data. The corresponding canonical coordinates

resolve the channels into coordinates that are only

pairwise correlated. Canonical coordinates have been

used to decompose Wiener filters and Gaussian com-

munication channels into their canonical modes where

each mode corresponds to a scalar Gaussian channel, or

Wiener filter (Scharf & Thomas, 1998; Scharf & Mullis,

2000). They provide an elegant framework for analyzing

linear dependence and mutual information between two

data channels. In this coordinate system, the linear

dependence and mutual information between the original

channels are decomposed into those of canonical coordi-

nates of the channels, which are determined by the

corresponding canonical correlations. The canonical

correlation associated with each pair of canonical

coordinates determines the contribution of that pair to

the linear dependence and mutual information between the

channels (Scharf & Mullis, 2000).

The conventional method of finding canonical coordi-

nates involves computation of square-root-inverses of

covariance matrices followed by a singular value decompo-

sition (SVD) of a coherence matrix. These operations

become computationally intractable and inefficient

especially for large dimensional data. In addition all the

singular values and singular vectors of the coherence matrix

have to be evaluated even though only the most significant

singular values and their associated singular vectors are

used in most applications. These deficiencies make the

conventional scheme inefficient for real-time applications.

Consequently, to perform the canonical coordinate

decomposition efficiently, a method is required to extract

the most significant canonical coordinate pairs and the

corresponding canonical correlations recursively, and with-

out any matrix inversion, matrix square root computation or

direct SVD operations.

Neural networks have been proven to be powerful tools

for performing linear and nonlinear transformations.

Several neural network-based approaches have been

reported for extracting principal components of a

stochastic vector process directly from the input data

set. Oja (1982) proved that a linear model with a single

node trained with a normalized Hebbian rule can extract

the dominant principal component of a stationary vector

process. Sanger (1989) and Foldiak (1989), extended

Oja’s work to the multi-node case in order to simul-

taneously extract the first m principal components of a

vector process. Diamantaras and Kung (1994) exploited
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the idea of using lateral connections with anti-Hebbian

learning to recursively extract the principal components.

In a different approach, based on recursive least squares

(RLS) learning, Bannour and Azimi-Sadjadi (1995)

proposed another structure for recursive extraction of

principal components. Readers are referred to Diamantaras

and Kung (1996) for a review of other related work in this

area. Kung and Diamantaras (1994) also introduced a

network structure for computing the reduced-rank Wiener

filter. A network-based approach has been reported in Lai

and Fyfe (1999) for performing canonical correlation

analysis. However, this network only finds the most

significant canonical coordinate pair and the correspond-

ing canonical correlation.

In this paper a network and a set of updating rules for

performing canonical coordinate decomposition is pre-

sented. First, the problem of finding the first canonical

coordinate pair is formulated as a constrained minimization

problem. Then, given the first r canonical coordinate pairs,

the problem of finding the ðr þ 1Þth pair is formulated as one

of finding the first canonical coordinate pair after the

contributions of the first r pairs are deflated from the input

data subspace. This formulation is used to propose a

network structure that consists of two single-layer linear

subnetworks. The weights of the subnetworks are trained

using a stochastic gradient descent learning algorithm. Each

subnetwork includes a set of lateral connections that whiten

the output. The structure of each subnetwork is similar to

the structure of the single network proposed by Diamantaras

and Kung (1994). The lateral connections are trained to

deflate the contributions of the already extracted canonical

coordinates from the input data subspace. This structure

allows for adding new nodes for extracting a new canonical

coordinate without the need for retraining the previous

nodes. This is very useful since in most cases the number of

canonical coordinates or canonical correlations required is

not known a priori. In these cases a test of linear dependence

or mutual information may be performed to determine

whether additional canonical coordinate pairs need to

be extracted. A simulation example is given to demonstrate

the validity of the proposed network and the corresponding

learning rules.

2. A review on canonical coordinate decomposition

Let us follow the development of Scharf and Mullis

(2000) and consider the two random vectors, x [ Rm£1 and

y [ Rn£1 with m being the smaller dimension ðm # nÞ:

Assume that x and y have zero means and share the

composite covariance matrix

E
x

y

 !
ð xT yT Þ

" #
¼

Rxx Rxy

Ryx Ryy

" #
ð1Þ

This composite covariance matrix has the following block

tridiagonal decomposition

FT 0

0 GT

2
4

3
5 R21=2

xx 0

0 R21=2
yy

2
4

3
5 Rxx Rxy

Ryx Ryy

2
4

3
5

:
R2T=2

xx 0

0 R2T=2
yy

2
4

3
5 F 0

0 G

2
4

3
5 ¼

I K

K I

2
4

3
5 ð2Þ

where R21=2
xx RxxR2T =2

xx ¼ I; R1=2
xx RT=2

xx ¼ Rxx; and F;G and K

are chosen to be the SVD of the coherence matrix C ¼

R21=2
xx RxyR2T =2

yy : That is

C ¼ R21=2
xx RxyR2T=2

yy ¼ FKGT and FT CG ¼ K;

FT F ¼ I; GT G ¼ I; K ¼ diag½k1; k2;…; km�

ð3Þ

The diagonal matrix K is the canonical correlation

matrix of canonical correlations ki: The canonical

correlations are arranged in descending order ð1 $ k1 $

… $ km . 0Þ:

The canonical coordinates of x and y are defined as

u

v

" #
¼

FT 0

0 GT

" #
R21=2

xx 0

0 R21=2
yy

2
4

3
5 x

y

" #
ð4Þ

Correspondingly, the matrices

WT ¼ FT R21=2
xx and DT ¼ GT R21=2

yy ð5Þ

map x and y to their corresponding canonical coordinates u

and v. Thus we may rewrite the canonical coordinate map of

Eq. (4) as

u

v

" #
¼

WT 0

0 DT

" #
x

y

" #
ð6Þ

The composite vector of canonical coordinates, ½uT vT �T has

covariance matrix

E
u

v

 !
ð uT vT Þ

" #
¼

Ruu Ruv

Rvu Rvv

" #

¼
WT RxxW WT RxyD

DT RyxW DT RyyD

2
4

3
5 ¼

I K

K I

" #
ð7Þ

The canonical correlation matrix K is the cross

covariance matrix of u and v. That is

E½uvT � ¼ K ¼ WT RxyD ¼ FT R21=2
xx RxyR2T=2

yy G ð8Þ

The squared canonical correlations k2
i decompose the

linear dependence H between x and y, which is measured by
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the Hadamard ratio

H ¼ det{I 2 KKT } ¼
Ym
i¼1

ð1 2 k2
i Þ ð9Þ

In the case where x and y are marginally Gaussian, the

squared canonical correlation decompose the mutual

information Iðx; yÞ between x and y

Iðx;yÞ ¼2
1

2
log det{I2KKT }¼2

1

2

Xm
i¼1

logð12 k2
i Þ ð10Þ

The conventional method of canonical coordinate decompo-

sition, i.e. Eq. (4), requires the computation of the SVD of

the coherence matrix C ¼R21=2
xx RxyR2T=2

yy and the products

FT R21=2
xx and GT R21=2

yy ; which involve computation of matrix

square-root-inverses. In addition, the conventional method

does not allow for recursive extraction of a subset of

canonical coordinates at a lower computational cost. These

deficiencies of the conventional method motivate our next

discussion.

3. A network for recursive extraction of canonical

coordinates

This section presents a network structure and a set of

updating rules to recursively extract the canonical coordi-

nates of two data channels. The updating rules are derived

so that no matrix inversion or square root computation is

required. The network may be trained in either batch or

sequential mode and thus may be used for online

applications as well.

Let wi [ Rm£1 and di [ Rn£1 denote the ith columns of

W and D: Then, the ith canonical coordinates of x and y and

their corresponding canonical correlation are

ui ¼wT
i x; vi ¼dT

i y; and ki ¼E{uivi}¼wT
i Rxydi ð11Þ

From here on, we refer to wi and di as the ith canonical

coordinate mapping vectors. From Eq. (7), we have

E½uiuj� ¼wT
i Rxxwj ¼ dði2 jÞ

E½vivj� ¼ dT
i Ryydj ¼ dði2 jÞ

E½uivj� ¼wT
i Rxydj ¼ kidði2 jÞ

ð12Þ

where d(·) is the Kronecker delta. Noting that k1 ¼wT
1 Rxyd1

is the largest canonical correlation, the problem of finding

the first canonical coordinate mapping vectors, w1 and d1,

may be formulated as the maximization problem

max
w1;d1

wT
1 Rxyd1 ð13Þ

subject to the constraints

wT
1 Rxxw1 ¼ 1 and dT

1 Ryyd1 ¼ 1 ð14Þ

Using the method of Lagrange multipliers we may rewrite

the constrained optimization problem defined by Eqs. (13)

and (14) as minimizing the objective function J1 of

the form

J1 ¼2wT
1 Rxyd1 þðwT

1 Rxxw1 21Þ
l1;1

2

þðdT
1 Ryyd1 21Þ

l1;2

2
ð15Þ

where l1,1 and l1,2 are Lagrange multipliers that enforce

the constraints in Eq. (14).

Now, assume that the first r , m columns of W and D

have already been found. Let Wr [ Rm£r and Dr [ Rn£r be

the matrices that, respectively, contain the first r columns of

W and D: That is

Wr ¼ ½w1;…;wr� and Dr ¼ ½d1;…;dr� ð16Þ

The first r canonical coordinates of x and y are then given by

ur ¼ ½u1;…;ur�
T ¼WT

r x and vr ¼ ½v1;…;vr�
T ¼DT

r y ð17Þ

By deflating the contribution of the first r canonical

coordinates ur and vr from the input channels, we may

formulate the problem of finding the (r þ 1)th pair of

canonical coordinates as one of finding the first canonical

coordinate pair of the deflated input channels. This may be

done by replacing Rxy in Eq. (15) with its deflated version

ðI2RxxWrW
T
r ÞRxyðI2RyyDrD

T
r Þ

T (See Appendix for the

proof). Thus, the (r þ 1)th pair of canonical coordinate

mapping vectors wrþ1 and drþ1 may be found by

minimizing the objective function

Jrþ1 ¼2wT
rþ1ðI2RxxWrW

T
r ÞRxyðI2RyyDrD

T
r Þ

T drþ1

þðwT
rþ1Rxxwrþ1 21Þ

lrþ1;1

2

þðdT
rþ1Ryydrþ1 21Þ

lrþ1;2

2
ð18Þ

where lrþ1;1 and lrþ1;2 are Lagrange multipliers that

guarantee the unit variance property of the new pair of

coordinates,

E{u2
rþ1}¼wT

rþ1Rxxwrþ1 ¼ 1

E{v2
rþ1}¼ dT

rþ1Ryydrþ1 ¼ 1

ð19Þ

Taking the partial derivatives of Jrþ1 with respect to wrþ1

and drþ1 yields

›Jrþ1

›wrþ1

¼2ðI2RxxWrW
T
r ÞRxyðI2RyyDrD

T
r Þ

T drþ1

þRxxwrþ1lrþ1;1

›Jrþ1

›drþ1

¼2ðI2RyyDrD
T
r ÞRyxðI2RxxWrW

T
r Þ

T wrþ1

þRyydrþ1lrþ1;2

ð20Þ
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At the solution the constraints in Eq. (19) are satisfied.

Moreover, wrþ1 and drþ1 are, respectively, orthogonal to

RxxWr and RyyDr: That is

wT
rþ1RxxWr¼0 and dT

rþ1RyyDr¼0 ð21Þ

Using Eqs. (19) and (21) the optimal values of Lagrange

multipliers in Eq. (18) are found to be

lrþ1;1¼lrþ1;2¼lrþ1¼wT
rþ1Rxydrþ1¼krþ1 ð22Þ

From Eq. (6) the (r þ 1)th canonical coordinate pair of x

and y is given by

urþ1¼wT
rþ1x and vrþ1¼dT

rþ1y ð23Þ

Using Eqs. (17) and (21) we may rewrite Eq. (23) as

urþ1¼wT
rþ1ðI2RxxWrW

T
r Þx¼wT

rþ1x2qT
r ur

vrþ1¼dT
rþ1ðI2RyyDrD

T
r Þy¼dT

rþ1x2pT
r vr

ð24Þ

where

qT
r ¼wT

rþ1RxxWr and pT
r ¼dT

rþ1RyyDr ð25Þ

The pair of equations in Eq. (24) may be used to define

a network structure for extracting the (r þ 1)th pair of

canonical coordinates, given the first r pairs. Each

equation in Eq. (24) defines a single layer subnetwork

that features a feedforward set of weights from the input

to the output and a set of lateral connections that

connects the first r nodes to the (r þ 1)th node. Fig. 1

shows the structure of this network. In this structure, Wr

and Dr are the weight matrices that map x and y to their

first r canonical coordinates ur and vr: Given these

weights, the network may be trained, by minimizing Jrþ1

in Eq. (18), to extract the (r þ 1)th canonical coordinate

pair and the corresponding mapping vectors. The weight

vectors wrþ1 and drþ1 are trained to maximize the

correlation between the outputs urþ1 and vrþ1 and make

them unity variance. The lateral weight vector qr is

trained to orthogonalize ur (the first r canonical

coordinates of x) to urþ1 (the (r þ 1)th canonical

coordinate of x). Similarly, the lateral weight vector pr

is trained to orthogonalize vr to vrþ1: The lateral

connections perform a deflation process that subtracts

the contributions of the already extracted coordinates

from the linear subspaces of x and y. This structure

allows for adding new nodes for extracting additional

canonical coordinates without the need for retraining the

previous nodes.

Using the stochastic gradient descent learning algor-

ithm, with instantaneous values of covariance matrices

inserted into Eq. (20), we may derive the following

updating rules for wrþ1; and drþ1

wrþ1ðj þ 1Þ ¼ wrþ1ðjÞ þ ½ðxðj þ 1Þ2 Srðj þ 1Þurðj þ 1Þ

·vrðj þ 1Þ2 xðj þ 1Þxðj þ 1ÞT wrþ1ðjÞlrþ1

� ðj þ 1Þ�bðj þ 1Þ

drþ1ðj þ 1Þ ¼ drþ1ðjÞ þ ½ðyðjþ1Þ 2 Trðj þ 1Þvrðj þ 1Þ

·urðj þ 1Þ2 yðj þ 1Þyðj þ 1ÞT drþ1ðjÞlrþ1

� ðj þ 1Þ�bðj þ 1Þ ð26Þ

where j is the index of iteration. Matrices Sr and Tr are

updated to asymptotically approximate RxxWr and RyyDr;

respectively. From Eq. (22), the Lagrange multiplier

lrþ1 ¼ lrþ1;1 ¼ lrþ1;2 shall be updated to asymptotically

approximate wT
rþ1Rxydrþ1 ¼ krþ1: Thus the updating rules

for Sr, Tr, and lrþ1 are

Srðj þ 1Þ ¼
j

j þ 1
SrðjÞ þ

1

j þ 1
xðj þ 1ÞuT

r ðj þ 1Þ

Trðj þ 1Þ ¼
j

j þ 1
TrðjÞ þ

1

j þ 1
yðj þ 1ÞvT

r ðj þ 1Þ
ð27Þ

lrþ1ðj þ 1Þ ¼
j

j þ 1
lrþ1ðjÞ þ

1

j þ 1
wT

rþ1ðjÞxðj þ 1Þ

·yT ðj þ 1Þdrþ1ðjÞ�

Finally using Eq. (25) the learning rules for the lateral

weight vectors qr; and pr may be written as

qrðj þ 1Þ ¼ ST
r ðj þ 1Þwrþ1ðj þ 1Þ

prðj þ 1Þ ¼ TT
r ðj þ 1Þdrþ1ðj þ 1Þ

ð28Þ

Thus we may summarize the step-by-step training

algorithm for extracting the (r þ 1)th canonical coordinate

pair for r ¼ 0; 1;…;m 2 1 and the corresponding mapping
Fig. 1. The structure of the network for recursive extraction of canonical

coordinates of x and y.
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vectors as

urðjþ1Þ¼WT
r xðjþ1Þ and vrðjþ1Þ¼DT

r yðjþ1Þ

urþ1ðjþ1Þ¼wT
rþ1ðjþ1Þxðjþ1Þ2qT

r ðjÞurðjþ1Þ

vrþ1ðjþ1Þ¼dT
rþ1ðjþ1Þyðjþ1Þ2pT

r ðjÞvrðjþ1Þ

lrþ1ðjþ1Þ¼
1

jþ1
½jlrþ1ðjÞ

þwT
rþ1ðjÞxðjþ1ÞyT ðjþ1Þdrþ1ðjÞ�

Srðjþ1Þ¼
1

jþ1
½jSrðjÞþxðjþ1ÞuT

r ðjþ1Þ�

Trðjþ1Þ¼
1

jþ1
½jTrðjÞþyðjþ1ÞvT

r ðjþ1Þ�

wrþ1ðjþ1Þ¼wrþ1ðjÞþ½ðxðjþ1Þ2Srðjþ1Þurðjþ1ÞÞvrðjþ1Þ

2xðjþ1Þxðjþ1ÞT wrþ1ðjÞlrþ1ðjþ1Þ�bðjþ1Þ

drþ1ðjþ1Þ¼drþ1ðjÞþ½ðyðjþ1Þ2Trðjþ1Þvrðjþ1ÞÞurðjþ1Þ

2yðjþ1Þyðjþ1ÞT drþ1ðjÞlrþ1ðjþ1Þ�bðjþ1Þ

qrðjþ1Þ¼ST
r ðjþ1Þwrþ1ðjþ1Þ

prðjþ1Þ¼TT
r ðjþ1Þdrþ1ðjþ1Þ

ð29Þ

The initial values wrþ1ð0Þ[Rm£1; drþ1ð0Þ[Rn£1; qrð0Þ[
Rr£1; prð0Þ[Rr£1; Srð0Þ[Rm£r; Trð0Þ[Rn£r; and lrþ1

may be chosen randomly. The learning rate b may be

varied or kept fixed (Haykin, 1991). After convergence,

the linear dependence captured by the first (r þ 1) pair of

canonical coordinates is

Hr¼
Yrþ1

i¼1

ð12k2
i Þ¼

Yrþ1

i¼1

ð12l2
i Þ ð30Þ

and in case that x and y are marginally Gaussian, the

mutual information preserved by the first (r þ 1) pair of

canonical coordinates becomes

Irðx;yÞ¼2
1

2

Xrþ1

i¼1

logð12k2
i Þ¼2

1

2

Xrþ1

i¼1

logð12l2
i Þ ð31Þ

Since in most applications, the number of canonical

coordinate pairs to be extracted is not known a priori, we

may run a test based on Eqs. (30) or (31) to determine if

the amount of linear dependence or mutual information

preserved, meets a pre-specified threshold. If the threshold

is not reached, we may add another node to the network

to extract the next pair of canonical coordinates.

4. Simulation results

In this section, the proposed network is used to

recursively extract the canonical coordinate mappings for

a synthesized data set. The performance of the network is

demonstrated by presenting the plots of squared error

between the actual canonical coordinate mappings, com-

puted using the direct method in Eq. (5), and the ones

estimated by the network, along with the plots of squared

error for canonical correlations. Let ŵi and d̂i; respectively,

denote the estimate of the ith pair of the actual canonical

coordinate mappings wi and di: We define e2
wi

and e2
di

as the

squared estimation error of the ith canonical coordinate

mappings wi and di: That is

e2
wi

¼ kwi 2 ŵik
2

and e2
di
¼ kdi 2 d̂ik

2

Also, e2
ki
¼ ðki 2 k̂iÞ

2; is defined as the squared estimation

error of the ith canonical correlation ki: The actual canonical

correlation ki is found from the SVD in Eq. (3). From Eq.

(22), it is seen that the ith canonical correlation ki is

estimated by the Lagrange multiplier li: The data set is

formed from 500 samples of two data channels x [ R4£1;

y [ R5£1 governed by the linear model

x ¼ Hxhx and y ¼ Hyhy þ Hyxx

The matrices Hx [ R4£4;Hy [ R5£5 and Hyx [ R5£4 are

used to synthesize x and y from hx [ R4£1 and hy [ R5£1;

which are two independent white Gaussian vectors. The

network is trained for 2500 epochs using the training

algorithm in Eq. (29), without knowledge of the generating

mechanism for x and y. The learning rate is varied linearly

from b ¼ 5 £ 1023 to 5 £ 1026 in 2500 steps. All the initial

values in Eq. (29) are randomly selected.

Fig. 2(a)–(d) show the squared estimation errors e2
wi
; i [

½1; 4� vs. the epoch index for 10 independent initializations

of the network. It is seen that in all the cases the squared

error approaches zero within a misadjustment error (Haykin,

1996) and thus the weights of the upper subnetwork (Fig. 1)

converge to the actual canonical coordinate mapping

vectors that map the first data channel x into its canonical

coordinates u.

The plots of the squared estimation errors e2
di
; i [ ½1; 4�

vs. epoch index for the 10 initializations are shown in Fig. 3.

The convergence behaviors are very similar to those in

Fig. 2. In all the cases the squared error approaches zero

within a misadjustment error and thus the weights of the

lower subnetwork (Fig. 1) converge to the actual canonical

coordinate mapping vectors that map the second data

channel y into its canonical coordinates v.

Fig. 4 shows the squared estimation errors e2
ki
; i [ ½1; 4�

vs. the epoch index for the 10 initializations. The plots show

that the squared error decays to zero in all the cases. The

estimate of the ith canonical correlation ki is given by the

Lagrange multiplier li: These plots indicate that li’s

converge to the actual canonical correlations ki’s.
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Fig. 2. The squared error for wi’s, i [ ½1; 4� vs. the epoch index for 10

independent initializations of the network (a) i ¼ 1; e2
w1

¼ kw1 2 ŵ1k
2
: (b)

i ¼ 2; e2
w2

¼ kw2 2 ŵ2k
2
: (c) i ¼ 3; e2

w3
¼ kw3 2 ŵ3k

2
: (d) i ¼ 4; e2

w4
¼

kw4 2 ŵ4k
2
: In all the cases the squared error approaches zero and the

weights of the upper subnetwork (Fig. 1) converge to the actual canonical

coordinate mapping vectors that map the first data channel x into its

canonical coordinates u.

Fig. 3. The squared error for di’s i [ ½1; 4� vs. the epoch index for 10

independent initializations of the network (a) i ¼ 1; e2
d1

¼ kd1 2 d̂1k
2
:

(b) i ¼ 2; e2
d2

¼ kd2 2 d̂2k
2
: (c) i ¼ 3; e2

d3
¼ kd3 2 d̂3k

2
: (d) i ¼ 4; e2

d4
¼

kd4 2 d̂4k
2
: In all the cases the squared error approaches zero and the

weights of the lower subnetwork (Fig. 1) converge to the actual canonical

coordinate mapping vectors that map the second data channel y into its

canonical coordinates v.
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5. Conclusion

A new network for recursive extraction of canonical

coordinates of two data channels is introduced. The

network is based on a constrained minimization problem

that exploits a deflation process. The deflation process is

performed by incorporating lateral connections into the

subnetworks. The learning rules are derived using a

stochastic gradient descent algorithm. The structure of the

network along with the learning rules allow for adding a

new node to the network in order to extract a new

canonical coordinate pair without the need to retrain the

previous nodes. Unlike conventional methods, no matrix

inversion, matrix square root computation, or direct SVD

is required during the training. A simulation example

demonstrates the validity of the proposed network and

learning rules. The results confirm that the extracted

canonical coordinate mappings indeed approximate the

true ones.
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Appendix A

Here we show that the constrained minimization

problem in Eq. (18) indeed formulates the problem of

finding the (r þ 1)th pair of canonical coordinate map-

pings wrþ1 and drþ1: The assumption is that the matrices

Wr and Dr; which contain the first r columns of W and D

(the first r pair of canonical coordinate mappings), have

already been found.

Let us start by partitioning F;G and K into

F ¼ ½Fr F�r�; G ¼ ½Gr G�r�; and K ¼
Kr 0

0 K�r

" #
ð32Þ

where matrices Fr and Gr contain the first r and matrices F�r

and G�r the last m 2 r columns of F and G: The diagonal

matrices Kr ¼ diag½k1;…; kr� and K�r ¼ diag½krþ1;…; km�;

respectively, contain the first r and last m 2 r canonical

correlations. Then from Eq. (3), we have

C ¼ R21=2
xx RxyR–T=2

yy ¼ FKGT ¼ FrKrG
T
r þ F�rK�rG

T
�r ð33Þ

and

FT
r Fr FT

�r Fr

FT
r F�r FT

�r F�r

" #
¼

Ir 0

0 I�r

" #

GT
r Gr GT

�r Gr

GT
r G�r GT

�r G�r

" #
¼

Ir 0

0 I�r

" # ð34Þ

Fig. 4. The squared error for ki’s, i [ ½1; 4� vs. the epoch index for 10

independent initializations of the network (a) i ¼ 1; e2
k1
¼ ðk1 2 k̂1Þ

2: (b)

i ¼ 2; e2
k2
¼ ðk2 2 k̂2Þ

2: (c) i ¼ 3; e2
k3
¼ ðk3 2 k̂3Þ

2: (d) i ¼ 4; e2
k4
¼

ðk4 2 k̂4Þ
2: The estimate of ki is given by the Lagrange multiplier li: The

plots show that li converges to the actual canonical correlation ki in all the

cases.
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where Ir and I�r are the r £ r and ðm 2 rÞ £ ðm 2 rÞ identity

matrices. The SVD in Eq. (33), may be rewritten as

Rxy ¼ R1=2
xx FrKrG

T
r RT=2

yy þ R1=2
xx F�rK�rG

T
�r RT=2

yy ð35Þ

Using Eqs. (33) and (34), it may easily be verified that the

first term on the right hand side of Eq. (35) has three

equivalent representations. That is

R1=2
xx FrKrG

T
r RT =2

yy ¼ R1=2
xx FrF

T
r R21=2

xx Rxy

¼ RxyR2T=2
yy GrG

T
r RT=2

yy

¼ R1=2
xx FrF

T
r R21=2

xx RxyR2T=2
yy GrG

T
r RT=2

yy ð36Þ

Using this property, we may rewrite Eq. (35) as

ðI 2 R1=2
xx FrF

T
r R21=2

xx ÞRxyðI 2 R1=2
yy GrG

T
r R21=2

yy ÞT

¼ R1=2
xx F�rK�rG

T
�r RT=2

yy ð37Þ

We now partition W and D into W ¼ ½Wr W�r� and D ¼

½Dr D�r�; where the matrices W�r ¼ ½wrþ1;…;wm� and

D�r ¼½drþ1;…; dm� contain the last m 2 r columns of W

and D: Then, from Eq. (5) we have

Fr ¼ RT=2
xx Wr; F�r ¼ RT=2

xx W�r;

Gr ¼ RT=2
yy Dr; G�r ¼ RT=2

yy D�r ð38Þ

Using Eq. (38), we may rewrite Eq. (37) as

ðI 2 RxxWrW
T
r ÞRxyðI 2 RyyDrD

T
r Þ

T ¼ RxxW�rK�rD
T
�r Ryy ð39Þ

Pre-multiplying Eq. (39) by wT
rþ1; post-multiplying it by

drþ1; and noting that wT
rþ1RxxW�r ¼ ½1; 0;…; 0� and

dT
rþ1RyyD�r ¼ ½1; 0;…; 0� results in

wT
rþ1ðI 2 RxxWrW

T
r ÞRxyðI 2 RyyDrD

T
r Þ

T drþ1 ¼ krþ1 ð40Þ

Considering that krþ1 is the largest diagonal element of K�r

we may formulate the problem of finding wrþ1; drþ1 as

max
wrþ1;drþ1

wT
rþ1ðI 2 RxxWrW

T
r ÞRxyðI 2 RyyDrD

T
r Þ

T drþ1

subject to the constraints

wT
rþ1Rxxwrþ1 ¼ 1 and dT

rþ1Ryydrþ1 ¼ 1:
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