## THESIS

NUMERICAL SIMULATION FOR CONVECTION OF CONTAMINANTS IN GROUNDWATER

Submitted by

Leslie W. Pittman

In partial fulfillment of the requirements for the Degree of Master of Science Colorado State University

Fort Collins, Colorado
Fall, 1977

ABSTRACT

A numerical model which simulates the convective transport of conservative ions through groundwater aquifers is presented and discussed. The model uses the fully implicit, central finite difference technique to predict transient, two-dimensional areal groundwater level or piezometric head fluctuations, the corresponding flows, and the convective transport of conservative ions. The model uses the fully explicit finite difference technique to calculate the contaminant concentrations. The model neglects the dispersion portion of the convective-dispersion equation. Either square or rectangular grids which remain constant throughout the study period may be used.

Simple longitudinal and radial flow problems are solved. In addition, criteria to assure convergence and stability of the model are developed theoretically and empirically. The sensitivity of the model to variations in grid size, time increment and seepage velocity are presented.

The study was limited to confined aquifers. However, the model has been developed to handle unconfined aquifers also. The study was also limited to homogeneous and isotropic porous media.

[^0]ACKNOWLEDGEMENTS

The author wishes to thank his advisor, Professor R.A. Longenbaugh, for his critique and guidance during this study. Additional thanks are extended to the other members of the graduate committee, Dr. D.K. Sunada, Dr. D. B. McWhorter and Dr. D.W. Hendricks.

Thanks are extended to Colordao State University Experiment Station Project No. 110 for financial assistance received during the course of this study. Additional thanks are extended to Colorado State University for providing funds for costs incurred at the University Computer Center and to the Civil Engineering Department for making the HP9830A computer available free of charge.

Special thanks are extended to Ms. Gail Frick; her suggestions coupled with the conversion of this thesis to typescript are sincerely appreciated.

## TABLE OF CONTENTS

CHAPTER ..... PAGE
ABSTRACT ..... iii
ACKNOWLEDGEMENTS ..... iv
LIST OF TABLES
LIST OF FIGURES
I INTRODUCTION ..... 1
Groundwater Quality Modeling and its Limitations ..... 1
Objectives of this Study ..... 3
II CONVECTION AND DISPERSION IN POROUS MEDIA ..... 6
Analytic Solution of Longitudinal Convection and Dispersion ..... 8
Analytic Solution of Longitudinal and Lateral Dispersion and Longitudinal Convection ..... 10
Analytic Solution for Radial Convection and Dispersion ..... 11
Dispersion Coefficients ..... 13
Review of Finite Difference Simulation Techniques ..... 15
Review of Finite Element Simulation Techniques ..... 16
Review of Method of Characteristics Simulation Technique ..... 18
Summary of Previous Research ..... 20
III THE GROUNDWATER QUALITY MODEL ..... 21
Groundwater Flow Equation ..... 21
Water Quality Aspects of WTQUAL1 ..... 24
Modifications to WTQUAL1 ..... 25
Explicit Contaminant Mass Balance Equation ..... 27
Description of the Numerical Model ..... 29
IV NUMERICAL SIMULATION OF CONVECTIVE TRANSPORT ..... 34
Verification of the Longitudinal Convection Case ..... 34
Verification of the Radial Convection Case ..... 39
Stability Criteria ..... 43
Conservation of Contaminant Mass ..... 45
V SENSITIVITY ANALYSIS OF THE NUMERICAL MODEL ..... 49
Grid Size ..... 50
Time Increment ..... 55
Seepage Velocity ..... 59
Summary of the Sensitivity Analysis ..... 63
VI CONCLUSIONS AND RECOMMENDATIONS ..... 64
LITERATURE CITED ..... 67
APPENDIX A: DETERMINATION OF HYPOTHETICAL AQUIFER PROPERTIES ..... 70
APPENDIX B: PROGRAM FLOW CHART ..... 74
APPENDIX C: DESCRIPTION OF SUBPROGRAMS ..... 82
Subroutine READPH ..... 83
Subroutine READH ..... 83
Subroutine LEKAQF ..... 84
Subroutine CSET ..... 84
Subroutine STØRAG ..... 84
Subroutine QFIX ..... 85
Function ET ..... 85
Subroutine MATS $\emptyset$ L ..... 86
Function PARAM ..... 86
Subroutine NSCøNT ..... 87
Subroutine BSøLVE ..... 87
Subroutine BJUST ..... 87
Subroutine $\emptyset$ DFLøD ..... 88
Subroutine BYFLøW ..... 88
Subroutine BALCøP ..... 89
Subroutine MATRøP ..... 89
Subroutine READC ..... 90
APPENDIX D: PROGRAM LISTING ..... 91
APPENDIX E: DATA CODING FORMAT ..... 115

## LIST OF TABLES

TABLENUMBERPAGE
2-1 Experimentally Determined Values for $\alpha_{1}$ and $\beta_{1}$ ..... 14
5-1 Value of $\mathrm{C} / \mathrm{C}_{0}$ Versus Percent Error in Calculated Distance ..... 50
5-2 Data for Cases Tested ..... 60

## LIST OF FIGURES

FIGURENUMBER
PAGE
2-1 Schematic of longitudinal dispersion ..... 9
2-2 Schematic of longitudinal and lateral dispersion ..... 11
3-1 Finite difference grid notation (adapted from Bittinger, et al) ..... 22
3-2 Typical aquifer grid illustrating parameters which influence a change in concentration ..... 28
4-1 Schematic of the hypothetical aquifer with constant contaminant source ..... 35
4-2 Numerical versus analytic solutions for $\Delta x / v \Delta t=1$ and $\Delta t=30$ days ..... 37.
4-3 Numerical versus analytic solution for $\Delta x / v \Delta t=1$ and $\Delta t=10$ days ..... 38
4-4 Concentration distribution curves for radial flow in a uniform size grid network ..... 41
4-5 Concentration distribution curves for radial flow in a variable size grid network ..... 42
4-6 Oscillation of numerical solution for $\Delta x / v \Delta t=0.86$ after 90 days ..... 46
4-7 Oscillation of numerical solution for $\Delta x / v \Delta t=0.86$ after 360 days ..... 47
5-1 Concentration distribution curves for various grid sizes with $\Delta t=30$ days ..... 51
5-2 Concentration distribution curves for various grid sizes with $\Delta t=10$ days ..... 53
5-3 Concentration distribution curves for various grid sizes with $\Delta t=45$ days ..... 54FIGURENUMBERPAGE
5-4 Concentration distribution curves for various time increments with $\Delta x=300$ feet ..... 56
5-5 Concentration distribution curves for various time increments with $\Delta x=500$ feet ..... 57
5-6 Concentration distribution curves for various time increments with $\Delta x=115$ feet ..... 58
5-7 Concentration distribution curves for a medium sand ..... 61
5-8 Concentration distribution curves for a medium gravel ..... 62

## CHAPTER I

INTRODUCTION

Water is the most abundant substance on earth. It is estimated that there is six times as much water on the earth as there is feldspar, the most abundant solid material. Of all the fresh water, approximately 97\% -- about 8 trillion acre-feet -- is groundwater (Universal Oil Products, 1974).

Rapid population and industrial growth have led to extensive utilization of groundwater for municipal, agricultural, and industrial purposes. At the same time, improper disposal of human wastes, garbage and toxic chemicals, in addition to agricultural irrigation and fertilization, and a general unfamiliarity with groundwater hydrology have resulted in many instances of groundwater contamination.

These problems have finally begun to make officials aware of the potential for contamination of groundwater aquifers. The need for managing the quality of groundwater has also become apparent. In order to study and predict the areal distribution of contaminants in groundwater aquifers, it is necessary to understand the movement of the contaminants through the groundwater systems.

Groundwater Quality Modeling and its Limitations
As a means to study the movement of contaminants in groundwater aquifers, numerical models using digital computers have been developed.

These models simulate the movement of groundwater with additional provisions to simulate the transport and dispersion of contaminants.

Recent attempts at developing groundwater quality models have been limited primarily to conservative substances, principally the mineral salts. While this simplifies the development process, it is not undesirable since certain conservative parameters (e.g. total dissolved solids, chlorides, etc.) are of significant interest to water quality agencies.

These water quality models generally model only one contaminant at a time. The models are normally two-dimensional simulating areal or vertical distribution of the contaminant. While many models ignore the effects of soil chemistry, some models (Water Resources Engineers, Inc., 1969, and Perez et al, 1972) take the effects of the unsaturated soil zone into account.

Various numerical techniques have been used in the attempt to simulate the convective transport and dispersion of contaminants in groundwater aquifers. The finite difference technique has been adapted using the fully explicit, fully implicit (including forward, centered, and backward in time approaches), and the alternating-direction methods for solution. Previous research has indicated that, while these methods are valid, large amounts of computer time and storage usually limit their application.

The finite element technique has been studied more recently because it supposedly has advantages over the finite difference technique. However, some studies have shown that the Rayleigh-Ritz method exhibits convergence and stability problems and is not applicable to cases where
convection is the dominant transport mode. Another approach, the Galerkin method, requires large amounts of computer storage and time because small time steps and grid sizes must be used during the early calculations.

The method of characteristics is another numerical technique used to simulate convective transport and dispersion. Initial research where concentration values of the stationary grids were plotted indicated a significant amount of numerical dispersion. However, additional studies were made and accurate results obtained when the concentrations of the moving points were plotted.

Objectives of this Study
The previous discussion indicates that serious limitations are inherent in most numerical methods used to simulate convection and dispersion in groundwater aquifers. Most of the models require that the coefficient of dispersion be known and that the users have an extensive understanding of numerical methods, groundwater hydrology and the convection-dispersion process. In addition, these models often require extensive field data and very large amounts of computer time and storage.

Sunada (McWhorter et al, 1977) presented a finite difference numerical model called WTQUALl which simulates the convective transport of conservative ions. This model simplifies the simulation of contaminant movement through groundwater aquifers by neglecting the dispersion process. The model ignores the effects of the unsaturated soil
column and handles only one conservative parameter at a time. By using the fully explicit technique to calculate contaminant concentrations, the model minimizes the need for costly computer storage and time. The objectives of this study are to:

1. Briefly discuss WTQUALl, paying particular attention to the groundwater flow equation and the mass balance equation used to calculate the contaminant concentrations.
2. Modify WTQUALl so that it is applicable to a wider variety of problems.
3. Verify the numerical model by comparing numerical solutions to appropriate analytic solutions.
4. Develop criteria to assure convergence and stability of the model.
5. Perform a sensitivity analysis of the model, specifically evaluating those terms which appear in the stability criteria.

A review of literature dealing with numerical simulation of convection and dispersion in groundwater aquifers will be made. The problems encountered in these approaches will be noted and the effort of this study directed toward minimization or elimination of these problems. The existing numerical model will be modified and a hypothetical aquifer developed for which both numerical and analytic solutions for convection problems will be made. Computer runs will be made primarily on the HP 9830A desk-top computer with verification of these runs being made on the CDC 6400. Theoretical and empirical approaches will be used to develop criteria to assure convergence and stability of the model. Analyses will be performed to determine the sensitivity of the model to
changes in grid size, length of time increment and seepage velocity. In addition, runs will be made to verify that the model produces accurate results for the two-dimensional convection process resulting from radial flow from a recharge well.

## CHAPTER II

CONVECTION AND DISPERSION IN POROUS MEDIA

The first recorded study of dispersion in porous media was done inadvertently by Slichter (1905). In attempting to determine the rate of movement of groundwater, he injected a salt solution into a well and observed the time of arrival at an observation well down-gradient. He noted that the salt did not arrive at the observation well as a slug, but that the salt concentration gradually increased to some maximum value and then decreased. Since that time, much work has been done on the properties of dispersion and molecular diffusion of contaminants in groundwater.

Variation of concentration of contaminants in groundwaters is caused by three processes: convection, dispersion and molecular diffusion. Convection is the transportation of contaminants associated with groundwater flow and is based on the average seepage velocity. Dispersion in a porous media is associated with the convection process and results from a mechanical mixing caused by the individual fluid particles traveling at variable velocities through the pore spaces of the media and along microscopic path lines. Molecular diffusion results directly from the thermal motion of the individual fluid molecules and takes place under the influence of a concentration gradient. A detailed discussion of convection and dispersion is contained in Bear (1972).

Due to the difficulty encountered in trying to describe the boundary conditions on a microscopic scale (i.e. diffusion), the system is usually described on a macroscopic scale (i.e. convection and dispersion). Dispersion is a function of three physical properties: the fluid, the porous media, and fluid flow. Fluid properties of concern are density, viscosity, contaminant concentration, and miscibility of fluids in systems containing two or more fluid types. Media properties affecting dispersion are permeability, pore geometry, and pore space dimensions. Velocity is the major flow property.

According to Scheidegger (1961), and deJosselin deJong and Bossen (1961), the convection and dispersion of a contaminant in fluid flow through a saturated homogeneous porous medium is described by the differential equation:

$$
\begin{equation*}
\frac{\partial C}{\partial t}=\frac{\partial}{\partial x_{i}}\left[D_{i j} \frac{\partial C}{\partial x_{j}}-v_{i} C\right] \tag{2-1}
\end{equation*}
$$

where $D_{i j}=$ coefficient of dispersion
C $=$ the contaminant concentration
$\mathrm{t}=\mathrm{time}$
$v_{i}=$ the component of the seepage velocity vector in a cartesian coordinate system, and
$x_{i}(i=1,2,3)=$ the cartesian space coordinates.
The double subscripting of $\mathrm{D}_{\mathrm{ij}}$ and $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ represent the tensorial nature of the dispersion process. The first term in brackets represents the dispersion process while the second term represents convection.

Analytic Solution of Longitudinal Convection and Dispersion
For longitudinal convection and dispersion in a homogeneous and isotropic porous medium with a $p l$ ane source at $x_{3}=0$ (see Figure 2-1), Equation 2-1 becomes:

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D_{L} \frac{\partial^{2} C}{\partial x_{3}^{2}}-v_{3} \frac{\partial C}{\partial x_{3}} \tag{2-2}
\end{equation*}
$$

where $D_{L}$ is the longitudinal dispersion coefficient neglecting molecular diffusion. The initial and boundary conditions needed for the schematic in Figure 2-1 to apply for steady state flow in the direction of the velocity vector are as follows: the concentration $\mathrm{C}=\mathrm{C}_{0}$ of the contaminant source is constant for all times; the concentration in the porous media is initially zero for all values of $x_{3}$; the concentration at $x_{3}$ equal infinity is always zero. Mathematically, these initial and boundary conditions are given by:

$$
\begin{align*}
& C(0, t)=C_{0} ; \quad t \geq 0 \\
& C\left(x_{3}, 0\right)=0 \quad ; \quad x_{3} \geq 0  \tag{2-3}\\
& C(\infty, t)=0 \quad ; \quad t \geq 0 .
\end{align*}
$$

Ogata and Banks (1961) used Laplace transforms to obtain the following solution to Equations 2-2 and 2-3:

$$
\begin{equation*}
\frac{C}{C_{0}}=\frac{1}{2}\left[\operatorname{erfc}\left(\frac{x_{3}-v_{3} t}{2 \sqrt{D_{L} t}}\right)+\exp \left(\frac{v_{3} x_{3}}{D_{L}}\right) \operatorname{erfc}\left(\frac{x_{3}+v_{3} t}{2 \sqrt{D_{L} t}}\right)\right] \tag{2-4}
\end{equation*}
$$

where erfc=1-erf. For areas not close to the source and where $x_{3}>v_{3} t$, the second term in Equation 2-4 can be omitted and the equation simplified to:


Figure 2-1. Schematic of longitudinal dispersion.

$$
\begin{equation*}
\frac{C}{C_{0}}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{x_{3}-v_{3} t}{2 \sqrt{D_{L} t}}\right)\right] \tag{2-5}
\end{equation*}
$$

Where $\mathrm{x}_{3}<\mathrm{v}_{3} \mathrm{t}$, the applicable equation is:

$$
\begin{equation*}
\frac{C}{C_{0}}=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x_{3}-v_{3} t}{2 \sqrt{D_{L} t}}\right)\right] \tag{2-6}
\end{equation*}
$$

Equations 2-5 and 2-6 assume that the dispersion is symmetric about the point $C / C_{0}=0.50$ and assume steady state flow but non-steady state dispersion.

Analytic Solution of Longitudinal and Lateral Dispersion and

## Longitudinal Convection

If the source area is less than the area through which flow is occuring, longitudinal and lateral dispersion and longitudinal convection will occur. A schematic of this condition is shown in Figure 2-2(a).

For a homogeneous and isotropic media with one dimensional flow in the $x_{3}$ direction only, the governing equation is:

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D_{L} \frac{\partial^{2} C}{\partial x_{3}^{2}}+D_{T} \frac{\partial^{2} C}{\partial x_{3}^{2}}-v_{3} \frac{\partial C}{\partial x_{3}} \tag{2-7}
\end{equation*}
$$

where $\mathrm{D}_{\mathrm{T}}$ is the lateral (transverse) dispersion coefficient. For steady state conditions and with flow in the direction of the velocity vector, the initial and boundary conditions for this equation are:

$$
\begin{array}{ll}
C\left(x_{2}, 0, t\right)=C & ; 0 \leq x_{2} \leq b ; \\
C\left(x_{2}, 0, t\right)=0 & t \geq 0 \\
\frac{\partial C\left(0, x_{3}, t\right)}{\partial x_{2}}=0 ; & t \leq x_{2} \leq \ell_{2} ; \\
\frac{\partial C\left(\ell_{2}, x_{3}, t\right)}{\partial x_{2}}=0  \tag{2-8}\\
C\left(x_{2}, \infty, t\right)=\text { bounded } & ; t>0 \\
C\left(x_{2}, x_{3}, 0\right)=0 & ; 0 \leq x_{2} \leq \ell_{2} ; x_{3}>0
\end{array}
$$

The actual dispersion process is graphically shown in Figure 2-2(b). Harleman and Rumer (1963) gave the following approximate steady state


Figure 2-2. Schematic of longitudinal and lateral dispersion.
solution to Equations 2-7 and 2-8:

$$
\begin{equation*}
\frac{\mathrm{C}}{\mathrm{C}_{0}}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{\mathrm{x}_{3}-\mathrm{b}}{2 \sqrt{\mathrm{D}_{\mathrm{T}} \frac{\mathrm{x}_{3}}{\mathrm{v}_{3}}}}\right)\right] \tag{2-9}
\end{equation*}
$$

## Analytic Solution for Radial Convection and Dispersion

The partial differential equation governing radially symmetric diverging flow and the associated convection and dispersion from a well is (Bear, 1972):

$$
\begin{equation*}
\frac{\partial C}{\partial t}=v a_{I} \frac{\partial^{2} C}{\partial r^{2}}-v \frac{\partial C}{\partial r} \tag{2-10}
\end{equation*}
$$

where $r$ is the radial distance from the recharging well and $a_{I}$ is the longitudinal dispersivity of the porous media expressed as the coefficient of dispersion $D_{L}$ divided by the seepage velocity $v$.

For a well of radius $r_{w}$ injecting a fluid at a constant rate into a confined aquifer, the initial and boundary conditions for Equation 2-10 are:

$$
\begin{array}{ll}
C(r, t)=C_{0} ; & t>0 ; r=r_{2} \\
C(r, 0)=0 & ; r>r_{w}  \tag{2-11}\\
C(\infty, t)=0 & ; \quad t>0
\end{array}
$$

Because of the nonlinearity of Equation 2-10 (resulting from the fact that $v$ is a function of $r$ ), exact analytic solutions are difficult to obtain. However, deJosselin deJong (Lau et al, 1959) obtained the following approximate analytic solution to Equation 2-10

$$
\begin{equation*}
\frac{C}{C_{0}}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{\mathrm{r}-\overline{\mathrm{r}}}{\sqrt{\frac{4}{3} \mathrm{a}_{\mathrm{I}} \overline{\mathrm{r}}}}\right)\right] \tag{2-12}
\end{equation*}
$$

where $\bar{r}$ is the average radius of the body of injected water.
Raimondi et al (1959) suggested an approximate solution to Equation 2-10 based on the assumption that the influence of dispersion becomes small in comparison to the local convective effect as the contaminant moves away from the source. They assumed that the influence of dispersion and diffusion on the concentration distribution as the contaminant moves past any point becomes small as compared to the accumulated effect of dispersion and diffusion that has taken place up to that point. For the case of a well continuously injecting a contaminant of constant concentration they derived the equation:

$$
\begin{equation*}
\frac{C}{C_{0}}=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{r^{2} / 2-G t}{\sqrt{\frac{4}{3} a_{I} \bar{r}^{3}}}\right)\right] \tag{2-13}
\end{equation*}
$$

where G is obtained from the relationship

$$
\begin{equation*}
G=\frac{Q}{2 \pi h \phi}=v r \tag{2-14}
\end{equation*}
$$

where $h$ is the saturated thickness of a confined aquifer, $v$ is the seepage velocity and $\phi$ is the porosity.

## Dispersion Coefficients

Ebach and White (1958) developed the following empirical relationship for the longitudinal dispersion coefficient based on experiments over a wide range of particle sizes and shapes and where the Reynolds numbers $(\mathbb{R})$ were 1 ess than 100 :

$$
\begin{equation*}
\frac{D_{L}}{v}=\alpha_{1}\left(\frac{v d}{v}\right)^{\beta_{1}} \tag{2-15}
\end{equation*}
$$

where $\left(\frac{v d}{v}\right)=$ the Reynold's number $\mathbb{R}$
$v \quad=$ the fluid velocity
$\mathrm{d} \quad=$ the particle size of the porous media
$\nu \quad=$ the kinematic viscosity of the fluid
$\alpha_{1}$ and $\beta_{1}=$ porous medium coefficients.
They found that $\alpha_{1}$ is strongly dependent on the porous medium while $\beta_{1}$ is a function of the flow regime and the porous medium. Various experimental values for $\alpha_{1}$ and $\beta_{1}$ have been obtained and are listed in Table 2-1.

TABLE 2-1. Experimentally Determined Values for $\alpha_{1}$ and $\beta_{1}$

| Reference | $\alpha_{1}$ | $\beta_{1}$ |
| :--- | :---: | :--- |
| Harleman and Rumer (1963) | 0.66 | 1.2 |
| Hoopes and Harleman (1965) | 1.70 | 1.2 |
| Ebach and White (1958) | 1.92 | 1.06 |

Harleman et al (1963) also correlated the longitudinal dispersion coefficient with intrinsic permeability and obtained the following empirical relationship:

$$
\begin{equation*}
\frac{\mathrm{D}_{\mathrm{L}}}{v}=\alpha_{2}\left(\frac{\mathrm{v} \sqrt{\mathrm{k}}}{v}\right)^{\beta} \tag{2-16}
\end{equation*}
$$

where $k$ is the intrinsic permeability. They found $\alpha_{2}=54$ for spheres and 88 for sand with $\beta_{2}=1.2$ for both media.

Attempts to fit the lateral dispersion coefficient into a form similar to Equation 2-15.1ed to the following equation:

$$
\begin{equation*}
\frac{\mathrm{D}_{\mathrm{T}}}{v}=\alpha_{3}\left(\frac{\mathrm{vd}}{v}\right)^{\beta_{3}} \tag{2-17}
\end{equation*}
$$

Experimental values for $\alpha_{3}$ range from 0.036 (Harleman and Rumer, 1963) to 0.11 (Hoopes and Harleman, 1965). Both studies estimated $\beta_{3}$ to be 0.7 .

## Review of Finite Difference Simulation Techniques

Numerical methods approximate the governing differential equations, allowing for high speed solution of a set of equations. While the use of analytic solutions is limited to simplistic problems, the numerical models can be applied to problems involving many source or sink terms and a variety of boundary conditions. To verify the validity of a numerical scheme, it is necessary to compare numerical and analytic solutions for the same problems. A discussion of numerical methods is contained in Conte (1965).

Douglas, Peaceman and Rachford (1959) solved the problem of miscible displacement in a two-dimensional flow field using an alternating-direction implicit scheme. This work was expanded on by Peaceman and Rachford (1962) and by Blair and Peaceman (1963). Two significant problems were often encountered: either the results were effected by numerical dispersion or the solution developed severe oscillations, especially in the regions where the concentration changed rapidly. Numerical dispersion is the error associated with the numerical approximation of the governing differential equation.

In an effort to overcome the problems of instability and numerical dispersion, Stone and Brian (1963) developed a method which consisted of writing a general finite difference equation for the one-dimensional convective-dispersion equation. Their method contained arbitrary weighting coefficients for approximations to the space and time derivatives of the contaminant concentration. With proper choice of weighting coefficients, the model did reduce oscillations and numerical dispersion but could not handle two- and three-dimensional problems.

Shamir and Harleman (1966) took advantage of the Stone and Brian scheme by transforming the two-dimensional dispersion equation into a potential flow coordinate system (i.e., equipotential and streamlines). In this case, the velocity is everywhere tangential to the streamlines and the equation becomes one-dimensional in the convective term. They observed that $C / C_{0}$ values greater than 1.0 occurred behind the dispersion front. While the method did exhibit this oscillation, the solution was considered stable since the magnitude of the oscillation was constant with time.

Shamir and Harleman also discussed several basic finite difference approaches of simulating the movement of contaminants in groundwater aquifers. They stated that the fully explicit method of calculating the contaminant concentrations was impractical due to the large amounts of computer time required to solve even very simple problems. They determined that the grid size in the direction of flow must be on the order of a single grain size. They also concluded that the maximum admissible time increment was of the order required for the mean velocity to cover a distance equal to a fraction of the grain size. This particular numerical scheme required that the coefficient of dispersion be known to solve the dispersion equation.

## Review of Finite Element Simulation Techniques

The finite element technique supposedly has several advantages over the finite difference technique. Chief among these are the use of smaller amounts of computer time and less storage, additional flexibility available to model irrigular shaped basins by using triangular grids as
opposed to square or rectangular grids, and a minimizing of numerical dispersion. Whereas the finite difference technique solves the dispersion equation directly, the finite element technique uses a functional which is minimized for each triangular element. The resulting set of equations is then solved.

Price, Cavendish and Varga (1968) used the Galerkin method for solution of the one-dimensional diffusion-convection equation. They obtained more accurate results while requiring less computer time than central or non-central finite difference approximations and the method of characteristics.

Guyman (1970a) applied the Rayleigh-Ritz finite element technique to the solution of the nonsteady state one-dimensional diffusionconvection equation and later extended it to the two-dimensional case (1970b). The method was not applicable to problems defined by mixed partial differential equations. Later, Guyman (1972) suggested an improvement to his previous solution of the convective dispersion equation but that method displayed numerical dispersion and gave erratic results for small values of the dispersion parameters. It was concluded that the method was not applicable to convection dominated mass transport.

The efforts by Guyman and additional work by Nalluswami (1971) suggested that the method could not be applied to convection dominated transport which is the case for a majority of field situations. In addition, the time domain solution was comprised of inherently explicit schemes and so exhibited convergence and stability problems.

Prakash (1974) applied the Galerkin method to the flow of salt water towards partially penetrating wells located in homogeneous and isotropic aquifers consisting of a fresh water layer overlying a salt water layer. He found that in order to prevent oscillations in the solution of the flow equation, small initial time steps must be followed by gradually increasing time step size. He also found that the number of elements required for reasonably accurate results with a linear interpolation function has to be very large, necessitating huge amounts of computer storage. Due to the combined effect of small initial time steps and the large number of elements, the number of iterations to be performed becomes very large.

## Review of Method of Characteristics Simulation Technique

Garder, Peaceman and Pozzi (1964) used the method of characteristics to solve the problem of miscible displacement of an oil-solvent system in order to reduce numerical dispersion. The method gave good results for low oil-solvent viscosity ratios but ignored the tensorial nature of dispersion. However, the method required large amounts of computer time and storage while giving results slightly more accurate than previous, cheaper methods.

Reddell and Sunada (1970) developed flow and convective dispersion equations for non-homogeneous, unsteady flow fields. The flow equation: was solved using an implicit numerical technique and the convective dispersion equation was solved using the method of characteristics. This technique required so much excessive storage to catalog information on each moving point that auxilliary storage was required. They observed that the magnitude of error did not converge to a minimum value
regardless of the number of points used per grid in the simple onedimensional case. They also observed that the concentration profile lagged the actual frontal movement when the moving points remained inside a grid throughout a time step. Use of a weighted-average in the concentration calculations and taking the tensorial nature of dispersion into account allowed for more accurate calculations.

Kraeger (1972) applied the method of characteristics as developed by Reddell and Sunada to a field problem. She observed numerical dispersion inherent in the method of characteristics which did not show up in Reddell and Sunada's study. She attributed this to the grid size used. Reddell and Sunada used grids on the order of fractions of centimeters in size, allowing the actual physical dispersion to partially absorb the numerical smear. Kraeger used grids approximately one-half mile square which clearly indicated the numerical dispersion. She also encountered difficulty in trying a trial-and-error process to arrive at a time increment which produced a concentration distribution resembing the data collected in the field.

Shariatmadar Taleghani (1974) used the method of characteristics to solve the convective-dispersion equation for the case of partially penetrating wells pumping from an aquifer consisting of a fresh water layer underlain by salt water. He obtained accurate results when the concentrations of the moving points were plotted. Kraeger had plotted the concentrations of the stationary grids while neglecting the dispersion process. Therefore, she whould have obtained a vertical front regardless of the value of the dispersion coefficient. Shariatmadar Taleghani concluded that the numerical dispersion which Kraeger noted
was a result of the manner in which she plotted the concentration distribution curves and not the grid size used.

Summary of Previous Research
The development of the analytic solutions for dispersion in porous media were major accomplishments. However, their applicability to physical situations is severely restricted. The effect of boundary conditions and inability to handle more than one contaminant source are serious limitations.

The numerical methods which have been developed offer a significant improvement over the analytic solutions but have their own limitations. These methods often require large amounts of costly computer time and storage. Many of the models are affected by instability. In addition, some models require extensive physical data such as longitudinal and lateral dispersion coefficients which are often economically impossible to obtain or which simply are unavailable.

THE GROUNDWATER QUALITY MODEL

The groundwater staff of the Civil Engineering Department at Colorado State University recognized the need to develop a numerical approach to simulate two-dimensional flow in aquifers consisting of multiple sources and sinks. The basic philosophy of the model was presented in Bittinger et al (1967). Eckhardt (1976) modified the model to handle confined and unconfined leaky aquifers. Sunada (McWhorter et al, 1977) added provisions to simulate the convection of conservative water quality parameters and called the model WTQUAL1.

## Groundwater Flow Equation

The basic non-linear partial differential equation describing twodimensional transient flow in a saturated porous medium may be derived from the mass continuity equation and Darcy's Law and written as (Jacob, 1950):

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(K_{x} h \Delta y \frac{\partial H}{\partial x}\right) \Delta x+\frac{\partial}{\partial y}\left(K_{y} h \Delta x \frac{\partial H}{\partial y}\right) \Delta y=S \frac{\partial h}{\partial t} \Delta x \Delta y+Q \tag{3-1}
\end{equation*}
$$

where $h=$ saturated thickness of aquifer (L)
H = water table elevation above datum
$\mathrm{K} \quad=$ hydraulic conductivity ( $\mathrm{L} / \mathrm{T}$ )
S = storage coefficient (dimensionless)
$\mathrm{Q}=$ net groundwater withdrawal $\left(\mathrm{L}^{3} / \mathrm{T}\right)$

$$
\begin{aligned}
x, y & =\text { space dimensions }(L) \\
t & =\text { time dimension }(T)
\end{aligned}
$$

Equation 3-1 has no general solution. However, by making use of the grid system shown in Figure 3-1, a finite difference approximation of this equation will allow a numerical solution. Equation 3-1 written in implicit, central finite difference form is as follows:

$$
\begin{align*}
& {\left[A H_{i, j-1}+B H_{i, j+1}+C H_{i-1, j}+D H_{i+1, j}-(A+B+C+D+E) H_{i, j}\right]^{t+\Delta t}} \\
& \quad=Q-E H_{i, j}^{t} \tag{3-2}
\end{align*}
$$



Figure 3-1. Finite difference grid notation (adapted from Bittinger, et al).
where,

$$
\begin{aligned}
& A=\frac{2 K_{i, j} \cdot K_{i, j-1} \cdot \Delta y_{i, j} \cdot \Delta y_{i, j-1} \cdot h_{i, j-1 / 2}}{\Delta y_{i, j} \cdot K_{i, j} \cdot \Delta x_{i, j-1}+\Delta y_{i, j-1} \cdot K_{i, j-1} \cdot \Delta x_{i, j}} \\
& B=\frac{2 K_{i, j} \cdot K_{i, j+1} \cdot \Delta y_{i, j} \cdot \Delta y_{i, j+1} \cdot h_{i, j+1 / 2}}{\Delta x_{i, j} \cdot K_{i, j+1} \cdot \Delta y_{i, j+1}+\Delta x_{i, j+1} \cdot K_{i, j} \cdot \Delta y_{i, j}} \\
& C=\frac{2 K_{i, j} \cdot K_{i-1, j} \cdot \Delta x_{i, j} \cdot \Delta x_{i-1, j} \cdot h_{i-1 / 2, j}}{\Delta y_{i, j} \cdot K_{i-1, j} \cdot \Delta x_{i-1, j}+\Delta y_{i-1, j} \cdot K_{i, j} \cdot \Delta x_{i, j}} \\
& D=\frac{2 K_{i, j} \cdot K_{i+1, j} \cdot \Delta x_{i, j} \cdot \Delta x_{i+1, j} \cdot h_{i+1 / 2, j}}{\Delta y_{i, j} \cdot K_{i+1, j} \cdot \Delta x_{i+1, j}+\Delta y_{i+1, j} \cdot K_{i, j} \cdot \Delta x_{i, j}} \\
& E=\frac{S_{i, j} \cdot \Delta x_{i, j} \cdot \Delta y_{i, j}}{\Delta t}
\end{aligned}
$$

Equations 3-1 and 3-2 are subject to the Dupuit-Forchheimer assumptions and also assume that the fluid and porous medium are incompressible.

The subscript notation refers to particular grid blocks in a fivegrid system as indicated in Figure 3-1. The superscript $t$ refers to the starting time or previous time level, $\Delta \mathrm{t}$ is the time increment and $t+\Delta t$ is the current time level. Equation 3-2 is written for each grid in the study area for each designated time increment. The system of equations for the first time increment is solved simultaneously for the values of $H_{i, j}$ at the end of the time increment. These computed values of $H_{i, j}$ are then used as initial values in the system of equations representing the next time increment.

The coefficients A, B, C, and D are computed for each grid at the beginning of each time increment and are held constant during the time increment. The term $\left(h_{i, j-1 / 2}\right)$ in the equation for coefficient $A$ is the effective saturated thickness between grids (i,j-1) and (i,j) calculated by the following approximation:

$$
\begin{equation*}
h_{i, j-1 / 2}=\operatorname{MAX}\left(H_{i, j}, H_{i, j-1}\right)-\operatorname{MAX}\left(z_{i, j}, z_{i, j-1}\right) \tag{3-3}
\end{equation*}
$$

where $Z$ equals the bedrock elevation above a datum. A similar expression may be written for the $h$ term in the equations for the coefficients B, C, and D. The value for the storage coefficient, S, included in coefficient E, various spatially but remains constant in time. If the time increment is also constant, coefficient $E$ will remain constant in time for each grid.

The rate of net groundwater withdrawal, $Q$, represents the deep percolation of precipitation and applied surface water, and the rate of net withdrawal by pumping. The extraction of water by phreatophytes or the addition of water by artificial recharge could also be included in the value of $Q$. It is necessary to calculate an average value of $Q$ for each grid for each time increment.

## Water Quality Aspects of WTQUAL1

WTQUAL1 was developed primarily to model the convection of contaminants which are picked up when water flows through strip mine tailings. The model allows for a continuous contaminant source in those cases where the contaminants go into solution over a long period of time. The model considers as slug sources those cases where the contaminants go into solution in a relatively short period of time.

WTQUALl uses the fully explicit method to determine relative contaminant concentrations during each time increment. However, the model only allows consideration of water quality parameters within the aquifer itself. Other contaminant sources such as rivers, lakes, irrigated land and artificial recharge areas cannot be considered when using WTQUAL1.

The fully explicit method, which assumes complete and instantaneous mixing of the waters in the aquifer, satisfies the objective of a simplistic convective transport simulator. In addition, the fully explicit method as utilized in WTQUAL1 provides results of sufficient accuracy to render the numerical simulator a valid approach.

Since it was desirable to develop a simplistic simulator of convection in groundwater aquifers, it was felt that WTQUALl offered an excellent starting point. Because WTQUAL1 was based on a groundwater flow model, all the required inputs and outputs of the groundwater system, the geologic parameters and a provision for either slug or continuous contaminant injection were available. The primary modification required was to make provisions for including and varying input contaminant concentrations for each source variable for each desired time increment to be studied. This involves estimating relative concentrations of contaminants in rainfall, water applied as irrigation, constant head sources (e.g., lakes, rivers, ponds), artificial recharge areas, and the underflow into the aquifer from outside the area being studied.

## Modifications to WTQUALl

The first modification to WTQUAL1 involved providing for the input of initial contaminant concentrations for all source waters. This was accomplished by expanding Subroutine READPH (see Appendix B for a flowchart of the computer program and Appendix C for a description of all subroutines). Provisions were made for reading in, as either slug or continuous sources, initial contaminant concentrations for precipitation, water applied as irrigation, water
artificially recharged to the aquifer, and constant head sources such as rivers, lakes and ponds. These initial concentrations can be input as a constant throughout the study area or can be varied from grid to grid.

The second modification, which is actually an extension of the previous one, involved providing for the change of the contaminant concentrations of all the source waters at each time increment of analysis. This was accomplished by adding Subroutine READC to the program. A controlling variable, AGGIE, is included in the initial data input to the numerical model. Depending on the value of AGGIE, the model either uses the initial contaminant concentrations for each time increment of analysis or control is transferred to READC at the beginning of each time increment and new relative concentration values are read in. Concentrations for flows through boundary grids into the study area are included in this data input.

The next modification occurred in Subroutine QFIX. In order for the relative contaminant concentration calculation to be made later in the program, it was necessary to convert all flows to a consistent volumetric unit and to identify and store this volume for each source and sink for each grid in the study area. These terms are then retrieved by Subroutine BYFLøW where the actual concentration calcuations are made.

Due to the structure of Subroutine BYFLøW, the concentration calculation process was broken into two steps. First, an intermediate change in contaminant mass for the current time level was computed based on all source and sink terms except constant head grids. This step includes the actual flow of groundwater within the aquifer. Then, all constant head
contributions to each grid were calculated. A new total change in contaminant mass was computed, converted to a relative concentration value and combined with the relative concentration value at the previous time step to give the new relative concentration value for each grid.

For confined aquifers, the model automatically excludes contaminants resulting from precipitation, water applied as irrigation, water artificially recharged to the aquifer, and phreatophyte consumption. However, contaminants removed by pumping and added by constant head sources in direct contact with the aquifer are included.

These modifications make the numerical model suitable for application to many problems involving either confined or unconfined aquifers. This modified version of WTQUAL1 is called WTQUAL2.

## Explicit Contaminant Mass Balance Equation

The fully explicit mass balance equation used in calculating the contaminant concentrations is very similar to that used in the development of the basic groundwater flow equation. In general terms, the mass balance equation can be written as:
$\left[\begin{array}{l}\text { RATE OF CHANGE } \\ \text { OF CONTAMINANT } \\ \text { IN THE AQUIFER }\end{array}\right]=\left[\begin{array}{l}\text { RATE OF CONTAMINANT } \\ \text { INFLOW TO THE } \\ \text { AQUIFER }\end{array}\right]-\left[\begin{array}{l}\text { RATE OF CONTAMINANT } \\ \text { OUTFLOW FROM THE } \\ \text { AQUIFER }\end{array}\right]$
where the assumption is made that the rate of contaminant removal within the aquifer is zero (i.e. we are modeling a conservative substance).

The grid system used is identical to that shown in Figure 3-1. However, for more detailed illustration, a typical grid is shown in Figure 3-2 indicating the various parameters which effect the mass
balance calculation. Neglecting the dispersion process, the applicable explicit mass balance equation in finite difference form is:

$$
\begin{align*}
C_{i, j}^{t+\Delta t}= & C_{i, j}^{t}+\left[\left(V^{t+\Delta t} \cdot C^{t}\right)_{i, j-1}+\left(V^{t+\Delta t} \cdot C^{t}\right)_{i-1, j}-V_{i+1, j}^{t+\Delta t} \cdot C_{i, j}^{t}\right. \\
& \left.-V_{i, j+1}^{t+\Delta t} \cdot C_{i, j}^{t}+(W \cdot C)_{i, j}^{t+\Delta t}-V L E A K_{i, j}^{t+\Delta t} \cdot C_{i, j}^{t}\right] /\left[U_{i, j}^{t+\Delta t}\right] \tag{3-5}
\end{align*}
$$

where $C_{i, j}$

$$
v_{i, j-1}=\text { volume of flow from grid } i, j-1 \text { to grid } i, j
$$

$$
C_{i, j-1}=\text { relative contaminant concentration corresponding }
$$ to $\quad V_{i, j-1}$

$V_{i-1, j}=$ volume of flow from grid $i-1, j$ to grid $i, j$


Figure 3-2. Typical aquifer grid illustrating parameters which influence a change in concentration.

$$
\begin{align*}
& C_{i-1, j}= \text { relative contaminant concentration corresponding to } \\
& V_{i-1, j} \\
& V_{i+1, j}= \text { volume of flow from grid } i, j \text { to grid } i+1, j \\
& V_{i, j+1}= \text { volume of flow from grid } i, j \text { to grid } i, j+1 \\
& \text { VLEAK }_{i, j}= \text { volume of flow from grid } i, j \text { through the leaky layer } \\
& \text { beneath the grid (applicable only if leaky aquifer } \\
& \text { conditions exist) } \\
&= \text { total volume of water stored in grid } i, j . \\
& U_{i, j} \quad \\
& \text { The term }(W \cdot C)_{i, j}^{t+\Delta t} \text { is determined from the following relationship: } \\
&(W \cdot C)_{i, j}^{t+\Delta t}= {\left[(V \cdot C)_{P P T}+(V \cdot C)_{R C H R}+(V \cdot C)_{A P W}+(V \cdot C)_{S Q R}\right.}  \tag{3-6}\\
&\left.-(V \cdot C)_{P H R}-(V \cdot C)_{P U M}\right]_{i, j}^{t+\Delta t}
\end{align*}
$$

where the volumes, V , and relative contaminant concentrations, C , apply to precipitation (PPT), artificial recharge (RCHR), water applied as irrigation (APW), recharge from constant head sources such as rivers, lakes and ponds (SQR), phreatophyte consumption (PHR), and pumping from wells (PUM). This equation encompasses the modifications made to WTQUAL1 allowing the contaminant concentrations of all source and sink waters to be taken into account.

Description of the Numerical Model
WTQUAL2 uses the fully implicit, central difference technique to predict transient, two-dimensional areal groundwater level (or piezometric head) fluctuations and the corresponding flows. Based upon the se flows, the model uses the fully explicit mass balance technique to simulate the convection of contaminants through the aquifer.

The study area is overlain with a grid system. The selection of grid dimensions are dependent upon the stability criteria of the concentration calculation (see Chapter IV). The rectangular grid system is oriented to allow for easy boundary approximation, provide for easy adaption of hydrologic and geologic data, and to meet the required stability criteria.

The program reads in the number of rows and columns for the entire grid system, including those of the buffer zones which are built into the program (O1son, 1973). The desired time increment of analysis, total time of analysis, and time increment printout are also input to the program.

The dimensions of each grid and values for hydraulic conductivity, bedrock elevation, ground surface elevation, storage coefficient or specific yield, coefficient for the fraction of each grid that is irrigated, initial relative concentrations for all source waters, and initial relative conentrations for each of the grids in the aquifer are read as input data. All values are held constant throughout the time of analysis except for source water concentrations which may be changed at the beginning of each time step. New values of the aquifer concentrations are calculated for each time increment based on the previous concentration of each grid and the addition or loss of contaminant during the time period $\Delta t$.

Contaminant concentrations are read in and calculated as relative concentrations ranging from 0.0 to 1.0 . Normally, a source concentration is considered to have a value of 1.0 . However, if concentrations are anticipated which might exceed a source concentration, then an arbitrary
value can be assigned to the relative concentration value of 1.0 and all other values will be referenced to it.

The initial water table (or piezometric head) elevations are also read in for each grid. Impermeable boundary grids, constant head boundary grids, and grids with horizontal underflow are identified by coding the initial water table elevations. For boundary grids having underflow, the difference in water elevation between the outermost boundary grid and the next inner grid is held constant throughout the total time of the analysis (i.e., a constant hydraulic gradient is maintained).

The program also reads in hydrologic data for annual precipitation (the model assumes a uniform depth of precipitation over the entire study area), annual water applied as irrigation (the model assumes a uniform application of the water over the irrigated portion of the grid in question), annual phreatophyte extraction, gross annual pumping withdrawal, and annual application of water to recharge pits. The annual precipitation, irrigation, phreatophyte, pumping, and recharge values are read in for each grid of the study area for the year to be analyzed. One set of annual distribution coefficients is read in for each of the five types of hydrologic data. The coefficients represent the percentage of annual precipitation, irrigation, phreatophyte consumption, pumping, and recharge that occurs during each of the time increments. The coefficients are read in initially and remain constant throughout one year of analysis but may be changed at the beginning of each additional year of analysis.

The program also reads in coefficients that represent the percentage of precipitation, applied water, and recharge water that percolates to the water table. Another coefficient is read in to represent the percentage of the gross pumping withdrawal that does not return to the water table.

The program uses the Gauss elimination method to solve the system of equations for each time step. The program output at desired time steps includes the following:

1. Matrix of net vertical withdrawal of water from each grid including precipitation, applied water, pumping, artificial recharge, phreatophyte consumption and leakage.
2. List of overdrawn or flooded grids.
3. List of grids, if any, which change from confined to unconfined or unconfined to confined.
4. Matrix of discharge between grids in the i-directions. Flow down is considered positive and flow upward is negative. Discharge in the first row of the matrix is the flow between grids in row 1 and 2, and so on for the remainder of the grids. Therefore, the value in the last row is always zero.
5. Matrix of discharge between grids in the j-direction. Flow right is positive and flow left is negative. Discharge in the first column of the matrix is the flow between grids in column 1 and 2 and so on for the remainder of the grids. Therefore, the value in the last column is always zero.
6. Matrix of net flow from constant head grids.
7. Table of water balance computations.
8. Matrix of water table or piezometric head elevations.
9. Matrix of relative contaminant concentrations.

## NUMERICAL SIMULATION OF CONVECTIVE TRANSPORT

As mentioned in the introduction, a major purpose of this research was to study a simplistic numerical technique to simulate convection of contaminants in groundwater aquifers. This attempt at a simplistic model is based on the fully explicit method of calculating contaminant concentrations. In order to compare numerical and analytic results, the aquifer studied must have both numerical and analytic solutions.

A hypothetical one-dimensional, homogeneous and isotropic, steady state situation was developed using representative values of aquifer properties for a coarse sand commonly encountered in actual physical situations (McWhorter and Sunada, 1977). The assumptions and calculations associated with the development of the hypothetical situation are discussed in Appendix A and a schematic of the layout is shown in Figure 4-1. In order to assure that flow was steady state, the saturated thickness of the aquifer was held constant and a constant hydraulic gradient was maintained.

## Verification of the Longitudinal Convection Case

The longitudinal convection case was verified using a onedimensional, steady state flow situation with a constant contaminant source located along the inflow boundary of the model. Hydraulic conductivity was uniform throughout the model and the piezometric head was oriented to provide a constant gradient in the direction of flow


Figure 4-1. Schematic of the hypothetical aquifer with constant contaminant source.
and zero gradient perpendicular to the direction of flow. Boundaries parallel to the direction of flow were considered impermeable. This results in a constant seepage velocity $v$ being maintained throughout the aquifer in the direction of flow.

The numerical results were compared with those derived from Equations 2-5 and 2-6. The results for time equal $90,180,270$, and 360 days and grid size equals 115 feet for a time increment of 30 days and grid size equals 40 feet for a time increment of 10 days are shown graphically in Figures 4-2 and 4-3, respectively.

The analytic solution is at all times located a distance equal to the product of the seepage velocity and the elapsed time from the contaminant source. The numerical solution satisfies this condition for the case where $C / C_{0}$ has a value of approximately 0.5 .

The numerical model yielded relative concentration values which decreased gradually with increasing distance from the contaminant source. The shape of the numerically determined curve can be attributed to the numerical dispersion inherent in the model. This numerical dispersion is a result of the error which occurs from numerically approximating the governing differential equation. It is a function of the numerical model and is independent of the aquifer properties.

The abrupt change of the analytic solutions shown in Figures 4-2 and $4-3$ is a result of neglecting the dispersion process. Therefore, the curves shown are actually vertical lines. The analytic solutions including the dispersion process were calculated but not plotted. The shape of these curves could not be distinguished from the curves neglecting the dispersion process.


Figure 4-2. Numerical versus analytic solutions for $\Delta x / v \Delta t=1$ and $\Delta t=30$ days.


Figure 4-3. Numerical versus analytic solution for $\Delta x / v \Delta t=1$ and $\Delta t=10$ days.

Previous research indicates that analytic solutions are usually S-shaped curves similar to the numerical solutions shown. The seepage velocities and the associated dispersion coefficients for the analytic solutions used in this study are typical for actual physical situations and are low relative to those used by many previous researchers. As a result, the analytic solutions take on essentially vertical profiles.

The results shown in Figures $4-2$ and $4-3$ indicate that the method used to calculate the relative concentrations of the contaminant is a valid method, especially in the region near the point where $C / C_{0}=0.5$. For the particular cases illustrated, the method gives results to within approximately $\pm 10$ percent for all relative concentration values $0 \leq C / C_{0} \leq 1.0$ at time equal 360 days.

In addition, Figures 4-2 and 4-3 indicate that the results are stable for all times. Thus, the accuracy of the solution does not decrease with time. If the initial error which is introduced during the very early time steps when large concentration gradients are present can be minimized, then a high degree of accuracy can be maintained throughout the period of study.

## Verification of the Radial Convection Case

To show that the numerical model is applicable to problems other than simple one-dimensional flow, the model was run for a simplistic twodimensional case. This involved simulating the injection of a contaminant into a confined aquifer through a recharge well. A constant rate of flow containing a conservative contaminant was injected into a homogeneous and isotropic confined aquifer and the convection of the contaminant was radially symmetric about the location of the well.

The model was first run for a square grid network where all grids were of a uniform size. The center grid of the system was used to simulate a recharge well by maintaining a constant head throughout the period of analysis. This resulted in radial, diverging flow into the aquifer from the recharge grid. The flow rate from the recharge grid into the aquifer remained constant for all time. The piezometric head of all grids surrounding the recharge grid were initially level and a uniform constant head was maintained on all boundary grids.

The concentration distribution curves for various times and the associated analytic solutions for Equation 2-13 neglecting dispersion are shown in Figure 4-4. It can be seen that the numerical solutions lag the analytic solutions by a large but relatively constant value. This can be attributed to the fact that the numerical model (using a rectangular coordinate system) is trying to simulate purely radial, diverging flow. The fact that the model only approximates this condition results in the errors shown.

In order to minimize this problem, a run was made for an almost identical hypothetical situation except the grid sizes were varied radially, from small dimensions near the recharge grid to larger grids on the edge of the grid network. The results for this condition are plotted in Figure 4-5. These results are better with regard to the location of the point where $C / C_{0}=0.5$, improving on the results shown in Figure 4-4.

Semi-logarithmic plots were made of piezometric head versus radial distance at time equal 270 days for both the uniform and variable grid size problems. While the results showed that neither solution was


Figure 4-4. Concentration distribution curves for radial flow in a uniform size grid network.


Figure 4-5. Concentration distribution curves for radial flow in a variable size grid network.
exact with regard to the radial flow case, both numerical solutions gave good approximations at points located away from the recharge grid. The curve for the variable grid size problem became linear at a radial distance of approximately 200 feet while the uniform grid size problem did not become linear until a radial distance of approximately 500 feet had been reached. The fact that the variable grid size problem gives a better approximation of the radial flow case nearer the recharge grid explains the reason for the improved accuracy over the uniform grid size problem.

The concentration distribution curves in Figures 4-4 and 4-5 exhibit significant amounts of numerical dispersion. As time increases the magnitude of the numerical dispersion increases. However, the error in distance between the numerical and analytic solutions at the point where $C / C_{0}=0.5$ remains constant with increasing time.

For radially symmetric, diverging flow with a constant flow rate, the velocity of the fluid decreases with increasing distance from the recharge grid. It will be shown in Chapter $V$ that the degree of numerical dispersion is a function of the grid size, time increment and seepage velocity.

## Stability Criteria

The general equation governing longitudinal convection and dispersion, which was discussed previously, is

$$
\begin{equation*}
\frac{\partial C}{\partial t}=D_{L} \frac{\partial^{2} C}{\partial x^{2}}-v \frac{\partial C}{\partial x} \tag{2-2}
\end{equation*}
$$

For the purpose of developing the simplistic model, the term $D_{L} \frac{\partial^{2} C}{\partial x^{2}}$ was assumed to be zero. This reduced Equation 2-2 to

$$
\begin{equation*}
\frac{\partial C}{\partial t}=-v \frac{\partial C}{\partial x} \tag{4-1}
\end{equation*}
$$

Using the backward finite difference expansion, Equation 4-1 becomes $\frac{C_{i}^{t}-C_{i}^{t+\Delta t}}{\Delta t}=-v \frac{C_{i}^{t}-C_{i-1}^{t}}{\Delta x}$

Rearranging Equation 4-2 and solving for $C_{i}^{t+\Delta t}$ yields

$$
\begin{equation*}
C_{i}^{t+\Delta t}=\frac{v \cdot \Delta t}{\Delta x}\left[C_{i-1}^{t}-C_{i}^{t}\right]+C_{i}^{t} \tag{4-3}
\end{equation*}
$$

Noting that contaminant concentrations are at all times between zero and one, and that the worst condition is given by $C_{i}^{t}=0, C_{i-1}^{t}=1.0$ and $C_{i-1}^{t+\Delta t}=1.0$, Equation $4-3$ reduces to

$$
\begin{equation*}
1=\frac{v \cdot \Delta t}{\Delta x}[1-0]+0 \tag{4-4}
\end{equation*}
$$

Simplifying this equation leads to the stability criteria

$$
\begin{equation*}
\frac{\Delta x}{v \cdot \Delta t} \geq 1.0 \tag{4-5}
\end{equation*}
$$

An identical criteria was developed empirically and is discussed below. Upon examining the runs made using the numerical model, it was noted that the volume of water flowing through a finite difference grid during each time increment must not exceed the volume of water stored in the grid during the time increment under study or severe oscillation and instability of the solution would occur. Mathematically, this necessary condition for the one-dimensional flow case may be expressed as

$$
\begin{equation*}
\mathrm{Q} \leq \Delta \mathrm{x} \cdot \Delta \mathrm{y} \cdot \mathrm{~h} \cdot \phi \tag{4-6}
\end{equation*}
$$

```
where Q = volume of flow through the grid
    \Deltax, \Deltay = grid dimensions
    h = saturated thickness
    \phi = porosity.
```

Noting that the volume of flow through the grid may be expressed using Darcy's law, the grid dimensions and the time increment, Equation 4-6 may also be written as

$$
\begin{equation*}
\mathrm{v} \cdot \Delta \mathrm{y} \cdot \Delta \mathrm{t} \cdot \mathrm{~h} \cdot \phi \leq \Delta \mathrm{x} \cdot \Delta \mathrm{y} \cdot \mathrm{~h} \cdot \phi \tag{4-7}
\end{equation*}
$$

where $v$ is the seepage velocity and $\Delta t$ is the time increment. Cancelling like terms and rearranging this equation, we get

$$
\begin{equation*}
\frac{\Delta x}{\mathrm{v} \cdot \Delta \mathrm{t}} \geq 1.0 \tag{4-8}
\end{equation*}
$$

This relationship (which is identical to that developed by expanding the governing partial differential equation) indicates that the grid dimension in the direction of flow must at all times be greater than or equal to the seepage velocity times the time increment. If this criteria is not met, severe oscillations and instability, as shown in Figures 4-6 and 4-7, will occur. It can also be shown that the greates accuracy of the model occurs when $\frac{\Delta x}{v \cdot \Delta t}=1.0$. Figures 4-2 and $4-3$, discussed earlier, are plots of two specific instances where this stability criteria has a value of unity.

## Conservation of Contaminant Mass

Contaminant mass within the groundwater system is conserved at all times. This is a result of using the fully explicit method to calculate relative contaminant concentrations (i.e. mass of contaminant within each


Figure 4-6. $\begin{aligned} & \text { Oscillation of numerical solution for } \frac{\Delta x}{v \cdot \Delta t}=0.86 \\ & \text { after } 90 \text { days. }\end{aligned}$ after 90 days.


Figure 4-7. Oscillation of numerical solution for $\frac{\Delta x}{v \cdot \Delta t}=0.86$ after 360 days.
grid). Chapter III contains a detailed discussion of the concentration calculation process.

All $\mathrm{C} / \mathrm{C}_{0}$ values range between 0.0 and 1.0 . Since concentrations beyond the third significant figure are not normally of interest, the model only prints out concentrations to three decimal places. Many computers carry numbers to 10 or 15 significant figures. Therefore, grids with a printed concentration of 0.000 often have small contaminant concentrations. In order for a total conservation of contaminant mass to occur, these small concentrations must always be taken into account.

## CHAPTER V

SENSITIVITY ANALYSIS OF THE NUMERICAL MODEL

The response behavior of the groundwater system to the convection of a contaminant may be influenced by many input variables and the interaction of many system parameters. The number of possible combinations of these factors is infinite -- not only in terms of magnitude of the factors, but also variations in time and space. It is seldom economically feasible to quantitatively evaluate all or most of the input variables and system parameters with precision. It is, however, very important that the effect of these variables on the accuracy of the model be known.

While most aquifers are not homogeneous and isotropic, these basic assumptions were made in order to simplify the development of the numerical model. As such, sensitivity of the numerical model to variations in the aquifer properties (i.e., permeability, stratification, porosity, storage coefficient, etc.) will not be discussed here. The parameters grid size, time increment and seepage velocity are the primary components of the stability criteria. The effects of these properties on the accuracy of the numerical model should be studied prior to the effects of the aquifer properties.

Grid Size
For the purpose of analyzing the model's sensitivity to grid size, time increments of 10,30 and 45 days were chosen. Previous work with the basic groundwater flow model indicated that these time increments yield results of sufficient accuracy for the groundwater flow. Also, a total model time of 360 days was chosen to compare the results of the various grid sizes.

Figure 5-1 shows the concentration distribution curves for grid sizes $115,300,500$ and 1000 feet when the time increment is 30 days. It can be seen that the numerical dispersion increases with increasing grid size. As grid size increases, the numerical solution, as evidenced by the point where $C / C_{0}=0.5$, lags the analytic solution by an increasing amount. However, the calculated distance where $C / C_{0}=0.5$ for the 1000 foot grid size only lags the analytic solution by approximately 10 percent. Table 5-1 illustrates the percent error of distance for each grid size at various $C / C_{0}$ values.
$\begin{array}{ll}\text { TABLE 5-1. } & \text { Value of } C / C_{0} \text { Versus Percent Error } \\ \text { in Calculated Distance }\end{array}$

|  | PERCENT DISTANCE ERROR |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{C} / \mathrm{C}_{0}$ | $115^{\prime}$ | $300^{\prime}$ | $500^{\prime}$ | 1000 |
| 0 | 3.6 | 82.9 |  |  |
| 0.2 | 1.4 | 30.2 |  |  |
| 0.4 | 0 | 7.2 | -3.6 | -11.0 |
| 0.5 | 0 | -1.4 |  |  |
| 0.6 | 0 | -9.3 |  |  |
| 0.8 | -1.4 | -31.0 |  |  |
| 1.0 | -11.5 | -100.0 |  |  |



Figure 5-1. Concentration distribution curves for various grid sizes with $\Delta t=30$ days.

The data in Table 5-1 indicates that if a value of $\frac{\Delta x}{v \cdot \Delta t}=1$ is chosen (in this instance this corresponds to a grid size of 115 feet), then accuracy within $\pm 10$ percent can be obtained for the entire concentration distribution curve while accuracy to within $\pm 2 \%$ can be obtained for all values $0.2 \leq \mathrm{C} / \mathrm{C}_{0} \leq 0.8$. Thus, the model has the capability of giving very accurate results. For $\frac{\Delta x}{v \cdot \Delta t}=2.6$ (a grid size of 300 feet), accuracy to less than $\pm 10$ percent can be obtained for all values $0.4 \leq C / C_{0} \leq 0.6$. As grid size increases, the model does lose accuracy. Yet, very good results are obtained for the location of the point where $C / C_{0}=0.5$ for all grid sizes. Figures $5-2$ and $5-3$ show the concentration distribution curves for various grid sizes when the time increment equals 10 days and 45 days, respectively. These figures confirm the conclusions drawn with respect to the 30 day time increment.

The data for grid sizes 115 feet and 300 feet in Table 5-1 also indicate that the numerical model does not produce a symmetric numerical dispersion pattern. This can be attributed to the fully explicit mass balance technique which is used to calculate the relative contaminant concentrations. Regardless of the speed at which the contaminant front moves, the numerical model advances the contaminant concentrations one grid with each calculation. As the time of analysis increases, so does the numerical dispersion and non-symmetry of the concentration distribution curve. Figures $5-1,5-2$, and $5-3$ all indicate this pattern. However, by keeping the value of $\frac{\Delta x}{v \cdot \Delta t}$ as close to 1.0 as possible, this numerical dispersion and non-symmetric pattern is kept at a minimum, and in the case where $\frac{\Delta x}{v \cdot \Delta t}=1$ actually stabilizes.


Figure 5-2. Concentration distribution curves for various grid sizes with $\Delta t=10$ days.


Figure 5-3. Concentration distribution curves for various grid sizes with $\Delta t=45$ days.

## Time Increment

Figure 5-4 shows the relationship of the concentration distribution curves for time increments of 10,30 and 45 days with a constant grid size of 300 feet at time equal 360 days. This illustrates that the use of a small time increment actually leads to an increase in numerical dispersion. This is due to the use of the fully explicit mass balance technique to calculate the relative concentration values. If a time increment of 10 days is used, three calculations are made over a thirtyday period as opposed to one for a thirty-day time increment. Since each calculation moves the contaminant down-gradient one grid, the model has a tendency to smear the front with each mass balance calculation. The use of as large a time increment as possible while meeting the stability criteria will keep this numerical smear to a minimum.

From Figure 5-4, it can be seen that each time increment gives approximately the same distance for a $\mathrm{C} / \mathrm{C}_{0}$ value of 0.5 . Therefore, it can be concluded that while the time increment does have some effect on the accuracy of the numerical model, the effect is not as severe as that caused by variation in grid size.

The maximum value which can be chosen will be dictated by the hydrologic accuracy of the numerical model and the stability criteria. Figures 5-5 and 5-6 show the concentration distribution curves for various times when the grid size equals 500 feet and 115 feet, respectively. These figures confirm the conclusions drawn with respect to the 300 foot grid size. It should be noted that the larger variation


Figure 5-4. Concentration distribution curves for various time increments with $\Delta x=300$ feet.


Figure 5-5. Concentration distribution curves for various time increments with $\Delta x=500$ feet.


Figure 5-6. Concentration distribution curves for various time increments with $\Delta x=115$ feet.
indicated by Figure 5-6 is due to the fact that the $\frac{\Delta x}{v \cdot \Delta t}$ value for the 30 day time increment is 1.0 , resulting in a very accurate approximation to the analytic solution which somewhat distorts the comparison with the 10 day time increment.

## Seepage Velocity

As indicated by Equation 2-16, the dispersion coefficient is directly related to the seepage velocity. The analytic results presented previously are all related to one hypothetical case where the coefficient of longitudinal dispersion was calculated to be $1.44 \times 10^{-3} \mathrm{ft}^{2} /$ day. It should be noted that the coefficient of dispersion was estimated based on Equation 2-16 (Harleman, et al, 1963). While there is a small loss of accuracy in estimating the coefficient in this manner, the research by Harleman, et al, indicated that this is a valid relationship which gives accurate results. The results of this study tend to indicate that this estimation is very accurate and that confidence can be expressed in the results obtained based upon this empirical relationship.

To verify the validity of the numerical model for general use, the model was run for hypothetical cases using various values of seepage velocity. Table 5-2 lists the particular cases studied. As with the original hypothetical case, McWhorter and Sunada (1977) was used as a reference to obtain typical values of porosity and hydraulic conductivity for groundwater aquifers.

The concentration distribution curves for the medium sand and medium gravel are shown in Figures 5-7 and 5-8, respectively. It is apparent that the numerical model is valid for these different values of the seepage velocity and the associated dispersion coefficients. As discussed in the previous section, when $\frac{\Delta x}{v \cdot \Delta t}=1$ the numerical model produces a close approximation to the analytic solution. As the value of $\frac{\Delta x}{v \cdot \Delta t}$ increases, numerical dispersion increases. However, the model continues to produce accurate results with respect to the location of the point where $C / C_{0}=0.5$ for all values of the seepage velocity. From this analysis, it can be concluded that while the numerical model neglects the dispersion process, the effect of dispersion for typical aquifer properties is very small relative to convection over the time periods used and thus the model is valid for the range of seepage velocities studied.

TABLE 5-2. Data for Cases Tested

| CASE | TYPE OF <br> MATERIAL | POROSITY <br> $\phi$ | HYDRAULIC <br> CONDUCTIVITY <br> K <br> $\mathrm{ft} / \mathrm{day}$ | SEEPAGE <br> VELOCITY <br> v <br> $\mathrm{ft} / \mathrm{day}$ | DISPERSION <br> COEFFICIENT <br> $\mathrm{ft}^{2} / \mathrm{d} \mathrm{day}$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | Medium Sand | 0.41 | 40 | 0.975 | $1.26 \times 10^{-4}$ |
| 2 | Coarse Sand | 0.39 | 150 | 3.846 | $1.44 \times 10^{-3}$ |
| 3 | Medium Grave1 | 0.31 | 1140 | 36.84 | $7.32 \times 10^{-2}$ |



Figure 5-7. Concentration distribution curves for a medium sand.


Figure 5-8. Concentration distribution curves for a medium gravel.

## Summary of the Sensitivity Analysis

Results of the sensitivity analysis produce three independent conclusions. First, the grid size has a very large effect on the accuracy of the numerical model. For a constant time increment, the larger the grid size, the larger the numerical dispersion. Second, the value of the time increment chosen has little effect on the accuracy of the model. However, the larger the time increment, the greater the accuracy. Finally, the model is valid for a relatively wide range of seepage velocities commonly encountered in groundwater systems.

Collectively, additional conclusions can be drawn. Since the best numerical solutions occur when $\frac{\Delta x}{v \cdot \Delta t}=1$ and when large time increments are used, this forces the use of large grid sizes which reduce computer time and storage requirements. So long as the value of $\frac{\Delta x}{v \cdot \Delta t}$ remains close to 1.0 , the use of larger grid sizes does not significantly effect the accuracy of the model. In addition, the accuracy of the model for cases where $\frac{\Delta x}{v \cdot \Delta t}=1$ is so good that results for all values $0 \leq C / C_{0} \leq 1$ can be used with confidence. However, as the value of $\frac{\Delta x}{v \cdot \Delta t}$ increases, the range over which the $C / C_{0}$ values are acceptible decreases. Regardless, for all grid sizes the model produces very accurate locations of the point where $C / C_{0}=0.5$.

## CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

From the results of this study, it can be concluded that the numerical model is a valid numerical approach for simulating convection in confined groundwater aquifers. The accuracy of the model is strongly dependent on the value of the function $\frac{\Delta x}{v \cdot \Delta t}$. If the value of this function can be maintained near unity, very good accuracy of the dispersion process can be obtained. While larger values of the function result in increasing amounts of numerical dispersion, the model at all times locates the point where $C / C_{0}=0.5$ with good accuracy.

With regard to the sensitivity of the model, conclusions can be drawn about each of the terms which appear in the function $\frac{\Delta x}{v \cdot \Delta t}$. With $v$ and $\Delta t$ held constant, increased numerical dispersion results with larger grid sizes. With $\Delta x$ and $v$ held constant, varying $\Delta t$ has a much smaller effect on model accuracy than varying $\Delta x$. However, as $\Delta t$ is increased, numerical dispersion is minimized and the accuracy of the model increases. The model is valid for a wide range of seepage velocities subject to the limitations imposed by varying $\Delta x$ and $\Delta t$. It is shown that, for a given seepage velocity, the best results are obtained by maximizing $\Delta t$ within the limits of the accuracy of the groundwater flow portion of the model and minimizing $\Delta x$ so that the
value of $\frac{\Delta t}{v \cdot \Delta t}$ approaches 1.0. While this criteria does somewhat limit grid size, grid sizes on the order of hundreds of feet should be possible for most cases.

While the majority of work done as a part of this study was based on the one-dimensional, steady state flow condition, the model was developed to simulate two-dimensional, areal distribution of contaminants. For the radially symetric, diverging flow situation, the model produced relatively good results as the numerical approximation of the groundwater flow equation approached the solution for pure radial flow. The numerical dispersion increased with increasing distance from the contaminant source and is attributable to the increase in the value of the function $\frac{\Delta x}{v \cdot \Delta t}$ as the radial distance increases.

Several runs were made in which various numbers of recharge pits, pumping wells, constant head sources and phreatophyte sources were used. These indicated that the programming modifications made are correct insofar as computer language is concerned. However, no hypothetical cases were run to determine the accuracy and sensitivity of these contaminant sources.

In general, the numerical model minimizes many of the problems encountered with the development of previous numerical models. The model does not require prohibitive amounts of computer time or storage. It has the capability of handling impermeable, constant head and constant gradient boundaries. When the stability criteria is followed, the model is stable and converges to a reasonably accurate solution.

It is recommended that the following areas be studied with regard to the fully explicit mass balance approach of simulating convection in groundwater aquifers:

1. The validity of the model should be verified for non-homogeneous confined aquifers.
2. The validity of the model for both homogeneous and non-homogeneous unconfined aquifers should be established.
3. The model should be applied to an actual field problem.

## LITERATURE CITED

Bear, J., Dynamics of Fluids in Porous Media, American Elsevier Publishing Co., New York, 1972.

Bittinger, M.W., H.R. Duke, and R.A. Longenbaugh, 'Mathematical Simulations for Better Aquifer Management", Publication No. 72 of the IASH Symposium of Haifa, 1967.

Blair, P.M. and D.W. Peaceman, "An Experimental Verification of a TwoDimensional Technique for Computing Performance of Gas-Drive Reservoirs", Society of Petroleum Engineers Journal, Vol. 3, No. 1, March 1963.

Conte, S.D., Elementary Numerical Analysis, McGraw-Hill Book, Co., New York, 1965.
deJosselin de Jong, G. and J.M. Bossen, "Tensor Form of Dispersion in Porous Media -- Discussion', Journal of Geophysical Research, Vol. 66, No. 10, October 1961.

Douglas, J., Jr., D.W. Peaceman and H.H. Rachford, "A Method for Calculating Multi-Dimensional Immiscible Displacement", Transactions, American Institute of Mechanical Engineers, Vol. 216, 1959.

Ebach, E.A. and R.R. White, 'Mixing of Fluids Flowing Through Beds of Packed Solids", American Institute of Chemical Engineers Journal, Vol. 4, No. 2, June 1958.

Echkardt, J.R., "Simultaneous Solution for Distribution of Head in a Two Aquifer System," Thesis, Colorado State University, January, 1976.

Garder, A.O., D.W. Peaceman and A.L. Pozzi, Jr., "Numerical Calculation of Multidimensional Miscible Displacement by the Method of Characteristics", Society of Petroleum Engineers Journal, Vol. 4, No. 1, March 1964.

Guymon, L.R.G., 1970a, "A Finite Element Solution of the One-Dimensional Diffusion-Convection Equation', Water Resources Research, Vol. 6, No. 1, February 1970.

Guymon, L.R.G., 1970b, 'Mathematical Modeling of Movement of Dissolved Constituents in Ground Water Aquifers by the Finite Element Method", Dissertation, University of California at Davis, 1970.

Guymon, L.R.G., "Note on the Finite Element Solution of the DiffusionConvection Equation", Water Resources Research, Vol. 8, No. 5, October 1972.

Harleman, D.R.F., P.F. Mehlhorn and R.R. Rumer, Jr., "Dispersion-Permeability Correlation in Porous Media", Journal of the Hydraulics Division, American Society of Civil Engineers, March, 1963.

Harleman, D.R.F. and R.R. Rumer, Jr., "Longitudinal and Lateral Dispersion in an Isotropic Porous Medium", Journal of Fluid Mechanics, Vol. 16, Part 3, July 1963.

Hoopes, J.A. and D.R.F. Harleman, "Waste Water Recharge and Dispersion in Porous Media", Technical Report No. 75, Hydrodynamics Laboratory, Massachusetts Institute of Technology, June 1965.

Jacob, C.E., "Flow of Ground Water", Engineering Hydraulics, edited by Hunter Rouse, John Wiley and Sons, New York, New York, 1950.

Kraeger, C.E., "Numerical Modeling of Groundwater Contamination", Thesis, Colorado State University, June 1972.

Lav, L.K., W.J. Kaufman and D.K. Todd, 'Dispersion of a Water Tracer in Radial Laminar Flow through Homogeneous Porous Media", Hydraulic Laboratory, University of California at Berkeley, 1959.

McWhorter, D.B., J.W. Rowe, M.W. Van Liew, R.L. Chandler, R.K. Skogerboe, D.K. Sunada, G.V. Skogerboe, "Surface and Subsurface Water Quality Hydrology in Surface Mined Watersheds", Final Draft, prepared for the U.S. Environmental Protection Agency, Cincinnati, Ohio, 1977.

McWhorter, D.B. and D.K. Sunada, Ground-Water Hydrology and Hydraulics, Water Resources Publications, Inc., Ft. Collins, Colorado, 1977.

Nalluswami, M., "Numerical Simulation of General Hydrodynamic Dispersion in Porous Medium", Dissertation, Colorado State University, August, 1971.

Olson, A.F., "A Digital Model of a Stream-Aquifer System on the South Platte River near Sterling, Colorado", Thesis, Colorado State University, June 1973.

Peaceman, D.W. and H.H. Rachford, 'Numerical Calculation of Multidimensional Miscible Displacement", Society of Petroleum Engineers Journal, Vol. 2, No. 4, December 1962.

Perez, A.I., W.C. Huber, J.P. Heaney, and E.E. Pyatt, "A Water Quality Model for a Conjunctive Surface-Groundwater System', Water Resources Bulletin, Vol. 8, No. 5, October 1972.

Prakash, A., "Galerkin Simulation of Hydrodynamic Dispersion", Dissertation, Colorado State University, April 1974.

Price, H.W., J.C. Cavendish and R.S. Varga, "Numerical Methods of Higher Order Accuracy for Diffusion-Convection Equations", Society of Petroleum Engineers Journal, Vol. 8, No. 3, September 1968.

Raimondi, P., G.H.F. Gardner, and C.B. Petrick, "Effect of Pore Structure and Molecular Diffusion on the Mixing of Miscible Liquids Flowing in Porous Media", American Institute of Chemical Engineers and Society of Petroleum Engineers, Joint Symposium on Oil Recovery Methods, San Francisco, 1959.

Reddell, D.L. and D.K. Sunada, "Numerical Simulation of Dispersion in Groundwater Aquifers", Hydrology Paper No. 41, Colorado State University, 1970.

Scheidegger, A.E., "General Theory of Dispersion in Porous Media", Journal of Geophysical Research, Vo1. 66, No. 10, October 1961.

Shamir, U.Y. and D.R.F. Harleman, "Numerical and Analytic Solutions of Dispersion Problems in Homogeneous and Layered Aquifers", Technical Report No. 89, Hydrodynamics Laboratory, Massachusetts Institute of Technology, May 1966.

Shariatmadar Taleghani, M., "Transient Flow of Homogeneous Fluids to Wells", Dissertation, Colorado State University, Fall, 1974.

Stone, H.L. and P.L.T. Brian, "Numerical Solution of Convective Transport Problems", American Institute of Chemical Engineers Journal, Vol. 9, No. 5, September 1963.

Universal Oil Products, Ground Water and Wells, Johnson Division, Universal Oil Products Co., St. Paul, Minnesota, 1974.

Water Resources Engineers, Inc., "An Investigation of Salt Balance in the Upper Santa Anna River Basin", Prepared for the California State Water Quality Control Board and the Santa Anna River Basin Regional Water Quality Control Board, March 1969.

## APPENDIX A

DETERMINATION OF HYPOTHETICAL AQUIFER PROPERTIES

## APPENDIX A

DETERMINATION OF HYPOTHETICAL AQUIFER PROPERTIES

In order to show that WTQUAL2 is a valid dispersion simulator, it was felt that the data used in the comparison of the analytic and numerical solutions should be representative of values commonly encountered in actual physical situations. Therefore, typical values of hydraulic conductivity and porosity were chosen from a table in McWhorter and Sunada (1977) containing maximum, minimum and arithmetic mean values for soils ranging from the finest silts and clays to coarse gravels. The values $K=150 \mathrm{ft} /$ day and $\phi=0.39$ were chosen for the sensitivity analysis of grid size and time increment and are representative of a typical coarse sand.

Once these values were chosen, it was then necessary to choose a value for the hydraulic gradient. Review of several actual physical situations indicated that a gradient of 0.01 ( 10 feet change in vertical elevation per 1000 feet change in horizontal distance) is typical and so this value was chosen.

Assuming that the flow regime would be laminar (this will be checked later), Darcy's law was applied. The version used in this situation was

$$
\begin{equation*}
\mathrm{q}=\mathrm{K} \cdot \frac{\mathrm{dh}}{\mathrm{~d} 1} \tag{A-1}
\end{equation*}
$$

where q is the Darcy velocity, K is hydraulic conductivity, and $\frac{\mathrm{dh}}{\mathrm{d} 1}$ is the hydraulic gradient. Using the previously chosen values for $K$ and $\frac{d h}{d l}$, a Darcy velocity $q$ of $1.50 \mathrm{ft} /$ day was obtained. Dividing this value by the porosity gave a seepage velocity $v$ of $3.846 \mathrm{ft} / \mathrm{day}$. At this point in the analysis an additional assumption had to be made. For the purpose of this study, a groundwater temperature of $50^{\circ} \mathrm{F}$ was chosen. The groundwater system was then assumed to be isothermal throughout the period of study. The appropriate fluid properties of water at this temperature are

| dynamic viscosity | $\mu=2.735 \times 10^{-5} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{2}$ |
| :--- | :--- |
| kinematic viscosity | $\nu=1.410 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{sec}$ |
| density | $\rho=1.94 \mathrm{slugs} / \mathrm{ft}^{3}$ |
| acceleration of gravity | $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$ |
| specific weight | $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$. |

Applying the relationship between hydraulic conductivity and intrinsic permeability $k$

$$
\begin{equation*}
k=\frac{K \cdot \mu}{\rho g}=\frac{K \cdot \mu}{\gamma} \tag{A-2}
\end{equation*}
$$

yielded a permeability of $7.609 \times 10^{-10} \mathrm{ft}^{2}$.
At this point, Equation 2-16 as developed by Harleman et al (1963) was applied and a longitudinal dispersion coefficient value $D_{L}=1.439 \times 10^{-3} \mathrm{ft}^{2} /$ day was obtained. This value was then used in Equation 2-5 to obtain the analytic solution values of the concentration distribution curve.

To verify that the flow regime was laminar, the Reynold's number $\mathbb{R}$ was calculated from the following equation:

$$
\begin{equation*}
\mathbb{R}=\frac{v \sqrt{k}}{v} \tag{A-3}
\end{equation*}
$$

This calculation yielded $\mathbb{R}=8.708 \times 10^{-5}$. Since this value is less than 0.01 , the flow regime can be characterized as laminar and Darcy's law applies.

To determine the storage coefficient, it was necessary to estimate values for the pore volume compressibility and the compressibility of water due to the formation lying above the confined aquifer. Pore volume compressibility $\alpha_{p}$ was assumed to be $3 \times 10^{-5} \mathrm{psi}^{-1}$ and compressibility of water $\beta$ was assumed to be $3.3 \times 10^{-6} \mathrm{psi}^{-1}$. These values are relatively constant for most problems commonly encountered in groundwater hydrology and are therefore assumed to be representative for the condition being studied.

A specific storage $\mathrm{S}_{\mathrm{S}}$ of $5.68 \times 10^{-5} \mathrm{ft}^{-1}$ was obtained by applying the formula

$$
\begin{equation*}
S_{s}=\rho \cdot g \cdot \phi \cdot\left(\alpha_{p}+\beta\right) \tag{A-4}
\end{equation*}
$$

With a confined aquifer thickness set at 60 feet, a storage coefficient $S$ of 0.0034 was obtained.

## APPENDIX B

## PROGRAM FLOW CHART

## APPENDIX B

PROGRAM FLOW CHART








APPENDIX C
DESCRIPTION OF SUBPROGRAMS

## APPENDIX C

DESCRIPTION OF SUBPROGRAMS

## Subroutine READPH

This subroutine reads and writes the physical data describing the study area. The following variables are read and printed: DX, DY, FK, Z, CS, CPPT, CAPW, CRCHR, CSQR, G, PHI, and PHIC. CA is also read but printed later. Coded values of CS are printed. Only one data card is required if all variables are uniform for each grid, otherwise each parameter that is variable must be read in matrix form. Variables DX and DY require only NC and NR values, respectively.

CALLED FROM: Main Program
SUBPROGRAMS USED: MATRØP
IMPORTANT VARIABLES: DX, DY, FK, Z, G, PHI, PHIC, CA, CS, CPPT, CAPW, CRCHR, CSQR

## Subroutine READH

This subroutine reads the initial coded water level or piezometric head elevations. H is decoded and set equal to HT and HP. One data card is required if the initial water level is horizontal, otherwise the entire H -matrix must be read.

CALLED FROM: Main Program
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: $\mathrm{H}, \mathrm{HT}, \mathrm{HP}$

This subroutine reads and writes the leaky aquifer parameters. The following variables are read and printed: HL, TL, and FKL. One data card is required if these variables are uniform, otherwise each matrix that is variable must be read.

CALLED FROM: Main Program
SUBPROGRAMS USED: MATR $\emptyset P$
IMPORTANT VARIABLES: HL, TL, FKL

Subroutine CSET
This subroutine initializes the relative concentration throughout the aquifer.

CALLED FROM: Main Program
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: C $\emptyset, \mathrm{CT}, \mathrm{H}, \mathrm{G}, \mathrm{CS}$

## Subroutine STøRAG

This subroutine computes the initial storage and increase or decrease of storage. Total area and between station (between buffer zone boundaries) storage is calculated. Also storage of overlap areas is computed.

CALLED FROM: Main Program
SUBROUTINES USED: None
IMPORTANT VARIABLES: STA, STT, STØL, H, HT, Z

## Subroutine QFIX

This subroutine reads and writes the hydrologic parameters. The hydrologic and artificial inputs are then calculated for each grid. A value of zero on the input card indicates a particular parameter is not used. The exception to this is the number of grids with phreatophyte use, NGPU. If NGPU is blank, the entire PHR matrix must be read, otherwise the number of grids specified is read. NGPU equal to zero indicates no phreatophyte use.

Coding PHR less than one indicates that phreatophyte use should be calculated every time increment from the previous time step water level elevation. The ET subprogram is used for this.

The factors considered in QFIX are (1) precipitation, (2) applied water as irrigation, (3) phreatophyte use, (4) wells, (5) recharge areas or lines, and (6) leaky aquifer conditions.

CALLED FROM: Main Program
SUBPROGRAMS USED: ET
IMPORTANT VARIABLES: PPT, CPT, YPT, APW, CAW, YAW, NGPU, PHR, YPR, WELL, RPUM, YPM, PIT, RCHR, YRC, Q, SQT, SQA, REPEAT, CPM

## Function ET

This subprogram computes the phreatophyte use for each grid using the water level elevations from the previous time step. If the depth of water table DTWT is negative, an error message is printed. It is anticipated this program, if used, will change with each study area.

CALLED FROM: QFIX
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: ET, DTWT

Subroutine MATSøL
This subroutine sets up the coefficient matrix, CMATRX, and the right hand side vector matrix, CR. CMATRX is a reduced matrix containing only the band of known values in the left side of the difference equations and is written vertically rather than diagonally. Its dimensions are (NR-2)*(NC-2) by $2 * N R-3$. The coefficients are computed using Function PARAM and checked for adjacent boundary values of H in subroutine NSCøNT. MATSØL treats known grid values of H. BSøLVE is used to solve the matrix equation set up.

CALLED FROM: Main Program
SUBPROGRAMS USED: PARAM, NSCØNT, BSØLVE
IMPORTANT VARIABLES: CMATRX, CR

## Function PARAM

This subprogram computes the coefficients in the left side of the finite difference equation. For confined aquifer analysis, saturated thickness is compared to aquifer thickness and the smallest of the two is used to calculate the coefficient.

CALLED FROM: MATSØL, BYFLØW
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: PARAM

Subroutine NSCøNT
This subroutine transfers the coefficients, in CMATRX, multiplied by their respective H -value, to the right hand side vector matrix in case of adjacent head or known boundary conditions. It also sets coefficients equal to zero in case of adjacent impermeable grids. CALLED FROM: MATSØL

SUBPROGRAMS USED: None
IMPORTANT VARIABLES: None

Subroutine BS $\emptyset$ LVE
This subroutine solves the matrix equation set up in MATSøL by Gauss Elimination. BSøLVE is designed specifically for a diagonal matrix that results from analysis of groundwater systems.

CALLED FROM: MATSØL
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: None

## Subroutine BJUST

This subroutine adjusts the underflow boundary water level elevations. Gradients are calculated three grids in from the exterior boundary grids and the gradients are projected back to the exterior boundary grids to obtain new water level elevations. This calculation is performed at even time steps. At odd time steps the water level elevations are held constant and the exterior boundary grids are treated as constant head grids.

CALLED FROM: Main Program
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: H, HT

## Subroutine ØDFLøD

This subroutine checks for overdrawn or flooded grids. If either should occur, a message is printed indicating such. For confined aquifer analysis the flooded grid computations are bypassed. Total flooded and overdraw amounts are computed for the total area and between stations. CALLED FROM: Main Program

SUBPROGRAMS USED: None
IMPORTANT VARIABLES: $\emptyset$ ACFTT $=\emptyset$ VT, $\emptyset$ ACFTA= $\varnothing \mathrm{VA}, ~ F A C F T T=F V T, ~ F A C F T A=F V A$

## Subroutine BYFLøW

This subroutine computes flows for each grid. Total flow through model boundaries and buffer zone boundaries is calculated as well as flow into the system from constant head grids. The flow equation used is developed from the finite difference equations and uses particular values of the CMATRX. These values are transferred from MATS $\varnothing$ L except for boundary values which are calculated in BYFLøW using Function PARAM. Flow is not allowed to or from an impermeable grid and between any two adjacent underflow grids. I-direction and J-direction flows are printed and flows from constant head grids are interpreted and printed as flow from river grids. Relative concentration calculations are made using the flow between grids.

CALLED FROM: Main Program
SUBPROGRAMS USED: PARAM, MATR $\emptyset$ P
IMPORTANT VARIABLES: SQGGI, SQGGJ, SQBT, SQBA, SQR, SQRT, SQRA, CS, CPPT, CAPW, CRCHR, CSQR

## Subroutine BALCØP

This subroutine writes the balance computations at the desired time steps specified by FWTØP. Mass balance for the entire area cannot always be obtained, due to accounting procedures used to compute mass flow at exterior boundary grids. However, for between stations, which refers to the area between the buffer zone boundaries, mass balance must always be satisfied except for the case when a confined grid becomes unconfined. This error should be small and is indicated by the "TOTALS" in the mass balance output being different than zero. To reduce this error, decrease the value of $\Delta t$. For confined aquifer analysis, a message is printed indicating if a grid becomes unconfined.

CALLED FROM: Main Program
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: SQA, SQT, SQRA, SQRT, SQBA, SQBT, STT, STTTEM, STA, STATEM, STØL, $\varnothing \mathrm{VA}, \emptyset \mathrm{VT}$

Subroutine MATR $\varnothing$ P
This subroutine organizes data or results into a suitable form for printing and then prints.

CALLED FROM: READPH, LEKAQF, QFIX, BYFLøW
SUBPROGRAMS USED: None
IMPORTANT VARIABLES: $N R=N \varnothing R \emptyset W, N C=N \varnothing C \varnothing L$

Subroutine READC
This subroutine reads in new relative concentration values for all source waters and the boundary grids for each time increment of analysis. Execution of this subroutine is controlled by the value AGGIE. If AGGIE is less than or equal to zero, only new concentrations for the boundary grids will be read in. If AGGIE is greater than zero, new values for each source water throughout the grid network can be read in as a single value. Variable concentrations must be read in matrix form. Boundary grid concentrations are read in one value per card for each grid other than impermeable boundaries.
CALLED FROM: Main Program

SUBPROGRAMS USED: None
IMPORTANT VARIABL̇ES: CPPT, CAPW, CRCHR, CSQR, C $\varnothing$, AGGIE

# APPENDIX D 

PROGRAM LISTING

## PROGRAM WTQUALE


C
C
$N A=(N P-2) *(N C-2)$

    \(N A=(N P-2)\)
    $N B=2 * N R-3$$\mathrm{NB}=2^{*} \mathrm{NR}-3$
INYR $=353.3 / 0 \mathrm{~T}$

    INYR \(=353.3 / 0 T\)
    $I D C=N R * N C$

    IOC \(=N^{*}{ }^{*} N C\)IFK=1I PHI =IDC+1
    I $Z=2$ * IDC +1$I G=3 * I D C+1$I $D X=4^{*}$ TDC +1I $O Y=5+10 C+1$I $C A=6 * I O C+1$IHT $=8$ *IOC +1IHT $=8$ INC +1
IHP $=9 * I N C+1$
$I O=10 * I D C+1$
IWFLL=11*IクC+1
IPIT=12*IOC+1
$I P H P=13 * 1 D C+1$
ISOFGI $=14^{*}$ IDC +1
I SQGGJ=15*IDC+1
I $S Q R=16 * I O C+1$
ISQR $=16^{*}$ IOC +1
I $A=17 * I D C+1$
I $A=17 * I D C+1$
$I B=18 * I O C+1$
IPHRTMP $=19 * I D C+1 \quad 780$
$I H F=20 * I D C+1$
ICO $=21 * I O C+1$
ICT $=22^{*}$ IDC +1
ICS $=23^{*}$ IOC +1
I $A$ PEA $=24 * I O C+1$
I OPP $T=25^{*}$ I $O C+1$
IOAPW $=26^{*} I D C+1$
I GRCHR=27* IDC +1
I $\cap P H R=2 B^{*}$ IDC +1
$I Q^{2} U M=29^{*} I O C+1$
IQLEAK=30*IOC+1
ICPPT $=31^{*}$ I $D C+1$
ICPPT $=31^{*}$ IOC +1
ICAPK $=32^{*}$ I $10 C+1$
ICRCHP $=33 * 10 C+1$
ICP $Q=34^{*}$ IDC+1
ICPH $\mathrm{I}=3$ 4* $^{*}$ IDC+1
ICPUM $=35^{*}$ IOC +1
ICLE $A K=36^{*} I D C+1$
ICSQR=37*IOC+1
IPHIC=ICS + ICFAQ*IDC
$I H L=I P H I C+I L K A Q * I D C \quad 810$
$I T L=I H L+I L K A Q * I O C \quad 82:$
IFKL $=I T L+I L K A O^{*} I O C$
IENDI $=38^{*}$ IOC $I C F A O^{*} I D C+I L K A Q^{*} 3^{*} I D C$
830
$I F K L=I T L+I L K A O^{*} I O C$
$I E N D I=38^{*} I O C+I C F A O^{*} I D C+I L K A Q * 3^{*} I D C$
$I Y P T=I E N D_{1}+1$
$I Y P R=I Y P T+I N Y R$
I $Y A W=I Y P R+I N Y R$
IYPM=IYAH+INYR
$\begin{array}{ll}I Y P M=I Y A W+I N Y R & 890\end{array}$
$I C O M=I Y P M+N W$ * $I N Y R$
I $R P U M=I C P M+N W$
$I Y R C=I R P U M+N H$
IYRC $=I R P U M+N H$
$I R C H R=I Y R C+N P+I N Y R$
IENCZ $=I E N D 1+3 * I N Y R+N N^{*} I N Y R+2 * N H+N P * Z N Y R+A P * 1$
ICMATRX=IEND2 +1
$I C R=I F N O 2+(N A * N A)+1$
ICR $=I F N O 2+(N A * N A)+1$
It $N O 3=I t N O 2 * N A *(N A * N B)$
LWA LOCF(C (IENOS)) 1000
LWA LOCF(C (IENOZ)
WRITE ( $\mathrm{F}, 230$ ) LWA
$\begin{array}{ll}\text { WRITE }(6,230) \text { LWA } & 101 \mathrm{~L} \\ \text { CALL CORF (LWA: } & 1020\end{array}$
CALL CORF ILWA:
OO $100 \mathrm{LI}=1$, IENO 3
$C(L I)=$ UNDEF
100 CONTINUE
c
LCIE=NC-2 $1050^{\circ}$
$L C J H=3$
LCJE = NR-2
1030
1065
WFITE (6,210) YITLE
$107:$
108
WKITE $(6,210)$ TITLE 110 169
$\begin{array}{ll}\text { IF (ILKAQ.LE, O) GO TO } 110 & 110 \text { : } \\ \text { WRITE }(6,250) & 1: 10\end{array}$
$\begin{array}{ll}\text { IF (ILKAQ.LE, O) GO TO } 110 & 1105 \\ \text { WRITE }(6,250) & 1: 10\end{array}$
520
536
53.
540
551
55.
56
C
570
57
IFK $=1$
IPHI $=I D C+1$
580
( 60 j
—. 610
- 620
€
IOY $=5+$ IDC +1 ( $64 i$
$\begin{array}{ll}\text { I } O Y=5 * \text { IDC }+1 & 64 i \\ \text { ICA }=6 * \text { IDC }+1 & 65 i\end{array}$
(260
$59:$
$N A=(N P-2) *(N C-2)$
$N B=2 * N R-3$
0
EOi
616
610
620
620
E 3.
$64 i$
$65 i$
$66 i$
660
67.
67.
68
680
690
700
700
1
11
$72:$
1SOR=16*
74 .
75.
$I \mathrm{~B}=18 *$ TOC +1 1 76
780
$79:$
850
850
$26 i$
$86 i$
$87 i$

TCOM $=$ IYPM + NH* INYR - -
ICOM=IYPM+NN+INYR 90.
C1.
(95
ICMATRX=IEND2 +1 967
$96{ }^{9}$
MA=LOCF(C (IENDZ) - 990
LCIW=3 104
LCIE=NC-2
1192
GO TO 13C

        1120
    110 IF ICFAQ.LE.O) GO TO 120
        WRITE \((6,240)\)
    GO TO 130
WRITE $(6,240)$
GO TO 130
120 WFITE $(6,260)$
130 WFITE $(6,190)$ NR,NC,OT,ST
C
CALL READFH (NR,NC,C(IFK),C(IFHI),C(IZ),C(IG),C(IDX),C(IDY),C(ICA)
1,C(IPHIC),C(ICPPT),C(ICAPK),C(ICRCHK),C(ICSQR),C(ICS),C(IAREA),TAR
CALL READFH (NR,NC,C(IFK),C(IFHI),C(IZ),C(IG),C(IDX),C(IOY),C(ICA)
1,C(IPHIC),C(ICPPT),C(ICAPK),C(ICRCHK),C(ICSQR),C(ICS),C(IAREA),TAR
2EA)
1,C(IPHIC), C(ICPPT), C(ICAPK), C(ICRCHF), C(ICSQR), C(ICS), C(IAREA), TAR
2EA)
c
C
CALL READH (NR,NC,C(IH),C(IHP),C(IHT),C(IHF),LBC,RBC,TBC,BBC)
IF IILKAQ.LE.O) GO TO 140
CALL LEKAQF (NR,NC,C(IHL),C(ITL),C(IFKL))
140 CALL SFORAG (NR,NC,C(IH), C(IFT),C(IZ),C(IDX),C(IOY),CIPHI),C(IG),
1C(IPNIG))
CALL CSET (NR,NC,C(ICO), C(ICT), C(IH), C(IG),C(ICS))
C
LOOPUL=ST /OT
I $N O X=1$
c
OC $170 \mathrm{I}=1, \mathrm{LOOPUL}$
$I O T=0 T$
$J 1=I O T *(I-1)$
$J 2=I D T * I$
$\mathrm{FI}=\mathrm{I}$
$T 1=\mathrm{J}:$
$T 2=\mathrm{J} 2$
C
C CALL QFIX (NF,NG,C(IDX),C(IOY),C(ICA),C(IH),C(IZ),C(IHT),I,C(IC
1 ),NW,NP,C(IPHR),C(IWELL),C(IPIT),C(IYFT),C(IYAW),C(IYPR),C(IYPM
2 ), C(IRPUM),C(ICPM), C(IYRC),C(IRCHR), IAYR,C(IHL),C(ITL),C(IFKL),
3 C(IG),C(IPHRYMP),C(IQPPT),CIIQAPW),C(IQRCHR),C(IQPHR),C(IGFUR),
$\begin{array}{ll}2 & C(I G), C(I P H R Y M P), C(I O P P T), C I I Q A P W), C(I Q R C H R), C(I Q P H R), C(I G F U M), \\ 3 & C(I Q L E A K), C(I A R E A), T A K E A)\end{array}$
C
C CALL MATSOL (NR,NC,NA,NB,C(IFK),C(IPHI),C(IH),C(IHT),C(IZ),C(ID
$x), C(I O Y), C(I Q), C(I C M A T R X), C(I C R), C(I A), C(I A), C(I G), C(I P H I C), C($
$\begin{array}{ll}1 & X), C(I O Y), C( \\ 2 & I H F), C(I H F))\end{array}$
C
CALL B.JUST (NR,NC,C(IH),C(IHT),C(IFP),C(IOX),C(IOY),I) 1510
C CALL ODFLOO (NR,NC,C(IH),C(IHT),C(IT),C(IG),C(IPHI),C(IOX),C(IO
C CALL ODFLON (NR,NC,C(IH),C(IHT),C(IT),C(IG),C(IPHI),C(IOX),C(IO
1 Y),C(IPHIC))
C
STYTEM=STT
STATEM=STA
STATEM = STA
1 CALL STORAG (NR,NC,C(IH),C(IHT),C(IZ),C(IOX),C(IDY),C(IPHI),C(I
1 CALL STORAG (NR,NC,C(IH),C(IHT),C(IZ),C(IOX),C(IOY),C(IPHI),C(I
C
PCNT $=1 N D X$
IF ((FI*DT).NE. (PCNT*FWTOP)) GC TO 150
IF ( $F$ I ${ }^{*} D T$ )
INDX $=I N O X+1$
CALL BYFLOW (NR,NC,NA,NB,C(IFK),C(IH),C (IHF),C(IZ),C(IEX),C(IOY
$\begin{array}{ll}1 \\ 2 & \text { G),C(ISQGGI), C(ISQGGJ),C(ISQR), C(ICMATRX),C(IA),C(IA),C(IHF),C(I } \\ 2\end{array}$
$\begin{array}{ll}1 & 1, C(I S Q G G I), C(I S Q G G J), C(I S Q R), C(I C M A T R X), C(I A), C(I R), C(I H F), C(I \\ 2 & G), I, C(I C O), C(I C T), C(I P H I), C(I P H I C), C(I C S), C(I Q P P T), C(I Q A F W), C I \\ 3 & I Q R C H R), C(I C P H R), C(I Q P U M), C(I Q I E A K), C(I C P P T), C(I C A F W), C(I C R C H R)\end{array}$
$\begin{array}{ll}2 & G 1, I, C(I C O I, C(I C T), C(I F H I), C(I P H I C), C(I C S), C(I Q P P T), C(I Q A F W), C( \\ 3 & I Q R C H R), C(I C P H R), C(I Q P U M), C(I Q L E A K), C(I C P P T), C(I C A F W), C(I C R C H R)\end{array}$
3 IQRCHR),C(IGPHR),C(IQPUM),C(IQLEAK),C(ICPPT),
CALL BALCOP (J1,JZ, I, STTTEN,STATEM)
c
WRITE ( 6,1 RO) TR
CALL MATROP INR,NC, C(IHT))
C
$150 \quad$ NCT $=0$
$\begin{array}{ll}\mathrm{NCT}=0 \\ \mathrm{DO} & 160 \quad L=1, N C\end{array}$
OO $160 \mathrm{~K}=1$, NR
$C(I H P+N C T)=C(I H T+N C T)$
NCT $=$ NCT $T+1$
1136
1140
C
1160
117
118 J
119 J
121i
1230
1230
1240
1240
1250
1260
1260
1270
1280
1280
1292
1302
1200
1210
C INDX=1 1 1310
1320
133
13
133
1340
1340
135
135.
1360
1360
1375
1375
1376
138
138.
1390
140 C
140 C
1410
1410
1422
1430
1446
1466
1470
148 C
1495
150
1510
1510
1520
1530
1530
154 C
$154 \mathrm{C}^{2}$
155 C
155 C
156 C
1566
1570
$158 \mathrm{c}^{2}$
1590
1590
1600
1610
1610
$1 \in 60$
C
.
C
1510
c
Y) OLI
4 , C(ICSQR), CTIO), C(ICPUM), C (ICLEAK),

160 CONTINUE
179
CALL RFAOC (NR,NC,C(ICAPW),C (ICRCHR), C(ICSGR), C (ICC), LEC,REC,TEC,
1ARC, AGGIE)
170 CONTINUE 1890
170 CONTINUE 1890
STOP
180 PORMAT (1H1.44X, 22HHEAD MAP AY TTME LEVEL,F10.2,11H, 52 X , 18 H (FEE
1T' ABOVE OATUM))











```
C
```




```
        18
        1870
        1890
    195,
```


## SUBROUTINE READPH

THIS SUBROUTINE READS AND WRITES THE FHYSICAL DATA DESCRIBING
THE SYSTEM.
FK=PERMEABILITY (FEET/DAY)
PHI=EFFECTIVE POROSITY
$Z=B F O R O C K$ ELEVATION (FEET)
G=GROUND SURFACE ELEVATION, OR TOP CF CONFINEL AOUIFER (FEET)
$D X=X=D I M E N S I O N$ OF GRID (FEET)
OY $=Y=$ DIMENSION OF GRID (FEET)
CA $=$ FRACTION OF GRIO THAT WATER IS APPLIED (OECIMAL)
PHIC=CONFINEO AQUIFER STORAGE CCEFFICIENT
DLX $=$ UNIFORM DX
OL $Y=$ UNIFORM OY
OLY $=$ UNIF FORM OY
$F F K=$ UNIFORM FK
FFK=UNIFORM FK
ZZ=UNIF CRM Z
$G G=U N I F O R M G$
PPHI =UNIFORM PHI
CCA =UNIFORM CA

```
    SUBROUTINE READPH (NR,NC,FK,PHI,Z,G,OX,OY,CA,PHIC,CFPT,CAPH,CRCHR,
    2CSQR,CS,AREA,TAREAI
```

RP 40
PP 6

RP 70| PP |
| :--- | :--- |
| 80 |P 10:

110123
13 C
14:
$15 i$
16 J
170
18 i196

    PPHIC=UNIFORM PHIC
    PPHIC=UNIFORM PHIC200RP210CPPT=RELATIVE CONCENTRATICN CF CONTAMIAANT IN PRECIPITATICNCAPW=RELATIVE CONCENTRATICN IF CONTAMINANT IN WATEF APPLIEC AS
IRRIGATION
CRCHR=RELATIVE CONCENTFATION OF CONTANINANT IN RECHARGE WATERS
CSOR=PELATIVE CONCENTRATTCN OF CONTAMINANT FFON CONSTANT HEAC
SOURCES
AREA $=A$ REA OF EACH GRID
TAPEA = TOTAL AREA COVERED EY THE GRID NETWCRK
DIMENSION FK (NR,NC), PHI(NR,NC), Z(NR,NC), G(XXR,NC), DX(NR,NC), DY RP 230
$1(N R, N C), C A(N R, N C), F H I C(N R, N C), C S(N F, N C), A F E A(N R, N C), ~ C P P T(N F$,
$2 N C), C A P W(N R, N C), C R C H R(N R, N C), C S Q R(N R, N C)$
COMMON /BLK1/ DT,S:, ICFAC,ILKAD,LCIE,LCIN,LCJF,LCJW,FhTCP RP 260
RP 250
C
$00110 \mathrm{~J}=1$, NR
DO 11C $K=1, N C$
$F K(J, K)=0.0$
$F K(J, K)=0.0$
$Z(J, K)=C .0$
$G(J, K)=0.0$
PHT (J,k) $=0.0$
PHT $(J, K)=0.0$
$C A(J, K)=0.0^{0}$
PHIC $(J, K)=0.0$
RP 260
RP 270
RP 28 S
RP 292
$R P$
$R P$
20
$\operatorname{CS}(J, K)=0.0$
$\operatorname{CS}(J, K)=0.0$
$\operatorname{CPPT}(J, K)=0$.
$\operatorname{CPPT}(J, K)=0.0$
$\operatorname{CAPW}(J, K)=0.0$
$\operatorname{CRCHR}(J, K)=0.0$
$\operatorname{CRCHR}(J, k)=0.0$
$\operatorname{CSnO}(1, k)-n .1$.
11J GUTMUL $\quad$ RP $\quad 36 \mathrm{~L}$
RFAO $(5,440)$ DLX, DCY,FFK, ZZ, GG, OPHI, CCA, PPHIC
$\begin{array}{ll}R P & 364 \\ R P & 376 \\ R P & 380\end{array}$
IF (DLX.LE.C.O) GO TC 132
380
356
400

```
            00 120 J=1,NC
    00 120 I=1,N2
    120 OX(I,J)=OLX
        GO TO 150
    130 READ (5,440) (0\times(1,J),J=1,NC)
        DO 14C I =2,NR
        DO 140 J=1.NC
    140 Q ( [ [, J)=0 =(1, J)
    150 CONTINIH
C
    IF 1OLY.LF.O.O1 GO TO 170
    OO 16C J=1,NC
    #O 1GC I=1,NR
    160 DY(I,J)=DLY
    GO TO 190
    170 FEAD (5,440) (OY(I,1),I=1,NR)
    00 180 J=2,NC
    00 180 I=1,NR
    180 DY(I,J)=OY(I,1)
    190 CONTIHUE
        TAREA=0.C
        OC 195 J=1,NC
        DO 195 I=1,NR
        AREA(I,J)=DX(I,J)*DY(I,J)
        TAREA=TAREA +AREA (I,J)
    195 CONTINUE
C
    IF (FFK.LE.O.O) GO TO 210
    DO 200 J=1,NR
    DO 200 K=1.NC
    2CO FK(J,K)=FFK
    GO TO 220
    210 REAO (5,440) FK
    220 IF (ZZ.NF.0.0) GO TO 230
    IF (SIGN(1.0,2Z).LT.0.0) GO TO 250
    230 DO 24i J=1,NR
    00 240 K=1,NC
    240 2(J,K)=27
    GO TO 260
    250 REAO (5,440) 7
c
    260 IF (GG.NE.O.O) GO TO 270
    IF (STGN(1.O,GG).LT.O.O) GO TO 290
    270 DO 280 J=1,NR
    OO 280 K=1,NC
    280 G(J,K)=GG
        GO TO 3CO
    290 REAO (5,440) G
C
    300 IF (PPHI.LE.O.0) GO TO 320
        OO 310 J=1,NR
        OO 31C K=1,NC
    310 PHI (J,K)=PPHI
        GC TO }33
    320 REAO (5,440) PHI
C
    33J IF (CCA.NE.O.O) GO TO 340
        IF (SIGN(1.0,CCA).LT.O.2) GO TO 3\inO
    340 00 350 J=1,NC
    DO 350 I=1,NR
    350 CA(I,J)=CCA
        GO TO }37
    360 READ (5,440) CA
C
    30 IF (ICFAO.LE.0) GO TO 400
            IF (PPHIC.LE.O.C) GO TO 390
            DO 380 I=1,NR
    DC 380 J=1,NC
    380 PHIC(I,J)=PPHIC
    GO TO 40C
    390 RFAO (5,440) PHIC
    400 RFAD (5,445) CSS
        IFICSS.LE.O.J) GO TO 610
        OO 60C J=1,NC
        DO 60O I=1,NR
    600 CS(I,J)=CSS
    GO TO 615
    610 READ (5,440) CS
    615 READ (5,445) CCFPT
        IF (ССРPT.LT.O.C) GO TO }63
```

```
        DO 620 J=1,NC
        DO 620 I=1,NR
    620 CPPT(I,J)=CCPPT
        GO TO 640
    630 READ (5,440) CPPT
C
    640 RFA\ (5,445) CCAPW
        IF (CCAPW.LT.O.O) 60 T0 650
        DO 65O J=1,NC
        DO 66C I =1,NR
    660 CAPW(I,J)=CCAPW
        GO TO 670
    650 RFAD (5,440) CAPW
C
    670 READ (5,445) CCRCHR
        IF (CCRCHF.LT.O.0) GO TO 680
        OO 590 J=1,NC
        00 69C I=1,NR
    690 CRCHR(I,J)=CCRCHR
        GO TO 700
C
    700 READ (5,445) CCSQR
        IF (CCSQR.LT.O.G) GO TO 710
        00720 J=1,NC
        DO }720\textrm{I}=1,N
    720 CSOR(I,J)=CCSQR
        GO TO }73
    710 REAJ (5,440) CSOR
    70 CONTINUE
    RP 1080
C
    WFITE (6,530)
    CALL MATROP (NR,NC,CS)
    WF.ITE (6.540)
    CALL MATPOP (NR,NC,CPPT)
    WKITE (6,550)
    CALL MATROP (NR,NC,CAPW)
    WFITE (6,560)
    CALL MATPOP (NR,NC,CRCHR)
    WEITE (6,570)
    CALL MATROP (NR,NC,CSQR)
    WFITE (6,450) RP 1000
    CALL MATROP (NR,NC,OX) RP 110J
    WRITE (6,4,60)
    CALL MATROP (NR,NC,OY)
    IF (ICFAQ.GT.0) GJ TO 410
    WRITE (6,470)
    GO TO 420
    410 WPITE (6,510)
    420 CALL MATROP (NR,NC,G)
    WRITE (6,480)
    CALL MATROP (NR,NC,Z)
    WFITE (6,49C)
    CALL MATROP (NR,NC,PHI)
    IF IIGFAQ.LE.O) GO TO 430
        WPITE (6,520)
        CALL MATROP (NR,NC,FHIC)
    WFITE (6,500)
        CALL MATROP (NR,NC,FK)
        RETURN
C
    440 FORMAT (8F10.1)
    445 FORMAT (1F10.1)
    450 FORMAT (1H1,4OX, 5OHOELTAOX MAP,SFACING ACRCSS IN J-DIRECTION IFE RP 1ZOL,
    1ET) ,N
    RP 1310
    460 FORMAT (1H1,41X, 47HDELTOV MAF, SPACING CONN IN I=DIRECTICN (FEET RP 132心
        1),1) (1H1,41X, 47HOELTOR MAP, SPACTNG COWN IN I=OIRECTIN 1?3.j
    470 FORMAT (IH1,44X, 41HSURFACE ELEVATION MAP (FEET ABOVE DATUM),') RP 134N
    480 FDRMAT (1H1,44X, 41HBFDROCK ELEVATION MAP (FEET AROVE DATUM),/) RP 1350
    490 FORMAT (1H1,55x,
    509 FORMAT (1H1,46X, 2BHPERMEABILITY MAP (FEET/CAY),N), RP 127:
        RP 136L
    510 FORMAT (1H1, 30X, 5THTOP OF CONFINEO AQUIFER ELEVATICN MAP (FEET A RP 138L
    1BOVE OATUMI,/I
    5 2 0 ~ F O R M A T ~ ( 1 H : , ~ 3 9 X , ~ 4 C H C O N F I N E D ~ A Q U I F E R ~ S T O R A G E ~ C O E F F I C I E N T ~ M A P , / ) ~ R P ~ 1 4 0 C ~
    530 FORMAT (1H1,51X, 33HINITIAL AQUIFER CCNCENTFATICN MAP,N)
    540 FORMAT (1H1,49X, 39HINITIAL FRECIFITATION CONCEATRATICN MAP,1)
    5 5 0 ~ F C R M A T ~ ( 1 H : , 4 9 x , ~ 3 S H I N I T I A L ~ A F P L I E D ~ W A T E R ~ C C N C E N T R A T I C A ~ M A P , ~ / ) ~
    560 FORMAT (:H2,52X, 34HINITIAL RECHAFGE CONCENTKATICN MAF, %)
    5 7 0 ~ F O R M A T ~ I I H 1 , 4 8 X , ~ 3 8 H C O N S T A N T ~ H E A D ~ G R I D ~ C C A C E N T R A T I C A ~ N A P , I ) ~
C

\section*{SUBROUTINE READH}


\(\pi \frac{\pi}{2}\)
        RH
CH
    RH
    RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
200
216
220
22
220
230
\(24 L\)
25:
260
260
27.
280
29.
\(30 i\)
\(30 i\)
315
\(31:\)
320
320
\(33:\)
346
346
350
\(3 \in 0\)
370
370
383
38 d
380
39
400
400
410
410
420
415
420
430
420
440
45:
45:
\(46 i\)
47:
\(480^{\circ}\)
480
496
500
51J
520
520
530
530
540
545
\(55 i\)
\(56 i\)
570
570
580

\section*{SUBROUTINE LEKAQF}
\begin{tabular}{|c|c|}
\hline & SUGRCUTINE LEKAQF (NR, NC, HL, TL, FKL) \\
\hline C & \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C & THIS SUGPOUTINE READS IN LEAKY AQUIFEf PARAMETERS. \\
\hline c & HL = CONSTANT HEAD VALUE SJUSINS LEAK (FEFT, \\
\hline c & TL = THICKNESS OF LEAKY LLYER (FEET) \\
\hline C & FKL = PERMEABILITY OF LEAKY LAYER (FEET/DAY) \\
\hline & DIMENSION HL (NR,NC), TL (NR,NC), FKL (NR,NC) \\
\hline
\end{tabular}

\footnotetext{
\(\underset{b}{r}\)
}
        HIS SUAPOUTINE READS IN LEAKY AQUIFEF PARAMETERS.
        HL = CONSTANT HEAD VALUE VIUSINS LEAK (FEFT,
        TL = THICKNESS OF LEAKY LLYER (FEET)
105
110
116
\(12 i\)
136
140
150
150
160
160
170
190
180
190
245
260
270
```

        00 110 I=1,NR
    LA 11L
NO 11G J=1,NC
HL(I,J)=0.0
TL(I,J)=0.0
FKL(I,J) =0.0
110 CONTINUE
READ (5,210) HHL,TTL,FFKL
IF (HHL.LE.O.O) GO TO 130
00 120 I = 1,NR
DC 120 J=1,NC
120 HL(I,J)=HHL
GO TO 140
130 RFAD (5,210) HL
140 IF (TTLOLE.O.0) GO TO 160
OO 150 I=1,NR
DO 150 J=1,NC
150 TL(I,J)=TTL
GO TO 170
160 REAO (5,21G) TL
170 IF (FFKL.LE.O.0) GO TO 190
OO 180 I=1,NR
DO 1BC J=1,NC
1BO FKL(II,J)=FFKL
GO TO 200
190 RFAD (5,21C) FKL
200 CONTINUE
WRITE (6,22G)
CALL MATROP (NR,NC,HL)
WRITF (6,230)
CALL MATROP (NR,NC,TL)
WRITE (6,240)
CALL MATROP (NR,NC,FKL)
RFTURN
C
210 FORMAT (8F10.1)
22J FOQMAT (1H1,//////,3HX, 44HHEAC MATRIX CAUSING LEAK (FEET ABCVE DA
1TUM),///
230 FORMAT (1H1.//////,44x, 32HTHICKNESS OF LEAKY LAYER (FEET),//)
240 FORMAT (1H1,/|/|/, 36X, 4BHVERTICAL PERMEABILITY CF LEAKY LAYER
IEET/OAY,,//;
C
ENO

```

\section*{SUBROUTINE STORAG}
\begin{tabular}{|c|c|}
\hline & SUBROUTINE STORAG (NR,NC,H,HT, Z, DX, DY, S, G\%SC) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C}} \\
\hline & \\
\hline C & THIS SUBROUTINE COMPUTES THE INCREASE OR DECṘEASE IN STORAGE. \\
\hline C & STA=BETWËEN STATIONS STORAGE (AF) \\
\hline \multicolumn{2}{|r|}{STT=TOTAL AREA STORAGE (AF)} \\
\hline \multicolumn{2}{|r|}{STOL=OVERLAP AREA STORAGE (AF)} \\
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|r|}{1R,NC), G(ND, NC), SC (NR, NC)} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & \multirow[t]{2}{*}{COMMCN /BLKI/ OT,ST,ICFAQ,ILKAQ,LCIE,LCIK,LCJE,LCJK,FKTOP COMMON /RLKZ/ STA,STOL, STT, SQA,SOT, SOFA, SQBA, SQFT, SOBT,OVA,OVT} \\
\hline & \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multicolumn{2}{|r|}{NC1 \(=\) NC-1} \\
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
& N P 1=N F-1 \\
& S T T=j . \sigma^{1}
\end{aligned}
\]} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { STA }=3.0 \\
& 00130 \quad L=2, N C 1 \\
& 00130 \mathrm{~K}=2, N R 1
\end{aligned}
\]}} \\
\hline & \\
\hline & \\
\hline & IF (H(K,L).GT.1000C.) GO TO 130 \\
\hline & IF (ICFAQ.LE.G) GO TO 110 \\
\hline & IF (HT (K,L)-LE.G(K,L:) GO TO 1:0 \\
\hline & \begin{tabular}{l}
 \\
\(1 \quad Y(K, L) / 43560\).
\end{tabular} \\
\hline & - GC TO 120 \\
\hline 110 & \(S T P=(H T(K, L)=Z(K, L)) * D \times(K, L) * O Y(K, L) * S(K, L) / 4356 C\). \\
\hline 120 & \(S T T=S T T+S T P\) \\
\hline
\end{tabular}

\footnotetext{
10
T 30

T 60

10
110
120
136 140 156
160
170
180
190
200
210
220
226
80
340
340
250
\(26 i\)
270
280
}

THIS SUBROUTINE COMPUTES THE INCREASE OR DECAEASE IN STORAGE. STT=TOTAL AFEA STORAGE (AFI
= TOTAL AFEA STORAGE (AF)

DIMENSION H(NR,NC), HT(NR,NC), Z(NR,NC), OX(NR,NC), DY(NR,NC), S(N

COMMCN /BLK1/ OT, ST, ICFAQ, ILKAQ,LCIE,LCIW,LCJE,LCJK,FKTOP COMMON /ALKZ/ STA, STOL, STT, SQA, SOT, SQFA, SQBA, SQKT, SQBT, OVA, OVT
\(\mathrm{NCl}=\mathrm{NC}-1\)
NP \(1=N \mathrm{NF}-1\)
\(S T T=j . \mathrm{O}^{1}\)
STA \(=3.0\)
STA,NC1
IF (H(K,L).GT. 10002 .) GO TO 130
IF (HT \((K, L), L E, G(K, L:)\) GO TO \(1: 0\)
ST \(4{ }^{\circ}\)

T 76
\(\begin{array}{ll}\text { ST } & 8 \mathrm{~L} \\ \text { ST }\end{array}\)

STP=(HT(K,L) \(=2(K, L)) * O X(K, L) * O Y(K, L) * S(K, L) / 4356 C\).
\(120 \quad S T T=S T T+S T P\)
```

                IF (L.LT.LCIW) GO TO 130
                IF (L.GT.LCIE) GO TO 130
    i IF (K.LT.LCJW) GOTO 130
            IF (K.GT.LCJE) GO TO 130
            STA=STA+STP
    130
    continue
    STOL = STT-STA
    C
RFTURN
RF TURN

```
                    ST

END

\section*{SUBROUTINE CSET}

SUAROUTINE CSET (NR,NC,CO,CT, H,G,CS)


\section*{SUBROUTINE QFIX}

> SUBROUTINE QFIX (NR,NC, \(X X, D Y, C A, H, Z, H T, I, Q, N H, N P, P H R, W E L L, P I T, Y P T\), \(Q F\) IYAW,YPR,YPM, RPUM, CPM, YFC, \(Q C H R, I N Y F, H L, T L, F K L, G, F H R T M P, G P P T, O A F W, Q F\) 2CHR, QPHR, QPUM, QLEAK, AREA,TAFEA)

THIS SURROUTINE COMPUTES THF HYCROLOGIC AND ARTIFICIAL INPUTS. \(P P T=P R E C I P I T A T I O N\) (INCHES/YEAR) \(C P Y=C O E F\). OF EFFECTIVE PRECIPITATION TC GRCUNOWATER (DECIMAL) \(Y P T=O I S T R I B U T I O N\) OF PRECIFITATION FCR EACH DT OF ONE YEAR (DECIMAL)
\(A P W=A P P L I E D\) WATER AS A RESULT OF SURFACE IRRIGATICN (FEET/YEAR) \(C A W=C O E F\). OF DEEP PERCOLATI (N OF APFLIEC WATER (DECIMAL) \(\checkmark A W=O I S T R I B U T I O N\) OF APFLIEC WATER FCR EACH DT CF CNE YEAR (DFCIMAL)
NGPU = NUMEER OF GRIDS WITH PHREATOPHYTE USE
PHR = WATER USED BY PHREATOPHYTES (AF/YEAF). THIS MAY BE CALCULATED FROM THE ET SUBPROGRAM EY CCOING FHR VALUES LESS THAN ZERO.
YPR \(=\) DISTRIBUTION OF PHFEATOPHYTE USE FCR EACH DT OF ONE YEAR (DECIMAL)
WELL =WELL NUMBER CODE

GPM = COEF. OF GROUNDWATER REMOVEC BY PUNPING (DECIMAL)
YPM \(=\) OISTRIBUTION OF PURPING FCR EACH OT CF ONE YEAR (OECIMAL)
PIT =RECHARGE PIT NUMBER CODE
RCHR =AMOUNT EACH PIT RFCHARGES FER YEAF (FEFT)
\(Y R C=D I S T R I B U T I O N\) OF PIT RECHARGE FOF EACH OT CF ONE YEAR
(DECIMAL)
\(D=N E T\) VALUE OF HYOROLOGIC AND AFTIFICIAL INPUT PER GRID (AF/DAY) QF QF QF QF QF QF 90 100 QF
QF QF 120 F 130 140 F 15 C 150
160 170 180 190 200 210 \(22 \%\) 230 240 254 260 27. 280
```

SQT=TOTAL Q PER DT (AF)
SQA=TOTAL Q PER DT BETWEEN STATIONS (AF)
REFEAT=OATA INPUT CODE FOR NULTIPLE YEAR ANALYSIS

```
29

29
300
300
314
F 320
DIMENSION DX(NR,NC), DY(NR,NC), CA(NR,NC), H(NR,NC), \(2(N R, N C), H T(Q F \quad 330\) 1NR, NC), D(NR, NC), PHR(NR, NC), WELL(NR,NC), FIT(NR,NC), YPT(INYR), QF 2YAW(INYR), YPR(INYR), YPM (HW,INYR), RFUM(NW), I:FM(NW), YRCI(AP,IAYR DF
 \(4, N G), ~ Q P P T(N R, N C), ~ D A P W(N R, N C), ~ I N C H E(N F, N C), ~ G P H R(N R, N G), ~ G L Y A K(N E\) 5,NC), \(\operatorname{5PUM}(N R, N C), A R E A(N Q, N C)\)

COMMON /BLK1/ OT, ST, ICFAD,ILKAO,LCIE,LCIW,LCJF,LCJW,FWTOP
COMMON /BLK2I STA,STOL, STT, SQA, SQT, SQFA, SQBA, SQRT, SQBT, CVA,OVT
C
IF (I.NE.1) GO TO 320
ICT=O
INOX=1
\(11000120 \mathrm{~K}=1\), NR
DO \(120 \mathrm{~L}=1, \mathrm{NC}\)
PHR \((K, L)=0.0\)
\(Q(K, L)=0.0\)
\(\therefore \quad \operatorname{PHRTMP}(K, L)=0.0\)
\(W E L L(K, L)=0.0\)
\(\operatorname{PIT}(K, L)=0.0\)
120 CONTINUE
\(E T C N T=0 . C\)
DO \(130 \mathrm{~K}=1\), INYR
\(Y P T(K)=0.0\)
\(\operatorname{YAW}(K)=0.0\)
\(Y P R(K)=0.0\)
130 CONTINUE
FFT=HT(I,J)-G(I, J)
READ \((5,470)\) FOT,CPT
IF (PPT.LE. O.O) GO TO 140
PEAD (5,480) (YPT(K), K=1,INYR)
140 REAO \((5,470)\) APW,CAW
IF (APW.LE.O.O) GO TO 150
READ \((5,4\) BO) (YAW(K), K=1, INYR)
150 CONT INUE
REAT \((5,496)\) NGPU
IF (NGPU.EQ.O) GO TO 170
DO 160 NPR \(=1\), NGPU
READ \((5,490) \mathrm{J}, K, P\)
PHR \((J, K)=P\)
160 CONTINUE
GO TO 180
170 IF (SIGN(1.0.NGPU).GT. O.0) GO TO 21C
READ \((5,476)\) PHF
\(18000190 \mathrm{KK}=1\), NR
DO \(190 \mathrm{LL}=1, \mathrm{NC}\)
IF (PHR(KK,LL),LT.G.0) GO TO 210
IF (PHR(KK,LL).GT.0.0) GO TO 200
190 CONTINUE
\(200 \operatorname{READ}(5,480)\) (YPR(K),K=1, INYR)
210 IF (NH.LE.O) GO TO 250
READ \((5,49 \mathrm{C}) \mathrm{NW}\)
OC \(220 \mathrm{~K}=1\), NH
DO \(220 \mathrm{~L}=1\), INYR
\(Y P M(K, L)=0.0\)
220 CONTINUE
DO \(240 \mathrm{~J}=1, \mathrm{NW}\)
RFAD (5,500) IWNO,K,L,RPUMiJ), (PM(J)
WELL \((K, L)=\) IWNO
READ (5,48C) (YPM(IWNO,K), K=1, INYR)
IF (YPM(J,1).NE,O.0) GO TO 240
IF (SIGN(1.0,YPM(J,1)).GE. O.0) GO TO 240
DO \(230 \mathrm{~K}=1\), INYR
\(230 \quad Y P M(J, K)=Y P M(J-1, K)\)
240 CONTINUE
250 IF (NP.LE. O) GO TO 290
READ \((5,490)\) NP
OC \(2 F U K=1, N P\)
\(00250 \mathrm{~L}=1\), INYR
\(Y R C(K, L)=0.0\)
260 CONTINUE
\(0028 \mathrm{~J}=1, \mathrm{NP}\)
READ \((5,500)\) IPNO,K,L,RCHR(J)
PIT(K,L) =IPNO
QF
QF
340
35.
Sh11

38
4
F 410
42.

\section*{430}

440
450
450
\(46 i\)
470
480
490
50.

510
520
530
54:
550
563
58 :
59.

F 60
610
62.

F 630
644
650
E6u
F 67
E80
690
F \(70 j\)
F 716
720
730
F 74.

\section*{750
760}

760
770
78:
790
800
810
F2:
F3u
840
850
F 86.
87.
880

890
90
920

PEAD \((5,480)\) (YRCIIPNO,K), \(K=1\), INYR)

QF 1074
94.
95
960
970
99.
1002
F 1010
F 1020
F 103 j
\(1040^{\circ}\)
1040
1050
108 C
```

            00 270 K=1.INYR
                                    YPC (J,K)=Y&C(J-1,K)
    270
280 CONT INUE
290 CONTINUE
WPITF (6,510)
CALL MATFOP (NR,NC,GA)
WFITE (6,62C) APW
WFTTE (h,F30) (YAW(K),K=1,INYR)
WRITF (6,560)
CALL MATROP (NR,NC,PHF)
WFITE (6,630) (YPC (K),K=1, INYR)
WRITE (5,640) PPT
WRITE (6,630) (YPT (K),K=1,INYP)
IF (NW.LE.0) GO TO 300
WRITE (6.520)
CALL MATROP (NR,NC,WELL)
WRITF (6,650)
DC 295 J=1,NH
295 WFITE (6,660) J,RPUM(J), (YPM(J,K),K=1,IAYR)
300 IF (NF.LE.O) GO TO 310
WRITE (6,530)
CALL MATROP (NR,NC,PIT)
WFITE (6,670)
00 305 J=1.HP
305 WRITE(6,6 90) J,RCHR(J), (YRC(J,K),K=1,INYR)
C
310 IF (I.NE.1) GO TO 320
WRITE (6,590)
CALL MATROP (NR,NC,H)
WFITE (6,600) STA,STOL,STT
C
320 ICT=ICT+:
IF (ICT.LE.INYR) GO TO 330
ICT=ICT=INYR-1
REAO (5,470) REPEAT
IF (REPEAT.NE.0.0) GO TO 320
KYEAR=I/INYR
WFITE (6,610) KYEAR
GO TO 110
3 3 0 ~ P C N T = I N O X
FI=I
SOA=0.0
SOT=0.0
KCT=0
DO 440 K=1,NR
DO 440 L=1.NC
IF (H(K,L).GT.1.E4) GO TO 440
IF (HT (K,L),GT,Z(K,L)) GO TO }35
A=0.0
IF (KC.T.GT.O) GO TO 340
WRITE (6,580) I
KCT=1
340 WRITF (6,540) K,L
GO TO 360
350 A=1.0
360 CONTINUE
C
QPPT (K,L) = (PPT*CPT*YPT(ICT)*AREA(K,L;/TAREA)/(12.*43560.)
OAPW(K,L) = (APW*CAW*CA(K,L;*YAW(ICT)*AFEA(K,L)/TAREA)/43560.
JJJ=PIT TK,L)
IF (JJJ.LE.O) GO TO 37O
QRCHR(K,L)=RCHR(JJJ)*YRC(JJJ,ICT) *APEA(K,L)/4.3560.
GC TO 380
QFCHR (K,L)=0.0
CONTIHUE
IF (PHR(K.L).GF.0.0) GO TO 390
\ QPHR (K,L)=ET (HT (K,L),G(K,L),K,L) *AREA (K,L)/435600.
PHRTMP(K,L) =QPHP (K,L)
ETCNT = 1.
GO TO 400
390 QPHR(K,L) =PHR(K,L)*YPR(ICT)
400 CONTINUE
JJ=WELL(K,L)
IF (JJ.LE.O) GO TO 410
OPUM(K,L)=RPUM(JJ)*YOM(JJ,ICT)*CPM(JJ)
GO TO 420
410 \operatorname{PUM}(K,L)=0.0
CONTINUF
CONTINUF
OLEAK(K,L)=FKL(K,L)*(HT(K,L)=HL(K,L))*AREA(K,L)*OT/(TL(K,L)*435
160.)
GO TO 431

```
```

    430 GLEAK(K,L)=0.0
    431 Q O(K,L)=(QPPT (K,L) +QAPW (K,L) &QR(HP (K,L)=QPHR (K,L)=QPUM (K,L)-QLEA
        1K(K,L))/0T
    c
SQT=SQT+Q(K,L)*DT OF 1920
IF (L.LT.LCIW) GO TO 4%0
IF (L.GT.LCIE) GO TO 440
IF (K.LT.LCJW) GO In 4.40
1F (K.GT.LCJE) GO TO 440
SOA=SQA+O(K,L)*OT
440 CONTINUF
IF ((FI*OT).NE. (PCNT*FWTOP)) GO TO 4EO
INDX=INOX+1
IF (ETCNT.LE.O.) GO TO 450
WRITE (6,570)
CALL MATROP (NR,NC,PHRTMP)
450 WRIYE (6,550) I
CALL MATROP (NR,NC,Q)
c
470 FO\&MAT (8F10.1)
40 FORMAT (1GF5.1)
490 FORMAT (2I5,7F10.1)
500 FORMAT (3I5,6F10.1)
510 FORMAT (1H1,45X,40HCOEFFICIENT FOR PART CF ELOCK IRRIGATEC.1)
520 FORMAT (1H1,57X,16HWELL NUMBER MAF./)
530 FORMAT (1H1,53X,24HRECHARGE PIT NUMBER MAP.1)
540 FORMAT (31H WITHDRAWAL RESTRICTED IN GRID 2I3)
550 FORMAT (1H1, 3OX, 4GHMATRIX OF O(I, J) (ACOFT/OAY) FOR INCREMENT NUM QF 2170
1BER,I10)
560 FORMAT (IHI, 2CX, GOHMATRIX OF PHR(I,J) - (ACRE-FEET CF HATER USEC / QF 2190
1 GRIO (YEARI)
570 FORMAT (1H1, 20X, 6OHMATPIX OF PHR(I,d) - (ACGL-FEET CF NATER USEE
I GRID,'INYR))
OF 2210
1AL FROM THE FOLLOWING GRIOS FCR TIME FFRICO,I5)
OF 2230
50 FORMAT (1HI,37X, 4GHINITIAL HEAD ELEVATION'NAP (FEET AROVE CATUM) QF 225?
1,1)
QF 226.
600 FORMAT (1H,///, 48X, 24HINITIAL STORAGE (AC-FT),//,10X, 5HSTA= QF 2270
1F15.3,10X, 6HSTOL=,F15.3,10X, 5HSTT = ,F15.3) QF 2280
610 FORMAT (1H1,/|/|,55X, 4HYEAR,1X,I3,2X, 11HOF ANALYSIS) QF 2290
620 FORMAT (1H,///, 38X, 21HYEARLY APFLIED WATEF=,F10.3,5X, GHFEET/YE QF 230`
1AR)
630 FORMAT (1H, //, 5X, 12HOISTRIPUTION,3X,12F7.4)
QF 231L
630 FORMAT (1H,//,5X, 12HOISTRIPUTION,3X,12F7.4) 2F 2320
640 FORMAT (1H1,//|,37X, 21HYEAFLY FRECIPITATION=,F10.3,5X, 11HINCHES/ QF दे33:
IYEARI
650 FORMAT (1H1,/////,60X, 1OHWELL TABLE)
OF 234C
660 FORMAT (1H, /////,5X, BHWELL NC.,7X,I10,//,5X, 17RRATE (AC-FT/YEAF QF 2Z6O
1),6x,F10.4, (/,5x, 12HNISTRIBUTION,3X,12F7,4)) QF 237,
670 FORMAT (1H1,/////,53X, {4HRECHARGE TAELE) QF 23\&
680 FORMAT (1H, /////,5X, 7HPIT NO.,8X,I1C,//,5X, 1GHRATE (FEET/YEAR), QF 2390
c
14X,F10.4,(/,5X, 12HOISTRIQUTICN,3X,12F7.4)) QF 2400

## FUNCTION ET

## FUNCTION ET(AHT,AG,K,L)

THIS SUBPROGRAM COMPUTES THE PHREATCPFYTE USE USING WATER TAELE ELEVATI OHS.
ET = EVAPOTRANSPIRATION (FEET/IAYR)
OTKT = DEPTH TO WATER TAGLé FRCM GROUNJ SURFACE (FEET)
$D T W T=A G-A H T$
IF (DTWT.GE.O.O) GO TO 110
WRITE $(6,120) \mathrm{K}, \mathrm{L}$
110 CONTINUE
ET=-0.0
RFTURM
C
120 FORMAT (1H1, //////,45X, 37HET ERROR, OTWT LESS THAN ZERO IN GRIO, 2 I 15)


## SUBROUTINE MATSOL

SUBROUTINE MATSOL INOROW, NOGCL,IP,IR,FK,FHI,H,HT, Z, DELX, DFLY, Q, CMA MS $1 T+X, C Q, A, A, G, P H \perp C, H P, H F$ I

THIS SUBROUTINE SETS UP THE CCEFFICIENT MATRIX ANO RIGHT HANO SIOE VFCTOR MATRIX.
CMATRX $=$ COEFFICIENT MATRIX
$G R=R I G H T$ HAND SIDE VECTOR MATRIX
DIMENSION FK(NOPOW, NOCOL), PHI(NOROW,NOCOL), H(NCRCN, NCCOL), HT (NC MS 1ROW, NOCOL), Z(NOROH, NOCOL), DELX(NOKCW, NCCOL), CELY(NCRCW,NOCOL), 2Q(NOROW,NOCOL), CMATRX(IP,IR), CR(IP), A(NOROW,NOCOL), B(NORCW,NOC MS 3OL), G(NOROH,NOCOL), PHIC(NOFCH,NCCOL), HF(NOROW,NCCOL), HF (NCRCH, MS 4 NOCOL)

COMMON /BLKI/ DT,ST,ICFAO,ILKAG,LCIE,LCIW,LCJE,LCJH,FWTOP
DELT $=$ DT
$00110 \mathrm{~J}=1, I R$
DO 11C I=1,IP
$\operatorname{CMATRX}(I, J)=0.0$
110 CONTINUE
DO 120 I $=1$, NOROW
00 126 $\mathrm{J}=1, \mathrm{NOCOL}$
$A(I, J)=0.0$
Я(I,J) $=0.0$
120 CONTINUE
$\mathrm{NT}=\mathrm{J}$
NC1 $=\mathrm{NOCOL}-1$
NK $1=$ NOROW -1
I $B=$ NOR $O W=2$
$I M=T M+1$
$I C=I M+1$
I $O=2 * I B+:$
DO 1ES J=2,NC1
$00160 \quad I=2$, NRI
$N T=N T+1$
$C R(N T)=0.0$
IF (H(I, J).GE. 10000.0 ) GO TO 150
$J A=I$
$J \mathrm{~J}=\mathrm{I}$
LEFT(A)
CMATRX $(N T, 1)=$ PARAM $(F K(J A, J=1), F K(I, J), H T(J A, J=1), H T(I, J), 2(J A, J$ MS
1 -1),Z(I,J), DELX(JA,J-1), DELX(I,J), CELY(JA,J-1), OEL)(I,J),G(JA,J MS
$2-1), G(I, J))$
TOP (B)
CMATRX(NT, IR $)=$ PARAM $(F K(I-1, J, F K(I, J), H T(I-1, J), H T(I, J), Z(I=1, J$
1 ',7II;J), DELY(I-1,J), DCLY(I,J), DELA(I-1,J), DELX(I, J),GI-1,J),G
2 (I,Ji)
BOTTOM(C)
CMATRX $(N T, I C)=P A R A M(F K(I+1, J), F K(I, J), H T(I+1, J), H T(I, J), Z(I+1, J$ MS
$1 \quad,, Z(I, J), D E L Y(I+1, J), D F L Y(I, J), O E L X(I+1, J), D E L X(I, J), G(I+1, J), G M S$
2 (I,J)
$A(I, J)=\operatorname{CMATRX}(N T, I C)$
RIGHT (D)
$C M A T R X(N T, I D)=P A R A M(F K(J O, J+1), F K(I, J), H T(J D, J+1), H T(I, J), Z(J O, M S$
$J+I), Z(I, J), D E L X(J D, J+1), D E L X(I, J), D E L Y(J D, J+1), O E L Y(I, J), G(J D, M S$
$J+1), G(I, J))$
$B(I, J)=C M A T R X(N T, I O)$

CALL NSCONT (H $(J A, J=1), H T(J A, J=1), F T(I, J), Z(J A, J=1), Z(I, J), C M A T$ MS
1 RX(NT, 1), CMATRX(NT,IM),CR(NT))
CALL NSCONT (H (I-1, J), HT (I-1, J), HT(I,J), Z(I-1,J), Z (I, J), CNATFXI MS
1 NT,IB), CMATRX(NT,IM), CR(NT)) MS
CALL NSCONT (H(I+1,J), HT (I+1,J), HT(I,J) $Z(I+1, J), Z(I, J), C M A T E X(M S$
1 NT,IC), CMATRX(NT,IM),CR(NT)) $\quad$ CALL NSCONT (H(JD,J+1),HT(JO,J, 1$)$, NT (I, J), $Z(J O, J+1), Z(I, J), C M A T$ MS
1 RX(NT,IO), CMGTRX(NT,IM),CR(NT))
(E)


00 HIU $\mathrm{Ma}_{3} 4$
 846 850 86 87 C

## 88

## 890

900
916
$92 i$
035
$94 i$
950
960
$97 L$
98
$1 C D C$
1616
451025
451036
S 1040
S 165:
S 106
107
1080
S 1102
MS 1110
MS 1120
S 113:
MS 1150
MS 1160
MS 118.

- CMATRX(NT,NR1)=CMATRX(NT,NR1)+(PHI:I,J)-PHIC(I,J))*OELX(I,J)*DE MS 1190

WRITE $(6,240) I, J$ MS $121 i$
$I C A C=1 \quad$ MS 1221
$R O R=(G(I, J) *(P H I(I, J)=P H I C(I, J))) * D E L X(I, J) * D E L Y(I, N) / D E L T \quad$ MS 1240
$C R(N T)=C R(N T)=E R R O R \quad$ MS 126 C
$C M A T R X(N T, N R 1)=\operatorname{CMATRX}(N T, N F 1)+(P H I C(I, J)=P H I(I, J)) * D E L X(I, J) * D E$ MS $127\left(\begin{array}{ll}14 \\ L Y(I, J) / D E L T\end{array}\right.$
$12 B G_{6}$
WRITE $(6,250)$ I,J MS 1294
MS 1300
0 CONTINUE
MS 131
MS 1335
$N T=0$
MS 134 C
$00220 \mathrm{~J}=2$, NC1
$N T=N T+1$
$\operatorname{HT}(I, J)=\operatorname{CR}(N T)$
$\operatorname{HF}(I, J)=C R(N T)$
220 CONTINU
RFTURN

240 FORMAT (1H , $43 X$, 4 HGRID, $2 I 5,5 X, 22 H U N C O N F I N E D ~ T C ~ C O N F I N E D)$

FND

## FUNCTION PARAM

IF (ICFAQ.LE.0) GO TO 110
$A=A M I H 1(A H T 1, A G 1)$
$A=A M I N 1(A H T 2, A G 2)$
$S A T H C K=A M A X 1(A, B)=A M A X 1(A Z 1, A Z Z)$ GO TO 120
110 SATHCK=AMAX1 $(\triangle H T 1, A H T 2)=\triangle M A X 1(A Z 1, A Z 2)$
120 PARAM=(2.*AK1*AK2*AY1*AY2*SATHCK)/((AX1*AK2*AY2)*(AX2*AK1*AY1))
C
RETURN
C
ENO

[^1]15:
PR 16.
PR 17:
$\begin{array}{ll}\text { PR } & 18: \\ \text { PR }\end{array}$
PR 200

## SUBROUTINE NSCONT

|  | SUBROUTINE NSCONT (HA,HTA,HTM, ZA, ZM, CRXA, CRXM, CRL) |
| :---: | :---: |
| $\underset{\mathbf{C}}{\mathbf{C}}$ |  |
| C | THIS SUBROUTINE TRANSFERS THE CCEFFICIENTS, MULTIPLIED BY THEIR |
| C | RESPECTIVE H-VALUE, TO THE RIGHT HAND SIDE VECTOR MATRIX IA |
| C | CASE OF AOJACENT CONSTANT HEAO OR KNOWN ECUNDARY CONDITIONS. |
| CCC | IT ALSO SETS COFFFICIFNTS EQUAL TO ZERC IN CASF OF ACJACENT |
|  | IMPERMEABLE BCUNDARIES. |
|  | IF (HA.LT. 20000.0$)$ GO TO 110 |
|  | CFL $=$ CRL-CRXA*HTA |
|  | CK XM $=$ CRXM-CRXA |
|  | $C F \times A=O . C$ |
|  | GO TO 120 |
| 110 | IF (HA.GE. 10000.0$)$ GO TO 130 |
| 120 |  |
|  | IF ( $(H T A-Z A)$. GT. 1.0.OR.HTA.LE.HTM) GC TO 140 |
| 133 | $C R X A=0.0$ |
| C |  |
| 140 | RETURN |
| C |  |
|  | ENO |


|  <br>  |
| :---: |
|  |  |
|  |  |

## SUBROUTINE BSOLVE

```
    SUBROUTINE BSOLVE (O,N,M,W)
C
    YHIS SUBROUTINE SOLVES THE MATRIX, SET UP IA MATSOL, EY GAUSS
        ELIMINATION.
    DIMENSION D(N,M), V(N)
    LK=(M-1)/2
    DO 120 L=1,LR
        IN=LR-L+1
    DO 120 I=1,IM
        00 110 J=2,M
        D(L,J-1)=0(L,J)
        KN=N-L
        KM=M=I
        O(L,M)=0.0
    120 D(KN+1,KM+1)=0.0
    LF=LR+1
    I M=N-1
    OC 190 I=1,IM
        NPI V=I
        LS=I+1
        DO 13C L=LS,LR
            IF (ABS(O(L,1)).GT.ABS(Q(NPIV,1))) NPIV=L
            CONTINUE
```



```
```

        IF (NPIV.LE.I) CO TO 15C 
    ```
```

        IF (NPIV.LE.I) CO TO 15C 
        IF (NPIV.LE.I) CO TO 15C 
    TEMP=0(I;J)
TEMP=0(I;J)
140 O(NPIV,J) = TEMP
140 O(NPIV,J) = TEMP
140 O(NPIV,J) = TEMP
140 O(NPIV,J) = TEMP
TEMP=V(I)
TEMP=V(I)
V(I)=V(NPIV)
V(I)=V(NPIV)
V(NPIV)=TEMP
V(NPIV)=TEMP
150 V(I)=V(I)/O(I,1)
150 V(I)=V(I)/O(I,1)
00 160 J=2,M
00 160 J=2,M
160 D(I,J)=0(I,J)/O(I,N)
160 D(I,J)=0(I,J)/O(I,N)
nO 18J L=LS.LR
nO 18J L=LS.LR
TEMP=O(L,1)
TEMP=O(L,1)
V(L) =V(L)-IFMP*V(I)
V(L) =V(L)-IFMP*V(I)
M
M
M

```
```

M

```
```




```
```

1月0 I(L,M)=0.0

```
```

1月0 I(L,M)=0.0
190 CONTINUE
190 CONTINUE
190 CONTINUE
190 CONTINUE
JM=?
JM=?
DO 210 I=1,IM
DO 210 I=1,IM
L=N-I
L=N-I
DO 200 J=2.JM
DO 200 J=2.JM
KM=L+J
KM=L+J
200 V(LL)=V(L)-D(L,J)*V(KM-1)
200 V(LL)=V(L)-D(L,J)*V(KM-1)
200 V(LL)=V(L)-D(L,J)*V(KM-1)
200 V(LL)=V(L)-D(L,J)*V(KM-1)
i210 CONTINUE
i210 CONTINUE
c
c
C
C
RETURN
RETURN
fno
fno
56
56
*
*
-1
-1
<
<
[-m
[-m
170
170
190 CONTINUE
190 CONTINUE
+1

```
```

    +1
    ```
```

    27.
            BS 28 C
            BS 29 C
    BS $31 i$

| 89 |
| :--- |

296
$30 C$
220
236
320
336
4S 336
340
BS 35 .
301
$32 i$
320
36.
37
37
37.
38.
38.
39.
40 .
410
416
426
426
S 436
$44 \dot{0}$
440
450
$46 i$
$46 i$
470
480
48 C
490
490
500
502
$51 i$
$52 i$
526
536
BS
BS
BS
$1-$
$\square \square$
$\square \square \square$
?

## SUBROUTINE ODFLOD

\begin{tabular}{|c|c|c|c|}
\hline \& SU3ROUTINE ODFLOO (NR,NC,H,HT, Z,G,S,OX,OY,SC) \& OF \& 1. <br>
\hline C \& \& OF \& 2. <br>
\hline C \& \& OF \& 3. <br>
\hline C \& THIS SUAPOUTINE CHEGKS FOR OVFRDRAWN OR FLCODED AREAS. \& OF \& 4 C <br>
\hline C \& OAGFTT $=$ OVT = TOTAL OVEPDRAW (AF) \& OF \& 51 <br>
\hline C \& FACFTTAFVT = TOTAL AMCUNT FLCCDED (AF) \& OF \& ¢.. <br>
\hline C \& OACF TA OVVA=I)VERDRAW RETWEEN RUFFEh TONE BCUNOARIES (AF) \& OF \& 76 <br>
\hline C \& F ACFTA=FVA =AMOUNT FLOOCHD EFTWFFN PUFFER TCNE BOUNDARIFS (AF) \& OF \& ${ }_{4}$ <br>
\hline C \& \& OF \& 9. <br>
\hline \& DIMENSION H(NR, NC), HT(NR,NC), Z \& OF \& $10 \%$ <br>
\hline \& $1, N \mathrm{NC)}$, DY(NR,NC), SC (NR,NC) \& OF \& 111 <br>
\hline C \& \& OF \& 12. <br>
\hline \& COMMON /BLK1/ DT, ST, ICFAQ, ILKAQ,LCIE,LCIW,LCJE,LCJW,FKTOP \& OF \& $13{ }^{\circ}$ <br>
\hline \& COMMCN /RLK2/ STA, STOL, STT, SQA, SQT, SCFA, SQEA,SQRT, SQBT, CVA, OVT \& OF \& 14. <br>
\hline C \& \& OF \& 15. <br>
\hline \& OACFTT $=0.0$ \& OF \& 166 <br>
\hline \& FACFTT $=0.0$ \& OF \& 170 <br>
\hline \& $$
\text { OACF TA }=0.0
$$ \& OF \& $18 i$
$10 i$ <br>
\hline \& SVOL $0=0.0$ \& OF \& 206 <br>
\hline \& SVOLF $=0.0$ \& OF \& 216 <br>
\hline \& KCT $=0$ \& OF \& $22 i$ <br>
\hline \& $00180 \mathrm{~J}=1, \mathrm{NC}$ \& OF \& 236 <br>
\hline \& DO $180 \mathrm{I}=1$, N R \& OF \& 24. <br>
\hline \& IF (HII, J).GE. 10000.0$)$ GO TC 180 \& OF \& 250 <br>
\hline \& IF (HT (I, J),GE.Z(I,J)) GO TO 130 \& OF \& 26. <br>
\hline \& OOFT=Z(I, J)-HT(I, J) \& OF \& 27. <br>
\hline \& FACFT $=0.0$ \& OF \& 28. <br>
\hline \& FFT $=0.0$ \& OF \& 290 <br>
\hline \& $S S=S(I, J)$ \& OF \& 300 <br>
\hline \& IF (ICFAQ.LE.O) GO TO 110 \& OF \& 316 <br>
\hline \& $S S=S C(I, J)$ \& OF \& ?2i <br>
\hline \& IF (HT (I, J).LE,G(I,J)) SS=S(I, J) \& OF \& 336 <br>
\hline 110 \& OCACFT = ODFT*OX(I, J)*DY (I,J)*SS/435E0. \& OF \& 34. <br>
\hline \& IF (H(I, J).GE. 20000.0$)$ GO TO 120 \& OF \& 350 <br>
\hline \& SVOLO ODACFT \& OF \& 360 <br>
\hline 120 \& HT (I, J) $=2(I, J)$ \& OF \& 370 <br>
\hline \& GO TO 150 \& OF \& $38:$ <br>
\hline 130 \& IF (ICFAD.GT.C) GO 10180 \& OF \& 39: <br>
\hline \& IF ( $\mathrm{HT}(\mathrm{I}, \mathrm{J}$ ).LE.G(I,J)) GO TO 180 \& OF \& 40. <br>
\hline \& FACFT=FFT*OX(I, J)*OY(I,J)*S(I,J)/4ミ560. \& OF \& 410 <br>
\hline \& ODFT $=\mathrm{C} .0$ \& OF \& 42. <br>
\hline \& ODACFT $=0.0$ \& OF \& 435 <br>
\hline \& SVOLO $=0.0$ \& OF \& 445 <br>
\hline \& IF (H(I,J).GT. 20000.0 ) GO TO 140 \& OF \& 453 <br>
\hline \& SVOLF $=$ FACFT \& OF \& 46. <br>
\hline \& GO TO 150 \& OF \& 475 <br>
\hline 140 \& HT $(1, J)=G(I, J)$ \& OF \& 48. <br>
\hline \& SVOLF $=0.0$ \& OF \& 496 <br>
\hline \& OACFTT $=$ OACFT $T+$ SVOL 0 \& OF \& 50 C <br>
\hline  \& FACFTT $=$ FACFT $T+S V O L F$ \& OF \& 514 <br>
\hline \& IF (J.LTULCIW) GO TO 160 \& OF \& $52 i$ <br>
\hline \& IF (J.GT.LCIt) Go 70160 \& OF \& 536 <br>
\hline \& IF (I.LT.LCJW) GO TO 160 \& OF \& 54. <br>
\hline \& IF (I.GT.lCJE) GO TO :60 \& OF \& 550 <br>
\hline \& OACFTA $=$ OACF TA + SVOLO \& OF \& 560 <br>
\hline \& FACFTA $=$ FACFTA + SVOLF \& OF \& 570 <br>
\hline 160 \& IF (KCT.GT.O) GO TO 170 \& OF \& 58. <br>
\hline \& WRITE (6,200) \& OF \& 591 <br>
\hline \& WRITE
KCT \& OF \& 600 <br>
\hline 170 \& WFTTE (6,220) I, J, ODFT, OOACFT, FFT, FACFT \& OF \& 610 <br>
\hline 180 \& CONTINUE \& OF \& <br>
\hline \& IF (OACFTT.EQ.O.O.AND.FACFTT. EQ.O.0) CO TO 190 \& 0 F \& 646 <br>
\hline \& WFITF (6,230) OACFTT, FACFTT, CACFTA, FACFTA \& OF \& E5i <br>
\hline 190 \& OVA = CACFTA \& OF \& <br>
\hline \& OVT $=$ OACF TT \& OF \& 67 <br>
\hline \& \multirow[t]{2}{*}{RETURN} \& OF \& 680 <br>
\hline C 200 \& \& OF \& 690 <br>
\hline 200 \&  \& OF \& 70. <br>
\hline \& 10 E $0,5 \mathrm{x}, 8 \mathrm{BHAREA} 00 ., 4 \mathrm{x}, 8 \mathrm{BAREA}$ FO.1: \& OF \& 710 <br>
\hline 210 \&  \& OF \& <br>
\hline 230 \&  \& OF \& 736 <br>
\hline C \& \& OF

OF \& 74
750 <br>
\hline \multicolumn{2}{|r|}{ENO} \& OF \& 760 <br>
\hline
\end{tabular}

## SUBROUTINE BYFLOW




```
    WFITE (6,410) ITIME IFF 15%,
    CALL MATROP (NR,NC,STGGJ) BF 156U
C
C
    RFLATIVE CONCENTRATION CALCULATIONS
    CALCULATE CHANGE IN RELATIVE CONCENTRATICAS CUE TO ALL VARIAELES
    EXCEPT CONSTANT HEAD SOURCES INSICE THE ROUNDARY GRIOS.
    SOURCE GRIDS ARE TAKEN AS C=1.0
    00 10 J=1,NC
    OO 10 I=1,NR
    CPUM(I,J)=CO(I,J)
    CPUM(I,J)=CO(I,J)
    CPHR(I,J)=0.0
    10 CONTINUE
    DO 530 J=2,NC1
    DO 530 I=2,NR1
    IF (CS(I.J) .GT. 2.0) GO TO E30
    IF (HP(I,J) .GT. G(I,J)) GO TO L8O
    CT(I,J)=CO(I,J-1)*SOGGJ(I,J-1)+CO(I-1,J) *SOEGI(I-1,J)-CC(I,J)*(
    1SOGGI(I,J)+SQGGJ(I,J)+OPPT(I,J)*CPPT(I,J)+QKCHR(I,J)*CRCHR(I,J)+
    1SOGGI(I,J)+SQGGJ(I,J))+OPPT(I,J)*CPPT(I,J)+QRCHR(I,J) *CRCHR(I,J)+
    3I,J) *CLEAK(I,J)
    GO TO 490
    4%OCT(I,J)=CO(I,J-1)*SQGGJ(I,J-1)+CO(I-1,J)*SQGGI(I-1,J)-CC(I,J)*(
    1SOGGI(I,J) +S2GGJ(I,J))=QPUM(I,J)*CPUM(I,J)
    490 IF(SOGGI(I-1,J).GE.0.C) GC TC 500
    CTII,J)=CT(I,J)+(CO(I,J)=CO(I-1,JN)*SQGGI(I-1,J)
    500 IFISOGGIII,J).TFF.0.01 GO TO 510
    CT(I,J)=CT(I,J)=(CO(I*I,J)=(C(I,J))*SOGGI(I,J)
    510 IF(SOGr,J(I,J-1).GE.0.0) GO TC 520
    CT(I,J)=CT(I,J)+(CO(I,J)=CO(I,J-1))*SQGGJ(I,J-1)
    520 IF(SQGGJII,J).GF.0.01 GO TO 530
    CT(I,J)=CT(I,J)=(CO(I,J*1)=CO(I,J))*SGGGJ(I,J)
    530 CONT I NUE
C
    SORT=0.0
    SORT=0.0
    SORT=0.0
    SORT=0.0
    330 CONTINUE
    SORT=0.0
    SORT=0.0
    SORT=0.0
    340 CONTINUE
        DO 350 I = 2,NR1
        DC 350 J=2,NC1
        SQR(I,J)=0.0
            KK=(H(I,J)/10000.)*1
            IF (KK,NE,4) GO TO 350
            SQR(I,J)=-SQGGI(I-1,J)+SQGGI(I,J)-SQGGJ(I,J-1) +SQGGJ(I,J)
            SQRL=SQR (I,J)
C
    TOTAL INFLOW FROM CONSTANT HEAO GRIDS
            SQRT=SQRT+SQRL
    350 CONTINUE
    TOTAL INFLOW THROUGH BOUNDARIES
    SOBT = SQBJA +SQBIA
    IF (SQPT.LE.O.0) GO TO }35
    WRITE (6,420) ITIME
    CALL MATROP (NR,NC,SQR)
C
360 SQRA=0.0
    DO 370 J=LCIW,LCIE
        SQGr,I (NN,J)=C.0
        SDGr,I (NN;J)}=C.
    370 CONTIHULE
    DO 3&G I=LCJH,LCJE
        SQGGJ(I,LN)=0.0
        SQGGJ(I,LS)=0.0
    380 CONTINUE
    OO 390 I=LCJW,LCJE
    DO 39C J=LCIW,LCIE
        SQR(I,J)=0.0
        KK=(H(I,J)/100C0.) =1
        IF (KK.NE.4) GO TO 390
        SQR(I,J)=-SQGGI(I-1,J)+SQGGI(I,J)=SQGGJ(I,J-1) +SQGGJ(I,J)
            SQRL=SQR(I,J)
BF 158,
C
C
BF 1\inOO
BF}1\in0
BF 1E2,
OO 350 I=2,NR1
BF 1&3:
BF 1\in4:
BF 1\in40
BF 165%
MF 167%
BF 1&Bu
BF 168 
BF 169.
HF 17GO
3F 1710
BF 1720
BF 1720
BF 173.
BF 174.
BF 1750
C
BF 176i
BF 1770
C
            IF (KK.NE 4) GO TO 39
BF 178.
36
    TOTAL INFLOW FROM CONSTANT GRIDS WITHIN EUFFER ZCNE BCUNDARIES
BF 1790
C
BF
WFITE (6,410) ITIME
RFLATIVE CONCENTRATION CALCULATIONS
                *
                    J)
                        *
                    9F 157
\%,
1570
1%
```

```
                SOCA=SJFA+SQRL
                    3F COR:
    390 CONTINUE BF 209:
C
C TCTAL INFLOW THROUGH GUFFER ZCNE ROUNTAPIES
    SORA=TOBJA TSORIA
C
C
    CALCULATE NEW RELATIVE CCNCENTRATIONS FOR EACH GRIO.
        DO 570 J=2,NC1
        00 570 I=2,NR1
    IF (CS(I,J).GT, 2.0) GO TO 590
    IF (HP(I,J) .GT. G(I,J)) GO TO 580
    CT(I,J)=CO(I,JJ+(CT(I,J)+SQR(I,W)*CSQR(I,J))*(43560./(0X(I,J)*OY(I
        1.J)*PHI(I,J)*(HP(I,J)=Z(I,J))*Q(I,J)NDT + SQR(x,J)))
        GO TO 57C
    580 CT(I,J)=CO(I,J) +(CT(I,J) +SQR(I,J)*CSQF(I,J))*(43560./(0x(I,J)*OY(I
        1,J)*(PHI(I,J)*(G(I,J)=Z(I,J))*PHIC(I,J)*(HP(I,J)=G(I,J))) =QFUM(I,
        2J) +SQR(I,J)))
        GO TO 57C
    590 CT(I,J)=CS(I,J)-2.
    5 7 0 ~ C C N T I N U E ~
        TIME = ITIME*OT
        WRITE(6,430) TIME
        CALL MATROP (NR,NC,CT)
        OO 397 J=1,NC
        00 397 I= I,NR
        CO(T,J)=1:T(I,J)
    397 CONTINUE
        RETUQN
c
    400 FORMAT (1H1,29X, 5GHOISCHARGE IN I-DIFECTICN (AC-FT/OT) FOR INCREN
        IENT NUMRER,IG)
    410 FORMAT (1H1,29x, 56HOISCHARGE IN J=DIFECTION (AC=FT/CT) FOR INCFEF
    IFNT NUMBER,I6)
    420 FORMAT (1H1, 22X, 74HRIVER FLCH IN EACH GRIO MINLS MEANS FLOW FRCM
        IAQUIFER (AC-FT/OT),/,1H , 49x, 1GHINCREMENT NUMBER,IE)
C
    430 FCRMAT (1H1,3CX, 2THRFLATIVE CONCENTRATICN (CA),G10.2,4HOAYS)
    ENO
    CONT INUE:
BF &10.
MF दि11L
C
    BF 214C
    BF 2150
    BF &160
BF &160
BF 217L
BF 2180
BF 2196
BF żcuc
BF C2N6
BF 2220
BF 223i
```


## SUBROUTINE BALCOP

```
    SUBROUTINE BALCOP (J1,J2.I,STTTEM,STATEM)
THIS SUBRDUTINE WRITES OUT THE BALANCE CCMPUTATICNS FC& EACH
    TIME INCREMENT. ALL UNITS ARF IN AC-FT PFRR TIME INCRFMENT.
    SOA,SOT - APPLIED HATEG, BETHEEN STATICAS, TOTAL AREA.
    SQRA,SIRT = IHFLOW FROM RIVER, NETLEEN STATTICAS, TOTAL AREA.
    SOEA,SOBT = BOUNDAOY INFLOW, BETHEEN STATICNS, TOTAL AREA.
    STT,STTTEM = TOTAL ARFA STQFAGF ANC DECREASE CF STOFAGE.
    STA,STATEM - BETWEEN STATICNS STOFAGE AND DFCFEASE CF STORAGE.
    STOL - STORAGE OF OVEPLAP AFEAS.
    OVA,OVT - ILLEGALLY WITHDRANN.
    ASTA,ASTT - TOTALS, BETWEFN STATIONS, TOTAL AREA.
COMMCN /BLKZ/ STA,STOL,STT,SQA,SQT, SQFA, SQRA,SQRT, SQBT, OVA,OVT
WRITE (6,110) J1,J2,I
WRITE (6,120) SQA,SOT
WRITE (6,13G) SORA,SORT
WRITE (6,140) SOBA,SOBT
STTTFM=STTTEM=STT
STTTFM=STTTEM-STT
WKITE (6.150) STT,STTTEM
WFITE (6,16G) STA,STATFM
WKITE (6,170) STOL
BC
\begin{tabular}{ll} 
BC & 10 \\
BC & 20 \\
BC & 30 \\
BC & 43 \\
BC & 50 \\
BC & 60 \\
BC & 70 \\
BC & 80 \\
BC & 90 \\
AC & 100 \\
BC & 116 \\
BC & 120 \\
BC & 130 \\
AC & 140 \\
BC & 150 \\
HC & 160 \\
BC & 170 \\
BC & 180 \\
BC & 19. \\
BC & 20 \\
BC & 210 \\
BC & 220 \\
BC & 230 \\
BC & 240 \\
BC & 250 \\
BC & 260 \\
BC & 270 \\
BC & 250 \\
BC & 290 \\
BC & 300 \\
BC & 210 \\
BC & 320 \\
&
\end{tabular}
```

C
C
C
C
C
C
C
C
C
C
C
C
C
C
i

```
    110 FORMAT (1H1,13X, 55HMASS PALANCE COMPUTATIONS (AC-FT/OT) FOR SIMUL BC
        1ATED TIME,I9, 1H=,I9, 26H AS AT THE END CF PERIOC,I3,1/1)
    120 FORMAT (5OHO APPLIED WATER (BETWEEN STATIONS - TOTAL AFEA), 2OX, BC 35G
        12F15.21
    130 FORMAT (54HO
        116x,2F15.21
    140 FORMAT (52HO
        1X,2F15.2)
    150 FORMAT (4.7HO
        12,15x,F15.21
    160 FORMAT (53H0
        1X,2F15.2)
    170 FORMAT (2 9HO
    18O FORMAT (56HO
        1),14X,2F15.2)
    190 FORMAT (49H-
        1F15.2)
C
    INFLON FPOM gIVER (BETHEEN STATIONS - TOTAL AGEA), BC
    FO
    BOUNOARY INFLCW (BETHEEN STATIONS - TOTAL AREA),18 BC Z9C
    BC 42C
    BETHEEN STATICNS STOFAGE ANC DECREASE CF STOFAGE,2 BC 430
    STORAGE OF OVFRLAF ARtAS,26X,F1E.2/I
    ILLEGALLY WITHORANN (EETHEEN STATIONS - TOTAL AREA BC 4EO
    T O T A L S (EETHEEN STATIONS - TOTAL AREA), 21X,& & BC
        &ND
        ENO BC
        5 1 0
```


## SUBROUTINE MATROP

```
    SUBRCUTINE MATROP (NOROW,NOCCL,B)
C
C
NOCOLM=NOCOL
ICONT=1
NO1 =NOCOLM
IF (NOCOLM.GT.12) NO1=12
    110 NO2=NOCOLM-12
WFITE (6,140) (JJ,JJJ=YCONT,NC1)
OO 129 I=1,NOP.OW
    120 WFITE (6,150) I,(B(I,J),J=ICCNT,NC1)
    IF (NOZ.LE.G) RETURN
    NOCOLM=NOCOLM=12
    ICONT=ICONT +12
    IF (NOCOLM.LE.12) GO TO 130
        NO1 = ICONT + 11
    GO TO 110
    130 NO1=ICONT=1 +NOCOLM
    GO TO 110
C
    140 FORMAT (1H, /1/,3X,12(7X, 1HX,I2)/)
    150 FORMAT (1H, 1HY,I2,12F10.3)
C
    THIS SUBROUTINE OFGANIZES OATA OR RESLLTS INTO A SUITARLE FCRM
        FCR PRINTING AND PRINTS.
    DIMENSION B(NORON,NOCOL)
END
```



## SUBROUTINE READC

SUBROUTINE READC（NR，NC，CAPW，CRCHF，CSGR，CO，LBC，FEC，TBC，EBC，AGGIE）

```
this sugroutine readS In relative concentraticns of scurce waters
WhICH mAY Change wITH EACH TIME INTERVAL.
CAPH=CONCENTRATION IN APPLIEC WATER
CFCHR = CONCFNTRATION IN ARTICICIALIY RFCHARGEC WATERS
CSOR=CONCENTRATION IN WATERS FROM CONSTANT HEAD GRIDS
CO=CONCENTPATION IN QCUNIGARY GRTOS WHFRE WATER FLOES INTO THE GRIO
    SYSTEM
```

```
        OIMENSIDN CAPW(HR,NC), COF,HF(NF,NC), CSQF(NF,NC),CO(NR,NC)
        IF (AGGIE .EO. C.(G) GOO TO 1P=
        IF (AGGIE .LT. O.OS GO TO 2jj
C
        HK 1=NR-1
        FEAD (5,500) CCAPW
        IF ICCAPW .LT. C.OS GO TO 13O
        OO 110 J=1,NC
        00 110 I=1,NR
    110 CAPW(I,J)= CCAPW
        CO TO 12:
    100 KFAO (5,510) CAPN
C
    120 FEAD (5,500) CCFCHR
        IF (CCRCHF .LT. O.O) GO TO 130
        DO 140 J=1,NC
        00 140 I = 1,NR
    140 CFCHR(I,J)= CCRCHR
        GO TO 150
    130 REAO (5,510) CRCHR
C
    150 PFAD (5,500) CCSQR
        IF (CCSQR .LT. O.0) GO TO 1\inO
        OO 170 J=1,NC
        00 170 I=1,NR
    170 CSQR(I,J)=CCSQR
        GO TO 180
    160 REAC (5,510) CSQR
C
    180 IF (LBC .NE. 10COO.) GO TO 190
    280 IF TRBC.NF. 10000.1 GO TC 200
    290 IF (TRC.NE. 10000.) GO TO 2ै10
    3CO IF (BBC.NE. 10000.) GO TO 220
    GO TO 230
    190 RFAD (5,510) (CO(I,1), I=2, AR1)
        GO TO 280
    2CO REAO (5,510) (CO(I,NC), I=2,NR1)
    GO TO 290
    210 REAO (5,510) (CO(1,J), J=1,NC)
        GO TO 300
    220 FEAD (5,510) (CO(NR,J), J=1,NC)
    500 FORMAT (:F10.1)
    510 FORMAT (BF10.1)
    2 3 0 ~ C O N T I N U F
        ENO
```


## APPENDIX E

DATA CODING FORMAT








[^0]:    Leslie W. Pittman
    Civil Engineering Department Colorado State University
    Fort Collins, Colorado 80523 Fa11, 1977

[^1]:    14. 
