FRED JOHNSON

EXTENDED GERGONNE SYLLOGISMS

ABSTRACT. Syllogisms with or without negative terms are studied by using Gergonne’s
ideas. Soundness, completeness, and decidability results are given.

1. BACKGROUND AND MOTIVATION

Gergonne [2] relates the familiar A, E, I, and O sentences without nega-
tive terms to five basic sentences that express the “Gergonne relations.”
These relations are: exclusion, identity, overlap, proper containment, and
proper inclusion. What makes these relations especially interesting is that
for any pair of non-empty class terms exactly one of them holds.

Faris [1] develops a formal system that takes the Gergonne relations as
basic. His system takes advantage of Lukasiewicz’s [4], which attempts
to formalize the Aristotelian syllogistic. The following paper results from
two ideas: 1) If Gergonne had been interested in studying A, E, I, and O
sentences with negative terms, the count of Gergonne relations would
be seven rather than five; and 2) The most Aristotelian way to develop
a syllogistic system based on the these seven relations is by following
Smiley’s [5] rather than FLukasiewicz’s [4].

After developing the Aristotelian “full syllogistic” based on seven
relations, we will discuss a subsystem that is adequate for representing
AEIO-syllogisms with or without negative terms.

2. THE SYSTEM

Sentences are defined by referring to:
terms: A,B,C,...
simple quantifiers: =, =~,ctt, c*~,c™t,c™,Z
comma: ,

Q1,...,Qn is a quantifier provided i) each Q; (1 < ¢ < n) is a simple
quantifier, ii) Q; precedes Q; if i < j, where precedence among simple
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quantifiers is indicated by the above ordering of simple quantifiers, and
iii) at least one quantifier is not a Q;. No expressions are quantifiers other
than those generated by the above three conditions. So, for example,
=,C** is a quantifier but C**,= is not. Qab is a sentence iff Q is a
quantifier and a and b are distinct terms. So, for example, =, C*TAB
and =—,C~ ", ZAB are sentences, but =, C*TAA is not. Qab is a simple
sentence iff Qab is a sentence and Q is a simple quantifier. Read simple
sentences as follows: =ab as “The a are the b,” ="ab as “The a are
the non-b,” C*+ab as “The a are properly included in the b,” C*~ab as
“The a are properly included in the non-b,” C~tab as “The non-a are
properly included in the b,” C~"ab as “The non-a are properly included
in the non-b,” and Zab as “Some a are b, some a are non-b, some non-q
are b, and some non-a are non-b.” Read Qq,...,Quab by putting “or”
between sentences that correspond to Q;ab. So, read =, C*ab as “The
a are the b, or the a are properly included in the b” (or “All a are b.”)
=",ct~,c~*,c~~,Zab may be read as “Some a are not b.”

The deducibility relation (F), relating sets of sentences to sentences,
is defined recursively. Read “X F y” as “y is deducible from X.” Set
brackets are omitted in the statement of the following definition. “X, y”
is short for “X U {y}” and “z,y” is short for “{z} U {y}.” “a”, “b”,...
range over terms; and “p”, “q”,... range over “+”, and “—". p* is “+”
iff p is “—". cd(Pab) = Qab iff every quantifier that does not occur in P
occurs in Q. Read “cd” as “the contradictory of.”

(Bl) =abt =ba

(B2) ="abk="ba

(B3) CPabt CTP ba

(B4) Zabt Zba

(B5) =ab,Qbct Qac, where Qis =,=", or c?
(B6) ="ab,="bct =ac

(B7) ="ab,CPbct P lac

(B8) cCPab,c?bct cPlac

R1l) IfXtyandy,zF wthen X,z +w

If X,y F Pab then X, Qab |- cd(y) if no quantifier in P is a

(R2) quantifier in Q
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If X, Pab - y and X, Qab + y then X, Rab F y if each
quantifier in R is in P or Q

(R3)

(L1) Xt yiff Xy in virtue of B1-R3.

So, for example, =—AB, c**BC + c~+AC (by B7) and C~TAC,
c+=CD  C~—AD (by BS). So =—AB, C**BC, c*~CD I c~~AD
(by R1). So ="AB, c**BC, ct*—,ZAD + =, =—,ctt,c~*,c™,
ZCD (by R2).

THEOREM 1. (D1) If X,y - Pab then X,y + cd(Qab) if no simple
quantifier occurs in both P and Q. (D2) If X,y + cd(Pab) and X,y
cd(Qab) then X,y F cd(Rab) if each quantifier in R is in P or Q. (D3)
IfFX,ykF zand v,wt y then X,v,wl z.

Proof. Begin each proof by assuming the antecedent. (D1) Then
X,Qab + cd(y) (by R2). Then X,y + cd(Qab) (by R2). (D2) Then
X,Pab F cd(y) and X,Qab F cd(y) (by R2). Then X,Rab F cd(y)
(by R3). Then X,y F cd(Rab) (by R2). (D3) Then X,cd(z) F cd(y)
and v, cd(y) F cd(w) (by R2). Then X, v, cd(z) F cd(w) (by R1). Then
X,v,w F z (by R2). a

A model is a quadruple (W, v, v_,v), where i) W is a non-empty set,
ii) v4 and v_ are functions that assign non-empty subsets of W to terms
such that vy (a) Uv_(a) = W and vy(a) Nv_(a) = &, and iii) v is a
function that assigns ¢ or f to sentences such that the following conditions
are met:

) v(=ab) =t iff vy (a) = v4(b)

(i) v(="ab) =tiff vy(a) = v_(b)

(i)  v(CPlab) =t iff vy(a) C ve(b)

(iv)  v(Zab) =t iff vy(a) Nvy(b) # @ for each p and ¢

V)  v(Qi,...,Qnab) =t iff for some i (1 <i < n)v(Q;ab) =t
y is a semantic consequence of X (X k y) iff there is no model (W, ... v)
such that v assigns ¢ to every member of X and v assigns f to y. X is
consistent iff there is a model (W, ..., v) such that v assigns ¢ to every

member of X. X is inconsistent iff X is not consistent.

THEOREM 2 (Soundness). If X I y then X E y.
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Proof. Straightforward. (For B1, note that for any model (W, ...,v),
if vi(a) = v4(b) then vy (b) = v4(a). For R2, suppose no quantifier
in P is a quantifier in Q, and suppose that X, Qab ¥ cd(y). Then there
is a model (W,...,v) in which v assigns t to every member of X,
v(Qab) = t, and v(cd(y)) = f. Note that v(cd(y)) = f iff v(y) = t.
And note that since no quantifier in P is a quantifier in Q, v(Pab) = f.

So X, y ¥ Pab.) 0
A chain is a set of sentences whose members can be arranged as
a sequence (Qi[aiaz], Qz(aza3), . ..,Qrlana1]), where Q;[a;a;] is either

Qia;a; or Qiaja; and where a; # a; if ¢ # j. So, for example, {=AB,
=~,C*t*CB,ZCA} is a chain. A pair (X,y) is a syllogism iff X U {y}
is a chain. So ({=AB,=",C*TCB},ZCA) is a syllogism.

A normal chain is a set of sentences whose members can be arranged

as a sequence (Qiaiaz,Q2a2a3,...,Qnan01), Where a; # a; if i #
j- A simple normal chain is a normal chain in which each quantifier
is simple. So, for example, {=,="AB,=BA} is a normal chain. And

{=AB,=BA} is a simple normal chain.

By definition, e(=ab) is =ba, e(="ab) is ="ba, e(CP4ab) is C? P ba,
and e(Zab) is Zba.

{Qiab,Qzbc} a-reduces to Qzac iff the triple (Q;ab, Q2bc, Qzac) is
recorded on the following Table of Reductions:

ngc
= qu
= = =" cTr
Qiab —— = T Qsac
cPe CP‘I CP(I' ad

So, for example, {=AB,=BC} a-reduces to =AC, and {Ct+AB,
C*t~BC} a-reduces to C*AC.

If X; is a simple chain then a sequence of chains Xj, ..., Xy, (=Y1),
«ovs Yy, is a full reduction of X; to Y, iff: i) X,, is a normal chain and if
m > 1 then, for 1 < i < m, if X; has form {Qab}UZ then X;; has form
{e(Qab)} UZ, and ii) there is no pair in Y,, that a-reduces to a sentence
and if n > 1 then, for 1 < i < n, if Y; has form {Q;ab,Qxbc} UZ
then Y, has form {Qsac} UZ. X fully reduces to Y iff there is a full
reduction of X to Y.

THEOREM 3. Every simple chain fully reduces to a simple normal chain.
Proof. Assume X; is a simple chain. We construct a sequence of
chains that is a full reduction of X; to Y,. Step 1: If X; is a simple
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normal chain let X; = Y; and go to Step 2. If X; is not a simple
normal chain find the alphabetically first pair of sentences in X, of form
(Qab, Qcb) and replace Qcb with e(Qcb), forming X,. Repeat Step 1
(with “X;” in place of “X;”). Step 2: If no pair of sentences in Y, a-
reduces to a sentence, then X, fully reduces to Y. If a pair of sentences
in Y; a-reduces to a sentence « find the alphabetically first pair that a-
reduces to = and form Y, by replacing this pair with x. Repeat Step 2
(with “Y;” in place of “Y;”). ]

So, for example, given the sequence ({=AB},{=AB,=BA}),
{=AB} fully reduces to {=AB,=BA}. And, given the sequence
({ct*AB,C~~CB,C*™tCA}, {C**AB,C**BC,Cct**CA}, {CTTAC,
CttCA}), {C**AB,C~~CB,C**CA} fully reduces to {C*TAC,
Ct*+CA}. Some chains fully reduce to themselves. {CT+AB, C~~BC,
ZCA} is an example.

{Pl [a102]7 v 7Pn[ana’1]} is a strand Of {Ql [ala2]7 e aQn[anal]} iff
each P; is a simple quantifier in Q; and q; is the first term in P;[a;a;41]
iff a; is the first term in Q;[a;a;+1], where P[ab] is Pab or Pba. So, for
example, {=AB,="AB} is a strand of {=,C*TAB,=",Cc**AB}.

A simple normal chain is a cd-pair iff it has one of the following
forms:

{=ab,="ba (or cP%ba or Zba)}, {="ab, CP%ba (or Zba)},
or {CPab, CTba (or Zba)}.

THEOREM 4 (Syntactic decision procedure). If (X,y) is a syllogism
then X & y iff every strand of X U {cd(y)} fully reduces to a cd-pair.
Proof. Assume (X,y) is a syllogism. We use Lemmas 1-3, below.
(If) Suppose every strand of X, cd(y) fully reduces to a cd-pair. Then
by Lemmas 1 and 2, X, cd(y) is inconsistent. Then X F y. (Only if)
Suppose some strand of X, cd(y) does not fully reduce to a cd-pair.
Then, by Theorem 3, some strand of X, cd(y) fully reduces to a simple
normal chain that is not a cd-pair. Then, by Lemmas 1 and 3, X, cd(y)
is consistent. Then X ¥ y. D

LEMMA 1. A chain is inconsistent iff each of its strands is inconsistent.
Proof. Note that a model satisfies {Qab} U X and {Qab} U X iff it
satisfies {Qsab} U X, where the quantifiers in Q; are the quantifiers in

Q; and Q,. O

LEMMA 2. If a simple chain X fully reduces to a cd-pair, then X is
inconsistent.
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Proof. Use the following three lemmas, whose proofs will be omitted
since they are easily given. m)

LEMMA 2.1. Each cd-pair is inconsistent.

LEMMA 2.2. If a simple normal chain {Qsac} UX is inconsistent and
{Quab, Qzbc} a-reduces to Qszac, then {Qab, Q2bc} UX is inconsistent.

LEMMA 23. If a simple chain {Qab} U X is inconsistent, then
{e(Qab)} U X is inconsistent.

LEMMA 3. If a simple chain X fully reduces to a simple normal chain
that is not a cd-pair, then X is satisfied in an m-model, where m < n+2
and n is the number of terms in X.

Proof. Use the following three lemmas. a

LEMMA 3.1. If a simple chain fully reduces to a simple normal chain X
that is not a cd-pair, then X is satisfied in an m-model, where m < n+2
and n is the number of terms in X.

Proof. Assume the antecedent. We consider three cases determined
by the number of occurrences of “Z” in X.

Case 1: “Z” does not occur in X. If either “=" or “="" occurs in
X then X has form {=ab, =ba} or {="ab,="ba}. Use ({1,2},...,v),
where, for each term z, vy (z) = {1}. If neither “=" or “=""" occurs in
X then X has form {CP'"P2q qy, ..., CP2-1Phgg, ., ..., CPn-1Png, q, 1},

where py; = p3;., for 1 < i < n, and py, = p{. We use induction
on the number n of terms in X to show that X is satisfied in a 3-
model. Basis step: n = 2. X has form {CP"P2qyay, CP:Piaza;}. Use
({1,2,3},...,v), where vp (a) = {1}, and, for terms x other than a,
ve(z) = {1,2}. Induction step: n > 2. By the induction hypothesis
{Cmma]ag,, e, CPE-Plig.a, .., Cm"-lmnanal} is satisfied in a 3-
model (W,...,v), where py; = p3;,, for 2 < i < n, and p2, = pi.
Construct a model (W,...,v"), v, (a2) = vy, (a1) U vy;(a3), and, for
other terms z,v), (z) = v4(z). Then V/(CPP2a1ap) = t. u;,;(ag) =
vp,(a3) — vp,(a1) and pj = p3. So V'(CPPaza3) = t¢.

Case 2: “Z” occurs exactly once in X. Then X has at least three
members and has form {Zab} U {CP%bc,...,C"*da}. We use induction
on the number of terms in X to show that X is satisfied in a 4-model.
Basis step: n = 3. X has form {Zab} U {CP%c, C? "ca}. Construct a
model ({1,2,3,4},...,v), where 1,(a) = {1,2}, vp(b) = {1,3}, and,
for other terms z,v,(z) = {1,3,4}. Induction step: n > 3. Follow the
model construction in the induction step in Case 1.
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Case 3: “Z” occurs at least twice in X. Then X has form {Zab,...,
Zcd,...}. We use induction on the number n of terms in X. Basis
step: » = 2. X has form {Zab,Zba}. Use ({1,2,3,4},...,v), where
vy(a) = {1,2} and, for other terms z,v.(z) = {1,3}. Induction step:
n > 2. X has form {Zab, Qbc, . .. ,Zde, . . .}. By the induction hypothesis,
{Zac,...,Zde} is satisfied in an m-model, where m < n+2 and n is the

number of terms in X. Suppose Q is “=". Construct model (W, ..., 0},
where 1/, (b) = v, (c) and, for terms z other than b, v/, (z) = v, (). Sup-
pose Q is “="". Construct model (W, ..., v'), where v/, (b) = v_(c) and,

for terms z other than b, v/, (x) = v (). Suppose Q is “Z”. Construct a
model (W,...,0), where v/, (b) = (v4(a) Nvy(c)) U (v—(a) Nv_(c)),
and, for other terms z, v/, (z) = v, (z). Finally, suppose that Q is “CP9”.
The strategy is to construct a model (W’,... /) such that X is satisfied
in it, where W' = WU {M}, and v/ (a) N(c) has at least two members,

including M. Then we construct a second model (W', ..., v"), such that
X is satisfied in it by letting v, (b) = vg(c) — {M}, and, for terms z other

than b, v/} (z) = v/ (z). Then v"(Zab) =t and v"(CPlbc) = t.

We construct (W/,...,/). If a and c are the only terms in X, let
a = vi(a) Nyy(c) (and, thus, o has at least one member). If terms
di,...,d, occur in X, where these terms are other than “a” or “c”,
pick p; — pn, such that o has at least one member, where o = v4(a) N
va(e) Nup (di) N -+ Ny, (dn). Let W = WU {M}, where M ¢ W. Let
Vi (z) = vy (x)U{M} if & C v (z); otherwise, let v/, (x) = v (z). Then
v (z) = v_(z) U{M} if @ C v_(z); otherwise, v/_(z) = v_(z). Note
that v/, (a) Nvj(c) has at least two members and M € v/, (a) Nrg(c). We
show that X is satisfied in (W', ..., /). Suppose v(Qde) = t. Suppose
Q is “=". Then v/, (d) = v4(d) U {M} and v/, (e) = v4(e) U {M} or
v, (d) = vy(d) and v/ (e) = v4(e). Then v'(=de) = t. Suppose Q
is “="". Then v/, (d) = v4(d) U {M} and v/ (e) = v_(e) or v/ (d) =
v4(d) and V' (e) = v_(e) U {M}. Then /(="de) = t. Suppose Q is
“CP?”. If a C vp(d) then v,(d) = vp(d)U{M} and v(e) = vy(e) U{M}.
If a ¢ vp(d) then vy(d) = vp(d) and either v (e) = vy(e) or vy(e) =
vq(e) U {M}. Then v'(CP%de) = ¢. Finally, suppose Q is “Z”. Then, for
any p and g, vp(d) Niy(e) C v,(d) Nvy(e). Then V' (Zde) = ¢. o

LEMMA 3.2. If a simple chain {Qsac} UX is satisfied in an n-model
(W,...,v), where n is the number of terms in {Qsac} UX, and if
{Qiab, Qzbc} a-reduces to Qsac, then {Qqab, Qbc}UX is satisfied in an
m-model, where m < n and n is the number of terms in {Qyab, Q2bc}UX.

Proof. Assume the antecedent. Suppose Qy is “=". Construct (W, ...,
'), where v/, (b) = v (a), and, for terms x other than b, v/, (z) = v4(z).
Suppose Q; is “="". Construct (W, ..., ), where v/, (b) = v_(a), and,
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for terms z other than b, v/, (z) = v4(z). Use similar constructions if
Q; is “=" or “="". So, the only a-reduction left is this: {CP%ab, CT"bc}
a-reduces to CP"ac. Construct a model (W', ... /) such that W = WU
{M}, M ¢ W, and v,,.(a) Nv;(c) has at least two members, including M.
To do this follow the procedure in Case 3 of Lemma 3.1. Then construct
a model (W',...,v") such that v”(b) = vy(a) U {M} and, for other
terms z, vy (z) = v, (). ]

LEMMA 3.3. If a simple chain {Qab} U X is satisfied in an n-model,
where n is the number of terms in {Qab} UX, then {e(Qab)} UX is
satisfied in an n-model, where n is the number of terms in {e(Qab) } UX.

Proof. Straightforward. O

THEOREM 5 (Semantic decision procedure). If (X,y) is a syllogism
then X F y iff X, cd(y) is not satisfied in an m-model, where m < n+2
and n is the number of terms in X.

Proof. Assume (X, y) is a syllogism. (Only if) Immediate. (If) Assume
X, cd{y) is not satisfied in an m-model, where m < n + 2 and n is the
number of terms in X. Then every strand of X, cd(y) is not satisfied in
an m-model where m < n+2 and n is the number of terms in X, cd(y).
Then every strand of X, cd(y) fully reduces to a cd-pair (by Theorem 3
and Lemma 3 of Theorem 4). Then X F y (by Theorem 4).

Given Theorem 5, it is natural to ask whether, for any n, there is
an n-termed syllogism that requires an n + 2 model to show that it is
invalid. The answer is Yes. If n = 2, use ({Zaja,}, cd(Zaza1)). if n > 2,
use ({Zajap, Cttazas, ..., ay_1a,}, cd(Zana;)). Consider a mod-
el (W,...,v) in which {Zaja;,C*"*aza3,...,C  ap-1an,Zanar} is
satisfied. Note that v, (a;) has at least two members, since v(Zajay) = t.
So v (ay,) has at least n members. v_ (ay,) has at least two members since
v(Zana)) = t. O

THEOREM 6 (Completeness). If (X,y) is a syllogism and X £ y then
Xty

Proof. Assume the antecedent. Then, by Theorem 4, every strand
of X, cd(y) fully reduces to a cd-pair. So, by Lemmas 1-4, below, X -
cd(cd(y)). Thatis X - y. ]

LEMMA 1. If {z,y} is a cd-pair, then z \- cd(y).

Proof. 1) =ab =ba (by Bl). So =ab t- cd(="ba) (and cd(CPba)
and cd(Zba)) (by D1). 2) ="ba  ="ab (by B2). So ="ba - cd(=ab)
(by D1). And ="ab F ="ba (by B2). So ="ab + cd(CP%a) (and
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cd(Zba)) (by D1). 3) CP9ba  CT P ab (by B3). So CPla - cd(=ab)
(and cd(="ab)) (by D1). CP%ab - CT"P"ba (by B3). So CPlab Fcd(Cba)
(and cd(Zba)) (by D1). CTba - C™ ¢ ab (by B3). So C¥ba I cd(CPlab)
(by D1). 4) Zba + Zab (by B4). So Zba +- cd(=ab) (and cd(="ab) and
cd(CPlab)) (by D1). w

LEMMA 2. If X = {Qsac} UZ, Y = {Qiab, Qabc} UZ, {Qiad, Qzbc}
a-reduces to Qsac, and X — {z} \ cd(z), for every x such that z € X,
then Y — {y} F cd(y), for every y such that y € Y.

Proof. Assume the antecedent. Case 1: y € Z. {Qzac} UZ — {y}
cd(y). We use

LEMMA 2.1. If {Qiab,Qzbc} a-reduces to Qzac then Qiab, Qubc
Q30,C.

Proof. Given B5-B8, we only need to show that: i) ="ab, =bc I
="ac; ii) CPlab, =bc F CPlac; and iii) CP9ab, = bc - CPT ac. For i),
=bc b =cb (by Bl) and ="ab - ="ba (by B2). =cb, ="ba F ="ca
(by B5). So ="ab, =bc F ="ca (by D3). ="ca F ="ac (by B2). So
="ab, =bc F ="ac (by R1). Use similar reasoning for ii) and iii).

So Qiab, Qabc F Qzac (by Lemma 2.1). So {Qjab, Qbc}UZ— {y} -
cd(y) (by D3).

Case 2: y = Qiab. Z F cd(Qsac). Qabe, cd(Qsac) F ¢d(Qpab) (by
Lemma 2.1 and R2). So Z, Qxbc + ¢d(Q;ab) (by R1).

Case 3: y = Qqbc. Use reasoning similar to that for Case 2. [m]

LEMMA 3. If X = {Qab}UZ, Y = {e(Qab)}UZ, and X — {z} } cd(c),
for every x such that x € X, then Y — {y} F cd(y), for every y such that
yeY.

Proof. Assume the antecedent. Case 1: y € Z. {Qab} UZ — {y} +
cd(y). e(Qab) + Qab (by B1-B4). So {e(Qab)} UZ — {y} + cd(y)
(by D3). Case 2: y = e(Qab). Z I cd(Qab). cd(Qab) - cd(e(Qab)) (by

B1-B4 and R2). So Z I cd(e(Qab)) (by R1). O
LEMMA 4. If each strand Y U {z} of X U {y} is such that Y F cd(2),
then X  cd(y).

Proof. Use D2 and R3. (The proof is illustrated below.) O

The proof of the above theorem provides a mechanical procedure for
showing that X + y given that X F y. We illustrate by showing that
=,CT*tAB,=BC F cd(=",C*~AC). First, fully reduce the following
strands as indicated: i) {=AB,=BC,="AC} to {=AB,=BC,="CA}
to {=AC,="CA}; ii) {=AB,=BC,C*~AC} to {=AB,=BC,cT~CA}
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to {=AC,c*~CA}; iii) {C*TAB,=BC,="AC} to {C**AB,=BC,
=~CA} to {C**AC,="CA}; and iv) {C*+*AB,=BC,C*~AC} to
{c**AB,=BC,C*"CA}to {C**AC,C*~CA}. By the proof of Lem-
ma 1: =AC + cd(=""CA); =ACF cd(CtT~CA); CTTACH cd(="CA);
and CTTAC + ¢d(Ct~CA). By the proof of Lemma 2: =AB,=AC |
cd(="CA); =AB,=AC F cd(C*~CA); C**AB,=BC F cd(="CA);
and CT+AB,=BC | cd(C*~CA). By the proof of Lemma 3: =AB,
—AC F cd(="AC); =AB,=AC F cd(C*~AC); c+*AB,=BC F
cd(==AC); and C**AB,=BC F cd(C*t~AC). By D2, =AB, =AC +
cd(==,C*~AC) and C**AB,=BC F cd(=",C*~AC). By R3, =,
C*t*AB,=ACF cd(=",CT~AC).

3. GERGONNE SYLLOGISMS

Faris [1] is motivated by an interest in providing a decision procedure for
Gergonne syllogisms. Faris construes syllogisms as sentences, following
Lukasiewicz’s [4], rather than as inferences, as in Smiley’s [5]. For us,
a Gergonne syllogism is a syllogism consisting of Gergonne sentences,
which are defined as follows, using Gergonne’s symbols in [2]. The
Gergonne-quantifiers are: H =gt =—,C77; X =¢s €™, Z; | =4t =;C
=gt CT7T, and D =4t C~ . A Gergonne-sentence is any sentence of form
Q1,...,Qnab, where Q; is a Gergonne-quantifier. So Theorem 4 above
gives an alternative solution to the problem that motivated Faris’ [1],
since every Gergonne syllogism may be expressed in our system. Note,
for example, that “H, XAB” is expressed as “=—,C*~,C~*,ZAB".

4. SYSTEM B

In this section we develop a subsystem B which expresses no sentences
other than those that may be expressed by using sentences of form “All. ..
are — — =", “No... are — — —”, “Some... are — — —”, or “Some. ..
are not — — —”, where the blanks are filled by expressions of form x
or non-z (the “A, E, I, and O sentences, respectively, with or without
negative terms.”)

The B-quantifiers (“B” for “basic”) are: =,C*t+(A+*); ==, C*~
(At7) =", HA )=, Cc T (ATT) =", T L Z(01Y);
=ctt,c*t,c ", Z(0"); =,ctt,ct,c 7, Z(07F); and =",
ctt,ct=,c™+,Z(077). Qab is a B-sentence iff Qab is a sentence
and Q is a B-quantifier. So, for example, A**AB is a B-sentence. And
a B-syllogism is a syllogism composed of B-sentences.
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We define y is B-deducible from X (X tp y), where X,y is a set of
B-sentences, and where ct(AP4ab) = APY ab, cd(APab) = OPlab, and
cd(OPab) = APiab:

(B1) APablg AT ba

B2) AP%b,A%Tbclp AP ac

Ry) IfXtpyandy,ztpgwthen X, 2z g w
(R2) If X,y kg ct(z) or cd(z) then X, z g cd(y)
(L)) IfXFy,then XF y in virtue of B;-Rj.

THEOREM 7. (Dy) If X,y b 2z and u,v g y then X,u,v g 2.
Proof. Use the reasoning for the proof of Theorem 1. O

THEOREM 8 (Soundness). If X Fp y then X E y.
Proof. Straightforward. O

By definition, e(AP9ab) is AYP ba and e(OP9ab) is O P ba. And, by
definition, a set X of sentences b-reduces to a sentence y iff (X,y) has
form ({AP%ab, A7 bc}, AP ac).

If X is a chain of B-sentences then a sequence of chains Xi,..., X,
(=Y1),..., Yy, is a full B-reduction of X; to Y, iff: i) X,,, is a normal
chain and if m > 1, then, for 1 < i < m, if X; has form {Qab} uYy,
then X, has form {e(Qab)} UY; and ii) there is no pair of sentences
in Y,, that b-reduces to a sentence and if n > 1 then, for 1 <i<n, Y;
has form {AP%ab, A%bc} UX and Y4 has form {AP"ac} UX. X fully
B-reduces to Y iff there is a full B-reduction of X to Y.

THEOREM 9. Every chain of B-sentences fully B-reduces to a normal
chain of B-sentences.
Proof. Imitate the proof of Theorem 3. =]

A normal chain of B-sentences is a cd-B-pair iff it has one of the fol-
lowing forms: {APab, A%"ba} or {AP4ab,09 P ba}.

THEOREM 10 (Syntactic decision procedure). If (X, y) is a B-syllogism
then X E y iff X, cd(y) fully B-reduces to a cd-B-pair.

Proof. Assume (X,y) is a B-syllogism. We use Lemmas 1 and 2,
below. (If) Suppose X, cd(y) fully B-reduces to a cd-B-pair. Then, by
Lemma 1, X, ¢d(y) is consistent. Then X ¥ y. (Only if) Suppose X k y.
Then X, cd(y) is inconsistent. Then X, cd(y) fully B-reduces to a cd-B-
pair (by Lemma 2 and Theorem 9). o
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LEMMA 1. If a chain X of B-sentences fully B-reduces to a cd-B-pair
then X is inconsistent.
Proof. Imitate the proof of Lemma 2 of Theorem 4. O

LEMMA 2. If a chain X of B-sentences fully B-reduces to a normal
chain of B-sentences that is not a cd-B-pair, then X is satisfied in a
3-model.

LEMMA 2.1. If a chain of B-sentences fully B-reduces to a normal chain
of B-sentences X that is not a cd-B-pair, then X is satisfied in a 3-model.

Proof. Assume the antecedent. We consider three cases determined
by the number of occurrences of “O” in X.

Case 1: *“O” does not occur in X. We use induction on the number n of
terms in X. Basis step: n = 2. Then X has form {AP%ab, A%ba} or form
{APIab, ATP ba}. If p = q, use ({1,2,3},...,v), where v4(z) = {1}.
If p # q, use ({1,2,3},...,v), where v;(a) = {1}, and, for terms
z other than a, v4(z) = {2,3}. Induction step: n > 2. Then X has
form {AP'P2q)a,,...,AP%-1Phgq, ., ..., APn-1Ping q,}, where py; =
D5i41- By Case 1 of Lemma 3.1 {CP'P2q;ay,...,CP%P%a,a:4y,. ..,
CPm=1Pingpay}, where py; = p3;,y, for 1 < i < n, and prn, = pf, is
satisfied in a 3-model. So X is satisfied in a 3-model.

Case 2: “O” occurs exactly once in X. Suppose there are exactly
two terms in X. Then X has form AP%ab, 07 Pba (or O%ab or O% ba).
3-models are easily constructed to show that X is consistent. Suppose
there are more than two terms in X. We use induction on the num-
ber n of terms in X to show that X is satisfied in a 3-model. Basis
step: n = 3. Then X has form {OP%ab, A"bc, A>"“ca}. So there is a
strand of X with one of the following forms: {CP% ab, C™*bc, CS*“ca},
{cP %ab, C"*bc, C*"¥ca}, and {CP'T ab, C"be, C*"“ca}. So, by Case 1
of Lemma 3.1 of Theorem 4, X is consistent if p = u or ¢ = r. Sup-
pose p # u and ¢ # r. Then X has form {OP%ab, AT *bc, ASP"ca}.
If p = g, there is a strand of X with form {="ab,=bc,="ca} or
form {="ab,="bc,=ca}. If p # g, there is a strand of X with form
{=ab, =bc, =ca} or form {=ab, ="bc,="ca}. Each of these four chains
can easily be shown to be satisfied in a 3-model. Induction step: n >
3. X has form OPab, A™bc, AS"“cd,... . By the induction hypothe-
sis, OP9ab, A" “bd, ... is satisfied in a 3-model (W, ...,v). Construct
(W,...,v"), where v}(c) = v,(b), and, for terms z other than ¢, v/, (z) =
v+ (z). Note that /(A"*bc) = t, since v.(b) = v//(c), and /(A% %cd) = ¢,
since V. (c) = V. (b).

Case 3: “O” occurs at least twice in X. We use induction on the num-
ber of terms n in X. Basis step: n = 2. X has form {OP%ab,O"*ba}. It is
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easy to show that X is satisfied in a 3-model. Induction step: » > 2. X has
form {OP%ab,Q"%bc, ...,0%"de, . ..}. Suppose Qis “A” and r = sor Q is
“O” and r # s. By the induction hypothesis, {OPac, ...,0%de, ...} is
satisfied in a 3-model (W, ..., v). Construct 3-model (W, ..., ), where
Vg(b) = v4(c), and, for terms x other than c, v/ (z) = v, (). Suppose Q
is “A” and r # s or Q is “O” and 7 = s. By the induction hypothesis,
{OP% ac,...,0%de, ...} is satisfied in a 3-model (W, ..., v). Construct
3-model (W,...,v/), where v,(b) = vg-(c), and, for terms x other than
¢, Vi (x) = vi(z). ]

LEMMA 2.2. If {AP"ac}UY is satisfied in a 3-model and if term b does
not occur in a member of Y, then {AP9ab, AT bc} U'Y is satisfied in a
3-model.

Proof. Assume that {AP"ac}UY is satisfied in a 3-model (W, ..., v).

Construct (W, ..., /'), where 1;,(b) = v4(a), and, for terms x other than

b, vV, (z) = vi(x). |

LEMMA 2.3. If {Qab} UY is satisfied in a 3-model, then {e(Qab)} UY
is satisfied in a 3-model.
Proof. Straightforward. O

THEOREM 11 (Semantic decision procedure). If (X, y) is a B-syllogism
then X E y iff X, ed(y) is not satisfied in a 3-model.

Proof. Assume (X, y) is a B-syllogism. (Only if) Immediate. (If) Sup-
pose X, cd(y) is not satisfied in a 3-model. Then, by Theorem 9 and
Lemma 2 of Theorem 10, X, cd(y) fully B-reduces to a cd-B-pair. So,
by Theorem 10, X F y. O

Theorem 11 extends the result in Johnson’s [3]. There it is shown, in
effect, that any invalid syllogism constructed by using B-sentences other
than those of form A~tab or O~ *ab is satisfied in a 3-model. There are
invalid B-syllogisms that require a domain with at least three members to
show their invalidity. This is an example: ({AT~AB,AT~BC},07~AC).

THEOREM 12 (Completeness). If (X,y) is a B-syllogism and X E y
then X g y.

Proof. Assume the antecedent. Then, by Theorem 10, X U {cd(y)}
fully B-reduces to a cd-B-pair. Use the following three lemmas. m]

LEMMA 1. If {z,y} is a cd-B-pair, then z g cd(y) and y by cd(z).
Proof. (1) A% ba -g APY ab, that is, ct(AP4ab) (by B;). So APdab kg
cd(A%"ba) (by Ry). So A% ba by cd(APab) (by Ry). (2) APab by
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