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ABSTRACT 

The velocity distribution in and above model vegetation is the 

subject of this study. Experiments have revealed that flow over a 

surface which has been made rough by covering it with tall simulated 

plants may have a universal distribution law. It is suggested that 

this law can be expressed in terms of the two parameters ( tu ) 
* max 

and rJ , which in turn depend on the shape, height, and spacing of 
0 

the covering elements. 
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Chapter I 

INTRODUCTION 

The first analytical description of the velocity distribution 

within a vegetative canopy was formulated by Tan and Ling (Le mon 

1963). Cionco ~al. (1963) also made an attempt to describe this 

profile with an analytical formula. Inoue (1963) proposed that the 

canopy eddy has a scale that is independent of the height above the 

ground. He also suggested that the coefficient of momentum absorp­

tion is independent of the plant height. These two assumptions lead 

to exponential velocity profiles within canopies. 

Experimental investigations of turbulent structures in and 

above canopies may be carried out in two ways: (a) taking field data 

at numerous measuring points, or (b) constructing a simulated canopy 

and subjecting it to laboratory tests. In many cases, the costs 

associated with method "a" are excessively large . This cost factor 

motivated personnel of the Fluid Dynamics and Diffusion Laboratory 

to adopt method "b" . Results of these investigations using the Army 

meteorological wind tunnel (Fig 1-1) were presented by Plate and 

Quraishi (1965) and Cermak and Plate (1963 ). These results showed 

that the flow may be divided into two types: (a) inner flow and (b) 

outer flow at a certain he ~ght. For instances, it was found that the 

tall elements modified the flow in the layer above the effective plant 
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he ight. This phenomenon can be seen in Figs . 4-3 through 4-5 . 

Thus, the disturbance associate d with the f1ow ove r a plant extends 

into the whole boundary layer. 

The purpose of this study is to develop significant parame te rs 

that will express the universal profile which appears over an area 

covered with vegetation. Wind tunnel results indicate that vertical 

profiles depend upon the location of the measuring device with respect 

to the individual roughness elements. However, in order to simplify 

the analysis, we shall consider the mean motion to be two-dimensional. 
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Chapt er II 

EXPERIMENTAL EQUI PMENT AND PROCEDURE 

Experiments employed two types of roughness elements: (a) 

flexible plastic strips, and (b) wooden dowels. The plastic s : rips 

were O. 25 in . wide , 0. 0075 in . thick and 4 in. high . These roughness 

elements were attached to wooden strips with their broad sides facing 

the direction of the wind . Spacing in th e direction normal to the flow 

was one element per linear inch, and spacing in the direction of flow 

was one row every 2 inches. The arrangement of the flexible strips 

is shown in Fig. 2-1 . Dowels, each being 2 in. high and 3/ 16 in. in 

diameter, were arranged in a square pattern 1 in. on a side, as shown 

in Fig. 2-2. 

All experimental data were obtaine d at the Fluid Dynamics 

and Diffusion Laboratory located at Colorado State University. A 

detailed description of all experimental equipment can be found in the 

paper by Plate and Quraishi ( 1965). 
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Chapter III 

TURBULENT BOUNDARY LAYER 

The purpose of this study is to investigate the boundary-layer 

velocity profiles for flow over a rough surface consisting of tall 

elements . In order to pre pare a suitable foundation for such a dis­

cussion, we shall first re-examine the conventional formulations for 

smooth and rough walls. 

Velocity data in turbulent boundary layers over smooth walls 

ar e normally expressed in one of three ways: 

u - u 
a 

= A log 

zv* 
= A log 

V 

z 
{j 

+ B 

+ C 

( 3. 1) 

( 3. 2) 

( 3. 3) 

We are then faced with the problem of determining the friction velocity 

and boundary-layer thickness from mean velocity data obtained in the 

laboratory. 

Equation ( 3. 1) may be evaluated from measurements of velocity 

in the boundary layer as a function of the distance from the surface. 

Plotted velocity profiles, using 
u 

u 
a 

versus Z/ o, do not coincide, 

but form a family of profiles for different Reynolds numbers . For an 

example refer to the experimental data plotted by Claus er ( 1954) as 
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seen in Fig. 3-1 . Thus, in place of t he single universal profi l e that 

exists for laminar layers, turbul ent laye rs make famili e s of profiles 

depending on both Re yno lds numbers a nd th e d eg r ee of roughness of 

the wall. Although, th e r e i s a wide - s pr ead beli e f that profile s in a 

turbulent boundary laye r are well r e presente d by a s ingle 1/ 7-power 

curve, experimental data indicate that the ex pone nt vari e s from one­

third to one-tenth, b e lying th e existenc e of a single curve . The above 

results have been substan-: i ated for geophysical flows by studies 

probing the atmospheric boundary layer for a n eutral condition . 

Equation ( 3. 2), often refe rred to as the "universal velocity 

defect, " relates wall effects and free stream effects. This relation­

ship introduces both the wall shear stress and the boundary-layer 

thickness. However , data plotted on this basis correlates in the outer 

part of the boundary layer, but not near the wall. Equation (3 . 3) must 

be applied for flow descriptions near the wall. 

It is difficult to determine the flow 's undisturbed boundary-

layer thickness, 6 , and the wall shear stress, V * , from labora­

tory data. However, it is the intent of this paper to d escribe turbulent 

processes over a vegetated area in terms of these parameters. Univer­

sal constants, including those appearing in Equations ( 3. 2) and ( 3. 3) 

can be found with a reasonable amount of accuracy . The unknown 

variables , 6 and V ,:0 , can then be dete rmined by combining the se 

two equations. 
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The universal profile-function for the turbulent laye r is 

assu m e d t o b e of t h e form 

u - u 

wher e rJ = 

a nd 

a 

z 
6 

T 
0 

p 
(3.4) 

where f is essentially a stream function and its derivative f' repre­

sents the universal velocity profile. If Equation ( 3. 4) is substi tuted 

into the continuity equation for two-dimensional, incompressible flow, 

one obtains the following equation for the vertical velocity: 

w = V ~-,,, 
do 
dx 

( 3. 5) 

where f( 0) = 0. (In this report, it will be assumed that V _,_ is 
"' 

independent of position over a region of the canopy sufficiently far 

from the e nds where the flow has become established. } 

Equations (3.4) and (3. 5), are then substituted into the 

boundary-layer equation for zero pressure gradient, 

au 
u ax + 

au 
w az = 

1 
p 

OT 
az (3.6) 

This operation is identical to Clauser 's presentation, which is e x -

pressed by 



where h = 
T 

T 
0 

nf" _ ff" l 
7 

= h, ( 3. 7) 

Equation ( 3 . 7) is then integrated across the turbulent bound2.ry layer . 

do { 1 
dx 0 

( ua nf" - ff") dn = hn=i - 1 v,,., ,, 
( 3. 8) 

Since h = 0, a relation between the turbulent boundary-layer 
rJ = 1 

thickness , o , and the wall shear stress, V _,_ , is given by -,-

do 1 
= 

dx 1 

f'' (!;) d!;l u 

f a 
f ( 1) -

v"-< 
0 

( 3. 9) 

The wall shear stress is determined from Equations ( 3. 2) and 

( 3. 3), which overlap within the turbulent boundary layer. In the over-

lap zone, for a smooth plate, a relation between these factors may be 

obtained by the elimination u and Z by subtraction, yielding 

u 
a 

V _,_ 
-r-

= A log + C - B 
V 

Equation ( 3. 10) can be rewritten as 

or 

u 
a 

V 
* 

= A log 
ou 

a 

V u 
a 

+ C - B 

(3.10) 

(3.11) 



8 

C + A log C = A log R o + C - B (3.12) 
s s 

u ou 
whe r e C 

a 
Ro 

a 
A 5 . 75 , C 5.5, and = = = = 

v * ' s V 

B = 2 . 5 

The above m e nt ioned va lue s for the universal constants should be 

acceptable in the pres entation which follows. 

C can be expre ss e d in t erms of a local friction coefficient, 
s 

Cf , by the following relation: 

(3.13) 

To integrate Equation ( 3 . 8), Equation ( 3. 12) m ust be rearranged to 

obtain a simple relation betwe en Cs and R 
6 

. Although Equat ion 

( 3. 12) does not contain an explicit relation for Cs in terms of R 6 , 

an approximation procedure can be used to obtain such a relation (see 

Appendix). Equation ( 3 . 12) is replaced by 

where 

Cs = {3 A log (RO + 2. 5) - A log ( 2. 5 + D ) + D , ( 3 . 14) 

{3 = 
1 

, and D = C - B . This equation contains a 
1.08 

coefficient adjusted for Equation ( 3 . 12). The differences between 

Equations ( 3. 12) and ( 3 . 14) are verified by a numerical calculation 

shown in Fig. 3-2 . The result is acce ptable as an approximation . 

Aft e r substituting Equation ( 3 . 14) into Equation ( 3 . 9), and 

then integrating the r esults , w e obta in a r e lation betwe en the downwind 

distance a nd t h e boundary-layer t hic kness for a smoot h surface : 
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Rx = R 0 [ 43.92 log (R
0 

+ 2.5) - 123 . 85] 

+ 109.80 log (R
0

+ 2.5) - 41.10. (3.15) 

To examine Equation ( 3. 15), wind tunnel data were plotted in the 

dimensionless form seen in Fig. 3- 3; additional data of Poreh and 

Cermak ( 196 3) are shown in Fig. 3-4. 

Although Equations (3.14) and (3.15) are in agreement with 

the small amount of experimental data that is available, these equa­

tions need to be compared with other studies of boundary-layer flow. 

Karman ( 1921) applied a modified form of the logarithmic law to the 

calculation of the skin-friction drag of a flat plate. He accomplished 

this by means of the momentum equation (see for an example, Gold­

stein (ed.), Modern Developments influid Dynamics, p. 36 2). For 
u 

a 
large values of k the approximation is: 

v* 

-1/2 
C = A' + B' log ( R C ) 

f X f 
(3.16) 

The theoretically predicted relation was found to be in good 

agreement with the experiment performed by Kampf ( 1929). Equations 

( 3. 14} and ( 3. 15} were used to determine the range of R for which 
X 

Cf -
1

/ 
2 

varies linearly with log (Rx Cf) . Fig. 3-5 shows that the 

linear relation is valid for large values of R 
X 
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Since nearly all boundary surfaces with which the atmosphere 

comes in contact are aerodynamically rough, it is desirable to inves­

tigate the general problem of flow over a rough surface. The equation 

for an inner profile of a small rough surface can be written as: 

= A log V*Z 
V 

+ C - .6u 
V ,~ 

( 3. 1 7) 

where ~u represents the vertical shift of the logarithmic curve 
* 

caused by a small amount of roughness. Usually this shift is con­
Ku 

sidered to be a function of the Reynolds number Rk 
r 

= 
r a 

11 

However, for any given roughness, the equation does not show a unique 

value, and as such is regarded as an experimental constant with a 

certain ambiguity. This ambiguity forces the investigator to de­

termine Lhe position roughness by two other factors: (a) the dimensions 

such as height, width, and spacing of the roughness elements, and 

(b) the statistical configuration. When Rk is large and the viscous 
r 

flow region is highly disturbed, the inner layer is usually considered 

independent of the viscosity. .6u 

v* 
is often expressed as 

= A log + D 
V 

( 3. 18) 

The above mentioned method for rough surfaces of small 

elements may be applied to surfaces with tall elements . In other 

words, 
.6u 
VJ, ,,. 

caused by tall elements is expected to be associated with 
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the same phenomena as an area covered with vegetation . Figure 3-6 

illustrates the change in wind speed downwind of an area with tall 

elements. Experimental data may also be applied to the discernible 

roughness length Z as will be illustrated later in this study. At 
0 

the present time, it is sufficient to state that the original flow will be 

modified by two factors: (a) the downwind distar.ce, and (b) the amount 

of flow penetration into the area with the tall elements. 

The formula for a field with a small amount of roughness is: 

z 
= A log Z 

0 

(3.19) 

where Z = yk and y is a certain constant which is dependent 
o r 

upon the specific shape of the roughness elements . However, Equation 

( 3. 19) is the formula accepted by most investigators even though it 

reflects some of the above mentioned ambiguity. 

The outer and inner parts of the turbulent boundary layer are 

represented as follows: 

u-u 
a z 

= A log T + B 

z 
= A log Z 

0 

{ 3. 20) 

(3.21) 

Equations (3. 20) and (3 . 21) indicate an overlap zone that is defined 

as: 



12 

u 
a 

V ,:, 

6 
= A log z - B 

0 

(3 . 22) 

Equation ( 3. 22) contains a s kin-fri ction law for a s mall rough pla t e 

that differs from the re lation of a smooth plate, Equation ( 3 .11). 

Changing the notation, Equation ( 3. ZZ) can be written as : 

C 
s 

6 
= A log z - B 

0 

( 3. 23) 

After substituting Equa tion (3. 23) into Equation (3 . 9), we obtain the 

result 

X 

z 
0 

= 
0 

z 
0 

0 
(47 . 44 log Z 

0 

- 61 . 81) ( 3 . 24) 

Equation ( 3. 24) expresses a relationship between the downwind 

distance and the boundary-layer thickness . This relationship is shown 

in Fig. 3-7. It should be noticed that Equation ( 3. 24) is similar to 

an expression of "plume-width, " which grows with an increase of the 

neutral layer's downwind distance (see Cermak 196 3, Batchelor 1964). 

Downwind variations in the turbulent boundary-layer thickness are 

attributable to momentum losses at the boundary. 

form: 

Equation ( 3. 24) may be expressed in the following familiar 

X 
bk z 

0 

= 
0 

z 
0 

0 
( log - - E) z 

0 

( 3 . 25) 

1 
where b k = 

4 7
. 44 and E = 1 . 3. Both of these factors are obtained 

from Equation (3. 24). Equation (3 . 25) corresponds to a character­

istic plume-width seen in the turbulent diffusion of particles released 
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at a chimne y height of zero elevation. It is feasible to assign a value 

to the Batchelor constant b . This is accomplished by referring to 

the O. 4 portion of the Karman constant. The Batche lor constant "b" 

- 1 should be nearly equal to k as shown in the relation b k ~ 4 7 . 44 

The only external paramete r that appears in the above formulation 

then is constant for the wind profile in a turbulent boundary layer. 

It should be mentioned that the foregoing discussion is based on the 

situation in which the momentum transfer differs from the mass 

transfer. 

The foregoing results are supported by a linear relationship 

I \ 

{ C 1/2 ~ I 
I f . z I 
\ o I 

-1/2 
between Cf and log . This relationship was 

found by Karman (1934), and is expressed by: 

cf-t/z = A"+ B" log ( cf t/z . z: ) (3.26) 

Equations (3.23) and (3.24) have been used to construct Fig. 3-8. 

Equation ( 3. 26) is in good agreement with the curve for 

log > 4. 0 
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Chapter IV 

EXPERIMENTAL DATA AND ANALYSIS 

Prior to discussing the experimental data, a few of the 

characteristics of the wind tunnel should be noted. Calibration data 

using an ambient velocity of u = 30 ft/sec is plotted in Fig. 4-1. 
a 

On this plot, 'x" represents the distance downwind from the leading 

edge. Figure 4-1 also indicates that the upper and lower layers have 

different slopes. It is believed that this difference in slopes was the 

result of a stimulator generating a leading edge within the wind tun­

nel. Also, investigators found that the upper layer dominated the 

overall tunnel flow. This fact made it difficult to obtain a reasonable 

boundary thickness from the theory discussed in Chapter III. To 

fulfill the requirements of the theory, the flow 's roughness height Z 
0 

was determined by using the slope of the upper layer, as shown in 

Table 1. 

Once Z has been found, both the thickness of the boundary-
o 

layer and the friction velocity can be obtained for a given distance 

downwind by Equations ( 3. 23) and ( 3. 24). Wind-tunnel parameters 

are also shown in Table 1. In this discussion, the boundary-layer 

thickness, 11 6" , corresponds to the distance from the tunnel floor 

to that level where the local velocity reaches a value of approximately 
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0. 92 .u . It should be noted that u is the velocity outside of the 
a a 

boundary layer. The value assigned to this factor is not what is 

normally expected, but the difference has no substantial effect on the 

outcome of test results . One area where this difference may be im­

portant is in regard to a constant, such as the "B" constant, which is 

included in a logarithmic profile. In this particular example, the 

velocity, u - u , does not become zero at Z/ o = 1 . 
a 

TABLE 1 

VALUES OF PARAMENTERS FOR THE FLOW OVER A 

PLATE WITH A ROUGH SURFACE OF SMALL ELEMENTS 

30 ft/sec z -2 
u = = 2. 2x10 in. 

a 0 

X ft 10 20 30 40 50 60 70 

o in. 3.07 4.29 5.97 7.59 9.00 10.38 12. 10 

V * ft/sec 2.32 2.23 2.11 2.01 1 .9 7 1. 91 1.89 

The profile, using reference parameters shown in Table 1, 

may be expressed universally, as illustrated in Fig. 4-2. It should be 

remembered that this profile reflects the domination of the upper 

boundary layer, and that this deviation from the norm is regarded as 

a characteristic of the wind tunnel. 
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Data were taken from t e sts in which tall simulate d plants were 

placed at the leading edge of a given flow . This flow was mixed by 

two influences: {a) the growing turbulent boundary layer above a rough 

surface of small elements, and {b) the turbulence that was caused by 

the tall elements. These two factors may appear inseparable, but 

for the purposes of this discussion they are considered individually. 

Experiments were conducted using two types of rough surfaces 

of tall elements as discussed in the introduction. Raw data, from the 

flexible plastic strips and the peg elements, are plotted with different 

ambient velocities in Figs. 4- 3, 4-4, and 4-5. In these figures, 

"x" denotes the distance from the leading edge of the small elements, 

and "x" denotes the distance from the leading edge of the tall elements. 

Disturbance in the flow extended throughout the boundary-layer. 

The flow 's roughness height "Z " is determined by finding how 
0 

much the slope of the upper layer deviates from the profile in front 

of the rough area of tall elements . This value is then substituted into 

Equations ( 3. 29) and ( 3. 23) which yield the values of 6 and V * seen 

in Tables 2, 3, and 4. 

Note that the character of the roughness height "Z " for the 
0 

same surface depends upon the ambient velocity values tabulated in 

Tables 1, 2, 3, and 4. This fact is reflected in Fig. 4-6. Resulting 

from this fact is the hypothesis that "Z " can be used to develop a 
0 

reference scale that will yield a similarity law between model and 
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p r ototype (see Cermak, 1963) . Tani (1963) found this same 

phenomenon i n his investigations of the atmospheric boundary layer. 

TABLE 2 

VALUES OF o AND V -1., 

CALCULATED FROM THE EXPERIMENTAL DATA 

FOR FLEXIBLE PLASTIC STRIPS 

u = 10 ft/sec z = 1.15x 10 
-2 

in. 
a 0 

X ft 36 40 42 46 50 52 54 56 58 

x' ft -4 0 2 6 10 12 14 16 18 

o in. 12.5 13.3 13.5 14. 1 14.9 15. 1 15.8 16.0 16.3 

V *ft/sec 0.830 0-.826 0.821 0.810 0.801 0.797 0.790 0.781 0.781 

TABLE 3 

VALUES OF 0 AND v* 
CALCULATED FROM THE EXPERIMENTAL DATA 

FOR FLEXIBLE PLASTIC STRIPS 

20 ft/sec 
-2 

u = z = 1. 80x10 in. 
a 0 

X ft 36 40 42 46 50 52 54 56 58 

x' ft -4 0 2 6 10 12 14 16 18 

o in. 6.64 7.23 7.60 8. 10 8.30 8.62 9.40 9.50 10.10 

V *ft/sec 1. 34 1. 31 1. 31 1.28 1. 28 1. 27 1. 26 1.26 1. 25 
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All available experimental data were plo t ted Figs. 4-7, 4-8, 

and 4-9. Plotting was a ccomplished by applying the universal defect 

law which employs the parameters in Tables 2, 3, and 4. These 

figures indicate that the profile is still in the transition range a t the 

edge of the simulated vegetation area . Thus, the discussion of the 

profile is restricted to that surface which extends downwind beyond 

the transition distance. 

TABLE 4 

VALUES OF 6 AND V* 

CALCULATED FROM THE EXPERIMENT AL DATA 

FOR PEGS 

30 ft/sec z -2 
u = = 2. 2x10 in. 

a 0 

X ft 10 20 30 40 50 60 70 

x' ft -30 -20 -10 0 10 20 30 

6 in. 3 .07 4.29 5.97 7.59 9.00 10.38 12. 10 

V *ft/sec 2.32 2.23 2.11 2 . 01 1.97 1. 91 1. 89 

The velocity profile over a rough surface of small elements is 

expressed by 

u-u 
a 

V_,_ ..,. 
= A log 

z 
6 

+ B ( 4 . 1) 
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The velocity profile modified by the momentum absorption of tall 

simulated plants may be expressed by 

u-u 
a 

The last term 

z 
= A log - 0- + B -

l:iu 
V .,_ -~ 

l:iu 
V .,, 

on the right hand side of Equation ( 3. 28) 
~-

( 4 . 2) 

represents the net effect of the tall plant surface. Therefore, it ought 

to be expressed in terms of such parameters as the height, spacing, 

and slope of the roughness elements. 

An evaluation of ~u was performed using each set of 
* 

experimental data, and the results are shown in Figs . 4-10 and 4-11 . 

These figures indicate that part of the velocity's maximum net diminu­

tion is caused by the simulated vegetation at Z/ o = 0. 2. The width, 

defined by tu becoming zero in the upper flow, is used to plot a 

* 
normalization curve. The normalized data are found in Fig. 4-12. 

Similar results may be obtained by applying an equation applicable 

t o the wake behind a symmetrical cylinder, 

l:iu 

(l:iu)max 
= 

{ 

r,' 3/2 l 2 
1 - -

r,o 

where r,' = r, - 0. 2 and r,' = rJ at the edge of the wake. 
0 

( 4. 3) 

On the basis of the agreement between experimental data and 

l:iu 
Equation ( 4. 3), it is suggested that can be expressed as 

v* 
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( ~u) - --V..,, 
,,. max 

( 1 - ~ 3/2 ) z (4. 4) 

where ~ = rJ 'In . It should be noted that ( ~u ) 
o V,:c max 

and r, 
0 

might be a function of the height, shape, spacing, and mean velocity 

as can be seen in Fig. 4-1 O and 4-11. However, there are not enough 

data to determine a functional relationship. r, is almost too large a 
0 

value to support the theory that the above height is of the same order 

as the height of the tall elements. 

An exponential velocity profile within plants may be applicable 

to the upper portions of vegetative canopies. The exponential profile 

of Inoue ( 196 3) is indicated by the dotted line in Fig. 4-12. 

On the b~sis of the preceding discussion, the velocity 

distribution in and above vegetative canopies is expressed by 

u - u 
a 

= A log r, + B - ( ~u ) 
v* max 

3/2 2 

(1-~) +a,(4.5) 

where a is defined by u - u 
a 

becoming zero at r, - 0. 2 = 

Thus, a is given by 

a = - A log ( r, + 0. 2 ) - B 
0 

Therefore, Equation (4. 5) can be expressed by 

( 4. 6) 

u - u 
a 

v* 
= A log r, - ( ~) Vt., 

(1 - r::3/2)
2 

' .,, - a , ( 4. 7) 

where a ' = A log ( r, + 0. 2) . 
0 

~ max 
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Equation ( 4 . 7) may b e writt e n as 

u - u 
a 

V 
O:< 

= A log· ( ) , )~ o . z l -( e ~ l 
o · rnax 

. ( 4. 8) 

Upon making the substil11li1;11s Z = 11 b and 
1 O 

Z -= O. 2 o , Equation 
2 

( 4 . 8) becomes 

u - u 
a 

( 
tiu ) - --v ~< · max 

The quantities Z 
1 

and Z 
2 

are a function of distance downwind from 

the leading edge of a tall, rough surface. 
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Chapter V 

VERTICAL VE LOCITI ES IN AND ABOVE 

VE GETATIVE CANOPIES 

In the pr eceding di :::ic u::-;::; ion an <:quation was obtained for the 

mean velocity profik in and above ta ll i:; imulated vegeta.tion. In the 

discussion that follows, the subscripts 1 and 2 will refer to 

boundary-layer profiles associated with rough surfaces consisting of 

tall and small elements, respectively. 

(5 .1 ), 

Equation ( 4. 7) may be used to define a stream function, 

( 
flu l 3/2 

2 

- f' (ri) = A log ri - V ( 1 - ~ ) - a 1 = 
* max 

u -u 
1 a 

v* 

(5. 1) 

The stream function f (ri) is obtained by integrating Equation 

-f(ri)=A(rilogri-ri)-ri [~u) fi-~ 3
/

2
/d~-

o * max 

- a 'ri + f3 (5. 2) 

where f3 is defined by f( 0) = O • 

Equation ( 3. 5) is still satisfactory for a general vertical 

velocity . Thus, a dimensionless vertical velocity in and above a plant 

cover area is given by: 



1 
ciT = 
dx 
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(5 . 3) 

On the othe r ha nd, the veloc ity pr ofile for a rough surface of 

small elements may also be used to define a stream function; 

u2 - ua 
- f' ( l1) = A log l1 + B = ---. v* 

- f ( l1) = A ( l1 log ri - ri) + B ri 

Therefore, the vertical velocity over a rough surface of small 

elements is given by 

1 
do = 
dx 

(5. 4) 

(5. 5) 

Equation (5. 5) shows that the vertical velocity increases with height . 

The ratio of the vertical flow caused by tall elements to that caused 

by small elements can be expressed as 

= (5 . 6) 

As an example, Equation (5. 6) was evaluated when the flexible strips 

were subjected to an ambient velocity of 20 ft/ sec . The results of 

this calculation are shown in Fig. 5-1. Note that ~: becomes 

larger at the outer layer of the flow over the vegetation area . This 
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fact is in agreement with the two-dime ns ional continuity equati on . 

Raw data, seen in Figs. 4-3, 4-4, :ind 4-5, also reveal this same 

situation. Fig. 5-1 indicat1•:::i 1.hal. t.lw dirncn8ion] ess simulated 

vegetation height is h / 6, provicl<-cl that the defle cted height is taken 
(' 

as the reference height h . The deflected height is 3. 9 inches for 
e 

an ambient velocity of 20 fps (see Plate 1965) . 

Figure 5-2 depicts the change in velocity profiles associated 

with flow over a rough surface consisting of tall elements. The data 

contained in this report indicate that the variation of the mean wind 

velocity with distance downwind from leading edge of a tall simulated 

vegetative area, can be predicted by the wake-theory. 
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Chapter VI 

CONCLUSION 

In the preceding sections the authors have investigated a 

universal velocity distribution in and above an area covered with 

vegetation. This study indicates that such a distribution can be 

expressed in terms of two significant parameters--the maximum 

net diminution velocity and the apparent wake edge created by tall 

vegetation. These parameters depend upon the shape, height, and 

spacing of the roughness elements. The rest.Its mentioned above, 

however, must be supported by additional experimental data. These 

data will be obtained in further explorations of the phenomena 

produced by various types of plants. Once these data are accumulated, 

investigators will be able to focus their attention on other exchange 

processes such as evaporation from a vegetative surface. 
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APPENDIX 

Consider the equaL on 

We assume that C has the form 
s 

C = A log
10 

R - f(R ) + D , 
s o o 

where f(R ) is an unknown function. 
0 

The substitution of (2) into (1), yields 

We then make the substitution 

(1) 

(2) 

(3) 

( 4) 

where F(R
0

) is another unknown function and is regarded as being 

less than 1. 

The substitution of ( 4) into (3), yields 

Alog (n - A log F(Ro>] = A log [F(Ro) • Ro] . (5) 

On the other hand, C can be expressed by means of (2) and (4) as 
s 

Cs = - A log10 F + D . ( 6) 

From (5) we obtain 

D - A log 10 F = F · Ro ( 7) 
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It is then assumed that F has the form 

where the range of a is restricted to O < a < 1 . 

For sufficiently small values of a , F(R ) may be 
0 

approximated by 

F(R ) = 1 - a 
0 

The substitution of (8) and (9) into (7), yields 

D + 2. 5 a = (1 - a) • R
0 

Thus, from (9) and (10), F(R ) can be expressed by 
0 

2. 5 + D 
F(Ro) = R + 2. 5 

0 

When (11) is substituted into ( 6), C becomes 
s 

(8) 

(9) 

(10) 

( 11) 

Cs = A log
10 

(R
0 

+ 2. 5) - A log
10 

(2. 5 + D) + D . (12) 
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