
THESIS

MULTIMODAL AGENTS FOR COOPERATIVE INTERACTION

Submitted by

Joseph J. Strout

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2020

Master’s Committee:

Advisor: Ross Beveridge

Francisco Ortega

Lisa Daunhauer

Copyright by Joseph J. Strout 2020

All Rights Reserved

ABSTRACT

MULTIMODAL AGENTS FOR COOPERATIVE INTERACTION

Embodied virtual agents offer the potential to interact with a computer in a more natural man-

ner, similar to how we interact with other people. To reach this potential requires multimodal

interaction, including both speech and gesture. This project builds on earlier work at Colorado

State University and Brandeis University on just such a multimodal system, referred to as Diana.

I designed and developed a new software architecture to directly address some of the difficulties

of the earlier system, particularly with regard to asynchronous communication, e.g., interrupting

the agent after it has begun to act. Various other enhancements were made to the agent systems,

including the model itself, as well as speech recognition, speech synthesis, motor control, and gaze

control. Further refactoring and new code were developed to achieve software engineering goals

that are not outwardly visible, but no less important: decoupling, testability, improved networking,

and independence from a particular agent model. This work, combined with the effort of others in

the lab, has produced a “version 2” Diana system that is well positioned to serve the lab’s research

needs in the future. In addition, in order to pursue new research opportunities related to develop-

mental and intervention science, a “Faelyn Fox” agent was developed. This is a different model,

with a simplified cognitive architecture, and a system for defining an experimental protocol (for

example, a toy-sorting task) based on Unity’s visual state machine editor. This version too lays a

solid foundation for future research.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisory committee for their thoughtful guidance and mentoring, and

my family for their understanding and support over the last few years.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . v

LIST OF FIGURES . vi

Chapter 1 Introduction . 1

Chapter 2 Background . 5

2.1 Natural user interfaces . 5

2.2 A Brief history of ECAs . 5

2.3 Benefits of ECAs . 8

2.4 Developmental disorders and assessment 10

Chapter 3 Contributions to Diana 2.0 . 12

3.1 Cognitive Architecture . 12

3.2 Network Interface . 15

3.3 Agent Independence . 16

3.4 Inverse Kinematics . 17

3.5 Facial Control . 18

3.6 Natural Language Processing . 19

3.7 Support Code . 22

Chapter 4 Faelyn Fox . 26

4.1 Visual protocol editor . 26

4.2 RGB gesture perception . 30

4.3 Initial user test . 31

Chapter 5 Conclusions . 34

5.1 Directions for future work . 34

5.2 Discussion . 35

Bibliography . 38

iv

LIST OF TABLES

3.1 Sample DataStore keys. 12

3.2 Cognitive modules. 14

3.3 Network protocol. 15

3.4 Part-of-speech tags. 20

3.5 Communication classes. 23

3.6 Sample NLP inputs. 23

v

LIST OF FIGURES

1.1 Diana version 1. 1

1.2 Faelyn Fox. 3

2.1 Other ECAs. 6

3.1 Four Agents. 16

3.2 Debugging displays. 24

4.1 Example state machine. 27

4.2 Sorting protocol state machine. 29

vi

Chapter 1

Introduction

Natural user interfaces are computer interfaces that allow users to interact with technology or

virtual entities in ways that mimic how we interact with real-world entities. One type of natural

user interface is the embodied conversational agent (ECA), which is presented visually with some

form of embodiment, such as a human or animal figure, and which is able to engage the user in

natural-language conversation.

Figure 1.1: The original (version 1) Diana agent.

Over the last several years, an ECA referred to as Diana (Figure 1.1) [1] has been under active

development. Diana is the result of a collaboration between two research groups and two universi-

ties. At Brandeis University, a team led by James Pustejovsky and Nikhil Krishnaswamy focused

on natural language processing and reasoning, including 3D spatial planning and affordances. At

Colorado State University, a team led by Ross Beveridge and Bruce Draper (and recently by Fran-

cisco Ortega) has focused on visual perception. Other aspects of the system, such as animation and

inverse kinematics, have been worked on by both teams.

1

In the standard configuration, Diana appears as a life-sized human figure displayed on a large

screen behind a work table. Diana is able to perceive and interpret the user’s position, gaze direc-

tion, and a variety of gestures, including pointing, via a Kinect sensor and deep neural networks.

Diana is also able to understand spoken speech, using off-the-shelf text-to-speech (TTS) services

and the VoxSim reasoning system developed at Brandeis. On the output side, Diana is able to

speak, gesture, and manipulate virtual blocks which appear on “her” side of the table. Diana has

successfully demonstrated utility in cooperative tasks, where the agent and a human user work

together using the shared perceptual space of the virtual blocks to build structures such as lines,

pyramids, or staircases.

ECAs have been shown to be useful in a wide variety of contexts, particularly in education.

ECAs have been found to facilitate learning by more actively engaging users’ attention, and by

making use of redundant communication channels (e.g., gesture as well as speech). In memory

tests, recall was found to be higher with ECAs than without embodiment [2]; other work has

found ECAs to be effective in teaching foreign languages [3] and math [4]. Some studies have

found improvement of a full letter grade or more in student performance [5], comparable to results

obtained by human tutors.

Other work has highlighted the benefits of ECAs for working with children with autism [6] [7]

or cerebral palsy [8]. At Colorado State University, Lisa Daunhauer in the Department of Hu-

man Development and Family Studies is particularly interested the Down syndrome (DS) popula-

tion [9] [10] [11]; and Anita Bundy in the Department of Occupational Therapy considers children

with Developmental Coordination Disorder (DCD) [12] [13]. In all such populations there is an

urgent need for precise, semi-automated measures to help assess impairments and developmental

delays, both to identify children who may benefit from early intervention, and to evaluate out-

comes in clinical trials. This has led to a new collaboration between these researchers and Ross

Beveridge and Francisco Ortega in the Department of Computer Science, to explore applications

of an advanced ECA like Diana in the context of developmental outcomes.

2

However, one limitation of early versions of the Diana system was that it could not be smoothly

interrupted if, for example, it grabbed the wrong block. To avoid such a situation, Diana was

therefore programmed to ask the user for confirmation before almost any action, but this turned

out to be a slow and unpleasant user experience as well. Fixing this and related issues was proving

difficult due to fundamental limitations of the system architecture.

To address this problem, a new system architecture was developed with a clean-sheet design.

This has resulted in a new, “Diana 2.0” system that is more responsive and more proactive. It can

be interrupted, and so has less need for confirmation before acting, resulting in a system that is

faster and easier to use. The new architecture is also more modular, making it easier to produce

variants of the system with different feature sets.

Figure 1.2: The new Faelyn Fox avatar, illustrated here in the context of the first user test.

One example of such a variant is the Faelyn Fox system, an ECA specialized for the new devel-

opmental outcomes work (see Figure 1.2). In addition to a different appearance and voice, Faelyn

Fox uses a simplified cognitive architecture and a visually-edited behavior system, allowing non-

programmers to develop responsive yet clearly controlled experimental protocols. It is expected

that this ECA will find use in assessment tasks in young children. (Both the new Diana 2.0 system

architecture, and the Faelyn Fox system, are primarily the work of this author.)

The rest of this thesis is organized as follows. Chapter 2 reviews related research on virtual

worlds, embodied agents, and child development, providing a historical context for the Diana and

3

Faelyn systems, and laying the foundation for future work in developmental assessment. Chapter

3 describes my contributions to Diana 2.0, highlighting, in particular, the blackboard architecture

which accounts for many of the new system’s advantages. Chapter 4 presents Faelyn Fox and

the new software modules built specifically for that ECA, including the visual behavior editor.

Chapters 3 and 4 together may serve as useful reference material for future maintenance and de-

velopment of the software. Finally, Chapter 5 considers possible directions for future research and

attempts to place the project in a larger historical context.

4

Chapter 2

Background

2.1 Natural user interfaces

Virtual worlds and embodied agents have a rich history in computer science. In many cases

a key feature of such agents is a gestural interface, often in combination with spoken or written

language. Such interfaces involve fusing different types of data, as well as managing dialog state

over time [14]. Early work in the field studied the gestures used in collaborative tasks, dividing

them into pointing and representational gestures [15]. Later work on iconic gestures (those in

which the path or pose of a gesture depicts what is described) found that the content of these

gestures cannot be understood without reference to the shared context of the speaker and listener

[16].

However, Donald Norman [17] pointed out that gestural interfaces (often referred to under the

marketing term “natural user interfaces”) are not natural at all; that is, gestures are usually culture-

specific, not discoverable, and offer little feedback, especially when compared to graphical user

interfaces. This highlights the value of a multimodal interface, where gestures and speech can

be used to disambiguate each other. Kennington et al. [18] described a model for interpreting a

speaker’s intentions considering both spoken language and nonverbal cues such as gestures and

gaze, as well as a method for grounding those representations via the shared visual context. It

extends previous work on grounded semantics by working incrementally (i.e. word by word).

2.2 A Brief history of ECAs

A review of earlier work in ECAs helps put Diana and Faelyn Fox into the broader context of

the field. A selection of ECAs appears in Figure 2.1. An early ECA named August (Figure 2.1(a))

served as a museum guide in Sweden [19]. The authors collected information on how naive users

responded to the system and how they adapted their speech when the agent failed to understand.

5

(a) (b) (c)

(d) (e) (f)

Figure 2.1: A chronological survey of ECAs in the literature. (a) August [19], 1999. (b) Rea [20], 2001.

(c) Greta [21], 2002. (d) SmartKom [22], 2003. (e) Max [23], 2003. (f) AutoTutor-3D [24], 2014. See text

for details.

6

Cassel et al [20] studied the nonverbal cues associated with topic shifts in discourse, and in-

corporated these results into Rea, an ECA real-estate agent that communicated through speech and

gesture (Figure 2.1(b)). The following year, Pelachaud et al [21] presented Greta (Figure 2.1(c)),

an ECA for discussing medical information. Greta featured a belief-desire-intention network for

simulating emotional states.

SmartKom was a symmetric multimodal agent (i.e., one in which all modalities are available

for both input and output) that uses speech, gesture, and facial expression [22] (Figure 2.1(d)).

SmartKom used a three-tiered representation of discourse, with layers for domain, discourse, and

modality, and also understood pointing gestures from the user.

Kopp et al [23] presented Max, a 3D (CAVE-based) virtual agent who worked with a human

user on assembly tasks on a virtual table, in a setup is very similar to our Diana system (Fig-

ure 2.1(e)). Max is built on MURML, an XML-based language to represent communication acts

that combine speech, gesture, and facial behaviors, and a software system for smoothly linking

these together [25]. Like August, Max was also put to work as a museum guide [26], where anal-

ysis of conversation logs found that museum goers were likely to use human-like communication

strategies with this ECA in a real-world setting; in this case he was displayed at human-like size on

a static screen, standing face-to-face with museum goers, and equipped with camera-based visual

perception.

All the ECAs discussed so far were built between 1999 and 2003. See [27] for a review of major

projects and progress in ECAs in the first decade of the 2000s, including the realization of both

verbal and non-verbal behaviors. Somewhat newer is AutoTutor and its several variants, such as

AutoTutor-3D [24], a multimodal ECA that analyzes students’ speech acts and adapts accordingly

(Figure 2.1(f)).

The Diana system builds upon this previous work in important ways. Like Max, but unlike

the other ECAs mentioned above, Diana uses a full-sized, full-body, humanlike avatar, with a

shared perceptual space representing realistic objects. But Diana’s multimodal communication

is grounded in human-human elicitation studies on the same blocks world building task [28]. Re-

7

searchers found that tasks were completed faster with gesture and speech together than with speech

alone. They also found that social cues (e.g., acknowledgement) are frequently used between hu-

mans, and point out that these are often omitted from artificial gesture sets. Gestures are grouped

into three categories: social, deictic, and iconic; iconic gestures were found to be less important

when speech was allowed. They also found that when ambiguities arise, the conversational lead

switches to the other partner in order to resolve the ambiguity.

Using VoxML as its cognitive foundation [1], Diana was built to emulate these communication

strategies, leading to further studies exploring peer-to-peer communication between people and

virtual agents [29].

2.3 Benefits of ECAs

The efficacy and benefits of ECAs over non-embodied agents or other types of user interfaces

have been the subject of much research. It is generally recognized that ECAs engage users more

actively, and by being a social presence, may increase motivation. It is also pointed out that ECAs

enable the use of multiple communication channels, allowing for a failure in one channel to be

recovered by another, or a message in one channel to be explained or elaborated by another [2].

A review of evidence supporting and disputing the benefit of ECAs on learning and memory was

presented by Louwerse et al [30], who provided evidence from eye tracking that humans treat

ECAs as conversational partners, not mere attention magnets.

Bickmore et al [31] performed two large clinical trials showing that patients respond well to an

ECA providing health information, and found this especially beneficial for patients with inadequate

health literacy. Comments from participants suggested that even patients who do not typically like

to interact with computers liked interacting with the ECA.

Beun et al [2] tested memory on stories that were presented by a realistic human female virtual

agent, a purple cartoon gorilla, or by no ECA at all. Recall was found to be higher with both

virtual agents than with the absent ECA, but anthropomorphism (measured to be higher for the

8

humanlike agent) had no apparent effect. This suggests that ECAs are effective, but not because of

anthropomorphism, and has obvious relevance to our Faelyn Fox agent.

Matus et al [32] presented a machine learning system that learns to understand deictic gestures

in which the speaker is drawing attention to specific objects, and found that combining multiple

modalities of communication (speech and gesture) is more effective than using only a single type.

The integrated system uses a robot arm to manipulate colored blocks from unscripted directions of

human users, similar to our objectives with the Diana blocks world setup.

A study by Andrist et al [33] shows the effectiveness of bidirectional gaze, i.e. the coordinated

production and detection of gaze cues in a collaborative task. They find that this form of nonverbal

communication with a virtual character can be established using eye-tracking glasses or (more

simply) head-pose estimation, and that it works both for agents on a flat screen and for agents in

VR. A similar effect was found in a study involving an ASIMO robot telling a story to human

listeners [34]; it found that listeners were significantly better at recalling story details later when

the robot had looked at them more.

In an educational context, ECAs have been shown to be effective for learners of foreign lan-

guages [3] and math problems [4]. Kumar and Rose [5] present an architecture for building con-

versational agents that work in a collaborative-learning (i.e. multi-user) environment. They report

findings of improvement of a full letter grade or more in comparison with no learning support, or

static (non-conversational) support conditions.

Graesser et al [24] describe computer agents that simulate human tutoring, with an emphasis

on AutoTutor. Empirical evidence suggests that AutoTutor and similar natural-language computer

tutors produce learning gains comparable to those of trained human tutors, in a variety of subjects.

AutoTutor has been made in various versions, including various combinations of communication

modalities. In one direct comparison, AutoTutor-3D (see Figure 2.1(f)) yielded a significant im-

provement in learning over a strictly conversational version for students who used the system more

than once. In another study, an AutoTutor that was emotionally empathetic aided learning better

than one that was not emotionally responsive.

9

Some researchers have looked at the benefits of ECAs for users with disabilities. Mencía et

al [8] relate experiences and recommendations pertaining to the use of ECAs with children who

have severe motor and mental disabilities (primarily cerebral palsy). Specific recommendations

included the need to clearly show the mouth and eyes, and to display exaggerated facial expressions

along with both auditory and gestural reinforcements. Bosseler and Massaro [6] showed that an

ECA was effective at teaching vocabulary to children with autism. Tanaka et al [7] found ECAs

to also be effective at social skills training in people with autism spectrum disorders, and that the

multimodal nature of such ECAs was central their success.

It is worth noting that many users today have experience with non-embodied conversational

agents that have become common home appliances, such as Amazon Echo and Google Home,

as well as agents built into our smart phones. However, Luger and Sellen [35] find that user

expectations are out of step with the reality of these conversational agents. These observations

emphasize the importance of natural language as a communications channel, while at the same

time highlighting how much work is still to be done to make such interfaces truly natural.

2.4 Developmental disorders and assessment

The incidence of Down syndrome (DS) has increased over 30% from 1979 through 2003 [36].

Mouse models of DS show that pharmacological interventions can rescue some of the intellectual

disability resulting from DS, and that the benefits can outlast treatment. However, such interven-

tions are more effective the earlier they are applied [37].

Developmental coordination disorder (DCD) is a neuromotor condition affecting about 5%-6%

of school-aged children [38]. It is characterized by difficulty coordinating either gross or fine motor

movements, or both. It is typically diagnosed at age 5 or later. Earlier diagnosis and intervention

might offer better outcomes, and is an area of active research.

Various tasks involving toys have been successfully used for assessment of children of 3-4

years of age [39]. Standard tests include the Bayley Scales of Infant Development (BSID-IV) [40],

10

which can assess children up to 42 months old, and the Peabody Developmental Motor Scales

(PDMS-2) [41], which can be applied from birth through 5 years old.

Information processing abilities such as attention, processing speed, and memory in infants and

toddlers predict later executive function [42]. Useful measures include reaction time and duration

of engagement, both of which could be measured automatically while interacting with a system

like Faelyn Fox.

11

Chapter 3

Contributions to Diana 2.0

The Diana 2.0 system was a clean-sheet design, with relatively little code retained from the

original system outside of VoxSim itself. Like its predecessor, Diana 2.0 is written in C# within

the Unity development environment.

3.1 Cognitive Architecture

The 2.0 cognitive architecture is built around a blackboard metaphor [43] [44]. Our version of

the blackboard is a strongly-typed key-value store, implemented as a C# class called DataStore.

DataStore follows a modified Singleton pattern [45], with a static instance that is commonly used

in actual application, though other instances may also be created for such purposes as unit testing.

The keys in our DataStore are strings, with conventions that subdivide the key space into pro-

gressively more specific areas. For example, all keys that begin with “user:” refer to some informa-

tion about the human user, while all keys that begin with “me:” reflect some state about the agent.

Examples of keys currently in use are given in 3.1, and a full list may be found in the GitHub repo

as DataStore.md.

Table 3.1: Sample keys used with the DataStore, along with the data type and a brief description.

Key Data Type Description

me:intent:action String action agent intends to do: “point”, “grab”, etc.

me:intent:target Vector3 target location of ‘me:intent:action‘

me:name String agent’s own name, e.g. “Diana” or “Faelyn Fox”

me:speech:intent String text the agent intends to speak

user:intent:location Vector3 location to which the user wants the agent to attend

user:isPointing Boolean true iff the user is pointing

user:isSpeaking Boolean true iff the user is speaking

user:speech String text of utterance user has just spoken (or typed)

12

The values in the data store are small objects that implement a DataStore.IValue interface.

This interface defines several methods useful for all types: ToString (string conversion), Equals

(equality testing), and IsEmpty (used with DataStore.HasValue). Concrete classes implementing

this interface were written for string, boolean, integer, scalar, float array, Vector3, and quaternion

(orientation/rotation). Core DataStore methods allow any type to be set or retrieved by string key;

convenience methods allow for setting and retrieving these specific datatypes without having to

box or unbox the values on each call.

While users of the DataStore may poll it for values of interest, an event system was also made

available to simplify the code and reduce the overhead of polling. Code may subscribe to data

changes in two different ways. First, it may subscribe to changes to a specific key, with a callback

invoked only when that key is changed. Alternatively, it may subscribe to an event that fires

whenever any value is changed. These events receive both the key and the new value, enabling the

subscriber to disambiguate the change when needed.

With this DataStore blackboard as the interface hub, a large number of relatively small, simple

modules were written. Each of these works by subscribing to (or polling for) changes to keys

of interest; applying some computation (often, updating a state machine); and then updating the

blackboard with new values. In addition, of course, there are “input” modules which take values

from some other source (e.g. speech transcribed by a Text-to-Speech system) and place them on

the blackboard, and “output” modules which take blackboard values and use them to cause some

other effect (e.g. setting inverse kinematics targets for the avatar).

These modules are supported by a simple common base class called, uncreatively, ModuleBase.

ModuleBase provides some debugging support: a comment that is stored whenever one of its value

setter methods is used, and a link to a ModuleDisplay, which is a UI component that displays

module state (including these comments). Particularly in the early days of Diana 2.0, these module

displays were used extensively to provide a continuous view into the state of the system.

At the time of this writing, nearly 50 ModuleBase subclasses have been created. Table 3.2 lists

the modules created by this author.

13

Table 3.2: Cognitive modules (subclasses of ModuleBase) written primarily by the author.

Name Description

AttentionModule state machine controlling agent’s attention and alertness

BoolKeyStandInModule allows boolean keys to be set by holding a keyboard key

CommandsModule part of reduced NLP system; interprets commands from parsed text

DianaGaze makes a humanoid agent look at a target by turning head and eyes

EyeControlModule controls eyes, including gaze, alertness display, and blinking

GrabPlaceModule uses IK to make a humanoid agent pick up or place an object

InteractionGlue interfaces between blackboard intents and hand interaction system

ParserModule part of reduced NLP system; interprets raw text from the user

PleasantriesModule part of reduced NLP system; handles phatic communication

PointAtPointModule produces behavior of pointing wherever the user points

PointModule uses IK to make a humanoid agent point at any target location

SelfKnowledgeModule provides the agent with knowledge of its name, voice, and hands

SocketInterfaceModule provides a network interface to the DataStore

SpeechOutModule produces audible speech using some text-to-speech service

SRStandInModule allows a text input field to substitute for speech-to-text

StanfordParserModule uses StanfordNLP library to convert text into a parse tree

StringKeyStandInModule allows string keys to be set by pressing certain keys on the keyboard

WatsonStreamingSR does streaming text-to-speech via the IBM Watson service

14

3.2 Network Interface

For some functions — most notably deep neural network models built on PyTorch — it was

necessary to interface with external processes, which in some cases might not even be running on

the same machine.

To facilitate this, a SocketInterfaceModule was written in C# which acts as a simple server, lis-

tening for incoming TCP/IP connections on a given port (by default, 38276). The module services

the socket on a worker thread to avoid blocking the main thread (where all Unity classes do their

regular updates).

The code in this module implements a command protocol, based loosely on the open-source

Redis data store [46], as shown in table 3.3. When a client process uses the SUB command to sub-

scribe to value changes for a particular key, it will receive SETI, SETS, SETV, or SETB messages

using the same syntax.

To demonstrate how to interface with the system from Python, a simple client script called

pythonSockDemo.py was written (available in the GitHub repo). This establishes a TCP/IP con-

nection with the SocketInterfaceModule running in Unity, and provides helper methods for setting

values or subscribing to a particular key. As a further demo, it increments a counter once per

second and puts its value on the blackboard as “demo:python:counter”. Based on this example,

other members of the lab were able to interface other Python code to the Diana 2.0 system for such

things as gesture recognition.

Table 3.3: Network protocol understood by the SocketInterfaceModule.

Command Example Meaning

SETI <key> <integer value> SETI me:alertness 90 set an integer value

SETS <key> <string value> SETS user:speech Hello set a string value

SETV <key> <x> <y> <z> SETV user:pointPos 2.5 1.7 0 set a Vector3 value

SETB <key> <T or F> SETB user:isPointing T set a boolean value

SUB <key> SUB me:isEngaged subscribe to value changes

NAME <new name> NAME HandClient changes client name

15

3.3 Agent Independence

One goal in the new design was to make the agent readily swappable. In fact, the new system

was built with not one, but four different agents: the original Diana model, the new Diana model,

a humanoid robot, and an industrial robot arm. See Figure 3.1.

(a) (b)

(c) (d)

Figure 3.1: Four agents functional in the early days of Diana 2.0. (a) The original Diana model. (b) The

new Diana model. (c) A humanoid robot. (d) An industrial robot arm.

The new Diana model was built from an Adobe Fuse character configured by the author and

rigged (i.e. given a standard humanoid animation skeleton) through the Mixamo service. It features

67 degrees of freedom, including fully articulated hands.

Currently only the new Diana model is in use, plus Faelyn Fox (described in the next chapter).

However, for a while in the early days of the project, all four agents were functional. The original

Diana model has since been deleted from the project, as it was based on a third-party asset that

is no longer supported and does not work with recent versions of Unity. The two robotic agents,

however, remain in the project and could be made to work again with relatively little effort.

This is accomplished primarily by taking advantage of the decoupling offered by the DataStore

(blackboard). Each agent includes a SelfKnowledge module that places the agent’s name, hand

bones, and voice options onto the blackboard. Other modules, which are placed not on the avatar

but in a general “cognitive architecture” part of the scene, pick up these values and use them

16

appropriately. Modules which directly control some aspect of the model, such as eye/eyelid control

or other motor control, are placed on each agent. All the humanoid agents use identical scripts for

controlling reach and hand pose, but they use different scripts for eye control and facial expressions,

since (for example) the humanoid robot has considerably fewer degrees of freedom in its face. The

robot arm uses a different IK setup for reaching, and of course has no face at all. Other cognitive

modules continue to post face-related intents to the blackboard, and these are harmlessly ignored

in this case.

3.4 Inverse Kinematics

Like the Diana 1.0 system, Diana 2.0 relies largely on inverse kinematics (IK) to control move-

ment of the hands, torso, neck, and head. We are using a commercial library (FinalIK) to do the

actual IK computations. However, proper setup and configuration is essential to avoid problems

such as reaching through the body, bending awkwardly at the waist, or looking away while reach-

ing for an object. This section provides some details on how all this was set up to produce Diana

2.0’s smooth, natural-looking motion.

Three FinalIK components are added to the agent model: Full Body Biped IK, Look At IK,

and Interaction System. Full Body Biped IK is the primary IK controller. It requires references

to joint transforms throughout the model skeleton. It also has detailed parameter blocks for the

body, each arm, and each leg. For our purposes, the Left Arm and Right Arm parameter blocks are

particularly important; these are involved whenever the agent reaches for something on the table,

and by default, will often result in solutions that have the agent’s arms awkwardly close to her

sides, even while successfully reaching a target location on the table.

The solution to this problem was to add a “Bend Goal” transform to each arm, or at least to the

right arm (since currently our agent is only programmed to reach with her right hand). This is a

transform positioned in the environment about 0.8 meters to the side, and slightly (27 cm) behind

the agent, and then set as the Bend Goal in the Right Arm parameter block, with a Bend Goal

17

Weight of 0.2. This additional constraint for the IK solver causes the agent to lift her elbow away

from the body, all other things being equal, resulting in a much more natural reaching motion.

The other important setting to avoid awkward reaches is the “Reach” parameter under “Chain”

(still in the Right Arm parameter block). Larger values here will cause the upper body to bend

more aggressively toward the reach goal. A value of 0.1 is appropriate, producing a gentle bend

towards the reach target.

The Look At IK component is used to make the agent turn her head towards a target. This must

be used whenever reaching is used, or the IK solution will cause the head to turn away from the

reach position as a side-effect. Note that we are not using FinalIK to control the eyes themselves,

as every model seems to have the eyes set up differently. A custom script, DianaGaze.cs, was

written to both rotate the eyes to look ta a target, and control the Look At IK component to turn

the head.

Finally, the Interaction System component is used to provide fine control over reaching and

grasping motions. It works in conjunction with an Interaction Object script on any graspable ob-

ject, that defines the hand pose (or poses) used to hold that object. Our use of these components

is standard, following the FinalIK instructional videos. To interface this with our custom cogni-

tive architecture, an InteractionGlue.cs script was created; this reads several DataStore keys and

invokes methods on Interaction System accordingly, and also sets a key when the intended action

is complete.

Because they operate directly on IK components attached to a specific agent, both DianaGaze

and InteractionGlue are attached directly to the agent, rather than grouped with the agent-independent

scripts at the scene level.

3.5 Facial Control

In addition to gross body movements, there is a need for fine control over the agent’s facial

expressions, eye and eyelid movements, and mouth movements (lip syncing). These are handled

with several new scripts.

18

As noted in the previous section, a DianaGaze.cs script controls the direction of the eyes, using

the corresponding bones in the skeletal system. These are hooked into the animation system via

Unity’s standard OnAnimatorIK callback, so after the eyes are positioned by any running animation

on each frame, we override their rotation to make them look at the target position.

All other aspects of facial control are done not through bones, but through blend shapes. A

blend shape is a modification of a 3D mesh, represented as the change in position for each vertex

in some subset of the mesh vertices. These deltas are multiplied by a weight for each blend shape,

and added to the normal (default) position of each vertex to determine the final shape of the mesh.

As Diana 2.0 uses an Adobe Fuse model, we have access to the 50 blend shapes defined on all Fuse

models.

A script called EyelidMorphs.cs was written to read the key me:eyes:open on the blackboard,

and set the weight of the Blink_Left and Blink_Right blend shapes accordingly. Thanks to other

modules in the cognitive architecture, this results in Diana blinking, closing her eyelids slightly

when bored, and opening them wider than usual when excited (or more accurately, when the intent

is to produce the illusion of boredom or excitement).

While the appropriate weights for closing the eyes are simple, facial expressions are more com-

plex, requiring the adjustment of 5-10 different blend shapes such as Brows_In_Left and Mouth-

Narrow_Right. To facilitate this, a BlendShapeMixer.cs script was written. This allows one to

define any number of “expressions” as a combination of any number of blend shapes. Other code

(e.g. FaceUpdate.cs, written by colleague Heting Wang) then adjusts the weights on these ex-

pressions, working at the higher abstraction level of expressions rather than at the lower level of

individual blend shapes. This is used to express emotion, to study the role of affect between the

ECA and the human user [47].

3.6 Natural Language Processing

Since VoxSim was reintegrated into Diana 2.0, it has handled all the agent’s natural language

processing (NLP) needs. However, prior to that point, a simpler NLP system was implemented,

19

which served to get the new system up and running with a conversational interface quickly. This

section describes the design and operation of that NLP system.

Processing begins by dividing the input into words, and tagging each word with its most likely

part of speech. The tags used are shown in table 3.4, and are a subset of tags used by the Brown

corpus [48]. To assign these tags, a dictionary was built by analyzing the SEMCOR 3.0 data

set [49] as follows. For every word (and set phrase), I collected all the instances in the corpus and

counted its usage as various parts of speech (POS). Then I output a simple file with the word, and

the POS frequencies, normalized to 1.

Table 3.4: Part of speech tags used by the NLP module.

Tag Meaning

NN noun

JJ adjective

CD ordinal number (one, two, etc.)

CC conjunction (and, or)

IN preposition

RB adverb

DT determinant

NP proper noun

VB verb

RP adverb particle (off, up)

WRB WH-adverb (where)

WDT WH-determinant (also where)

WP WH-pronoun (who, what)

PPS singular pronoun (it, one)

UH interjections and greetings

While the result does a good job of correctly identifying the POS of many words, it fails

miserably on others. For example, “point” is overwhelmingly classified as a noun (97% of the

time) if not capitalized, or a proper noun (100% of the time) when capitalized (even if at the

start of a sentence). This is because the SEMCOR corpus consists almost entirely of declarative

statements (newspaper articles etc.), with very few imperative commands or interrogative queries.

20

This is an ill fit for our purposes, as interaction with a computer agent consists almost entirely of

commands and queries, with very little need for declarative statements. So given a command such

as “Point at the green block,” any system trained on a standard corpus like SEMCOR is going to

begin from the difficult position of misidentifying the verb.

As I was unable to find a tagged corpus consisting of interrogative and imperative sentences, I

worked around the issue by hand-coding a number of “overrides” of the SEMCOR parts of speech

for specific cases. These include all the common verbs in our context (e.g. “point”, “pick”), some

common emphatic words that were too rare in the corpus for correct identification (“hi”, “bye”),

and some set phrases that were simply missed (e.g. “to the right of”, “pick up”, “multiplied by”).

In addition, some things identified by the corpus as set phrases should not be, for example “two

times” (treating this as a set phrase makes it very hard to parse mathematical expressions), so those

were removed. In all, 48 such corrections were applied.

The words and their initial POS assignments are moved into a data structure that also includes

dependency information, that is, which words are subordinate to which others. The objective of

the next step is to produce a shallow parse — one in which noun phrases, verb phrases, and prepo-

sitional phrases are identified, but not necessarily parsing the entire input into a tree with a single

root. A Parser.cs script was written for this purpose. It repeatedly applies an ordered set of 17

heuristics, any of which can modify the part of speech of one or more words, or assign dependen-

cies. These heuristics are things like “a determinant modifies the closest noun or pronoun” and “an

adverb right before a verb modifies that verb.” When no more rules can be applied, parsing stops.

These heuristics were constructed by hand with the aid of extensive unit testing. Each rule,

when applied, returns a unique rule ID, which greatly helps debugging. In addition, the parse

result can convert itself into a string representation which includes both POS and dependency

information, while still being easily read, enabling simple one-line test cases. The general philos-

ophy behind the rules was to handle all the easy cases, while leaving difficult or ambiguous cases

unresolved — possible since we are doing a shallow parse rather than a complete parse.

21

The next step of the NLP pipeline is to interpret the intent and arguments of the input. This

is represented with a small class tree based on on a Communication base class. Each subclass

represents a different communication type or intent, as shown in table 3.5. Each subclass has

public fields for whatever arguments are appropriate for that type.

Filling out an appropriate Communication instance is the job of the Grok.cs script. This script

too relies on hand-coded heuristics based on both part of speech and specific words, and supported

by extensive unit tests. The main method invokes helper methods specialized for interpreting

object references, locations/directions, and actions. The code is written in such a way that even

if the entire input cannot be parsed, it is likely to find some bits of meaning, giving client code a

chance to at least produce a helpful response.

Everything described in this section up to this point is completely encapsulated in a CWCNLP

namespace, and independent of the DataStore, cognitive modules, or anything else in this particular

project. Two cognitive modules tie it into the rest of the system. First, ParserModule.cs takes user

input from the blackboard (via a user:speech key), runs it through the parser, and posts the final

Communication (using a user:communication key). And finally, a CommandsModule subscribes

to the latter key, and takes action based on the various communication types and arguments.

As noted in the beginning of this section, the NLP architecture described here is no longer in

use; modern Diana 2.0 uses VoxSim instead. However, for a while, this NLP system was used

successfully to handle inputs such as those in table 3.6.

3.7 Support Code

In the last section of this chapter, I cover various support bits of support code to make main-

tenance and debugging easier. These including unit testing, debug displays, and runtime options.

Some of these features were previously mentioned, but more detail is presented here about how

they actually work.

Unit testing is supported by a custom UnitTest script, which defines virtual methods Setup,

Run, and Cleanup. Subclasses of this are written to test various areas of functionality in the project;

22

Table 3.5: Classes used to represent communication from the user in the NLP system.

Class Meaning

ComCommand commands

ComQuery questions

ComAssertion imparting information to the listener

ComConfirmation agreement/confirmation

ComDenial disagreement/denial

ComEmote interjection or expression of emotion/state (wow, argh, etc.)

ComPhatic back-channel communication; conversational grease

Table 3.6: Examples of user input correctly interpreted and handled by the custom NLP system.

Hello!

What is your name?

Pick up this block.

Lift the green block.

Grab that one.

Put it down.

Place this one here.

Put it over there.

That’s enough.

Stand by.

What is this block?

Good-bye.

23

these override at least the Run method. The base class also defines a number of assertion functions

for comparing actual values to expected values. Failures are reported through Unity’s standard

Debug.LogError mechanism.

The UnitTest subclasses are instantiated and run from a helper class called UnitTestRunner,

which in the main (Demo) scene, exists on an otherwise empty GameObject of the same name,

located under System in the scene hierarchy. Tests are run from the Start method, and so execute

shortly after the scene is loaded.

Figure 3.2: Screen shot of the Diana 2.0 system, with blackboard state display (text on left side of image)

and module displays (gray informational boxes at right) activated.

While the system is running, it is often useful to be able to monitor the state of various cog-

nitive modules in real time. This is facilitated through module displays as shown in Figure 3.2

(right). Each display is connected to one cognitive module, and shows at least the most recently

set DataStore key and value, along with the comment that was submitted with the value change.

In some cases additional state information is shown, such as the EyeControlModule, which shows

(via a cartoon-level diagram) the intended state of the eyes, including look angle and eyelid levels.

This information remains valid and useful even when working with agents with limited or no eye

articulation (such as the humanoid robot or industrial robot arm).

24

Also available is a filtered display of the current keys and values in the DataStore. Through

Unity’s inspector, this can be adjusted to show only keys which match some pattern (e.g “user:*” to

show only user keys), or to hide any keys which match some pattern; by default it is configured to

hide keys starting with “user:joint:*” which reflect the angles of every joint in the Kinect skeleton.

An example of the DataStore display is shown in Figure 3.2 (left).

Finally, while these displays can be useful for debugging, they are unwanted clutter during

normal operations. A user interface was therefore created that allows the operator to toggle these

displays in any combination, along with other bits of stand-in UI (such as a speech stand-in that

allows you to type your inputs rather than relying an speech-to-text). This options panel is sum-

moned or dismissed by pressing the Alt key (or Option key on Mac), and all settings are stored in

preferences so that they are retained across restarts of the system.

25

Chapter 4

Faelyn Fox

As noted in chapter 1, embodied agents have particular benefits when working with children.

To maximize these benefits, and in consultation with Drs. Lisa Daunhauer and Anita Bundy, a new

avatar was designed specifically for this context. The new agent, called Faelyn Fox, features both

a new, more child-friendly model (see Figure 1.2), and a simplified cognitive model with some

support for visually scripted experimental protocols.

4.1 Visual protocol editor

The intended use of this agent differs from that of the Diana system in two important ways,

and these differences have led to design changes “under the hood.” First, children are less likely

to effectively gage an artificial agent in conversation, and are certainly not likely to use complex

linguistic constructs. Second, Faelyn Fox will be used to conduct test procedures which need to be

highly repeatable, following a script that must be understandable by researchers in developmental

science, rather than only by computer scientists.

As a result, the VoxSim cognitive architecture has been disabled in the Faelyn Fox agent.

Currently, the agent has no language understanding at all, though basic understanding could be

restored via the simplified parser and NLP modules described in section 3.6. To control the agent’s

behavior, a visual scripting system has been developed, built upon Unity’s standard animation state

machine editor.

A small example of such a protocol state machine is shown in figure 4.1. This particular state

machine implements a simple protocol for testing the agent’s perception of push left/right gestures

from the user: the agent speaks a greeting, waits for a gesture, identifies the gesture seen, and

returns to the waiting state.

Unity’s state machine editor is normally used for controlling animations; the state machine

configuration is stored in a type of asset called an AnimationController. Here, we are using it to

26

(a)

(b)

(c)

(d)

(b)
(c)

(d)

(e)

(f)

(g)

(e)

(f)

(g)

Figure 4.1: Protocol state machine example implementing an interactive test of the agent’s visual perception

of push gestures. (a) State machine as viewed in Unity’s animation controller editor; the initial state is

indicated in orange. Each box represents a state, and arrows indicate transitions. (b) Inspector properties

for the initial state. A SMB Speak state machine behavior has been added, causing the agent to speak the

indicated text when this state is entered. (c) Inspector details for the transition from the initial state to

the Waiting state. This transition has no conditions, but instead happens automatically after the Exit Time

(2.5 seconds). (d) Details for the Waiting state. This state has no associated behaviors. (e) Details for

the transition from Waiting to the Push Left state. This transition has a condition: it happens only when

user:intent:isPushLeft on the blackboard becomes true. (f) Details for the Push Left state. Two custom

behaviors have been attached: SMB Shake Nod has been configured to nod the agent’s head, and SMB Speak

provides verbal feedback. (g) Details for the transition from Push Left back to the Waiting state. With no

conditions, this transition happens automatically after the Exit Time of 0.75 seconds.

27

instead control the agent at a higher level, where each state represents a step in some experimental

procedure. This is possible due to several custom scripts that interface the state machine to the rest

of the cognitive architecture. First is the BlackboardToAnimParams script. This continually sets

any parameters defined on the animation controller from blackboard keys of the same name. For

example, a boolean “user:isEngaged” parameter on the animation controller gets set by this script

to the value of “user:isEngaged” on the blackboard on every frame. This allows state machine

transitions to respond to blackboard values, as in 4.1(e).

The next piece is a set of simple scripts that cause behaviors in the agent (or the simulated

environment) when certain states are entered. These are built on the SMBBase script, which itself

derives from Unity’s StateMachineBehaviour class. Such classes can be attached to any state of an

animation controller, and execute code when that state is entered, exited, or maintained, and any

public fields may be configured for each such place they are attached. SMBBase provides utility

methods to set values of various types on the blackboard. The SMBSpeak subclass uses these to

set the “me:speech:intent” key with a given text string, causing the agent to speak. SMBShakeNod

causes the agent to shake or nod her head, with a specified count, period, and amplitude.

Finally, SMBToyAction is an SMBBase subclass that interfaces with some code written espe-

cially for a toy-sorting task used in child development studies. In this task, toys are presented in

pairs, with a large and a small version of the same toy in each pair. This is triggered from the state

machine using the “Present Pair” action on the SMBToyAction component. On either side of the

table is a bucket, one large and one small. One of the toys is indicated by moving it closer to the

user, who is then asked which way it should go (done via the “Ask To Sort” action). When the user

indicates left or right (detected via “user:intent:isPushLeft” and “user:intent:isPushRight” keys on

the blackboard), then the toy moves into the corresponding bucket via the “Sort Left” and “Sort

Right” actions.

Figure 4.2 shows a basic implementation of this protocol. The lowermost seven states all make

use of the SMBToyAction component to trigger manipulations of toys on the table. Some of them

28

Figure 4.2: A state machine implementing the toy-sorting protocol. Blackboard keys used are shown as

state-machine parameters on the left.

29

also make use of SMBSpeak and SMBShakeNod to provide verbal and nonverbal feedback to the

user.

4.2 RGB gesture perception

One of the design goals for the Faelyn system was to be more easily portable, i.e., to work

without a dedicated setup and specialized sensor hardware. The input needs for developmental

science studies are minimal; we only need the children to indicate either the left or right bucket.

Accordingly, we have developed a gesture detection module based on optical flow that can detect

gross left and right motions.

This module, implemented as the C# script OpenCVFlow, is built on OpenCV, or more specif-

ically on a C# port called OpenCvSharp. This calculates dense optical flow across the image using

the Farneback algorithm [50], and then finds the mean horizontal movement across the whole im-

age, then averaged across a window of frames. When the absolute value of this averaged movement

exceeds a threshold, it is signaled as a “left” or “right” motion. The detector then goes into a re-

fractory (cooldown) period during which it will not signal either direction again; this helps prevent

rebound signals which otherwise often occur at the end of a gesture. Reasonable values for these

parameters were found empirically to be: window = 5 frames, threshold = 0.6; cooldown = 20

frames.

The OpenCVFlow script is written independent of the rest of the Diana/Faelyn system. To

interface it with the cognitive architecture, an OpenCVPushModule was added, which sets the

“user:intent:isPushLeft” and “user:intent:isPushRight” keys on the blackboard according to the

current signal from the detector.

Together, these scripts enable the Faelyn system to respond to push-left and push-right gestures

on any computer equipped with an ordinary RGB camera.

30

4.3 Initial user test

Finally, an early version of the Faelyn Fox system was used for an informal gesture elicitation

study in late January, 2020 at the Early Childhood Education Center in Fort Collins. In this study,

children of 5-7 years age (with caregiver consent) were brought into the library one at a time to

interact with the system running on a laptop computer. A “wizard of Oz” technique was employed

whereby this author stood some distance behind the child, operating the system via an unobtrusive

wireless gamepad. In this version of the system, one toy was presented at a time, though still with

two buckets of different sizes as shown in Figure 1.2. Another experimenter (Dr. Daunhauser)

explained that small toys should go in the small bucket, and big toys should go in the big bucket.

The children were given instructions such as “Faelyn can see your hands. Use your hands to show

which bucket the toy should go in.” They were carefully not told exactly how to do so.

Each toy was then presented, with the experimenter giving the child a prompt such as “here’s

a big sheep. Where should that go?” After sorting toys in this manner for several minutes, the

children were told, “Now let’s play a silly game. Let’s put the big toys in the small bucket, and the

small toys in the big bucket!” Sorting then continued under this new rule. Data were recorded in

several ways: events were logged to a file by the Unity code; written observations were taken by

Dr. Ortega; and both RGB and depth-sensor video was captured by the Kinect camera.

The purpose of this study was to see what gestures children would use to indicate each bucket,

when not prompted to do this in any particular way. The result was a very large and varied gesture

set. The rest of this section presents some key observations.

The first child immediately reached for the screen, and started using it like an iPad: with one

finger extended, she touched the toy on the screen, and tried to drag it to the correct bin. When

the toy did not track her finger fast enough, she did it again, as if the software had simply failed

to track properly. One might speculate that this child had prior experience with touch interfaces.

For subsequent trials, the screen was moved back from the edge of the table, the child’s chair was

moved away, and the children were instructed to stay seated.

31

One child pointed very clearly, with a whole arm extension. It was noticed that the arm and

hand would be extended first, somewhat tentatively, and then when a decision was made, the index

finger was extended and the arm did a jabbing motion, making it very clear that she had decided.

Another child did a variety of swiping gestures, with varying speeds, orientation of the hands,

etc. Even within the broad category of “swipe” (a horizontal motion of the arm/hand in the desired

direction), the highly variable gestures observed would likely present a challenge to an automated

classifier.

One child used a reverse-bloom “grasping” gesture on the toy, then moved her hand towards

one bucket or the other, and did a “release” gesture. She also tried virtually grasping the toy, and

then throwing it left or right (and seemed pleased when this worked).

One child kept his hands in his lap, and did very subtle side-to-side gestures with the index

finger, or sometimes with the whole hand. These were difficult even for the human operator to

confidently perceive.

Another child used pointing, but instead of pointing at the bucket, pointed first at the toy, and

then traced an arc similar to the desired path of the toy on screen (having picked up on the toy-to-

bucket animation shape after only a few trials). She was essentially interacting as if with a touch

interface, trying to “drag” the toy where she wanted it, even though pointing at a screen several

feet away.

When we did the “silly game,” reversing the rule about where the toys go, it occasionally

happened that a child made a mistake and put a toy in the wrong bucket. Though no feedback was

given, I think in every case the child immediately noticed their error, and looked quickly to the

experimenter as if to see what they should do about it. In such cases the experimenter would say

something like “keep going!” and the child would resume sorting correctly. It was also observed

that response times were longer in the silly game.

These preliminary results suggest several insights for future work. First, unconstrained gestures

from children this age are extremely variable. To make an automated detector and classifier for

such gestures would be a technical challenge. A better approach might be to prime the children

32

to make one particular type of gesture, such as pointing or swiping, and have them practice a few

times in a simpler task, such as getting Faelyn to look left or right. A more complete elicitation

study could determine which sort of gesture would feel natural to most children. Second, the “silly

game” did indeed appear to be an appropriate challenge to children of this age, requiring some

extra thought (measured as slower response time). Careful measurement of this response time

could serve as a useful metric, providing insight into developmental stage and executive function,

specifically cognitive flexibility (personal communication, Lisa Daunhauer).

33

Chapter 5

Conclusions

5.1 Directions for future work

There are ample opportunities for future research related to the Faelyn Fox system; some of

these relate to the technical qualities of the system, while others are opportunities for new tasks

that might be useful in assessing child development.

First, a proper gesture elicitation study could be performed to gather data on what sort of

gestures children use to indicate the bucket to which a toy should go. Video recordings could be

manually classified, and the corresponding Kinect skeleton pose data could be used to program or

train detector algorithms for the most common or useful gestures. Note that in our early user test

(see section 4.3), children found the animated arc traced by the toys to be attention-grabbing, and

often shaped their gestures to imitate that motion. A future gesture elicitation study might want

to instead have Faelyn pick up and move the toy in a more natural manner, perhaps with some

random variation in the path taken.

The Kinect sensor provides reliable pose estimation, and with the help of existing code and

models in the CwC lab, is a demonstrated way to detect a wide variety of user gestures, including

pointing. But it requires substantial physical setup that may be inconvenient for some contexts

in which Faelyn Fox could be useful. So, pose estimation and gesture perception based on an

ordinary RGB camera may be worth pursuing. The current Faelyn Fox system has a very simple

way to detect gross left/right gestures based on optical flow, but this code could probably be fine-

tuned and further improved. To take it further, real-time RGB pose estimation is needed. Several

libraries in recent years are able to do this task at reasonable framerates on some hardware, e.g.

MoVNect [51].

At some point it may be valuable for Faelyn (or Diana) to be able to perceive not only the pose

of the user, but also the position and orientation of physical objects on the table, providing a truly

34

symmetric capability, i.e. one where both Faelyn and the human user can perceive objects on both

sides of the table, though only manipulate their own. This might be possible using a library such

as MobilePose [52].

Along similar lines, eye/gaze tracking could be of value, particularly in working with younger

children where such data can be used to measure attention and delayed recognition. 3D eye gaze

tracking using a single RGB camera has been demonstrated [53].

With such perceptual abilities, Faelyn Fox would be capable of other tasks besides the current

toy-sorting task. For example, there is a bear/dragon task in which children are supposed to follow

instructions from the bear but ignore instructions from the dragon; this tests inhibitory self-control

[54]. There are also tasks that test children’s understanding of false belief; for example, Faelyn

could place a toy in a box, leave the scene or turn away, and then let the children move the toy to

the other box. Faelyn would then turn back, and the children would be asked where Faelyn thinks

the toy is, and where the toy actually is. Such tasks test the development of a theory of mind, which

is affected in DS, autism, and Asperger syndrome [55] [56].

Finally, as noted in section 3.6, correct parsing of natural language input in the context of a

cooperative agent is greatly hampered by the fact that current text corpuses are mainly culled from

news articles, blog posts, and tweets, all of which consist of almost entirely declarative statements.

Declarative statements have a different grammatical structure than the interrogative and impera-

tive statements most frequently used when working with an agent. Development of a corpus of

interrogative and imperative sentences, tagged with part of speech and/or parse data, would be a

valuable step towards building better parsers for actually communicating with computers, and a

very helpful service to the community.

5.2 Discussion

Early AI projects, such as the Hearsay speech understanding model in the 1970s [43], faced

several issues. To solve complex problems, many knowledge sources were needed, each applying

different heuristics and transformations to the data. The work was necessarily experimental in

35

nature, prompting researchers to enable some knowledge sources, disable others, and modify still

others; to do this effectively required those modules to remain loosely coupled. There was also a

desire to decompose the system to take advantage of multiple processors. At the same time, each

module needed to expand on and correct the hypotheses made by other modules.

These apparently conflicting requirements — modules completely independent yet able to work

together on a problem — were solved via the blackboard architecture. A central blackboard served

as the data bus connecting modules which had no direct communication or interdependencies.

This solution proved quite successful, and led to a series of advances in understanding speech, and

became a cornerstone of AI in the late 20th century; the main architectural paper [57] has been

cited over 2000 times.

In the early days of AI there was some tension between symbolic (logic-based) and connec-

tionist (artificial neural network) approaches, but as Marvin Minsky pointed out in 1991 [58],

successful AI systems are often built out of diverse components, some connectionist and some

symbolic. Yet in recent years the astounding success of "deep learning" (large neural networks

trained on very large datasets) has taken the world by storm, to the extent that one may be tempted

to see them as the “master algorithm” that can do everything. Yet contemporary researcher Pe-

dros Domingos, in his book Master Algorithm [59], identifies these as only two of five “tribes” of

AI (the others are genetic algorithms, Bayesian logic, and analogical modeling), and argues that

none of these can solve all the problems of AI on its own. Like Minsky, Domingos believes that a

human-like AI system is likely to need techniques from all these approaches.

The Diana agent faced issues of complexity, interdependency, and fragility very similar to

those tackled by the designers of Hearsay in the 1970s. In the course of this Diana 2.0 project,

we found that a very similar solution still applies today. We expanded on it; unlike the Hearsay

blackboard, which shared only hypothesis data, ours is used for the complete pipeline of perceptual,

cognitive, and intention data. But the core idea is the same. At the same time, unlike Hearsay but as

predicted by Minsky, our Diana agent also makes use of deep learning (the connectionist approach)

on perceptual tasks for which such systems are especially well suited.

36

While projects like Diana press forward on the artificial intelligence side, other developments in

technology are foreshadowing a future in which embodied conversational agents are commonplace.

After several false starts over the decades, virtual reality (VR) appears to finally be here to stay,

with consumer devices such as Oculus Quest and HTC Vive becoming commonplace. Augmented

reality (AR) is at an earlier stage, with HoloLens and Magic Leap selling mainly to developers or

enterprised customers for specialized purposes. However each generation of these is better than

the last, and presistent rumors swirl that Apple may be announcing AR glasses that may do for AR

what the iPod did for MP3 players, or the iPhone did for cell phones. We will live in a world where

our computers can manifest realistic images and sounds in both virtual worlds and in the real one.

In both VR and AR, you generally have no easy access to a keyboard; any communication

with other agents (whether human or artificial) is primarily through speech and gesture. Consumer

non-embodied agents such as Alexa and Google Home manage to serve useful functions with

speech only, out of technological necessity; but once VR and AR become sufficiently common,

such agents will surely present themselves in an embodied form, and take advantage of the richer

multimodal communication such form affords. The roles an intelligent ECA could perform in the

future are innumerable: personal assistant, medical advisor, search agent, or research assistant, just

to name a few. These roles will surely include working with children, allowing human experts to

more quickly and consistently assess developmental progress, and even provide interventions such

as social training.

These ECAs of the future will almost certainly combine both symbolic and connectionist ap-

proaches, just as Diana does today. In this project, I’ve played a part in bringing a key idea from

the early days of AI into a modern context, and made it a core component of a revolutionary com-

puter interface. With Diana 2.0 and Faelyn Fox on a solid architectural footing, they push forward

toward the day when intelligent ECAs are our steadfast companions.

37

Bibliography

[1] Nikhil Krishnaswamy, Pradyumna Narayana, Isaac Wang, Kyeongmin Rim, Rahul Bangar,

Dhruva Patil, Gururaj Mulay, Ross Beveridge, Jaime Ruiz, Bruce Draper, et al. Commu-

nicating and acting: Understanding gesture in simulation semantics. In IWCS 2017 — 12th

International Conference on Computational Semantics — Short papers, 2017.

[2] Robbert-Jan Beun, Eveliene De Vos, and Cilia Witteman. Embodied conversational agents:

effects on memory performance and anthropomorphisation. In International Workshop on

Intelligent Virtual Agents, pages 315–319. Springer, 2003.

[3] Preben Wik and Anna Hjalmarsson. Embodied conversational agents in computer assisted

language learning. Speech communication, 51(10):1024–1037, 2009.

[4] Silvia Tamayo-Moreno and Diana Pérez-Marín. Designing and evaluating pedagogic conver-

sational agents to teach children. International Journal of Social, Behavioral, Educational,

Economic, Business and Industrial Engineering, 11(3):488–493, 2017.

[5] Rohit Kumar and Carolyn P Rose. Architecture for building conversational agents that sup-

port collaborative learning. IEEE Transactions on Learning Technologies, 4(1):21–34, 2010.

[6] Alexis Bosseler and Dominic W Massaro. Development and evaluation of a computer-

animated tutor for vocabulary and language learning in children with autism. Journal of

autism and developmental disorders, 33(6):653–672, 2003.

[7] Hiroki Tanaka, Hideki Negoro, Hidemi Iwasaka, and Satoshi Nakamura. Embodied conversa-

tional agents for multimodal automated social skills training in people with autism spectrum

disorders. PloS one, 12(8), 2017.

[8] Beatriz López Mencía, David Díaz Pardo, Alvaro Hernández Trapote, and Luis A Hernández

Gómez. Embodied conversational agents in interactive applications for children with special

educational needs. 2014.

38

[9] Lisa A Daunhauer, Brianne Gerlach-McDonald, Elizabeth Will, and Deborah J Fidler. Perfor-

mance and ratings based measures of executive function in school-aged children with down

syndrome. Developmental neuropsychology, 42(6):351–368, 2017.

[10] Elizabeth A Will, Lisa A Daunhauer, Deborah J Fidler, Nancy Raitano Lee, Cordelia Robin-

son Rosenberg, and Susan L Hepburn. Sensory processing and maladaptive behavior: Pro-

files within the down syndrome phenotype. Physical & occupational therapy in pediatrics,

39(5):461–476, 2019.

[11] Lisa A Daunhauer, Elizabeth Will, Emily Schworer, and Deborah J Fidler. Young students

with down syndrome: Early longitudinal academic achievement and neuropsychological pre-

dictors. Journal of Intellectual & Developmental Disability, pages 1–11, 2020.

[12] Jane Clifford O’Brien, Harriet G Williams, Anita Bundy, Jim Lyons, and Amita Mittal. Mech-

anisms that underlie coordination in children with developmental coordination disorder. Jour-

nal of Motor Behavior, 40(1):43–61, 2008.

[13] Monique Natalie Beutum, Reinie Cordier, and Anita Bundy. Comparing activity patterns,

biological, and family factors in children with and without developmental coordination dis-

order. Physical & Occupational Therapy in Pediatrics, 33(2):174–185, 2013.

[14] Bruno Dumas, Denis Lalanne, and Sharon Oviatt. Multimodal Interfaces: A Survey of Princi-

ples, Models and Frameworks, pages 3–26. Springer Berlin Heidelberg, Berlin, Heidelberg,

2009.

[15] Susan R Fussell, Leslie D Setlock, Jie Yang, Jiazhi Ou, Elizabeth Mauer, and Adam DI

Kramer. Gestures over video streams to support remote collaboration on physical tasks.

Human-Computer Interaction, 19(3):273–309, 2004.

[16] Alex Lascarides and Matthew Stone. Formal semantics for iconic gesture. In Proceedings of

the 10th Workshop on the Semantics and Pragmatics of Dialogue (BRANDIAL), pages 64–71,

2006.

39

[17] Donald A. Norman. Natural user interfaces are not natural. Interactions, 17(3):6–10, May

2010.

[18] Casey Kennington, Spyridon Kousidis, and David Schlangen. Interpreting situated dialogue

utterances: an update model that uses speech, gaze, and gesture information. Proceedings of

SigDial 2013, 2013.

[19] Joakim Gustafson, Nikolaj Lindberg, and Magnus Lundeberg. The august spoken dialogue

system. In Sixth European Conference on Speech Communication and Technology, 1999.

[20] Justine Cassell, Yukiko I Nakano, Timothy W Bickmore, Candace L Sidner, and Charles

Rich. Non-verbal cues for discourse structure. In Proceedings of the 39th Annual Meeting on

Association for Computational Linguistics, pages 114–123. Association for Computational

Linguistics, 2001.

[21] Catherine Pelachaud, Valeria Carofiglio, Berardina De Carolis, Fiorella de Rosis, and Isabella

Poggi. Embodied contextual agent in information delivering application. In Proceedings of

the first international joint conference on Autonomous agents and multiagent systems: part

2, pages 758–765, 2002.

[22] Wolfgang Wahlster. Towards symmetric multimodality: Fusion and fission of speech, gesture,

and facial expression. In Annual Conference on Artificial Intelligence, pages 1–18. Springer,

2003.

[23] Stefan Kopp, Bernhard Jung, Nadine Lessmann, and Ipke Wachsmuth. Max-a multimodal

assistant in virtual reality construction. KI, 17(4):11, 2003.

[24] Arthur C Graesser, Haiying Li, and Carol Forsyth. Learning by communicating in natural lan-

guage with conversational agents. Current Directions in Psychological Science, 23(5):374–

380, 2014.

[25] Stefan Kopp and Ipke Wachsmuth. Synthesizing multimodal utterances for conversational

agents. Computer animation and virtual worlds, 15(1):39–52, 2004.

40

[26] Stefan Kopp, Lars Gesellensetter, Nicole C Krämer, and Ipke Wachsmuth. A conversational

agent as museum guide–design and evaluation of a real-world application. In International

workshop on intelligent virtual agents, pages 329–343. Springer, 2005.

[27] Elisabeth André and Catherine Pelachaud. Interacting with embodied conversational agents.

In Speech technology, pages 123–149. Springer, 2010.

[28] Isaac Wang, Pradyumna Narayana, Dhruva Patil, Gururaj Mulay, Rahul Bangar, Bruce

Draper, Ross Beveridge, and Jaime Ruiz. Exploring the use of gesture in collaborative tasks.

In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Com-

puting Systems, pages 2990–2997, 2017.

[29] Pradyumna Narayana, Nikhil Krishnaswamy, Isaac Wang, Rahul Bangar, Dhruva Patil, Gu-

ruraj Mulay, Kyeongmin Rim, Ross Beveridge, Jaime Ruiz, James Pustejovsky, and Bruce

Draper. Cooperating with avatars through gesture, language and action. In Kohei Arai,

Supriya Kapoor, and Rahul Bhatia, editors, Intelligent Systems and Applications, pages 272–

293, Cham, 2019. Springer International Publishing.

[30] Max M Louwerse, Arthur C Graesser, Danielle S McNamara, and Shulan Lu. Embodied

conversational agents as conversational partners. Applied Cognitive Psychology: The Official

Journal of the Society for Applied Research in Memory and Cognition, 23(9):1244–1255,

2009.

[31] Timothy W Bickmore, Laura M Pfeifer, Donna Byron, Shaula Forsythe, Lori E Henault,

Brian W Jack, Rebecca Silliman, and Michael K Paasche-Orlow. Usability of conversational

agents by patients with inadequate health literacy: evidence from two clinical trials. Journal

of health communication, 15(S2):197–210, 2010.

[32] Cynthia Matuszek, Liefeng Bo, Luke Zettlemoyer, and Dieter Fox. Learning from unscripted

deictic gesture and language for human-robot interactions. In Twenty-Eighth AAAI Confer-

ence on Artificial Intelligence, 2014.

41

[33] Sean Andrist, Michael Gleicher, and Bilge Mutlu. Looking coordinated: Bidirectional gaze

mechanisms for collaborative interaction with virtual characters. In Proceedings of the 2017

CHI conference on human factors in computing systems, pages 2571–2582, 2017.

[34] Bilge Mutlu, Jodi Forlizzi, and Jessica Hodgins. A storytelling robot: Modeling and eval-

uation of human-like gaze behavior. In 2006 6th IEEE-RAS International Conference on

Humanoid Robots, pages 518–523. IEEE, 2006.

[35] Ewa Luger and Abigail Sellen. " like having a really bad pa" the gulf between user expectation

and experience of conversational agents. In Proceedings of the 2016 CHI Conference on

Human Factors in Computing Systems, pages 5286–5297, 2016.

[36] Mikyong Shin, Lilah M Besser, James E Kucik, Chengxing Lu, Csaba Siffel, Adolfo Correa,

et al. Prevalence of down syndrome among children and adolescents in 10 regions of the

united states. Pediatrics, 124(6):1565–1571, 2009.

[37] Fiorenza Stagni, Andrea Giacomini, Sandra Guidi, Elisabetta Ciani, and Renata Bartesaghi.

Timing of therapies for down syndrome: the sooner, the better. Frontiers in behavioral neu-

roscience, 9:265, 2015.

[38] Susan R Harris, Elizabeth CR Mickelson, and Jill G Zwicker. Diagnosis and management of

developmental coordination disorder. Cmaj, 187(9):659–665, 2015.

[39] Stephanie M Carlson, Louis J Moses, and Laura J Claxton. Individual differences in executive

functioning and theory of mind: An investigation of inhibitory control and planning ability.

Journal of experimental child psychology, 87(4):299–319, 2004.

[40] Nancy Bayley and Glen Aylward. The bayley scales of infant development (4th ed.). 2019.

[41] M. Rhonda Folio and Rebecca R. Fewell. Peabody developmental motor scales, 2nd edition.

2000.

42

[42] Susan A Rose, Judith F Feldman, and Jeffery J Jankowski. Implications of infant cognition

for executive functions at age 11. Psychological science, 23(11):1345–1355, 2012.

[43] Lee D. Erman. Overview of the hearsay speech understanding research. SIGART Bull.,

(56):9–16, February 1976.

[44] H Penny Nii. The blackboard model of problem solving and the evolution of blackboard

architectures. AI magazine, 7(2):38–38, 1986.

[45] Stuart Maclean. On the singleton software design pattern. Technical report, Technical Report

DSSE-TR-97-4, Dept of Electronics and Computer Science . . . , 1997.

[46] Redis. https://redis.io, 2020. [Online; accessed 25-May-2020].

[47] Heting Wang. An empathic avatar in task-driven human-computer interaction. Master’s

thesis, Colorado State University, Fort Collins, Colorado, 2020.

[48] W Nelson Francis and Henry Kucera. Brown corpus manual. Letters to the Editor, 5(2):7,

1979.

[49] Rada Mihalcea. SemCor 3.0. http://www.nltk.org/nltk_data/, 2020. [Online; accessed 25-

May-2020].

[50] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Scan-

dinavian conference on Image analysis, pages 363–370. Springer, 2003.

[51] Dong-Hyun Hwang, Suntae Kim, Nicolas Monet, Hideki Koike, and Soonmin Bae.

Lightweight 3d human pose estimation network training using teacher-student learning. arXiv

preprint arXiv:2001.05097, 2020.

[52] Tingbo Hou, Adel Ahmadyan, Liangkai Zhang, Jianing Wei, and Matthias Grundmann. Mo-

bilepose: Real-time pose estimation for unseen objects with weak shape supervision. arXiv

preprint arXiv:2003.03522, 2020.

43

[53] Congyi Wang, Fuhao Shi, Shihong Xia, and Jinxiang Chai. Realtime 3d eye gaze animation

using a single rgb camera. ACM Transactions on Graphics (TOG), 35(4):1–14, 2016.

[54] Marjorie A Reed, Diana L Pien, and Mary K Rothbart. Inhibitory self-control in preschool

children. Merrill-Palmer Quarterly (1982-), pages 131–147, 1984.

[55] Nurit Yirmiya, Daphna Solomonica-Levi, Cory Shulman, and Tammy Pilowsky. Theory of

mind abilities in individuals with autism, down syndrome, and mental retardation of unknown

etiology: The role of age and intelligence. Journal of Child Psychology and Psychiatry,

37(8):1003–1014, 1996.

[56] Atsushi Senju, Victoria Southgate, Sarah White, and Uta Frith. Mindblind eyes: an absence

of spontaneous theory of mind in asperger syndrome. Science, 325(5942):883–885, 2009.

[57] Lee D Erman, Frederick Hayes-Roth, Victor R Lesser, and D Raj Reddy. The hearsay-ii

speech-understanding system: Integrating knowledge to resolve uncertainty. ACM Comput-

ing Surveys (CSUR), 12(2):213–253, 1980.

[58] Marvin L. Minsky. Logical versus analogical or symbolic versus connectionist or neat versus

scruffy. AI Magazine, 12(2):34, Jun. 1991.

[59] Pedro Domingos. The Master Algorithm: How the quest for the ultimate learning machine

will remake our world. Basic Books, Lebanon, IN, 2015.

44

