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SOLUTE TRANSPORT IN OVERLAND FLOW DURING RAINFALL

A numerical model was developed to simulate the movement of a 

conservative solute in steady overland flow over a smooth impervious 

plane under a constant rainfall intensity. This movement was described 

by shear-flow convection, vertical mixing, and rainfall dilution. Mass 

was converted in flow layers whose velocities varied according to 

velocity profile relationships developed in this study. Vertical 

diffusion occurred between flow layers according to the Fickian 

equation. Mass was diluted due to increasing depth of flow downstream. 

This model closely reproduced results of several analytical solutions 

for solute transport in steady, uniform flow. The model was then 

calibrated to results from overland flow laboratory experiments using 

the vertical mixing coefficient, e^, as a calibration parameter. A 

regression analysis was used to relate the calibrated values to

rainfall and flow variables.

The resulting regression equation showed that increased with

increasing rainfall intensity and with decreasing mean flow velocity.

varied the greatest at low rainfall intensities and near the top of 

the overland flow plane. The lower range of the calibrated values

compared favorably with the molecular diffusion coefficient for the dye 

tracer used in the laboratory experiments, while the upper range was 

similar to theoretical vertical mixing coefficients for steady, 

uniform, turbulent flow at equivalent discharges. It was concluded
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that the velocity of the peak concentration can vary between the mean 

cross-sectional velocity and the maximum point velocity, depending on 

the Cy value. It was further concluded that rainfall generally does 

not produce a continuous state of complete vertical mixing in overland 

flow.

The study was then taken one step further by using the resulting 

equation to examine the length of the convective distance beyond 

which Taylor's one-dimensional dispersion analogy is generally valid. 

This distance was found to be very short where vertical mixing was 

great and very long where vertical mixing was small. In addition, the 

equation was used along with Fischer's theoretical expression for 

the one-dimensional dispersion coefficient for open-channel flow (based 

on Taylor's research with pipe flow) to compute dispersion coefficients 

for overland flow during rainfall. In some cases, negative dispersion 

coefficients were computed. In further checking the applicability of 

Fischer's expression, it was concluded that it is not appropriate for 

all velocity profiles.

R. Lee Peyton, Jr.
Civil Engineering Department 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 1985
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Chapter I 

INTRODUCTION

The movement of pollutants over the land surface during a 

rainfall-runoff event can have a significant impact on the quality of 

the receiving water. This impact can be especially important from such 

pollutants as agricultural chemicals applied to cropland, bacterial and 

organic wastes from feedlots, drainage from surface mining activities, 

street surface contaminants from urban runoff, leachates from indus-

trial stockpiles, and hazardous waste leakage or spills.

The State of Colorado is particularly susceptible to these 

overland flow water quality impacts. It is a State where unique and 

sensitive ecosystems abound and where quantities of high quality water 

are a precious commodity. Yet it is a state experiencing significant 

urban and industrial growth superimposed on an economy traditionally 

based heavily on agricultural and mining activities— all of which are 

potentially threatening to the quality of surface runoff. Therefore, 

in order to maintain and protect the existing water quality resources 

of Colorado, it is important to gain a better understanding of pollu-

tant movement and pollutant concentrations in overland flow during 

rainfall-runoff events.

The typical approach to estimating pollutant concentrations in 

overland flow has been to divide the pollutant mass available at the 

land surface during a given time interval by the runoff volume during 

the same time interval. Little attention has been directed to the



transport processes involved or the influence of these processes on 

pollutant concentrations.

When overland flow occurs without raindrop impact, pollutant 

movement can be modeled using theories developed for wide, straight 

open channels with uniform discharge. However, the introduction of 

rainfall onto thin overland flow increases vertical mixing, changes the 

velocity profile, produces nonuniform flow, and provides continuous 

dilution. This study attempts to gain insight into these processes by 

investigating the following simplified case: an instantaneous, line- 

source injection of a soluble, conservative, dye tracer in steady, 

nonunifonn overland flow over a smooth, impervious surface under 

rainfall impact.

First, an examination is made of those processes thought to be 

important in the transport of soluble pollutants in overland flow with 

rainfall impact: shear-flow convection, vertical mixing, and rainfall 

dilution. Second, a numerical model is proposed which attempts to 

describe these processes. Third, the model is calibrated to laboratory 

data using the vertical mixing coefficient as a calibration parameter. 

Finally, a mathematical relationship for the vertical mixing coeffi-

cient is obtained which is used to derive an expression for the one-

dimensional, convective, dispersion coefficient for overland flow with 

rainfall.



Chapter II 

LITERATURE REVIEW

A. Overland Flow Hydraulics

The momentum equation for shallow, steady, gradually-varied 

overland flow with rainfall as lateral inflow was presented in the 

following form by Yen and Wenzel (1970)

-2
dy S - S, + ^ 7 (V cos4) - 2pii) -

s _ o f gA _____  ̂ 8 dx
dx

COS0 -

where y^ = depth of flow, x = distance along the flow direction, = 

bed slope, = friction slope, i = lateral inflow rate, g = accelera-

tion of gravity, A = cross-sectional area of flow, V = velocity vector 

of lateral inflow, (|> = angle between V and x, P = momentum coeffi-

cient, u = mean velocity of flow, 8 = angle between channel bed and the 

horizontal, and = hydraulic depth, equal to the area A divided by 

the free surface width.

Robertson et al. (1966) and Yu and McNown (1964) experimentally 

evaluated the terms in the momentum equation and foimd that and

were of much greater magnitude than the remaining terms, resulting 

in the following approximation to the momentiim equation for shallow 

overland flow with rainfall.

S = S, 
o f

(2 - 1 )



The Darcy-Weisbach equation has been used (Robertson et al., 1966; Yu 

and McNown, 1964; Shen and Li, 1973; Woolhiser, 1975; Morgali, 1970; 

Kisisel et al., 1973; Emmett, 1970) to express Eq. 2-1 as

S = ^
o 8 g y

(2-2)

where f = Darcy-Weisbach friction coefficient.

It can be theoretically shown that for laminar overland flow 

without rainfall,

e

where

and

R = a
e V

q = u y

(2-3)

with R^ = Reynolds number, q = discharge per unit width, and v = 

kinematic viscosity. For low Reynolds number flows under rainfall, 

experimental data have been collected which show that f increases 

with increasing rainfall intensity (Emmett, 1970; Kisisel et al., 1973; 

Morgali, 1970; Shen and Li, 1973; Woo and Brater, 1962; Yoon and 

Wenzel, 1971; and Yu and McNown, 1964). For flow over a smooth 

surface, a relationship of the form

f =
24 + 27.162 (2-4)

was found by Shen and Li (1973) for Reynolds numbers less than 900, 

while a relationship of the form



|- = 1.048 
e

was found for Reynolds numbers greater than 2000, where f^ = Darcy- 

Weisbach friction factor for equivalent flow without rainfall. For 

Reynolds numbers between 900 and 2000, an interpolated relationship was 

presented.

The transitional Reynolds number range between laminar and 

turbulent overland flow with rainfall was found to be 200 to 1000 by Yu 

and McNown (1964) over a concrete surface and 800 to 1000 by Yoon 

(1970) over a hydraulically smooth surface. Data presented by Morgali 

(1970) for asphalt and turf surfaces indicate a transition between 

about 100 and 300, while for a crushed slate surface, the transition 

appears to be between 200 and 300. Based on f vs. R^ plots for data 

collected over a smooth surface, Shen and Li (1973) chose to use the 

three Reynolds number ranges mentioned above (less than 900, 900 to 

2000, and greater than 2000) for the derivation of friction coefficient 

expressions.

Velocity profiles in overland flow with rainfall have been 

measured by Kisisel (1971) and Yoon (1970). Kisisel measured veloci-

ties for flows in the Reynolds number range of 2673 to 5754 on a slope 

of 0.001 under a rainfall intensity of 5.00 inches per hour. He found 

that velocity profiles over a smooth surface followed a law-of-the-wall 

logarithmic relationship in the turbulent and buffer zones, while 

velocities measured closest to the bottom surface were somewhat less 

than that predicted by the law-of-the-wall for the viscous sublayer. 

Kisisel did not observe a velocity retardation close to the free 

surface.



Yoon measured velocities for flows in the Reynolds number range of 

350 to 4000 on slopes of 0.005 and 0.010 under rainfall intensities 

ranging from 1.25 to 15.00 inches per hour. In all cases, the maximum 

velocity occurred some distance below the water surface. The velocity 

distribution law derived from von Karman's similarity hypothesis was 

used to develop velocity profile equations for both the lower profile 

(below the point of maximum velocity) and the upper profile (above the 

point of maximum velocity). For the lower profile, the value of von 

Karman's constant was varied between 0.19 to 0.29 (compared to the 

usually accepted value of about 0.4) to obtain the best-fit equation. 

For the upper profile, the slope of the velocity profile at the water 

surface was varied to obtain the best-fit equation while using the von 

Karman constant found for the lower profile.

In discussing the differences found in the Kisisel and Yoon 

studies related to velocity retardation near the water surface, Rao et 

al. (1972) and Yoon and Wenzel (1973) speculated that this velocity 

retardation exists for the lower Reynolds number range investigated by 

Yoon and is absent for the higher Reynolds number range investigated by 

Kisisel.

B. Raindrop Impact

Laws and Parsons (1943) measured raindrop size and intensity over 

a two-year period in the Washington, D.C. area and showed a general 

trend of increased drop size with increased rainfall intensity. Drop 

sizes ranged from 1.00 to 4.00 millimeters over a rainfall intensity 

range of 0.02 to 4.50 inches per hour. Drop sizes for rainfall inten-

sities of 1.00 to 4.50 inches per hour ranged from 2.00 to 4.00 

millimeters.



Impact velocities of raindrops have been studied by a niunber of 

investigators. Laws (1941) used high-speed photography to measure the 

fall velocity of raindrops ranging in size from 1.15 to 6.14 milli-

meters and falling from heights of 0.50 to 20.00 meters. Measured 

velocities for all drop sizes at a fall height of 0.50 meters were 2.7 

to 3.1 meters per second. At the largest fall height of 20.00 meters, 

velocities ranged from 4.6 meters per second for a 1.17 millimeter 

diameter drop to 9.4 meters per second for a 6.10 millimeter diameter 

drop. Dingle and Lee (1972) developed a regression equation for the 

terminal velocity of a raindrop. Banks (1978) used this regression 

equation along with the data collected by Laws (1941) to obtain an 

expression for the velocity of accelerating raindrops as a function of 

fall height, terminal velocity, density and diameter of raindrop, 

density of air, and drag coefficient.

Based on energy considerations, Engle (1966, 1967) derived 

theoretical equations for initial pressure, initial flow velocity, 

maximum crater depth, and time dependence of crater depth for impacts 

of waterdrops in deep, stagnant, liquid layers. These equations were 

expressed as functions of the impact velocity, drop diameter, and the 

density, surface tension, and viscosity of the liquid.

Mutchler (1967) and Mutchler and Hansen (1970) examined raindrop 

splash behavior in stagnant, liquid layers using high-speed photography 

and showed how crown height, crater width, and two characteristic 

angles varied with depth of water layer and time to maximum crown 

height. They found that waterdrop size is the major variable affecting 

splash size and that surface-water depth is the major variable affect-

ing splash shape. They further concluded that surface-water depth has
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its greatest effect on raindrop splash at depths of about one-third 

drop diameter and that splash geometry changes very little at depths 

greater than one drop diameter.

Harlow and Shannon (1967a, 1967b) numerically solved the Navier- 

Stokes equations of motion for a number of raindrop impacts in stagnant 

liquid and presented the analytical results of pressures, velocities, 

and splash shape as a function of time. Wang and Wenzel (1970) 

extended Harlow and Shannon's results by numerically solving the 

Navier-Stokes equations for a range of raindrop sizes typical in storm 

intensities of one to six inches per hour impacting at speeds up to 

terminal velocity. Resulting pressures, velocities, and shear stresses 

compared favorably to experimental data.

Macklin and Metaxas (1976) used an energy approach similar to

Engle (1966, 1967), but expressed in terms of the dimensionless Froude,

Weber, and Reynolds numbers, to derive analytical expressions for

maximum cavity radius and maximum crown height for both deep and

shallow splashing. Deep splashing (where the bottom of the liquid

layer does not affect the splash and where the cavity is approximately

hemispherical) was experimentally found to occur at ratios of water

layer depth (y ) to maximum cavity radius (R ) greater than 1.5. 
s c

Shallow splashing (where the cavity is approximately cylindrical) was 

experimentally found to occur at Vg/Rj. ratios less than 0.5.

C. Overland Flow Pollutant Concentration Models

A number of models have been developed for the simulation of 

pollutant concentrations in overland flow during rainfall. The Storm-

water Management Model (SWMM) computes a "pollutograph" at a subbasin 

outlet by dividing the estimated pollutant mass washed off the surface



in any time interval by the volume of runoff in that time interval 

(Lager et al., 1971). The Pesticide Transport and Runoff (PTR) model 

(Crawford and Donigian, 1973) and its modified version, the Agricul-

tural Runoff Management (ARM) model (Donigian and Crawford, 1976) 

determine the soluble pollutant concentration by dividing the estimated 

mass of pollutant available in soluble form during any time inteirval by 

the volume of flow in that time interval. The Nonpoint Source Pollu-

tant (NPS) model relates pollutants to sediment transport which is 

modeled using empirical equations (Donigian and Crawford, 1976). The 

Cornell Nutrient Simulation (CNS) model estimates monthly losses of 

nutrients in runoff, thereby determining only a monthly average pollu-

tant concentration (Haith and Loehr, 1979). The Agricultural Chemical 

Transport Model (ACTMO) simulates overland flow concentrations on the 

basis of pollutant mass available at the surface per runoff volume 

(Frere et al., 1975). The Field Scale Model for Chemicals, Runoff, and 

Erosion from Agricultural Management Systems (CREAMS) determines the 

amount of pollutant extracted from the top soil layer divided by runoff 

volume to estimate pollutant concentration in overland flow (Knisel, 

1980). CREAMS is the only one of the above models which accounts for 

the nonuniform character of overland flow during rainfall.

D. Dispersion in Steady, Uniform, Open Channel Flow

Taylor (1953, 1954) published two important analyses of 

longitudinal dispersion. He showed that the combined action of convec-

tion and diffusion in shear flow can be modeled as an apparent one-

dimensional diffusion process moving at the speed of the mean flow 

velocity. This process, called dispersion, can be described mathemati-

cally by the following one-dimensional, convective, dispersion equation
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8c ^ - 3c „ 8^c
8 Î * “ 8i = “ r 2

9x
(2-5)

where c = cross-sectional average concentration, t = time, u = mean 

flow velocity, x = distance in direction of flow, and D = longitudinal 

dispersion coefficient.

In order for Taylor to establish this analogy, he had to impose 

some conditions on the distribution of concentrations throughout the 

flow. The conditions included that the deviation of local concentra-

tion from c must be small and that c must vary slowly with time and 

distance. When these conditions are met, Taylor showed that the longi-

tudinal dispersion coefficient (written here for open channel flow with 

infinite width, from Fischer, 1966) is

-Fo ..y -y

“ ' ■ r i i r i “■'S*^0 ^ ̂  xt r\
' dy dy dy (2 - 6 )

o y •' o

where y = distance in vertical direction measured above streambed, 

y^ = depth at water surface, = vertical mixing coefficient, and u' = 

point velocity deviation from the cross-sectional mean velocity.

Fischer (1966, 1967, 1968) emphasized that following an 

instantaneous injection of solute into shear flow, there is an initial 

time period, or ’’convective period," when Taylor’s conditions are not 

met. During this time, the spreading of the solute cloud is dominated 

by convection, and the distribution along the channel of the cross- 

sectionally averaged concentration is highly skewed. For instance, at 

very short time periods after injection, the cloud will assume the 

shape of the velocity profile. Following the initial time period, the 

"diffusive period" or "Taylor period" begins. This period can be
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experimentally verified by observing a linear growth rate of the 

variance of the solute cloud and by observing that the cross- 

sectionally averaged concentration distribution along the channel 

decays according to the dispersion equation, £q. 2-5.

The time to the end of the convective period has been related to 

two time scales (Fischer, 1967). The Eulerian time scale is a measure 

of the time required for cross-sectional mixing and is defined as 

,2
T = —  
E e

(2-7)

where £ is a characteristic length and e is a characteristic mixing 

coefficient. The Lagrangian time scale for turbulent flow is a measure 

of how long a fluid particle takes to lose memory of its initial 

velocity. It is defined as

j o
R(t) dT

where R(x) is the Lagrangian autocorrelation function.

R(X) =
_ <u"(t) u"(t + X)>

<u"(t) >

and u" is the instantaneous point velocity of a fluid particle, t 

and X are values of time, and the angle brackets represent an average 

over a large number of particles. Fischer (1966b, 1967) derived the 

expression

D = u'^ T, (2-8)

where the overbar represents a cross-sectional average. He showed that 

T^ could be computed from Eq. 2-8 by using Eq. 2-6 for D and using 

the velocity profile to compute u*.
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These time scales have been used to approximate the transition 

between the convective and Taylor periods. In steady, laminar, 

Poiseuille pipe flow, Bailey and Gogarty (1962) and Lighthill (1966) 

found that Eq. 2-5 is a good approximation for times greater than 

0.5 Tg, and Chatwin (1970) showed that the concentration distribution 

became normally distributed approximately at 1.0 T„. In these studies, 

the characteristic length and mixing coefficient for T„ (Eq. 2-7) were 

the pipe radius and the molecular diffusion coefficient, respectively.

In steady, uniform, turbulent, laboratory, open channel flow, 

Sayre (1968a, 1968b, 1969) found that conditions necessary for estab-

lishment of the Taylor period were satisfied to within one percent at 

about 0.5 T_, where the characteristic length was the flow depth and 

the characteristic mixing coefficient was the vertical eddy diffusivity 

averaged over the flow depth. Sayre (1969) concluded that the rate of 

approach of the longitudinal concentration distribution from negative 

skewness to symmetry was quite slow, converging at times much greater 

than the beginning of the Taylor period. For natural streams, where 

transverse mixing usually controls longitudinal dispersion, Fischer 

(1967) concluded that 1) the convective period extends through 3 T^, 2) 

a transition period occurs between 3 T^ and 6 T^ during which time 

the growth of concentration variance is nearly linear but the one-

dimensional dispersion equation (Eq. 2-5) does not apply, and 3) the 

Taylor period extends beyond 6 T^. Elsewhere (Fischer et al., 1979), 

results of experiments in uniform channels show 1) generation of skewed 

concentration distribution up to 0.2 T„, 2) decay of the skewed distri- 

bution from 0.2 Tg to 1.0 Tg, 3) gradual approach toward Gaussian 

distribution beyond 1.0 Tg, A) linear growth of variance beyond 0.2 Tg, 

and 5) validity of dispersion equation beyond O.A Tg.
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Several approaches to modeling concentration distributions during 

the convective period have been presented. Yotsukura and Fiering 

(1964, 1966) developed a numerical solution to the two-dimensional

dispersion equation,

8c . 8c 8 , 8c..
8t 8x 8y 8y

where c = point concentration, u = point velocity in x direction, and 

Cy = point vertical diffusion coefficient. A logarithmic velocity 

profile was assumed. The results indicated that the characteristics of 

the longitudinal concentration distribution became approximately 

Gaussian at distances of several hundred times the depth. The authors 

questioned the feasibility of using this solution approach due to the 

substantial computer time required.

Because of this limitation, Fischer (1968b) developed a model 

which attempts to simulate the physical processes rather than solve the 

differential equation. The model divides the flow into streamtubes. 

Each time step consists of two parts: 1) the concentration is con-

verted within each streamtube according to the velocity of that tube, 

and 2) mass is transferred between streamtubes using an appropriate 

mixing coefficient, e, in a finite difference form of Fick's law,

Ac,
F = - e

A. .

where F = mass flux across boundary between streamtubes i and j ,

Ac. . = difference in concentration between streamtubes i and j, and 
i.J

£. . = distance between centerlines of streamtubes i and i. Fischer 

(1968b) applied this model to two cases. In natural streams where the 

transverse velocity profile dominates dispersion, streamtubes were
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placed side by side across the channel width so that the common 

boundary between streamtubes was in the x-y plane, where x is the 

direction of flow and y is the vertical direction. For two- 

dimensional flow in an infinitely wide channel, streamtubes were 

stacked vertically so that the common boundary between streamtubes was 

in the x-z plane, where z is orthogonal to x and y. For the 

latter case, with a logarithmic velocity profile, the numerical solu-

tion converged to a linear rate of variance increase consistent with 

Elder's theoretical dispersion coefficient (Elder, 1959).

McQuivey and Keefer (1976) presented a pure convective model which 

moves an instantaneous, completely-mixed injection of mass downstream 

according to the vertical velocity profile and includes no diffusion 

processes. This approach was found to reasonably simulate the longi-

tudinal concentration distribution during the initial stage of the 

convective period. For application in natural streams where transverse 

velocity variations are important, the flow was divided into stream- 

tubes placed side by side across the channel width. The mass in each 

streamtube was then moved downstream by convection according to the 

unique vertical velocity profile in each streamtube. Again, this 

approach appeared satisfactory only for the initial stage of the con-

vective period. A "multiple-convective-systems model" of the entire 

convective period was also presented. This consisted of 1) dividing 

the convective period into six or more subreaches, 2) convecting mass 

through the subreach according to the vertical velocity profile, 3) 

using the vertically-averaged concentrations at the end of the 

subreach as the initial "injection" into the following subreach, and 4) 

repeating steps 2 and 3. Comparison of model results to laboratory
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data and river data indicated close agreement. However, the authors 

and others (Sayre, 1977; Fischer, 1977) have noted that this multiple- 

convective- systems approach is lacking in meaningful physical similar-

ity to actual dispersion processes in real streams.

Two noteworthy analytical solutions to the concentration 

distribution in open channel flow are available. Cleary and Adrian 

(1973) presented analytical solutions to the two- and three- 

dimensional, convective-diffusive, partial differential equations which 

describe the concentration distribution of a tracer dye released as an 

instantaneous line source (two-dimensional case) or instantaneous point 

source (three-dimensional case) subject to no-flux boundary conditions 

at the river bottom, water surface, and banks. The channel was assumed 

rectangular with constant depth and infinite width for the two- 

dimensional case and finite width for the three-dimensional case. The 

velocity field was described by uniform velocity at all points in the 

flow. Directional diffusion coefficients were constant, but were not 

required to be identical. Longitudinal diffusion was included in both 

two- and three-dimensional solutions. Yeh (1976) and Yeh and Tsai 

(1976) presented analytical solutions to the two- and three- 

dimensional, convective-dispersive, partial differential equations 

which describe the steady-state concentration distribution of a 

continuously-released line source (two-dimensional case) or con-

tinuously-released point source (three-dimensional case) subject to the 

same no-flux boundary conditions and channel geometry as assumed by 

Cleary and Adrian. However, the spatial variation of velocity, verti-

cal diffusion, and transverse diffusion were expressed as power func-

tions of the vertical distance above the streambed. Longitudinal 

diffusion was neglected.



Buchberger (1979) and Buchberger and Sanders (1982) derived 

partial differential equations for one-dimensional dispersion in open 

channel flow with uniform lateral inflow (rainfall) assuming that the 

one-dimensional dispersion coefficient does not vary in the direction 

of flow. For the special case of a soluble pollutant applied uniformly 

over a dry impervious plane prior to rainfall, a solution to the 

dispersion equation for the rising hydrograph (unsteady, uniform flow) 

was shown to be

w
" = n
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where c = vertically-averaged pollutant concentration, w = pollutant 

mass initially applied per unit area, i = rainfall intensity, and t = 

time since beginning of rainfall. This solution assumes instantaneous 

uniform vertical mixing of the pollutant mass at the beginning of rain-

fall and is valid in the region bounded on the upstream end by the 

location of the kinematic wave front and on the downstream end by the 

limit of the initial pollutant application.



Chapter III 

MATHEMATICAL MODEL

A. Introduction

Solute transport in two-dimensional, steady, nonuniform flow 

(overland flow during rainfall) can be described by the following 

equation assuming that velocity components orthogonal to the flow 

direction are zero and that the longitudinal diffusion term is negli-

gible compared to the longitudinal convective t e m  (Yotsukura and 

Fiering, 1964):

+ u(x y) = i- [e (x y)3^ -r u(x,yj gy lEy(.x,yj g^ j

where c = point concentration, t = time, u = time-averaged point 

velocity, X = distance along the flow direction, y = vertical distance 

above the streambed, and = vertical mixing coefficient. The above 

equation is a second-order, linear, partial differential equation with 

variable coefficients for which an analytical solution is not available 

without restrictive assumptions regarding velocity profiles and uni-

formity of flow conditions. Therefore, numerical methods must be

employed to model in general this type of solute transport.

This study approaches solute transport by attempting to

mathematically simulate the dominant physical processes thought to be 

involved. The simulation takes the form of a two-dimensional, 

convection-dilution-diffusion model which assumes that conditions 

transverse to the flow direction are uniform.
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The model is valid in both the convective and Taylor periods. 

Although the influence of rainfall mixing on the lengths of these 

periods in overland flow has not been previously studied, one can 

easily estimate an upper limit for the convective period and conclude 

that this time could be very large. For instance, as rainfall inten-

sity approaches zero over laminar overland flow, the mixing coefficient

would be expected to approach the molecular diffusivity-generally 

“8 2
about 1 X 10 ft /sec. If the depth of flow is 0.01 foot, the 

Eulerian time scale (Tj.) is computed from Eq. 2-7 to be 2.8 hours. 

Using O.A Tg as an estimate for the convective period (Fischer et al., 

1979) results in a period of 1.1 hours. Furthermore, in many field 

applications, travel distances to the nearest gulley, stream, or storm- 

sewer can be relatively short— reemphasizing the need to investigate 

both convective and Taylor periods.

The model developed for this study is patterned after the Fischer 

flow layer model (Fischer, 1968b; Fischer, 1977; Fischer et al., 1979). 

Flow layers, whose longitudinal axes are aligned in the direction of 

Streamtubes, whose longitudinal axes are aligned in the direction of 

flow, are stacked vertically such that boundaries between flow layers 

are in approximately horizontal planes. A three-part computational 

sequence is completed during each time step. First, mass is converted 

within each flow layer according to the velocity profile. Since over-

land flow with rainfall is nonuniform, the velocities in each flow 

layer increase with increasing distance downstream. Second, the mass 

in each flow layer is diluted based on the ratio of flow depths before 

and after convection. Third, mass is diffused vertically between flow 

layers based on an appropriate vertical mixing coefficient which
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incorporates the effect of rainfall mixing. Longitudinal diffusion is 

generally considered to have a negligible effect on longitudinal dis-

persion (Fischer, 1968b; Fischer et al., 1979; Taylor, 1954; Yeh and 

Tsai, 1976; Yotsukura and Fiering, 1964) and is therefore not included 

in this study.

The model is used to investigate the following simplified case: 

an instantaneous, line-source injection of a soluble, conservative, dye 

tracer in steady, nonuniform, overland flow at Reynolds niunbers in the 

laminar range occurring over a smooth, impervious surface subject to 

rainfall. The following assumptions are employed: The width-to-depth 

ratio is sufficiently large that lateral boundaries have negligible 

effect on flow or dispersion characteristics. The initial injection is 

instantaneously, uniformly mixed. A cross-sectionally averaged mixing 

coefficient can be applied throughout the depth of flow. Transport of 

mass by splash droplets can be neglected.

B. Velocities and Depths

The velocity profile measurements published by Yoon (1970) and 

Yoon and Wenzel (1973) were used to derive new velocity profile equa-

tions for overland flow with rainfall. These equations were developed 

using a different approach than Yoon for three reasons. First, Yoon 

used von Karman's mixing length for turbulent flow to derive the veloc-

ity profile; however, the turbulence created by a raindrop impacting a 

thin sheet of moving liquid at a laminar Reynolds number is a different 

physical phenomenon than the model of eddy turbulence assumed by 

von Karman. Second, Yoon's velocity profile is not valid near the bed 

surface where it results in negative velocities. Third, simpler 

mathematical expressions of the velocity profile are needed to



integrate Eq. 2-6 to theoretically derive a one-dimensional dispersion 

coefficient.

Yoon measured velocity profiles in overland flow under rainfall 

intensities of 1.25, 3.75, and 15.00 inches per hour over slopes of

0.005 and 0.010 at Reynolds numbers ranging from 350 to 4000. From a 

plot of Darcy-Weisbach friction factor versus Reynolds number for flows 

without rainfall, Yoon concluded that the upper limit for laminar flow 

in his experiments occurred at Reynolds numbers between 800 and 1000. 

Shen and Li (1973) used Yoon's data as well as their own to come to a 

similar conclusion. Therefore, in order to restrict the present study 

to flows in the laminar Reynolds number range, only those profiles 

measured at Reynolds numbers of 800 or less were analyzed.

To investigate similarities between profiles, Yoon's velocity 

data were transformed for the present study using the dimensionless 

variables

20

u* = u/u
m

and

y* = y/y,m

where u = point velocity at distance y from bed surface, u^ = 

maximum point velocity in the profile, and y^ = distance from bed 

surface to u^. The transformed data are plotted in Figure 3-1. 

Separate profile curves were fit to the data below and above y* = 1.0.

For the lower profiles, two comparisons were made. In the first 

case, each profile was fit by least-squares regression to a second- 

degree polynomial,

^2
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Figure 3-1. Plot of Transformed Velocity Profile Data 
(Data Collected by Yoon, 1970)
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where the subscript £ indicates the lower profile. In general, the 

resulting polynomials did not pass through the point (0,0) and (1,1), 

even though from the no-slip boundary condition and from physical rea-

soning, the actual velocity profiles must pass through these two 

points. Therefore, artificial data at these points were included in 

the velocity profile data sets. The results of the regression analyses

are shown in Table 3-1. Because of the added artificial data, the

2
resulting coefficients of determination, r , for these regressions were 

not meaningful. Instead, Table 3-1 shows values for a Mean Residual 

defined as

Mean Residual =
1 ^ 2  
- I (u* - u*)^ 
n . , 1 11=1

where u* = ith measured value of u*, u* = estimate of u* based on 

polynomial equation, and n = total number of measured data points.

In order to obtain a general velocity profile equation for any 

flow condition within the range of those considered in Table 3-1, an 

attempt was made to correlate the polynomial coefficients to flow 

conditions. Since the values for coefficient were very small and

since this coefficient should theoretically equal zero (zero velocity 

at bed surface), its value was taken as zero for the general velocity 

profile equation. Coefficients and were related to flow

conditions by multiple linear regression.

The choice of flow parameters used in the regression of B̂  ̂ and 

was based on functional relationships used by Yoon (1970) and Shen 

and Li (1973). For overland flow under rainfall, Yoon presented

= function (u, y , S , k', jj, p, i, v, d, n» g)
O o U



Results of Polynomial Regression for Lower Portion of Velocity Profile

Table 3-1

Rainfall 
Intensity, i 

(in/hr)
Reynolds 

Number, R
e

Bed
Slope,

Best-Fit Polynomial 
Coefficients Number of 

Measured 
Data Points, n

Mean
Residual

1.25 350 0.005 0.019 1.667 -0.711 10 0.057
1.25 450 0.010 0.010 1.680 -0.688 5 0.034
1.25 550 0.005 0.021 1.993 -1.022 11 0.026
1.25 800 0.005 0.027 2.224 -1.272 12 0.062
1.25 800 0.010 0.021 2.243 -1.281 11 0.028

3.75 350 0.005 0.029 1.663 -0.723 19 0.058
3.75 450 0.010 0.027 1.948 -0.996 15 0.072
3.75 550 0.005 0.044 2.095 -1.167 18 0.066
3.75 800 0.005 0.050 2.044 -1.124 19 0.069
3.75 800 0.010 0.030 2.221 -1.272 16 0.057

15.00 350 0.005 0.021 2.042 -1.079 8 0.064
15.00 450 0.010 0.035 2.291 -1.352 10 0.085
15.00 550 0.005 0.034 2.103 -1.156 7 0.099
15.00 800 0.005 0.028 1.979 -1.024 9 0.081
15.00 800 0.010 0.035 2.527 -1.594 8 0.104

kj
LO
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where = boundary shear stress, u = mean flow velocity, y^ = depth 

of flow, = bed slope, k' = boundary roughness, p = dynamic viscosity 

of water, p = density of water, i = rainfall intensity, v = impact 

velocity of raindrop, d = size of raindrop, r) = parameter describing 

raindrop pattern, \  = parameter describing raindrop shape, and g = 

acceleration of gravity. He rearranged these variables into dimension-

less groups as follows:

P
= function

u

Vg y.
s .

p i y.
n. x) (3-1)

Vg ^

Yoon concluded that 1) k'/y is negligible over a smooth surface, 2) \
s

-2
was constant throughout the tests, 3) the effect of n on x^/(pu ) 

and on the velocity profile was negligible for the two raindrop pat-

terns investigated, 4) (p i y )/p and v/^g y are poorly correlated
s s

to ^q/(P 0^)» 5) the effect of u/^g y^ appears to be of secondary 

importance for the slopes tested, and 6) (pid)/p is essentially pro-

portional to i, since raindrop size was held constant. Therefore, 

Eq. 3-1 was reduced to 

I
— ;r = function (R , S , i) 
-2 e’ o’

P u

From a similar analysis, Shen and Li (1973) presented 

^s
--- = function (R , S , i)
y e’ o’

and

^  = function (R , S^, i) 
u
e
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where y = flow depth under rainfall, u = flow velocity under rainfall, 
s

and the subscript e indicates the element of equivalent flow without 

rainfall.

Based on the above analyses, it was assumed for the present study

that the polynomial coefficients describing the velocity profile under

rainfall would be a function of R , S , and i. Results of the mul-
e’ o’

tiple linear regression for polynomial coefficients and are

B, = 0.415 R (3-2)
£ e

and

n QOQ n -300
(3-3)C = -0.741 S R

£ o e

with coefficients of determination, r , of 0.60 and 0.57 respectively. 

The addition of a third independent variable in each regression did not 

increase the explained variation sufficiently to warrant its inclusion 

in the final equations, based on an F test at a = 0.01. Therefore, 

the final general velocity profile from this approach is

u* = (0.415 - (0.741 R^°'^^^) y*^ (3-4)

A second approach to obtaining a general velocity profile equation 

for y* < 1.0 was also investigated. A second-degree polynomial 

equation was fit by regression to all data below y* = 1.0, including 

artificial data points at (0,0) and (1,1). The resulting equation was

u* = 0.056 + 1.957 y* - 1.034 Y' (3-5)

with a Mean Residual of 0.075. This equation is very similar to the 

theoretical velocity profile equation for laminar flow.

u*= 2 y* - y*^ (3-6)
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A comparison of Eq. 3-6 to all data below y* = 1.0 resulted in a mean 

residual of 0.091.

Equations 3-4, 3-5, and 3-6 are compared in Table 3-2, where it is 

shown that the lowest average Mean Residual results from the use of 

Eq. 3-5. However, at lower rainfall intensities and lower Reynolds 

niunbers, where one would expect the flow to be the most laminar, 

Eq. 3-6 based on the theoretical laminar velocity profile appears to 

give an equal or better fit. Since the tests conducted for the present 

study covered the lower rainfall intensity range (2 to 5 inches per 

hour) and included a Reynolds number range (100 to 400) equal to and 

less than the lower range of Yoon's data, the theoretical laminar 

velocity profile equation, Eq. 3-6, was chosen to describe the lower 

portion of the profile. A plot of this equation is shown in 

Figure 3-1.

As shown in Figure 3-1, the upper portion of the profile 

(y* > 1.0) displays significant scatter, partly because of measurement 

difficulties experienced by Yoon which were introduced by surface ten-

sion and water surface irregularities. An attempt to fit each profile 

to a polynomial equation and then correlate polynomial coefficients to 

flow parameters was not successful due to lack of correlation. The 

data were then grouped according to rainfall intensity, and a poly-

nomial equation was fit to each group. However, when these equations 

were applied to the experimental flow conditions, negative velocities 

were computed near the water surface for some flows. To avoid this 

result, the depths were transformed using the dimensionless variable y 

defined as



Comparison of General Velocity Profile Equations for Lower Profile

Table 3-2

Rainfall 
Intensity, i 

(in/hr)
Reynolds
Number, R 

’ e

Bed
Slope, S

Number of
Measured

Data Points, n 
o

Mean Residual

Eq. 3-4^^^ Eq. 3-5^^^ Eq. 3-6^^^

1.25 350 0.005 10 0.085 0.092 0.085
1.25 450 0.010 5 0.171 0.084 0.066
1.25 550 0.005 11 0.069 0.023 0.033
1.25 800 0.005 12 0.084 0.061 0.091
1.25 800 0.010 11 0.171 0.040 0.067

3.75 350 0.005 19 0.065 0.090 0.083
3.75 450 0.010 15 0.152 0.069 0.079
3.75 550 0.005 18 0.092 0.066 0.093
3.75 800 0.005 19 0.099 0.068 0.093
3.75 800 0.010 16 0.096 0.061 0.088

15.00 350 0.005 8 0.082 0.055 0.073
15.00 450 0.010 10 0.139 0.094 0.120
15.00 550 0.005 7 0.131 0.093 0.117
15.00 800 0.005 9 0.176 0.074 0.091
15.00 800 0.010 8 0.128 0.134 0.165

Average 0.116 0.074 0.090

= (0.415
.0.047 „ 0. 
1 R

e “ ') y* - (0.741 S R 
o e

322) y.2

= 0.056 + 1.957 y* - 1.034 y*^
(3)

U* = 2 y* - y*
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y - y.
y  =

m

m
(3-7)

A plot of y versus u* is shown in Figure 3-2. These data were

grouped according to rainfall intensity. A regression analysis fit

each data group to a second-degree polynomial,

• ^̂2 
u* = A + B y + C y 

u u u

where the subscript u indicates the upper profile. Since the profile 

must pass through point (1,0), artificial data points at this location 

were included in each data group. The results are shown in Table 3-3.

A general relationship for these polynomial coefficients was 

determined. A constant value of 1.0 was chosen for coefficient A
u

since its value should theoretically be 1.0 (u* = 1.0 at y = 0) and 

since the best-fit values of this coefficient were all close to 1.0. 

Coefficients B and C were related to rainfall intensity by fit-

ting a straight line between coefficient values for 1.25 and 3.75 

inches per hour and between coefficient values for 3.75 and 15.00 

inches per hour. The following set of equations resulted.

B = 
u

-0.404 + 0.0492i, i < 3.75 in/hr

-0.211 - 0.0022i, i > 3.75 in/hr

-0.199 + 0.0060i, i < 3.75 in/hr

-0.217 + O.OllOi, i > 3.75 in/hr
C = 
u

(3-8)

(3-9)

Therefore, a general equation for the upper portion of the profile 

becomes

u * = 1 . 0  + B y + C y 
u u

~2 (3-10)

where B^ and C^ are given in Eqs. 3-8 and 3-9. Plots of Eq. 3-10 

for 1.25, 3.75, and 15.00 inches per hour are shown in Figure 3-2.
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Figure 3-2. Plot of y Versus u*
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Table 3-3

Results of Polynomial Regression for 
Upper Portion of Velocity Profile

Rainfall 
Intensity, i 

(in/hr)

Best-Fit Polynomial^^^ 
Coefficients Number of 

Measured 
Data Points, n

Mean
ResidualA

u
B
u

C
u

1.25 1.005 -0.342 -0.191 17 0.116

3.75 0.992 -0.219 -0.176 32 0.095

15.00 1.006 -0.244 -0.053 20 0.081

(1) Polynomial coefficients defined by u* A + B y + C y
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must be found. Therefore, values of u and y from Yoon's measure-
m "̂ m

ments were related to flow and rainfall variables by regression. A 

functional relationship similar to that for the lower profile poly-

nomial coefficients was assiamed--that is, u and y are functions of 

R^, S^, and i. However, since a high correlation was expected between 

the maximum and mean velocities and between the depth of the maximum 

velocity and the flow depth, u and y^ were used as independent 

variables in place of in the regression, since

To use these profile equations, a relationship for u^ and

u y,
R = ---^
e V

and V remains essentially constant. The functional relationship 

becomes

u , y = function (u, y , S , i) 
m ’ •'m ’ •'s’ o’

The data are shown in Table 3-4. The resulting regression equations 

are

, _0.801 .-0.071u = 1.216 u 1
m

_ , 1.138 .-0.078y = 1.361 y i
•'m •’s

(3-11)

(3-12)

with coefficients of determination, r , of 0.96 and 0.86, respectively. 

In Eqs. 3-11 and 3-12, the units of u^ and u are feet per second;

the units of y and y are feet; and the units of i are inches

per hour. The addition of a third independent variable in each regres-

sion did not increase the explained variation sufficiently to warrant

its inclusion in the final equations, based on an F test at a = 0.01.

Flow depths and mean velocities can be computed using the Darcy-

Weisbach equation. Rearranging Eq. 2-2,



Table 3-4

Measured Velocities and Depths ( 1)

Rainfall 
Intensity, i 

(in/hr)
Reynolds 

Number, R
e

Bed
Slope,

Mean
Velocity, u 
(ft/sec)

Maximum 
Velocity, u 

(ft/sec)

Flow 
Depth, y 

(ft) ®

Depth of Max 
Velocity, y 

(ft) “

1.25 350 0.005 0.315 0.475 0.0118 0.0088
1.25 450 0.010 0.466 0.740 0.0102 0.0063
1.25 550 0.005 0.414 0.565 0.0143 0.0104
1.25 800 0.005 0.540 0.730 0.0160 0.0129
1.25 800 0.010 0.705 0.890 0.0127 0.0092

3.75 350 0.005 0.300 0.405 0.0129 0.0092
3.75 450 0.010 0.438 0.578 0.0118 0.0083
3.75 550 0.005 0.396 0.480 0.0155 0.0117
3.75 800 0.005 0.494 0.638 0.0179 0.0129
3.75 800 0.010 0.638 0.752 0.0143 0.0092

15.00 350 0.005 0.245 0.340 0.0168 0.0100
15.00 450 0.010 0.398 0.470 0.0135 0.0092
15.00 550 0.005 0.361 0.425 0.0178 0.0117
15.00 800 0.005 0.446 0.575 0.0206 0.0125
15.00 800 0.010 0.554 0.615 0.0171 0.0096

^^^From data measured by Yoon (1970).

US
K)
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=
f q

8 g s.

1/3
(3-13)

The friction coefficient, f, can be computed from Eq. 2-4. The 

discharge per unit width, q, can be computed from

q = IX

where x = distance from top of the plane. When units of i are

inches per hour, when units of x are feet, and when units of q are 

cubic feet per second per foot width, q can be computed from

q = (2.315 X 10"^)ix (3-14)

Mean velocity is then

u = q/y. (3-15)

Mean velocity can also be computed from Eqs. 3-6 and 3-10. 

Consider

U = U U' 
p m

(3-16)

where u^ = mean velocity (in units of feet per second) based on the 

previously derived velocity profile, u^ = maximum velocity in the pro-

file (in units of feet per second), and u* = mean of the dimensionless 

velocity profile, u*, throughout the flow depth, u* can be expressed

as

u* = U)„ u* + U) u-
u u

(3-17)

where U), = fraction of total depth included in lower profile = y /y ;Jc in s

U)̂  = fraction of total depth included in upper profile = (y^ - y„,)/yg> 

and

u* = r u* dy*
^ Jo

(3-18)
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and

u* = i u*
“  Jo

dy (3-19)

Substituting Eqs. 3-6, 3-10, 3-17, 3-18, and 3-19 into Eq. 3-16,

u = u
p  m

■ y,
^ j (2 y* - y*̂)dy* * ̂

•'O

m
1

1 (1.0 + B
•̂0

y +  y )dy

After integrating and rearranging.

- _ % [2
y™ (y. - yn,)(i.o +m  s  m

J B + I C )1 
2 u  3 u J

(3-20)

Mean velocities computed from Eqs. 3-15 and 3-20 will not exactly 

coincide due to the different nature of their derivations. A compari-

son of these two equations is shown in Table 3-5 for a range of hypo-

thetical flow conditions typical of the flows investigated for this 

study. Table 3-6 compares Eqs. 3-15 and 3-20 to measured data for the 

lower rainfall intensities and lower Reynolds numbers.  To make the 

velocity profiles consistent with Darcy-Weisbach mean velocities, the 

ratio u/Up was added to the profile equations as a correction factor. 

The final velocity profile equations are therefore written as

u« =

C.  Dilution

(u/Up)(2y’’' - y’*'̂), y* £ 1.0

(u/Up)(1.0 +  y +  ŷ), > 1-0
(3-21)

Pollutant concentration will decrease as it travels down the 

overland flow plane due to the increasing depth of flow. Consider a 

parcel of fluid in flow layer j  at point A on the overland flow 

plane as shown in Figure 3-3. The volume of this parcel of unit width

is 6x • 6y. . • 1, where 
J



Comparison of Mean Velocity Equations for Hypothetical Flows

Table 3-5

Rainfall 
Intensity, i 
(in/hr)

Bed
Slope,

Distance from 
Top of Plane, x 

(ft)
Reynolds

Number

Mean Velocity (ft/sec)

Eq. 3-15^^^ Eq. 3-20^^^

2.0 0.001 35 162 0.104 0.132
2.0 0.015 35 162 0.256 0.279
2.0 0.030 35 162 0.323 0.337
5.0 0.001 35 404 0.177 0.194
5.0 0.015 35 404 0.436 0.407
5.0 0.030 35 404 0.549 0.492

U)Cn

Assuming kinematic viscosity is 1 x 10 ft /sec.

''Using Eqs. 2-4, 3-13, and 3-14.
(3)
''Using Eqs. 3-8, 3-9, 3-11, 3-12, and 3-13.



Table 3-6

Comparison of Computed and Measured Velocities (1)

Rainfall 
Intensity, i 

(in/hr)
Bed

Slope,
Reynolds
Number, R 

’ e

Mean Velocity (ft/sec)

Computed 
by Eq. 3-15

Computed 
by Eq. 3-20 Measured

1.25 0.005 350 0.315 0.329 0.315

1.25 0.010 450 0.475 0.458 0.466

3.75 0.005 350 0.291 0.297 0.300

3.75 0.010 450 0.440 0.414 0.438

OJ
O'

(1)Measured velocities taken from data collected by Yoon (1970).
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Flow Direction

Figure 3-3. Change in Volume of a Parcel of Fluid of Fixed Length 
Moving Through Flow Layer in Nonuniform Flow
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«yj,A=“jy3,A (3-22)

and where Y a ~ depth of water surface at point A, and a. = frac-s > A j

tional height of flow layer j relative to depth of water surface.

For a given mass, M, contained within this parcel, the parcel concen-

tration at point A is

M
C.
j ’* • «yj,A • '

(3-23)

Similarly, for point B,

C.
M

j’® • 3
(3-2A)

From Eqs. 3-22, 3-23, and 3-24, the ratio of concentrations at points

A and B is

'"j.B *^j,A ''s,A

Solving for the concentration at point B,

y.
C. r, = C.

's,A
j.B j,Ay^^g

(3-25)

or, the concentration of a fixed-length parcel traveling within a 

flow layer in nonuniform flow, considering only pure convection, is 

equal to its upstream concentration times the ratio of upstream to 

downstream flow depths.

D. Vertical Diffusion

For this study, vertical movement of solute in laminar, overland 

flow is assumed to be influenced by two processes: 1) continuous 

molecular diffusion, and 2) short-term, local mixing due to raindrop 

impact. For movement by molecular diffusion, Fick's law describes
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solute mass flux as proportional to the concentration gradient in the 

direction of solute movement. Stated mathematically,

F = - e ^y m 9y (3-26)

where F = solute mass flux in the vertical direction, e = diffusion 

coefficient due to molecular diffusion, and C = solute concentration. 

Application of conservation of mass to a control volume using Fick's 

law results in the partial differential equation.

3C _ â c
at ^m . 2 ay

(3-27)

where t = time.

Solute mixing due to raindrop impact is more difficult to 

precisely describe quantitatively. However, qualitative descriptions 

of raindrop impact behavior in stagnant liquid have been presented by a 

number of authors (Macklin and Metaxas, 1976; Engle, 1966; Harlow and 

Shannon, 1967; Mutchler, 1967; Wang and Wenzel, 1970). Following drop 

impact, a crown of liquid is thrown upward along the perimeter of the 

drop. As the drop penetrates further, the height of the crown 

increases and a cavity formed in the liquid layer increases in size. 

During this time, local velocity directions are downward beneath the 

cavity, outward along the sides of the cavity, and upward into the 

crown. For shallow liquid depths, such as those considered in this 

study, the shape of the cavity is cylindrical and the bottom of the 

cavity penetrates to the bed surface. At maximum crown height, spray 

droplets are formed at the peak of the crown and are thrown outward, 

followed by recession and disintegration of the crown and collapse of 

the cavity. At this point, local velocities have reversed direction



and move radially inward. As the cavity collapses, a jet of liquid may 

rise above the water surface at the center of the former cavity. The 

time to maximum crater diameter for shallow liquid layers has been 

shown to be several hundredths of a second or less (Mutchler, 1967; 

Wang and Wenzel, 1970). Defining the effect of raindrops on vertical 

mixing is further complicated by their random nature in time and space.

Due to the complexity of mathematically describing these physical 

processes, simplifying assumptions were made. It was assumed that the 

vertical mixing of solute due to raindrops could be modeled using a 

Fickian-based diffusion model, similar to Eq. 3-27, with a vertically- 

averaged, time-averaged, vertical diffusion coefficient. Therefore, 

the effect of both molecular diffusion and raindrop mixing can be 

expressed as

40

e = e + e 
y m y ,r

(3-28)

where e = total vertical diffusion coefficient and e = vertical
y y ,r

diffusion coefficient due to raindrop mixing. The general form of 

Eq. 3-27 for both molecular diffusion and raindrop mixing then becomes

DC 3^C
(3-29)

Consider the vertical diffusion of solute concentration C. in
J

flow layer j where the lower and upper boundaries of the flow layer 

are located r and s distances from the bed surface, respectively. 

The initial condition is

C(y,t)
t=0

0, y < r

= C(y,0) = { Cj, r < y < s 

0, y > s

(3-30)
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The solution to Eq. 3-29 becomes

C(y,t) = ;
c.

r n e t 
y

exp -(y - jy
4 e

y t
(3-31)

where the integrand is the solution to Eq. 3-29 for 

C(y,0) = 6(y - |)

with 6( ) representing the Dirac delta function. Transforming 

Eq. 3-31 by setting

z = (y - 0

£y t

results in

C(y,t) =
C.

_ _1 

■yjn

V - s

J4 e t
y

V4 e t
y

-z
dz

C.
= - -1

y -

■PT y  _ 2

e  ̂ dz

f V4" T T1J 0
y_i.

J 0

V4 e t
y “Z ,

e dz

C.
= -J- 

2 erf
- r ^

erf
'y - s N

(3-32)

where erf is defined as the error function. With no-flux boundary 

conditions at the bed surface and water surface, the solution for 

C(y,t) for 0 < y < y^ is the summation of Eq. 3-32 for sets of R 

and S which define the lower and upper boundaries of flow layer j 

as well as the lower and upper boundaries of all image sources of 

flow layer j. The resulting solution is written
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C(y,t) = ^  I
n=-oo

erf R(n)^
erf

V4 s t
y

(y - S(^)^

V y

(3-33)

where

R(n) =

S(n) =

nYs + r, 

(n+l)y^ - r,

nys + s, 

(n+l)y^ - s,

for all even n 

for all odd n

for all even n 

for all odd n

and where n is an integer. In the application of Eq. 3-33, n is 

taken in steps beginning with 0, ±1, ±2, etc. until the incremental 

increase in C(y,t) is below a predetermined cutoff level.

E. Proposed Model

A simplified schematic of the proposed model is shown in Figure 

3-4. As shown in this figure, the flow field is divided into flow 

layers. Each flow layer is further divided into fixed grid cells of 

equal length. Ax. During each computational time step, AT, mass is 

convected within its flow layer, diluted due to the increase in depth, 

and vertically diffused. Details of the procedures are described 

below.

1. Convection. Due to the nonuniform nature of overland flow 

with rainfall, the velocity within a flow layer is a function of 

distance from the top of the plane. A velocity U(j,k) is assigned to 

each grid cell, where j = flow layer number, counting from the bed 

surface up, and k = cell number, counting downstream from the point of 

injection. The value of U(j,k) is determined from Eq. 3-21 at the 

center of the grid cell.
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a) Slug Injection and Velocity Profile

t
b) Convection and Dilution
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c) Vertical Diffusion

Figure 3-4. Simplified Schematic of Proposed Model for Solute 
Transport in Overland Flow with Rainfall
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Pollutant mass is contained within pollutant cells. At injection, 

pollutant cell boundaries are identical to grid cell boundaries as 

shown in Figure 3-5a. However, during convection, pollutant cell 

boundaries move downstream at the velocity of the flow layer, and at 

the end of the computational time step, AT, the location of the pollu-

tant cell boundary will not in general be identical to one of the fixed 

grid cell boundaries as shown in Figure 3-5b. Also, due to nonuniform 

velocities within the flow layer, pollutant cell boundaries tend to 

spread apart during convection. Therefore, each pollutant cell boun-

dary is convected separately. The convection is simulated by moving 

the boundary through successive downstream grid cells until the summa-

tion of Ax/U(j,k) equals AT. At that point, the distance between 

the pollutant cell boundary and the nearest grid cell boundary is 

recorded as a residual (Figure 3-5b). Then the pollutant cell boundary 

is temporarily adjusted to its nearest grid cell boundary (Figure 3-5c) 

for the dilution and diffusion steps. The pollutant cell is then 

returned to its exact location prior to the next convection step 

(Figure 3-5d). When adjacent pollutant cell boundaries spread far 

enough apart to span the distance of two grid cells, a new pollutant 

cell boundary is created, and the pollutant cell is split into two 

cells. The pollutant mass is equally divided between the two cells.

2. Dilution. Following convection, the concentration of the 

pollutant cell is adjusted due to the increase in flow depth in the 

downstream direction. This adjustment is made by multiplying the cell 

concentration by the ratio of flow depths before and after convection 

(Eq. 3-25). Flow depths are computed using the Darcy-Weisbach equa-

tion, Eq. 3-13, with a friction factor computed from Eq. 2-4.
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for Dilution and Diffusion Steps

Prior to Next Convection Step

Figure 3-5. The Convection Step
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3. Vertical Diffusion. To facilitate vertical diffusion 

computations, the location of a pollutant cell is adjusted as shown in 

Figure 3-5c to match the grid cell configuration. All cells which are 

then aligned in one vertical column comprise a "cell column." Vertical 

diffusion calculations proceed independently from one cell column to 

the next. Equation 3-33, with t = AT, is applied separately to each 

pollutant cell within a cell column, and then the individual solutions 

are added to yield the final diffused concentrations. In applying 

Eq. 3-33 for the present study, the value of n was incremented from 0 

to ±1, ±2, etc. until the incremental increase in C(y,AT) was less 

than 0.5 percent of C^. The resulting truncation error was then 

distributed uniformly throughout the cell column. The concentration 

computed at the mid-depth of the cell was used as the concentration for 

the entire cell.

4. Computer Program. The procedures described above were coded 

into a FORTRAN V computer program. A program listing is included in 

Appendix A.

F. Model Testing

Analytical solutions are not available for model testing of 

nonuniform flow with rainfall impact. Instead, the model was tested 

for steady, uniform flow (no rainfall) using the analytical solutions 

described below.

1. Cleary and Adrian Solution. A two-dimensional, analytical 

solution for an instantaneous point source in a uniform velocity field 

was presented by Cleary and Adrian (1973). Figure 3-6 shows schemati-

cally the concentration distribution resulting from the solution when 

only vertical mixing is considered.
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Figure 3-6. Concentration Distribution of Cleary and Adrian 
(Neglecting Longitudinal Diffusion)

C=IOOO

Ax
o) Numerical Model

J û y

h- *1Ax
b) Grid of 36 Point Sources 

for Analytical Solution

Figure 3-7. Middepth Injection Used for Cleary and Adrian Test



The numerical model was tested against the Cleary and Adrian 

solution for a source introduced instantaneously at flow middepth under 

the steady, uniform conditions described in Table 3-7. In this table, 

discharge was computed from Eq. 3-14 using i = 3 inches per hour and 

X = 35 feet. The parameter f was computed using Eq. 24 with i = 

3 inches per hour. Depth of flow and mean velocity were computed from 

Eqs. 3-13 and 3-15, respectively. Longitudinal diffusion was assumed 

to be negligible.

To simulate a middepth injection, the source was introduced in the 

numerical model as a concentration of 1000 within a single grid cell 

located in the middle flow layer as shown in Figure 3-7a. Therefore, 

the total mass injected was

M . , = 1000(Ax • Ay • 1)
numerical ■’

where Ax and Ay are defined in Figure 3-7.

Since the analytical solution is valid only for a point source (in 

two dimensions), a grid of point sources was used as shown in Figure 

3-7b to represent a uniform concentration within the area equivalent to 

a grid cell. Therefore the mass of each point source was equal to

_ 1000(Ax ♦ Ay • 1) 
analytical 36

The sum of the 36 individual solutions was compared against the 

numerical model results. Details are contained in Appendix B.

For each test, the value of the dimensionless group

(Ay)^
AT • e

48

was varied until the difference between model result and analytical 

solution was minimized. The significance of this dimensionless group
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Table 3-7

Flow Conditions for 
and Yeh

Cleary and Adrian Test 
and Tsai Test

Discharge Per Unit Width, q 0.0024255 ft^/sec

Kinematic Viscosity, v 0.00001 ft^/sec

Friction Coefficient, f 0.2721

Acceleration of Gravity, g 32.2 ft/sec^

Bed Slope, 0.015

Depth of Flow, y^ 0.007455 ft

Mean Velocity, u 0.3254 ft/sec

Vertical Mixing Coefficient, 30 X 10  ̂ft^/sec
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as follows. The numerator is a measure of the distance between flow

layers. The denominator is a measure of the distance over which the

system is able to diffuse mass during the time interval AT. For a

2
large value of (Ay) /(AT • £y) > the distance between flow layers is

large relative to the distance over which the system is able to diffuse

2
mass. For a small value of (Ay) /(AT • £y)» the system is able to 

diffuse mass over distances much greater than Ay. Because the compu-

tational scheme uses the concentration at middepth of the flow layer as 

the average cell concentration, accuracy is greater when the mass is 

spread over many flow layers than when spread over few flow layers.

Model tests were conducted using 7, 11, and 19 flow layers. All 

results are contained in Appendix B. The results using only 11 flow 

layers are shown graphically in Figure 3-8 and are typical of those

obtained using 7 and 19 flow layers. A review of all tests indicates

2
that the greatest accuracy is achieved when (Ay) /(AT • e^) < 1.25.

Within this range, the mean deviation was not greater than 0.6 percent

of the cross-sectional average concentration. This value of 1.25 was

2
therefore selected as the upper limit for (Ay) /(AT • e^) for all 

subsequent model runs presented in this study.

Based on these test results, it appears that the number of 

flow layers, within the range investigated, is not a major factor 

affecting accuracy. From the practical view of adequately defining

the velocity profile, a minimum of 11 flow layers was used in all 

subsequent model runs.

in determining the accuracy of diffusion calculations can be explained

2. Yeh and Tsai Solution. A two-dimensional, steady-state,

analytical solution for a continuously-released point source in shear
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Figure 3-8. Comparison of Numerical Model (Using 11 Flow Layers) 
to Cleary and Adrian Solution
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Figure 3-8. continued



53

Figure 3-8. continued



54

flow was presented by Yeh and Tsai (1976). The velocity profile was 

expressed as a power function of the vertical distance above the 

streambed. Only diffusion in the vertical direction was considered.

The numerical model was tested against this solution for a source 

introduced continuously at flow middepth under the same steady, uniform 

flow conditions described in Table 3-7. Thirteen flow layers were used 

in these tests. The velocity profile was defined by

u = 0.7488

where u = local velocity at vertical distance y from the streambed.

The source was introduced in the numerical model as a continuous 

injection of concentration 1000 within the middepth grid cell. There-

fore, the rate of mass injection was

_ 1000(Ax • Ay • 1)
numerical Ax/u ^

midpt

where Ax and Ay are defined in Figure 3-7a and u  ̂= local 

velocity at middepth.

For the analytical solution, multiple point sources were used to

simulate the areal coverage of injection in the numerical model as done

for the Cleary and Adrian test. So, the rate of mass injection of each

point source was equal to M . , divided by the total number of
numerical

point source injections.

In each test, the ratio Ax/AT was varied to determine its 

influence on the response of the numerical model compared to the analy-

tical solution. The response was examined for a point located eight 

feet down the plane from the point of injection. Results are shown in 

Figure 3-9 and Table 3-8 for Ax/AT values ranging from 0.5 u to 

3.0 u. These results indicate a mean deviation from the analytical
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Figure 3-9. Graphical Comparison of Numerical Model to 
Yeh and Tsai Solution
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Table 3-8

Tabular Comparison of Numerical Model to 

Yeh and Tsai Solution^^^

Time
Since

Mean Cross-Sectional Concentration 
Computed By Numerical Model 

8 Feet Downstream from Injection

Ax/AT
.IJ U J.UU
(sec) 0.5 u 0.75 u 1.0 u 2.0 u 3.0 u

31.2 76.41 78.51 79.57 79.70 79.42
32.2 77.23 78.96 80.42 80.35 80.37
33.3 77.31 79.26 80.17 81.27 80.38
34.3 77.30 79.76 78.71 79.31 79.35
35.3 77.62 80.72 78.33 78.17 79.26
36.4 77.68 81.61 79.58 79.55 79.40
37.4 77.81 81.55 79.65 80.54 79.41
38.5 78.18 80.86 79.73 80.68 79.80
39.5 78.36 80.23 79.93 80.64 80.30
40.5 78.81 80.44 79.98 79.96 80.15
41.6 78.89 80.48 79.73 78.94 79.43

Mean 77.78 80.22 79.62 79.91 79.75

Mean^^^
Deviation 1.85 0.98 0.41 0.75 0.40

Mean^^^
Deviation
Percent 2.3 1.2 0.5 0.9 0.5

^^^Mean cross-sectional concentration from Yeh and Tsai solution = 
79.63.

(2) n
Mean deviation = (1/n) 1 C. - 79.63

i=l ^

(3)

where n = number of concentration values
C, = concentration value 
1

M j • Mean deviationMean deviation percent = -------------  x 100
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solution of less than 1.0 percent for Ax/AT > 1.0 u. A comparison of

vertical concentration distributions for Ax/AT = 1.0 u is shown in

Figure 3-10. In all subsequent model runs presented in this study,

Ax/AT was set between u and u (u = maximum velocity within the
m m

cross section). The value of u^ generally ranged between 1.2 u and

1.8 u.

Further details of these tests are included in Appendix C.

3. Elder's Theoretical Turbulent-Flow Dispersion Coefficient. 

Elder (1959) investigated dispersion in steady, uniform, turbulent flow 

down an "infinitely-wide" plane. He used the following logarithmic 

velocity profile

u
u = Û + —  (1 + £n ^ )  

K  ̂ y ^s
(3-34)

where u = mean velocity, u^ = shear velocity = Vg Yg S^, g = accelera-

tion of gravity, y^ = flow depth, = bed slope, K = von Karman con-

stant, and y = vertical distance above bed surface. Assuming that the 

mixing coefficients for momentum and mass are the same in turbulent 

flow based on the Reynolds analogy, he derived

e = K y (1 - ^) u
y s
• 's

(3-35)

Elder substituted Eqs. 3-34 and 3-35 into Eq. 2-6 and solved for the 

longitudinal dispersion coefficient, D. Taking von Karman's constant 

to be 0.410, he found

D = 5.86 y u 
•'s s

(3-36)

Elder used a dye tracer in turbulent flow and experimentally measured 

D within eight percent of Eq. 3-36.



Legend; o Numerical Model 
—  Yeh and Tsai Steady-State Solution

Ui
00

Figure 3-10. Comparison of Concentration Distributions of Numerical Model (AX/AT = 1.0 u) and 
Yeh and Tsai Solution at 8 Feet Downstream from Injection
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The mean cross-sectional value for using Eq. 3-35 is (Fischer

et al., 1979)

e = 0.067 y u 
y •’ s s (3-37)

This constant value for along with Eq. 3-3A can be substituted

into Eq. 2-6, as shown in Appendix D, to yield

D = 6.58 y u 
s s (3-38)

if von Karman's constant is taken to be 0.410 as assumed by Elder 

(1959), or

D = 6.91 y u 
■'s s (3-39)

if von Karman's constant is taken to be 0.4 as assumed by Schlichting 

(1979).

Equations 3-38 and 3-39 were used to test the numerical model in a 

manner similar to Fischer (1968b). An instantaneous injection, com-

pletely mixed in the cross section, was simulated in the numerical 

model using Eq. 3-34 for the velocity profile and Eq. 3-37 for the 

vertical mixing coefficient. The variance of the distribution of the 

vertically-averaged concentration in the direction of flow is plotted 

versus time since injection. After the convective period, the variance 

should increase linearly with time according to Eq. 2-5, and the longi-

tudinal dispersion coefficient can be computed from 

.2

(3-40)D = i ^
2 At

where = variance of the distribution of the vertically-averaged 

concentration along the x axis (Fischer, 1966; Holley and Harleman, 

1965).
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The numerical model was tested using similar flow conditions as 

investigated by Elder (1959). This included a relationship for the 

maximum velocity (at the water surface) found by Elder for his flow 

conditions,

— / nc. 0.63u = 6.496 y 
o s

where units of y are feet and units of u are feet per second.
s o

Data used in the model test are listed in Table 3-9.

A plot of variance versus time since injection is shown in

Figure 3-11. Application of Eq. 3-40 to Figure 3-11 results in a

2
dispersion coefficient of approximately 0.0108 ft /sec. Equations 3-38

2
and 3-39 yield dispersion coefficients of 0.0094 and 0.0099 ft /sec, 

respectively--a difference of 13 and 8 percent from the numerical model 

result.

From Eq. 2-7, an estimate of the Eulerian time scale is

2
^s

T„ = -^ = 19.3 sec 
E e

y

From Fischer et al., (1979), an estimate of the time when the variance 

will begin to increase linearly is

0.2 T_ = 3.9 sec

The variance plotted in Figure 3-11 appears to increase at a linear 

rate beyond about 3.0 seconds.

4. Theoretical Laminar-Flow Dispersion Coefficient. A procedure 

similar to that described above for turbulent flow can be used to 

theoretically derive a dispersion coefficient for laminar flow down a 

plane. Fischer et al., (1979) used the laminar flow velocity profile 

(a rearranged form of Eq. 3-6)
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Table 3-9

Data Used in Numerical Model for Theoretical 
Turbulent-Flow Dispersion Test

Reynolds Number,

Kinematic Viscosity, v 

Discharge Per Unit Width, q 

Bed Slope,

Friction Coefficient, f 

Depth of Flow, y^

Mean Velocity, u 

Acceleration of Gravity, g

3500

0.00001 ft^/sec 

0.035 ft^/sec 

0.0008029 

47

0.04302 ft 

0.81376 ft/sec 

32.2 ft/sec^

u
Velocity Profile, u = u + ^  (1 + £n

^s

*8 2
Vertical Mixing Coefficient, = 0.067 y^ u^ = 9610 x 10 ft /sec

Number of Flow layers = 9

ÎM Î = 1 19
e AT  ̂̂
y

AT
= u
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Figure 3-11. Variance of Vertically-Averaged Concentration Along 
X Axis Versus Time Since Injection for Turbulent Flow 
Dispersion Test
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U = U 2(!^) - 
V Vs

(3-41)

along with a constant vertical mixing coefficient to derive

D =

2 2
8 %
945 e (3-42)

m

where is the maximum velocity (at water surface) computed from

. 1 8

“o 2 V

and where e = molecular diffusion coefficient, g = acceleration of

gravity, = bed slope, and v = kinematic viscosity.

An instantaneous injection, completely mixed in the cross section,

was simulated in the numerical model using Eq. 3-41 for the velocity

2
profile. A steady, uniform discharge of 0.0018 ft /sec was used. This

value is equivalent to the discharge produced by a rainfall intensity

of 3 inches per hour at a point 26 feet from the top of the runoff

plane. Other data used in the model test are listed in Table 3-10.

A plot of variance versus time since injection is shown in

Figure 3-12. Application of Eq. 3-40 to Figure 3-12 results in a

2
dispersion coefficient of approximately 0.1573 ft /sec. Equation 3-42

2
yields a dispersion coefficient of 0.1544 ft /sec, a difference of

2 percent from the numerical model result.

From Eq. 2-7, an estimate of the Eulerian time scale is

2
^s

T = —  = 60.7 sec 
e e

y



64

Table 3-10

Data Used in Numerical Model for Theoretical 
Laminar-Flow Dispersion Test

Reynolds Number,

Kinematic Viscosity, v 

Discharge per Unit Width, q 

Bed Slope,

Friction Coefficient, f

Depth of Flow, y^

Mean Velocity, u

Acceleration of Gravity, g

Vertical Mixing Coefficient,

Velocity Profile, u = u [2(^)
° ^s

168

0.0000107 ft^/sec 

0.0018 ft^/sec 

0.015 

0.1426 

0.004928 ft 

0.3654 ft/sec 

32.2 ft/sec^

40 X 10  ̂ft^/sec

(Ay)^
8 AT
y

= 0.76

AT
= 1.2 u



ON

Figure 3-12. Variance of Vertically-Averaged Concentration Along x Axis Versus Time 
Since Injection for Laminar Flow Dispersion Test



66

From Fischer et al. (1979) an estimate of the time when the variance 

will begin to increase linearly is

0.2 = 12.1 sec
E

The variance plotted in Figure 3-12 appears to increase at a linear 

rate beyond about 11.0 seconds.



Chapter IV

LABORATORY EXPERIMENTS

A. Introduction

Dye tracer experiments were conducted in overland flow under 

simulated rainfall to provide data for the calibration of the numerical 

model. These experiments consisted of an instantaneous, line source 

injection of a soluble, conservative dye tracer in steady, nonuniform 

overland flow over a smooth, impervious surface under a constant, 

uniform rainfall intensity. This chapter describes the experimental 

facilities and procedures used to collect this data.

B. Indoor Rainfall-Runoff Simulator

The indoor rainfall-runoff simulator used for these experiments is 

described in detail by Peterson (1977) and Buchberger (1979). A 

general description follows.

1. Rainfall Modules. Rainfall was simulated using two feet by 

two feet Plexiglas modules, shown in Figure 4-1, suspended approxi-

mately ten feet above the floor of a tilted flume. Capillary tubes 

penetrated the bottom of the Plexiglas module to form water drops. One- 

half of the modules contained capillary tubes with 0.022 inch inside 

diameter; the other half contained tubes with 0.023 inch inside diam-

eter. These tubes produced a mean spherical drop diameter of 3.63 

millimeters which reached about 77 percent of terminal velocity prior 

to impact (Peterson, 1977). The tubes were spaced on a one-inch square 

grid system as shown in Figure 4-2 so that each module contained 576
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Figure 4-1. Rainfall Module
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tubes. An estimated 20 percent of the capillary tubes functioned 

erratically due to clogging or structural inconsistencies.

Water entered the module through a hole at the top. An air vent 

at the top corner of the module relieved air pressure buildup. The 

depth of water inside the module determined rainfall intensity. The 

modules were placed side by side to produce uniform rainfall over a 4 

feet by 41 feet area.

2. Water Supply. Water from the City of Fort Collins municipal 

water system was fed through a water softener unit and stored in an 

800-gallon holding tank. Heating units were contained inside the tank 

to maintain water temperatures between 18 and 22°C. A pump delivered 

water from the tank to the rainfall modules.

3. Flow Controls. A schematic diagram of the flow control 

system is shown in Figure 4-3. The pump at the holding tank pressur-

ized a 3-inch diameter feeder line which ran along the entire 41 feet 

of rainfall module coverage. Three-eighths inch diameter branch pipes 

tapped the feeder line at two-feet intervals. Each branch pipe pro-

vided two rainfall modules with their water supply. Needle valves were 

located in the branch pipes between the feeder line and the rainfall 

module to allow for flow control. A one-fourth inch diameter pressure 

line tapped each branch pipe downstream of the needle valve. The 

pressure line was connected to a "scanivalve" which was capable of 

scanning all pressure lines and connecting the desired line to a pres-

sure transducer and transducer indicator. In this manner, the pressure 

in each branch pipe could be monitored and correlated to rainfall 

intensity to facilitate intensity control.



Figure 4-3. Flow Control System (from Buchberger, 1979)
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4. Runoff Collection System. A 4 feet wide by 60 feet long 

flume served as the base for the runoff collection system. The flume 

could be tilted to produce slopes ranging from 0 to 0.0333. A six-inch 

high raised floor was constructed in the bottom of the flume directly 

below the rainfall modules. The floor was covered with a neoprene 

rubber surface painted with a white latex paint to increase surface 

wettability (that is, minimize formation of water beads and flow rivu-

lets and facilitate the formation of sheet flow), to minimize adsorp-

tion of dye tracer, and to provide a suitable background color for 

viewing movement of the dye tracer.

The raised floor ended at the downstream limit of rainfall module 

coverage, providing a six-inch vertical drop at this location for 

convenient sampling. A collection box, containing two 22-1/2 degree 

triangular weirs along its downstream end, was placed beneath this 

drop-off as shown in Figure 4-4. The depth of water in the collection 

box was measured using a stage recorder and was calibrated to weir 

discharge. During rainfall-runoff simulations, the stage recorder was 

used to confirm steady flow conditions on the plane.

A triangular sampling trough, shown in Figure 4-4, was used for 

dye tracer sampling. This trough was approximately six inches long, 

one and one-half inches deep, and one and one-half inches wide and was 

open on both ends. It could easily be moved to any point along the 

overflow ledge. The trough provided for a temporary concentration of 

flow sufficient to submerge a one-fourth inch diameter fluorometer 

intake tube located in the bottom of the trough. A pump located on the 

discharge end of this intake tube forced a sample of the trough flow 

through the fluorometer which produced a continuous record of dye



73

4 '-0 "

A

Overland Flow 

1 1 1 1 1 i

Sampling Trough^— J —  

^ W e ir Plates-^

________^

<  -

TOP VIEW

_6" I Sampling 
I /Trough

(P T
FRONT VIEW

Overflow Ledge 
Sampling Trough

Weir Plate

SECTION A-^

Figure 4-4. Overflow Collection Box



74

concentration on chart paper. Tests conducted to measure the time from 

dye entry into the intake tube to the time of response on the fluorom- 

eter chart recorder indicated a time of approximately one and one-half 

seconds.

C. Experimental Procedure

1. Facility Operation. Prior to each rainfall-runoff simulation, 

the rainfall supply holding tank was filled and the water was allowed 

to warm to 20-22°C. When rainfall simulation was begun, the inflow 

rate into the holding tank was set approximately equal to the outflow 

rate. However, due to limitations in the holding tank storage and 

limitations in the maximum inflow rate, outflow exceeded inflow when 

rainfall intensities greater than three inches per hour were simulated. 

For instance, at five inches per hour intensity, there was storage and 

inflow capacity for only 30 to 40 minutes of simulation--thus essen-

tially restricting the maximum capacity of the rainfall simulator to 

this intensity.

After the three-inch diameter feeder line was pressurized, each 

needle valve (Figure 4-3) was adjusted until the downstream branch pipe 

pressure equaled the precalibrated pressure required for that pair of 

rainfall modules to generate the desired rainfall intensity. After all 

pressures were set and after a steady-state discharge had been reached 

at the overflow ledge (as indicated by the stage recorder chart), a 

discharge measurement was taken manually. This measurement consisted 

of collecting the flow in a container during a measured time period and 

then calculating discharge as the volume of water collected divided by 

the time of collection. If this discharge did not match the desired
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rainfall intensity, all needle valves were adjusted uniformly until the 

desired flow rate (and therefore intensity) was reached.

Line-source injections of dye tracer were made using a 4.35 feet 

long, 2.0 inch diameter pipe, sealed on both ends, with a line of 1/4 

inch diameter holes drilled along its length. These holes were spaced 

3/8 inch apart. The pipe was placed inside a wooden frame, shown in 

Figure 4-5, which spanned across the flume width, rested on the top of 

the flume walls, and protected the pipe from contact with the rainfall. 

The pipe was positioned so that the line of drilled holes was on top 

and so that the pipe's longitudinal axis was in a horizontal plane and 

was perpendicular to the flow direction. Then 200 milliliters of a 

Rhodamine WT dye solution were poured into the pipe. A line-source 

injection into the overland flow was made by releasing the pipe from 

its fixed position and allowing it to roll forward one revolution under 

the force of its own weight--thus simulating an "instantaneous" injec-

tion which was easily reproducible in terms of volume of dye solution 

injected. The dye fell approximately two feet from the pipe to the 

overland flow.

2. Data Collection. The travel distance of the dye between the 

point of injection and the point of measurement varied from 8 to 

13 feet. The injection location was chosen so that this travel dis-

tance was at the downstream end of the rainfall simulator. At this 

location, flow conditions changed slowly with distance down the plane-- 

that is, the percent increase in discharge, depth of flow, and velocity 

of flow over this travel distance was the smallest compared to any 

other equivalent length of plane. One would therefore speculate that 

would also change slowly over this distance. Since a constant
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Figure 4-5. Wooden Frame Containing Injection Pipe
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value of e over the entire travel distance was used in the numerical
y

model calibration, this "most uniform" flow condition was the most 

desirable location for data collection.

The dye concentration was measured at the overflow point using a 

Turner 111 fluorometer. Two methods of collecting and measuring 

samples were employed, continuous sampling and discrete sampling. The 

first involved continuous sampling from a trough attached to the over-

flow ledge as explained previously. This resulted in continuous con-

centration data being recorded by a strip chart recorder attached to 

the fluorometer. Experiments were repeated three times with the trough 

moved to a different location each time. These locations were 1/6, 

1/2, and 5/6 the distance across the overflow ledge. The data col-

lected at each location was assumed to be representative of a strip of 

flow equal in width to 1/3 of the flume width. A flow-weighted average 

concentration was computed from the data collected at the three loca-

tions and was used for subsequent numerical model calibration. Flows 

used in the flow weighting were collected at the overflow ledge for 

each one-third-width strip by measuring the volume of water flowing 

over the ledge in a known time period.

A second method involved collecting and measuring width-averaged 

samples at discrete time intervals. These were collected by manually 

moving a glass container at a constant speed underneath the entire 

width of the overflow ledge, thus collecting a single, flow-weighted, 

width-averaged sample. The travel time of the glass container across 

the width of the ledge was 1 to 2 seconds. Immediately after collec-

tion, the sample was poured into a cuvette and stored. This procedure 

was repeated every 10 seconds during the passage of the dye cloud



78

across the overflow ledge. At the conclusion of sampling, the cuvettes 

were individually placed into the fluorometer for concentration read-

ings. This method was used when concentrations at the collection point 

were changing slowly with time.

The mass of dye injected was changed between many of the 

experiments so that the dye concentrations at the measurement location 

would fall within a convenient detection range of the fluorometer. The 

selection of the mass injected was based on preliminary trial-and-error 

runs. A comparison of dye mass injected to dye mass collected indi-

cated that dye loss was negligible.



Chapter V

RESULTS AND DISCUSSION

A. Introduction

This chapter describes the simulation of laboratory experiments 

using the mathematical model presented in Chapter 3. The vertical 

mixing coefficient, was used as a calibration parameter in the

simulations. The results are discussed, and a regression relationship 

is presented relating to rainfall and flow characteristics. This

predictive equation for completes the data set needed to apply the

mathematical model. The study is then taken one step further by using 

the equation for to examine the convective period and the one-

dimensional dispersion coefficient for overland flow.

B. Laboratory Measurements

Data were collected for 12 sets of rainfall intensities and slopes 

as listed in Table 5-1. Rainfall intensities less than 2 inches per 

hour were not investigated because of significant spatial nonuniformity 

in raindrop production at low intensities.

The results of the laboratory concentration-versus-time 

measurements are displayed in Figures 5-1 through 5-15. One of the 

measured curves in Figure 5-1 (as indicated on the figure) and the 

measured curve in Figure 5-3 represent width-averaged concentrations 

obtained from the discrete sampling method described in Chapter 4. The 

change in concentration with time at the measurement location was



Table 5-1

Summary of Experiments

Experiment
No. Slope

Rainfall
Intensity
(in/hr)

Injection 
Location 
from Top 
of Plane 

(ft)

Measurement 
Location 
from Top 
of Plane 

(ft)

Reynolds 
Number at 
Midpoint

Between Injection 
and Collection

la 0.001 2 27.7 40.8 138
lb 0.001 2 32.8 40.8 148
2a 0.001 3 27.7 40.8 221
2b 0.001 3 32.8 40.8 222
3 0.001 4 32.8 40.8 334
4 0.001 5 32.8 40.8 387

5 0.015 2 32.8 40.8 159
6 0.015 3 32.8 40.8 237
7 0.015 4 32.8 40.8 318
8 0.015 5 22.8 30.6 294

9a 0.030 2 27.7 40.8 153
9b 0.030 2 32.8 40.8 162
10 0.030 3 32.8 40.8 222
11 0.030 4 32.8 40.8 291
12 0.030 5 27.7 40.8 382

00
o
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Injection location from top of plane = 27.7 ft 
Measurement location from top of plane = 40.8 ft

Figure 5-1. Comparison of Measured and Computed Concentration
Curves for S = 0.001 and i = 2 (Experiment No. la) 

o
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Figure 5-2. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 2 (Experiment No. lb)
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Figure 5-3. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 3 (Experiment No. 2a)
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Injection location from top of plane = 32.8 ft

ft'̂ /sec)

Figure 5-4. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 3 (Experiment No. 2b)
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Figure 5-5. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 4 (Experiment No. 3)
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Figure 5-6. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 5 (Experiment No. A)
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Figure 5“7. Comparison of Measured and Computed Concentration
Curves for S = 0.015 and i = 2 (Experiment No. 5)
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Figure 5-8. Comparison
Curves for

of Measured and Computed Concentration
= 0.015 and i = 3 (Experiment No. 6)
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Figure 5-9. Comparison
Curves for

of Measured and
S =0.015 and
o

Computed Concentration
i = 4 (Experiment No. 7)
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Figure 5-10. Comparison of Measured and Computed Concentration
Curves for = 0.015 and i = 5 (Experiment No. 8)
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Figure 5-11. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 2 (Experiment 9a)
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Figure 5-12. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 2 (Experiment No. 9b)
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Figure 5-13. Comparison
Curves for

of Measured and
S = 0.030 and
o

Computed Concentration
i = 3 (Experiment No. 10)
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Figure 5-14. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 4 (Experiment No. 11)
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Figure 5-15. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 5 (Experiment No. 12)
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sufficiently slow to allow this sampling method to describe these 

concentration-versus-time curves.

The measured curves shown in the remaining figures represent 

flow-weighted average concentrations obtained from the continuous 

sampling method. As described in Chapter 4, this method involves 

averaging the concentration measured at three different locations 

across the width of the overflow ledge. A comparison can be made in 

Appendix E between the averaged curve and the magnitude and timing of 

the peak concentrations from the three separate measurements. This 

comparison indicates that the concentrations were not always uniform 

transverse to the flow direction. Factors influencing this variation 

were that 1) the flume was slightly out of level in the transverse 

direction near the downstream end causing a transverse flow distribu-

tion of approximately 38, 34, and 28 percent across one-third width 

segments at the overflow ledge and 2) bed surface irregularities 

existed due to seams in the neoprene rubber surface and due to occa-

sional small pockets of water which accumulated under the rubber sur-

face after many hours of continuous rainfall simulation. Although much 

effort was expended to minimize these deviations from a theoretically 

plane surface, the deviations that remained were assumed to introduce 

variabilities which would be expected in natural overland flow.

Deviations of a width-averaged measured curve shown in Figures 5-1 

through 5-15 from the true width-averaged curve could be influenced by 

a number of factors: 1) The use of only three measurement locations to 

determine a width-averaged concentration curve could have introduced 

errors since flow over only 38 percent of the ledge was actually sam-

pled. 2) The three measurements were made from three separate 

injections as explained in Chapter IV. Variabilities due to the amount
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of dye injected, fluctuation in rainfall module line pressures, changes 

in water temperature, and the random timing of raindrop impacts could 

have produced variations between the three dye clouds. 3) Fluorometer 

reproducibility was found to vary by a small amount. 4) Slight fluo- 

rometer fluctuations were experienced during steady-state measurements 

of constant concentrations. 5) Small changes in the fluorometer cali-

bration were found to have occurred during the period that laboratory 

experiments were conducted. 6) The use of the collection trough for 

flow sampling allowed for a short period of local flow mixing within 

the trough prior to flow entry into the sampling intake tube. 7) The 

use of a 2-1/2 feet long sampling intake tube between the collection 

trough and the fluorometer allowed for additional dispersion of the dye 

during its travel through the tube. 8) The warming of the fluid during 

its travel through the sampling intake tube and the fluorometer was 

difficult to judge and correct for in analyzing the temperature- 

sensitive fluorometer readings.

The discrete sampling method was additionally susceptible to 

errors due to continually changing concentrations during the one-to- 

two-second period of collection, errors due to the long (10 seconds) 

interval between samples, errors introduced by sample storage condi-

tions between the time of collection and the time of concentration 

readings, and errors related to fluorometer operation during the 

readings of the cuvette samples.

To emphasize the fact that the width-averaged measured 

concentrations shown in Figures 5-1 through 5-15 are influenced by 

these random and systematic measurement errors, a subjective assessment 

of percent variability was made. Variability in these concentrations 

up to ±15 percent was estimated due to the averaging of three
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measurement locations from three separate injections for the continuous 

sampling method and due to continually changing concentrations during 

and between sample collection for the discrete sampling method. Addi-

tional variability of up to ±5 percent was estimated due to other 

factors. Therefore, the accuracy of the width-averaged measurements 

compared to the true width averaged values is roughly estimated to be 

up to ±20 percent.

C. Numerical Model Results

1. Data Input. Appendix F summarizes the data used to generate 

the numerical model calibrations for each experiment listed in 

Table 5-1.

Initial concentration in the flow at time zero was determined as 

follows. Observations made during the laboratory experiments indicated 

that the length (in the direction of flow) of the line source 

immediately after injection was approximately 0.35 foot. The initial 

concentration was therefore computed as

Initial _ (mass injected per unit width)
Concentration (flow depth)(0.35 ft)

where flow depth was computed from Eq. 3-13. To conveniently describe 

this initial concentration in the numerical model, Ax was set to 0.35 

foot in all model calibrations.

2. Calibration Procedure and Results. For each experiment in 

Table 5-1, a series of numerical model runs were made, using a differ-

ent value of Cy for each run, until the computed concentration-time 

curve most closely matched the measured curve. The criterion chosen to 

establish the best fit was the closeness of the magnitude and timing of 

the peak concentrations. This criterion was selected because of the
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importance of peak concentrations in environmental modeling and 

assessments and because the overall shapes of the two curves were 

generally very similar.

In the course of completing each series of numerical model runs, 

it was noted that as was changed from a high value approaching 

complete vertical mixing to a low value approaching molecular diffu-

sion, the envelope of computed peak concentrations followed a shape 

similar to that shown in Figure 5-16 from point 1 to point 2. The 

value of which produced the point on the envelope closest to the 

measured peak concentration was selected as the appropriate value 

for that experiment. Appendix E shows the series of computed 

concentration-time curves which were generated for each experiment. 

The curves selected as the best fits are shown in Figures 5-1 through 

5-15 along with the corresponding measured curve.

3. Discussion of Figures 5-1 through 5-15. The curves generated 

by the numerical model for = 0.001 were lagged behind the labora-

tory measurements when the dye injection occurred at 32.8 feet from the 

top of the plane. Two possible reasons for this exist. First, the low 

mean velocities produced on this slope were outside the range of data 

analyzed by Yoon (1970) and Shen and Li (1973). The data of these 

investigators were used to estimate maximum and mean flow velocities in 

the numerical model. Since this range was exceeded, the appropriate-

ness of the model for = 0.001 could be subject to question. 

Second, the timing of the individually-measured peaks using the con-

tinuous sampling method, as shown in Appendix E, generally displayed 

the greatest variability for S^ = 0.001 with the injection at 32.8 

feet, indicating that these experiments may have been influenced more
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Time of Arrival of Peak Concentration at Measurement
Location

Figure 5-16. Typical Envelope of Computed Peak Concentrations
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significantly by surface nonuniformities. A further test of the model 

was made using data obtained from injections at 27.7 feet from the top 

of the plane for rainfall intensities of 2 and 3 inches per hour (data 

were not available for 4 and 5 inches per hour at this injection loca-

tion). Figures 5-1 and 5-3 show a much closer timing of the peak 

concentrations for these two additional experiments, justifying the use 

of the model's velocity equations and implicating the effect of surface 

nonuniformities downstream of the 32.8 feet injection as influencing 

the lag in modeled peak concentrations for the other = 0.001 

experiments.

Laboratory measurements for = 0.015 had the least variability 

transverse to the flow, and the corresponding numerical model calibra-

tions appear to produce reasonable fits.

A comparison of the curves for = 0.030 indicates deviations in 

peak concentrations and in curve shapes for rainfall intensities of 2 

and 5 inches per hour. In these two cases, the measured curve (an 

average curve based on continuous sampling at three different points 

across the flow width) has a wider base and lower peak than the com-

puted curve. It is presumed that the relatively large differences in 

timing of the three individually-measured curves as seen by the plots 

of their peak concentrations in Appendix E, contributed substantially 

to the uncharacteristic shape of the averaged curves in these two 

cases.

4. Discussion of Figure 5-16. This figure is based on the 

apparent behavior of the peaks of the computed concentration-time 

curves shown in Appendix E. It indicates that as is decreased 

from a value representative of complete vertical mixing to a value
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approaching molecular diffusion, the peak concentration will arrive 

earlier and will decrease to a minimum value before increasing again.

A physical explanation supports the above finding related to 

travel time. When the extent of vertical mixing is very small, mass 

tends to remain at its original depth (or in its original flow layer) 

and little is vertically diffused to other locations (to other flow 

layers). Therefore, the distribution of mass in the flow, following a 

completely-mixed, instantaneous injection, tends to take on a shape 

similar to the velocity profile. Since the slope of the velocity 

gradient is greatest near the point of maximum velocity, the greatest 

concentration of mass will reside in this vicinity and will travel at a 

speed near the maximum flow velocity— thus producing a peak concentra-

tion which arrives "early" at the measurement location.

When the extent of vertical mixing is very great, a particle of 

mass in the flow will change its vertical position very frequently, 

sampling a large range of velocities throughout the depth of flow. 

Thus, over a long time period, the speed of the particle of mass will 

tend toward the mean flow velocity. Summing this process over all the 

particles of mass which were injected instantaneously into the flow 

results in a peak concentration traveling near the speed of the mean 

flow velocity. This peak concentration will therefore arrive at the 

measurement location at a later time than for a flow with little verti-

cal mixing. This implies that caution should be exercised in using dye 

tracer time-of-travel data to estimate mean flow velocities in overland 

flow.

When is between values representative of complete vertical

mixing and molecular diffusion, the peak concentration will travel at a
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speed between the maximum velocity and mean velocity. In this 

transition region, Figure 5-16 indicates that the magnitude of the peak 

concentration will be somewhat less than that for a peak concentration 

travel speed of either the maximum or mean velocity.

5. Calibrated Values. A summary is shown in Table 5-2 of

the values which resulted in the best-fit concentration-time

curves. Each value was assumed to be valid at the midpoint

between injection and measurement locations. These midpoint distances 

are also listed in Table 5-2.

Calibrations were conducted for two different injection locations

in Experiments 1, 2, and 9. These two injection locations produced

travel distance midpoints which were 2.5 feet apart. The calibrated

2
£y values for Experiment 1 (200 and 150 ft /sec) and Experiment 9 (5 

2
and 8 ft /sec) were reasonably close. The much larger difference

2
between £^ values for Experiment 2 (600 versus 1500 ft /sec) can be 

partly explained by the method of data collection. Concentrations in 

Experiment 2a were collected and measured by the discrete sampling 

method. The samples were collected at 10-second intervals. From 

Figure 5-3, it is seen that the measured concentration values immedi-

ately before the peak, at the peak, and immediately after the peak were 

approximately 32, 90 and 71. Because samples were collected only once 

every 10 seconds and because there are large jumps in concentration 

values between measurements, it seems very likely that the actual peak 

concentration was missed and was somewhat greater than 90. If this 

were the case. Figure E-3 in Appendix E indicates that £^ would need 

to be increased to match a larger peak, thus converging more closely to 

the £^ value of 1500 for Experiment 2b.



Table 5-2

Calibrated e Values

Experiment
No. Slope

Rainfall
Intensity
(in/hr)

e X 10® 
y
(ft^/sec)

Distance

Midpoint
(ft)

Computed Values

Mean Depth 
Velocity of Flow 
(ft/sec) (ft)

at Midpoint

Ratio of^®^ 
Depth of 
Flow to 
Drop

Diameter

,2)

Reynolds
Number

la 0.001 2 200 34.3 0.098 0.0162 1.4 138
lb 0.001 2 150 36.8 0.103 0.0166 1.4 148
2a 0.001 3 600 34.3 0.127 0.0187 1.6 221
2b 0.001 3 1500 36.8 0.130 0.0196 1.7 222
3 0.001 4 2600 36.8 0.160 0.0213 1.8 334
4 0.001 5 6500 36.8 0.176 0.0242 2.0 387

5 0.015 2 10 36.8 0.260 0.0066 0.6 159
6 0.015 3 140 36.8 0.328 0.0078 0.7 237
7 0.015 4 250 36.8 0.388 0.0088 0.7 318
8 0.015 5 300 26.7 0.356 0.0087 0.7 294

9a 0.030 2 5 34.3 0.315 0.0050 0.4 153
9b 0.030 2 8 36.8 0.329 0.0052 0.4 162

10 0.030 3 16 36.8 0.405 0.0063 0.5 222
11 0.030 4 25 36.8 0.474 0.0072 0.6 291
12 0.030 5 100 34.3 0.531 0.0075 0.6 382

o4:'

( 1)

(2)

(3)

Midpoint between injection and measurement locations. 

Computed using Eqs. 2-4, 3-13, and 3-14.

Drop diameter approximately equal to 3.63 mm, or 0.0119 ft.
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A number of variables can be identified as having a possible 

influence on the calibrated values of e^. As discussed in Chapter 2, 

the pressures, velocities, and crater geometries experienced by a 

stagnant liquid layer due to the impact of a drop have been related to 

impact velocity, drop diameter, depth of the receiving liquid, and the 

density, surface tension, and viscosity of the liquid. For the present 

study, it is suggested that these pressures, velocities, and crater 

geometries are related to the magnitude and areal extent of local 

vertical mixing due to the impact of a raindrop in overland flow. If 

this is the case, then when impact velocity, drop diameter, and the 

density, surface tension, and viscosity of the liquid are held con-

stant, as was done for the laboratory experiments reported herein, 

depth of the receiving liquid becomes a variable affecting e^. 

Mutchler (1967) and Mutchler and Hansen (1970), using water drops 

falling from a height of 40 feet, found that both the height of the 

splash crown and the width of the crater reached maximums when the 

water depth was approximately 1/3 of the drop diameter, and then they 

slowly decreased (by 30 and 15 percent, respectively) to relatively 

constant values above a water depth of one drop diameter. Palmer 

(1965) used a strain gage at the bottom of various depths of water to 

find that the maximum impact force from water drops falling from a 

height of 5 feet occurred at a water depth equal to one drop diameter. 

His data indicates that the impact force at depths equal to 1/3 of the 

drop diameter and 2 drop diameters was about 80 percent of the maximum. 

Wang and Wenzel (1970) used a pressure transducer mounted flush with 

the bottom surface of a tray to measure water-drop impact pressures 

under various depths of ponded water. They found that the maximum
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pressure occurred at a zero depth of water and that pressures decreased 

as the depth of water increased. They used water drop fall heights 

ranging from 4.7 to 33.0 feet. Macklin and Metaxas (1976) classified 

the behavior of drop impacts into two unique categories: shallow 

splashing characterized by a cylindrical cavity which penetrates to the 

bed surface and deep splashing characterized by a hemispherical cavity 

which is not affected by the bed surface. The experiments conducted 

for the present study were at depths ranging from 0.4 to 2.0 times the 

drop diameter and were classified as shallow splashing according to the 

definitions of Macklin and Metaxas.

Another variable which would be expected to influence vertical 

mixing is the number of drops impacting the receiving liquid per unit 

time period. For the experiments conducted in the present study, the 

drop rate was linearly proportional to the rainfall intensity since 

drop size was constant. In nature, Laws and Parsons (1943) found that 

the median drop size tends to increase with increasing rainfall inten-

sity. This finding was based primarily on data collected at rainfall 

intensities less than two inches per hour; an extrapolation of this 

relationship indicates a 20 percent increase in median drop size from 2 

to 5 inches per hour rainfall intensity. For the present study, rain-

fall intensity was selected as the variable representing number of 

drops per unit time.

Mean flow velocity was a third variable which was expected to 

affect £y. As a parcel of water flows between two fixed points on the 

plane, the parcel will be impacted by fewer raindrops, resulting in 

less vertical mixing, as the velocity of the parcel is increased.

Finally, it is speculated that the Reynolds number may affect 

vertical mixing due to rainfall. As the Reynolds number of the flow



decreases, the influence of viscous forces over inertial forces becomes 

stronger. When this occurs, it seems reasonable to assume that the 

flow can more effectively dampen local perturbations created by the 

impact of a raindrop.

Table 5-2 lists values of the above variables for each 

calibration. In reviewing this table, it is difficult to deduce the 

effect of any single variable. In order to develop a quantitative 

relationship between and these variables, a regression analysis

was performed as described later in this chapter.

An estimate of the molecular diffusion coefficient for Rhodamine 

WT dye can be made and compared to the values in Table 5-2.

Rhodamine WT is an organic compound whose chemical structure was pre-

sented by Abidi (1982). Based on this structure, a molecular weight of 

523 can be computed. A regression equation presented by Spalding 

(1963) relates the molecular weight of a substance (with the exception 

of inorganic acids and bromine) to the Schmidt Number,

S = —
C £

m

where V = kinematic viscosity and e = molecular diffusion coeffi-
m

cient. The regression equation is 

S^ = 140(MW)°'^^^

where MW = molecular weight. Spalding estimates that this equation is

accurate within ±20 percent. Using these relationships, an estimate of

-8 2
£ for Rhodamine WT dye is 0.65 x 10 ft /sec. For laminar flow 
m

without rainfall.

107

e = t 
y m
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The lowest calibrated values of e in Table 5-2 (at a rainfall
y

*8
intensity of 2 inches per hour) are in the range of 5 x 10 to 10 x 

“8 2
10 ft /sec— a reasonable comparison to considering that

values in Table 5-2 increase by multiples of 1.5 to 14 for an increase 

in rainfall intensity of one inch per hour.

Another comparison can be made between values in Table 5-2

and estimated values for hypothetical, steady, uniform, turbulent

flow at equivalent discharges. Using a Manning's n value of 0.01 and 

Manning's equation to compute depth, Eq. 3-37, written below, can be 

used to estimate for steady, uniform, turbulent flow:

e = 0.067 y u.,. 
y ■'s *

where y^ = depth of flow and u.,, = shear velocity = V g y ÿ  A

steady, uniform, turbulent discharge equivalent to 5 inches per hour

rainfall intensity at 36.8 feet down the plane on a slope of 0.001

results in = 2200 x 10  ̂ ft^/sec compared to 6500 x 10  ̂ft^/sec

in Table 5-2. A steady, uniform, turbulent discharge equivalent to 5

inches per hour rainfall intensity at 26.7 feet down the plane on a

_8 2
slope of 0.015 results in = 1900 x 10 ft /sec compared to

“8 2
300 X 10 ft /sec in Table 5-2. A steady, uniform, turbulent dis-

charge equivalent to 5 inches per hour rainfall intensity at 34.3 feet

"8 2
down the plane on a slope of 0.030 results in = 2400 x 10 ft /sec

_8 2
compared to 100 x 10 ft /sec in Table 5-2. This indicates that when 

rainfall occurs on overland flow moving at a laminar Reynolds number, 

vertical mixing under certain conditions can be equal to or greater 

than that predicted by the above turbulent flow equation for the

same discharge without rainfall. Under different conditions, the
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vertical mixing created by rainfall can be significantly less than 

expected in turbulent flow.

For purposes of comparison, the numerical model was run once for 

each experiment assuming "complete vertical mixing." This condition 

was simulated in the model by replacing the diffusion step with a 

complete mixing step: following convection and dilution during each 

time interval, the concentration in each cell was set equal to the 

average concentration of its vertical cell column. As can be seen from 

the plots in Figures 5-1 to 5-15 and in Appendix E, most of the cali-

brated values were significantly less than that required to

approach the "completely-mixed," concentration-time curve. It is 

therefore concluded that for the range of conditions examined in this 

study, rainfall generally does not produce a continuous state of 

complete vertical mixing in overland flow.

6. Sensitivity and Limitations of the Numerical Model. Appendix 

E shows the sensitivity in the concentration-time curves computed by 

the numerical model due to changes in e^. Along the right-hand limb 

of the envelope of computed peak concentrations (Figure 5-16), a 1 per-

cent decrease in generally resulted in a 1/3 percent decrease in

peak concentration. The change in peak concentration was less near the 

minimum point on the envelope curve of Figure 5-16.

The model becomes more limited as it is applied closer to the top 

of the plane. This results from the difficulty in maintaining the 

relationships

—  < 1 25 
AT • e 1

y

and



110

- Ax
U < T7S < U
- AT - m

(as discussed in Chapter 3, Sections FI and F2) where the flow 

conditions are changing most rapidly per unit length of plane.

Depth and velocity relationships used in the numerical model were 

based on data collected by others. These data were collected under 

restricted sets of conditions which thereby limit the applicability of 

the numerical model. These restrictions include the following. The 

data were collected in the shallow splashing zone as defined by Macklin 

and Metaxas (1976). The data chosen for use in the present study were 

limited to the laminar Reynolds number range (less than 900). The 

ranges in raindrop sizes and raindrop spacings were limited. The 

raindrop impact velocities were less than terminal velocity.

As can be seen in Figures 5-1 through 5-15 and in Appendix E, a 

certain degree of numerical "noise" was present in the results of the 

numerical model. A change in the number of flow layers or in the 

length of the time step would change this noise pattern. As seen in 

the computed concentration-time curves, the effect of this noise 

appears to be minor. In some cases it could have had a small influence 

on the selection of the calibrated e value.
y

It was found that the niimerical model was costly to run on the

computer. The cost increased as the value of increased due to the

increased niunber of iterations necessary to compute vertically-diffused

concentrations down to the cutoff limit of 0.5 percent of (see

Section III-E-3). On the other hand, for very small values of e^, the

required minimum number of flow layers was large (in order to satisfy 

2
(Ay) /(AT'Sy) < 1.25), which also increased computer time.
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D. Regression of Calibrated e Values
__ ________________________1________
Based on the previous discussion of variables likely to affect 

vertical mixing in the experiments conducted, the following independent 

variables were selected for use in a regression analysis: rainfall 

intensity, mean velocity, depth of flow, and Reynolds number. The 

calibrated values of log were related to the logarithms of the

values of the above variables in Table 5-2 by using the stepwise mul-

tiple linear regression program described by Dixon (1981). Details of 

the regression analyses discussed below are contained in Appendix G.

The resulting equation for was

e = 0.278 y 
y ■'s (5-1)

with a coefficient of determination, r , equal to 0.95. The units of 

y^ are feet, and the units of i are inches per hour. The addition 

of u or R^ in the equation did not increase the explained variation 

sufficiently to warrant the inclusion of either in the final equation, 

based on an F test at a = 0.01.

Equation 5-1 results in increased vertical mixing with increased 

depth of flow and with increased rainfall intensity. As discussed 

previously, one would rationally expect a greater degree of mixing when 

the frequency of drop impacts, or rainfall intensity, increases. 

However, increased mixing with increased depth of flow does not appear 

to be physically reasonable nor can it be justified from previous 

research findings related to measured splash geometry, forces, or 

pressures at depth-to-drop diameter ratios greater than about 1/3 to 1 

(see discussion in Section 5-111-E). Since some of the depth-to-drop 

diameter ratios for the data in Table 5-2 fall between 1/3 and 1, a
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second regression was conducted using only the data with ratios greater 

than 1 (data for S = 0.001). The resulting equation

e = 2.472 X 10^^ y 
y •'s

gives the same general relationship between and y^, that is,

increasing e with increasing y . It is therefore assumed that this
y s

correlation between e and y exhibited by the data in Table 5-2 is
y •'s ^

not a correlation between and splash geometry, forces, and pres-

sures, but instead indicates that y^ is apparently serving as a 

surrogate for other independent variables in the analysis.

A third regression was conducted using all the data in Table 5-2 

but using only rainfall intensity, mean velocity, and Reynolds number 

as independent variables. The following equation resulted.

e - o AAQ 10-11 -5.25 -3.25e = 3.663 X 10 i u (5-2)

with a coefficient of determination, r , equal to 0.94. The units of i 

are inches per hour, and the units of u are feet per second. The addi-

tion of in the equation did not increase the explained variation 

sufficiently to warrant its inclusion in the final equation, based on 

an F test at a = 0.01. Equation 5-2 shows that vertical mixing 

increases with increasing rainfall intensity and with decreasing mean 

flow velocity--results which are physically reasonable. Therefore, 

Eq. 5-2 was selected for the present study.

Equation 5-2 can be rewritten to show how varies as a 

function of distance from the top of the plane, x, for a given rainfall 

intensity, slope, friction coefficient, viscosity, and acceleration of 

gravity. Substituting Eqs. 2-4, 3-13, 3-14, and 3-15 into Eq. 5-2 and 

rearranging.



e = 0.0427 (24 + 27.162 ¿0.407^1.08 ^3.08 ĵ -2.167

^ ^ o

A plot of Eq. 5-3 as a function of x is shown in Figures 5-17 and 5-18 

for the range of travel distances used in the laboratory experiments of 

this study, indicating a decrease in of 38 and 57 percent over the

travel distances of 8.0 and 13.1 feet, respectively.

An extrapolation of Eq. 5-3 outside the range of data used in its 

derivation is shown in Figure 5-19, where

113

e* . =
0.0427

S ®o

This figure indicates the variation of with rainfall intensity.

The plot includes the 2 to 5 inches per hour range as well as extrapo-

lations beyond this range. Note that the largest change in per

unit change in rainfall intensity occurs in the lower intensity 

range--the most often encountered intensity range in nature.

A third plot of Eq. 5-3 is shown in Figure 5-20 where

e
e*

0.0427 (24 + 27.162 ¿0-^07^1.08 ^3.08

This figure shows the radical changes in which Eq. 5-3 would 

predict near the top of the plane--the region where flow hydraulics are 

changing most rapidly and the region of special interest in urban 

hydrology where the travel distance to storm sewers or roadside 

drainage is frequently short.

The regression equation for found in this study, Eq. 5-2, is 

based on numerical model calibration of laboratory data. As discussed 

previously, these laboratory data include an amount of variability due 

to random and systematic experimental error which was roughly estimated 

to be up to ±20 percent. Considering this experimental error, as well
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= .001
o

Figure 5-17. e from Eq. 5-3 for Laboratory Experiments
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Figure 5-18. e from Eq. 5-3 for Laboratory Experiments
= .015 and .030 

o
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Figure 5-19. Variation of with Rainfall Intensity
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Figure 5-20. Variation of with Distance
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as the sensitivity of to peak concentration in the numerical model

calibration runs and the numerical noise present in the numerical 

model, the variability incorporated into the regression equation for 

could be up to 60 percent or more. However, note that the range in 

calibrated values found in this study varies by a factor of 1000.

E . Convective and Taylor Periods

These two periods have been defined to establish when the 

one-dimensional dispersion equation for steady, uniform flow (Eq. 2-5) 

can be correctly applied. The two periods are divided by the point at 

which the Taylor conditions are established. Though the equation 

itself is not theoretically valid for nonuniform overland flow during 

rainfall, an examination of these Taylor conditions and their relation-

ship to as applied to this study may be useful.

As explained in Chapter 2, the Taylor conditions are that 1) only 

small deviations exist between local concentrations (c) and the 

vertically-averaged concentration (c) and 2) vertically-averaged con-

centrations vary slowly with time and distance down the plane. The 

first condition will be met when injected particles have had a suffi-

cient time to move significant distances in the vertical direction from 

their original position immediately after injection. For small e^, 

this time period could be very large; for large £^, the condition could 

be met very quickly. Regarding the second condition, c at a fixed 

point near the injection location will vary greatly with time immedi-

ately following the injection regardless of the value of e^. The var-

iation of c with distance down the plane will be large when the peak 

concentration is traveling near the leading edge of the dye cloud, thus 

producing a large concentration gradient in this vicinity. This event
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will occur when 8^ is small, resulting in a peak concentration 

traveling at a speed near the maximum velocity. Therefore, the 

convective period (the time between injection and the beginning of the 

Taylor period) is longer for small s^.

The Eulerian time scale is defined in Eq. 2-7 to be

T =
E 8

and is generally taken to be

2
^s

"e = (5-4)

for infinitely-wide, open channel flow. As discussed in Chapter 2, 

this time scale has been used as a tool for estimating the travel time 

through the convective period in steady, uniform flow. The travel 

distance corresponding to T„ for steady, uniform flow can be written as

^Tg ’’■E (5-5)

In order to develop similar time and distance scales for overland 

flow during rainfall, Eqs. 5-4 and 5-5 must be modified to account for 

the changing hydraulic conditions with distance down the plane. In the 

case of steady, uniform flow, the fraction of x„ represented by a 

subreach Ax is

U)
Ax Ax

Ax 8
(5-6)

E E

For steady, nonuniform flow, assume that the flow conditions change in 

a stepwise manner with step reaches equal to Ax. The fraction of x„
E

represented by the ith subreach is written as

Ax 8 (x.)
1 y 1

U) = —r-- -̂------
^T_ y^(x.) u(x.)
E 1 1
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where = distance from top of plane to midpoint of the ith subreach. 

Assuming that an injection is made at the beginning of the first sub-

reach, x_, can be computed as 
E

x„ = n Ax 
E

where n is defined in the following equation,

I = 1
i=l

(5-7)

Similarly, as Ax approaches zero, x_ can be computed from
^E

1 e (x)
^ ____

(x. .)
inj^ YgCx) u(x)

dx = 1 (5-8)

where “ distance from top of plane to injection location and

where y (x), u(x), and e (x) are defined by Eqs. 3-13, 3-15, and 
s y

5-3, respectively.

From Eqs. 2-3, 2-4, 3-13, and 3-14, Yg(x) further be

expressed as

Y (x) = K X 
•'s y

s

1/3
(5-9)

where

K = 0.01425 
^s

V i(24 + 27.162

8 S.

1/3
(5-10)

Similarly, from Eqs. 2-3, 2-4, 3-13, 3-14, and 3-15,

-/  ̂ V 2/3 u(x) = K- X 
u

(5-11)

where



K- = 0.00162 
u
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8 S,

v(24 + 27.162

1/3

and from Eq. 5-3,

(5-12)

e(y) = Kg X
y

-2.167
(5-13)

where

K = 0.0427 (-V-)^'^^ (24 + 27.162 iO-407^1.08 .3.08 
y ® o

(5-14)

Substituting Eqs. 5-9, 5-11, and 5-13 into Eq. 5-8 and integrating

gives the following relationship for x_ ,
Ê

x„ = 
E

-2.50
X . .
inj

2.50 K K-
y us

K

-0.40

X . . 
inj

(5-15)

An expression for T̂, can now be written as

i:E / X. .
dx

inj u(x)
(5-16)

Substituting Eq. 5-11 into this expression and integrating.

T = ̂  (xl/3 _ 1̂/3) 1e ix̂  ̂ x.̂ .j (5-17)

Table 5-3 gives the results of Eqs. 5-15 and 5-17 for the experiments 

conducted in this study.

As mentioned in Chapter 2, Fischer et al. (1979) concluded from a

review of field and laboratory studies in steady, uniform flow that a

2
linear growth with time of the variance (a^) of c with respect to x

begins at about time 0.2 T„, or at about distance 0.2 x„ , and that theE Tg

Taylor conditions are generally met at time 0.4 T„, or at about
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Table 5-3

Computed Values for and T̂, for Laboratory Experiments
E

Experiment
No. Slope

Rainfall
Intensity
(in/hr)

Injection Location 
From Top of Plane, x. . 

(ft)

X.
E
(ft)

T (2)
E

(sec)

la 0.001 2 27.7 2.0 23
lb 0.001 2 32.8 6.8 67
2a 0.001 3 27.7 2.5 22
2b 0.001 3 32.8 4.7 37
3 0.001 4 32.8 2.7 19
4 0.001 5 32.8 1.5 9

5 0.015 2 32.8 >200 >200
6 0.015 3 32.8 >200 >200
7 0.015 4 32.8 >200 >200
8 0.015 5 22.8 4.1 12

9a 0.030 2 27.7 >200 >200
9b 0.030 2 32.8 >200 >200
10 0.030 3 32.8 >200 >200
11 0.030 4 32.8 >200 >200
12 0.030 5 27.7 50.8 75

(1)

(2)

Computed from Eq. 5-15 using data presented in Appendix F. Values 
for Experiments 5, 6, 7, 9a, 9b, 10, and 11 were approximated from 
Eq. 5-7 instead of Eq. 5-15 since the bracketed term in Eq. 5-15 
was negative, producing a complex number.

Computed from Eq. 5-17 using data presented in Appendix F.

distance 0.4 x„ . For nonuniform flow, one would not expect to see a 
E

strictly linear growth rate of a since 8 , D (Eq. 2-6), y , u,
X y s

and q are all changing in the direction of flow. However, for over-

land flow during rainfall, the degree of nonuniformity is decreasing 

with increasing distance down the plane. That is, the percent change

in 8y, D, y^, u, and q per unit length of plane is decreasing down-

2
stream, so that might be expected to approach a linear growth rate

2
in an asymptotic manner. Figures 5-21 through 5-23 show versus

time as computed by the numerical model for each experiment in this
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Figure 5-21. Variance of Dye Cloud Versus Time Since
Injection for S = .001 

•* o
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Figure 5-22. Variance of Dye Cloud Versus Time Since 
Injection for = .015
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M

<U .

Time Since Injection (sec)

Figure 5-23. Variance of Dye Cloud Versus Time Since
Injection for S = .030

o
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study. Compared to the values of T̂, given in Table 5-3, it appears 

2
that the o -versus-time curves remain nonlinear beyond 0.2 T„ as

X t

expected; however, they seem to be moving toward a linear growth rate.

It is difficult to compare the experimental results of this study

to the 0.4 Tg guideline for the beginning of the Taylor conditions.

Though it was developed from steady, uniform flow data, it will be

assumed that this guideline would not be significantly different over

short reaches of slowly-varying, nonuniform flow. Comparison of this

guideline to the x„ and T„ values shown in Table 5-3 and to the
Tg E

£y values in Figures 5-17 and 5-18 implies that the Taylor conditions 

are reached within a reasonable travel distance only for large e^.

F. Longitudinal Dispersion Coefficient

The velocity profile equation developed in Chapter 3, Eq. 3-21, 

can be substituted into the theoretical equation for the longitudinal 

dispersion coefficient, Eq. 2-6, to derive a relationship for this 

dispersion coefficient for overland flow during rainfall. From 

Eq. 2-6, the longitudinal dispersion coefficient is

y y y

*^c ^  r t  • ' r i  \ T  r \

dy dy dy (2- 6)
y o

where

u = u - u (5-18)

and y = distance in vertical direction measured from streambed, y^ = 

depth at water surface, = vertical mixing coefficient, u = point 

velocity, and u = vertically-averaged velocity. Define Uĵ  as the 

lower velocity profile from y = 0 to y = y
m

(where y = vertical 
•'m
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distance above streambed to point of maximiun velocity, û) and  as

the upper velocity profile from y = y to y = y •  From Eq. 3-21,
ID S

u  /2  12'

u  \ "̂m  y
P  \  m  /

(5-19)

and

u

u
P

1.0 + B

- y \  /y ■ y  \2

U \ y - y 
\ s  m

U \ y - y 
V-'s  •’m

(5-20)

The equation for u' becomes

\   “
0 < y < y

m

y  < y  ym  s

(5-21)

Substituting Eq. 5-21 into Eq. 2-6 and assuming  is constant with

respect to y.

D =
y  £s y

y  ,y

i
(u - u) f  f (VL - u) dy dy dy

o •'0*^0

y

i
(û - Ü) l  f (û - u) dy dy 
ŷ Jo Jo

dy (5-22)

Define Terms 1 and 2 as

y  .y

Term 1= j  j j (“l -
J n O  •' O

u) dy dy dy (5-23)

y  ,y

Term 2 == i (û - Ü) f f (û - G)
J y o •'o
•'m

dy dy dy (5-24)

These terms are evaluated in Appendix H. Substituting these evaluated 

terms into Eq. 5-22 results in
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D = -
210 m y.„ ■

13 - 3 ^ 1 2 3
t t t u u y + z u  y 
60 m p •̂ m 6 p -̂m

X 1 1,2 r 3 3. ^ 1 , , ,4 4.
+ Z k, (y - y ) + z k,k_ (y - y ) 

6 1 ■'s 6 1 2  •'s ■'m

' Is  55 y-) k ‘‘2‘‘3 '^s ■ 4'm

where

4. 1 1,2 / 7 7,
84 “ 3 '4s - 4m> (5-25)

k, =

k„ =

k„ =

u
u B,, y u C„ y 
m U •'m ^ m U •̂m

m y - y«»O •' 1
- u

s 'm (y^ - y_̂ )'

U B„ 2 y u C,, 
m U •'m m U
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Equation 5-25 was evaluated for the experiments considered in this

study, using Eqs. 2-3, 2-4, 3-8, 3-9, 3-11, 3-12, 3-13, 3-14, 3-15,

3-16, and 5-3 to determine values for B,,, C,,, u , y , y , u, u , and
U ’ U ’ m ’ •'m’ •'s’ ’ p ’

£y. Plots of D are shown in Figure 5-24. The results for Experi-

ments 6, 7, 8, 10, 11, and 12 gave negative values for D.

A comparison is made in Table 5-4 between three different 

dispersion coefficients computed for the same discharge but represent-

ing different flow conditions. Equation 3-36 is the theoretical 

dispersion coefficient for infinitely-wide, steady, uniform turbulent 

flow down a smooth plane with a logarithmic velocity profile. Equation
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Figure 5-2A. D from Eq. 5-25 for Laboratory Experiments



Table 5-4

Comparison of Dispersion Coefficients Computed from Eqs. 3-36, 3-42, and 5-25

Experiment
No. Slope

Rainfall
Intensity
(in/hr)

(2)
Discharge
(ff^/sec)

Dispersion Coefficient (ft^/sec)

Eq. 3-36^^^ Eq. 3-42^^^ Eq. 5-25

la 0.001 2 0.00159 0.0008 7.4 0.0040
lb 0.001 2 0.00170 0.0008 8.5 0.0056
2a 0.001 3 0.00238 0.0011 16.6 0.0021
2b 0.001 3 0.00256 0.0012 19.2 0.0030
3 0.001 4 0.00341 0.0016 34.1 0.0019
4 0.001 5 0.00426 0.0019 53.2 0.0010
5 0.015 2 0.00170 0.0010 8.5 0.0140
9a 0.030 2 0.00159 0.0009 7.4 0.0087
9b 0.030 2 0.00170 0.0010 8.5 0.0131

(1)
(2)

(3)

(4)

Only those experiment numbers which produced a positive value for Eq. 5-25 are included.

Computed at midpoint of laboratory travel distance.

Flow depth computed using Manning's equation with n = 0.01.

Flow depth computed using Eq. 3-13 with f = 24/R ; molecular diffusion coefficient assumed to be
—8 2 ^

0.65 X 10 ft /sec for Rhodamine WT dye.

u>
o



131

3-42 is the theoretical dispersion coefficient for infinitely-wide, 

steady, uniform laminar flow down a smooth plane. Equation 5-25 repre-

sents dispersion in overland flow during rainfall. The dispersion 

coefficient values in this table for overland flow with rainfall are 

generally closer to those for steady, uniform turbulent flow than for 

steady, uniform laminar flow.

The large values shown for laminar flow are due in part to the use 

of the very small molecular diffusion coefficient as the vertical 

mixing coefficient. As seen in Eq. 2-6, from which the equations used 

in Table 5-4 were derived, the dispersion coefficient is inversely 

related to the vertical mixing coefficient. Since the molecular diffu-

sion coefficient is generally several orders of magnitude lower than 

the vertical mixing coefficient for either overland flow with rainfall 

or steady, uniform turbulent flow, the dispersion coefficient for 

laminar flow might be expected to be significantly greater.

It is interesting to note that for small Reynolds number flows, 

these much larger dispersion coefficients will be approached as the 

rainfall approaches zero intensity, while the length of the convective 

period will approach a very large value.

The negative values computed for D for some of the experiments 

raise questions regarding the applicability of the dispersion coeffi-

cient equation, Eq. 2-6, to certain velocity profiles. To further 

check this applicability, dispersion coefficients were computed for the 

velocity profile shown in Figure 5-25 which also has the maximum 

velocity, u^, located below the water surface. One could conceive of 

this profile occurring for steady, uniform, laminar flow between 

parallel plates where the bottom plate is fixed, the top plate is
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Figure 5-25. Velocity Profile Which Yields Positive, Negative, 
and Zero Values for Dispersion Coefficient Using 
Eq. 2-6
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moving at a constant velocity, and a porous plate or screen located at 

depth is moving at the maximum velocity, u^. The following

expression for D can be derived:

D = -
e 2

! y L30 m
2 ^m 6m

- 4 1 _2 3
u y + z u y 

•'m 6 ■'m

* H ;  ■ ( 4  ■ y»)- k ( s  - “ ) ( 4  ■ m

^ (y. - y.
30 n

5
's

where u = mean velocity, y^ = depth at water surface, y^ = depth at

maximum velocity, = vertical mixing coefficient, and b, n, and m

are defined in Figure 5-25. Calculations for the case of u = 1.0, y
m m

= 1.0, y = 1.5, and m = 1.0 indicate that the computed dispersion 
s

coefficients will be positive for y^ < b < 1.60, zero for b = 1.60, 

and negative for b > 1.60. This implies that Eq. 2-6 is not appropriate 

for all velocity profiles.

G. Approximation Methods for Peak Concentrations

The solution to Eq. 2-5 for the peak concentration in steady, 

uniform flow is (Fischer et al., 1979)

M

"p A V̂ TtDt
(5-29)

where M = mass, A = cross-sectional area, D = longitudinal dispersion 

coefficient, and t = time. Since Eq. 2-5 is only valid for steady, 

uniform flow where the Taylor conditions are met, the solution is 

similarly restricted. However, an investigation was made into the 

possible use of Eq. 5-29 as a tool for estimating the peak concentra-

tions measured in the laboratory experiments for this study, using



Eq. 5-25 to estimate the dispersion coefficient. The reasoning behind 

this investigation is that 1) flow conditions are changing slowly down 

the plane so that the use of average flow conditions over a short 

travel distance might be an acceptable approximation, and 2) the esti-

mated travel distance to the point where the Taylor conditions are met 

is relatively short for some of the experiments based on calculations 

presented in Table 5-3.

Two approaches were taken. First, Eq. 5-29 was used to compute 

Cp using an average cross-sectional area (Eq. 3-13) and average dis-

persion coefficient (Eq. 5-25) over the travel distance and using t 

equal to the travel time of the mean velocity.
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col
dx

X. . u(x) 
inj

(5-30)

where ~ distance from top of plane to sample collection location,

and “ distance from top of plane to injection location.

Second, Eq. 5-29 was modified to account for the changing 

cross-sectional area and changing dispersion coefficient over the 

travel distance. The modified equation is

c = 
P

M

r A^(x) D(x) 

J x .  . u(x)
•' inj

(5-31)

4n dx

For a unit width of flow.
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A^(x) = yf(x)
S

so that

c = 
P

M

i n  f
l x . .  .
J inj u(x)

(5-32)

dx

For the purposes of this comparison, Eq. 5-32 was approximated as

M

n y (x.) D(x.) Ax 
An I ---- ----

(5-33)

i=l u(xp

where

n • Ax = X , - X. .
col inj

A value of 0.5 foot was used for Ax.

The results are presented in Table 5-5 for those experiments with 

small X™ and T„ (Table 5-3) and with positive dispersion coeffi-
Te e

cients from Eq. 5-25. It is seen that both approximation methods give 

similar results and are greater than the measured peaks by a factor of 

2 to 3. It therefore appears that even very short convective periods 

may cause significant deviations from the dispersion theory of Eqs. 2-5 

and 5-29, and that the nonuniform conditions on the plane may be sig-

nificantly influencing these approximations. However, for the cases 

examined, the two approximation methods could be used to obtain an 

upper limit of peak concentrations for planning studies.



Table 5-5

Peak Concentrations from Eqs. 5-29 and 5-33

Experiment
No. Slope

Rainfall
Intensity
(in/hr)

Computed Peak (pg/L)

Peak from 
Averaged 
Laboratory 
Conc.-Dist. 
Curve 
(Pg/L)

Average of 
Individually 
Measured 
Laboratory 

Peaks
(M8/L)Eq. 5-29 Eq. 5-33

la 0.001 2 134 135 65 79
lb 0.001 2 161 161 94 132
2a 0.001 3 225 223 93 192
2b 0.001 3 265 262 155 (1)
3 0.001 4 389 333 151 205
4 0.001 5 677 679 200 255

^^^Only width-averaged samples were collected for this experiment.

U)



Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

A numerical model was developed to simulate the movement of a 

solute in steady overland flow during rainfall. The flow layer 

approach used by the model, and the depth and velocity relationships 

adopted, produced concentration-time curves which reasonably reproduced 

measurements in the laboratory, given that a proper value for the 

vertical mixing coefficient, e^, was selected.

A study of these numerical model simulations concluded that the 

velocity of the peak concentration may vary between the mean cross- 

sectional velocity and the maximum point velocity, depending upon the 

value--implying that caution should be used in interpreting time- 

of-travel data to estimate velocities in overland flow. Based on these 

simulations, it is further concluded that for the conditions examined 

in this study, rainfall generally does not produce a continuous state 

of complete vertical mixing in overland flow.

The calibrated values were used in a regression analysis to

determine their relationship to the rainfall and flow parameters 

thought to be most important in vertical mixing. It is concluded that 

the most important variables affecting (for the conditions of this 

study) are rainfall intensity and mean flow velocity. The regression 

equation showed that varies greatest at low rainfall intensities

and near the top of the overland flow plane. The lower range of e
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values compared favorably with an estimate of the molecular diffusion 

coefficient for Rhodamine WT dye. The upper range of values was 

similar to estimated vertical mixing coefficient values for equivalent 

hypothetical turbulent flow.

The distance from the injection location to the point where the 

Taylor conditions are met was estimated to be very short where vertical 

mixing is great (high rainfall intensities and low flow velocities) and 

very long where vertical mixing is small (low rainfall intensities and 

high flow velocities). An expression for the longitudinal dispersion 

coefficient, D, (valid where the Taylor conditions apply) was derived 

using the integral equation for D presented by Fischer along with the 

flow relationships developed earlier in this study. In applying this 

expression to the flow conditions tested in the laboratory, the com-

puted dispersion coefficients were generally closer in magnitude to 

turbulent dispersion coefficients than laminar dispersion coefficients. 

For some of these flow conditions, however, negative dispersion coeffi-

cients were computed. In further checking this finding, it was dis-

covered that the integral equation for D can produce positive, nega-

tive, or zero values for D for the case of laminar flow between 

parallel plates where the bottom plate is fixed, the top plate is 

moving at a constant velocity, and a porous plate or screen located at 

an intermediate depth is moving at the maximum velocity. Therefore, it 

was concluded that this integral equation for D is not appropriate 

for all velocity profiles.

An investigation of approximate methods for estimating peak 

concentrations showed that they overestimate by a factor of 2 to 3. 

However, there may be cases when these approximate methods are appro-

priate as conservative estimates for planning studies.
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The results and conclusions of this study are limited to the 

experimental conditions investigated. These conditions include a 

rainfall intensity range of 2 to 5 inches per hour; slopes of 0.001, 

0.015, and 0.030; raindrop size of 3.64 millimeters; raindrop spacing 

on a 1-inch square grid; impact velocity at 77 percent of terminal 

velocity; a smooth, impervious bed surface; "shallow splashing" condi-

tions; Rhodamine WT dye tracer; constant rainfall intensity; steady- 

state flow conditions; travel distances between 27.7 and 40.8 feet from 

the top of the plane; slightly nonuniform flow conditions transverse to 

the flow direction; and Reynolds numbers between about 100 and 400. 

Variability in the values presented in this study, due to experi-

mental and numerical model variability, could range up to ±60 percent 

or greater, based on subjective assessments.

B. Recommendations

As mentioned above, the experimental conditions investigated in 

this study are limited. In order to more completely describe vertical 

mixing coefficients and dispersion coefficients in overland flow found 

in nature, additional experimental investigations should include 1) a 

wider rainfall intensity range, 2) transport closer to the top of the 

plane, 3) transport throughout the runoff hydrograph, and 4) relation-

ships for velocity profiles over rough surfaces.

The numerical model can be expanded with a modest amount of 

additional effort to include 1) initial solute distribution over an 

area rather than a line, 2) entrance of solute into the flow as a 

function of time rather than instantaneously, 3) infiltration of solute 

from bottom flow layer into bed surface, 3) entrance of solute from the 

bed surface into the bottom flow layer, 5) first-order decay of solute
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due to sorption, volatilization, biodegradation, photolysis, etc., 6) 

rising and falling limbs of the runoff hydrograph, and 7) variable 

rainfall intensities. Expansion of the model to flow over rough sur-

faces would present special challenges. One of the major difficulties 

would be developing new relationships for velocity profiles, for which 

experimental data is lacking. Simulation of the "dead zones" created 

by a rough surface could be accomplished by adding an additional flow 

layer at the bed surface whose velocity would be zero and whose height 

could be correlated to the size of the roughness elements.

Additional need exists for development of approximate methods to 

estimate peak concentrations. For instance, in the case of hazardous 

waste spills, methods are needed which could be utilized quickly and 

easily to expedite decision-making. Also, the relative effect of 

various scenarios related to overland pollutant transport could be 

evaluated as effectively in many studies using approximate methods 

rather than computer simulations.



REFERENCES

Abidi, S. L., 1982, "Detection of Diethylnitrosamine in Nitrite-Rich 
Water Following Treatment with Rhodamine Flow Tracers," Water 
Research, Vol. 16, pp. 199-204.

Bailey, H. R. and Gogarty, W. B., 1962, "Numerical and Experimental 
Results on the Dispersion of a Solute in a Fluid in Laminar Flow 
through a Tube," Proceedings, Royal Society of London, Series A, 
Vol. 269, pp. 352-367.

Banks, R. B., 1978, "Accelerations and Terminal Velocities of Rain-
drops," J. of Environmental Engr. Div., Am. Soc. of Civil Engrs., 
Vol. 104, No. EE3, June, pp. 527-531.

Buchberger, S. G., 1979, "The Transport of Soluble Nonpoint Source
Pollutants During the Rising Hydrograph," M.S. Thesis, Colorado 
State University, Fort Collins, Colorado.

Buchberger, S. G., and Sanders, T. G., 1982, "A Kinematic Model for 
Pollutant Concentrations During the Rising Hydrograph," in 
Modeling Components of Hydrologic Cycle, Proceedings of the Inter-
national Symposium on Rainfall-Runoff Modeling held May 18-21, 
1981 at Mississippi State University, Water Resources Publica-
tions, Littleton, Colorado, pp. 405-426.

Chatwin, P. C., 1970, "The Approach to Normality of the Concentration 
Distribution of a Solute in a Solvent Flowing Along a Straight 
Pipe," ^  Fluid Mech., Vol. 43, Part 2, pp. 321-352.

Cleary, R. W. and Adrian, D. D. , 1973, "New Analytical Solutions for 
Dye Diffusion Equations," ^  Environmental Engr. Div., Am. Soc. of 
Civil Engrs., Vol. 99, No. EE3, June, pp. 213-227.

Crawford, N. H. and Donigian, A. S., Jr., 1973, "Pesticide Transport 
and Runoff Model for Agricultural Lands," U.S. Environmental 
Protection Agency, EPA-660/2-74-013.

Dingle, A. N. and Lee, V., 1972, "Terminal Fallspeeds of Raindrops," ^  
of Applied Meteorology, Vol. 11, Aug., pp. 877-879.

Dixon, W. J., Chief Editor, BMDP Statistical Software 1981, University 
of California Press, Berkeley, 1981.



142

Donigian, A. S., Jr., and Crawford, N. H., 1976, "Modeling Pesticides 
and Nutrients on Agricultural Lands," U.S. Environmental Protec-
tion Agency, Environmental Protection Technology Series, 
EPA-600/2-76-043.

Donigian, A. S., Jr., and Crawford, N. H., 1976, "Modeling Nonpoint 
Pollution from the Land Surface," U.S. Environmental Protection 
Agency, Ecological Research Series, EPA-600/3-76-083.

Elder, J. W. , 1959, "The Dispersion of Marked Fluid in Turbulent Shear 
Flow," ^  of Fluid Mech., Vol. 5, No. 4, pp. 544-560.

Emmett, W. W. , 1970, "The Hydraulics of Overland Flow on Hillslopes," 
U.S. Geological Survey Professional Paper 662-A, U.S. Govt. 
Printing Office, Washington, D.C.

Engle, 0. G. , 1966, "Crater Depths in Fluid Impacts," ^  of Applied 
Physics, Vol. 37, No. 4, March 15, pp. 1798-1808.

Engle, 0. G. , 1967, "Initial Pressure, Initial Flow Velocity, and the 
Time Dependence of Crater Depth in Fluid Impacts," J. of Applied 
Physics, Vol. 38, No. 10, Sept., pp. 3935-3940.

Fischer, H. B., 1965, Discussion of "Numerical Solution to a Dispersion 
Equation," ^  Hydraulics Div., Am. Soc. of Civil Engrs., Vol. 91, 
No. HY2, March, pp. 402-407.

Fischer, H. B., 1966, "A Note on the One-Dimensional Dispersion Model," 
Air and Water Pollution International J. , Vol. 10, pp. 443-452.

Fischer, H. B., 1967, "The Mechanics of Dispersion in Natural Streams," 
J. Hydraulics Div., Am. Soc. of Civil Engrs., Vol. 93, No. HY6, 
Nov., pp. 187-216.

Fischer, H. B. , 1968a, "Dispersion Predictions in Natural Streams," J. 
Sanitary Engr. Div., Am. Soc. of Civil Engrs., Vol. 94, No. SA5, 
Oct., pp. 927-943.

Fischer, H. B., 1968b, "Methods for Predicting Dispersion Coefficients 
in Natural Streams, With Applications to Lower Reaches of the 
Green and Duwamish Rivers, Washington," U.S. Geological Survey 
Professional Paper 582-A.

Fischer, H. B. , 1977, Discussion of "Convective Model of Longitudinal 
Dispersion," J. Hydraulics Div., Am. Soc. of Civil Engrs., 
Vol. 103, No. HY8, Aug., pp. 948-949.

Fischer, H. B. , List, E. J. , Koh, R. C. Y. , Imberger, J. , and Brooks, 
N. H., 1979, Mixing in Inland and Coastal Waters, Academic Press, 
New York.

Frere, M. H., Onstad, C. A., and Holtan, H. N., 1975, "ACTMO, An
Agricultural Chemical Transport Model," U.S. Department of 
Agriculture, Agricultural Research Service, ARS-H-3.



143

Haith, D. A. and Loehr, R. C., eds., 1979, "Effectiveness of Soil and 
Water Conservation Practices for Pollution Control," U.S. 
Environmental Protection Agency, Ecological Research Series, 
EPA-600/3-79-106.

Harlow, F. H. and Shannon, J. P., 1967a, "Distortion of a Splashing 
Liquid Drop," Science, Vol. 157, No. 3788, Aug. 4, pp. 547-550.

Harlow, F. H. and Shannon, J. P., 1967b, "The Splash of a Liquid Drop," 
J- of Applied Physics, Vol. 38, No. 10, Sept., pp. 3855-3866.

Holley, E. R., Jr. and Harleman, D. R. F., "Dispersion of Pollutants in 
Estuary Type Flows," Report No. 74, Hydrodynamics Laboratory, 
Dept, of Civil Engr., Mass. Inst, of Tech., Cambridge, Mass., 
Jan. 1965.

Kisisel, I. T. , 1971, "An Experimental Investigation of the Effect of 
Rainfall on the Turbulence Characteristics of Shallow Water Flow," 
Thesis submitted in partial fulfillment of the requirements for 
the degree of Doctor of Philosophy, Purdue University, Lafayette, 
Indiana.

Kisisel, I. T., Rao, R. Delleur, J. W. , 1973, "Turbulence in
Shallow Water Flow Under Rainfall," ^  Engineering Mechanics Div., 
Am. Soc. of Civil Engrs., Vol. 99, No. EMI, Feb., pp. 31-53.

Knisel, W. G. , ed., 1980, "CREAMS; A Field Scale Model for Chemicals, 
Runoff, and Erosion from Agricultural Management Systems," U.S. 
Department of Agriculture, Conservation Research Report No. 26.

Lager, J. A., Pyatt, E. E., and Shubinski, R. P., 1971, "Storm Water 
Management Model, Volume I - Final Report," U.S. Environmental 
Protection Agency, Water Pollution Control Research Series 11024 
DOC 07/71.

Laws, J. 0., 1941, "Measurements of the Fall-Velocity of Water-Drops 
and Raindrops," Trans., Am. Geophysical Union, Part III, 
pp. 709-721.

Laws, J. 0. and Parsons, D. A., 1943, "The Relation of Raindrop-Size to 
Intensity," Trans., Am. Geophysical Union, Part II, pp. 452-460.

Lighthill, M. J., 1966, "Initial Development of Diffusion in Poiseuille 
Flow," J. of the Institute of Mathematics and its Applications, 
Vol. 2, pp. 77-108.

Macklin, W. C. and Metaxas, G. J., 1976, "Splashing of Drops on Liquid 
Layers," J. of Applied Physics, Vol. 47, No. 9, Sept., pp. 3963- 
3970.

McQuivey, R. S. and Keefer, T. N., 1976, "Convective Model of Longitu-
dinal Dispersion," ^  Hydraulics Div., Am. Soc. of Civil Engrs., 
Vol. 102, No. HYIO, Oct., pp. 1409-1424.



144

Morgali, J. R., 1970, "Laminar and Turbulent Overland Flow Hydro-
graphs," ^  Hydraulics Div., Am. Soc. of Civil Engrs., Vol. 96, 
No. HY2, Feb., pp. 441-460.

Mutchler, C. K. , 1967, "Parameters for Describing Raindrop Splash," ^  
of Soil and Water Conservation, Vol. 22, No. 3, May-June, 
pp. 91-94.

Mutchler, C. K. and Hansen, L. M. , 1970, "Splash of a Waterdrop at 
Terminal Velocity," Science, Vol. 169, No. 3952, Sept. 25, 
pp. 1311-1312.

Oliver, F. W. J., editor, 1960, Royal Society Mathematical Tables, Vol. 
7, Bessel Functions, Part III, Zeros and Associated Values, 
University Press, Cambridge, 79 pp.

Palmer, R. S., 1965, "Waterdrop Impact Forces," Trans. Am. Soc. of 
Agric. Engrs., Vol. 8, No. 1, pp. 69-70, 72.

Rao, R. A., Kisisel, I. and Delleur, J. W., 1972, Discussion of
"Mechanics of Sheet Flow Under Simulated Rainfall," ^  Hydraulics 
Div., Am. Soc. of Civil Engrs., Vol. 98, No. HY6, June,
pp. 1082-1089.

Robertson, A. F., Turner, A. K. , Crow, F. R., and Ree, W. 0., 1966, 
"Runoff from Impervious Surfaces Under Conditions of Simulated 
Rainfall," Trans. Am. Soc. of Agric. Engrs., Vol. 9, No. 3,
pp. 343-346, 351.

Sayre, W. W., 1968a, "Dispersion of Mass in Open-Channel Flow," 
Colorado State University Hydraulics Paper No. 3, Colorado State 
University, Fort Collins, Colorado.

Sayre, W. W. , 1968b, Discussion of "The Mechanics of Dispersion in
Natural Streams," J. Hydraulics Div., Am. Soc. of Civil Engrs.,
Vol. 94, No. HY6, Nov., pp. 1549-1556.

Sayre, W. W. , 1969, "Dispersion of Silt Particles in Open Channel
Flow," J. Hydraulics Div., Am. Soc. of Civil Engrs., Vol. 95, 
No. HY3, May, pp. 1009-1038.

Sayre, W. W. , 1977, Discussion of "Convective Model of Longitudinal 
Dispersion," J. Hydraulics Div., Am. Soc. of Civil Engrs., 
Vol. 103, No. HY7, July, pp. 820-823.

Schlichting, H., 1979, Boundary-Layer Theory, Seventh Edition, McGraw- 
Hill Book Company, New York.

Shen, H. W. and Li, R. M., 1973, "Rainfall Effect on Sheet Flow Over 
Smooth Surface," ^  Hydraulics Div., Am. Soc. of Civil Engrs., 
Vol. 99, No. HY5, May, pp. 771-792.

Spalding, D. B., 1963, Convective Mass Transfer, McGraw-Hill Book
Company, New York.



145

Taylor, G. I., 1953, "Dispersion of Soluble Matter in Solvent Flowing 
Slowly Through a Tube," Proceedings, Royal Society of London, 
Series A, Vol. 219, pp. 186-203.

Taylor, G. I., 1954, "The Dispersion of Matter in Turbulent Flow
Through a Pipe," Proceedings, Royal Society of London, Series A, 
Vol. 223, pp. 446-468.

Wang, R. C. and Wenzel, H. G., 1970, "The Mechanics of a Drop After 
Striking a Stagnant Water Layer," University of Illinois, Water 
Resources Center, Research Report No. 30, Urbana, Illinois.

Woo, D. C. and Brater, E. F., 1962, "Spatially Varied Flow From
Controlled Rainfall," J. Hydraulics Div., Am. Soc. of Civil 
Engrs., Vol. 88, No. HY6, Nov., pp. 31-56.

Woolhiser, D. A., 1975, "Simulation of Unsteady Overland Flow,"
Chapter 12 in Unsteady Flow in Open Channels, Vol. II, by Mahmood, 
K. and Yevjevich, V., editors. Water Resources Publications, Fort 
Collins, Colorado.

Yeh, G-T., 1976, "Three-Dimensional Pollutant Modeling in Shear Flow," 
J. Hydraulics Div., Am. Soc. of Civil Engrs., Vol. 102, No. HY3, 
March, pp. 351-365.

Yeh, G-T and Tsai, Y-J., 1976, "Dispersion of Water Pollutants in a 
Turbulent Shear Flow," Water Resources Research, Vol. 12, No. 6, 
Dec., pp. 1265-1270.

Yen, B. C. and Wenzel, H. G., Jr., 1970, "Dynamic Equations for Steady 
Spatially Varied Flow," ^  Hydraulics Div., Am. Soc. of Civil 
Engrs., Vol. 96, No. HY3, March, pp. 801-814.

Yoon, Y. N., 1970, "The Effect of Rainfall on the Mechanics of Steady 
Spatially Varied Sheet Flow on a Hydraulically Smooth Boundary," 
Thesis submitted in partial fulfillment of the requirements for 
the degree of Doctor of Philosophy in Civil Engineering, Univer-
sity of Illinois at Urbana-Champaign, Urbana, Illinois.

Yoon, Y. N. and Wenzel, H. G. , 1971, "Mechanics of Sheet Flow Under 
Simulated Rainfall," Hydraulics Div., Am. Soc. of Civil Engrs., 
Vol. 97, No. HY9, Sept., pp. 1367-1386.

Yoon, Y. N. and Wenzel, H. G., 1973, Discussion Closure to "Mechanics 
of Sheet Flow Under Simulated Rainfall," ^  Hydraulics Div., Am. 
Soc. of Civil Engrs., Vol. 99, No. HY4, April, pp. 675-677.

Yotsukura, N. and Fiering, M. B. , 1964, "Numerical Solution to a
Dispersion Equation," ^  Hydraulics Div., Am. Soc. of Civil 
Engrs., Vol. 90, No. HY5, Sept., pp. 83-104.

Yotsukura, N. and Fiering, M. B. , 1966, Discussion Closure to "Numeri-
cal Solution to a Dispersion Equation," ^  Hydraulics Div., Am. 
Soc. of Civil Engrs., Vol. 92, No. HY3, May, pp. 67-72.



APPENDIX A

COMPUTER PRINTOUT OF 
NUMERICAL MODEL



147

Figure A-1. Flow Chart for Numerical Model
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PROGRAM DISPERS (INPUT,OUTPUT.TAPES =INPUT.TAPE6 =OUTPUT,TAPE?, 
1 TAPES)

THIS PROGRAM MODELS THE DISPERSION OF A POLLUTANT IN OVERLAND FLOW 
WITH RAINFALL. THE POLLUTANT IS WATER SOLUBLE AND CONSERVATIVE. 
THE INTRODUCTION OF THE POLLUTANT INTO THE FLOW TAKES PLACE 
INSTANTANEOUSLY WITH COMPLETE MIXING UPON INJECTION. THE AREAL 
COVERAGE OF THE SOURCE IS INFINITE IN THE DIRECTION TRANSVERSE 
TO THE FLOW AND FINITE IN THE DIRECTION LONGITUDINAL TO THE 
FLOW. THE RAINFALL HAS A CONSTANT AND UNIFORM INTENSITY, DROP 
SIZE. AND IMPACT VELOCITY OVER THE ENTIRE PLANE. THE OVERLAND 
FLOW IS STEADY AND NONUNIFORM ON A PLANE OF CONSTANT AND UNIFORM 
SLOPE AND ROUGHNESS. CONVECTION OF THE POLLUTANT OCCURS WITHIN 
STREAMTUBES WHOSE LONGITUDINAL AXIS IS PARALLEL TO THE FLOW.
WHOSE TRANSVERSE DIMENSIONS ARE INFINITE, AND WHOSE VERTICAL 
DIMENSIONS ARE SPECIFIED BY THE USER.
THE FLOW VELOCITY WITHIN STREAMTUBES IS DEFINED BY 
A DIMENSIONLESS VELOCITY DISTRIBUTION CURVE ALONG WITH THE MEAN 
CROSS-SECTIONAL VELOCITY COMPUTED FROM DARCY-WEISBACH FRICTION 
FACTOR EQUATION. VERTICAL DIFFUSION OF POLLUTANT BETWEEN STREAM- 
TUBES FOLLOWS FICKIAN-TYPE DIFFUSION PROCESS USING A CROSS- 
SECTIONAL MEAN VERTICAL MIXING COEFFICIENT WHICH 
INCLUDES THE EFFECT OF RAINDROP MIXING. DIFFUSION IN LONGITUDINAL 
DIRECTION IS ASSUMED NEGLIGIBLE COMPARED TO SHEAR FLOW DISPERSION.

DEFINITIONS : 

AVGCON(J) AVERAGE CONCENTRATION OF ALL CELLS IN THE VERTICAL 
CELL COLUMN (THAT IS, AVERAGE CROSS-SECTIONAL 
CONCENTRATION) LOCATED J CELLS DOWNSTREAM FROM 
BASELINE XO (UNITS = MG PER lOOOL, OR PPB).

CB(I,K) POLLUTANT CELL BOUNDARY LOCATION, MEASURED FROM 
UPSTREAM POINT ON PLANE WHERE RAINFALL BEGINS, AND 
MEASURED ALONG X-AXIS (PARALLEL TO FLOW DIRECTION). 
'I' REPRESENTS THE STREAMTUBE NUMBER, BEGINNING 
WITH THE TUBE ADJACENT TO THE STREAMBED LABELED '1'. 
'K' REPRESENTS THE POLLUTANT CELL BOUNDARY NUMBER. 
BEGINNING WITH THE POLLUTANT CELL BOUNDARY LOCATED 
FURTHEREST DOWNSTREAM (WITHIN STREAMTUBE 'I')
LABELED '1'. A POLLUTANT CELL BOUNDARY IS A 
VERTICAL BOUNDARY BETWEEN TWO ADJACENT COMPUTATIONAL 
CELLS WITHIN A STREAMTUBE, WITH AT LEAST ONE OF THE 
ADJACENT CELLS CONTAINING A POLLUTANT CONCENTRATION
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CLPRT

CLPRTS

COMP

CONC(I,K)

DEBUG

BELT

DELX

DELY

GREATER THAN ZERO.

= TIME AT WHICH A PRINTOUT IS DESIRED OF
INDIVIDUAL CELL CONCENTRATIONS (UNITS = SEC).

= NUMBER OF CELL CONCENTRATION PRINTOUTS DESIRED.

= CONTROLS WHETHER TO COMPARE COMPUTED CONCENTRATION 
CURVE WITH LABORATORY CURVE. IF EQUAL TO 'O',
NO COMPARISON IS MADE. IF EQUAL TO '1'. THE 
TWO CORVES WILL BE COMPARED BASED ON SUMMATION 
OF ABSOLUTE VALUES OF DIFFERENCES BETWEEN THE 
TWO CURVES.

= THE POLLUTANT CONCENTRATION IN THE UPSTREAM 
CELL ADJACENT TO THE POLLUTANT CELL BOUNDARY, 
CB(I,K), (UNITS = MG PER lOOOL, OR PPB).

= INTEGER VARIABLE CONTROLING PRINTOUT OF INTERIM 
CALCULATIONS FOR DEBUGGING PURPOSES. IF EQUAL TO 
'O', NO INTERIM PRINTOUTS. IF EQUAL TO '1', 
INTERIM PRINTOUTS WILL BE PRINTED.

= THE COMPUTATIONAL TIME STEP (UNITS = SEC).

= THE LENGTH OF ALL COMPUTATIONAL CELLS, MEASURED IN 
FLOW DIRECTION (UNITS = FT).

= VERTICAL DIMENSION OF STREAMTUBE (UNITS = FT).

DIFFUSION
OPTION

DIFUSE

EPSLN

INTENS

KPARAM

MAXT

Q

OPTION ONE COMPUTES VERTICAL DIFFUSION 
RESULTS AT CENTERLINE OF EACH STREAMTUBE.
OPTION TWO COMPUTES VERTICAL DIFFUSION RESULTS 
AT VERTICAL QUARTER POINTS WITHIN EACH STREAMTUBE, 
THEN AVERAGES THE RESULTS OVER THE HEIGHT OF 
THE STREAMTUBE.

= VERTICALLY-DIFFUSED CONCENTRATION 
USING VERTICAL TURBULENT DIFFUSION COEFFICIENT, 
EPSLN (UNITS = MG PER lOOOL, OR PPB).

= VERTICAL TURBULENT DIFFUSION COEFFICIENT (UNITS = 
SQ FT PER SEC).

= RAINFALL INTENSITY (UNITS = INCHES PER HOUR) .

= PARAMETER RELATED TO DARCY-WEISBACH FRICTION 
FACTOR (F) AND REYNOLDS NUMBER (R) SUCH THAT 
KPARAM = F * R.

= MAXIMUM TIME FOR COMPUTER RUN (UNITS = SEC).

= DISCHARGE PER FOOT WIDTH (UNITS = SQ FT PER SEC).
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RES(I.K) = A RESIDUAL VALUE WHICH WHEN ADDED TO THE POLLUTANT 
CELL BOUNDARY LOCATION, CB(I,K), RESULTS IN THE 
CORRECT LOCATION FOR CB(I,K). THIS RESIDUAL 
VALUE WILL ALWAYS BE LESS THAN PLUS OR MINUS 
DELX (UNITS = FT).

SO = BED SLOPE

SOURCE = THE CONCENTRATION OF THE DYE IN THE FLOW THE
INSTANT FOLLOWING INJECTION AT TIME T=0 
(UNITS = MG PER lOOOL, OR PPB).

SUMT = TIME ELAPSED SINCE INJECTION (UNITS = SEC).

TPLOT = INTEGER VARIABLE CONTROLING WHETHER CONCENTRA-
TION VS DISTANCE AND MASS VS DISTANCE CURVES 
WILL BE PLOTTED AT TIMES SPECIFIED BY 'TPRINT'.
IF EQUAL TO 'O', NO PLOT WILL BE PRODUCED. IF 
EQUAL TO '1', A LINE PRINTER PLOT WILL BE MADE 
USING 'MAPA' PLOT ROUTINE.

TPRT TIME AT WHICH A CONCENTRATION-DISTANCE CURVE 
PRINTOUT IS DESIRED.

TPRTS NUMBER OF CONCENTRATION-DISTANCE CURVE PRINTOUTS 
DESIRED.

TSUM SUMMATION OF TRAVEL TIME OF A POLLUTANT CELL 
BOUNDARY DURING CONVECTION (UNITS = SEC).

TUBES = NUMBER OF STREAMTUBES USED.

U(I,K) = VELOCITY WITHIN THE UPSTREAM CELL ADJACENT TO
THE POLLUTANT CELL BOUNDARY, CB(I,K), (UNITS = 
FT PER SEC).

UAVG(J) AVERAGE VELOCITY OF ALL CELLS IN THE VERTICAL 
CELL COLUMN (THAT IS, AVERAGE CROSS-SECTIONAL 
VELOCITY) LOCATED J CELLS DOWNSTREAM FROM 
BASELINE XO (UNITS = FT PER SEC).

UNIFLO DISCHARGE FOR STEADY UNIFORM FLOW CONDITIONS —  
NO RAINFALL (UNITS = SQ FT PER SEC).

VCHECK THE NUMBER OF CELLS DOWNSTREAM OF THE BASELINE, 
XO. FOR WHICH VELOCITY VALUES ARE NEEDED TO 
PROCEED WITH CONVECTION CALCULATIONS.

VEL IHE NUMBER OF CELLS DOWNSTREAM OF THE BASELINE, 
XO, FOR WHICH VELOCITIES HAVE BEEN COMPUTED.

VISCOS KINEMATIC VISCOSITY OF WATER (UNITS = 
SQ FT PER SEC).
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WHICHX CONTROLS WHICH LOCATION ON PLANE A COMPARISON 
WILL BE MADE BETWEEN COMPUTED AND LABORATORY 
CONCENTRATION CURVES.

WIDTH WIDTH OF LINE SOURCE INJECTION IN THE FLOW THE 
INSTANT FOLLOWING INJECTION AT TIME T=0. THIS 
WIDTH IS A DIMENSION MEASURED ALONG THE X-AXIS, 
THAT IS, PARALLEL TO FLOW DIRECTION (UNITS = 
FT) .

XINJEC

XO

LOCATION OF CENTERLINE OF LINE SOURCE INJECTION, 
MEASURED FROM UPSTREAM POINT ON PLANE WHERE 
RAINFALL BEGINS. IHE ORIENTATION OF THE LINE 
SOURCE IS PERPENDICULAR TO X-AXIS, THAT IS, 
PERPENDICULAR TO FLOW DIRECTION (UNITS = FT).

A BASELINE FOR COMPUTATIONS, EQUAL TO THE LOCATION 
OF THE UPSIHEAM-MOST CELL BOUNDARY WHICH CONTAINS 
POLLUTANT (UNITS = FT).

XPLOT INTEGER VARIABLE CONTROLING WHETHER CONCENTRATION 
VS TIME AND MASS VS TIME CURVES WILL BE PLOTTED 
FOR LOCATIONS SPECIFIED BY 'XPRINT'. IF EQUAL TO 
'O', NO PLOT WILL BE PRODUCED. IF EQUAL TO '1',
A LINE PRINTER PLOT WILL BE MADE USING 'MAPA'
PLOT ROUTINE.

XPRINT

YS

= LOCATIONS ALONG X-AXIS WHERE VALUES OF CONCENTRATION 
VS TIME AND MASS VS TIME WILL BE PRINTED OUT.
UP TO FOUR LOCATIONS ARE ALLOWED. A ZERO VALUE 
INPUT FOR ANY OF THE FOUR POSSIBLE XPRINT 
LOCATION OPTIONS MEANS NO PRINTOUT WILL BE PRODUCED 
FOR THAT XPRINT OPTION (UNITS = FT).

= DEPTH OF FLOW AT WATER SURFACE (UNITS = FT).

DIMENSION AVGCON(150), CARAYK200) , CARAY2( 4,150) , 
CB(41,100), CBS(58), CELL(58), CONC( 41,100), CONCEN(400), 
MARAYK200), MARAY2( 4,150) , MASSS(400), NEWCB(150), 
NEWCON(150), NEWRES(150), RES(41,100), TARAY(500), 
TEMCON(58), TIME(150), 0(41,100), UAVG(150), XARAY(200), 
XOCBS(58), XPRINT(4), V(58), SUMUCY(150), LABTIM(150),
LABCON(150), DELY(58) 
CHANGT(5 8), NEWT(5 8), 
,DIFFAC(100) , W(58)

. YTUBE(58), CLPRTOO), TPRT(90) 
CHANGX(58), ARGMT(5), TERM(5)

INTEGER ADVANC, ARAYl, ARAY2, BACKUP, CBS, CBSUM, CELL, COUNT, 
1 DEBUG, ENDIT, EVEODD, GRDSUM, GRIDS, ODDEVE, OLD, OIHERL,
1 OTHERM, QUIT, REFLEC, STEPT, TOTAL, TPLOT, TUBES, UPDOWN,
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1 VCHECK, VEL, XOCBS, XPLOT, CARDS, DATA.POINTS,COMP,WHICHX. 
1 OPTION, WHICHl, CLPRTS, TPRTS, CHOICE, DELTS, DELXS,
1 VPROFL, TEST, CEASE, REED, TIMEIN

REAL INTENS, KARMAN, KPARAM, LOCATE, MAXCB, MINCB, NEWCB,
1 NEffCON, NEWRES, NEWXO, MAXT, MASS, MARAYl, MARAY2, MASSS,
1 LABCON,LABTIM,NEffT,KPAR,INCRT,MAXU,MAXFAC

CHARACTER*10 DI, TI, CO, MA 
CHARACTER*80 DICO, DIMA, TICO, TIMA

READ(5,1) WIDTH,XINJEC, SOURCE, TEST,
1 INCRT, REED, SURFD, MAXU,
1 DELX, DELT, MAXT, TUBES, DEBUG, OPTION, VPROFL,
1 KPARAM, SO, VISCOS, INTENS, EPSLN, UNIFLO, UMAX,
1 TPLOT, XPRINT(l), XPRINT(2), XPRINTO), XPRINT(4),
1 XPLOT, COMP, WHICHX
FORMAT(F10.4,2F10.3,I10,F10.3,15,2F7.3/F10.7,F10.6,F10.3,
1 4I10/F10.3,F10.5,
1 F10.7,F10.3,F10.9,F10.8,F10.4/I10,4F10.3,313)
READ(5,3) DELTS, (CHANGT(I), NEWT(I), 1=1,DELTS)
READ(5,3) DELXS, (CHANGX(I), 1=1,DELXS)
READ(5,2) (DELY(I), 1=1,TUBES)
FORJIAT(10F7.3)
READ(5,3) CLPRTS, (CLPRT(I),1=1,CLPRTS)
READ(5,3) TPRTS, (TPRT(I),1=1,TPRTS)
FORMAT(I5,(8F8.3))
WRITE(6,4) WIDTH, XINJEC, SOURCE, TEST, INCRT, REED, SURFU,
1 MAXU,DELX,DELT,MAXT,TUBES,
1 DEBUG,OPTION,VPROFL,KPARAM, SO, VISCOS, INTENS, EPSLN, UNIFLO, 
1 UMAX,TPLOT, XPRINT(l), XPRINT(2), XPRINT(3), XPRINT(4), XPLOT, 
1 COMP, WHICHX, DELTS, (I, CHANGT(I), I, NEWT(I), 1=1,DELTS) 
FORMAT('1'////35X, '******************••***•****************•,
1 '••*******'/35X,'*',19X,'DATA INPUT
1 ' *>****«********•******•***•*************«*>^

1 '*•••*****741X,'(SEE PROGRAM LISTING FOR DEFINITIONS)'
1 /////5X,'WIDTH(FT) = ',F7.4/5X,'XINJEC(FT) = ',F7.3/5X,
1 'SOURCE(PPB) =',F10.2/5X,'TEST =',I7/5X,'INCRT',8X,
1 '=',F8.3/5X,'REED',9X,'=',I7/5X,'SURFU',8X,'=',F7.3/5X,'MAXU'
1 ,9X,' = ',F7.3///5X,'DELX(FT) =',2X,F10.7/5X,'DELT(SEC) =',
1 F8.6/5X,'MAXT(SEC) =',F8.3/5X,'TUBES =',14/5X,'DEBUG
1 ,14/5X,'DIFFUSION'/8X,'OPTION =',14/5X,'VELOCITY'/8X,'PROFILE'
1 /8X,'OPTION =',I4///5X,'KPARAM',24X,'=',F6.1/5X,
1 'SO',28X,'=',F8.5/5X,'VISCOS(SQ FT PER SEC)',9X,'=',F12.7/
1 5X,'INTENSdN PER HR) ' ,13X,' = ',F7.2/5X,'EPSLN(SQ FT PER SEC)'
1 ,10X,'=',F13.9/5X,'UNIFLO(CU FT PER SEC PER FT) =',F12.7
1 /5X,'UMAX(FT PER SEC)',14X,'=',F8.4///5X,'TPLOT',10X,'=',
1 I5/5X,'XPRINT(l) (FT) =',F10.4/5X,'XPRINT(2) (FT) =',
1 F10.4/5X,'XPRINT(3) (FT) =',F10.4/5X,'XPRINT(4) (FT) =',
1 F10.4/5X,'XPLOT',10X,'=',I5/5X,'COMP',11X,'=',15/
1 5X,'WHICHX',9X,'=',I5///5X,'DELTS=',I3/(5X,'CHANGT(',12,')=',
1 F8.3,' SEC',5X,'NEWT(',I2,')=',F8.3,' SEC'))
WRITE(6,6) DELXS, (I, CHANGX(I), 1=1,DELXS)
FORMAT(5X,'DELXS=',13/(5X,'CHANGX(',12,')=',
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10

1 F8.3,' SEC'))
WRITE(6,7) (I, DELY(I), 1=1.TUBES)
FORMAT(//(5X,'DELY(',I2,') =',F6.2,' PERCENT OF DEPTH')) 
IF(CLPRTS.EQ.O) THEN 

WRITE(6,8)
F0RMAT(//5X,'CLPRTS= O')

ELSE
WRITE(6.9) CLPRTS, (I.CLPRT(I). I=1,CLPRTS)
FORMAT!//5X,'CLPRTS=',15/(5X,'CLPRT(',12.')='.

1 F8.3.IX,'SEC'))
ENDIF
WRITE(6,10) TPRTS, (I,TPRT(I). I=1,TPRTS)
FORMAT!//5X,'TPRTS=',15./(5X,'TPRT(',12,')=',
1 F8.3,IX,'SEC'))

IF!COMP.EQ.l) THEN
READ!5,11) CAPJ)S, POINTS

11 FORMAT!2I5)
DATA = CARDS * 3 
DO 13 1=1,DATA,3

READ!5,12) LABTIM!!), LABCON!!). LABTIM!I+1),
1 LABC0N!I+1), LABTIM!I+2), LABC0N!I+2)

12 FORiIAT!3!F10.2,F10.1) )
13 CONTINUE 

ENDIF
IF!REED.EQ.l) THEN

READ! 7,820) SUMT.DELT,DELX.XO,VEL.TOTAL,LIMIT.ARAYl,
1 ARAY2.KILL,ITIME,IX,STEPT.G,KARMAN

820 FORMAT!IX,2F10.3.2F10.5,3I10/1X,6I10/1X,2F10.5)
DO 82 8 1=1, TUBES

READ!7,822) CBS!I),!CB!I,K),K=1,CBS!I))
822 FORMAT!6X,I5/!1X,7F10.6))

READ!7,824) !RES!I,K),K=1,CBS!I))
824 F0RMAT!!1X.7F10.6))

READ!7,826) !CONC!l,K),K=1.!CBS!I)-1))
826 FORMAT!!IX,7F10.4))

READ!7.824) !U!I,J),J=1,VEL)
82 8 CONTINUE

READ!7,824) !UAVG!J),J=1,VEL)
READ!7.826) !AVGCON!J).J=1.TOTAL)
IF!ARAY1.GT.0) THEN

READ!8,830) !XARAY!J),CARAYl!J),MARAY1!J),J=1.ARAYl) 
830 FORMAT!!IX,FIO.6,FIO.4,FIO.8,FIO.6,FIO.4,FIO.6))

ENDIF
IF!ARAY2.GT.O) THEN 

DO 83 4 J=l,4
IF!XPRINT!J).GT.O.) THEN

READ!7,832) !TARAY!K),CARAY2!J,K),MARAY2!J,K).
1 K=1,ARAY2)

832 FORMAT!!1X,FIO.3 .FIO.4,FIO.8.FIO.3,FIO.4,FIO.8))
ENDIF

83 4 CONTINUE
ENDIF

ENDIF
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WRITE (6.14)
14 FORMAT(*i'////33X,'***************************************',

1 '•*♦♦•*****♦••**'/33X.,19X,'PROGRAM OUTPUT',
1 19X,'*'/33X,'•*******♦*****•**•♦***********',
2  '**4>********************* >)

DI = 'DIST (FT) '
TI = 'TIME (SEC)'
CO = 'CONC (PPB) ’
MA = 'MASS (MG) '
DICO = ' DISTANCE FROM BEGINNING OF RAIN * VERSUS * CONCE
INTRATION AT TIME T
DIMA = ' DISTANCE FROM BEGINNING OF RAIN * VERSUS * MASS
1 AT TIME T
TICO = ' TIME SINCE INJECTION • VERSUS * CONCENTRATION
1 AT FIXED POINT X
TIMA = ' TIME SINCE INJECTION • VERSUS • MASS AT FIXED
1 POINT X '
IF(REED.EQ.l) GO TO 840

C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
840

LIMIT = 0
ARAY1=0
ARAY2=0
SUMT=DELT
KILL=0
G=32.2
KARMAN = .41 
ITIME = 1 
IX = 1 
STEPT = 1 
TIMEIN = 0

IF THE FLOW IS STEADY AND UNIFORM (NO RAINFALL),
THEN COMPUTE:

1) DEPTH = DEPTH OF FLOW USING DARCY-WEISBACH
EQUATION WITH KPARAM WHERE
KPARAM = (FRICTION FACTOR) * (REYNOLDS NO.).

2) TAD(BOUNDARY SHEAR STRESS) = SO(BED SLOPE) TIMES
DEPTH(DEP1H OF FLOW) TIMES 62.3(SPECIFIC WEIGHT 
OF WATER).

3) USTAR(SHEAR VELOCITY) = SQUARE ROOT OF (BOUNDARY
SHEAR STRESS DIVIDED BY DENSITY IN SLUGS).

4) V(LOCAL VELOCITY IN CROSS SECTION) = VELOCITY
DISTRIBUTION AS DERIVED FOR LAMINAR OR TURBULENT 
FLOW OVER A PLANE.

IFdNTENS.EQ.O.) THEN
DEPTH = ((KPARAM*VISCOS*UNIFLO)/(8.*G*SO))**(!./3 
TAD = SO • DEPTH • 62.3
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USTAR = SQRT(TAU/1.937)
AVGVEL = UNIFLO/DEPTH 
RYNDLS = TJNIFLO/VISCOS 
FRICTN = KPARAM/RYNDLS
WRITE(6,15) DEPTB, TAU, USTAR, AVGVEL, RYNDLS, FRICTN

15 FORMAT(////5X,'THE FLOW IS STEADY, UNIFORM (NO RAINFALL).'
1 /5X,'COMPUTED FLOW CHARACTERISTICS ARE AS FOLLOWS: '//
1 1OX,'DEPTH OF FLOW(FT) =',F10.7/10X,
1 'BOUNDARY SHEAR STRESS(LB PER SQ FT) =',F10.7/10X,
1 'SHEAR VELOCITY(FT PER SEC) =',F9.6/10X,
1 'MEAN VELOCITY(FT PER SEC) =',F8.5/10X,'REYNOLDS NUMBER'
1 ,' =',F8.2/10X,'DARCY-WEISBACH FRICTION FACTOR ='
1 ,F8.4//)

YBASE = 0.
IF(TEST.EQ.3 .OR.TEST.EQ.4.0R.TEST.EQ.5.OR.TEST.EQ.6 

1 .OR.TEST.EQ.7) THEN
WRITE(6,500)

500 FORMAT(//10X,'STREAMTUBE VELOCITIES BASED ON ',
1 '1/7 POWER LAW.')

ELSE IF(VPROFL.EQ.O) THEN 
WRITE(6,16)

16 FORMAT(//10X,'VELOCITY DISTRIBUTION IS UNIFORM.',
1 'ALL STREAMTUBE VELOCITIES EQUAL TO ',
1 'CROSS-SECTIONAL MEAN VELOCITY.'//)

ELSE IF(VPROFL.EQ.3) THEN 
WRITE(6,501)

501 F0RMAT(//10X,'VELOCITY PROFILE IS PARABOLIC',
1 ' WITH A MAXIMUM VELOCITY AT .80 DEPTH.'//52X,
1 'LAMINAR PROFILE',8X,'ADJUSTED PROFILE')

GO TO 505
ELSE IF(RYNDLS.GE.950..OR.VPROFL.EQ.2) THEN 

WRITE(6,17)
17 FORMAT(//10X,'STREAMTUBE VELOCITIES BASED ON LOGARITHMIC'

1 ,' VELOCITY PROFILE FOR'/IOX,'TURBULENT FLOW OVER AN ',
1 'INCLINED PLANE ARE AS FOLLOWS:'//15X,'TUBE NO.',10X,
1 'DEPTH(FT)',10X,'VELOCITY(FT PER SEC)'//)

GO TO 505
ELSE IF(RYNDLS.LT.950.) THEN 

WRITE(6,18)
18 FORMAT(//10X,'STREAMTUBE VELOCITIES BASED ON VELOCITY ',

1 'PROFILE FOR'/IOX,'LAMINAR FLOW OVER AN INCLINED',
1 ' PLANE ARE AS FOLLOWS:'//15X,'TUBE NO.',10X,'DEPTH(FT)
1 ,10X,'VELOCITY(FT PER SEC)'//)

ENDIF
505 IF(VPROFL.EQ.3) THEN

Y = .8*DEPTH
VMAX = (((USTAR**2)*Y)/VISCOS)“

1 ((G*SO*(Y**2))/(2.*VISCOS))
MAXFAC = MAXU/VMAX
P = (.25*((.2*DEPTH)**2))/(MAXU-SURFU)

ENDIF
DO 20 1=1,TUBES

YTUBE(I) = (DELY(I)/100.)»DEPTH
Y = (.5*YTUBE(I))+YBASE
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YBASE = (.5*YTUBE(I))+Y
IF(TEST.EQ.3.OR.TEST.EQ.4.OR.TEST.EQ.5.OR.TEST. EQ.6 

1 .OR.TEST.EQ.7) THEN
V(I) = .748765*(Y**.1428571)

ELSE IF(VPROFL.EQ.O) THEN 
V(I) = AVGVEL 

ELSE IF(VPROFL.EQ.3) THEN
W(I) = (((USTAR**2)*Y)/VIS(X)S)-((G*SO*(Y**2))/

1 (2.*VISCOS))
IF(Y.LE.(.8*DEPTH)) THEN

V(I) = MAXFAC*((((USTAR**2)*Y)/VISCOS)- 
1 ((G*SO*(Y**2))/(2.*VISCOS)))

ELSE
V(I) = MAXU-(((Y-(.8*DEPTH))**2)/(4.*P))

ENDIF
WRITE(6,508) I.Y.W(I) ,V(I)

508 FORMAT(15X,I3,13X,F9.6,16X,F8.5,16X,F8.5)
GO TO 20

ELSE IF(RYNDLS.GE.950..OR.VPROFL.EQ.2) THEN
V(I) = AVGVEL + ((USTAR/KARMAN)*(l.+LOG(Y/DEPTH))) 
GO TO 510

ELSE IF(RYNDLS.l t .950.) THEN
V(I) = (((DSTAR**2)*Y)/VISCOS)-((G*SO*(Y**2))/

1 (2.*VISCOS))
ENDIF

510 WRITE(6,19) I, Y, V(I)
19 FORMAT(15X,I3,13X,F9.6,16X,F8.5)
20 CONTINUE 

ENDIF
IF(VPROFL.EQ.3) THEN 

SUM=0.
DO 509 1=1.TUBES 

SUM = V(I)+SUM
509 CONTINUE

AVGVEL = SUM/TUBES 
DEPTH = UNIFLO/AVGVEL
KPARAM = ((DEPTH**3)*8.*G*SO)/(VISCOS*UNIFLO)
TAD = SO*DEPTH*62.3 
USTAR = SQRT(TAU/1.937)
WRITE(6,511) KPARAM,DEPTH,TAD,USTAR,AVGVEL

511 FORMAT(///5X,’NEW KPARAM =',F8.2/5X,'NEW DEPTH ='.
1 F10.7/5X,'NEW BOUNDARY SHEAR STRESS ='.F10.7/
1 5X,'NEW SHEAR VELOCITY =',F9.6/5X,'NEW MEAN',
1 ' VELOCITY =',F8.5)
ENDIF

512 IFdNTENS.EQ.O. .AND.OPTION.EQ.5) THEN
1 = 0
FACl = -3.
FAC2 = -1.
DT4 = SQRT(4.*EPSLN*DELT)
YDEL = YTDBE(l)

514 I = I+l
FACl = FACl+2.
FAC2 = FAC2+2.
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DIFFAC(I) = .5*(-ERF((FACl*YDEL)/(2.*DT4))+
1 ERF((FAC2*YDEL)/(2.*DT4)))

IF(DIFFACd) .GT. .001) GO TO 514 
MAXI = I 

ENDIF
IF(TIMEIN.EQ.l) GO TO 30 
IF(REED.EQ.l) GO TO 30 

C *•*
C *** COMPUTE NUMBER OF GRID COLUMNS OCCUPIED BY 
C INJECTED DYE AT TIME T=0.
C •••

GRIDS=NINT(WIDTH/DELX)
C ***
C *** COMPUTE LOCATION OF UPSTREAM-MOST CELL BOUNDARY
C •** OCCUPYING INJECTED DYE AT TIME T=0. LET THIS 
C *** LOCATION BE BASELINE. XO.
C

BACKUP=GRIDS/2 
XO=XINJEC-(BACKUP*DELX)

IF(DEBUG.EQ.l) THEN
WRITE(6,21) GRIDS, BACKUP, XO

21 FORMAT(//5X,'GRIDS =',13,5X.'BACKUP =',I3,5X,'XO =',F7.3)
ENDIF 

C ***
C ESTABLISH LOCATION OF POLLUTANT CELL BOUNDARIES
C (CB(I,K)) WHICH CONTAIN THE LINE SOURCE IN THE
C *** FLOW AT TIME T=0, SET RESIDUAL VALUE (RES(I,K))
C OF EACH CELL BOUNDARY TO ZERO. INITIALIZE
C *** CONCENTRATION (CONC(I,K)) IN EACH CELL TO THE
C VALUE OF 'SOURCE'.
C ***

KGRIDS = GRIDS + 1 
DO 23 1=1,TUBES 

DO 22 K=1.KGRIDS
CB(I.K) = XO + ((KGRIDS)*DELX) - (K*DELX)
RES(I.K) = 0.
IF(K.EQ.KGRIDS) GO TO 22
IF(TEST.EQ.1.0R.TEST.EQ.2.0R.TEST.EQ.3.0R.TEST.EQ.6)

1 THEN
L = (TUBES + l)/2 
IF(I.EQ.L) THEN

CONC(I.K) = SOURCE 
GO TO 22 

ELSE
CONC(I.K) = 0.
GO TO 22 

ENDIF
ELSE IF(TEST.EQ.4.0R.TEST.EQ.5) THEN 

IF(I.EQ.TUBES) THEN 
CONC(I.K) = SOURCE 
GO TO 22 

ELSE
CONC(I.K) = 0.



158

23

22

GO TO 22 
ENDIF 

ENDIF
CONC(I,K) = SOURCE 

CONTINUE 
CBS(I) = KGRIDS 

CONTINUE

24

25

26
27

IF(DEBUG.EQ.l) THEN 
WRITE(6,24)
FORMAT(5X,'IMMEDIATELY AFTER INJECTION:')
DO 27 1=1,TUBES.2 

DO 26 K=l,KGRIDS,2
WRITE(6,25) I, K, CB(I,K), RES(I,Z), CONC(I.K) 
FORMAT(5X,'TUBE NO. =',12,5X,'CELL BNDRY NO. =',I3,

1 5X,'CELL BNDRY LOCATION =',F7.3,5X,'RESIDUAL =',
1 F5.3.5X,'CONC =',F8.1)

CONTINUE 
CONTINUE 

ENDIF
DO 28 I=1,CLPRTS

IF(SUMT.GE.CLPRT(I).AND.(SUMT-DELT).LT.CLPRT(I)) THEN 
ENDIT = GRIDS 
CHOICE = 1
CALL CELLCON(CONC, CB. ENDIT, XO, DELX,TUBES,CBS.

1 DEBUG, SUMT,CHOICE)
ENDIF 

28 CONTINUE 
C ***
C •** COMPUTE DOWNSTREAM CELL VELOCITIES FOR FIRST 
C ••*20 CELL COLUMNS.
C •••

VEL = 0 
VCHECK = 0
CALL VELCTY (VCHECK, KPARAM, VISCOS, SO, DELT, DELX, INTENS,
1 XO, U, VEL, TUBES, UAVG, DEBUG, KILL, WHERE,AVGVEL,V,DELY,
1 UMAX, UPINJ, UINJ, KPAR)
IF(KILL.EQ.l) GO TO 425 
IFdNTENS.GT.O.) THEN 

WRITE(6,520)
520 FORMAT(//////////5X,'VELOCITY DISTRIBUTION AT',

1 ' INJECTION LOCATION:'//lOX,'TUBE NO.',5X,
1 'VELOCITY(FT/SEO'/)

DO 540 1=1,TUBES
WRITE(6,530) I,U(I,1)
F0RMAT(13X,I2,11X,F9.6)

CONTINUE
WRITE(6,550) UINJ,UPINJ,KPAR
FORMAT(///' MEAN VELOCITY OF ABOVE CORRECTED PROFILE (CORR', 

1 'ECTED TO INPUT K VALUE) IS',2X,F7.4/' MEAN VELOCITY OF'.
1 ' UNCORRECTED PROFILE WAS',2X,F7.4/' K VALUE',
1 ' CORRESPONDING TO UNCORRECTED PROFILE WAS',F6.1)
ENDIF
IF(EPSLN.EQ..99) IEPSLN=1

530
540

550
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30 IF(INCRT.GE.SUMT.AND.(INCRT-DELT).LT.suin') THEN
WRITE(8,850) SDMT,DELT.DELX,XO.VEL,TOTAL,LIMIT,

1 ARAYl,ARAY2.KILL,ITIME,IX,STEPT,G,KARMAN
850 FORÌÌAT(1X,2F10.3,2F10.5.3I10/1X,6I10/1X,2F10.5)

DO 858 1=1,TUBES
WRITE(8,852) I ,CBS(I ) , (CB(I ,K) ,K=1.CBS(D)

852 FORMAT(1X,2I5/(1X,7F10.6))
WRITE(8,854) (RES(I,K),K=1,CBS(I))

854 F0RMAT((1X,7F10.6))
¥RITE(8,856) (CONC(I,K),K=1,(CBS(I)-l))

856 FORMAT((1X,7F10.4))
WRITE(8,854) (U(I,J),J=1,VEL)

858 CONTINUE
WRITE(8,854) (UAVG(J),J=1,VEL)
WRITE(8,856) (AVGCON(J),J=1,TOTAL)
IF(ARAYl.GT.O) THEN

WRITE(8,860) (XARAY(J),CARAY1(J),MARAY1(J),
1 J=l,ARAYl)

860 FORMAT((1X,F10.6,F10.4,F10.8,F10.6,F10.4,F10.6))
ENDIF
IF(ARAY2.GT.O) THEN 

DO 864 J=l,4
IF(XPRINT(J).GT.O.) THEN

WRITE(8,862) (TARAY(K),CARAY2(J,K),
1 MARAY2(J,K),K=1,ARAY2)

862 FORMAT((IX.FIO.3,F10.4.F10.8,F10.3.FIO.4,
1 FIO.8))

ENDIF
864 CONTINUE

ENDIF 
GO TO 430 

ENDIF

C
C
C

*** CONVECT POLLUTANT CELL BOUNDARIES FOR TIME 
•** STEP 'DELT' AND DILUTE CONCENTRATION DUE TO 
•** RAINFALL (SPATIALLY-VARIED FLOW).

DO 70 1=1,TUBES 
C ***
C •** CHECK TO SEE IF SUFFICIENT NUMBER OF DOWNSTREAM
C CELL VELOCITIES HAVE BEEN PREVIOUSLY COMPUTED.
C IF NOT, COMPUTE THEM.
C **•

VCHECK = NINT((CB(I,1) - XO) /DELX) + 1
CALL VELCTY ( VCHECK, KPARAM, VISCOS, SO, DELT, DELX, INTENS.

1 XO, U, VEL, TUBES, UAVG, DEBUG, KILL, WHERE, AVGVEL, V.DELY,
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1 UMAX, UPINJ, UINJ, KPAR)
IF(KILL.EQ.l) GO TO 425
IF(DEBUG.EQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O..AND.

1 SUMT.LE.4.) IHEN
WRITE(6,31)

31 FORMAT(//5X.'AFTER CONVECTION AND DILUTION ADJUSTMENT'.IX.
1 '(PROG STATEMENT 3 4):'/5X,'STREAMTUBE',5X,'CELL BNDRY',
1 IX,'NO.',5X,'LOCATION',5X,'RESIDUAL',5X,'CONC')

ENDIF
DO 36 K=1,CBS(I)

C
C *** FIND CELL NUMBER, J, OF THE POLLUTANT CELL
C WHOSE DOWNSTREAM POLLUTANT CELL BOUNDARY IS TO
C *•* BE CONVECTED. CELL NUMBER, J, REPRESENTS THE
C *•* JTH COMPUTATIONAL CELL DOWNSTREAM FROM
C BASELINE, XO.
C **•

J = NINT((CB(I,K) - XO) / DELX)
IF(DEBUG.EQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O.

1 .AND.SUMT.LE.4.) T H M
WRITE(6,29) I,K,CB(I,K).XO.DELX.J

29 FORMAT(/5X,'1=',I4,2X,'K=',I4,2X,'CB=',F9.5,2X,'XO='.
1 F9.5,2X,'DELX=',F9.5,2X,'J=',I4)

ENDIF
C
C INITIALLY, SET VALUE OF 'TSUM' TO THE TRAVEL
C TIME EQUIVALENT OF THIS POLLUTANT CELL
C BOUNDARY RESIDUAL.
C *•*

IF(RES(I,K).LT.O..AND.J.EQ.O) THEN 
TSUM = -RES(I,K) / U(I,J+1)

ELSE IF(RES(I,K).LT.O.) THEN 
TSUM = -RESd.K) / U(I,J)

ELSE IF(RES(I,K).GT.O.) THEN 
TSUM = -RES(I.K) / U(I.J+1)

ELSE
TSUM = 0.

ENDIF
GRDSUM = 0 

33 J = J + 1
GRDSUM = GRDSUM + 1 

C •**
C •** CHECK TO SEE IF SUFFICIENT NUMBER OF DOWNSTREAM
C **• CELL VELOCITIES HAVE BEEN PREVIOUSLY COMPUTED.
C *** IF NOT. COMPUTE THEM.
C *•*

VCHECK = J + 2
CALL VELCTY ( VCHECK, KPARAM, VISCOS, SO, DELT, DELX,

1 INTENS.XO, U. VEL, TUBES, UAVG, DEBUG, KILL. WHERE,
1 AVGVEL, V.DELY, UMAX, UPINJ. UINJ, KPAR)

IF(KILL.EQ.l) GO TO 425 
C •**
C •** COMPUTE TRAVEL TIME (TRAVEL) THROUGH EACH DOWN-
C •** STREAM CELL WHILE SUMMING THESE TRAVEL TIMES
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C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

34

(TSUM). WHEN THE SUM EQUALS OR EXCEEDS THE 
COMPUTATIONAL TIME STEP (DELT), STOP.

THEN COMPUTE THE FOLLOWING FRACTION (FRAC):
THE DIFFERENCE BETWEEN THE TRAVEL TIME SUM 
(TSUM) AND THE COMPUTATIONAL TIME STEP (DELT) 
DIVIDED BY THE TRAVEL TIME (TRAVEL) THROUGH 
THE LAST CELL.

USE THIS FRACTION TO DECIDE WHICH COMPUTATIONAL 
GRID LINE TO ASSIGN THE CONVECTED POLLUTANT CELL 
BOUNDARY (CB(I,K)) AND TO COMPUTE ITS RESIDUAL 
VALUE ( RES(I.K): THE DIFFERENCE BETWEEN THE 
POLLUTANT CELL BOUNDARY'S ASSIGNED LOCATION AND 
ITS ACTUAL CONVECTED LOCATION).

THEN ADJUST CELL CONCENTRATION DUE TO RAINFALL 
DILUTION ENCOUNTERED AS CELL WAS CONVECTED. 
ACCOMPLISH THIS BY MULTIPLYING CONCENTRATION AT 
OLD LOCATION BY THE RATIO OF DEPTH AT OLD 
LOCATION (YOLD) TO DEPTH AT NEW LOCATION (YNEW). 
FIND THIS RATIO FROM THE DARCY-WEISBACH EQUATION 

Y = (F • (UAVG**2)) / (8. * SO • G)
WHERE F = DARCY-WEISBACH FRICTION FACTOR = K/R;
K = PARAMETER; R = REYNOLDS NUMBER = Q/VISCOSITY; 
Q = DISCHARGE PER FOOT WIDTH; UAVG = AVERAGE 
CROSS-SECTIONAL VELOCITY; SO = BED SLOPE;
G = ACCELERATION OF GRAVITY; SO THAT

Y=((K*VISCOSITY*Q)/(8.*SO*G))*•(1/3)
AND

YOLD/YNEW = (UAVG(OLD) / UAVG(NEW))*•.5

TRAVEL = DELX / 0(1,J)
TSUM = TSUM + TRAVEL 
IF (TSUM.LT.DELT) GO TO 33 
FRAC = (TSUM - DELT) / TRAVEL 
IF (FRAC.GT..5) THEN

CB(I.K) = XO + ((J-1) * DELX)
RES(I.K) = (1. - FRAC) * DELX 
IF(K.EQ.CBS(D) GO TO 34 
OLD = J - GRDSUM 
NEW = J-1
CONC(I,K) = CONC(I.K) • ((UAVG(OLD)/UAVG(NEW))*•.5) 

ELSE
CB(I,K) = XO + (J * DELX)
RES(I,K) = -FRAC • DELX 
IF(K.EQ.CBSd)) GO TO 34 
OLD = J - GRDSUM 
NEW = J
CONCd.K) = CONCd.K) * ( (UAVG(OLD)/UAVG(NEW) )*• .5) 

ENDIF

IF (DEBUG.BQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O. 
.AND.SUMT.LE.4.) THEN
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WRITE(6,35) I, K, CB(I.K), RES(I.K), CONC(I.K)
35 FORMAT(/9X,I3,14X,I4,10X,F7.3,6X,F6.3,4X,F8.2)

ENDIF
36 CONTINUE

IF (DEBUG.EQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O.
1 .AND.SDMT.LE.4.) THEN

WRITE(6,37)
37 FORMAT(//5X,'AFTER ADJUSTMENT DUE TO HORIZONTAL SPREAD',

1 IX,'(PROG STATEMENT 37):'/5X,'STREAMTUBE',5X,
1 'CELL BNDRY NO.',31X,'CONC')

ENDIF
IF(DEBUG.EQ.9.0R.DEBUG.EQ.8) THEN

IF(I.EQ.8.AND.(SUMT.EQ.40..OR.SUMT.EQ.48..OR.SUMT.EQ.52. 
1 .OR.SUMT.EQ.56..OR.SDMT.EQ.60..OR.SDMT.BQ.64.)) THEN

CONC(I,CBS(I))=0.
DO 600 K=CBS(I),1,-l

WRITE(6,610) CONC(I,K), CB(I,K), RES(I,K)
610 FORMAT(20X,'CONC=',F10.4/10X,'CB=',F8.4/10X,

1 'RES=',F8.4)
600 CONTINUE

ENDIF 
ENDIF

620

C
C
c
c
c
c
46

38

39

CBSUM = 1 
K = 0 
K = K + 1
IF(K.EQ.CBS(D) GO TO 51

•* ADJUST CONCENTRATIONS DUE TO HORIZONTAL SPREAD 
•* OF CELL BOUNDARIES WHICH OCCURRED DURING CONVEC- 
** TION OF STEADY, NONUNIFORM FLOW. HORIZONTAL SPREAD 
** IS MEASURED BY COMPUTING CELL BOUNDARY WIDTH (CBW).
**

CBW = CB(I,K) - CB(I,K+1)
IF(DEBUG.EQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O..AND. 

SUMT.LE.4.) THEN
WRITE(6,38) I, K, CB(I,K),CB(I,K+1),CBW,CONC(I,K) 
FORMAT(I5,I5,3F10.4,F10.2)

ENDIF
IF(ANINT(CBW/DELX).EQ.O.) THEN 

IF(K.EQ.l) THEN
C0NC(I,1) = C0NC(I,1) + C0NC(I,2)
DO 39 KK=2,(CBS(I)-1)

CB(I,KX) = CB(I,(KK+1))
RES(I,KK) = RES(I,(KK+D)
IF(KK.EQ.(CBS(I)-1)) GO TO 39 
CONC(I,KK) = CONC(I,(KK+D)

CONTINUE
ELSE IF(K.EQ.(CBS(I)-1)) THEN

NEW = NINT((CB(I,(CBS(I)-2))-X0)/DELX)
OLD = NEW-1
C0NC(I,(CBS(I)-2)) = CONCd, (CBS(I)-2)) +

(((UAVG(0LD)/UAVG(NEW))**.5)*C0NC(I,(CBS(I)-1)))
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1

1

40

41

47

48

NEWC0N(CBS(I)-2) = CONC(I.(CBS(I)-2)) 
RES(I,(CBS(I)-D) = RES(I,CBS(D) 
NEWRES(CBS(I)-1) = RES(I,(CBS(I)-l))
CBS(I) = CBS(I) - 1 
GO TO 51 

ELSE
CHECKl = CB(I,(K-D) + RES(I.(K-D) - 

(CB(I,K) + RES(I,K))
CHECK2 = CB(I,(K+D) + RES(I,(K+D) - 

(CB(I,(K+2)) + RES(I.(K+2)))
IF(CHECKl.LT.CHECK2) THEN

NEW = NINT((CB(I,(K-1))-X0)/DELX)
OLD = NEW-1
CONC(I,(K-D) = C0NC(I,(K-1) ) +

(((UAVG(OLD)/UAVG(NEW))*•.5)*CONC(I,K)) 
NEWCON(CBSUM-l) = CONC(I.(K-1))
DO 40 KK=K,(CBS(I)-1)

CB(I.KK) = CB(I,(KK+1))
RES(I,KK) = RES(I.(KK+D) 
IF(KK.EQ.(CBS(I)-D) GO TO 40 
CONC(I.KK) = CONC(I,(KK+D)

CONTINUE
NEWRES(CBSDM) = RES(I,K)

ELSE IF(CHECKl.GT.CHECK2) THEN
CONCd.K) = CONC(I,K) + CONC(I,K+l)
DO 41 KK=(K+1),(CBS(I)-1)

CB(I,KK) = CB(I.(KK+1))
RESd.KK) = RESd,(KK+D)
IF (KK.EQ.(CBS(I)-l)) GO TO 41 
CONCd.KK) = CONCd,(KK+D)

CONTINUE
ELSE

IF(ABS(RES(I,K)) .GE.ABS(RESd,K+l) )) THEN 
NEW = NINT((CB(I,(K-l))-XO)/DELX)
OLD = NEW-1
CONC(I,(K-1))=CONC(I,(K-1))+

(((UAVG(OLD)/UAVG(NEW))**.5)*CONC(I,K)) 
NEWCON(CBSUM-l)=CONC(I,(K-l))
DO 47 KK=K,(CBS(I)-1)

CBd ,KK) =CB(I, (KK+1 ) )
RES(I,KK)=RES(I,(KK+1)) 
IF(KK.EQ.(CBS(I)-1)) GO TO 47 
CONC(I,KK)=CONC(I,(KK+1))

CONTINUE
NEWRES(CBSUM)=RES(I.K)

ELSE
CONCd ,K) =CONC(I ,K)+CONC(I, (K+1 ) )
DO 48 KK=(K+1).(CBS(I)-l) 

CB(I,KK)=CB(I.(KK+1))
RES(I,KK)=RES(I,(KK+1)) 
IF(KK.EQ.(CBS(I)-1)) GO TO 48 
CONC(I,KK)=CONC(I,(KK+1))

CONTINUE
ENDIF
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650
660

44

ENDIF
ENDIF
CBS(I) = CBS(I) - 1 
GO TO 46 

ENDIF
CONC(I,K) = CONC(I,K) • (1./ANINT(CBW/DELX))
IF (DEBUG.EQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O. 

.AND.SUMT.LE.4.) THEN 
WRITE(6,43) I, K, CONC(I,K) 
FORMAT(9X,I3,14X,I4,33X,F10.2)

ENDIF

IF HORIZONTAL SPREAD OF CELL BOUNDARIES EQUALS 
OR EXCEEDS WIDTH OF TWO COMPUTATIONAL CELLS 
(2 • DELX), THEN NEW CELL BOUNDARIES (NEWCB(N)) 
NEED TO BE ESTABLISHED BETWEEN THE OLD CELL 
BOUNDARIES (CB(I,K) AND CB(I,K+D). ALSO, THE 
CONCENTRATION OF THESE NEW POLLUTANT CELLS 
SHOULD BE ADJUSTED SLIGHTLY (NEWCON(N)) DUE TO 
THEIR SLIGHTLY SHALLOWER DEPTH OF FLOW UPSTREAM 
OF THE OLD CELL BOUNDARY. CB(I.K).

NEWCBS = NUMBER OF NEW CELL BOUNDARIES TO 
BE ESTABLISHED BETWEEN ONE SET OF 
OLD CELL BOUNDARIES.

NEWCBS = ( NINT( CBW / DELX )) - 1 
IF (NEWCBS.EQ.O) GO TO 45 
CBS(I) = CBS(I)+NEWCBS 
IF((K+NEWCBS+1).EQ.CBS(I)) THEN 

CBd.CBSd)) = CB(I,(CBSd)-l)) 
RESd.CBSd)) = RESd.(CBSd)-l)) 
GO TO 660 

ENDIF
DO 650 KL=CBS(I).(K+NEWCBS+1),-l 

CBd.KL) = CB(I,(KL-NEWCBS)) 
RESd.KL) = RESd.(KL-NEWCBS)) 
IF(KL.EQ.CBSd)) GO TO 650 
CONCd.KL) = CONCd.(KL-NEWCBS)) 

CONTINUE
DO 44 L=1.NEWCBS 

N = CBSUM + L
NEWCB(N) = CBd.K) - (L • DELX) 
NEWRES(N) = 0.
OLD = NINT(( CBd.K)
NEW = OLD - L 
NEWCON(N) = CONCd.K)
CB(I,(K+L)) = NEWCB(N) 
RES(I,(K+L)) = NEWRES(N) 
CONC(I,(K+L)) = NEWCON(N)

CONTINUE
NEWCON(N-NEWCBS) = CONCd.K)
CBSUM = CBSUM+1 
GO TO 620

XO) / DELX)

((UAVG(OLD)/UAVG(NEW))**.5)
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***

RELABEL THE SEQUENCE NUMBER OF THE OLD CELL 
*** BOUNDARIES, RESIDUALS, AND CONCENTRATIONS 
*** (SEQUENCE NUMBER = K IN THE (I,K) ARRAY)
**• DUE TO THE ADDITION OF NEW CELL BOUNDARIES. 
***

N = CBSUM + 1 
NEWCB(N) = CB(I,K+1)
NEWRES(N) = RES(I,K+1)
NEWCON(CBSUM) = CONC(I,K)
CBSUM = CBSUM + 1 
IF(K.EQ.(CBS(I)-D) GO TO 51 

GO TO 620

51 IF(DEBUG.EQ.1.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O.
1 .AND.SUMT.LE.4.) THEN

WRITE(6,55)
55 F0RMAT(//5X,'AFTER ADDING NEW CELL BOUNDARIES AND ADJUST'

1 ,'ING CONC IN NEW CELLS'/5X,'(PROG STATEMENT 56):'/5X,
1 'STREAMTUBE',5X,'CELL BNDRY NO.',5X,'LOCATION',5X,
1 'RESIDUAL',5X,'CONC')

ENDIF
C •••
C *** REPLACE OLD VALDES WITH NEW ONES FOR POLLUTANT
C *** CELL BOUNDARY LOCATION (CB(I,K)), POLLUTANT CELL
C •** BOUNDARY RESIDUAL (RES(I,K)), AND POLLUTANT CELL
C CONCENTRATION (CONC(I,K)).
C *•*

DO 60 K=2,CBSUM
CB(I,K) = NEWCB(K)
RES(I,K) = NEWRES(K)
IF (K.EQ.CBSUM) GO TO 60 
CONC(I,K) = NEWCON(K)
IF(DEBUG.EQ.l.AND.(I.EQ.4.0R.I.EQ.5).AND.SUMT.GT.O.

1 .AND.SUMT.LE.4.) THEN
WRITE(6,56) I, K, CB(I,K), RES(I,K), CONC(I,K)

56 FORMAT(9X,I3,14X,I4,10X,F7.3,6X,F6.3,4X,F8.2)
ENDIF

60 CONTINUE
CBS(I) = CBSUM
IF(TEST.EQ.2.0R.TEST.EQ.3.OR.TEST.EQ.4) THEN 

IF(TEST.EQ.2) ICELL=(TUBES+1)/2 
IF(TEST.EQ.3) ICELL=(TDBES+1)/2 
IF(TEST.EQ.4) ICELL=TDBES 
IF(I.EQ.ICELL) THEN

65 IF(NINT((CB(I,CBS(I))-XO)/DELX).EQ.O) GO TO 70
CONC(I,CBS(D) = SOURCE 
CBS(I) = CBS(I)+1
CB(I,CBS(D) = CB(I,(CBS(I)-1))-DELX 
RES(I,CBS(I)) = RES(I,(CBS(I)-D)
IF(DEBUG.EQ.l) THEN

WRITE(6,68) I, CBS(I), CB(I,CBS(I)), RES(I,CBS(I)), 
1 CONC(I,(CBS(I)-l))

68 FORMAT(//5X,'I=',I4,5X,'CBS(I)=',I4,5X,
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1 'CB(I,CBS(I))=',F10.5.5X,'RES(I.CBS(I))=',
1 F10.5,5X,'C0NC(I,(CBS(I)-1))='.F12.5)

ENDIF 
GO TO 65 

ENDIF 
ENDIF 

70 CONTINUE 
***

•** FIND LOCATION OF LEADING-MOST DYE CLOUD CELL 
*** BOUNDARY (MAXCB) AND TRAILING-MOST DYE CLOUD 

CELL BOUNDARY (MINCB).
**•

*** SET PRELIMINARY VALDES FOR 'MINCB' AND 'MAXCB'
***

73 MINCB = CBd.CBSd))
MAXCB = CB(1,1)
***

•** FIND ACTUAL VALUES FOR 'MINCB' AND 'MAXCB'.
• **
DO 80 1=1.TUBES

IF (CBd.CBSd)) .GE.MINCB) GO TO 75 
MINCB = CBd.CBS(I))

75 IF (CB(I.l).LE.MAXCB) GO TO 80
MAXCB = CBd.l)

80 CONTINUE
IF(TEST.EQ.2.0R.TEST.EQ.3 .OR.TEST.EQ.4) THEN 

TOTAL = NINT((MAXCB-XO)/DELX)
IF(DEBUG.LE.2) THEN

WRITE(6.82) MAXCB. MINCB. XO. TOTAL 
82 FORMAT(//5X.'MAXCB='.F10.5,5X,'MINCB='.FIO.5.5X.

1 'XO='.F10.5.5X.'TOTAL='.14)
ENDIT = NINT((MAXCB-XO)/DELX)
CHOICE = 2
CALL CELLCON(CONC. CB. ENDIT. XO. DELX. TUBES.

1 CBS. DEBUG. SUMT. CHOICE)
ENDIF 
GO TO 90 

ENDIF 
*C

C
c
c
c
c
c
c
c
c

• RESET VALUE FOR BASELINE XO. BASELINE XO IS
* RESET FOLLOWING EACH CONVECTION CYCLE SO THAT
* IT IS EQUAL TO THE TRAILING-MOST DYE CLOUD CELL
* BOUNDARY (MINCB). THEN THE SEQUENCE NUMBERS FOR
• CELL VELOCITIES AND AVERAGE VELOCITIES ARE ALSO
• RESET. IHIS PROCEDURE OF RESETING XO IS USED TO
* MINIMIZE COMPUTER MEMORY REQUIREMENTS FOR THESE
• VELOCITY ARRAYS.
4>

NEWXO = MINCB
ADVANC = NINT((NEWXO-XO)/DELX)
NEWVEL = VEL - ADVANC
TOTAL = NINT((MAXCB-MINCB)/DELX)
IF (DEBUG.LE.2.AND.T0TAL.l t .50) THEN

WRITE(6,85) MAXCB. MINCB. NEWXO. NEWVEL. TOTAL
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85 FORMAT!//5X,'MAXCB =',F7.3,5X,'MINCB =',F7.3,5X,'NEffXO =',
1 F7.3.5X,'NEWVEL =',14,5X,'TOTAL =',I4)

ENDIT = NINT((MAXCB-XO)/DELX)
CHOICE = 2
CALL CELLCON(CONC, CB, ENDIT, XO, DELX, TUBES,CBS,

1 DEBUG, SUMT, CHOICE)
ENDIF
IF(DEBUG.EQ.l.AND.SUMT.GT.O..AND.SUMT.LE.2.) THEN 

WRITE(6,86)
86 FORMAT!//////5X,'CELL NO. !STARTING AT XO)',5X,'UAVG',

1 5X,'U IN TUBE AT BED',5X,'U IN TUBE AT SURFACE')
ENDIF

DO 89 M=1,NEWVEL 
N = M + ADVANC 
DO 87 1=1,TUBES 

U!I,M) = U!I,N)
87 CONTINUE 

UAVG!M) = UAVG!N)
MODD = M - !2*INT! M/2))
IF !DEBUG.EQ.l.AND.MODD.EQ.l.AND.SUMT.GT.O. .AND.

1 SUMT.LE.2.) THEN
WRITE!6,88) M, UAVG!M), U!l,M), U!TUBES,M)

88 FORMAT!15X,I4,13X,F6.4,8X,F6.4,19X,F6.4)
ENDIF

89 CONTINUE

XO = NEWXO 
VEL = NEWVEL 

C ***
C *** INITIALIZE CONCENTRATION VALUE OF CELLS BETWEEN
C *** XO AND CB!I,CBS!D).
C ***
90 DO 104 1=1.TUBES

TEND = NINT!!CB!I,CBS!I))-XO)/DELX)
XOCBS!I) = CBS!I) + TEND 
IF!JEND.EQ.O) GO TO 104 
DO 91 J=1,JEND

CB!I,!CBS!I)+J)) = CB!I,CBS!D) - !J*DELX) 
RES!I,!CBS!I)+J)) = RES!I.CBS!D) 
CONC!I.!CBS!I)+J-l)) = 0.

91 CONTINUE
CBS!I) = XOCBS!I)

104 CONTINUE 
C *•*
C •** INITIALIZE CONCENTRATION VALUE OF CELLS 
C ♦** BETWEEN MAXCB AND CB!I,1)
C **•

DO 96 1=1.TUBES
93 IF!MAXCB.GT.!CB!I,1)+!.5*DELX))) THEN

NEWCB!1) = CB!I,1) + DELX 
NEWCON!!) = 0.
NEWRES!!) = RES!I,1)
DO 94 K=1,CBS!I)
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NEWCB(K+1) = CB(I,K)
NEWRES(K+1) = RES(I,K)
IF(K.EQ.CBS(D) GO TO 94 
NEWCON(K+l) = CONCd.K)

94 CONTINUE
CBS(I) = CBS(I) + 1 
DO 95 K=1,CBS(I)

CB(I.K) = NEWCB(K)
RES(I,K) = NEWRES(K)
IF(K.EQ,CBS(D) GO TO 95 
CONC(I,K) = NEWCON(K)

95 CONTINUE 
GO TO 93

ELSE
GO TO 96 

ENDIF
96 CONTINUE

DO 103 I=1,CLPRTS
IF(SUMT.GE.CLPRTiI).AND.(SUMT-DELT).LT.CLPRT(I)) THEN 

ENDIT = TOTAL 
CHOICE = 2
CALL CELLCON (CONC, CB, ENDIT,XO, DELX, TUBES, CBS, 

1 DEBUG, SUMT,CHOICE)
ENDIF 

103 CONTINUE

C
C
C
C
C
C
C

** BEGIN PROCEDURE FOR DIFFUSING DYE IN VERTICAL 
DIRECTION. START WITH THE VERTICAL CELL COLUMN 

*• CORRESPONDING TO THE TRAILING-MOST POLLUTANT 
•* CELL. DIFFUSE THE DYE VERTICALLY IN THIS 
** COLUMN. REPEAT THE PROCESS IN A DOWNSTREAM 
*• DIRECTION, ENDING WITH THE CELL COLUMN CORRES- 
*• PONDING TO THE LEADING-MOST POLLUTANT CELL.

ISWICH = 0 
IDROP = 0 
DO 290 J=l,TOTAL 

C •**
C *** FIND THE CELL COLUMN TO BE DIFFUSED.
C ***

LOCATE = XO + (J • DELX)
C ***
C *♦* FIND THE VERTICAL HEIGHT OF EACH STREAMTUBE (YTUBE(I))
C

IFdNTENS.EQ.O.) THEN 
Q = UNIFLO
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899

101

92

97

C
C
c
c

98

1
1

YS = DEPTH 
GO TO 101 

ENDIF
Q = (LOCATE - (DELX / 2.)) * INTENS • .00002315 
YS = Q / UAVG(J)
IF(IEPSLN.EQ.l) THEN

EPSLN = .0000000001754*(INTENS**4.15)*(UAVG(J)**(-3.4D) 
ENDIF
IF(DEBUG.EQ.10.AND.STEPT.LE.5) THEN 

WRITE(6,899) EPSLN 
FORMAT(5X,'EPSLN=',F20.15)

ENDIF
DO 92 1=1.TUBES

YTDBE(I) = (DELY(I)/100.)*YS 
CONTINUE
IF (DEBUG.EQ.1.AND.J.LT.3.AND.SUMT.GT.O..AND.

SUMT.LE.2.) THEN
WRITE(6,97) LOCATE. Q. YS. (YTUBE(I). 1=1.TUBES) 
FORMAT(/////5X.'VERTICAL DIFFUSION (PROG STATEMENT 92):'/5X. 

'LOCATE ='.F10.6.5X.'Q =' .FIO.7.5X.'YS ='.F8.5.5X.
'YTUBE ='.(F8.5))

ENDIF
*•*

INITIALIZE INTERIM CELL CONCENTRATION 
••• VALUES (NEWCON).
***
DO 98 N=1.TUBES 

NEWCON(N) = 0.
CONTINUE

C
C
C
C

OPT4 = 0.
DO 260 1=1.TUBES 

***
*** FIND THE CORRECT POLLUTANT CELL WITHIN 
••• STREAMTUBE 'I' WHICH IS TO BE DIFFUSED.
***

CELL(I) = 0
DO 102 K=1.(CBS(I)-1)

IF (CB(I.K).EQ.LOCATE) THEN 
CELL(I) = K 
GO TO 110

ELSE IF(CBd.K) .GT.(LOCATE+( .05*DELX))) THEN 
GO TO 99 

ELSE
DIFF = ABS(LOCATE - CB(I.K))
IF(DIFF.LT.(.05*DELX)) THEN 

CELL(I) = K 
GO TO 110

ELSE IF(DIFF.GT.(.95*DELX).AND.DIFF.LT.(1.05* 
DELX)) THEN 
CELL(I) = X-1 
GO TO 110 

ENDIF 
ENDIF
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99

100

102

105

110

115

1
1

1
1
1

C
C
C

C
C
C
C
C
C
C
C

C
C
c
c
c
c
c
c
c
c
130

120
C

IF(DEBUG.EQ.l.AND.J.LT.3.AND.SUMT.GT.O..AND.
SUMT.LE.2.) THEN
WRITE(6,100)I.K,CB(I,K),LOCATE,CELL{I),DELX 
FORMAT (5X,'1=M2,2X, 'K='. 12,2X,'CB=',F15.12,

5X.'LOCATE=',F15.12,5X,'CELL(I)=',12,2X, 
'DELX=',F9.6)

ENDIF
CONTINUE
IF (CELL(I).EQ.O) THEN 

WRITE(6,105) I, J, SUMT
FORMAT(5X,'* * »TERMINATED* * *'/5X,'PROGRAM CANNOT LOCATE' 

,IX,'PROPER CELL FOR VERTICAL DIFFUSION AT PROG',
IX,'STATEMENT 100.'/5X,'TUBE =',5X,I3,'CELL NO.',
IX,'(STARTING FROM XO) =',I4,5X,'TIME =',F7.2)

GO TO 430 
ENDIF
IF (DEBUG.EQ.l.AND.J.LT.3.AND.SUMT.GT.O..AND.

SUMT.LE.2.) THEN
WRITE(6,115) I, K, CELL(I), CONC(I,CELL(I)), CBS(I), 

CB(I,K)
FORiIAT(5X,' I,K =',213 ,5X, ' CELL BNDRY NO. =',I4,5X, 

'PRE-DIFFUSED CONC =',F10.2,'CELLS=',13,5X,
'CB(I,K) =',F8.4)

ENDIF
***
*** SKIP THIS CELL IF ITS CONCENTRATION IS ZERO.
•**
IF (CONC(I,CELL(D) .EQ.O.) GO TO 260
IF(EPSLN.EQ.O.) GO TO 260
***
••* ESTABLISH CUTOFF VALUE FOR ENDING THE DIFFUSION 
•*• CALCULATIONS. (TO PRESERVE
••* CONSERVATION OF MASS, THE MASS LEFT OVER DUE TO 
*•• CUTOFF REQUIREMENT WILL BE PROPORTIONALLY ADDED 
*** BACK TO THE OTHER DIFFUSED CONCENTRATIONS AT A 
••• LATER POINT IN THE COMPUTER PROGRAM.)
***
IF(OPTION.EQ.l) CUTOFF=.01*C0NC(I,CELL(I))
IF(OPTION.EQ.2) CUTOFF=.005*CONC(I,CELL(I))
IF(OPTION.EQ.3) CUTOFF=.005*CONC(I,CELL(I))
***

***
***

***

***
***
***
*0*
DO 120 M=l,TUBES 

TEMCON(M) = 0,
CONTINUE 
***

COMPUTE DIFFUSED CONCENTRATIONS (DIFUSE) AT 
DISTANCES AWAY FROM THE HORIZONTAL 
CENTERLINE OF THE POLLUTANT SOURCE CELL.
USE THE VERTICAL DIFFUSION COEFFICIENT, EPSLN. 
USE THE SOLUTION TO THE ONE-DIMENSIONAL, PARTIAL 
DIFFERENTIAL DIFFUSION EQUATION. DUE TO 
ASSUMPTION OF SYMMETRY, VALUES COMPUTED ON ONE 
SIDE OF THE SOURCE CELL WILL APPLY TO BOTH SIDES.
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C
C
c

c
c
c
c
c
c
c
c
c

122

124

•** COMPUTE DIFFUSED CONCENTRATIONS IN VERTICAL CELL 
COLUMN BEFORE IMAGE REFLECTION.

***
IF(OPTION.EQ.2) THEN

* OPTION 2 COMPUTES DIFFUSED CONCENTRATIONS AT
* QUARTER POINTS WIIHIN EACH STREAMTUBE, THEN 
AVERAGES THE FOUR CONCENTRATIONS TO OBTAIN THE 
CELL CONCENTRATION. THIS LEVEL OF DETAIL IS NEEDED 
FOR DIFFUSION COEFFICIENT VALUES ON THE ORDER OF THE 
MOLECULAR DIFFUSION COEFFICIENT (LAMINAR FLOW WITH-
OUT RAINFALL).

DY4 = YTUBE(I)/4.
A =  (CONCd.CELLd)) * DY4)/SQRT(12.5664*EPSLN*DELT)
B = 4. • EPSLN • BELT 
CEASE = 0 
S = 0.
DO 136 L=1.(TUBES-I+1)

M = I+L-1 
IF(L.EQ.l) THEN 

DIFUSE = 0.
DO 122 JJ=1,4

ARGMT(JJ) = (((REAL(JJ)-.5)*DY4)**2)/B 
IF(ARGMTdJ) .GT.IOO.) THEN 

TERMdJ) = 0.
ELSE

TERMdJ) = (9.-(2.*REAL(JJ)))*A*EXP 
(-ARGWT(JJ))

ENDIF
DIFUSE = TERMdJ) + DIFUSE 

CONTINUE
DIFUSE = DIFUSE/4.
IF(DEBUG.EQ.3.AND.J.EQ.l.AND.(I.EQ.l.OR.I.EQ.2) 

.AND.SUMT.LE.DELT) THEN 
WRITE(6,124) J,I.L,M,DIFUSE
FORMAT(5X, '132 ' ,2X,' J=M3,2X, d = M 3  ,2X,'L=', 

13,2X,*M=’,I3,2X,'DIFUSE='.F10.5)
ENDIF 
GO TO 135 

ENDIF
DIFUSE = 0.
W = YTUBE(M)/4.
DO 128 N=l,4 

R=(N-.5)*DY4 
DO 126 JJ=1,5

ARGMT(JJ) = ((R+S+((REAL(JJ)-1.)*W))**2)/B 
IF(ARGMT(JJ).GT.IOO.) THEN 

TERMdJ) = 0.
ELSE

IF(JJ.EQ.1.0R.JJ.EQ.5) THEN 
COEF = .5 

ELSE
COEF = 1.
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126

128

133

135
136 
138

139
140

ENDIF
TERM(JJ) = COEF*A*EXP(-ARGMT(JJ))

ENDIF
DIFUSE = TERM(JJ)+DIFUSE 

CONTINUE 
CONTINUE
DIFUSE = DIFUSE/4.
IF(DEBUG.EQ.3.AND.J.EQ.1.AND.(I.EQ.l.OR.I.EQ.2) 

.AND.SUMT.LE.DELT) THEN 
WRITE(6,133) J,I,L,M,DIFUSE
FORMAT(5X,'133',2X,'J=M3,2X,'K=M3,2X,'L=',

13,2X.'M='.I3.2X,'DIFUSE='.F10.5)
ENDIF
IF(DIFUSE.LT.CUTOFF.AND.L.GT.2) THEN 

CEASE = 1 
GO TO 138 

ENDIF
S = S + YTUBE(M)
TEMCON(M) = DIFUSE 

CONTINUE 
S = 0.
DO 142 L=2,I 

M = I-L+1 
DIFUSE = 0.
W = YTUBE(M)/4.
DO 140 N=l,4

R = (N-.5)*DY4 
DO 13 9 JJ=1,5

ARGMT(JJ) = ((R+S+((REAL(JJ)-1.)*W))**2)/B 
IF(ARGMT(JJ).GT.IOO.) THEN 

TERM(JJ) = 0.
ELSE

IF(JJ.EQ.1.0R.JJ.EQ.5) THEN 
COEF = .5 

ELSE
COEF = 1.

ENDIF
TERM(JJ) = COEF*A*EXP(-ARGMT(JJ))

ENDIF
DIFUSE = TERM(JJ) + DIFUSE 

CONTINUE 
CONTINUE
DIFUSE = DIFUSE/4.
IF(DIFUSE.LT.CUTOFF.AND.L.GT.2.AND.CEASE.EQ.1)THEN 

GO TO 200
ELSE IF(DIFUSE.l t .CUTOFF.AND.L.GT.2.AND.

CEASE.EQ.O) THEN 
GO TO 152 

ENDIF
S = S + YTUBE(M)
TEMCON(M) = DIFUSE
IF(DEBUG.LE.3.AND.J.EQ.1.AND.(I.EQ.1.0R.I.EQ.2) 

.AND.SUMT.EQ.DELT) THEN
WRITE(6,141) DY4, J, I, CELL(I), CONC(I,CELL(I)),
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1 L, DIFUSE, TEMCON(M)
141 FORMAT(5X,'DY4=',FIO.8.5X,'CELL COL.=',13,5X,

1 'TUBE=',I3,5X, 'CELL(I) = M3,5X,'CONC(I,CELL',
1 '(!))=',FIO.3/5X,'L=',I2,5X,'DIFUSE=',F10.3,5X,
1 'TEMC0N(M)=',F10.3)

ENDIF
142 CONTINUE

ELSE IF(0PTI0N.EQ.1.0R.0PTI0N.EQ.3) THEN 
C •**
C OPTION 1 COMPUTES DIFFUSED CONCENTRATIONS
C ONLY AT CENTERLINE OF SIREAMTUBES BASED ON MASS IN
C *** SOURCE CELL CONCENTRATED AT CELL CENTERLINE.
C
C •** OPTION 3 COMPUTES DIFFUSED CONCENTRATIONS AT
C *** CENTERLINE OF STREAMTUBES BASED ON STEP FUNCTION
C *** CONCENTRATION AT SOURCE CELL.
C

IF(OPTION.EQ.3) THEN 
A = -YTUBE(I)/2.
B = YTUBE(I)/2.
C = SQRT(4.*EPSLN*DELT)

ELSE IF(OPTION.EQ.l) THEN
A=( CONC ( I, CELL( I ) ) ♦YTUBE( I ) ) /SQRT( 12.5664'*EPSLN*DELT) 
B=4.*EPSLN*DELT 

ENDIF 
S = 0.
DO 144 L=1,(TUBES-I+1)

M = I+L-1
IF(L.EQ.l) GO TO 143 
S = S+(.5*YTUBE(M-1))+(.5*YTUBE(M))

143 IF(OPTION.EQ.3) THEN
DIFUSE = (CONC(I,CELL(I))/2.)*(ERF((S-A)

1 /C)-ERF((S-B)/0)
ELSE IF(OPTION.EQ.l) THEN 

DIFUSE = A*EXP(-(S**2)/B)
ENDIF
IF(DIFUSE.l t .CUTOFF.AND.L.GT.2) GO TO 146 
TEMCON(M) = DIFUSE

144 CONTINUE
146 S = 0.

DO 149 L=2,I 
M = I-L+1
S = S + (.5*YTUBE(M+l))+(.5*YTUBE(M))
IF(OPTION.EQ.3) THEN

DIFUSE = (CONC(I,CELL(I))/2.)*(ERF((S-A)/C)
1 -ERF((S-B)/0)

ELSE IF(OPTION.EQ.l) THEN 
DIFUSE=A*EXP(-(S**2)/B)

ENDIF
IF(DIFUSE.LT.CUTOFF.AND.L.GT.2) GO TO 152 
TEMCON(M) = DIFUSE
IF(DEBUG.BQ.3.AND.J.EQ.l.AND.(I.EQ.l.OR.I.EQ.2)

1 .AND.SUMT.GT.O..AND.SUMT.LE.2.) THEN
WRITE(6,148) J, I, M, TEMCON(M)
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148

149

C
C
C

C
C
C
C
C
C

570
572

574

576 

5 80

5 82 
584

5 86

588

C
C

FORMAT(/5X,'AT PROG STATEMENT 145:',5X,'J =M4,5X, 
'I =M4,5X,'M =M4,5X.'TEMCON(M) =',F9.2)

ENDIF
CONTINUE

ELSE IF(OPTION.EQ.4) THEN 
***
•** OPTION 4 ASSUMES COMPLETE VERTICAL MIXING 
***

OPT4 = (CONC(I.CELL(I))*YTUBE(I))+GPT4 
GO TO 260

ELSE IF(OPTION.EQ.5) THEN 
***
•** OPTION 5 REDUCES THE NUMBER OF COMPUTATIONS FOR
••• STEADY, UNIFORM FLOW WITH STREAMTDBES OF EQUAL HEIGHT.

THIS OPTION USES A STEP FUNCTION CONCENTRATION AT 
*** SOURCE CELL AS IN OPTION 3.
***

JJ = 0
DO 570 L=I,TUBES 

JJ = JJ+1
TEMCON(L) = TEMCON(L)+(CONC(I.CELL(I))*DIFFAC(JJ)) 
IF(JJ.EQ.MAXI) GO TO 580 

CONTINUE
DO 574 L=TUBES,1,-1 

JJ = JJ+1
TEMCON(L) = TEMCON(L)+(CONC(I,CELL(I))*DIFFAC(JJ)) 
IF(JJ.EQ.MAXI) GO TO 580 

CONTINUE
DO 576 L=1.TUBES 

JJ = JJ+1
TEMCON(L) = TEMCON(L)+(CONC(I,CELL(I))*DIFFAC(JJ)) 
IF(JJ.EQ.MAXI) GO TO 580 

CONTINUE 
GO TO 572 
JJ = 1
DO 582 L=(I-1) ,1,-1 

JJ = JJ+1
TEMCON(L) = TEMCON(L)+(CONC(I,CELL(I))*DIFFAC(JJ)) 
IF(JJ.EQ.MAXI) GO TO 200 

CONTINUE
DO 5 86 L=1 .TUBES 

JJ = JJ+1
TEMCON(L) = TEMCON(L)+(CONC(I,CELL(I))*DIFFAC(JJ)) 
IF(JJ.EQ.MAXI) GO TO 200 

CONTINUE
DO 588 L=TUBES,1,-1 

JJ =N JJ+1
TEMCON(L) = TEMCON(L)+(CONC(I.CELL(I))*DIFFAC(JJ)) 
IF(JJ.EQ.MAXI) GO TO 200 

CONTINUE 
GO TO 584 

ENDIF 
***
*** COMPUTE DIFFUSED CONCENTRATIONS DUE TO IMAGE REFLECTION.
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C
152

154

156

***

SUP = 0.
SOWN = 0.
DO 154 N=1,(TUBES-I)

SUP = yruBE(i+N)+sup 
CONTINUE 
DO 156 N=1,(I-1)

SDOWN = YTUBE(N) + SDOWN 
CONTINUE
IF(REAL(TUBES-I).GE.(.5*TUBES)) UPDOWN = 0 
IF(REAL(TUBES-I).LT.(.5*TUBES)) UPDOWN = 1 
REFLEC = 0
IF (UPDOWN.EQ.O) THEN 

LSTART = I
OTHERL = TUBES - I + 1 
ODDEVE = 0 
COUNT = 0
OTHERM = TUBES + 1 
EVEODD = 1 
S = SDOWN 
T = SUP
SS = SDOWN+( .5*YTUBE(D)
TT = SUP+(.5*YTUBE(I))

ELSE
LSTART = TUBES - I + 1
OlHERL = I
ODDEVE = 1
COUNT = 1
OlHERM = 0
EVEODD = 0
S = SUP
T = SDOWN
SS = sup+(.5*yruBE(i))
TT = SDOWN+(.5*YTUBE(I))

ENDIF
DIFUSl = SOURCE 
DIFUS2 = SOURCE

160 DO 170 NUM=1.TUBES
IF(ODDEVE.EQ.l) M=TUBES+1-NUM 
IF (ODDEVE. EQ.O) M=4WM 
L = LSTART + (REFLEC*TUBES) + NUM 
IF(DIFUS1.l t .CUTOFF.AND.L.GT.2) GO TO 166 
IF(OPTION.EQ.2) THEN 

DIFUSl = 0.
W = YTUBE(M)/4.
DO 163 N=l,4

R = (N-.5)*DY4 
DO 161 JJ=1.5

ARGMT(JJ) = ((R+S+((REAL(JJ)-1.)*W))**2)/B 
IF(ARGMT(JJ).GT.100.)THEN 

TERM(JJ) = 0.
ELSE

IF(JJ.EQ.1.0R.JJ.EQ.5) THEN
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161

162

163

164

166

COEF = .5 
ELSE

CX)EF = 1.
ENDIF
TERM(JJ) = COEF*A*EXP(-ARGMT(JJ))

ENDIF
DIFUSl = TERM(JJ) + DIFDSl 

CONTINUE
IF(DEBUG.EQ.3.AND.SUMT.LE.2.) THEN 

WRITE(6,162) A,B.R,S,W,DIFUSl 
FORMAT(5X,'162',2X.'A=',F12.9,2X,'B='.F12.9 

,2X,'R='.F12.9.2X,'S='.F12.9,2X,'W=', 
F12.9.2X,'DIFUS1='.F18.12)

ENDIF 
CONTINUE 
S = S + YTUBE(M)
DIFUSl = DIFUSl/4.

ELSE IF(OPTION.EQ.l.OR.OPTION.EQ.3) THEN 
SS = SS + (.5*YTOBE(M))
IF(OPTION.EQ.3) THEN

DIFUSl = (CONC(I.CELL(I))/2.)*(ERF((SS-A)/C) 
-ERF((SS-B)/0)

ELSE IF(OPTION.EQ.l) THEN 
DIFUS1=A*EXP(-(SS**2)/B)

ENDIF
SS = SS + (.5*YTUBE(M))

ENDIF
IF(DIFUSl.LT.CUTOFF.AND.DIFUS2.LT.CUTOFF.AND.L.GT.2)

GO TO 200
IF(DIFUS1.l t .CUTOFF.AND.L.GT.2) GO TO 166 
TEMCON(M) = TEMCON(M) + DIFUSl
IF(DEBUG.EQ.3.AND.J.EQ.l.AND.COUNT.LT.3 .AND.(I.EQ.1.OR. 

I.EQ.2).AND.SUMT.GT.O..AND.SUMT.LE.2.) THEN 
WRITE(6,164) J, I, M, TEMCON(M)
FORMAT(/5X,'AT PROG STATEMENT 165:',5X,'J ='.I4,5X, 
'I ='.I4,5X,'M =',I4,5X,'TEMCON(M) =',F9.2)

ENDIF
IF(DIFUS2.l t .CUTOFF.AND.L.GT.2) GO TO 170 
IF (L.LE.OTHERL) GO TO 170 
IF(EVEODD.EQ.l) OTHERM=OTHERM-l 
IF(EVEODD.EQ.O) OTHERM=OTHERM+l 
IF(OTHERM.EQ.O) THEN 

OTHERM = 1 
EVEODD = 0

ELSE IF (OTHERM.EQ.(TDBES+D) THEN 
OTHERM = TUBES 
EVEODD = 1 

ENDIF
IF(OPTION.EQ.2) THEN 

DIFUS2 = 0.
W = YTUBE(OTHERM)/4.
DO 167 N=l,4

R = (N-.5)*DY4 
DO 165 JJ=1,5
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ARGMT(JJ) = ((R+T+((REAL(JJ)-1.)*W))**2)/B 
IF(ARGMT(JJ).GT.IOO.) THEN 

TERM(JJ) = 0.
ELSE

IF(JJ.EQ.1.0R.JJ.EQ.5) THEN 
COEF = .5 

ELSE
COEF = 1.

ENDIF
TERM(JJ) = COEF*A*EXP(-ARGMT(JJ))

ENDIF
DIFUS2 = TERM(JJ) + DIFUS2 

165 CONTINUE
IF(DEBUG.EQ.3.AND.SUMT.LE.2.) THEN 

WRITE(6,169) A,B.R,T,W,DIFUS2
169 F0RMAT(5X,'167',2X,'A=',F12.9,2X.'B=',F12.9,

1 2X,'R='.F12.9,2X,'S=',F12.9,2X,'W='.
1 F12.9.2X.'DIFUS2='.F18.12)

ENDIF
167 CONTINUE

T = T + YTUBE(OTHERM)
DIFUS2 = DIFUS2/4.

ELSE IF(0PTI0N.EQ.1.0R.0PTI0N.EQ.3) THEN 
TT = TT + (.5*YTUBE(OTHERM))
IF(OPTION.EQ.3) THEN

DIFUS2 = (CONC(I,CELL(I))/2.)*(ERF((TT-A)/C)
1 -ERF{(TT-B)/0)

ELSE IF(OPTION.EQ.l) THEN 
DIFUS2 = A*EXP(-(TT**2)/B)

ENDIF
TT = TT + (.5*YTUBE(01HERM))

ENDIF
IFCDIFUSl.LT.CUTOFF.AND.DIFUS2.l t .CUTOFF.AND.L.GT.2)

1 GO TO 200
TEMCON(OTHERM) = TEMCON(OTHERM) + DIFUS2 
IF(DEBUG.EQ.l.AND.J.EQ.l.AND.COUNT.LT.3 .AND.(I.EQ.l.

1 OR.I.EQ.2).AND.SUMT.GT.O..AND.SUMT.LE.2.) THEN
WRITE(6,168) J, I, OTHERM, TEMCON(OTHERM)

168 FORMAT(/5X,'AT PROG STATEMENT 168:',5X.'J =',14,
1 5X,'I =',14,5X,'OTHERM =',14,5X,'TEMCON(OTHERM) ='
1 ,F9.2)

ENDIF
170 CONTINUE

COUNT = COUNT + 1
ODDEVE = COUNT - (2*INT(C0UNT/2))
REFLEC = REFLEC + 1 
IF(C0UNT.EQ.15) THEN 

WRITE(6,180)
180 FORMAT(//5X,'***TERMINATED***'/5X,'COUNT EXCEEDED 15'

1 ,' AT PROG STATEMENT 170 .')
GO TO 430

ENDIF 
GO TO 160 

C
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205

210
C
c
c
c
c
c
c
c

C *** SUM ALL THE DIFFUSED CONCENTRATIONS IN THE
C **• CELL COLUMN (SUMCON).
C *•*
200 SUMCON = 0.

DO 210 N=1.TUBES
SUMCON = SUMCON + (TEMCON(N)*YTUBE(N))
IF (DEBUG.EQ.l.AND.J.LT.3.AND.SUMT.GT.O..AND.

1 SUMT.LE.2.) THEN
WRITE(6,205) N. TEMCON(N)
FORMAT(1 OX,'TUBE = M 3  ,5X.'TEMCON(DIFFUSED CONC) =' 

.F10.2)
ENDIF 

CONTINUE 
***
•** COMPARE SUM OF ALL THE DIFFUSED CONCENTRATIONS 
*** TO THE ORIGINAL CONCENTRATION OF THE SOURCE CELL.
*** (THIS IS EQUIVALENT TO A CHECK FOR MASS CONSER- 
*•* VATION.) IF SUM OF DIFFUSED
*** CONCENTRATIONS (SUMCON) IS GREATER THAN CONCEN- 
*♦* TRATION OF SOURCE CELL (CONC(I.K)), PRINT NOTE.
***
IF (SUMCON.GT.(CONC(I,CELL(I))*YTUBE(I))) THEN 

IF(LIMIT.EQ.O) THEN
WRITE(6.220) SUMCON. CONC(I.CELLd)) , I.

1 CELL(I), SUMT
220 F0RMAT(//10X,'***NOTE***'/lOX.'SUM OF DIFF'.

1 'USED CONCENTRATIONS IN CELL COLUMN GREA',
1 'TER THAN'/lOX,'SOURCE CONCENTRATION BECA',
1 'USE OF NUMERICAL APPROXIMATION TO DIRAC',
1 ' DELTA FUNCTION'/lOX,'COMBINED WITH '.
1 'VERY SMALL DIFFUSION COEFFICIENT',
1 ' AND/OR TIME STEP.'/lOX,'THIS WILL',
1 ' BE CORRECTED WITH APPROPRIATE',
1 ' REDUCTION FACTOR. NO OTHER NOTES',
1 ' WILL BE PRINTED.'/IOX,'SUMCON=',
1 F10.3,5X,'CONC(I,CELL(I))='.F10.3,5X,
1 '1='.I2.3X,'CELL(I)=',I3,3X,'SUMT='.F8.3)

LIMIT = 1 
ENDIF

C ***
C •** IF SUM OF DIFFUSED CONCENTRATIONS (SUMCON) IS
C *** GREATER THAN SOURCE CONCENTRATION (CONC(I,K)),
C •** COMPUTE REDUCTION FACTOR (FACTOR) TO APPLY TO
C *** ALL DIFFUSED CONCENTRATIONS.
C

FACTOR = (CONC(I,CELL(I))*YTUBE(I)) / SUMCON 
GO TO 230

ELSE IF (SUMCON.EQ.(CONC(I.CELL(I))*YTUBE(I))) THEN 
FACTOR = 1.
GO TO 245 

ELSE
C ***
C •** IF SUM OF DIFFUSED CONCENTRATIONS ( SUMCON)
C **• IS LESS THAN SOURCE CONCENTRATION (CONC(I.K)),
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C
C
c

c
c
c
c
230

240
c
c
c
c
245

246

248

250
260

265

C
C
c
c
c

270
c
c
c
275

2 80

COMPUTE INFLATION FACTOR (FACTOR) TO APPLY 
TO ALL DIFFUSED CONCENTRATIONS.

***
FACTOR = (CONC(I,CELL(I))*yrUBE(I)) / SUMCON 
GO TO 230 

ENDIF 
***
•** APPLY CORRECTION FACTOR (FACTOR) TO ALL 
*** DIFFUSED CONCENTRATIONS.
***
DO 240 N=l.TUBES

TEMCON(N) = FACTOR * TEMCON(N)
CONTINUE
***
•** STORE DIFFUSED CONCENTRATIONS IN VARIABLE 
*•* NAME 'NEWCON'.
***
IF(DEBUG.EQ.l.AND.J.LT.3.AND.SUMT.GT.O..AND. 

SUMT.LE.2.) THEN 
WRITE(6.246) FACTOR 
FORMAT(1OX,'FACTOR =',F10.7)

ENDIF
DO 250 N=1.TUBES

NEWCON(N) = NEWCON(N) + TEMCON(N)
IF (DEBUG.EQ.l.AND.J.LT.3.AND.SUMT.GT.O..AND. 

SUMT.LE.2.) THEN 
WRITE(6,248) N, NEWCON(N)
FORMAT(1OX,'TUBE ='.13,5X,'NEWCON =',F10.2) 

ENDIF 
CONTINUE 

CONTINUE
IF(EPSLN.EQ.O.) GO TO 275 
IF(OPTION.EQ.4) THEN 

DO 265 1=1.TUBES
CONCd.CELLd)) = OPT4/YS 

CONTINUE
AVGCON(J) = OPT4/YS 
GO TO 2 82 

ENDIF 
**
•* PLACE INTO THE 'PERMANENT' CONCENTRATION 
•• VARIABLE 'CONC(I.K)' THE RESULT FROM THIS 
*• DIFFUSION COMPUTATION CYCLE (NEWCON(D).
**

DO 270 N=1.TUBES
CONC(N.CELL(N)) = NEWCON(N)

CONTINUE
*«*
•** COMPUTE AVERAGE CROSS-SE(d’IONAL CONCENTRATION. 
***
SUM = 0.
DO 2 80 N=1 .TUBES

SUM = SUM + (CONC(N.CELL(N))*YTUBE(N))
CONTINUE
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2 85

C
C
C
C
C
C

AVGœN(J) = SUM / YS
282 IF(AVGCON(J).LT..005.AND.ISWICH.EQ.0) THEN

IF(J.EQ.l) IDROP=l 
IF(J.GT.l) IDROP=IDROP+l 

ELSE
ISWICH = 1 

ENDIF
IF (DEBUG.EQ.l.AND.SUMT.GT.O..AND.SUMT.LE.2.)

1 THEN
WRITE(6,285) J. AVGœN(J)
F0RMAT(//5X,'*** CELL COLUMN NO. (MEASURED FROM XO) = M 4 ,  

1 lOX.'AVGCON (AVG CONC FOR THIS CELL COLUMN) =',F10.2)
ENDIF 
«*»
*** COMPUTE SUMMATION OF CPRIME*UPRIME*YTUBE

FOR USE IN COMPUTING LONGITUDINAL DISPERSION 
*** COEFFICIENT LATER IN PROGRAM. (LOOK BETWEEN PROG 
*•* STATEMENTS 322 AND 325.)
***
SUMUCY(J) = 0.
DO 2 89 N=l,TUBES

CPRIME = CONC(N.CELL(N))-AVGCON(J)
UPRIME = U(N,J) - UAVG(J)
SUMUCY(J) = SUMUCY(J) + (CPRIME*UPRIME*YTUBE(N)) 
IF(DEBUG.LE.l.AND.SUMT.EQ.12..AND.J.LT.19.AND.J.GT.15)THEN 

WRITE(6,288) N, J, CONC(N,CELL(N)), AVGCON(J).
1 U(N.J)

FORMAT(5X.’!=',I2,2X,'J=',I3,2X,’CONC(I,CELL(I))='
1 .F10.3,4X,'AVGCON(J)=',F10.3.4X,'U(I,J)=',
1 F10.6)

ENDIF 
CONTINUE 

CONTINUE 
DO 294 N=1,CLPRTS

IF(SUMT.GE.CLPRT(N).AND.(SUMT-DELT).LT.CLPRT(N)) THEN 
ENDIT = TOTAL 
CHOICE = 3
CALL CELLCON(CONC. CB, ENDIT, XO. DELX, TUBES,CBS,

1 DEBUG, SUMT,CHOICE)
ENDIF

294 CONTINUE
IF((CB(1,1).GE.5..AND.CB(1,2).LT.5.).OR.(CB(l,l).GE.

1 10. .AND.CBd .2) .LT.IO.) .OR. (CB(1,1) .GE.15. .AND.
1 CB(1,2).LT.15.)) THEN

WRITE(6,292) CB(1,1)
292 FORMAT(/////5X,'VELOCITY DISTRIBUTION',F9.4,

1 ' FEET FROM TOP OF PLANE:'//
1 lOX,'TUBE NO.',5X,'VELOCITY(FT/SEC)'/)

J = NINT((CB(l,l)-XO)/DELX)
DO 295 1=1.TUBES

WRITE(6,293) I,U(I,J)
293 F0RMAT(/13X,I2,11X,F9.6////)
295 CONTINUE 

ENDIF

288

289
290
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IF(DEBUG.EQ.8) THEN 
DO 299 1=1,TOTAL 
X = XO+(I*DELX)-(.5*DELX)
Q = X*INTENS*.00002315 
YS = Q/UAVGd)
WRITE(6,297) I,XO,X,Q.AVG(X)N(I),DAVG(I),YS.U(1,I),D(TDBES,I) 

297 FORMAT(/5X,'1=',13,'XO=',F8.3,3X,'X=',F8.3,3X,'Q=',
1 F9.6,3X,'AVGCON=',F10.4,3X,'DAVG=',F7.4,3X,'YS=',F8.5,3X,
1 'U(1,I)=',F7.4,3X,'U(TDBES,I)=',F7.4)

299 CONTINUE
IF(STEPT.EQ.l) GO TO 301 
WHICH1=1
CALL STATS(AVGCON,XO,TOTAL,DELX,INTENS,UAVG,SUMT,STEPT,

1 DEPTH,TARAY,CARAY2,MARAY2,WHICH1,ARAY2,DELT,WHICHX,
1 UNIFLO,DEBUG,XPRINT)
ENDIF

C
C
C
C

*** IF TPRTS GREATER THAN ZERO, PRINT RESULTS 
**♦ OF AVERAGE CROSS-SECTIONAL CONCENTRATIONS 
*** (AVGCON) ALONG X-AXIS AT TIME INTERVALS 
*** SPECIFIED BY TPRT(I) (IN SECONDS).

301 DO 296 1=1,TPRTS
IF(SUMT.GE.TPRT(I) .AND.(SUMT-DELT) .LT.TPRT(D) GO TO 298 

296 CONTINUE 
GO TO 340 

C ***
C **• LIMIT THE NUMBER OF VALUES TO BE PRINTED
C *♦* TO 100. ACCOMPLISH THIS BY DEFINING AN INTERVAL
C •** (INTERV) FOR PRINTOUT VALUES.
C ***
298 INTERV = 0

DO 300 1=150,3000,150
IF(TOTAL.LE.I.AND.TOTAL.GT.(1-150)) THEN 

INTERV = 1 / 1 5 0  
GO TO 312 

ENDIF
300 CONTINUE

IF(INTERV.EQ.O) THEN 
WRITE(6,310)

310 FORMAT(//5X,'»»»WARNING***'/5X,'TOTAL NUMBER OF POLLUTANT',
1 IX,'CELLS IN X DIRECTION GREATER THAN 3000.'/5X,
1 'COMPUTER PROGRAM CANNOT PRINT CONCENTRATION CURVE',
1 IX, "THIS LARGE UNLESS PROGRAM IS MODIFIED.')

GO TO 3 40 
ENDIF
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C **•
C **♦ PRINT VALUES OF CONCENTRATION AND MASS
C ALONG X-AXIS.
C *•*
312 WRITE(6,313) SDMT
313 FORMAT('1',20X,'**********CONCENTRATION-DISTANCE CURVE',

1 F6.2,' SECONDS AFTER INJECTION**********’)
WRITE(6,315) SUMT,STEPT, XINJEC

315 FORMAT(/////5X,'TIME (SEC) =',3X,F8.3/5X,'TIME STEP’,
1 IX,'NUMBER =',2X,14/5X,'INJECTION LOCATION FROM ',
1 'TOP OF PLANE(FT) =',F8.2)

WRITE(6,320)
3 20 FORMAT(/81X,'APPROXINATION OF'/9X,

1 'DISTANCE FROM TOP',10X,'MEAN CROSS-SECTIONAL',22X,
1 'LONGITUDINAL DISPERSION'/IIX,'OF PLANE (FT)',12X,
1 'CONC(MG/1000L, OR PPB) MASS (MG)
1 'COEFFICIENT (SO FT PER SEC)’)

DO 330 I=l,TOTAL,INTERV
X = (I * DELX) - (.5 * DELX)
TOTALX = XO + X 
IFdNTENS.EQ.O.) THEN 

Q = UNIFLO 
YS = DEPTH 
GO TO 322 

ENDIF

.02832

Q = TOTALX * INTENS * 
YS = Q / UAVG(I)

.00002315

322 MASS = AVGCON(I) * YS * DELX *
C ***
C *** SAVE VALUES FOR PLOTTING.
c ***
c *** XARAY = LOCATION ON X AXIS
c **• CARAYl = CONC AT X (PPB)
c *** MARAYl = MASS AT X (MG)
c • **

IF (TPLOT.EQ.l) THEN

C
C
c
c
c
c
c
c
c
c
c
c
c

ARAYl = ARAY1+ 1 
XARAY(ARAYl) = TOTALX 
CARAYl(ARAYl) = AVGCON(I) 
MARAYl(ARAYl) = MASS 

ENDIF

COMPUTE LONGITUDINAL DISPERSION COEFFICIENT, DISPER.

DISPER = 1/(DC/DX) * 1/YS * (SUMMATION FROM Y=0 
TO Y=YS OF (UPRIME*CPRIME*YTUBE) )

WHERE:
DC/DX = GRADIENT (GRAD) OF AVERAGE CROSS- 

SECTIONAL CONCENTRATION (AVGCON) WITH 
RESPECT TO X.

YS = DEPTH OF FLOW
YTUBE = HEIGHT OF STREAMTUBE
UPRIME = U(I,J) - UAVG(J)
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C
C
c
c

324

325
326 
330

*** CPRIME = CONC(I.J) - AVGCON(J)
*•* SUMÜCY = SUMMATION OF (UPRIME*CPRIME*YTUBE)

(SEE PROG. STATEMENT 288)
***

IF(TOTAL.LE.2) THEN 
DISPER = 0.
GO TO 325 

ENDIF
IF(I.EQ.l) THEN

GRAD = (AVGCON(2)-AVGCON(l))/DELX 
ELSE IF(I.EQ.TOTAL) THEN

GRAD = (AVGCON(TOTAL)-AVGCON(TOTAL-l))/DELX 
ELSE

GRAD = (.5*((AVGCON(I)-AVGCON(I-l))/DELX))+
(.5*((AVGCON(I+1)-AVGCON(I))/DELX))

ENDIF
IF(GRAD.EQ.O.) THEN 

DISPER = 0.
GO TO 325 

ENDIF
DISPER = -SUMUCY(I)/(GRAD*YS)
IF(DEBUG.LE.1.AND.SDMT.EQ.12..AND.I.LT.20.AND.I.GT.15)THEN 

WRITE(6,324) I, GRAD. YS, SUMUCY(I)
FORMAT(/5X.'1=',I3,5X.'GRAD=',F15.8,5X.'YS=',F10.7,

3X,'SUMUCY(I/)='.F15.7)
ENDIF
WRITE(6,326) TOTALX, AVGCON(I), MASS, DISPER 
FORMAT(15X,F6.2,21X,F8.2.9X,F10.5.12X,F12.8)

CONTINUE 
WHICHl = 1
IF(TOTAL.EQ.l) GO TO 340
CALL STATS(AVGCON, XO, TOTAL, DELX, INTENS,

UAVG, SDMT, STEPT, DEPTH, TARAY, CARAY2, MARAY2. WHICHl, 
ARAY2, DELT, WHICHX, DNIFLO,DEBUG, XPRINT)

C
C

•** IF 'XPRINT' GREATER THAN ZERO, SAVE CONCENTRA- 
*** TION AND MASS VALUES TO BE PRINTED OUT LATER.

c
c *«*
c «««
c «««
c
c **«
c
c *««
c

IF 'XPRINT' GREATER THAN ZERO, SAVE CONCENTRATION 
.UES FOR ALL TIME STEPS AT A FIXED 
X-AXIS. THIS FIXED LOCATION EQUAL TO 
? 'XPRINT'. DP TO FOUR LOCATIONS

TARAY = TIME (SEC)
CARAY2 = CONC AT TIME TARAY (PPB)
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C MARAY2 = MASS AT TIME TARAY (MG)
C
340 ARAY2 = ARAY2 + 1

TARAY(ARAY2) = SUMT 
DO 3 46 1=1,4

IF (XPRINT(I).EQ.O.) GO TO 346
IF (XPRINT(I).GT.MAXCB) GO TO 344 
IF (XPRINT(I).LT.MINCB) GO TO 344 
EXACT = (XPRINT(I)-XO)/DELX 
J = NINT(EXACT)
IF(J.EQ.O) GO TO 344 
IFU.EQ.TOTAL) AVGCON(J+1) =0.
DFRNCE = (EXACT-REAL(J))*DELX
CARAY2(I,ARAY2) = AVGCON(J)+((DFRNCE+(DELX/2.))/DELX) 

1 •(AVGCON(J+1)-AVGCON(J))
IFdNTENS.EQ.O.) THEN 

Q = UNIFLO 
YS = DEPTH 
UEXACT = AVGVEL 
GO TO 3 42 

ENDIF
Q = XPRINT(I) * INTENS * .00002315
UEXACT = UAVG(J)+(((DFRNCE+(DELX/2,))/DELX)*

1 (UAVG(J+1)-UAVG(J)))
YS = Q / UEXACT

342 MASS = CARAY2(I,ARAY2) * UEXACT * DELT * YS * .02832
MARAY2(I,ARAY2) = MASS 
GO TO 3 46

344 CARAY2(I,ARAY2) = 0.
MARAY2(I,ARAY2) = 0.

3 46 CONTINUE

*** CHECK TO SEE IF DELX SHOULD BE CHANGED.

IF(IX.GT.DELXS) GO TO 350
IF(SUMT.GE.CHANGXdX) .AND. (SUMT-DELT) .LT.CHANGX(IX)) THEN 

DO 349 I=1,TUBES 
J=0
DO 347 K=1,CBS(I) .2 

J=J+1
NEWCB(J)=CB(I,K)
NEWRES(J)=RES(I,K)
IF((K+1) .EQ.CBS(D) THEN

NEWCB(J+1) = NEWCB(J)-(2.*DELX)
NEWRES(J+1) = RESd.K)
OLD = NINT((CB(I,K)-XO)/DELX)
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NEW = OLD+1
NEWCON(J) = (((UAVG(NEW)/((DAVG(NEW)+UAVG(OLD))

1 /2.))**.5)*CONC(I,K))/2.
ICBS = J+1 
XO = NEWCB(J+1)
GO TO 3 47

ELSE IF(K.EQ.CBSd)) THEN 
ICBS = J 
GO TO 3 47 

ENDIF
OLD = NINT((CB(I,K)-XO)/DELX)
NEWCON(J) = ((((DAVG(OLD)/((UAVG(OLD)+UAVG(OLD-D)

1 /2.))**.5)*CONC(I.K))+(((UAVG(OLD-l)/((UAVG(OLD)
1 +UAVG(OLD-l))/2.))**.5)*CONC(I,(K+l))))/2.

3 47 CONTINUE
CBS(I) = ICBS 
DO 348 K=1,ICBS

CB(I.K) = NEWCB(K)
RES(I.K) = NEWRES(K)
IF(K.EQ.CBSd)) GO TO 348 
CONCd.K) = NEWCON(K)

348 CONTINUE
349 CONTINUE

DELX = 2.*DELX 
IX = IX+1 
VEL = 0 
VCHECK = 0
CALL VELCTY(VCHECK.KPARAM.VISCOS. SO.DELT.DELX,

1 INTENS.XO,U,VEL.TUBES.UAVG.DEBUG.KILL.
1 WHERE.AVGVEL.V.DELY. UMAX. UPINJ. UINJ. KPAR)

IF(KILL.EQ.l) GO TO 425 
ENDIF

C
C

CHECK TO SEE IF TIME INCRDIENT (DELT) 
*** SHOULD BE CHANGED.

350 IF(ITIME.GT.DELTS) THEN
TIMEIN = 0 
GO TO 3 51 

ENDIF
IF((SUMT+.00000001).GE.CHANGT(ITIME).AND.(SUMT-DELT).LT.

1 CHANGT(ITIME)) THEN 
DELT = NEWT(ITIME)
ITIME = ITIME+1 
TIMEIN = 1 
GO TO 351
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ENDIF
TIMEIN = 0

C
C
C
C

**• IF THE TIME SINCE INJECTION (SUMT) IS LESS THAN 
•** THE SPECIFIED MAXIMUM TIME FOR THIS COMPUTER 

RUN (MAXT). THEN ADVANCE ONE TIME STEP AND 
**• BEGIN ANOTHER COMPUTATION CYCLE.

351 IF(MAXT.GE.SUMT.AND.(MAXT-DELT).LT.SUMT) GO TO 353 
SUMT = SUMT + DELT
STEPT = STEPT+1 
IF(DEBUG.LE.7) THEN 

WRITE(6,352) SUMT
352 FORMAT(//////5X.'***BEGIN NEW TIME STEP***'/

1 SX.'TIME (SEC) =',F8.3)
ENDIF
IF(IX.EQ.l) GO TO 359
IF((SUMT-DELT).GE.CHANGX(IX-1).AND.(SUMT-(2.*DELT)).LT. 
1 CHANGX(IX-l)) GO TO 742 

359 IF(IDROP.GT.O) THEN
XO = XO+(IDROP*DELX)
VEL = VEL-IDROP 
TOTAL = TOTAL-IDROP 
DO 354 1=1.TUBES

CBS(I) = CBS(I)-IDROP 
DO 3 56 J=1,VEL

U(I,J) = U(I.(J+IDROP))
CONTINUE 

CONTINUE 
DO 3 57 J=1,VEL

UAVG(J) = UAVG(J+IDROP)
CONTINUE
DO 358 J=1.TOTAL

AVGCON(J) = AVGCON(J+IDROP)
CONTINUE 

ENDIF 
1 = 0  
JDROP = 0
IF(AVGCON(TOTAL-I).LT..005) THEN 

JDROP = JDROP+1 
ELSE

GO TO 710 
ENDIF 
I = I+l 
GO TO 700

710 IF(JDROP.EQ.O) GO TO 742

356
354

357

358

700
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730
740
742

TX)TAL = TOTAL-JDROP 
DO 740 1=1.TUBES

CBS(I) = CBS(I)-JDROP 
DO 730 K=1,CBS(I)

CB(I.K) = CB(I,(K+JDROP)) 
RES(I.K) = RES(I,(K+JDROP)) 
IF(K.EQ.CBS(D) GO TO 730 
CONC(I.K) = (X)NC(I,(K+JDROP)) 

CONTINUE 
CONTINUE
IF(TIMEIN.EQ.O) GO TO 30 
IF(TIMEIN.EQ.l) GO TO 512

C
C
C

*** IF 'TPLOT' EQUALS 1, USE 'MAPA' (LIBRARY LINE 
••• PRINTER PLOT ROUTINE) TO PLOT CONCENTRATION AND 
*** MASS VS DISTANCE ALONG X AXIS.

353 IF (TPLOT.EQ.O) GO TO 355
CALL MAPA(5,XARAY.CARAYl.1,ARAYl,XMIN,XMAX,YMIN,YMAX,

1 DI.CO.DICO.l)
CALL MAPA (5.XARAY,MARAYl.l.ARAYl.XMIN.XMAX.YMIN,YMAX. 

1 DI.MA.DIMA.l)

C
C
C

•** IF 'XPRINT' GREATER THAN ZERO, PRINT OUT CONC 
**• VS TIME AND MASS VS TIME CURVES AT FIXED VALUES 
*** OF X.

355 NEWJ = 0
DO 420 1=1,4

IF (XPRINT(I).EQ.O.) GO TO 420 
INTERV = 0
DO 360 L=100,3000,100

IF(ARAY2.LE.L.AND.ARAY2.GT.(L-lOO)) THEN 
INTERV = L/lOO 
GO TO 375 

ENDIF
360 CONTINUE

IF (INTERV.EQ.O) THEN
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WRITE(6,370)
370 FORMAT(//5X.'***WARNING***75X,'TOTAL NUMBER OF'.IX,

1 ' XPRINT VALUES GREATER THAN 3 000.7 5X,' COMPUTER M X ,
1 'PROGRAM MUST BE MODIFIED FOR MORE VALUES.')

GO TO 420 
ENDIF

375 WRITE(6,380) XPRINT(I), XINJEC
380 FORMAT('1'/////22X,'♦♦♦*******CONCENTRATION-TIME CURVE ',

1 'AT ',F6.2,' FEET FROM TOP OF PLANE**********'/////5X.
1 'INJECTION LOCATION FROM TOP OF PLANE(FT) =',F6.2
1 //36X,'MEAN CROSS-SECTIONAL')

WRITE(6,390)
390 FORMAT(14X.'TIME (SEC)',12X.'CONC (MG/IOOOL, ORPPB)',5X,

1 'MASS (MG)')
DO 410 J=1,ARAY2,INTERV

WRITE(6,400) TARAY(J). CARAY2(I,J), MARAY2(I,J)
400 FORMAT(15X,F7.2,21X,F8.2.9X.F10.5)

NEWJ = NEWJ + 1 
TIME(NEWJ) = TARAY(J)
CONCEN(NEWJ) = CARAY2(I,J)
MASSS(NEWJ) = MARAY2(I,J)

410 CONTINUE
WHICHl = 0
CALL STATS (AVGCON, XO, TOTAL, DELX, INTENS, UAVG,

1 SUMT, STEPT, DEPTH, TARAY, CARAY2, MARAY2, WHICHl,
1 ARAY2, DELT, WHICHX, UNIFLO, DEBUG, XPRINT)

420 CONTINUE

C
C
C

•** IF 'XPLOT' EQUALS 1, USE 'MAPA' LIBRARY LINE 
*** PRINTER PLOT ROUTINE TO PLOT CONC AND MASS 
*** VS TIME.

IF (XPLOT.EQ.O) GO TO 422
CALL MAPA (5,TIME,CONCEN,l,NEWJ,XMIN,XMAX,YMIN,YMAX, 
1 TI,CO,TICO,l)
CALL MAPA (5,TIME,MASSS,1,NEWJ,XMIN,XMAX,YMIN,YMAX,
1 TI,MA,TIMA,1)

C
C
C

*** IF 'COMP' EQUALS 1, CALL SUBROUTINE COMPAR 
*** TO COMPARE DIFFERENCE BETWEEN COMPUTED 
*** CONCENTRATION-TIME CURVE VS LABORATORY
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C0NCE2miATI0N-TIME CURVE.

422 IF(COMP.EQ.l) THEN
CALL COMPAR(CARAY2, TARAY, LABCON, LABTIM, POINTS.

1 ARAY2, DEBUG, WHICHX)
ENDIF 
GO TO 430

425 WRITE(6,426) WHERE
426 FORMAT(///5X,'***TERMINATED***75X.'VELOCITY IN STREAMTUBE AT', 

1 IX,'WATER SURFACE IS NEGATIVE.'/5X,'LOCATION ON PLANE =',
1 F9.4.2X,'FT')

430 STOP 
END

**************************** SUBROUTINE VELCTY ****************«***«4>******

SUBROUTINE VELCTY (VCHECK, KPARAM, VISCOS, SO, DELT, DELX, 
1 INTENS, XO, U, VEL. TUBES, UAVG, DEBUG, KILL, WHERE,
1 AVGVEL, V.DELY, UMAX, UPINJ. UINJ, KPAR)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

THIS SUBROUTINE COMPUTES THE FLOW VELOCITY WITHIN EACH COMPU-
TATIONAL CELL. SINCE OVERLAND FLOW WITH RAINFALL IS NONUNIFORM 
FLOW, THE VELOCITY WITHIN A STREAMTUBE WILL VARY IN THE FLOW 
DIRECTION. PLUS, VELOCITY VARIES IN THE VERTICAL DIRECTION DUE 
TO THE VERTICAL VELOCITY DISTRIBUTION. THIS SUBROUTINE USES 
A POLYNOMIAL EQUATION TO DESCRIBE THE VERTICAL VELOCITY 
DISTRIBUTION, AND IT USES THE DARCY-WEISBACH FRICTION RELATION-
SHIP TO COMPUTE FLOW DEPTHS, WHERE K/R IS SUBSTITUTED FOR THE 
DARCY-WEISBACH FRICTION FACTOR (K=KPARAMn R=REYNOLDS NUMBER=
Q/VISCOS).

DEFINTIONS:

YMAX THE DEPTH AT WHICH THE MAXIMUM LOCAL VELOCITY 
(UMAX) OCCURS. (UNITS = FT)
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C
c
c
c
c
c
c
c
c
c

UMAX = MAXIMUM LOCAL VELOCITY IN CROSS-SECTION 
(UNITS = FT PER SEC)

A,B,C = POLYNOMIAL COEFFICIENTS IN EQUATION FOR 
U/UMAX.

YYMAX = DEPTH OF A POINT WITHIN CROSS SECTION DIVIDED 
BY YMAX.

INTEGER FORWAR, VEL. VCHECK, DEBUG. TUBES
REAL INTENS. KPARAM. KPAR. KFAC
DIMENSION U(41.100) .UAVGOOO) . V(58). DELY(58)

G = 32.2
IF (VCHECK.l t .VEL) GO TO 100 
XBEGIN = XO + (VEL • DELX)
FORWAR = VCHECK - VEL + 20 
IF (DEBUG.EQ.l) THEN

WRITE(6.5) VEL.VCHECK. XBEGIN. FORWAR
5 FORMAT(//////5X.'SUBROUTINE VELCTY:'/5X.'VEL ='.I3.5X.

1 'VCHECK ='.13.5X.'XBEGIN ='.F7.3.5X.
1 'FORWAR ='.I3)
ENDIF
IF(INTENS.EQ.O.) THEN 

DO 7 L=l.FORWAR 
J = VEL + L 
UAVG(J) = AVGVEL 
DO 6 1=1.TUBES 

U(I.J) = V(I)
6 CONTINUE
7 CONTINUE 

GO TO 90
ENDIF
IF(INTENS.LT.3.75) THEN

BU = -.404+(.0492*INTENS)
CU = -.199+(.0060*INTENS)

ELSE IF(INTENS.GE.3.75) THEN 
BU = -.211-(.00222*INTENS)
CD = -.217+(.0110*INTENS)

ENDIF
DO 20 L = 1.FORWAR

DISTNC = (XBEGIN-DELX)+(L*DELX)+(DELX/2.)
Q = DISTNC * INTENS * .00002315
YS = ((KPARAM*VISCOS*Q)/(8.*G*SO))**(l./3.)
UMEAN = Q/YS 
YSIN = YS • 12.
YMAXIN = .966*(YSIN**1.14)*(INTENS**(-.08))
YMAX = YMAXIN / 12.
IF(UMAX.GT.O.) DMAX1=UMAX*UMEAN
IF(UMAX.EQ.O.) UMAXl=1.216*(INTENS**(-.07))*(UMEAN**.80)
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10

12

15

20
90

100

J= VEL + L 
DAVG(J) = UMEAN
UMEANP = (DMAX1/YS)*(((2./3.)*YMAX)+((YS-YMAX)*

1 (l.+( .5*BU)+((1./3.)*CU))))
VELFAC = UMEAN/UMEANP 
IF(L.EQ.l) THEN 

UPINJ = UMEANP 
UINJ = UMEAN
KPAR = ((8.*80*0*0)/(UMEANP**3))*(Q/VISCOS)

ENDIF
IF (DEBUG.EQ.l.AND.(L.EQ.l.OR.L.EQ.lO)) THEN

WRITE(6,8) L. J. DISTNC, 0, YS, UMEAN, YMAX, UMAXl 
F0RJIAT(5X,'L =M3,5X,'J = M 3  ,5X,'DISTNC =' ,F7 .3 ,5X,'0 =' 

1 ,F9.7,5X,'YS =',F7.5,5X,'UMEAN =',F6.4/10X,
1 'YMAX =',F7.5,5X,'UMAXl =',F6.4,5X)

ENDIF 
YBASE = 0.
DO 10 1=1,TUBES

YYMAX = ((.5*(DELY(I)/100.)*YS)+YBASE)/YMAX 
YBASE = (.5*(DELY(I)/100.)*YS)+(YYMAX*YMAX)
YXYS = ((YYMAX*YMAX)-YMAX)/(YS-YMAX)
IF(YYMAX.LT.l.) U(I,J) = VELFAC*UMAX1*((2.*YYMAX)- 

1 (YYMAX**2))
IF(YYMAX.GE.l.) U(I,J) = VELFAC*UMAX1*(1.+(BU*YXYS)+

1 (CU*(YXYS**2)))
IF (DEBUG.EQ.l.AND.(L.EQ.l.OR.L.EQ.IO)) THEN

WRITE(6,9) I, U(I,J)
FORMAT(5X,'TUBE NO. =',12,5X,'CELL VELOCITY =',

1 F6.4)
ENDIF

CONTINUE
IF(U(TUBES,J).GT.O.) GO TO 12 

KILL = 1 
WHERE = DISTNC

IF(U(TDBES,J).GT.U(l.J)) GO TO 20 
WRITE(6,15) DISTOC
FORMAT(1 OX,'***WARNING***'/lOX,'VELOCITY OF'

1 ,1X,'STREAMTUBE AT SURFACE IS LESS THAN VELOCITY'
1 ,1X,'0F STREAMTUBE AT THE BED. DISTANCE =',F7.3/)
CONTINUE
VEL = VEL + FORWAR
RETURN
END

**************************** SUBROUTINE CELLCON ****************************
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SUBROUTINE CELLCON(CONC, CB, ENDIT, XO, DELX, TUBES,CBS.DEBUG. 
1 SUMT, CHOICE)

C
C
C

10

12

15

20
50

THIS SUBROUTINE PRINTS OUT CELL CONCENTRATIONS IN FORM OF A 
••• LONGITUDINAL CROSS-SECTION OF THE FLOW.
***
INTEGER ENDIT, TUBES. CBS, DEBUG, CHOICE
DIMENSION CONC(41,100), CB(41,100), K(58), C(5 8), CBS(58)
IF(CHOICE.EQ.l) THEN 

WRITE(6,2)
FORiIAT(//////34X.'•*********CELL CONCENTRATIONS AT 

1 'INJECTION**********')
ELSE IF(CHOICE.EQ.2) THEN 

WRITE(6,3) SUMT
FORMAT(//////23X,'**********CELL CONCENTRATIONS AFTER ',

1 'CONVECTION AT ',F6.2,IX,'SECONDS**********')
ELSE IF(CHOICE.EQ.3) THEN 

WRITE(6,4) SUMT
FORMAT(//////19X,'**********CELL CONCENTRATIONS AFTER ',

1 'VERTICAL DIFFUSION AT ',F6.2,IX,'SECONDS**********')
ENDIF 
WRITE(6,6)
FORMAT(//2X,'DISTANCE FROM',35X,'STREAMTUBE NUMBER'/
1 2X,'TOP OF PLANE'/6X,'(FT)',11X,'1',9X,'2',9X,'3',
1 9X.'4',9X,'5',9X,'6',9X,'7',9X,'8',9X,'9',9X,'10'///)
DO 10 1=50,2000,50

IF(ENDIT.LE.I.AND.ENDIT.GT.(1-50)) THEN 
INTERV = 1/50 
GO TO 10 

ENDIF 
CONTINUE
DO 50 J=l,ENDIT,INTERV 

DO 15 1=1.TUBES
X(I) = NINT((CB(I,l)-(XO+(J*DELX)))/DELX) +1 
IF(K(I).LT.l.OR.K(I).GE.CBS(I)) THEN 

C(I) = 0.
ELSE

C(I) = CONC(I,K(D)
ENDIF
IF(DEBUG.LE.2.AND.SUMT.GT.8..AND.SUMT.LE.10.

1 .AND.(I.EQ.4.0R.I.EQ.5)) THEN
WRITE(6,12) I, CB(I.l), XO. K(I)
FORJIAT(/5X,'TUBE =', 12,5X,' CB(1,1) =',F8.4,5X.

1 'XO =',F8.4,5X,'K(I) =',I4)
ENDIF

CONTINUE
X = XO + (J*DELX)-(.5*DELX)
WRITE(6,20) X, (C(I), 1=1,TUBES) 
FORMAT(/1X,F10.5,3X,10F10.2/14X,10F10.2)

CONTINUE
RETURN
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END

*********4t4>************** SUBROUTINE STATS ***************************

THIS SUBROUTINE COMPUTES THREE SETS OF MOMENTS FOR THE DYE CLOUD:
1) MOMENTS OF CONCENTRATION DISTRIBUTION ALONG X-AXIS.
2) MOMENTS OF MASS DISTRIBUTION ALONG X-AXIS.
3) MOMENTS OF CONCENTRATION-TIME CURVE.

THE FOLLOWING MOMENTS ARE COMPUTED;

FOR CONCENTRATION:
OlH MOMENT (MOCON)
1ST MOMENT (MICON)
2ND MOMENT (M2CON)
3RD MOMENT (M3CON)

FOR MASS:
OTH MOMENT (MOMAS) 
1ST MOMENT (MIMAS) 
2ND MOMENT (M2MAS) 
3RD MOMENT (M3MAS)

THE FOLLOWING VARIABLES ARE COMPUTED:

FOR CONCENTRATION:
MASS (MASCON) = MOCON (UNITS = (MG-FT)/1000 LITERS )
CENTROID (CENCON) = MICON / MOCON 
VARIANCE (VARCON) = M2CON / MOCON
SKEW COEF (SKECON) = (M3CON/MOCON)/((M2CON/MOCON)**!.5) 

FOR MASS:
MASS (MASMAS) = MOMAS (UNITS = MG-FT)
CENTROID (CENMAS) = MIMAS / MOMAS 
VARIANCE (VARMAS) = M2MAS / MOMAS
SKEW COEF (SKEMAS) = (M3MAS/M0MAS)/((M2MAS/M0MAS)**!.5)

SUBROUTINE STATS(AVGCON,XO,TOTAL,DELX,INTENS,UAVG,SUMT,STEPT. 
1 DEPTH, TARAY, CARAY2, MARAY2, WHICHI,ARAY2,
1 DELT, WHICHX, UNIFLO. DEBUG, XPRINT)
DIMENSION AVGCON(300), UAVG(300), TARAY(300), CARAY2(4,300),
1 MARAY2(4,300), XPRINT(4)
INTEGER TOTAL, STEPT, WHICHI, WHICHX, ARAY2, DEBUG
REAL MOCON, MICON, M2CON, M3CON, MOMAS, MIMAS, M2MAS, M3MAS,
1 MASS, INTENS, MARAY2, MEDIAN

•** INITIALIZE VALUES FOR MOMENTS

MOCON = 0. 
MICON = 0. 
M2CON = 0.
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M3C0N = 0.
MOMAS = 0.
MIMAS = 0.
M2MAS = 0.
M3MAS = 0.
SUMASS = 0.

**• COMPUTE OTH AND 1ST MOMENTS

1
2

IF(WHICHl.EQ.O) 1HEN
0 = XPRINT(WHICHX)*INTENS*.00002315 
DO 2 I=1,ARAY2 

IF(I.EQ.l) THEN
DELTI = TARAY(2)-TARAy(l)

ELSE IF(I.EQ.ARAY2) THEN
DELTI = TARAY(ARAY2) - TARAY(ARAY2-1)

ELSE
DELTI = .5*(TARAY(I+l)-TARAY(I-l))

ENDIF
MOCON = MOCON + (DELTI*CARAY2(WHICHX,I))
IFdNTENS.EQ.O.) GO TO 1
SUMASS = SUMASS + MARAY2(WHICHX,I)
MICON = MICON + (TARAY(I)*DELT1*CARAY2(WHICHX,I)) 

CONTINUE
IFdNTENS.GT.O.) GO TO 12 
SUMASS = MOCON*UNIFLO*.02832 
GO TO 12 

ENDIF
DO 10 1=1.TOTAL

X = (I*DELX) - (.5*DELX)
MOCON = MOCON + (AVGCONd ) *DELX)
MICON = MICON + (X*AVGCON(I)*DELX)
IFdNTENS.EQ.O.) THEN 

YS = DEPTH 
GO TO 5 

ENDIF
Q = (XO + X) * INTENS * .00002315 
YS = Q / UAVGd)
MASS = AVGCONd) * YS * DELX • .02832 
MOMAS = MOMAS + (MASS • DELX)

10
MIMAS = MIMAS 

CONTINUE
+ (X * MASS • DELX)

•** COMPUTE CENTROIDS

12 IF(MOCON.EQ.O.) GO TO 38 
IF(WHICHl.EQ.O) THEN 

CENCON = MICON/MOCON 
GO TO 13 

ENDIF 
CENCON 
CENMAS 
CENTRO 
CENTRM

MICON/MOCON 
MIMAS/MOMAS 
CENCON + XO 
CENMAS + XO
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: **• COMPUTE 2ND AND 3RD MOMENTS

13 IF(WHICHl.EQ.O) THEN
DO 14 I=1,ARAY2 

IF(I.EQ.l) THEN
DELTI = TARAY(2)-TARAY(1)

ELSE IF(I.EQ.ARAY2) THEN
DELTI = TARAY(ARAY2)-TARAY(ARAY2-1)

ELSE
DELTI = .5*(TARAY(I+1)-TARAY(I-1))

ENDIF
M2CON = M2CON+(((TARAY(I)-CENCON)**2)*

1 CARAY2(WHICHX,I)*DELT1)
M3CON = M3CON+(((TARAY(I)-CENCON)**3)*

1 CARAY2(WHICHX,I)*DELT1)
14 CONTINUE 

GO TO 22
ENDIF
DO 20 1=1.TOTAL

X = (I • DELX) - (.5 • DELX)
M2CON = M2CON+(((X-CENCON)**2)*AVGCON(I)*DELX)
M3CON = M3CON+{((X-CENCON)**3)*AVGCON(I)*DELX)
IFdNTENS.EQ.O.) THEN 

YS = DEPTH 
GO TO 15 

ENDIF
Q = (XO + X) • INTENS * .00002315 
YS = Q / UAVG(I)

15 MASS = AVGCON(I) * YS * DELX * .02832 
SUMASS = SUMASS + MASS
M2MAS = M2MAS + (((X-CENMAS)**2)*MASS*DELX)
M3MAS = M3MAS + (((X-CENMAS)**3)*MASS*DELX)
IF(DEBUG.EQ.7) THEN

WRITE(6,18) I,X,XO,Q.UAVG(I).YS.AVGCON(I).SUMASS 
18 FORMAT(//5X. 'I=M4.3X. 'X=' .F9.4.3X. 'XO=' .F10.5.3X.

1 'Q='.F10.6.3X.'UAVG(I)='.F10.6/5X.’YS='.F10.6.3X.
1 'AVGCON(I)='.F8.2.3X.'SUMASS='.FIO.6)

ENDIF 
20 CONTINUE

C •** COMPUTE VARIANCES

22 VARCON = M2CON / MOCON
IF(WHICHl.EQ.O) GO TO 24 
VARMAS = M2MAS / MOMAS

C *•* COMPUTE SKEW COEFFICIENTS

24 SKECON = (M3CON/MOCON)/((M2CON/MOCON)**1.5)
IF(WHICH1.EQ.O) GO TO 26
SKEMAS = (M3MAS/M0MAS)/((M2MAS/M0MAS)**!.5)

*** COMPUTE MEDIAN TIME FOR TIME-CONCENTRATION CURVE.
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26 IF(WHICHl.EQ.O) IBEN 
SUM = 0.
DO 28 I=1,ARAY2 

IF(I.EQ.l) THEN
DELTI = TARAY(2)-TARAY(1)

ELSE IF{I.EQ.ARAY2) THEN
DELTI = TARAY(ARAY2)-TARAY(ARAY2-1)

ELSE
DELTI = .5*(TARAY(I+1)-TARAY(I-1))

ENDIF
SUM = SUM + (DELTl*CARAY2(WHICeX.I)) 
IF(SDM.GE.(MOCON/2.)) THEN 

IF(I.EQ.l) GO TO 38
FRAC = ((M0C0N/2.)-(SUM-(DELTl*CARAY2(WHICHX,I))))/ 

1 (DELT1*CARAY2(WHICHX,I))
MEDIAN = ((TARAY(I)+TARAY(I-l))/2.)+(FRAC*DELTl)
GO TO 29 

ENDIF
28 CONTINUE

: •** PRINT RESULTS

29 WRITE(6,30) SUMASS, CENCON, VARCON, SKECON, MEDIAN
30 FORMAT(////5X,'STATISTICS OF CONCENTRATION-TIME CURVE:'//

1 5X,'TOTAL MASS (MG) =',F8.5/5X,
1 'CENTROID(SEC) =',F8.4/5X,'VARIANCE(SECONDS SQUARED)='
1 ,F8.4/5X.'SKEW COEF =',F8.4/5X,'MEDIAN(SEC)=',
1 F9.4/8X,'(MEDIAN = TIME WHEN 50 PERCENT OF',
1 ' MASS PASSED)')

GO TO 38 
ENDIF

WRITE(6,35)
35 FORMAT(////5X,'STATISTICS OF CONCENTRATION-DISTANCE CURVE:') 

WRITE(6,36) SUMT, STEPT, SUMASS, CENTRC, VARCON, SKECON,
1 CENTRM, VARMAS, SKEMAS

36 FORMAT(/5X,'TIME IN SECONDS =',11X,F10.2/5X,'TIME STEP NUMBER ='
1 ,15X,14/5X,'TOTAL MASS IN MILLIGRAMS =',F10.5//5X,
1 'CONCENTRATION DISTRIBUTION:',5X,'CENTROID(FT) =',2X,F8.4,5X, 
1 'VARIANCE(SQ FT) =',2X,F8.4,5X,'SKEW COEF =',2X,F8.4/5X,
1 'MASS DISTRIBUTION:',14X,'CENTROID(FT) =',2X,F8.4,5X,
1 'VARIANCE(SQ FT) =',2X,F8.4,5X,'SKEW COEF =',2X,F8.4)

3 8 RETURN 
END
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*************************** SUBROUTINE COMPAR ***************************

THIS SUBROUTINE COMPARES THE CONCENTRATION-TIME CURVE COMPUTED 
*** IN THE MAIN PROGRAM (COMCON(L) VS COMTIM(D) WITH THE 
*** CONCENTRATION-TIME CURVE MEASURED IN LABORATORY (LABCON(L) VS 
*•* LABTIM(L)). THE MEASURE OF COMPARISON IS THE AVERAGE OF THE 
*** ABSOLUTE VALUES OF COMPUTED CONCENTRATION MINUS MEASURED CONCENTRATION.

SUBROUTINE COMPAR(COMCON, COMTIM, LABCON, LABTIM, POINTS,
1 ARAY2, DEBUG. WHICH!)

DIMENSION COMCON(4,300). COMTIM(300), LABCON(300), LABTIM(300),
1 X(200), Y(200)
CHARACTER*10 XT, YT 
CHARACTER*80 MTIT
INTEGER POINTS, ARAY2, START, COUNT, DEBUG, WHICH!
REAL LABCON. LABTIM

20

CONMAX = 0.
DELC = 0.
COUNT = 1
DELTI = COMTIM(2)-COMTIM(l)
DO 100 L=l,POINTS

IF(COMTIM(1).GE.(LABTIM(L)+DELT1)) THEN 
DELC = DELC + LABCON(L)
GO TO 80

ELSE IF(COMTIM(l).GT.LABTIM(L).AND.COMTIM(l).LT.
1 (LABTIM(L)+DELT1)) THEN

FRAC = (DELTI-(COMTIM(1)-LABTIMCL)))/DELTI
DELC = DELC+ABS(LABCON(L)-(FRAC*COMCON(WHICHX,D) )
GO TO 80

ELSE IF(COMTIM(l).EQ.LABTIM(L)) THEN
DELC = DELC+ABS(COMCON(WHICHX,l)-LABCON(L))
GO TO 80 

ENDIF
START = COUNT 
DO 20 M=START,ARAY2

IF(COMTIM(M).EQ.LABTIM(L)) THEN
DELC = DELC+ABS(COMCON(WHICHX,M)-LABCON(L)) 
COUNT = M - 1 
GO TO 80

ELSE IF(COMTIM(M).GT.LABTIM(L)) THEN
FRAC = (COMTIM(M)-LABTIM(D)/(COMTIM(M)- 

1 COMTIM(M-D)
DELC = DELC+ABS(LABCON(L)-(COMCON(WHICHX.M)- 

1 (FRAC*(COMCON(WHICHX,M)-COMCON(WHICHX,(M-1))
1 ))))

COUNT = M - 1 
GO TO 80 

ENDIF 
CONTINUE
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30

80

90

100
C
C
C
C

105
110

IF(LABTIM(L).GT.COMTIM(ARAY2)) THEN 
AVERAG = DELC/(L-1)
GO TO 105 

ENDIF
WRITE(6.30) L
FORMAT(//5X,'*•»TERMINATED* *•7 5X.'SUBROUTINE COMPAR',

1 ’ COULD NOT COMPUTE A DIFFERENCE BETWEEN LAB CONC',
1 ' AND COMPUTED CONC AT LABTIM( M 2  ,') .')

GO TO 120
IF(DEBUG.EQ.7) THEN

WRITE(6,90) L, LABTIM(L), DELC 
FORMAT(5X, 'L=M3,5X, 'LABTIM(L) =’,F8.3 ,5X,

1 'DELC='.F12.4)
ENDIF
IF(LABCON(L).GT.CONMAX) CONMAX=LABCON(L)

CONTINUE
***
•** COMPUTE AVERAGE ABSOLUTE VALUE OF COMPUTED 
•*• CONCENTRATION MINUS MEASURED CONCENTRATION.
***
AVERAG = DELC / POINTS 
WRITE(6,110) AVERAG
FORJIAT(/////5X,'*•* COMPARISON OF COMPUTED CURVE VS LAB CURVE'
1 ,'***'//5X,'AVERAGE ABSOLUTE VALUE OF COMPUTED CONCENTRATION'
1 ,' MINUS LAB CONCENTRATION (PPB) =',F8.2)

DO 114 1=1,POINTS 
X(I) = LABTIM(I)
Y(I) = LABCON(I)

114 CONTINUE
DO 116 I=1,ARAY2

X(POINTS+I) = COMTIM(I) 
Y(POINTS+I) = COMCON(WHICHX.I) 

116 CONTINUE
ITOTAL = POINTS + ARAY2 
XT='TIME (SEC)'
YT = 'CONC (PPB)'
MTIT = ' CONCENTRATION VS TIME CURVES

120

YMIN = 0.
YMAX = 2.0*CONMAX
XMIN = LABTIM(l)-(.5*(LABTIM(POINTS)-LABTIM(l)))
XMAX = LABTIM(POINTS)+( .5*(LABTIM(POINTS)-LABTIM(D)) 
CALL MAPA(5,X,Y,1,ITOTAL,XMIN.XMAX,YMIN.YMAX.
1 XT.YT.MTIT.l)
RETURN
END
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Appendix B

COMPARISON OF NUMERICAL MODEL TO CLEARY AND ADRIAN SOLUTION

Cleary and Adrian (1973) presented an analytical solution to the 

two-dimensional, convective-diffusive, partial differential equation,

DC , „ ac r, 9̂ c . „ â c . „  ̂  ̂ ^
+ U —  = D^ — 2 — 2 * ^ 6(x-Xj) 6(y-y^) 6(t-t)at ax (B-l)

ax ay

for an instantaneous, line-source injection (equivalent to a point 

source in two dimensions) in a uniform velocity field subject to 

no-flux boundary conditions at the streambed and water surface. The 

solution is

.2

M exp

C(x,y,t) =

(x - Xj - Ut)'

4 D t
X

H(4 n D^t) 1/2

1 + 2  I exp(- D u t) cos(u y) cos(u y.)
, ^ y '̂ n '̂n-' '̂n-'l

n=l
(B-2)

The symbols in the above two equations are given in Table B-l.

The numerical model in the present study is limited to a source 

with finite dimensions equivalent to the dimensions of one grid cell or 

a combination of grid cells, while the Cleary and Adrian solution is 

limited to a source at a point. Also, the numerical model simulates 

only vertical diffusion; thus, when this method is applied in a uni-

form velocity field, mass is diffused in the vertical direction only. 

The Cleary and Adrian solution requires a non-zero value for the
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List of Symbols Used in Equations B-1 and B-2

Table B-1

C

X

y

t

u

D
X

D
y
M

6( ) 

t

’̂l

^1

H

concentration

distance along flow direction 

vertical distance above streambed 

time

uniform velocity

longitudinal diffusion coefficient 

vertical diffusion coefficient

mass per unit width of stream instantaneously injected at a 
point (in two dimensions)

Dirac delta function

time of source release

longitudinal location of point source

vertical location of point source

depth of flow

(nn)/H

integer
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loagitudinal diffusion coefficient and therefore models the spread of 

the point source both longitudinally and vertically. These concepts 

are shown schematically in Figure B-1.

To provide for a valid test, the Cleary and Adrian solution was 

applied in such a way as to simulate the conditions in the numerical 

model. This was accomplished by using multiple point sources spaced 

uniformly over the area of the grid-cell injection. The mass of each 

point source was set equal to the total mass injected in the numerical 

model divided by the number of point sources used for the Cleary and 

Adrian simulation. This result is shown schematically in Figure B-2. 

By appropriately choosing the number of point sources and the value of 

the longitudinal diffusion coefficient, the sum of the individual 

point-source solutions, shown in Figure B-3, yields a concentration 

distribution with a spatial coverage approximating one cell column and 

with approximately uniform concentrations over the width of the cell 

column.

The number of point sources used in this test was 36. The 

longitudinal diffusion coefficient used was equal to about 0.1 percent 

of the vertical diffusion coefficient. Other data are given in 

Chapter 3.

The Cleary and Adrian solution for multiple point sources was 

coded into a FORTRAN V computer program listed in Attachment B-1. The 

summation in Eq. B-2 was truncated when the argument of its exponential 

function fell below -100. Concentrations were computed at points 

throughout the cell column. The distance between these points was the 

same as the distances between the multiple point sources. The computed 

concentrations were averaged over equivalent grid-cell areas.
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Flow

at t = t

a) Numerical Model

Flow

/ / A W

Point 
Injection 
at t = to
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Distribution 
at t = t,

b) Cleary and Adrian Solution

Figure B-1. Differences in Numerical Model and Cleary and Adrian 
Solution for Uniform Velocity Field
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Figure B-2. Results of Multiple Point Injections
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Figure B-3. Summation of Point-Source Solutions
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Tests were conducted using 7, 11, and 19 streamtubes in the 

numerical model. For each test, the value of the dimensionless group

(Ay)^
AT

was varied to determine its effect on the accuracy of the numerical 

model. The accuracy was measured by computing the Mean Deviation and 

the Mean Deviation Percent defined as

Mean Deviation = - 1 |C. . - C„ .
n I A,i N,i

where

and

n = number of streamtubes,

C. . = concentration in streamtube i based on analytical solution, 
A , 1

C„ . = concentration in streamtube i based on numerical model.N,i

w „ . . . T, . Mean DeviationMean Deviation Percent = -------------- x 100

where

c = cross-sectional average concentration. 

The results are shown in Tables B-2, B-3, and B-A.



Table B-2

Comparison of Cleary and Adrian Solution to Numerical Model Using 7 Streamtubes

(Ay)^
AT-e

y

Concentrations At 12.25 Seconds After T • (1)Injection

Mean
Deviation

Mean
Deviation
Percent

Streamtube No.

1 2 3 4

(Cleary and
Adrian Solution) (124.99) (138.44) (155.22) (162.70)

0.62 125.30 138.51 155.01 162.35 0.22 0.2
0.93 125.61 138.59 154.79 162.01 0.44 0.3
1.23 125.24 138.50 155.05 162.42 0.18 0.1
1.54 126.45 138.80 154.21 161.07 1.04 0.7
1.85 127.24 139.00 153.66 160.19 1.61 1.1
2.47 126.90 138.91 153.90 160.57 1.36 1.0
3.70 130.01 139.68 151.75 157.12 3.58 2.5
7.41 132.56 140.31 149.98 154.29 5.40 3.8

Concentrations At 24.50 Seconds After T • i-- (1)Injection

(Cleary and
Adrian Solution) (141.54) (142.53) (143.76) (144.32)

0.62 I4l.66 142.56 143.69 144.19 0.08 0.1
0.93 141.70 142.57 143.66 144.14 0.11 0.1
1.23 141.65 142.56 143.69 144.20 0.08 0.1

(1)Concentrations in streamtubes 5, 6, and 7 are identical to concentrations in streamtubes 3, 2, 
and 1, respectively.

N3
o
ON



Table B-3

Comparison of Cleary and Adrian Solution to Numerical Model Using 11 Streamtubes

(Ay)^
AT-e

y

Concentrations At 12.25 Seconds After Injection^

Mean
Deviation

Mean
Deviation
Percent

Streamtube No.

1 2 3 4 5 6

(Cleary and
Adrian Solution) (78.43) (82.38) (89.05) (96.31) (101.86) (103.93)

0.25 78.31 82.29 89.02 96.36 101.98 104.09 0.09 0.1
0.50 77.95 82.06 88.98 96.52 102.27 104.42 0.32 0.4
0.75 78.01 82.10 88.99 96.49 102.22 104.36 0.28 0.3
1.00 79.09 82.84 89.15 96.03 101.28 103.23 0.44 0.5
1.25 78.46 82.41 89.06 96.30 101.83 103.89 0.02 0.0
1.50 79.42 83.06 89.20 95.88 100.99 102.89 0.66 0.7
2.00 80.46 83.77 89.36 95.43 100.07 101.81 1.36 1.5
4.00 82.48 85.16 89.66 94.56 98.30 99.69 2.70 3.0
8.00 84.23 86.35 89.92 93.79 96.77 97.88 3.87 4.3

Concentrations At 24.50 Seconds After Injection^^^

(Cleary and
Adrian Solution) (89.99) (90.28) (90.77) (91.31) (91.71) (91.87)

0.75 89.95 90.26 90.77 91.32 91.75 91.90 0.02 0.0
1.00 90.11 90.36 90.79 91.26 91.61 91.74 0.08 0.1
1.25 90.02 90.30 90.78 91.29 91.69 91.84 0.02 0.0

K)
O

(1)Concentrations in streamtubes 7, 8, 9, 10, and 11 are identical to concentrations in streamtubes 5, 4, 
3, 2, and 1, respectively.



Table B-4

(Ay)'
AT-e

Concentrations At 12.25 Seconds After Injection^^^

Streamtube No.

Comparison of Cleary and Adrian Solution to Numerical Model using 19 Streamtubes

10
Mean

Deviation

Mean
Deviation
Percent

(Cleary and
Solution) (45..07) (45,,89) (47..44)(49.,55) (52..00) (54,,51) (56.,82) (58,,68) (59.,89) (60..30)

0.50 44,,57 45..44 47..09 49..35 51..95 54..64 57,. 10 59,.08 60,.37 60.,81 0..33 0.,6
0.84 45,.08 45.,90 47..44 49..55 52,,00 54..51 56,.82 58.,68 59..88 60..29 0.,00 0,,0
1.01 45..53 46,.30 47,.75 49,.74 52,.03 54..40 56,.57 58,.32 59.,45 59..84 0.,29 0..6
1.26 45..09 45,.91 47,.45 49..56 52..00 54.,51 56,.81 58,.67 59..87 60,.28 0..01 0..0
1.51 45..73 46.,48 47,.89 49,.82 52..05 54..35 56,.46 58,.15 59..25 59..63 0,.43 0..8
2.10 46,.48 47,.15 48,.41 50..13 52..12 54.,16 56,.04 57,.55 58..53 58..87 0,,91 1..7
4. 19 47 .73 48,.26 49,.26 50..63 52..22 53,.85 55,.35 56..55 57..33 57..60 1,.72 3,.3

Concentrations At 24.5 Seconds After Injection (1)

(Cleary and
Adrian Solution) (52.07)(52.14)(52.25)(52.40)(52.59)(52.77)(52.94)(53.08)(53.16)(53.19)

0.84 52.08 52.14 52.25 52.41 52.59 52.77 52.94 53.07 53.16 53.19 0.00 0.0
1.01 52.15 52.20 52.30 52.43 52.59 52.75 52.90 53.02 53.10 53.12 0.05 0.1
1.26 52.08 52.14 52.26 52.41 52.59 52.77 52.94 53.07 53.16 53.19 0.00 0.0

Ni
O
OO

(1)Concentrations in streamtubes 11, 12, 13, 14, 15, 16, 17, 18, and 19 are identical to concentrations 
in streamtubes 9, 8, 7, 6, 5, 4, 3, 2, and 1, respectively.
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ATTACHMENT B-1

PROGRAM CLEARY(INPUT,OUTPUT,TAPE5=INPOT,TAPE6=OUTPUT) 
DIMENSION C(10,100),C0NC(10,100),C0NCEN(15),TERM(100) 
REAL MASS
INTEGER POINTS,TUBES
READ(5,10) MASS,XI,11,VEL,DX,DY,DEPTH,TIME,TUBES 

10 F0RMAT(F13.10,2F10.8/F10.5,2F15.10,F10.8/F10.5,I10)
WRITE(6,20) MASS,XI,Y1,VEL,DX,DY,DEPTH,TIME,TUBES 

20 FORMAT(/////20X,'•••♦DATA INPUT^^^'///5X,'MASS(MG)=',
1 F13.10/5X,'X(FT)='.F10.8/5X,'Y(FT)=',F10.8/5X,
1 'VEL(FT/SEC)=',F10.5/5X,'DX(SQ FT/SEC)=',F15.10/
1 5X,'DY(SQ FT/SEC)=',F15.10/5X,'DEPTH(FT)=',F10.8/
1 5X,'TIME(SEC)=',F10.5/5X,'TUBES=',I5////20X,
1 '•••♦PROGRAM OUTPUT^^^^'///)
PI = 3.1415927 
POINTS = TUBES^6

DO 200 J=l,POINTS 
DO 100 1=1,9

X = 3.985698 + (.0001130^REAL(I-1))
Y = .0073985 - (.0001130^REAL(J-1))
ARGMT = ((X-X1-(VEL^TIME))^^2)/(4.^DX^TIME) 
IF(ARGMT.GT.100.) THEN 

C(I,J) = 0.
GO TO 45 

ENDIF
EXPl = EXP(-ARGMT)

DEMON = DEPTH^((4.^PI^DX^TIME)^^.5)
TOTAL = 0.
K = 0

30 K = K+1
ARGMT = DY^((REAL(K)^PI/DEPTH)^^2)^TIME 
IF(ARGMT.GT.100.) THEN 

TERM(K) = 0.
GO TO 40 

ENDIF
TERM(K) = EXP(-ARGMT)^COS((REAL(K)^PI^Y)/

1 DEPTH)♦COS((REAL(K)•PI^Yl)/DEPTH)
TOTAL = TOTAL+TERM(K)
GO TO 30

40 C(I,J) = (MASS•EXPl/DEN0M)^(1.+
1 (2.•TOTAL))/.02832

45 WRITE(6,50) X,Y,I,J,C(I,J)
50 F0RMAT(5X,'X=',F11.7,5X,'Y=',F11.7,5X,

1 'C(',I2,',',I2,')=',F11.5)
100 CONTINUE
200 CONTINUE
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250
300

K=0
DO 300 J=l,POINTS

C0NC(1,J)=C(1,J)+C(2,J)+C(3, 
C0NC(2,J)=C(1,J)+C(2,J)+C(3, 
C0NC(3,J)=C(2.J)+C(3,J)+C(4. 
C0NC(4.J)=C(3,J)+C(4,J)+C(5, 
C0NC(5,J)=C(4.J)+C(5,J)+C(6, 
CONC(6,J)=C(5,J)+C(6,J)+C(7, 
WRITE(6,250) (CONC(I.J).1=1, 
F0RMAT(1X,6F12.4)

CONTINUE

J)+C(4,J)+C(5,J)
J)+C(4.J)+C(5.J)+C(6,J)
J)+C(5.J)+C(6.J)+C(7,J)
J)+C(6,J)+C(7,J)+C(8,J)
J)+C(7,J)+C(8.J)+C(9,J)
J)+C(8,J)+C(9,J)
6)

340
350

400

DO 400 K=l,TUBES
ISTART=(6*(K-1))+1
IEND=ISTART+5
C0NCEN(K)=0.
DO 350 J=ISTART,IEND 

DO 340 1=1,6
CONCEN(K)=CONCEN(K)+CONC(I,J)

CONTINUE
CONTINUE

C0NCEN(K)=C0NCEN(K)/36
CONTINUE

450
500

DO 500 K=l,TUBES 
WRITE(6,450) K,CONCEN(K)
F0RMAT(5X,'CONCEN(’,12,')=',F10.4) 
CONTINUE

STOP
END



APPENDIX C

COMPARISON OF NUMERICAL MODEL 
TO YEH AND TSAI MODEL
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Appendix C

COMPARISON OF NUMERICAL MODEL TO YEH AND TSAI SOLUTION

Yeh and Tsai (1976) presented an analytical solution to the 

two-dimensional, steady-state, convective-diffusive, partial differen-

tial equation,

a ar
(C-1)ac 9  ̂ .

for a continuously-released line source (equivalent to a point source 

in two dimensions) in shear flow subject to no-flux boundary conditions 

at the streambed and water surface. The velocity profile and diffusion 

coefficient are expressed as power functions,

(C-2)m

and

u = a y

D = by
y

The solution is

(C-3)

C(x,y) = M
1 + m

aH
(1+m)

+ I 
i=l

2
«i y J. I2 V X. y

•yi J-v\2''\yi / exp

where

V =
1-n

2+m-n

(C-4)

(C-5)

and K. and a. are defined by 
1 1
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and

2 
a . 
1

'■2V ^
= 0

2+m-n

gjj(2+m-n) j 2^^2 v  \

(C-6)

(C-7)

The symbols in the above equations are defined in Table C-1.

The Yeh and Tsai solution was applied using multiple point sources 

spaced uniformly over the equivalent area of a grid cell, as explained 

previously for the Cleary and Adrian solution. In the present case, 

the longitudinal dimension of all grid cells was set to 0.35 feet, the 

value used in the model runs described in Chapter 5. Thirty point 

sources were used to simulate a uniform injection over the area of a 

grid cell--three horizontal rows of ten point sources. The injection 

location was in the streamtube located at middepth. A continuous 

injection concentration of 1000 was introduced into this streamtube's 

grid cell at the injection location. An equivalent mass rate was used 

for the point sources as explained in Chapter 3. Thirteen streamtubes 

were used in this test.

Values of the coefficients in Eqs. C-2 and C-3 were

a = 

m = 

b = 

n =

0.7488

1/7

30 X 10 

0

-8

Additional data used in the test are contained in Table 3-7.

The Yeh and Tsai solution for multiple point sources was coded 

into a FORTRAN V computer program listed in Attachment C-1. The
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program includes a subroutine to compute the value of the Bessel 

function of the first kind of order -v defined as (when v is not an 

integer)

-v+2mCo
J./t) = I (-1)*” t

m=0 m! r(-v+m+l)
(C-8)

where F( ) = Gamma function. The summation in Eq. C-8 was terminated 

when the absolute value of the last term computed in the summation was 

either less than 0.001 or less than 0.1 percent of the summation of the 

previously computed terms.

Oliver (1960) presented tables of Bessel function arguments which 

satisfy

V  > = “ (C-9)

These tables were used to solve for in Eq. C-6. In the present

study, Eq. C-5 gives

V = 0.4667

Therefore,

-V+1 = 0.5333

Tables published in Oliver (1960) list the first 15 Bessel function 

arguments satisfying Eq. C-9 for P = 0.5 and P = 1.0. Arguments 

were estimated for p = 0.5333 by linear interpolation and are listed 

in Table C-2.

The summation of terms in Eq. C-4 was terminated when the absolute 

value of the last computed term was less than 0.01, given that at least 

four terms had been computed.

Results are presented in Chapter 3.
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y

U

D
y
s

a,b,Di,n

M

H

Table C-1

List of Symbols Used in Equations C-1 through C-7 

= concentration

= distance along flow direction 

= vertical distance above streambed 

= point velocity

= vertical diffusion coefficient 

= source function 

= constants

= rate of mass injection per unit width 

= depth of flow

V+1
( ) = Bessel function of the first kind of order 

order -v+1

= longitudinal location of point source 

= vertical location of point source

-V or of
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Table C-2

Bessel Function Arguments Satisfying Eq. C-9 Obtained by 
Linear Interpolation of Data Presented by Oliver (1960)

Number Argument

1 3.187600
2 6.332012
3 9.474691
4 12.616859
5 15.758807
6 18.900643
7 22.042411
8 25.184136
9 28.325834
10 31.467510
11 34.609172
12 37.750822
13 40.892464
14 44.034098
15 47.175728
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ATTACHMENT C-1

PROGRAM YEHdNPUT,OUTPUT,TAPE5=INPUT,TAPE6=OOTPUT) 
DIMENSION CONC(40,20),BETA(20),0(40,20)
INTEGER BETAS,START,END,TRACE 
REAL MASS,M,N,ORDER,JV,LAMDA,JVZ,JVZS,NU 
READ(5,20) MASS,A,M,B,N,DEPTH,XS,ZS,BETAS,TRACE 

20 F0RMAT(F14.11,F10.6,F10.6/F12.9,F10.6,F12.8/2F15.12/
1 2110)

READ(5,30) (BETA(J),J=1,BETAS)
30 F0RMAT((5F10.6))

WRITE(6,42) MASS,A,M,B,N,DEPTH,XS,ZS,BETAS,TRACE 
42 FORMAT(/////20X,'•♦»»•DATA INPUT»»»»»'//5X,'MASS(MG=',

1 F12.8/5X,'A=',F10.6/5X,'M=',F10.6/5X,'B=',F12.9/5X,
1 'N=',F10.6/5X,'DEPTH=’,F12.8/5X,'XS=',F12.8/5X,
1 'ZS=',F12.8/5X,
1 'BETAS=',I10/5X,'TRACE=',I10)
WRITE(6,44) (I,BETA(I),1=1,BETAS)

44 F0RMAT((5X,'BETA(',12,')=',F10.6))
WRITE(6,46)

46 FORMAT(/////20X,'»»»»»PROGRAM OUTPUT»»»»»'/////,
1 ' CONCENTRATIONS DUE TO A POINT SOURCE:'//)

50

JV=0.
NU=(l.-N)/(2.+M-N)
ORDER=-NU
C0NST=(1.+M)/(A»(DEPTH»»(1.+M)))
ZSEXP=ZS»»((1.-N)/(2.»NU))
WRITE(6,50) NU,ORDER,CONST,ZSEXP 
FORMAT(//5X,'NU=',F10.7/5X,'ORDER=',F10.7/5X, 
1 'C0NST=',F14.8/5X,'ZSEXP=',F10.8)

DO 200 J=l,39 
DO 150 1=1,19

X=7.685 + (.035»REAL(I-D)
Z=.007359423 0769-(.000191153 8462»REAL(J-1)) 
SUM=0.
ZEXP=Z»»((1.-N)/(2.»NU))
DO 100 K=1,BETAS

LAMDA=BETA(K)/(2.»NU»(DEPTH»»((1.-N)/
I (2.»NU))))

ARG=BETA(K)
CALL BESSEL(ORDER,ARG,JV,TRACE) 
AI2=(2.+M-N)/(A»(DEPTH»»(2.+M-N))»(JV»»2.)) 
ARG=2.»NU»LAMDA»ZEXP 
CALL BESSEL(ORDER,ARG,JV,TRACE)
JVZ=JV
ARG=2.»NU»LAMDA»ZSEXP
CALL BESSEL(ORDER,ARG,JV,TRACE)
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JVZS=JV
STEP=AI2*(Z**((1.-N)/2.))*JVZ*(ZS**((1.-N)/

1 2.))*JVZS*EXP(-(B*(1.-N)/A)*(LAMDA**2.)•(X-XS))
SUM=SUM+STEP 
IF(TRACE.EQ.l) THEN

WRITE(6,60) X,Z,ZEXP.BETA(K),LAMDA,AI2.
1 JV,JVZ,ARG,JVZS,STEP,SOM

60 F0RMAT(/5X,'X=',F10.6,5X,'Z=',F10.8,
1 5X,'ZEXP=',F10.8,5X,'BETA(K)=',F14.9.5X,
1 'LAMDA=’,F14.6/5X.'AI2=',E16.6,5X,
1 'JV=',F30.8,5X,'JVZ=',F30.8/5X,
1 'ARG=',F14.8.5X,'JVZS=',F30.8,5X.
1 'STEP=',F14.8,5X,'SUM=’,F14.8)

ENDIF
IF(ABS(STEP).LT..01.AND.I.GT.4) GO TO 110 

CONTINUE
CONC(J,I)=(MASS*(CONST+SUM))/.02832 
IF(REAL(J/5).NE.(REAL(J)/5.)) GO TO 150 
WRITE(6,120)X,Z.J,I,C0NC(J,I)
F0RMAT(5X,'X='.F12.8,5X,'Z=',F12.8,

5X,'C0NC(',I3,','.13.')=',F12.5>
CONTINUE 

CONTINUE

100
110

120

150
200

DO 420 K=l,39 
DO 410 L=l,10 

START=11-L 
END=START+9 
C(K,L)=0.
DO 400 J=START,END

C(K,L)=CONC(K,J)+C(K,L)
400 CONTINUE
410 CONTINUE
420 CONTINUE

WRITE(6,450)
450 F0RMAT(////5X,'CONCENTRATIONS DOE TO AREA SOURCE, WHERE'

1 .'THE AREA SOURCE IS SIMULATED BY A GRID OF POINT'/
1 ' SOURCES COVERING A DEPTH EQUAL TO ONE STREAMTUBE'
1 ,' AND A LENGTH EQUAL TO DELTA X:'//)
DO 500 1=1,39

WRITE(6,480) (C(I,L),L=1,10)
480 FORMAT(lOFl0.3)
500 CONTINUE

510

WRITE(6,510)
FORMAT(/////5X,'AVERAGE CONCETRATIONS IN VERTICAL CELL:'//)

START=-2
END=0
DO 580 J=l,13 

START=START+3 
EMD=END+3
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550
560

570
580

S0M=0.
DO 560 I=START,END 

DO 550 L=l,10 
SUM=C(I,L)+S0M 

CONTINUE 
CONTINUE 
AVGC0N=SUM/30.
WRITE(6,570) AVGCON 
FORMAT(5X.F10.4) 

CONTINUE

C
C
C
C

STOP
END

SUBROUTINE BESSEL(ORDER.ARG.JV,TRACE)

•••THIS SUBROUTINE COMPUTES VALUE FOR BESSEL FUNCTION 
•••OF FIRST KIND OF ORDER 'ORDER'.

INTEGER TRACE
REAL NUMER, ORDER, MFACT, JV

JV = 0.
M = -1

40 M = M+1
MFACT = 1.
IF(M.EQ.O) THEN 

GO TO 65 
ELSE

DO 60 1=1,M
MFACT = MFACT^I 

60 CONTINUE
ENDIF

65 NUMER = ((-l.)^^M)^(ARG^^(0RDER+(2.^M)))
GAM = GAMMA(ORDER+M+1.)
DENOM = (2.^^(0RDER+(2.^M)))^MFACT^GAM
CHECK = NUMER/DENOM
IF(TRACE.EQ.l) THEN

WRITE(6,70) M,JV.MFACT,NUMER,GAM.DENOM,CHECK 
70 F0RMAT(5X,'M=',I5,5X,'JV=',F30.8.5X,'MFACT=',

1 E16.6/5X.'NUMER=',E16.6,5X.'GAM=',E16.6,
1 5X,'DENOM=',E16.6,5X,'CHECK='.E16.6)

ENDIF
TEST=.001^ABS(JV)
IF((ABS(CHECK).LT..0001.OR.ABS(CHECK).LT.TEST).AND. 

1 M.GT.4) GO TO 80
JV = JV+CHECK

GO TO 40
80 RETURN 

END



APPENDIX D

DERIVATION OF LONGITUDINAL DISPERSION COEFFICIENT 
USING A CONSTANT VERTICAL DIFFUSION COEFFICIENT 

IN INFINITELY-WIDE, STEADY, UNIFORM, TURBULENT FLOW
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Appendix D

DERIVATION OF LONGITUDINAL DISPERSION COEFFICIENT USING A CONSTANT 
VERTICAL DIFFUSION COEFFICIENT IN INFINITELY-WIDE, STEADY, 

UNIFORM, TURBULENT FLOW

Substituting Eq. 3-34,

u
u = u + —  ( 1 + £n

K y
s

(3-34)

and Eq. 3-37,

e = 0.067 y u 
y s s

into Eq. 2-6,

(3-37)

r^s
D = - ^  \ u' I I u' dy dy dy

^ s j o  Jo y Jo
(2- 6)

where

results in

u
D = - 2 2

0.067 y K 
s

y ,y

r  » • “  i  io ” o
( 1 + £n ^ )  dy dy dy

0.067 y^ •'o s
i s J O1( 1 + £n ^ )  I y £n ^  dy dy

2 2
0.067 y K 

s c ( 1 + £n ^ )  (x y £n ^  
y 2 y
■'s s

1 2 . ,
4 y ) dy
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r^s
,1 2 „ y 1 2 . 1 2,„ y ^2l ,

- „ 2 2 I4 y £n ^  - 5 y t J y (in 1 dy
0.067 y K J o  ■’̂s •'s

s 1,1 3 „ y 1 3 ,  1,1 3,
----------- 4^3 y y -  9 y ) -  4^3 y ^0.067 y K 1 ys ^

^ 1 3,„ .2 1,1 3 „ 1 3. . , 1 3 .  1 3.
+ g y (Any) - 2 ( 3 y Any - g y ) - Any(^ y Any - ^ y )

. y<

+ I (Any)^ (| y^)

U
, 2 3.
(“ 07 y^)- I l ' '  27

0.067 y K 
 ̂s

1.1056 U y 
s s

If von Karman's constant, K, is taken to be 0.410 as assumed by Elder 

(1959),

D = 6.58 u y 
s s

If von Karman's constant is taken to be 0.4 as assumed by Schlichting 

(1979),

D = 6.91 u y 
s s

Symbols used in the above derivation are as follows:

D = longitudinal dispersion coefficient 

u = point velocity 

u = vertically-averaged velocity

u = shear velocity = V y g S 
s s o

y = vertical distance from streambed
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y = vertical distance from streambed to water surface 
•̂s

K = von Karman's constant

= vertical mixing coefficient



APPENDIX E

SERIES OF COMPUTED CONCENTRATION-TIME CURVES 
GENERATED BY NUMERICAL MODEL FOR EACH EXPERIMENT
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Injection location from top of plane = 27.7 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.169 mg

Figure E-1. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 2 (Experiment No. la)
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Injection location from top of plane - 32.8 ft
Measurement location from top of plane = 40.8 ft

Figure E-2. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 2 (Experiment No lb)
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Injection location from top of plane = 27.7 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.212 mg

Figure E-3. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 3 (Experiment No. 2a)
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Injection location from top of plane = 32.8 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.224 mg

Figure E“4. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 3 (Experiment No. 2b)
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Injection location from top of plane = 32.8 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width “ 0.262 mg

Figure E-5. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 4 (Experiment No. 3)
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Injection location from top of plane =32.8 ft
Measurement location from top of plane = 40.8 ft

Figure E-6. Comparison of Measured and Computed Concentration
Curves for = 0.001 and i = 5 (Experiment No. 4)
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Injection location from top of plane = 32.8 ft
Measurement location from top of plane = AO.8 ft
Total mass per foot width = 0.065 mg

Figure E-7. Comparison of Measured and Computed Concentration
Curves for = 0.015 and i = 2 (Experiment No. 5)
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Injection location from top of plane = 32.8 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.060 mg

Figure E-8. Comparison of Measured and Computed Concentration
Cuirves for = 0.015 and i = 3 (Experiment No. 6)
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Injection location from top of plane = 32.8 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.060 mg

Figure E-9. Comparison of Measured and Computed Concentration
Curves for = 0.015 and i = 4 (Experiment No. 7)
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Injection location from top of plane = 22.8 ft
Measurement location from top of plane = 30.6 ft

Figure E-10. Comparison of Measured and Computed Concentration
Curves for = 0.015 and i = 5 (Experiment No. 8)
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Injection location from top of plane *= 27.7 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.139 mg

Figure E-11. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 2 (Experiment No. 9a)
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Injection location from top of plane = 32.8 ft
Measurement location from top of plane = 40.8 ft
Total mass per foot width = 0.142 mg
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Figure E-12. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 2 (Experiment No. 9b)
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Injection location from top of plane = 32.8 ft

Figure E”13. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 3 (Experiment No. 10)
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Injection location from top of plane = 32.8 ft

Figure E-14. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 4 (Experiment No. 11)
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Injection location from top of plane = 27.7 ft 
Measurement location from top of plane = AO. 8 ft

Figure E-15. Comparison of Measured and Computed Concentration
Curves for = 0.030 and i = 5 (Experiment No. 12)
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Appendix F

DATA USED IN NUMERICAL MODEL CALIBRATIONS 

The input data used in the numerical model to calibrate e values
y

for each laboratory experiment are tabulated in this appendix. The 

following footnote explanations apply to the last set of data entries 

on each of the following pages:

( 1).

( 2 )

(3)

Streamtube number, beginning at water surface.

Vertical height of streamtube, in percent of total depth.

Velocity of streamtube at injection location, in feet per 

second.
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Experiment No.

Parameter la lb 2a

Bed Slope, 0 .00 1 0 .0 0 1 0 .00 1

Intensity, i (in/hr) 2 2 3

Injection Location from
Top of Plane (ft) 27.7 32.8 27.7

f • R
e

60 60 66

, 2 -5 -5 -5
Viscosity, V (ft /sec) 1.15 X 10 ^ 1.15 X 10 1.08 X 10

Ax (ft) 0.35 0.35 0.35

AT (sec) 4.0 3.0 3.0

Initial Cone. (pg/L) 1130 1144 1225

Depth at Injection
Location (ft) 0.01509 0.01583 0.01733

Mean Velocity at Injection
Location (ft/sec) 0.085 0.096 0 . 1 1 1

Discharge per Unit 
Width at Injection 
Location (ft /sec) 0.00128 0.00152 0.00192

(1 ) (2 ) (3) (1 ) (2) (3) (1 ) (2 ) (3)

1 4 0.007 1 4 0.007 1 4 0.009
2 7 0.024 2 7 0.027 2 7 0.031
3 10 0.048 3 10 0.054 3 10 0.062
4 10 0.072 4 10 0.080 4 10 0.093
5 10 0.092 5 10 0 . 1 0 2 5 10 0.118
6 10 0.106 6 10 0.118 6 10 0.137
7 10 0.116 7 10 0.129 7 10 0.149
8 10 0 . 1 2 1 8 10 0.135 8 10 0.155
9 4 0 . 1 2 1 9 4 0.136 9 4 0.153

10 10 0.109 10 10 0.123 10 10 0.141
11 9 0.090 11 9 0 . 1 0 1 11 9 0.119
12 6 0.070 12 6 0.079 12 6 0.098
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Experiment No.

Parameter 2a 3 4

Bed Slope, 0 .00 1 0 .00 1 0 .00 1

Intensity, i (in/hr) 3 4 5

Injection Location from
Top of Plane (ft) 32.8 32.8 32.8

f • R
e

66 72 78

2
Viscosity, V (ft /sec) 1.15 X lO"^ 1.02 X lO"^ 1.10 X lO'^

Ax (ft) 0.35 0.35 0.35

AT (sec) 2 .0 1 . 6 1.5

Initial Cone. (pg/L) 1202 1287 1497

Depth at Injection
Location (ft) 0.0189 0.0205 0.0234

Mean Velocity at Injection
Location (ft/sec)

Discharge per Unit 
Width at Injection 
Location (ft /sec)

0 . 1 2 1 0.148 0.162

0.00228 0.00304 0.00380

(1 ) (2 ) (3) (1 ) (2 ) (3) (1 ) (2 ) (3)

1 6 0.107 1 6 0.137 1 7 0.154
2 10 0.133 2 10 0.165 2 10 0.185
3 10 0.158 3 10 0.192 3 10 0.213
4 4 0.171 4 4 0.206 4 4 0.227
5 7 0.170 5 14 0.204 5 12 0.224
6 10 0.164 6 12 0.189 6 1 1 0 . 2 1 0

7 10 0.152 7 11 0.163 7 11 0.185
8 10 0.133 8 1 1 0.129 8 1 1 0.149
9 10 0.107 9 10 0.087 9 11 0.103

10 10 0.075 10 7 0.047 10 8 0.054
1 1 8 0.040 11 5 0.014 11 5 0 .0 16

12 5 0 .0 1 1
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Experiment No.

Parameter 5 6 7

Bed Slope, 0.015 0.015 0.015

Intensity, i (in/hr) 2 3 4

Injection Location from 
Top of Plane (ft) 32.8 32.8 32.8

f • R 60 66 72
® 2 

Viscosity, V (ft /sec) 1.07 X lO"^ 1.08 X lO"^ 1.07 X 10

Ax (ft) 0.35 0.35 0.35

AT (sec) 1 . 0 1 . 0 0.75

Initial Cone. (pg/L) 1029 806 714

Depth at Injection 
Location (ft) 0.00630 0.00747 0.00844

Mean Velocity at Injection 
Location (ft/sec) 0.241 0.305 0.360

Discharge per Unit 
Width at Injection 
Location (ft /sec) 0.00152 0.00228 0.00304

(1) (2) (3) (1) (2) (3) (1 ) (2 )

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

1
2
3
4
5
6
7
8 
9

185 
,209 
,231 
,252 
271 
289 
,305 
320 
333 
339 10
,337 11
,332 12
,324 
,313 
,300 
,284 
,266 
,244 
,220  

,194 
.165 
.133 
.098 
.061 
,021

6
10
10
8
4

10
10
10
10
8
8
6

0.259
0.310
0.363
0.401
0.421
0.419
0.396
0.351
0.285
0.207
0.123
0.039

1
2
3
4
5
6
7
8 
9

10
11
12
13
14

4
7
8 
8 
8
4 
8 
8 
8 
8 
8 
8 
8
5

0.315
0.353
0.399
0.441
0.474
0.494
0.490
0.470
0.435
0.383
0.315
0.231
0.131
0.039
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Experiment No.

Parameter 8 9a 9b

Bed Slope, 0.015 0.030 0.030

Intensity, i (in/hr) 

Injection Location from

5 2 2

Top of Plane (ft) 2 2 .8 27.7 32.8

f • R 78 60 60
® 2 

Viscosity, V (ft /sec) 1.05 X lO"^ 1.04 X lO'^ 1.05 X lO"^

Ax (ft) 0.35 0.35 0.35

AT (sec) 0 .8 1 . 0 0 .8

Initial Cone. (pg/L) 

Depth at Injection

826 2986 2854

Location (ft) 0.00825 0.00468 0.00500

Mean Velocity at Injection
Location (ft/sec) 0.320 0.274 0.304

Discharge per Unit 
Width at Injection 
Location (ft /sec) 0.00264 0.00128 0.00152

(1 ) (2 ) (3) (1 ) (2 ) (3) (1 ) (2 ) (3)

1 7 0.291 1 5 0.031 1 4 0.232
2 10 0.337 2 5 0.089 2 4 0.260
3 10 0.383 3 5 0.141 3 4 0.287
4 10 0.420 4 5 0.189 4 4 0.312
5 4 0.438 5 5 0.231 5 4 0.335
6 10 0.432 6 5 0.268 6 4 0.357
7 10 0.403 7 5 0.300 7 4 0.377
8 10 0.351 8 5 0.327 8 4 0.395
9 10 0.275 9 5 0.349 9 4 0.411

10 10 0.177 10 5 0.366 10 4 0.426
11 9 0.062 1 1 5 0.377 1 1 4 0.426

12 5 0.384 12 4 0.421
13 5 0.381 13 5 0.412
14 5 0.364 14 4 0.400
15 5 0.344 15 4 0.384
16 5 0.323 16 4 0.365
17 5 0.298 17 4 0.341
18 5 0.272 18 4 0.315
19 5 0.243 19 4 0.284
20 5 0 . 2 1 2 20 4 0.250

21 4 0.213
22 4 0.172
23 4 0.127
24 4 0.079
25 4 0.027
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Experiment No.

Parameter 10 1 1 12

Bed Slope, 0.030 0.030 0.030

Intensity, i (in/hr) 3 4 5

Injection Location from 
Top of Plane (ft) 32.8 32.8 27.7

f • R 66 72 78
 ̂ 2 

Viscosity, V (ft /sec) 1.15 X lO"^ 1.17 X 10
-5

1.04 X 10

Ax (ft) 0.35 0.35 0.35

AT (sec) 0.7 0.65 0.60

Initial Cone. (pg/L) 3265 3245 3588

Depth at Injection 
Location (ft) 0.00608 0.00694 0.00696

Mean Velocity at Injection 
Location (ft/sec) 0.375 0.438 0.461

Discharge per Unit 
Width at Injection 
Location (ft /sec) 0.00228 0.00304 0.00321

(1) (2) (3) (1 ) (2 ) (3) (1 ) (2 )

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

0 ,

0 ,

0 ,

0 .

0 ,

0 .

0 ,

0 ,

0 ,

0 .

0 .

0 .

0 ,

0 ,

0 .

0 ,

0 ,

0 .

0 ,

0 .

1
2
3
4
5
6
7
8 
9

312 
350 
386 
418 
447 
472 
495
515
516 
508 10
492 1 1

469 12
440 13
404 14
361 15
310 16
254 17
190 18
119 19
041 20

21
22
23
24
25

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5 
4

1
2
3
4
5
6
7
8 
9

381 
414 
444 
473 
499 
523 
544 
564 
581 
596 10
598 11
592 12
580 13
563 14
541 15
514 16
482 
444 
402 
354 
301 
243 
180 
112 
039

4
6
7
7
7
7
4
7
7
7
7
7
7
6
6
4

0.378
0.416
0.461
0.503
0.539
0.570
0.587
0.581
0.560
0.523
0.470
0.401
0.317
0.225
0.128
0.038



STEPWISE MULTIPLE LINEAR REGRESSIONS OF e
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Table G-1

Results of Stepwise Multiple Linear Regression Assuming = f(i, u, y^, R^)

Step
No.

2
r

D • (1 )Regression
Coefficient

Variables :in Equation^^^ Variables Not in Equation (1 )

Variable Exponent Variable
Partial^^^
Correlation

F to^^^ 
Enter

0 log i 0.55 5.8
log u -0.52 4.9
log y„ 0.90 56.4
log R

e
0.55 5.6

1 0.81 15.053 log y„ 3.56 log i 0.84 29.00
s log u 0.81 22.44

log R
e

0.84 28.19

2 0.95 0.278 log y 3.23 log u -0.08 0.07
log i 2.23 log R

e
0.16 0.28

The addition of log u or log R in the equation during Step 3 will not increase the explained variation
sufficiently to warrant the inclusion of either in the final equation, based on an F test at a = 0 .0 1 ,
where

^0 .0 1 ^^’
1 2 ) == 6.93.

 ̂ 3.23 2.23
Final Equation; s

y
= 0.278 y 

•'s
1

ho
4>
00

( 1) Pi P2

(2)

(3)

Regression equation of the form “ Pg •••’ '̂ êre = regression coefficient; a^, 0 2 » ••• =

independent variables; and p^, P2 , ••• = constants.

The correlation of each independent variable with the dependent variable, removing the effect of 
variables already in the equation.

A statistical test to determine the significance of adding each variable to the equation as if it were 
entered separately at the next step.



Results of Stepwise Multiple Linear Regression Assuming e = f(i, u, y , R ) 
Using Only Data with Depth-to-Drop Diameter Ratios Greater than 1?0 ^

Table G-2

Step
No. r

0 . (1 )Regression
Coefficient

Variables in Equation^^^ Variables Not in Equation(1 )

Variable Exponent Variable
Partial^^^
Correlation

F to^^^ 
Enter

0 log i 0.978 87.7
log u 0.973 72.1
log y 0.984 1 2 2 . 2

log R^ 0.968 60.2

1 0.97 2.472x10^^ log y 9.59 log i 0.132 0 . 1
s

log u 0.049 0 .0

log R^ 0.038 0 .0

The addition of log i, log u, log R in the equation during Step 2 will not increase the explained varia-
tion sufficiently to warrant the inclusion of either in the final equation, based on an F test at 
a = 0 .0 1 , where oj(l,4) = 2 1 . 2

Final Equation: 8 = 2.472x10^^ y ^
^ y •' s

(1 ) ^1 ^2
Regression equation of the form e = ..., where p^ = regression coefficient; a^,

( 2 )

(3)

independent variables; and P^, P2 = constants.

The correlation of each independent variable with the dependent variable, removing the effect of 
variables already in the equation.

A statistical test to determine the significance of adding each variable to the equation as if it were
entered separately at the next step.

K)



Table G-3

Results of Stepwise Multiple Linear Regression Assuming e = f(i, u, R )
y ®

Variables in Equation^^^ Variables Not in Equation(1 )

Step T, • (1 )Regression Partial^^^ F to^^^
No. r Coefficient Variable Exponent Variable Correlation Enter

0 log i 0.55 5.8
log u -0.52 4.9
log R^ 0.55 5.6

1 0.30 3.223xl0"® log i 3.32 log u -0.95 116.6
log R^ 0.05 0 . 1

2 0.94 3.663xl0“^̂ log i 5.25 log R 0.54 h.l

log u -3.25

The addition of log R in the equation during Step 3 will not increase the explained variation suffi-
ciently to warrant its inclusion in the final equation, based on an F test at a = 0 .0 1 , where

.93.

Final Equation: 8 = 3.663x10"^^ î
y

.25 — 3.25 
u

^Regression equation of the form
Pi P2

8 = P a, ..., where 
y ^o 1 2 ’

P^ = regression coefficient; a^. «2 ... =

independent variables; and P^ ... = constants.

The correlation of each independent variable with the dependent variable, removing the effect of 
variables already in the equation.

A statistical test to determine the significance of adding each variable to the equation as if it were
entered separately at the next step.

( 2 )

(3)

N3
Ln
O



EVALUATION OF TERMS 1 AND 2 IN EQ. 5-22

APPENDIX H
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Evaluation of Term 1

Term 1 (Eq. 5-23) is evaluated in this section. The term is 

written as

y -y
Term 1 = \ (u, - u) i i

J o   ̂ J o  J o
(Uĵ  - u) dy dy dy

Substituting Eq. 5-19 into the above equation and integrating, 

Term 1 = I (il - u) I

y- r m 

u J o

(u^ - u)

.y

u (—  y 
m y  ^

1 2 , 
- ^ y  )

0 u m y
P m

r
2 u U -
r ro
(— y -

m 2
^ y  -

► J o m
^m

m
(Ul - u)

y u _ u
f \R 2

‘r> '
1 m
3 2

0 m
^m

■ t >1
” “m “m 2 - „1 “m 3 1 “m 4 1 - 2,,

(— y — y - V ' s F ’' ' u - 2 ^  - 2 “p y ) ' i y
o m y ^ '̂ m y

p ' m m

u •'o

-2 2 4 '̂ m - 3 ^ .2 ‘̂m 7 “m - . 4
y - 3 r "p * ‘ 3  “ 2 12  ^  “p>>'

“ ^m ^m

1 m 5 . 1 m o , ,
2 ^  y * 1 2 - 4  y ’ '•y

m m
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,ü .2 fl -2 3
(;r) I s “p y

1 u /m - 4 + 1  (2  
5 '■3

2
m 7

u
m

' 3
—  u y
y P 2 12 2

u
p

Hl
y « . y » .

1___
12 2

in 6 . 1
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m
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y«,

,ii 3 ,13 2
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Evaluation of Term 2

Term 2 (Eq. 5-24) is evaluated in this section. The term is 

written as

.y
Term 2 = f (u^ - u) i I (u^ - u) dy dy dy 

Jym J o  J o

Substituting Eq. 5-20 into the above equation and integrating.

y -y _
Term 2

J y ^  J o  J o  u s m

+ -----— (y-y )̂ ] - u} dy dy dy

- C^s U B
= ^  (u,-il)i i [ ( U m - - ^  

u j y  J o J o •'s
p m

u B y u C y
” " _1J5 + in ur n

m (y^-y^)

Let

u B  2 y u C  u C  _
N . i ' i n u  ■ ' m m u ^  . m u  2 , ^ , ,

- U_) + — ::------------ — ) y + ------- - y ] dy dy dy
P' '^s-ym (y^-yj2

u B y u C y
, m u m , m u m -
k, = u - -------- + -------- - u
1 m y -y , .,2 p

■̂s m (y ~y )s m

=
u B 2 y u C 
m u  m m u

2 y -y f ->2

‘‘s =

u C 
m u

so that
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Term 2

p

+ k^y + k^y ) dy dy dy

r^s
u

u
(u^ - u)

p m
lo  ̂^

r^s

= ( ^ ) ' j  a,
u J y 
p m

+ V  * * I ‘'2='̂  * k  “3’'"'’ '*>'

_ ,u . 2  I , 1 ^2 
- C-) (2

u_ Jy_-’yp 'm

2 2 ^ 2 . .  3 ^ , 7  ,. ^ 1 , 2 .  4
y + 3 k j V  kjk3 ♦ 5 k^) y

j-lui, 3 ^ 1  ,2 6.-
4 *̂ 2̂ 3̂  I2 *̂ 3̂  ^

,u .2 ,1 ,2, 3 3, - 1 . , , A 4.
>6 ‘'I'ys ■ * 6 ‘‘l‘'2<ys - ym'

u
p

* 'lo ‘‘l“3 * 5o Ia “2‘'3'>'! •

- 1 ,2,7 7„
* 84 - y»” (G-12)
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A

A,

u

c. 
1

d

D

F

f

g

i

K

K-
u

K

M

q

R
c

R

= cross-sectional area of flow (transverse to flow direction) 

= polynomial coefficient for lower velocity profile 

= polynomial coefficient for upper velocity profile 

= polynomial coefficient for lower velocity profile 

= polynomial coefficient for upper velocity profile 

= polynomial coefficient for lower velocity profile 

= polynomial coefficient for upper velocity profile 

= point concentration 

= vertically-averaged concentration 

= initial concentration prior to diffusion 

= peak vertically-averaged concentration 

= size of raindrop

= longitudinal dispersion coefficient 

= hydraulic depth 

= mass flux

= Darcy-Weisbach friction coefficient 

= acceleration of gravity 

= rainfall intensity 

= constant related to y
s

= constant related to u 

= constant related to e
y

= mass

= discharge per unit width 

= maximum cavity radius of raindrop splash 

= Reynolds number 

= friction slope 

= bed slope
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L

AT

u

u

u'

u*

u
m

u
o

u
P

V

w

X

X. . 
inj

col

y

y,V

e

e
y
e
m

time

Eulerian time scale 

Lagrangian time scale 

time step in numerical model 

time-averaged point velocity 

vertically-averaged velocity 

u - u

= u/u
m

= maximum point velocity

= maximum velocity at water surface in laminar flow without 
rainfall

= mean velocity of flow computed from the velocity profile 

= lower velocity profile 

= upper velocity profile 

= impact velocity of raindrop 

= pollutant mass per unit area

= distance along the flow direction measured from the top of 
the plane

= travel distance corresponding to T̂,

= distance from top of plane to injection location 

= distance from top of plane to collection location 

= vertical distance above streambed 

= distance from streambed to u
m

= vertical distance above streambed to water surface

= y/y,m

characteristic mixing coefficient 

vertical mixing coefficient 

molecular diffusion coefficient
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e

K

|J

V

P

2
a
X

X

t

angle between channel bed and the horizontal

von Karman's constant

dynamic viscosity

kinematic viscosity

density of water

variance of the distribution of the vertically-averaged 
concentration along the x axis

time

boundary shear stress


