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ABSTRACT 

This report represents an analytical investigation of unsteady free 

surface flow in a storm drain. As a preliminary general study its broad 

scope is the outline of problems, the selection of mathematical tools and 

procedures, and the elaboration of a general approach for further studies 

by hydraulic model and by digital computer investigations in order to develop 

a set of routing methods for storm drain floods. Each method of this set 

should be feasible to the particular conditions of data available of flood hydro­

graphs and storm drain characteristics, as well as of precision of computa­

tion. 

The initial and boundary conditions, applications, and the general 

approach selected are briefly enumerated in the introduction. The two 

partial differential equations for unsteady flow are derived and discussed. 

These basic mathematical tools serve as the starting equations for the com­

putation of all high-order approximations of unsteady flow. Characteristic 

curves are derived and discussed. The integration of differential equations 

by method of finite differences is treated in detail, with special attention 

given to boundary problems. 

The coefficients of differential equations are analyzed. Particular 

attention is given to geometric characteristics of conduit drains, to velocity 

distribution coefficients, to flow resistance and to lateral flows, in order to 

treat their functions which are introduced in the two partial differential 

equations. 

The initial and boundary data are analyzed: for flow before the storm 

flood enters the drain; for inflow hydrographs; for data of junction problems 

when main drains meet; for outflow conditions; and for data of general 

boundary conditions. 

The end of the report contains the specific aims of the future 

research program, methods and procedures to be used (especially hydraulic 
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studies, digital computer studies and comparative studies for the results of 

these two procedures), significance and characteristics of the future research . 

and finally the facilities either available now, or to be installed in the near 

future in order to enable the research program to be carried out. 
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Description of Research Project 

"UNSTEADY FLOW IN A STORM DRAIN" 

Part One 

THE BROAD PROBLEM 

Construction of highways in urban areas (and sometimes elsewhere) 

requires disposal of stormwater by means of underground storm drains 

because property values and other considerations prohibit carrying storm­

water in open channels. These systems frequently include picking up 

storm water contributed by areas outside the right-of-way. The usual design 

procedure is to compute sizes of pipe by the so-called "rational method." 

When the highway i s depressed the highway department usually attempts to 

exclude all water falling outside of the depressed section so that the size of 

the system collecting water for the highway itself (and usually requiring 

pumping) will be a minimum. 

Storm drains for depressed highways sometimes are miles in length 

(West Route in Chicago for example is about 6 miles) this producing a water­

shed that is very long in relation to its width. There is good reason to doubt 

that the rational method is reliable in such a case, (nor for that matter has 

the rational method been scientifically proved in any case). A flood-routing 

procedure beginning with routing of overland flow to inlets is generally con­

ceded to be the logical approach especially since digital computers would per­

mit investigation of various storm patterns both as to time and areal distribu­

tion in testing the probable functioning of a given system and indicated modifica­

tions. Such a procedure would make it possible to know where every cubic 

foot of water was at any time so that opportunities for temporary storage 

reducing the peak load could be investigated. Major economies in initial cost 

-vii-. 



might result and are worthwhile exploring since the usual storm-drain 

system for a depressed highway will cost around $500,000 per mile. 

To my knowledge no one has developed a procedure for routing 

storm water through a storm drain by any except grossly approximate methods. 

The problem then is to study the hydrodynamics of unsteady flow in 

storm drains with the objective of developing a sound procedure adopted to a 

digital computer, verifying the procedure by hydraulic model tests and field 

measurements as may seem necessary. The ultimate purpose is to provide 

a working design method applicable to any situation where storm drains are 

used for removal of storm water. However, there are many variations pos­

sible in the physical set-up as will be shown in the following paragraphs. 
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Part Two 

AN OUTLINE OF THE FACTORS INVOLVED IN THE 

HYDRODYNAMICS ANALYSIS 

The inflow hydrographs to the storm-drain system will not be 

considered as part of the hydrodynamics of the storm drain as that is a sepa ­

rate problem. It can be assumed that methods of computing inflow hydro­

graphs will be provided, The system will also be assumed to consist of a 

single continuous line of pipe with inflow from inlets, or from laterals col­

lecting flow from a series of inlets all located on the highway right-of-way. 

The right-of-way may include large interchange areas in which case lateral 

inflow may be substantial in relation to flow in the main drain and conceivably 

may be large enough to require analysis as a system by itself. For purpose 

of analysis it may be assumed that flow entering system at any point will 

have no momentum in the direction of the outflow pipe. 

Conduit may be circular or of any shape commonly used, either 

precast or monolithic concrete, generally will increase in size in downstre z:.11.1 

direction, changes in size being made at manholes open to atmospheric pres ·· 

sure, and crown-lines will match up except in case where a drop manhole 

occurs. The latter would be equivalent to a free outlet for system upstre!lm , 

In large drains especially those of monolithic construction. conduit may be 

continuous with manhole rising at one side in which case transitions will be 

used for changes in size . 

The slope of the main drain will change usually with breaks at man­

holes but could be constructed on a vertical curve. Slopes may be subcritical 

or supercritical and can be very steep, slopes of 3-5% sometimes occurring 

in main drains. The latter may produce augmented rates of discharge. A 

single line may involve a wide range of slopes, the usual situation involving 

steep slopes on upstream reaches becoming mild on downstream end. A grea.k 

to a steeper slope, however. is also possible. 
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Alignment commonly will be straight or with relatively small 

deflections at manholes. Curved alignment is possible but rare. As a rule 

the main drain will not involve abrupt changes in direction such as 90° 

except at a connection to existing interceptor which case should be given 

special treatment which is beyond the scope of this problem. 

Design criteria ordinarily provide that conduit will not flow under 

pressure for the design storm. But it should be possible to compute what 

will happen in the main drain when any part does flow full. Outflow may be 

either free, or subject to back pressure from stream or conduit into which 

drain discharges, or from water in wet well of a pumping station. In the 

latter case flow may be subject to surges created by sudden stoppage of pumps 

due to power failure. 

Manholes are commonly constructed either round or square with or 

without a stream-lined invert conforming to invert of conduit; section through 

manhole normal to direction of flow will be as large or larger than cross sec­

tion of conduit . Common practice is to bring all laterals in at manholes and 

may be at any elevation at or above flow line of main drain. The laterals for 

individual inlets are brought increasingly in at a T or Y connection (inflow 

from one inlet is usually so small relative to flow in main drain that momen­

tum in downstream direction may be neglected). 

Inflow hydrographs may have a single peak, or more than one peak. 

A situation will also occur where a second storm follows so closely after the 

first th.at only a part of the volume from the first storm will have been dis­

charged from the system, when the inflow from the second storm begins. 
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Part Three 

LIMITATIONS OF ANALYTICAL STUDY FOR FIRST YEAR 

The numerous possible variations in boundary conditions, inflow 

hydrographs, and outlet conditions require that the analytical study contem­

plated for the first year be limited so that initial solution for the more simple 

cases will be poss "ble. 

During the first year the study will be limited to hydrodynamic analysis 

of a single storm drain on straight alignment with single-peak hydrographs 

(not necessarily identical) introduced at discrete points along the line, and a 

free outlet. 

The conduit shall be considered to be circular in cross section ( other 

cross sections may be introduced if feasible), changing in size at manholes, 

with crown lines matched up and changes in slope at manholes but not neces• 

sarily at every manhole. 

The conduit shall be considered to be smooth concrete with resistance 

factor Darcy-Weisbach "f" varying as a function of the Reynolds Number of 

the flow in accordance with latest results from full-scale tests made for the 

Florida State Road Department and Public Roads at the St. Anthony Falls 

Hydraulic Laboratory. In the event this requirement complicates the solution 

unduly, then an average value of "f" for each size may be used . 

Only the case of free-water surface at atmospheric pressure is to be 

studied initially. Flows as introduced to line shall be considered to have no 

momentum in direction of outflow line . Both subcritical and supercritical slopes 

shall be studied but not as steep as to augment the rate of discharge. Distur­

bances created by discontinuity of boundary at manholes shall be given considera­

tion based on assumption that manhole is an abrupt enlargement over entire 

periphery of conduit except at flow line and distance across manhole in direc­

tion of flow is not more than 3 pipe diameters. 
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The hydrodynamic analysis shall be made having in mind conversion 

of the results to solution by a digital computer. The contract will provide for 

employment of a consultant on machine computation to assist in that develop­

ment. It is hoped that the end result will be a program whereby the outflow 

hydrograph for the simple case herein described may be printed out for any 

set of inflow hydrographs which do not cause the line to flow under pressure 

at any point (i.e. to flow full) . 

The analysis is quite likely to require experimental verification and 

establishment of certain constants by empirical tests. The study should out­

line the tests and how they should be made. but no experimental work is to be 

included under the initial contract. 

August 1960 
Washington 25, D. C. 
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UNSTEADY FREE SURFACE FLOW IN A STORM DRAIN 

by 

Vujica M. Yevdjevich 

I. INTRODUCTION 

A. PROBLEM 

The problem is to study the hydrodynamics of unsteady free surface 

flow in storm drains with the objective of developing a set of routing proce­

dures adapted to a digital computer, helping or verifying the procedures by 

hydraulic model tests as may seem necessary. The ultimate purpose is to 

provide working design methods applicable to any situation where storm 

drains are used for removal of storm water. 

The first-year investigation contained in this report, is limited to 

general and analytical studies which will be the basis for an advanced 

research program in subsequent years. The aim of this report is to out-

line problems in detail, to set-up the basic mathematical tools, to discuss 

the initial and boundary conditions, and to select the general approach to be 

followed in the next phases of this research program. 

B. INITIAL CONDITIONS ASSUMED FOR THE ANALYSIS 

1. The depth of water in storm drain is small prior to storm inflow and a 

steady low flow regime is assumed; later a second storm may occur 

while the storm drain is still partly filled due to the previous storm. 

2. Storm inflow hydrographs along the storm drain are given either as 

simple hydrographs of any shape or as composed hydrographs of suc­

cessive individual storm hydrographs. Each inlet point (i) has an 



2 

individual discharge hydrograph Q. (t} with the shape, peaks and time 
1 

of peaks of the hydrograph different from inlet to inlet, and they depend 

on catchment area of each inlet, the storm characteristics, and the direc­

tion and speed of storm movement. 

C. BOUNDARY CONDITIONS 

1. Storm drain consists of a single continuous line of pipe ( except when the 

problem of junction of two main drains is discussed}. 

2. Storm water inflows at discrete points, from inlet to inlet, which are 

located along the storm drain. 

3. Inflow discharge at an inlet has momentum which is negligible in the 

direction of the outflow pipe. 

4. The conduit is circular (representing all other drain shapes}. 

5. Conduit dimensions change at manholes, open to atmospheric pressure, 

which might be or might not be inlet points. No inlet points are located 

outside the manholes. 

6. The conduit has the matching crown-lines at manholes, except in case 

where a drop manhole occurs. vVhen a drop occurs, the hydraulic 

characteristics of those manholes are known as boundary conditions, 

namely the outflow rating curve of the outlet for system upstream is 

given. 

7. The hydraulics of transitions at manholes is known as a head loss function 

of the main pipe discharge, the inlet discharge if any, and a water stage . 

This head loss is to be considered as a singular resistance loss at man­

hole points • 

8. The slope of the storm drain is constant between manholes, with changes 

in slope at manholes. If the storm drain is constructed on a vertical 

curve, it is composed of many constant slopes which change at given 



distances along the general vertical curve. The points at which slopes 

change will be equivalent to manholes without inflows and with a singular 

head loss. 

9. Slopes can vary. with both subcritical and supercritical flow, reaching 

slopes up to 3-5 percent. 

10. Alignment of storm drain is generally straight. but sometimes with 

3 

small deflection at manholes • with the head loss due to deflection included 

in the general singular loss at the manhole. 

11. The flow regime is a free surface water motion during all the movement 

of storm flood wave through the drain. 

12. Outflow at the end of the storm drain is free, with a given outflow stage­

discharge relationship (rating curve or family of rating curves). 

13. The Darcy-Weisbach f factor will be used to define the flow resistance 

for both the rough and smooth conduits. 

D. APPLICATIONS 

The free surface unsteady water movement through pipes. tunnels, 

storm drains, and all other conduits, either of circular or any other shapes, 

is applicable to many problems, including the problem outlined in the 

"Description of Research Project". 

Some of these problems are: 

1. Removal of rainfall water through storm drains in high way and urban 

drainage problems. 

2. Computation of free surface wave movement along water power tunnels 

and conduits. This leads, generally, to a computation of inflow hydro­

graph in a forebay of downstream water power station, when the outflow 

hydrograph of upstream water power station at the entrance of the free 



surface tunnel is known. It is a computation of hydrograph transforma­

tion along the tunnel with free surface flow. 

4 

3. Analysis of tunnels and conduits either as pools for peaking power or as 

storage in the case of water pumping, with unsteady free surface water 

flow along them. 

4. Passage of flash-floods of small water courses through diversion tunnels 

or conduits. 

5. Computation of unsteady flow along canals which have cross sections 

close to a circular shape. 

6. Study of movement of splashing water waves along semi-circular flumes 

to drift logs . 

7. Computation of splashing water waves in cleaning sewage drains, pipes, 

and tunnels • 

8. Computat ion of propagation of water waves from a sea or a lake along 

storm drains which enter into these bodies of water. 

There are other potential applications of this free surface flow in hydraulic 

engineering. 

The results of this study of unsteady free surface water movement 

along circular drains can be applied, with due modifications, to all free sur­

face unsteady movements in canals and regular artificial channels. 

E. GENERAL APPROACH SELECTED 

1. The general approach to the problem of unsteady free surface flow in 

storm drains was selected as follows: 

a. A hydrodynamic analysis of the problem was pursued with a mini­

mum of basic assumptions and of neglected factors. 



b. All assumptions or neglected factors were discussed with the 

characteristics of storm drains in view. 

c. Simplifications to suit the accuracy of available data, and needed 

precision of results, will be introduced in a later stage of the 

study, when the evaluation of their effect could be made. 

5 

The derivations of basic hydrodynamic equations have been extensive 

in this study, regardless of the fact that many of them repeat the lines of deri­

vations in the already classical studies. They have been pursued for two 

reasons: 

( 1) To give the complete analytical background of methods for the 

computation of unsteady free surface flow in storm drains. 

(2) To modify and adapt the analytical expressions to the specific 

characteristics of storm drains. 

2. In treating the unsteady free surface flow in a conduit or a channel, the 

following facts are emphasized here: 

a. Any existing mathematical expression which describes the unsteady 

free surface flow is based on some assumptions , which means 

that there is always a difference between the mathematically derived 

unsteady flow patterns, and the real patterns. 

b. Existing methods or methods which will be developed in the future 

for the computation of unsteady free surface flow are only approxi­

mations of the real flow, and the degree to approximation is a basic 

question which should be determined for each individual method. 

There is little value in discussing the merits of individual methods 

without determining the degree of approximation, or the accuracy of 

the computed unsteady flow patterns from initial patterns, when com­

pared with the real flow patterns. 



c. Selection of the computation method for unsteady free surface flow 

should depend on the degree of approximation which is justified 

economically (or from any other point of view). This implies that 

the following problems have to be answered: 

( 1) What is the degree of approximation for each method? 

( 2) What degree of approximation is justified. both from the point 

of view of an analysis of the case at hand, and from the eco­

nomy of computation? 

3. The problem of unsteady free surface flow in conduitl> or channels may 

be systematically approached from two different directions. They are: 

a. A very simple method, generally a rough approximation of the real 

flow. is adopted for the computation of unsteady flow. This method 

is considered as a low-degree approximation. By adding the other 

factors, i.e. , flow resistance, acceleration factors, or similar, 

new methods which are more accurate are derived, and so on, from 

lower-degree approximations to higher-degree approximations. 

6 

b. The complete hydrodynamic equations are the closest existing 

mathematical approximation to the physics of the unsteady free sur­

face flow. Any computation of unsteady flow by these equations is 

assumed to be the highest order approximation possible at the pre­

sent status of fluid dynamics and applied mathematics in hydro­

dynamics. By neglecting some factors or by simplifying the initial 

and boundary conditions, and quantities which describe these condi­

tions, the lower-order approximations are derived. As the accuracy 

of computations decreases by an increase of simplifications and 

neglect of factors, the practical problem is in determination of the 

lower-order but simple method of approximation, which satisfies 

requirements imposed by other considerations. 



4. This second direction is pursued in this analytical study and will be pur­

sued in the studies which will be its sequence. The procedures to follow 

are: 

7 

1. Regardless of which mathematical expressions are used to describe 

the unsteady free surface flow, there are always several assumptions, 

which introduce the first departures between the real flow and the 

flow described by the mathematical tool. The effects of these assump­

tions on the flow patterns are discussed . 

2. Mathematical tools in the form of the two partial differential equations 

(often called the De Saint Venant 's partial differential equation of 

unsteady free surface flow), as continuity equation and momentum 

equation, are derived in the most general form, in order to stress 

the physics of the unsteady free surface flow, and to show the vari­

ables and quantities entering into equations and having the effect on 

the flow patterns. 

3. These general equations are adapted to storm drains in order to 

derive suitable methods for computation of unsteady free surface 

flow along such conduits under different conditions. 

4. Initial and boundary conditions, already defined for the storm drain 

problem, are discussed whenever they influence the computation 

method. 

5. Methods of integrating the two partial differential equations are 

discussed for selected initial and boundary conditions, and the 

numerical computational methods in using digital computers are 

analyzed shortly. 

6. Specific hydraulic problems related to the storm drains are studied 

in general in this study, but will be studied in detail later in future 

research. 



7. Simplified methods will be derived in a later stage of the study or 

existing ones will be discussed, which will serve the preliminary 

design of storm drains. They will be analyzed in the light of errors 

introduced by errors in basic data. of the errors inherent to the 

methods themselves, and in the light of tolerable errors. 

The analytical solution of the two partial differential equations for 

unsteady free surface water flow is impossible for the conduits and channels 

under the natural conditions. As soon as the s implifications which enable 

an analytical solution are introduced in equations, the departures from the 

real conditions are so great that the results become invalid in most cases. 

The methods of approximate integrations have been thus imposed. 

Ninety years , from 18 71 to 19 61, of application of the two basic 

partial differential equations of unsteady free surface flow for practical pur­

poses in canals, channels, and conduits has resulted in many methods of 

solution, both graphical and numerical, with different degrees of approxima­

tion to exact solutions. As the amount of work to be done was very large in 

numerical methods, the graphical methods have dominated the field until 

recently. As the graphical procedures are tedious and time consuming in 

practice, they are being replaced by the unsteady flow routing methods 

8 

based either on the simple continuity equation alone (water storage equation), 

or on it and on a simplified momentum equation. A very large number of 

these approximate methods has been developed (ref 1), and most of them are 

used currently. 

Two relatively recent developments have influenced greatly the 

treatment of unsteady flows: 1) Appropriate numerical procedures, generally 

based on using methods of finite differences for integration of differential 

equations ; and 2) Computing machines of varying characteristics, which are 

suitable to carry out fast and large numerical computations with relatively low 

cost. The inovations and progress in both of these directions have enabled the 

use of procedures which have been outlined a long time ago, but were 



considered as impractical 2-5 decades ago~ Among these procedures of 

integration are both: a) The method of finite differences in solving the two 

partial differential equations for unsteady free surface flow under complex 

conditions; and b) The method of finite differences applied to the four 

characteristic differential equations as an equivalent set to the two partial 

differential equations. The use of finite differences (graphical or numeri­

cal methods) to integrate the two partial differential equations through use 

of their equivalent characteristic curves (and sometimes straight lines), is 

usually called method of characteristics. By using the names "Method of 

finite differences II for the first case. and "Method of characteristics 11 

for the second case, they should be understood in the above sense, regard­

less that the method of characteristics is also a method of finite differences . 

There are two other problems for which a general approach is taken 

in this study, namely: the selection of a routing method in the case of water 

flow in two directions in a storm drain, or of a junction problem which must 

be included in the computation, and the selection of the routing method in 

the light of accuracy of computation. which is justified. 

As the inflow hydrographs at inlets along the storm drain may be 

with different phases of the occurrence of peak discharges and of different 

rising limb times. it can happen that the water temporarily may flow in both 

directions of the storm drain, upstream and downstream. In the similar 

way, junctions between storm drains in the level creates the interdependence 

of the unsteady flow in the system of the storm drains. For this purpose 

the flood routing methods which cannot take into consideration that case (as 

the flood routing methods based on the simple storage equation) theoretically 

are not feasible for the computation of unsteady free surface flow in storm 

drains. The two partial differential equations can treat this case. 

9 

As the inlet hydrographs along the storm drain are subject to errors 

by making assumptions and by carrying out their computations, and as the 

design storms are also of a limited accuracy when compared with the real 
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storms in nature, there is a limit of accuracy economically justified in flood 

routing methods. This accuracy corresponds to the precision of basic data 

(in this case to accuracy of inflow hydrographs along the storm drain). 

Greater accuracy than this is then not justified in hydraulic computation. 

The problem seems for the moment to be beyond the analytical approach to 

unsteady flow problem, and is not considered here in this analytical investi­

gation, but it will be treated later in the subsequent research program, when 

the set of routing methods and their conditions of application will be discussed. 



II. DERIVATION OF THE TWO PARTIAL DIFFERENTIAL 

EQUATIONS FOR UNSTEADY FREE SURFACE 

FLOW IN CONDUITS 

11 

A. DERIVATION OF CONTINUITY EQUATION (LAW OF CONSERVATION Q! 
MASS) 

At a given time t the cross section area of unsteady free surface 

flow at the section x (fig. 1) is A • At the section x + dx at the same 

time t the area is A+ !~ dx • The mass of water between these two 
1 aA 2 sections (slice 1-2-3-4- 1) is pAdx + 2 p ax dx • By neglecting the 

second order differential term. the mass is pAdx • Assuming that the 

lateral outflow or inflow is given as q • discharge per unit length of conduit, 

with q positive for outflow and negative for inflow, then the change of mass 

with time is 

d 
dt 

( pAdx) = - pqdx 

For incompressible fluid p = constant. 

For a particle it is 

d(dx) = 
dt 

av 
(v + ax dx)dt-vdt 

dt 
= 

av 
ax 

dx 

where v is the particle velocity along a stream line. 

d- a- a. f h 1 d . t · f . . 1 Using the symbol dt = at + v ax or t e tota eriva 1ve o a pai 1..1.<.: e 

along its stream line, applied to dA/ dt , then because 

_..!_ JI vdA = 1 
VA A 

• and 
1 
A ff 

A 

V = mean velocity in a cross section, 

av dA = av 
ax ax I 

( 1) 



it is 

or 

with Q = VA. 

aA + v aA + A av 
at ax ax +q=O 

aA + 
at 

8(VA) + q = 0 ax 

Equation 3 is sometimes written as 

aA + aQ + 
at ax q = 0 

B. DERIVATION OF MOMENTUM (DYNAMIC) EQUATION 

Using Newton's second law, or law of momentum 

d(mv) = F 
dt 

12 

(2) 

(3) 

(3a) 

( 4) 

where m is the mass. v velocity of the particle, and F the resultant 

force of all forces acting on the particle. Replacing the particle by the 

elementary slice of water (fig. 1) between section x and x + dx , and the 

particle velocity v by the mean velocity V in the cross section, in that 

case the following velocity distribution coefficients must be introduced 

" = A~> ff v
3
dA , and ~ = ;V, ff v'dA 

to take care of the replacement of particle velocity v by the mean cross 

section velocity V • 

The coefficients C< and {3 depend on velocity distribution 

across a cross section A (fig. 2), and therefore depend on the shape and 

area of cross section. 
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Equation 4 will be applied along the direction of the conduit bottom 

(fig. 1), in which case dx is to be replaced by dx/ cos r/J , and all acting 

forces, external and internal (gravity force), are projected to this direction. 

Gravity force or its tangential component T along the bottom tak­

ing positive sign with the direction of slope (fig. 4), is T = pgAdx sin r./1 • 

Friction force Ff , with the head loss dHf along the conduit 

length dx/ cos r/J , with dH/ dx = Sf = friction slope, can be expressed as: 

or 

Pressure forces, fig. 2, 3, and 4, can be expressed as follows: 

F 
p 

aF JH __p = ax . 
0 

aF 

pg(H-y) B dy , with 
y 

aH + J H pg a;;- By dy pg(H-y) 

0 

-;( dx = pgA ~~ dx + F x l + F xz , 

~ dxdy , ax 

so that the resultant pressure force in the direction of conduit bottom 

becomes 

SH 
-pgA ax dx COSr/J. 



In this case, equation 4, with 

m = pdx 1r dA = pAdx 
0 

becomes for direction of conduit bottom slope 

With 

( 
pdx ff A 

dt coo t/1 O 

d dA l + dx ff A r av + V av ) dA = 
v P cos t/1 at ax 

0 

8H 
= pgA dx sin t/1 - pgASf dx - pgA ax dx cos t/J • 

vdA = VA , cos t/1 :::: 1 , sin t/J :::: tg t/1 :::: s 
0 

bottom slope along dx , and taking into account equation 1 , equation 5 

becomes 

with 

d d ff A av dA + P dx ff A avz dA = 
- pqV X + p X O at 2 0 ax 

= pgAdx (S - s - aH ) 
0 f ax 

av dA A a av and at = .., at; avz dA = 
ax 

14 

(5) 

(6) 



Equation 6, after arranging becomes 

..@ av + ..£.. ( ci vz ) + aH _ 8 + 8 _ 
g at ax 2g ax o f 

where 

with 

aH 
e 

ax 

s = - az I ax (fig. 1) 
0 

then the general form of momentum equation is 

f3 av 
aH {3Vq 

+ e + sf - - -g at ax gA 

f3 Vq 
gA 

= 0 

= 0 

designating s =_@ av 
acceleration slope, = a g at 

aH 
s 

e slope of energy line = = 
e ax 

and s = /3 Vq 
= slope due to lateral outflow q gA 

(or lateral inflow) 

then 

s + s + sf+ s = 0 a e q 

15 

(7) 

(8) 

(9) 

(IO) 
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or multiplying equation 1 O by dx , and with dH = S dx , dH = S dx , 
a o e e 

dHf = Sfdx , and dHq = Sq dx 

then 

dH + dH 
a e 

( 11) 

or the sum of all slopes or of all head changes along dx-length is zero. 

Equation 7 is often written as 

/3 av + v av + 
at a ax 

/3 Vq 
A 

(7a) 

and generally the last term (3 Vq/ A is neglected, as well as (3 ~ a ~ 1 is 

assumed. 

C. DISCUSSION OF BASIC ASSUMPTIONS USED IN DERIVATION OF THE TWO 

PARTIAL DIFFERENTIAL EQUATIONS 

The general approach in deriving equations 2 and 7 assumes that 

the flow is gradually varied unsteady free surface water movement. This 

means that the changes of variables, aH/at or aA/at , and av/at, aH/ax 

or aA/ ax , and av/ ax are relatively small, in order that this basic assump­

tion could be justified. 

The basic and general assumptions underlying the development and 

the applicability of equations 3 and 7 are: 

1. Vertical acceleration can be neglected in comparison with the hori­

zontal acceleration (or better, the acceleration normal to conduit 

in comparison with the acceleration along the conduit), because of 

the gradual change of depth and discharge with time and with distance. 

The steeper a wave is, the less justified becomes this assumption. 

It is quite inapplicable in the case of water surges (bores and depres­

sions). 
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2. Flow is gradually varied, or the vertical components of velocities 

are cons idered small in comparison with the longitudinal components 

of velocities • 

3. Flow patterns are the same in vertical planes parallel to longitu­

dinal axis of the channel (in the case of curvilinear channels the 

vertical cylindrical surfaces parallel to the longitudinal axis have 

the same flow pattern), or the influence of the channel sides and 

its curvature on flow patterns can be neglected. 

4. Velocity distribution along a vertical in unsteady flow is the same 

as that in steady flow, or the velocity-distribution coefficients 

a and f3 in equation 7 are constants, for given values of discharge, 

depth and velocity, or the unsteady flow does not influence these 

coefficients. Since this assumption depends on rate-of-change of 

velocities with time and distance, it is justified only in the case of 

a small rate-of-change. 

5. Friction resrstance in unsteady flow is the same as that in steady 

flow, which assumption is justified only if the rate-of-change of 

velocities with respect to time and distance is small. 

There are no data in the literature that show the numerical effect 

of these factors either individually or as the group on the computed or 

observed waves along the river channel, so evidence is lacking for justifica­

tion of these five assumptions in terms of the specific characteristics of a 

wave, of channel and of lateral inflow or outflow. Only global comparison, 

between the observed wave and the computed wave by using equations 3 and 

7 exist . In a very gradually varied unsteady flow the total influence of all 

above factors is relatively small. It is therefore, justified to neglect them 

in this case. 

The effect of the above assumptions will be studied in detail during 

the future research program. It is anticipated that a hydraulic model 



conduit sufficiently long and with a large diameter will be available for 

research purposes. This model will give the detailed hydraulic results to 
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be used in a digital computer as very accurate input and boundary data. Inflow 

hydrographs, wave profiles for given times, and hydrographs at the charac­

teristic places along the conduit will be recorded very accurately for different 

storm floods. Inflow hydrographs will be input data for a digital computer. 

Equations 2 and 7 will be used for computing very precisely the wave profiles 

for given times and wave hydrographs for given places (same times and same 

places for which the recording is made in hydraulic model studies). 

The comparison between wave profiles and wave hydrographs recorded 

in the hydraulic model and computed by digital computer will produce a general 

picture of the effect caused by above assumptions. During this analysis the 

eventual departures between the two sets of data, created only by recording 

error in hydraulic model and by computational errors in computer, must 

be evaluated and taken into consideration. The comparison is planned to be 

carried out for different rate-of-change of flows. 

It is expected that the first assumption, of a negligible vertical 

acceleration (assumption under 1.), will produce departures among two sets 

of results which increase with an increase of rate-of-change of hydrograph •. 

A relationship D(flQ/ flt), with D = departure and l:JQ/ flt = rate-of-chang 

of discharge hydrograph, would give a general picture how the first assump­

tion influences ~he computed wave movement. The second assumption is 

implicitely included in the effect of first assumption, and its effect will also 

increase with an increase of rate-of-change of discharge hydrograph. 

It is a fact, that the mathematical tools available for the computation 

of unsteady free surface flow are more accurate either for a very gradually 

varied flow -(by using the two De Saint Vernant partial differential equations) 

or for a st~ep surge (by using equations for treatment of travelling bores and 

steep depressions), than it is the case for a steep wave between these two 

extremes. The anticipated results obtained from hydraulic model and digital 
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computer studies are considered as the potential research data. The new 

mathematical tools may be developed in order to improve the computational 

accuracy of steep waves which are still far from the surges, but can not be 

considered as the gradually varied flow. The storm floods in storm drains 

in highways and in urban drainage problems are very often just in this 

transition region of wave shapes. 

The effect of assumpt ion under 3.) will be avoided by selecting a 

. straight line conduit, and carrying out the hydraulic experiments in such a 

way, that the lateral oscillations of the body of water in conduit would not 

occur during wave movement. 

The effects of differences for velocity distribution coefficients and 

for flow resistance factors between the unsteady and steady flow patterns 

are difficult to assess without basic studies. The steeper a wave, the more 

influence the constantly changing boundary layer has on the flow resistance 

and velocity distribution. These differences increase with an increase of 

rate-of-change of discharge hydrograph. When the results of hydraulic 

model and digital computer studies are compared, the effect of these dif­

ferences will be combined with the effect of first and second assumptions. 

To isolate the effects, special hydraulic studies should be carried out prior 

to comparison of two sets of results. 

The efforts in determining the effects of the above assumptions, 

which are involved in the derivation of the two partial differential equations, 

are worth undertaking both from the theoretical as well as from practical 

point of view. The current engineering design is always based on an approxi­

mate computation procedure, and any improvement in this direction is a 

replacement of a lower-degree approximation by a higher-degree approxi­

mation. This replacement should al ways be justified from the practical 

point of view . Information about the degree of approximation for different 

procedures is as v~tal as the procedures themselves. The difficulties with 

the storm flood routing methods actually used in storm drain drainage 
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design is the lack of information on the degree of approximation that is 

attained when the method is applied. The analysis of effect of above basic 

assumptions should be a substantial contribution to the estimation of degrees 

of approximation, both for the most advanced mathematical methods of com­

puting flood wave propogation, and for any other flood routing method, 

either existing or to be developed for future practical applications. 

From the theoretical point of view any new detailed study of the 

degree of approximation attained by the application of De Saint Venant equa­

tions under different conditions will be a contribution to the body of knowledge 

for llilsteady free su::-face flow in conduits and channels. 

D. BRIDGE BETWEEN TWO PARTIAL DIFFERENTIAL EQUATIONS 

The continuity equation involves the cross-section area, while the 

momentum equation is based on the rate-of-change of energy line, or of 

water surface position, plus the dynamic head. For irregular conduits with 

changing bottom slope and irregular cross section shape and area, the 

bridge between these two partial differential equations introduces the first 

complexity in the mathematical analysis. The rate-of-change of cross­

sectj,pn characteristics, as related to the bottom position , and the rate-of­

chanie of bottom slope with distance, when expressed in analytical form, 

generally provide the bridge between the two equations. Some a~~;umptions 

and simplifications for cross sectior,, ap.d for bottom position a:t7e necessary 

to enable analytical treatment of equations 3 and ·g. 
To bridge equations 2 and 7 , or 2 and 7a, the general area function 

in the form A(H,x, t) should be available, where the variable t designates 

the change of the contour position with time (movable boundary). Assuming 

that the conduit contours are fixed (in some movable alluvial beds, this 

assumption is only approximately satisfied) the area function becomes 

A(H,x). There are two general cases: 



1. The conduit is prismatic, so that A(H) , or the area is inde­

pendent of x . The simplest equation is A = BH , a rectangular 

prismatic channel or conduit, with constant width B , and which 

is usually used for the theoretical analysis of unsteady free sur­

face flow in channels. A fit to natural channels is the power 

function A = pHs , with p and s constants. The circular 

drains of a given diameter D have a complex (arccosine) area 

function, with area only dependent on depth H • 

2. The conduit or channel is non-prismatic, with A(H,x). The 

power function A = pHs is applicable for some channels, with 

p and s being functions of x . The converging or diverging 

circular conduits belong to this category of conduits. 

The bridge between equations 2 and 7 cannot be made, unless the 

relation of A and H is defined along the conduit. 
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A storm drain is assumed to be prismatic conduit between the two 

successive manholes, so that A(H) is valid for that reach, or the area is 

independent of x • In this case 

and 

with 

aA 
at 

oA 
ax 

= 

= 

aA 
aH 

aA 
aH 

aH 
at 

aH 
ax 

aH 
=Bat 

= B 8H 
ax 

B(H) = aA/ aH 

( 12) 

(13) 

(14) 



becomes 

Introducing the expressions of equations 12 and 13, equation 2 . 

1 aH + 
V at 

A av+ 
VB ax 

8H + 
ax 

..s.. 
VB 

= 0 
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(15) 

so that equations 15 and 7 which describe the unsteady free surface flow are 

given in dimensionless form. 

It must be assumed also that the function of q is known in advance, 

which in a general form is given as q(H,x,t) • The variable t is necessary 

if there are any changes in the contour or the time (slow opening of gates, or 

valves, and slow breaches of levees, in the case of channels or conduits). 

The term with q should not be neglected for storm drains in general, 

because they may have the lateral spillways along them (lateral continuous 

inflows also) . 

E. NAME AND MEANING OF DIFFERENT TERMS IN THE TWO PARTIAL 

DIFFERENTIAL EQUATIONS 

The four terms in equation 2 when multiplied by dxdt give dimension 

of volume. In the order of sequence, they have the following physical mean­

ings: 1) storage of rate-of-rise of level (rate- of-change of area A with 

time); 2) wedge storage (due to the difference of depths at the beginning and 

the end of the elementary reach dx by a change of area A along the 

conduit); 3) prism storage; and 4) storage (positive or negative) due to 

lateral inflow or outflow. The six terms in equation 7, in the order of 

sequence have the following physical meanings: 1) acceleration term (ratio 

of accelerations, or ratio of the change of velocity with time and the 

acceleration of gravity, also called acceleration.,.head term, velocity-~ 

hydrograph inclination, localized acceleration gradient); 2) rate.-of-change 

of v.elocity head (also called dynamic head, velocity-head term, energy 



23 

grade line inclination, instantaneous energy gradient), or the slope created 

by the change of velocity head along the conduit; 3) rate-of-change of depth 

(depth-taper or depth-change term), or the slope created by the change of 

depth along the conduit; 4) bottom slope; 5) friction slope; and 6) part of 

the gradient on the energy line created by the lateral outflow or inflow. 

This equation is differently expressed in different papers: 

dimensionless as in equation 7. or with dimension of head, acceleration, 

momentum, energy, or other dimension . 

F. SELECTION OF DEPENDENT VARIABL:SS 

The partial differential equations are simplest in the case when 

the dependent variables are the mean velocity V and the depth H , with 

length x and time t being independent variables. In order to get a dis­

charge hydrograph at a place x of the drain, the depth hydrograph H(t) , 

and velocity hydrograph V(t) are first obtained in this case . Then the area 

hydrograph A(t) is determined from depth hydrograph . The discharge 

hydrograph is then Q(t) = V(t) A(t) . 

If the discharge hydrographs at different places should be the 

final result of the computation of a storm flood movement through drains, 

it might be more convenient to use discharge Q and depth H as dependent 

variables, instead velocity V and depth H , though the partial differen­

tial equations come out to be more complex, and therefore, the computa­

tional procedures by digital computer (programming and computation time) 

might be somewhat longer than in using V a nd H as dependent variables. 

The problem should be solved by the digital computer, and it 

might come out that for one type of problems the dependent variables V and 

H are feasible, while for the other type the use of dependent variables Q 

and H may give a better approach. 
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III. DERIVATION AND DISCUSSION OF CHARACTERISTIC CURVES 

A. DERIVATION OF CHARACTERISTIC CURVES~• 

The partial differential equations for unsteady free surface flow in 

conduits. with t wo dependent (V. H) and two independent variables (x, t) have 

the general form 

A av+ 
2 ax 

av + c 
at 1 

av 
at 

+ ,... 
'--2 

aH 
ax 

+ D 
1 

aH + 
at 

E 
1 

= 0 

aH + D aH + E = O 
ax 2 at 2 

with coefficients A, B, •• . • • E as functions of V. a, x, t • 

( 16) 

(17) 

Equations 16 and 17 are linear in relation to partial derivatives. but 

the coefficients are functions of dependent variables also . Equations 16 and 

17 are called quas ilinear partial differential equations. 

Equations 15 and 7a, in order to be comparable with equations 16 and 

17 respectively, have the form 

A av + aH + 1 aH + _g__ 
VB ax ax V at VB 

= 0 

* This derivation follows closely the derivation of characteristic curves 
(applied to the cas e of this report). given in the book: R . Courant and 

( 18) 

K. 0. Friedrichs . Supersonic Flow and Shock Waves, Interscience Publishers, 
Inc , , New York, 1948, ref. 2 , 

For all other references on characteristic curves see Bibliography 
on Flood Routing Methods. ref. 1, or ref. 3. 



in this case: 

av av + ..fL 
g ax g 

A 
VB; 

av + 
at 

aH + 
ax 

S-S-~=O 
f o gA 

..L 
VB 

= 1 ; D = 0 · E = S - S - {3 Vq 
2 , 2 f o gA 
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(19) 

As E
1 

is different from E
2 

, equations 18 and 19 are not homo­

geneous . As E 
1 

and E 
2 

in a general case are not equal, and as E 
2 

is 

different from zero, even if q = O , equations 18 and 19 are not reducible, 

or the roles of dependent and independent variables are not interchangeable. 

In other words, the hodograph transformation of the (x, t)-plane into the 

(V ,H)-plane is not applicable. 

The solution of equations 18 and 19 gives the two functions V(x, t), 

and H(x,t). 

A linear combination of two derivatives: 
af 

a ax + b..£! 
at 

of 

function f(x, t) is a derivation of f in a direction given by dx:dt = a:b • 

For the case x( c;) and t( c;) representing a curve with the parameter !J" , 

a af + b af then ax at is a derivative along the curve, if 

ax at 
- · = a:b . A direction is called characteristic, if the derivatives of 8c; . acr 
V and those of H combine to derivatives in the same direction, so that the 

coefficients of differential equations 16 and 17 for such two directions and 

for derivatives in these two directions become functions of x, t only. In 

other words, the quasilinear partial differential equations become linear for 

the two characteristic directions. There are two such different directions, 

and they depend on the point x, t, as well as on the values V, H at this point. 
ax at 

Assuming that such a direction is given by ac; : ac; , then the 

following relation is obtained by a procedure given in above mentioned main 
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reference (ref 2, p. 4 1) 

a ( :: r -2b ;: :: + c ( ;: ) 
2 

= 0 (20) 

where 

with the abbreviation [ XY] = X 
1 

Y 
2 

- X 2 Y 
1 

• In the case of unsteady free 

surface flow of equations 18 and 19 

a = 
A 
VB 

av 
g 

2b = - a + {3 · c = -Ji. 
g· gV 

As ac - b2 is al ways small er than zero, bee aus e in this case 

2 (3A ! { ) ac - b = - gBVz - 4gz \ a - (3 2 

the system of equations 18 and 19 is called hyperbolic, so that their name 

is quasilinear hyperbolic partial differential equations of unsteady free surface 

flow with two dependent and two independent variables. 

Designating the slope of a characteristic direction as 

then equation 20 becomes a quadratic equation of s : 

ax at 
s = acr : acr ' 

c s2 
- 2b s + a = 0 (21) 

with two different real solutions : s and s , but generally with ~+ =/= ~ • 
+ - -

The two character istic directions in the (x, t)-plane are given by two equations 

(22) 

at the point (x, t) • 
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The two solutions of equation 21 are 

s+ 
a+ {3 v- -v (a - {3)Z vz gA = + 
2{3 4 (32 {3 B 

(23) 

-y· (a - {3)2 va 
s = a+ {3 

V+ + 
gA 

2{3 413z {3 B 
(24) 

The two roots of equations 21. or equation 23 and equation 24, are 

therefore functions of V, H, x, t, and they depend on the individual functions 

V(x,t) and H(x, t ). 

The above equations 22 are two separate ordinary differential equa­

tions of the first order. Each of them define one-parametric family of charac­

teristic curves (simply called the characteristics) in the (x, t)-plane. These 

two families will be designated as C + and C • 

Equations 23 and 24 show that s + and s do not depend on E 
1 

and 

E
2 

, or they do not depend directly on q, S
0 

and Sf (lateral flows, conduit 

slope, and resistance to flow), but indirectly through the dependent variables 

V and H. 

Taking the mean depth H = A /B into account, and putting as a 
m 

first approximation that a = {3 = 1 , equations 23 and 24 become 

s+ = v-~ = v-c 
0 

= V +.....,~ = V + C V m o 

with C
O 

= ~ an approximate expression of theoretical celerity of a 

very small water disturbance in a large canal. 

( 25) 

(26) 
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With the same idea of the above approximation. s+ is positive 

and ~ is negative for subcritical flow. while both s and s are positive 
+ 

for supercritical flow. 

The two families of characteristic curves. C and C , are often 
+ -

represented in the form 6(x. t) = constant. and y(x, t) = constant respec-

tively, and they form a curvilinear net. For each constant value of 6 or y 

then a characteristic curve is defined, (fig. 5). 

The introduction of new parameters. y, 6 instead x, t in such a 

way that o is constant along the curves C + and y is constant along C 

is very seful. Through any point (x, t) the two characteristic curves C + 

and C pass, and their parameters y. o are then characteristic parameters. 

If these parameters are introduced. then 

ax 
ay 

e = ':, + 
at 
ay along C+• 

ax 
and 

80 
= s at 

ao along C 

Using similar procedure as in the case of deriving equation 20. two 

new differential equations are obtained in the form (ref 2. p. 43) 

av 
T ~ + ay + 

av 
T ~- ao + (a - M ~ ) 

aH 
ay 

aH 
a o 

+ (K - N ~ ) ax 
+ ay 

+ (K - Ns ) 
ax 
ao 

= 0 

= 0 

in which T = [ AB] , M = [BC] , K = [ AE] • and N = [ BE ] • 

Using the coefficients of equations 18 and 19 these values are: 

T = (3 A 
gVB 

M= - l 
g 

A ) _g_ 
K = VB (Sf - So - gB (a + {3) ; N = - h 

gVB 

(27) 

(28) 
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II_) 
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The following four characteristic equations are therefore, available: 

ax 
s+ -

a" 

ax s -00 -

...IL!:_ 
gVB s + 

at 
a-y 

at 
ao 

av 
a-y 

= 

= 

0 

0 

+ ( ~ -
\ VB 

av 
- + g 

+ [ :B (S - S ) - _s_ ( a + f3) 
f O gB 

{3A s av 
+ ( 

A aV + 
gVB - ao VB g 

+ [ :B (Sf - So ) - .....9._ ( a +{3) 
gB 

(29) 

(30) 

.P ~ l g + + 

+ f3 q {+] ax 
0 = 

gVB a-y 
(3 l) 

{3 s ] aH + g ao 

+ (3 q { rx = 0 
gVB - ao 

(32) 

which hold for every solution V(x, t) and H(x, t), and refer to its charac­

teristics C + and C _ , while . s + and s are given by equations 23 and 

24 respectively. Equations 29 through 32 is a system of four differential 

equations for four variables V, H, x, t as functions of parameters 'Y and 

o • These four equations are simple because each equation contains the 

derivatives with respect to only one of independent parameters, and the coef­

ficients do not depend on the independent parameters ( canonical hyperbolic 

differential equations). 

Introducing the simplifying assumptions in equations 29 through 3 2 

and in equations 23 and 24 , as: 

C = fuH = · ~ = , r;;ii ( with H = €H , where H o yo--m VgFI V5~u m 



is water depth), q = 0 , a = /3 = 1 , then equations 29 through 3 2 

become 

I+) 

I_) 

II+) 

II_) 

ax 
(V - C ) 

at - = 
ay 0 ay 

ax (V + C ) 
at -86 0 a 6 

(V - C) ( 2Y - .L 
0 ay C 

0 

i. 
C 

0 

0 

= 0 

8H ) + 
ay g (Sf - So) 

ax 
ay 

ax 
ao 

= 0 

= 0 

The derivatives aH/ ay and 8H/ 86 may be replaced by ac / ay 
0 

and ac / ao , in which case equations 35 and 36 become 
0 

II_) 

(V - C) 
0 

a (V -
ay 

(V + C ) _aa ( V + 
o 6 

2 

€ 

ax 
ay 

ax 
ao 

= 0 

= 0 

In an idealized channel, with € = 1, and with horizontal bottom 

(S
O 

= 0) and frictionless walls (Sf = 0) the above equations 35a and 36a 

become 

II ) 

d(V-2C) = O 
0 

d(V+ZC) = 0 
0 

In this last case, equations 33 and 34 become 

30 

(33) 

(34) 

(35) 

(36) 

(35a) 

(36a) 

(35b) 

(36b) 



I ) 

v-c 
0 

= V + C 
0 

Equations 33b through 36b are often used in the application of 

characteristics to unsteady free surface flow in large channels, but t i.1e 

approximation t1rns introduced departs appreciably from the actual wave 

patterns. 

B. DISCUSSION OF CHARACTERISTIC CURVES 

31 

(33b) 

(34b) 

The coefficients of equations 18 and 19 contain beside the variables 

V, H, the following quantities: A, B, q, a , f3 , Sf , and S
O 

, and g being 

a constant. The Darcy-Weisbach formula for resistance losses is 

Sf = !R ~; , with f = Darcy-Weisbach friction coefficient, and R = hydraulic 

radius. The coefficient f , in general, is a function of Reynolds number, 

but for rough pipes of given roughness it is a constant for sufficiently great 

Reynolds numbers. In this case: A, B, R, f, a , f3 , and g are generally 

functions of H and x only. The quantities A, B, R, f , a , f3, q, and 

S do not contain derivaties of H and V , but are functions of V, H, x 
0 

and t . 

The main feature of characteristic curves is the replacement of 

the original system of the two partial differential equations, equations 18 

and 19 , by the characteristic system of the four differential equations, 

equations 29 through 32. According to the derivation (ref 2) every solution 

of the original system satisfies this characteristic system, and the converse 

is also true, that every solution of the characteristic system, equations 29 

through 3 2, satisfies the original system, equations 18 and 19, provided that 

Jacobian 



ax 
a-v 

does not vanish. 

at 
ao 

ax 
ao 

at 
a-v = 

at 
a-v 

at 
86 

In the case the differential equations 18 and 19 are linear, then 
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s + and g are known functions of x. t. so that equations I, 29 and 30, 

are not coupled with equations II, 31 and 32 . In this case equations I 

determine two families of characteristic curves. C and C • independent 
+ 

of the solution. The linearization of equations 18 and 19 introduces such a 

departure from the real flow phenomena, ~hat this case will not be pursued 

here in this analytical study. 

If E
1 

= E
2 

= O. and if A
1 

, ••••• D
2 

depend on V, a only, 

which would be a very rough approximation to the real flow conditions, the 

situation is similar, namely the differential equations are reducible, the 

slopes ~ and ~ are known functions of V and H , and equations II 
+ -

are independent of x and t . The same case is when E 
1 

and E 
2 

do not 

vanish but depend on V and H only. This last case is applicable to equa­

tions 18 and 19 under the condition that the conduit is prismatic and the bot­

tom slope S
O 

is constant, because all coefficients A 
1 
••••• E 2 may 

be considered as dependent only on V and H . The characteristic curves 

in the (V, H)-plane, designated r + and r_ , as the images of the charac­

teristic curves C + and C in the (x, t)-plane, are independent of the 

special solution V(x, t), H(x, t) considered. However, the assumptions 

made above to convert equations 18 and 19 into the reducible equations are 

already an approximation to the real unsteady free surface flow. 

As the purpose of this study is a determination of the effects of 

different assumptions or of neglect of factors, any restriction in the basic 

general differential equations would mean a departure from the basic 

approach already selected for this study. 
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The initial value problem, or the initial conditions are of a major 

importance in the theory of hyperbolic differential equations. A curve must 

be known with all values along it in the (x, t )-plane . In the most general case, 

and for the unsteady free surface flow in conduits, either a velocity hydro­

graph V(t}, or better a discharge hydrograph Q(t), is known for a given 

x-value, or a wave profile along the conduit as H(x) for a given t is avail­

able. The flow conditions should be known, so as soon as Q(t) is known, 

that the functions V(t) and H(t) may be determined, or as soon as H(x) is 

known that V(x) can be determined. In the first case, the initial conditions 

are given along a vertical straight line, for which all values V, H, x, t, 

are known, and in the second case a horizontal straight line gives the initial 

conditions with the corresponding values V, H, x, t known along it. 

As soon as the initial line is known, the problem is to determine in 

the neighborhood of this line a solution V(x,t), H(x,t) of equations 18 and 

19, which takes on the prescribed values V, H on the line. It is assumed 

that the line initially known has no characteristic direction, which in this 

particular case of unsteady flow is a right assumption. 

Using the characteristic form, equations 29 through 3 2, of the 

partial differential equations 18 and 19 the integration problem can be treated 

as the corresponding problem for ordinary differential equations. 

As equations 29 through 3 2 are given in parametric form, with 

y , 6 characteristics parameters, the line of initial values may be considered 

as the image of the special line: y + 6 = O • because the characteristic 

parameters y and 6 were introduced with reference to a curve on which 

y = 6 , and now it is necessary only to replace 6 by -6 • The initial con­

ditions can be formulated for the differential equations 29 through 32 in the 

(y, 6)-plane. A method of iterations (ref 2, p. 49) enables the determina­

tion of values V, H, x, t at a point ( y, c5) which is in one-sided neighborhood 

of the initial line: y + 6 = O, (fig. 6) . The solution thus obtained is a solu-, 
tion of equations 29 through 3 2. 
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The iterat ion process shows that the values V, ff, x, t at the point 

P ( y, o) depend only on the initial values at the segment of the line y + o = 0 

between the points (- o, 6) and ( y 
1 

- y) indicated in fig. 6. In the (x, t)-plane, 

(fig. 7) it means that the values V, H at the point P(x, t) depend only on the 

values V, H of the segment from x 1 to x 2 , and since the curves 

o = constant and y = constant determine two characteristic curves C + and 

C , the interval x
1 

to x
2 

on the line between these characteristic curves 

passing through the point P(x, t) is called the domain of dependence. 

On the other hand, if a point R(x, 0) is selected in the initial line, 

(fig. 7) with the initial values V, H, then the characteristic curves C+ and 

C _ through the point R determine the range of influence. Only the values 

V, H at the points (x, t) inside the range of influence depend on the initial 

values V, H of the point R , the outside points do not. 

If the values of first and higher partial derivatives of V and I-I are 

continuous along the initial line, then they are continuous also in all the points 

in the (x, t)-plane. If, however, there are some places of discontinuity 

either at the initial line (av/ ax, av/ at, aH/ ax, aH/ at or higher partial deri­

catives are not continuous, which mean that some disturbances exist), or 

the discontinuities are introduced at some points in the (x, t)-plane, then the 

discontinuities in derivatives occur only along characteristics passing through 

the discontinuity points on the initial line. In a common way of expression, 

the discontinuities in first or higher partial derivatives of V and H propa­

gate along the characteristic lines in the (x, t)-plane. These discontinuities 

propagate along one or both of the two characteristics through the point of the 

source of discontinuity, and they can never disappear. The discontinuities 

refer only to the derivatives of V, H, but not to the discontinuities in V, H 

themselves, which propagate as surges (bores or depressions). 

The characteristic form, equations 29 through 3 2, of the differential 

equations 18 and 19 are especially useful for numerical solutions. If the dif­

ferential equations are replaced by equations for finite differences, the 
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numerical solutions can be carried out with little labor, and especially if the 

digital computers are used for these computations . 

The characteristic curves, particularly in their simplified form, 

are quite useful in analyzing the properties of the solutions, and in study­

ing the initial and boundary conditions. 



IV. SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 

FOR UNSTEADY FREE SURFACE FLOW IN CONDUITS 

A. INTEGRATION OF DIFFERENTIAL EQUATIONS 

36 

Three methods are available for the integration either of the two 

partial differential equations 18 and 19, or of their four equivalent characteris­

tic equations 29 through 32: analytical integration, graphical integration of 

finite differences, and numerical integration by finite differences. 

For the analytical method of integration, the initial and boundary con­

ditions (i.e • • hydrographs. conduit shape . lateral inflows or outflows) must be 

expressed in simple analytical forms and introduced in equations 18 and 19 • 

The complexity of these expressions as well as that of equations 18 and 19 

make the analytical integration impossible except in cases of extreme simpli­

fications which mean a substantial departure from the real flow patterns . The 

method of analytical integration is, therefore, outside the procedures planned 

for this study, except for some very approximate preliminary design methods 

to be eventually developed in the future research activities of this study. 

The method of finite differences, either graphical or numerical, is 

based on a replacement of increments dV. dH, dx, dt, dA, dB •••• • by 

their finite differences b.V. b.H, b.x, b.t, b.A, b.B ••• •• The partial 

derivatives av/ ax. av / at. aH/ ax , and aH/ at are replaced by ratios of finite 

differences b.V/b.x, b.V/b.t, b.H/b.x, and b.H/b.t . Now equations 18 and 19 

become 

A b.V b.H 1 b.H qo 0 + + + 0 (37) = VB b.x b.x V b.t VB 
0 0 0 0 0 

av b.V (30 b.V b.H (30 Vo qo 0 0 (S - S ) - 0 (38) + + -- + = g b.x g b.t b.x f o O gA 
0 
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Where the finite differences !::ix and !::it of independent variables are selected 

in some way, l::iV, and 

!::it, and A , B , V , 
0 0 0 

these quantities for both 

l::iH are the changes of dependent variables for !::ix, 

q • (Sf - S ) , a , Q are the mean values of 
o oo o /Jo 

!::ix and !::it • 

For selected !::ix, and !::it at the values V Z , HZ are assumed first 

at the end of t::ix , !::it • With the initial values V 
1 

, H
1 

known, the mean 

values V
0 

= (V
1 

+ VZ)/2, A
0 

= (A 1 + A 2)/2, B
0 

= (B
1 

+ BZ)/2, 

q
0 

= (q
1 

+ q 2)/2, 2(Sf - S
0

\ = (Sf - S
0

) 

1 
+ (Sf - S

0
\, a

0 
, {3

0 
, are 

determined. Equations 37 and. 38 for these coefficients known and for !::ix and 

!::it selected give the values l::iV , t::iH. If V 
1 

+ l::iV = V 2 , and H
1 

+ l::iH = Hz• 

then the assumed values V Z , HZ are correct. If not, the iterative process is 

carried out until the right values V Z , HZ are obtained. 

The procedure of supplementing the finite differences method consists 

of dividing the conduit in reaches t::ix
1 

, t::ix
2 

, •••••••••• l::ixn , either 

equal or unequal, which division depends on the type of conduit. In the case of 

storm drains the inlet points (manholes), the junction points, and the points 

where any changes of quantities A, B, S , f, q, etc. , occur, determine the 
0 

subdivision of the conduits into reaches. The selection of !::it intervals, equal 

or unequal, is a special problem to deal with. 

There is a limitation for the selection of !::it once l::ix is selected. 

As it is shown in figure 7, the domain of dependence must be taken into con­

sider~tion, namely for a selected !::ix = x 2 - x
1 

, the !::it should be so selected, 

as to have the point P inside the domain of dependence. In this case, one can 

be sure that the changes in variables V, H and other quantities outside the 

reach Ax = xz - x
1 

have no bearing on the corresponding values at the point P. 

This limitation makes the use of characteristic curves advantageous, that the 

selection of Ax , At would satisfy in all cases the requirement of the new 

points in the (x,t)-plane being selected inside the domain of dependence. • The 
I 

approximate relation !::ix r= (V ± -y gHm)At determines the relation between 

/ 
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6x and 6t • It can be used to check numerically, that 6t is inside the 

domain of dependence, and it depends upon the selected mesh of points in the 

(x, t)-plane. The 6t must be sufficiently small that it falls within the domain 

of dependence. 

The smaller are the values of 6x and 6t , the greater is the 

computational work, and also the greater is the accuracy (taking into account 

the effects of rounding errors in the computer), because the assumption of 

linear change of variables V, H and of the other quantities inside the finite 

differences 6x , 6t becomes more justified than in the case of large values 

of 6x , 6t . The accuracy of background data for conduit characteristics, 

wave shape and lateral flows, however, determines the economical low limit 

6x and 6t . The more accurate the background data, the smaller can be the 

finite differences for a more accurate routing procedure. 

The computed end values of V, H and other quantities for 6x, and 

6t , become the values at the beginning of finite differences 6x
2 

and 6t 
2 

. 

The iterative (or trial-and-error) or direct computation procedure, inherent 

to the finite differences method, depend on the numerical set-up selected. The 

points selected in the (x,t)-plane make a mesh, and the choice of the most 

appropriate mesh, which gives the greatest accuracy for a given amount of 

computational work, represents one of the pivot problems of the numerical 

solution by finite differences. 

Tht difficulties in applying the iterative procedure in the classical 

numerical computations by a desk computer have shifted this method of finite 

differences in the past in two directions, namely towards the use of: 

a) Characteristic curves in the form of simplified four differential equations 

which replace the equations 18 and 19; b) Graphical procedures, by using the 

(x,t)-plane for characteristic lines, and the (V,H)-plane for the results of this 

graphical integration. The four characteristic differential equations are also 

expressed in finite differences form, but they are nearly always used in the 

very simplified form, which means neglecting some factors, or assuming 

simpler conduit shapes and flow resistance tha11th.ey .act-ua-lly-are; 
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B. COMPARISON OF METHODS OF FINITE DIFFERENCES AS APPLIED TO 

TWO PARTIAL DIFFERENTIAL EQUATIONS, AND TO FOUR CHARACTERIS­

TIC DIFFERENTIAL EQUATIONS 

As it was stressed in the introduction of this report. the advent of 

digital computers (and also analog computers). to eliminate the tedious and 

expensive labor of the iterative procedure of finite differences method, and the 

development of numerical methods in solving partial differential equations, 

have changed the conditions previously existing in the application of numerical 

procedures in solving the differential equations. Some of advantages of the 

method of characteristics, especially the us e of its graphical procedure and 

the finite differences, have disappeared, and the direct use of the two partial 

differential equations of unsteady free surface flow in conduits, expressed in 

finite differences form of equations 37 and 38, with the appropriate numerical 

methods and the digital computer, has become as attractive (ref 4, 5, 6). as 

the use of method of characteristics. 

As both sets of equations, set of equations 18 and 19 expressed also 

in finite differences form as equations 37 and 38, and set of four equations, 

equations 29 through 32, expressed also in finite differences form, may be 

used for obtaining the solutions V(x, t) and H(x, t), and as both sets of 

equations have been programmed and solved by digital computers (or analog 

computers), the practical questions arise as to the choice between two sets 

for the use in this study. 

The finite difference method applied to the two basic partial 

differential equations of unsteady free surface flow in conduits is planned to be 

used to determine the effects of different factors in equations 18 and 19 during 

the wave movement along drains. This method is planned to be used also to 

determine the order of magnitude of individual terms in these equations under 

different initial and boundary conditions. The purpose is developing a set of 

wave routing procedures for practical use . The preference at the initial stages 
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of the future research program of this study will be given to the use of the two 

partial differential equations instead of to that of four equivalent characteris ­

tic differential equations . This is considered especially appropriate in the 

case of the most general case of equations 18 and 19, with no neglect of 

terms, or no simplification of expressions . It is assumed that equations 18 

and 19 in their finite difference form will be simpler to use in digital (or 

analog) computers, than it is the case with the four equations 29 through 32, 

with the simultaneous use of equations 23 and 24, in their finite difference 

form. 

It might be the case, however, that some approximate methods of 

unsteady flow computations, when several assumptions and simplifications 

are introduced for equations 18 and 19, may be simpler if the method of 

characteristics is used instead that of the two partial differential equations. 

This problem will remain open for the present status of the study, and will 

be investigated when the phase of digital ( or analog) computer studies would 

be carried out. 

C. PRACTICAL ASPECTS IN THE APPLICATION OF FINITE DIFFERENCE 

METHOD 

The finite difference method applied to the two partial differential 

equations of unsteady free surface flow in conduits has, in summary, the 

following characteristics: 

I. The increments are replaced by finite differences, and partial deriva­

tives by quotients of the corresponding finite differences. 

2. The variation of variables and all parameters inside the finite dif­

ferences .6x, .6t is assumed to be linear. 

3. The changes of parameters A, B, R, f, S , q, a, {3 , as functions 
0 

of V, H, x, t are known as boundary and initial conditions. 

4. The initial conditions of unsteady flow are clearly defined. 
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5. The selection of bix is a function of the accuracy of available data, 

and the economic justification of the precision of results. The selec­

tion of bit depends on the selection of bix , in order that the domain 

of dependence should cover the selected new points in the (x, t)-plane, 

for which the next computation should determine V, H values. 

6 . The selection of the mesh of points in the (x, t)-plane is an important 

part of numerical methods to be applied, in order that the numerical 

procedure becomes feasible and practical. 

The basic principle of applying the method of finite differences is 

to carry out the solution step-wise in time-units of length bit • To show this 

procedure, the (x, t)-plane with points determined by the finite differences 

will be used, (fig . 8), and especially adapted to the unsteady free surface flow 

in storm drains . 

As the initial conditions, for t = 0 , the values V and H should be 

known all along the storm drain, (fig. 8), or the values V, H should be 

known along x- axis. In the same time, the inflow hydrographs at inlet-points, 

1
1

, 1
2

, should be given . In other words, on the verticals 1
1

, 1
2 
•••• • 

the inflow discharges Q are given. At each inlet, therefore, there is a 

continuity equation Q. + Q = Qd to be satisfied, where Q. = inflow dis-
1 U 1 

charge from the inlet, Q = the discharge flowing from upstream drain, in 
u 

Qd = the discharge flowing at the beginning of downstream drain, (fig. 9). 

The other condition at inlet point , namely the relation of stages, would be 

satisfied also, after the hydraulic characteristics of an inlet type manholes 

have been specified . 

It is supposed. that the inlet inflows at the moment t = 0 are zero, 

or that values V, H on the x-axis are not affected by the inflows. In other 

words. it may be assumed that the water flow through storm drain before 

the storm starts is steady low flow produced by the general drainage of 

adjacent ground water in order to keep the highway area or the other areas 

dry. This assumption is generally true in city drainage problems , when the 

storm floods are usually superimposed on sewage flow in drains . 
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To perform the computations by the method of finite differences. a 

rectangular. a staggered. or any other mesh of points may be selected. For 

the purpose of this analytical study and as an example the staggered net point 

lattice, or the staggered mesh is selected as a feasible point net (ref 4, 5, 

6, and 7 J, (fig . 8) . T.1.-ie values V, H are given along x-axis (t = 0) for all 

points at distances tix. For two points 1, 2 the values are V 
1 

, H 
1 

, and 

V 
2 

, H
2 

• In the middle of two points, point O , the values are approximately 

The partial derivatives replaced by quotients of finite differences 

along t-axis from the point O to point 3 , tit distant from t = 0 , are 

approximately: 

tiV 
tit 

and along x-axis 

= 

tix tix 

tit tit 

tiH 
tix 

= 

(39) 

( 40) 

( 41) 

Equations 37 and 38 for tix , tit , and their coefficients determined 

a and f3 averaged in the same way, and (Sf - S ) 
O O O 0 

B 2) / 2 ; qo = ( q 1 + q 2) / 2 ' 

" [ (Sf - so) I + 

+ (Sf - so) 2] /2, give the two unknown values V 
3 

and H
3 

at the point 3: 

V = V -
3 o 

a 
0 -

/30 
tit 

Vo (V 2 - V 1) tix 

(42) 



H = H -
3 o 

A 
0 

B 
0 

with q = O these two equations become simple. 
0 

q 6t 
0 

B 
0 

The criterion for convergence of the finite difference scheme as 

6x and 6t tend to zero is that the point 3 should be inside the domain of 

dependence determined by the characteristic lines C and C through 
+ -

points 1, 2, (fig. 8). Using the expressions, equations 25 and 26, for the 
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(43) 

slopes of characteristic lines, the above criterion may be simply written as 

an approximation 

6t ~ 6x 
zV gA /B 

0 0 

(44) 

The problem of selecting the type of net point lattice (rectangular, 

staggered, centered net point scheme, or any other type) is a special problem 

to be dealt with during the analysis of digital computer procedures and is 

treated here only briefly for illustrative purposes (see ref 4, 5, and 6). 

D. BOUNDARY PROBLEMS 

There are four types of problems in a storm drain system, which can 

be considered as boundary problems: 1) The most upstream inlet point pro­

blem, with the discharge hydrograph Q(t) given; 2) The problem of ordi-

nary inlet points, with discharge hydrograph Q(t) given, as well as the 

hydraulic head loss relationship at the inlet structure; 3) The junction problem. 

where two main storm drains meet at the level, with Q
1 

+ Q
2 

= Q
3 

, and 

H
1 

= H
2 

= H3 , the discharge and level relationships for 3 close cross sections 

to the theoretical junction cross section; and 4) The problem of free outlet 

boundary conditions, given by discharge-stage relationship at the conduit end. 
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1. Most Upstream Inlet 

The first boundary problem is shown schematically at the 

extreme left in the figures 8 and 9, as inlet I
1 

• The inflow discharges 

are given at discrete points .6t apart along the vertical for x = O • 

According to the properties of characteristic curves. for the 

subcritical flow and at the point (x = O, t) one characteristic curve is 

directed · to the right and another to the left • It means that only one 

boundary condition is necessary. For the supercritical flow both 

characteristic curves are directed to the right, so that two boundary 

conditions are necessary. For all points along the vertical 

Q = VA 

so that the relation of V. H is determined. For the points 4, 5, 6. 

and 7 the partial derivatives are replaced by quotients as 

.6V 
.6t 

= 
.6H 
.6t 

= .6V --= 
.6x 

In some cases it would be better to use .6 V / .6t = Z(V 
6
-v 

4
) / .6t , and 

.6H/.6t = 2(H
6
-H

4
)/.6t. but in this case with given Q

6 
= v

6
A

6
• and 

Q
7 

= V 
7
A

7 
• it is better to use the quotients of equation 46. 

Equations 37 and 38 give for q = 0 

2A
7 V 5-V7 2(H

5
-H

7
) 

1 H6-H7 
0 + + - = 

V7B7 .6x .6x v7 .6t 

2a
7
V

7 v5-v7 {37 V 6-V7 2(H5-Hi 
(Sf-S ) = 0 + - + + g .6x g .6t .6x 0 7 

(45) 

(47) 

(48) 
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with 

(49) 

(50) 

There are four equations 47 through 50 for four unknown V 
6 

, H
6

, V 
7

, 

I-I
7 

, because V 
5 

and H
5 

are known, and all other quantities are 

functions of known V, H • 

For the supercritical flow the discharge-stage rating curve at 

the beginning of the drain gives the other boundary condition. 

2. Current Inlet 

For the ordinary inlet points, as the second boundary problem, 

it is necessary to know the head loss at the inlet as the function of two 

discharges, Q {upstream), Q. (inlet discharge), and one depth 
U l 

(H ) so that 
u 

taH. = F (Q , Q . , H) 
l U l 

(51) 

for a given inlet box, with the inlet discharge assumed to enter the inlet 

box under the water surface. 

The values V, H are known for the points 9, 11 of fig. 8. 

It is feasible to consider the section tax of 9-11 as three reaches: 

tax/ 2 from 9 to left of 10 (lOL), the reach of length zero at the inlet, 

and tax/ 2 from the right of 1 O (lOR) to 11. There are now 8 unknowns: 

the following equations: 



V lOL AlOL + QlO = V lOR AlOR 

For the points 9-1 O L-12 L , the partial derivatives are 

replaced by the quotients 

I:) V 
-= DX 

6H 
-= 
6x 

/:)ff 
6t 
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(52) 

(53) 

(54) 

(55) 

= 

The similar ratios are obtained for points 1 OR - 11 .-12R. Equations 3 7 

and 38 for q = O give four additional equations 

2A10L 

V lOL BIOL 

v10L•V9 ----+ t>x 

+ (Sf ... S ) = O 
o lOL 

1 (56) 

(57) 
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2AlOR V 11-V lOR 2(Hll-HlOR) 1 H12R-HlOR 
0 + + = 

V lORBlOR 6x 6x V lOR 6t 

(58) 

alOR V lOR V 11-V lOR 
+ 

(310R V 1'2R-V lOR 
+ 

2(Hl 1-H lOR} 
+ g 6x g 6t 6x 

+ (Sf - S } = 0 (59) 
o lOR 

The eight equations, 52 through 59, make it possible to obtain 

eight unknowns. In equations 52 and 53 h
10 

= h
12 

= D
2 

- D
1 

, and 

6H
10 

and 6H 
12 

are given by equation 51 • or they are functions of 

V lOL , HlOL , and Q10 , or V 12L , HlZL , and Q12 respectively. 

For the solution of these eight equations by a digital computer, they 

should be arranged in such a manner as to facilitate the programming 

and the computation. 

3. Junction 

The third boundary problem of storm drain is the junction 

problem. In the case the vertical line representing a junction of two 

drains, with the crown lines matching for all three drains at the junction , 

then for three branches a, b, and c the following conditions must be 

satisfied at the junction: 

H = H + (D - D ) = H - (D - D ) 
a b a b c c a 

(60) 

when the diameters of three conduits are Db < D a < D c , and 

~ I 
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Q + Qb = Q • or V A + vb Ab = V A a c a a c c 
(61) 

Assume that the vertical line I 2 in fig. 8 and the inlet box in 

fig. 9 represent the junction of three storm drains. The values of V , 

H are supposed to be known at the points 9, 11, and values Va , Vb , 

V , H , Hb , and H at the point 8 are also known. The 6 values 
C a C 

V, H at the point 1 O, and 6 values at the point 12 make 12 unknowns. 

Equations 60 and 61 for the points 10 and 12 give six equations, and the 

application of equations 37 and 38 for the three branches at the points 

10 and 12 give the other six equations . The solution of this set of 12 

equations give the 12 unknowns. Due to the fact that equation 60 gives a 

simple relation among Ha , Hb , and He at each point , the 12 equa­

tions are easily reduced to the 8 equations with the 8 unknowns. The 

quotients 6H./6t and 6V /6t might be used either between the points 

1 O and 12, 8 and 1 O, or 8 and 12, in order to approximate at the best 

way the corresponding partial derivatives for each branch. The arrange­

ments of eight equations thus obtained would be made according to the 

feasibility of digital computer programming and computation. 

4. Outlet Section 

The fourth boundary problem is defined by the drain outlet 

conditions. In this general study a free conduit outlet will be assumed, 

though any other hydraulic outlet relationship may be equally treated, 

if it is alrea y known. 

For subcritical flow, one characteristic curve is directed to 

the right, another one to the left. One boundary condition is necessary. 

For the supercritical flow both characteristic curves are directed to the 

right, and therefore, no boundary condition is necessary. The initial 

stage value at the end is a sufficient data. 
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The outflow rating curve, as a discharge-stage relationship is 

supposed to be known at the end of the conduit . It is assumed here, that 

the subcritical flow occurs at the end of the pipe, so that a stage is 

associated with a given discharge. or that Q(H) is given. In the case 

the unsteady flow influences the discharge-stage relation, a family of 

rating curves Q(H
1 

• H
2

) must be available. 

Assume that the outlet cross section, (fig. 9) is represented 

by the last vertical in the (x,t)-plane, (fig. 8) and that the V, H-values 

are known at the points 13 and 14. To determine the V. H-values at the 

points 15 and 16, the following equations can be used: 

2Al5 

Za- 15 V 15 V 15-V 14 

g DX 

v15-v14 
+ DX 

+ 
(3 15 

g 
v16-v15 

+ Dt 

It is feasible, (ref 7). to use the quotients 

instead of 
v16-v15 

Dt 
and 

(62) 

(63) 

(64) 

+ (S -S ) = O 
f O 15 

v16-v13 

2Dt 
and 

(65) 

Equations 62 through 65 give four equations for four unknowns 

v
15

• v
14

, H
15

• and H
14

• The discharges Q
15 

and Q
16 

are 



replaced in equations 6 2 and 63 by Q 
15 

= V 
15 

A 
15 

• and 

Q
16 

= V 
16 

A
16 

respectively. 

5. Other Boundary Problems 

T n e lateral flow q of equat ions 3 7 and 38 are neglected in 
0 
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the treatmen .. of four boundary problems. If. however, there are con-

tinuous inflow (drainage) or ou"i.fl.:>w (spillways) along the drains, the 

use of q corresponding does not change the solutions of boundary 
0 

problems, but only adds tne new factor. which complicates the program-

ming and increases the computational work. 

In tile case tnere is a water evel drop at an inlet box for al~ 

discharges, the upstream part of the drain can be treated independently 

from its downstream part, and tne outflow hydrograph from the up­

stream part becomes the inlet hydrograph (first boundj3.ry problem) of 

the downstream part. It can occur, that in the low flows there is a 

level drop at the inlet box, so that the upstream levels are independent 

from the downstream flow conditions, but for the highest stages the 

interdependence may be created by a backwater effect. These condi­

tions would impose a new boundary limit, namely the level when the 

backwater starts to affect the upstream part of the drain, and different 

programming must be carried out, so as to switch from one condition 

to t~~ o~h~r a;s soo.ti as the boundary ~imit stage would be passed'in one 

or an~t~e l;\ dfoection. 

The boundary problems are very important when the digital 

computers are used for unsteady free surface flow computations, and 

their detailed analysis and solutions for the best programming and 

cheapest computations will be the subject of the future studies of un­

steady flow by digital computer. 



V. COEFFICIENTS FOR DIFFERENTIAL EQUATIONS 

A. COEFFICIENTS 

The coefficients of the two partial differential equations 18 and 

19 are: 

A 
VB 

1 , v, _g_ 
VB • 

av 
g 

and S - S -
g I f 0 

/3 Vq 
gA 

All quantit ies should be expressed by four variables, V, H, x, t , 

plus some constants, in order that equations 18 and 19 can be integrated by 

finite difference methods. Therefore: A, B, q, a, /3, S
0

, Sf, must be 

expressed as functions of these four variables. 

B. GEOMETRIC CdARACTERISTICS OF CONDUITS 
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Four quantities: A ( cross section area), B ( cross section width at 

water surface level), R ( hydraulic radius), and S (bottom slope) determine 
0 

the general geometric characteristics of a storm drain. 

Stormdrainsmay be circular or of any other shape. In the case of 

circular drains the quantities A, B, R, may be expressed as a function of 

diameter and water depth in the conduit. However, this procedure becomes 

very cumbersome in the case of the other storm drain shapes. The graphical 

or numerical relationship is usually given for non-circular shapes. As this 

study will be conducted for the circular conduits, the other drain shapes will 

not be treated here . It is a current procedure to determine the approximate 

analytical expressions A(H) , B(H), R(H) for a drain type, so that this 

expression could be used in digital computer operations, with the minimum 

occupation of its storage space. 
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1. Area Function 

Instead of using the water depth H • the dimensionless ratio 

h = H/D • and a ratio a = A/Af may be used, with Af = area of a pipe 

flowing full, with Af = Dz 1r I 4 • It follows from fig. 1 0 

Dz Dz H D 
A = - ( (3 - sin (3) 

8 
= 4 arccos ( 1-2 -) - (- - H) -v (D-H)H D 2 

or 

= 
1 
1( 

arccos (1-2h) - ! (1-2h) ~ 

A = ~, [ arc~os (1-Zh) - 2 (1-Zh) ~)] 

Figure 11 gives the relative cross section area for different 

relative depths h = H/D of the pipe. 

2. Width Function 

The width B. (fig. 10), can be expressed in both ways, 

absolute as B , or relative as b = B/D , so that 

B = D sin ~ = 2 D -/ ~ (1 - ~) = 2D ~ 

b=2~ 

3. Hydraulic .Radius Function 

The wetted perimeter P is 

p = Df3 = 
2 

2H Darccos (1- 0 ) = D arccos (1-2h) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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Using equations 66 and 71 the hydraulic radius is 

R = 
A D (D-ZH) V (D-H)H 
-= 

ZD arccos ( 1-ZH/D) p 4 
(72) 

[ I -
Z(l-Zh) ,/ h (1-h) ] 

R 
D 

= arccos ( 1-Zh) 4 
(73) 

or with the relative value r = R/(D / 4), where D /4 is the hydraulic 

radius of full pipe flow 

r = 
2(1-Zh) -y h(l-h) 

l - ( 1-Zh) arccos 

The relative values r are given in fig. 11 as function of 

h = H/D • The relative value R/H is given as 

R 
H 

1 
= - -4h 

( 1-Zh) ~ h( 1-h) 
Zh arccos (1-Zh) 

4. Presentation of Geometric Characteristics 

{74) 

(75) 

The cross section characteristics at any point of a storm drain 

are, therefore, given for area, width and hydraulic radius as functions 

of conduit diameter and water depth: in the form of analytical expressions 

{exact or approximate), in graphical form, or in a numerical {tabular) 

form. The use of one of these forms will depend on the computational 

method and device selected. The above formulae show that A, B, R 

are functions of both D, H. As D is a constant for a given drain section, 

all these three cross section characteristics are function of depth H only. 
-.;/ 

The practical problem arises when these functions have to be used 

in computation by digital computer. They are generally approximated by 



simpler expressions which fit sufficiently well the numerical values, 

(ref 8). 
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The area, width, and hydraulic radius functions are complex to 

use. They will be, therefore , replaced by power series form, so that 

they will be easily programmed in the case a digital computer is used 

for storm flood computations. The work would be so directed as to 

minimize the necessary storage occupation in a computer by the geome­

tric properties of drains, in order to leave storage capacity for inflow 

hydrogr aphs and other elements not easily subject to an analytical inter­

p!'etation. 

The approximations for above functions, equations 68, 69, and 73 

will be dealt with in the future programming for the integration of equa­

tions 18 and 19 by digital computer and finite difference method. 

5. Dra b Slope 

The slope S will be selected always a constant for a given ~x , 
0 

o~ the s election of finite difference ~x will be made so as to never have 

tll,e change of S inside that diff e;rence. The slope S is positive when 
0 0 

t~e botton+ is inclined toward the direction of water flow, and negative for 

the opposite case. 

C. VELOCITY DISTRIBUTION COEFFICIENTS 

Two velocity distribution coefficients a and {3 appear in equations 

18 and 19; and are defined as; 

a = i v33 dA 
V A (76) 

where v is the stream line velocity of the elementary cross section area dA, 

V = mean velocity, and A = total flow area . This coefficient, sometimes 

called energy coefficient, Coriolis coefficient or kinetic energy correction 
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factor. comes from the requirements that the energy of flow is the same when 

the mean velocity replaces the velocities of incremental areas. so that aV3 A 

takes care of that requirement. 

{3 = (77) 

so that {3 V?.. A takes care of the requirement that the momentum of flow is the 

same when th e mean velocity replaces the velocities of incremental cross sec­

tion areas. This coefficient is sometimes called the momentum coefficient. 

Boussinesq coeffic ient. or momentum correction factor. 

Putting 

v=V(l-v) (78) 

and 

(79) 

the approximate values of a and f3 are. (ref 9). 

a = ~ J ( 1 + v )3 dA = 1 + ~ J v ?..dA = 1 + 3 s ( 8 O) 

{3 = 1 + l J v ?..dA = 
2 + a 

3 
= 1 + s (81) 

Another approximation is used. (ref 10) , in the case of a logarithmic velocity 

distribution with 

so that 

€ = 
V 

max 
V 

- 1 

a = 1 + 3 E?.. - 2€3 

(82) 

(83) 
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{3 = 1 + €2 (84) 

The experimental data indicate. (ref 10) that the a - value varies 

in the limits 1. 03 to 1. 36 ·or fairly straight prismatic channels. The value 

of a decreases in general with an increase of the channel size, and for 

channels with considerable depth. 

For pipes in full flow, and with the logarithmic distribution of 

velocities, the analytical expressions for a and /3 are, (ref 11): 

a = l+ 2.93 f-1.55 f
3

/Z 

and 

{3 = 1 + 0. 98 f 

(85) 

(86) 

where f is Darcy-Weisbach friction coefficient. As f is the function of 

Reynolds number for smooth pipe. a and /3 are, therefore, functions 

also of Reynolds number. 

The values of a change for fully flowing pipes from 1. 028 for 

f = O. O 1 to 1. 13 for f = O. 05, and the values of {3 change less, from 

1.01 for f = 0.01 to 1.05 for f = 0.05. 

For the partly flowing conduits a and {3 are functions of depth. 

It is expected that a and f3 depend also on the absolute value of pipe 

diameter, apart from the depth or depth-diameter ratio. So 

a (f, H, D) ; /3 (f, H, D) ••• 

with F approximately constant for a given rough pipe, and function of Re 

for smooth pipes. A recent survey of literature has not produced the data 

or information on the velocity distribution coefficient functions for partly 

filled pipes. 

(87) 
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In general, the coefficients a and f3 are taken as unity. This 

approximation does not affect substantially the flow computations. A dif-
, 

ferent approach is planned for this study in connection with the general approach 

outlined in the introduction part of this report . 

One of the purposes of this basic study is the analysis of errors and 

departures among computed unsteady free surface flows and the true observed 

flow patterns, by using the statistical methods of theory of errors . The assump­

tion of a = 1 and f3 = 1 , instead of using their real functions, equation 87, 

will introduce the departures between the two compared flow patterns . In 

order to analyze the sources of errors, and their order of magnitude, the 

efforts will be made to determine the functions of a and f3, equation 87, 

and to use them in equations 18 and 19 for the highest order approximation treat­

ment of unsteady free surface flow in storm drains . The later neglect of these 

functions by assuming a = 1 and f3 = 1 , and the differences detected will give 

the effects of velocity distribution coefficients on flow patterns under different 

initial and boundary conditions. 

The basic remarks directed towards different methods of computing 

the unsteady free surface flows are in the lack of any real experimental or 

computational dat a which enable one to assess the errors with a good scienti­

fic approach. 

It will be necessary, however, to introduce an approximation also in 

this most general treatment of velocity distribution coefficients and of their 

effects . It consists in assuming that the coefficients determined for steady 

flow are the same as those for the unsteady flow . This assumption will be 

carried out, if data (either available in literature or obtained easily on the 

future hydraulic model study) would not be obtained during the period of the 

study. This assumption will have a relatively small effect , because the small 

differences of a and f3 in unsteady and in steady flow should be applied to 

a relatively small effect of a and f3 coefficients on unsteady flow patterns . 
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D. FLOW RESISTANCE 

The Darcy-Weisbach formula for the flow in conduits will be used. 

The standard formula for the full flowing pipe is 

f y?. 
Sf = D 2g (88) 

with f = Darcy-Weisbach friction coefficient, and V?. / 2g the kinetic-energy 

head. As the kinetic-energy head is aV?./zg , the velocity distribution coef­

ficient a is, therefore, included in f • When a is only function of f , 

this fact does not matter, but if a has a different function. as for example 

given by equation 87, then f is dependent on the other factors also than in 

the case a and f were separated. 

For partly filled pipes. a modified formula will be used here, replac­

ing D by 4R , \vith R = hydraulic radius, so that 

f 
4R 

(89) 

with R given by equation 7 2 or equation 7 3, a by equation 8 7, and f is 

the friction coefficient dependent on relative roughness of conduit, and Reynolds 

number Re (for smooth pipes only). 

There are several formulae in literature for f for fully flowing pipes, 

but appropriate expressions are lacking for partly flowing conduits. 

The values for f of Karman-Prandtl for smooth full flowing pipes 

are 

I 

-fr 
= 2 log Re '1f- 0.8 (90) 

For full flowing tamped concrete pipes (ref 12) the values of f experimentally 

determined start to depart from the curve of equation 90 at Re = 2 x 10
5 

, but 
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5 
are nearly constant for values Re > 2 x 10 • For concrete pipes cast in 

steel forms and vibrated with good joints the conduits are smooth, so that f 

decreases with an increase of Re. but the f(Re)-line is somewhat higher than 

the line of equation 90. The fitted line has the expression 

= 2. 7 + 5. 75 log (91) 

which approximates well t e experimental data. This refers to fully flowing 

pipes. Experimental data for partly flowing pipes are lacking. 

For the purpose of this study two kinds of pipe roughness will be used, 

in order to develop for both the corresponding programs for digital computer: 

1. Rough pipes. with f = constant for greater values of Re than a 

minimum value (around Re = 1 x 10
5
). Using equation 89 the varia­

bility of a will be excluded from the potential variability of f 

with the depth H • 

2. Smooth pipes. with f(Re), as in equations 90 and 91, where Re 

for partly full pipes is defined in an appropriate manner. 

In order to introduce the accurate relationship of equation 89 into the 

basic differential equation 19, the functions f(Re) = f(V, R, T) with 

T = temperature and R = hydraulic radius; a(f, H,D) , and R( D,H) must 

be clearly defined and substituted in equation 89. In this case, the friction 

slope becomes a function of five variables: Sf (f, V, D, H, T). For smooth 

pipes, with Re = VR/v (T), where v(T) = dynamic viscosity as function of 

temperature, and using equations 73, 87, and 91 the function Sf (f, V, D, H, T) 

becomes very complex and feasible to treat only by a digital computer during 

the integration of partial differential equations by finite difference methods. 
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The complexity of this resistance law imposes the solution of finite difference 

equations by an interative (trial-and-error) procedure in most cases, 

~specially for the boundary problems. 

It is necessary to investigate the flow resistance at the manholes or 

iplet boxes for free surface flow. There are limited data in the literature for 

any type of inlet boxes with free surface flow. There are sufficient data for 

flow resistance at inlet boxes working under water pressure. 

The bulletin No. 41 of the Engineering Experiment Station of the 

University of Missouri, "Pressure Changes at Storm Drain Junctions 11
, 

treats only the storm drains with flow under water pressure. As in this study 

of "Unsteady Free Surface Flow in a Storm Drain II it is supposed that there is 

only surface flow, a surface level drop takes place at manholes instead of a 

pressure drop. It has not been possible as yet to use results of the University 

of Missouri study for this research project. 

A survey of literature has not as yet resulted in a feasible method of 

treating the hydraulic losses of surface flow at manholes, with assumed match­

ing arrangements and with lateral inflow. The adequate solution of this pro­

blem seems to be very important for accurate storm flood computation. It 

might be that the problem would be solved satisfactorily only when the model 

study would be undertaken in the next phase of study, with this problem as a 

secondary model study attached to the general model study of storm flood 

movement through drains. 

In order to simulate the actual conditions in the computation of 

unsteady free surface flow by digital computer, and to compare the results 

with the wave movement in a conduit, determiIJ.ed by hydraulic model, the 

simple inlet boxes will be designed according to actual practices, and their 

hydraulic characteristics will be determined. As an inlet box represents the 

jµnction of a small drain with the main drain, the flow resistance in the form 

of a level drop ~H at inlet bo~. will be a function of two types of para­

meters, geometric and hydraulic. For a fixed shape the geometric 
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characteristics may be reduced to one or two parameters, for example L 
1 

and L 
2 

, while the hydraulic parameters must be three: upstream discharge 

Q entering the inlet box; lateral discharge Q. given by inlet hydrograph; 
U l 

•1.,nd the upstream (or downstream) water level at the manhole, so that 

~H = F (L l , L
2 

• Q , Q. , H ) 
U l U 

(92) 

In order to solve the problem of manhole hydraulics for surface flow 

in drains, a characteristic shape of manholes used in highway or urban 

drainage systems will be adopted. 

The hydraulic investigation of selected inlet box, being a part of this 

study, is considered as a prerequisite for any good comparison among hydrau­

lic model investigations and digital computer analysis of unsteady flow. 

The hydraulics of local resistances or of singular losses, which are 

due to the changes of cross section, to the type of transition from one to 

another cross section, or even due to the change of their shape, then to the 

change of direction of storm drain, is considered as known and the relation­

ships will be obtained either from the most recent literature on these subjects 

or from measurements on a hydraulic model. 

The above flow resistance formulae as well as discussion and pro­

gram for future detailed hydraulic measurements on model conduit refer to 

steady free surface flow. As discussed previously, the question of a difference 

in flow resistance between an unsteady and a steady flow may be answered 

only by special hydraulic investigations, both analytical and experimental. 

It is anticipated that the research facilities and the future research program 

will allow - at least partly - an insight in this problem. 
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E. LATERAL FLOWS 

The boundary and initial conditions of a storm drain, selected for 

this study, do not foresee the continuous lateral spill of water either into the 

storm drain or out of it. In these cases, therefore. q = O • The point inlet 

inflows are treated with the finite differ enc es .6x = 0 • If. however, the 

spill-over out of the storm drains is designed, or if water can spill over an 

edge or drain into the storm drain, the function q (H,x,t) should be known 

as a boundary and initial condition. 
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VI. INITIAL AND BO NDAR Y DAT A 

A. WATER FLOW CONDITIONS IN DRAIN BEFORE THE STORM FLOOD BEGINS 

The antecedent flow conditions to the storm flood inflows into a drain 

may be the following: 

1. The storm drain is dry; 

2. The flow is steady, but with a low flow covering the bottom of the 

drain; 

3 . The flow is unsteady of a previous storm flood on which the new 

storm flood (generally to be assumed larger than the previous 

storm flood) is superimposed . 

The dry drain imposes a flood wave front movement along the conduit. 

The two part ial differential equations 18 and 19 do not apply to that condition, 

because they are developed for gradually varied flow , while the wave front on 

a dry bed is a rapidly varied flow, a special type of progressing surge. The 

movement of flood wave on a dry bed will be considered as a particular pro­

blem to be investigated separately later in the broad framework of basic and 

applied research for unsteady free surface flow in storm drain. 

The steady flow prior to storm flood inflow will be assumed in further 

studies. A small steady discharge will create a sufficient flow depth in con­

duit, that the storm flood wave movement at its beginning can be still con­

sidered as gradually varied flow . 

The third case may be assumed, under conditions that the wave 

characteristics (V, H as function of x for a given t , for example) are 

known prior to the new storm flood inflows . 

B . INFLOW HYDROGRAPHS 

All inflow hydrographs should be known as the initial data . Their 

accuracy will determine the precision with which the hydrographs along the 
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storm drain will be comp ted in comparison with the actual hydrographs. 

The steepness of storm flood rise or of recession part of inflow 

hydrographs has a bearing on the selection of finite difference 6t . The 

steeper the discharge hydrograph, the smaller should be the finite difference 

6t • at least at the parts of hydrograph with steep rate-of-change 6Q/ 6t • 

The general case of unsteady flow in a storm drain should be 

analyzed independently of the type of inflow hydrographs at the inlet points. 

so that no specific shape of hydrograph will be assumed for the analytical 

approach. except in eventual examples. 

C. JUNCTION DATA 

When the junction problem must be included in the unsteady flow 

computation, all data should be available for the drain branches at the junc­

tion. If the drainage system has many storm drains which join together from 

place to place. with the confluence at water levels. all branches should be 

included into the unique solution, because their wave flows are dependent. 

In such cases. only the digital computers. with large storage space and a 

relatively fast computation capacity, are able to carry out economically the 

simultaneous solution for wave movement and development along all drain 

branches. 

D. OUTFLOW CONDITIONS 

The outflow rating curve at the storm drain end in unsteady flow is 

not in general a unique relation of discharge and water depth at a given place 

at outlet. because the changing slope of water surface at the outlet makes that 

relationship dependent also on this third variable. This problem is to be 

clarified for each case. especially as to the effect which any third variable 

{in this case : slope. another depth or level, and level difference) may have 

on the discharge change for a constant value of a stage. This general case 
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will enable, however, the treatment of any outflow conditions, when outflow 

discharge depends on two other variables (for example, the backwater effect 

of a pool at the storm drain end) . 

The free outlfow from a drain was the subject of some experimental 

studies, but under steady flow conditions . It is an open question how much 

the rating curve changes in unsteady flow due to changing surface slope . This 

boundary condition at the outlet poses the question of what is the departure of 

rating curves in steady and unsteady free surface flow in drains. The future 

experimental conduit will permit stu dy of this problem . 

E. GENERAL BOUNDARY CONDITION DAT A 

The general scheme of boundary conditions for a storm drain is that 

all inlets and changes of cross section areas and shapes , matching arrange­

ments , direction of storm drains and similar are located at the discrete 

points along the drain, kn0wn in advance. Between the two adjacent points 

the drain data are uniform, with slope, cross section area and shape, and 

resistance factor constant and with no lateral inflow or outflow. 

Where there is a drop at a manhole, and where there is never a 

tailwater effect carried from downstream section to upstream section through 

the drop, the storm flood computation of the upstream portion of storm drain 

is independent of all downstream conditions, but it is dependent on the data 

concerning the outflow rating curve at the drop . The outflow hydrograph 

from the upstream section of the drain is the inflow hydrograph to the down­

stream portion of the system. These drop points will make the computation 

procedure simple. and should be identified and taken into consideration as the 

important boundary condition data . 

Where there is a tail water effect at the drop from downstream to up­

stream section, this effect has to be taken into account either through the 

rating curve Q == f(Ha, Hd), with Ha == upstream level, and Hd == downstream 

level at the drop, or a submergence factor can be introduced, which represents 
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the ratio of the real outflow at the drop to the outflow which could occur with 

out the submergence (tail water effect). The submergence factor for the largest 

discharge during the surface flow, or for the highest water levels at the drop 

will determine if the drop could be considered or not as a boundary condition 

data of storm drain from the point of view of unsteady surface flow, or the 

drop is only a singular resistance in a unique system. Some conventional 

criteria for this condition cannot be avoided in the practical applications. 

The boundary condition should be analyzed prior to unsteady flow 

computation for the occurrence of passage from supercritical to subcritical 

flow or vice versa, both in steady and unsteady surface flow in the storm 

drain. The places where there is always a passage from subcritical to super­

critical flow or vice versa (hydraulic jumps) in unsteady flow will be considered 

as dividing points for unsteady flow computations, similarly, as for the drops 

without or with the submergence effect. 



67 

VII. RESEARCH PROGRAM, SIGNIFICANCE AND FACILITIES 

A. SPECIFIC AIMS 

The specific aims of the future research program are: 

1. Development of a set of flood routing methods of unsteady free surface 

flow in a storm drain. Each method of the set should be a feasible 

procedure for given conditions of storm floods and drain charac­

ter istics. This set of methods should cover as wide a range of 

flow conditions as possible, in computing the depth, the velocity 

or discharge hydrographs and wave profile at any point or along a 

system of storm drains . 

2. The long term goals of both the basic research and the applied 

research of unsteady free surface flow in conduits or in special storm 

drains are a better understanding of flow phenomena, and the develop­

ment of design criteria and methods for storm drains. 

3. To conduct analytical or experimental study of hydrodynamics aspects 

of unsteady free surface flow in conduits, which could have any effect 

on flood routing methods to be developed for storm drains. 

4. The developed set of flood routing methods should be based on the use 

of a digit al computer, with Fortran programming, in order to use for 

this purpose any available digital computer manufactured in the 

Unit ed States. 

B. METHOD OF PROCEDURES 

The research program and procedures used in carrying out the 

research plan for the unsteady free surface flow in storm drains, foreseen for 

the fiscal yeo.rs 1962, 1963, and 1964 a.re divided into three parts: 

1. Hydraulic experimental studies; 
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2. Digital computer studies, and 

3. General comparat ·ve studies with final results. 

1. Hydraulic Experimental Studies 

As the flood hydrographs change slowly in a smooth conduit, an 

experimental pipe (about 800 feet long) is planned to be installed for 

hydraulic experiments. The research program will consist of the follow­

ing problems and procedures: 

a. The study of the relationship between boundary roughness and 

steady free surface flow in a storm drain. The purpose of this 

study is to determine the effect of boundary roughness, Reynolds 

number (especially of depth of flow) on the Darcy-Weisbach coef­

ficient f • Results of the experimental study will be used as 

input data for t e digital computer. 

b. The study of the relationship between head loss, discharges and 

water levels at manholes in a storm drain. The first phase will 

consider the elementary type of manhole only. The experimental 

results will be entered as input data into the digital computer. 

c. The study of the relationship between depths of free surface flow 

and discharge at the conduit outlet. The study will consider both 

steady and unsteady flow, to inquire for an eventual difference of 

rating curves between steady and unsteady free surface flow. 

Rating curves will be developed for different conduit conditions, 

and they will be used as boundary conditions for the studies by 

digital computer. 

d. The study of other flow phenomena involving unsteady free surface 

flow, such as: the amplification of flood waves in channels of 

steep slopes; the instability of flow when the pipe is flowing nearly 
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full; the passage from supercritical to subcritical flow by the 

hydraulic jump and the instability of position of the hydraulic 

jump in unsteady flow; and the study of other similar problems 

will be carried out. 

e. The study of the velocity distribution in drains flowing partly full 

to determine accurately the velocity distribution coefficients. 

a and {3 • for their use as input data into the digital computer. 

f. The study of the other flow phenomena observed by using either 

tran,sparent windows in the drain or transparent sections of pipe,. 

obs~rved flow phenomena would be checked or simulated by 

digital computer. Reproduction of the flow phenomena would be 

essential to establishing identity of phenomena examined by model 

drain studies and digital computer analysis. 

g. The research schedule will include the use of three or more slopes 

of the storm drain, the use of three or more boundary roughnes­

ses, and, for reasons of economy initially one pipe diameter only, 

or the slope and boundary r .oughness will be variables , while the 

pipe diameter will be first constant, but later two additional small 

pipes may be added to the experimental set-up in or.d.er to make 

diameter the third variable. 

h. On the basis of the aforementioned studies to simulate floods in a 

storm drain by introducing inflow hydrographs at the extreme and 

at at several inlet points along the model drain. The inflow hydro­

graphs--discharge as a function of time--will be accurately 

recorded by appropriate devices. The movement and development 

of flood waves along the storm drain and at the pipe outlet will 

also be accurately recorded. The recorded inflow hydrographs 

will be used as input data for the digital computer. The recorded 

hydrographs at any point in the storm drain or wave profiles along 
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the drain for different times will serve as a basis for comparing 

with and checking the hydrograph determined for the same point 

or wave profile at a given time determined by the computer. 

2. Digital Computer Studies 

The main purpose of using the digital computer studies is to investi­

gate the feasibility of using the two partial differential equations of unsteady 

free surface flow as the basic mathematical tool for routing of flood waves 

through storm drains. 

The influence of different factors as well as the order of magnitude 

of different terms in the two partial differential equations will be investi­

gated by computer for different inflow hydrograph and storm drain charac­

teristics. 

· The selection between digital and analog computer for the research 

purposes is planned to be studied also • . 

The advantages of using the digital computer in integrating the 

two partial differential equations of unsteady free surface flow are: 

a. Economy of computation • . 

b. Speed of predicting or computing the flood waves along the storm 

drain, and 

c. Increased accuracy, but which should correspond to the level of 

accuracy of the background data • . 

The program for the digital computer is planned to be carried out 

simultaneously with the hydraulic model studies. The results obtained by 

the hydraulic study will be used in developing the program for the computer 

studies. The errors created in rounding the numbers in digital computer 

will be studied also. 



71 

Two different procedures for integration of the two partial clif-

f erential equations are planned to be carried out by computer during the 

study " First. the method of finite differences. as applied to the two 

partial differential equations of unsteady flow. with different increments 

(finite differences) of time and length of storm drain will be used . 

Computations by this method will be compared with the results obtained 

by hydraulic studies. The second method of integrating will be in apply­

ing the method of finite differences to the four character istic equations. 

as equivalent equations derived from the two partial differential equations. 

By using the four characteristics. they will be developed in the most 

general terms. and then to investigate by the computer which factors, 

especially the velocity distribution coefficients, could be neglected . 

The following is planned to be solved by using a digital computer: 

a . ) · To determine the order of magnitude of different terms in the two 

partial differential equations for different characteristics of con­

duit and inflow hydrographs . 

b . ) To determine the effects of different factors in the two partial 

differential equations of unsteady free surface flow, equations 18 

and 19, on the flood wave developments along a storm drain. 

c . ) To solve some of th e hydrodynamic problems, which are not yet 

solved by experimental or mathematical methods . One of these 

problems is the criterion when a wave in a storm drain either does 

not change or amplifies under different conduit characteristics. 

d.) To supply the basic data to assess the accuracy and reliability of 

different existing flood routing procedures. or to develop a new 

set of flood routing procedures for storm drains . using the digital 

computer . 
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3. Comparative Studies 

As soon as the first results from both hydraulic experiments and 

from the computer will be available , the comparative studies will be 

carried out simultaneously. 

The purpose of these studies is to genera.lize the results, but also 

to direct if necessary the hydraulic experimental studies, for additional 

problems, and to guide the computer programming and study, so that 

the basic results can be improved. The comparative studies will use the 

theory of errors and other tools of mathematical statistics and probability, 

in order to derive a set of flood routing methods feasible for storm drains. 

C. SIGNIFICANCE AND CHARACTERISTICS OF THE RESEARCH 

In order to drain highways or urban areas during the storm precipita­

tion, and to avoid flooding of highways and cities of all consequences for the 

given intensity, duration and probability of occurrence of rainfall, by using the 

large storm drains, four following problems should be solved simultaneously : 

• 1. To determine the inflow hydrographs into inlet points on the highways 

or streets. 

2. To shape and design curb inlets so that they will not impede the desired 

conveyance of flood waters. 

3. To design primary and secondary storm drains in order to reduce 

flooding on the highways or streets for the design inflow hydrographs. 

4. To evacuate the water from the outlet of the main storm drain either 

by gravity flow or by use of pumps. 

The significance of the research program of this study is to find, by 

using basic and applied research, the feasible methods to solve the problem 

outlined in item 3. In this case the design inflow hydrographs, geometry of the 
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curb inlets and outflow conditions at main storm drain outlets are assumed to 

be known, and they will be supposed in this study as to be a known information. 

Only the unsteady free surface flow in the storm drain will be studied. 

The reasons for this are as follows: 

, . a. The main storm drain should be located as near to the highway or 

street surface as feasible to minimize the stress of the overburden 

and to avoid additional cost in excavation and in reinforcing of the storm 

drain . 

b. The maximum discharge for free surface flow in conduits is approxi­

mately O. 9 of the conduit diameter. If the same discharge should be 

conveyed in a pipe flowing full and under pressure, the slope of the 

energy line must exceed the slope of the pipe. 

c. If the maximum discharge should exceed the discharge for O. 9 D and 

the energy line slope, the conduit slope, this results in flooding of 

the lowest part of the highway or street. 

As soon as the flow in the pipe becomes flow under pressure the out­

flow discharge is approximately equal to the sum inflow of all inlets. 

The main significance of this study is to supply the design methods as 

the final result of the basic and applied research for highway or urban storm 

drains as well as all other water drainage systems in which flood waves occur. 

The new methods should replace, where justified or feasible, the current 

flood routing methods based on simple differential equation. 

Due to the fact that the storm drains are made of smooth concrete, 

the velocities are generally sufficiently great, that the acceleration terms 

av /at , and av /ax in equation 19 are not negligible in unsteady water flow 

through storm drains. This assumption leads to the selection already made 

that the storm flood routing through storm drains should be primarily based 

on the two De Saint Venant partial differential equations. The analysis of the 
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order of magnitude of acceleration terms in momentum equation for some 

specific cases, with the purpose of justifying the above assumption, should be 

useful and significant. 

Though the basic significance will be in defining a convenient set of 

flood routing methods based on the two partial differential equations, the 

methods based on the storage equations only (continuity equation), or the 

methods which are considered as transitions from methods based either on the 

two or on one differential equation, will be analyzed also as for their applica­

bility in the case of unsteady flow in a storm drain. 

To determine the dimensions of a storm drain there are two approaches 

when the unsteady flow is computed by a storm wave routing method: 

1.) The method is so simplified that the diameter or other cross section 

dimension can be computed directly; 

2.) The dimensions of drain are first assumed then the computation of a 

storm flood by a routing method is carried out along the drain. If 

the dimensions come out to be either small or large, the new dimen­

sions are assumed, and the storm wave analysis is repeated until 

the right dimensions are obtained . 

VVhen the two partial differential equations are used as the basis for 

flood routing, only the second approach seems, as by the actual status of 

unsteady flow theory and practice, possible. The first approach is, however, 

the goal which should not be overlooked. 

The current flood routing methods start from any hydrograph shape, 

and determine, mostly dividing the hydrograph by time unit .6t in many parts, 

the transformed hydrograph for a position .6x-distance downstream or up­

stream from the initial position. As some design storms are one-sharp peak 

hydrograph, they can be approximated sometimes by an analytical expression. 

Though the analytical integration of the two partial differential equations is 

excluded from this study, there is also a potential storm drain routing method, 
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though very approximate, which can be based on routing of parameters 

(generally three) of the analytical equation of hydrograph along the storm drain, 

instead of routing the elements of the hydrograph. This method would be suit­

able for fast computations in preliminary design, if it is shown by future 

research program to be practically feasible. The significance of this research 

program will be in determining the feasibility of such a method to storm drain 

computations. 

The expectation is that the future studies are likely to produce a set of 

potential methods for computation of unsteady flow in a storm drain. Only the 

comparison by actual computations, by hydraulic model study (or by eventual 

observations in the nature), and by the use of the digital computer will answer 

the question under which conditions and with which accuracy each new or exist­

ing method should be performed. 

D. FACILITIES AVAILABLE 

The hydraulic test drain pipe is to be located near the new Hydraulics 

Laboratory of Colorado State University now under construction. The 30-inch 

diameter conduit will be approximately 800 feet in length. It will be located 

along the side of a ridge with a relatively steep but straight side slope. Thus. 

it will be possible, by holding the entrance end of the pipe fixed while the out­

let end is free, to move to vary the slope from O % to 5% . 

Discharge in the conduit will be from a forebay supplied by gravity 

flow from nearby Horsetooth Reservoir. 

Entrance conditions between forebay and test conduit are to be 

designed such that steady flow conditions will be established within a relatively 

short reach of the conduit . Thus, permitting a maximum length of pipe for 

flow analysis and measurement. 

The flow hydrographs will be introduced into the main channel flow by 

means of a supply pipe and laterals. Sections of plexiglass or windows in the 

test conduit will permit visual observation and photographic analysis of the 
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flow phenomena. The unsteady free surface flow will be measured and 

recorded by means of appropriate measuring devices . Velocity profiles will 

be determined. 

The conduit flow will be wasted into nearby College Lake and returned 

during the night by pump and pipe to Horsetooth Reservoir. This system per­

mits a wide range in the discharge demand on the water supply. 

The digital computer IBM 1620 located at the computing center on the 

main campus of the University will be used for the proposed study. 

The IBM 7090 as a much faster computer will be available for the 

research activities of the research staff of Colorado State University, under 

very favorable conditions. This computer will be used for complex and bulky 

computation, when IBM 1620 would not be appropriate. 
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