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ABSTRACT

UNSUPERVISED VIDEO SEGMENTATION

USING TEMPORAL COHERENCE OF MOTION

Spatio-temporal video segmentation groups pixels with the goal of representing moving

objects in scenes. It is a difficult task for many reasons: parts of an object may look very

different from each other, while parts of different objects may look similar and/or overlap.

Of particular importance to this dissertation, parts of non-rigid objects such as animals

may move in different directions at the same time. While appearance models are good for

segmenting visually distinct objects and traditional motion models are good for segmenting

rigid objects, there is a need for a new technique to segment objects that move non-rigidly.

This dissertation presents a new unsupervised motion-based video segmentation ap-

proach. It segments non-rigid objects based on motion temporal coherence (i.e. the cor-

relations of when points move), instead of motion magnitude and direction as in previous

approaches. The hypothesis is that although non-rigid objects can move their parts in differ-

ent directions, their parts tend to move at the same time. In the experiments, the proposed

approach achieves better results than related state-of-the-art approaches on a video of zebras

in the wild, and on 41 videos from the VSB100 dataset.
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Chapter 1

Introduction

Spatio-temporal video segmentation groups pixels, with the goal of representing moving

objects in scenes. For example, Figure 1.1 shows a family of zebras in the savannah [18],

described in more details in Figure 1.2. The zebras all have similar colors and markings,

and the babies stay close to their mother, circling her as she grazes. The result is a dynamic

pattern of visual occlusions among similar objects. Worse still, zebras are non-rigid; their

head, legs and tail typically move in different directions from the torso and from each other.

The challenge is to develop a general-purpose motion segmentation algorithm capable of

dividing this video into four regions, namely three zebras and the stationary background.

Figure 1.1: A spatio-temporal video segmentation example. (a) A frame from a video [18] of
three zebras walking around. The three zebras walk and stop continuously and independently
in an uncorrelated manner. (b) The ideal segmentation of this video shown on this frame.
Each color represents a segment, for a total of four segments.

This dissertation presents an unsupervised motion-based video segmentation algorithm

designed for non-rigid objects such as animals, but that works for both rigid and non-rigid

objects. Previous motion-based segmentation algorithms group pixels (or superpixels) based

on consistent motion magnitudes and directions. Unfortunately, non-rigid objects may have
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Figure 1.2: An example of three zebras [18], numbered from left to right in the first frame.
At the beginning of the video, the third zebra is walking from right to left toward the middle
of the frame, while the first zebra is walking in the opposite direction and passing behind the
third zebra. Meanwhile, the second zebra pretty much remains in its place in approximately
the first third of video. At that time, the third zebra stops briefly in the middle, while the
second zebra turns around it in front of it, and the first zebra turns around it behind it.
Finally, the third zebra starts to turn around the second zebra and becomes in front of it,
while the first zebra walks to the right until it becomes out of view.

parts moving in different directions, as in the zebra example above. The hypothesis of

this work is that although non-rigid objects may move their parts in different directions,

connected parts tend to move at the same time. From this observation, the key is to identify

when objects move instead of how they move. If two adjacent superpixels often move at

the same time, their motions are temporally correlated and they are likely to be parts of a

single object, even if they are moving in different directions. The emphasis on the temporal

coherence of motion instead of motion magnitude and direction is the main contribution

of this dissertation. The result is an algorithm capable of segmenting videos containing

combinations of rigid and non-rigid objects. We called this algorithm Robust Animate

Motion Segmentation (RAMS).
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Figure 1.3: A simple example for illustrating how temporal coherence of motion is used
in RAMS. Top: A video example of a man walking from right to left, holding a gas can
that he places on the ground in the middle of the video. Bottom: An extracted temporal
motion pattern for each of the three objects. The idea is that these objects are separable by
comparing their temporal motion patterns.

Figure 1.3 shows an example of how temporal coherence can be used to group objects

in a simpler video. A segmentation of the video in Figure 1.3 based on homogeneity should

produce four moving superpixels: one for the man’s shirt, another for his pants, one for the

gas can he puts down, and one for the tablecloth he walks in front of. The key observation,

however, is that the shirt and pants can be grouped, even though they don’t look alike,

because they tend to move at the same time. The gas can, on the other hand, is separate

because after he puts it down, it stops moving. The tablecloth is yet a third object because

it moves when the wind blows, and therefore has a third, distinct pattern of motion timings.

Notice, however, that a rigid motion model will not group the shirt and pants, because

although they move at the same time, they move in different directions. The insight of this

paper is that temporal correlation alone is better than rigid motion models for animated

objects, and is sufficient for other object types.

Returning to the more challenging example of the zebras shown in Figures 1.1, even

though the zebras look alike, their temporal motion patterns are different; they start and

3



Figure 1.4: Segmentation results for the zebra video example for RAMS, and state-of-the-art
approaches: Grundmann et al. [16], Xu et al. [7], Galasso et al. [10], and Ochs and Brox
[25], respectively. For each algorithm, this figure shows the segmentation with the fewest
clusters such that the zebras are visually separable (when possible).

stop at different times. The temporal coherence of their motions is sufficient to segment

the overlapping zebras. The second row of Figure 1.4 shows the segmentation produced
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by RAMS on two frames of this video. Rows 3, 5 and 6 of Figure 1.4 show the results

of segmentation algorithms based on rigid motion models; they cannot group the zebras

without over-segmenting the whole scene because the zebras are not rigid. Row 4 shows the

no-more-successful result of an appearance based segmentation algorithm.

To compute temporal motion patterns, RAMS determines whether a point is moving or

not. Currently, RAMS assumes a fixed camera to make motion detection simple. This is

why we evaluate RAMS on 41 of the 100 VSB100 [9] videos: we test it on every video that

does not have significant camera motion (we do compensate for jitter; see Chapter 3). This

allows us to evaluate the effectiveness of temporal coherence models, rather than our ability

to detect independent motion, although it limits the use of the current implementation to

surveillance applications and other scenarios with fixed cameras. In the future, we expect

to integrate RAMS with algorithms that detect independently moving points, for example

[11, 31], to remove the fixed camera limitation, as discussed in Section 5.2.

Temporal coherence of motion may seem like a weak source of information. When seg-

menting videos, motion magnitudes and directions are generally thought of as the important

video cues, based on intuitions from rigid objects. Given a video of cars on a street, for ex-

ample, points that move with the same magnitude and direction should be grouped together,

since they are likely to belong to the same car, while points that move in different directions

are likely to belong to different cars. Notice that this is only true for rigid objects, however.

Non-rigid objects, such as humans and animals, have parts that move in different directions.

RAMS is the first approach that disregards motion magnitude and direction, and replaces

them with a novel motion cue: temporal coherence. Figure 1.4 shows how well RAMS seg-

ments the zebras in the example of Figure 1.1 using this new cue. Just as important, the

videos from VSB100 [9] show that temporal coherence outperforms rigid motion models and

videos selected for other purposes, in part because some of the objects in these videos are

non-rigid, and in part because temporal coherence is sufficient for rigid objects, too.
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The term “temporal coherence of motion” has been used by previous video segmentation

algorithms to mean “temporal coherence in motion type” (i.e. pixels of a segment temporally

move together in the same direction and magnitude). In the proposed work, we mean the

exact words of “temporal coherence of motion” as we use motion timings (i.e. pixels of a

segment move at the same time, regardless of direction or magnitude). Although our use

of the term is correct, there is a difference in definition that could confuse a reader. The

idea of video segmentation based on when movements happen, not on how the movements

happen, is counter-intuitive, but the idea is simpler and more general, and it works better

for segmenting non-rigid objects.

The segments of a segmentation result can be further used for object recognition or action

recognition. Segments provide localized and freely-shaped 3D regions for object recognition.

Furthermore, the motion within a segment can also be analyzed for more localized object

action recognition. The work in [35] by Ke et al. is an example of the use of video segments

in action recognition. Other applications include the generation of automatic segmentations

to reduce human effort. Automatic segmentations simplify video semantic labeling as a user

can label a segment once, and then all labels are propagated to all frames. The annotation

tool of [17] is an example of this application.

The next chapter describes some related work and background material. The third chap-

ter describes the proposed approach, RAMS, in detail. The evaluation results are reported

in the fourth chapter. The fifth and final chapter includes the conclusions and future work.
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Chapter 2

Related Work

Image segmentation research preceded video segmentation research, and is a much more

mature area. A video is an image sequence, but the introduction of motion in videos ad-

mits new sources of information. Thus, video segmentation is not a trivial extension of

image segmentation. If a video segmentation approach segments each frame independently,

it cannot use the motion information in videos. More importantly, If each video frame im-

age is segmented independently, the frames’ segmentations would suffer from segmentation

inconsistency. Therefore video segmentation approaches process multiple frames at a time,

either by processing the whole video at once, or by processing sliding windows of frames

in a streaming mode while exploiting past segmentations. The first method has the advan-

tage of acquiring all the motion information at once, and thus it has more information for

better segmentation decisions. On the other hand, streaming methods have the advantage

of breaking large videos into smaller parts to reduce memory and computational expenses.

Section 2.2 presents some related video segmentation approaches.

Many video segmentation approaches, including the proposed approach (RAMS), use

image over-segmentations called superpixels as a basis for video segmentation. Superpixels

provide the segmentation unit for RAMS, presented in Chapter 3. Thus superpixels, super-

pixel methods, and their extension to videos, are described first in the following section.

2.1 Superpixels

Image segmentation partitions images into regions, using color and texture information,

with the goal of representing the different objects in an image. Since image segmentation is
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highly dependent on the domain area, many applications that use image segmentations resort

to image over-segmentations. An over-segmentation of an image produces more and smaller

regions, such that each region is a set of compact and homogeneous pixels that respects the

boundaries of the image. These over-segmentations are called superpixels.

Since similar neighboring pixels are grouped together in a superpixel segmentation, many

video segmentation approaches pre-process a video by obtaining its superpixel segmentation,

and then segment the superpixels. This significantly reduces the number of units to segment

when compared to segmenting at the pixel level. In addition, many neighboring pixels

are similar and have redundant information, thus segmenting at the pixel level presents

unnecessary workload since superpixel segmentations pre-group similar neighboring pixels.

This section starts by describing some single image superpixel segmentation algorithms, and

then it describes an approach that extends superpixels to videos by Chang, Wei, and Fisher

III [12]. RAMS segments the superpixels of [12], so these algorithms are reviewed in detail.

2.1.1 Image Superpixel Methods

Two state-of-the-art and widely used superpixel algorithms are simple linear iterative

clustering (SLIC) by Achanta et al. [27], and graph-based image segmentation (GBIS) by

Felzenszwalb and Huttenlocher [22]. The following is a brief description of each of these two

algorithms, and Figure 2.1 shows a segmentation example for both of these algorithms.

2.1.1.1 SLIC Superpixels [27]

The SLIC algorithm [27] represents pixels in terms of their Lab colors (l, a, b) and image

locations (x, y), and performs a modified version of k-means clustering of the N pixels in

this 5D space. The number of clusters (k) is a parameter for this algorithm, and it is set

to the desired number of superpixels. The algorithm starts with initializing the clusters’

centers by first placing them on a grid with spacing S =
√

N
k
, and then adjusting these

8



Figure 2.1: Superpixels methods results on the first frame of the video example of Figure 1.3:
(a) SLIC [27] result. The two parameters were set as follows: (i) the approximate number
of superpixels was set to 100, and (ii) the compactness ratio m was set to 20. (b) GBIS [22]
result. The two parameters were set as follows: (i) scale, for region size, was set to 190, and
(ii) minimum region size was set to 50.

locations to the lowest gradient location in a 3×3 neighborhood. These centers act as seeds,

so the adjustment prevents them from being located on an image edge or a noisy pixel. After

initialization,the algorithm iteratively performs two steps: the pixels’ assignment step, and

the centers’ update step.

In the pixel assignment step, each pixel is assigned to the nearest cluster center, using a

distance function D. Instead of comparing a pixel with all the clusters’ centers, the algorithm

only compares a pixel with cluster centers that have a search region that includes this pixel.

The search region for each cluster center is the 2S×2S region centered at the cluster’s center,

because the approximate size of a superpixel is S×S. For the distance function D, instead of

using the euclidean distance in the 5D space, the algorithm computes the euclidean distance

in color space (dc) and spatial image space (ds) independently, and then combines them in

the final distance D =
√

d2c + (ds
S
)2m2, where m is the weight for the relative importance

between color similarity and spatial proximity, and is another parameter for the algorithm.
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After the assignment step, each cluster center is updated to the mean in the 5D space

for all the cluster’s assigned pixels. The residual error between the new and old centers is

computed. The iterations are stopped when this error converges.

Finally, a post-processing step is performed to ensure connectivity in superpixels. A

connected components algorithm is performed on the pixels’ labels. Each pixel that does

not belong to the same connected component as their assigned cluster’s center, is reassigned

to the same label as the nearest cluster center.

2.1.1.2 GBIS Superpixels [22]

GBIS [22] is a graph-based approach, where an image is represented as an undirected

graph. Each node corresponds to a pixel, and the edges connect neighboring pixels. Edge

weights are set to the dissimilarity between the connected pixels. The graph is partitioned

into a set of connected components/regions using an iterative and greedy region-merging

process to obtain an image segmentation.

For each region, an internal difference is computed as the maximum weight in its mini-

mum spanning tree. The difference between a pair of regions is computed as the minimum

weight edge connecting these two regions. This difference is set to infinity if there are no con-

necting edges between the two regions. The algorithm uses a predicate for checking whether

a boundary exists between two regions. The predicate evaluates to true if the difference be-

tween the pair of regions is larger than the internal difference of at least one of the regions,

and evaluates to false otherwise. This predicate is used to control the merging process by

preventing a merge of two regions if there was a boundary between them.

The algorithm starts by sorting the graphs edges by their weights in a non-decreasing

order, and then greedily process each of these edges in the sorted order. If the edge’s

connected nodes belong to two different regions, then these two regions are merged only if

the boundary predicate evaluates to false. Otherwise, they are not merged.

10



2.1.2 Extending Superpixels to Videos

Applying superpixel segmentation for each frame of the video independently results in

inconsistencies between the frames’ segmentations. Chang, Wei, and Fisher III [12] presented

an extension of SLIC [27] that generates temporally consistent superpixels (TSP) from videos.

RAMS uses these TSPs as a basis for video segmentation. Some other video segmentation

approaches extend another superpixel algorithm called GBIS [22] to videos. Examples are:

Grundmann et al. [16] and Xu et al. [7] video segmentation approaches. The following is

a brief description of the TSP [12] approach. Figure 2.2 shows the consistency of the TSPs

and the inconsistency of the per-frame SLIC segmentations for a video example.

2.1.2.1 TSP [12]

Chang, Wei, and Fisher III [12] presented an approach for generating temporally con-

sistent superpixels from videos, and they call them Temporal SuperPixels (TSP). They are

actually trajectories of superpixels, since they are tracked through time. RAMS clusters the

superpixel trajectories to segment a video.

The TSP [12] approach starts with computing the superpixels in the first frame, and then

propagating and updating this segmentation in subsequent frames, going forward in time.

This section is divided into two parts: the first part describes how the initial superpixels

are computed, and then the second part describes how the superpixels are propagated over

time. In each of these two parts, the approach tries to maximize the likelihood of the labeling

to arrive at a local optima. So in each of these parts, how the likelihood of a labeling is

computed is described first, then how does it start and iterate to arrive to the local optima is

described second. The approach takes one input, which is the desired number of superpixels

per frame, and it is denoted with M .
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Figure 2.2: TSP [12] vs. SLIC [27] segmentation for the video example in Figure 1.3. The
first row contains the per-frame SLIC segmentations for the frames 1, 8, and 20. By looking
at the gas can in these frames, you can see that even though its shape and appearance did
not differ much, its segmentation is not consistent; it was mostly 2 superpixels in the first
frame, a single superpixel in the 8th frame, and 3 superpixels in the 20th frame. The second
row contains the TSP segmentation for the same frames. The temporal superpixels of the
gas can are highlighted in red in the first frame, and the color is propogated in subsequent
frames showing temporal connectivity.

2.1.2.1.1 First Frame Segmentation

The TSP [12] approach is similar to SLIC [27] in producing the superpixels of the first

frame, in that it transforms SLIC’s k-means clustering to a Gaussian mixture model. Treating

each superpixel as a Gaussian distribution with unknown parameters: mean and variance,

and that pixels are generated from this mixture of distributions and their labels are the

hidden variables, the approach tries to maximize the likelihood of the pixels labeling. So

the superpixels’ properties and pixels’ labels are statistically inferred from the probabilistic

model. In contrary to SLIC [27] that verifies connectivity as a post-processing step, the

12



connectivity in the TSP approach is ensured by incorporating a restriction on the labels’

distribution. A proposed labeling z is considered valid only if all the superpixels are single

4-connected regions. So any invalid labeling will have a zero prior probability: P (z) = 0.

2.1.2.1.1.1 Likelihood of a Labeling

Given an image frame, each pixel i has a Lab color ai and a location ℓi. Each pixel is

therefore assigned a 5-dimensional vector. Let N denote the number of pixels in the frame,

and K denote the number of superpixels. Each pixel i has a label zi in 1..K corresponding

to the label of the superpixel where it belongs. Each superpixel k has two means: µa
k and

µℓ
k, for color and location respectively. The approach assumes all superpixels have the same

and fixed variances: σ2
a and σ2

ℓ , for color and location respectively.

The prior probability of an event is the probability of this event occurring without seeing

the observations and taking them into account, thus requires some prior knowledge. The

prior probability of a labeling z (i.e. without looking at the observed pixels) is modeled by

restricting the distribution of labels for connectivity, and the geometric distribution on the

number of superpixels:

p(z) ∝ α̂KV alid(z) (2.1)

where V alid(z) is one if all the superpixels are single 4-connected regions, otherwise its zero.

α̂ is a parameter that controls the coarseness of the superpixels. The coarseness refers to

the color homogeneity; larger α̂ values promote fewer superpixels, thus larger and coarser

superpixels. The prior probabilities of the superpixels’ means is set to be from a uniform

distribution:

p(µℓ
k) =

1

N
, p(µa

k) = (
1

256
)3 (2.2)

assuming each color component has the value range [0,255].
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The approach derives an optimal solution from an initial labeling. From a given labeling,

a set of movements are proposed, and each proposal has its implicit optimal mean parameters

for it. The approach accepts and performs the movement proposals that increases the labeling

likelihood to arrive at a local optimum. The approach jointly optimizes the labels and the

parameters, and the joint log likelihood is defined as:

L(z)
C
= log[p(z)

∏

k

∏

d

p(µk,d)
∏

i

p(xi,d|zi, µd)] (2.3)

where d indexes the 5 dimensions (color and location) of pixels xi, and the symbol
C
= means

equality up to an additive constant. If the topology of z is assumed to be valid (the meaning

of the
T
= symbol), then joint log likelihood can be rewritten as:

L(z)
T
= αK +

∑

k

∑

d

log p(xIk,d|zi, µk,d) (2.4)

where constants are combined into α, and the pixels of a superpixel k is denoted by Ik.

The number of pixels in a superpixel k is denoted by Nk. Since the prior probabilities of

the means are from uniform distributions, the optimal means µ̂k,d for a labeling z are the

empirical means computed from the corresponding pixels. By computing the log likelihood

for superpixel k (log p(xIk,d|, µ̂k,d)) and denoting it with Ln(xIk,d), the joint log likelihood

can be rewritten as:

L(z)
C,T
= αK −

∑

k

∑

d

Ln(xIk,d) (2.5)
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2.1.2.1.1.2 Labeling Initialization and Possible Moves

The initial hypothesis labeling z to start from and propose changes is not clearly stated

in the paper [12]. It appears to start with k randomly-centered superpixels, where k is the

number of desired superpixels, and the labels of these centers are flooded to all remaining

pixels using a watershed flooding technique.

From a current labeling, a neighborhood of moves is proposed. Since the connectivity of

the superpixels are ensured in the model, a proposed move must maintain connectivity. So

the approach considers only three possible movement types:

• Single-pixel move: Only “simple points” can change their labels. They are basically

the points that lie on the edges of the superpixels, so changing their labels won’t affect

connectivity of the pixels within the superpixels.

• Merge move: Two superpixels can be merged if the merged result is a single 4-connected

region.

• Split move: A superpixel can be split into two superpixels. The two superpixels are

identified by performing k-means clustering and then ensuring connectivity, as in SLIC

[27].

Considering only the valid changes, the approach accepts and performs the move that in-

creases the likelihood of the labeling. This is done iteratively until there are no more moves,

thus it arrived at a local optimum. The result is the superpixels of the first frame.

2.1.2.1.2 Subsequent Frames Segmentation

The superpixels in subsequent frames are inferred from previous frames. The following

describes how likelihoods are computed, the initial state, and the neighborhood of possible

moves. The approach goes forward through time, processing one frame after another.
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2.1.2.1.2.1 Likelihood of a Labeling

Given a new frame t, its labeling is initialized by propagating the labels of the previous

frame t − 1 through optical flow as described in the next subsection. The appearance and

locations of superpixels change over time. In addition, the set of superpixels from frame to

frame can change; some superpixels can die while some new ones may appear. The super-

pixels that die, i.e. become occluded or leave the field of view, are called “dead superpixels”.

The superpixels that are still alive are called “old superpixels”, and are denoted with the

subscript “o”, while the newly appeared superpixels are called “new superpixels” and are

denoted with the subscript “n”. So Ko and Kn are used to denote the number of old and

new superpixels, respectively. The likelihood of a proposed labeling z, similar to Equation

2.5, depends on the likelihood of the old and new superpixels:

L(z)
C,T
= βKo + αKn −

∑

k

(Nk −
N
M
)2

2σ2
M

∑

d

Lsk(xIk,d) (2.6)

where sk ∈ {o, n} and switches between the likelihood of new superpixels (Ln) and the

likelihood of old superpixels (Lo). The likelihood of new superpixels (Ln) is the same as in

the case of the first frame. However, the likelihood of old superpixels (Lo) is different since

the old superpixels evolve through time and have past information. So Equation 2.6 can

be broken down to the following basic probability computations for old superpixels. More

details in the TSP paper [12].

The appearance and locations of old superpixels change over time. The approach models

the color means separately from location means. The current color means are modeled using

the previous means:

p(µa,t
k |µa,t−1

k ) = N (µa,t
k ;µa,t−1

k , δ2aI) (2.7)
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For modeling the location means of the superpixels, the approach assumes that superpix-

els that are spatially close and are similar in color move together, assuming that the object

is moving smoothly/rigidly. So the location means are modeled with a Gaussian process f t,

using the mean of the previous frame and a bilateral kernel that combines both color and

location in the covariance matrix:

p(f t|µt−1) = N (f t;µℓ,t−1,Σ(µt−1)) (2.8)

such that

Σk,j(µ
t−1) =

∏

d

h(µt−1
k,d , µ

t−1
j,d ) (2.9)

and h is the squared exponential kernel:

h(µk, µj) = e−
1

2
|µk−µj |

2

(2.10)

The covariance output of h gets closer to one if its inputs are very close, and it decreases as

the inputs distance increase.

Using Gaussian process regression, a predication of f t for old superpixels can be made:

f t = Σ(Σ + δ2ℓ I)
−1(µℓ,t

o − µℓ,t−1
o ) + µℓ,t−1

o (2.11)

It is used to compute the location mean probabilities:

p(µℓ,t
k |f t) = N (µℓ,t

o ; f t, δ2ℓ I) (2.12)

The prior probability of a labeling z is changed to the form:

p(z) ∝ α̂Kn β̂KoV alid(z)
∏

k

N (Nk;
N

M
,σ2

M) (2.13)
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by splitting the geometric distribution on the number of superpixels into two: one for the

number of old superpixels and one for the number of new superpixels. Setting α̂ and β̂ differ-

ently controls the trade-off between the preference of using old superpixels and creating new

superpixels. In addition, an area term is included for controlling the size of the superpixels.

2.1.2.1.2.2 Labeling Initialization and Possible Moves

The initial labeling of a frame is a propagation of the labels of its previous frame through

optical flow. From the previous frame’s labeling, each pixel gives its label to the pixel at

the end of the optical flow vector in the current frame, if it was within the image domain.

As a result, a pixel in the current frame can get zero, one, or multiple possible labels. If

the pixel gets one label, then it takes this label. If the pixel gets multiple possible labels,

it choses the label of the closest superpixel based on distances to means. If the pixel does

not get any label, it is labeled with the new superpixel label. After that, the approach

enforces connectivity resulting in some rejected pixels. The rejected pixels are then assigned

to neighboring superpixels by iteratively looking at their 4-neighbors and flooding their labels

to rejected pixels.

Similar to the case of the first frame, a set of movements from a given labeling are

proposed. The approach accepts and performs the move that increases the labeling likelihood

until there are no more accepted moves, thus it arrived at a local optimum. The three

possible movements in the first frame case are also used here, with an additional fourth

possible movement: the switch move. In this move, a new superpixel can be relabeled to be

linked to a dead superpixel.

2.2 Related Video Segmentation Approaches

In the previous section, low-level superpixel algorithms are reviewed. RAMS and some

other video segmentation approaches group superpixels to produce higher level segments.
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This section reviews related video segmentation approaches. Some of them use superpixels,

while others use different segmentation units as discussed below.

Video segmentation approaches vary in different aspects. The first aspect is the seg-

mentation unit they use, which is the video parts that they cluster. The most common

segmentation units are pixels, superpixels, and point trajectories. Clustering pixels or su-

perpixels results in dense segmentations, while clustering point trajectories results in sparse

segmentations. A second aspect where approaches vary is the video cues used for segmenta-

tion, which includes motion, color, and location. Some use all three, while others use two or

one of them. The focus of this review is motion-based approaches, since the goal is motion-

based segmentation. The third aspect where approaches vary is the clustering algorithm they

use, where the most common are spectral clustering, bottom-up hierarchal clustering, and

search and optimization. The related approaches are categorized in the following sections

based on their used segmentation unit. Approaches that use the same segmentation unit are

more similar than approaches with the same clustering algorithm.

Supervised vs. unsupervised approaches is another variation aspect. Despite the fact

that supervised approaches can give high accuracy results, unsupervised approaches are

sought after to minimize costs and time. A recent supervised approach [29] propagates

a first frame hand-labeling to subsequent frames by tracking image patches. However, the

focus of this review is unsupervised approaches, since the proposed approach is unsupervised

segmentation.

Videos are 3D space-time volumes (2D spatial and 1D temporal), so another consideration

is the order in which the approaches handle the video dimensions. Some approaches spatially

segment each frame using motion and/or color first, and then match regions to get a more

consistent temporal segmentation. Other approaches track segmentation units through time

first, and then segment these trajectories using motion with/without color, such as the

approaches that cluster point-trajectories. And then there are approaches that do spatial

and temporal segmentation simultaneously, such as the graph-based approaches.
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Figure 2.3: Segmentation results for Brox and Malik [32], and Ochs and Brox [25] approaches
for the video example shown in Figure 1.2. The first row contains the original frames. The
second row contains the point-trajectories segmentation of Brox and Malik [32] approach.
The third row contains the corresponding densification of point-trajectories labels by Ochs
and Brox [25] approach.

2.2.1 Clustering Point-Trajectories

Motion in videos is a rich source of information for video segmentation. Optical flow is

used to densely estimate motion. Optical flow computation is the generation of flow vectors

that map each pixel in a frame to a subsequent frame. However, optical flow only gives

information about frame-to-frame motion. So many video segmentation approaches resort

to point-trajectories for analyzing long-term motion in videos. These approaches segment

videos by clustering their point-trajectories. Examples include [13], [15], [24], and [32].

Brox and Malik [32] presented an approach for segmenting point-trajectories using spec-

tral clustering. The pairwise affinities are computed based on the motion and spatial dis-

tances between point-trajectories. The motion distance is computed as the maximum dis-

tance between the pair of trajectories translational motions at a shared frame among all
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Figure 2.4: Segmentation results for Brox and Malik [32], and Ochs and Brox [25] approaches
for the video example shown in Figure 1.3. The first row contains the original frames. The
second row contains the point-trajectories segmentation of Brox and Malik [32] approach.
The third row contains the corresponding densification of point-trajectories labels by Ochs
and Brox [25] approach.

shared frames. Then this motion distance is scaled by the average spatial distance between

the pair of trajectories at all shared frames, giving more weight to close pairs. Color is not

used in the approach [32]. After clustering the point-trajectories based on these affinities, a

post-processing step is performed to merge clusters that have similar motion models. The

motion type that this approach [32] can handle is rigid motion only; non-rigid motion is not

handled here. That is because they compute the distance between two trajectories as the

maximum motion difference. So if one part of the object moves differently than the other

part, then they will have higher distance and consequently lower affinity. Figures 2.3, 2.4,

and 2.5 show some segmentation results for this approach.
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Figure 2.5: Segmentation results for Brox and Malik [32], and Ochs and Brox [25] approaches
for the video “freight train” from VSB100 [9] dataset. Frames 1, 61, and 101 are shown in
consecutive columns. The first row contains the original frames. The video is stabilized
with [28], and hence the black borders on the frames. The second row contains the point-
trajectories segmentation of Brox and Malik [32] approach. The third row contains the
corresponding densification of point-trajectories labels by Ochs and Brox [25] approach.
The segmentation of the train is successful. However, the train is a rigid object.

The segmentation result of [32] is sparse; it does not cover the whole video. However, this

problem was alleviated in [25]. Ochs and Brox [25] extended the point-trajectories clustering

of [32] to all the pixels in the video for dense video segmentation, but they do so for each

frame independently. First, a labeling of all pixels was computed by minimizing an energy

function that is based on conserving the labels of the points along the already-clustered

point-trajectories and distributing these labels in condensed regions. The result of this

segmentation is then used as the lowest level in a k-level hierarchal clustering, where the levels

use hierarchical superpixels and k is a user-set parameter (they set it to 3 experimentally).

Then all the levels are jointly optimized to minimize an extended energy function with three

terms. The first term objective is still to maintain the labels of the points along the already-

clustered point-trajectories in the first level, but now these points are weighted by their

distance to the coarsest superpixel boundary since points close to object boundaries have

unreliable motion. The second term, as in the original energy function, has the objective of
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distributing the labels in condensed regions, but it does that for each level. The third term

is the one that ties the levels together by minimizing the difference between the consecutive

levels labeling weighted by the color differences between their corresponding superpixels mean

color. The weakness of this approach is that this dense segmentation is an interpolation of

the sparse segmentation of point-trajectories. So the correctness of final results depends on

the correctness of the point-trajectories clustering, and it also uses the same clusters. Figures

2.3, 2.4, and 2.5 show some segmentation results for this approach. Ochs, Malik, and Brox

consolidated the approaches [32] and [25] in [23].

Then, Ochs and Brox [24] approach update the point-trajectories clustering of [32] by

changing the pairwise affinities to tertiary affinities. This change was adopted to overcome

the limitation of comparing two point-trajectories that can only reveal their translational

motion similarity. Using three or more point-trajectories, a motion model (translation,

rotation, and scaling) can be estimated using two point-trajectories and the other points are

fitted to this model so the similarity will be based on the fitting error. Since the relationships

are defined for more than two point-trajectories, a hyper-graph is constructed instead of

a regular graph, and then this hyper-graph is projected to a regular graph in order to

perform spectral clustering. The details of this process are as follows. First, a hyper-graph

is constructed where the nodes are the point trajectories and the hyper-edges connect three

nodes with weights that equals their motion similarity. The distance between a triplet in

a shared frame is based on the fitting error of one of these point-trajectories to a motion

model estimated using the other two point-trajectories. Note that this distance varies by

the choice of the two point-trajectories used to compute the motion model, so they take the

maximum distance among all distances from permuting the point-trajectories. The spatial

distance between their points then weights this distance. So the final similarity of a triplet

is based on their maximum distance in all shared frames. After constructing the hyper-

graph, it is projected to a regular graph using a proposed regularized maximum projection,

which basically sets the weight of an edge between two point-trajectories in the regular graph
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with the maximum hyper-edge weight among all hyper-edges that include these two point-

trajectories weighted by the length of their overlapping time. Since this is a computational

expensive process due to the full-connectivity of the hyper-graph, they suggested sampling

the hyper-edges considered in a projection. The sampling was a combination of random

sampling and k-nearest neighbors sampling. Finally, spectral clustering was performed to

obtain the clusters. As in [32], this method also doesn’t handle non-rigid motion, and for

the same reason.

Fradet, Robert, and Perez [15] presented another approach for sparse video segmentation

by clustering point-trajectories. The basis for motion segmentation here is motion model

fitting instead of pairwise similarities. A motion model is fitted for each cluster such that

it is defined by a series of affine motion models for its lifetime. A trajectory is compared

with a cluster’s motion model through the use of motion residual, which is the dissimilarity

between them computed as the mean geometric distance between the trajectory and its

warped version (computed by applying the motion model of the cluster to the trajectory

coordinates). So this approach starts by randomly sampling the trajectories set to create

groups with minimum size of three trajectories. Then a motion model is fitted for all groups,

and a preference set is computed for all trajectories (the groups where the motion residual

between the trajectory and the group’s motion model is less than a threshold). Based on

these preference sets, a bottom-up hierarchical clustering algorithm starts with these sets as

initial clusters, and then in each step, it merges the closest pair of clusters, where closeness

is based on the Jaccard distance between the clusters. The clustering process stops when all

clusters are disjoint sets, and then a motion model is fitted for all clusters and trajectories

are assigned to their closest cluster based on the motion residual. The segmentation result

is a sparse segmentation that only uses the motion cue of the video, and naturally suitable

only for rigid motion.
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Dimitriou and Delopoulos [19] also segmented point-trajectories, but operate on overlap-

ping subsequences and then combine results. They first obtain an over-segmentation using

spectral clustering with [32] affinities. For each segment, an affine motion is estimated and

outliers are removed, and then similar segments are merged. In [20], Dimitriou and De-

lopoulos compute all possible motion models from the trajectories of a subsequence, when

comparing its first and last frames. Then each trajectory is compared with all the possible

motion models, resulting in a ranking vector for all models. These ranking vectors are used

to compute affinities between trajectories, which are used in spectral clustering to obtain the

subsequence segmentation. The segmentations of subsequences are combined, and similar

segments are merged as in [19]. As previous approaches, both [19] and [20] segment point-

trajectories based on affine motion models. What all these systems have in common is that

they use rigid motion models to group points. RAMS uses only the temporal co-occurance of

motion, not affine motion models, and therefore is able to group parts of non-rigid objects.

2.2.2 Clustering Pixels and Superpixels

Other approaches cluster pixels or superpixels. In these approaches, local image informa-

tion such as color or texture supplement motion data. These approaches construct graphs

connecting spatially and temporally neighboring nodes and segment the graph. Galasso,

Cipolla, and Schiele [10] presented an approach that clusters superpixels of videos using

spectral clustering. The authors presented six possible different affinities: (i) short-term-

temporal affinity (STT), which basically measures pixel overlap for superpixels in neighbor-

ing frames; (ii) long-term-temporal affinity (LTT), which is point-trajectories overlap for the

point-trajectories within the superpixels in different frames; (iii) spatio-temporal-appearance

affinity (STA), which is based on the difference between the median colors of the superpix-

els; (iv) spatio-temporal-motion affinity (STM), which is based on the difference between the

superpixels median optical flows; (v) across-boundary-appearance affinity (ABA), which is

based on the common boundary of neighboring superpixels; and (vi) across-boundary-motion
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Figure 2.6: Segmentation result for Galasso et al. [10] approach for the video example shown
in Figure 1.2. The first row contains the original frames, while the second row contains the
segmentation result shown for the corresponding frames. The frames were resized by half for
the approach to be able to process the video. The small zebras were not visually separable in
any level, so the level where the big zebra was first visually separable from the background
is the level presented in this figure.

affinity (ABM), which is based on the motion in the common boundary of the superpixels.

The authors analyzed these six terms experimentally on a dataset and decided based on their

segmentation performance that the minimal set is (STT+LTT+STM+STA).

The approach in [10] gives dense segmentation results, and incorporates multiple video

cues. However, the authors reported that it fails when there is little to no motion in the

video. In addition, this approach partially handles non-rigid motion on the boundaries only

when the ABM affinity is used, but the authors did not include this term in the final minimal

set. Figures 2.6 and 2.7 show some segmentation results for this approach.

Building on [10], Galasso, Keuper, Brox, and Schiele presented another approach in [8].

In [10], their approach uses superpixels of the first finest segmentation level in the image

segmentation hierarchy produced by an extension of [21]. In [8], they use superpixels of the

second coarser segmentation level in the image segmentation hierarchy produced by [21].

These superpixels are larger with uneven sizes. So they re-weighted their pairwise affinities
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Figure 2.7: Segmentation result for Galasso et al. [10] approach for the video example shown
in Figure 1.3. The first row contains the original frames, while the second row contains the
segmentation result shown for the corresponding frames. The frames were resized by half for
the approach to be able to process the video. The level in the segmentation hierarchy with
the lowest number of clusters and still separates the man, the gas can, and the background,
is the level presented in this figure.

by scaling them with the product of their corresponding superpixel sizes. In addition, they

presented an algorithm for streaming videos, in which they update the superpixels graph as

frames become available and defer merges if they had low certainty.

A graph-based approach is presented by Levinshtein, Sminchisescu, and Dickinson [1] to

segment superpixels of a video, where edges connect spatially and temporally neighboring

superpixels with weights based on either motion or color similarity. The color similarity is

based on the histograms of the superpixel pair, while the motion similarity is based on the

difference between their flow vectors. If two neighboring superpixels are in different frames,

then their affinity is their color similarity only. Otherwise, if two neighboring superpixels

are in the same frame, the affinity is either their color or motion similarity, whichever is

smallest. Superpixels areas product is used to scale the final affinity, giving more weight

to larger superpixels. However, the result is multiple solutions, where each is a two-cluster

solution. Another reported limitation is the failure to segment small objects correctly.
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The approach by Huang, Liu, and Metaxas [34] is a hyper-graph-based video segmenta-

tion. The nodes are image regions that are described with motion magnitudes and directions

that were obtained by averaging over all the region’s pixels motion. In addition, each image

region is also described with a motion profile, which can be described as the probabilities of

this region corresponding to a set of neighboring regions in the next frame based on color

similarity. To create the hyper-edges, they first create two regular graphs and compute their

first k eigenvectors using spectral analysis. These two graphs connect pairs of nodes that are

spatial and temporal neighbors (8-connected). The first graph affinities are based on differ-

ences between the pairs’ motion, while the second graph affinities are based on differences

between their motion profiles. For each obtained eigenvector, they compute a two-way cut

resulting in binary images. Then for each two-way cut, two hyper-edges are constructed in

the hyper-graph where each of these hyper-edges connects the regions that lie in the same

part of the cut. The weight of this hyper-edge is based on the motion difference between the

two parts. Finally, a hyper-graph cut is computed based on hyper-edges weight and volume.

Grundmann, Kwatra, Han, and Essa [16] presented a graph-based approach. Their ap-

proach starts with a pixel-level graph connecting each pixel with its 26 spatial-temporal

neighbors and performs an over-segmentation to get the regions. Then it performs a bottom-

up hierarchical clustering of regions using region graphs, where regions are connected if they

are incident, and iteratively merging regions based on the difference between their color

histograms. They first proposed an approach that is based on color only, but then they

proposed another one enhanced with optical flow as follows. Instead of connecting a pixel

with its immediate neighbors in the previous and next frames in the first stage of processing,

the pixel is connected with its neighbors along the optical flow. In addition to the color

histogram descriptor, a per-frame flow histogram is computed for each region. This gives

distances between regions that are based on both color and flow histogram distances. The

addition of the motion cue improved the segmentation results significantly. Figures 2.8 and

2.9 show some segmentation results for this approach.
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Figure 2.8: Segmentation result for Grundmann et al. [16] approach for the video example
shown in Figure 1.2. The first row contains the original frames, while the second row contains
the segmentation result shown for the corresponding frames. The level in the segmentation
hierarchy with the lowest number of clusters and the zebras are visually separable, is the
level presented in this figure.

Extending the previous approach of [16], and also building on Brox and Malik [32] point

tracking and clustering, Lezama, Alahari, Sivic, and Laptev [13] presented an approach that

starts with clustering point-trajectories, then extends that clustering to all the pixels of the

video. In this approach, the sparse point-trajectories of the video get clustered by optimizing

a labeling cost function with three terms. The first term penalizes for the between-cluster

similarities encouraging similar tracks to have the same label. The second term penalizes for

weak within-cluster similarities encouraging dissimilar tracks to have different labels. The

similarity here is based on both spatial and velocity distances. By representing the relative

depth of clusters in the clusters labels (i.e. 1 < 2 means that cluster 2 occludes cluster 1),

the third term enforces the order of labels by penalizing with an occlusion score for any

track that is occluding another track but gets an equal or smaller label than that track. The

occlusion score is based on the spatial and velocity distances between the two tracks at the

time endpoints of the first track. Large spatial distance decreases the occlusion score, while
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Figure 2.9: Segmentation result for Grundmann et al. [16] approach for the video example
shown in Figure 1.3. The first row contains the original frames, while the second row contains
the segmentation result shown for the corresponding frames. The level in the segmentation
hierarchy with the lowest number of clusters and still separates the man, the gas can, and
the background, is the level presented in this figure.

large motion distance increases the occlusion score. Note that this labeling cost function is

only for all pairs that have some time overlap, and color information was not used here.

After that, the obtained result, which is a clustering of a set of point-trajectories, is

incorporated into the previous graph-based segmentation [16] to segment all the video’s

pixels. The first difference between this approach and the approach [16] is in the first

processing step. Instead of connecting a pixel with its 9 temporal neighbors along the optical

flow in one time direction in the approach [16], the pixel is connected in this approach with

only one temporal neighbor along the optical flow, and the velocity distances is also included

in the weight of edges between the pixels in addition to the color distances. Once the graph

has been constructed, the point-trajectories are incorporated in the graph such that the

weight of the edges that lie along these trajectories is set to zero making them perform as

seeds in the segmentation process. Also, the labels of the point-trajectories are incorporated

here such that there is an additional pixel labeling in a way that pixels that lie along these
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trajectories are labeled with the same point-trajectory label that they lie within, while the

remaining pixels have -1 labels. Finally, in the iterative merge process, a merge cannot be

done if the considered regions have different additional labels unless one of them has the -1

label. This enforces the sparse initial clustering results into the final dense segmentation.

However, since it is an extension to [16], the results are also over-segmentations. Another

limitation is the assumption of constant relative ordering. Even though it is not true in

all cases, the authors maintain that it is a reasonable assumption. They also reported that

errors in the initial sparse clustering will get propagated to the final dense clustering.

Similarly to [13], Silva and Scharcanski [14] adopted a video segmentation approach that

also starts with point-trajectories clustering and then extends it to all pixels yielding a

dense segmentation, but they approached this goal differently. The points along the point-

trajectories are clustered in independent frame-level clusterings then integrated in an all-

video-level using ensemble clustering. Finally, the point clustering is extended to pixels to

achieve a dense video segmentation.

The details of the clustering process are as follows: In the frame-level clustering, three

clusterings are performed for each frame comparing it with the frames that are one, two, and

three frames apart by clustering the points within them based on their displacement vector.

Then all these clustering are integrated to get one clustering of all the points using a meta-

clustering algorithm in five steps. First, clusters are mapped to a hyper-graph in which the

nodes are the points and there is a hyper-edge for each cluster connecting the nodes within

it. Second, a similarity matrix is constructed for these hyper-edges where the similarity

is computed as the Jaccard distance between each pair. Third, this similarity is used to

hierarchically cluster these hyper-edges in meta-clusters (clusters of clusters). The level in

this tree (i.e. the number of clusters) is chosen automatically such that it corresponds to

the longest range of varying the threshold while the number of clusters remained constant.

Fourth, for each meta-cluster, all its hyper-edges are collapsed into one meta-hyper-edge

with a membership score for each point based on the percentage of hyper-edges in this

31



meta-cluster that include this point. Finally, each point is assigned to the meta-cluster with

highest membership score.

Once this final point clustering is obtained, it gets validated based on the motion and

spatial differences between the points and the meta-clusters, and re-labeling of points is

performed where necessary. Then the results are spatially filtered based on connected com-

ponents of Delauny triangulation. Finally, these results are extended to the video pixels

by assigning each pixel to the meta-cluster of the most similar point based on motion and

spatial distance. The entire segmentation process is based on motion and spatial distance

without consideration of color.

Xu, Xiong, and Corso [7] presented the first segmentation approach for streaming videos.

It is a graph-based hierarchical segmentation approach. It goes forward in time such that

it uses previous segmentations for a current segmentation problem, but does not change

these previous segmentations. It cuts the video into a set of non-overlapping chunks, and

the computation of a chunk’s segmentation (vi) depends on its immediate predecessor video

chunk segmentation (vi−1) by processing the union of these two video chunks. They add an

additional criteria for the merging process in the graph-based hierarchical segmentation of

vi, such that if two regions in the union and both include some regions from vi−1, they cannot

me merged if these included regions were not merged in the segmentation of vi−1 at a higher

layer. For the graph-based hierarchical segmentation itself, they extended the graph-based

image segmentation algorithm [22] to videos, similarly to [16]. However, they describe each

region with a Lab color histogram and use histogram distances to compute edge weights. So

they only use the color information with no motion information. This approach is included

here only for evaluation purposes, since it was included in the comparison of [9]. Figures

2.10 and 2.11 show some segmentation results for this approach.

Tripathi, Hwang, Belongie, and Nguyen [30] improved [7] by utilizing motion. As in [16],

they combine per frame flow histograms with color histograms. They use this supervoxel

segmentation as a basis for motion layer segmentation, where they hierarchically merge
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Figure 2.10: Segmentation result for Xu et al. [7] approach for the video example shown
in Figure 1.2. The first row contains the original frames, while the second row contains
the segmentation result shown for the corresponding frames. The level in the segmentation
hierarchy with the lowest number of clusters and the zebras are visually separable, is the
level presented in this figure.

Figure 2.11: Segmentation result for Xu et al. [7] approach for the video example shown
in Figure 1.3. The first row contains the original frames, while the second row contains
the segmentation result shown for the corresponding frames. The level in the segmentation
hierarchy with the lowest number of clusters and still separates the man, the gas can, and
the background, is the level presented in this figure.
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segments even further in a streaming manner too. Affine motion parameters are estimated

for each segment, then neighboring segments are merged greedily based on their motion

differences. Setyanto, Wood, and Ghanbary [2] also use a hierarchal video segmentation

similar to [16], but it describes each region with a mean color in gray levels, and a temporal

direction based on the motion of its centroid. Li, Lin, Zou, Yan, and Tang [6] presented a

streaming approach that clusters a fine supervoxel segmentation of [16]. In addition to color,

texture, and image edges, their motion features are histograms of optical flow. Collectively,

these systems all supplement affine motion models with color and adjacency information,

but the underlying motion models still assume rigid objects.

Another approach that segments pixels is by Taylor, Karasev, and Soatto [4] and it uses

occlusion for segmentation. It processes one frame at a time, using its previous and next

frames for occlusion cues, to create layers with depth orders. A depth order of zero is for

the background layer, while higher depth orders are for foreground layers. The higher the

value, the closer it is to the viewer. Objects are then obtained by determining the connected

components of the foreground layers. Occlusions occur in regions where the forward and

backward optical flow differ, so the approach determines the occluder/occluded relationships

in order to determine depth order for the pixels in these regions. The depth order labeling

is then optimized for all pixels using image and motion boundaries. The approach goes

forward in time, but history of previous frames is used, especially when there is no motion to

produce occlusion cues. The limitation of this approach occur when there is self occlusion,

such as for example when a person moves his/her hand in front of his/her body. Since the

hand occludes the body, these parts are placed on different depth layers, and thus ultimately

segmented differently. This can break a non-rigid object into more than one segment.

RAMS differs from all the approaches above in that it does not use motion magnitude

nor direction as a basis for motion comparison, thus dropping the rigid object assumption.

RAMS clusters superpixel trajectories and compare their motion in terms of temporal co-

occurrence. Another difference is the use of superpixel trajectories as segmentation units,
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an approach that benefits from both the long-range motion information of point-trajectories

and the large support areas of superpixels. RAMS builds on the work of Chang, Wei, and

Fisher III [12] as it provides the superpixel-trajectories that RAMS clusters. By visually

comparing results of RAMS with state-of-the-art approaches results, shown in Figure 1.4,

RAMS significantly improves segmentation results.
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Chapter 3

Robust Animate Motion Segmentation

(RAMS)

The proposed approach (RAMS) is an unsupervised motion-based video segmentation

algorithm. Its segments moving objects in videos based on motion, color, and location.

Objects can move either rigidly or non-rigidly. A non-rigid object, for example the zebra

shown in Figure 1.2, has parts that can move in different directions. Traditional rigid motion

methods use motion magnitude and direction for segmentation, thus they are not suitable for

segmenting non-rigid objects. The proposed approach does not assume rigid objects and uses

temporal coherence of motion for segmentation. Even though the parts of a non-rigid object

move independently in different directions, they are hypothesized to move at the same time.

Using motion timing instead of motion magnitude and direction is proposed for segmenting

moving objects.

As discussed in Chapter 2, image over-segmentations, called “superpixels”, can create

low-level segmentation units that can be clustered for obtaining video segmentations. Chang,

Wei, and Fisher III [12] presented an approach for creating superpixel-trajectories of a video.

By obtaining the superpixel trajectories as a preprocessing step, the proposed approach

casts the video segmentation problem as the problem of clustering superpixel trajectories.

This preprocessing step is not a contribution of this work, and RAMS is not limited to

[12] in principle. However, [12] provides good superpixel trajectories and it is used in the

experiments of the proposed approach.

Given superpixel trajectories, RAMS computes an affinity matrix for the trajectories in

order to cluster them. Every pair of superpixel trajectories has an entry in the affinity matrix
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Figure 3.1: The basic program flow of RAMS. It starts with the input video frames, stabilized
if needed, and obtains its superpixel trajectories using [12]. The superpixels are reduced in
size from the boundaries, and some trajectories are discarded according to criteria discussed
in the text. Then three descriptors are computed for each trajectory, and descriptors are
used to compute the initial pairwise similarities. Finally, an iterative bottom-up hierarchical
clustering is performed to cluster the superpixel trajectories.

that measures how similar they are. The affinity function for a pair of superpixel trajectories

is based on temporal coherence of motion, color similarity, and spatial distance. Using these

affinities, the superpixel trajectories are clustered to obtain the video segmentation.

Most other related video segmentation approaches cluster selected segmentation units

through spectral clustering. Although spectral clustering can produce good results when

segments are evenly sized, as pointed out in [3], usually this is not the case. That is because

the goal of motion-based video segmentation is to segment moving objects, while combining

all other non-moving objects into a single background segment. As a result, the background

segment is usually much larger than the other segments. Spectral clustering tends to break

this large background segment into multiple smaller pieces. To avoid this problem, RAMS

uses bottom-up hierarchal clustering. The steps of RAMS are described in more details in

the following sections. Figure 3.1 shows the basic flow of RAMS.

To compute temporal coherence of motion, motion must be determined for each super-

pixel trajectory to facilitate comparison. For simplicity, RAMS assumes that the background
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Figure 3.2: Superpixel segmentation of the video example shown in Figure 1.3, obtained using
[12]. One of the superpixels trajectories is shown using an arrow between its corresponding
superpixels in the first three frames.

is still. If a video has some jitter, it can be stabilized as a pre-processing step, and then

RAMS proceeds with the stabilized frames. We use the video stabilization algorithm of Dutta

et al. [28] for stabilizing the videos. However, videos with significant camera movement are

not used. While it is possible to determine camera motion and thus the independent mo-

tions, this not done here since the focus of this work is on exploring the usability of motion

temporal coherence in video segmentation instead of low-level motion detection. Extending

RAMS to segment videos from cameras in motion is future work, and is discussed in more

details in Chapter 5.

3.1 Superpixel Trajectories

The first step is to obtain a superpixel segmentation of the video. This is an over-

segmentation of the video frames such that each superpixel is a small set of homogeneous

pixels. These superpixels are tracked through time to obtain their trajectories. Note that

these trajectories can have different lifetimes, i.e. they can start and end at different frames.

Figure 3.2 demonstrates an example.

Superpixels were chosen over pixels or points for their larger support area in the image

frames, which gives them more robust motion estimation and color information. Trajectories
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are used to get the long-range motion information that is required for analyzing the objects

motion in videos.

Chang, Wei, and Fisher III [12] presented an approach that generates temporally consis-

tent superpixels from videos. We chose this algorithm for the temporal consistency of the

superpixels and the length of their trajectories. Trajectories are the segmentation unit of

RAMS, and their length is crucial for measuring temporal coherence. For example, if a long

trajectory was broken into smaller pieces, the motion information from the smaller pieces

is not complete. Consider a trajectory on the gas can in the video shown in Figure 1.3 for

example. Consider having the trajectory in full video length as opposed to two separate

parts. If the trajectory was long, then it can be inferred that it was moving in the first half

of the video before it was placed on the ground in the middle of the video. Thus it has a

motion pattern that is different from the motion pattern of the still background, so it can be

segmented differently. On the other hand, if the trajectory was broken into two parts, the

second trajectory will have a motion pattern that is similar to the background. As a result,

the first trajectory may be clustered with the man segment, while the second trajectory

might be clustered with the background segment. So longer trajectories have more complete

motion information for measuring temporal coherence.

As a practical matter, optical flow is unreliable on the boundaries of moving objects due

to occlusion; some regions may disappear, while new regions may appear. Since superpixel

boundaries can lie on object boundaries, and are sometimes inaccurate, boundaries of super-

pixels may contain some pixels of another object or may have unreliable motion information.

To avoid false motion along superpixels boundaries, each superpixel is reduced four pixels

from the boundaries. These discarded pixels are not used in the segmentation algorithm.

However, they are assigned the same label as their original superpixels during evaluation.

In addition, trajectories that are less than three frames long, or have superpixels with less

than a threshold number of pixels, are discarded in the segmentation process. Trajectories

in the second case can be trimmed and used if the small superpixels are on either ends of
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Figure 3.3: Superpixel segmentation of the “tennis tr” video from the VSB100 dataset [9],
obtained using [12] with the number of superpixels per frame parameter set to 500, is shown
for the frames 1, 10, and 60. This video is 121-frames long, and resized by half to 640×360
pixels per frame. The first column is the original frames. The second and third columns
are the superpixel segmentations where the first one is overlayed on the original image.
Four superpixels were selected in colors: red, green, yellow, and aqua blue, to highlight the
superpixels that have inaccurate boundaries. As seen in the first frame, they combine the
two persons’ limbs (legs, hand, and head) with some background regions. This can lead to
inaccurate motion and color information. In addition, they cause tracking problems. These
colored superpixels tracked to subsequent frames by the TSP algorithm [12], shown in frames
10 and 60, have shifted to background regions. These wrong tracks will probably have wrong
motion patterns, affecting the segmentation result.

the track. The threshold for the number of pixels per superpixel is set to 10 in the experi-

ments. Discarded superpixels are later merged with segments in a post-processing step for

evaluation purposes, by assigning a discarded trajectory the same label as its most similar

neighbor.
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The temporal superpixels algorithm [12] takes the approximate number of superpixels

per frame as a parameter. This parameter affects the superpixel accuracy depending on

the video’s dimensions and level of details. There is a trade-off between superpixel size

and boundary accuracy. Large superpixels can include multiple visual regions, which affects

motion estimation and color homogeneity. Smaller superpixels respect boundaries more,

thus have better motion estimation and more homogeneous colors, and track for longer time.

This segmentation approach aims at using fairly small superpixels for these reasons. But

not so small that they loose their meaning as image regions and have weak and unreliable

motion information. Figure 3.3 shows an example of inaccurate superpixels. The value of this

parameter (approximate number of superpixels per frame) was set to 500 in the presented

experiments. The video of the man and gas can is an exception, as this parameter was set

to 800 because of its large size.

3.2 Clustering Superpixel Trajectories

RAMS uses bottom-up hierarchal clustering to group superpixel trajectories. A super-

pixel trajectory is a superpixel that is tracked through time, resulting in a sequence of

superpixels from the first frame it appears in to the last frame where it exists. A superpixel

trajectory ti can be expressed as:

ti = 〈SPi,startFrameti
, SPi,startFrameti+1, . . . , SPi,endFrameti−1, SPi,endFrameti

〉,

where SP is short for superpixel, and [startFrameti , endFrameti ] is the time range over

which the trajectory ti exist. Clustering begins with each trajectory in its own cluster, form-

ing the lowest level in the hierarchy, and then iteratively merges clusters greedily until only

two clusters are left. The initial affinity between a pair of trajectories is a linear combination

of all three similarities: motion similarity (ms), color similarity (cs), and spatial similarity

(ss), as follows:

ati,tj = α1msti,tj + α2csti,tj + α3ssti,tj (3.1)
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where the weights α1, α2, and α3 are set proportional to the importance of each video cue,

such that they all add to one.

For motion similarities, motion temporal coherence between a pair of trajectories is used.

It looks at when superpixel trajectories move or don’t move together. For example, if both

are moving or not moving, then they are more likely to belong to the same object. On the

other hand, if one is moving while the other is not, then they are more likely to belong to

different objects. So each trajectory ti is described with a temporal motion pattern (TMPi):

a sequence of motion probabilities for each of its compositing superpixels. A superpixel’s

motion probability (mpi,frame) is computed as the fraction of its pixels that are moving. A

pixel (p) is considered moving if its corresponding pixel in the subsequent frame (next(p)),

as determined by the forward optical flow, lies within the subsequent superpixel of the

trajectory, and the pixel’s motion magnitude (m(p, next(p))) is above a threshold (mt).

Notice that the motion pattern for a trajectory is always one frame shorter than the length

of the trajectory since there is no motion information for the last frame. So for a trajectory

ti, its temporal motion pattern can be expressed as:

TMPi = 〈mpi,startFrameti
,mpi,startFrameti+1, . . . ,mpi,endFrameti−1〉

Each motion probability can be given as:

mpi,frame =
Number of Moving Pixels

Number of Considered Pixels
,

for superpixel SPi,frame, where

Number of Considered Pixels = |{p ∈ SPi,frame|next(p) ∈ SPi,frame+1}| , and

Number of Moving Pixels = |{p ∈ SPi,frame|next(p) ∈ SPi,frame+1 ∧ m(p, next(p)) ≥

mt}|.

The motion similarity (ms) between a pair of trajectories ti and tj is based on the city-

block difference between their temporal motion patterns in the time they overlap (i.e. in

the shared frames SF ). Motion patterns begin and end in different times, so a set of shared

frames where they co-existed must be determined for comparison. Motion similarity can be
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given as:

msti,tj =















0 if |SF | = 0,

1−
∑

f∈SF |mpi,f−mpj,f |

|SF |
otherwise.

(3.2)

It is worth mentioning that RAMS looks at motion patterns for the whole video at once.

Motion patterns do not need to be exactly the same to have high similarities. A part that

is different in a fraction of time can still have high similarities with the other parts of the

object, compared to the background or other objects motions patterns. As an example, the

big zebra in the zebras video [18] stops some time while moving its head independently, and

yet the head is segmented with the rest of the body correctly by RAMS (the red region in

the second row of Figure 1.4). So RAMS works well on zebras and other non-rigid objects

because statistically over time motions of parts tend to occur together.

In addition to motion, RAMS also uses color and spatial distances to describe the affinities

between trajectories. In regards to color, Lab color space was chosen for its perceptual

uniformity. In other words, the perceptual difference between two colors is proportional to

the Euclidean distance between the two colors’ points in this space. This is also why it is

used by other approaches, e.g. [12, 27], as described in Chapter 2. In RAMS, each trajectory

is represented by a single 3-tuple Lab color point that is the mean of all pixels lying within

the trajectory, assuming that the pixels are homogeneous. This assumption may not always

hold, depending on the accuracy of the underlying superpixel segmentation. To reduce the

effect of misclassified pixels and outliers, the centroid is computed by taking the mean in all

the three color components. The color similarity (cs) between two trajectories is based on

the Euclidean distance between their color centroids (cc) as follows:

csti,tj = 1−
euclidean(ccti , cctj)

maxColorDist
(3.3)

where maxColorDist is the maximum possible distance based on the video’s colors.
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The spatial distance between any two trajectories is also incorporated in their pairwise

affinity. Each trajectory is represented with a sequence of spatial centroids (sc) for each

of its superpixels during its lifetime. The spatial distance between two trajectories is the

maximum distance between their centroids in their overlapping time. The spatial similarity

(ss) can be given as follows:

ssti,tj =















0 if |SF | = 0,

1−
maxf∈SF euclidean(sci,f ,scj,f )

maxSpatialDist
otherwise,

(3.4)

where maxSpatialDist is the maximum distance based on the video’s dimensions.

As clustering progresses, similarities are measured between clusters instead of individual

trajectories. After merging superpixel trajectories in a cluster (Ck), the new cluster’s tem-

poral motion pattern is computed by combining the patterns of its compositing trajectories

together. This is done by taking the unweighted average of their motion probabilities:

mpk,f =

∑

ti∈{ti|ti∈Ck∧f∈[startFrameti ,endFrameti−1]} mpi,f

|{ti|ti ∈ Ck ∧ f ∈ [startFrameti , endFrameti − 1]}|
(3.5)

Using this combined temporal motion pattern TMPk for the new cluster Ck, the motion

similarity between it and the other clusters can be computed using the same equation of 3.2.

For the spatial centroids of the new cluster Ck, they are computed as the centroids of the

trajectories’ centroids:

sck,f = centroid({sci,f |ti ∈ Ck ∧ f ∈ [startFrameti , endFrameti ]}) (3.6)

where centroid(points) is the centroid for the set of given points. Then, the spatial similarity

between the cluster Ck and the other clusters can be computed using the same equation of

3.4.
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The color pairwise similarity definition is slightly changed here to accommodate clusters

of trajectories, so there is no need for a new color descriptor for each cluster. The reason

for that is that it may not be appropriate to have a single Lab color point to represent a

cluster, since the cluster may represent a multi-color object. So instead, the color similarity

between two clusters Ck and Cr is the average of the color similarities, defined in Equation

3.3, for the trajectories of the two clusters as follows:

csk,r =

∑

ti∈Ck,tj∈Cr
csi,j

|Ck||Cr|
(3.7)

The similarities between clusters slightly varies from similarities between individual tra-

jectories, but the final affinity is given by the same linear combination as in 3.1. The affinity

matrix is updated after every merge operation. Based on the affinity matrix, the most similar

clusters are merged greedily until only two clusters are left.

Spectral clustering is considered state-of-the-art unsupervised clustering algorithm for

its time efficiency. However, it is not suitable for motion-based video segmentation, where

objects and background have different sizes. The goal of RAMS is to segment the different

moving objects, while all other non-moving regions should be in a single segment. The back-

ground region is usually much larger than the moving objects. From our experiments with

spectral clustering, the background was always split into multiple segments in the segmen-

tation result. Figure 3.4 shows these results for the video shown in Figure 1.3. Although the

background regions had high similarity values between each other, they were still split into

multiple segments. After investigation, the reason turned out to be the spectral clustering

algorithm. Spectral clustering is biased to create even-sized segments. That is what made

backgrounds split, therefore spectral clustering is not suitable for motion-based video seg-

mentation against backgrounds. Nadler and Galun [3] have shown the limitations of spectral

clustering, and how it fails when a dataset contains multi-size segments. For this reason,

bottom-up hierarchal clustering was adopted since it has no bias with regard to cluster size.
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This chapter describes the details of RAMS. It describes how temporal motion patterns

are computed and compared to cluster superpixel trajectories. Performance evaluation of

RAMS is reported in the next chapter. Conclusions and future work are included in the last

chapter.
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Figure 3.4: Spectral Clustering vs. Bottom-Hierarchal Clustering. Using only the motion

similarities, the first column shows the spectral clustering result while the second column
shows the bottom-up hierarchal clustering result, for the video shown in Figure 1.3. The
number of clusters is four for the two settings.

47



Chapter 4

Performance Evaluation

In video segmentation evaluation, approaches are evaluated by comparing their segmen-

tation results with hand-labeled segmentations called ground truth. A set of evaluation

metrics are used for this comparison to generate some scores for an evaluated approach.

Thus, approaches are compared by comparing their evaluation scores. The evaluation goal

in this section is threefold:

• The first goal is to examine the performance of the proposed approach (RAMS). Are

the results as expected, and is the approach performing as designed? RAMS differs

from other related approaches in that it addresses the problem of non-rigid motion.

The goal of the approach is to segment moving objects, whether moving rigidly or non-

rigidly, as wholes by using motion temporal coherence. So the results should segment

each moving object without breaking it into different parts. Thus the first goal of

evaluation is testing how well RAMS succeeds in achieving its segmentation goals.

• The second goal is comparing the segmentation results of RAMS with human segmen-

tations. Humans can visually detect and segment objects in videos. However, when

a group of people are assigned the job of segmenting a video, they provide different

answers to the same video segmentation task. Comparing the segmentation results of

RAMS to what humans perceive as correct segmentations is the second goal of the

evaluation.

• The third goal is comparing RAMS with other related approaches in the literature.

The approaches are different in nature (group pixels, superpixels, or point-trajectories),

goal (motion or color segmentation), output (single or hierarchal segmentation), and
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Figure 4.1: Interpretation of point locations in a VPR plot.

assumptions (rigid or non-rigid motion). So a comparison on a standard dataset is the

third goal of the evaluation.

RAMS is evaluated using the evaluation measures originally suggested in [9], and de-

scribed in the next section. The scores measure how well a segmentation result matches

human-labeled ground truth. Of particular interest, Volume Precision-Recall (VPR) is used

for evaluating video segmentations. Video segments are compared with ground truth video

segments by inspecting the pixel overlap. Precision (P) measures how well a video segment

is encapsulated within a ground truth segment. Perfect precision is scored by a video seg-

mentation where none of its segments overlap with multiple ground truth segments. On

the other hand, recall (R) measures how well the ground truth segments are covered by the

tested segmentation segments. The equations are included in the next section, and more

details with working examples are provided in Appendix A.

In general, over-segmentation results in high precision values but low recall values. Con-

versely, under-segmentation results in high recall values but low precision values. Good

segmentations have high values for both precision and recall. Figure 4.1 shows how to in-

terpret a point location for a segmentation result score. Most algorithms, including RAMS,
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Figure 4.2: An example of a VPR plot.

produce a sequence of segmentations, ranging from over-segmented to under-segmented re-

sults. This creates a curve, starting in the upper left (over-segmented) corner of the graph,

and heading toward the lower right (under-segmented) corner. The closer the curve gets to

the upper right corner of the figure, the better. An example is shown in Figure 4.2 for RAMS

result on the man and gas can video that have been previously shown in the introduction in

Figure 1.3. It shows a curve with 50 points corresponding to 50 segmentations, each with

fewer regions than the one before it. Segmentations 1, 2, 3, 4, 40, and 50 are shown in the

figure for the first frame of the video. The best F-measure is achieved by the third level

where the scores are F(R = 0.98, P = 0.86) = 0.92. After that, the gas can is merged with

the background, which causes a drop in the precision scores.

The result of RAMS is a sequence of segmentations, where the number of clusters de-

creases from one segmentation to the next. The finest segmentation contains a cluster for

every superpixel trajectory, and the coarsest segmentation contains only two clusters. From
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these segmentations, 50 are selected for evaluation. Since we evaluate on the VSB100 [9]

dataset, and the maximum number of ground truth labels for a video in this dataset is 21,

the first 41 coarsest segmentations are included in the evaluation. In addition, the segmen-

tations where the number of clusters is 50, 100, 150, 200, 250, 300, 400, 500, and 600, are

also included in the evaluation.

We evaluate RAMS and three other state-of-the-art approaches that provide publicly

available code: Grundmann et al. [16] using their improved code in [17], Ochs and Brox

[25], and Xu et al. [7]. The evaluation of the superpixel-trajectories that RAMS starts with,

provided by the TSP [12] algorithm, is also included for the VSB100 [9] dataset results.

Galasso et al. [8] did not have a publicly available code at the time of this dissertation,

while the Galasso et al. [10] code proved too computationally expensive to be feasible. Thus

[8] and [10] were not included in the presented evaluation. Xu et al’s. [7] approach only

uses the color information with no motion information. This approach was included in this

evaluation since it was included in the comparison of [9].

4.1 Evaluation Measures

The VSB100 [9] dataset is composed of 100 videos. Every twentieth frame from each

video is human-labeled as ground truth. The selected frames are labeled by different people

to encompass the different views and opinions of people to what are the objects in the video.

Some hand labellings have more details than others. The benchmark aggregates an approach

score over all the available ground truth segmentations, to accompany the different video

segmentation approaches.

The VSB100 [9] benchmark evaluates the performance of algorithms using two types of

metrics. The first one evaluates the boundaries in the segmentation result, and it is called

Boundary Precision-Recall (BPR). However, this metric evaluates each frame independently;

whether they are temporally consistent or not does not affect the score. So the benchmark
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includes a second metric, called Volume Precision-Recall (VPR), that evaluates how well the

segments’ 3D volumes of the segmentation result fit the ground truth segments’ volumes.

The following describes these two metrics.

4.1.1 Volume Precision-Recall (VPR) [9]

The Volume Precision-Recall (VPR) [9] evaluates the pixel overlap between the segments

of a segmentation result (S) generated by an algorithm, and the segments of a ground truth

(G), with two metrics: precision (P) and recall (R). Precision maps the segments of S to

the segments of G. Each segment s in S is matched to a ground truth segment g from G

that has maximal overlap with s. Then the precision of the segmentation S is the average of

the overlaps between its segments and their matched ground truth segments. Since multiple

ground truth segmentations are provided for each video, the final precision is the average of

precisions with each of these ground truth segmentations. So precision is expressed as:

P =
1

M

M
∑

i=1

∑

s∈S maxg∈Gi
|s
⋂

g|

|S|
, (4.1)

where the intersection
⋂

is the pixel overlap, |.| denotes the number of pixels, and M is the

number of provided ground truth segmentations. In general, as a segment s becomes more

fitted inside its matched ground segment g, its precision increases. So a perfect precision

score is achieved by a segmentation when all its segments are fitted within the ground truth

segments, no matter how small they are. Thus generally, over-segmentations usually achieve

high precision scores.

On the contrary, recall maps the ground truth segments of G to the segments of S, in the

same manner as precision. Each ground truth segment g from G is matched with a segment

s in S that has maximal overlap with g. So recall is expressed as:

R =
M
∑

i=1

∑

g∈Gi
maxs∈S|g

⋂

s|
∑M

i=1 |Gi|
. (4.2)
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In general, as a ground truth segment g gets covered by less segments from S, its pixel

overlap with its matched segment s increases, and thus its recall increases. Note that it

does not matter if the matched segment s exceeds the boundaries of g. Thus generally,

under-segmentations usually achieve high recall scores.

However, there is an issue with these definitions. Consider the two degenerate cases: the

first case is when each pixel is in its own segment, and the second case is when all pixels are

in a single segment. The first case will result in a perfect precision score, while the second

case will result in a perfect recall score. So the benchmark normalizes these values to avoid

this problem, and thus precision and recall are re-expressed as:

P =

∑M

i=1[(
∑

s∈S maxg∈Gi
|s
⋂

g|)−maxg∈Gi
|g|]

M |S| −
∑M

i=1 maxg∈Gi
|g|

, and (4.3)

R =

∑M

i=1

∑

g∈Gi
(maxs∈S|g

⋂

s| − 1)
∑M

i=1(|Gi| − ΓGi
)

, (4.4)

where ΓGi
is the number of segments in the ground truth Gi. Appendix A provides an

additional description of VPR by examples.

4.1.2 Boundary Precision-Recall (BPR) [9]

Boundary Precision-Recall (BPR) [9] measures the quality of boundary detection in the

tested approach. It is usually used in image segmentation evaluation, but can be used for

evaluating video segmentations. For a given frame with an associated ground truth segmen-

tation, both the frame segmentation and the ground truth segmentation are transformed

to binary boundary maps. A boundary map is a classification of each pixel being either a

boundary pixel or not. Then the metric evaluates how well they overlap using a precision-

recall framework. Letting S be the boundary map for the frame’s segmentation result, and

Gi be the boundary map for the ith ground truth segmentation for M available ground truth
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segmentations, the precision (P ) and recall (R) can be defined as:

P =
|S

⋂

(
⋃M

i=1 Gi)|

|S|
, and (4.5)

R =

∑M

i=1 |Gi

⋂

S|
∑M

i=1 |Gi|
, (4.6)

where the intersection
⋂

is the bipartite graph assignment between the given boundary maps,

and |.| denotes the number of matched pixels. The precision is the percentage of correct pixel

assignment according to the ground truth, while recall is the percentage of ground truth that

is covered by the segmentation.

Although BPR is generally a good measure for evaluating the quality of boundaries

in segmentation results, it is less interesting for RAMS. That is because the accuracy of

objects’ boundaries is largely the responsibility of the underlying superpixel segmentation,

which is TSP [12]. So the boundary accuracy of the final segmentation result is depen-

dent on the boundary accuracy of the superpixels provided by TSP [12]. The goal of the

proposed approach is to find temporally consistent object segmentation of a video by an-

alyzing the objects’ motion temporal patterns, and is not concerned with the accuracy of

boundary detection. Thus VPR is more interesting for RAMS, and BPR is reported here

for completeness.

4.1.3 F-measure Scores [9]

Precision and recall values are combined in the F-measure for aggregate performance

evaluation and comparison:

F =
2PR

R + P
. (4.7)

F-measure is used to report a final evaluation score of an evaluated approach, as in [9]. There

are three scores reported for each approach: (i) Average Precision (AP), which is the area

54



Figure 4.3: A video of a freely moving man [5], shown with six frames and their corresponding
forward optical flow. This is an extreme case of non-rigid motion, and it is evident in the
optical flow as the parts have different colors meaning that they are moving in different
directions. The optical flow was part of the [32] result on this video, and it was color-coded
with [33].

under the curve, (ii) Optimal Segmentation Scale (OSS) score, which is the F-measure when

an optimal scale (level) is selected for each segmentation, and (iii) Optimal Dataset Scale

(ODS) score, which is the F-measure when an optimal fixed scale (level) is selected for all

segmentations.

4.2 New Dataset Results

A new small dataset is proposed to include videos with more challenging non-rigid motion

than standard datasets. The purpose of this dataset is to demonstrate the strengths of the

proposed approach, and to demonstrate where other approaches may fail. This dataset

includes three videos: (i) the zebra video [18] shown before in Figure 1.2, (ii) the man

with gas can video shown before in Figure 1.3, and (iii) another video of a freely moving

man [5] shown in Figure 4.3. The lengths of these videos are 152, 110, and 150 frames,
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respectively. Ground truth is hand-labeled for each video. The performance of RAMS and

other related approaches is compared on this dataset. The evaluation method in [9] evaluates

every twentieth frame for a video, so these are the frames that are shown for the results for

visual comparison. The following sub-sections discuss the segmentation results on each of

these videos.

When processing the zebras and freely moving man videos of this dataset, the boundary

pixels of superpixels were not discarded as done for the other videos. Recall that pixels

on superpixel boundaries are discarded during processing since they are unreliable. How-

ever, these two videos have very small image dimensions per frame, and thus discarding

the boundary pixels ends up in discarding the important trajectories of the videos. So the

boundary pixels of the superpixels of these two videos were kept during processing.

4.2.1 Zebras

The first video of the new dataset contains three zebras [18], described in detail in Fig-

ure 1.2. As discussed previously, zebras move non-rigidly; their parts can move in different

directions at the same time. The ground truth for this video is hand-labeled and shown

in the second column of Figure 4.4. The VPR and BPR evaluation scores are included in

Table 4.1, and the plots are shown in Figure 4.5. The results can be visually compared in

Figure 4.4. From these results, RAMS outperforms state-of-the-art approaches on the zebra

video. It achieved higher scores, and was visually closer to the ground truth segmentation.

From Figure 4.4, Grundmann et al. [16] and Xu et al. [7] results are over-segmentations,

while Ochs and Brox [25] result is an under-segmentation. Xu et al. [7] uses the color cue

only, so it is extremely sensitive to color differences in the video so the background is highly

over-segmented. Grundmann et al. [16] is also sensitive to color differences, so it also divides

the background into many pieces. The zebras look alike, so they get merged when they get

close to each other, and split when they separate, in the results of both approaches [16] and

[7]. In Grundmann et al. [16] result, a large portion of the big zebra’s back is merged with
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the background in the middle frames of the video as the zebra stops walking. In addition, the

legs of the big zebra segments differently in some frames because they move differently. The

levels shown for both approaches [16] and [7] are the best visually because the separation

of the zebras in some frames. In regards to Ochs and Brox [25] result, it labels the pixels

of each frame independently by extending the point-trajectories labeling of Brox and Malik

[32]. Figure 4.6 shows the segmentation of Brox and Malik [32]. From this figure, Brox and

Malik [32] was not able to segment the zebras correctly, and that affects Ochs and Brox

[25] result. In most frames, the majority of points within the zebras are merged with the

background. Only at the end of the video when the labels on the big zebra get denser, and

even then the zebra is divided into two segments because of their rigid motion assumption.

However, when the corresponding frames of this time range, Ochs and Brox [25] result merges

these two segments probably because they use superpixel boundaries in their optimization

function. Note that in [32], color is not used for grouping point-trajectories.
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Figure 4.4: The zebras video [18] and its segmentation results. The frames 1, 21, 41, 61,
81, 101, 121, and 141 are shown in consecutive rows. The first column contains the original
frames, while the second column contains a hand-labeled ground truth. Columns 3-6 contain
the segmentation results of RAMS (0.34, 0.33, 0.33), Grundmann et al. [16], Xu et al. [7],
and Ochs and Brox [25], respectively. The visually best levels are the levels shown in columns
3-5.
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Table 4.1: VPR and BPR evaluation scores for the zebras video [18]. The scores are in the
format: F(R, P). The ODS and OSS are identical because this evaluation is for a single
video; the dataset scale and segmentation scale are the same.

VPR - Zebras Video

Approach ODS OSS AP

RAMS (0.4, 0.4, 0.2) 0.77 0.77 0.68

(0.91, 0.67) (0.91, 0.67)
RAMS (0.34, 0.33, 0.33) 0.76 0.76 0.66

(0.92, 0.65) (0.92, 0.65)
Grundmann et al. [16] 0.50 0.50 0.32

(0.49, 0.52) (0.49, 0.52)
Ochs and Brox [25] 0.06 0.06 0.03

(0.99, 0.03) (0.99, 0.03)
Xu et al. [7] 0.39 0.39 0.21

(0.41, 0.38) (0.41, 0.38)

BPR - Zebras Video

Approach ODS OIS AP

RAMS (0.4, 0.4, 0.2) 0.52 0.52 0.27

(0.79, 0.39) (0.79, 0.39)
RAMS (0.34, 0.33, 0.33) 0.53 0.53 0.26

(0.70, 0.42) (0.70, 0.42)
Grundmann et al. [16] 0.25 0.25 0.08

(0.64, 0.16) (0.64, 0.16)
Ochs and Brox [25] 0.07 0.07 0.02

(0.03, 0.69) (0.03, 0.69)
Xu et al. [7] 0.24 0.24 0.12

(0.71, 0.14) (0.71, 0.14)
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Figure 4.5: VPR and BBR plots for the zebras video [18]. The solid red and dashed blue
lines are for RAMS results, where the difference is the weight combination (α1, α2, α3) used:
the blue dashed line is when equal weights are used, and the red solid line is when the
combination (0.4, 0.4, 0.2) is used. RAMS, Grundmann et al. [16], and Xu et al. [7], all
produce multiple segmentations with different number of clusters. Therefore their results
are represented with curves; a point for each produced segmentation. Ochs and Brox [25]
produce a single segmentation, thus their result is represented with a single point (green
circle).
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Figure 4.6: The comparison between the segmentation results of Brox and Malik [32], and
Ochs and Brox [25] on the zebras video [18]. The frames 1, 21, 41, 101, 121, and 141 are
shown in consecutive rows. The first column contains the original frames. The second and
third columns contain the segmentation results of Brox and Malik [32], and Ochs and Brox
[25], respectively. Brox and Malik [32] group point-trajectories, so each point is represented
with a square in these images.
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4.2.2 Man with Gas Can

The second video of the new dataset is a video of a man walking from right to left while

carrying a gas can that he places on the ground midway through the video, as first shown

in Figure 1.3, and discussed in the introduction. This video has a combination of motions;

non-rigid motion by the man, and rigid motion by the gas can. Visual results are shown in

Figure 4.7. From this figure, RAMS is able to segment the man and gas can correctly. The

coarsest levels of Grundmann et al. [16] nd Xu et al. [7] results are shown in this figure, and

they both divided the man into multiple parts. In addition, Xu et al. [7] overly segments

the background. On the other hand, Ochs and Brox [25] was not able to segment the gas

can. It also separates the legs because of their different motion.

Comparing to the hand-labeled ground truth shown in Figure 4.7, the VPR and BPR

evaluation scores are reported in Table 4.2 for all approaches, and the plots are shown in

Figure 4.8. RAMS achieved higher scores than the other approaches. The scores of RAMS

(0.4, 0.4, 0.2) is less than RAMS (0.34, 0.33, 0.33) and Grundmann et al. [16] because of

the occlusion issue discussed in Section 4.4.
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Figure 4.7: The man and gas can video and its segmentation results. The frames 1, 21,
41, 61, 81, 101, 121, and 141 are shown in consecutive rows. The first column contains the
original frames, while the second column contains a hand-labeled ground truth. Columns
3-6 contain the segmentation results of RAMS (0.34, 0.33, 0.33), Grundmann et al. [16], Xu
et al. [7], and Ochs and Brox [25], respectively. The coarsest levels are shown in columns 4
and 5.
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Table 4.2: VPR and BPR evaluation scores for the man and gas can video. The scores are in
the format: F(R, P). The ODS and OSS are identical because this evaluation is for a single
video; the dataset scale and segmentation scale are the same.

VPR - Man and Gas Can Video

Approach ODS OSS AP

RAMS (0.4, 0.4, 0.2) 0.85 0.85 0.85

(0.95, 0.77) (0.95, 0.77)
RAMS (0.34, 0.33, 0.33) 0.92 0.92 0.87

(0.98, 0.86) (0.98, 0.86)
Grundmann et al. [16] 0.88 0.88 0.81

(0.87, 0.89) (0.87, 0.89)
Ochs and Brox [25] 0.80 0.80 0.66

(0.97, 0.68) (0.97, 0.68)
Xu et al. [7] 0.38 0.38 0.21

(0.26, 0.69) (0.26, 0.69)

BPR - Man and Gas Can Video

Approach ODS OIS AP

RAMS (0.4, 0.4, 0.2) 0.70 0.70 0.56

(0.79, 0.62) (0.79, 0.62)
RAMS (0.34, 0.33, 0.33) 0.76 0.76 0.65

(0.87, 0.68) (0.87, 0.68)
Grundmann et al. [16] 0.51 0.51 0.34

(0.89, 0.35) (0.89, 0.35)
Ochs and Brox [25] 0.64 0.64 0.44

(0.52, 0.85) (0.52, 0.85)
Xu et al. [7] 0.21 0.21 0.11

(0.87, 0.12) (0.87, 0.12)
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Figure 4.8: VPR and BPR plots for the man and gas can video.
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4.2.3 Freely Moving Man

The third video contains a man with a wide range of motion [5]. He is bending his body

while moving his arms and legs more freely than usual. This is an extreme case of non-rigid

motion. Figure 4.9 shows every twentieth frame of the video in its first column. The ground

truth segmentation for this video is two segments: a segment for the moving man, and a

segment for the background, as shown in the second column of Figure 4.9. The segmentation

results are visually shown in Figure 4.9, which contains the coarsest segmentations. RAMS

was able to segment the man and the background. Even though the boundaries of the man

segment is not accurate, RAMS did put the man in a single segment as opposed to some

other approaches. Grundmann et al. [16] and Xu et al. [7] approaches divide the man and

combine his parts with larger portions of the background. The approaches [16] and [7] also

add more segments in the background such as the mat. However, the mat is stationary, and

thus should be combined with the rest of the background. Ochs and Brox [25] segment the

man at first, but then it starts to merge with the background. VPR and BPR evaluation

scores are reported in Table 4.3, and the plots are shown in Figure 4.10. RAMS achieved

higher scores than the other approaches.
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Figure 4.9: The freely moving man video [5] and its segmentation results. The frames 1, 21,
41, 61, 81, 101, 121, and 141 are shown in consecutive rows. The first column contains the
original frames, while the second column contains a hand-labeled ground truth. Columns
3-6 contain the segmentation results of RAMS (0.4, 0.4, 0.2), Grundmann et al. [16], Xu et
al. [7], and Ochs and Brox [25], respectively. The coarsest levels are shown in columns 3-5.
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Table 4.3: VPR and BPR evaluation scores for the freely moving man video [5]. The scores
are in the format: F(R, P). The ODS and OSS are identical because this evaluation is for a
single video; the dataset scale and segmentation scale are the same.

VPR - Freely Moving Man Video

Approach ODS OSS AP

RAMS (0.4, 0.4, 0.2) 0.80 0.80 0.73

(0.92, 0.71) (0.92, 0.71)
RAMS (0.34, 0.33, 0.33) 0.75 0.75 0.66

(0.93, 0.62) (0.93, 0.62)
Grundmann et al. [16] 0.52 0.52 0.30

(0.44, 0.62) (0.44, 0.62)
Ochs and Brox [25] 0.37 0.37 0.22

(0.98, 0.23) (0.98, 0.23)
Xu et al. [7] 0.21 0.21 0.12

(0.14, 0.42) (0.14, 0.42)

BPR - Freely Moving Man Video

Approach ODS OIS AP

RAMS (0.4, 0.4, 0.2) 0.54 0.54 0.41

(0.67, 0.45) (0.67, 0.45)
RAMS (0.34, 0.33, 0.33) 0.47 0.47 0.36

(0.76, 0.34) (0.76, 0.34)
Grundmann et al. [16] 0.23 0.23 0.12

(0.73, 0.14) (0.73, 0.14)
Ochs and Brox [25] 0.23 0.23 0.10

(0.14, 0.69) (0.14, 0.69)
Xu et al. [7] 0.22 0.22 0.11

(0.64, 0.13) (0.64, 0.13)
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Figure 4.10: VPR and BPR plots for the freely moving man video [5].
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4.3 VSB100 [9] Dataset Results

Galasso et al. [9], presented a video dataset called VSB100, consisting of 100 HD videos.

This video set is originally from the Berkeley Video Dataset first introduced in [26], and its

purpose is occlusion boundary detection. However, Galasso et al. [9] adopted this set as

a general video segmentation benchmark because of its diversity, and provided the ground

truth segmentations. The length of these videos range from 31 to 121 frames. The goal

of RAMS is to segment moving objects as wholes, without breaking them up into different

parts. Non-moving objects should be combined in a single background segment. However,

some ground truth segmentations provided in VSB100 [9] do not fit with this segmentation

goal; they either have less or more details. As a result, the evaluation on this dataset is

performed twice: using the given ground truth, and using an adjusted ground truth. The

adjustment is done by either merging or splitting some segments, to test how well RAMS

succeeds in achieving its segmentation goals.

This dataset contains videos that were captured with moving cameras. However, as

discussed above, RAMS assumes a fixed camera. If a video has jitter, it is stabilized using

[28] and then processed by RAMS. Otherwise, it is not used for evaluation. As a result, 41

videos out of 100 are used in this evaluation, and their names are listed the first columns

of Tables 4.5 and 4.6. In addition, as in [9], all videos are resized by half to reduce the

computational expense.

The VPR and BPR evaluation scores for the VSB100 [9] dataset are shown in Table 4.4.

VPR scores for each video individually are reported in Tables 4.5 and 4.6. The VPR and

BPR plots are shown in Figure 4.11. From these results, RAMS outperforms state-of-the-art

approaches on this dataset; it achieves higher F scores (see Table 4.4). Some approaches

achieve either higher precision or higher recall, but not both. The F score combines both

recall and precision in one measure, and requires a balance between them to achieve a high

value. In addition, the VPR curve for RAMS covers different levels of segmentations from
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Figure 4.11: VPR and BPR plots for the VSB100 [9] dataset, using the given and adjusted
ground truth (GT).

over-segmentations to under-segmentations. Defining what is a “correct” segmentation is a

matter of opinion. So this variation is an advantage that leaves the selection of the optimal

level to the end-user or end-system.

RAMS depends on the accuracy of the underlying superpixel segmentation. If a super-

pixel boundary is not accurate, it may contain pixels of multiple objects within it. This

causes mixed motion information for this superpixel, and also affects the correctness of its

trajectory. This usually happens to very small objects, such as the tennis ball in the video

“tennis tr” of the VSB100 [9] dataset.
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Table 4.4: VPR and BPR evaluation scores for the 41 videos from VSB100 [9] dataset with
roughly stationary cameras, using the given ground truth and adjusted ground truth. The
scores are in the format: F(R, P).

VPR - VSB100 Dataset

Approach
Using Given Ground Truth Using Adjusted Ground Truth

ODS OSS AP ODS OSS AP

RAMS 0.56 0.62 0.50 0.59 0.65 0.54

(0.64,
0.49)

(0.68,
0.57)

(0.65,
0.54)

(0.71,
0.61)

TSP [12] 0.01 0.01 0.01 0.01 0.01 0.01

(0.01,
0.86)

(0.01,
0.86)

(0.01,
0.87)

(0.01,
0.87)

Grundmann et al. [16] 0.49 0.52 0.41 0.50 0.54 0.42

(0.43,
0.56)

(0.49,
0.56)

(0.43,
0.59)

(0.50,
0.60)

Ochs and Brox [25] 0.43 0.43 0.26 0.43 0.43 0.26

(0.94,
0.28)

(0.94,
0.28)

(0.94,
0.28)

(0.94,
0.28)

Xu et al. [7] 0.35 0.35 0.21 0.37 0.36 0.22

(0.30,
0.42)

(0.26,
0.54)

(0.31,
0.45)

(0.26,
0.57)

BPR - VSB100 Dataset

Approach
Using Given Ground Truth Using Adjusted Ground Truth

ODS OIS AP ODS OIS AP

RAMS 0.38 0.39 0.24 0.30 0.31 0.17

(0.53,
0.29)

(0.60,
0.29)

(0.47,
0.22)

(0.59,
0.21)

TSP [12] 0.13 0.13 0.06 0.09 0.09 0.04

(0.93,
0.07)

(0.93,
0.07)

(0.93,
0.05)

(0.93,
0.05)

Grundmann et al. [16] 0.28 0.29 0.16 0.22 0.22 0.11

(0.50,
0.20)

(0.66,
0.19 )

(0.49,
0.14)

(0.65,
0.13)

Ochs and Brox [25] 0.24 0.24 0.07 0.21 0.21 0.05

(0.16,
0.45)

(0.16,
0.45)

(0.16,
0.33)

(0.16,
0.33)

Xu et al. [7] 0.18 0.18 0.09 0.13 0.13 0.06

(0.68,
0.10)

(0.72,
0.10)

(0.69,
0.07)

(0.72,
0.07)
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Table 4.5: VPR evaluation scores for the 41 videos from VSB100 [9] dataset, using the given
ground truth. The evaluation is performed on each video individually. The ODS and OSS are
identical since its a single video evaluation, and thus the dataset scale and the segmentation
scale are the same. So only the OSS score is reported in this table.

Video

VPR - Using Given Ground Truth
RAMS Grundmann Ochs and Xu et al. [7]

et al. [16] Brox [25]
OSS AP OSS AP OSS AP OSS AP

arctic kayak 0.59 0.51 0.62 0.49 0.33 0.17 0.46 0.36
baseball 0.53 0.43 0.44 0.30 0.08 0.04 0.24 0.12
beach volleyball 0.30 0.18 0.38 0.21 0.01 0.01 0.17 0.10
big wheel 0.23 0.13 0.34 0.22 0.20 0.10 0.19 0.12
birds of paradise 0.87 0.84 0.54 0.5 0.36 0.20 0.42 0.26
buffalos 0.55 0.52 0.41 0.36 0.60 0.36 0.44 0.31
car jump 0.62 0.50 0.38 0.22 0.01 0 0.4 0.25
chrome 0.28 0.17 0.35 0.16 0.04 0.02 0.24 0.11
dominoes 0.65 0.67 0.56 0.44 0.35 0.21 0.48 0.30
freight train 0.73 0.67 0.67 0.49 0.74 0.58 0.38 0.21
frozen lake 0.37 0.22 0.51 0.37 0.01 0 0.32 0.17
gray squirrel 0.71 0.60 0.61 0.50 0.70 0.51 0.32 0.13
guitar 0.48 0.48 0.52 0.47 0.11 0.06 0.32 0.18
hummingbird 0.71 0.59 0.76 0.63 0.23 0.12 0.22 0.12
juggling 0.90 0.85 0.78 0.68 0 0 0.43 0.36
jungle cat 0.63 0.56 0.5 0.47 0.02 0.01 0.37 0.28
kangaroo fighting 0.49 0.39 0.54 0.36 0.44 0.27 0.33 0.22
kia commercial 0.74 0.67 0.83 0.72 0.67 0.50 0.31 0.18
knot 0.77 0.67 0.74 0.63 0.02 0.01 0.41 0.23
koala 0.49 0.46 0.52 0.42 0.44 0.26 0.37 0.20
lion 0.12 0.05 0.19 0.06 0 0 0.29 0.10

palm tree 0.7 0.52 0.50 0.33 0 0 0.20 0.09
penguins 0.6 0.59 0.37 0.37 0.25 0.14 0.41 0.31
pepsis wasps 0.41 0.20 0.23 0.08 0 0 0.42 0.19
planet earth one 0.74 0.69 0.47 0.31 0.65 0.48 0.32 0.18
pouring tea 0.73 0.66 0.42 0.28 0.47 0.29 0.28 0.14
rock climbing 0.41 0.26 0.39 0.19 0 0 0.43 0.24
rock climbingtwo 0.71 0.60 0.55 0.42 0.13 0.07 0.31 0.18
roller coaster 0.34 0.28 0.36 0.18 0 0 0.1 0.05
rolling pin 0.73 0.64 0.44 0.32 0.65 0.45 0.47 0.29
salsa 0.36 0.24 0.45 0.26 0.09 0.04 0.32 0.22
shark attack 0.56 0.38 0.46 0.30 0 0 0.30 0.16
sitting dog 0.67 0.60 0.49 0.38 0.64 0.45 0.39 0.28
sled dog race 0.32 0.25 0.28 0.16 0 0 0.11 0.05
snow leopards 0.56 0.53 0.62 0.51 0.46 0.27 0.47 0.37
street food 0.79 0.75 0.53 0.49 0.71 0.54 0.43 0.27
tennis tr 0.38 0.24 0.54 0.35 0 0 0.21 0.09
trampoline 0.84 0.72 0.52 0.33 0.70 0.54 0.18 0.10
up dug 0.79 0.70 0.62 0.49 0.22 0.12 0.33 0.18
white tiger 0.63 0.54 0.56 0.43 0.44 0.28 0.21 0.11
zoo 0.73 0.65 0.50 0.44 0.53 0.32 0.47 0.31
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Table 4.6: VPR evaluation scores for the 41 videos from VSB100 [9] dataset, using an
adjusted ground truth. The evaluation is performed on each video individually. The ODS
and OSS are identical since its a single video evaluation, and thus the dataset scale and the
segmentation scale are the same. So only the OSS score is reported in this table.

Video

VPR - Using Adjusted Ground Truth
RAMS Grundmann Ochs and Xu et al. [7]

et al. [16] Brox [25]
OSS AP OSS AP OSS AP OSS AP

arctic kayak 0.59 0.55 0.60 0.48 0.48 0.28 0.46 0.35
baseball 0.54 0.43 0.44 0.30 0.08 0.04 0.24 0.12
beach volleyball 0.29 0.17 0.38 0.2 0.01 0.01 0.17 0.10
big wheel 0.25 0.14 0.34 0.22 0.24 0.13 0.20 0.12
birds of paradise 0.90 0.88 0.57 0.52 0.37 0.21 0.47 0.29
buffalos 0.55 0.53 0.42 0.37 0.59 0.35 0.45 0.32
car jump 0.61 0.49 0.38 0.22 0.02 0.01 0.40 0.25
chrome 0.33 0.20 0.34 0.15 0 0 0.24 0.11
dominoes 0.65 0.66 0.56 0.44 0.35 0.21 0.48 0.30
freight train 0.72 0.66 0.68 0.49 0.74 0.57 0.38 0.21
frozen lake 0.37 0.22 0.52 0.37 0.01 0 0.32 0.17
gray squirrel 0.75 0.64 0.64 0.51 0.72 0.54 0.32 0.15
guitar 0.64 0.63 0.73 0.67 0.08 0.04 0.41 0.26
hummingbird 0.71 0.59 0.76 0.63 0.22 0.12 0.22 0.12
juggling 0.90 0.86 0.78 0.68 0 0 0.44 0.36
jungle cat 0.63 0.56 0.50 0.47 0.02 0.01 0.37 0.28
kangaroo fighting 0.49 0.39 0.55 0.36 0.44 0.27 0.33 0.22
kia commercial 0.61 0.54 0.49 0.48 0.29 0.16 0.37 0.24
knot 0.77 0.68 0.75 0.66 0.06 0.03 0.43 0.25
koala 0.49 0.47 0.52 0.42 0.44 0.26 0.37 0.20
lion 0.12 0.05 0.21 0.07 0 0 0.30 0.11

palm tree 0.71 0.53 0.50 0.33 0 0 0.20 0.09
penguins 0.60 0.59 0.37 0.37 0.25 0.14 0.41 0.31
pepsis wasps 0.42 0.22 0.31 0.12 0 0 0.42 0.19
planet earth one 0.74 0.69 0.47 0.31 0.65 0.48 0.32 0.18
pouring tea 0.74 0.67 0.43 0.28 0.48 0.30 0.28 0.15
rock climbing 0.43 0.29 0.40 0.2 0 0 0.44 0.25
rock climbingtwo 0.71 0.60 0.55 0.41 0.15 0.08 0.32 0.18
roller coaster 0.39 0.31 0.36 0.19 0 0 0.11 0.05
rolling pin 0.78 0.69 0.44 0.33 0.72 0.54 0.49 0.30
salsa 0.36 0.24 0.45 0.26 0.09 0.04 0.32 0.21
shark attack 0.57 0.39 0.47 0.31 0 0 0.33 0.18
sitting dog 0.67 0.60 0.49 0.38 0.64 0.45 0.39 0.28
sled dog race 0.69 0.54 0.75 0.62 0 0 0.32 0.14
snow leopards 0.83 0.71 0.64 0.48 0.73 0.55 0.35 0.23
street food 0.87 0.82 0.52 0.49 0.70 0.53 0.46 0.29
tennis tr 0.37 0.23 0.53 0.34 0 0 0.20 0.09
trampoline 0.84 0.73 0.53 0.33 0.70 0.54 0.19 0.10
up dug 0.83 0.74 0.63 0.53 0.20 0.10 0.34 0.19
white tiger 0.60 0.52 0.55 0.43 0.41 0.26 0.22 0.11
zoo 0.70 0.65 0.56 0.51 0.47 0.26 0.52 0.34
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4.3.1 Ground Truth Adjustment

An evaluation dataset consists of a set of videos and a ground truth labeling for each

video. The score of an evaluated approach measures how well its segmentation results match

the ground truth. This traditional evaluation method has major shortcomings manifested

in ground truths associated with videos. Ground truths are hand-labeled by people, and

people have different opinions about what is a correct segmentation for a video. Consider,

for example, a scene of a person walking in a park where there are some trees behind

him/her. One might think that the correct segmentation consists of the person, some trees,

the ground, and the sky. Another one might think that the correct segmentation is the

person, and everything else is the background. Consider another example of a scene where

a person is walking his/her dog in the park. Disregarding the background, one might think

that the dog’s leash is a different object than the dog, while another one will consider the

dog and the leash as a single object. The person itself can be thought of as a single object,

or multiple objects: shirt, pants, shoes, etc. Different people have different opinions about

what is the the “correct” segmentation of a video, and the level of details it should include.

There is no right or wrong answer.

RAMS is a motion-based segmentation approach. Its goal is to segment every moving

object as a whole. Some objects move rigidly, while others move non-rigidly. Non-rigid

objects impose problems for traditional rigid motion segmentation methods because they

have different parts that move in different directions. The hypothesis of this work is that the

parts of a non-rigid object move at the same time, even if they move in different directions. So

the proposed approach uses temporal coherence of motion for segmenting objects in videos.

If spatially neighboring regions look alike and move temporally together, then they are likely

to belong to the same object. This solves the problem of segmenting non-rigid objects. For

example, people and animals have limbs that move in different directions. However, a person

or an animal is a single object. Since a non-rigid object’s parts move at the same time, using
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motion temporal coherence can put the parts together in a single segment. In addition to

non-rigid motion, an object can move rigidly, for example a flying airplane. A rigid object

moves as a whole in one direction, and all its parts are also moving temporally together. So

temporal coherence of motion is sufficient for segmenting moving objects in videos. Thus,

the goal is segmenting every moving object as a whole, without breaking them down into

different parts. All non-moving objects should be combined in a single background segment.

Some ground truth segmentations in the VSB100 [9] dataset do not fit with the segmenta-

tion goal above; they either have less or more details, as shown below. We therefore evaluate

segmentation algorithms using both the original ground truth and ground truth segmenta-

tions adjusted to match the expected outcome for a true evaluation of the approach. This

creates a second evaluation of the VSB100 [9] dataset, and its results are shown alongside

the first evaluation (using the given ground truth) in the previous subsection.

The VSB100 [9] dataset provides up to four ground truth segmentations per video. The

adjusted version is created by either selecting one of the provided four segmentations, or

adjusting one of the provided segmentations by merging or splitting regions. By looking at

the differences between the scores of RAMS per video, reported in Tables 4.5 and 4.6, the

difference is insignificant for most videos. However, a few videos have significant difference.

One such video is called “guitar”; it contains a man playing a guitar as shown in Fig-

ure 4.13. The movement is mainly in his hands with a little nodding from his head. The

given ground truth segmentations are shown in Figure 4.12. There are three given ground

truth segmentation for this video, and they are all very different. None of them capture the

guitarist as a single segment. Semantically, there are two objects: the man and the guitar.

However, in respect to motion, they are considered a single object since the man carries the

guitar the whole time. Thus the new adjusted ground truth contains only one segment for

the whole man and guitar, in addition to the background segment, as shown in Figure 4.12.

The increase in OSS scores after adjusting the ground truth is 0.16. Figure 4.13 shows some

segmentation results for this video by RAMS.
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(a) Given GT (b) Adjusted GT

Figure 4.12: The given and adjusted ground truth for the “guitar” video of the VSB100 [9]
dataset. The given ground truth segmentations GT 2, GT 3, and GT 4 contain 3, 4, and 2
segments, respectively.

(a) Original Frame

(b) Level 1 Segmentation (c) Level 2 Segmentation (d) Level 3 Segmentation (e) Level 22 Segmentation

Figure 4.13: The original first frame of the “guitar” video of the VSB100 [9] dataset, and
RAMS segmentation result for this video. The levels shown are 1, 2, 3, and 22. In this video,
a man is playing a guitar. The movement is mainly in his hands with a little nodding from
his head. So it is correct for RAMS to segment the hands and head in the first levels. Since
the torso and guitar were not moving, they were segmented differently in later levels, and
that is expected.
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(a) Given GT (b) Adjusted GT

Figure 4.14: The given and adjusted ground truth for the “kia commercial” video of the
VSB100 [9] dataset.

A second video is called “kia commercial”. From its name, it is a commercial for a

car where the car lands on the ground and slightly turns to the right of the viewer, with

cheering crowds on the right and left. Some frames of this video are shown in Figure 4.15.

Although the crowd is cheering by moving and waving their hands, all the given ground

truth segmentation for this video contain a single a segment for the car, in addition to the

background segment, as shown in Figure 4.14. However, the two crowds, on the right and

left of the car, are moving and separate, so the new adjusted ground truth contains two

additional segments for the two crowds, as shown in Figure 4.14. Figure 4.15 shows RAMS

segmentation for this video.

After adjusting the ground truth for the “kia commercial” video, the OSS score surpris-

ingly decreased from F(R 0.73, P 0.76) = 0.74 to F(R 0.71, P 0.54) = 0.61. The recall

decreased insignificantly by 0.02, but the precision decreased by 0.22. By visually looking

at the segmentation result, as shown in Figure 4.15, the ninth level is the lowest level that

separates the car and the two crowds, and it seems to be closer to the adjusted ground truth
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(a) Frame 1 (b) Level 5 Segmentation (c) Level 6 Segmentation (d) Level 9 Segmentation

(e) Frame 21 (f) Level 5 Segmentation (g) Level 6 Segmentation (h) Level 9 Segmentation

(i) Frame 41 (j) Level 5 Segmentation (k) Level 6 Segmentation (l) Level 9 Segmentation

Figure 4.15: The original frames of the “kia commercial” video of the VSB100 [9] dataset,
and RAMS segmentation result for this video. The levels shown are 5, 6, and 9. The car
segment is spilling on the background in these levels, and that is normal since the shadow
seems to move with car. The crowd segments are not complete, and that is because the
motion of the people there is mainly in their arms and hand as they raise them up.

than the given ground truth. The car segment is spilling a little on the background, espe-

cially in the first frame, so this affects this segment precision, but this should also affect the

score when given ground truth is used. By investigating the ninth level scores when using the

adjusted ground truth, the reported score is F(R 0.82, P 0.25) = 0.38. Recall that precision

measures how well a segment from the result is fitted within a ground truth segment. So each

segment from the result is matched with a ground truth region with maximal pixel overlap,

and then its precision is based on the number of pixels in their intersection. By manually

calculating the precision (as in Equation 4.1) of the main segments in the ninth level segmen-

tation: the car, the left crowd, the right crowd, and the background, the precisions were 48%,

83%, 72%, and 89%, respectively. The precision for all these segments collectively is 82%,

which is very different from the reported precision for this level. However, after normalizing

the precision score, as in Equation 4.3, by subtracting the number of pixels in the ground
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(a) Given GT (b) Adjusted GT

Figure 4.16: The given and adjusted ground truth for the “rolling pin” video of the VSB100
[9] dataset.

truth background segment, the normalized precision is 0.23. Note that I did not include the

small regions in this calculation, and thus the small difference from the reported score. So

the normalization process of VSB100 [9] is what is affecting the scores for this video.

A third video called “rolling pin” contains a woman who is rolling a pin on a table, as

shown in Figure 4.17. All the given ground truth for this video is composed of a segment

for the woman, a segment for the pin, and a segment for the background. However, the

evaluation is for motion segmentation, and in respect to motion, the woman and the pin

are moving together and the pin was in her hands all the time, so the pin is an extension

of her. Thus the new adjusted ground truth merges the pin and woman segments together.

The given and adjusted ground truth for this video shown in Figure 4.16. Figure 4.17 shows

RAMS segmentation result for this video, and the increase in OSS scores after adjusting the

ground truth is 0.05.

A fourth video is called “sled dog race”, and it is a video of a pack of dogs pulling a

sled with a person on it. The dogs in the pack have synchronized motion, spatially close

to each other, and similar in color. To hand-label this video, one person may segment each

dog independently, while another one may segment the dog pack together. Although there

is no right or wrong answer for this video, the dogs in the team are co-temporally moving
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(a) Original Frame

(b) Level 1 Segmentation (c) Level 3 Segmentation (d) Level 6 Segmentation

Figure 4.17: The original first frame of the “rolling pin” video of the VSB100 [9] dataset,
and RAMS segmentation result for this video. The levels shown are 1, 3, and 6.

together, thus segmenting them together is the adopted answer for this approach. However,

the given ground truth segmentations for this video all include the first answer; they separate

each dog in a separate segment. So the adjusted ground truth contains a single segment for

the pack. In addition, the sled that the dogs are pulling is inherently moving with them,

so it is also merged with the dogs pack segment. Figure 4.18 shows the given and adjusted

ground truth for this video. Figure 4.19 shows RAMS segmentation result for this video.

The difference in OSS scores after adjusting the ground truth is 0.37.

The fifth and last video, called “snow leopards”, contains a leopard moving slightly from

right to left on what seems to be a rocky mountain. The only moving object is the the leopard.

However, the given ground truth breaks up the background by putting the stationary rocks

in front of the leopard in separate segments. The rocks are not moving, and thus should be

merged in a single background segment. This is done in the adjusted ground truth, which is

shown with the given ground truth in Figure 4.20. RAMS segmentation result for this video

is shown in Figure 4.21. The increase in OSS scores after adjusting the ground truth is 0.27.
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(a) Given GT (b) Adjusted GT

Figure 4.18: The given and adjusted ground truth for the “sled dog race” video of the
VSB100 [9] dataset.

(a) Original Frame (b) Level 1 Segmentation (c) Level 6 Segmentation

Figure 4.19: An original frame of the “sled dog race” video of the VSB100 [9] dataset, and
RAMS segmentation result for this video. The levels shown are 1 and 6.

(a) Given GT (b) Adjusted GT

Figure 4.20: The given and adjusted ground truth for the “snow leopards” video of the
VSB100 [9] dataset.

82



(a) Original Frame (b) Level 1 Segmentation (c) Level 9 Segmentation

Figure 4.21: The original first frame of the “snow leopards” video of the VSB100 [9] dataset,
and RAMS segmentation result for this video. The levels shown are 1 and 9.

4.3.2 Parameter Setting

The three similarity weights α1, α2, and α3 used to compute the final similarities in

Equation 3.1 were set to (0.4, 0.4, 0.2) respectively for all the videos in this evaluation,

since this combination achieved the maximum score on the VSB100 [9] dataset. The contour

plot of scores for all possible weight combinations is shown in Figure 4.22. From this plot,

the large plateau (white region) is the weight space where high scores are achieved. This

indicates that RAMS is not highly sensitive to these parameter values, as long as there is a

balance of motion and color weights that is equal or higher than the spatial weight. Since this

search was done to find the best weight combination for RAMS to achieve its segmentation

goals, the adjusted ground truth is used in this evaluation. In addtion, this evaluation uses

the first 41 coarsest levels of each segmentation.

The above weight search was done for the VSB100 [9] dataset as a whole. In addition,

a weight search was done for each of its videos individually to see what is the best weight

combination for each video. A histogram was computed to collect the votes of the individual

videos about their best weight combination that achieved the highest score. A contour plot

for this histogram is shown in Figure 4.23. From this histogram, it is clear that the videos do

not agree on a weight combination; the different videos perform best with different weights.

That does not mean that they cannot perform well with other weights. However, collectively,

the weight combination (0.4, 0.4, 0.2) achieves better scores from the above weight search.

83



α
2

α
1

 
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

O
S

S
 S

c
o

re

0.35

0.4

0.45

0.5

0.55

0.6

Figure 4.22: A contour plot of OSS scores for RAMS using all possible weight combinations
(α1, α2, α3), where increments per each weight is 0.1. The shown weights are α1 and α2,
while α3 is implicitly equal to:
1.0 − α1 − α2. Since all weights sum to 1.0, only the top left triangle contains the possible
weight combinations.
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Figure 4.23: A contour plot of a histogram that collects the votes of the individual videos
about their best weight combination that achieved the highest score. A blue cross mark is
placed on the bin of (0.4, 0.4, 0.2) weight combination.
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These similarity weights are used in both the clustering step and the post-processing

step of RAMS. The clustering step is when the superpixel trajectories are grouped, while

the post-processing step is when discarded trajectories are merged with their most similar

neighbors. The same weights are used in both steps during the weight search. However,

in the evaluation reported above, the post-processing weights were equally set. This did

not affect the scores significantly. In addition, the discarded trajectories are problematic

trajectories; they are either less than three frames long, or have very small superpixels.

Thus using equal weights for merging them with similar neighbors is probably better.

4.4 Cases of Unexpected Results

There are some case when the results are not as expected by a user of a video segmentation

algorithm. The first case is when a moving object has non-moving parts, such as for example

a person or an animal that only moves his/her/its head. Any motion-based algorithm will

not detect the non-moving parts. In this case, its up to the other visual cues, such as color

and location, to help segmenting these parts. However, this could end up dividing the object

into more than one segment. In addition, these parts usually appear in levels with larger

number of clusters, as they tend to merge with the background in levels with smaller number

of clusters. Figure 4.24 illustrates an example.

Another case where unexpected segments may appear involves occlusions. An example is

a wall that gets occluded when an object passes in front of it. The occluded or dis-occluded

areas of the video may get segmented with the occluding object, especially in the levels with

small number of clusters as they can get separated in levels with larger number of clusters.

Figure 4.25 illustrates an example. The reason causing this problem is that these occluded

or dis-occluded areas usually end up having short trajectories as they are terminated with

an occlusion or appear just after an occlusion. In addition, the superpixels on the boundary

of the moving occluding object may not be accurate, spilling some pixels on these areas that
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Figure 4.24: RAMS segementation result for the “koala” video of the VSB100 [9] dataset.
The frames 1, 21, 41, 61, 81, and 101 are shown in consecutive rows. The columns contains
the original frames, level 2 segmentation, and level 16 segmentation, respectively. Only the
head of the koala is moving, so it is segmented in the first level shown. The rest of the
koala’s body did not move, so it got separated from the background in a later level.

have the same motion as the occluding object. So for the example shown in Figure 4.25,

changing the weights of the motion, color, and spatial similarities, did change the effect of

occlusion.
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Figure 4.25: Different levels of the RAMS segmentation result of the man and gas can video,
with different weight combinations. The frames 1, 36, 84, and 102 are shown in consecutive
rows.This example shows the effect of occlusion on the wall behind the man as he passes in
front of it. Merging the occluded wall area with the man happens at levels with small number
of clusters. The occlusion effect was lessened by using a different weight combination that
decreases the motion weight. It merged the occluded area of the wall with the background
instead of merging it with the man segment.
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4.5 Additional Discussion

RAMS outperforms state-of-the-art approaches on new videos that emphasize non-rigid

motion, and the more traditional VSB100 [9] dataset as well. Although BPR is not as

important as VPR for RAMS, RAMS also achieves good results with BPR. RAMS was

designed for non-rigid motion, as in the zebra video example, but also works for rigid objects.

The majority of objects of interest in real-world videos are non-rigid objects. In the tested

videos of VSB100 [9], the approximate total number of main moving objects is 164, where 28

of them are rigid objects, and 136 of them are non-rigid objects. The rigid objects include

three balls, two cars, a boat, and a train. However this video set contains more than 73

people and 62 animals.

An additional advantage of RAMS is its ability to put the background together in a single

segment. Other approaches, such as [16] and [7], break up the background because of their

color sensitivity. However, the background is still, thus a motion segmentation approach

should put the background pieces together in a single segment.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

A new unsupervised motion-based video segmentation approach (RAMS) is proposed

in this dissertation. It segments non-rigid objects based on temporal motion coherence,

instead of coherence in motion magnitude and direction. Considering motion timing is a

new perspective for looking at motion coherence between objects in videos. The experiments

show significant improvement in video segmentation results, compared with related state-of-

the-art approaches. These results prove that this new concept in motion coherence works

for video segmentation.

In most videos, the objects of interest are people and animals, which move non-rigidly.

Non-rigid objects have parts that can move in different directions at the same time. On the

other hand, parts of a rigid object move at the same time and direction. So using temporal

coherence of motion is suitable for segmenting all objects, whether they move rigidly or non-

rigidly. Other approaches assume rigid motion, and thus can break an object into multiple

segments. RAMS drops this assumption, and outperforms the other approaches.

RAMS hierarchically segments videos, producing multiple segmentations with different

number of clusters. Defining what is a “correct” segmentation is a matter of opinion. So

hierarchal segmentation is an advantage that leaves the selection of the optimal level to the

end-user or end-system. The approaches [16] and [7] also produce hierarchal segmentations,

but they tend to break up a stationary background into multiple segments even in their

coarsest levels. RAMS, as opposed to these approaches, is able to put the background pieces

together in a single segment.
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RAMS sets parameters (α1, α2, α3) to weigh the contribution of three video cues: motion,

color, and location, respectively. In experiments, RAMS was able to perform relatively well

under a wide range of weights. So RAMS is not highly sensitive to these parameters setting.

Other than the fixed camera assumption, RAMS is a general-purpose automatic video

segmentation system. It makes no assumptions about the video contents. Its segmentations

can be further used as a basis for object recognition or action recognition. Instead of look-

ing at whole images or bounding boxes, segments provide more localized and freely-shaped

regions for object recognition, and multi-frame regions provide time information. Further-

more, the motion of superpixel trajectories within a segment can also be analyzed for action

recognition. The work in [35] by Ke et al. is an example that uses video segments in action

recognition.

Other applications include the generation of automatic segmentations to save some human

efforts. It simplifies video semantic labeling as a user can label a segment once, and then

all labels are propagated to all frames. The annotation tool of [17] is an example of this

application. In this context, tools can also be provided for correcting misclassified superpixel

trajectories, and the user only needs to correct one superpixel to correct its whole trajectory.
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5.2 Future Work

The biggest limitation of RAMS is that it assumes a fixed camera for detecting motion.

Future work can use a motion detection algorithm to determine whether a superpixel is

moving independently from the camera. Note that RAMS only needs to know whether a

superpixel is moving, not how much nor in what direction. A future work will add inde-

pendent motion detection to RAMS, in order to extend the domain of application to videos

from moving cameras, while maintaining the principal of unsupervised segmentation through

temporal motion coherence. However, this is not easy; motion detection algorithms can have

assumptions about video content, or their inaccuracy affects the inferred motion timing,

which in turn affects the segmentation results.

The video stabilization algorithm by Dutta et al. [28], uses a set of tracked points in every

frame, segments them as background or foreground points, and uses the background points to

estimate the transformation from one frame to the next. As a pilot study for adapting RAMS

to camera motion, we use these points’ foreground/background segmentation to estimate

motion within superpixels without the need to transform or stabilize the frames; foreground

points are moving, while background points are still. Rahul Dutta generously provided us

with the foreground/background segmentation of points for two videos from the VSB100 [9]

dataset with camera motion, namely the “hockey” and “space shuttle” videos.

One issue is that points do not cover the entire image, so some superpixels do not have

points within them to determine their motion. Table 5.1 contains the number of superpixels

that do not have points within them at all, so they do constitute a big and important

portion of the video and thus discarding them is not a good option. Thus another modified

version of RAMS was implemented to take this problem into account. In this version, the

motion probability for a superpixel is computed as the fraction of the points within it that

are labeled as foreground. If the superpixel does not have any points within it, then its

motion probability is undefined. These motion probabilities are what creates the motion
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Table 5.1: The number of superpixels that do not have points (generated by [28]) within
them, in the “hockey” and “space shuttle” videos of VSB100 [9] dataset.

“hockey” “space shuttle”

Total number of superpixels 78,254 82,437
Number of superpixels

without any points

14,551 27,868

Approximate percentage 19% 34%

patterns for each superpixel trajectory. Then, comparing two superpixel trajectories in their

overlapping time is done as usual. The exception is when two corresponding superpixels in

a frame have undefined motion, both of them or either one of them, this frame is skipped

during comparison. If two trajectories do not have any common frame with defined motion,

their motion similarity is undefined and thus it is not used in the final similarity between the

two trajectories. In this case, the weight of motion similarity is redistributed to the weights

for the color and spatial similarities. For example, if the weights are (0.34, 0.33, 0.33) for

motion, color, and spatial similarities respectively, then the weights become (0, 0.5, 0.5) for

this pair of trajectories.

The “hockey” video is hard since the majority of frames in this video are dominated

by foreground objects, and that is against the video stabilization algorithm assumption

of the background being the majority of the frames. Figure 5.1 shows some frames of

this video. However, although the video mainly consists of people, it could be sufficient

to just distinguish between them regardless of whether they are considered foreground or

background as long as adjacent people have different labels. Figure 5.1 shows the points and

superpixel boundaries overlaid on the original images, and the point segmentation was able

to differentiate between the main people in most frames. So an attempt to use this point

segmentation was performed. The result of the modified version of RAMS for the “hockey”

video is shown in Figure 5.1, and its VPR scores using the given ground truth shown in

Figure 5.2 are shown in Table 5.2. RAMS was able to separate the main people in the visual

result of this video.
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Figure 5.1: Original frames for the “hockey” video of VSB100 [9] dataset, and RAMS (0.34,
0.33, 0.33) modified version segmentation result for it. Frames 1, 2, 61, and 121 are shown
in consecutive rows. The first column contains the original frame, while the second column
overlays the superpixel boundaries and the points foreground/background segmentation pro-
vided by Rahul Dutta [28]. Red points correspond to the background segment, while green
points correspond to the foreground segment. The points are thickened to be more visible.
There is no point segmentation for the first frame by [28]. The third column contains a
segmentation result from the modified version of RAMS (level 19). The segmentation re-
sult shown overlays the labeled superpixels (before post-processing) on the original images;
labeled superpixels are colored according to their labels, while discarded superpixels retain
their original colors.
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(a) Given ground truth for the first frame. (b) Given ground truth for the last frame

Figure 5.2: The given ground truth for the “hockey” video of the VSB100 [9] dataset.

Table 5.2: The VPR scores for the modified RAMS (0.34, 0.33, 0.33) version result on the
“hockey” video of the VSB100 [9] dataset. In addition, the scores of Grundmann et al.
[16, 17], and Ochs and Brox [25] are included for comparison.

Approach ODS OSS AP

Modified RAMS 0.68 0.68 0.64

(R 0.66, P 0.70) (R 0.66, P 0.70)
Grundmann et al. [16] 0.49 0.49 0.41

(R 0.39, P 0.67) (R 0.39, P 0.67)
Ochs and Brox [25] 0.06 0.06 0.03

(R 0.98, P 0.03) (R 0.98, P 0.03)
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Table 5.3: The VPR scores for the modified RAMS (0.34, 0.33, 0.33) version result on the
“space shuttle” video of the VSB100 [9] dataset. In addition, the scores of Grundmann et
al. [16, 17], and Ochs and Brox [25] are included for comparison. Score are in the format:
F(R,P).

Using Given Ground Truth Using Adjusted Ground Truth

Approach ODS OSS AP ODS OSS AP

Modified RAMS 0.26 0.26 0.16 0.41 0.41 0.26
(0.23,
0.29)

(0.23,
0.29)

(0.31,
0.62)

(0.31,
0.62)

Modified RAMS - 0.31 0.31 0.21 0.57 0.57 0.51

Boundary Discarded (0.39,
0.26)

(0.39,
0.26)

(0.85,
0.43)

(0.85,
0.43)

Grundmann et al. [16] 0.35 0.35 0.20 0.38 0.38 0.26
(0.23,
0.78)

(0.23,
0.78)

(0.27,
0.64)

(0.27,
0.64)

Ochs and Brox [25] 0 0 0 0 0 0
(0.74,
0.00)

(0.74,
0.00)

(0.77,
0.00)

(0.77,
0.00)

The second video, called “space shuttle”, is about a launch of a space shuttle. Figure 5.3

shows some frames and the point segmentation for this video. This video is hard because the

camera zooms as well as pans. In addition, it has black strips on the borders of the image

frames. Figure 5.3 shows a segmentation result from the modified version of RAMS in its

third column. There were some points that were falsely labeled as foreground, especially in

the black borders of the images. This lead to the spill of the space shuttle segment to the

background. So another segmentation was attempted after discarding the superpixels on the

image boundaries. This lessened the spill of the space shuttle segment to the background.

Table 5.3 contains the VPR evaluation scores for the two results (with and without discarding

boundary superpixels) using the given and adjusted ground truth shown in Figure 5.4.

The results of the “hockey” and “space shuttle” videos were a little encouraging, so the

modified RAMS version was tested on five of the previously tested videos of VSB100 [9]

dataset: “dominoes”, “juggling”, “kia commercial”, “trampoline”, and “up dug”. However,

the scores for these videos significantly decreased. So it is clear that this version of RAMS

is sensitive to mislabeling in the points foreground/background segmentation by [28]. As a

result, future work will test other motion detection algorithms to find a more suitable one.
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Figure 5.3: Original frames for the “space shuttle” video of VSB100 [9] dataset, and RAMS
(0.34, 0.33, 0.33) modified version segmentation result for it. Frames 2, 25, 71, 118, and
121 are shown in consecutive rows. The first column contains the original frame, while the
second column overlays the superpixel boundaries and the points foreground/background
segmentation provided by Rahul Dutta [28]. Red points correspond to the background seg-
ment, while green points correspond to the foreground segment. The points are thickened to
be more visible. The third column contains a segmentation result from the modified version
of RAMS (level 2). The fourth column contains a segmentation result from the modified
version of RAMS (level 3) after discarding the boundary superpixels. The segmentation re-
sults shown overlays the labeled superpixels (before post-processing) on the original images;
labeled superpixels are colored according to their labels, while discarded superpixels retain
their original colors.
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(a) Given ground truth for the last frame. (b) Adjusted ground truth for the last frame

Figure 5.4: The given and adjusted ground truth for the “space shuttle” video of the VSB100
[9] dataset. The adjusted ground truth merges the two segments of the space shuttle into
one since they are parts of the same object and are moving together in the video.

Conceptually, it is simple to adapt to moving cameras by changing the motion detection

method. RAMS only needs to know when a superpixel is moving. This can be accomplished

by detecting the camera’s motion and then the independent motions. Examples of algorithms

for this task include [11] and [31]. In the current version of RAMS, a superpixel’s motion

is dependent on the video’s optical flow, as described in the third chapter. So replacing

the optical flow with a version that compensates for camera motion, as in [11], is a simple

solution to adapt RAMS to camera motion. However, Wang and Schmid [11] algorithm uses

human detectors to remove points corresponding to humans for better background/camera

motion estimation. The use of human detectors was optional for their algorithm, but it

did significantly improve their results. The goal of their algorithm is to improve action

recognition for humans, so their goal is different and may not be very sensitive to noisy

optical flow. So a test is needed to check its compatibility with RAMS. Another solution

is replacing pixels optical flow with point-trajectories motion, where the camera motion has

been removed as in [31]. However, Wu et al. [31] requires all the trajectories to have the

same length, and start at the first frame. If a trajectory gets out of view, the trajectory

repeats its end point until the end of the video. This requirement is not reasonable as
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objects can enter and leave at any time in the video. However, their results look promising,

so perhaps the video can be divided into multiple small overlapping sub-videos and processed

by their algorithm. This will be tested in future work. Both algorithms, [11] and [31], have

assumptions about video content while RAMS does not. In the future, a preprocessing step

will be added to RAMS to eliminate the fixed camera assumption, while keeping RAMS an

unsupervised approach.
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Appendix A

Performance Evaluation Measures

A video segmentation is evaluated by comparing it with a ground truth segmentation.

Ground truth segmentations are human annotated segmentations. An evaluation score for a

segmentation encompasses how much it matches a given ground truth. A set of evaluation

measurements are used for this comparison. The following is a description by examples of

the Volume Precision-Recall (VPR) [9] that is used for performance evaluation.

A.1 Volume Precision-Recall (VPR) [9] by Examples

Galasso et al. [9] introduced a precision-recall method to evaluate video segmentations.

Each segment in a video segmentation is a 3D volume: two image spatial dimensions, in

addition to the time dimension. Segments of a video segmentation result are compared with

the segments of a ground truth segmentation by inspecting their pixel overlap. Precision

measures how well a segment volume is encapsulated within a ground truth segment. A

perfect precision is scored by a video segmentation where none of its segments overlap with

multiple ground truth segments. On the other hand, recall measures how well the ground

truth segments are covered by the tested segmentation segments. For both precision and

recall, a matching procedure is performed to choose the corresponding pair of segments to

be used for computing the scores. The following example explains this method.

Consider an example video of a person playing with a ball and bouncing it on the ground.

Assume that the given ground truth segmentation for this video is composite of three seg-

ments: person, ball, and background. A segmentation result, compared to this ground truth,

can range from being either a correct segmentation, an over-segmentation where more details
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(a) Ground Truth Segmentation
(S0)

(b) First Segmentation (S1) (c) Second Segmentation (S2) (d) Third Segmentation (S3)

Figure A.1: Segmentation examples for a video of a person playing with a ball. The seg-
mentations are displayed in 2D for a frame. The first row is a ground truth segmentation
provided by a human, while the second row contains three possible computer segmentation
results.

are segmented, or an under-segmentation where it is more simplified. These segmentations

are depicted in Figure A.1.
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Using this video as a working example, the following is how precision and recall are

computed in regards to the person. For computing the precision score of a segmentation,

each of its segments is matched with a ground truth segment that has maximal pixel overlap.

For example, in (S2), segment J is matched with A. For recall, its the other way around,

where each ground truth segment is matched with a segmentation segment that has maximal

pixel overlap. Pixel overlap between a segment st and its matched segment sm can be given

as |st∩sm|
|st|

, where ∩ is the intersection of pixels, and |.| denotes the number of pixels. So in

the case of (S2), the person will have perfect precision and recall.

Considering the first segmentation (S1) in Figure A.1, the person is over-segmented into

three segments: D, E, and F. The precision for each of these three segments is perfect since

each of them has a 100% pixel overlap with the ground truth segment A. However, the

recall for the person in this segmentation is penalized since the ground truth segment A

is matched to only one segment of these three segments (D, E, or F), whichever has the

maximum overlap. If we assume E has the highest portion of the person in S1 with 40% of

its pixels, then A will be matched with E with a 40% recall score. So in general, using this

VPR evaluation measurement, over-segmentation methods have high precision scores and

low recall scores.

Considering the third segmentation (S3) in Figure A.1, the person and the ball are in

a single segment: M. For computing precision, this segment is matched with the ground

truth segment A since it has maximum pixel overlap, assuming that the person is much

larger than the ball (i.e. |A| > |B|). Since M is not entirely encapsulated within the ground

truth segment, its precision is penalized. Assuming that 70% of M pixels corresponds to the

person, while 30% corresponds to the ball, M will have a 70% precision score. On the other

hand, the recall for the person in this segmentation is perfect since the person in the ground

truth, A, is completely covered by M. So in general, under-segmentation methods have high

recall scores and low precision scores.
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For simplicity, the above example discussed the precision and recall scores for a single

segment. The final precision and recall scores for a video segmentation S compared to a

ground truth segmentation G is given as follows:

P =

∑

s∈S maxg∈G|s ∩ g|

|S|
(A.1)

R =

∑

g∈G maxs∈S|s ∩ g|

|G|
(A.2)

However, in VSB100 [9], multiple ground truth segmentations are provided for each video

from different people to take into account the multiple levels of detail that people perceive for

a video. This evaluation method is designed to accommodate multiple types of segmentation

methods ranging from an over-segmentation to an under-segmentation. So the precision and

recall scores are averaged over the M given ground truth segmentations, as follows:

P =
1

M

M
∑

i=1

∑

s∈S maxg∈Gi
|s ∩ g|

|S|
(A.3)

R =
M
∑

i=1

∑

g∈Gi
maxs∈S|s ∩ g|

∑M

i=1 |Gi|
(A.4)

A precision-recall (VPR) plot is used to plot the scores of an evaluated approach with

(recall, precision) points. Figures 4.2 and 4.5 show examples of VPR plots. If an approach

produces a single segmentation for a video, it will have a single point in this plot. But if an

approach produces a hierarchy of segmentations for a video, it will have a point for each level

in this hierarchy, with a curve line connecting these points. So the varying parameter for

a curve is the level in segmentation hierarchy. If the evaluation is done on multiple videos,

then these points are the average scores for each level.
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Finally, F-measure is used to report a final evaluation score for the aggregate performance

of an evaluated approach:

F =
2PR

P +R
(A.5)

There are three scores reported for each evaluated approach: (i) Average Precision (AP),

which is the area under the curve, (ii) Optimal Segmentation Scale (OSS) score, which is the

F-measure when an optimal scale (level) is selected for each segmentation, and (iii) Optimal

Dataset Scale (ODS) score, which is the F-measure when an optimal fixed scale (level) is

selected for all segmentations.

There are two trivial cases for a segmentation: (i) all the pixels are in a single segment,

and (ii) each pixel is a separate segment. The first case will result in a perfect recall score;

any ground truth segment will be entirely covered by this single segment. The second case

will result in a perfect precision score; every segment is completely encapsulated within a

ground truth segment since it contains only one pixel. So in VSB100 [9], the scores are

normalized to prevent the problem of obtaining high scores with these trivial cases. The

following are the normalized scores:

P =

∑M

i=1[{
∑

s∈S maxg∈Gi
|s ∩ g|} −maxg∈Gi

|g|]

M |S| −
∑M

i=1 maxg∈Gi
|g|

(A.6)

R =

∑M

i=1

∑

g∈Gi
{maxs∈S|s ∩ g| − 1}

∑M

i=1{|Gi| − ΓGi
}

(A.7)

where ΓGi
is the number of segments in ground truth segmentation Gi. So for the first

case, the recall will still be perfect, but the precision will be zero, and thus having a zero

f-measure score. The opposite happens for the second case, where it will still have a perfect

precision but zero recall, and thus zero F-measure score. The following example explains

this normalization affect. Consider a video where its total number of pixels is 150 pixels.

Assume it has only one ground truth segmentation, for simplicity, which is composite of
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three segments and each of them contain 50 pixels. Table A.1 shows the computations of

VPR scores for this example, both normalized and unnormalized, for these two trivial cases.

As a result of this normalization, the final score is always F = 0 for these two cases.
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Table A.1: A working example showing the difference between the normalized and unnor-
malized scores of two trivial cases of video segmentations: all pixels are in a single segment,
and every pixel is in a separate segment. In this example, the video contains 150 pixels.
It is assigned a single ground truth segmentation that is composite of three segments, each
contain 50 pixels. Since there is only one ground truth segmentation in this example, nor-
malized scores equations are simplified in the first block of this table, and used to compute
the normalized scores of this table. Unnormalized scores are computed using the Equations
A.1 and A.2. F is computed as in Equation A.5. The normalized scores for these two cases
is: F = 0.

Simplified equations for this example

P =

∑

s∈S maxg∈G|s ∩ g| −maxg∈G|g|

|S| −maxg∈G|g|

R =

∑

g∈G{maxs∈S |s ∩ g| − 1}

|G| − ΓG

First Case: all pixels = 1 segment

Unnormalized Scores Normalized Scores

P = 50
150 = 0.33 P = 50−50

150−50 = 0

R = 3×50
150 = 1 R = 3×(50−1)

150−3 = 1

F = 2×0.33×1
0.33+1 = 0.50 F = 0

Second Case: each pixel = 1 segment

Unnormalized Scores Normalized Scores

P = 150×1
150 = 1 P = 150×1−50

150−50 = 1

R = 3×1
150 = 0.02 R = 3×(1−1)

150−3 = 0

F = 2×1×0.02
1+0.02 = 0.04 F = 0
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