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ABSTRACT 

 

APPLICATION OF SEMI-ANALYTICAL MULTIPHASE FLOW MODELS  

FOR THE SIMULATION AND OPTIMIZATION OF 

GEOLOGICAL CARBON SEQUESTRATION 

 

Geological carbon sequestration (GCS) has been identified as having the potential to reduce increasing 

atmospheric concentrations of carbon dioxide (CO2).  However, a global impact will only be achieved if 

GCS is cost effectively and safely implemented on a massive scale.  This work presents a computationally 

efficient methodology for identifying optimal injection strategies at candidate GCS sites having caprock 

permeability uncertainty.  A multi-objective evolutionary algorithm is used to heuristically determine 

non-dominated solutions between the following two competing objectives: 1) maximize mass of CO2 

sequestered and 2) minimize project cost.  A semi-analytical algorithm is used to estimate CO2 leakage 

mass rather than a numerical model, enabling the study of GCS sites having vastly different domain 

characteristics.  The stochastic optimization framework presented herein is applied to a case study of a 

brine filled aquifer in the Michigan Basin (MB).  Twelve optimization test cases are performed to 

investigate the impact of decision maker (DM) preferences on heuristically determined Pareto-optimal 

objective function values and decision variable selection.  Risk adversity to CO2 leakage is found to have 

the largest effect on optimization results, followed by degree of caprock permeability uncertainty.  This 

analysis shows that the feasible of GCS at MB test site is highly dependent upon DM risk adversity.  

Also, large gains in computational efficiency achieved using parallel processing and archiving are 

discussed. 

 

Because the risk assessment and optimization tools used in this effort require large numbers of simulation 

calls, it important to choose the appropriate level of complexity when selecting the type of simulation 

model.  An additional premise of this work is that an existing multiphase semi-analytical algorithm used 
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to estimate key system attributes (i.e. pressure distribution, CO2 plume extent, and fluid migration) may 

be further improved in both accuracy and computational efficiency.  Herein, three modifications to this 

algorithm are presented and explored including 1) solving for temporally averaged flow rates at each 

passive well at each time step, 2) using separate pressure response functions depending on fluid type, and 

3) applying a fixed point type iterative global pressure solution to eliminate the need to solve large sets of 

linear equations.  The first two modifications are aimed at improving accuracy while the third focuses 

upon computational efficiency.  Results show that, while one modification may adversely impact the 

original algorithm, significant gains in leakage estimation accuracy and computational efficiency are 

obtained by implementing two of these modifications.   

 

Finally, in an effort to further enhance the GCS optimization framework, this work presents a 

performance comparison between a recently proposed multi-objective gravitational search algorithm 

(MOGSA) and the well-established fast non-dominated sorting genetic algorithm (NSGA-II).   Both 

techniques are used to heuristically determine Pareto-optimal solutions by minimizing project cost and 

maximizing the mass of CO2 sequestered for nine test cases in the Michigan Basin (MB).  Two 

performance measures are explored for each algorithm, including 1) objective solution diversity and 2) 

objective solution convergence rate.  Faster convergence rates by the MOGSA are observed early in the 

majority of test optimization runs, while the NSGA-II is found to consistently provide a better search of 

objective function space and lower average cost per kg sequestered solutions. 
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CHAPTER I:  INTRODUCTION 

 

1 Problem Statement 

The steady increase in atmospheric concentrations of CO2 is referred to as the “carbon problem”.   

Historical ice core data have indicated that the atmospheric concentration of CO2 has ranged between 

about 170 ppm and 300 ppm over the past 650,000 years.  The current value of 390 ppm is a third higher 

than the highest value seen in the past 650 millennia.  The mass of annual anthropogenic carbon 

emissions has been recently estimated to be between 8 and 9 gigitonnes (Gt).  Reference [47] reports that 

global emissions are composed of the following: Electricity and Heat (41%), Transport (22%), Industry 

(20%), Other (10%), and Residential (7%).  This distribution reflects the reality that both the United 

States and China have an abundance of cheap coal making coal fired power generation likely for at least 

the next few decades [47].  This heavy dependence upon fossil fuels requires the evaluation of a portfolio 

of carbon emission reduction technologies [55]. 

 

Carbon capture and storage (CCS) has been proposed as a method of reducing CO2 emissions while our 

society continues to utilize fossil fuels.  Capture, as it pertains to CCS, involves the separation of CO2 

from fossil fuel emissions.  Isolated CO2 is then stored at some location other than the atmosphere.  

Geological carbon sequestration (GCS) refers to long term storage by injection into in deep geological 

formations.  Due to favorable phase dependent properties such as high density and low buoyancy drive, it 

is advantageous to inject CO2 at depths where both temperature and pressure are in excess the critical 

point of CO2 (i.e. 31.1°C and 7.4 MPa, respectively).  Supercritical conditions exist at depths below 800m 

for typical geothermal gradients [47]. 

 

There are several advantages associated with this method.  The technology needed for GCS already exists 

as the deep geological injection of CO2 has been used for enhanced oil recovery (EOR) for decades and 
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there are multiple large scale GCS projects currently active.  Also, GCS allows the continued use of 

fossils fuel energy sources while reducing global greenhouse gas emissions.  The combination these two 

advantages suggest that GCS could be used as a temporary solution to the carbon problem while more 

sustainable methods of reducing CO2 emissions are developed. 

 

There are, however, several disadvantages associated with the implementation of GCS.  Capture, 

transport, and injection of CO2 require additional energy and water resources, where the generation of 

addition energy resources is likely to produce additional CO2 emissions.  In addition, injection wells must 

be properly designed and operated to maintain the long-term injectivity into the formation.  Perhaps the 

largest disadvantage of GCS is the potential for the leakage of CO2 or brine to overlying aquifers or the 

surface.  Although due to natural conditions caused by volcanic activity, the Lake Nyos disaster, in which 

1,700 people died of asphyxiation from a release of approximately one cubic kilometer of build-up of 

CO2, shows an extreme example of the risk associated with CO2 leakage [25].  Due to storage into porous 

media rather than subterraneous voids, leakage from sequestered CO2 deposits is likely to occur slowly 

over several decades.  While a slow release of sequestered CO2 does not pose asphyxiation hazards, it 

may seep into overlying drinking water aquifers and create conditions which release immobilized 

pollutants or change pH values.  Therefore, the risk of CO2 leakage need to be fully understood and 

minimized before implementation of GCS. 

 

Although GCS has been identified as a prominent technology to manage increasing atmospheric 

concentrations of carbon dioxide (CO2) [47,55], the effective application of GCS will require a global 

implementation of large numbers of carbon injection projects.  While an individual large coal-fired power 

plant may emit up to 5-10 megatonnes (Mt) of CO2 per year [6], total annual global anthropogenic carbon 

emissions measured in mass of CO2 are approximately 30,000 Mt [47].  Results from [23] suggest that 

specific regions of a small number of candidate aquifers will provide the majority of low cost geological 

CO2 storage.  Thus, as the selection of the appropriate subsurface reservoir is crucial to the success of a 
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GCS project [7], many potential injection sites will need to be assessed world-wide for GCS suitability.  

The efficient preliminary characterization of candidate GCS injection sites has the potential to create 

massive resource savings to society.  In addition, a comprehensive pre-screening effort will increase GCS 

storage reliability by eliminating “bad” and identifying “good” GCS reservoirs. 

 

Conjunctive preliminary project planning will involve the characterization, optimization, and risk 

assessment of potential GCS sites.  There are, however, several difficulties associated with these tasks.  

The first is that the large-scale, multiphase numerical modeling of several potential injection sites for the 

purpose of initial assessment is infeasible due to the effort involved in model construction and calibration.  

Data characterizing the subsurface domain are typically scarce, which introduces parameter uncertainty 

and adds to the complexity of modeling GCS.  Also, because of their propensity to be computationally 

expensive [24], the direct use of large-scale, multiphase numerical models would be unrealistic in 

simulating the high volume of realizations needed for risk assessment and optimization.  The high 

computational cost associated with numerical models may be overcome by the use of data-based response 

surface methods (e.g. [8]).  However, it is the authors’ intent for the resulting framework to ultimately be 

used to optimize and compare large numbers of potential injection sites having vastly different domain 

characteristics.  Creating and calibrating each potential injection site’s numerical model, as well as 

training the resulting response surface would require user expertise and large investments of 

computational time.  Therefore, this work has chosen to simulate multiphase subsurface flow using a 

semi-analytical model presented by [53] and modified by [16].  This semi-analytical leakage algorithm is 

very general and can be applied to simplified computational models of the vast majority of potential 

injection sites. 

 

An additional difficulty associated with preliminary GCS project planning is that potential storage 

reservoirs typically exhibit a high degree of uncertainty associated with physical parameters.  Reference 

[10] identified abandoned (herein referred to as “passive”) well permeabilities as the most dominant 
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uncertainty parameter when estimating fluid leakage due to GCS.  In North America, significant numbers 

of passive wells may perforate the caprock in formations suitable for GCS [9,45,47].  Most likely, very 

little information exists on the location and/or sealing properties of these wells.  However, several efforts 

have been made to investigate and account for the uncertainty associated with passive well permeability.  

References [67,68] developed a passive well integrity scoring index based upon typically available 

information (e.g. completion date, regulatory requirements, etc.).  Reference [17] physically sampled and 

analyzed segments of a 30 year old passive well that had been continuously exposed to 96% CO2 finding 

that cement interfaces are more important than the cement matrix when quantifying migration pathways.  

 

Multiphase subsurface optimization problems are typically highly non-linear due to the irregular spatial 

location of preferential flow pathways and the multiphase flow (i.e. CO2 and brine) equations governing 

pressure response and CO2 plume migration.  Therefore, a robust global optimization tool is needed to 

find best performing injection strategies that maximize the mass of CO2 sequestered and minimize project 

cost by selecting optimal injection well locations and injection rates.  In multi-objective problems, a 

Pareto-optimal, or non-dominated, solution outperforms all other solutions with respect to all objectives 

[58].  Multi-objective evolutionary algorithms (MOEAs) have been shown to be effective in providing 

Pareto-optimal solutions for a large number of subsurface flow applications possessing several decision 

variables  [1,5,12,28,37,41,44,56,59,61,62,63,64,70].  In particular, [58] presents a comprehensive review 

of state-of-the-art MOEAs highlighting key algorithm advances which may be used to identify critical 

tradeoffs in water resources problems.  A fast non-dominated sorting genetic algorithm (NSGA-II) [19] 

with -dominance [39] has been selected as a computational optimization tool because it is among the 

best performing multi-objective optimization evolutionary algorithms available [13]. 

 

If computationally feasible, stochastic methods should be applied in cases where parameter uncertainty is 

of significant concern.  A popular approach for accomplishing this is to apply a Monte Carlo (MC) 

method where simulation is performed for an ensemble of uncertain parameter sets to estimate the 
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statistics of optimization objectives and constraints.  There are several examples in the literature where 

MOEAs are coupled with MC techniques to optimize groundwater problems having parameter 

uncertainty.  A multi-objective groundwater flow optimization problem with aquifer hydraulic 

conductivity uncertainty is solved by [5] using an NPGA.  Reference [1] used a MC-based Bayesian 

update scheme to approximate posterior uncertainty in hydraulic conductivity and head when using an 

NSGA-II to perform multi-objective design of aquifer monitoring networks.  A MC approach was also 

used by [41] when determining optimal remediation methods for groundwater aquifers having hydraulic 

conductivity uncertainty.  MC techniques are also used to investigate parameter uncertainty associated 

with GCS [27,54,66,69].  In particular, Reference [10] applied a stochastic Monte Carlo approach to 

estimate leakage risk associated with passive well permeability uncertainty.  Reference [45] used a large-

scale Monte Carlo method to explore the effects of caprock permeability uncertainty on fluid leakage 

estimation, determining that the amount of CO2 leakage from GCS is typically acceptable for climate 

change mitigation. 

 

Herein, several computational tools have been integrated into a stochastic multi-objective optimization 

framework for the purpose of performing large-scale candidate GCS site feasibility studies.  These tools 

include 1) a semi-analytical leakage algorithm to rank the performance of trial injection strategies; 2) a 

Monte Carlo procedure to quantify risk resulting from parameter uncertainty; and 3) an NSGA-II with -

dominance to heuristically determine Pareto-optimal solutions between competing objectives.  Three 

fundamental goals are investigated by applying this framework to a test site in the Michigan Basin (MB): 

1) quantify the impact of decision maker (DM) preferences on heuristically determined Pareto-optimal 

objective values (i.e. mass sequestered and project cost); 2) quantify the impact of DM preferences on 

heuristically chosen decision variables (i.e. injection well flow rates and locations), and; 3) preliminarily 

assess the suitability of the MB test site for GCS. 
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Stochastic techniques for preliminary GCS site assessment (e.g. injection strategy optimization, risk 

analysis, and sensitivity analysis, etc.) require large numbers of simulations.  Therefore, it is important to 

continually develop the accuracy and efficiency of simulation tools.  Several attempts have been made to 

analytically quantify the hydraulic communication between aquifers separated by leaky aquitard layers 

[29,30,31,43].  In addition, several other authors have presented analytical or semi-analytical solutions 

used to estimate subsurface pressure distributions and fluid flux across layer boundaries resulting from 

leaky wells [33,34].  For example, [42] introduced fluid and matrix compressibility to the similarity 

solutions governing single-well CO2 injection presented in [51], while [71] presented a single-phase semi-

analytical solution for large scale injection-induced pressure perturbation and leakage in a laterally 

bounded aquifer-aquitard system.  Also, a semi-analytical model estimating multiphase fluid flux through 

a single caprock perforation was developed by [36] to determine optimal injection intervals based upon 

trapping effects for secure CO2 storage in saline aquifers and [6,15,14] presented and applied a single-

phase semi-analytical model for both forced and diffuse leakage in a multi-layer system.  Finally, [4] 

combined solutions presented by [29], [49], and [65] to create a semi-analytical solution for 

approximating the area of potential impact from a single CO2 injection well.   

 

However, while other semi-analytical algorithms provide insight regarding specific processes (e.g. diffuse 

leakage [14]), the work presented herein focuses upon the multiphase subsurface flow model proposed by 

[53] and further developed by [10] because it is the only semi-analytical model able to simulate 

multiphase flow in domains having multiple injection wells and multiple aquifer and aquitard (i.e. 

caprock) layers.  An analytical algorithm was first developed by [49] for estimating the pressure 

distribution and leakage resulting from single-phase injection (e.g. injection of brine into a brine filled 

domain of aquifer) into a domain having multiple passive wells and multiple aquifer-aquitard layers.  This 

algorithm creates a set of linear equations describing the pressure distribution throughout the domain by 

superimposing pressure changes caused by each source or sink in each aquifer.  The general algorithm 

presented in [49] in conjunction with the development of a multiphase pressure response function 
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[50,51,52,49] led to the semi-analytical CO2 leakage algorithm, presented in [53] and expounded upon in 

[10], which estimates both brine and CO2 flux across confining layers resulting from GCS. While there 

are multiple pathways for the leakage of sequestered CO2 from subsurface storage reservoirs (e.g. 

geological discontinuities, caprock permeability, etc.), [53] assumes that hydrocarbon exploration and 

production boreholes created preferential flow paths in the domain [2,3,18,20,26,38,46].  This assumption 

appears reasonable, as the existing caprock had successfully held the recently produced hydrocarbons for 

many millennia prior to production [48]. 

 

Herein, three modifications to this semi-analytical leakage algorithm are presented and explored.  These 

include 1) solving for temporally averaged flow rates at each passive well at each time step, 2) using 

separate pressure response functions depending on fluid type [65], and 3) applying a fixed point type 

iterative global pressure solution to eliminate the need to solve large sets of linear equations. 

 

In addition, due to the complexity of the optimization problem, it is also important to select the best 

performing optimization algorithm. Reference [57] recently proposed a novel heuristic optimization 

method inspired by Newtonian laws of gravity.  While the gravitational search algorithm (GSA) had not 

yet been applied to the field of subsurface hydrology, several other studies report favorable results when 

comparing the GSA to other heuristic search algorithms for optimizing a number of non-linear 

engineering applications.  Reference [57] compared the GSA to particle swarm optimization (PSO), a real 

genetic algorithm (RGA), and central force optimization (CFO), finding that the GSA provided superior 

results in most cases and comparable results in all other cases.  Reference [11] found the GSA to exhibit 

better performance in terms of final fitness values and computational efficiency when compared against a 

modified PSO algorithm.  Reference [40] studied parameter identification of a hydraulic turbine 

governing system finding their improved GSA to be more accurate and efficient than both genetic and 

particle swarm algorithms.  References [21] and [22] used the GSA to solve large scale electrical power 

control problems while a slope stability analysis was performed using a modified GSA by [35].  
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Several versions of multi-objective GSAs (MOGSA) have also been presented.  Reference [32] proposed 

and compared a MOGSA with a multi-objective genetic algorithm (MOGA), Pareto-archived evolution 

strategy (PAES), and multi-objective particle swarm optimization (MOPSO) finding the MOGSA to 

outperform all the other methods.  A MOGSA has also been proposed and tested by [60].  This MOGSA 

was found to outperform almost 20 other heuristic algorithms when optimizing a Routing and 

Wavelength Assignment problem.   

 

Also in this work, a performance comparison is made between the MOGSA and the NSGA-II to 

determine the best algorithm for the preliminary optimization of potential GCS sites.   In order to 

accomplish this, a total of 360 optimization runs are processed where each of 9 test cases at the MB test 

site are optimized 20 times using each algorithm. 

 

2 Major Findings 

A stochastic methodology is presented herein where a semi-analytical CO2 leakage algorithm and a 

Monte Carlo procedure are integrated into a NSGA-II with -dominance to determine optimal GCS 

injection strategies.  In an effort to show how this method may be applied to real world candidate 

injection sites, the stochastic optimization framework is applied to a hypothetical GCS project at a MB 

test site in northern Michigan, USA.  Three fundamental goals are investigated using the stochastic 

optimization framework: 1) quantify the impact of DM preferences on heuristically determined Pareto-

optimal objective values (i.e. mass sequestered and project cost); 2) quantify the impact of DM 

preferences on heuristically chosen decision variables (i.e. injection well flow rates and locations), and; 3) 

preliminarily assess the suitability of the MB test site for GCS.  To accomplish this twelve stochastic 

optimization cases, each having differing DM preferences, are performed using MB test site data where 

the risk adversity factor, rA, is set to either 1.0 or 1.2 while the stochastic non-exceedance cost probability, 

z, is set to either 50% or 95% for each of three passive well uncertainty scenarios. Uncertainty scenarios 

tested and compared include 1) data supporting an abundance of intact passive well segments (U1); 2) no 
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available passive well permeability data (U2); and 3) data supporting an abundance of degraded passive 

well segments (U3). 

 

In cases where the estimated mass of CO2 leakage is high, DM risk adversity, rA, is found to have a 

profound effect on project cost.  While all optimization cases assigned a U1 uncertainty scenario (i.e. 90% 

of passive well segments assigned as intact) exhibit very little CO2 leakage, substantial CO2 leakage 

masses are estimated for test cases assigned U2 (i.e. 50% of passive well segments assigned as intact) and 

U3 (i.e. 10% of passive well segments assigned as intact) uncertainty scenarios, resulting in very large 

leakage costs when rA = 1.2.  Test cases assigned uncertainty scenarios with a greater percentage of intact 

well segments are found to exhibit less CO2 leakage.  All optimization cases having a U1 uncertainty 

scenario exhibit minimal CO2 leakage costs resulting in total project costs being very similar to capital, 

operation, and maintenance (CO&M) costs.  Cases assigned U3 uncertainty scenarios are found to have 

much more leakage cost than corresponding cases with U2 uncertainty scenarios, especially when rA = 

1.2.  Also, while estimated project costs increase when a greater value of z is used, the value chosen for z 

is found to have only a minor impact on resulting Pareto-optimal objective function values.   

 

Two quantitative analyses are performed to study how DM preferences ultimately influence the heuristic 

selection of carbon injection strategies.  First, the relative insensitivity of carbon injection strategy 

selection in relation to each DM parameter (i.e. rA, z, and uncertainty scenario) is quantified as the 

percentage of injection well rate/location combinations that remain constant when varying each DM 

preference.  The percentage of injection strategies that remain constant in both location and injection rate 

when varying values of rA, uncertainty scenario, and values of z is quantified as 72.2%, 75.5%, and 

87.9%, respectively.  Secondly, a categorical distribution analysis is used to identify general injection 

strategy trends associated with DM preferences.  The number of times each candidate location is selected 

for injection well placement is counted for all cases having each given DM preference value.  This 

analysis shows that the southwest corner of the candidate injection well field is heavily favored by the 
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optimization algorithm, regardless of parameter choice, with 94.2% of all injection well placements being 

made at the three furthest candidate injection well locations.  Also, the furthest southwest candidate 

injection well location is found to have a substantially greater number of selections than all other 

individual locations. 

 

DM risk adversity is found to have the greatest effect on injection strategy selection.  Increasing rA from 

1.0 to 1.2 is found to increase the total number of candidate well location selections from 138 to 154.  

This increased number in total candidate well location selections is caused by the optimization algorithm 

attempting to alleviate incurred CO2 leakage cost by using additional injection wells to spread out and 

reduce the injection induced pressure distribution.  This finding suggests that the leakage penalty savings 

from diversifying the injection well field are greater in certain cases than the additional CO&M costs 

incurred from installing, operating, and maintaining more injection wells.  Passive well uncertainty 

scenario selection is also found to significant affect injection strategy.  The total number of candidate well 

location selections is found to increase from 92 for uncertainty scenario U1 to 100 for the more “leaky” 

uncertainty scenario U2, further validating the trend found when studying risk adversity.  Also, greater 

estimated CO2 leakage, as in the case of uncertainty scenarios U2 and U3, is clearly observed to drive 

candidate injection well location selections further southwest.  The likelihood of selecting the three 

furthest southwest candidate locations increases from 83.7% in cases assigned uncertainty scenario U1 to 

99.0% in cases assigned either uncertainty scenario U2 or U3.  While stochastic non-exceedance cost 

probability, z, is found to have the least effect on injection strategy selection, trends are still observed 

when examining results from this analysis.  As with uncertainty scenario selection, increases in estimated 

CO2 leakage (e.g. increasing z from 50% to 95%) are also found to drive candidate injection well location 

selections further southwest when studying the stochastic non-exceedance cost probability.  The 

likelihood of selecting the three furthest candidate injection well locations increased from 89.7% in cases 

assigned z = 50% to 98.6% in cases assigned z = 95%. 
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The final decision of whether or not to proceed with GCS project planning will be made by the DM.  This 

choice will ultimately be made by assessing a large number of political and financial indicators. However, 

the preliminary stochastic cost assessment presented herein suggests that GCS feasibility at the MB test 

site is highly dependent upon the DM’s risk adversity preference.  All three uncertainty scenarios are 

shown to produce feasible project cost results if the DM selects rA = 1.0, although a U3 uncertainty 

scenario is predicted to be about twice as expensive as the U1 uncertainty scenario.  If the DM decides to 

select rA = 1.2, U1 is the only uncertainty scenario providing feasible project cost results due to high CO2 

leakage costs resulting from the exponential leakage cost term, rA. 

 

Because of the iterative nature of the evolutionary search and Monte Carlo processes, large numbers of 

model simulations are needed for each stochastic optimization run.  Assuming that a numerical model 

would require two hours per simulation, complete enumeration of each MB optimization problem would 

take approximately 4,068 years to complete.  However, a semi-analytical algorithm and a NSGA-II 

optimization approach is used for this problem.  Without using simulation archiving, when applying a 

NSGA-II the total number of model calls required for each stochastic optimization run is equal to the 

product of number of Monte Carlo realizations, NMC, the population size, Npop, and the number of 

generations, Ngens.  To improve computational efficiency, this work also utilizes parallel computing and 

simulation archiving.  The theoretical evaluation time to process CO2 leakage evaluations may be reduced 

by 96% using parallel processing.  The actual CPU time required for a single optimization run with NMC = 

400, Npop = 25, and Ngens = 200 using 12 processor cores is approximately 1.04 days, or about six orders of 

magnitude less than the theoretical time required for the complete enumeration of this problem using a 

numerical model.   

 

Because of the large set of assumptions made by the semi-analytical CO2 leakage algorithm, the 

stochastic optimization framework may only be used for initial site planning and characterization.  After 

‘coarse scale’ project planning has been completed using this stochastic optimization framework, more 



12 

 

rigorous, although slower, numerical models should be used for final project development of individual 

potential injection sites.  However, this tool has potential for initial carbon sequestration project planning 

and performing initial screening and ranking of large sets of potential carbon sequestration sites.   

 

In addition, this work leads to important modifications of the semi-analytical CO2 leakage algorithm 

presented by [39].  Three proposed modifications to a semi-analytical leakage algorithm are proposed and 

tested.   A modification involving the use of temporally averaged flux rates (TAFR) to estimate aquifer 

fluid pressure changes throughout the domain is found to address an underestimation of fluid leakage by 

the original algorithm.  Results show that the ELSA-TAFR algorithm estimates leakage to be 11.2% 

higher on average that the original algorithm with an insignificant increase in computational expense.  It 

is important that the TAFR modification be implemented in all cases as the original algorithm may 

significantly underestimate leakage. 

 

The use of separate pressure response functions (SPRF) for fluid types was found to provide no change in 

accuracy while greatly decreasing computational efficiency.  It is therefore suggested that this 

modification not be applied to this semi-analytical algorithm. 

 

The final modification to the semi-analytical algorithm proposes the use of a fixed point type iterative 

global pressure solution (IGPS) as opposed to solving large linear sets of equations to determine the 

global pressure solution.  This method is found to significantly increase computational efficiency.  The 

average difference in fractional leakage between the two algorithms is found to be very small with the 

computational cost decreasing on average by approximately one order of magnitude.  From the results 

obtained, the simulation of domains having large quantities of passive wells and aquifer layers would 

greatly benefit by using the IGPS modification.  In addition, this modification would be extremely 

beneficial when large numbers or simulations need to be performed such as in the cases of stochastic 
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analysis or optimization.  It should be noted that the TAFR modification does not need to be applied when 

using the IGPS modification as there is no need to linearize the pressure solution. 

 

In addition, a performance comparison is made between the MOGSA and the NSGA-II to determine the 

best algorithm for injection strategy optimization at candidate GCS sites.   It is important that multi-

objective optimization algorithms perform the following: 1) fully explore the objective space providing 

diverse Pareto-optimal tradeoff sets and 2) find the best or close-to-best Pareto-optimal solutions with 

minimal computational expense.  To explore how well each algorithm accomplishes these tasks, a total of 

360 deterministic optimization runs are processed where 20 different random seed optimization runs are 

performed for each of nine MB test cases using each algorithm.  Two performance measures are explored 

for each algorithm, including 1) objective solution diversity and 2) objective solution convergence rate.   

 

The results show the NSGA-II to outperform the MOGSA when evaluating objective solution diversity 

where an average of 94% and 78% of full solutions sets are found using the NSGA-II and the MOGSA, 

respectively.  However, when comparing the rate at which each algorithm converges (i.e. progresses) 

toward Pareto-optimal solutions, the MOGSA tends to display large but less frequent reductions in 

average project cost per unit mass sequestered while the NSGA-II is found to have a more gradual 

improvement pattern.  Also related to the previous observation, in 78% of cases studied, the MOGSA 

finds better average project cost per unit mass sequestered values early in the optimization run only to be 

overtaken by the NSGA-II.  These trends are caused by a fundamental methodology difference between 

the two optimization algorithms.  The MOGSA takes a significantly more direct approach when 

generating new sets of trial injection strategies compared to the NSGA-II.  With the MOGSA, new trial 

injection strategies are directly driven toward well-performing trial injection strategy positions in decision 

space where the NSGA-II uses a much more complex method to generate each new trial population 

member. 
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Both algorithms are shown to arrive at relatively similar final objective function tradeoff solutions in all 

trial cases.  At first glance, the NSGA-II is found to outperform the MOGSA when comparing solution 

accuracy.  However, a further investigation of the results data shows that the relative differences in final 

solution accuracy are fairly small.  Although the MOGSA provides less accurate solutions in seven out of 

nine of the test cases, the average relative difference in solution accuracy is found to be only 3.1%.  In test 

cases having only two or three injection wells the average relative difference between the two algorithms 

is much less, at approximately 1.0%.  The largest relative differences are found in test cases having four 

injection wells, where the average relative difference is found to be approximately 7.2%.  Even with 

slightly less accurate final objective solutions, the MOGSA may still be preferable over the NSGA-II due 

to its fast early convergence rates.  When optimizing a particular test case, the MOGSA found a 

comparable tradeoff solution using only about one-quarter of the computational cost spent by the NSGA-

II. 

  

The decision of whether or not to pursue GCS is complex.  The answer to this question lies in the 

comparison between two unknown, yet imminent, potential costs to society.  Significantly addressing the 

carbon problem through a global GCS effort would be immensely costly and extremely difficult to 

politically coordinate.  In addition, physical parameter uncertainties inherent in subsurface domain result 

in a level of CO2 and brine leakage risk that is difficult to quantify.  Upon initial inspection, it is easy to 

conclude the futility of pursuing this technology.  However, global climate change has the potential to 

incur a massive cumulative cost upon society.  For example, what will the cost be of replacing or 

improving our existing marine infrastructure should ocean levels drastically change?   Is the carbon 

problem influencing the frequency, severity, and spatial distribution of extreme weather events?  How 

significantly will global hydrological patterns change and thereby affect the existing structure of 

agriculture and water distribution?  These questions need to be thoroughly investigated and continually 

monitored before firmly determining the viability of GCS. 
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3 Research Accomplishments 

The following is a list of the accomplishments presented by this dissertation: 

 An improved the state of semi-analytical multi-layer, multiphase flow modeling 

 The development a computationally efficient stochastic GCS optimization framework 

 A demonstration of a real-world case study using the stochastic GCS optimization framework 

 An analysis of the sensitivity of decision maker preference parameters upon optimal objective 

solutions and injection strategies 

 A performance comparison between a MOGSA and a NSGA-II for the purposes of GCS 

optimization 

 

4 Future Research  

It is the authors’ intent for the stochastic optimization framework to ultimately be used to optimize and 

compare large numbers of real-world GCS sites.  There are several tasks which would be beneficial in 

realizing this future goal.  The effects associated with each assumption of the semi-analytical leakage 

algorithm will need to be exhaustively investigated.  If computationally feasible, important leakage model 

complexities should be incorporated.  These may be made possible through the additional parallelization 

of trial injection strategy processing.  Substantial additional gains in computational efficiency may be 

obtained by processing each trial injection strategy’s MC ensemble in parallel using large processor core 

clusters.  Increased computational efficiency will also lead to the ability to increase the number of model 

calls per optimization run or to process greater quantities of potential injection sites. 

 

There are also several possible variations of the optimization framework which may be explored.  For 

example, the injection duration may be included as a third decision variable in addition to location and 

flow rate of each injection well.  Also, the minimization of risk of cost exceedance may be included as a 

third objective function in addition to maximizing the mass of CO2 sequestered and minimizing the 
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project cost.  A multi-criteria decision analysis (MCDA) may also be performed upon the resulting 

Pareto-optimal sets of equations to quantify the importance of conflicting objectives and aid in the final 

selection of injection strategy selection.  Finally, if additional accuracy is required for a particular 

candidate injection site, the semi-analytical algorithm may be replaced by an artificial neural network 

(ANN) trained by a site specific numerical model. 

 

It will be important to use the best optimization algorithm when processing large numbers of potential 

injection sites.  While the NSGA-II outperformed the MOGSA in both the objective solution diversity 

and solution accuracy performance measures, it may be possible to exploit the MOGSA’s trend of faster 

early convergence rates by creating a multi-stage hybrid method between the two algorithms where the 

MOGSA is first used to quickly perform an initial optimization then the NSGA-II is used complete the 

final stage of decision variable selection. 

 

This framework may be applied to multi-layer single-phase stochastic optimization problems (e.g. aquifer 

storage and recovery).  It would also be interesting to research the applicability of the semi-analytical 

model to surface-ground water interactions. 

 

5 Organization 

This dissertation is organized in the following three sections: 

 Chapter 2 is entitled Improved Semi-Analytical Simulation of Geological Carbon Sequestration 

and includes an article by Cody, Baù, and González-Nicolás [2014a] currently under review for 

“Computational Geosciences”. 

 Chapter 3 is entitled Stochastic Injection strategy Optimization for the Preliminary Assessment of 

Candidate Geological Storage Sites and includes an article by Cody, Baù, and González-Nicolás 

[2014b] being submitted to “Hydrology Journal”. 
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 Chapter 4 is entitled Performance Comparison between a Multi-objective Gravitational Search 

Algorithm and NSGA-II for Injection strategy Optimization of Geological CO2 Sequestration and 

includes an article by Cody, Baù, and González-Nicolás [2014c] being submitted to “Swarm and 

Evolutionary Computation”. 
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CHAPTER II: IMPROVED SEMI-ANALYTICAL SIMULATION OF GEOLOGICAL CARBON 

SEQUESTRATION 

 

Summary Successful large-scale implementation of geological CO2 sequestration (GCS) will require the 

preliminary assessment of multiple potential injection sites.  Risk assessment and optimization tools used in this 

effort typically require large numbers of simulations.  This makes it important to choose the appropriate level of 

complexity when selecting the type of simulation model.  A promising multiphase semi-analytical method proposed 

by [39] to estimate key system attributes (i.e. pressure distribution, CO2 plume extent, and fluid migration) has been 

found to reduce computational run times by three orders of magnitude when compared to other standard numerical 

techniques.  The premise of this work is that the existing semi-analytical leakage algorithm proposed by [39] may be 

further improved in both accuracy and computational efficiency.  Herein, three modifications to this algorithm are 

presented and explored including 1) solving for temporally averaged flow rates at each passive well at each time 

step, 2) using separate pressure response functions depending on fluid type [41], and 3) applying a fixed point type 

iterative global pressure solution to eliminate the need to solve large sets of linear equations.  The first two 

modifications are aimed at improving accuracy while the third focuses upon computational efficiency.  Results show 

that, while one modification may adversely impact the original algorithm, significant gains in leakage estimation 

accuracy and computational efficiency are obtained by implementing two of these modifications.  In addition, these 

two beneficial modifications provide the same enhancements to similar semi-analytical algorithms that simulate 

singe-phase injection into multi-layer domains. 

 

1 Introduction 

Geological CO2 sequestration (GCS) has the potential to greatly reduce greenhouse gas loading to the 

atmosphere while cleaner, more sustainable energy solutions are developed.  However, displaced brine or 

sequestered CO2 may intrude into and adversely affect shallow groundwater resources.  Brine leakage 

would increase aquifer salinity, while CO2 intrusion may cause secondary effects, such as the 

mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. 

These risks must be fully understood and minimized before project implementation. 
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It is thus often beneficial to use faster, though less accurate, leakage estimation models to perform the 

large quantities of model simulations required for preliminary GCS planning, site selection, optimization, 

and sensitivity analysis.  In addition, inherent subsurface uncertainties often necessitate the need for 

stochastic methods, further increasing the quantity of simulations needed.  The direct use of other 

multiphase multi-layer numerical methods in the initial planning stage is typically prohibited by both the 

high computational cost per simulation and the significant effort involved in building and calibrating a 

custom model for each potential injection site.  In response to these obstacles, analytical and semi-

analytical methods have been developed which greatly reduce simulation complexity and computational 

run times. 

 

Several attempts have been made to analytically quantify the hydraulic communication between aquifers 

separated by leaky aquitard layers [19,20,21,30].  In addition, several other authors have presented 

analytical or semi-analytical solutions used to estimate subsurface pressure distributions and fluid flux 

across layer boundaries resulting from leaky wells [24,25].  For example, [29] introduced fluid and matrix 

compressibility to the similarity solutions governing single-well CO2 injection presented in [33], while 

[42] presented a single-phase semi-analytical solution for large scale injection-induced pressure 

perturbation and leakage in a laterally bounded aquifer-aquitard system.  Also, a semi-analytical model 

estimating multiphase fluid flux through a single caprock perforation was developed by [27] to determine 

optimal injection intervals based upon trapping effects for secure CO2 storage in saline aquifers and 

[5,9,10] presented and applied a single-phase semi-analytical model for both forced and diffuse leakage in 

a multi-layer system.  Finally, [4] combined solutions presented by [21], [37], and [41] to create a semi-

analytical solution for approximating the area of potential impact from a single CO2 injection well.   

 

However, while other semi-analytical algorithms provide insight regarding specific processes (e.g. diffuse 

leakage[10]), this work focuses upon the multiphase subsurface flow model proposed by [39] and further 
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developed by [7] because it is the only semi-analytical model able to simulate multiphase flow in domains 

having multiple injection wells and multiple aquifer and aquitard (i.e. caprock) layers. 

 

An analytical algorithm was developed by [37] for estimating the pressure distribution and leakage for 

single-phase injection (e.g. injection of brine into a brine filled domain of aquifer) into a domain having 

multiple passive wells and multiple aquifer-aquitard layers.  This algorithm creates a set of linear 

equations describing the pressure distribution throughout the domain by superimposing pressure changes 

caused by each source or sink in each aquifer.  The general algorithm presented in [37] in conjunction 

with the development of a multiphase pressure response function [33,34,35,37] has led to a semi-

analytical CO2 leakage algorithm, presented in [39] and expounded upon in [7], which estimates both 

brine and CO2 flux across confining layers resulting from the injection of CO2.  While there are multiple 

pathways for the leakage of sequestered CO2 from subsurface storage reservoirs (e.g. geological 

discontinuities, caprock permeability, etc.), [39] assumes that hydrocarbon exploration and production 

boreholes created preferential flow paths in the domain [2,3,12,14,18,28,32].  This assumption appears 

reasonable as the existing caprock had successfully held the recently produced hydrocarbons for many 

millennia prior to production [36]. 

 

Stochastic techniques for preliminary GCS site assessment (e.g. injection strategy optimization, risk 

analysis, and sensitivity analysis, etc.) require large numbers of simulations.  Therefore, it is important to 

be continually developing the accuracy and efficiency of simulation tools.  Three modifications to this 

semi-analytical CO2 leakage algorithm are presented and explored.  These include 1) solving for 

temporally averaged flow rates at each passive well at each time step, 2) using separate pressure response 

functions depending on fluid type [41], and 3) applying a fixed point type iterative global pressure 

solution to eliminate the need to solve large sets of linear equations. 
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This work first includes a detailed description of the original semi-analytical leakage algorithm then 

presents the methodology for applying the three proposed modifications.  Following this is a description 

of hypothetical test cases, then a discussion regarding the accuracy and computational efficiency results 

for each proposed method.  Finally, we conclude with suggestions of cases when usage of these 

modifications would be essential. 

 

2 Methodology  

A thorough understanding of the existing semi-analytical leakage algorithm’s methodology is needed 

before describing potential modifications.  Therefore, the first part of this section provides a detailed 

description of work presented in [39] and [7]. 

 

2.1 The Estimating Leakage Semi-analytically (ELSA) Algorithm 

Referred to as Estimating Leakage Semi-analytically (ELSA) when used by [31] to estimate the 

maximum probable leakage along abandoned oil wells, this semi-analytical algorithm estimates both 

brine and CO2 flux through permeable caprock locations resulting from GCS.  Permeable caprock 

locations are conceptualized as segments of abandoned wells and represent cylindrical portions of the 

aquitard layers having non-negligible permeability values.  These are referred to as ‘passive wells’ and 

are assumed to be the only pathways for fluid flux between aquifer layers.  Users of this model are able to 

specify the number of injection wells (M), passive wells (N), and aquifer/aquitard layers (L), as well as 

their respective spatial locations and hydrogeological parameters when characterizing the domain. 

 

The domain is structured as a stack of aquifer/aquitard layers perforated by injection and passive wells.  

Aquifers are assumed to be horizontally level, homogenous, and isotropic.  Aquitards are assumed to be 

impermeable, except where perforated by passive wells.  Injection wells are able to inject into any layer.  

Initially, fluid is not flowing through any of the passive wells because the entire domain is assumed to be 
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saturated with brine at hydrostatic pressure.  Additional assumptions made by this model include: 1) 

Aquifers exhibit horizontal flow; 2) Capillary pressure is negligible resulting in a sharp fluid interface; 3) 

CO2 plume thickness at any given location is assumed to be the maximum plume thickness from all 

sources in the aquifer; 4) Pressure response from sources and sinks are superimposed in each aquifer; and 

5) the injectivity of the formation remains constant.  Several of these processes are important 

[9,11,13,15,17,22,26] and should be included [6,16,23,38] when model accuracy is more important that 

efficiency (e.g. during final project design). 

 

At the start of injection, aquifer fluid pressures throughout the domain begin to change resulting in 

pressure differentials across aquitards and fluid flux through passive wells.  It is therefore very important 

to understand aquifer fluid pressure response resulting from changes in the mass storage of CO2 and 

brine.  A pressure response function for the injection of CO2 into a brine filled confined aquifer was 

derived in [33].  Reference [7] expresses this radial overpressure response, p, at the bottom of a confined 

aquifer for a single well injecting CO2 as: 

 

∆𝑝 = 𝑝 − 𝑝0 = ∆𝑝
′(𝜌𝑏 − 𝜌𝑐)𝑔𝐻 (1)  

 

where p0 and p are the initial and resulting fluid pressures at the bottom of the aquifer,  is fluid density, g 

is gravitational acceleration, H is aquifer thickness, and subscripts b and c denote phase types brine and 

CO2, respectively.  In addition, p’ is a dimensionless function defined as: 

  

∆𝑝′(𝜒) =

{
 
 
 

 
 
 

 0,                                                                                      𝜒 ≥ 𝜓         

  −
1

2Γ
ln (

𝜒

𝜓
) + ∆𝑝′(𝜓),                                                  𝜓 > 𝜒 ≥ 2𝜆  

   
1

Γ
−

√𝜒

Γ√2𝜆
+ ∆𝑝′(2𝜆) + 𝐹(ℎ′),                                 2𝜆 > 𝜒 ≥

2

𝜆

−
1

2𝜆Γ
ln (

𝜒𝜆

2
) + ∆𝑝′ (

2

𝜆
),                                             

2

𝜆
> 𝜒           

 (2)  
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where, 

𝜒 =
2𝜋𝐻𝜑(1 − 𝑆𝑏

𝑟𝑒𝑠)𝑟2

𝑄 ∙ 𝑡
 (3)  

 

Γ =
2𝜋(𝜌𝑏 − 𝜌𝑐)𝑔𝑘𝐻

2

𝜇𝑏𝑄
 (4)  

 

𝜓 =
4.5𝜋𝐻𝜑𝑘(1 − 𝑆𝑏

𝑟𝑒𝑠)

𝜇𝑏𝑐𝑒𝑓𝑓𝑄
 (5)  

 

ℎ′ =
ℎ(𝜒)

𝐻
=

1

𝜆 − 1
(
√2𝜆

√𝜒
− 1) (6)  

 

𝐹(ℎ′) =
−𝜆

𝜆 − 1
[h′ −

𝑙𝑛[(𝜆 − 1)ℎ′ + 1]

𝜆 − 1
] (7)  

 

In Equations (2-7), B is aquitard thickness, h is CO2 plume thickness, h’ is the ratio of CO2 plume 

thickness to aquifer thickness, 𝑆𝑏
𝑟𝑒𝑠 is the residual saturation of the brine, t is the injection duration, k is 

the aquifer permeability,  is the dynamic viscosity, is the aquifer porosity, Q is the total volumetric 

well flux, ceff is the effective compressibility of the fluid and solid matrix, and r is the radial distance from 

the CO2 source or sink.  Also, F(h’) is an offset term related to the vertical pressure distribution [7] and 

the mobility ratio is defined as  = c/b, where  = kr,/ and kr, is the relative permeability of phase  

( = b for brine or  = c for CO2).   

 

ELSA uses Equation (1) to determine the pressure distribution throughout the aquifer, then applies a 

multiphase version of Darcy’s law to determine each flow rate, 𝑄𝛼𝑗,𝑙, for each phase   across each 

confining layer l (l=1,2,..,L) for each passive well j (j=1,2,..,N): 
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𝑄𝛼𝑗,𝑙 =  𝜋𝑟𝑝𝑤
2
𝑗,𝑙

𝑘𝑟,𝛼𝑗,𝑙𝑘𝑝𝑤𝑗,𝑙

𝜇𝛼𝐵𝑙
(𝑝𝑗,𝑙−1 − 𝜌𝛼𝑔𝐵𝑙 − 𝑔𝜌𝛼𝐻𝑙−1 − 𝑝𝑗,𝑙) (8)  

 

In Equation (8), 𝑟𝑝𝑤𝑗,𝑙 is the passive well radius and 𝑘𝑝𝑤𝑗,𝑙 is the permeability for passive well j 

(j=1,2,..,N) and aquitard layer l. 

 

Equation (1) differs significantly from the solution derived by [41] for single phase flow in that estimated 

pressure responses are non-linear with respect to the injection flow rate.  Also, unlike single phase flow, 

CO2 plume locations and thicknesses must be known when determining fluid saturations and relative 

permeabilities found in passive well pathways.  ELSA overcomes these problems by linearizing Equation 

(1) using Green’s functions and applying time stepping to approximate the changing pressure distribution, 

passive well fluxes, and CO2 plume locations and thicknesses over the injection duration.  For each time 

step, the following linear equation is written for each passive well in each aquifer. 

 

𝑝𝑖,𝑙 = 𝑝0𝑙 + ∑ 𝐺𝑖,𝑖𝑤,𝑙𝑄𝑖𝑤,𝑙

𝑀

𝑖𝑤=1

+∑𝐺𝑖,𝑗,𝑙{𝑄𝑗,𝑙 − 𝑄𝑗,𝑙+1}

𝑁

𝑗=1

+ 𝐹(ℎ𝑚𝑎𝑥
′ )(𝜌𝑏 − 𝜌𝑐)𝑔𝐻 (9)  

 

where i (i=1,2,..,N) denotes the passive well at which pressure is being solved, l (l=1,2,..,L) denotes 

aquifer layer, and iw (iw=1,2,..,M) and j (j=1,2,..,N) denote the injection and passive well, respectively, 

whose flux is causing pressure change at well i.  Green’s functions are defined by the partial derivatives: 

 

𝐺𝑖,𝑗,𝑙 =
𝜕(∆𝑝𝑖,𝑙)

𝜕𝑄𝑎𝑣𝑔𝑗,𝑙
 (10)  

 

Reference [39] describes the Green’s functions defined by Equation (10) as representations of “the 

sensitivity of the pressure field for a given source or sink”.  These are obtained analytically by calculating 
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the partial derivative of Equation (1) with respect to the average flux, 𝑄𝑎𝑣𝑔𝑗,𝑙
, of a given injection or 

passive well.  For each time step, Green’s function coefficients, Gi,j,l, are evaluated using the previous 

time step’s flow rates.  As shown by the denominator of Equation (3), for each time step, ELSA estimates 

the total pressure change from the start of simulation, rather than the incremental pressure change over the 

time step, at well i (i=1,2,..,N) resulting from fluid flux at well j (j=1,2,..,N), by multiplying the current 

time step’s passive well flow rate by a Green’s function constant calculated using the average flow rate 

over all previous time steps: 

 

∆𝑝𝑖,𝑗,𝑙 = 𝐺𝑖,𝑗,𝑙 ∙ 𝑄𝑗,𝑙
(𝑡)

 (11)  

 

Substituting Equation (8) into Equation (9) yields the following: 

  

𝑝𝑖,𝑙 = 𝑝0𝑙 + ∑ 𝐺𝑖,𝑖𝑤,𝑙𝑄𝑖𝑤,𝑙

𝑀

𝑖𝑤=1

+∑𝐺𝑖,𝑗,𝑙 {𝜋𝑟𝑝𝑤
2
𝑗,𝑙

𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙
𝑘𝑝𝑤𝑗,𝑙

𝜇𝑒𝑓𝑓𝐵𝑙
(𝑝𝑗,𝑙−1 − 𝜌𝑏𝑔𝐵𝑙 − 𝑔𝐻𝑙−1(𝜌𝑏 − 𝜌𝑏ℎ𝑖,𝑙−1

′

𝑁

𝑗=1

+ 𝜌𝑐ℎ𝑖,𝑙−1
′ ) − 𝑝𝑗,𝑙)

− 𝜋𝑟𝑝𝑤
2
𝑗,𝑙+1

𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙+1
𝑘𝑝𝑤𝑗,𝑙+1

𝜇𝑒𝑓𝑓𝐵𝑙+1
(𝑝𝑗,𝑙 − 𝜌𝑏𝑔𝐵𝑙+1 − 𝑔𝐻𝑙(𝜌𝑏 − 𝜌𝑏ℎ𝑖,𝑙

′ + 𝜌𝑐ℎ𝑖,𝑙
′ )

− 𝑝𝑗,𝑙+1)} + 𝐹(ℎ𝑚𝑎𝑥
′ )(𝜌𝑏 − 𝜌𝑐)𝑔𝐻 

(12)  

   

where the subscript eff denotes ‘effective’.  Effective phase dependent parameters are needed because 

total volumetric flow rates may be composed of both CO2 and brine.  It is now possible to isolate 

unknown pressure terms pi,l, pj,l-1, pj,l, and pj,l+1 in Equation (12): 
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𝑝𝑖,𝑙 +∑(𝐴𝑖,𝑗,𝑙 ∙ 𝑝𝑗,𝑙−1 + 𝐵𝑖,𝑗,𝑙 ∙ 𝑝𝑗,𝑙+𝐶𝑖,𝑗,𝑙 ∙ 𝑝𝑗,𝑙+1)

𝑁

𝑗=1

= 𝐷𝑖,𝑙 (13)  

 

where Ai,j,l, Bi,j,l, Ci,j,l, and Di,l, are constants for the current time step and defined as: 

 

𝐴𝑖,𝑗,𝑙 = −𝐺𝑖,𝑗,𝑙𝜋𝑟𝑝𝑤𝑗,𝑙
2
𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙

𝑘𝑝𝑤𝑗,𝑙

𝜇𝑒𝑓𝑓𝐵𝑙
 (14)  

 

𝐵𝑖,𝑗,𝑙 = 𝐺𝑖,𝑗,𝑙𝜋𝑟𝑝𝑤𝑗,𝑙
2
𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙

𝑘𝑝𝑤𝑗,𝑙

𝜇𝑒𝑓𝑓𝐵𝑙
+ 𝐺𝑖,𝑗,𝑙𝜋𝑟𝑝𝑤𝑗,𝑙+1

2
𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙+1

𝑘𝑝𝑤𝑗,𝑙+1

𝜇𝑒𝑓𝑓𝐵𝑙+1
 (15)  

 

𝐶𝑖,𝑗,𝑙 = −𝐺𝑖,𝑗,𝑙𝜋𝑟𝑝𝑤𝑗,𝑙+1
2

𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙+1
𝑘𝑝𝑤𝑗,𝑙+1

𝜇𝑒𝑓𝑓𝐵𝑙+1
 (16)  

 

𝐷𝑖,𝑙 = 𝑝0𝑙 + ∑ [𝐺𝑖,𝑖𝑤,𝑙𝑄𝑖𝑤,𝑙]

𝑀

𝑖𝑤=1

+∑[𝐺𝑖,𝑗,𝑙 {𝜋𝑟𝑝𝑤𝑗,𝑙
2
𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙

𝑘𝑝𝑤𝑗,𝑙

𝜇𝑒𝑓𝑓𝐵𝑙
(−𝜌𝑏𝑔𝐵𝑙 − 𝑔𝐻𝑙−1(𝜌𝑏 − 𝜌𝑏ℎ𝑖,𝑙−1

′

𝑁

𝑗=1

+ 𝜌𝑐ℎ𝑖,𝑙−1
′ ))

− 𝜋𝑟𝑝𝑤𝑗,𝑙+1
2

𝑘𝑟,𝑒𝑓𝑓𝑗,𝑙+1
𝑘𝑝𝑤𝑗,𝑙+1

𝜇𝑒𝑓𝑓𝐵𝑙+1
(−𝜌𝑏𝑔𝐵𝑙+1 − 𝑔𝐻𝑙(𝜌𝑏 − 𝜌𝑏ℎ𝑖,𝑙

′ + 𝜌𝑐ℎ𝑖,𝑙
′ ))}]

+ 𝐹(ℎ𝑚𝑎𝑥
′ )(𝜌𝑏 − 𝜌𝑐)𝑔𝐻 

(17)  

 

Equation (13) is written for each passive well i (i=1,2,..,N) at the bottom of each aquifer l (l=1,2,..,L) 

resulting in a linear system of N*L equations and unknowns.  Solving this set of linear equations provides 

fluid pressures, pi,l, at each passive well at each layer.   
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Once pressures are known throughout the domain, Equation (8) is used to explicitly calculate passive well 

segment fluxes for the current time step.  The time step is then advanced and the process is repeated until 

the full simulation duration is reached. Mass storage changes in each layer, Mα,l, may be determined for 

both CO2 ( = c) and brine ( = b) by calculating the product of fluid density, , injection duration, tinj, 

and the sum of average passive well segment flow rates, Qα,avg: 

 

∆𝑀𝛼,𝑙 = 𝜌𝛼𝑡𝑖𝑛𝑗 ∑ 𝑄𝑎𝑣𝑔𝑖𝑤,𝑙

𝑀

𝑖𝑤=1

+ 𝜌𝛼𝑡𝑖𝑛𝑗 ∑ [𝑄𝛼,𝑎𝑣𝑔𝑗,𝑙
− 𝑄𝛼,𝑎𝑣𝑔𝑗,𝑙+1

]

𝑀+𝑁

𝑗=1

 (18)  

 

2.2 Temporally Averaged Flow Rate (TAFR) Modification 

In [37], the CO2 pressure response function is derived for sources or sinks having a constant flow rate.  

However, passive well fluxes occur as a response to pressure differentials across caprock layers and 

therefore change over the injection duration.  This work proposes the estimation of pressure change by 

multiplying the average passive well flow rate by its corresponding Green’s function constant.  Therefore, 

Equation (11) is changed as follows: 

 

∆𝑝𝑖,𝑗,𝑙 = 𝐺𝑖,𝑗,𝑙 ∙ 𝑄𝑎𝑣𝑔
(𝑡)

𝑗,𝑙
 (19)  

 

Figure 2.1 shows the rate of CO2 leakage through a passive well over an injection period of 180 days.  In 

this example, the CO2 plume encounters the passive well at 56 days (point A in Figure 2.1).  Following 

this, there is a dramatic increase in the CO2 flow rate due to the rapidly increasing saturation of CO2 in the 

passive well.  At 147 days (point B in Figure 2.1), the slope of the passive well’s flow rate abruptly 

reduces upon reaching the maximum CO2 saturation in the passive well segment.  
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 Figure 2.1: Rate of CO2 leakage through a passive well segment over 180 days of injection 

 

In this case, the leakage rate at 180 days (point C in Figure 2.1), Q(t=180), is much greater than the average 

leakage rate over the 180 day injection period, 𝑄𝑎𝑣𝑔
(𝑡=180)

.  Accordingly, multiplying Q(t=180) by the 

injection duration in Equation (3) overestimates both the mass of fluid transferred and the resulting 

pressure changes.   

 

To apply this modification, Equation (9) is rewritten with respect to Qavg. 

  

𝑝𝑖,𝑙 = 𝑝0𝑙 + ∑ 𝐺𝑖,𝑖𝑤,𝑙𝑄𝑎𝑣𝑔𝑖𝑤,𝑙

𝑀

𝑖𝑤=1

+∑𝐺𝑖,𝑗,𝑙 {𝑄𝑎𝑣𝑔𝑗,𝑙
− 𝑄𝑎𝑣𝑔𝑗,𝑙+1}

𝑁

𝑗=1

 + 𝐹(ℎ𝑚𝑎𝑥
′ )(𝜌𝑏 − 𝜌𝑐)𝑔𝐻  (20)  

 

Next, unknown passive well flow rates are defined.  Average volumetric flow rate is equal to total fluid 

mass transferred through passive well segment, 𝑀𝑗,𝑙
(𝑡)

, divided by the effective fluid density, 𝜌𝑒𝑓𝑓, divided 

by the time, 𝑡.   
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𝑄𝑎𝑣𝑔𝑗,𝑙
(𝑡) = 𝑀𝑗,𝑙

(𝑡)
/𝜌𝑒𝑓𝑓𝑡 (21)  

 

Effective fluid densities are needed in this case because 𝑀𝑗,𝑙
(𝑡)

 may be composed of both CO2 and brine.  

The total fluid mass transferred from the start of injection through the current time step between aquifers 

by a passive well segment may be defined as: 

 

𝑀𝑗,𝑙
(𝑡)
= 𝑀𝑗,𝑙

(𝑡−Δ𝑡)
+ Δ𝑡 ∙ 0.5 (𝑄𝑗,𝑙

(𝑡−Δ𝑡)
+ 𝑄𝑗,𝑙

(𝑡)
) 𝜌𝑒𝑓𝑓 (22)  

 

where 𝑀𝑗,𝑙
(𝑡−Δ𝑡)

 is total fluid mass transferred by the well segment during all previous time steps, Δ𝑡 is the 

time step duration, and 0.5 (𝑄𝑗,𝑙
(𝑡−Δ𝑡)

+ 𝑄𝑗,𝑙
(𝑡)
)𝜌𝑒𝑓𝑓 is the average mass flux over the current time step.  

Substituting Equation (22) into Equation (21) gives: 

 

𝑄𝑎𝑣𝑔𝑗,𝑙
(𝑡) = [𝑀𝑗,𝑙

(𝑡−Δ𝑡)
+ 0.5Δ𝑡 (𝑄𝑗,𝑙

(𝑡−Δ𝑡)
+ 𝑄𝑗,𝑙

(𝑡)
) 𝜌𝑒𝑓𝑓] /𝜌𝑒𝑓𝑓𝑡 (23)  

 

Subtracting the bottom layer’s average flow rate by the top layer’s average flow rate gives: 

 

𝑄𝑎𝑣𝑔𝑗,𝑙
− 𝑄𝑎𝑣𝑔𝑗,𝑙+1

= 𝑐2(𝑄𝑗,𝑙 − 𝑄𝑗,𝑙+1) + 𝑐1 (24)  

 

where c1 and c2 are defined as: 

 

 

𝑐1 =
𝑀𝑗,𝑙
(𝑡−Δ𝑡)

−𝑀𝑗,𝑙+1
(𝑡−Δ𝑡)

+ 0.5Δ𝑡 (𝑄𝑗,𝑙
(𝑡−Δ𝑡)

−𝑄𝑗,𝑙+1
(𝑡−Δ𝑡)

) 𝜌𝑒𝑓𝑓

𝜌𝑒𝑓𝑓𝑡
 (25)  
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𝑐2 =
0.5Δ𝑡

𝑡
 (26)  

 

Finally, substituting Equation (24) into Equation (20) gives the pressure equation for the modified 

method: 

 

𝑝𝑖,𝑙 = 𝑝0,𝑙 + ∑ [𝐺𝑖,𝑖𝑤,𝑙𝑄𝑖𝑤,𝑙]

𝑀

𝑖𝑤=1

+∑[𝑐2𝐺𝑖,𝑗,𝑙 {𝜋𝑟𝑝𝑤𝑗,𝑙
2 𝑘𝑗,𝑙

𝑘𝑟,𝑒𝑓𝑓,𝑗,𝑙

𝜇𝑒𝑓𝑓𝐵𝑙
(𝑝𝑗,𝑙−1 − 𝜌𝑏𝑔𝐵𝑙 − 𝑔𝐻𝑙−1(𝜌𝑏 − 𝜌𝑏ℎ𝑖,𝑙−1

′

𝑁

𝑗=1

+ 𝜌𝑐ℎ𝑖,𝑙−1
′ ) − 𝑝𝑗,𝑙)

− 𝜋𝑟𝑝𝑤𝑗,𝑙+1
2 𝑘𝑗,𝑙+1

𝑘𝑟,𝑒𝑓𝑓,𝑗,𝑙+1

𝜇𝑒𝑓𝑓𝐵𝑙+1
(𝑝𝑗,𝑙 − 𝜌𝑏𝑔𝐵𝑙+1 − 𝑔𝐻𝑙(𝜌𝑏 − 𝜌𝑏ℎ𝑖,𝑙

′ + 𝜌𝑐ℎ𝑖,𝑙
′ )

− 𝑝𝑗,𝑙+1)} + 𝑐1𝐺𝑖,𝑗,𝑙] + 𝐹(ℎ𝑚𝑎𝑥
′ )(𝜌𝑏 − 𝜌𝑐)𝑔𝐻 

(27)  

 

2.3 Separate Pressure Response Function (SPRF) Modification 

ELSA uses the sum of CO2 and brine fluxes to calculate the total volumetric source or sink when 

determining Q for Equation (1).  Since the fundamental pressure response equation was derived for a 

single well injecting only CO2, the use of a separate pressure response equations for each fluid type is 

proposed as a potential accuracy improvement.   

 

This modification is applied by continuing to estimate pressure changes from CO2 leakage with Equation 

(1) while determining pressures changes from brine leakage using the Theis equation [41]: 

 

𝑝𝑖,𝑙 − 𝑝0𝑙 =
𝜌𝑏𝑔

4𝜋𝑇𝑙
𝑊(𝑢𝑖,𝑗,𝑙)𝑄𝑏𝑗,𝑙 

(28)  



37 

 

where, 

 

𝑢𝑖,𝑗,𝑙 =
𝑟𝑖,𝑗
2 𝑆𝑙

4𝑇𝑙𝑡
 (29)  

 

In Equations (28) and (29) Tl is the layer transmissivity, W(u) is the Well function [41], Sl is the layer 

storativity, and ri,j is the horizontal distance between passive well i (i=1,2,..,N) and passive well j 

(j=1,2,..,N).  ELSA assumes ceff in Equation (5) to be equal to the compressibility of brine [7]. Therefore, 

in order to maintain consistency between the original and modified algorithms, S is assumed to be the 

storativity resulting solely from the compressibility of brine, cb: 

 

𝑆𝑙 = 𝜌𝑏𝑐𝑏𝑔𝐻𝑙 (30)  

 

Pressure changes from each source or sink are superimposed at each passive well location i (i=1,2,..,N) in 

each aquifer: 

 

𝑝𝑖,𝑙 = 𝑝0𝑙 + ∑ [𝐺𝑖,𝑖𝑤,𝑙𝑄𝑐𝑖𝑤,𝑙 +
𝜌𝑏𝑔

4𝜋𝑇𝑙
𝑊(𝑢𝑖,𝑖𝑤,𝑙)𝑄𝑏𝑖𝑤,𝑙]

𝑀

𝑖𝑤=1

+∑[𝐺𝑖,𝑗,𝑙 {𝑄𝑐𝑗,𝑙 − 𝑄𝑐𝑗,𝑙+1}] +
𝜌𝑏𝑔

4𝜋𝑇𝑙
∑[𝑊(𝑢𝑖,𝑗,𝑙) {𝑄𝑏𝑗,𝑙 −𝑄𝑏𝑗,𝑙+1}]

𝑁

𝑗=1

𝑁

𝑗=1

 

(31)  

 

2.4 Iterative Global Pressure Solution (IGPS) Modification 

The number of unknown variables, hence the number of linear equations, is equal to the product of the 

number of passive wells and the number of aquifer layers (N*L).  Domains having large numbers of 

passive wells and/or layers produce very large sets of linear equations and resulting in significantly higher 
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simulation run times.  An iterative fixed point [40] approach is proposed here to increase computational 

efficiency by solving the global pressure solution.  In addition, this method is able to solve nonlinear sets 

of equations, therefore eliminating the need to linearize the pressure response equation.  In the following 

methodology, iter denotes iteration index, Qavg and Q are vectors of average and current time step passive 

well flow rates with a size of [N*L], p is a vector of fluid pressures at the bottom of each aquifer at each 

passive well with a size of [N*L], and Ω1 and Ω2 are sets of parameters and independent variables, other 

than Q and p, for Equation (1) and Equation (8), respectively: 

 

𝛀1 ≡ { 𝜌𝑐 , 𝜌𝑏 , 𝑔, 𝐇, 𝜆, 𝜋,𝛗, 𝑆𝑏
𝑟𝑒𝑠, 𝐫, 𝑡, 𝐤, 𝜇𝑏 , 𝑐𝑒𝑓𝑓} (32)  

 

𝛀2 ≡ { 𝜋, 𝐫𝑝𝑤 , 𝐤𝑟,𝑐 , 𝐤𝑟,𝑏 , 𝐤𝑝𝑤, 𝜇𝑐 , 𝜇𝑏 , 𝐁, 𝜌𝑐 , 𝜌𝑏 , 𝑔, 𝐇} (33)  

 

where H, , and k are vectors of aquifer thicknesses, porosities, and permeabilities, respectively, with 

size [L], B is a vector of aquitard thicknesses with size [L+1], r is an array of radial distances with size 

[M+N] x [M+N], and rpw, kpw, kr,c, and kr,b are arrays of passive well radii, permeabilities, and relative 

permeabilities of the CO2 and brine phases, respectively, with size [N] x [L+1].  The following is the 

procedure for the IGPS modification. 

 

1. Use the initial assumption that passive well flow rates for the current time step remain constant from 

the previous time step: 

 

𝐐(t)(𝑖𝑡𝑒𝑟=0) = 𝐐(t − ∆𝑡) (34)  
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2. Use Equation (21) to determine average passive well flux rates then apply the non-linear Equation (1) 

to calculate the global pressure distribution by superimposing pressure changes from both assumed 

passive well flow rates and known injection well flow rates at each passive well in each aquifer: 

 

𝐩(t)(𝑖𝑡𝑒𝑟) = 𝐩(𝛀𝟏, 𝐐avg(t)
(𝑖𝑡𝑒𝑟−1)) (35)  

 

3. Calculate new passive well flow rates using this new pressure distribution and Equation (8): 

 

𝐐(t)(𝑖𝑡𝑒𝑟) = 𝐐(𝛀𝟐, 𝐩(t)
(𝑖𝑡𝑒𝑟)) (36)  

 

4. Repeat steps 2 and 3 until the maximum relative error, , between the preceding and current 

iteration’s flow rate becomes smaller than a prescribed tolerance coefficient, max: 

 

𝜀 = 𝑚𝑎𝑥

{
 
 

 
 |
𝑄1,1

(𝑖𝑡𝑒𝑟+1) − 𝑄1,1
(𝑖𝑡𝑒𝑟)

𝑄1,1
(𝑖𝑡𝑒𝑟+1)

| ,⋯ , |
𝑄𝑗,𝑙

(𝑖𝑡𝑒𝑟+1) − 𝑄𝑗,𝑙
(𝑖𝑡𝑒𝑟)

𝑄𝑗,𝑙
(𝑖𝑡𝑒𝑟+1)

|

,⋯ , |
𝑄𝑁,𝐿

(𝑖𝑡𝑒𝑟+1) − 𝑄𝑁,𝐿
(𝑖𝑡𝑒𝑟)

𝑄𝑁,𝐿
(𝑖𝑡𝑒𝑟+1)

|
}
 
 

 
 

≤ 𝜀𝑚𝑎𝑥 (37)  

 

Two additional parameters are implemented when applying this modification to ensure time step 

convergence stability.  First, a maximum passive well flow rate, Qpw,max, is specified to dampen artificially 

high-magnitude pressure differentials calculated when using either large time step intervals or closely-

spaced passive well positions.  Secondly, a relaxation factor, , between preceding and current iterative 

passive well flow rates is specified to reduce the likelihood of divergent oscillations: 

 

𝐐(𝑖𝑡𝑒𝑟) = ω𝐐(𝑖𝑡𝑒𝑟) + (1 − ω)𝐐(𝑖𝑡𝑒𝑟−1) (38)  

 



40 

 

This work has found that setting Qpw,max equal to one tenth the volumetric injection rate and  equal to 0.1 

has resulted in algorithm stability for all cases tested. 

 

3 Results and Discussion 

CO2 leakage estimation and simulation run times are compared for the three proposed modifications.  The 

following information is constant for all analyses presented herein.  A continuous CO2 injection rate of 50 

kg/s is simulated through one injection well (M = 1) into the lower of two 20 m thick aquifers (L = 2) 

separated by one 20 m thick aquitard.  All aquifers have k = 100 mD,  = 5, 𝑆𝑏
𝑟𝑒𝑠 = 30%, ceff = 4.6 x 10-10 

m2/N, and  = 10%.  The bottom of the lower aquifer is set to a depth of 2000 m.  Parameter values for 

the domain include g = 9.81 m/s2, b = 1000 kg/m3, c = 600 kg/m3, b = 0.5 mPa s, and c = 0.05 mPa s.  

All passive wells have a radius, rpw, equal to 0.2 m. 

 

All sets of linear equations are solved by LU decomposition with partial pivoting using the DGESV 

solver available in the optimized linear algebra package LAPACK [1].  This general solver is needed 

because the matrix characterizing our linear set of equations is non-sparse and non-symmetrical.  Verified 

by converge testing, all injection durations are discretized into 150 time steps.  A computer having a 2.4 

GHz Intel® Core™ i7 processor with 8 GB of installed memory is used for all simulations.  Multiple 

identical runs are performed to ensure computational run time consistency.   

 

Time saving measures (e.g. neglecting far or low mass flux sources) should be included when practically 

implementing this semi-analytical leakage model.  However, these are not used in the following 

comparisons to maintain run time consistency.   

 

This work makes the assumption that Equation (1) accurately estimates pressure changes resulting from a 

single well injecting CO2 into a confining aquifer and accepts the numerical validation presented by [33].  
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While the modifications presented above alter the implementation of the pressure solution, its 

fundamental form, defined by Equation (1), remains the same.  Also, the upconing solution [34] and F’ 

offset term defined above with Equation (7) are neglected for the purpose of simplifying the following 

analyses. 

 

3.1 Application of the Temporally Averaged Flux Rate (TAFR) Modification 

While the mathematical justification for using a temporally averaged flux rate (TAFR) has been provided 

in Section 2.2, the two analyses presented in this section provide additional support to this modification.  

The first analysis explores a worst case scenario for the original algorithm where large changes in passive 

well leakage flux occur near the end of simulation.  This may occur when a highly permeable passive well 

encounters the CO2 plume later in simulation, causing leakage rates for late time steps to be drastically 

greater than corresponding average leakage rates.   

 

Both ELSA and the TAFR modified algorithm (herein referred to as ELSA-TAFR) are used to simulate 

CO2 leakage through a passive well (N = 1) with kpw = 10,000 mD located 5,000 m away from one 

injection well (M = 1).  Fractional leakage is defined herein as the mass of CO2 leakage into the upper 

aquifer divided by the mass injected.  Figure 2.2 shows fractional leakage versus time estimated by the 

original and modified algorithms over the 50 year injection duration.  In this case, ELSA-TAFR 

calculates a 25.6% higher fractional leakage at the end of the injection duration. 

 

The underlying cause for the original semi-analytical algorithm’s underestimation of leakage is due to the 

linearization of the pressure response function.  Recall from Equation (11) that the change in aquifer fluid 

pressure is equal to the product of the Green’s function and the source or sink flow rate (p = G*Q). 

Passive well flow rates typically increase over time when a constant or increasing rate of injection is 

occurring, causing flow rates determined for each time step (Q) to be greater than corresponding average 
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Figure 2.2: Fractional leakage vs. time for a 50 year simulation using both the ELSA and ELSA-TAFR algorithms 

 

flow rates (Qavg).  In this case, the original method estimates greater pressure changes (pELSA = G*Q) 

than the modified method (pELSA-TAFR = G*Qavg) resulting in the equalization of the pressure differential 

between the two aquifers with less cumulative leakage mass. 

 

Passive well flow rates typically increase over time when a constant or increasing rate of injection is 

occurring, causing flow rates determined for each time step (Q) to be greater than corresponding average 

flow rates (Qavg).  In this case, the original method estimates greater pressure changes (pELSA = G*Q) 

than the modified method (pELSA-TAFR = G*Qavg) resulting in the equalization of the pressure differential 

between the two aquifers with less cumulative leakage mass. 

 

Let us now compare fluid leakage estimation between the existing and modified semi-analytical 

algorithms for more typical injection strategies and domain characteristics.  Figure 2.3 shows the plan and 

elevation views of a hypothetical injection domain created for all following analyses.  Passive well 
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Cartesian coordinates were uniformly randomly generated to be within a 50 km by 50 km domain 

centered with respect to the injection well.  

 

 

Figure 2.3: (a) Plan view of the domain showing locations of all 700 passive wells. (b) Elevation view of the domain 

showing layer locations and thicknesses. 

 

All passive wells permeabilities, kpw, were randomly generated having a 50% chance of being either 

“intact” or “degraded” [31].  Passive well permeabilities were assumed to be 0.1 mD for “intact” passive 

wells and 1000 mD for “degraded” passive wells.  For this test, the only changing variable is the number 

of passive wells simulated, ranging between 50 and 700 in increments of 50.   

 

ELSA and the TAFR modified algorithm were used to estimate CO2 leakage at the end of the 50 year 

injection period for the set of domains described above.  Figure 2.4 shows a comparison of simulation run 

times and fractional leakage at the end of the 50 year injection period versus the number of passive wells 

between the original and modified algorithms.  A small increase of 1.7% in average CPU time was 

observed when applying the TAFR modification.  However, differences in leakage estimation were found 
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to be significant.  The TAFR modified algorithm’s leakage estimates ranged between 2.6% and 15.6% 

higher than the original algorithm.  

 

  

    (a)        (b) 

Figure 2.4: Comparison of (a) simulation run time and (b) fractional leakage at the end of the 50 year injection period 

versus the number of passive wells between the original and TAFR modified algorithms 

 

These results show that the original algorithm underestimates leakage for multiple randomly generated 

domains in addition to single passive well testing.  Therefore, the TAFR modification is deemed 

important and is included in all following test cases. 

 

3.2 Application of the Separate Pressure Response Equations for Fluid Type (SPRF) Modification 

The use of separate pressure response functions (SPRF) for brine and CO2 was explored as a potential 

modification to the existing algorithm.  The TAFR and TAFR/SPRF modified algorithms were used to 

estimate CO2 leakage at the end of the 50 year injection period for an identical set of domains used in the 

preceding analysis.  Figure 2.5 shows a comparison of simulation run times and fractional leakage at the 

end of the 50 year injection period versus the number of passive wells between the TAFR and 

TAFR/SPRF modified algorithms.  Results from these simulations show that TAFR/SPRF modification 
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produces negligible differences in CO2 leakage estimation while greatly increasing computational 

expense.  The average difference in fractional leakage decreased by 0.7% with the average computational 

cost increasing by 209%.   

 

  

      (a)         (b) 

Figure 2.5: Comparison of (a) simulation run time and (b) fractional leakage at the end of the 50 year injection period 

versus the number of passive wells between the TAFR and TAFR/SPRF modified algorithms 

 

Computational expense is greatly increased by the SPRF modification due to the additional need to 

compute W(u) in Equation (28) for each source or sink.  Leakage mass estimation is very similar between 

the two methods because Equation (1) and Equation (28) provide very similar estimations of pressure 

change.  Figure 2.6 shows the aquifer fluid pressure response versus radial distance calculated by these 

two equations.  A volumetric flux rate of 1.667 x 10-4 m3/s over 50 years was used for both fluids.   

 

The SPRF modification is found to adversely affect model efficiency with no significant difference in 

model accuracy and thus will not be included in the following comparisons. 
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Figure 2.6: Comparison of aquifer fluid pressure response versus radial distance calculated using Equation (1) and 

Equation (28) 

 

3.3 Application of the Iterative Global Pressure Solution (IGPS) Modification 

The randomly generated domains presented in Section 3.1 were also used to quantify the accuracy and 

efficiency of the iterative global pressure solution (IGPS) modification.  As seen in Equation (35), the 

IGPS modification uses average flux rates when calculating pressure changes.  However, because it does 

not require the linearization of the pressure solution, Equations (22-27) are not used in conjunction with 

the IGPS modification.  Figure 2.7 shows a comparison of simulation run times and fractional leakage at 

the end of the 50 year injection period versus the number of passive wells for the TAFR and IGPS 

modified algorithms. These results show that there are negligible differences in CO2 leakage estimation 

between the TAFR and IGPS modified algorithms while the IGPS modification greatly decreases 

computational expense.  The average observed difference in fractional leakage between the two 

algorithms is infinitesimal while computational cost is reduced by approximately one order of magnitude.  
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    (a)        (b) 

Figure 2.7: Comparison of (a) simulation run time and (b) fractional leakage at the end of the 50 year injection period 

versus the number of passive wells between the TAFR and IGPS modified algorithms 

 

Leakage mass estimation is very similar between the two methods because both use the same pressure 

response equation and average passive well flux to estimate the pressure distributions throughout the 

domain.  Simulations run times are drastically reduced using the IGPS modification because the problem 

is solved explicitly within each iteration and typically very few iterations (~1-3) are required for 

convergence.  This provides greatly reduced simulation times.  In addition, computational efficiency 

savings increase with the number of passive wells modeled.  Figure 2.8 shows the ratio of simulation run 

time between the TAFR and IGPS modified algorithms versus the number of passive wells included in 

the domain. 

 

4 Conclusions 

This work has led to important modifications of the semi-analytical CO2 leakage algorithm presented by 

[39].  Three proposed modifications to a semi-analytical leakage algorithm were proposed and tested.   A 

modification involving the use of temporally averaged flux rates (TAFR) to estimate aquifer fluid 

pressure changes throughout the domain was found to address an underestimation of fluid leakage by the 
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Figure 2.8: Ratio of ELSA-TAFR to ELSA-IGPS simulation run time versus the number of passive wells  

 

original algorithm.  Results showed that the ELSA-TAFR algorithm estimated leakage to be 11.2% higher 

on average that the original algorithm with an insignificant increase in computational expense.  It is 

important that the TAFR modification be implemented in all cases as the original algorithm may 

significantly underestimate leakage. 

 

The use of separate pressure response functions (SPRF) for fluid types was found to provide no change in 

accuracy while greatly decreasing computational efficiency.  It is therefore suggested that this 

modification not be applied to this semi-analytical algorithm. 

 

The final modification proposed the use of a fixed point type iterative global pressure solution (IGPS) as 

opposed to solving large linear sets of equations to determine the global pressure solution.  This method 

was found to significantly increase computational efficiency.  The average difference in fractional leakage 

between the two algorithms was found to be very small with the computational cost decreasing on 

average by approximately one order of magnitude.  From the results obtained, the simulation of domains 

having large quantities of passive wells and aquifer layers would greatly benefit by using the IGPS 
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modification.  In addition, this modification would be extremely beneficial when large numbers or 

simulations need to be performed such as in the cases of stochastic analysis or optimization. 
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CHAPTER III: STOCHASTIC INJECTION STRATEGY OPTIMIZATION FOR THE PRELIMINARY 

ASSESSMENT OF CANDIDATE GEOLOGICAL STORAGE SITES 

 

Summary Geological carbon sequestration (GCS) has been identified as having the potential to reduce increasing 

atmospheric concentrations of carbon dioxide (CO2).  However, a global impact will only be achieved if GCS is cost 

effectively and safely implemented on a massive scale.  This work presents a computationally efficient methodology 

for identifying optimal injection strategies at candidate GCS sites having caprock permeability uncertainty.  A multi-

objective evolutionary optimization algorithm is used to heuristically determine non-dominated solutions between 

the following two competing objectives: 1) maximize mass of CO2 sequestered and 2) minimize project cost.  A 

semi-analytical algorithm is used to estimate CO2 leakage mass rather than a numerical model, enabling the study of 

GCS sites having vastly different domain characteristics.  The stochastic optimization framework presented herein is 

applied to a study of a brine filled aquifer in the Michigan Basin (MB).  Twelve optimization test cases are 

performed to investigate the impact of decision maker (DM) preferences on Pareto-optimal objective function values 

and carbon injection strategies.  Risk adversity to CO2 leakage is found to have the largest effect on optimization 

results, followed by degree of caprock permeability uncertainty.  This analysis shows that the feasibility of GCS at 

the MB test site is highly dependent upon the DM’s risk adversity selection.  Finally, large gains in computational 

efficiency achieved using parallel processing and archiving are discussed. 

 

1 Introduction 

Geological carbon sequestration (GCS) has been identified as a prominent technology to manage 

increasing atmospheric concentrations of carbon dioxide (CO2) [37,44], however, the effective application 

of GCS will require a global implementation of large numbers of carbon injection projects.  While an 

individual large coal-fired power plant may emit up to 5-10 megatonnes (Mt) of CO2 per year [3], total 

annual global anthropogenic carbon emissions measured in mass of CO2 are approximately 30,000 Mt 

[37].  Results from [17] suggest that specific regions of a small number of candidate aquifers will provide 

the majority of low cost geological CO2 storage.  As the selection of the appropriate reservoir is crucial to 

the success of a GCS project [4], many potential injection sites will need to be assessed world-wide for 
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GCS suitability.  Therefore, the efficient preliminary characterization of candidate GCS injection sites has 

the potential for massive resource savings.  In addition, a comprehensive pre-screening effort will 

increase GCS storage reliability by eliminating “bad” and identifying “good” GCS reservoirs. 

 

Large-scale conjunctive preliminary project planning will involve the characterization, optimization, and 

risk assessment of several potential GCS sites.  There are, however, several difficulties associated with 

these tasks.  The first is that the large-scale, multiphase numerical modeling of several potential injection 

sites for the purpose of initial assessment is infeasible due to the effort involved in model construction 

and calibration.  Data characterizing the subsurface domain are typically scarce, which introduces 

parameter uncertainty and adds to the complexity of modeling GCS.  Also, because of their propensity to 

be computationally expensive [18], the direct use of large-scale, multiphase numerical models would be 

unrealistic in simulating the high volume of realizations needed for risk assessment and optimization.  

 

The high computational cost associated with numerical models may be overcome by the use of data-based 

response surface methods (e.g. [5]).  However, it is the authors’ intent for the resulting framework to 

ultimately be used to optimize and compare large numbers of potential injection sites having vastly 

different domain characteristics.  Creating and calibrating each potential injection site’s numerical model, 

as well as training the resulting response surface would require user expertise and large investments of 

computational time.  This work has therefore chosen to use a semi-analytical multiphase flow model 

presented by [41] and modified by [12] for multiphase subsurface flow simulation.  The semi-analytical 

leakage algorithm is very general and can be applied to simplified computational models of the vast 

majority of potential injection sites. 

 

An additional difficulty associated with preliminary GCS project planning is that potential storage 

reservoirs typically exhibit a high degree of uncertainty associated with physical parameters.  Reference 

[8] identified abandoned (herein referred to as “passive”) well permeabilities as the most dominant 
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uncertainty parameter when estimating fluid leakage due to GCS.  In North America, significant numbers 

of passive wells may perforate the caprock in formations suitable for GCS [7,36,37].  Most likely, very 

little information exists on the location and/or sealing properties of these wells.  However, several efforts 

have been made to investigate and account for the uncertainty associated with passive well permeability.  

References [56,57] developed a passive well integrity scoring index based upon typically available 

information (e.g. completion date, regulatory requirements, etc.).  Reference [14] physically sampled and 

analyzed segments of a 30 yr. old passive well that had been continuously exposed to 96% CO2 finding 

that cement interfaces are more important than the cement matrix when quantifying migration pathways. 

 

Multiphase subsurface optimization problems are typically highly non-linear due to the irregular spatial 

location of preferential flow pathways and the multiphase flow (i.e. CO2 and brine) equations governing 

pressure response and CO2 plume migration.  Therefore, a robust global optimization tool is needed to 

find best performing injection strategies that maximize the mass of CO2 sequestered while minimizing 

project cost by selecting optimal injection well locations and injection rates.  In multi-objective problems, 

a Pareto-optimal, or non-dominated, solution outperforms all other solutions with respect to all objectives 

[46]  Multi-objective evolutionary algorithms (MOEAs) have been shown to be effective in providing 

Pareto-optimal solutions for a large number of subsurface flow applications possessing several decision 

variables [1,2,9,24,28,31,35,45,47,48,49,50,51,59].  In particular, [46] presents a comprehensive review 

of state-of-the-art MOEAs highlighting key algorithm advances which may be used to identify critical 

tradeoffs in water resources problems.  A non-dominated sorting genetic algorithm (NSGA-II) [15] with 

-dominance [29] has been selected as the computational optimization tool because it is among the best 

performing multi-objective optimization evolutionary algorithms [10]. 

 

If computationally feasible, stochastic methods should be applied in cases where parameter uncertainty is 

of significant concern.  A popular approach for accomplishing this is to apply a Monte Carlo (MC) 

method where simulation is performed for an ensemble of uncertain parameter sets to estimate the 
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statistics of optimization objectives and constraints.  There are several examples in the literature where 

MOEAs are coupled with MC techniques to optimize groundwater problems having parameter 

uncertainty.  A multi-objective groundwater flow optimization problem with aquifer hydraulic 

conductivity uncertainty is solved by [2] using an NPGA.  Reference [1] used a MC-based Bayesian 

update scheme to approximate posterior uncertainty in hydraulic conductivity and head using an NSGA-II 

when performing multi-objective design of aquifer monitoring networks.  A MC approach was also used 

by [31] when determining optimal remediation methods for groundwater aquifers having hydraulic 

conductivity uncertainty.  MC techniques are also used to investigate parameter uncertainty associated 

with GCS [22,42,54,58].  In particular, reference [8] applied a stochastic Monte Carlo approach to 

estimate leakage risk associated with passive well permeability uncertainty.  Reference [36] used a large-

scale Monte Carlo method to explore the effects of caprock permeability uncertainty on fluid leakage 

estimation, finding that the amount of CO2 leakage from GCS is typically acceptable for climate change 

mitigation. 

 

Herein, several computational tools are integrated into a stochastic multi-objective optimization 

framework for the purpose of performing large-scale GCS site feasibility studies.  These tools include 1) a 

semi-analytical leakage algorithm to rank the performance of trial injection strategies; 2) a Monte Carlo 

procedure to quantify risk resulting from parameter uncertainty; and 3) an NSGA-II with -dominance to 

heuristically determine Pareto-optimal solutions between competing objectives.  We begin with a detailed 

description of the stochastic optimization methodology including an overview of both the semi-analytical 

CO2 leakage algorithm and the NSGA-II with -dominance.  Next, a general description and GCS-

specific characterization of a saline aquifer situated within the Michigan Basin (MB) is presented.  

Following this is the formulation of the optimization case study at a MB test site  The framework is then 

used to investigate the following three goals regarding the stochastic optimization of the MB site: 1) 

quantify the impact of decision maker (DM) preferences on heuristically determined Pareto-optimal 
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objective values (i.e. mass sequestered and project cost); 2) quantify the impact of DM preferences on 

carbon injection strategy (i.e. the selection of injection well flow rate and location), and; 3) assess the 

suitability of the MB test site for GCS.  Finally, gains in computational efficiency using parallel 

processing and simulation archiving are discussed. 

 

2 Methodology 

2.1 Semi-Analytical CO2 Leakage Estimation 

While other semi-analytical algorithms provide insight regarding specific processes, this work has chosen 

to use a modified version of the ELSA (Estimating Leakage Semi-analytically) multiphase subsurface 

flow model [8, 12,41] because it is the only semi-analytical model able to simulate multiphase flow in 

domains having multiple injection wells, geological layers, and passive wells (i.e. weak caprock areas).   

 

Figure 3.1 shows a schematic of the semi-analytical leakage model’s computational domain.  This domain 

is structured as a stack of L+1 caprock layers separated by L aquifers layers, perforated by M carbon 

injection wells and N passive wells.  Aquifers are assumed to be horizontally level, homogenous, and 

isotropic.  Caprock layers are assumed to be impermeable, except where perforated by passive wells.  

Injection wells are able to inject into any layer.  Initially, fluid is not flowing through any of the passive 

wells because the entire domain is assumed to be saturated with brine at hydrostatic pressure.  Additional 

assumptions made by this model include: a) aquifers exhibit horizontal flow; b) capillary pressure is 

negligible, resulting in a sharp CO2-brine interface; c) CO2 plume thickness at any given location is 

assumed to be the maximum plume thickness from all sources and sinks in the aquifer; d) pressure 

response from sources and sinks can be superimposed in each aquifer; and e) the injectivity of the 

formation remains constant.  Several of these processes are important [11,13,16,20,21,25,27] and should 

be included [6,19,26,40] when accurate is more important that efficiency (e.g. final project design). 
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Figure 3.1. Schematic of the semi-analytical leakage model’s computational domain 

 

At the start of injection, aquifer fluid pressures throughout the domain begin to change resulting in 

pressure differentials across caprock layers and fluid flux through passive wells.  It is therefore very 

important to understand aquifer fluid pressure response resulting from changes in the mass storage of CO2 

and brine.  A pressure response function for the injection of CO2 into a brine-filled confined aquifer was 

derived in [38].  Reference [8] expresses this radial pressure response p [ML-1T-2] at the bottom of the 

aquifer where a single well injects CO2 as: 

 

𝑝 = 𝑝0 + (𝜌𝑏 − 𝜌𝑐) ∙ 𝑔 ∙ 𝐻 ∙ ∆𝑝
′ (1)  

 

where p0 is the initial fluid pressures at the bottom of the aquifer, 𝜌𝛼 is fluid density [ML-3] (𝛼denotes the 

phase type, 𝑏 for brine and 𝑐 for CO2), 𝑔 is gravitational acceleration [LT-2] and 𝐻 is aquifer thickness 

[T].  In Equation (1), ∆𝑝′ (/) is defined by: 
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where, 

 

𝜒 =
2𝜋𝐻𝜙(1 − 𝑆𝑏

𝑟𝑒𝑠)𝑟2

𝑄 ∙ 𝑡
 (3)  

Γ =
2𝜋(𝜌𝑏 − 𝜌𝑐)𝑔𝑘𝐻

2

𝜇𝑏𝑄
 (4)  

𝜓 =
4.5𝜋𝐻𝜙𝑘(1 − 𝑆𝑏

𝑟𝑒𝑠)

𝜇𝑏𝑐𝑒𝑓𝑓𝑄
 (5)  

ℎ′ =
ℎ(𝜒)

𝐻
=

1

𝜆 − 1
(
√2𝜆

√𝜒
− 1) (6) 

𝐹(ℎ′) =
−𝜆

𝜆 − 1
[h′ −

𝑙𝑛[(𝜆 − 1)ℎ′ + 1]

𝜆 − 1
] (7)  

 

In Equations (2-7): B is aquitard thickness [/]; h is CO2 plume thickness [L]; h’ [/] is the CO2 plume 

thickness relative to the aquifer thickness H; 𝑆𝑏
𝑟𝑒𝑠 is the residual saturation of the brine [/]; t is time [T]; k 

is the aquifer permeability [L2];  is the dynamic viscosity [ML-1T-1]; is the aquifer porosity [/]; Q is the 

total volumetric well flux [L3T-1]; ceff is the effective compressibility of the fluid and solid matrix [M-

1LT2]; and r is the radial distance [L]. Also, F(h’) is an offset term related to the vertical pressure 
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distribution [8] and the mobility ratio is defined as  = c/b, where  = kr,/ and kr, is the relative 

permeability of phase  ( = b for brine or  = c for CO2). 

 

To determine the fluid overpressure at any given time throughout the aquifer system, [36] applies 

superposition of effects derived from the application of Equation (1) for all the volumetric sources and 

sinks corresponding to CO2 injection wells and passive wells. Consequently, the fluid pressure at any 

given time t, at the bottom of the generic aquifer l (l=1,2,..,L) and for each passive well j (j=1,2,..,N) can 

be expressed as: 

 

𝑝𝑗,𝑙 = 𝑝0𝑙 + (𝜌𝑏 − 𝜌𝑐) ∙ 𝑔 ∙ 𝐻𝑙 ∙ [∑ ∆𝑝′(𝜒𝑖𝑤,𝑗,𝑙)

𝑀

𝑖𝑤=1

+∑∆𝑝′(𝜒𝑖,𝑗,𝑙)

𝑁

𝑖=1

] (8)  

 

where 𝜒𝑖𝑤,𝑗,𝑙 = 2𝜋𝐻𝑙𝜙𝑙(1 − 𝑆𝑏,𝑙
𝑟𝑒𝑠)𝑟𝑖𝑤,𝑗

2 (𝑄𝑖𝑤,𝑙 ∙ 𝑡)⁄  and 𝜒𝑖,𝑗,𝑙 =

2𝜋𝐻𝑙𝜙𝑙(1 − 𝑆𝑏,𝑙
𝑟𝑒𝑠)𝑟𝑖,𝑗

2 ∫ (𝑄𝑗,𝑙−𝑄𝑗,𝑙+1) ∙ 𝑑𝜏
𝑡

𝑜
⁄  (see Equation (3)). By following this approach, the fluid 

pressures at the bottom of each aquifer and at each passive well can be grouped into the N×L vector 𝐩: 

 

𝐩(t) = 𝐩[𝐏𝟏,𝐌(t)] (9)  

 

Equation (9) shows that 𝐩(t) is a function of the array 

 

𝐏1 ≡ [𝐇,𝛟, 𝐤, 𝑺𝑏
𝑟𝑒𝑠, 𝐫 , 𝐐𝑖𝑤 , 𝜌𝑐 , 𝜌𝑏 , 𝑔, 𝜆, 𝜋, 𝜇𝑏 , 𝑐𝑒𝑓𝑓] (10)  

 

In Equation (10): the L×1 vectors H, 𝛟, 𝑺𝑏
𝑟𝑒𝑠 and k include the thicknesses, porosities, brine residual 

saturations and permeabilities of all aquifers; 𝐐𝑖𝑤 is M×L vector including the CO2 inflow rates for each 
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aquifer l (l=1,2,..,L) for injection well iw (iw=1,2,..,M); and the (M+N)×(M+N) r matrix includes the 

relative distances between injection and passive wells. 

 

In addition, 𝐩(t) (Equation 9) is a function of the N×L vector 𝐌(t), whose generic component 𝑀𝑗,𝑙(𝑡) 

represents the net cumulative fluid mass transferred into aquifer l through passive well j. This mass is 

calculated as: 

 

𝑀𝑗,𝑙(𝑡) = ∫ 𝜌𝑒𝑓𝑓,𝑗,𝑙(𝜏) ∙ [𝑄𝑗,𝑙(𝜏) − 𝑄𝑗,𝑙+1(𝜏)] ∙ 𝑑𝜏
𝑡

0

 (11)  

 

where 𝜌𝑒𝑓𝑓,𝑗,𝑙(𝜏) is the effective fluid density in aquifer 𝑙, at passive well 𝑗 which is time-dependent since 

the leaking fluid composition is a function of the phase saturations of CO2 and brine, which vary based on 

the CO2 plume location. The effective fluid density is estimated as 𝜌𝑒𝑓𝑓,𝑗,𝑙 = 𝜌𝑐 ∙ 𝑆𝑐𝑗,𝑙 + 𝜌𝑏 ∙ (1 − 𝑆𝑐𝑗,𝑙).  

 

Since application of Equation (9) requires knowing the temporal evolution of leakage rates through 

passive wells 𝑄𝑗,𝑙, [36] propose to use the sum of the flow rates, 𝑄𝛼𝑗,𝑙, for each phase , calculated using 

the  multiphase version of Darcy’s law across each confining layer l for each passive well j: 

 

𝑄𝑗,𝑙 = ∑ [𝜋𝑟𝑝𝑤
2
𝑗,𝑙

𝑘𝑟,𝛼𝑗,𝑙𝑘𝑝𝑤𝑗,𝑙

𝜇𝛼𝐵𝑙
(𝑝𝑗,𝑙−1 − 𝜌𝛼𝑔𝐵𝑙 − 𝑔𝜌𝛼𝐻𝑙−1 − 𝑝𝑗,𝑙)]

𝛼=𝑏,𝑐

 (12)  

 

In Equation (12), 𝑟𝑝𝑤𝑗,𝑙 is the passive well radius and 𝑘𝑝𝑤𝑗,𝑙 is the single phase passive well permeability 

for passive well j (j=1,2,..,N) and aquitard layer l. Note that in order to apply Equation (12), fluid 

pressures 𝑝𝑗,𝑙  as well as CO2 relative thicknesses in passive well pathways must be known to estimate 
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pressure gradients, fluid saturations and relative permeability values. Given Equation (12), the flow rates 

across each aquitard l (l=1,2,..,L) for each passive well j (j=1,2,..,N) can be can be grouped into the N×L 

vector 𝐐: 

 

𝐐(t) = 𝐐[𝐏𝟐, 𝐩(t)] (13)  

 

where the array 𝐏2 is given by: 

 

𝐏2 ≡ [𝐁,𝐇, 𝐫𝑝𝑤 , 𝐤𝑝𝑤, 𝐤𝑟,𝑐 , 𝐤𝑟,𝑏 , 𝜌𝑐 , 𝜌𝑏 , 𝜇𝑐 , 𝜇𝑏 , 𝑔] (14)  

 

In Equation (14), the (L+1)×1 vector 𝐁 includes the aquitard thicknesses, the N×(L+1) matrices 𝐫𝑝𝑤 and 

𝐤𝑝𝑤 contain the passive well radii and permeabilities, and the N×(L+1) matrices 𝐤𝑟,𝑐  and 𝐤𝑟,𝑏 include the 

relative permeabilities of CO2 and brine at passive wells.  

 

By combining Equations (9) and (13), a set of N∙L non-linear equations in N∙L unknowns is obtained. 

These unknowns are the fluid pressures at the bottom of each aquifer and at each passive well (Equation 

8), and the flow rates (Equation 12) across each aquitard for each passive well. 

 

In an effort to increase computational efficiency, this work has chosen to neglect effects from upconing 

and apply the IGPS modification from [12] where a fixed point iteration scheme is applied to solve the 

system of non-linear equations introduced above at a generic time t given the solution at time t-t 

obtained at the previous time step.  The resulting CO2 leakage simulator is highly efficient, capable of 

simulating 50 years of injection into a domain with 100 passive wells and 4 aquifer/aquitard layers in less 

than 1 second on a standard laptop.  Additional information regarding the implementation of the leakage 
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model, as well as modifications made to the original work presented by [8,39,41], are discussed in detail 

in [12].  

 

2.2 Stochastic Multi-objective GCS Problem 

For any given potential GCS reservoir, a set of Pareto-optimal injection scenarios exist which (a) 

maximize the deterministic mass of CO2 injected, Massinj, and (b) minimize the stochastic project cost, C,: 

 

       𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑎):         max{𝑀𝑎𝑠𝑠𝑖𝑛𝑗(𝐐)}   

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑏):         min{𝐶(𝐱, 𝐐, 𝐬̃)} 

(15)  

 

In Equation (15), spatial position, x, and flow rate, Q, are the two decision variables comprising each 

injection strategy and 𝐬̃ is the stochastic set of state variables (i.e. aquifer pressure distribution and CO2 

plume locations and thicknesses) dependent on each simulation’s injection strategy and stochastically 

generated parameter set.  Massinj is simply the total mass of CO2 injected into the domain during 

simulation, and is calculated by multiplying the sum of injection well flow rates by the injection duration, 

tinj: 

 

𝑀𝑎𝑠𝑠𝑖𝑛𝑗 = ∑ 𝑄𝑐𝑖𝑤 ∗ 𝑡𝑖𝑛𝑗

𝑀

𝑖𝑤=1

 (16)  

 

where M is the number of injection wells, and 𝑄𝑐𝑖𝑤  is the CO2 mass injection rate for injection well iw.   

 

In order to quantify the risk associated with passive well permeability uncertainty, an ensemble of NMC 

parameter set realizations (𝐤𝑝𝑤
(1)

, 𝐤𝑝𝑤
(2)

, … , 𝐤𝑝𝑤
(𝑁𝑀𝐶)), with each having an equal probability of occurrence, 

is generated for each trial injection strategy.  For each Monte Carlo (MC) realization, each passive well 
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segment is assigned either an “intact” (low) or “degraded” (high) [8,36] permeability value.  This is 

accomplished using a simple bi-value probability distribution function (PDF).  Passive well segments 

have a Pintact chance of being assigned an “intact” permeability value and a (1 - Pintact) chance of being 

assigned a “degraded” permeability value.  The cost, Costi, associated with each MC realization, i (i = 

1,2,…,NMC), consists of the summation of each injection well’s (iw) capital cost, Cap, operational cost, 

OP, surface maintenance cost, SurM, subsurface maintenance cost, SubM, and variable cost, Var, added 

to the cost associated with CO2 leakage, LC: 

 

𝐶𝑜𝑠𝑡𝑖(𝐐,𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘)

= ∑ [𝐶𝑎𝑝𝑖𝑤 + 𝑂𝑃𝑖𝑤(𝑡𝑖𝑛𝑗) + 𝑆𝑢𝑟𝑀𝑖𝑤(𝑡𝑖𝑛𝑗) + 𝑆𝑢𝑏𝑀𝑖𝑤(𝑡𝑖𝑛𝑗)

𝑀

𝑖𝑤=1

+ 𝑉𝑎𝑟𝑖𝑤(𝑄𝑖𝑤 , 𝑡𝑖𝑛𝑗)] + 𝐿𝐶[𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬𝑖)] 

(17)  

 

where si is the set of state variables for each MC realization including the CO2 saturation and total flow 

rate in each passive well segment. LC is estimated as: 

 

𝐿𝐶[𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬𝑖)] = 𝑐𝐿 ∙ 𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬𝑖)
𝑟𝐴  (18)  

 

In Equation (18), cL is the coefficient representing penalty cost per unit of CO2 leakage ($/kg) and rA is a 

risk adversity factor reflecting the preferences of the DM by exponentially increasing LC in relation to the 

mass of CO2 leakage.  The mass of CO2 leakage (kg), Massleak, is quantified numerically using the semi-

analytical leakage algorithm described in Section 2.1 as: 

 

𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬𝑖) =∑∫ 𝜌𝑐 ∙ 𝑆𝑐𝑗,𝐿
(𝑖) (𝑡) ∙ 𝑄𝑗,𝐿

(𝑖)
(𝑡) ∙ 𝑑𝑡

𝑡𝑖𝑛𝑗

0

𝑁

𝑗=1

 (19) 
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Empirical cumulative distribution functions (CDFs) of each injection strategy’s MC Cost (Cost1, Cost2, 

… , CostNMC) are then compiled by first sorting the Cost vector in ascending order from i = 1…NMC, then 

assigning the non-exceedance probability of Costi as (i – 0.5)/NMC [23].  The stochastic cost objective, 𝐶̃, 

is finally assigned as the zth percentile value, Pz, of the sorted Cost vector: 

 

𝐶(𝐱, 𝐐, 𝐬̃) = 𝑃𝑧(𝐂𝐨𝐬𝐭) (20) 

 

As discussed later in Section 4.1, larger NMC values are needed to accurately quantify 𝐶̃ as z becomes 

farther from 50%.  Several constraints are included in this problem.  First, the number of injection wells is 

limited to a maximum integer value by constraining M to a value between 0 and Mmax:  

 

0 ≤ 𝑀 ≤ 𝑀𝑚𝑎𝑥 (21)  

 

All candidate injection wells must be located horizontally within prescribed minimum and maximum 

spatial bounds representing the areal extent selected for the construction of GCS faculties: 

 

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖𝑤 ≤ 𝑥𝑚𝑎𝑥 ;  𝑦𝑚𝑖𝑛 ≤ 𝑦𝑖𝑤 ≤ 𝑦𝑚𝑎𝑥 ;  𝑖𝑤 = 1, 2, . . , 𝑀 (22)  

 

 Also, each injection well’s flow rate must be between prescribed minimum and maximum flow rates Qmin 

and Qmax: 

 

𝑄𝑚𝑖𝑛 ≤ 𝑄𝑖𝑤 ≤ 𝑄𝑚𝑎𝑥 ;  𝑖𝑤 = 1, 2, . . , 𝑀 (23)  
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In Equation (23), Qmin and Qmax are physical constraints related to the technical capacity of injection 

pumps and wells.  Finally, fluid pressures at each injection well in each layer, piw,l, must not exceed each 

layer’s fracture pressure, 𝑝𝑓𝑟𝑎𝑐𝑙.  

 

𝑝𝑖𝑤,𝑙(𝐐, 𝐬̃) < 𝑝𝑓𝑟𝑎𝑐𝑙  ;  𝑖𝑤 = 1, 2, . . , 𝑀 ; 𝑙 = 1, 2, . . , 𝐿 (24)  

 

where 𝑝𝑓𝑟𝑎𝑐𝑙 is calculated by multiplying a specified fracture gradient [8,] by layer depth and piw,l is 

estimated for each injection well iw at the end of the injection duration at a small effective distance from 

the injection location.  The value for effective distance must be carefully selected as Equation (1) is very 

sensitive to radial distance when estimating pressure changes nearby the injection location, where a 

conservative estimate for this value would be the injection well’s casing radius.  Also, since the left-hand 

side of Equation (24) contains stochastic state variables, these stochastic constraints have to be 

transformed into deterministic. This is carried out using a chance-constraint approach [54] such that: 

 

𝑃𝑟𝑜𝑏{𝑝𝑖𝑤,𝑙(𝐐, 𝐬̃) < 𝑝𝑓𝑟𝑎𝑐𝑙} ≥ 𝑆𝑃 ;  𝑖𝑤 = 1, 2, . . , 𝑀 ; 𝑙 = 1, 2, . . , 𝐿 (25)  

 

Equation (25) requires the probability that the fluid pressure at injection wells does not exceed the layer 

fracture pressure to be larger than or equal to a prescribed fracture safety probability, Sp. 

 

2.3 Multi-objective GCS Optimization Algorithm 

In order to solve the stochastic multi-objective optimization problem presented in Section 2.2, the semi-

analytical CO2 leakage algorithm (Section 2.1) and the Monte Carlo procedure (Section 2.2) are 

integrated into a NSGA-II with -dominance.  Each trial injection strategy is encoded into a 

“chromosome” (i.e. a unique sequence of binary numbers representing the values of each decision 

variable).  The first segment of the chromosome contains spatial location information for Mmax injection 
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wells represented by Ncl predefined candidate injection well location indices, thus intrinsically satisfying 

the spatial location constraint defined by Equation (22).  The number of digits required to represent each 

injection well’s location is a function of the number of candidate locations, Ncl.  For example, if Ncl = 16 

for a potential GCS site, the locational information of each injection well for each injection strategy 

would require four binary digits (i.e. ‘0000’ = 1, ‘0001’ = 2, … , ’1111’=16).  In this case, the spatial data 

component of the chromosome has a length of M∙4.  The last segment of the chromosome represents the 

injection rate index of each well.  Injection rate indices represent Nir prescribed discrete flow rate values 

within the constraints of Equation (23).  For example, injection rate index values of 0, 1, 2, and 3 may 

represent injection rates of 0, 20, 30, and 40 kg/s, respectively (Nir = 4).  In this case, two binary digits 

would be used to encode each well’s injection index (‘00’ = 0, ‘01’ = 1, … , ’11’=3) bringing the total 

chromosome length to M∙4 + M∙2.  

 

The general procedure followed by the NSGA-II with -dominance is presented in Figure 3.2.  Once input 

files containing domain characteristics and algorithm parameters are read, an initial population of Npop 

trial injection scenarios, including the spatial location and flux rate for each injection well, is randomly 

generated.  In step (b), objective function values are calculated for each population member and 

simulation archiving keeps a record of simulation results, preventing the NSGA-II from recalculating 

objective values for identical scenarios.  As described in Section 2.2, an ensemble of parameter set 

realizations are generated for each trial injection strategy in step (c).  After this, fitness values (i.e. an 

assessment of performance related to objective function values) are calculated for each injection strategy.  

The semi-analytical leakage algorithm is used to estimate Massleak for each of these realizations in step 

(d), then objective values Massinj and 𝐶̃ are calculated using Equations (16-20).  Also in step (d), if 

Equation (25) is violated the injection strategy is deemed infeasible. 
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Figure 3.2. Schematic of the stochastic optimization algorithm 

 

Next, the NSGA-II is used to generate new injection strategy populations of size Npop using selection, 

crossover, and mutation operators.  In step (e), population members are first ranked (irank) as the number 

of solutions dominating population member i using the fast-nondominated sorting procedure from [15] 

then assigned a crowding distance (idistance) as the largest cuboid in objective space enclosing the point i 

without including any other point in the population [15].  A partial order is established using the crowding 

comparison operator, ≥n [15]. Population member i outperforms member j if the following conditions are 

met: 

  

𝑖 ≥𝑛  𝑗  IF {(𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘) OR ((𝑖𝑟𝑎𝑛𝑘 = 𝑗𝑟𝑎𝑛𝑘) AND (𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒))} (26)  

 

The NSGA-II’s ranking process is further improved with the concept of -dominance [29].  Suppose 

population members p1 and p2 have fitness values of f1 and f2, respectively.  Using -dominance, p1 is 
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allowed to dominate p2 if (1+)∙f1 is greater than or equal to f2.  -dominance allows for the inclusion of 

additional, well-performing population members to each rank’s Pareto-optimal front. 

 

Next, in step (f) an iterative tournament-style selection process is used to select parent injection strategies 

for the next generation.  A subset of Tsize population members is selected randomly and the population 

member with highest partial order according to Equation (26) is chosen as a parent.  Once parents are 

selected, a crossover operator is used to create the new generation of population members in step (g).  

During each crossover operation, components of chromosomes from two randomly selected parents are 

used to build a new trial injection strategy.  Crossover is repeated until the new population is filled.  

Finally, there is a chance, quantified as the mutation rate, Mrate, in which chromosome elements of this 

new population will be randomly altered during step (h).  Steps (b-h) are repeated until the maximum 

prescribed number of generations, Ngens, is reached. 

 

2.4 Efficient Computational Implementation 

This framework utilizes parallel computing and simulation archiving to improve the computational 

efficiency.  Due to the iterative nature of both evolutionary search and Monte Carlo analyses, large 

numbers of model simulations are needed for each stochastic optimization run.  Without using simulation 

archiving, the total number of model calls required for each stochastic optimization run, Nct, is equal to 

the product of NMC, Npop, and Ngens.  CO2 leakage estimation calculations for each trial injection strategy 

are independent and therefore may be processed in parallel (i.e. simultaneously) rather than sequentially 

by distributing processes on different computer cores.  

 

A custom optimization program is created to apply both parallel processing and simulation archiving.  An 

efficient, multi-tier archive lookup method is implemented.  As results from new trial injection scenarios 

are received, the archive dataset continually remains sorted from smallest to largest based upon the sum 
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of each archived injection strategy’s decision variable values.  When the code is searching through the 

archive database to determine if an identical trial injection strategy had previously been evaluated, the 

code first looks for a match between the summations of decision variable values.  If a match is found, the 

code checks to see if each decision variable is identical.  The archive search process is stopped if either an 

identical set of decision variables is found or the remainder of archived injection scenarios have a larger 

decision variable value sum. 

 

3 Characterization of the MB test site 

The Michigan Basin (MB) is near the town of Thompsonville in northwest Michigan.  Michigan 

Technological University’s data library provides detailed subsurface data in this region.  A cross-sectional 

schematic of the MB is provided in Figure 3.3, showing a nearly depleted hydrocarbon reservoir between 

depths of approximately 4660 and 5000 feet (1420-1520 meters) overlain by multiple confining and saline 

aquifer layers.  This reservoir’s only production well, Merit 1-20A, was originally drilled by the Shell Oil 

Company and is located between two exploration boreholes, Burch 1-20B and Stech 1-21A.  This work 

explores the simulation and optimization of GCS into the saline Grey Niagaran formation immediately 

below the hydrocarbon reservoir. 

 

The Burch 1-20B (Burch) and Stech 1-21A (Stech) boreholes have provided a wide variety of high 

resolution well logs that may be used to characterize subsurface domain properties such as density, 

porosity, electrical resistivity, compressional and shear wave velocities.  For this analysis, we choose to 

use Neutron Porosity Hydrogen Index (NPHI) data gathered from the boreholes to estimate aquifer and 

caprock locations, thicknesses, and permeabilities.  High NPHI values indicate relatively high 

permeability while regions exhibiting low NPHI values indicate low permeability caprock layers.  Figure 

3.4 shows NPHI versus depth for both the Burch and Stech boreholes.  Aquifer (highlighted light blue) 

and caprock (highlighted brown) layers are then defined using this data.  Derived formation thicknesses 

and depths shown in Figure 3.4 correspond with aggregated layer sets displayed in Figure 3.3.   
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Figure 3.3. Cross-sectional schematic of the MB with the simulated injection layer highlighted orange (modified with 

permission from [53]) 
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Figure 3.4. NPHI vs. Depth for the Burch 1-20B (Burch) and Stech 1-21A (Stech) boreholes.  Light blue areas are defined 

as aquifers (A1 – A4) while brown areas are defined as confining units (C1 – C5). 

 

Five derived aquitards and four interlaying aquifer layers (including the Grey Niagaran formation) are 

used in the computational model (L = 4).  Caprock thicknesses are estimated to be 16.8, 18.3, and 109.1 m 

for layers 2, 3, and 4, respectively, while layers 1 and 5 are assumed to be completely impermeable even 

at passive well locations.  Average aquifer permeability, k, in milliDarcys (mD; 1 mD ≅ 10-15 m2) is 

estimated for all aquifer layers using the following from [52]: 

 

𝑘 = {
2 ∙ 𝑒31.6∙𝜙                                 𝑖𝑓 𝜙 < 0.124

4.94 ∙ 104 ∙ 𝜙2 − 763           𝑖𝑓 𝜙 ≥ 0.124
 (27)  
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where,  is assumed to equal NPHI.  Table 3.1 shows the permeability, thickness, and porosity value for 

each aquifer layer obtained using the preceding methodology.   

 

Table 3.1. Aquifer permeability, thickness, and porosity values used in this study 

Parameter Symbol 
Value for Aquifer Layer l 

Units 
l = 1 l = 2 l = 3 l = 4 

Permeability k 24 4.5 6.7 655 mD 

Thickness H 119.5 35.1 36.6 75.3 m 

Porosity  0.079 0.026 0.038 0.169 / 

 

The Michigan Department of Environmental Quality maintains a database of producing and inactive oil 

and gas wells in the state.  Although 65,560 well records containing permit number, depth, and spatial 

coordinates are retrieved from the department’s website [34], only 131 wells are located within 4 km of 

the reservoir’s production well, Merit 1-20A, and intersect the four aquifer layers defined above. 

 

A GCS test site is envisioned herein using MB data characterized above.  Optimal injection rates and well 

locations are determined for a maximum of 3 injection wells (Mmax = 3).  Injection wells are allowed to 

operate at a constant injection rate of either Q1 = Qmin = 0, Q2 = 20, Q3 = 30, or Q4 = Qmax = 40 kg/s (Nir = 

4) over a 50-year duration (tinj = 50 yrs.), thereby satisfying Equation (23).  Injection well locations may 

be selected from 16 candidate locations uniformly distributed over a 1 km2 square grid.  Figure 3.5 

provides a plan view of the MB site with candidate injection well locations (Ncl = 16) shown as orange 

circles and existing passive well locations (N = 131) shown as blue pluses.  Horizontal positions are 

relative to the Merit 1-20 production well with xmin = ymin = -500 m and xmax = ymax = 500 m), thereby 

satisfying constraint Equation (22). 

 

In Equation (19), Massleak is defined as the cumulative mass of CO2 that escapes into the top layer (l = 4) 

at the end of the 50-year injection duration.  The radii, rpw, used in Equation (12) is assumed to be 0.2 m 

for all 131 passive wells.  A fracture safety probability of Sp = 95% is assumed for the pressure constraint 
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Figure 3.5. Plan view of the MB test site showing all PWs included in the study 

 

(Equation (25)).  Also a fracture gradient of 20.0 kPa/m, as used in [9] is used for the purposes of 

optimization and analysis, however the effects of using the more conservative fracture gradient of 14.2 

kPa/m [43] are also considered.  Table 3.2 lists additional deterministic hydrogeological parameter values 

used herein. 

 

Table 3.2. Deterministic hydro-geological parameter symbols and values 

Parameter Symbol Value Units 

Brine density b 1,045 kg/m3 

CO2 density c 479 kg/m3 

Brine viscosity b 2.94x10-4 Pa∙s 

CO2 viscosity c 3.95x10-5 Pa∙s 

Effective compressibility ceff 4.6x10-10 m2/N 

Brine residual saturation Sres 0.3 / 

 

The costs associated with installation, operation, and maintenance [30] used for each candidate well 

location in this study are shown in Table 3.3.  This preliminary analysis does not include costs involved 
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with site characterization, permitting, lease/purchase of land/pore space, financing, insurance, monitoring, 

verification, EPA financial bond requirement, post-injection site care, and long-term liabilities although 

these may be significant in the final financial assessment [30].  The leakage cost parameter cL in Equation 

(18) is assigned a values of 0.6 $/kg. 

 

Table 3.3. Cost parameter values for each candidate well location in Equation (17) 

Capital Cost, 

Cap ($/well) 

Fixed O&M 

Cost, OP 

($/day/well) 

Surface 

Maintenance, 

SurM ($/yr/well) 

Subsurface 

Maintenance, SubM 

($/yr/well) 

Variable Cost, 

Var  

($/kg of CO2) 

3,537,104 11,566 120,608 37,612 0.009 

 

In this case study, passive well segment permeability is assumed to be the only uncertain variable.  For 

each MC simulation, passive well segment permeabilities are randomly assigned as either 0.01 or 1000 

mD, representing “intact” and “degraded” cement, respectively [8,13,36].  Table 3.4 shows the 

probability of each passive well segment being assigned an "intact" or “degraded” permeability value 

during the MC ensemble generation for each uncertainty scenario.  Herein, three uncertainty scenarios are 

tested and compared including 1) data supporting an abundance of intact passive well segments (U1); 2) 

no available passive well permeability data (U2); and 3) data supporting an abundance of degraded 

passive well segments (U3). Passive well segment permeabilities are assumed to be fully uncorrelated 

(i.e. passive wells may have differing permeabilities at different depths). 

 

4 Results and Discussion 

4.1 NSGA-II Parameter Calibration 

The number of Monte Carlo simulations, NMC, generated and simulated for each trial injection strategy is 

determined from an analysis of the uncertainty scenario U3.  U3 is assumed to be the worst case (i.e. most 

difficult to solve) optimization problem because it has the largest probability of degraded passive wells 

and, therefore, the greatest potential for CO2 leakage.  Both P50%(Cost) and P95%(Cost) (Equation (20)) 
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Table 3.4. Probability of passive well segments being assigned either an "intact" or “degraded” permeability value for 

each uncertainty scenario. 

Uncertainty 

Scenario 
Description 

Probability of being assigned an 

"intact" permeability value 

Probability of being assigned a 

"degraded" permeability value 

U1 Intact Passive Well Data 90% 10% 

U2 No Passive Well Data 50% 50% 

U3 Degraded Passive Well Data 10% 90% 

 

are estimated for ten different injection strategies (Nsims = 10).  For each of these simulations, the value of 

NMC is ranged between 50 and 1000 in intervals of 50.  An inspection of the results of this analysis shows 

that NMC values of 200 and 400 produce convergence for P50%(Cost) and P95%(Cost), respectively.  

P95%(Cost) is further from the center of the CDF and thus requires a greater NMC value for stabilization. 

 

Optimal NSGA-II parameter values of Npop, Mrate, Tsize, and  are selected from a series of preliminary 

tests using a deterministic optimization problem having 50% degraded and 50% intact passive well 

segments.  A deterministic problem is used because it requires much less computational time for each 

simulation as there is no need for MC analysis.  First, a single measure is established to quantify the 

performance of each NSGA-II parameter value set where the average project cost per unit mass 

sequestered ($/kg) over all non-dominated solutions is assumed to represent the fitness of any given 

Pareto set.  Next, the true optimal Pareto set is found for the test deterministic optimization problem by 

performing three exhaustive evolutionary searches, each with 5,000 generations.  Each of these arrived at 

the same average project cost per unit mass sequestered.  Finally, the set of parameter values consistently 

requiring the least number of simulation calls to arrive within 0.1% of the minimal average project cost 

per unit mass sequestered found from exhaustive search are selected to be used by the stochastic 

optimization problem.  Table 3.5 shows the NSGA-II parameter values and maximum number of 

optimization generations found using this analysis.  
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Table 3.5.  NSGA-II parameter values and maximum number of optimization generations used for the stochastic case 

study 

Npop Mrate Tsize  Ngens 

25 1.6% 2 0.001 200 

 

A performance comparison between the NSGA-II and a random search algorithm is also performed to 

further validate the effectiveness of the NSGA-II used in this study.  One hundred deterministic 

optimization trials having differing random number seeds are processed.  The genetic algorithm is found 

to greatly outperform the random search algorithm. The percent of trials reaching 0.1% of the minimal 

project cost per unit mass sequestered in 200 generations is 100% for the NSGA-II compared to 0% for 

the random search algorithm.  Results from this convergence test provide strong evidence that, for this 

problem, optimal or close-to-optimal Pareto sets are found using the algorithmic parameter set shown in 

Table 3.5. 

 

4.2 Stochastic Optimization Analysis 

Three goals regarding the stochastic optimization of the MB site are investigated and discussed within 

this section: 1) quantify the impact of DM preferences on heuristically determined Pareto-optimal 

objective values (i.e. mass sequestered and project cost); 2) quantify the impact of DM preferences on 

carbon injection strategy (i.e. the selection of injection well flow rate and location), and; 3) assess the 

suitability of the MB test site for GCS.  To accomplish this, results from several optimization test cases 

having differing DM preference values, including the selection of risk adversity factor, rA, (Equation 

(18)), stochastic non-exceedance cost probability, z, (Equation (20)), and passive well uncertainty 

scenario (Table 3.4), are compared and discussed.  Twelve stochastic optimization cases are performed 

for the MB test site data described in Section 3.  The risk adversity factor, rA, is set to either 1.0 or 1.2 

while the stochastic non-exceedance cost probability, z, is set to either 50% or 95% for each of the three 

possible passive well uncertainty scenarios (U1, U2, U3), hence obtaining a total of 2∙2∙3 = 12 
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combinations of DM preference selections.  Table 3.6 shows DM preferences for each of these stochastic 

optimization cases (i.e. cases C1-C12). 

 

Table 3.6.  DM preferences for each of the 12 stochastic optimization runs (C1-C12) 

Stochastic 

Optimization 

Case 

Risk 

Adversity 

Factor, rA 

Passive Well 

Uncertainty 

Scenario 

Stochastic non-

exceedance cost 

probability, z 

C1 

1.0 

U1 
50% 

C2 95% 

C3 
U2 

50% 

C4 95% 

C5 
U3 

50% 

C6 95% 

C7 

1.2 

U1 
50% 

C8 95% 

C9 
U2 

50% 

C10 95% 

C11 
U3 

50% 

C12 95% 

 

4.2.1 Impact of DM Preferences on Objective Function Values 

The first step in investigating relationships between DM preferences and objective function values is to 

determine Pareto-optimal (or close-to-optimal) tradeoff sets for each stochastic optimization case 

described in Table 3.6 using the methodology presented in Section 2.  The quantity of total mass 

sequestered (Equation (16)) is a function of the injection duration, tinj, the maximum number of injection 

wells, Mmax, as well as the number, Nir, and flow rates, Q, of prescribed injection rates.  Because values 

for these three variables are prescribed before the start of optimization, all possible values of the total 

mass sequestered objective function are known.  Recall from Section 3 that each injection well may only 

assume an injection rate of either 0, 20, 30, or 40 kg/s.  Because of this, there are only 11 possible non-

zero, discrete values of total mass sequestered when Mmax = 3 and tinj = 50 yrs., as the total injection rate 

for all three wells may range between 20 and 120 kg/s in increments of 10 kg/s.   
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A visual representation of resulting Pareto sets is provided in Figure 3.6, where project cost versus mass 

of CO2 sequestered are displayed for each of the 12 optimization cases described in Table 3.6.  Subpanels 

in Figure 3.6 plot the objective function tradeoff curve associated each uncertainty scenario (i.e. U1, U2, 

and U3) for given values of rA and z.  Capital, operation and maintenance (CO&M) costs, defined herein 

as all project costs other than the penalties incurred from CO2 leakage, are also plotted.  Also, while all 

plotted Pareto-optimal solutions are valid using a fracture constraint of 20.0 kPa/m, only those solutions 

represented by solid markers are feasible when the fracture gradient is set to 14.2 kPa/m.  Note that, due 

to higher project costs, a larger scale is used on the ordinate axis when rA = 1.2. 

 

Figure 3.6.  Optimal project costs in millions of USD versus mass of CO2 sequestered for the 12 optimization runs 

described in Table 3.6.  While all discrete solutions are valid using the 20.0 kPa/m fracture gradient, solid markers denote 

feasible solutions when assuming the lower fracture gradient of 14.2 kPa/m.   
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The choice of fracture gradient is found to significantly reduce the quantity of feasible objective tradeoff 

solutions shown in Figure 3.6.  Only 30.3% of total tradeoff solutions for all test cases remain valid when 

assuming a 14.2 kPa/m fracture gradient.  Tradeoff solutions for only the three lowest values of mass of 

CO2 sequestered remain valid for uncertainty scenarios U1 and U2.  The fourth lowest value of mass of 

CO2 sequestered also remains valid for U3 because this uncertainty scenario has a greater quantity of 

degraded wells, thus allowing for more fluid pressure release from the injection layer.  These observations 

indicate that the choice of fracture gradient significantly affects optimization results and should, therefore, 

be accurately estimated for each injection layer when applying this framework. 

 

A general trend exhibited by these tradeoff profiles shows that project cost increases with the mass of 

CO2 sequestered in all optimization runs.  Two sharper increases in capital project cost are observed in 

CO&M costs when rA = 1.0 (Figure 3.6, subpanels (a-b)) because, due to the maximum prescribed 

injection rate, additional injection wells are needed when sequestering more than 63.1 or 126.1 Mt of 

CO2.  While increases in injection well capital costs are also incurred when rA = 1.2 (Figure 3.6, subpanels 

(c-d)), they are completely overshadowed by much larger total project costs. 

 

In this work, DM risk adversity preference, rA, is quantified through an exponential term when estimating 

leakage cost (Equation (18)) and therefore does not affect the estimated mass of CO2 leakage.  However, 

as seen in optimization cases C9-C12, when the estimated mass of CO2 leakage is high, rA is found to 

have a profound effect on project cost.  While all optimization cases under uncertainty scenario U1 (90% 

probability of any passive well being assigned as intact) exhibit very little CO2 leakage, substantial CO2 

leakage masses are estimated for test cases assigned U2 (50% probability of any passive well being 

assigned as intact) and U3 (10% probability of any passive well being assigned as intact) uncertainty 

scenarios, resulting in very large leakage costs when rA = 1.2.   
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The selection of uncertainty scenario (Table 3.4) represents a DM’s knowledge of the GCS site’s caprock 

integrity.  Uncertainty scenario selection directly impacts the estimated mass of CO2 leakage and, 

therefore, indirectly affects the estimated cost associated with CO2 leakage.  Cases assigned uncertainty 

scenarios having greater percentages of intact well segments are found to exhibit less CO2 leakage.  All 

optimization cases assigned U1 uncertainty scenarios exhibit fairly negligible CO2 leakage costs as their 

minimized total project costs are very similar to CO&M costs.  In contrast, cases assigned U3 uncertainty 

scenarios are found to have much more leakage cost than corresponding cases with U2 uncertainty 

scenarios especially when rA = 1.2. 

 

Finally, the choice of stochastic non-exceedance cost probability, z, affects the estimated cost associated 

with CO2 leakage because greater project costs are required to increase non-exceedance probability.  Data 

shown in Figure 3.6 suggest that the value chosen for z has a minor impact on resulting Pareto-optimal 

objective function values, thus indicating that spread of each Cost CDF is relatively contained.  Estimated 

project costs increase when a greater value of z is used.  However, the project cost variability associated 

with stochastic non-exceedance cost probability is much smaller than the project cost variability 

associated with risk adversity or uncertainty scenario selection. 

 

4.2.2 Impact of DM Preferences on Injection Strategy Selection 

The impact of DM preferences upon the heuristic selection of optimal injection locations and flow rates is 

also investigated.  Figure 3.7 displays a close-up, plan view of the MB test site showing the 16 candidate 

injection well location indices. 

 

As explained in Section 4.2.1, there are 11 possible mass sequestered values for each of the 12 

optimization cases.  Therefore, a total of 12∙11=132 Pareto optimal injection strategies are found using 

the NSGA-II.  As a general presentation of decision variable results, Table 3.7 shows both candidate well 
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Figure 3.7. Close-up plan view of the MB test site showing candidate injection well location indices. 

 

location indices (see Figure 3.7) and injection rates in kg/s for each injection strategy.  While injection 

strategies eliminated when using the lower fracture gradient of 14.2 kPa/m are highlighted grey, all 

injection strategies shown in Table 3.7 are feasible when assuming a fracture gradient of 20.0 kPa/m and 

are therefore used in the following analyses.  Note that injection strategies may use multiple injection 

wells. 

 

Using the data presented in Table 3.7, two quantitative analyses are performed to study how DM 

preferences ultimately influence the heuristic selection of carbon injection strategies.  First, the relative 

sensitivity of carbon injection strategy selection in relation to each DM parameter (i.e. rA, z, and 

uncertainty scenario) is quantified as the percentage of injection well rate/location combinations that 

change when varying each DM preference.  These percentages are calculated as the sum of differing 

injection well rate/location combinations divided by the total number of injection well rate/location 

combinations in each comparison set.  Optimization cases having all but one identical DM preferences are 

individually compared.  When contrasting rA (rA=1.0 with rA =1.2) a set of six injection strategy 

comparisons are made; stochastic optimization cases C1-C6 are thus compared with cases C7-C12, 
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Table 3.7.  Candidate well location indices from Figure 3.7 and injection rates for each injection.  Injection strategies 

eliminated by using the lower fracture gradient of 14.2 kPa/m are highlighted grey. 

Stochastic 

Optimization 

Run Index 

Mass Sequestered (MT) 

31.5 47.3 63.1 78.8 94.6 110.4 126.1 141.9 157.7 173.4 189.2 

Injection Strategy Selection [Location(Injection Rate)] 

C1 

1(20) 1(30) 1(40) 9(20) 

13(30) 

9(30) 

13(30) 

1(40) 

2(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(30) 

5(40) 

6(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

6(40) 

C2 

1(20) 1(30) 1(40) 1(30) 

5(20) 

1(30) 

5(30) 

1(40) 

5(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C3 

1(20) 1(30) 1(40) 1(30) 

5(20) 

1(30) 

5(30) 

1(40) 

5(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

5(40) 

9(40) 

C4 

1(20) 1(30) 1(40) 1(30) 

5(20) 

1(30) 

2(30) 

1(40) 

2(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C5 

1(20) 1(30) 1(40) 1(30) 

2(20) 

1(30) 

2(30) 

1(40) 

2(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

5(40) 

9(30) 

1(40) 

2(40) 

5(40) 

C6 

1(20) 1(30) 1(40) 1(30) 

2(20) 

1(30) 

2(30) 

1(40) 

2(30) 

1(40) 

2(40) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C7 

1(20) 1(30) 1(40) 9(20) 

13(30) 

9(30) 

13(30) 

1(40) 

2(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(40) 

5(30) 

9(30) 

5(30) 

9(40) 

13(40) 

1(40) 

2(40) 

5(40) 

C8 

1(20) 1(30) 1(40) 9(20) 

13(30) 

1(30) 

5(30) 

1(40) 

5(30) 

1(40) 

5(40) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C9 

1(20) 1(30) 1(40) 1(30) 

5(20) 

1(20) 

2(20) 

5(20) 

1(30) 

2(20) 

5(20) 

1(30) 

2(20) 

5(30) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C10 

1(20) 1(30) 1(40) 1(30) 

5(20) 

1(20) 

2(20) 

5(20) 

1(30) 

2(20) 

5(20) 

1(30) 

2(20) 

5(30) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C11 

1(20) 1(30) 1(40) 1(30) 

2(20) 

1(20) 

2(20) 

5(20) 

1(30) 

2(20) 

5(20) 

1(30) 

2(30) 

5(20) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

C12 

1(20) 1(30) 1(40) 1(30) 

2(20) 

1(20) 

2(20) 

5(20) 

1(30) 

2(20) 

5(20) 

1(30) 

2(20) 

5(30) 

1(30) 

2(30) 

5(30) 

1(40) 

2(30) 

5(30) 

1(40) 

2(30) 

5(40) 

1(40) 

2(40) 

5(40) 

 

  

respectively.  Six injection strategy comparisons are also made when contrasting z (z=50% with z=95%); 

case C1 with case C7, case C2 with case C8, case C3 with case C9, case C4 with case C10, case C5 with 

case C11, and case C6 with case C12.  A set of 12 injection strategy comparisons are made when 
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contrasting uncertainty scenario (U1 with U2, U2 with U3, and U3 with U1); cases C1-C2 are compared 

with cases C3-C4, respectively, cases C7-C8 are compared with cases C9-C10, respectively, cases C3-C4 

are compared with cases C5-C6, respectively, cases C9-C10 are compared with cases C11-C12, 

respectively, cases C5-C6 are compared with cases C1-C2, respectively, and cases C11-C12 are compared 

with cases C7-C8, respectively.  The percentage of injection strategies that remain constant in both 

location and injection rate when varying values of rA, uncertainty scenario, and values of z is quantified as 

72.2%, 75.5%, and 87.9%, respectively.  These findings are used to augment the following discussion. 

 

Secondly, a categorical distribution analysis is used to identify general injection strategy trends associated 

with DM preferences.  The number of times each candidate location is selected for injection well 

placement is counted for all cases having each given DM preference value.  For example, candidate 

location 1 is found to be selected for well placement 64 times when rA=1.0 (i.e. for cases C1-C6), 38 

times when assuming uncertainty scenario U1 (i.e. for cases C1, C2, C7, and C8) and 61 times when 

z=50% (i.e. for cases C1, C3, C5, C7, C9, and C11).  Table 3.8 provides the number of selections of each 

candidate injection location for each DM preference value. 

 

Table 3.8.  Number selections for each candidate well location index.  Indices having zero selections are not shown. 

Candidate 

Location 

Risk 

Adversity 

Factor, rA 

Passive Well 

Uncertainty 

Scenario 

Stochastic 

non-

exceedance 

cost 

probability, z 

1.0 1.2 U1 U2 U3 50% 95% 

1 64 62 38 44 44 61 65 

2 31 39 15 23 32 32 38 

5 35 44 24 32 23 38 41 

6 2 0 2 0 0 2 0 

9 4 5 7 1 1 8 1 

13 2 4 6 0 0 5 1 

Total 138 154 92 100 100 146 146 
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From the results shown in Table 3.8, the southwest corner of the candidate injection well field is heavily 

favored by the optimization algorithm, regardless of parameter choice, with 94.2% of all injection well 

placements being made at either candidate location 1, 2, or 5.  This is due to the presence of a passive 

well cluster approximately 1000 meters northeast of the candidate injection well field (see Figure 3.5).  

Also, the furthest southwest candidate injection well location is found to have a substantially greater 

number of selections than all other individual locations.  Approximately 41.2% of all injection well 

placements being made at candidate location 1, compared with 24.0% and 27.1% for candidate location 2 

and 5, respectively.   

 

DM risk adversity is found to have the greatest effect on injection strategy selection as only 72.2% of 

injection strategy selections remain constant when varying values of rA (see second and third columns of 

Table 3.8).  Also, increasing rA from 1.0 to 1.2 is found to increase the total number of candidate well 

location selections from 138 to 154.  This increased number in total candidate well location selections is 

caused by the optimization algorithm attempting to reduce CO2 leakage cost by using additional injection 

wells to spread out and reduce the injection induced pressure distribution.  For example, a total injection 

rate of 40 kg/s may be achieved by one well injecting at 40 kg/s or by two each injecting at 20 kg/s.  This 

finding suggests that the leakage penalty savings from diversifying the injection well field are greater in 

certain cases than the additional CO&M costs incurred from installing, operating, and maintaining more 

injection wells. 

 

Passive well uncertainty scenario selection, also having a low percentage (75.5%) of injection strategy 

selections remaining constant, is found to significant affect injection strategy selection (see fourth to sixth 

columns of Table 3.8).  The total number of candidate well location selections is found to increase from 

92 for uncertainty scenario U1 to 100 for the more expensive uncertainty scenario U2, further validating 

the trend found when studying risk adversity.  Also, greater estimated CO2 leakage, as in the case of 

uncertainty scenarios U2 and U3, is clearly observed to drive candidate injection well location selections 
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further southwest.  The likelihood of selecting the three furthest southwest candidate locations (i.e. 

locational indices 1, 2, and 5) increases from 83.7% in cases assigned uncertainty scenario U1 to 99.0% in 

cases assigned either uncertainty scenario U2 or U3. 

 

While stochastic non-exceedance cost probability, z, is found to have the highest percentage (87.9%) of 

injection strategy selections remaining constant and, therefore, has the least effect on injection strategy 

selection, trends are still observed when examining results shown in the seventh and eighth columns of 

Table 3.8.  As with uncertainty scenario selection, increases in estimated CO2 leakage (e.g. increasing z 

from 50% to 95%) are also found to drive candidate injection well location selections further southwest 

when studying the stochastic non-exceedance cost probability.  The likelihood of selecting candidate 

locations 1, 2, and 5 increased from 89.7% in cases assigned z = 50% to 98.6% in cases assigned z = 95%. 

 

4.2.3 GCS Suitability Assessment for the MB test site 

The final decision of whether or not to proceed with GCS project planning will be made by the DM.  This 

choice will ultimately be made by assessing a large number of political and financial indicators. However, 

the preliminary stochastic cost assessment presented above suggests that GCS feasibility at the MB test 

site is highly dependent upon the DM’s risk adversity preference.  Figure 3.6 shows that all three 

uncertainty scenarios produce feasible project cost results if the DM selects rA = 1.0, although a U3 

uncertainty scenario is predicted to be about twice as expensive as the U1 uncertainty scenario due to its 

higher CO2 leakage cost penalties from a greater percentage of degraded passive well segments.  If the 

DM decides to select rA = 1.2, U1 is the only uncertainty scenario providing feasible project cost results 

due to high CO2 leakage costs resulting from the exponential leakage cost term, rA. 

 



88 

 

4.3 Computational Efficiency 

It is interesting to note that the complete enumeration of this problem when using NMC = 400 would 

require 17,817,600 simulation calls: 

𝑁𝑀𝐶 ∙ 𝑁𝑖𝑟
𝑀𝑚𝑎𝑥 ∙ ∑ (

𝑁𝑐𝑙
𝑖
)

𝑀𝑚𝑎𝑥

𝑖=1

= 400 ∙ 43 ∙ [
16!

1! ∙ 15!
+

16!

2! ∙ 14!
+

16!

3! ∙ 13!
] = 17,817,600 (28)  

 

Assuming that a numerical model would require two hours per simulation, the CPU time required to 

sequentially process 17,817,600 CO2 leakage evaluations without archiving would be approximately 

4,068 years.  However, a semi-analytical algorithm and an NSGA-II optimization approach is used for 

this problem.  For the NSGA-II optimization parameters provided in Table 3.5, each optimization run 

requires either 1,000,000 or 2,000,000 simulation model calls, Nct, to estimate CO2 leakage without 

archiving, depending if NMC = 200 or 400, respectively (e.g. Nct = NMC∙Npop∙Ngens = 400∙25∙200 = 

2,000,000).  Assuming that each semi-analytical simulation requires 1 second, the CPU time required to 

sequentially process 2 million CO2 leakage evaluations without archiving would be 23.2 days.  The 

computational time required for this problem may also be reduced using parallel processing and 

archiving.  For example, if 25 computer processor cores are available, setting the number of parallel 

processes to Npop will reduce this theoretical simulation evaluation time by 96% to 0.93 days.  The actual 

CPU time required for a single optimization run with NMC = 400, Npop = 25, and Ngens = 200 using 12 

processor cores and employing both parallel processing and simulation archiving is approximately 1.04 

days, or about six orders of magnitude less than the theoretical time required for the complete 

enumeration of this problem using a numerical model.  

 

5 Conclusions 

A stochastic methodology for determining optimal GCS injection strategies has been presented, where a 

semi-analytical CO2 leakage algorithm and a Monte Carlo procedure were integrated into a NSGA-II with 

-dominance.  In an effort to show the applicability of this method to real world potential injection sites, 
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the stochastic optimization framework has been used to assess a hypothetical GCS project at a MB test 

site in northern Michigan, USA.  The following three goals were investigated regarding the stochastic 

optimization of the MB site: 1) quantify the impact of DM preferences on heuristically determined 

Pareto-optimal objective values (i.e. mass sequestered and project cost); 2) quantify the impact of DM 

preferences on carbon injection strategy (i.e. the selection of injection well flow rate and location), and; 3) 

assess the suitability of the MB test site for GCS.  This was accomplished by analyzing twelve MB test 

site stochastic optimization cases having differing DM preferences.  DM preferences were varied as 

follows: the risk adversity factor, rA, was set to either 1.0 or 1.2 while the stochastic non-exceedance cost 

probability, z, was set to either 50% or 95% for each of three possible passive well uncertainty scenarios 

(i.e. U1 where any passive well had a 90% probability of being assigned as intact, U2 where any passive 

well had a 50% probability of being assigned as intact, and U3 where any passive well had a 10% 

probability of being assigned as intact). 

 

The choice of fracture gradient was found to significantly impact optimization results, with only 30.3% of 

the total tradeoff solutions remaining valid when assuming a 14.2 kPa/m (as opposed to 20.0 kPa/m) 

fracture gradient.  Also, DM risk adversity preference, rA was found to have a profound effect on project 

cost when the estimated mass of CO2 leakage was high.  While all optimization cases assigned a U1 

uncertainty scenario exhibited very little CO2 leakage, substantial CO2 leakage masses were estimated for 

test cases assigned U2 and U3 uncertainty scenarios, resulting in very large leakage costs when rA = 1.2.  

Uncertainty scenarios having greater percentages of intact well segments were found to exhibit less CO2 

leakage.  All optimization cases assigned a U1 uncertainty scenario exhibited fairly negligible CO2 

leakage costs, as their minimized total project costs were found to be very similar to CO&M costs.  Cases 

assigned U3 uncertainty scenarios were found to have much more leakage cost than corresponding cases 

assigned U2 uncertainty scenarios especially when rA = 1.2.  The choice of stochastic non-exceedance 

cost probability, z, had only a minor impact on resulting Pareto-optimal objective function values, thus 

indicating that Cost vectors were typically relatively uniform.  
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The southwest corner of the candidate injection well field was heavily favored by the optimization 

algorithm, regardless of parameter choice, with 94.2% of all injection well placements being made at the 

three furthest southwest candidate locations.  DM risk adversity was found to have the greatest effect on 

injection strategy selection.  Increasing rA from 1.0 to 1.2 was found to increase the total number of 

candidate well location selections from 138 to 154.  This finding suggests that the leakage penalty savings 

from diversifying the injection well field were greater in certain cases than the additional project costs 

incurred from installing, operating, and maintaining more injection wells.  Passive well uncertainty 

scenario selection was also found to significant affect injection strategy selection where greater estimated 

CO2 leakage, as in the case of uncertainty scenarios U2 and U3, was clearly observed to drive candidate 

injection well location selections further southwest.   Stochastic non-exceedance cost probability, z, was 

estimated to have the least effect on injection strategy selection.  However, as with uncertainty scenario 

selection, increases in estimated CO2 leakage from a greater values of z were found to drive candidate 

injection well location selections further southwest.   

 

This work also discussed large gains in computational efficiency using semi-analytical modeling, NSGA-

II optimization, parallel computing, and simulation archiving.  The actual CPU time required for a single 

optimization run with NMC = 400, Npop = 25, and Ngens = 200 using 12 processor cores and employing both 

parallel processing and simulation archiving was approximately 1.04 days, or about six orders of 

magnitude less than the theoretical time required for the complete enumeration of this problem using a 

numerical model.  In addition, further gains in computational efficiency may also be obtained by 

processing each trial injection strategy’s MC ensemble in parallel using large processing core clusters.  

This may lead to the ability to use a more computational expensive, thus more accurate, leakage 

algorithm, increase the number of model calls per optimization run, or process greater quantities of 

potential injection sites. 
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The final decision of whether or not to proceed with GCS project planning within the MB will be made 

by the decision maker (DM).  While this choice should ultimately be made by assessing a large number of 

political and financial indicators, the preliminary stochastic cost assessment presented herein suggested 

that GCS feasibility at the MB test site is highly dependent on the DM’s risk adversity preference.  All 

three uncertainty scenarios produce feasible project cost results if the DM selects rA = 1.0, while U1 was 

the only uncertainty scenario providing feasible project cost results when selecting rA = 1.2 due to high 

CO2 leakage costs resulting from this exponential leakage cost term. 

 

Because of the large set of assumptions made by the semi-analytical CO2 leakage algorithm, this 

framework may only be used for initial site planning and characterization.  After ‘coarse scale’ project 

planning has been completed using this stochastic optimization framework, more rigorous, although 

slower, numerical models should be used for final project development of individual potential injection 

sites.  However, this tool has potential for initial carbon sequestration project planning and performing 

initial screening and ranking of large sets of potential carbon sequestration sites.   
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CHAPTER IV: PERFORMANCE COMPARISON BETWEEN A MULTI-OBJECTIVE 

GRAVITATIONAL SEARCH ALGORITHM AND NSGA-II FOR INJECTION STRATEGY 

OPTIMIZATION OF GEOLOGICAL CO2 SEQUESTRATION 

 

Summary Geological carbon sequestration (GCS) has been proposed as a technology to mitigate CO2 emissions 

from fossil fuels while cleaner, more sustainable energy production methods are developed.  However, the global 

trend of increasing atmospheric concentrations of carbon dioxide (CO2) will only be addressed through large scale, 

international efforts.  Hence, it is important to select the most efficient optimization algorithm available to address 

the immense scale of the GCS problem.  This work presents a performance comparison between a recently proposed 

multi-objective gravitational search algorithm (MOGSA) and the well-established fast non-dominated sorting 

genetic algorithm (NSGA-II) for the optimization of GCS.  Both techniques are used to heuristically determine 

Pareto-optimal solutions by minimizing project cost and maximizing mass of CO2 sequestered for nine test cases in 

the Michigan Basin (MB).  Two performance measures are explored for each algorithm, including 1) objective 

solution diversity and 2) objective solution convergence rate.  Substantially faster convergence rates by the MOGSA 

were observed early in the majority of test optimization runs, while the NSGA-II was found to provide a better 

search of objective function space as well as lower average project cost per unit mass sequestered solutions. 

 

1 Introduction 

The global trend of increasing atmospheric concentrations of carbon dioxide (CO2) will only be addressed 

through large scale, international efforts [34,38].  Geological carbon sequestration (GCS) has been 

proposed as a technology to mitigate CO2 emissions from fossil fuels while cleaner, more sustainable 

energy production methods are developed.   With total annual global anthropogenic carbon emissions 

measured in mass of CO2 at approximately 30,000 million tonnes (Mt) in 2008 [34], the success of GCS 

will be dependent upon the scale at which it is applied.  Hence, it is important to select an efficient 

optimization algorithm to sufficiently address the immense scale of the GCS problem. 
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In multi-objective problems, a Pareto-optimal, or non-dominated, solution outperforms all other solutions 

with respect to all objectives [41].  Multi-objective evolutionary algorithms (MOEAs) have been shown 

to effectively find optimal or close-to-optimal Pareto-optimal solution sets for a large number of 

subsurface flow applications possessing several decision variables 

[1,2,6,21,27,31,33,39,42,44,45,46,47,50].  Reference [41] presents a comprehensive review of state-of-

the-art MOEAs highlighting key algorithm advances, which may be used to identify critical tradeoffs in 

water resources problems.   

 

A stochastic optimization method using a fast non-dominated sorting genetic algorithm (NSGA-II) for the 

purposes of preliminary GCS site assessment has been presented by [10] where mass of CO2 sequestered 

is maximized while project cost is minimized by selecting optimal injection well locations and injection 

rates.  The NSGA-II [12] with -dominance [28] was selected as the computational optimization tool in 

[10] because it was found by [7] to be among the best performing multi-objective optimization 

evolutionary algorithms.  While the current literature does not contain any other examples of NSGA-II 

being used for GCS optimization, a large amount of research has been performed using the NSGA-II to 

assist water resources management.  The optimization of conjunctive management of surface and 

groundwater resources using both a NSGA-II and sequential genetic algorithms (SGA) was performed by 

[47] where the NSGA-II was found to considerably reduce the computational burden in comparison to the 

SGA.  Also, [19] used an NSGA-II for a multi-objective cost analysis for the removal of VOCs from 

water by pervaporation.  Finally, uncertainty analysis of water supply networks was studied by [20] where 

the NSGA-II was found to improve the process of network fuzzy analysis. 

 

Reference [40] recently proposed a novel heuristic optimization method, namely the gravitational search 

algorithm (GSA), inspired by Newtonian laws of gravity.  Reference [40] also compared the GSA to 

particle swarm optimization (PSO), a real genetic algorithm (RGA), and central force optimization 

(CFO), finding that the GSA provided superior results in most cases and comparable results in all other 
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cases.  While the GSA has not been applied to subsurface optimization problems, it has been applied to a 

number of non-linear engineering applications, with several studies reporting favorable results when 

comparing the GSA to other heuristic search algorithms.  Reference [4] found the GSA to exhibit better 

performance in terms of final fitness values and computational efficiency when compared against a 

modified PSO algorithm to minimize sidelobe levels in concentric ring array antenna design.  Reference 

[30] studied parameter identification of a hydraulic turbine governing system finding their improved GSA 

to be more accurate and efficient than both genetic and particle swarm algorithms.  References [14] and 

[15] used the GSA to solve large scale electrical power control problems while a slope stability analysis 

was performed using a modified GSA by [26]. 

 

In addition, several versions of multi-objective GSAs (MOGSA) have been presented.  Reference [22] 

proposed and compared a MOGSA with a multi-objective genetic algorithm (MOGA), Pareto-archived 

evolution strategy (PAES), and multi-objective particle swarm optimization (MOPSO) finding the 

MOGSA to outperform all the other methods.  A MOGSA has also been proposed and tested by [43] and 

was found to outperform almost 20 other heuristic algorithms when optimizing a routing and wavelength 

assignment problem. 

 

This work compares the performance of the NSGA-II to the MOGSA using a deterministic version of the 

GCS optimization framework presented by [10].  We begin with an explanation of the multi-objective 

GCS problem followed by a description of the methodology of the optimization framework, including an 

overview of the semi-analytical CO2 leakage algorithm, NSGA-II, and MOGSA.  Next, a characterization 

of the Michigan Basin (MB) test site and the formulation of nine hypothetical GCS test cases are 

described.  Finally, we compare performance results for each algorithm and conclude with a discussion of 

advantages and limitations of each heuristic optimization method. 
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2 Methodology 

The GCS injection strategy optimization framework is an assembly of an optimization algorithm (i.e. 

either an NSGA-II or MOGSA) linked to a semi-analytical CO2 leakage algorithm.  New sets of trial 

injection strategies are generated by either the NSGA-II or MOGSA to heuristically determine Pareto-

optimal solutions between two competing objectives where both optimization algorithms call on the semi-

analytical CO2 leakage algorithm to quantify CO2 leakage mass for each trial injection strategy during the 

ranking process.   

 

2.1 Semi-Analytical CO2 Leakage Estimation 

A modified version of the Estimating Leakage Semi-Analytically (ELSA) Algorithm [5,9,37] is chosen to 

estimate the mass of CO2 leakage resulting from each injection strategy since it is the only semi-analytical 

model able to simulate multiphase flow in domains having multiple layers, injection wells, and weak 

caprock areas (i.e. passive wells).  Figure 4.1 shows a schematic of the semi-analytical leakage model’s 

computational domain.  The subsurface domain is structured as a horizontal stack of aquifer/aquitard 

layers perforated by injection and passive wells.  Users of this algorithm are able to specify the number 

and spatial location of injection wells, passive wells, and aquifer/aquitard layers.   Passive wells are the 

only pathways for fluid flux between aquifer layers and are represented by cylindrical portions of the 

aquitard layers having non-negligible permeability values.  

 

This CO2 leakage simulator is highly efficient, capable of simulating 50 years of CO2 injection into a 

domain having 100 passive wells and 4 aquifer layers in less than 1 second on a standard laptop.  

However, several assumptions must be made to achieve this level of computational efficiency.  Aquifers 

are assumed to be horizontally level, homogenous, and isotropic.  Aquitards are assumed to be 

impermeable, except where perforated by passive wells.  Injection wells are able to inject into any layer.   
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Figure 4.1. Schematic of the semi-analytical leakage model’s computational domain from [10] 

 

Initially, fluid is not flowing through any of the passive wells because the entire domain is assumed to be 

saturated with brine at hydrostatic pressure.  Additional assumptions made by this model include: 1) 

Aquifers exhibit horizontal flow; 2) Capillary pressure is negligible resulting in a sharp fluid interface; 3) 

CO2 plume thickness at any given location is assumed to be the maximum plume thickness from all 

sources and sinks in the aquifer; 4) Pressure response from sources and sinks are superimposed in each 

aquifer; and 5) the injectivity of the formation remains constant.  The radial pressure response p [ML-1T-2] 

at the bottom of the aquifer where a single well injects CO2 is expressed as [5]: 

 

𝑝 = 𝑝0 + (𝜌𝑏 − 𝜌𝑐) ∙ 𝑔 ∙ 𝐻 ∙ ∆𝑝
′ (1)  

 

where p0 is the initial fluid pressures at the bottom of the aquifer, 𝜌𝛼 is fluid density [ML-3] (𝛼denotes the 

phase type, 𝑏 for brine and 𝑐 for CO2), 𝑔 is gravitational acceleration [LT-2] and 𝐻 is aquifer thickness [T] 

and ∆𝑝′ (/) is defined by: 
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  −
1

2Γ
ln (

𝜒

𝜓
) + ∆𝑝′(𝜓)                                                  for 𝜓 > 𝜒 ≥ 2𝜆  

   
1

Γ
−

√𝜒

Γ√2𝜆
+ ∆𝑝′(2𝜆) + 𝐹(ℎ′)                                 for 2𝜆 > 𝜒 ≥

2

𝜆

−
1

2𝜆Γ
ln (

𝜒𝜆

2
) + ∆𝑝′ (

2

𝜆
)                                              for 

2

𝜆
> 𝜒           

 (2)  

 

where, 
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𝑟𝑒𝑠)𝑟2

𝑄 ∙ 𝑡
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−𝜆

𝜆 − 1
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𝑙𝑛[(𝜆 − 1)ℎ′ + 1]

𝜆 − 1
] (7)  

 

where B is aquitard thickness [/]; h is CO2 plume thickness [L]; h’ [/] is the CO2 plume thickness relative 

to the aquifer thickness H; 𝑆𝑏
𝑟𝑒𝑠 is the residual saturation of the brine [/]; t is time [T]; k is the aquifer 

permeability [L2];  is the dynamic viscosity [ML-1T-1]; is the aquifer porosity [/]; Q is the total 

volumetric well flux [L3T-1]; ceff is the effective compressibility of the fluid and solid matrix [M-1LT2]; 

and r is the radial distance [L]. Also, F(h’) is an offset term related to the vertical pressure distribution [5] 
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and the mobility ratio is defined as  = c/b, where  = kr,/ and kr, is the relative permeability of 

phase  ( = b for brine or  = c for CO2). 

 

Superposition is applied to determine the fluid overpressure throughout the aquifer system resulting in the 

following definition of fluid pressure at any given time t, at the bottom of the generic aquifer l (l=1,2,..,L) 

and for each passive well j (j=1,2,..,N): 

 

𝑝𝑗,𝑙 = 𝑝0𝑙 + (𝜌𝑏 − 𝜌𝑐) ∙ 𝑔 ∙ 𝐻𝑙 ∙ [∑ ∆𝑝′(𝜒𝑖𝑤,𝑗,𝑙)

𝑀

𝑖𝑤=1

+∑∆𝑝′(𝜒𝑖,𝑗,𝑙)

𝑁

𝑖=1

] (8)  

 

where 𝜒𝑖𝑤,𝑗,𝑙 = 2𝜋𝐻𝑙𝜙𝑙(1 − 𝑆𝑏,𝑙
𝑟𝑒𝑠)𝑟𝑖𝑤,𝑗

2 (𝑄𝑖𝑤,𝑙 ∙ 𝑡)⁄  and 𝜒𝑖,𝑗,𝑙 =

2𝜋𝐻𝑙𝜙𝑙(1 − 𝑆𝑏,𝑙
𝑟𝑒𝑠)𝑟𝑖,𝑗

2 ∫ (𝑄𝑗,𝑙−𝑄𝑗,𝑙+1) ∙ 𝑑𝜏
𝑡

𝑜
⁄ .  A vector, 𝐩, of the fluid pressures at the bottom of each 

aquifer with size N×L may then be assembled: 

 

𝐩(t) = 𝐩[𝐏𝟏,𝐌(t)] (9)  

 

Also, 𝐩(t) is a function of the array: 

 

𝐏1 ≡ [𝐇,𝛟, 𝐤, 𝑺𝑏
𝑟𝑒𝑠, 𝐫 , 𝐐𝑖𝑤 , 𝜌𝑐 , 𝜌𝑏 , 𝑔, 𝜆, 𝜋, 𝜇𝑏 , 𝑐𝑒𝑓𝑓] (10)  

 

where, the L×1 vectors H, 𝛟, 𝑺𝑏
𝑟𝑒𝑠 and k include the thicknesses, porosities, brine residual saturations and 

permeabilities of all aquifers; 𝐐𝑖𝑤 is M×L vector including the CO2 inflow rates for each aquifer l 

(l=1,2,..,L) for injection well iw (iw=1,2,..,M); and the (M+N)×(M+N) r matrix includes the relative 
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distances between injection and passive wells.  The generic component of the N×L vector 𝐌(t) is net 

cumulative fluid mass transferred into aquifer l through passive well j,  𝑀𝑗,𝑙(𝑡) and is defined as: 

 

𝑀𝑗,𝑙(𝑡) = ∫ 𝜌𝑒𝑓𝑓,𝑗,𝑙(𝜏) ∙ [𝑄𝑗,𝑙(𝜏) − 𝑄𝑗,𝑙+1(𝜏)] ∙ 𝑑𝜏
𝑡

0

 (11)  

 

In Equation (11), 𝜌𝑒𝑓𝑓,𝑗,𝑙(𝜏) is the effective fluid density in aquifer 𝑙, at passive well 𝑗 and effective fluid 

density is estimated as 𝜌𝑒𝑓𝑓,𝑗,𝑙 = 𝜌𝑐 ∙ 𝑆𝑐𝑗,𝑙 + 𝜌𝑏 ∙ (1 − 𝑆𝑐𝑗,𝑙).  The temporal evolution of leakage rates 

through passive wells 𝑄𝑗,𝑙, is then calculated using the multiphase version of Darcy’s law across each 

confining layer l for each passive well j: 

 

𝑄𝑗,𝑙 = ∑ [𝜋𝑟𝑝𝑤
2
𝑗,𝑙

𝑘𝑟,𝛼𝑗,𝑙𝑘𝑝𝑤𝑗,𝑙

𝜇𝛼𝐵𝑙
(𝑝𝑗,𝑙−1 − 𝜌𝛼𝑔𝐵𝑙 − 𝑔𝜌𝛼𝐻𝑙−1 − 𝑝𝑗,𝑙)]

𝛼=𝑏,𝑐

 (12)  

 

where, 𝑟𝑝𝑤𝑗,𝑙 is the passive well radius and 𝑘𝑝𝑤𝑗,𝑙 is the single phase passive well permeability for passive 

well j (j=1,2,..,N) and aquitard layer l.  The N×L vector 𝐐 contains flow rates across each aquitard l 

(l=1,2,..,L) for each passive well j (j=1,2,..,N): 

 

𝐐(t) = 𝐐[𝐏𝟐, 𝐩(t)] (13)  

 

where: 

𝐏2 ≡ [𝐁,𝐇, 𝐫𝑝𝑤 , 𝐤𝑝𝑤, 𝐤𝑟,𝑐 , 𝐤𝑟,𝑏 , 𝜌𝑐 , 𝜌𝑏 , 𝜇𝑐 , 𝜇𝑏 , 𝑔] (14)  
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The (L+1)×1 vector 𝐁 includes the aquitard thicknesses, the N×(L+1) matrices 𝐫𝑝𝑤 and 𝐤𝑝𝑤 contain the 

passive well radii and permeabilities, and the N×(L+1) matrices 𝐤𝑟,𝑐  and 𝐤𝑟,𝑏 include the relative 

permeabilities of CO2 and brine at passive wells.  A set of N∙L non-linear equations in N∙L unknowns is 

obtained by combining Equations (9) and (13) are combined and solved to determine fluid pressures at the 

bottom of each aquifer and at each passive well (Equation 8).  Fluid pressures are then used to estimate 

flow rates (Equation 12) across each aquitard for each passive well. 

 

Also, as in [10], this work has chosen to neglect effects from upconing and apply the IGPS modification 

from [9] to further increase computational efficiency.  Several assumptions made by this algorithm are 

important [8,11,13,17,18,23,25] and should be included [3,16,24,36] when accurate is more important 

that efficiency (e.g. final project design).  Additional information regarding the implementation of the 

leakage model, as well as modifications made to the original work presented by [5,35,37], are discussed 

in detail in [9]. 

 

2.2 Multi-objective GCS Problem 

The multi-objective GCS problem presented in this section is a deterministic version of the problem set 

forth by [10].  The goal herein is to determine the Pareto-optimal set of injection scenarios which 

minimize the project cost, C, while maximizing the mass of CO2 injected, Massinj. 

 

min{𝐶(𝐱, 𝐐, 𝐬)}       

max{𝑀𝑎𝑠𝑠𝑖𝑛𝑗(𝐐)}  
(15)  

 

In Equation (15), spatial position, x, and flow rate, Q, are the two decision variables comprising each 

injection strategy and s is the set of state variables (i.e. aquifer fluid pressures at injection wells and 

passive well flow rates) dependent on each simulation’s injection strategy and parameter set.   
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Several components comprise the cost, C, associated with each trial injection strategy, including the 

summation of each injection well’s (iw) capital cost, Cap, operational cost, OP, surface maintenance cost, 

SurM, subsurface maintenance cost, SubM, and variable cost, Var, added to the cost associated with CO2 

leakage, LC: 

 

𝐶(𝐐,𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘) = ∑ [𝐶𝑎𝑝𝑖𝑤 + 𝑂𝑃𝑖𝑤(𝑡𝑖𝑛𝑗) + 𝑆𝑢𝑟𝑀𝑖𝑤(𝑡𝑖𝑛𝑗) + 𝑆𝑢𝑏𝑀𝑖𝑤(𝑡𝑖𝑛𝑗)

𝑀

𝑖𝑤=1

+ 𝑉𝑎𝑟𝑖𝑤(𝑄𝑖𝑤 , 𝑡𝑖𝑛𝑗)] + 𝐿𝐶[𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬)] 

(16)  

 

In the following analyses LC is estimated as: 

 

𝐿𝐶[𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬)] = 𝑐𝐿 ∙ 𝑀𝑎𝑠𝑠𝑙𝑒𝑎𝑘(𝐐, 𝐬)
𝑟𝐴  (17)  

 

where, cL is a coefficient representing penalty cost per unit of CO2 leakage ($/kg) and rA is a risk adversity 

factor reflecting the adversity of the DM to injection strategies that cause leakage.  The effect of this 

coefficient is to significantly increase LC in relation to the mass of CO2 leakage.  The mass of CO2 

leakage (kg), Massleak, associated with each trial injection strategy is quantified numerically using the 

semi-analytical leakage algorithm Equation (11) as the mass of CO2 that has escaped into the top layer by 

the end of simulation. 

 

Massinj is the total mass of CO2 injected into the domain at the end of the injection duration, tinj, is 

calculated as: 

 

𝑀𝑎𝑠𝑠𝑖𝑛𝑗 = ∑ 𝑄𝑐𝑖𝑤 ∗ 𝑡𝑖𝑛𝑗

𝑀

𝑖𝑤=1

 (18)  
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where M is the number of injection wells, and 𝑄𝑐𝑖𝑤  is the CO2 mass injection rate for injection well iw.  

The fluid pressure at each injection well in each layer, piw,l, must remain less than each layer’s fracture 

pressure, 𝑝𝑓𝑟𝑎𝑐𝑙.  

 

𝑝𝑖,𝑙(𝐐, 𝐬) < 𝑝𝑓𝑟𝑎𝑐𝑙  ;  𝑖 = 1, 2, . . , 𝑀; 𝑙 = 1, 2, . . , 𝐿 (19)  

 

where, 𝑝𝑓𝑟𝑎𝑐𝑙 is calculated by multiplying a specified fracture gradient [5] by layer depth and pi,l is 

estimated for each injection well i at the end of the injection duration at a small effective distance (e.g. the 

borehole radius) from the injection location using Equation (8).  In addition, the number of injection wells 

is limited to a maximum integer value, Mmax:  

 

0 ≤ 𝑀 ≤ 𝑀𝑚𝑎𝑥 (20)  

 

Also, the prescribed areal extent selected for the construction of GCS faculties will limit the minimum 

and maximum spatial bounds of candidate injection wells: 

 

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖𝑤 ≤ 𝑥𝑚𝑎𝑥 ;  𝑦𝑚𝑖𝑛 ≤ 𝑦𝑖𝑤 ≤ 𝑦𝑚𝑎𝑥 ;  𝑖𝑤 = 1, 2, . . , 𝑀 (21)  

 

 Finally, each injection well’s flow rate must be between prescribed minimum and maximum flow rates 

Qmin and Qmax: 

 

𝑄𝑚𝑖𝑛 ≤ 𝑄𝑖𝑤 ≤ 𝑄𝑚𝑎𝑥 ;  𝑖𝑤 = 1, 2, . . , 𝑀 (22)  
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In Equation (22), Qmin and Qmax represent physical constraints related to the technical capacity of injection 

pumps and wells.   

 

2.3 Multi-objective GCS Optimization using the NSGA-II with -dominance 

The NSGA-II is implemented in the same manner as in [10].  Trial injection strategies are encoded into a 

unique sequence (i.e. “chromosome”) of binary numbers representing the values of each decision 

variable, where the first part of the chromosome contains spatial location information represented by Ncl 

predefined candidate injection well location indices for each of the Mmax injection wells.  This intrinsically 

satisfies the locational constraint defined by Equation (21) because each candidate injection well location 

is previously defined within minimum and maximum spatial bounds.  The last segment of the 

chromosome represents the injection rate index of each well.  There are Nir injection rate indices to 

represent prescribed discrete flow rate values within the constraints of Equation (22).   

 

The number of digits required to identify each injection well’s location is a function of the number of 

candidate locations, Ncl.  As an example, if Ncl = 16 for a potential GCS site, the locational information of 

each injection well for each injection strategy would require four binary digits (i.e. ‘0000’ = 1, ‘0001’ = 2, 

… , ’1111’=16).  In this case, the spatial data component of the chromosome has a length of M∙4.  The 

number of digits required to represent each well’s injection rate is a function of the number of injection 

rate indices, Nir.  If injection rate index values of 0, 1, 2, and 3 represent injection rates of 0, 20, 30, and 

40 kg/s, respectively (Nir = 4), two binary digits would be used to encode each well’s injection index (‘00’ 

= 0, ‘01’ = 1, … , ’11’=3) bringing the total chromosome length to M∙4 + M∙2.  

 

Figure 4.2 shows a schematic of the NSGA-II’s procedure.  An initial population of Npop trial injection 

scenarios, each typically having unique spatial location and injection rate data, is randomly generated 

after first reading domain characteristics and algorithm parameters.  Next, objective function values are 
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calculated for each population member in step (b) by first using the semi-analytical leakage algorithm 

described in Section 2.1 to estimate Massleak for each population member in step (c) then using Equations 

(16) and (18) to calculate objective values C and Massinj, respectively.  The semi-analytical algorithm is 

also used to check if the fracture pressure defined by Equation (19) is exceeded.  If the fracture pressure 

constraint is violated the injection strategy is deemed infeasible.  Finally, simulation archiving is used to 

prevent the NSGA-II from recalculating objective values for identical scenarios by keeping a record of 

simulation results. 

 

 

Figure 4.2. Schematic of the NSGA-II optimization algorithm 

 

After this, a partial order is established using crowding comparison operator, ≥n [15] where population 

member i outperforms member j if the following conditions are met: 

  

𝑖 ≥𝑛  𝑗   IF {(𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘) OR ((𝑖𝑟𝑎𝑛𝑘 = 𝑗𝑟𝑎𝑛𝑘) AND (𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒))} (23)  
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where population members are ranked (irank) as the number of solutions dominating population member i 

using the fast-nondominated sorting procedure from [15] and assigned a crowding distance (idistance) as the 

largest cuboid in objective space enclosing the point i without including any other point in the population 

[15].  In addition, NSGA-II’s ranking procedure is improved with concept of -dominance [28] by 

allowing for the inclusion of additional, well-performing population members to each rank’s Pareto-

optimal front.  For example, if population members p1 and p2 have fitness values of f1 and f2, respectively, 

using -dominance, p1 is allowed to dominate p2 if (1+)∙f1 is greater than or equal to f2.   

 

A subset, Tsize, of population members is selected randomly and, through an iterative tournament-style 

selection process, are used to choose parents for the next generation.  The population member with 

highest partial order out of this subset using Equation (23) is chosen as a parent.  Following the selection 

of Npop parents, a crossover operator is used to create a new generation of population members in step (f) 

until the new population is filled.  During each crossover operation, components of chromosomes from 

two randomly selected parents are used to build a new trial injection strategy.  In step (g), there is a 

chance, quantified as the mutation rate, Mrate, in which chromosome elements of this new population will 

be randomly altered.  Steps (b-g) are repeated until the maximum prescribed number of generations, Ngens, 

is reached.  This work uses NSGA-II parameter values found by the convergence analysis in [10].  Table 

4.1 lists the parameter values used for the NSGA-II. 

 

Table 4.1. NSGA-II parameter values 

Npop Mrate Tsize  Ngens 

25 1.6% 2 0.001 200 

 

2.4 Multi-objective GCS Optimization using the Gravitational Search Algorithm 

When applying a MOGSA, the decision space is encoded into a set of vectors containing the injection 

well location and flow rate values for each search agent (i.e. population member).  The first and second 
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sets of Mmax values in each vector contain X and Y horizontal injection well positions, respectively, while 

the third set of Mmax values contain each injection well’s flow rate.  The number of values, hence the 

number of dimensions, in each vector is 3∙Mmax.  All values within each vector are normalized as real 

numbers ranging between 0 and 1 where 0 represents the minimum injection rate (Qmin) or locational (xmin, 

ymin) constraint value and 1 represents the maximum injection rate (Qmax) or locational (xmax, ymax) 

constraint value. 

 

Due to the bi-objective nature of this problem, the MOGSA proposed and tested by [43] is used to 

generate new injection strategy populations.  This MOGSA’s general procedure is presented below in 

Figure 4.3.  Once input files containing domain characteristics and algorithm parameters are read, an 

initial population of Npop trial injection scenarios, including the spatial location and flux rate for each 

injection well, is randomly generated.  In step (b), objective function values are calculated for each 

population member.  The semi-analytical leakage algorithm described in Section 2.1 is used to estimate 

Massleak for each of these realizations in step (c) then objective values C and Massinj are calculated using 

Equations (16) and (18).  Once again, simulation archiving is used to keep a record of simulation results, 

therefore preventing the MOGSA from recalculating objective values for identical scenarios and if the 

fracture pressure defined by Equation (19) is exceeded the injection strategy is deemed infeasible.  

 

In step (d), fitness values, fiti, are assigned to each search agent i using: 

 

𝑓𝑖𝑡𝑖(𝑘) = (𝑖𝑟𝑎𝑛𝑘 +
1

1 + 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)
−1

 (24)  

 

where k is the generation iteration index and irank and idistance are defined in Section 2.3.  Here, better 

performing search agents are assigned lower fitness values.  Because irank must be an integer and both irank 
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Figure 4.3. Schematic of the MOGSA optimization algorithm 

 

and idistance must be greater than or equal to zero, significant preference is given to ranking versus 

crowding distance in Equation (24).  Next, in step (e) a gravitational constant used for determining each 

search agent’s acceleration in decision space, G(k), is updated as: 

 

𝐺(𝑘) = 𝐺0𝑒
−𝛼

𝑘
𝑁𝑔𝑒𝑛 

(25)  

 

where G0 is an initial gravitational constant value,  is a reduction factor, and Ngen is the total number of 

generations.  In addition, fitbest(k) and fitworst(k) are assigned as the best and worst fitness values for the 

current population. 
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The MOGSA conceptualizes the search agent population as a collection of masses in the decision space.  

In step (f) the relative fitness of each search agent, qi, calculated as: 

 

𝑞𝑖(𝑘) =
𝑓𝑖𝑡𝑖(𝑘) − 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑘)

𝑓𝑖𝑡𝑏𝑒𝑠𝑡(𝑘) − 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑘)
 (26)  

 

Once relative fitness’s are calculated, the mass of each search agent, Mi, is assigned as: 

 

𝑀𝑖(𝑘) =
𝑞𝑖(𝑘)

∑ 𝑞𝑗(𝑘)
𝑁𝑝𝑜𝑝
𝑗=1

 (27)  

 

where, Npop is the number of search agents and is analogous to the NSGA-II’s population size variable.  In 

each dimension, d, new velocities, 𝑣𝑖
𝑑(𝑘), and positions, 𝑥𝑖

𝑑(𝑘), of each search agent i are determined at 

step (g) using both old velocities from the preceding iteration, 𝑣𝑖
𝑑(𝑘 − 1), and the cumulative 

acceleration, 𝑎𝑖
𝑑(𝑘), resulting from the gravitational forces induced by a number of the best performing 

search agents:  

 

𝑎𝑖
𝑑(𝑘) =

𝐹𝑖
𝑑(𝑘)

𝑀𝑖(𝑘)
= ∑ 𝑟𝑎𝑛𝑑𝑗

𝑑𝐺(𝑘)
𝑀𝑗(𝑘)

𝑅𝑖𝑗(𝑘 − 1) + 𝜉
(𝑥𝑗

𝑑(𝑘 − 1) − 𝑥𝑖
𝑑(𝑘 − 1))

𝑗∈𝑘𝑏𝑒𝑠𝑡,𝑗≠𝑖

 (28)  

 

𝑣𝑖
𝑑(𝑘) = 𝑟𝑎𝑛𝑑𝑖

𝑑 ∙ 𝑣𝑖
𝑑(𝑘 − 1) + 𝑎𝑖

𝑑(𝑘)∆𝑡 (29)  

 

𝑥𝑖
𝑑(𝑘) = 𝑥𝑖

𝑑(𝑘 − 1) + 𝑣𝑖
𝑑(𝑘)∆𝑡 (30)  

 

where, 𝐹𝑖
𝑑(𝑘) is the total gravitational force acting upon search agent i along dimension d, 𝑟𝑎𝑛𝑑𝑗

𝑑 and 

𝑟𝑎𝑛𝑑𝑖
𝑑 are uniform random numbers between 0 and 1, 𝑅𝑖𝑗(𝑘 − 1) is the Euclidian distance in decision 
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variable space between the two agents i and j,  is a very small number, and kbest is the set of K agents 

with the best fitness values in the current generation.  K decreases linearly to 1 in the final iteration.  

Finally, a mutation operation is applied at a rate of Mrate if the Pareto-front is determined to be stagnant at 

step (h).  New positions within the normalized decision space, 𝑥𝑖
𝑑(𝑘 + 1), are then converted back to the 

nearest discrete injection well locations and flow rates.  Steps b-h are repeated until the maximum 

prescribed number of generations, Ngens, is reached.   

 

The value of Mrate used by the MOGSA is identical that is used by the NSGA-II while Npop, Ngens, G0 and 

 are found through a trial and error analysis similar to the analysis used by [10].  Optimal parameter 

values are selected from a series of preliminary tests using an optimization problem having 50% degraded 

and 50% intact passive well segments.  First, a single measure is established to quantify the performance 

of each NSGA-II parameter value set where the average project cost per unit mass sequestered ($/kg) over 

all non-dominated solutions is assumed to represent the fitness of any given Pareto set.  Next, the true 

optimal Pareto set is found for the test optimization problem by performing three exhaustive evolutionary 

searches, each with 5,000 generations where each arrived at the same average project cost per unit mass 

sequestered.  Finally, the set of parameter values consistently requiring the least number of simulation 

calls to arrive within 0.1% of the minimal average project cost per unit mass sequestered found from 

exhaustive search are selected to be used by the stochastic optimization problem.  Table 4.2 provides the 

resulting MOGSA parameter values and maximum number of optimization generations. 

 

Table 4.2. MOGSA parameter values 

Npop Mrate G0  Ngens 

100 1.6% 2 0.001 50 
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2.5 Efficient Computational Implementation 

Due to the iterative nature of each optimization method, large numbers of model simulations are needed 

for each optimization run.  Without using simulation archiving, the total number of model calls, required 

for each optimization run will be equal to Npop∙Ngens.  However, this framework utilizes parallel computing 

and, as described in the previous two sections, simulation archiving to improve computational efficiency.  

CO2 leakage estimation calculations for each trial injection strategy are independent and therefore may be 

processed in parallel (i.e. simultaneously) rather than sequentially. 

 

3 Characterization of the MB test site 

Michigan Technological University’s data library provides detailed subsurface data for the Michigan 

Basin (MB) located near the town of Thompsonville in northwest Michigan.  A nearly depleted 

hydrocarbon reservoir exists between depths of approximately 4660 and 5000 feet (1420-1520 meters) 

and is overlain by multiple confining and saline aquifer layers.  Located between two exploration 

boreholes, Burch 1-20B and Stech 1-21A, this reservoir’s only production well, Merit 1-20A, was 

originally drilled in by the Shell Oil Company.  Figure 4.4 shows a cross-sectional schematic of the MB 

site.   

 

This work uses the site characterization methodology presented in [10] to conceptualize the simulation 

and optimization of GCS into the saline Grey Niagaran formation immediately below the hydrocarbon 

reservoir (highlighted orange in Figure 4.4).  Five derived aquitards and three interlaying aquifer layers in 

addition to the Grey Niagaran formation are used in the computational model (L = 4).  From Neutron 

Porosity Hydrogen Index (NPHI) data [48] gathered from the Burch 1-20B and Stech 1-21A boreholes 

caprock thicknesses are estimated to be 16.8, 18.3, and 109.1 m for layers 2, 3, and 4, respectively, while 

layers 1 and 5 are assumed to be completely impermeable even at passive well locations.  Table 4.3 shows 

aquifer permeability, thickness, and porosity values used in this study.   

 



116 

 

 

Figure 4.4. Cross-sectional schematic of the MB with the simulated injection layer highlighted orange (modified with 

permission from [49]) 

 

Table 4.3. Aquifer permeability, thickness, and porosity values used in this study 

Parameter Symbol 
Value for Aquifer Layer l 

Units 
l = 1 l = 2 l = 3 l = 4 

Permeability k 24 4.5 6.7 655 mD 

Thickness H 119.5 35.1 36.6 75.3 m 

Porosity  0.079 0.026 0.038 0.169 / 

 

As in [10], this work includes a small subset of the 65,560 producing and inactive oil and gas well records 

from the Michigan Department of Environmental Quality database [32].  Only the 131 passive wells (N = 

131) found within 4 km of the reservoir’s production well, Merit 1-20A, and intersect the 4 aquifer layers 

defined above are included in the computational domain. 
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Domain data characterized above are used to create a GCS test site in the MB.  Injection well locations 

may be selected from 16 (Ncl = 16) candidate locations uniformly distributed over a 4 km2 square grid 

where horizontal positions are relative to the Merit 1-20 production well with xmin = ymin = -1000 m and 

xmax = ymax = 1000 m where injection wells assumed to operate at a constant injection rate of either Q1 = 

Qmin = 0, Q2 = 20, Q3 = 30, or Q4 = Qmax = 40 kg/s (Nir = 4) over a 50-year duration (tinj = 50 yrs.), thereby 

satisfying Equation (22).  Table 4.4 lists additional hydrogeological and cost parameter [29] values used 

herein. 

 

Table 4.4. Hydro-geological and cost parameter symbols and values used herein 

Parameter Symbol Value Units 

Brine density b 1,045 kg/m3 

CO2 density c 479 kg/m3 

Brine viscosity b 2.94x10-4 Pa∙s 

CO2 viscosity c 3.95x10-5 Pa∙s 

Effective compressibility ceff 4.6x10-10 m2/N 

Brine residual saturation Sres 0.3 / 

Fracture Gradient - 20 kPa/m 

Capital Cost Cap 3,537,104 ($/well) 

Fixed O&M Costs OP 11,566 ($/day/well) 

Surface Maintenance Costs SurM 120,608 ($/yr/well) 

Subsurface Maintenance Costs SubM 37,612 ($/yr/well) 

Variable Costs Var 0.009 ($/kg of CO2) 

Penalty Cost Coefficient cL 0.6 ($/kg of CO2) 

Risk Adversity Factor rA 1.1 / 

 

This analysis does not include costs involved with site characterization, permitting, lease/purchase of 

land/pore space, financing, insurance, monitoring, verification, EPA financial bond requirement, post-

injection site care, and long-term liabilities though these may be significant in the final financial 

assessment [29].   
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4 Results and Discussion 

In this section a performance comparison is made between the MOGSA and the NSGA-II to determine 

the best algorithm for injection strategy optimization at potential GCS sites.   It is important that multi-

objective optimization algorithms perform the following: 1) fully explore the objective space providing 

diverse Pareto-optimal tradeoff sets and 2) find the best or close-to-best Pareto-optimal solutions with 

minimal computational expense.  Appropriate measures are applied herein to evaluate how well each 

algorithm accomplishes these tasks.  First, to measure objective space diversity, the percentage of 

optimization runs reaching full Pareto-optimal sets of solutions (defined further in Section 4.1) is 

calculated for each test case.  Secondly, convergence rates are graphically and quantitatively compared by 

calculating the average project cost per unit mass sequestered versus number of model calls for the 

average of the top two best performing optimization runs of each test case. 

 

A total of 360 optimization runs are processed where 20 different random seed optimization runs are 

performed for each of nine GCS test cases using each algorithm.  Redundancy is needed as heuristic 

algorithms may occasionally produce abnormal results which are not representative of typically 

performance.  Hypothetical GCS test cases are generated for the MB test site by varying both the 

maximum allowable number of injection wells and passive well permeability.  The maximum allowable 

number of injection wells is ranged between 2 and 4.  Passive well segment permeabilities are assumed to 

be either 0.01 or 1000 mD (mD; 1 mD = ~10-15 m2), representing “intact” and “degraded” cement, 

respectively [5,11].  Three uncertainty scenarios are assumed, including 1) data supporting an abundance 

of intact passive well segments (75% intact/25% degraded); 2) no passive well permeability data available 

(50% intact/50% degraded); and 3) data supporting an abundance of degraded passive well segments 

(25% intact/75% degraded).  To provide an element of structure to the optimization problem, degraded 

wells are concentrated in specific quadrants of the domain for each uncertainty scenario.  Passive well 

segment permeabilities are assumed to be fully correlated, therefore all caprock segments for any given 
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passive well are given the same permeability value.  Figure 4.5 shows locations for both candidate 

injection wells as well as intact and degraded passive wells for each uncertainty scenario.  

 

 

Figure 4.5. Spatial locations of both candidate injection wells and intact and degraded passive wells for the (a) 75% 

intact/25% degraded, (b) 50% intact/50% degraded, and (c) 25% intact/75% degraded uncertainty scenarios. 

 

Also, Table 4.5 shows both the maximum allowable number of injection wells and the probability of 

passive well segments being assigned either an "intact" or “degraded” permeability value for each of the 

nine test optimization cases.  It should be noted that increasing the maximum allowable number of 
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injection wells adds to the optimization problem’s complexity by significantly expanding both objective 

function and decision variable search space.   

 

Table 4.5. Maximum allowable injection wells and the percent likelihood of passive well segments being assigned either an 

"intact" or “degraded” permeability value for each test case 

Test 

Case 

Maximum 

Number of 

Injection Wells 

Percentage of passive wells 

being assigned an "intact" 

permeability value 

Percentage of passive wells 

being assigned a "degraded" 

permeability value 

I 2 75% 25% 

II 2 50% 50% 

III 2 25% 75% 

IV 3 75% 25% 

V 3 50% 50% 

VI 3 25% 75% 

VII 4 75% 25% 

VIII 4 50% 50% 

IX 4 25% 75% 

 

4.1 Objective Solution Diversity 

Objective solution diversity may be evaluated using either the Spacing metric [22] to find how well 

objective solutions are uniformly distributed or the Hyper-volume metric [43,51] to compare how well 

objection solution sets are “spread-out”.  However, our problem is more finely structured than most multi-

objective optimization problems, thus enabling a more rigorous evaluation of objective solution diversity.  

Before processing each optimization run, all possible values of the total mass sequestered objective 

function are known.  This is because values for the variables composing the quantity of total mass 

sequestered (i.e. injection duration, tinj, maximum number of injection wells, Mmax, and the number Nir and 

allowable injection rates, Qiw) are prescribed before the start of optimization.  Recall from Section 3 that 

each injection well may only assume an injection rate of either 0, 20, 30, or 40 kg/s.  Hence, the total 

injection rate may range between 20 and Mmax∙40 kg/s in increments of 10 kg/s.  Table 4.6 shows all 

possible injection rates and mass sequestered quantities for up to 4 injection wells.  Cases with 2, 3, and 4 

injection wells have 7, 11, and 15 non-zero, discrete values of total mass sequestered, respectively.   
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Table 4.6. Injection rates and mass sequestered quantities for up to 4 injection wells 

Max Number of 

IWs 

Total Flow 

Rate (kg/s) 

Mass of CO2 Sequestered 

after 50 years (Mt) 

2 20 31.5 

2 30 47.3 

2 40 63.1 

2 50 78.8 

2 60 94.6 

2 70 110.4 

2 80 126.1 

3 90 141.9 

3 100 157.7 

3 110 173.4 

3 120 189.2 

4 130 205.0 

4 140 220.8 

4 150 236.5 

4 160 252.3 

 

Therefore, it is possible to define a single measure of objective solution diversity that takes into account 

both the Spacing and Hyper-volume measures.  Optimization runs providing project cost solutions for 

each possible discrete mass sequestered value are defined as having full objective function solution sets.  

The percentage of optimization runs arriving at full solution sets out of the 20 runs processed for each test 

case is used herein as the objective solution diversity measure.  Table 4.7 shows the percentage of 

optimization runs arriving at a full solution set for each trial case.   

 

The results provided by Table 4.7 show the NSGA-II to outperform the MOGSA when evaluating 

objective solution diversity.  The average percentage of full solutions sets over all 9 simulations is 94% 

and 78% for the NSGA-II and the MOGSA, respectively.  Both algorithms typically provide full solutions 

sets for test cases having either two or three injection wells.  However, the MOGSA has difficulty filling 

the objective function space when optimizing cases allowing for four injection wells.  It should also be 

noted that a lower percentage of full solutions sets is typically observed in both algorithms when 
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Table 4.7.  Percentage of optimization runs arriving at full solution set for each trial case 

Test 

Case  

Percentage of full solution sets 

NSGA MOGSA 

I 100% 100% 

II 100% 100% 

III 100% 100% 

IV 100% 90% 

V 85% 80% 

VI 100% 100% 

VII 100% 15% 

VIII 65% 20% 

IX 100% 95% 

Average 94% 78% 

 

optimizing the 50%-intact/50%-degraded uncertainty scenario, indicating a more difficult optimization 

problem. 

4.2 Objective Solution Convergence 

The rate at which each algorithm converges (i.e. progresses) toward the true Pareto-optimal solution is 

also investigated using the nine test cases described by Table 4.5.  To obtain a general understanding of 

the convergence performance, the average project cost per unit mass sequestered ($/kg) over the non-

dominated objective trade-off set is calculated at each generation using averages from the two best 

performing optimization runs for each test case.  Figure 4.6 contains plots of the average project cost per 

unit mass sequestered versus number of model (i.e. CO2 leakage simulator) calls made by each 

optimization algorithm. 

 

Several convergence rate trends are observed through both the qualitative and quantitative inspection of 

Figure 4.6.  The NSGA-II is found to have a more consistent improvement of the average project cost per 

unit mass sequestered as the generation index (thus, the total number of model calls) progresses while the 

MOGSA tends to display large but infrequent reductions in average project cost per unit mass 
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Figure 4.6.  Average project cost per unit mass sequestered versus number of model calls for Cases (I-IX) 

 

sequestered.  Also related to the previous observation, in 78% of cases studied the MOGSA finds better 

average project cost per unit mass sequestered values early in the optimization run only to be overtaken 

by the NSGA-II.  This is especially obvious in test cases I, II, VIII, and IX.  These trends are caused by a 

fundamental methodology difference between the two optimization algorithms.  In comparison to the 

NSGA-II, the MOGSA takes a significantly more direct approach related to fitness weighting when 

generating new sets of trial injection strategies.  With the MOGSA, new trial injection strategies are 

directly driven toward well-performing trial injection strategy positions in decision space using Equations 

(26-30).  The NSGA-II uses a much more convoluted method to generate each new trial population 
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member. Two trial injection strategies are chosen as parents through tournament selection then encoded 

into a chromosome of binary numbers.  Using the crossover operator, these chromosomes are then split at 

a random length then merged into a unique chromosome representing a new trial injection strategy.  In 

addition, the mutation operator (i.e. the random altering of trial injection strategy components) is only 

used in the MOGSA if the Pareto-set is found to be stagnant after several generations where it performed 

at every generation using the NSGA-II. 

 

Both algorithms are shown to arrive at relatively similar final average objective function tradeoff 

solutions in all trial cases.  At first glance, the NSGA-II is found to outperform the MOGSA when 

comparing solution accuracy.  Although and the NSGA-II and the MOGSA arrive at the same final 

average project cost per unit mass sequestered in test cases I and III, the NSGA-II found better final 

solutions in all 7 other trial cases.  In addition, the NSGA-II’s outperformance of the MOGSA in the area 

of objective solution accuracy is accentuated in cases having greater optimization problem difficulty.  The 

solution diversity results presented in Table 4.7 suggest that cases with either Mmax set to 4 (i.e. cases VII, 

VIII, IX) or a 50% intact/50% degraded uncertainty scenario (i.e. cases II, V, VIII) are the most difficult 

to optimize.  The NSGA-II is found to provide more accurate solutions in all 5 of these cases.  However, a 

further investigation of the data presented in Figure 4.6 shows the relative accuracy differences between 

the two algorithms to be fairly small.  Table 4.8 shows the relative differences in the MOGSA’s final 

Pareto set solution compared to the NSGA-II’s solution. 

 

Although the MOGSA provides less accurate solutions in seven out of nine of the test cases, the average 

relative difference in solution accuracy is found to be only -3.1%.  In test cases having only two or three 

injection wells (i.e. Cases I-VI) the average absolute relative difference between the two algorithms is 

only 1.0%.  The largest absolute relative differences are found in test cases having four injection wells 

(i.e. Cases VII-IX) where the average absolute relative difference is found to be approximately 7.2%.   
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Table 4.8.  Relative differences in the MOGSA’s final Pareto set solution compared to the NSGA-II solutions. 

Test 

Case 

MOGSA Relative 

Difference in Solution 

Accuracy 

I 0.0% 

II -0.6% 

III 0.0% 

IV -1.9% 

V -1.0% 

VI -2.5% 

VII -6.7% 

VIII -9.1% 

IX -5.9% 

Average -3.1% 

 

Even with slightly less accurate final objective solutions, the MOGSA may still be preferable over the 

NSGA-II due to its fast early convergence rates.  Figure 4.7 shows project cost versus mass sequestered 

for Case (IX) where objective function tradeoffs are shown at 1000 model calls for the MOGSA and 4000 

model calls for the NSGA-II to demonstrate the effectiveness of the MOGSA’s faster early convergence. 

 

 

Figure 4.7.  Project cost versus mass sequestered for Case (IX).  Objective function tradeoffs are shown at 1000 model 

calls for the MOGSA and 4000 model calls for the NSGA-II.  
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As shown by Figures 4.6 and 4.7, when optimizing Case (IX) the MOGSA found a comparable tradeoff 

solution using about one-quarter of the computational cost spent by the NSGA-II.  The MOGSA and 

NSGA-II provided very similar project cost values when injecting less that 150 Mt of CO2 but began to 

differ with greater quantities of mass sequestered.  These trends suggest that the best method may be to 

use a hybrid approach where the MOGSA performs an initial optimization then the NSGA-II is used to 

“fine-tune” injection strategy selection. 

 

5 Conclusions 

Two heuristic algorithms, the NSGA-II and MOGSA, have been applied to nine different injection 

strategy optimization test cases at the MB test site.  Two performance measures, included 1) objective 

solution diversity and 2) objective solution convergence rate were compared for each optimization 

algorithm.  The NSGA-II provided a better search of objective function space and slightly more accurate 

objective function solutions.  The average percentage of full solutions sets over all 9 test cases was 94% 

and 78% for the NSGA-II and the MOGSA, respectively.  In addition, the MOGSA had difficulty filling 

the objective function space when optimizing cases allowing for four injection wells.  The NSGA-II 

provided slightly better average project cost per unit mass sequestered solutions in 7 of the 9 test cases 

while each algorithm provided equal average project cost per unit mass sequestered in the other two test 

cases.  The average relative difference in solution accuracy was found to be only 3.1% between the two 

algorithms. 

 

Perhaps the most significant finding of this work was that, faster convergence rates by the MOGSA were 

observed early in the majority optimization runs.  The MOGSA found a comparable tradeoff solution 

using about one-quarter of the computational cost spent by the NSGA-II for Case (IX).   It may be 

possible to exploit this trend by creating a multi-stage hybrid method between the two algorithms where 

the MOGSA is first used to quickly perform an initial optimization then the NSGA-II is used complete 

the final stage of injection strategy selection. 
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