
DISSERTATION

A TALE OF ‘T ’ METRICS:

CHOOSING TRADEOFFS IN MULTIOBJECTIVE PLANNING

Submitted by

Mark Roberts

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2013

Doctoral Committee:

Advisor: Adele Howe

Co-Advisor: Indrajit Ray

Darrell Whitley
Daniel Turk

ABSTRACT

A TALE OF ‘T ’ METRICS:

CHOOSING TRADEOFFS IN MULTIOBJECTIVE PLANNING

Search-based planning systems are often evaluated according to their computational effi-

ciency and final plan quality under the assumption of producing a single plan that is evaluated

according to a single metric. In this context, a planner is preferred if it produces a better

quality solution with the same (or fewer) computational resources. This evaluative focus

has naturally led the planning community to design planning systems based on the tradeoff

between efficiency and quality, and has led to techniques that improve performance along

one or both of the quality-efficiency dimensions. The end result is continuing advancement

of the state-of-the-art for applications needing the best quality (sometimes optimal) plan.

In general, planners get faster at finding that single best solution.

We present a motivating application – personalized cybersecurity – that challenges the

single-solution, single-metric assumption. First, this application requires the planner to

generate plan sets instead of a single solution. Generating plan sets adds a new evaluation

dimension, frequently called diversity, to the already existing dimensions of efficiency and

quality. Further, our motivating application requires that plans are evaluated according to

multiple quality metrics that interact in subtle ways. The two challenges of producing plan

sets and evaluating under multiple metrics form the two research directions of this work. We

seek to understand the implications of these two directions in how we design and evaluate

planners.

A planner’s performance is typically evaluated along several dimensions: its coverage

over the number of problems it solved, the quality of its final plan for a given problem,

and its computational efficiency of producing each plan. Computational efficiency is usually

measured using time or memory consumption. Plan quality is usually a one-dimensional

criterion that uses either the length of the plan or a sum over the cost of its actions. The more

ii

recent evaluation focus of diversity is usually measured as the distance between plans using

the set difference or set intersection of their actions. Recent work has extended planning

systems to produce diverse plan sets [Ngu+12; CMA11; Sri+07; Rob+12]. But relatively

little research has been done to understand the tradeoffs of plan set diversity in the context

of multiple quality metrics that may also interact with each other. Matters get worse when

diversity and quality interact.

Our approach is to tackle each research direction independently before combining them.

Thus, we first examine producing single-metric plan sets before examining metric interaction

while producing single plans. Finally, we combine the two directions to examine producing

plan sets when the same metrics interact. We evaluate the tradeoffs along three evaluation

axes of quality, efficiency, and diversity using many of the evaluation metrics that are in the

literature. The existing diversity metrics have two shortcomings. Plan distance does not

provide comparison between two plan sets produced by different approaches, so we create

a metric, overlap, that takes the set intersection of two plan sets. Plan distance also does

not characterize the distinctness of plans within a plan set. We create two diversity metrics

designed to alleviate this. We found in our studies that plans within a plan set could be

subsets of each other. The first metric, uniqueness, captures the way in which plans do not

subsume each other by removing any padded or permuted plans. The second metric, the

parsimony ratio, characterizes how verbose a planner is for a given plan πl with respect to

a minimal plan, πk. We obtain πk (for as many problems as possible) by running A* while

restricting the allowed operators to only those in πl.

In our study of producing single-metric plan sets, we focus on variants of A*, a com-

mon base algorithm for many state-of-the-art planners. A* is designed to produce a single

solution using an estimate of the cost to achieve a solution. Our study of single-metric di-

versity includes four algorithms based on A* and one full planning system. To maintain a

fair comparison, we implement the algorithms in the same planning framework. The algo-

rithms include random walk search [XNM12], modifying the heuristic to drive diverse search

[CMA11], a new algorithm, Iterated Tabu A* (ITA), that encourages plan set diversity using

iii

a state-based Tabu list [Rob+12], and a hybrid of the heuristic and tabu approaches. We

complement our analysis of the algorithms with a full planning system, called LPG-diffmax

[Ngu+12], that is designed to produce diverse plan sets. We run these five approaches on

several benchmark domains from the International Planning Competitions (IPCs).

We find that approaches that generate the highest diversity with the highest uniqueness

also produce plans that sacrifice plan quality and reduce search efficiency. Our findings

challenge the approach of using diversity as a metric to both drive search and evaluate planner

performance. These approaches produce plans that appear unique but drive high diversity

by repeating action sequences that do not lead to the goal; the plans are not parsimonious.

Although the full planning system solves more problems, it does not always produce more

diverse plans (nor more unique plans) than the simpler algorithmic approaches. Finally, our

findings suggest that selecting the best approach for generating alternatives depends on the

evaluating metric, which ultimately depends on the needs of the application for which those

alternatives are generated.

To assess the impact of metric interactions on search behavior, we start with single-

solution search as a baseline. Since there are very few domains with metric interaction, we

create a synthetic domain that allows us to vary the interaction of two metrics, x and y,

in a weighted objective function, z, while controlling for plan-length. We use a common

variant of A*, called A∗ε , that provides bounds on the cost of the solution returned. One

of the more surprising findings is that A∗ε search performs quite poorly when minimizing

collinear functions (y = x and y = sigmoid(x)), which suggests that researchers should

avoid combining x and y when they are (nearly) collinear. A∗ε works well for curvilinear

functions such as polynomials and an “inverted” sigmoid. However, scaling the metrics

appears to dramatically reduce search effectiveness. Poorer performance occurs when the

metrics were uniformly scaled to control, at least in part, for plan-length correlation. Search

performance also degraded as one metric was weighted more heavily. These findings have

implications not only for the general use of weighted objective functions in A* search (and its

variants), but more specifically for using any weighted combination of diversity and quality.

iv

Bolstered by our understanding of how metric interaction impacts single-objective, single-

solution search, we create a new algorithm, Multi-Queue A* (MQA), that is designed to

produce diverse alternatives under multiple objectives. MQA manages each quality metric

in its own queue, thus alleviating (some of) the issues of scale and interaction caused by

combining metrics in a single objective function. We drive diversity by using what we

call a ”parsimony queue” that first minimizes the heuristic estimate and then maximizes

diversity. We find that MQA with the parsimony queue indeed results in more unique

solutions than other algorithmic approaches while maintaining good parsimony. We also

find that it can produce a better spread of solutions along the solution front of the synthetic

problem. However, in cases where quality and diversity are collinear, it achieves better

diversity while sacrificing solution quality. Finally, we find that ITA still produces the most

unique solutions for the security domain of any approach we examined.

Our findings synthesize the recent literature on generating diverse alternatives. In prac-

tical terms, they suggest that the objectives of the application should direct the choice of

the algorithm and choice of the search control mechanisms for generating plan sets on a

pareto-optimal front. Contrary to the conventional wisdom of modifying the heuristic to

improve search, we find heuristic modifications alone do not account for the success of pro-

ducing diverse plan sets. Instead, we show that parsimony must be a central concern and

that using a portfolio-like multi-queue approach can lead to good results – depending on

the application. We show that targeted changes to the A* algorithm can improve search for

specific applications, but that such changes must be tailored to the application for which

they are intended.

v

ACKNOWLEDGMENTS

Getting this far in any pursuit requires the support of many people. Foremost, I want

to thank my primary advisor, Dr. Adele Howe, for all her mentoring and support. Her

professional and personal guidance over the many years of my journey has shaped me for

the better. Words cannot express the depth of gratitude I feel for her. I also want to thank

Dr. Indrajit Ray for his guidance, especially in his encouragement to reconsider an academic

path for my career.

Along my trek, I was fortunate to consider as my mentors and colleagues many bright and

engaging people at CSU, SRI, NASA, and HP. Each one of them gave me insight into how to

think more clearly, how to be a better professional, and how to be a better human. I want to

thank the many people in the ICAPS community for many productive and fun conversations

on all topics research and personal. Many of these individuals provided feedback on my

work, which only helped to improve its quality.

I have been privileged to receive support for this project from the National Science

Foundation, and this material was supported by the National Science Foundation under

Grant No. 0905232. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

Finally, I sincerely appreciate the support of my family and friends. I especially thank

my friends from Fort Collins, who enjoyed the outdoors or a beer with me working out the

finer issues of research or life. To the many people who have supported me in one way or

another, thank you. Your investment as a friend, colleague, mentor, or all three has been an

invaluable gift to me. I’ll be sure to reinvest it wisely!

vi

TABLE OF CONTENTS

1 The ‘T ’ Metrics of Planner Evaluation . 1

2 Motivating Planning Advancements Through Applications 7

2.1 Focus Problem: Cybersecurity For Home Computer Users 7

2.1.1 The Security Model: A Personalized Attack Graph (PAG) 9

2.2 Other Applications of Alternative Plans . 12

3 Background and Related Work . 15

3.1 Classical Planning . 15

3.2 Generating Plans . 18

3.2.1 The Plan Graph and Modern Heuristics for Classical Planning 19

3.2.2 Other Methods for Generating Plans 21

3.3 Generating Alternative Plans . 22

3.3.1 Multi-objective Planning . 24

3.4 Evaluating Planning Systems . 25

3.4.1 Efficiency . 25

3.4.2 Quality . 26

3.4.3 Diversity . 31

4 Assessing Tradeoffs in Generating Diverse Plan Sets 33

4.1 Diversity Metrics . 36

4.2 Domains . 39

4.3 Implementations . 39

4.3.1 Diversity-A* (Div) . 41

4.3.2 Augmenting A* with a Tabu List (ITA) 42

4.3.3 Hybrid Diversity+Tabu (Hybrid) . 44

4.3.4 Random Walk Search . 45

vii

4.3.5 LPG-diffmax 2.0 (LPGd) . 45

4.4 Results: Parsimony, Uniqueness, and Overlap 47

4.4.1 Parsimony . 47

4.4.2 Uniqueness and Overlap . 49

4.4.3 Diversity . 53

4.5 Results: Quality . 56

4.6 Results: Search Cost . 58

4.7 Results: Security Domains . 58

4.8 Limitations . 61

4.9 The Tradeoffs of Generating Plan Sets . 64

4.10 Summary . 67

5 Understanding Metric Interaction . 71

5.1 Evaluation Metrics . 74

5.2 Domains . 76

5.2.1 Existing Benchmarks in Planning . 76

5.2.2 Controlling for Metric Interaction in a Synthetic Domain 78

5.3 Implementations . 82

5.3.1 A-star-Epsilon (A∗ε) . 82

5.3.2 Multi-queue A* (MQA) . 82

5.4 Results: Producing Single Solutions for BiSyn 86

5.4.1 Single Solutions for BiSyn using A∗ε 87

5.4.2 Single Solutions for BiSyn using MQA 94

5.5 Results: Producing Plan Sets for BiSyn . 98

5.6 Results: Producing Plan Sets for the Benchmarks 101

5.7 Limitations . 105

5.8 Revisiting the Tradeoffs of Generating Plan Sets 106

6 Evaluating Diversity For Planners . 109

viii

6.1 Producing Plan Sets . 111

6.2 Understanding Metric Interaction . 111

6.3 Unifying Parsimony and Metric Interaction: Multi-Queue A* 112

6.4 Limitations and Future Work . 113

6.5 Final Remarks . 116

References . 117

Appendices . 126

A The Mosaic Planning Framework . 127

B Supplemental Plots for Chapter 4 . 129

C Supplemental Plots for Chapter 5 . 136

ix

Chapter 1
The ‘T ’ Metrics of Planner Evaluation

Classical Planning is a sub-field of Artificial Intelligence concerned with producing a set

of actions that achieve a goal state from an initial state. Figure 1.1 provides an example of

a logistics application, the kind of application to which planning is naturally suited. The

left side of this figure shows a white truck in City 4 and a package in City 1. The goal state

shown on the right indicates that the package is needed in City 3, and, while the truck is

also at that location, there is no requirement that the truck end up there (though the truck

will always be at that location in this example since the problem will be solved as soon as

the package is unloaded). The operators and states form an implicit state transition system

that we will formalize in Section 3.1.

The dominant paradigm for producing a plan in Classical Planning is best first search over

this implicit state transition system. Often the algorithm is some variant of A*. Best first

search proceeds by taking what it believes is the current best state, expanding all possible

operators on that best state to produce the successors, and then queuing the successors into

a data structure that stores the states that remain to be explored. To ensure that search

does not repeat effort on states it has already visited, a closed list keeps track of the states

Figure 1.1: An example planning problem where the goal (right) is to move the package
from its initial position at City 1 (left) to a location at City 3 using the transition operators
Move, Load, and Unload.

1

that have already been expanded. Best first search is often informed by a heuristic to help

it select the more promising states (i.e., those states on the path to the goal). In general,

when we talk about search-based planning we mean state-based best first search guided by

a heuristic.

Search-based planning has at its core an assumption of producing a single plan according

to a single quality metric. This has huge implications for how planners are designed. Often,

planners are evaluated on their ability to cover more problems, the efficiency (i.e., time and

memory) with which they solve problems, and the quality (i.e., plan length or plan cost) of

the final plans. Generally speaking, a more efficient planner will solve more problems and

have higher coverage. So, in this evaluative context, one planner is preferred over another

planner for a given problem if it produces a better quality solution with the same (or fewer)

computational resources. This evaluative focus has naturally led the community to design

systems that balance the tradeoff between efficiency and quality, and has led to techniques

that improve performance along one or both of the quality-efficiency dimensions. The end

result is continuing advancement of the state-of-the-art for applications needing the best

quality (sometimes optimal) solution. In general, planners get faster at finding that single

best solution. But not every application requires these assumptions.

Our motivating application – personalized cybersecurity – challenges the single-solution,

single-metric assumptions upon which many planners are evaluated. In particular, the secu-

Figure 1.2: The gap of existing planning research: much of the planning literature (the gray
inset box) focuses on producing single solutions under a single quality metric.

2

Figure 1.3: The two research directions of this dissertation (left) and the axes of evaluation
(right).

rity application requires a planner that generates sets of plans that are evaluated according to

a variety of metrics. These two requirements yield the research directions of this dissertation,

as shown in Figure 1.2.

The two research directions of multiple solutions and multiple metrics have implications

for how to design and evaluate planners. We focus on three axes of evaluation as presented

in the right subplot of Figure 1.3. It will still be the case that we care about quality

and efficiency, although we will need to adjust several aspects of evaluation. Along the

efficiency axis remain concerns about the computational resources (time and memory) that

are consumed by the planner. Along the quality axis remain concerns about the “goodness”

of the final plan that is produced, where quality is usually measured by a single metric such

as the length of the plan or the sum of the action costs. However, the quality axis now

includes additional concerns over managing quality in the face of multiple metrics.

The requirement of producing plan sets adds a third evaluation dimension that has been

called diversity in the planning literature. It is not of great use to have a set of plans that

differ only trivially. So along the diversity evaluation axis we are concerned with metrics

that assess the distinctness of a solution in a plan set, which has usually been measured in

the literature as the set difference between the actions of the plans. Note that this evaluation

dimension can be closely tied with how plan sets are produced as well. In reality, considering

plan sets raises two questions that are not necessarily related to one another: 1) how to find

3

solutions and 2) how to evaluate those solutions. However, many approaches in the literature

conflate these two questions – the same technique is used to both produce diverse plan sets

and evaluate those plan sets. Along the diversity axis, we examine plan sets using two

distance-based diversity metrics from Nguyen et al. [Ngu+12; Sri+07] as well as Coman

and Muñoz-Avila [CMA11]. We show how these evaluation metrics are too similar to the

way in which search is driven and can be misleading indicators for good diversity. To

complement these distance-based metrics, we add two set-based metrics we call “overlap”

and “uniqueness” that both help characterize the contribution of individual plans within a

plan set. We also found that many plans can be subsumed by other plans, so we create a

new metric called the “parsimony ratio” that measures the extent to which a plan is longer

than it needs to be.

Several approaches have shown success in isolated experiments for producing diverse plan

sets (e.g., [Ngu+12; CMA11; Sri+07; Rob+12]). It is less clear how these approaches compare

to one another, how diversity, quality, and efficiency interact, and how such interactions may

have implications for search performance (and thus, of how we evaluate that performance).

In this study, we investigate the tradeoffs of producing plan sets along the three axes of

diversity, quality, and efficiency. Our analysis leverages existing metrics for evaluating quality

and efficiency by using the common measurements already mentioned: search cost, plan

length, and plan quality. We are also interested in the interplay of the diversity-quality and

diversity-efficiency axes, so we characterize the plan sets using quality and efficiency metrics.

Interactions can take place within the same axis. For example, a manufacturing appli-

cation may require plans that create products using distinct methods, where each method

produces varying levels of pollution while consuming varying levels of resources. Such a

tradeoff occurs within the quality axis. Much of the planning literature focuses on a single

metric, but less is understood on the interaction of quality metrics.

Interactions can also take place between axes. For example, it might be computationally

efficient to compute a low quality plan but take increasingly more computational resources to

produce better and better plans. Much of the planning literature has focused on efficiency-

4

quality tradeoffs, which has led to some very efficient planners that produce a single solution

under a single metric evaluation. But less is understood about the tradeoffs of these efficiency

and quality metrics with respect to diversity, when more than one plan is being evaluated.

This dissertation examines the performance tradeoffs of moving along one or both of two

research directions: producing multiple solutions or assessing plans with multiple metrics.

These two research directions are the independent variables of the study, and we tackle each

direction in isolation before combining them together. The ‘T ’ metrics of this dissertation

fall along three axes; these are the dependent variables of the study. Efficiency metrics

quantify the computational effort a planner expends to produce a solution. Since much

of the computation effort of planners lies in searching for a solution, these metrics include

ways to quantify CPU time or memory usage. Quality metrics assess the value of a single

plan. These metrics tend to be application specific and include ways to quantify the effort

of executing the plan. One common plan quality metric, a plan’s length, has played a large

role in the development of planners. Diversity metrics assess the value of a plan set both

within a plan set and between plan sets. Examining alternatives is best done with the widest

possible set of alternatives, and these metrics try to measure the distance any two plans will

be from each other. Together, these metrics interact to create tradeoffs that we characterize.

We endeavor to advance the algorithms of planning systems with an analysis-driven approach

that leverages the knowledge we gain from our study into these tradeoffs.

Figure 1.3 shows both the two research directions (the independent variables) and the axes

of evaluation (the dependent variables) and how the main chapters of this document relate.

Chapter 2 more clearly motivates how the security application (and other applications)

require these two new directions. Chapter 3 relates our work with the existing literature.

Along the vertical axis (in gray), we assess tradeoffs associated with having a planner produce

plan sets instead of just a single solution; this is studied in Chapter 4. Along the horizontal

axis (in red), we study metric interaction. In order to study metric interaction, we justify

and present a synthetic domain in the first half of Chapter 5 and follow with results of

running two variants of A* on this domain. Finally, in Chapter 5 we combine the knowledge

5

we gather into the design of an algorithm called Multi-Queue A* that takes a step toward

producing diverse plan sets while managing metric interaction.

The main contributions of this dissertation are as follows. We create new diversity

metrics for comparing plan sets and different approaches that generate plan sets. These

metrics allow us to analyze the tradeoffs of producing plan sets as well as to analyze search

behavior when metrics interact. We show that combining diversity in a weighted metric

has the unintended consequence that it often seriously misleads search with the undesirable

tradeoffs of decreased efficiency and poor quality. We also show that the weighted linear

combination of multiple metrics confounds searching for good quality plans that balance

the objectives at hand precisely when the metrics interact in unexpected ways or when the

metrics are pathologically intertwined (i.e., they fall in the same range but are contradictive).

For planning, diversity is at odds with quality because long plans usually imply poor quality,

thus further confounding the weighted objective function. This leads us to the perspectives

that diverse plans are only worthwhile if they are also parsimonious and that alternative ways

of driving diversity are needed. We present two algorithms that attempt to alleviate some of

the problems of a weighted objective function. The first, Iterated Tabu A* (ITA), extends

A* with a Tabu list to encourage exploration of new states. The second, Multi-Queue A*

(MQA), extends A* to manage distinct queues for each quality metric and diversity metric

to maintain parsimony and quality and while encouraging diversity.

Our study synthesizes the recent literature on generating diverse plan sets. As far as we

are aware, it is the first study to examine the tradeoffs of contrasting approaches and then

propose ways to address those tradeoffs. Since each application will have differing concerns

with respect to quality and diversity, our results show that the objectives of the application

should direct the choice of the algorithm and choice of the search control mechanisms for

generating the plan sets. We show that understanding the interplay of diversity, quality, and

efficiency leads to an improved algorithm design for applications such as the security domain

and that targeted changes to the A* algorithm can improve search for such applications.

6

Chapter 2
Motivating Planning Advancements Through Applications

Our work advances planning systems to meet the demands of applications. In this con-

text, a planning system produces a plan, which is sequence of steps (or actions) that achieve

some goal; we will present a formal model for planning in Section 3.1. Figure 1.1 provides an

example of one kind of plan for a logistics domain where the goal is to move a package from

one location to another. In such domains, the planner constructs a sequence that achieves

some end that (assumedly) will be executed by some agent in a physical world. A plan

can also be a way for a human or software agent to reason about the potential ways an

event might happen. For example, a plan could represent a sequence of steps leading to a

compromised computer system, and the plan itself is never intended to be executed.

The focus problem for our research is a security agent for home computer users. We

discuss the security agent and its underlying security model, which presents two distinct

challenges for planning: generating alternatives and evaluating plan quality with multiple

metrics. Many other applications also require the planner to support exploring alternatives

with complex evaluation of the tradeoffs. So we end the chapter with a brief overview of

other potential applications that further motivate our research.

2.1 Focus Problem: Cybersecurity For Home Computer Users

The Internet has brought many benefits to users who embrace it. Tools such as email,

texting, web pages, search engines, shopping, gaming, social networking, etc., make commu-

nication much more efficient and allow for disparate groups of individuals to form regardless

of geographical boundaries or social strictures. However, never before has a technology

brought so much risk to an individual’s security and privacy. A user can engage in appar-

ently innocuous behavior only to discover that private information has been compromised.

Even the most knowledgeable computer user may find it challenging to maintain a safe com-

puting environment. Casual computer users may find the array of security choices daunting

7

in the midst of having to learn new terminology. Sophisticated users demand more fluid

interfaces with complex systems and get annoyed by constant, pedantic interruptions, while

novice users may need more individualized instruction to deal effectively with potential se-

curity threats. Finding a balance between these user groups is challenging, and security

software does not cater to the needs of individual users within these groups.

Consider a security agent that is tasked with helping a home computer user mitigate

security and privacy breaches. Such an agent would need to perform all of the following

tasks: monitor the user/system for new behavior/state, adjust its behavior based on the

user and the current user’s task, incorporate new exploits from a common security database,

adapt to newly installed software, block the most critical vulnerabilities first, offer suggestions

of actions to the user to support achieving his/her goals while not breaching security/privacy,

and intervene independently to the extent that the user’s trust allows.

The agent must be able to offer alternatives if the user is not satisfied with a plan it

has selected. For example, the user may be starting to install some peer-to-peer (P2P)

software that includes a virus. Suppose the preferred plan is to check that no virus has

yet been installed and to halt the installation; however, because the user desires the P2P

functionality, an alternative plan of searching for different P2P software and installing a

more secure application may be better.

Planning is amenable to the security domain because a security attack proceeds along a

set of state transitions (i.e., the system state) that are advanced by actions (i.e., the attacker,

the user, or the attacking software). Previous research has shown how a planner can help

analysts identify actions that lead to security breaches. Boddy et al. [Bod+] built a mixed

initiative planning system that could identify potential vulnerabilities and countermeasures

in cyber security for large organizations. Their domain model allowed them to produce

“insider subversion” plans of 40–60 steps, demonstrating the success of applying planning

to identify novel attack scenarios. Their work was also the first to identify the problem that

planners do not easily produce alternative plans.

8

2.1.1 The Security Model: A Personalized Attack Graph (PAG)

A natural model for security is a state transition system where nodes indicate states

and edges indicate transitions between states. As part of the research grant, we developed

a Personalized Attack Graph (PAG) security model to characterize the ways that a home

system can be compromised [Urb+13]. An important detail of the PAG is that it integrates

states of the personal computing system with user and attacker actions. In this model, a

vulnerability is some software or system state that is susceptible to attack and user/attacker

actions serve as the transitions between states. Vulnerabilities are enabled by specific versions

of software or system state and user/attacker actions cause the vulnerability to lead to an

exploit. Exploits are then leveraged to attack the compromised system or to access data.

DOS

CVE-2010-0187
Exploited (43)

CVE-2010-0187 Adobe
Flash Domain Sandbox

Adobe_Flash_6_0_88_0 (0.15)

Flash File
Compromised (43)

User opens
Flash File (95)

User using
Social Network (13)

CVE-2008-3111
Exploited (100)

CVE-2008-3111
Sun Java Multiple (100)

Sun_JRE_1_4_0_02 (0.12)

Java App With
Long vm-args (28)

User loads
JavaWebStart App (24)

User Browsing
In te rne t Conten t (63)

User loads
PDF document (15)

CVE-2010-4091
Exploited (93)

CVE-2010-4091
AcrobatReader Memory Corruption (86)

AcrobatReader_9_4_1 (0.63)

PDF File
Compromised (28)

Figure 2.1: The Denial of Service personalized attack graph. The probabilities for nodes are
given in parentheses.

Figure 2.1 shows a PAG leading to a Denial of Service (DOS) attack. Urbanska et al.

provide a detailed formal description of the PAG [Urb+13], but here we will cover the

essential properties relevant to planning. The PAG is a state-transition system that is

instantiated with the state of a particular home computer and user. Layers in the graph

indicate preconditions, but across the graph the layers are otherwise insignificant. Nodes in

the graph include system states and vulnerabilities (shown as white boxes in the figures),

execution states of attack actions (gray boxes), and execution states of user actions (doubly-

lined boxes). An arc in the graph is used to represent a state transition that contributes to

a system compromise, but these transitions are unlabeled for clarity. Conjunctive (AND)

9

nodes (e.g., the three CVE nodes in the second layer from the top of Figure 2.1) require all

preconditions to be met for a state transition; they are indicated by multiple arcs that are

incident on the node. Disjunctive (OR) branches (e.g., the Denial of Service (DOS) node at

the top of Figure 2.1) have a small circle for the choices and require only a single branch

to be true. Nodes that represent the execution of user actions are associated with a user

profile [Urb+13]. In Section 4.7, we use this particular example to show how we can generate

alternative plans in a single episode

This security model builds on work of a psychology team1. The goal of the psychology

team is to characterize the user’s likelihood of engaging in specific behaviors (e.g., using a

social network website, online shopping) and their tolerance for risk. To this end, the team

members have performed experiments to determine a user’s perceptions of risk and the cost-

to-benefit ratio of using Internet technologies [Byr+12] for two populations deemed most

at risk from a security standpoint: college-aged adults (aged 18-22 years) and older adults

(aged 60 and up). The results from this study are intended to feed into the security model

that relies on a user profile to provide probabilities for the user action nodes in the PAG.

A full PAG for a single system can be very large. The DOS subtree of Figure 2.1 is actually

only one subtree of a more complete PAG shown in Figure 2.2 that contains 7 exploits, 25 user

actions, 38 system states or actions (of which 11 are system vulnerabilities), and 19 attack

actions2. It was hand-constructed from a subset of vulnerabilities present on an actual

machine running Microsoft Windows XP Professional SP3 with common configurations.

Before collecting the data, the system was secured and updated. Subsequently, the machine

was disconnected from the Internet, and automatic updates were disabled. After three

months, the machine was plugged into the Internet and scanned with a vulnerability scanner

called NeXpose by Rapid7 LLC [Rap]. NeXpose found 216 vulnerabilities during this scan.

1This currently includes Dr. Zinta Byrne and a graduate student, Kyle Sandell.

2This PAG was created by Gosia Urbanska.

10

Of these, 133 were critical, 74 severe, and 9 moderate. In the worst case, the PAG grows

exponentially in the number of potential user/system/attacker attributes. For a reasonable

size of graph, it would be intractable to represent all the possible ways of an attack occurring.

Fortunately, researchers of the more general Attack Graph upon which the PAG is based

have tackled this scalability problem.

The PAG is a specialization of a more general model called an attack graph. Researchers

have modeled security for networked systems using attack graphs [PS98; She+02] and attack

trees [MEL01; Dew+07]. These models capture dependencies among different system at-

tributes such as vulnerabilities and network connectivity and facilitate security risk analysis

and management. But these models focus on networked systems rather than home computer

users. Attack Graphs (including the PAG, which is a specialization) quickly become large,

computationally expensive to analyze and hard for human analysts to understand. One way

to manage this complexity is to make assumptions about how attacks propagate through

the graph. One such assumption, monotonicity, states that once a state in the graph is

activated, it is never deactivated [AWK02]. The implication is that once an attacker achieves

an exploit, the exploit remains active from that point forward. This assumption simplifies

propagating changes through the Attack Graph.

Another way to handle the complexity is to use an implicit representation to reason about

the graph without instantiating the entire set of states. Ghosh and Ghosh [GG12] reduce the

complexity of instantiating an attack graph by iteratively applying a planner to eliminate

unreachable attack scenarios. They use a planning model similar to Boddy et al. and generate

minimal attack paths. To identify multiple paths that lead to the same scenario, they

modified the domain model by eliminating each path (that is, commenting out an action

or predicate) as it was discovered. Obes et al. [OSR10] construct a large planning model

(1800 actions) from an attack graph and integrate a planner into a penetration testing

tool. Although they found an exponential increase in computation time as the number of

machines modeled increased, the time was still just 25 seconds to generate a plan involving

480 machines; using planning improves reasoning about an Attack Graph.

11

Figure 2.2: Example PAG constructed from 11 vulnerabilities found during a scan of a
computer that did not receive patches/updates for three months.

We observe two gaps in the literature for employing planners to solve the computational

intractability of reasoning over Attack Graphs and the PAG. In the first case, no previous

literature has examined how to enable a planner to find multiple attack paths (i.e., alternative

plans) in a single planning episode for these applications. In the second case, these graphs

require more than one kind of quality evaluation for the plans that are produced.

2.2 Other Applications of Alternative Plans

The focus problem of a cybersecurity agent for home computer users is only one applica-

tion that requires alternative solutions or multiple metrics for assessing plan quality. Such

concerns are also central in applications for human-in-the-loop control, real-time and remote

systems, and decision support.

Many human-in-the-loop AI systems present alternative plans/solutions for evaluation

by a human. These systems – which are used in space, military, and commercial applica-

tions and sometimes labeled mixed-initiative – can involve a combination of planning and/or

scheduling and are often part of a larger software agent. Human in the loop planning in-

12

cludes applications where humans have final say over plans (e.g., military, computer security)

as well as cases where humans have to carry out part of or anticipate consequences of the

plan such as some production planning/scheduling and logistics. Example space applica-

tions include producing schedules for imaging satellites [SEM02], constructing plans for an

autonomous remote satellite [She+98], and scheduling satellite communications [Bar+03]. A

plan is constructed and then sent to the remote agent for execution. Due to time lag and

safety concerns, plans must meet complex time, resource, and sometimes political constraints.

Sometimes the plans must also include contingencies to manage execution anomalies. Thus,

planners must support multiple objectives while exploring alternative execution paths.

Real-time applications demand a slightly different focus for generating alternatives be-

cause the system generates new plans for a human to assess during execution. Applications

in this category include managing unmanned aerial vehicles [Gol+02], teams of robots and

humans in military campaigns [WLB03], materiel logistics [BS00; SBK04], and an elder’s

schedule [Pol+03]. These kinds of domains have a strong focus on generating plans that

repair execution anomalies but maintain stability with respect to the currently executing

plan. Often such reasoning implies understanding the critical bottlenecks. Other real-time

applications focus on helping the user identify problems or opportunities in plans. Examples

of this kind of system are found in network security [Bod+], vehicle routing [SLK02], and

satellite scheduling [Ber+08]. Thus, planners must identify alternatives that may highlight

bottlenecks or new opportunities.

For remote, semi-autonomous systems, a plan is constructed and then sent to a system

for execution. Often, plans must meet complex time, resource, or political constraints.

Such applications include producing schedules for imaging satellites [SEM02], constructing

plans for an autonomous remote satellite [She+98], and scheduling satellite communications

[Bar+03]. Thus, planners must support multiple objectives.

Decision support applications require human judgment to balance between multiple ob-

jectives. Presenting users of these systems with alternative plans gives them options for

balancing the objectives. It is often impractical or impossible to capture in a domain model

13

all the knowledge required to make good judgments, e.g., a resource may be preferred because

of which user controls it, or some task should be done earlier because the requesting user has

more authority. The problem is exacerbated if there are multiple, possibly competing objec-

tive criteria for evaluating a solution. Although many of these systems may employ complex

constraint reasoning (e.g., ASPEN [Chi+00] and EUROPA [FJ03]) or hierarchical planning

(e.g., PASSAT [Mye+02]), they still rely on human judgment and negotiation. Indeed, in

most of the applications, humans are integral to the decision process and always approve

the final plan. Users must be involved in the decision process when the domain modeling

is inaccurate, and planners must support the iterative decision making process of exploring

alternatives.

14

Chapter 3
Background and Related Work

In this chapter, we define formally the classical planning problem and its extensions,

explaining the dominant approach for creating plans (heuristic search), discuss recent ap-

proaches for generating plan sets, and close with a discussion of how planning systems are

evaluated. Our focus is on the systems that take steps along the two research directions of

producing plan sets and using alternative metrics. The gray box of Figure 3.1 demonstrates

this focus.

3.1 Classical Planning

A common approach to generating plans is to encode the planning problem into a lan-

guage that a planner can then use to synthesize a plan. The variety of methods for auto-

matically generating plans can fall under the broad framework of “plan refinement” [Sub97],

where refinements are added to a (possibly empty or incomplete) plan until the goals are

achieved. The three primary means of refining (i.e., searching for) plans are state-based

heuristic search, task decomposition, and plan-based search. This dissertation focuses on

heuristic search4, so we begin with a formal definition for heuristic search in planning. We

adopt the notation and definitions directly from Gallab, Nau, and Traverso [GNT04]. We

assume the state-based planning formalism that is based on a state-transition system. A

general state-transition system is a tuple Σ = (S,A,E, γ), where:

• S = {s1, s2, ...} is a finite or recursively enumerable set of states;

• A = {a1, a2, ...} is a finite or recursively enumerable set of actions;

• E = {e1, e2, ...} is a finite or recursively enumerable set of events; and,

• γ : S × A× E → 2S is a state-transition function.

4In general, when I say heuristic search, I mean state-based heuristic search.

15

Figure 3.1: The two research directions of this dissertation with the focus of this chapter
highlighted in red.

In classical planning, it is common to further restrict the state-transition system to 1) be

finite, 2) be fully observable (the state of the system is completely known), 3) be deterministic

(each transition applies to and results in no more than one state), 4) be static (the set of

events is empty and only actions change the state), 5) have restricted goals (the goal or goal

set does not have associated trajectory constraints or utilities), 6) have sequential solutions (a

plan is a linear ordering of actions), 7) have implicit time (transitions occur instantaneously),

and 8) be offline (the world state does not change during a planning episode). The restricted

model allows us to disregard the set of events E because those are empty; this system is

denoted Σ = (S,A, γ) rather than the full state-transition system of Σ = (S,A,E, γ). With

this restricted model, planning is then defined:

Given Σ = (S,A, γ), an initial state, s0, and a subset of goal states, Sg, find a

sequence of actions π = 〈a1, a2, ..., ak〉 corresponding to a sequence of state tran-

sitions (s1, s1, ...sk) such that s1 ∈ γ(s0, a1), s2 ∈ γ(s1, a2), ..., sk ∈ γ(sk−1, ak),

and sk ∈ Sg.

A planning problem is then denoted P = (Σ, s0, Sg), where s0 is an initial state and Sg

is a set of goal states. A solution to this problem synthesizes a plan π that is a sequence

of actions. For all but the smallest Σ, it is intractable to enumerate the entire set of states

and transitions. A number of representations have been used that can compute the states

and transitions as search proceeds. We will focus on the representation that is used in most

16

planning, called the Classical Representation. The de facto language to represent classical

planning problems has become the Planning Domain Definition Language [AIP98; FL03],

which is a common input language for many recent classical planners.

If cost is assigned to each action, then a cost function C : A→ {0, 1, ...} maps the actions

to non-negative integers. In planning, this is called metric planning. In cost-based planning,

the cost of a plan is the sum of the action costs, or c(π) =
∑

a∈π C(a).

Classical Representations are based on first-order logic that is restricted to be function-

free; there can be any number of predicates and constants. A predicate is a relation that

gives a truth value; for example, at(?robot, ?location), where ?robot and ?location

are variables that can be assigned any value from the world.

If a predicate variable is bound to a specific variable, it is said to be grounded ; otherwise,

it remains lifted. A constant is a specific object in the system; it can be typed or untyped,

though most current systems employ typing to help control the combinatorial explosion due

to grounding nonsensical objects to predicates. Parameterized versions of actions, called

operators, can also be ungrounded. In this system, an ungrounded operator o ∈ O provides

the transition function by listing its preconditions, denoted precond(o) ∈ S, and its effects,

denoted effects(o). The task of the planner is to bind variables and select actions. Many

planners will fully ground the operators as a preprocessing step prior to search.

Propositional representations only allow binary values for variables. An alternative is

to allow an arbitrary number of values for variables. Such multi-valued representations

focus on a functional description over a relational description. A commonly used formalism,

called SAS+, converts the PDDL problems to a multi-valued representation [BN95]. Note

that this formalism can be converted to a propositional representation in polynomial time.

The two formalisms are semantically identical, but they can have dramatically diverging

computational (i.e., search) costs as the multi-valued encoding can be seen as a more compact

set of transitions over which to search.

State-of-the-art planners often fully ground the domain and use a multi-valued represen-

tation. The first planner to do so was Fast Downward [Hel06]. This planner employs the

17

concept of a preferred operators [RH09a], which are identified during successor generation

as the set of operators more likely to lead to a goal. A more recent planner, called LAMA

[RW10] is based on Fast Downward. LAMA adds the ability to search according to land-

marks, which are states in the plan that must be true in any solution to the goal. The idea

of a landmark is that it is a kind of bottleneck that can aid searching for a plan.

For the security agent, we can assume a (mostly) classical model. In planning problems

where the transitions are non-deterministic, the action effects are stochastic, or states are

not observable, it is common to use methods from probabilistic planning. Solutions to

probabilistic planning problems are given as policies, which map states to actions. A survey of

this area is given by Kaebling, Littman, and Cassandra [KLC98]. Notwithstanding promising

advances in state abstraction, a drawback of decision theoretic planning is that the flat state

space can be very large even when state abstractions are used. The security agent aligns

more closely with an observable, discrete planning model plus quality metrics more so than

a partially observable, continuous planning model minus a policy.

3.2 Generating Plans

One of the first algorithms for creating plans, A* [FN71], has become a common core

algorithm for many planners. A* works by using an open list, O, a closed list, C, and a

heuristic function, h. Algorithm 1 shows the A* algorithm. At each step, A* pulls the

minimum valued node off the open list, expands its successors (i.e., applies the possible

operators that match), evaluates each successor according to h, and places each successor

into O. O is usually a MinQueue (e.g., a MinHeap), sorted according to the function

f = g + ĥ, where g is the cost-so-far of steps to get to this node and ĥ = h(s).

We use two techniques that extend A* search. The first uses what is called a focus list

to select solutions instead of the minimum from O. Instead of getting the minimum state

(s = min(q)) from the top of the priority queue at each iteration, A∗ε [PK82] selects a solution

from the top K solutions. A solution s′ ∈ K if f(s′) <= εf(s), where ε > 1 and h(s′) = h(s).

18

Algorithm 1 A*-SEARCH (P , maxSteps) returns a solution or failure

1: closed ← ∅
2: O ← INSERT(MAKE-NODE(so), O)
3: stepsTaken ← 0
4: while stepsTaken ≤ maxSteps do
5: if isEmpty(O) then
6: return failure
7: end if
8: node ← O.removeNext()
9: state ← node.getState()

10: if Sg ⊆ state then
11: return SOLUTION(node)
12: end if
13: if not inClosedList(state) then
14: closed ← closed ∪ state
15: O ← O ∪ EXPAND(node, P)
16: end if
17: stepsTaken++
18: end while

An important property of A∗ε is that, assuming an admissible heuristic, it can guarantee the

solution quality is within (1 + ε)c∗, where c∗ is the optimal solution quality. The second

technique is modifying the sort of O using f = g + wh, where w > 1. This technique favors

the heuristic during search so that the search process is biased to explore states closer to the

goal before expanding states farther away from the goal.

3.2.1 The Plan Graph and Modern Heuristics for Classical Planning

An important advancement in state-space heuristic search for planning was the Planning

Graph [BF95]. This data structure interleaves the states and actions of the state-transition

system. Figure 3.2 shows the first three layers of the graph for the problem in Figure 1.1.

The first state level is the initial state of the system, and the first action level contains those

actions that apply to that initial state. The next state level is given by the effects of each

action that can apply, and mutually exclusive (mutex) relations (not shown in the figure) are

put in the level to account for the case where a state contains contradictory effects. A no-op

action carries all effects from the previous level that do not have a corresponding action.

States accumulate as the levels increase provided that more actions can apply at each new

19

Figure 3.2: The first three layers of the plan graph (without mutexes) for Figure 1.1. Solid
lines represent the move operator, circle-dash lines represent special no-op actions that
transfer unchanged state from one layer to the next, and long-short-dash lines represent
load/unload for the package.

level. When a level is reached that contains the goal state(s), as shown by the k − 1 and k

layers in the figure, then one can search the graph to recover a solution.

Few planners continue to use the planning graph at their core, but a more recent appli-

cation of the planning graph is in generating heuristics to use during heuristic search. The

planning graph is useful for providing a lower-bound on the number of steps to achieve some

state or goal condition. Since delete effects generate most of the mutexes for the construc-

tion of a planning graph, ignoring them considerably speeds up computation. So a relaxed

version of the planning graph is used wherein the delete effects are ignored. This heuristic is

commonly referred to as h+. The first planner to use this heuristic was the Heuristic Search

Planner (HSP) [BLG97; BG01]. The h+ heuristic, or one of its family of variants [HG00;

HBG05], are now widely used in heuristic search planning.

20

3.2.2 Other Methods for Generating Plans

While the focus of this thesis is in extending the state-of-the-art approaches in state-

based heuristic search, we cover additional methods for planning that could make sense for

some aspects of security agent but were not studied.

Precompiled Plans A precompiled (or hand-generated) plan could be used for activities

that the agent should know how to accomplish without additional reasoning. For example,

we already know how to update software, so it makes more sense to create a precompiled

plan that will work for most software updates. A possible list of precompiled plans includes:

updating software for major programs, updating the OS, updating virus definitions, check-

ing/confirming system registry and user access settings, monitoring actions, system actions,

scheduling and queuing actions, and checking for newly installed software.

Plan Templates In many cases, a plan library can also provide plans that have either been

hand-generated or previously discovered through automatic generation. Not all domains

require automatic plan generation and storing a set of previously generated plans can “free”

the agent’s resources to focus on other concerns. In some domains, it makes more sense to

have domain experts encode possible plans and then have a planner place these plans on a

timeline. The security agent could use hand-generated plans when they are appropriate, as

in the case for intervening in security attacks.

As an example of manually generated templates, plans for Autominder [Pol+03; Pol02]

consisted of daily plans constructed by a caregiver on behalf of, or in consultation with,

an elder client. The caregiver could select from a set of plan fragments, for daily activities

such as “Watch a TV program” or “Take a medication.” The caregiver would fill out the

template with more specific details regarding recurrence and preferences such as “three

times daily” or “within an hour after breakfast.” Daily plans consist of a set of completely

specified plan fragments. The plans are represented in a constraint-based representation

called a Disjunctive Temporal Problems (DTPs). DTPs can leverage constraint satisfaction

techniques to quickly compute whether the current plan is feasible given all the constraints

21

and where potential bottlenecks exist. The DTP model also allows for easy online updates

to the plan. Updates occur when activities are added or removed from the plan, when an

activity is completed, or when an activity is not completed.

Task Decomposition In a Hierarchical Task Network (HTN) [EHN94b; EHN94c; Ero+95],

the planner decomposes goal states into methods and task networks that further refine a plan.

As the planner applies possible expansions of methods and tasks, it selects among choices to

achieve goals. This approach is useful for combining automated search with plan templates.

HTN planning is exemplified in the SHOP2 planning system [Nau+03]. Although HTN plan-

ning has the same complexity as other planning techniques [EHN94a], its key advantage is

in domain elicitation and domain construction, where the domain engineer can specify how

to achieve a goal by decomposing the goal into sets of possible expansions.

HTN planning is applied at the highest reasoning level of Phoenix, a multi-agent system

for forest fire management [Coh+89; How93]. The top-level agent, called a fireboss, plans

through the use of a plan library and a hierarchical decomposition. Three action types can be

scheduled on a time-line to allow this decomposition to take place in a natural way. Selection

actions are place holders on the time-line that tell the agent to search for appropriate plans

in the plan library for a specific goal such as “deal with a new fire.” Plan actions instantiate

(or expand, to use HTN language) the resulting plan that was chosen by the selection action.

Primitive actions direct an agent or command a sensor or effects. All three types can be

composed of each other, which allows for nested plan expansions.

3.3 Generating Alternative Plans

Alternative plans capture the variety of ways that a set of goals can be achieved. They

can be used to increase applicability of planning systems to support human decision making

and agent adaptability. For example, in mixed-initiative planning, alternatives can explain

key bottlenecks and represent a variety of solutions [SLK02]. In an execution setting, new

plans may deal with contingencies while minimizing disruption to an already executing plan

22

[Fox+06]. In a security application, the planner needs to produce all the possible ways an

attack can occur [Bod+].

Several groups of researchers have examined how one can generate alternative plans

that are diverse with respect to plans that are already found. Approaches for generating

alternatives can be broadly characterized along three dimensions: 1) whether they modify

a single solution or a population of solutions, 2) whether they use a full planning system or

single algorithm, and 3) whether they focus on changing the heuristic or controlling the set

of states visited during search.

Several groups of researchers have examined how one can generate alternative plans that

are diverse with respect to plans that are already found. Srivastava et al. [Sri+07] explore

how to generate diverse plans in a constraint-based planner and a local search planner; this

work was later extended to planning with incomplete preference models [Ngu+12]. They use

actions, states, and causal links to assess the distance between plans, and they use a weighted

combination of one of these distance metrics during search to produce diverse plans. They

find that using actions usually encourages sufficient search diversity.

Coman and Muñoz-Avila [CMA11] describe a heuristic-based approach that can embed

arbitrary distance metrics into the search heuristic. Given a plan π, a set of plans Π, and a

distance metric D, this method calculates:

RelativeDiversity(π,Π) =

∑
π,π′∈Π

D(π, π′)

|Π|
(3.1)

Generalizing the distance metric, D, in Equation 3.1 allows the authors to substitute any

quantitative or qualitative distance measure to help generate diverse plans. In particular,

as the authors point out and show, D can contain domain-specific information that may be

challenging to incorporate into the domain model. For example, the authors use D to guide

planning in a Real Time Strategy game where the domain model remained the same but D

took into account dynamic environmental concerns that are absent from the domain model.

They showed that they could elicit different plans from the planner that adapted to this new

information without directly changing the domain model.

23

More recently, Talamadupula et al. looked at generating plans for execution with the

best net benefit in a partial satisfaction planning framework [Tal+10; Sch+09]. While this

work is not strictly about generating alternatives, it does examine how to evaluate multiple

plans with respect to usefulness to a user. For their evaluation metric, they use the sum of

the reward minus the sum of the action costs.

We note that many of the planners from the recent International Planning Competition

(IPC-2011) find better solutions over time, e.g., LAMA [RW10], which uses a multi-queue

local WA* search, and CBP [Fue11], which uses branch-and-bound search. Such anytime

planning algorithms and satisfying planners could be seen as generating alternative solutions;

each new solution is effectively an alternative that improves over the last. Indeed, nearly

any planner could be modified to produce alternative solutions, though they may still have

a bias toward progressively better solutions under the current IPC metrics for comparing

planners.

3.3.1 Multi-objective Planning

Temporal and resource reasoning lies at the heart of many significant problems in plan-

ning research. A wealth of literature exists for producing (diverse) temporal plans using a

single plan metric (e.g., SAPA [DK03], LPG-td [GSS06], COLIN [Col+12]). In most cases,

these temporal+metric planners embed deep reasoning to solve specific resource and time

constraints that lie at the junction of planning and scheduling. It is difficult to assess the

contribution of the non-temporal metrics when they are combined with temporal concerns

in a weighted objective function.

Several researchers have examined multiobjective planning in different contexts such

as temporal planning or preference planning. The SAPA planner by Do and Kambham-

pati [DK03] is a multi-objective metric temporal planner that can handle resource con-

straints; this was one of the first planners to examine how to extend the planning graph

heuristics to incorporate plan quality and plan makespan. Nguyen et al. examined multi-

objective planning for problems where the preferences model is incomplete [Ngu+12]. As

24

mentioned in Section 3.3, they used actions, states, and causal links to encourage search for

diverse solutions. From a multi-objective perspective, they evaluate the planners according

to a metric called the Integrated Convex Preference [Fow+05], which is a way to assess the

solution quality of a set of solutions in a weighted multiple-objective context. More recently,

Khouadjia et al. [Kho+13] wrapped a population-based search mechanism around a plan-

ner, YAHSP [Vid04], to produce Divide and Evolve YAHSP (DAE-YAHSP)5. This planner

produces diverse solutions and handles multiple quality metrics.

3.4 Evaluating Planning Systems

In general, the planning literature has focused on producing a single solution while min-

imizing (or maximizing) a single metric – metrics in the planning literature are known by

objective functions or evaluation criteria in other search literature. There are notable ex-

ceptions such as the planners mentioned in the previous two sections. Many applications

require complex judgments that seek a balance between a variety of objectives and not just

progressively better solutions driven by a single metric. We now cover the metrics used in

our study

3.4.1 Efficiency

A standard way to evaluate software systems is by the computational resources they

consume during their execution lifetime. The field of planning uses similar CPU time and

memory measures as those in much of computer science. Since planning systems are large

software projects, an upper bound on computational resources is usually set (e.g., 15 minutes

and 1 GB of memory). When two approaches share the same underlying code base, they

can also be compared by the number of nodes they generate or the number of evaluations of

the heuristic function. Both are proxies for the true effort but provide a fair comparison.

5We attempted to obtain a copy of DAE-YAHSP for our study, but were informed that the authors are
creating a version for public release.

25

3.4.2 Quality

In many applications, humans (or agents) must balance complex, hard-to-quantify objec-

tives. The quality of a plan is useful in the context of alternative plans because it helps the

human (or agent) evaluate the various means of achieving goals. We consolidate under the

term of “plan quality” a number of measures that can be quantified, which might include:

the utility to the user, the number of actions in a plan, the likelihood of occurrence for

a plan, the plan’s temporal duration (i.e., its scheduling makespan), the resource usage of

the plan, etc. Several of these metrics come from the security domain that motivates our

research, while others appear in the planning competitions that we discuss next.

For a long time, the classical planning literature – at least the literature outside of

applying planning to realistic problem domains – focused on minimizing the number of

actions, also called the plan length, of a serial plan. Applications that required more reactive

planning (and the use of decision theoretic models such as MDPs or POMDPs) have included

quality measures and leveraged decision theory to come up with policies that maximized the

expected gain [KLM96]. Similarly, applications where scheduling concerns played a central

role [Fox94; BS00] included many evaluations of the overall quality of a plan/schedule6. We

quote Bacchus, the organizer of the second International Planning Competition (IPC2): “In

general, no serious attempt was made to measure the quality of the plans produced. Only

the length of the plan was measured because there was no facility for specifying the cost of

different solutions. In fact, most of the planning systems were incapable of taking such a

metric into account during planning.” [Bac01, p. 49]

6It is especially noteworthy to see the overlap of scheduling and Partial Order Planning (POP) [Wel94;
SFJ00] and their application to real-world applications, which continue to be solved using partially ordered
planning in some combination with HTN and/or timeline-based systems. The IPCs are just coming around
to evaluation metrics that are getting closer to the needs of those real-world applications. But state-based
single-metric and single-solution planning systems still dominate the competition entries.

26

Plan quality in the International Planning Competitions In the last ten years,

interest in quality-aware planning has surged, and, since IPC2, the role of quality metrics

in evaluating plans has gained substantial footing. The IPCs provide a overview of that

change in focus. Most notably, the designers of the IPCs have progressively expanded the

representational ability of PDDL, the evaluation of planners has begun to include these

metrics in greater earnest, and planners have slowly adopted the comparison of plans under

various quality metrics.

The 2002 competition, IPC3, added to PDDL durative actions, a clarifying of numeric

support, and support for arbitrary plan metrics [FL03]; this version used a subset of PDDL+

[FL06] and became known as PDDL 2.1. Most of the problems in the competition had 4

metrics: plan length (called strips by the organizers), sequential makespan (called Simple-

Time), concurrent makespan (Time), and a metric based on the domain (Numeric). Two

additional problem sets had an optimization metric that measured the quality of images

taken by a satellite (HardNumeric), and an optimization metric that combined satellite

resource usage with the solution makespan and the image quality (Complex).

The organizers, Maria Fox and Derek Long, spent considerable effort understanding

how planners compared with respect to the plan metrics [LF03]. Of the fully-automated

planners, very few planners attempted the so-called HardNumeric and Complex problems.

Similarly only three fully-automated planners completed the numeric domains. Across the

four metrics, the results demonstrated that it was challenging to compare planners in terms

of plan quality, but that the inter-planner rankings were stable. Only a small set of the

planners used metrics other than temporal duration. One of the truly surprising results of

the competition analysis was that hand-coded planners did not seem to gain a huge advantage

over the domain independent planners in terms of the quality metrics, although the authors

do point out the limitations in such a conclusion because of the post-hoc analyses.

The fourth competition in 2004, IPC4, sought to further extend the focus on quality

metrics. The organizers, Jörg Hoffmann and Stefan Edelkamp, added derived predicates

and timed initial literals to the language [HE05] and the resulting language version was

27

PDDL 2.2. Derived predicates add a kind of domain axiom that becomes true as a result

of non-planner actions and are a convenient way to express completion of paths or flows.

Timed initial literals add what has become more commonly called exogenous events, which

are a convenient way to represent time windows for specific events.

As with IPC3, the organizers of IPC4 spent considerable time analyzing the data. No

hand-coded planners competed in this competition. The deterministic track of the competi-

tion was further split into optimal and satisficing planners; there was also a probabilistic track

that will not be discussed here. The predominant measures of plan quality were scheduling

makespan and plan length. Only one domain, Satellite, used a quality metric that diverged

from plan makespan or scheduling makespan. The metric of the Numeric version was to

minimize the fuel usage, and four of the five planners attempted to take this into account

during planning. The Complex version used a metric that was a linear combination of the

makespan, the fuel usage, and negative image quality, but none of the five planners that

could solve this problem attempted to use the metric during planning.

IPC5, held in 2006, was organized by Alfonso Gerevini, Yannis Dimopoulos, Patrik

Haslum, and Alessandro Saetti. The competition featured PDDL 3.0, which extended PDDL

2.2 to include state trajectory constraints that are true over every timepoint of the constraint

window, and preferences over constraints and goals [Ger+09]. The competition featured nu-

merous domains with domain-specific quality metrics in addition to metrics such as plan

makespan, soft-goals and preferences. Of the seven satisficing planners, five used the prob-

lem metric during search, though some of the planners used the metric in limited situations

(i.e., SGPlan5 [CWH06]). Only two planners supported the full set of PDDL 3.0 and only

one additional planner supported the full subset of PDDL 2.2. Few planners could deal the

more complex PDDL syntax and the more complex problems. For quality, many solutions

were much worse than the best/optimal known solutions. For preferences, the planners were

finding better solutions than when ignoring preferences. The organizers posit that this is

because the planners are able to find better solutions because of the techniques used during

search [Ger+09].

28

IPC6 was held in 2008 and IPC7 was held in 2011. Unfortunately, no peer-reviewed

articles have been published that summarizing them, so the conclusions that can be drawn

are limited to the brief presentations given at the conference venue. Neither competition

extended PDDL in a significant way except to correct or limit some semantic concerns, which

suggests that the language was more complex than many planners could handle. IPC6 held

a net-benefit track that used the full PDDL 3.0 capability. However only three optimal

planners competed and the satisficing track was canceled due to lack of participation. The

conclusions that can be drawn from the presentation of the net-benefit optimization track

are very limited. IPC7 had no “metric” or “net-benefit” tracks and chose instead to focus

exclusively on strips and temporal domains with action cost or plan makespan being the key

metric.

Non-competition Approaches to Incorporating Plan Quality. In parallel with the

competitions, other researchers have examined plan quality. Schreckenghost et al. built a

mixed-initiative planning assistant that helps a user examine possible plans/schedules for a

space crew planning problem [Sch+03]. The authors provide the user with several metrics to

evaluate the plans: goal subset selection (why specific goals, among many, were chosen for

planning), goal achievement, compliance with user preferences, goal priorities, plan efficiency,

and resource usage. Plans are ranked by an ordering of these metrics as specified by the user.

The system also supports managing/storing alternative plans as well as giving the user a way

to capture them. The planning horizon is managed through the notion of duty blocks, where

only the relevant available time slots are considered for planning. During plan construction,

the planner greedily selects tasks based on the user’s supplied metrics. During execution,

replanning is used to handle execution anomalies (though this is a proposed component and

not part of what was actually implemented).

Do and Kambhampati [DK04] extended the traditional relaxed plan heuristics of the

SAPA planner [DK03] to include action cost using net-benefit planning, which attempts to

maximize the utility (i.e., the net benefit) of a plan while minimizing the action cost. Benton,

29

Do, and Kambhampati [BDK09] then applied this cost-based extension in oversubscribed

planning domains. These domains often contain more goals than can be satisfied, so the

objective is to meet as many high utility goals as possible. The authors present a Partial

Satisfaction Planning (PSP) framework to handle these oversubscribed planning problems

that have goal utilities and action costs.

There are two significant contributions of the research in PSP. The first is a set of specific

heuristics that deal with cost during search. The heuristics allow the second contribution

that soft-goals are kept as an integral part of the search, which allows for a direct reasoning

about the trade-off of utility versus action cost while searching for a plan. In contrast to an

approach that compiles away soft goals in a preprocessing step [KG09], the authors conclude

that it was more beneficial to maintain the original formulation of soft goals or to compile

them away into hard goals. They found that compiling preferences to hard goals reduced

search effectiveness.

Keyder examined a number of extensions to the h+ heuristics that incorporate action

costs [KG08; Key10]. The h+ heuristic over-estimates the actual cost of achieving a plan

because it is the sum of the subgoals; it is a pessimistic upper bound on the true cost. On

the other end, an admissible version of h+, called hmax, takes the maximum value of the

subgoals; it is an optimistic lower bound on the true cost. Keyder and Geffner introduced

a more accurate heuristic, called the set-additive heuristic hsa that counts the subsets of

actions that appear in the subgoals. This heuristic finds better quality plans than hmax and

another common h+ heuristic called hff , although the authors point out that the set-additive

heuristic is often an order of magnitude slower than the other two heuristics [Key10].

A criticism of the net-benefit or PSP approaches is that they maximize the quality metric

of interest after subtracting the plan cost. This can have multiple drawbacks. If action costs

swamp the quality, then search is biased toward the action cost space. If two plans have

wildly different action costs and different quality metrics, then you must select one over the

other. Recent research shows that cost-based search – that is, search driven by the metric

rather than the plan length – is sensitive to a number of issues. Cushing, Benton, and

30

Kambhampati [CBK11] show specific cases where cost-based search is easily misled to find

a short plan of very poor quality when a longer plan of much better quality exists. Wilt and

Ruml [WR11] demonstrate that search is sensitive to the ratio of operator costs. Sroka and

Long [SL12] assess the metric sensitivity of planners and show that MetricFF (and other

planners) can generate more diverse solutions by varying the constraintedness of resources

in a logistics domain. What is not known from these results is the extent to which such

pathological behavior is elicited impacted when multiple quality (and cost) metrics interact

with each other. Further, it is unclear whether incorporating diversity as a mechanism to

drive search further confounds such pathological search behavior.

3.4.3 Diversity

A common way to evaluate the diversity within a plan set is to use some distance metric,

D, between the plans within that set. One distance metric is to count the difference in terms

of the number of ground actions. Fox et al. [Fox+06] codify this measure in research where

the algorithm tries to generate plans that are stable with respect to an already executing

plan. The authors study an online execution context, where plan stability is important

because large changes in the plan could result in surprise, irritation, or wasted execution

effort. So they define a stability metric such that if π1 and π2 are the actions for two plans,

then,

Dstability = |(π1 \ π2)|+ |(π2 \ π1)|. (3.2)

This equation is intended as a distance metric between the actions of two plans. Two plans

that are similar are presumed to have similar action sequences. Coman and Muñoz-Avila

generalize this measure to a plan set, Π, as follows:

Diversitystability(Π) = Ds(Π) =

∑
π,π′∈Π

Dstability(π, π′)

|Π|×(|Π|−1)
2

. (3.3)

Srivastava et al. [Sri+07] (later extended by Nguyen et al. [Ngu+12]) explored actions,

execution states, and causal links to assess differences in plan diversity. They find that using

31

an action-based distance usually generates diverse plans compared to the state and causal-

link distance measures. So we focus on the action-based distance. The distance formula,

δa(π1, π2) = 1− |(π1 ∩ π2)|
|(π1 ∪ π2)|

=
|(π1 \ π2)|
|(π1 ∪ π2)|

+
|(π2 \ π1)|
|(π1 ∪ π2)|

, (3.4)

is a plan-length normalized version of Equation 3.3. Although the authors only applied δa

during search, we use it to calculate a normalized diversity metric by applying it in the same

way as Equation 3.3,

Diversitynorm(Π) = Dn(Π) =

∑
π,π′∈Π

δa(π, π
′)

|Π|×(|Π|−1)
2

. (3.5)

A drawback of distance-based metrics is that they can overlook other ways in which the

plans are similar. For example, the distance metrics fail to examine how the plans within

a set may actually be repeated, permuted, or subsumed by other plans. Further, it is not

clear from the distance-based metrics how to compare plan sets to each other. We address

these shortcomings in Section 4.1.

32

Chapter 4
Assessing Tradeoffs in Generating Diverse Plan Sets7

A planner’s performance is typically evaluated along several dimensions for producing

a plan π: its coverage over the number of problems it solved, the computational efficiency

of producing each plan, and the quality of its final plan for each problem. A challenge

for comparing planner efficiency is that planners are often sophisticated software systems

that elude direct and detailed complexity analysis. When two planners share the same

implementation (or two techniques exist within the same planner implementation), then

efficiency can be compared using the number of search nodes generated, which is often called

the search cost and is a proxy for time and memory. When planners do not share the same

implementation, total CPU time to a valid plan is reported within upper bounds on the

available computational resources (e.g., 30 minutes and 1 Gigabyte of memory).

Along the quality dimension, planners are usually assessed by one of two metrics: plan

length or plan cost. Plan length denotes the size of the plan, |π|, or the number of actions in

the plan. In temporal planning, plan length is an upper bound on the plan makespan, which

denotes the number of steps required to execute the plan and can include cases where actions

might execute in parallel. When plan quality is evaluated using plan length, an assumption

is that shorter plans are preferred to longer plans. Plan length as a quality metric is deeply

embedded in many planning systems regardless of whether shorter plans are appropriate for

the problem being solved. For example, common algorithms for planning (e..g., best first

search, see Section 3.2) rely on reachability analysis that usually returns the “closest” plan

to the current partial solution (see background Section 3.2.1).

Plan cost denotes the cost of executing the actions of the plan, c(π), which assumes that

each action, a ∈ π, has an associated cost c(a), and c(π) =
∑

a∈π c(a). When plan quality is

7Portions of this work are from the paper: M. Roberts, A. Howe, I. Ray, M. Urbanska. Using Planning
for a Personalized Security Agent. The AAAI-12 Workshop on Problem Solving using Classical Planners
(CP4PS-12), July 22, 2012, Toronto, Ontario, Canada.

33

evaluated using plan cost, an implicit assumption is that lower cost plans are better. At first

glance, using plan cost to drive the search has the appearance of moving away from plan

length. Yet many planners still rely on reachability analysis as the basic mechanism driving

search. Plan quality even has the undesirable property that it can severely mislead search

(see background Section 3.4.2).

Coverage, quality and efficiency have a long history of use in the planning literature

for comparing planners that produce a single “best” solution. Generally speaking, a more

efficient planner will solve more problems and have higher coverage. So, in this evaluative

context, one planner is preferred over another planner for a given problem if it produces a

better quality solution with the same (or less than a set bound of) computational resources.

This evaluative focus has naturally led the community to focus on the tradeoff between

efficiency and quality, and has led to techniques that improve performance along one or

both of the quality-efficiency dimensions. The end result is continuing advancement of the

state-of-the-art for applications needing the best quality solution. In general, planners get

faster at finding that best solution.

But, as we motivated in Chapter 2, some applications require the planner to produce a

plan set, Π, instead of just one solution. This relaxation to alternative plans admits another

dimension of evaluation, namely the plan set diversity, which characterizes the way in which

plans within the set differ from each other. To be sure, it is still desirable to maintain suitable

Figure 4.1: On the left, the two research directions of this dissertation with the focus of this
chapter highlighted in red. On the right, the three main axes of evaluation we consider.

34

quality-efficiency tradeoffs. In this revised evaluative context, one planner is preferred over

another if it produces plan sets that are highly diverse while still maintaining good quality

and reasonable efficiency. Although recent work does examine how to incorporate diversity

metrics into planners [Ngu+12; CMA11; Sri+07], relatively little work examines how using

diversity metrics to drive search and evaluate planner performance may confound analysis

and may guide search to produce solutions that fail to match the desired outcome. We hope

to tease apart the two uses in our work.

In this chapter, we investigate the tradeoffs of moving in a research direction of producing

plan sets by evaluating several approaches according to the axes of efficiency, quality, and

diversity. Figure 4.1 demonstrates this focus. Our analysis leverages existing metrics for

evaluating efficiency and quality by using the common measurements already mentioned:

search cost, coverage, plan length, and plan quality. Along the diversity axis, we evaluate

plan sets using two diversity metrics from the literature [Ngu+12; CMA11]. We are interested

in the interplay of diversity-efficiency axes, so we introduce two new evaluation metrics: the

uniqueness attempts to characterize how much duplicated effort exists within a plan set,

while a set-based metric, overlap, helps compare two approaches to each other. Finally,

we investigate how the plan set changes over time to assess whether additional effort is

worthwhile.

Our study includes four algorithms and one full planning system. To maintain a fair

comparison, we implement the algorithms in the same planning framework. The algorithms

include random walk search [XNM12], modifying the heuristic to drive search [CMA11],

and modifying the states visited using a Tabu list [Rob+12], plus a hybrid of the heuristic

and Tabu approaches. We complement our analysis of the algorithms with a full planning

system, called LPG-diffmax [Ngu+12], that is designed to produce diverse plan sets. We

run these five approaches on several benchmark domains from the International Planning

Competitions (IPCs).

Our results show that, although the full planning system solves more problems, it does

not always produce more diverse plans than the simpler algorithmic approaches when we

35

take into account our new evaluation metrics. We show that adding diversity to a plan-

ner’s search mechanism often leads to many duplicated solutions or to solutions that contain

duplicated action sequences; i.e., the plans are syntactically different but uninteresting alter-

natives because they are subsumed by another (valid) plan. Paradoxically, the approaches

that generate the highest diversity with the highest uniqueness also produce plans that in-

clude many extra actions that sacrifice plan quality and reduce search efficiency. Thus, we

show that long searches for more diverse plans are unnecessary with these approaches. Our

findings suggest that selecting the best approach for generating alternatives depends on the

evaluating metric(s), which ultimately depends on the needs of the application for which

those alternatives are generated. Most importantly, our findings challenge the approach of

using diversity as a metric to both drive search and evaluate planner performance.

4.1 Diversity Metrics

We examine two ways to assess plan sets. The first compares the diversity within a

plan set, while the second is to compare plan sets between two sets generated by distinct

approaches. Within a plan set, we apply two existing diversity metrics in our work. The first

is due to Coman and Muñoz-Avila [CMA11] (see Equation 3.3) the second is due to Srivas-

tava et al. [Sri+07] (see Equation 3.5, which was later also used by Nguyen et al. [Ngu+12].

Both metrics are based, in part, on the observation by Fox et al. [Fox+06] that the actions

are a natural way to establish distance between plans.

These metrics summarize the average distance within a plan set. However, these values

can easily be misleading when plans are subsumed or permuted versions of each other. These

distance metrics also have some shortcomings. First, using distance metrics to drive search

and also evaluate the outcome leads to a confounding factor. Second, it is not clear how

to transfer the distance metrics for comparing between plan sets of different approaches.

Finally, it is also unclear how distinct plans are within a plan set because the distance

metric obscures this in a single value. So we contribute three additional diversity metrics

designed to overcome these limitations: uniqueness, parsimony, and overlap.

36

Some plans pad a shorter plan with spurious actions while other plans permute the actions

of another plan. We capture this in a measure called uniqueness, u(Π) that reduces the

plan set to those plans that are not subsumed after removing padded and permuted plans.

u(Π) =
∑

πm,πn∈Π,πm 6=πn


0, if πm \ πn = ∅
0, if πn ⊂ πm

1, otherwise.

(4.1)

Note that uniqueness is a measure of the efficiency with which the planner finds novel plans.

Low uniqueness usually indicates wasted search effort, although we show later how this

measure can be misleading because it ignores action sequences that don’t lead to a goal. We

occasionally limit a plan set to the first i unique plans to maintain a balanced comparison

between approaches. Often, we use the first i = 10 unique plans because it ensures a fair

comparison to approaches that did not produce many plans.

The uniqueness metric does not capture all cases where a plan contains extraneous actions

that do not produce a useful goal-directed alternative. The original plan, πl, contains a subset

of k actions that still lead to a valid plan. Thus, the plan is not as parsimonious as it could be.

Although such plans can be highly diverse from the others in the plan set, we will show that

they often lie at the worst extreme of the efficiency-quality axes that the planning community

cares deeply about; these plans are neither efficiently produced nor of good quality. Driving

search to maximize diversity can cause a planner that normally produces concise plans to

sometimes produce longer plans of poorer quality with significant duplicated search effort.

Or worse, the planner may produce plans including action sequences that are unrelated to

the goal state.

Characterizing the extent to which a plan might contain spurious action sequences is

challenging. To find a plan of minimal length, πk, is as hard as planning itself in the worst

case. But let us suppose that this analytical worst case is not hit often enough that it

prohibits good empirical results. Suppose we have a given plan πl ∈ Π with length l = |πl|.

We want to compute a minimal plan, πk ⊆ πl of length k = |minimal(πl)| that includes

only the actions necessary to produce a valid minimal plan. A naive approach to find πk is

37

through ablation of πl, which may have the same worst case complexity as planning itself8.

A different approach leverages best first search to construct πk. For our metric, we search for

πk using A* search with only the actions from πl. Using only the actions from πl significantly

reduces the branching factor of the search space. Note that there could be more than one

minimal plan, but no plan will be shorter because A* is optimal in this setting (i.e., when

searching by plan length). Note also that a solution may not be found if l or k are sufficiently

large or if A* is not given sufficient computational resources.

With πk at hand, we can estimate how often our approaches violate parsimony. We

calculate a parsimony ratio to capture how well a planner generates the smallest valid

plan with a given set of operators. To obtain this ratio for each plan, πl, we run A* search

with only the actions from πl to produce a minimal plan πk. However, given the number of

solutions we need to process, we run each solution with a reduced computational bound of

2 hours and 1GB of memory. So it is possible that search will not find a minimal plan. For

the plans where A* produces a minimal solution, πk, we calculate the parsimony ratio,

s(πk, πl) = |πk| \ |πl|, (4.2)

where πl is the original plan and πk ⊆ πl. The variable s is chosen because it does not conflict

with the typical usage of p in statistics or probability contexts. The ratio s demonstrates

on a scale of [0, 1) how close in length |πl| is to |πk|. Higher values of s are better as they

indicate that the planner finds an alternative plan close to the minimal length given the

operators from πl. We report summary statistics of this ratio over a plan set.

Finally, when considering how plans sets between algorithms compare, we assess the

overlap as the set intersection of two plan sets,

o(Π1,Π2) = Π1 ∩ Π2. (4.3)

Plans can be distinct from each other while still being supersets of the unique plans.

8This is conjecture on our part, and parametrized complexity analysis may show a naive approach is
tractable for small values of k and l. However, n-way interactions may prove to be the bane of this approach.

38

4.2 Domains

We study six domains. The first is the security domain discussed in Section 2.1. The

other five are benchmarks from the International Planning Competition (IPC) as shown

in Table 4.1; this table also shows the count of problems, actions, and predicates for each

domain (or each problem in the case of Cybersec) to give a sense of the size of these plan-

ning problems. Three IPC-2002 domains were used by Coman and Muñoz-Avila [CMA11]:

Driverlog, Depot, and Rover. We add the Cyber-security (Cybersec) domain from IPC-

2008 inspired by the work of Boddy et al. [Bod+] that identified the issue of generating

alternatives. Finally, we include the seq-opt Transport domain from IPC-2011 because it

is a newer “logistics” style benchmark, makes sense in a mixed-initiative setting, and in-

cludes action costs that we can use to examine plan quality in later experiments. We use the

Transport problems from seq-opt because the A* approaches – limited by their simplicity

– could solve more problems from the seq-opt track than the seq-sat track.

4.3 Implementations

We implement four different algorithms in a generic C++ framework, called Mosaic

(see Appendix A), into which we originally intended to embed the search spaces of many

C++ planners so that they could be compared on equal footing. Mosaic wraps the LAMA-

2008 planner [RW10] that won the sixth International Planning Competition (IPC) in 2008.

LAMA-2008 is based on the Fast Downward planner [Hel06].

We provide the implementation details of four algorithms: Div (Section 4.3.1), ITA

(Section 4.3.2), and Hybrid (Section 4.3.3), and Random Walk Search (Section 4.3.4). Three

algorithms extend A*, a common algorithm in the search planning literature (e.g., it is

used as a core algorithm in LAMA [RW10], Fast Downward [Hel06], and FF [HN01]). A

fourth algorithm implements a simplified variant of the Random Walk Search algorithm from

Aarvand [XNM12]. All the algorithms employ only the neighborhood function of LAMA using

the FF heuristic function and preferred operators; landmarks are not used (see Section 3.1

39

Table 4.1: Summarizing the domains used in this study.

Domain Source Problems # Actions # Predicates

Depot IPC-2002 22 5 6
Driverlog IPC-2002 20 6 6
Rover IPC-2002 20 9 25

Transport IPC-2011 20 3 5

Cybersec IPC-2008
p01 96942 1710
p02 96942 1710
p03 96942 1710
p04 96942 1710
p05 96942 1710
p06 69347 1143
p07 69347 1143
p08 1732 846
p09 933 574
p10 4564 535
p11 4431 553
p12 40284 992
p13 69287 1105
p14 69090 1105
p15 97024 1718
p16 96942 1710
p17 96942 1710
p18 96942 1710
p19 96942 1710
p20 96942 1710
p21 69347 1143
p22 69347 1143
p23 1732 846
p24 933 574
p25 4564 535
p26 4431 553
p27 40284 992
p28 69287 1105
p29 69090 1105
p30 97024 1718

for details about this planner). The neighborhood function of LAMA is used to generate

the successors for the A* variants, which implement Weighted-A* (WA*) with a weight that

begins at 10.0 and decreases by the factor 0.8 after a new solution is found.

40

Each algorithm is given 10 hours and up to 4 GB memory to produce up to 1000 plans for

each problem. We chose 1000 plans with the hope that the algorithms would have trouble

achieving such a high number, thus partially controlling for an artificial ceiling in the results.

For this study, we did not verify that there were at least 1000 solutions for each problem,

which is something we hope to do in future work. Each algorithm/problem pair is run on

a single processor from one of 48 dual quad-core Xeon 5450, 16 GB machines. Algorithms

terminate at 1000 plans or at memory or time limits.

4.3.1 Diversity-A* (Div)

Heuristic-based approaches modify the core heuristic of the algorithm to guide search to-

ward diverse solutions. Coman and Muñoz-Avila [CMA11] guide search when using Dstability

(Equation 3.3) as the distance function, D, in Equation 3.1 to create a heuristic,

hdiversity = RelativeDiversity(πrelax,Π), (4.4)

which measures the diversity of the current estimate of the best plan that can be achieved,

πrelax, relative to the existing plan set Π found so far during the current search episode. πrelax

is the final plan resulting from the relaxed plan heuristic, h+ (see background, Section 3.2.1).

The original heuristic h is combined with hdiversity to create the heuristic used during search,

hnew(π,Π) = (1− α)hdiversity − αh(π). (4.5)

Note that hnew is maximized; the original heuristic is subtracted because the authors want

to minimize the heuristic but maximize the diversity. The tuning parameter, α, balances

exploitation of the original heuristic and exploration of more diverse plans. But nothing is

done to control the scale between hdiversity and h, so one value could still dominate the final

value of hnew despite α. This is especially true as the number of solutions in Π increases.

Our implementation of the algorithm from Coman and Muñoz-Avila [CMA11] attempts

to maintain as much similarity as possible with the original description while also keeping

the comparison with our other WA* approaches fair. Similar to their planner, we leverage

the Dstability metric [Fox+06]. We also set α = 0.7 as was done in their original studies

41

Table 4.2: Results on using πcurrent (left) or πrelax (right) for Div.

πcurrent πrelax
n Avg Total Unique n Avg Total Unique
9 206.2 1856 57 Depot 9 210.1 1891 40

12 423.3 5080 850 Driverlog 12 180.2 2163 77
20 263.2 5264 174 Rover 20 204.2 4083 63

[CMA11], although we found that the best value for α was highly dependent on the domain

and problem; we discuss this as a limitation of our findings in Section 4.8. The heuristic

used in our implementation of Div is:

hDiv(π,Π) = (231)− (1− α)RelativeDiversity(πCurrent,Π) + αh(π). (4.6)

To maintain as much similarity as possible between the A* variants, we subtract the value

of RelativeDiversity() from a large constant and then add back the original heuristic so that

the algorithm minimizes hDiv .

We were concerned about the bias of using the relaxed plan to compute both h and

hdiversity. So we explored using the current partial plan of the current search node, πcurrent,

rather than the final estimated plan, πrelax, resulting from calculating the relaxed heuristic.

Table 4.2 shows results comparing the use of πcurrent (left) versus πrelax (right) for α = 0.70.

The columns in each sub-table indicate the total number of problems solved (‘n’), the average

number of plans produced per problem (‘Avg’), the total number of plans produced for all

the problems (‘Total’), and the number of unique plans (‘Unique’) . Recall that unique

solutions are those that are not permutations or subsets of other solutions (see Section 4.1).

Using πrelax results in less unique solutions for Depot, Driverlog, and Rover problems. Yet

it does not impact the coverage. This justifies using the current solution, πcurrent, in our

implementation of Div.

4.3.2 Augmenting A* with a Tabu List (ITA)

State-based approaches directly control which states are visited during search. We de-

signed an algorithm called Iterated Tabu A* (ITA) that augments the core A* algorithm

42

Algorithm 2 A*-TABU-SEARCH (P , T , maxSteps) returns a solution or failure

1: closed ← ∅
2: O ← INSERT(MAKE-NODE(so), O)
3: stepsTaken ← 0
4: while stepsTaken ≤ maxSteps do
5: if isEmpty(O) then
6: return failure
7: end if
8: node ← O.removeNext()
9: state ← node.getState()

10: if Sg ⊆ state then
11: return SOLUTION(node)
12: end if
13: if not inClosedList(state) then
14: closed ← closed ∪ state
15: O ← O ∪ EXPAND(node, P, T)
16: end if
17: stepsTaken++
18: end while

with a Tabu list [Rob+12]. Algorithms 2 and 3 show the pseudocode for ITA; the only dif-

ference between Algorithm 2 and the original A* algorithm presented (cf. Algorithm 1) is

in the addition of the Tabu list, T in line 15 and in the iteration in Algorithm 3. When

the search finds a goal node, it calls EXTRACT-STATE-ACTION-PAIRS() on the current

solution, which stores each (state, operator) pair that is on the path to the solution into T .

ITA stores the entire state, which is a vector of variable assignments. On the next iteration,

when the EXPAND() function encounters a (state, operator) pair that is already in T , ITA

adds to the g-value of that node an arbitrarily large constant, gConstant. This ensures that

those nodes are prioritized later in the A* open list and thus are very unlikely to be pulled

off next. Our implementation of ITA uses gConstant = 109. There is no Tabu tenure so the

Tabu list grows monotonically as more plans are found.

ITA was originally designed to find alternatives for the security application [Rob+11],

where alternatives represent possible ways a system can be attacked and it is important to

identify as many of these attacks as possible. We will show that ITA supports generating

diverse solutions especially well for the security domain, and that it also can produce good

alternatives for other benchmarks. However, it sometimes generates longer solutions that

43

Algorithm 3 ITERATED-TABU-A* (P , numSolutions, maxSteps) returns a set of solu-
tions or failure
1: solutions ← ∅
2: T ← ∅
3: while solutions.size() ≤ numSolutions do
4: solution ← A*-SEARCH-TABU(P, T , maxSteps)
5: T ← T ∪ EXTRACT-STATE-ACTION-PAIRS(solution)
6: end while

may be padded with spurious actions as a result of the state-based approach. We explore

this tradeoff in the evaluation. ITA is not optimal because adding gConstant for nodes

in the Tabu list can contradict the (assumed) admissibility of the heuristic. Further this

version of A* does not reopen nodes with a better g-value from the closed list when they are

rediscovered from the open list. But completeness and soundness remain unaffected, which

is clear from the fact that the core A* algorithm remains unchanged.

4.3.3 Hybrid Diversity+Tabu (Hybrid)

There are drawbacks to both the heuristic-based and state-based approaches. Heuristic-

based approaches can suffer because of the reliance on a single objective function; if action

costs swamp the reward, then the search trajectory is dominated by the action cost. If two

plans have wildly different action costs and different rewards, then it is not clear how to

select one over the other. Further, the distance metric, D, of Equation 3.1 can dampen

out the original heuristic, especially with a large difference in action costs. The state-based

approach we propose avoids these scaling issues, but introduces others.

State-based approaches can suffer because of the lack of a guiding heuristic. Moreover,

measuring diversity only in the state differences (or the actions applied) can generate solu-

tions that cause too much surprise or disruption to a currently executing plan. ITA uses

the entire state for the Tabu list rather than the portions relevant to the operator, which

can lead to plans that have differences only in the variable binding of an operator (e.g., a

package might be transported in a different truck that has the same fuel costs).

To help overcome the limitations of the heuristic and state approaches, we combine them

into a single hybrid algorithm that performs both at the same time. The thinking behind

44

this hybrid approach is that the state-based Tabu list will help eliminate any dampening

effect present in action costs because it focuses on the states visited during search. But the

heuristic approach can also help the state-based approach by focusing the search on good

solutions. We will see instead that these two approaches are not complementary and the

hybrid produces the fewest number of solutions.

Our implementation of Div+ITA (Hybrid) enables the Tabu list of ITA while also using

the diversity heuristic of Div. All other parameter settings remain the same as Div and ITA.

4.3.4 Random Walk Search

Random Walk Search (RWS) provides a natural baseline against which we can assess

informed search because it selects actions without regard to their contribution to quality or

diversity. Thus, it provides a fair way to assess where the bias of WA* and other algorithms

is beneficial or harmful. The version of RWS we implement is inspired by the Arvand planner

[XNM12]. RWS performs w walks where each walk performs p next descent probes of s steps.

If an improving solution is not found after p probes then search restarts from the initial state.

Our implementation of RWS performs w = 1000 walks where each walk performs p = 7 next

descent probes of s = 2000 steps. The original algorithm in Arvand also incorporated

probe lengthening enhancements [XNM12] that we do not use in our implementation. We

expected RWS to produce more plans with greater diversity and lower quality than the other

algorithms.

4.3.5 LPG-diffmax 2.0 (LPGd)

We complement the four algorithmic approaches with a full planning system. Srivastava

et al. [Sri+07] explore how to generate diverse plans in a constraint-based planner called

GraphPlan-CSP, and a local search planner, LPG-diffmax, that we abbreviate as LPGd in

our study. In later work, these authors extended this work to planning with incomplete

preference models [Ngu+12]. Both planners search for k plans of at least d distance apart.

They use three normalized distance metrics based on actions, states, and causal links. For

each distance metric, the authors embed it into the planner’s core heuristic to encourage

45

diverse plans. At each decision point during search, the planner can insert a new action

into the plan or remove an existing action from a partial plan it has constructed. Let E(a)i

be the result of evaluating the insertion of an action and E(a)r be the result of evaluating

the removal of an action in the plan. In the original version of LPG, the execution cost,

temporal cost, and search cost are combined in a weighted evaluation function to determine

which actions to insert or remove. In LPGd, an additional weighted term (i.e., the last term

in the formulas below) is added to capture the contribution that the action provides from a

reference plan π0 that is selected at the start of each search iteration:

E(a)i=αEExecutionCost(a)i+αT TemporalCost(a)i+αSSearchCost(a)i+αD|(π0−π)∩πi
R| (4.7)

E(a)r=αEExecutionCost(a)r+αT TemporalCost(a)r+αSSearchCost(a)r+αD|(π0−π−a)∩πr
R|. (4.8)

Using these formulas, LPGd generates diverse plans. The authors then compare the resulting

plan sets in terms of the three distance metrics, the average search cost to achieve the plans,

and several preference functions. They focus on solving temporal metric and preference

planning problems with large planning systems.

We obtained the code for the local search planner, LPGd, for inclusion in our study9; we

could not obtain the constraint-based planner for this study. LPGd works by performing

stochastic local search on planning graph subsets, which are partial plans that the authors

call action graphs [GSS03; GS02]. At each branch in the search, the choice to add or remove

an action is guided by a heuristic that rates each potential choice with respect to the current

partial solution; the heuristic function for each potential action is the count of unsupported

facts plus the count of actions which are mutex plus the diversity metric (Equation 3.5).

LPGd checks for and eliminates duplicates during its search, in contrast to the algorithmic

approaches we examine. LPGd produces plan sets of size k = {2, 4, 8, .., 32} that are at least

d distance apart. To fit our experimental methodology, we modified the planner to produce

1000 solutions. However, LPGd would sometimes terminate (due to exhausting time or

9Personal communication with Tuan Nguyen and Ivan Serina

46

memory) and fail to produce intermediate results. The primary author of the planner10

helped us modify the planner to use an increment policy for k that starts at 20 and increments

by 20 up to 1000 after each plan set is found. We use d = 0.5 because this appeared to be a

reasonable value given previous results [Ngu+12]. However, we acknowledge that it may be

unfair to compare LPGd in this experimental methodology, and in Section 4.8 we are careful

to limit our findings concerning our use of LPGd.

4.4 Results: Parsimony, Uniqueness, and Overlap

We now compare the approaches for generating plan sets using the metrics we outlined

at the outset of this chapter. Recall that we focus our analysis on the IPC2002 domains

Depot, Driverlog, and Rover, on the IPC2008 Cybersec domain, and on the IPC2011

Transport domain. Also recall that our analysis evaluates quality and efficiency by using

the coverage, search cost, plan length, and plan cost. In the 2002 domains (i.e., Depot,

Driverlog, and Rover) we use plan length for plan quality and in the other two we use plan

cost; this is a result of some domains being older and not having plan cost. For diversity,

we evaluate the plan sets using the parsimony ratio, uniqueness and overlap, and the two

distance metrics Diversitystability (Ds, Equation 3.3) and Diversitynorm (Dn, Equation 3.5).

4.4.1 Parsimony

Parsimony is a central concept to understanding our results. Although we discovered it

near the end of our exploration, we present it first here because it informs (and colors) much

of what we find. Plans produced by nearly every approach consistently contain action cycles.

LPGd was the most verbose and often has (10-30) extra actions in a given plan. Figure 4.2

shows one example, where a plan from ITA, RWS, and LPGd are shown, respectively. The

plan from LPGd is annotated with asterisks (‘*’) to show a 2-way action sequence; note the

10Personal communication, Ivan Serina

47

repeated inclusion of lift and drop actions for crate0. We have strong reason to believe

that even higher n-way action sequences occur within many plans of the approaches we

studied.

To understand how much longer plans are, we calculate the parsimony ratio where possi-

ble. Table 4.3 summarizes the distributions (mean, standard deviation, median and minimum

ratios) for the s-ratio on the solutions for which we could find a minimal plan. We apply the

Tukey HSD statistical test (α=0.05, df=4) to determine differences between the means of

the ratio distributions for the algorithms. Tukey HSD performs the standard t-test between

all pairs of mean ratios while simultaneously controlling the experimentwise error that can

result from performing multiple pair-wise inferences; it conservatively shows a significant

difference between means. We summarize the groupings that are not significantly different,

so algorithms within a group perform similarly. In every domain, the A* algorithms are

grouped as similar (i.e., {Div, Hybrid, ITA}). LPGd and RWS are distinct from each other

in every domain except Transport.

We can see that LPGd and RWS produce the lowest average and minimum ratios, in-

dicating that plans often contain extraneous actions. Both of these algorithms also have

the highest variance, indicating that a wider range of parsimony ratio values is seen in the

solutions. In contrast, the algorithmic approaches produce minimal plans more often (higher

means) with more reliability (lower variance). The algorithmic approaches also show a better

minimum performance.

We will show in the following sections that the approaches with the lowest parsimony

achieve higher diversity and uniqueness. These action cycles ensure the uniqueness of the

plans under our analysis and they artificially inflate the diversity of the plan set. When

paired with the overlap and number of unique solutions, the parsimony ratio provides strong

evidence that LPGd and RWS obtain such high uniqueness values by including n-way action

cycles in the plan that achieve uniqueness and diversity at the cost of plan parsimony.

Overlap is probably artificially low as well because of these action cycles. This observation

of parsimony will play an important role in our design decisions for MQA in Section 5.3.2.

48

(lift hoist0 crate1 pallet0 depot0)

(load hoist0 crate1 truck1 depot0)

(drive truck1 depot0 distributor0)

(lift hoist1 crate0 pallet1 distributor0)

(load hoist1 crate0 truck1 distributor0)

(unload hoist1 crate1 truck1 distributor0)

(drop hoist1 crate1 pallet1 distributor0)

(drive truck1 distributor0 distributor1)

(unload hoist2 crate0 truck1 distributor1)

(drop hoist2 crate0 pallet2 distributor1)

(drive truck0 distributor1 distributor0)

(lift hoist0 crate1 pallet0 depot0)

(lift hoist1 crate0 pallet1 distributor0)

(drive truck0 distributor0 depot0)

(load hoist0 crate1 truck0 depot0)

(drive truck0 depot0 distributor0)

(drive truck0 distributor0 distributor1)

(unload hoist2 crate1 truck0 distributor1)

(drop hoist2 crate1 pallet2 distributor1)

(drive truck0 distributor1 distributor0)

(load hoist1 crate0 truck0 distributor0)

(drive truck0 distributor0 depot0)

(unload hoist0 crate0 truck0 depot0)

(load hoist0 crate0 truck1 depot0)

(drive truck1 depot0 distributor0)

(drive truck1 distributor0 distributor1)

(unload hoist2 crate0 truck1 distributor1)

(drop hoist2 crate0 crate1 distributor1)

*(lift hoist2 crate0 crate1 distributor1)

*(drop hoist2 crate0 crate1 distributor1)

*(lift hoist2 crate0 crate1 distributor1)

*(drop hoist2 crate0 crate1 distributor1)

*(lift hoist2 crate0 crate1 distributor1)

*(load hoist2 crate0 truck1 distributor1)

(lift hoist2 crate1 pallet2 distributor1)

(load hoist2 crate1 truck1 distributor1)

(unload hoist2 crate0 truck1 distributor1)

(drop hoist2 crate0 pallet2 distributor1)

(drive truck1 distributor1 depot0)

(unload hoist0 crate1 truck1 depot0)

(load hoist0 crate1 truck0 depot0)

(drive truck0 depot0 distributor0)

(unload hoist1 crate1 truck0 distributor0)

(drop hoist1 crate1 pallet1 distributor0)

(lift hoist0 crate1 pallet0 depot0)

(drive truck0 distributor1 distributor0)

(lift hoist1 crate0 pallet1 distributor0)

(drop hoist0 crate1 pallet0 depot0)

(lift hoist0 crate1 pallet0 depot0)

(load hoist0 crate1 truck1 depot0)

(drive truck1 depot0 distributor0)

(load hoist1 crate0 truck0 distributor0)

(unload hoist1 crate1 truck1 distributor0)

(drive truck0 distributor0 distributor1)

(drop hoist1 crate1 pallet1 distributor0)

(unload hoist2 crate0 truck0 distributor1)

(drop hoist2 crate0 pallet2 distributor1)

Figure 4.2: The first solution by ITA(lop left), RWS (right), and LPGd (bottom left) for
Depot, problem 1. The asterisks indicate one place where the solution by LPGd contained
an extraneous two-way action cycle.

4.4.2 Uniqueness and Overlap

Table 4.4 shows solution counts for each algorithm by domain. The p column displays

how many problems the algorithm solved for a domain followed by Avg, the average number

of plans generated in those domains. Total is how many plans each algorithm generated and

49

Table 4.3: Distributions of the parsimony ratio, s, for each domain and algorithm. Search
could not find the minimal plan πk for Cybersec, which is indicated by a dash (‘-’).

x̄ SD Med Min

RWS

Depot 0.74 0.106 0.75 0.34
DriverLog 0.64 0.121 0.63 0.25

Rover 0.82 0.114 0.81 0.44

Cybersec - - - -

Transport 0.74 0.096 0.74 0.37

Div

Depot 0.93 0.089 1.00 0.77
DriverLog 0.98 0.046 1.00 0.81

Rover 1.00 0.002 1.00 0.90

Cybersec - - - -

Transport 0.98 0.043 1.00 0.82

ITA

Depot 1.00 0.018 1.00 0.72
DriverLog 0.99 0.040 1.00 0.61

Rover 1.00 0.011 1.00 0.83

Cybersec - - - -

Transport 0.95 0.070 1.00 0.50

Hybrid

Depot 0.93 0.095 1.00 0.75
DriverLog 0.97 0.045 1.00 0.88

Rover 1.00 0.000 1.00 1.00

Cybersec - - - -

Transport 0.95 0.055 0.98 0.83

LPGd

Depot 0.53 0.233 0.44 0.18
DriverLog 0.82 0.142 0.86 0.20

Rover 0.95 0.054 0.96 0.72

Cybersec - - - -

Transport 0.73 0.165 0.76 0.16

Unique is the number of unique plans generated; Ratio is Unique/Total. The best overall

approaches are noted in bold. An asterisk indicates the best algorithmic (A* variant or

RWS) approach. The last five columns compare the overlap between the approaches.

50

Table 4.4: Solution counts and overlap for the domains on RWS, Div, ITA, Hybrid, and
LPGd. The n column indicates the number of problems that were solved at least once for
each domain by an algorithm. The right set of columns show the number of plans that
overlap between pairs of approaches.

n Avg Total Unique Ratio RWS Div ITA Hybrid LPGd

RWS

Depot 12 376.4 *4517 *3181 0.704 0 1 1 262
DriverLog 17 776.5 *13201 *11011 0.834 0 0 0 2

Rover 14 706.6 *9893 *6232 0.630 0 1 1 4

Cybersec-strips 21 5.6 118 118 1.000 0 0 0 0

Transport 20 734.1 *14682 *14549 0.991 0 0 0 19

Div

Depot 8 231.0 1848 54 0.029 0 11 18 57
DriverLog 12 423.6 5083 855 0.168 0 9 26 64

Rover 20 275.3 5506 175 0.032 0 29 37 2

Cybersec 28 143.7 4023 563 0.140 0 94 340 5

Transport 20 576.0 11519 4356 0.378 0 10 481 14

ITA

Depot 8 282.9 2263 246 0.109 1 11 13 140
DriverLog 13 205.2 2667 375 0.141 0 9 14 98

Rover 20 226.7 4533 314 0.069 1 29 33 5

Cybersec-strips 28 261.8 7331 *1562 0.213 0 94 103 4

Transport 20 329.8 6595 5467 0.829 0 10 9 17

Hybrid

Depot 8 262.5 2100 100 0.048 1 18 13 130
DriverLog 12 210.1 2521 321 0.127 0 26 14 127

Rover 20 228.1 4562 382 0.084 1 37 33 3

Cybersec 28 220.6 6177 1342 0.217 0 340 103 5

Transport 20 332.4 6649 5574 0.838 0 481 9 23

LPGd

Depot 22 819.9 18038 17991 0.997 262 57 140 130
DriverLog 20 582.9 11657 11650 0.999 2 64 98 127

Rover 20 432.2 8644 8644 1.000 4 2 5 3

Cybersec-strips 24 48.0 1152 1152 1.000 0 5 4 5

Transport 20 974.9 19498 19491 1.000 19 14 17 23

LPGd solves more problems in Depot and Driverlog than the algorithmic approaches.

It also generates the largest total of solutions for Depot and Transport and generates the

51

most unique plans in every domain except Cybersec. Finally, it produces the highest unique

ratio of the algorithms. There are several possible explanations for the performance gap

between the algorithmic approaches and LPGd. First, LPGd skips reporting of duplicate

solutions during its search. Skipping duplicates during search has the benefit of making the

final uniqueness evaluation better, but this comes at an increased search cost for novel plans.

When comparing just the algorithmic approaches (i.e, the entries with an asterisk) to each

other, RWS finds more plans and more unique plans for the IPC-2002 and Transport bench-

marks than the A* approaches. This may be a consequence of its simplicity (very low memory

overhead and lack of open/closed lists) so it can process more potential plans. As mentioned

in Section 4.8, the algorithmic approaches fail to solve as many problems as a state-of-the-

art planner; this is evident by examining the n column between the algorithms and LPGd.

This is likely due to reverting to only WA* without other search enhancements such as lazy

initialization or multiple queues. For Cybersec, we note that the plan lengths are quite long

(40–60 steps) and it is likely that RWS has trouble finding these longer plans.

Many plans are duplicates, and the unique-to-total ratio varies a great deal between the

algorithms. Div has the lowest ratio of the WA* algorithms except in Driverlog while

RWS has the highest ratio of all algorithms. In Cybersec and Transport, both ITA and

Hybrid have similar ratios. ITA finds the most (unique) plans in Cybersec, which is expected

since the algorithm was originally designed to produce alternatives for a security domain very

similar to Cybersec. Except in Driverlog, ITA produces more unique plans than Hybrid,

which produces more unique plans than Div.

The overlap columns show that each algorithm generates unique plans not found by

the others as noted by the generally low intersection. For the algorithmic approaches, the

intersection is higher among the WA* algorithms compared to RWS. The greater overlap of

Hybrid with Div suggests that adding the diversity heuristic to ITA provides more benefit

than adding a Tabu list to Div. LPGd has the greatest overlap with the other approaches for

Depot, Driverlog, and Transport – this is most likely the result of LPGd having generated

more solutions.

52

4.4.3 Diversity

Table 4.5 compares the algorithms using Diversity(Π) from Equation 3.3, while Table 4.6

compares the algorithms using Diversity(Π) from Equation 3.5. These tables have two types

of entries: 1) when an approach is compared to itself and 2) when an approach is compared

to a different algorithm. When an algorithm is compared with itself, the number of problems

for which 10 unique solutions were found is presented. For example, in Table 4.5 the top-left

entry for Div—Div shows that Div only had 4 problems where it produced at least 10 unique

solutions; a quick glance at Table 4.4 verifies that Div produced 54 unique solutions over 8

problems.

When two algorithms are compared, we take their union. Each entry shows how often

the row approach produced equal or higher diversity than the column approach (‘≥’), the

size of the union (‘∪’), and their average magnitude of difference |δ̄|. Since we take the union

of problems with at least 10 unique solutions, any approach that does not solve a problem

gets a score of 0 for its diversity. For example, the first row of the second column (again

in Table 4.5) shows the Div—Hybrid comparison. It states that 7 problems were solved

by both algorithms, and Div produced higher diversity for 4 of the 7 problems. Further,

the magnitude of difference for all 7 problems was 12.7. Continuing the example, we see a

similar trend when Div is compared to ITA but that both LPGd and RWS produce more

unique solutions than Div. The magnitude for LPGd is also higher, but this is again more

a consequence of LPGd solving more problems.

RWS solution sets have higher diversity than the other algorithmic approaches except

in Cybersec. This finding seems to contradict Nguyen et al. [Ngu+12], who state that

their randomized approach produces less diverse plans than LPGd using the plan distance

metrics. Figure 4.2 shows an example of the extra action cycles. Without comparing the

actual solutions from the original experiments, it is difficult to determine the impact of the

extra actions in the results from [Ngu+12]. But it is likely that their random approach fared

worse because it included fewer extraneous actions than the standard LPGd approach.

53

Table 4.5: Average stability diversity (Ds) comparison for the first 10 unique plans for all
algorithms. Each entry shows how often the column algorithm’s average diversity for those
ten solutions was better or equal to the row algorithm’s average diversity (‘≥’ columns),
the union of problems with at least 10 solutions in either algorithm (‘∪’ columns), and the
average magnitude of difference (‘ ¯|δ|’ columns).

Div Hybrid ITA LPGd RWS

≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ|

Depot

Div 4 4 7 12.7 4 8 11.8 0 22 22.3 1 11 8.8
Hybrid 3 7 12.7 7 0 8 1.4 0 22 51.2 0 11 35.4

ITA 4 8 11.8 8 8 1.4 8 0 22 51.7 1 12 34.0
LPGd 22 22 22.3 22 22 51.2 22 22 51.7 22 20 22 23.0
RWS 10 11 8.8 11 11 35.4 11 12 34.0 2 22 23.0 11

Driverlog

Div 6 6 12 5.6 6 12 5.4 0 20 10.1 1 17 6.3
Hybrid 7 12 5.6 12 6 13 3.9 0 20 24.0 1 18 48.1

ITA 7 12 5.4 9 13 3.9 12 1 20 45.1 2 19 41.3
LPGd 20 20 10.1 20 20 24.0 19 20 45.1 20 10 20 28.8
RWS 16 17 6.3 17 18 48.1 17 19 41.3 10 20 28.8 17

Rover

Div 10 10 19 9.1 10 19 10.0 1 20 4.6 4 13 5.3
Hybrid 10 19 9.1 19 10 19 2.9 0 20 19.5 8 20 14.3

ITA 10 19 10.0 10 19 2.9 19 0 20 19.2 8 20 14.4
LPGd 19 20 4.6 20 20 19.5 20 20 19.2 20 16 20 3.3
RWS 10 13 5.3 12 20 14.3 12 20 14.4 4 20 3.3 12

Cybersec

Div 26 21 28 10.4 18 28 10.0 8 28 16.3 14 26 13.3
Hybrid 8 28 10.4 28 12 28 6.2 5 29 21.1 14 28 11.1

ITA 10 28 10.0 16 28 6.2 28 7 29 16.5 17 28 14.4
LPGd 20 28 16.3 24 29 21.1 22 29 16.5 24 18 25 16.7
RWS 13 26 13.3 14 28 11.1 11 28 14.4 7 25 16.7 19

Transport

Div 17 9 20 9.2 9 20 9.0 0 20 33.7 0 20 36.8
Hybrid 12 20 9.2 20 13 20 1.0 0 20 30.6 0 20 33.1

ITA 13 20 9.0 10 20 1.0 20 0 20 30.7 0 20 33.2
LPGd 20 20 33.7 20 20 30.6 20 20 30.7 20 9 20 11.1
RWS 20 20 36.8 20 20 33.1 20 20 33.2 11 20 11.1 20

54

Table 4.6: Average normalized diversity (Dn) comparison for the first 10 unique plans for all
algorithms. Each entry shows how often the column algorithm’s average diversity for those
ten solutions was better or equal to the row algorithm’s average diversity (‘≥’ columns),
the union of problems with at least 10 solutions in either algorithm (‘∪’ columns), and the
average magnitude of difference (‘ ¯|δ|’ columns).

Div Hybrid ITA LPGd RWS

≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ|

Depot

Div 3 2 3 0.1 2 7 0.1 1 22 0.2 2 9 0.1
Hybrid 3 3 0.1 3 3 7 0.1 1 22 0.1 3 9 0.0

ITA 7 7 0.1 6 7 0.1 7 2 22 0.2 3 10 0.1
LPGd 22 22 0.2 22 22 0.1 22 22 0.2 22 21 22 0.1
RWS 9 9 0.1 8 9 0.0 9 10 0.1 3 22 0.1 9

Driverlog

Div 6 4 6 0.3 5 12 0.2 3 20 0.3 3 17 0.3
Hybrid 4 6 0.3 6 5 12 0.1 4 20 0.2 4 17 0.2

ITA 10 12 0.2 10 12 0.1 12 7 20 0.1 9 19 0.1
LPGd 19 20 0.3 18 20 0.2 17 20 0.1 20 18 20 0.1
RWS 14 17 0.3 13 17 0.2 13 19 0.1 9 20 0.1 17

Rover

Div 5 5 5 0.1 2 19 0.1 1 20 0.2 2 12 0.1
Hybrid 2 5 0.1 4 2 19 0.1 1 20 0.2 0 12 0.1

ITA 17 19 0.1 18 19 0.1 19 3 20 0.2 11 20 0.2
LPGd 20 20 0.2 20 20 0.2 20 20 0.2 20 18 20 0.1
RWS 12 12 0.1 12 12 0.1 10 20 0.2 5 20 0.1 12

Cybersec

Div 2 1 11 0.1 1 28 0.1 0 24 0.2 1 19 0.1
Hybrid 10 11 0.1 10 5 28 0.2 4 26 0.2 3 21 0.1

ITA 28 28 0.1 23 28 0.2 28 8 29 0.2 17 28 0.2
LPGd 24 24 0.2 24 26 0.2 23 29 0.2 24 22 25 0.1
RWS 19 19 0.1 19 21 0.1 13 28 0.2 7 25 0.1 19

Transport

Div 6 4 6 0.1 5 20 0.1 4 20 0.1 4 20 0.1
Hybrid 5 6 0.1 6 5 20 0.1 4 20 0.1 4 20 0.1

ITA 18 20 0.1 16 20 0.1 20 13 20 0.1 11 20 0.1
LPGd 18 20 0.1 18 20 0.1 17 20 0.1 20 18 20 0.0
RWS 19 20 0.1 19 20 0.1 12 20 0.1 14 20 0.0 20

55

None of the WA* algorithms dominate each other in producing more diversity. The

relatively poor performance of Div may be due to the fact that the diversity values detract

from the original heuristic. The diversity values seen during search will be different than those

we can observe in a post-hoc analysis of complete solutions; recall that we use the partial

solution πcurrent during search. When we examine the pairwise diversity values for Π given

by Equation 3.3, which is an average, we note that the range of values seen by RWS appears

to be much larger than the other three algorithms. Further, there is an extreme skew of

values toward the low end, which can result from a planner producing duplicated plans. This

suggests that 1) algorithms that produce numerous duplicate plans actually dilute the value

of using diversity to guide search, and 2) a “solution Tabu” mechanism may help eliminate

the dilution for search algorithms employing diversity. Part of the success of LPGd in

producing greater diversity is no doubt due to it checking for and skipping over duplicate

solutions.

4.5 Results: Quality

We examine the quality of the plans as measured by VAL [HL03], which is the program

used to validate plans in the IPCs. For all the domains, the quality metric is minimized.

Transport minimizes the total cost of moving packages, where the cost is a sum of the road

distances plus 1 for each unload/load action. Cybersec minimizes the total cost of actions,

and the other three domains minimize plan length. Figure 4.3 shows the distributions of

quality values of each algorithm for the first 10 unique plans; these values are normalized by

the maximum value in each problem for all approaches.

We apply the Tukey HSD statistical test (α=0.05, df=4) to determine significant differ-

ences between the problem-normalized quality of the approaches, and report the resulting

groupings. For Cybersec, there was no significant difference between the quality of plans pro-

duced and thus a pairwise comparison is unjustified. For Depot, Driverlog, and Rover the

same two trends occurred: 1) all three A* algorithms produced quality that was distinct from

(and lower than) LPGd and RWS, and 2) Div performed the same as Hybrid and ITA but

56

Algorithm

N
or

m
al

iz
ed

 Q
ua

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Div Hybrid ITA LPGd RWS

● ● ● ● ●

Cybersec

0.
2

0.
4

0.
6

0.
8

1.
0

Div Hybrid ITA LPGd RWS

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●●

Depot

0.
2

0.
4

0.
6

0.
8

1.
0

Div Hybrid ITA LPGd RWS

●
● ●

●

●
●●

●

●
●

●

●

●

●
●

●

●

DriverLog

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

● ●
●

●

●

●●

Rover

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

●

●

●
●●●●

Transport

Figure 4.3: Comparing normalized quality of the first 10 unique plans.

Hybrid and ITA were distinct from each other. LPGd produced significantly better quality

solutions than RWS except for Depot; it is clear that LPGd fares worse because it produces

much less parsimonious plans (cf. Table 4.3). In the Transport domain, LPGd produced

about the same quality solutions as Div and Hybrid. Thus, while the three WA* algorithms

generally produce much better quality plans than LPGd and RWS, that is not always the

case. The high degree of similarity between Hybrid and the other algorithms suggests that

Hybrid does not improve quality over the other approaches.

57

4.6 Results: Search Cost

We examine search cost for the algorithmic approaches. LPGd is not included because it

does not keep track of the cost per solution; we intend to add this to the code, rerun LPGd,

and incorporate the search cost estimates for LPGd in future work. Search cost is plotted in

Figure 4.4 (bottom, log scale); as before, Driverlog was similar to Depot and the Tukey HSD

groupings are shown in red (gray). For Cybersec, the Tukey HSD (α=0.05, df=3) groupings

were {Div, Hybrid}, {Hybrid, ITA}, and {RWS}. All other domains were grouped {Div, Hy-

brid, ITA} and {RWS}. RWS is always significantly different and produces plans after a

large number of evaluations, which is an expected finding. The three WA* variants tend to

behave similarly, which suggests that the α weight in the diversity heuristic does not lower

the usefulness of the original heuristic so much that search moves into non-productive parts

of the search tree. In general the hybrid algorithm did not show a significant performance

difference from Div and ITA. Even in Cybersec, the difference between Div and ITA while

both being similar to Hybrid shows that the hybrid algorithm’s performance is comparable

to both Div and ITA algorithms despite them not being similar.

4.7 Results: Security Domains

In terms of the security domains we examined, Table 4.4 shows that ITA produces the

most solutions for the Cybersec domain. We also evaluate how well plans can be found for

the motivating security application. ITA can find unique solutions (alternative attack paths)

for the small PAG domain generated from Figure 2.1 as well as the Cybersec benchmark

domain.

Figure 4.5 (top) shows a partial PDDL description for the security domain motivated

in Chapter 2; the full PDDL description is given in Figure B.1. In codifying the PAG, we

followed a similar approach to the prior work by translating the PAG into PDDL [Rob+11].

Figure 4.5 shows portions of the domain and problem description of the leftmost subtree

given in Figure 2.1. The full PDDL description is provided in Figure B.1 and contains 15

58

Algorithm

C
os

t (
lo

g)
10

0
10

00
10

00
0

1e
+

05

Div Hybrid ITA RWS

●

●

●

●

●●

●

●

●

●●

●●

●
●
●

●●
●

●

●

●●

●●

●
●
●

●●

●●
●
●●
●

Cybersec

10
10

0
10

00
10

00
0

1e
+

05
1e

+
06

Div Hybrid ITA RWS

●
●

●

●●●

●
●
●
●

Depot

10
10

0
10

00
10

00
0

1e
+

05
1e

+
06

Div Hybrid ITA RWS

●

● ●

●

●●
●●●●●●●●●●●●
●●●●●●●●●●

DriverLog

10
10

0
10

00
10

00
0

1e
+

05

●
● ●

●
●●

●

●●

●

●

●

●
●●●●●●
●

●

●●
●

●

●

●

●

●
●●

●

●
●●●●●●
●

●

●●
●

●

●

●

●

●
●

●

●
●
●●

●
●
●

Rover

10
10

0
10

00
10

00
0

1e
+

05
1e

+
06

●
●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●●●●

Transport

Figure 4.4: Comparing search cost (log scale) of the first 10 unique plans.

actions, 5 predicates, 18 initial objects, and 12 initial predicates; these sizes are comparable

to the benchmark domains except Cybersec (c.f. Table 4.1). Plans in this domain highlight

potential paths that can be exploited, which allows other portions of the agent to prune and

personalize the PAG and remove exploits that cannot happen for a given system/user.

Figure 4.5 (bottom) shows the three solutions found by ITA in a single planning episode,

which correspond to the three subtrees of the PAG. It found these solutions with 53, 46,

59

(define (domain attack-graph)

(:requirements :strips :equality

:disjunctive-preconditions :typing)

(:types Object Action ExploitState software)

(:predicates (action-observed ?Action - Action)

(action-taken ?Action - Action)

(exploit-occurred ?Exploit - ExploitState)

(software-installed ?Software - software))

(:action AttackAction_FlashFileCompromised_5

:parameters (?Action5 - Action)

:precondition (and (action-observed ?Action5)

(= ?Action5 AttackAction_FlashFileCompromised_5))

:effect

(and

(action-taken AttackAction_FlashFileCompromised_5))))

(define (problem attack-graph-problem1)

(:domain attack-graph)

(:objects

Exploit_DenialOfService_1 - ExploitState

AttackAction_FlashFileCompromised_5 - Action

UserAction_UserUsingSocialMedia_7 - Action

ObeservedState_CVE_2010_0187_Exploited_2 - Action

UserAction_UserOpensFlashFile_6 - Action

)

(:init

(action-observed AttackAction_FlashFileCompromised_5)

(action-observed UserAction_UserUsingSocialMedia_7)

(software-installed Adobe_Flash_6_0_88_0)

)

(:goal

(and (exploit-occurred Exploit_DenialOfService_1))))

PLAN1

UserAction_UserUsingSocialMedia_7

UserAction_UserOpensFlashFile_6

ObeservedState_CVE_2010_0187_Exploited_2

Exploit_DenialOfService_1

PLAN2

UserAction_UserBrowsingInternetContent_13

AttackAction_PDFCompromised_20

UserAction_UserLoadsPDFDocument_21

ObeservedState_CVE_2010_4091_OS_Exploited_17

Exploit_DenialOfService_1

PLAN3

UserAction_UserBrowsingInternetContent_13

AttackAction_JavaAppWithLongVMArgument_11

UserAction_UserStartsJavaWebstartApplication_12

ObeservedState_CVE_2008_3111_SunJavaMultiple_Exploited_8

Exploit_DenialOfService_1

Figure 4.5: Partial PDDL domain and problem descriptions from the CVE-2010-0187 subtree
of the DoS exploit from Figure 2.1 followed by the three ITA solutions. The full PDDL
description is given in Figure B.1.

and 25 node expansions. The plan lengths for these solutions increase from 4 to 5, so ITA

overcomes a key problem identified by both Boddy et al. [Bod+] as well as Ghosh and Ghosh

[GG12], that the planner always finds the shortest path. For this problem, Div found a single

60

path but was unable to find new plans beyond that. We suspect that either the weighted

heuristic or the diversity measure is not well suited to small plans and domains such as those

of the security application. Plans in this domain are typically 5-10 actions total, while the

focus in the benchmarks is on scalability of planners to plan lengths of 20 or more actions.

4.8 Limitations

In earlier work on evaluating planner performance [RH09b], we found that the use of

full planning systems obscured the planner component most linked with search performance.

So in this study we sought to use simple algorithmic approaches to make the comparison

more understandable. However, this decision led to less potential data points for making our

comparisons – simple algorithms lack the refinements that increase the coverage of planners.

We dealt with this limitation by comparing the approaches on problems they solved in

common, by using unique solutions, and by limiting the solutions compared.

Another limitation of our findings is our use of the LAMA-2008 planner as the base

planner for Mosaic, because by now a newer version of LAMA is available that won the

subsequent IPC-2011. Although Mosaic was designed to make adding planner (or planner

versions) easy, it turns out to be much more difficult to port planners into Mosaic than we

anticipated for a number of unforeseen reasons; we discuss this “hidden” challenge in Section

6.4. It would be a significant effort to report results for LAMA-2011 here. Since we are not

using a state-of-the-art planning system, the results from the thesis cannot be compared

to results from the latest IPC planning systems in terms of the quality and efficiency axes

of our study. However, our use of an established heuristic, hFF , and the fact that all our

algorithms are implemented within the same framework should generalize, since we seek

answers concerning the relative differences between these algorithms while using the same

underlying planner foundation.

With regard to LPGd, we used the default parameters listed in the most recent pub-

lished results [Ngu+12]. However, different parameters might yield better results; we did not

perform an exhaustive parameter search to determine the best parameters for the problems

61

we studied. Nguyen et al. presented two additional mechanisms for generating diverse plans

using causal links and action states. These approaches may be able to drive search toward

diversity in a more consistent fashion that eliminates some of the issues we note in our re-

sults. We note that LPGd was not run to produce anywhere near 1000 solutions for those

original studies. Finally, LPGd was designed to work on temporal and preference domains,

and it may be completely unfair to use LPGd in our experimental methodology.

With regard to the Div and Hybrid algorithms that use the weighted diversity values

within the planner heuristic, we observed two limitations. The first relates to the chosen

value for α for Div ; recall that we set α = 0.70 to replicate the original studies. However,

in follow up experiments, we vary the α value for Div. Table 4.7 (left) shows the results

for the Rover, Depot, and Driverlog problems, which are the same domains used in the

original studies [CMA11]. The table includes results for πcurrent and πrelax as discussed in

Section 4.3.1. The columns show the alpha value (‘α’), the number of problems solved with

at least one solution (‘n’), the average number of solutions produced per problem solved

(‘Avg’), the total number of solutions produced (‘Total’), the number of unique solutions

(’Unique’), and the ratio of unique/total (‘Ratio’). In each column, the highest value for the

particular domain is in bold face font. The Unique/Total Ratio shows that the best α value

for Div depends highly on the domain. In some cases, more problems (‘n’ column) are solved

by certain values of α. It is evident that for our implementation of this algorithm α = 0.70

is rarely the best value. It remains as future work to explain why our results do not match

with the original implementation. Even if we were to include the very best alpha value for

Div our conclusions remain the same. So this limitation, while important to admit, does not

alter the substance of our findings with respect to the tradeoffs in generating plan sets.

It is interesting to note that Table 4.7 shows that neither pure heuristic search (i.e.,

α = 1.00) nor pure diversity search (α = 0.00) are the best approaches. Although it is clear

that varying the heuristic can result in more unique solutions for Rover and Depot, the best

unique ratios result from a weighted combination of the original heuristic with the diversity

heuristic.

62

Table 4.7: Results on varying α using πcurrent (left) and πrelax (right) for Div.

πcurrent πrelax
α n Avg Total Unique Ratio n Avg Total Unique Ratio

Rover

0.00 8 771.6 6173 146 0.024 7 572.0 4004 24 0.006
0.10 7 810.6 5674 94 0.017 7 581.0 4067 51 0.013
0.20 20 381.7 7634 879 0.115 20 204.7 4093 57 0.014
0.30 20 389.6 7792 803 0.103 20 204.4 4088 70 0.017
0.40 20 372.8 7456 1147 0.154 20 204.2 4085 61 0.015
0.50 20 384.6 7693 926 0.120 20 204.2 4083 48 0.012
0.60 20 282.6 5651 140 0.025 20 203.3 4067 58 0.014
0.70 20 263.2 5264 174 0.033 20 204.2 4083 63 0.015
0.80 20 343.6 6873 948 0.138 20 204.4 4089 72 0.018
0.90 20 334.9 6698 947 0.141 20 205.7 4114 96 0.023
1.00 20 327.2 6544 45 0.007 20 331.0 6620 44 0.007

Depot

0.00 4 453.2 1813 39 0.022 4 473.2 1893 33 0.017
0.10 6 308.0 1848 58 0.031 6 315.2 1891 39 0.021
0.20 8 232.2 1858 57 0.031 8 236.9 1895 45 0.024
0.30 7 141.0 987 52 0.053 8 232.6 1861 43 0.023
0.40 8 233.6 1869 71 0.038 9 208.7 1878 37 0.020
0.50 10 187.4 1874 70 0.037 10 189.4 1894 48 0.025
0.60 8 232.4 1859 55 0.030 9 209.4 1885 38 0.020
0.70 9 206.2 1856 57 0.031 9 210.1 1891 40 0.021
0.80 7 270.6 1894 101 0.053 8 236.6 1893 38 0.020
0.90 8 238.4 1907 118 0.062 8 239.4 1915 58 0.030
1.00 8 730.9 5847 24 0.004 9 631.9 5687 31 0.005

Driverlog

0.00 7 790.6 5534 1344 0.243 7 306.6 2146 81 0.038
0.10 9 574.6 5171 978 0.189 9 239.2 2153 96 0.045
0.20 12 462.1 5545 1446 0.261 12 178.8 2145 87 0.041
0.30 12 474.2 5690 1511 0.266 12 179.3 2152 88 0.041
0.40 12 468.9 5627 1460 0.259 12 180.3 2164 89 0.041
0.50 12 475.5 5706 1478 0.259 12 181.2 2174 93 0.043
0.60 12 439.6 5275 1028 0.195 11 195.3 2148 88 0.041
0.70 12 423.3 5080 850 0.167 12 180.2 2163 77 0.036
0.80 13 391.4 5088 879 0.173 13 166.2 2161 81 0.037
0.90 13 456.6 5936 1803 0.304 13 166.6 2166 80 0.037
1.00 13 622.8 8097 45 0.006 13 623.2 8102 45 0.006

63

One final confounding factor that still needs to be addressed is that all WA* algorithms

use a weighted diversity heuristic. It is not clear how the scale of the diversity value to the

heuristic value impacted these findings. We ran an experiment using scaled values and found

that using the raw diversity values dominated using scaled values. Still, the raw diversity

values grow proportionally with the number of solutions found while the heuristic values

from h do not change with respect to the plan set. It could be that later solutions are hard

to find because hnew becomes dominated by the hdiversity component. The results in Table 4.7

suggest a diversity-dominated hnew (i.e., lower values of alpha) would perform poorly. It also

suggests that varying alpha during search may improve the results.

4.9 The Tradeoffs of Generating Plan Sets

Tradeoffs are inherently about understanding the interactions between one or more axes

of evaluation, which for this study are efficiency, quality, and diversity. Understanding

these interactions justifies specific algorithm designs and tells us where to set appropriate

computational bounds. For example, we may wish to invest more search effort if doing so

will lead to better solutions. Or, we may be able to adjust algorithms if we identify a tradeoff

along other axis.

To examine whether more search effort results in improved quality or diversity, we par-

tition the plan sets of the unique plans produced by each algorithm into intervals i ∈

{10, 25, 50, 100, 250, 500, 1000}. For each interval, we take the first i unique plans from

each algorithm and call this the cumulative unique solutions at level i. In other words, we

drop any duplicates until we reach i unique plans. We will discuss the Transport domain

in detail since it has the most plans across all algorithms. We don’t have enough unique

solutions from the algorithmic approaches to draw fair conclusions for the three IPC-2002

problems, Depot, Driverlog, and Rover. Similarly, while the number of unique solutions

for Cybersec is higher, few approaches create more than a 200 unique solutions. Out of the

30 problems, Div alone achieves this four times while ITA and Hybrid together achieve this

ten times. These low counts of unique solutions further limit analysis of long-term trending.

64

So we draw our conclusions from the Transport domain with the caveat that these findings

may not always transfer to other domains.

Figure 4.6 plots one example from Transport problem 10 of diversity (top) and quality

(bottom) over the i unique plans; the data for all 20 problems is shown in Figures B.2 thru

Figures B.5. When we looked at diversity across the intervals for each algorithm, several

trends emerge. First, RWS and LPGd produce more diverse sets for 18 of the 20 problems.

In five problems Div is close to either RWS or LPGd. In four problems, the plan sets of Div

are as diverse as those from RWS or LPGd. In the case of the example from Figure 4.6, Div

(a circle in the figures) actually begins to produce lower diversity around 750 solutions, and

has a dip in diversity after about 50 solutions. RWS (a diamond in both figures) produces

higher diversity plan sets much of the time. But it sacrifices quality to do so (see bottom

plot). Except for four problems, RWS and LPGd tend to establish this high diversity by

the first ten plans and maintain it for the duration of the intervals. In nine of the problems,

Div starts low but trends up past the 200th unique solution, though it often stops trending

after that point.

In terms of quality, different trends are seen. the general trend across the Transport prob-

lems is that LPGd produces the best quality (i.e., the lowest quality), while RWS produces

the worst and the algorithms tend to fall in the middle. In seven problems, the algorithms

also dropped quickly in quality (usually by the 200th solution). In a different set of seven

problems, the algorithms dropped slowly in quality. For all algorithms, the quality tends to

hover around the initial quality of plans found or gets progressively worse. This is expected

given that we are not bounding the solutions returned based on solutions we have already

seen (i.e., as in using some kind of upper bound procedure within the A* approaches). These

results confirm that considering quality alone when attempting to drive diversity is unlikely

to be productive. They suggest that we must more carefully consider this tradeoff of quality

and diversity.

We wondered how often high diversity is paired with poor quality. To assess this tradeoff,

we compute the average quality and average diversity for the first 10 unique plans of each

65

D
iv

e
rs

it
y

5
0

6
0

7
0

8
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

Figure 4.6: Diversity (top) and Quality (bottom) over the cumulative unique solutions i ∈
{10, 25, 50, 100, 250, 500, 1000} for Transport problem 10.

algorithm (or fewer if the algorithm did not find 10 unique plans). Figure 4.7 plots the

average quality and diversity for all problems from Transport. It is evident there is a

strong tradeoff between high diversity and good quality. RWS exhibits a broad range of

quality and diversity values, Div tends to cluster toward the origin and Hybrid and ITA fit

in between with somewhat similar tradeoff. For problems solved by at least two algorithms,

this trend was seen in 19 of 20 problems in Transport and all problems in Depot, Driverlog,

and Rover. Figure 4.8 plots all the problems for Cybersec, where three distinct groups of

quality each provide different diversity values and the algorithms have more even behavior

across both dimensions. The solutions tend to be of much better (lower) quality though the

diversity of those good quality solutions can vary considerably.

66

Diversity

Q
ua

lit
y

0

2000

4000

6000

8000

0 50 100

Div
Hybrid
ITA
LPGd
RWS

Figure 4.7: Demonstrating the tradeoff of quality (lower is better) and diversity (higher is
better) in Transport.

Diversity

Q
ua

lit
y

0

500

1000

1500

2000

20 40 60 80

Div
Hybrid
ITA
LPGd
RWS

Figure 4.8: Demonstrating the tradeoff of quality (lower is better) and diversity (higher is
better) in Cybersec.

4.10 Summary

Among the algorithmic approaches, we investigate tradeoffs in planner performance along

the dimensions of quality, diversity, and efficiency. In terms of uniqueness, RWS can produce

67

many more unique plans than the other algorithms. Each algorithm produced unique plans

not found by another. Solution quantity may be more important in applications (e.g., secu-

rity), where one is seeking all possible plans. In applications where reducing solution overlap

is important, one may want to use multiple approaches. In terms of diversity, RWS produces

the most diverse plans in Transport while the WA* algorithms produce varying results for

other problems. For search cost, the WA* algorithms perform similarly. RWS is ineffi-

cient and incurs a high initial cost and then produces a large number of plans. Finally, for

plan quality, the ITA and Hybrid algorithms perform well and usually outperform the other

algorithms.

When examining the full planning system LPGd, we found that it generally solved more

problems and generated many more unique plans with higher diversity than the algorithmic

approaches. It also appears to generate unique plans for every solution (its ratio is con-

sistently near 1). But, when we examine the plans produced by LPGd, it is clear that it

generates artificially unique plans by including numerous extraneous actions and very long

plans. This has a side effect of also artificially boosting the diversity value for LPGd, which

in some domains such as Transport can lead to lower solution quality. This alone does not

single out LPGd as any worse than other approaches, but rather it makes a fair comparison

difficult under the metrics we used in the study.

Investing more search effort does not result in plans that get better on average in an

anytime fashion. Div produces unique plans early in search but tends to taper very quickly

and starts producing many duplicate plans. Hybrid and Div both produce good quality plans

at the start but then hover around the initial quality they find. RWS tends to stagnate.

LPGd produces very good quality early on but does not explore much of the diversity-quality

tradeoff.

The broader implication of these findings is that researchers and practitioners should

carefully consider the needs of the application. Paradoxically, using only diversity to guide

search does not always produce the most diverse plans according to an action-based diversity

metric. Embedding diversity in the heuristic can result in a large number of duplicated plans.

68

Pairing a state-based Tabu list with a diversity heuristic in a hybrid algorithm is inefficient,

largely because the weighted objective function approach misleads search and generates many

duplicates that are either produced as plans or must be skipped.

This chapter presents several contributions to the existing literature on generating plan

sets. We compare several different approaches for generating a plan set. As far as we are

aware, this is the first work to join these multiple approaches into a single evaluative focus.

We show that each approach produces plans not found by the other, which suggests that

each algorithm has distinct value for generating alternatives. Our study also shows that all

approaches produce their most useful results early regardless of the metric used. Thus, long

searches are not likely to be productive – this is an important observation when planners are

placed in the loop of an executing or mixed-initiative system. We demonstrate that ITA,

which was designed as part of this dissertation, is best suited to the security domain for

which it was originally designed. Since the security domain does not require such a strong

focus on the length of plans at the expense of other concerns, it seems that it is the kind of

application where search needs to be driven by something other than plan length. Overall,

these results reveal a tradeoff between diversity and quality. From a design standpoint,

deciding which is more important to an application is the first step in developing or tailoring

an algorithm for generating alternatives.

A key understanding is that using diversity to both drive a planner’s search and si-

multaneously evaluate its performance may be misleading in a larger context of all three

dimensions of quality, diversity, and efficiency. Doing so can lead to plans that violate par-

simony by containing extra action sequences which a human or agent could never tolerate.

It can lead to inefficient search by skipping duplicate solutions (i.e., low uniqueness) rather

than focusing search on creating novel solutions. Best First Search can be misled by what we

call a diversity-quality tradeoff if plan cost and diversity are paired together to drive search.

We usually want high values for diversity but low values for quality, and yet, quality and

diversity can interact in subtle, sometimes contradictory ways. Finally, the issue is further

complicated when diversity is used within a weighted heuristic, as is done in both Div and

69

LPGd. An imbalance between diversity values and heuristic values (i.e., plan length or plan

cost estimates) can seriously hamper search if diversity overtakes the original heuristic. In

the next chapter, we examine the extent to which such metric interactions would impact

search behavior, while continuing our analysis of the tradeoffs of incorporating diversity into

search.

70

Chapter 5
Understanding Metric Interaction11

The focus of many planning systems is generating solutions that minimize (or maximize)

the solution according to a single metric or a weighted combination of metrics. This may

be a reasonable approach when the metric(s) interact in an understood way and we are

producing a single solution. But it is less clear how one could generate a plan to satisfy

multiple metrics that interact in unexpected or competing ways. It is further less clear how

to generate diverse plan sets while also handling multiple metrics. Recent work examining

plan diversity [CMA11; Ngu+12] combines diversity metrics with the original metrics in

a single objective function, which further obscures the role of the objective function with

respect to the evaluation metrics for planner performance. In this chapter, we examine the

impact of metric interaction when shifting between producing single plans and plan sets.

Figure 5.1 captures this focus.

As motivated in Chapter 2, many applications cannot be reduced to a single, weighted

metric for quality. The search for plans in such domains requires a broader view of how the

plans may tradeoff one quality metric for another. For example, in the motivating security

domain, we are interested in finding diverse alternatives when quality metrics such as the

likelihood of an attack and the cost of an attack may interact in subtle ways or not at all.

Comparing plans across two or more metrics in such applications is challenging because the

metrics may be competing or incongruous. For example, the makespan of a plan might be

lower but the set of actions to achieve a lower makespan might use more costly resources.

In the security domain, we may want to see paths leading to attacks that may be more

detrimental or less probable than other attacks.

We looked to the existing planning literature on how to proceed with the potential metric

interactions of security domain and discovered a gap. While there is a wealth of literature

11Portions of this work are from the paper: M. Roberts, A. Howe, I. Ray, A Tale of ’T’ Metrics. The
ICAPS-13 Workshop on Heuristics and Search for Domain Independent Planning, 2013, Rome, Italy.

71

Figure 5.1: The two research directions of this dissertation with the focus of this chapter
highlighted in red (dark gray).

exploring metric interaction within temporal domains (e.g., SAPA [DK03], LPG-td [GSS06],

COLIN [Col+12]), the security domain does not require deep temporal or resource reasoning.

The literature does not explore very deeply the issue of having multiple non-temporal metrics,

and the existing benchmarks have few interactions between metrics for the small set of

benchmarks that do have multiple metrics. Thus, there is a gap in research on numeric-only

metric (non-temporal) domains, and this chapter presents the first results toward bridging

that gap. Our findings complement the temporal+metric planning literature by probing

deeper into the planner performance in the face of interacting non-temporal metrics. We

discuss how metrics are used in existing IPC benchmarks and show that these domains rarely

explore interactions between the metrics within the same action. The existing benchmarks

have few, if any, of the critical interactions we expect to see in the security domain. To study

the problem more deeply, we create a Bicriteria Synthetic domain (BiSyn) that allows us to

vary the interactions of two criteria in a controlled manner while fixing plan length.

To examine search behavior for producing single solutions in a multi-metric problem,

we run an off-the-shelf metric planner, MetricFF, on the synthetic problem. MetricFF im-

plements a variant of A* called A*-epsilon (A∗ε) that provides bounds on the plan cost of

solutions it finds (see Background, Section 3.2 for details). We examine search cost and

the ability to find minimal solutions for A∗ε [PK82], as implemented in MetricFF [Hof03].

We find that this implementation of A∗ε has the most difficulty finding minimal solutions

72

for collinear and random interactions, while it is most successful for simple curvilinear in-

teractions that are strongly correlated with plan length. Uniformly scaling the metrics so

that they less strongly correlate with plan length decreases the ability of A∗ε to find minimal

solutions. Weighting one metric more heavily than the other degrades search performance as

well. These findings, though limited, provide strong evidence against combining the metrics

in a weighted function if the metrics can be collinear or if they scale differently.

Continuing with our analysis of how metric interaction interplays with plan set diversity,

we move in the direction of producing plan sets within the bicriteria setting of BiSyn . Recall

that we show in the last chapter that driving search by adding diversity as a component of

the heuristic function leads to inefficiencies because high diversity can imply poor quality.

Instead, we seek to drive search by both quality metrics and the diversity metrics. In Sec-

tion 5.3.2, we introduce an algorithm, Multi-Queue A* (MQA), that leverages an observation

underlying the recent successes of several planners that use multiple heuristics (e.g., LAMA

[RW10], Fast Downward [Hel06]). Since heuristics can be inaccurate and mislead search,

such planners apply several heuristics during search, keep each heuristic in a distinct open

list, and select across the set of open lists in some principled manner (usually round robin).

Similarly, MQA maintains separate queues, Q1, Q2, .., Qt, for each individual metric t ∈ T ;

we call them queues because they are more general than the usual A* or WA* open list. A

queue can minimize or maximize a single metric or it can combine more than one metric (or

heuristic) into more complex sorting schemes, as we will show when we create a queue to

encourage parsimony. Further, we can also add the (state, operator) Tabu list from ITA,

creating what we call MQAT . We show that MQA can lead to different solutions depending

on the queues it uses. However, the solutions it produces are still not very diverse across the

spectrum of the tradeoff between quality metrics.

In a final linking of quality and diversity, we add two different kinds of diversity queues.

The first queue, QD, where D = Dstability, leads to two variants MQAD and MQATD and

reveals that diversity alone is still inefficient for producing plans that are distinct from those

of MQA and MQAT (i.e., the MQA algorithm run without QD). This led to reconsidering

73

how to include parsimony as a key metric for generating diverse plan sets. As we point out in

our discussion of the parsimony ratio (see Section 4.1), a planner which produces a shorter

plan while maximizing diversity avoids the poor tradeoff between quality, efficiency, and

diversity, as we demonstrate in Chapter 4. We show that, for a given level of diversity, the

most parsimonious solution is that which minimizes plan length and that to do this implies

minimizing hrelax first and – for all partial solutions at that level of h – then maximizing

Dstability. Thus, we arrive at what we call a parsimonious queue, QS, with two final variants

MQAS and MQATS. We show that MQATS, in particular, produces highly diverse plan sets

for BiSyn. Further, MQATS is competitive on the benchmarks from Chapter 4 and is very

well suited to one benchmark domain, Depots, for which it produces the most unique plans.

It finds the parsimonious plans it was designed to find.

Our results and analyses show that parsimony must be a central component of the plan-

ner design when considering how to generate diverse plan sets. We show that the most

parsimonious plans are those that minimize the distance-to-go, which is usually calculated

with reachability analysis, namely the relaxed graph plan. We embed this observation within

MQA using a parsimonious queue, QS, and show that the approach leads to improved di-

versity for several domains. While Chapter 4 shows that maximizing diversity alone leads

to inefficiencies, the results from this chapter unify and validate our new perspective of plan

sets and multi-metric planning.

5.1 Evaluation Metrics

We employ the same evaluation axes as we used in Chapter 4: coverage, quality, efficiency,

and diversity. Recall that coverage is the number of problems solved out of the set given and

quality is measured as either plan length or plan cost (i.e., the sum of action costs). Efficiency

is measured in terms of CPU time if planner implementations differ or search cost (i.e., the

number of search nodes generated) if the implementations rely on the same framework. In

some cases, we show box-and-whisker plots of CPU time to a completed plan. The diversity

of a plan set is measured in several ways. We use the stability distance metric from the

74

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

80

100

0 10 20 30

Best

0 10 20 30

Good

0 10 20 30

Poor

0 10 20 30

Poorest

Figure 5.2: An example histogram explaining how to read later plots. Thinner bars to the
left are best. Wider bars to the right indicate poorer performance. The y-axis is the percent
of total problems (out of 30) that fall into each bin.

literature Dstability (Equation 3.3), and contribute three additional metrics of uniqueness (u,

Equation 4.1), the parsimony ratio (s, Equation 4.2), and overlap (o, Equation 4.3).

Since we are taking a new focus on plan quality, we add one additional quality metric

for BiSyn. For plan cost on BiSyn, we state an algorithm ε-minimizes a function if most of

its solutions fall within 8 times the optimal; this allows a slightly more relaxed requirement

because we use ε = 5 so there should be a guarantee that solutions are within a factor of

5 of the optimal solution. To plot how well an approach minimizes the plan, each plan,

π, is first scaled, cost(π)/cost∗, where cost∗ is the minimal solution found using a simple

dynamic programming algorithm. A minimal plan receives a 1; other solutions are factors

of how much worse they are from the minimal solution. We then histogram these scaled

values using bin sizes of 1, 2, 4, 8, 16, and >= 32. Figure 5.2 shows a comparative example

of what we want to see for optimal and worsening solution quality. Thicker bars indicate

higher variance, while the right-most bars indicate the poorest relative performance. Note

that the y-axis in these plots is the percent of total problems, which for each function/metric

combination is 30 problems.

All experiments are run on a 2.7Ghz Quad Core i7 with a time limit of 15 minutes and

memory limit of 1GB.

75

5.2 Domains

Like the metrics, we use the same benchmark domains as Chapter 4, except that we do not

include psysec. However, our work is still motivated by what we hope to include in the secu-

rity domain. These included Driverlog, Depot, and Rover from IPC-2002, Cybersec from

IPC-2008, and Transport from IPC-2011. We add a synthetic domain that we discuss next.

5.2.1 Existing Benchmarks in Planning

Applications with multiple, competing quality metrics (e.g., minimizing time versus

money) are common but have been simplified in planning research to avoid explicitly rea-

soning about the trade-offs. The planning community has begun to look at more complex

quality metrics, e.g., the net-benefit track in the 2006 planning competition [GL05] and the

evaluation of planners based on plan cost in recent IPCs. While these have taken steps

toward including more complex metrics and capturing the trade-offs, they remain focused

on a weighted evaluation function that may not be appropriate for applications where the

metrics interact.

Our security domain presents at least four metrics that are not readily combined into a

single objective function. The likelihood of attack and cost of attack characterize the risk

associated with doing nothing about a potential threat, while utility to the user and cost

of intervening characterize the reward of better securing the system while minimizing user

irritation. Searching for breaches in the security domain is unique in that a property called

monotonicity [AWK02] eliminates cycles and bounds the length of plans, but the interacting

metrics create a challenge for search because they may interact in subtle ways. For example,

phishing attacks have a high privacy violation cost because a novice user may provide finan-

cial or personal details to a malicious third party, thus subjecting themselves to unpleasant

consequences. Since such attacks can only happen through email, a low cost intervention

might be to disallow email. However, this is unlikely to be a desirable intervention from

the user’s perspective given the ubiquity of email use for communication. A higher-cost

intervention could be educating the user, but failing to do this well may increase the risk or

76

cause the user to be overconfident in their ability to assess a new threat. The agent of this

security application must reason about a set of alternative plans which balance the complex

trade-offs of how likely an attack will lead to a compromised system, of the costs associated

with intervening against such attacks, and of the repair costs for a (potentially) compromised

system. In short, there is no single, best solution. The security application is one example

of metric interaction.

In other multi-metric applications, the metrics may have competing or subtle interactions

that occur within an action. Another example is an autonomous system that needs to

balance the overall objectives of a mission while assessing metrics such as power consumption,

remaining time, risk and safety, level of required coordination, communications delay, etc.

Another example is a human travel agent using a mixed-initiative planning system to book

an itinerary that balances cost, total travel time, airport preferences, choice of seating, etc.

Existing multi-metric benchmark domains provide some inspiration in how to approach

the multi-metric security domain. We highlight six non-temporal benchmark domains from

IPC-2002 [LF03] that are represented in PDDL 2.1, Level 2 [FL03]: Depots, DriverLog,

Satellite, Settlers, Rovers, ZenoTravel. These domains were a significant advancement to-

ward metric planning and include at least two unique metrics in addition to plan length.

Radzi [Rad11] shows that the single, weighted-sum metric in most of these domains interacts

with plan length in ways that make the problem straightforward to solve. More specifically,

Radzi distinguishes metric straightforwardness into a spectrum of strictly straightforward

(plan length is a proxy for the metric), straightforward (plan length may be a proxy), semi-

straightforward (plan length and the metric may diverge but the metric is monotonic in the

plan length), and expressive (the metric may contradict plan length). Radzi examines several

new domains for the semi-straightforward category and leaves to future work the set of ex-

pressive domains, of which we believe the security domain may be one case. Only Settlers has

metrics that interact with plan length in an uncorrelated way, although the metric interac-

tions are still constrained by a producer–consumer model. Radzi further shows that, for most

domains, the metrics interact within a set of repeatable action sequences (e.g., in satellite,

77

turning the camera to take an image) or the metrics interact within a producer–consumer

model where one action increases the availability of a resource that is later consumed by

another action. While the metric benchmarks Radzi studied have a variety of metrics that

do interact in constrained ways, the metrics rarely contradict plan length or interact within

the same action.

5.2.2 Controlling for Metric Interaction in a Synthetic Domain

Drawing on the security domain as inspiration, we seek a domain where many solutions in

the domain have similar plan length and cost between the metrics can interact. The mono-

tonicity property of the security domain motivates a restriction that there cannot be cycles

nor negative effects [AWK02] (see Motivation, Section 2.1.1 for details on monotonicity). We

discuss this limitation in more detail in Section 5.7

Our solution is to create a synthetic domain where all solutions have the same plan length

and the metrics are systematically varied across the operators of the domain. We focus on

varying the interactions of two metrics, x and y, with each other. Figure 5.3 presents a

pictorial view of the synthetic domain, which is essentially a fully connected planning graph.

Nodes in this graph are states and arcs are transitions (operators). The m×n graph has m

layers with each layer containing n states. In planning terms, m determines the plan length

of any valid solution, while n determines the granularity of the metrics as discussed below.

States are labeled sij ∈ S, where i = {0, 1, ..,m} indicates the layer, and j = {0, 1, .., (n−

1)} indicates one of the states within a layer. The initial (i = 0) and goal (i = m) layers

have only one state; these are respectively labeled ‘Init’ and ‘Goal’ in Figure 5.3. Transitions

between states are ordered pairs (sij, si′j′), i < i′, j < j′ and labeled a(ij,i′j′) ∈ A. The

middle layers of the graph are fully connected with the next layer, so there is a path from

any state in level i to all states at the next level (i′ = i+ 1, j′ = {0, 1, .., (n− 1)}). There are

(m − 2)n2 + 2m transitions. Each arc in the graph represents a single operator, where the

precondition links to a state at level i and the postcondition links to a state at level i+ 1.

78

Adding Cost Metrics To The Synthetic Domain We apply a weight matrix, W ,

over the transition matrix. Table 5.1 shows the weights of the transition matrix for the

3×3 problem. The weight of an arc is set to the value of the node it leads into (shown

as a small integer at the top of the states in Figure 5.3). The arcs leading into the left-

most states are all set to 0; formally, w(aij) → 0,∀i, j = 0. Arcs leading into the right-

most states are set to 1000; formally, w(aij) → 1000,∀i, j = (n − 1). Arcs in the middle

interpolate the distance between 0 and 1000. Formally, the values depend on the jth column:

w(aij)→ j ∗ 1000/(n− 1),∀ij, 0 < i < m, 0 ≤ j < n. Thus, the number of states across the

graph, n, determines the granularity of the metrics.

To weight this graph with costs, we apply two functions, x and y, which will become

the metrics by which we evaluate plan quality. A third function provides z = x + y. The

three metrics x, y and z are functions of W , the weighted transition matrix; we only set the

value of x or y if a transition exists. The ranges of all metrics are integers [1, 1000] to ensure

some numeric effect in every action. Values of x are obtained: x(ij,i′j′) = max(1, w(ij,i′j′)).

For brevity, we drop the subscripts and say x = max(1, w). To obtain y, we apply functions

that control the interaction between x and y. These functions are listed in Figure 5.4 and

plotted in Figure 5.5. The random (ran) function is a no-interaction baseline. The other

functions vary the interaction with functions (and their “mirrored inverses”): linear, lin (nil),

sigmoidal, sig (gis), and polynomial, pol (lop). To aid in reading, note that the letters are

reversed for each mirrored function. The polynomial function is rotated to provide a more

interesting optimization metric. The fractional component of any function is truncated,

and random noise ε = round(N (0, 10)) is added to all functions to generate randomized

problems. If the function or the random noise cause a negative value, it is set to 1.

We partition the functions into two sets. The “easy” functions E = {ran, lin, nil, sig}

show no real tradeoff between x and y or have many minimal solutions (as in nil). The

“difficult” functions D = {gis, pol, lop} exhibit a trade-off with a small number of mini-

mal solutions, although multiple symmetric solutions may exist because we discretize the

functions. The ordering of the functions maintains the relative order of these partitions.

79

Figure 5.3: A graph of the 3×3 synthetic domain. Transition weights are at the top of the
node an arc leads into. The graph is directed, and arcs only transition from the top down.

Table 5.1: The transition matrix for 3×3.

|1,0 1,1 1,2 |2,0 2,1 2,2 | 3,0 |

----|---------------|---------------|------|

0,0 | 0 500 1000 | | |

----|---------------|---------------|------|

1,0 | | 0 500 1000 | |

1,1 | | 0 500 1000 | |

1,2 | | 0 500 1000 | |

----|---------------|---------------|------|

2,0 | | | 0 |

2,1 | | | 500 |

2,2 | | | 1000 |

----|---------------|---------------|------|

We apply the transition matrix and the values of x and y to create PDDL problems for a

specific m×n size; this yields one domain file and 21 problem variants (i.e., seven functions,

three metrics). Metrics are applied in the operator effects with (increase (f) value). The

problems are labeled m×nmetric
function, where the function is one of {ran, lin, nil, sig, gis, pol, lop}

and the metric is one of {x, y, z}. Figure 5.6 shows the PDDL for 4×3xnil. The full listing for

this domain is in Figure C.1.

80

x = max(1, w) + ε

ran(w) = c · uniform(1, 1000) + ε

lin(w) = x = max(1, w) + ε

nil(w) = max(1, 1000− w) + ε

sig(w) = round(1000 ∗ (1/(1 + e−(w−500)/110))) + ε

gis(w) = round(1000 ∗ (1/(1 + e(w−500)/110))) + ε

pol(w) = round(1050 ∗ (1/exp(w/10)0.05)) + ε

lop(w) = round(1000 ∗ (10003 − w3/10003)) + ε

Figure 5.4: The functions used to vary metric interaction. See Figure 5.5 for a plot of each
function.

x

y

0

200

400

600

800

1000

0 200 400 600 800

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

ran

0 200 400 600 800

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lin

0 200 400 600 800

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

nil

0 200 400 600 800

●
●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

● ● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

● ● ●

● ● ●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

● ● ●

sig

0 200 400 600 800

● ●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●
● ●

gis

0 200 400 600 800

●

●

●

●

●

● ●
● ●

● ●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

● ●
●

● ● ●

●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

● ●
● ●

● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

● ●
● ●

● ●

●

●

●

●

●

● ● ● ●
● ●

●

●

●

●

●

●
●●

● ● ●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

● ●
● ● ● ●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

●
● ● ● ●

● ●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

● ●
● ●

● ●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●
●

● ●
● ●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

●
● ● ● ●

pol

0 200 400 600 800

● ● ●
●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●●
● ●

●
●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ●
●●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

lop

Figure 5.5: Examples of the interaction between metrics x and y.

(define (domain synthetic-4-3-nil)

(:requirements :equality :typing :fluents)

(:types State) (:predicates (state-active ?s - State))

(:functions (x) (y))

(:action Apply-00-10 :parameters (?state-00 - State)

:precondition (and (state-active ?state-00)

(= ?state-00 State-00))

:effect (and (state-active State-10)

(increase (x) 1)

(increase (y) 1000))) ...)

(define (problem synthetic-4-3-nil-x)

(:domain synthetic-4-3-nil)

(:objects State-00 - State

...

State-40 - State)

(:init (state-active State-00) (= (x) 0) (= (y) 0))

(:goal (state-active State-40))

(:metric minimize (x)))

Figure 5.6: Partial PDDL for the domain and problem 4×3xnil; a full listing of this domain
is included in Figure C.1

81

5.3 Implementations

We describe the two algorithmic approaches we apply in this chapter. The first is based

on a metric planner, MetricFF [Hof03], and the second is our algorithm called Multi-Queue

A* (MQA).

5.3.1 A-star-Epsilon (A∗ε)

We used the A∗ε algorithm as implemented in the newest version of MetricFF [Hof03].

Instead of popping the best solution (s = min(q)) from the top of the priority queue at each

iteration, A∗ε [PK82] selects a solution from the top K solutions (i.e., a focus list) on the

top of the queue. A solution s′ is in K if f(s′) <= 5f(s) and h(s′) = h(s). We only use

MetricFF with cost optimization enabled. This implementation does not use helpful actions

nor the initial enforced hill climbing stage. We use m×n = 15×29 because it was as large

as MetricFF could still handle.

5.3.2 Multi-queue A* (MQA)

We now bring together several insights from across our study and present a new algorithm,

Multi-queue A* (MQA), that offers one way to incorporate these insights in a variant of

A*. The first issue is one of metric scale. In Section 5.4.1 (below) we will show that

scaling the quality metrics can negatively impact search behavior. Thus, the need to manage

metric scale between diversity values and heuristic values is a critical design insight. When

combining diversity and multiple metrics, several issues conspire against the common practice

of normalizing the metric values to managing differences in scale between them. When

searching for plans, we do not have the luxury of knowing the maximum diversity and this

quantity grows with each iteration. Nor may we always have reliable (heuristic estimates of)

maximum values for the other quality metrics. The problem of normalizing diversity, quality,

and heuristic values for use within a single objective function is further complicated because

the heuristic is minimized while the diversity is maximized. Finally, even if we could get

good estimates, these metrics may have unknown (or only partially known) ranges during

82

search, which makes it challenging to normalize them effectively to drive the search process.

Results from Section 4.9 demonstrate that quality and diversity can (and often do) in-

teract. In Section 5.4.1 (below) we also show that metric interaction can negatively impact

the plan quality of final plans. For the BiSyn domain we deliberately force interactions and

observe some non-intuitive results. It seems clear enough that combining them in a weighted

objective function, while simple to do, is likely to lead to pathological search behavior (i.e.,

getting stuck without a solution, inefficient runtime to solution, or poor quality solutions)

at least some of the time.

Thus, the evidence we have collected suggests that we must manage these metrics inde-

pendently from each other during search rather than try to combine them. In short, we must

maintain independence of a set of metrics, T , that is itself composed of quality, heuristic,

and diversity metrics. To accomplish this, we can draw inspiration from existing planners

that manage separate heuristics in distinct open lists [Hel06; RW10]. The key idea behind

Multi-queue A* (MQA) is to use separate queues, Qt for each metric t ∈ T , and to sort each

queue as is appropriate for that metric. We call them queues instead of open lists because,

as we will show, not every queue sorts the nodes using the canonical A* f function. The

use of a queue rather than an open list has implications for the completeness, optimality,

and runtime guarantees of A*, and we conjecture that it may be possible to bound these in

a manner similar to A∗ε or MQA. If not, maybe MQA should really be called Multi-queue

Best First Search. In Section 5.7, we will discuss these implications, among others, that are

important future work for MQA and other multiple queue algorithms. For now, we maintain

the A* name because some queues will still employ the f function from A*. This naming

also follows a central theme of our work of applying directed changes to the A* algorithm

rather than incrementally tweaking a full planning system.

Algorithm 4 shows the main outer function of MQA. It is very similar to ITA except that a

set of queues, Q, is created and passed into the graph search algorithm, shown in Algorithm 5.

As in ITA, EXTRACT-STATE-ACTION-PAIRS() stores each (state, operator) pair that

is on the path to the solution into T .This version of graph search is similar to the A*-

83

Algorithm 4 MULTI-QUEUE-A* (P , numSolutions, maxSteps) returns a set of solutions
or failure
1: solutions ← ∅
2: T ← ∅
3: Q ← SETUP-QUEUES(P)
4: while solutions.size() ≤ numSolutions do
5: solution ← MULTI-QUEUE-GRAPH-SEARCH(P, T , Q, maxSteps)
6: T ← T ∪ EXTRACT-STATE-ACTION-PAIRS(solution)
7: end while

Algorithm 5 MULTI-QUEUE-GRAPH-SEARCH (P , T , Q, maxSteps) returns a solution
or failure
1: closed ← ∅
2: Q.INSERT-INTO-ALL-QUEUES(MAKE-NODE(so), Q)
3: stepsTaken ← 0
4: while stepsTaken ≤ maxSteps do
5: node ← Q.removeNext()
6: if isEmpty(Q) then
7: return failure
8: end if
9: state ← node.getState()

10: if Sg ⊆ state then
11: return SOLUTION(node)
12: end if
13: if not inClosedList(state) then
14: closed ← closed ∪ state
15: Q.INSERT-INTO-ALL-QUEUES(EXPAND(node, P, T))
16: end if
17: stepsTaken++
18: end while

GRAPH-SEARCH (cf. Algorithm 1) except that the Open list, O, is replaced by Q, which

is essentially a data structure holding the relevant queues and ensuring that the basic A*

loop does not know about the set of queues. In other words, when removeNext() is called,

Q takes care of incrementing the underlying queues as needed and simply returns the next

node for A* to consider. Similarly, other updates to Q propagate to all queues in Q.

There are two design decisions for MQA: how to set up the queues, as managed in the

SETUP-QUEUES() function, and how to select across them during search, as managed by

the REMOVE-NEXT() function. The SETUP-QUEUES() function takes care of setting up

Q depending on the problem and configuration; we discuss later the specific queues used

84

in our experiments. We set up two types of queues for our study, which we explain using

the metrics from the BiSyn domain as an example. Let tx represent the quality metric

x that we want to minimize. We create a queue Qx that sorts according to the usual f

function for A*. When we have a good estimate for hx we can use fx = gx + hx. When

we do not, we can use the reachability heuristic hrelax (see Background, Section 3.2.1) to

select the best action to apply and then estimate hx using the cost of that new action; thus

fx = gx + cost(bestAction(πrelax)). Note that using hrelax was designed to minimize plan

length, and thus maintains parsimony with respect to producing diverse plans. But this

design decision may be a poor choice if one is looking for longer solutions that may have a

better quality (see Section 3.4.2 for a discussion of pathological cases for cost-based search).

A quality queue may employ a metric that is itself compound. For example, consider

the z = x + y metric from the BiSyn domain. Creating compound metrics may lead to

improved search behavior if the metric interactions are well understood. But the queue, Qz,

that minimizes z is functionally the same from the perspective of MQA. While we have clear

justification for combining a heuristic estimate with (compound) quality metrics, the case is

not so clear for diversity.

To create diversity queues, we apply the same design principle of a distinct queue ex-

cept that our results caution us to avoid combining diversity and quality (or its heuristic

estimate) into a weighted function. Diversity must be sorted differently, and we propose

that the guiding design principle should be parsimony. Recall that parsimony suggests we

should prefer short plans while maximizing diversity (see Section 4.1). Let DS be a distance

metric that orders states first by minimizing hrelax (Section 3.2.1) and then breaks ties by

maximizing Dstability (Equation 3.3). We call this the parsimonious diversity queue, QS. As

a baseline to understand whether parsimony is useful, we also consider a queue, QD that

maximizes Dstability alone. We expect to observe that employing QS produces more diverse

plans that are also more parsimonious.

Now that we have discussed the queues, we must make the final design decision for MQA:

a queue selection strategy that is managed by the REMOVE-NEXT() function. We showed

85

in previous work on a planning portfolio called BUS [RHF07] that a simple round-robin

selection strategy is sufficient for many planning problems. So our implementation follows

from this insight and similarly uses a round-robin strategy. We point out, however, that

there may be application specific reasons for preferring some other selection strategy. We

discuss the selection strategy as an open question for future work in Section 5.7.

We implement MQA in the Mosaic framework (see Appendix A) and provide six variants

for this study. The variants depend on two choices: 1) whether the Tabu list of ITA is

enabled, and 2) whether and which diversity queue is enabled. Table 5.2 lays out the six

variants we use. Note that the Tabu list or a diversity queue are relevant only after the first

solution is found. It does not make sense to enable either of them when searching for a single

plan; thus, we only run the vanilla MQA when producing a single plan.

We decide which queues to use at runtime based on the problem being solved. Which

queues are enabled is another independent variable in our experiments for BiSyn. Table 5.3

shows the problems we explore along with the quality queues we used. In the case of the

BiSyn domain, we employ five different queue configurations, and it is always the case that

the first letter of the name for a configuration states the evaluation used for the solutions.

Two configurations evaluate the solutions according to x and y while using the same corre-

sponding quality queue. The other three configurations evaluate the solutions according to

z but vary the queues: one uses only z, the second (xy) uses x and y only, and the third

(xyz) uses all three quality queues x, y, and z. In the benchmark domains, we employ a

single quality queue but the quality metric changes depending on the domain: the quality

metric is plan length in the older IPC-2002 problems of Depot, DriverLog and Rover and

the quality metric is the sum of action costs in the newer IPC-2008 Cybersec and IPC-2012

Transport problems.

5.4 Results: Producing Single Solutions for BiSyn

We begin with a study of BiSyn, where we apply both algorithms to generate single

solutions. In this section, we analyze the two approaches for generating single solutions.

86

Table 5.2: The variants of MQA. When generating plan sets, the Tabu list can be on or off,
and is designated with a subscript T (e.g., MQAT). Use of the diversity queue is designated
with a D (e.g., MQAD), while use of the parsimony queue is designated with an S (e.g.,
MQAS). A dash indicates that this particular combination is unused.

Diversity Queue
None QD QS

Tabu Off - MQAD MQAS
Tabu On MQAT MQATD MQATS

Table 5.3: The queues used during experiments for MQA. Each run of MQA for a particular
problem contained one or more quality queues. A ‘D’ denotes MQA runs using the diver-
sity queue QD while ‘S’ denotes runs using the parsimony QS. A dash indicates that this
particular combination is unused.

Diversity Queue(s)
Quality Quality MQAD MQAS Preferred

Domain (Name) Metric Queue(s) MQAT MQATD MQATS Operators

BiSyn (x) x x D S Off
BiSyn (y) y y D S Off
BiSyn (z) z z D S Off
BiSyn (zxy) z xy D S Off
BiSyn (zxyz) z xyz D S Off

Depot |π| f - D S On
Driverlog |π| f - D S On
Rover |π| f - D S On
Cybersec c(π) f - D S On
Transport c(π) f - D S On

Our goals in this section are to lay a foundation of understanding when and how metric

interaction impacts search. Our measurements include search cost as well as the scaled

histograms (see Figure 5.2). Where appropriate we back up our observations with statistical

testing.

5.4.1 Single Solutions for BiSyn using A∗ε

We explore the behavior of A∗ε on BiSyn. We observe the impact of metric interaction,

whether there is a difference between easy (E) and difficult (D) functions, and the extent to

which scaling impacts search behavior.

87

Table 5.4: Significance, p-value, and statistics (average time and standard deviation) for
the paired-sample t-test on the quality metrics x and y for the original problems (top) and
uniformly scaled problems (bottom). A single asterisk (‘*’) indicates significance at the
p < 0.05 level. Three asterisks (‘***’) indicate significance at the p < 0.001 level.

x y
Sig. p-val Avg. time SD Avg. time SD

ran *** 0 1.41 0.101 4.48 0.958
lin 0.248 1.42 0.139 1.38 0.107
nil 0.669 1.41 0.109 1.42 0.088
sig *** 0 1.48 0.152 2.52 0.476
gis * 0.034 1.43 0.104 3.99 6.28
pol *** 0 1.43 0.115 1.94 0.372
lop *** 0.001 1.47 0.148 1.36 0.083

ran *** 0 1.52 0.189 4.1 0.953
lin 0.984 1.54 0.169 1.54 0.203
nil 0.751 1.44 0.162 1.45 0.153
sig *** 0 1.37 0.174 2.03 0.297
gis *** 0 1.43 0.162 2.09 0.338
pol *** 0 1.4 0.185 1.82 0.332
lop *** 0 1.42 0.16 1.27 0.048

The Impact of Metric Interaction Many planners are designed to minimize a single

objective function. So we expect to observe little performance difference when minimizing

either x or y alone. We study whether, for all functions, A∗ε ε-minimizes both x and y with

insignificant differences in CPU time between the two metrics. Table 5.4 (top) shows the

runtimes of x and y along with the p-values for a pairwise t-test between x and y. These are

also plotted on a log scale in Figure 5.7 (top). All the runtimes between the two metrics were

significant (p < 0.0073) except the linear functions12. Figure 5.8 (left) shows a histogram

of the scaled differences for how well A∗ε minimizes x and y. A∗ε has trouble finding the

ε-minimal solutions.

12The Bonferroni adjustment controls the experiment-wise error of 7 pairwise comparisons at α = 0.05, so
the critical value for p is 0.0073 = 1− (1− 0.051/7).

88

Metric

T
im

e
(lo

g)

1

10

100

x y z

●

●

●

●

ran

x y z

● ● ●
●● ●●

lin

x y z

● ●

●

● ●●●

nil

x y z

●

●
●

sig

x y z

●

●

●

●

●

●●●

●

●

gis

x y z

●
●

●

●

●

pol

x y z

● ●

●

lop

Metric

T
im

e
(lo

g)

1

10

100

x y z

●

●

●

●

ran

x y z

● ● ●
●

lin

x y z

● ●

●

●

nil

x y z

●

● ●

sig

x y z

●

●

●

●

●

gis

x y z

●
●

●

●

pol

x y z

● ●

●

lop

Figure 5.7: Runtime distributions of running A∗ε all functions and metrics for the original
problems (top) and the uniformly scaled problems (bottom).

There is a marked difference between minimizing x and minimizing y for some problems.

Both metrics have a range that is represented equally in the actions at each layer of the

graph. However, x is sampled at specific points that are interpolated between [1, 1000] while

y is sampled uniformly randomly in that same range. This sampling bias is evidenced in the

vertical ‘bands’ for x seen in Figure 5.5 that are absent for y. This leads to more potential

values for y than x, which appears to be more challenging for search. We plan to confirm

this explanation in future work.

So we can conclude that, for the most part, ε-minimal solutions are not found and that

there are significant differences in CPU time between minimizing x and y.

Comparing Easy and Difficult Functions For minimizing z, we expect to see quality

and performance degrade as the xy tradeoff becomes more challenging. So we examine

89

planner performance on the easy and difficult metric interactions. The intuition behind this

is that collinear functions are easy but non-collinear functions are more difficult. Finding

the minimum should take longer and happen less frequently under the difficult interactions.

We expect to see that, for the easy functions (ran, lin, nil, sig), A∗ε will ε-minimize z and

with insignificant differences between the CPU time of minimizing x, y, and z.

Figure 5.8 (left) shows thatA∗ε successfully finds ε-minimal solutions in z for nil, gis, pol, lop.

In terms of runtime, Figure 5.7 (top) shows there is often a significant cost (10 to 100 times

more) to minimizing z except in the simplest collinear functions lin and sig. The runtime

for minimizing z is significantly different except for lin.

We also expect to see that for the difficult functions (gis,pol,lop), A∗ε will not find the

global minimums in z, and the runtime will be significantly different between D and E.

Further we expect to see the difference in runtime will be similar between pol and lop, but

the difference in runtime will be significantly different between gis and {pol, lop}.

Figure 5.7 (top) shows that the runtimes between the E and D problems are distinct,

with the D problems usually taking more runtime. The runtimes between pol and lop, while

overlapping, are statistically different; a Tukey HSD test run on the runtimes of both the E

and D does not group any of the functions together. Figure 5.8 shows that A∗ε successfully

finds the minimal solutions for gis, pol, lop. So we conclude that CPU time increases for

the difficult functions but there is not otherwise similar performance with the easy/difficult

groupings. A∗ε finds minimal solutions for all three functions.

The Impact of Scaling Several recent results have linked the sensitivity of search to the

operator costs. Wilt and Ruml show that cost-based search is sensitive to the ratio of the

operator costs [WR11]. Cushing et al. show that cost-based search can be misled by cost

functions in the actions that work against heuristic distance [CBK11]. Finally, Sroka and

Long [SL12] show that some planners are more sensitive to the metrics; for example they

show that MetricFF (among other planners) can generate more diverse solutions by varying

the constraintedness of resources in a logistics domain. We are interested in how the search

90

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

x
pol

y
pol

0
20
40
60
80
100

z
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis

x
sig

y
sig

0
20
40
60
80
100

z
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

x
lin

y
lin

0
20
40
60
80
100

z
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

x
pol

y
pol

0
20
40
60
80
100

z
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis

x
sig

y
sig

0
20
40
60
80
100

z
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

x
lin

y
lin

0
20
40
60
80
100

z
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

Figure 5.8: Log-Histograms of the scaled difference from the minimum for the original prob-
lems (left) and the uniformly scaled problems (right). Bins for the bottom axis are set at
{0, 1, 2, 4, 8, 16,≥ 32} to provide a visual representation of how well an algorithm does. Bet-
ter performance is indicated by thinner and taller bars to the left. For more details, see the
discussion of Figure 5.2.

91

behavior changes when we scale the values of the metrics uniformly or with respect to each

other.

Our first set of experiments uniformly scales x and y together. We create a set of

uniformly scaled problems that simply scale the original metric values in actions by 0.3.

Figure 5.7 (bottom) and Table 5.4 show the runtime distributions for the uniformly scaled

problems. The results parallel those of the correlated problems except for a more significant

difference in gis, which can be explained by an outlier present in the original runs.

Figure 5.8 (right) shows histograms of the scaled difference from minimal solutions for

the uniformly scaled problems. When minimizing x or y, A∗ε finds equal or better solutions

for the uniformly scaled problems, except for ran. In contrast, when minimizing z, A∗ε finds

worse solutions except for lin and sig.

We can also scale either x or y when minimizing z, which leads to a skewed evaluation

function that favors one axis over another. We introduce functions that vary the weight of

x and y.

z2x = 2x+ y

z5x = 5x+ y

z10x = 10x+ y

z25x = 25x+ y

z50x = 50x+ y

z2y = x+ 2y

z5y = x+ 5y

z10y = x+ 10y

z25y = x+ 25y

z50y = x+ 50y

Figure 5.9 demonstrates that solutions tend to get worse as the scale increases (to the

right) for scaling along x. This trend is less pronounced (or absent) in the random and

collinear functions (ran, lin, and sig) while very evident in the remaining functions. The

scaling is similar for y, as shown in Figure C.2. This evidence suggests that managing scaling

is not as critical (but still useful) when metrics are collinear or uncorrelated but critical when

they interact in more subtle ways.

92

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

z
lop

z2x
lop

0 10 20 30

z5x
lop

z10x
lop

0 10 20 30

z25x
lop

z50x
lop

z
pol

z2x
pol

z5x
pol

z10x
pol

z25x
pol

0
20
40
60
80
100

z50x
pol

0
20
40
60
80

100
z

gis
z2x
gis

z5x
gis

z10x
gis

z25x
gis

z50x
gis

z
sig

z2x
sig

z5x
sig

z10x
sig

z25x
sig

0
20
40
60
80
100

z50x
sig

0
20
40
60
80

100
z
nil

z2x
nil

z5x
nil

z10x
nil

z25x
nil

z50x
nil

z
lin

z2x
lin

z5x
lin

z10x
lin

z25x
lin

0
20
40
60
80
100

z50x
lin

0
20
40
60
80

100
z

ran

0 10 20 30

z2x
ran

z5x
ran

0 10 20 30

z10x
ran

z25x
ran

0 10 20 30

z50x
ran

Figure 5.9: Log-Histograms of the scaled difference from the minimum for the z∗x problems.
Bins for the bottom axis are set at {0, 1, 2, 4, 8, 16,≥ 32} to provide a visual representation
of how well an algorithm does. Better performance is indicated by thinner and taller bars
to the left. For more details, see the discussion of Figure 5.2.

93

5.4.2 Single Solutions for BiSyn using MQA

In this section, we examine MQA on the BiSyn domain. Preferred operators are turned

off for these runs because using a restricted neighborhood would impact the goal of the

synthetic domain to assess how well the approaches use the alternative paths to construct

solutions. We use several figures in this section to summarize the search cost (as runtime),

the log-histograms, and the solution frontier of MQA, MQAD, and MQAS. Some of the

larger plots would disrupt the flow of the prose and are placed in Appendix C; plots of the

same type are placed on subsequent odd/even pages to allow for easier comparison.

Figure 5.10 shows the runtime histograms for MQA (top), MQAD (middle), and MQAS (bot-

tom). It is evident that all MQA variants show a similar performance trend of larger search

cost variance for the z function, which is similar to A∗ε (cf. Figure 5.7). We performed a

pairwise t-test between xy, xz, and yz while adjusting for experiment-wise error with a Bon-

ferroni adjustment (i.e., a critical value for p of 0.0073 = 1 − (1 − 0.051/7)). For MQA and

MQAD, xy are always not significantly different, while xz and yz are always significantly

different. For MQAS, the same trend occurs except that xy is not significant for pol and lop,

while, for xz and yz, all functions are significant except sig.

We also see that that MQA produces solutions with much less search effort than A∗ε for

all the functions except lin and sig. A Bonferroni adjusted t-test reveals that all versions

of MQA are significantly faster to the first solution except for lin and sig. (cf. Figure 5.7).

We believe that one explanation for this is the focus list of A∗ε , when focused on the quality

metric, can seriously mislead search. To see why, let us consider that the queue for A∗ε is

sorted by the quality metric ft for a specific metric t. But for the BiSyn domain, quality and

distance do not necessarily correlate with each other – in fact, we have deliberately caused

plan length to be less interesting by forcing all solutions to be the same plan length. Yet, A*

search is driven by both the cost of the current solution (i.e., its g-value) and simultaneously

the cost of its heuristic estimate (i.e., its h-value). So the “best” action to achieve the next

layer may be much deeper into the search queue than the size of the focus list. Alternatively,

the focus list can grow very large, which decreases the chance that A∗ε will even find that

94

“best” action. In such cases, it may be that h is a poor estimator to use. It may also be

the case that A∗ε is getting space restricted. Both of these possible explanations should be

explored in future work.

Figure 5.11 provides a visual intuition for this effect using the nil function, where x and

y are inversely correlated. The frontiers of Qx (in orange in the upper left) or Qy (in blue in

upper right) are represented by large ovals over the states of a hypothetical BiSyn problem.

Note that these two frontiers would be combined if we searched for z. A* is biased toward

nodes with a low f-value, which equates to nodes with a low h-value (i.e., a better quality

value) or a low g-value (i.e., a low cost-so-far value). Further, A∗ε selects across this frontier

– with equal likelihood – any node that is within the ε bound for the focus list. We believe

that this is the key to understanding why A∗ε is misled – expansions in this domain are very

costly and A∗ε expends lots of effort on nodes that are eventually shown to be less promising.

This insight complements the existing literature showing that cost-based (i.e, quality-based)

search can be misled in particular cases (e.g., [CBK11; WR11], see Section 3.4.2 of the

background for more details). In particular, we extend those results to show that quality-

based best-first search is misled when metrics interact with each other in specific ways and

that search can be further misled when scaling occurs on top of the metric interaction.

It is not surprising that adding either of the diversity queues significantly increases the

search cost over MQA without a diversity queue as diversity queues multiply search effort

by a constant factor. However, the parsimony queue, QS, has slightly better runtime than

QD. To understand why this might be the case, again refer to Figure 5.11. The hypothetical

frontier for the parsimony queue, QS, is shown across the middle in a green oval (it has no

filled background). Search moves one layer closer to the goal each time that MQAS expands

another node from QS. This gives MQAS a slightly lower overall runtime than MQAD even

though using any form of diversity queue is still significantly higher than MQA alone.

In terms of achieving the optimal solutions, a glance over Figures C.3 and C.5 reveals

that MQA and MQAD tend to produce similar solution quality. When comparing this to

the results from A∗ε (cf. Figure 5.8, left plot) we can see that in addition to finding optimal

95

Metric

T
im

e

20

25

30

x y z

● ●

●

ran

x y z

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

lin

x y z

● ●

●

nil

x y z

● ● ●

sig

x y z

● ●

●

gis

x y z

● ●

●

pol

x y z

● ●

●

lop

Metric

T
im

e

25

30

35

40

x y z

● ●

●

ran

x y z

● ●

●

lin

x y z

● ●

●

nil

x y z

● ● ●

sig

x y z

● ●

●

gis

x y z

● ●

●

pol

x y z

● ●

●

lop

Metric

T
im

e

15

20

25

30

35

40

x y z

● ●

●

●

●

●●

ran

x y z

● ●

●
●

●● ●●●

lin

x y z

●

●

●

●●
●●

nil

x y z

● ● ●

sig

x y z

●

●

●

●
●

●●●

gis

x y z

●

●

●

●

●●

pol

x y z

●

●

●

●

lop

Figure 5.10: Runtime distributions of all functions and metrics for MQA (top), MQAD (mid-
dle), and MQAS (bottom) to generate a single solution in 30 problems.

solutions in the z function for nil, gis, pol, and lop, the two MQA variants tend to find better

solutions than A∗ε . This is in contrast to MQAS as shown in Figure C.7, which has very poor

solution quality. At first it might seem that the worse solution quality is undesirable, but

recall that some domains exhibit a diversity-quality tradeoff where increased diversity implies

decreased quality. So when we start considering how to increase diversity, we expect to see a

drop in solution quality for those cases where the interaction between the two is correlated.

96

Figure 5.11: Explaining how Qs can help search while still pushing diversity.

As a last point of discussion, we turn to the diversity of the solutions produced by MQA,

MQAD, and MQAS. Figure C.4 shows the first solution of MQA on 30 problems of BiSyn .

What is plotted here is a solution’s final xCost (on the x-axis) and final yCost (on the y-axis).

The columns of the plot indicate which metric was used to evaluate the quality as well as

which queues were included in the search (as described in Table 5.3). The first and second

columns of plots indicate the use of a single queue x or y that was also used to evaluate the

final solution. The MQA variants successfully minimize either x or y alone. If x and y are

collinear, as they are in lin and nil, then solutions tend to clump in the lower left corner.

If x and y are negatively correlated, then solutions tend to be low in the minimized metric

and high in the one that was ignored. More complex interactions lead to varying results.

The third, fourth and fifth columns of Figure C.4 all indicate solutions that are evalu-

ated according to the z function, which is denoted by z being the first letter for all three

97

columns. However, each column indicates different kinds of queues that were used. The

third column (z) indicates that only one queue, z, was included. It is clear that solutions

which minimize both x and y are preferred. The fourth column (zxy) indicates that, while

z was the evaluation metric used for the final plan quality, only the x and y queues were

included. It is clear that employing separate queues for x and y not only led to a set of

solutions that were distinct in both x and y but also tend to be distinct from those in the

third column (z). This might suggest that putting all three queues together would lead to

a better spread of solutions. However, we see that this is not the case in the fifth column

(zxyz), which indicates that z is used to evaluate the final plan quality and three queues

were used by search: x, y, and z. Adding the z metric to xy did not generally help with

solution diversity but instead seems to have biased search toward minimizing the x axis;

again this may be due to the sampling differences between x and y that were noted earlier

at the start of Section 5.4.1 when discussing the impact of metric interaction.

Adding the diversity queue, QD, as shown for MQAD in Figure C.6 does not seem to

provide any significant gain, and when paired with nearly doubled runtime cost over MQA (cf.

Figure 5.10) clearly indicates that diversity alone is not a good driver for generating diverse

plan sets. Adding the parsimony queue, QS, as shown for MQAS in Figure C.8 demonstrates

exactly the kind of tradeoff we hoped to see. MQAS generates a wider variety of single

solutions for the cases where we evaluate using z (the third, fourth and fifth columns). It

also generates diverse solutions across the gap that could not be found in either MQA and

MQAD. Finally, it is even able to generate more varied solutions for the collinear functions,

which in MQA and MQAD were clustered very near the origin. The drawback to this

approach is that it generates this diversity at the expense of quality.

5.5 Results: Producing Plan Sets for BiSyn

We now turn our attention to extending the results for MQA on the BiSyn domain to

producing plan sets. First, we examine the uniqueness of the plan sets for the BiSyn problem.

Table 5.5 shows the results for obtaining 100 solutions for each function and metric combi-

98

Table 5.5: Solution counts and overlap for the BiSyn domain with MQAT , MQATD, and
MQATS.

MQAT MQATD MQATS

n Avg Total Unique Ratio Unique Ratio Unique Ratio

x
q 30 100.0 3000 2578 0.859 2288 0.763 2807 0.968
p 30 100.0 3000 2430 0.810 2208 0.736 2883 0.961
r 30 100.0 3000 2200 0.733 1984 0.661 2606 0.869
s 30 100.0 3000 2571 0.857 2197 0.732 2898 0.966

m 30 100.0 3000 2593 0.864 2251 0.750 2898 0.966
l 30 100.0 3000 1995 0.665 1502 0.501 2993 0.998
t 30 100.0 3000 2027 0.676 1677 0.559 2914 0.971

y
q 30 100.0 3000 2571 0.857 2156 0.719 2888 0.963
p 30 100.0 3000 2413 0.804 2283 0.761 2833 0.944
r 30 100.0 3000 2187 0.729 1938 0.646 2640 0.880
s 30 100.0 3000 2466 0.822 2234 0.745 2866 0.955

m 30 100.0 3000 2590 0.863 2175 0.725 2879 0.960
l 30 100.0 3000 2036 0.679 1558 0.519 2984 0.995
t 30 100.0 3000 2052 0.684 1638 0.546 2928 0.976

z
q 30 100.0 3000 2529 0.843 2187 0.729 2834 0.945
p 30 100.0 3000 2476 0.825 2180 0.727 2797 0.932
r 30 100.0 3000 2021 0.674 1644 0.548 2529 0.843
s 30 100.0 3000 2392 0.797 2186 0.729 2787 0.929

m 30 100.0 3000 2478 0.826 2174 0.725 2841 0.947
l 30 100.0 3000 1980 0.660 1354 0.451 2986 0.995
t 30 100.0 3000 1993 0.664 1341 0.447 2916 0.972

xy
q 30 100.0 3000 2795 0.932 2229 0.743 2905 0.968
p 30 100.0 3000 2630 0.877 2179 0.726 2858 0.953
r 30 100.0 3000 2452 0.817 2251 0.750 2699 0.900
s 30 100.0 3000 2759 0.920 2083 0.694 2878 0.959

m 30 100.0 3000 2822 0.941 2331 0.777 2902 0.967
l 30 100.0 3000 2232 0.744 1868 0.623 2796 0.932
t 30 100.0 3000 2444 0.815 2157 0.719 2924 0.975

xyz
q 30 100.0 3000 2705 0.902 2411 0.804 2875 0.958
p 30 100.0 3000 2500 0.833 2383 0.794 2814 0.938
r 30 100.0 3000 2361 0.787 2118 0.706 2641 0.880
s 30 100.0 3000 2762 0.921 2360 0.787 2844 0.948

m 30 100.0 3000 2737 0.912 2354 0.785 2888 0.963
l 30 100.0 3000 2105 0.702 1703 0.568 2650 0.883
t 30 100.0 3000 2101 0.700 1741 0.580 2556 0.852

99

nation of BiSyn . Each sub-table indicates the particular queue setup for these problems as

detailed in Section 5.3.2 and Table 5.3. Every run was able to produce 100 solutions within

the computational bounds, as indicated by the left three columns. The next three pairs of

columns indicate the uniqueness ratio for each variant of MQAT ; we did not run without the

tabu list because of the deliberate similarity of BiSyn and the security domain and our find-

ings that ITA was best in the security domain (see Section 4.4.2). In comparing the number

of unique solutions produced and the uniqueness ratios, where higher is better for both met-

rics, it is clear that a strict dominance relationship occurs: MQATD ≺ MQAT ≺ MQATS.

This is strong evidence that leveraging parsimony during search leads to improved search

performance. However, these metrics do not provide evidence about how efficiently these

plans are produced, the quality of those solutions, nor how well spread out the solutions

across the metrics.

Figure C.9 shows the runtime distributions for MQAT , MQATD, and MQATS. We can

see that the search time per solution did not change much between these values and those

of obtaining the first solution (cf. Figure 5.10). A Bonferroni adjusted t-test between the

first solution and the 100 solutions reveals that many of the runtimes are not significantly

different except for lin and nil for all three variants and lin, nil, and lop for MQATD.

In terms of quality, we can compare the solutions to the set of first solutions as well

as between the three approaches that generated plan sets. Both comparisons reinforce a

common thesis of this document: that solution quality and solution diversity are often at

odds with each other. Figures C.10, C.12, and C.14 show the log-histograms for solution

quality for obtaining the 100 plans in the problem, p00, of BiSyn; as before, these plots

are placed on alternating pages to make comparison easier. When compared to the first

solutions (cf. Figures C.3, C.5, and C.7, respectively), we see that solution quality has

generally worsened, as shown by the higher prevalence of the larger right-most bars. This

trend is less prevalent between the 1 and 100 solutions of MQATS, which suggests that the

initial solution of MQATS already sacrifices quality. What remains to be seen is whether

MQATS was able to continue the trend of a spread of solutions.

100

To understand the spread of the solutions, we examine Figures C.11 , C.13, and C.15. We

see that the spread of solutions is most diverse for MQATS. Further, we see that MQATS was

even able to produce diversity in the linear functions, where no other algorithm could do so.

5.6 Results: Producing Plan Sets for the Benchmarks

We close the results with a return to the benchmark domains from Chapter 4. Our goal in

this section is to tie up two important themes that have run through this entire document by

demonstrating two points. First, we show that driving search with parsimony is reasonable

even for the benchmark domains because it yields a higher number of unique solutions and

improved parsimony ratios over other approaches. Second, we want to show that selecting

the right approach should depend on the needs of the application.

Table 5.6 compares four MQA variants with the original results from Table 4.4 for ITA.

We can make two sets of comparisons in these results. First, when comparing the MQA vari-

ants, MQATS produces the highest number of unique solutions for all the domains except

Driverlog, where MQAD solved more in spite of achieving less coverage. This suggests

that embedding a parsimony queue led to better results for uniqueness. However, we note

that ITA was still able to achieve better uniqueness in the security domain for which it was

designed. This suggests that selecting the right algorithm should depend on the needs of

the application. Finally, Table 5.7 repeats the results for the parsimony ratio, s, from Ta-

ble 4.3 as well as shows the result for s when using the MQAvariants. We can see that using

the parsimony queue leads to much higher values of s and that the minimums are usually

higher. This suggests that using the parsimony queue naturally leads to more parsimonious

solutions.

Table 5.8 compares the average diversity of MQATS with ITA, LPGd, and RWS. It

is clear that (on average) MQATS generally produces more diverse plans than ITA, while

rarely producing more diverse plans than LPGd and RWS. This is an expected result since

MQA was shown to have more parsimonious plans than LPGd and RWS, so its average

diversity will naturally be lower.

101

Table 5.6: Solution counts for the domains with the MQA variants and ITA(repeated from
Table 4.4). The n column indicates the number of problems that were solved at least once
for each domain by an algorithm.

n Avg Total Unique Ratio

MQAD
Depot 7 671.9 4703 133 0.028

DriverLog 11 661.2 7273 1908 0.262
Rover 20 402.6 8052 2210 0.274

Cybersec-strips 30 768.2 23047 843 0.037

Transport 20 969.0 19380 5743 0.296

MQAS
Depot 9 830.1 7471 329 0.044

DriverLog 12 803.1 9637 482 0.050
Rover 20 927.2 18544 332 0.018

Cybersec-strips 28 968.9 27129 340 0.013

Transport 20 981.0 19619 196 0.010

MQATD
Depot 7 928.3 6498 8 0.001

DriverLog 12 798.1 9577 13 0.001
Rover 20 947.2 18944 21 0.001

Cybersec-strips 30 1000.0 30000 30 0.001

Transport 20 1000.0 20000 543 0.027

MQATS
Depot 8 336.0 2688 699 0.260

DriverLog 12 201.8 2422 391 0.161
Rover 20 519.2 10384 3713 0.358

Cybersec-strips 28 709.9 19876 1078 0.054

Transport 20 292.4 5849 3995 0.683

ITA

Depot 8 282.9 2263 246 0.109
DriverLog 13 205.2 2667 375 0.141

Rover 20 226.7 4533 314 0.069

Cybersec-strips 28 261.8 7331 1562 0.213

Transport 20 329.8 6595 5467 0.829

102

Table 5.7: The parsimony ratio from running the MQA variants on the benchmark problems.

x̄ SD Med Min

RWS

Depot 0.74 0.106 0.75 0.34
DriverLog 0.64 0.121 0.63 0.25

Rover 0.82 0.114 0.81 0.44

Cybersec - - - -

Transport 0.74 0.096 0.74 0.37

Div

Depot 0.93 0.089 1.00 0.77
DriverLog 0.98 0.046 1.00 0.81

Rover 1.00 0.002 1.00 0.90

Cybersec - - - -

Transport 0.98 0.043 1.00 0.82

ITA

Depot 1.00 0.018 1.00 0.72
DriverLog 0.99 0.040 1.00 0.61

Rover 1.00 0.011 1.00 0.83

Cybersec - - - -

Transport 0.95 0.070 1.00 0.50

Hybrid

Depot 0.93 0.095 1.00 0.75
DriverLog 0.97 0.045 1.00 0.88

Rover 1.00 0.000 1.00 1.00

Cybersec - - - -

Transport 0.95 0.055 0.98 0.83

LPGd

Depot 0.53 0.233 0.44 0.18
DriverLog 0.82 0.142 0.86 0.20

Rover 0.95 0.054 0.96 0.72

Cybersec - - - -

Transport 0.73 0.165 0.76 0.16

x̄ SD Med Min

MQAD
Depot 0.98 0.111 1.00 0.27

DriverLog 0.91 0.149 1.00 0.20
Rover 0.98 0.039 1.00 0.70

cybersec - - - -

Transport 0.97 0.057 1.00 0.52

MQAS
Depot 0.97 0.049 1.00 0.63

DriverLog 0.98 0.048 1.00 0.72
Rover 0.99 0.021 1.00 0.83

cybersec - - - -

Transport 0.98 0.046 1.00 0.74

MQATD
Depot 0.71 0.236 0.67 0.36

DriverLog 0.77 0.187 0.77 0.40
Rover 0.91 0.079 0.90 0.78

cybersec - - - -

Transport 0.90 0.083 0.90 0.63

MQATS
Depot 0.96 0.055 1.00 0.48

DriverLog 0.99 0.042 1.00 0.57
Rover 1.00 0.016 1.00 0.77

cybersec - - - -

Transport 0.96 0.069 1.00 0.46

103

Table 5.8: Average stability diversity (Ds) comparison for the first 10 unique plans for RWS,
ITA, MQATS, and LPGd. Each entry shows how often the column algorithm’s average
diversity for those ten solutions was better or equal to the row algorithm’s average diversity
(‘≥’ columns), the union of problems with at least 10 solutions in either algorithm (‘∪’
columns), and the average magnitude of difference (‘ ¯|δ|’ columns).

ITA LPGd MQATS RWS

≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ| ≥ ∪ ¯|δ|

Depot

ITA 7 0 22 49.9 4 8 2.7 1 10 33.1
LPGd 22 22 49.9 22 22 22 45.4 20 22 22.5

MQATS 6 8 2.7 0 22 45.4 8 2 11 32.2
RWS 9 10 33.1 2 22 22.5 9 11 32.2 9

Driverlog

ITA 12 1 20 44.2 6 13 8.8 2 19 40.0
LPGd 19 20 44.2 20 17 20 12.1 10 20 28.8

MQATS 8 13 8.8 3 20 12.1 11 0 17 34.5
RWS 17 19 40.0 10 20 28.8 17 17 34.5 17

Rover

ITA 19 0 20 18.4 6 19 4.1 8 20 13.0
LPGd 20 20 18.4 20 20 20 15.1 16 20 3.3

MQATS 13 19 4.1 0 20 15.1 19 8 20 12.2
RWS 12 20 13.0 4 20 3.3 12 20 12.2 12

Cybersec

ITA 28 0 7 29 17.3 8 28 4.0 17 28 14.4
LPGd 22 29 17.3 24 23 29 17.1 18 25 16.7

MQATS 20 28 4.0 6 29 17.1 28 16 28 13.3
RWS 11 28 14.4 7 25 16.7 12 28 13.3 19

Transport

ITA 20 0 20 29.7 5 20 4.2 0 20 32.2
LPGd 20 20 29.7 20 20 20 26.5 9 20 11.1

MQATS 16 20 4.2 0 20 26.5 20 0 20 29.0
RWS 20 20 32.2 11 20 11.1 20 20 29.0 20

104

5.7 Limitations

Our exploration of metric interaction has some limitations related to the domains we

used, our algorithm approaches, and our evaluation methods.

One clear future direction is to enrich BiSyn. The current version does not have cycles

or negative effects, which is justified by the security domain relying on the monotonicity

property (see Motivation, Section 2.1.1 for details on monotonicity). But it is clear that

other applications might introduce cycles (e.g. the production/consumption cycles or chains

of actions leading to a (sub)goal as explored by Radzi [Rad11]), and many domains have

actions with negative effects. The bicriteria functions we use (linear and curvilinear) are a

good starting point, but they are simple and should be extended to more complex interactions

and more than two metrics. We need to better control for the discretization of x that led to

better results than y. Uniformly selecting x should solve this problem. Finally, there is some

at least some evidence for plan-length correlation that should be explored in future work.

Our choice of MetricFF, A∗ε and metric planning limits the findings to a single approach;

we need to generalize our results to preference and cost-based planners as well as other

metric planners. We expect that similar results will be found because many planners are

still designed with the plan length and single-metric bias at their core. It is unclear how

much the weight of A∗ε or the heuristic accuracy could impact the search results, which needs

to be addressed with a deeper study of the parameters for A∗ε . It may also be fruitful to

compare the plans found with worst cost plans rather than the optimal cost.

We are interested in combining this work with search for diverse alternatives plans (e.g.,

[Ngu+12; CMA11; Rob+12; Kho+13; Rad11; SL12]). We intend to generalize our set of

domains to those by Radzi [Rad11] who examines the reliance of benchmarks on plan length

and Sroka [SL12] who explores drives diversity by exploiting the metric sensitivity. We also

hope to extend these findings to the security domain that motivates our research.

The variants of MQA only scratched the surface of what could be done with this algo-

rithm, and the results presented for this algorithm are strictly empirical. One future direction

105

Figure 5.12: Example of a two-dimensional pareto front.

is to examine the potential of more complex queue selection strategies. Another direction is

to characterize analytically the conditions under which MQA is optimal.

Finally, our evaluation of MQA provided anecdotal evidence that it produced solutions

along a frontier of potential plans. A well understood way to evaluate solution diversity is

to examine the coverage of solutions along a pareto-optimal front; Ehrgott provides a good

introduction to the details of this field from an AI search perspective [Ehr08]. Figure 5.12

shows a two-dimensional pareto front. Feasible solutions to the problem are shown as dots.

The large dots show a set of solutions that are said to be non-dominated with respect to at

least one of the objectives. All other points not on the pareto front are dominated because

a better solution exists for at least one objective. A clear future direction is to compare

MQA to other approaches that can produce diverse solutions such as a population-based

search algorithms like NSGA-II or the recent planning system DAE-YAHSP [Kho+13].

5.8 Revisiting the Tradeoffs of Generating Plan Sets

Our initial exploration into producing single solutions under bi-metric interaction yields

several important insights. One of the more surprising findings is that A∗ε search performs

quite poorly when minimizing collinear functions (y = x and y = sigmoid(x)), which suggests

106

that researchers should avoid combining x and y when they are (nearly) collinear. A∗ε works

well for curvilinear functions such as polynomials and an “inverted” sigmoid. Most critically,

we discovered that scaling the metrics dramatically reduced search effectiveness. Poorer

performance occurred when the metrics were uniformly scaled to control, at least in part,

for plan-length correlation. Search performance also degraded as one metric was weighted

more heavily.

The lack of a plan length for guidance in BiSyn is a serious hindrance to A∗ε , which implic-

itly relies on relaxed heuristics for guiding search13. This justifies our approach of employing

more than one queue to solve problems for this domain, where plan length was the same for

all solutions. Using more than one queue to generate single solutions accomplishes at least

two objectives. First, it allows us to vary systematically the bias of the algorithm. Second,

it gives a solid foundation for extending the family of MQA approaches into producing plan

sets.

We show that the MQA family solved many, but not all, of the problems associated

with producing plan sets while simultaneously dealing with metric interaction. We create

a parsimonious queue, QS, that first minimizes the reachability heuristic hrelax and then

maximizes diversity. Combining QS with the Tabu mechanism of ITA results in more unique

and parsimonious plans for many problems in BiSyn and the benchmarks. However, this is

not always the case. For example, MQATS does not outperform ITA on the security domain

for which ITA was originally designed.

These results both unify and clarify many of the themes we have observed. We combine

the knowledge that quality and diversity interact with each other with the knowledge of

how specific metric interactions impact search. Our findings led us to the key insight that

parsimony – preferring shorter plans – is central to maximizing diversity while maintaining

reasonable quality and efficiency. But we also show that no approach dominates. For exam-

13Thanks to Patrik Haslum for an insightful email discussion concerning this insight.

107

ple, ITA is still the best algorithm for Cybersec in generating the most unique solutions.

Together these findings provide a strong case that the needs of the application should drive

the choice of algorithm. It should also drive algorithm design. Perhaps most importantly, we

have shown that analysis-directed changes to an algorithm can lead to improved performance

and that the intrinsic design goal of plan length makes extensions difficult.

108

Chapter 6
Evaluating Diversity For Planners

This final chapter reviews the key findings so far from our exploration of the interplay of

diversity, quality, and efficiency for search-based planning. Such systems are often evaluated

under the assumption that they need to produce a single plan while minimizing a single

quality metric, and a planner is preferred if it produces a better quality plan with the

same (or fewer) computational resources. This quality-efficiency focus has naturally led to

techniques that iteratively improve the next generation of planners to find that single best

solution ever faster.

Our target application – a personalized security agent for home computer users – chal-

lenges the way in which many planning systems have been designed. The security application

requires generating plan sets (as opposed to a single solution) and evaluating plans according

to more than one quality metric (as opposed to a single metric). Figure 1.3 (left) demon-

strates these two research directions, where the gray box indicates the current literature

along both directions.

Moving in each of these two directions extends planner design and evaluation in two ways.

The requirement of more than one metric expands the quality dimension. The requirement

of producing plan sets introduces a new evaluation dimension of diversity. This creates the

three axes of evaluation (the dependent variables) that we use in our study, as shown in

Figure 1.3 (right). Many of the evaluation metrics are drawn from existing literature. For

example, in the efficiency metrics we used CPU time and number of nodes generated.

The quality metrics followed the common usage of plan cost for newer problems and plan

length for older problems. Finally, we employ two diversity metrics from the literature

that characterize the distance between plans within a plan set. One metric, Dstability, uses

set difference between the plan sets, while the other, Dnorm, normalizes the cardinality of the

set intersection by the cardinality of the set union between two plans.

The existing diversity metrics have two shortcomings. None supports comparison between

plan sets. So we create a metric, overlap, that takes the set intersection of two plan sets.

109

Within a plan set, plan distance does not characterize the distinctness of plans with respect

to each other. We create two diversity metrics designed to alleviate this. We found in

our studies that plans within a plan set could be subsets of each other. The first metric,

uniqueness, captures the way in which plans do not subsume each other by removing any

padded or permuted plans. The second metric, parsimony ratio, characterizes how verbose

a planner is for a given plan πl with respect to a minimal plan, πk. We obtain πk (for as

many problems as possible) by running A* while restricting the allowed operators to only

those in πl.

Recent work has extended planning systems to produce diverse plan sets, and the domi-

nant approach for driving search is to combine the quality and diversity metrics in a single,

weighted objective function. While these approaches show they can improve the diversity

of the final plan sets, relatively little is understood about the interplay of quality, efficiency,

and diversity with respect to search behavior. Our goal is to examine this interplay with the

hope of advancing the design of planning algorithms.

We tackle each research direction independently before combining them. Along the re-

search direction of producing plan sets in a single objective, we assess several approaches for

producing plan sets. Along the multiple metric direction, we examine metric interaction in

a bicriteria synthetic problem. Along both research directions of producing plan sets within

a bicriteria context, our work examines how to leverage the knowledge we gained. The cul-

mination of our effort is the MQA algorithm that uses multiple queues to simultaneously

manage separate quality and diversity metrics. MQA complements the existing algorithms

by providing a way to keep metrics independent while also allowing search to leverage the

bias of each one. In particular, it allows the simultaneous combination of maximizing diver-

sity and minimizing the quality (or cost) metric(s). In the end, we show that understanding

the interplay of diversity, quality, and efficiency while also considering the needs of the appli-

cation can lead to an informed choice of which algorithm to use as well as lead to principled

improvements to those algorithms.

110

6.1 Producing Plan Sets

As far as we are aware, our work is the first to evaluate several approaches for generating

plan sets using the same experimental parameters and evaluation metrics. In total we use

five approaches. Coman and Muñoz-Avila [CMA11] examine how to produce diverse plans in

a weighted objective function for A*; our implementation is called Div. Nguyen et al. extend

the LPG planner to produce diverse alternatives [Ngu+12] by adding a diversity component

in the action selection heuristic; we call this extended planner LPGd. To these two existing

approaches we add 1) a Random Walk Search (RWS) that randomly selects actions [XNM12],

2) an algorithm of our own creation called ITA [Rob+12] that uses a (state, operator)

Tabu list to encourage exploration, and 3) a hybrid algorithm Hybrid that combines Div and

ITA with the intent of leveraging their strengths.

We show that, for the problems we studied, combining the diversity metric with the

quality metric(s) in a weighted objective function often leads to high diversity that sacrifices

efficiency and quality. Our key contribution is showing that parsimony – preferring shorter

plans while maximizing diversity – is essential to achieving diverse plan sets that maintain

good quality. Our new diversity metric, the parsimony ratio, characterizes how well existing

approaches find minimal-length plans that also maximize diversity. With this new diversity

metric, we show that driving search with a weighted objective function including diversity

leads to a greater proportion of plans that are not parsimonious, which has implications for

multi-metric search in cases where we want to use diversity to drive search. In particular, we

find a diversity-quality tradeoff in many domains, which leads us to explore metric interaction

in a more principled way.

6.2 Understanding Metric Interaction

Since few current benchmark domains truly exercise the kinds of metric interaction we

expect to see in the security domain, we create a synthetic domain. The synthetic domain,

BiSyn, allows us to vary the interaction of two metrics, x and y, in a weighted objective

111

function, z = x+y, while fixing plan-length. These are both central requirements of our mo-

tivating security domain. We examine seven interactions: random (uncorrelated) interaction

plus three kinds of metric interactions (and their mirrored counterparts): linear, sigmoidal,

and polynomial.

We apply A∗ε to BiSyn to understand the impact of the seven metric interactions. Instead

of always selecting the top node from a queue, A∗ε works by selecting from a focus list that

is within a factor, ε, of the top solution. We observe the efficiency and quality of solutions

produced by A∗ε . We find that collinear interactions are challenging for A∗ε , while curvilinear

interactions are relatively easier. These findings have implications for any planner that

employs a weighting scheme to manage its queues. We also found that scaling in either x or

y while minimizing z reduces search effectiveness. This scaling issue has been observed by

other researchers (e.g., [WR11; CBK11; SL12]) and has implications for how one manages

differences in scale between metrics. Our method of controlling plan length while varying

the interactions of two metrics gives another perspective from which to view the impact of

cost-based search.

6.3 Unifying Parsimony and Metric Interaction: Multi-Queue A*

At long last, we arrive at our goal of generating plan sets in the context of multiple

objectives. Here, the issues of the diversity-quality tradeoff, metric interaction, metric scale,

and parsimonious diversity all conspire to thwart any approach that combines the metrics in

a weighted objective function. Our solution is an iterated version of A* that we call Multi-

Queue A* (MQA) that manages each quality metric, t ∈ T , in a separate queue, Qt. These

queues are minimized by using the usual (unweighted) A* function, f = g+h. To manage the

diversity-quality tradeoff while still driving search toward parsimonious solutions, we create

what we call a parsimony queue, QS, that minimizes first by the relaxed plan estimate, hrelax,

then maximizes by the diversity, Dstability. We evaluate the performance of several variants

of MQA on the BiSyn domain and find that the version enabling the parsimony queue (and

the Tabu mechanism), MQATS, leads to an improved spread over the space of solutions for

112

only a modest loss of efficiency. However, it does so at the expense of plan quality, which is

an expected result since we already know that diversity and quality can interact in subtle

ways.

Our final study returns to the original benchmark domains of our study in an attempt

to produce plan sets for a single quality metric. However, we have now arrived at the place

we started and seen it for the first time. There are three important observations. First, we

observe that diversity and quality often interact in a way that is collinear. Second, we have

seen that the variants we studied of best first search are sensitive to metric interaction and

it is worst when metrics interact in a collinear way. Third, we observe that search behavior

is highly sensitive to scaling of the two metrics. We now understand why driving search

with diversity on these problems leads to plans that violate parsimony, why solution quality

drops, and why search does not produce better results with more effort. In particular, the

design of many planners to minimize plan length (or to minimize quality, which is closely

aligned with plan length) has led to some design decisions that work against producing good

diversity. When we apply the MQA family to the benchmark domains, we find that a greater

number of unique plans is produced and parsimony is improved for many benchmarks. As

expected, solution quality is lower for these more diverse solutions. Finally, we also find

that ITA still dominates for the security domain Cybersec, the domain for which it was

specifically designed.

6.4 Limitations and Future Work

Naturally, there are a number of limitations to the work presented in this document. We

will discuss a (surprising) hidden challenge that we faced before we move into the specific

limitations motioned in Chapters 4 and 5 and how we see them leading into future work.

The Hidden Trade-offs in Generating Multi-metric Plan Sets

One of the most challenging aspects of this project was getting planners into the Mosaic

framework that is discussed in Appendix A. In fact, we attempted to incorporate four differ-

113

ent planners into Mosaic over the past year and failed at each attempt. All attempts were

failures because of the complexity of the software for these other planning systems. What is

worse, each attempt cost about two weeks of effort before the failure manifested. It was a bit

surprising given the relative ease with which we were able to build the initial Mosaic plugin

for LAMA-2008. Nevertheless, it left us with little faith in trying to upgrade the LAMA

planner to the latest version of Fast Downward (on which LAMA-2011 is based).

Classical planning is not itself difficult to understand: it is an implicit state transition

system, usually encoded in textual (i.e., human-readable) form, that uses search to find

solutions. In other words, any sophomore computer science or engineering student has the

conceptual tools to understand how planning works – at least on the surface. Yet, the latest

tutorial on using a planning system is over a decade old [Wel99], and that brings us to our

hidden tradeoff. Planners are challenging to use, not just as black boxes, but as software

systems. It is very challenging to tweak a planner without a great deal of effort. Trying to

modify an existing planner in straightforward ways is surprisingly challenging as well. An

argument could be made that the Fast Downward planner is easily accessible as a software

project – especially the latest versions. However, the drawback of this planner is it requires

a working understanding of the SAS+ formalism, which is itself a step aside of the typical

state-based planning system. We as a community need to change this if we want other

(non-planning) software developers to embed planners into their systems.

One future direction for the Mosaic planner is to incrementally implement a non-SAS+ plan-

ner such as MetricFF [Hof03]. Another is to provide a tutorial that helps ease the pain of

embedding a planning system in another software project.

Algorithmic Approaches

Our use of algorithms instead of full planning systems was a double-edged sword. Using

simple algorithms that are concise to describe and straightforward to implement allows us to

be precise and confident in our observations. This is important because we found in previous

work [RH09b] that the use of large planning systems confounded much of what we could say

114

at the end of a large study of 30 planners and over 5000 problems. However, the other side of

the sword is that simple algorithms underperform (often by a large difference) when compared

to state-of-the-art planning systems. This has the negative effect of limiting the available

data for analysis. One goal for future work is to take a subset of specific enhancements

that have provided the greatest benefit for planning systems and implement them in the

algorithms we have used in this study. Future work should also explore alternative heuristics

or metrics. Our current results then become a baseline for measuring which the enhancements

improve performance.

Benchmark and Synthetic Domains

We selected four benchmark domains based on their use in previous work (i.e., Depot,

Driverlog, and Rover) and based on similarity to our motivating security domain (i.e.,

Cybersec). We added another, Transport, to the set because it was a larger, newer domain

that also made sense from the perspective of generating alternatives. These benchmarks

are a subset of the available benchmarks, and we believe it would be worthwhile to assess

the extent to which our findings relate to other domains. We generated 1000 solutions

in the benchmark problems without actually verifying that these problems had this many

solutions. It is unlikely that such a ceiling effect would have a big impact on our findings

since we based most of our detailed analyses on the first i = 10 unique plans. Still this may

have confounded some of the findings if the problem was too small for 1000 solutions and we

need to verify (through some sort of exhaustive search) the extent to which this may have

occurred. Another potential future direction is to examine the set of problems by Radzi

[Rad11], who looked at how to generate problems with more interesting metrics.

The current version of the synthetic domain, BiSyn, was designed to mimic the security

application while controlling for plan length and varying metric interactions in a known way.

But many problems require other kinds of actions and effects and the interactions we studied

were somewhat limited (and simple). Three directions for future work on BiSyn are to add

more complex interactions, extend it to include cycles, and extend it to include delete actions.

115

The latter two directions would bring BiSyn closer to many of the existing benchmarks and

allow us to say even more about how planning systems behave when metrics interact.

MQA

The use of multiple queues generated solutions for the bicriteria problem along a spectrum

of minimizing x and minimizing y. Additionally, much more analysis can be done on MQA.

It is not clear how close the solutions that were found fit on a pareto optimal front (i.e., they

are non-dominated), so one future direction is to take a close look at the set of solutions from

that perspective. Another promising area of future work is to possibly bound the runtime

or solution quality using similar ideas from the bounded suboptimal search analysis.

6.5 Final Remarks

Like anything in life, what you measure is what improves. The evaluation metrics in

efficiency and plan quality drove planner development for some 30 years. For example,

when it was discovered that pairing state-based search with relaxed plan reachability heuris-

tics [BLG97; McD99] dramatically improved search efficiency, planning with heuristic search

became a dominant approach. Later, when the FF planning system [HN01] revealed that em-

ploying enforced hill climbing further improved performance, it became a favored approach.

Finally, when the Fast Downward system showed employing a multivalued representation

instead of propositional also led to a performance boost [Hel06], it became a dominant ap-

proach. The list goes on, to be sure.

It is often the case that the goals of efficiency and plan quality complement one another.

For example, many planners use plan cost to drive search. But Radzi shows that, for the

few metric benchmarks existing that have multiple metrics, these metrics rarely run counter

to plan length [Rad11]. Despite the move to cost-based metrics, many of the cost-based

benchmarks correlate strongly with plan length. Thus, planners that rely on plan length

(i.e., reachability analysis in the form of the relaxed plan graph) will have an edge over those

that do not. Given this perspective, it seems natural that the first foray into producing

116

plan sets would require only another weighted component in a planner’s metric. After all,

this is precisely what we (as a community) have learned from a long history of exploring

the efficiency-quality tradeoff within (cost-based) planning. But our results suggest that

this approach may not always be appropriate for the task at hand. We hope that our work

provides convincing evidence:

• that combining diversity in a weighted metric has the unintended consequence that it

often seriously misleads search with the undesirable tradeoffs of decreased efficiency

and poor quality;

• that the weighted linear combination of multiple metrics confounds searching for good

quality plans that balance the objectives at hand precisely when the metrics interact

in unexpected ways or when the metrics are pathologically intertwined (i.e., they fall

in the same range but are contradictive);

• that, for planning, diversity is at odds with quality because long plans usually imply

poor quality, thus further confounding the weighted objective function;

• that the two directions of multiple metrics and plan sets are an under-explored area of

planning worthy of further work;

• that we have simple, direct ways to harness algorithm (or metric, or heuristic) bias to

drive search in appropriate directions and that the portfolio community can teach us

a great deal about how to do this; and, finally,

• that diverse plans are only worthwhile if they are also parsimonious.

If what we measure is indeed what improves, then let us take stock, regather, and move

forward with a refined vision of how we will evaluate the next generation of classical planning

systems.

117

Bibliography
[AIP98] AIPS-98 Int’l Planning Competition Committee. PDDL : the planning domain

defnition language. Tech. rep. The AIPS-98 committee consisted of: M. Ghallab
and A. Howe and C. Knoblock and D. McDermott and A. Ram and M. Veloso
and D. Weld and D. Wilkins. Yale Center for Computational Vision and Control,
1998.

[AWK02] P. Ammann, D. Wijesekera, and S. Kaushik. “Scalable, Graph-Based Network
Vulnerability Analysis”. In: Proc. of the 9th ACM Conf. on Computer and Com-
munications Security. Washington, DC, USA, 2002, pp. 217–224.

[Bac01] F. Bacchus. “AIPS’00 Planning Competition”. In: AI Magazine 22(3) (2001),
pp. 47–56.

[Bar+03] L. Barbulescu, J. Watson, L. Whitley, and A. Howe. “Scheduling Space-Ground
Communications for the Air Force Satellite Control Network”. In: Journal of
Scheduling 7.1 (2003), pp. 7–34.

[BDK09] J. Benton, M. B. Do, and S. Kambhampati. “Anytime Heuristic Search for Par-
tial Satisfaction Planning”. In: Artificial Intelligence 173.5-6 (2009), pp. 562–
592.

[Ber+08] P. Berry, B. Bulka, B. Peintner, M. Roberts, and N. Yorke-Smith. “Neptune:
A Mixed-Initiative Environment for Planning and Scheduling”. In: Proc. of the
Twenty-First Int’l Florida Artificial Intelligence Research Society Conference
(FLAIRS-08). Coconut Grove, FL, 2008, pp. 573–574.

[BF95] A. Blum and M. Furst. “Fast Planning Through Planning Graph Analysis”. In:
Proc. of the 14th Int’l Joint Conf. on Artificial Intelligence (IJCAI-95). (Mon-
treal, Quebec, Canada). 1995, pp. 1636–1642.

[BG01] B. Bonet and H. Geffner. “Planning as heuristic search”. In: Artificial Intelli-
gence 129.1-2 (2001), pp. 5–33.

[BLG97] B. Bonet, G. Loerincs, and H. Geffner. “A Robust and Fast Action Selection
Mechanism for Planning”. In: Proc. 14th National Conf. on Artificial Intelli-
gence. (Providence, Rhode Island, USA). 1997.

[BN95] C. Bäckström and B. Nebel. “Complexity Results for SAS+ Planning”. In: Com-
putational Intelligence 11.4 (1995), pp. 625–655.

[Bod+] M. Boddy, J. Gohde, J. T. Haigh, and S. Harp. “Course of Action Generation
for Cyber Security Using Classical Planning”. In: Proc. of the 15th Int’l Conf. on
Automated Planning and Scheduling (ICAPS-05). (Monterey, CA, USA). Menlo
Park, CA: AAAI Press, pp. 12–21.

[BS00] M. Becker and S. Smith. “Mixed-Initiative Resource Management: The AMC
Barrel Allocator”. In: Proc. of the 5th Int’l Conf. on AI Planning and Scheduling.
2000, pp. 32–41.

118

[Byr+12] Z. Byrne et al. “Perceptions of Internet Threats: Behavioral Intent to Click
Again”. In: Proc. of the 27th Annual Society for Industrial and Organizational
Psychology (SIOP) Conf. San Diego, CA, USA, 2012.

[CBK11] W. Cushing, J. Benton, and S. Kambhampati. “Cost Based Satisficing Search
Considered Harmful”. In: Working notes of the Workshop on Heuristics for
Domain-independent Planning at Proc. of the 21st Int’l Conf. on Automated
Planning and Scheduling (ICAPS-11). (Freiburg, Germany, June 11-16). Menlo
Park, CA: AAAI Press, 2011.

[Chi+00] S. Chien et al. “ASPEN - Automating Space Mission Operations using Au-
tomated Planning and Scheduling”. In: 6th Int’l SpaceOps Symposium (Space
Operations). Toulouse, France, 2000.

[CMA11] A. Coman and H. Muñoz-Avila. “Generating Diverse Plans Using Quantitative
and Qualitative Plan Distance Metrics”. In: Proc. of the 25th AAAI Conf. on
Artificial Intelligence (AAAI-11). (San Francisco, CA, USA. Aug. 7-11). Menlo
Park, CA.: AAAI Press, 2011, pp. 946–951.

[Coh+89] P. Cohen, M. Greenberg, D. M. Hart, and A. E. Howe. “Trial By Fire: Under-
standing the Design Requirements for Agents in Complex Environments”. In:
AI Magazine 10.3 (1989), pp. 32–48.

[Col+12] A. J. Coles, A. I. Coles, M. Fox, and D. Long. “COLIN: Planning with Contin-
uous Linear Numeric Change”. In: Journal of Artificial Intelligence Research 44
(2012), pp. 1–96.

[CWH06] Y. Chen, B. W. Wah, and C.-W. Hsu. “Temporal Planning using Subgoal Parti-
tioning and Resolution in SGPlan”. In: Journal of Artificial Intelligence Research
26 (2006), pp. 323–369.

[Dew+07] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley. “Optimal security harden-
ing using multi-objective optimization on attack tree models of networks”. In:
Proc. of the 14th ACM conference on Computer and communications security
(CCS-07). Alexandria, Virginia, USA. Alexandria, Virginia, USA: ACM, 2007,
pp. 204–213.

[DK03] M. B. Do and S. Kambhampati. “SAPA: A Multi-objective Metric Temporal
Planner.” In: Journal of Artificial Intelligence Research 20 (2003), pp. 155–194.

[DK04] M. B. Do and S. Kambhampati. “Partial Satisfaction (Over-Subscription) Plan-
ning as Heuristic Search”. In: Proc. of Knowledge Based Computer Systems
(KBCS-2004). 2004.

[EHN94a] K. Erol, J. Hendler, and D. S. Nau. “HTN Planning: Complexity and Expressiv-
ity”. In: Proc. of the 12th National Conf. on Artificial Intelligence (AAAI-94).
Menlo Park, California: AAAI Press, 1994, pp. 1123–1128.

[EHN94b] K. Erol, J. Hendler, and D. S. Nau. Semantics for HTN Planning. Tech. rep.
CS-TR-3239. Also cross-referenced as ISR-TR-95-9, Also cross-referenced as
UMIACS-TR-94-31. University of Maryland, 1994.

119

[EHN94c] K. Erol, J. Hendler, and D. S. Nau. “UMCP: A Sound and Complete Procedure
for Hierarchical Task-Network Planning”. In: Proc. of the 2nd Int’l Conf. on
Artificial Intelligence Planning Systems (AIPS-94). Ed. by K. J. Hammond.
Menlo Park, California: AAAI Press, 1994.

[Ehr08] M. Ehrgott. “Multiobjective Optimization”. In: AI Magazine 29 (2008), pp. 47–
57.

[Ero+95] K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto. “A Critical Look at Critics in
HTN Planning”. In: Proc. of the 14th Int’l Joint Conf. on Artificial Intelligence
(IJCAI-95). (Montreal, Quebec, Canada). 1995.

[FJ03] J. Frank and A. Jonsson. “Constraint-based Attribute and Interval Planning”.
In: Journal of Constraints 8.4 (2003), 339–364.

[FL03] M. Fox and D. Long. “PDDL2.1: An Extension to PDDL for Expressing Tempo-
ral Planning Domains”. In: Journal of Artificial Intelligence Research 20 (2003),
pp. 61–124.

[FL06] M. Fox and D. Long. “Modelling Mixed Discrete-Continuous Domains for Plan-
ning”. In: Journal of Artificial Intelligence Research 27 (2006), pp. 235–297.

[FN71] R. E. Fikes and N. J. Nilsson. “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving”. In: Artificial Intelligence 2.3-4 (1971),
pp. 189–208.

[Fow+05] J. W. Fowler, B. Kim, W. M. Carlyle, E. S. Gel, and S.-M. Horng. “Evaluating
solution sets of ‘a posteriori’ solution techniques for bi-criteria combinatorial
optimization problems”. In: Journal of Scheduling 8 (1 2005), pp. 75–96.

[Fox+06] M. Fox, A. Gerevini, D. Long, and I. Serina. “Plan Stability: Replanning versus
Plan Repair”. In: Proc. of the 16th Int’l Conf. on Automated Planning and
Scheduling (ICAPS-06). (Lake District, Cumbria, UK, June 6-10). Menlo Park,
CA: AAAI Press, 2006, 212–221.

[Fox94] M. Fox. “Intelligent Scheduling”. In: ed. by M. Zweben and M. Fox. San Fran-
cisco, CA: Morgan Kaufmann Pub. Co., 1994. Chap. ISIS: A Retrospective,
pp. 3–28.

[Fue11] R. Fuentetaja. “The CBP planner”. In: The 2011 International Planning Com-
petition: Description of Participating Planners, Deterministic Track. Ed. by A.
Garcia-Olaya, S. Jimenez, and C. L. Lopez. 2011, pp. 21–24.

[Ger+09] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. “Determin-
istic planning in the fifth int’l planning competition: PDDL3 and experimental
evaluation of the planners”. In: Artificial Intelligence 173.56 (2009). Advances
in Automated Plan Generation, pp. 619 –668.

[GG12] N. Ghosh and S. Ghosh. “A Planner-based Approach to Generate and Analyze
Minimal Attack Graph”. In: Int’l Journal of Applied Intelligence 36.2 (2012).
Published online: 25 November 2010, pp. 369–390.

120

[GL05] A. Gerevini and D. Long. Plan Constraints and Preferences in PDDL3. Tech.
rep. RT 2005-08-47. Dept. of Electronics for Automation, University of Brescia,
Italy, 2005.

[GNT04] M. Ghallab, D. Nau, and P. Traverso. Automated Planning. Morgan Kaufmann
Publishers, 2004.

[Gol+02] R. Goldman, K. Haigh, D. Musliner, and M. Pelican. “MACBETH: a multi-
agent constraint-based planner [autonomous agent tactical planner]”. In: Proc.
of the 21st Digital Avionics Systems Conference. Vol. 2. 2002, pp. 31–38.

[GS02] A. Gerevini and I. Serina. “LPG: a Planner based on Local Search for Plan-
ning Graphs”. In: Proc. of the 6th Int’l Conf. on Artificial Intelligence Plan-
ning Systems (AIPS-02). (Toulouse, France. April 23-27). Ed. by M. Ghallab,
J. Hertzberg, and P. Traverso. Menlo Park, CA: AAAI Press, 2002, pp. 13–22.

[GSS03] A. Gerevini, A. Saetti, and I. Serina. “Planning Through Stochastic Local Search
and Temporal Action Graphs in LPG”. In: Journal of Artificial Intelligence
Research 20 (2003), pp. 239–290.

[GSS06] A. Gerevini, A. Saetti, and I. Serina. “An Approach to Temporal Planning and
Scheduling in Domains with Predicatable Exogenous Events”. In: Journal of
Artificial Intelligence Research 25 (2006), pp. 187–231.

[HBG05] P. Haslum, B. Bonet, and H. Geffner. “New Admissible Heuristics for Domain-
Independent Planning”. In: Proc. of the 20th National Conf. on Artificial In-
telligence (AAAI-05). (Pittsburgh, Pennsylvania, USA, July 9-13, 2005). Menlo
Park, CA: AAAI Press, 2005, pp. 1163–1168.

[HE05] J. Hoffmann and S. Edelkamp. “The Deterministic Part of IPC-4: An Overview”.
In: Journal of Artificial Intelligence Research 24 (2005), pp. 519–579.

[Hel06] M. Helmert. “The Fast Downward Planning System”. In: Journal of Artifical
Intelligence Research 26 (2006), pp. 191–246.

[HG00] P. Haslum and H. Geffner. “Admissible Heuristics for Optimal Planning”. In:
Proc. of the 5th Int’l Conf. on Artificial Intelligence Planning Systems (AIPS-
00). (Breckenridge, CO, USA). Menlo Park, CA: AAAI Press, 2000, pp. 140–
149.

[HL03] R. Howey and D. Long. “VAL’s Progress: The Automatic Validation Tool for
PDDL2.1 used in the International Planning Competition”. In: Workshop on The
Competition: Impact, Organization, Evaluation, Benchmarks, Working Notes of
the Int’l Conf. on Automated Planning and Scheduling. (Trento, Italy, June).
2003.

[HN01] J. Hoffmann and B. Nebel. “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: Journal of Artificial Intelligence Research 14
(2001), pp. 253–302.

[Hof03] J. Hoffmann. “The Metric-FF Planning System: Translating “Ignoring Delete
Lists” to Numeric State Variables”. In: Journal of Artificial Intelligence Research
20 (2003), pp. 291–341.

121

[How93] A. E. Howe. Evaluating Planning Through Simulation: An Example Using Phoenix.
Spring Symposiium SS-93-03. Menlo Park, California: AAAI, 1993.

[Key10] E. Keyder. “New Heuristics For Planning With Action Costs”. PhD thesis. De-
partment of Information and Communication Technologies, Universitat Pompeu
Fabra, 2010.

[KG08] E. Keyder and H. Geffner. “Heuristics for Planning with Action Costs Revisited”.
In: Proc. of the European Conf. in AI (ECAI-08). (Amsterdam, Netherlands).
Vol. 178. 2008, pp. 588–592.

[KG09] E. Keyder and H. Geffner. “Soft Goals Can Be Compiled Away”. In: Journal of
Artificial Intelligence Research 36 (2009), pp. 547–556.

[Kho+13] M.-R. Khouadjia, M. Schoenauer, V. Vidal, J. Dréo, and P. Savéant. “Multi-
Objective AI Planning: Evaluating DAEyahsp on a Tunable Benchmark”. In:
Proc. of the 7th International Conference on Evolutionary Multi-Criterion Opti-
mization (EMO-2013). (Sheffield UK, March 19-22). LNCS 7811. Sheffield, UK:
Springer, Mar. 2013, pp. 36–50.

[KLC98] L. Kaelbling, M. Littman, and A. Cassandra. “Planning and acting in partially
observable stochastic domains.” In: Artificial Intelligence 101 (1998), pp. 99–
134.

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A
Survey”. In: Journal of Artificial Intelligence Research 4 (1996), pp. 237–285.

[LF03] D. Long and M. Fox. “The 3rd Int’l Planning Competition: Results and Analy-
sis”. In: Journal of Artificial Intelligence Research 20 (2003), pp. 1–59.

[McD99] D. McDermott. “Using Regression-Match Graphs to Control Search in Plan-
ning”. In: Artificial Intelligence 109.1-2 (1999), pp. 111–159.

[MEL01] A. Moore, R. Ellison, and R. Linger. Attack Modeling for Information Secu-
rity and Survivability. Tech. rep. CMU/SEI-2001-TN-001. Software Engineering
Institute, Carnegie Melon University, 2001.

[Mye+02] K. L. Myers, W. M. Tyson, M. J. Wolverton, P. A. Jarvis, T. J. Lee, and M.
desJardins. “PASSAT: A User-centric Planning Framework”. In: Proc. of the
3rd Int’l NASA Workshop on Planning and Scheduling for Space. (Houston,
TX, USA). 2002.

[Nau+03] D. S. Nau et al. “SHOP2: An HTN Planning System”. In: Journal of Artificial
Intelligence Research 20 (2003), pp. 379–404.

[Ngu+12] T. Nguyen, M. Do, A. Gerevini, I. Serina, B. Srivastava, and S. Kambhampati.
“Generating Diverse Plans to Handle Unknown and Partially Known User Pref-
erences”. In: Artificial Intelligence 190 (2012), pp. 1–31.

[OSR10] J. L. Obes, C. Sarraute, and G. Richarte. “Attack Planning in the Real World”.
In: Workshop on Security and Artificial Intelligence (SecArt-10), Working Notes
of the 24th AAAI Conf. on Artificial Intelligence (AAAI-10). Atlanta, USA,
2010.

122

[PK82] J. Pearl and J. H. Kim. “Studies in Semi-Admissible Heuristics”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 4.4 (1982), pp. 392–399.

[Pol02] M. E. Pollack. “Planning technology for intelligent cognitive orthotics.” In: Proc.
of the 12th Int’l Conf. on Automated Planning and Scheduling (ICAPS-02).
(Toulouse, France). Menlo Park, CA: AAAI Press, 2002.

[Pol+03] M. E. Pollack et al. “Autominder: An Intelligent Cognitive Orthotic System for
People with Memory Impairment”. In: Robotics and Autonomous Systems 44.3-4
(2003), pp. 273–282.

[PS98] C. Phillips and L. Swiler. “A Graph-Based System for Network-Vulnerability
Analysis”. In: Proc. of the New Security Paradigms Workshop. Chicago, IL,
1998, pp. 71–79.

[Rad11] M. Radzi. “Multi-objective planning using linear programming”. PhD thesis.
The University of Strathclyde, 2011.

[Rap] Rapid7. Nexpose Community Edition. Available from http://www.rapid7.co

m/products/nexpose-community-edition.jsp.

[RH09a] S. Richter and M. Helmert. “Preferred Operators and Deferred Evaluation in
Satisficing Planning”. In: Proc. of the 19th Int’l Conf. on Automated Planning
and Scheduling (ICAPS-09). (Thessaloniki, Greece, September 19-23). Menlo
Park, California: AAAI Press, 2009, pp. 273–280.

[RH09b] M. Roberts and A. Howe. “Learning from Planner Performance”. In: Artificial
Intelligence 173 (2009), pp. 536–561.

[RHF07] M. Roberts, A. Howe, and L. Flom. “Learned Models of Performance for Many
Planners”. In: Workshop on Learning and Planning, Working Notes of the 17th
Int’l Conf. on Automated Planning and Scheduling (ICAPS-07). (Providence,
Rhode Island, USA. September 22-26). Menlo Park, California: AAAI Press,
2007.

[Rob+11] M. Roberts, A. Howe, I. Ray, M. Urbanska, Z. S. Byrne, and J. M. Weidert. “Per-
sonalized Vulnerability Analysis through Automated Planning”. In: Workshop
on Security and Artificial Intelligence (SecArt-11), Working Notes of the 22nd
Int’l Joint Conf. on Artificial Intelligence (IJCAI-11). (Barcelona, Catalonia,
Spain. July 16-22). 2011.

[Rob+12] M. Roberts, A. E. Howe, I. Ray, and M. Urbanska. “Using Planning for a Person-
alized Security Agent”. In: Workshop on Problem Solving using Classical Plan-
ners, Working Notes of the 26th AAAI Conf. on Artificial Intelligence (AAAI-
12). (Toronto, Ontario, Canada. July 22-26). Menlo Park, CA.: AAAI Press,
2012.

[RW10] S. Richter and M. Westphal. “The LAMA Planner: Guiding Cost-Based Anytime
Planning with Landmarks”. In: Journal of Artificial Intelligence Research 39
(2010), pp. 127–177.

123

http://www.rapid7.com/products/nexpose-community-edition.jsp
http://www.rapid7.com/products/nexpose-community-edition.jsp

[SBK04] S. Smith, M. Becker, and L. Kramer. “Continuous Management of Airlift and
Tanker Resources: A Constraint-Based Approach”. In: Mathematical and Com-
puter Modeling – Special Issue on Defense Transportation: Algorithms, Models
and Applications for the 21st Century 39.6-8 (2004), pp. 581–598.

[Sch+03] D. Schreckenghost, M. B. Hudson, C. Thronesbery, and K. Kusy. “When Au-
tomated Planning is Not Enough: Assisting Users in Building Human Activ-
ity Plans”. In: Proceeding of the 7th Int’l Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS-2003). (NARA, Japan). 2003.

[Sch+09] P. Schermerhorn, J. Benton, M. Scheutz, K. Talamadupula, and S. Kambham-
pati. “Finding and Exploiting Goal Opportunities in Real-time during Plan Ex-
ecution”. In: Proc. of the Int’l Conf. on Intelligent Robots and Systems (IROS).
2009, pp. 3912–3917.

[SEM02] B. D. Smith, B. E. Engelhardt, and D. H. Mutz. “The RADARSAT-MAMM
Automated Mission Planner”. In: AI Magazine 23 (2002), pp. 25–36.

[SFJ00] D. Smith, J. Frank, and A. Jonsson. “Bridging the gap between planning and
scheduling”. In: Knowledge Engineering Review 15.1 (2000), pp. 61–94.

[She+02] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. “Automated
Generation and Analysis of Attack Graphs”. In: Proc. of the IEEE Symposium
on Security and Privacy. Oakland, CA, USA, 2002, pp. 273–284.

[She+98] R. Sherwood, A. Govindjee, D. Yan, G. Rabideau, S. Chien, and A. Fukunaga.
“Using ASPEN to Automate EO-1 Activity Planning”. In: Proc. of the 1998
IEEE Aerospace Conf. Aspen, CO, 1998, pp. 145–152.

[SL12] M. Sroka and D. Long. “Exploring Metric Sensitivity of Planners for Genera-
tion of Pareto Frontiers”. In: Starting AI Researchers (STAIRS 2012). Vol. 241.
Frontiers in Artificial Intelligence and Applications. 2012, pp. 306–317.

[SLK02] S. Scott, N. Lesh, and G. Klau. “Investigating Human-Computer Optimization.”
In: Proc. of Conf. on Human Factors in Computer Systems (CHI-2002). Min-
neapolis, MN, 2002, pp. 155–162.

[Sri+07] B. Srivastava, S. Kambhampati, T. Nguyen, M. Do, A. Gerevini, and I. Serina.
“Domain Independent Approaches for Finding Diverse Plans”. In: Proc. of the
20th Int’l Joint Conf. on Artificial Intelligence. 2007, pp. 2016–2022.

[Sub97] K. Subbarao. “Refinement Planning as a Unifying Framework for Plan Synthe-
sis”. In: AI Magazine 18(2) (1997), pp. 67–97.

[Tal+10] K. Talamadupula, J. Benton, S. Kambhampati, P. Schermerhorn, and M. Scheutz.
“Planning for Human-Robot Teaming in Open Worlds”. In: ACM Transactions
on Intelligent Systems and Technology (TIST) 1.2 (2010), pp. 1–24.

[Urb+13] M. Urbanska, M. Roberts, I. Ray, A. Howe, and Z. Byrne. “Accepting the In-
evitable: Factoring the User into Home Computer Security”. In: 3rd ACM Conf.
on Data and Application Security and Privacy (CODASPY-13). (San Antonio,
TX). 2013.

124

[Vid04] V. Vidal. “A Lookahead Strategy for Heuristic Search Planning”. In: Proc. of the
14th Int’l Conf. on Automated Planning and Scheduling (ICAPS-04). (Whistler,
BC, Canada). Menlo Park, CA: AAAI Press, 2004, pp. 150–159.

[Wel94] D. S. Weld. “An Introduction to Least Commitment Planning”. In: AI Magazine
15.4 (1994), pp. 27–61.

[Wel99] D. S. Weld. “Recent Advances in AI Planning”. In: AI Magazine 20.2 (1999),
pp. 93–123.

[WLB03] D. E. Wilkins, T. J. Lee, and P. Berry. “Interactive Execution Monitoring of
Agent Teams”. In: Journal of Artificial Intelligence Research 18 (2003), pp. 217–
261.

[WR11] C. Wilt and W. Ruml. “Cost-Based Heuristic Search is Sensitive to the Ratio
of Operator Costs”. In: Proc. of the 4th Annual Symposium on Combinatorial
Search (SoCS). (Barcelona, Spain). AAAI Press. Menlo Park, CA, 2011, pp. 172–
179.

[XNM12] F. Xie, H. Nakhost, and M. Müller. “Planning via Random Walk-Driven Local
Search.” In: Proc. of the 22nd Int’l Conf. on Automated Planning and Scheduling
(ICAPS-12). (Atibaia, Sao Paulo, Brazil, June 25-29). Palo Alto, California:
AAAI Press, 2012, pp. 315–322.

125

Appendices

126

Appendix A
The Mosaic Planning Framework

The planning framework we use in this study, called Mosaic, is designed to allow planners

to be plugged into it while the algorithms, memory management, logging and experimental

instrumenting facilities remain constant. It was designed to allow a fair comparison between

distinct planner implementations. Since most planners are implemented in C++ , Mosaic is

also implemented in C++ . Mosaic configures itself based on XML files passed in at runtime

that allow the user to modify the heuristics, queues, and search strategies used for search.

Figure A.1 shows the interfaces of the main components. Each interface provides a

consistent way to access concrete subclasses. At the center of the diagram is the Planner

and SearchManager that sets up the various components based on XML configuration files.

The PlannerManager first instantiates the underlying planner as a NeighborhoodManager

(lower right). The NeighborhoodManager allows the successor generator of the planner to

be wrapped in a consistent interface. The StateFactory manages memory for Mosaic.

The PlannerManager constructs the appropriate heuristics for the current configuration

(middle right). Heuristics can be compound and are used both to sort queues (upper left)

and evaluate states; it is a slight misnomer to call some sorting mechanisms “heuristics”

but it serves the overall structure of the planner, since components understand how to work

with the IHeuristic interface. For example, the F-heuristic used to sort the queue for A*

is composed of the DistanceToGoHeuristic and the h-heuristic. A heuristic’s value can be

(optionally) stored in a SearchNodeWithHeuristic to be used by other components.

A SearchStrategy is used by the planner to search for a plan. The step() function

of this class is distinct for each strategy (e.g., A*, Random Walk Search, Iterated WA*).

Options for each strategy can be passed into the planner via the XML files. Each Strategy

uses one or more Queues to manage its state as search progresses. Queues are themselves

sorted according to a Comparator functor object. For example, a queue for A* simply sorts

the Queue according to f = g + h, while the parsimony queue, QS, (see Section 5.3.2)

minimizes h before maximizing diversity.

127

Figure A.1: The main components of the Mosaic Planner Architecture.

128

Appendix B
Supplemental Plots for Chapter 4

(define (domain attack-graph)

(:requirements :strips :equality :disjunctive-preconditions :typing)

(:types

Object

Action

ExploitState

software

)

(:predicates

(action-observed ?Action - Action)

(action-taken ?Action - Action)

(noop-predicate ?Noop - Object)

(exploit-occurred ?Exploit - ExploitState)

(software-installed ?Software - software))

(:action Exploit_DenialOfService_1

:parameters (

?Action2 - Action ;ObeservedState_CVE_2010_0187_Exploited_2

?Action8 - Action ;ObeservedState_CVE_2008_3111_SunJavaMultiple_Exploited_8

?Action14 - Action ;ObeservedState_CVE_2010_4091_OS_Exploited_14)

:precondition

(or

(and

(action-taken ?Action2)

(= ?Action2 ObeservedState_CVE_2010_0187_Exploited_2))

(and

(action-taken ?Action8)

(= ?Action8 ObeservedState_CVE_2008_3111_SunJavaMultiple_Exploited_8))

(and

(action-taken ?Action14)

(= ?Action14 ObeservedState_CVE_2010_4091_OS_Exploited_14)))

:effect (and (exploit-occurred Exploit_DenialOfService_1)))

(:action ObeservedState_CVE_2010_0187_Exploited_2

:parameters (

?Dependency3 - software

?Action5 - Action ;AttackAction_FlashFileCompromised_5

?Action6 - Action ;UserAction_UserOpensFlashFile_6)

:precondition

(and

(software-installed ?Dependency3)

(= ?Dependency3 Adobe_Flash_6_0_88_0)

(action-taken ?Action5)

(= ?Action5 AttackAction_FlashFileCompromised_5)

(action-taken ?Action6)

(= ?Action6 UserAction_UserOpensFlashFile_6))

:effect (and (action-taken ObeservedState_CVE_2010_0187_Exploited_2)))

(:action AttackAction_FlashFileCompromised_5

:parameters (

?Action5 - Action

)

:precondition

(and (action-observed ?Action5)

(= ?Action5 AttackAction_FlashFileCompromised_5))

:effect (and (action-taken AttackAction_FlashFileCompromised_5)))

Figure B.1: PDDL domain and problem descriptions from the CVE-2010-0187 subtree of
the DoS exploit.

129

(:action UserAction_UserOpensFlashFile_6

:parameters (

?Action7 - Action ;UserAction_UserUsingSocialMedia_7

)

:precondition

(and

(action-taken ?Action7)

(= ?Action7 UserAction_UserUsingSocialMedia_7)

) ;and

:effect (and (action-taken UserAction_UserOpensFlashFile_6)))

(:action UserAction_UserUsingSocialMedia_7

:parameters (

?Action7 - Action

)

:precondition

(and (action-observed ?Action7)

(= ?Action7 UserAction_UserUsingSocialMedia_7))

:effect (and (action-taken UserAction_UserUsingSocialMedia_7)))

(:action ObeservedState_CVE_2008_3111_SunJavaMultiple_Exploited_8

:parameters (

?Dependency9 - software

?Action11 - Action ;AttackAction_JavaAppWithLongVmArgument_11

?Action12 - Action ;UserAction_UserStartsJavaWebStartApplication_12

)

:precondition

(and

(software-installed ?Dependency9)

(= ?Dependency9 Sun_JRE_1_4_0_02)

(action-taken ?Action11)

(= ?Action11 AttackAction_JavaAppWithLongVmArgument_11)

(action-taken ?Action12)

(= ?Action12 UserAction_UserStartsJavaWebStartApplication_12)

) ;and

:effect (and (action-taken ObeservedState_CVE_2008_3111_SunJavaMultiple_Exploited_8)))

(:action AttackAction_JavaAppWithLongVmArgument_11

:parameters (

?Action11 - Action

)

:precondition

(and (action-observed ?Action11)

(= ?Action11 AttackAction_JavaAppWithLongVmArgument_11))

:effect (and (action-taken AttackAction_JavaAppWithLongVmArgument_11)))

(:action UserAction_UserStartsJavaWebStartApplication_12

:parameters (

?Action13 - Action ;UserAction_UserBrowsingInternetContent_13

)

:precondition

(and

(action-taken ?Action13)

(= ?Action13 UserAction_UserBrowsingInternetContent_13)

) ;and

:effect (and (action-taken UserAction_UserStartsJavaWebStartApplication_12)))

Figure B.1: (cont.) PDDL domain and problem descriptions from the CVE-2010-0187 sub-
tree of the DoS exploit.

130

(:action UserAction_UserBrowsingInternetContent_13

:parameters (

?Action13 - Action

)

:precondition

(and (action-observed ?Action13)

(= ?Action13 UserAction_UserBrowsingInternetContent_13))

:effect (and (action-taken UserAction_UserBrowsingInternetContent_13)))

(:action ObeservedState_CVE_2010_4091_OS_Exploited_14

:parameters (

?Dependency15 - software

?Action17 - Action ;AttackAction_PdfCompromised_17

?Action18 - Action ;UserAction_UserLoadsPdfDocument_18

)

:precondition

(and

(software-installed ?Dependency15)

(= ?Dependency15 AcrobatReader_9_4_1)

(action-taken ?Action17)

(= ?Action17 AttackAction_PdfCompromised_17)

(action-taken ?Action18)

(= ?Action18 UserAction_UserLoadsPdfDocument_18)

) ;and

:effect (and (action-taken ObeservedState_CVE_2010_4091_OS_Exploited_14)))

(:action AttackAction_PdfCompromised_17

:parameters (

?Action17 - Action

)

:precondition

(and (action-observed ?Action17)

(= ?Action17 AttackAction_PdfCompromised_17))

:effect (and (action-taken AttackAction_PdfCompromised_17)))

(:action UserAction_UserLoadsPdfDocument_18

:parameters (

?Action13 - Action ;UserAction_UserBrowsingInternetContent_13

)

:precondition

(and

(action-taken ?Action13)

(= ?Action13 UserAction_UserBrowsingInternetContent_13)

) ;and

:effect (and (action-taken UserAction_UserLoadsPdfDocument_18)))

(:action UserAction_UserBrowsingInternetContent_13

:parameters (

?Action13 - Action

)

:precondition

(and (action-observed ?Action13)

(= ?Action13 UserAction_UserBrowsingInternetContent_13))

:effect (and (action-taken UserAction_UserBrowsingInternetContent_13))))

Figure B.1: (cont.) PDDL domain and problem descriptions from the CVE-2010-0187 sub-
tree of the DoS exploit.

131

D
iv

e
rs

it
y

2
0

4
0

6
0

8
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

0
1
0

2
0

3
0

4
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

1
0
0

3
0
0

5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

2
0

2
5

3
0

3
5

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

0
1
0

2
0

3
0

4
0

5
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

2
5

3
0

3
5

4
0

4
5

5
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

2
0

3
0

4
0

5
0

6
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

2
0
0

4
0
0

6
0
0

8
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

Figure B.2: Diversity (top) and Quality (bottom) over the unique plans i ∈
{10, 25, 50, 100, 250, 500, 1000} for Transport problems 1 (top left), 2 (top right), 3 (center
left), 4 (center right), 5 (bottom left), and 6 (bottom right).

132

D
iv

e
rs

it
y

2
0

3
0

4
0

5
0

6
0

7
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

2
0
0

4
0
0

6
0
0

8
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

5
0

6
0

7
0

8
0

9
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
5
0
0

2
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

4
0

5
0

6
0

7
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
zRWS

D
iv

e
rs

it
y

5
0

6
0

7
0

8
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

4
0

5
0

6
0

7
0

8
0

9
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

2
0
0
0

4
0
0
0

6
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

6
0

7
0

8
0

9
0

1
0
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

Figure B.3: Diversity (top) and Quality (bottom) over the unique plans i ∈
{10, 25, 50, 100, 250, 500, 1000} for Transport problems 7 (top left), 8 (top right), 9 (center
left), 10 (center right), 11 (bottom left), and 12 (bottom right).

133

D
iv

e
rs

it
y

5
0

6
0

7
0

8
0

9
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
5
0
0

2
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

1
0
0
0

3
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

4
0

6
0

8
0

1
0
0

1
2
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

1
0
0
0

3
0
0
0

5
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

3
0

4
0

5
0

6
0

7
0

8
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

2
0
0

6
0
0

1
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

2
0

3
0

4
0

5
0

6
0

7
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

2
0
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

Figure B.4: Diversity (top) and Quality (bottom) over the unique plans i ∈
{10, 25, 50, 100, 250, 500, 1000} for Transport problems 13 (top left), 14 (top right), 15 (center
left), 16 (center right), 17 (bottom left), and 18 (bottom right).

134

D
iv

e
rs

it
y

0
2
0

4
0

6
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
5
0
0

2
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

D
iv

e
rs

it
y

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

200 400 600 800

Cumulative Unique Solutions

Q
u

a
lit

y
0

5
0
0

1
0
0
0

1
5
0
0

200 400 600 800

Div
Hybrid
ITA
LPGd
RWS

Figure B.5: Diversity (top) and Quality (bottom) over the unique plans i ∈
{10, 25, 50, 100, 250, 500, 1000} for Transport problems 19 (left), 20 (right).

135

Appendix C
Supplemental Plots for Chapter 5

(define (domain synthetic-4-3-mc)

(:requirements :strips :equality

:typing :fluents)

(:types State)

(:predicates

(state-active ?State - State))

(:functions (x) (y))

(:action Apply-0-0--1-0

:parameters (

?state-0-0 - State

)

:precondition

(and (state-active ?state-0-0)

(= ?state-0-0 State-0-0))

:effect (and

(state-active State-1-0)

(increase (x) 7.0)

(increase (y) 1012.0)))

(:action Apply-0-0--1-1

:parameters (

?state-0-0 - State

)

:precondition

(and (state-active ?state-0-0)

(= ?state-0-0 State-0-0))

:effect (and

(state-active State-1-1)

(increase (x) 510.0)

(increase (y) 508.0)))

(:action Apply-0-0--1-2

:parameters (

?state-0-0 - State

)

:precondition

(and (state-active ?state-0-0)

(= ?state-0-0 State-0-0))

:effect (and

(state-active State-1-2)

(increase (x) 1005.0)

(increase (y) 1.0)))

(:action Apply-1-0--2-0

:parameters (

?state-1-0 - State

)

:precondition

(and (state-active ?state-1-0)

(= ?state-1-0 State-1-0))

:effect (and

(state-active State-2-0)

(increase (x) 1.0)

(increase (y) 1010.0)))

(:action Apply-1-0--2-1

:parameters (

?state-1-0 - State

)

:precondition

(and (state-active ?state-1-0)

(= ?state-1-0 State-1-0))

:effect (and

(state-active State-2-1)

(increase (x) 500.0)

(increase (y) 482.0)))

(:action Apply-1-0--2-2

:parameters (

?state-1-0 - State

)

:precondition

(and (state-active ?state-1-0)

(= ?state-1-0 State-1-0))

:effect (and

(state-active State-2-2)

(increase (x) 1010.0)

(increase (y) 1.0)))

(:action Apply-1-1--2-0

:parameters (

?state-1-1 - State

)

:precondition

(and (state-active ?state-1-1)

(= ?state-1-1 State-1-1))

:effect (and

(state-active State-2-0)

(increase (x) 1.0)

(increase (y) 1006.0)))

(:action Apply-1-1--2-1

:parameters (

?state-1-1 - State

)

:precondition

(and (state-active ?state-1-1)

(= ?state-1-1 State-1-1))

:effect (and

(state-active State-2-1)

(increase (x) 501.0)

(increase (y) 492.0)))

(:action Apply-1-1--2-2

:parameters (

?state-1-1 - State

)

:precondition

(and (state-active ?state-1-1)

(= ?state-1-1 State-1-1))

:effect (and

(state-active State-2-2)

(increase (x) 1001.0)

(increase (y) 13.0)))

(:action Apply-1-2--2-0

:parameters (

?state-1-2 - State

)

:precondition

(and (state-active ?state-1-2)

(= ?state-1-2 State-1-2))

:effect (and

(state-active State-2-0)

(increase (x) 11.0)

(increase (y) 997.0)))

(:action Apply-1-2--2-1

:parameters (

?state-1-2 - State

)

:precondition

(and (state-active ?state-1-2)

(= ?state-1-2 State-1-2))

:effect (and

(state-active State-2-1)

(increase (x) 499.0)

(increase (y) 506.0)))

(:action Apply-1-2--2-2

:parameters (

?state-1-2 - State

)

:precondition

(and (state-active ?state-1-2)

(= ?state-1-2 State-1-2))

:effect (and

(state-active State-2-2)

(increase (x) 1002.0)

(increase (y) 1.0)))

Figure C.1: Full PDDL for the domain and problem 4×3xnil.

136

(:action Apply-2-0--3-0

:parameters (

?state-2-0 - State

)

:precondition

(and (state-active ?state-2-0)

(= ?state-2-0 State-2-0))

:effect (and

(state-active State-3-0)

(increase (x) 7.0)

(increase (y) 995.0)))

(:action Apply-2-0--3-1

:parameters (

?state-2-0 - State

)

:precondition

(and (state-active ?state-2-0)

(= ?state-2-0 State-2-0))

:effect (and

(state-active State-3-1)

(increase (x) 506.0)

(increase (y) 502.0)))

(:action Apply-2-0--3-2

:parameters (

?state-2-0 - State

)

:precondition

(and (state-active ?state-2-0)

(= ?state-2-0 State-2-0))

:effect (and

(state-active State-3-2)

(increase (x) 986.0)

(increase (y) 1.0)))

(:action Apply-2-1--3-0

:parameters (

?state-2-1 - State

)

:precondition

(and (state-active ?state-2-1)

(= ?state-2-1 State-2-1))

:effect (and

(state-active State-3-0)

(increase (x) 1.0)

(increase (y) 1017.0)))

(:action Apply-2-1--3-1

:parameters (

?state-2-1 - State

)

:precondition

(and (state-active ?state-2-1)

(= ?state-2-1 State-2-1))

:effect (and

(state-active State-3-1)

(increase (x) 488.0)

(increase (y) 505.0)))

(:action Apply-2-1--3-2

:parameters (

?state-2-1 - State

)

:precondition

(and (state-active ?state-2-1)

(= ?state-2-1 State-2-1))

:effect (and

(state-active State-3-2)

(increase (x) 994.0)

(increase (y) 4.0)))

(:action Apply-2-2--3-0

:parameters (

?state-2-2 - State

)

:precondition

(and (state-active ?state-2-2)

(= ?state-2-2 State-2-2))

:effect (and

(state-active State-3-0)

(increase (x) 5.0)

(increase (y) 1008.0)))

(:action Apply-2-2--3-1

:parameters (

?state-2-2 - State

)

:precondition

(and (state-active ?state-2-2)

(= ?state-2-2 State-2-2))

:effect (and

(state-active State-3-1)

(increase (x) 489.0)

(increase (y) 504.0)))

(:action Apply-2-2--3-2

:parameters (

?state-2-2 - State

)

:precondition

(and (state-active ?state-2-2)

(= ?state-2-2 State-2-2))

:effect (and

(state-active State-3-2)

(increase (x) 1015.0)

(increase (y) 1.0)))

(:action Apply-3-0--4-0

:parameters (

?state-3-0 - State

)

:precondition

(and (state-active ?state-3-0)

(= ?state-3-0 State-3-0))

:effect (and

(state-active State-4-0)

(increase (x) 1.0)

(increase (y) 988.0)))

(:action Apply-3-1--4-0

:parameters (

?state-3-1 - State

)

:precondition

(and (state-active ?state-3-1)

(= ?state-3-1 State-3-1))

:effect (and

(state-active State-4-0)

(increase (x) 505.0)

(increase (y) 503.0)))

(:action Apply-3-2--4-0

:parameters (

?state-3-2 - State

)

:precondition

(and (state-active ?state-3-2)

(= ?state-3-2 State-3-2))

:effect (and

(state-active State-4-0)

(increase (x) 1003.0)

(increase (y) 5.0)))

) ;end of define

Figure C.1: (continued) Full PDDL for the domain and problem 4×3xnil.

137

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

z
lop

z2y
lop

0 10 20 30

z5y
lop

z10y
lop

0 10 20 30

z25y
lop

z50y
lop

z
pol

z2y
pol

z5y
pol

z10y
pol

z25y
pol

0
20
40
60
80
100

z50y
pol

0
20
40
60
80

100
z

gis
z2y
gis

z5y
gis

z10y
gis

z25y
gis

z50y
gis

z
sig

z2y
sig

z5y
sig

z10y
sig

z25y
sig

0
20
40
60
80
100

z50y
sig

0
20
40
60
80

100
z
nil

z2y
nil

z5y
nil

z10y
nil

z25y
nil

z50y
nil

z
lin

z2y
lin

z5y
lin

z10y
lin

z25y
lin

0
20
40
60
80
100

z50y
lin

0
20
40
60
80

100
z

ran

0 10 20 30

z2y
ran

z5y
ran

0 10 20 30

z10y
ran

z25y
ran

0 10 20 30

z50y
ran

Figure C.2: Log-Histograms of the scaled difference from the minimum for the z∗y problems.
Bins for the bottom axis are set at {0, 1, 2, 4, 8, 16,≥ 32} to provide a visual representation
of how well an algorithm does. Better performance is indicated by thinner and taller bars
to the left. For more details, see the discussion of Figure 5.2.

138

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

zxy
lop

0 10 20 30

zxyz
lop

x
pol

y
pol

z
pol

zxy
pol

0
20
40
60
80
100

zxyz
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis
zxy
gis

zxyz
gis

x
sig

y
sig

z
sig

zxy
sig

0
20
40
60
80
100

zxyz
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

zxy
nil

zxyz
nil

x
lin

y
lin

z
lin

zxy
lin

0
20
40
60
80
100

zxyz
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

0 10 20 30

zxy
ran

zxyz
ran

Figure C.3: Log-Histograms of the scaled difference from the minimum for MQA to generate
a single solution in 30 problems of BiSyn.

139

xCost

yC
os

t

0

5000

10000

0 4000 10000

●
●●

●

●

●
●●●

●
●●

●

●
●●
●

●

●
●●
●
●
●●

●
●

●

●

●

x
lop

● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●● ●●●

y
lop

0 4000 10000

●
●

●●
●

●●●●●●●
●●●●●
●

●●●●
●

●●
●●

●
●

●

z
lop

● ●

●

●

● ●

●

●●●●●●●●●●

●

● ●

●
●●

●●●

●

●●●

zxy
lop

0 4000 10000

●

●
●

●

●●●
●
●

●●

●

●

●

●

●

●
●

●

●●
●

●
●●

●
●

●

●
●

zxyz
lop

●●
●●

●
●
●
●●
●●
●●

●

●
●

●●●
●
●

●

●
●
●●

●

●

●

●

x
pol

●● ●●●●●●● ●●●●●● ●●●● ●● ●●● ●●●●● ●

y
pol

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
pol

●● ●

●

●●●●● ●●●●●● ●●●● ●● ●●● ●●●●● ●

zxy
pol

0

5000

10000

●

●
●
●

●
●
●●
●

●

●

●

●

●

●●

●●●
●●

●

●●
●●

●

●

●

●

zxyz
pol

0

5000

10000
●●

●
●
●

●
●

●●●●

●
●●

●
●●●
●●

●
●
●
●
●
●●●●●

x
gis

●●●● ●● ●● ●●●●● ●●●●●●●●●●●●● ●● ●●

y
gis

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
gis

●●●● ●

●

●

●

●●●●● ●●●●●●●●●

●

●●● ●● ●

●

zxy
gis

●●
●●
●

●

●
●●●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●●
●
●●

zxyz
gis

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

x
sig

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

y
sig

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
sig

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxy
sig

0

5000

10000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxyz
sig

0

5000

10000 ●
●●
●
●●●●
●
●
●●●
●
●●●●
●
●●

●

●

●
●
●
●
●●

●

x
nil

● ●●● ●● ●●● ●●●● ●●●●●●●●● ●● ●●●●● ●

y
nil

●●●●●●●
●●

●●●●
●●●●●●●●
●●●●●●●●●

z
nil

●

●

●

●

●● ●

●

● ●●●● ●●●

●●

●●●●

●

●

●
●

●

●

●

●

zxy
nil

●
●
●
●●●
●●

●●

●●

●

●
●●●●
●●●
●

●
●●
●●
●●
●

zxyz
nil

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

x
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

y
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxy
lin

0

5000

10000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxyz
lin

0

5000

10000

●●●●●●
●●●●●●
●
●●
●
●●
●●●
●
●●●
●●●
●
●

x
ran

0 4000 10000

●●● ●●●● ●●●●●●●●●●●●●●● ● ●●●●●●●

y
ran

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
ran

0 4000 10000

●●● ●●
●

● ●

●

●●●●●●●●●●●●
●

● ●●
●

●●●●

zxy
ran

●
●●●●●
●●●●
●

●
●●
●
●
●●
●
●
●●
●
●●●●●
●
●

zxyz
ran

Figure C.4: Solution xy-interaction plots for MQA to generate a single solution in 30 prob-
lems of BiSyn.

140

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

zxy
lop

0 10 20 30

zxyz
lop

x
pol

y
pol

z
pol

zxy
pol

0
20
40
60
80
100

zxyz
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis
zxy
gis

zxyz
gis

x
sig

y
sig

z
sig

zxy
sig

0
20
40
60
80
100

zxyz
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

zxy
nil

zxyz
nil

x
lin

y
lin

z
lin

zxy
lin

0
20
40
60
80
100

zxyz
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

0 10 20 30

zxy
ran

zxyz
ran

Figure C.5: Log-Histograms of the scaled difference from the minimum for MQAD to generate
a single solution in 30 problems of BiSyn.

141

xCost

yC
os

t

0

5000

10000

0 4000 10000

●
●●

●

●

●
●●●

●
●●

●

●
●●
●

●

●
●●
●
●
●
●

●
●

●

●

●

x
lop

● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●● ●●●

y
lop

0 4000 10000

●
●

●●
●

●●●●●●●
●●●●●
●

●●●●
●

●●
●●

●
●

●

z
lop

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●
●●
●
●
●●

●

●

●

●

●

zxy
lop

0 4000 10000

●
●●

●

●

●
●●
●

●

●

●

●

●●●
●

●

●

●●
●
●
●
●

●
●

●

●

●

zxyz
lop

●●
●●

●
●
●●●●●●●

●

●
●

●●●
●
●

●

●
●
●●

●

●

●

●

x
pol

●● ●●●●●●● ●●●●●● ●●●● ●● ●●● ●●●●● ●

y
pol

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
pol

●●
●●

●
●
●
●●
●●
●●

●

●
●

●●●
●
●

●

●
●
●●

●

●

●
●

zxy
pol

0

5000

10000
●●
●●

●
●
●
●●
●●
●●

●

●
●

●●●
●
●

●

●
●
●●

●

●

●

●

zxyz
pol

0

5000

10000
●●

●
●
●

●
●

●●●●

●
●●

●
●●●
●●

●
●
●
●
●
●●●●●

x
gis

●●●● ●● ●● ●●●●● ●●●●●●●●●●●●● ●● ●●

y
gis

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
gis

●●
●
●
●

●
●

●●●●

●
●●

●

●

●●
●●

●
●
●

●
●
●●●●●

zxy
gis

●●
●
●
●

●
●

●●●●

●
●●

●
●●●
●●

●
●
●

●
●
●●●●●

zxyz
gis

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

x
sig

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

y
sig

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
sig

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxy
sig

0

5000

10000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxyz
sig

0

5000

10000 ●

●
●
●
●●●●
●
●
●●●
●
●●●●
●
●●

●

●

●
●
●
●
●●

●

x
nil

● ●●● ●● ●●● ●●●● ●●●●●●●●● ●● ●●●●● ●

y
nil

●●●●●●●
●●

●●●●
●●●●●●●●
●●●●●●●●●

z
nil

●

●

●
●●●●●
●
●
●●●
●
●●

●

●
●
●

●

●

●

●
●

●●

●
●

●

zxy
nil

●

●
●
●
●●●●
●
●
●●●
●

●●●●
●
●●

●

●

●
●
●
●
●
●

●

zxyz
nil

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

x
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

y
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxy
lin

0

5000

10000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxyz
lin

0

5000

10000

●●●●●●
●●●●●●
●
●●
●
●●
●●●
●
●●●
●●●
●
●

x
ran

0 4000 10000

●●● ●●●● ●●●●●●●●●●●●●●● ● ●●●●●●●

y
ran

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

z
ran

0 4000 10000

●●●●●●
●

●●●●●
●
●●
●

●
●●●
●
●
●●●

●
●●

●

●

zxy
ran

●●
●
●●●●
●●●●●
●●
●
●
●●
●●
●●
●
●
●
●
●
●

●
●

zxyz
ran

Figure C.6: Solution xy-interaction plots for MQAD to generate a single solution in 30
problems of BiSyn.

142

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

zxy
lop

0 10 20 30

zxyz
lop

x
pol

y
pol

z
pol

zxy
pol

0
20
40
60
80
100

zxyz
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis
zxy
gis

zxyz
gis

x
sig

y
sig

z
sig

zxy
sig

0
20
40
60
80
100

zxyz
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

zxy
nil

zxyz
nil

x
lin

y
lin

z
lin

zxy
lin

0
20
40
60
80
100

zxyz
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

0 10 20 30

zxy
ran

zxyz
ran

Figure C.7: Log-Histograms of the scaled difference from the minimum for MQAS to generate
a single solution in 30 problems of BiSyn.

143

xCost

yC
os

t

0
2000
4000
6000
8000

0 4000 8000

●●
●

●

●●
●

●
● ● ●

●
●

●
●

●

●

●
●

● ●
●●

●

●
●

●
●

●
●

x
lop

●
●●

●

●

●

●●

●

●●●

● ●
●

●

●
●

●
●

●
●

●

●
●
●

● ●
●

●

y
lop

0 4000 8000

●
● ●●

●

●

●●●
●
●

●

●

●
●

●

●

● ●
●
● ●

●

●
●
●

●
●

●●

z
lop

●●
●

●

●●
●

●● ● ●●●
●

●●

●

●
●

● ●
●●

●

●
●

●
●

●

●

zxy
lop

0 4000 8000

●●
●

●

●●
●

●
●
●

●●

●
●

●●

●

● ●

● ●
●

●

●

●
●●

●●
●

zxyz
lop

●
● ●

●

●
●●

●

● ●

●

●●
●●

●●

●
●
●●

●●
●
●
●

●

●●●

x
pol

● ●
●

●●

●

●
●

● ●●●●
●

● ●●

●

●● ●●
●

●
●●

●●
●

●

y
pol

● ●
●

●
●
●
●

●

●
●

●
●●●● ●●

●
●
●●

●●
●
●
●●

● ●
●

z
pol

●
● ●

●

●
●●

●

● ●

●

●●
●●

●●

●
●
●●

●●
●
●
●

●

●●●

zxy
pol

0
2000
4000
6000
8000

●
●

●

●

●
●●

●

● ●

●

●●
●●

●●

●
●
●●

●●
●
●
●

●

●●●

zxyz
pol

0
2000
4000
6000
8000

● ●

●
●

●

● ●
●

●

●
●

●●
●●
●●

●●
●●

●
●

●

●
●

●

●
● ●

x
gis

●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●

●
● ●●

●●●

●
●

●

●
●

●

y
gis

●
● ●

●
●
●

●
●

●

●
●

●●

●

●

●

●

●●
●●

●●●

●
●

●

●●
●

z
gis

● ●

●
●

●

● ●
●

●

●
●

●●
●●
●

●

●●
●●

●
●

●

●
●

●

●
● ●

zxy
gis

● ●

●
●

●

● ●
●

●

●
●

●●
●●
●●

●●
●●

●
●

●

●
●

●

●
● ●

zxyz
gis

●
●

●●●
●●●●
●

●
●●●

●

●

●

●●
●●

●
●

●
●
●

●
● ●●

x
sig

●
●

●●●
●●●●

●

●
●●●

●

●

●

●●
●●

●
●

●
●
●

●
●●●

y
sig

●
●

●●●
●●●●
●

●
●●●

●

●

●

●●
●●

●
●

●
●
●

●
● ●●

z
sig

●●

●
●

●

●
●● ●●

●

● ●
●

●

●

●

●●

●●
●

●
●
●

●

●

●●
●

zxy
sig

0
2000
4000
6000
8000

●●●●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●

zxyz
sig

0
2000
4000
6000
8000

●●
●●
●
●

●●

●

●

●●

●

●

●
●
●

●
●

●

●

●
●

● ●

●

●

●● ●

x
nil

●

●

●●
●

●
●●

●
●

●●

●

●●
●
●

●●

●

●●●

●
●●● ●
●

●

y
nil

●
●●

●
●

●
●●
●●

●
● ●

●● ●
●

●●

●

●

● ●
●

●
●● ●

●
●

z
nil

●●
●● ●●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●
●

●

zxy
nil

●●
●●
●
●

●●

●

●

●●

●

●

●
●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

zxyz
nil

●●
●
●

●●●●●●●●●●●●●●●●●
●●●

●●
●

●●●

x
lin

●●
●
●

●●●●●●●●●●●●●●●●●
●●●

●●
●

●●●

y
lin

●●
●
●

●●●●●●●●●●●●●●●●●
●●●

●●
●

●●●

z
lin

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxy
lin

0
2000
4000
6000
8000

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

zxyz
lin

0
2000
4000
6000
8000

●
● ●

●

●●
●

●● ●

●
●●

●●●

●●
●

●

●

●

●
●

●
●

●
● ●
●

x
ran

0 4000 8000

●
● ●

●

●
●

●

●
● ●

●
●●

●
● ●

● ●
●
●
●

●

●
●●●

●

●

●●

y
ran

●
● ●

●

●
●

●

●
●

●

●
●●●

●
●
●●

●
●

●
●

●

● ●●
●

●
●●

z
ran

0 4000 8000

●
● ●

●

●●
●

●

●

●

●
●●

●●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

zxy
ran

●
●

●
●

●●

●

●
●

●

●
●

●

●
● ●

●●
●

●
●

●

●
●

●

●

●

● ●

●

zxyz
ran

Figure C.8: Solution xy-interaction plots for MQAS to generate a single solution in 30
problems of BiSyn.

144

Metric

T
im

e

15

20

25

30

35

40

45

x y z

●
●

●

ran

x y z

●

●

●

lin

x y z

● ●

●

nil

x y z

●

●

●

●

●

●
●

●
●

●

●

sig

x y z

● ●

●

gis

x y z

●

●

●

●●●●●●●●●●●●●●●

●
●
●

pol

x y z

● ●

●

lop

Metric

T
im

e

20

40

60

80

100

120

x y z

● ●

●●
●●●●●●

●

●●●●

●●

●
●

●

ran

x y z

● ●

●

●

●
●
●●●●

●●●

●

●

●

●
●●
●

●●●

●

●

●●

●●
●

lin

x y z

● ●

●
●●●

nil

x y z

● ●

●

●

●●●

●●●●●●
●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●
●●

●●
●

●●

sig

x y z

● ●

●●●
●

●

●

●

●

●

●

●

●

gis

x y z

● ●

●
●●

●

pol

x y z

● ●

●
●

●●

●
●

●●

lop

Metric

T
im

e

15

20

25

30

35

40

45

x y z

● ●

●

●
●

ran

x y z

● ●
●

lin

x y z

●

●

●

nil

x y z

● ●

●

●

●

●●

●

●●●●●

●●●

●
●
●●●
●

●●●●

sig

x y z

●

●

●

gis

x y z

●

●

●

●●
●●●

pol

x y z

●
●

●

lop

Figure C.9: Runtime distributions of all functions and metrics for MQAT (top) and
MQATD (bottom) to generate a 100 solutions in p00 of BiSyn.

145

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

zxy
lop

0 10 20 30

zxyz
lop

x
pol

y
pol

z
pol

zxy
pol

0
20
40
60
80
100

zxyz
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis
zxy
gis

zxyz
gis

x
sig

y
sig

z
sig

zxy
sig

0
20
40
60
80
100

zxyz
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

zxy
nil

zxyz
nil

x
lin

y
lin

z
lin

zxy
lin

0
20
40
60
80
100

zxyz
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

0 10 20 30

zxy
ran

zxyz
ran

Figure C.10: Log-Histograms of the scaled difference from the minimum for MQAT to gen-
erate a 100 solutions in p00 problems of BiSyn.

146

xCost

yC
os

t

0
2000
4000
6000
8000

10000

0 4000 8000

●●●●
●
●●
●
●
●●●●●●

●●●●
●
●●
●
●●●●●●●●●
●
●●
●●●●●●●
●●●●
●
●
●●●●●●●
●●●
●
●
●
●

●●●●●●●
●●●●●●●
●●●●●●●●●●
●
●

●●●●●●●●●
●●●

x
lop

●●●●●●●●●●●●●●●
●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●

y
lop

0 4000 8000

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●● ●●●●
●●●

●●●
●

●
●

●●●

z
lop

●●●●

●
●
●
●
●

●

●●

●

●

●●●●●
●
●●
●
●

●●

●
●

●

●

● ●

●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●

●

●

●
●●●●●●●
●

●

●●
●
●
●
●
●●●●●●

●●●● ●●●●●●●●

●●●

zxy
lop

0 4000 8000

●

●●●●
●
●●
●●●●●●●
●●●●
●
●●
●
●

●
●

●

●●
●

●●●●●●●●●●

●

●
●

●

●

●

●●●●●●
●●
●●●●
●

●●

●●
●
●
●●●
●

●●●●●

●

●●

●●

●

●

●
●●●●●

●

●●●●●

●

●

●

●●
●
●

zxyz
lop

●●●●●●●●●●●●●●●
●●●●●●●
●
●
●
●
●
●●●●●
●●●●
●●●
●
●
●
●●●
●●●●●●●●●●
●
●
●●●
●●
●●●●●
●
●●
●
●●●●

●
●
●
●●●
●●
●●
●●●
●
●
●●
●●●
●●●●●

x
pol

●●●●●●●●●●●●●●
●
●●●●● ●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●●

y
pol

●●●●●●●●●●●●●
●●●

z
pol

●●●●●

●●●

●

●

●

●

●

●

●●●●●● ●●● ●

●●●●

●

●●●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●
●
●

●

●

● ●●●●

●

●

●●●●
●●●●●

●●●●●●●●●●●●●●●●

●

●

zxy
pol

0
2000
4000
6000
8000
10000

●

●●●

●

●●●

●

●●

●

●●

●

●
●●●●●
●●●●
●●●

●
●●●
●
●●
●●●
●●●●●
●●●●●●

●

●

●

●●●●●●●●●●●●●
●
●●

●

●●●
●
●
●●
●
●●●
●
●
●●●●
●
●●●
●
●
●●
●●

●

●
●●

zxyz
pol

0
2000
4000
6000
8000

10000
●●
●
●
●●
●
●●
●●●●●●
●

●●●
●
●
●●
●●●●●
●
●●●
●
●●●●
●
●
●●●
●●●●
●

●●●●●
●
●●●●●
●
●●
●
●●●●●●
●
●●
●
●●●
●

●

●
●
●●●
●●●
●●●●●
●●●
●●
●
●
●●
●

x
gis

●● ●●●●●●●●●●●●●
●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●

y
gis

●●●●●●●●●●●●
●●●
●●●

z
gis

●●

●

●●

●
●●

●

●
●

●

●

●

●●
●

●●●
●
●●●

●

●

●●

●

●

●
●●●●●
●
●●●●
●

●●

●

●●●

●

●

●

●
●●●●
●
●
●●●
●●●

●
●●
●

● ●●

●

●

●●
●●

●●

●

●

●

●

●
●

●●

●

●●●●●

●

●● ●●●●

zxy
gis

●●
●●●●●
●
●
●●●●●

●

●

●

●●●
●
●●
●
●●●●

●●●●●
●●●●
●●

●

●●
●●●
●

●●
●
●
●●●
●●●
●●●
●●
●

●

●
●
●●●●●●●
●

●
●
●
●

●●●●●

●
●●●
●●
●
●●●
●
●●●●●

●
●

zxyz
gis

●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●

x
sig

●●

y
sig

●●

z
sig

●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●

zxy
sig

0
2000
4000
6000
8000
10000

●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●

zxyz
sig

0
2000
4000
6000
8000

10000 ●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●
●
●
●●●●●●●●●
●●

x
nil

●●●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●

y
nil

●●●●●●●●●●●●●
●●●

z
nil

●●●

●

●●

●

●

●

●● ●

●

●● ●●●●●●●●●

●●

●

●

●

●

● ●●●● ●●●●●●●●

●●

●●

●●

●

●

●

●

● ●●●●●●●●●●

●●●●

●●

●●
●

●

●●

●

●●●●●●●●●●●

●

●

●●●●

●

●●●●●

zxy
nil

●●●●●●
●
●●

●●●●●
●●●●●●

●●●●●●●●●●
●

●

●●●●●
●●●●●●●

●●

●●●●●●●●●
●●●●●●
●
●●
●●●●

●

●●●●●●
●
●●●●●●●
●
●
●●●●●●●

●

●●●●●●●

zxyz
nil

●●●●●●●●●
●●
●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●

x
lin

●●

y
lin

●●●●●●●●●●●
●●●

z
lin

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

zxy
lin

0
2000
4000
6000
8000
10000

●●●●●●●●●
●●●
●●●●●●●●●●●●●●

zxyz
lin

0
2000
4000
6000
8000

10000

●●●●●●●●●●
●●●●●●●
●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●
●●●●●
●●●●●●●
●
●●
●●●●●●●
●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●
●●

x
ran

0 4000 8000

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●●● ●●●

y
ran

●●●●●●●●●●●●
●●

z
ran

0 4000 8000

●●●

●●●●

●● ●
●

●●●●●
●●
●
●●●●

●●●●●●●

●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●
●●

●

●
●

●●●●●●
●

●●●●

●●●●●
●
●●●●●●
●
●●
●●●

●
●●●●●●●●●

zxy
ran

●●●●
●
●
●
●●●
●
●
●
●●●●●

●●●
●
●●
●
●●
●

●●●●●●●●
●
●●●●●●●
●●
●●●
●
●
●●●
●●●
●
●●●●●●
●
●●●●●
●
●
●
●●●
●
●

●

●

●
●●
●●
●●
●●●●●●
●●●●●●●

zxyz
ran

Figure C.11: Solution xy-interaction plots for MQAT to generate a 100 solutions in p00
problems of BiSyn.

147

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

zxy
lop

0 10 20 30

zxyz
lop

x
pol

y
pol

z
pol

zxy
pol

0
20
40
60
80
100

zxyz
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis
zxy
gis

zxyz
gis

x
sig

y
sig

z
sig

zxy
sig

0
20
40
60
80
100

zxyz
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

zxy
nil

zxyz
nil

x
lin

y
lin

z
lin

zxy
lin

0
20
40
60
80
100

zxyz
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

0 10 20 30

zxy
ran

zxyz
ran

Figure C.12: Log-Histograms of the scaled difference from the minimum for MQATD to
generate a 100 solutions in p00 problems of BiSyn.

148

xCost

yC
os

t

0
2000
4000
6000
8000

10000
12000

0 4000 8000

●●●●
●
●●
●
●
●●●●●●
●●●
●
●●
●
●●
●●●●●●
●●●
●
●●
●●
●●●●●●
●
●●●●●
●●●●
●
●●●
●●●●●

●●

●●●
●

●
●
●●●

●●●
●●●

●●●●●●●●
●

●
●

●●
●

●●
●●
●

●

x
lop

●●●●●●●●●●●●●●●
●● ●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●● ●
●●●●●●●●●●●●●
●●●

●●
●●●●●●

●●●
●●

●●●●
●●●●
●

y
lop

0 4000 8000

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●● ●
●●●●
●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●
●●●

●●●●●●●●●●●

z
lop

●
●
●
●

●

●

●
●
●
●

●

●

●●

●
●●

●●

●●●
●

●

●●●

●
●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●●●

●

●●●●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●●

●
●

●●

●

●

●●

●

zxy
lop

0 4000 8000

●●
●●
●
●
●
●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●
●●

●

●

●

●

●●
●●●
●

●●
●

●●●●●
●
●●●●●

●
●

●
●

●
●

●●
●

●
●
●●●

●●

●●
●
●●
●●●
●●
●

●

●

zxyz
lop

●●●●●●●●●●●●●●●
●●●●●
●
●●
●
●●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●

●
●●●●●●●●●

●●
●●●●●●●●

●
●●
●
●●
●●●
●
●●
●●
●●
●
●
●●●●
●
●

x
pol

●●●●●●●●●●●●●●
●
●●●●●●●● ●●●● ●●● ●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●● ●●● ●●●●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●●

y
pol

●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

z
pol

●●
●
●

●●●●●●●●●●●●

●
●●●●●●●●●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●
●●●●

●

●
●●

●

●
●

●

●

●

●

●●●●●●

●

●
●●

●

●●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●

●●●●

zxy
pol

0
2000
4000
6000
8000
10000
12000

●●
●
●
●

●

●

●

●
●

●

●●

●●

●

●

●●●●●●●●●
●
●
●●
●
●●●

●

●●●●●●

●

●
●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●●
●●●

●

●
●●●●●●●●●
●●●●●●●●●●●●●
●●
●

zxyz
pol

0
2000
4000
6000
8000

10000
12000

●●
●
●
●●●●●
●●●●●●
●
●●●
●
●
●●●
●
●
●
●●●●●
●
●●
●●●●
●
●●●
●●
●●
●
●●●●
●●
●
●●●●
●●●●
●●●●

●
●●●●●
●
●
●●●
●●

●

●
●●●

●
●
●●●●●
●
●

●●
●●●

●

x
gis

●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●● ●●●●

●●● ●●●●●●●●●●●●●●●
●● ●●●●●●●● ●●●●●●●●●●●●●●●

y
gis

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●

●●●●●●●●
●●●●●●
●●

z
gis

●●●
●●

●●●

●

●●●●●●●

●
●●●●●●●●●
●
●●●●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●●
●●

●●

●
●

●●

●
●
●

●●

●●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●●●●●●
●●

●

●●

●

●
●●●●●

zxy
gis

●●●
●●●●●
●
●
●●●●●

●

●
●●●●●●
●
●
●●●●
●

●

●●●●
●
●
●●●
●
●●
●

●

●●

●

●
●

●

●●●●●●●●●●●●●●●
●●●●●●

●

●●●●
●
●

●●●●
●
●
●

●

●●
●●●
●
●●●●

●●●

zxyz
gis

●●●
●●●●●

x
sig

●●

y
sig

●●

z
sig

●●

zxy
sig

0
2000
4000
6000
8000
10000
12000

●●●
●●●●●●●●●●●●●●
●
●●

zxyz
sig

0
2000
4000
6000
8000

10000
12000

●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●
●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●
●
●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●

x
nil

●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●

y
nil

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●

●
●●●

z
nil

●

●●

●●

●

●

●

●

●●

●

●

●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●●

●

●●●

●●

●

●

●

●●●

●
●●●●●●

●●●●●●●●

●●

●

zxy
nil

●●●●●●
●
●●
●●●●●

●●●●●●●●●●●
●
●●

●

●●

●

●

●

●

●

●●●●●●●●●
●
●

●

●●

●

●

●

●
●●●●
●●●●
●

●

●●

●

●●

●●●●
●

●●●
●●●●●
●

●●●●

●●
●●●●●●●●

●

●

●

zxyz
nil

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●

x
lin

●●

y
lin

●●●●●●●●●●●
●●●

z
lin

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

zxy
lin

0
2000
4000
6000
8000
10000
12000

●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●
●
●●●●●
●●

zxyz
lin

0
2000
4000
6000
8000

10000
12000

●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●
●●●●●●●●
●
●●●●●

●●
●●●●●●●●●
●
●●●●●

●
●●●●●
●
●●

●
●●
●●●●●

x
ran

0 4000 8000

●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

y
ran

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●

z
ran

0 4000 8000

●●
●

●●

●
●

●●
●●

●●●
●

●
●●

●●● ●●●●● ●●●●●
●

●
●●

●
●●●

●

●●●●

●●●●●
●●

●●●
●●●●●●●●

●
●●● ● ●●
●●●●●

●
●

●●●●
●●●

●

●●

● ●

●●
●●●●

●
●

●●
●

●

zxy
ran

●●
●
●●●●
●
●●●
●
●
●
●
●●

●
●
●
●
●
●●●
●●●
●
●●
●
●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●●●●●●●●
●

●●●
●

●
●●●●●●●

●●●●
●●
●

●
●

●●●
●●
●●●

●
●

zxyz
ran

Figure C.13: Solution xy-interaction plots for MQATD to generate a 100 solutions in p00
problems of BiSyn.

149

Scaled Difference

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

100

0 10 20 30

x
lop

y
lop

0 10 20 30

z
lop

zxy
lop

0 10 20 30

zxyz
lop

x
pol

y
pol

z
pol

zxy
pol

0
20
40
60
80
100

zxyz
pol

0
20
40
60
80

100
x

gis
y

gis
z

gis
zxy
gis

zxyz
gis

x
sig

y
sig

z
sig

zxy
sig

0
20
40
60
80
100

zxyz
sig

0
20
40
60
80

100
x
nil

y
nil

z
nil

zxy
nil

zxyz
nil

x
lin

y
lin

z
lin

zxy
lin

0
20
40
60
80
100

zxyz
lin

0
20
40
60
80

100
x

ran

0 10 20 30

y
ran

z
ran

0 10 20 30

zxy
ran

zxyz
ran

Figure C.14: Log-Histograms of the scaled difference from the minimum for MQATS to
generate a 100 solutions in p00 problems of BiSyn.

150

xCost

yC
os

t

0
2000
4000
6000
8000

10000

0 4000 8000

●

●

● ●

●
● ●

●

●

●●●● ●●
●

●●
●

●●●
●

●●

●●

●

●
●

●
●

●
●●

●●

●●
●●

●
● ●●

●
●
●

●

●●

●
●●

●

●●

●
●
●●

●

●

●

●

●● ●
●● ●

●●●●●
●

●●●●●●
●

●●●

●

●●●●●
●
●●●

●●●

x
lop

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●●

●
●

●●

● ●●

●●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●●●
●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●●●●

●●●

●

●●

●●

●
●

●

●

●

y
lop

0 4000 8000

●

●

●
●

●

●

●●

●
●

●
●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●
●
●●

●
●

●

●
●

●
●
●

●

●
●●

●●

●
●

●●

●

●●●

●●●●●
●

●
●●●●●●●●●● ●●●
●

●●●● ●
●
●
●

z
lop

●●

●●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●
●

●
●

●

●●

●
●

●
●●

●

●

●
●

●●●●●●
●

●
●●●●

●

●

●
●

●
●
●

●
●

zxy
lop

0 4000 8000

●●

●

●

●

●
●

●

●
●

●

●
●

● ●●● ●●
●

●

●

●

●

●

●
●

●

●
●●
●●●

●
●●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

● ●●
●●

●
●●

●

●

●●●
●

● ●●
●●●●

●
●
●●●
●

● ●
●
●●●●

●

●

●

●

●
●●

●
●

●

●●
●

zxyz
lop

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●●

●●
●●●●
●

●
●●●
●
●●
●

●
●

●
●●●
●

●●●
●●

●●
●

●

●

x
pol

● ●●●● ●● ●
●

●● ●
●●

●●●●●●●●●● ●●
●

●
●

●●
●

●●●●
●● ●

●
●

●
● ●●● ●● ●● ●●●

●● ●●
●●

●●
●

● ●
●

●●
●

●●●●●
●● ●●

●

●● ●●
●

●● ●●● ●● ●●●
●

●
●●

●
●●

y
pol

●● ●●●●
●
● ●● ●● ●● ●
● ●●● ●●●

●●●●
●

●●● ●●●●●●●
●
●●●●●● ●●●●●● ● ●
●
●●●●●●●●● ●●●●● ●●
●●●● ●●●● ●●●●●●●

●●●●●●●●●●●
●

●
●● ●

z
pol

●
● ●●

●

●●
●● ●●● ●● ●

●

●●●
●

●

●

●
●

●●

●

●
●

●●

●●●

●
●

●●

●

●● ●
●

●

● ●
●

●
●●●●●●●●●●●

●●●●●●●
●

●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●

zxy
pol

0
2000
4000
6000
8000
10000

●

●

● ●

●

●●

●

●

●

●

●

● ●

●
●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●

●
●

●
● ●

●●●

● ●●
●●●●●●
●●●●●●

●●●●

● ●●●

●

●

●

● ●●●●●●● ●●

●

●
●●●●

●●

●

●●
● ●●●●

zxyz
pol

0
2000
4000
6000
8000

10000

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●●

●●●
●
●

●
●

●●

●●●
●

●
●

●
●

● ●●

● ●

●●

●
●

●

●

●●
●

●

●

●●
●

●

●

●
●●

●●

●

●

●●

●

●

●●●●●
● ●●●●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●●

●●

x
gis

●

● ●

●

● ●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●●

●●●●

●●
●
●●

●

●● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●●●

●●

●●

●
●

●
●

●●●

●

●●

●

y
gis

●

●●

●
●

●

●

●

●

●

● ●
●

● ●

●●

●

●

●

●

●

●

● ●●

●

●

●●

●●

●

●
●

●●

●

●
●

● ●

●

●

●
●

●

●

●●
●●●
●● ●●●●● ●●●●●

●
●●

●●

●
●●● ●●●● ●●●●●

●●● ●
●●●●● ●●●
●●● ●●

z
gis

●

● ●

●●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

● ●●●

●
●

●●

●

●●
●

● ●●●
●●

●●●●●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●

●●

●● ●● ●●●●●●●●●

zxy
gis

●
●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●●● ●
●

●●
●

●

●

●

●

●●●
●

●●●●●
●

●

●

●
●

●●●●●●●●●●●
●●

●

●

●
●●
●

●●●

●
●

●●●●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

zxyz
gis

●

●

●●

●

●
●

● ●

●

●

●

●● ●

●

●●
●

●

●●
●●

●●

●

●●●

●

●
●●

●

●●●●
●

●●

●
●

●●

●

●
●

●
●

●
●
●●●

●

●

●

●

●
●

●

●●
●●●

●

●
●
●
●●●●
●

●
●

●

●
●●

●●● ●
●●●●

●●●
●●
●● ●

●

x
sig

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●●●

●

●
●
●●

●●

●

●

●
●●

●●
●

●

●

●

●
●●●

●
●

●●●●
●●●

●●
●

●

●

●

●
●●

●●●

●●

●

●●●●●●
●
●

●
●

●
●●
●●●

●
●●●●●

●

●●●
●
●●
●●

●

y
sig

●

●

●●

●

●
●

● ●

●

●

●

●●●

●

●●

●●

●
●●●

●

●
●

●
●●

●
●

●
●

●●

●●

●

● ●
●●

●●

●●
●
●

●

●●●

●●

●
●●●

●

●
●●●
●

●
●

●●

●●
●●●
●●●

●

●

●
●●

●●●●
●●●

●●
●

●●
●

●
●●●

●

z
sig

●

●

●

●

●

●

●● ●

●●●

●

●

●

●

●

●●
●
●●●

●●

●●

●
●

●●

●

●●

●
●

●
●●●

●●
●

●

●

●

●

●●●
●●●

●
●

●
● ●

●●●

●

●●

●

●

●

●●
●
●●●

●

●●●

●●●●

●
●

●

●

●

●

●

●●
●

●

●
●●

●
●●●

●

zxy
sig

0
2000
4000
6000
8000
10000

●●

●●
●

●

●

●●

●

●

●●

●●●●●●●●

●●● ●●●
●

●

●

●● ●●
●

●

●
●●● ●

●●

●

●●●●●

● ●●●
●
●
●●
●

●
●●
●

●●●

●

● ●
●

●

●
●

●
●

●●
●

●
●

●

●●●

●
●

●
●

●

●
●

●

●●
●

●●
●●

●
●

zxyz
sig

0
2000
4000
6000
8000

10000

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●●
●

●

●● ●

●

●

●

●
●●

●

● ●

●

●

●●
●

●●

●

●
●

●

●

●●
●

●●●
●

●
●●

●

●
●

●
●

●

●
●

●●

●
●
●
●

●●
●●●●●●●●●

●●●●●
●●●●
●●

●

●

●

x
nil

●

●●●●
●●

●

●

● ●●●●●●●
●

● ●●●●
●●●

●
●

●
●●

●
●●

●
●
●
●

●
●●

●
●●
●
●●●

●●
●●

●

●

●●● ●●●●●

●●●

●● ●●●
●

●
●●●●●●●●●
●

●●●
●

●
●●

●

●●●

●

●

●●●
●

●

y
nil

●
●

●
●

●
●●

●●
●●●
●

●●
●●●●● ●●
●● ●●●●●

●●
●●●●
●

● ●●
●●

●
● ●

●
●

●
●●
●
●

●●●
●
●●

●
●
●●●●● ●●
● ●

●
● ●●●

●●●●
●●●●●●●●●●●●
●●●●●●●●

●
● ●

z
nil

●

●
●

●●
●

●●
●
●
●

●
●

●
●

●
●●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●●●
●●

●●●●
●●●●
●●●●

●
●●

●●●

●
●

●●●●
●

●
●

●
●

●●●●● ●
●

●

●●●●●

zxy
nil

●

●
●

●●●

●●

●

● ●
●●

●●

●
●●
●

●

●●

●
●
●

●

●
●●

●

●
●●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●●

●●●●●

●●●●●●
●●●●

●●
●

●
●●●

●●
●

●

●

●

●

●

●
●

●●●●
●

●
●

●
●

●

zxyz
nil

●

●
●

●
●●

●●
●

●●
●
● ●

●

●
●●
●

●
●

●
●

●
● ●

●
●

●●

●

●

●●
●

●

●
●

●● ●●

●
●

●●
●

●

●●

●
●●

●●●

●
●

●
●

●
●●

●
●●

●●
●

●●

●●
●

●
●

●

●●●●
●

●●
●●
● ●
●

●

●●●●●

●
●●● ●

x
lin

●

●
●

●
●●

●●
●●●

●

●

●●
●

●

●●

●

●●

●
●

●

●

●
● ●●

●●

●

●
●

●

●●●●

●
●●●

●●●●

●●●

●●
●●

●
●

●●●
●

●
●

●
●●

●

●
●

●

●

●

●
●●

●

●

●
●●●●
●●●● ●

●●●
●

●●

●

●
●●

●●
●

y
lin

●

●
●

●
●●

●●
●●●

●
● ●

● ●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●
●

●
●●

●
●

●

● ●

●

●

●
●●●

●●

●

●
●

●●

●

●●
● ●● ●●

●
●●●

●
●

●

●

●

●
●

●
●

●●
●

●
●●

●●

●●
●●●●

●
●●

●
●
●
●

●
● ●●

●

z
lin

●● ●
●●●●

●
●●●

●●
●●●●

●

●●

●●

●

●●●
●

●
●

●

●
●●
●

●
●

●

● ●

●
●

●
●●

●●

●
●

●
●●

●
● ●●

●
●●●
●

●
●

●●●●
●

●

●●

●
●

●
●

●

●●
●●

●

●

●
●● ●
●●●

●
●●●

●
●

●●
● ●●

●

zxy
lin

0
2000
4000
6000
8000
10000

●● ●
●●●

●●

●●●

●●●●●
●

●●●●●
●

●

●
●
●
●●

●
●●●

● ●
●●

●●
●●●●

●

●●●●●

●

●●●●●●●
●●

● ●●
● ●

●
●
●●● ●

●●●●
●●

●

●●

●
●

●
●

●●
●

●
●

●●●
●

●
●

●●●●●
●

zxyz
lin

0
2000
4000
6000
8000

10000

●

●

●
●

●
●

●
●

●●

●
●●●

●●
●

●●
●

●

●
●● ●●●
●

●

●

●

●

●

●
●
●

●
●

●
●

● ●●●
● ●

●
●●
●

●
●● ●

●
●

●
●●

●
●●

●
●●●

●
●

●●●●●●●●●●●
●●●●●●●

●●●●

●

●

●●
●●●

●●
●

x
ran

0 4000 8000

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

●●

●●

●

●

●
●

●

●

●●

●●
●

●

●
●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●
●

●●●●●
●●●●

●

●

● ●●

●

●

●

●
●

●

●
●

●

●

●●

●

y
ran

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●
●●●

●●●●

●

●●●

●

●

●

●
●●

●

●●

●

●

●

●
●●

● ●●
●●●

●

●

● ●

●
●●●●

●●●
●

●●●●
●●

●●
●●●●●●●●●●●
●●●●●

●●●

●

●

●●●●●●●

z
ran

0 4000 8000

●

●●

●
●

● ●

●

● ●
●

●

●

●

●
● ●

●●●

●●

●
●

●

●●● ●●
●

●●
●

● ●●
●

●●

●

●

●
●●●

●●
●

●
●

●

●●
●

●
●

●

●●

●●

●●●
●
●●●

●●
●●●●● ●● ●

●●●●
●

●

●

●

●

●●
●

●

●

●

●●
●

●
●●

zxy
ran

●

●
●

●

●● ●
●

●

●

●

●
●●● ●

●

●

●
●

●●●
●

●●●
● ●
●

●

●●●●●●
●● ●

●●
●

●●
●

●●

●●

●
●

●

●●
●

●

●●
●

● ●
●●

●●●●
●●

●
●
●
●

●

●●

●

●●●● ●●●

●
●

●

●

●
●● ●
●
●

●●

●
●●

zxyz
ran

Figure C.15: Solution xy-interaction plots for MQATS to generate a 100 solutions in p00
problems of BiSyn.

151

	The `T' Metrics of Planner Evaluation
	Motivating Planning Advancements Through Applications
	Focus Problem: Cybersecurity For Home Computer Users
	The Security Model: A Personalized Attack Graph (PAG)

	Other Applications of Alternative Plans

	Background and Related Work
	Classical Planning
	Generating Plans
	The Plan Graph and Modern Heuristics for Classical Planning
	Other Methods for Generating Plans

	Generating Alternative Plans
	Multi-objective Planning

	Evaluating Planning Systems
	Efficiency
	Quality
	Diversity

	Assessing Tradeoffs in Generating Diverse Plan Sets
	Diversity Metrics
	Domains
	Implementations
	Diversity-A* (Div)
	Augmenting A* with a Tabu List (ITA)
	Hybrid Diversity+Tabu (Hybrid)
	Random Walk Search
	LPG-diffmax 2.0 (LPGd)

	Results: Parsimony, Uniqueness, and Overlap
	Parsimony
	Uniqueness and Overlap
	Diversity

	Results: Quality
	Results: Search Cost
	Results: Security Domains
	Limitations
	The Tradeoffs of Generating Plan Sets
	Summary

	Understanding Metric Interaction
	Evaluation Metrics
	Domains
	Existing Benchmarks in Planning
	Controlling for Metric Interaction in a Synthetic Domain

	Implementations
	A-star-Epsilon (A*)
	Multi-queue A* (MQA)

	Results: Producing Single Solutions for BiSyn
	Single Solutions for BiSyn using A*
	Single Solutions for BiSyn using MQA

	Results: Producing Plan Sets for BiSyn
	Results: Producing Plan Sets for the Benchmarks
	Limitations
	Revisiting the Tradeoffs of Generating Plan Sets

	Evaluating Diversity For Planners
	Producing Plan Sets
	Understanding Metric Interaction
	Unifying Parsimony and Metric Interaction: Multi-Queue A*
	Limitations and Future Work
	Final Remarks

	References
	Appendices
	The Mosaic Planning Framework
	Supplemental Plots for Chapter 4
	Supplemental Plots for Chapter 5

