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Abstract

The studies of behavioral finance show that the cognitive bias plays an important role in
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developed, which incorporates the two-stage initialization strategy, the improved stochastic
ranking approach, the aging leader and the multi-frequency vibrational mutation operator.
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Robust Multi-Period Portfolio Model Based on Prospect Theory and

ALMV-PSO Algorithm

1 Introduction

Portfolio optimization as an effective wealth allocation and risk management tool has attracted

a lot attention from both academics and practitioners. The mean-variance model formulated by

Markowitz (1952) lays the foundation of modern portfolio selection theory. The main goal of the

mean-variance model is to optimally allocate wealth by considering the trade-off between risk and

return. Recently, substantial effort has been devoted to extending the portfolio theory based on

Markowitz’s framework, including the multi-period portfolio problem with a kernel-based control

policy (Takano and Gotoh, 2014), the mean-variance portfolio based on a stochastic benchmark

(Bernard and Vanduffel, 2014), the portfolio management with financial ratios and technical

indicators (Silva et al. 2015), and the multi-objective portfolio considering the dependence structure

of asset returns (Babaei et al., 2015). We refer the interested readers to Markowitz (2014) for

a detailed discussion about a half-century of research on mean-variance approximations to the

expected utility.

In the framework of the mean-variance model, security returns are regarded as random vari-

ables, and expected returns are denoted as investment returns for securities. However, the accurate

distributions of security returns are difficult to obtain through historical data. Moreover, the mean-

variance model is highly sensitive to expected returns: a small perturbation in expected returns

may lead to a large variation in the optimum portfolio allocation (cf. Best and Grauer, 1991;

Black and Litterman, 1992). Therefore, it is more reasonable to regard the distributions of secu-

rity returns as interval random uncertainty sets (cf. Chen et al., 2011; Moon and Yao, 2011; Chen

and Kwon, 2012), which reflect investors’ uncertainty about parameters and therefore reduce the

sensitivity of portfolio optimization models on expected returns.

We join a substantial list of researchers that examine the robust portfolio model. To remedy the

problem of parameter uncertainty, Soyster (1973) first employed the concept of robust optimization

to solve an inexact linear programming problem. In the framework of Soyster (1973), the values of

parameters are defined as uncertainty sets, and decision-makers make decisions under the worst-
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case scenario within the sets. Bertsimas and Sim (2004) developed a new robust approach for

uncertain linear optimization problems with the Soyster (1973)’s framework as a special case, which

provides flexibility of selecting the degree of conservatism of the solution. With the development of

the robust optimization theory, the robust optimization method has been widely used in investment

decision-making. Based on the robust optimization approach of Bertsimas and Sim (2004), several

new robust models have been proposed, such as the robust mean absolute deviation portfolio model

(Moon and Yao, 2011), the robust index tracking portfolio model (Chen and Kwon, 2012), the

robust multi-period portfolio model (Gharakhani and Sadjadi, 2011) and the robust multi-objective

R&D project portfolio model (Hassanzadeh et al., 2014). In addition, using a robust regression-

based approach, Maillet et al. (2015) introduced a robust global minimum variance portfolio model

to mitigate the impact of parameter uncertainty. By integrating a robust optimization approach

with a mixture distribution modeling scheme, Zhu et al. (2014) developed a portfolio selection

framework with a feature of double robustness in both return distribution modeling and portfolio

optimization. Ai, Brocket and Wang (2013) examine the corporate optimal portfolio under the

Dynamic enterprise risk management framework.

While most of robust portfolios are proposed under the hypothesis that investors are perfectly

rational beings, this hypothesis does not always hold in real life. The studies of behavioral finance

have found that the axioms of rationality are violated across a range of financial decision-making

situations (e.g. Tiwana et al., 2007; Heiman et al., 2015), and the cognitive biases of investors

have great influence on the decision-making processes (e.g. Kahneman and Tversky, 1979; Liu et

al., 2014). Prospect theory proposed by Kahneman and Tversky (1979) provides both the descrip-

tive theory for individual’s actual decision-making behavior under uncertainty and the theoretical

foundation of optimal portfolios that take into account the behavioral factors of investors.

Under the mean-variance framework, portfolio models based on prospect theory have been

developed in recent years. Shefrin and Statman (2000) developed a behavioral portfolio theory

based on the foundation of SP/A theory and prospect theory. Since the seminal work of Shefrin

and Statman (2000), there is a vast body of literature considering the behavioral portfolio theory

(e.g. Das and Statman, 2013; Jiang et al., 2013; Magron, 2014; Hoffmann and Shefrin, 2014).

In addition, Blake et al. (2013) built an asset allocation model which uses the prospect theory

value function to reflect investors’ behavioral traits in the defined contribution pension planning.
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More recently, Guo (2014) incorporated the cumulative prospect theory into the insurance portfolio

model, where the preference of decision-maker is defined by an S-shaped utility function. While

these studies produce important pieces of information relating to the nature of optimal portfolios

subject to a range of psychological factors, they do not make an attempt at robust portfolios.

The purpose of this study is to incorporate the impact of investors’ behavioral factors into the

robust multi-period portfolio model. The key differences between our paper and existing litera-

tures are as follows. First, existing robust portfolio models seldom consider investors’ behavioral

factors (e.g. Hassanzadeh et al., 2014; Maillet et al., 2015; Zhu et al., 2014). We formulate a

robust multi-period portfolio model featuring the reference dependence, loss aversion and dimin-

ishing sensitivity, where the loss aversion parameters are dynamically updated based on prospect

theory. Moreover, to control the conservatism level of the robust solution intuitively, the most vio-

lated probability is introduced, which reflects investors’ safety requirement. Second, we introduce

a novel particle swarm optimization (PSO) algorithm with an aging leader and multi-frequency

vibration (ALMV-PSO) for the robust multi-period portfolio problem. In the ALMV-PSO algo-

rithm, an aging leader and a multi-frequency vibrational mutation operator are employed, which

can reduce the probability of being trapped into local optimal. Additionally, we also design a two-

stage initialization strategy and an improved stochastic ranking approach for PSO. The two-stage

initialization strategy guarantees that all of the initial particles are in a feasible region and with a

high level of diversity. The improved stochastic ranking approach balances between the objective

function value and the constraint violation function value for the constrained portfolio problem.

The rest of this paper is organized as follows. Section 2 constructs a robust multi-period

portfolio model featuring the reference dependence, loss aversion and diminishing sensitivity, where

loss aversion parameters are dynamically updated. Section 3 proposes an ALMV-PSO algorithm

to solve the proposed robust model. In Section 4, a real market data example is used to illustrate

the portfolio model and check the effectiveness of the ALMV-PSO algorithm. Finally, we present

conclusions of the paper and directions for further research in Section 5.
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2 Robust Multi-period Portfolio Model Based on Prospect

Theory

The studies of behavioral finance show that investors could have numerous cognitive biases (e.g.

mental accounting, loss aversion, etc.), which play important roles in decision-making process (cf.

Shefrin and Statman, 2000; Barberis and Huang, 2001). While lots of current literatures focus on

the subjects of the behavioral portfolio model (e.g. Das and Statman, 2013; Jiang et al., 2013;

Guo, 2014) and the robust portfolio model (e.g. Hassanzadeh et al., 2014; Zhu et al., 2014; Maillet

et al., 2015), these studies have been in separate fashions, making a simplified assumption that

neglects the joint impact of investors’ irrationality and incomplete information of future returns.

In this paper, we study the robust multi-period portfolio model with behavioral factors, which

not only addresses the parameter uncertainty, but also takes investors’ reference dependence, loss

aversion and diminishing sensitivity into consideration.

2.1 Problem Description

Consider that there are one riskless asset a0 and n risky assets {a1, . . . , an} in security market

for trading. An investor wants to make a multi-period investment strategy, where the invest-

ment duration is divided into T periods. Suppose that the investor holds a portfolio X(t) =

[x0,t, x1,t, . . . , xn,t]
> at time t, where x0,t denotes the wealth of riskless asset a0 at time t, and xi,t

denotes the wealth of risky asset ai at time t, i = 1, . . . , n, t = 0, . . . , T .

The investor could dynamically adjust the portfolio at the end of each period based on the

realized return and updated information about the security market. Let ∆X(t) = [∆x0,t,∆x1,t, . . . ,

∆xn,t]
> be the adjustment of the portfolio at time t, where ∆xi,t > 0 means the wealth of asset

ai is increased at time t, and ∆xi,t < 0 means the wealth of asset ai is decreased at time t,

i = 0, 1, . . . , n, t = 0, . . . , T−1. Thus we obtain the adjusted portfolio X+(t) = [x+
0,t, x

+
1,t, . . . , x

+
n,t]
>

after the adjustment according to ∆X(t) at time t, where X+(t) = X(t)+∆X(t), t = 0, . . . , T −1.

Following Calafiore (2008), the multi-period investment procedure is shown in Fig. 1.

[Insert Figure 1 Here]

Let r0,t and ri,t be the return of riskless asset a0 and risky asset ai at period t respectively,
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i = 1, . . . , n, t = 1, . . . , T . Then the wealth of asset ai at time t is given as

xi,t = (ri,t + 1)x+
i,t−1, i = 0, 1, . . . , n, t = 1, . . . , T (1)

Using the recursive relationship in the multi-period investment, we can rewrite Eq. (1) as

xi,t = gi(1, t)xi,0 +
t∑

j=1

gi(j, t)∆xi,j−1, i = 0, 1, . . . , n, t = 1, . . . , T (2)

where gi(j, t) denotes the cumulative return of asset ai from period j to period t, gi(j, t) = (ri,t +

1)(ri,t−1 + 1) · · · (ri,j + 1), gi(t, t) = ri,t + 1.

By Eq. (2), the multi-period portfolio wealth at time t is given by

Wt =
n∑
i=0

xi,t =
n∑
i=0

t∑
j=1

gi(j, t)ξi,j−1, t = 1, . . . , T (3)

where ξi,0 = xi,0 + ∆xi,0, ξi,j = ∆xi,j, i = 0, 1, . . . , n, j = 1, . . . , T − 1.

2.2 Robust Optimization Approach

If the investor exactly knew the future return of each asset, this would be a classic deterministic

multi-period portfolio optimization problem. In practice, since it is difficult to estimate asset

returns exactly, the deterministic assumption of the portfolio optimization problem is invalid.

Robust optimization has emerged as a leading methodology for addressing the uncertainty in

optimization problems.1 In this paper, we adopt the robust optimization framework of Bertsimas

and Sim (2004) that has been widely used in decision-making for uncertain optimization problems

(e.g. Chen and Kwon, 2012; Hassanzadeh et al., 2014). To balance the trade-off between the

optimality of the solution and its robustness to return perturbation, Bertsimas and Sim (2004)’s

robust optimization framework provides flexibility of the degree of conservatism of the solution. 2

1The multi-period stochastic programming model has also been proposed. At each stage, it applies the policy
that is optimal when maximizing the expected value of the risk adjusted returns. The computational results of
stochastic programming algorithms have been shown to violate the original constrains with certain probability and
to be outperformed by the robust optimization both in terms of efficiency and optimal strategy selection (cf. Ben-
Tal and Nemirovski, 1998, 1999; Bertsimas and Pachamanova, 2008). In this paper, we will focus on the robust
optimization approach for multi-period portfolio selection.

2See Bertsimas and Sim (2004) and Gabrel et al. (2014) for a detailed discussion about different robust opti-
mization methods.
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We will assume the cumulative return gi(j, t) takes values in the interval [ḡi(j, t)−ĝi(j, t), ḡi(j, t)+

ĝi(j, t)], where ḡi(j, t) denotes the nominal value, and ĝi(j, t) denotes the half-interval width of

gi(j, t), i = 0, 1, . . . , n, j = 1, . . . , t, t = 1, . . . , T .3 Suppose that the cumulative return of riskless

asset is exactly known, while the cumulative return of risky asset is uncertain, i.e. ĝ0(j, t) = 0,

ĝi(j, t) > 0, i = 1, . . . , n, j = 1, . . . , t, t = 1, . . . , T , which is in line with our practice. Thus, based

on Eq. (3), the portfolio wealth Wt contains n · t uncertain variables.

The goal of robust optimization is to find a solution which is feasible for all possible data

realizations and optimal subject to a certain level of conservatism. Following the notation in

Bertsimas and Sim (2004), we define a parameter Γt ∈ R+ and a subset St to control the level of

conservatism in Wt, where Γt ∈ [0, |Jt|], St ⊆ Jt, |St| = bΓtc, and Jt = {(i, j)|i = 1, . . . , n, j =

1, . . . , t}. The rule of deviation for uncertain returns is defined, where one uncertain return’s

deviation can change up to (Γt − bΓtc)ĝv(d, t), (v, d) ∈ Jt \ St , and bΓtc uncertain returns’

deviations can change up to ĝi(j, t), (i, j) ∈ St. Intuitively, the robust optimization framework

stipulates that only a subset of the uncertain coefficients will change and provides flexibility by

adjusting the level of conservatism of the robust solution through the parameter Γt.

Given Γt, St and (v, d), the portfolio wealth Wt at time t, t = 1, . . . , T , can be defined as

Wt =
n∑
i=0

t∑
j=1

ḡi(j, t)ξi,j−1 −
[ ∑

(i,j)∈St

ĝi(j, t)|ξi,j−1|+ (Γt − bΓtc)ĝv(d, t)|ξv,d−1|
]

(4)

In order to make the solution to be robust against all scenarios of {St ∪ {(v, d)}|St ⊆ Jt, |St| =

bΓtc, (v, d) ∈ Jt\St}, we develop the portfolio wealth that maximizes the derivation, which implies

that the uncertain returns in Eq. (4) are equal to the worst case values in the scenarios of

{St ∪ {(v, d)}|St ⊆ Jt, |St| = bΓtc, (v, d) ∈ Jt\St}. Following Eq. (4), the robust counterpart of Wt

is given as

3While we focus on symmetric random uncertainty sets to illustrate the methodology in this paper, the approach
could be naturally extended to asymmetric random uncertain sets for capturing the downside and upside risk as
discussed in Chen et al. (2011).
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WR
t =

n∑
i=0

t∑
j=1

ḡi(j, t)ξi,j−1 −

max
{St∪{(v,d)}|St⊆Jt,|St|=bΓtc,(v,d)∈Jt\St}

{ ∑
(i,j)∈St

ĝi(j, t)|ξi,j−1|+ (Γt − bΓtc)ĝv(d, t)|ξv,d−1|
}

(5)

Eq. (5) shows that the conservatism of the solution is controlled by the parameter Γt. When

Γt = 0, all uncertain returns are equal to ḡi(j, t), i = 1, . . . , n, j = 1, . . . , t, then Eq. (5) is

equivalent to the nominal problem. When Γt = n · t, all uncertain returns realize the highest

deviations, then Eq. (5) is equivalent to the worst-case problem.

Bertsimas ans Sim (2004) proved that

max
{St∪{(v,d)}|St⊆Jt,|St|=bΓtc,(v,d)∈Jt\St}

{ ∑
(i,j)∈St

ĝi(j, t)|ξi,j−1|+ (Γt − bΓtc)ĝv(d, t)|ξv,d−1|
}

is equivalent to


max

n∑
i=1

t∑
j=1

ĝi(j, t)|ξi,j−1|zi,j

s.t.
n∑
i=1

t∑
j=1

zi,j ≤ Γt, 0 ≤ zi,j ≤ 1, i = 1, . . . , n, j = 1, . . . , t

(6)

By model (6), the robust wealth for risky asset ai at time t is xRi,t =
∑t

j=1 ḡi(j, t)ξi,j−1 −

ĝi(j, t)z
∗
i,j|ξi,j−1|, where z∗t represents the optimal solution in model (6), i = 1, . . . , n, t = 1, . . . , T .

Thus, the robust formulation of the adjusted wealth for risky asset ai at time t is x+R
i,t = xRi,t + ξi,t,

i = 1, . . . , n, t = 1, . . . , T − 1.

To control the value of Γt intuitively, similar to Bertsimas and Sim (2004), we use the notation

of the violated probability. Let W opt
t and ξ∗t denote the optimal value and the optimal solution of

maxξt∈DW
R
t , where D denotes constraints in the portfolio. The violated probability is given as

Prob

{ n∑
i=0

t∑
j=1

gi(j, t)ξ
∗
i,j−1 < W opt

t

}
≤ ε (7)

where ε denotes the most violated probability.
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Eq. (7) provides a guarantee performance, where the maximum probability of the uncertain

wealth
∑n

i=0

∑t
j=1 gi(j, t)ξ

∗
i,j−1 less than W opt

t is ε. The guarantee performance is a central feature

in behavioral portfolio model (e.g. Shefrin and Statman, 2000; Das and Statman, 2013; Jiang et

al, 2013). Bertsimas and Sim (2004) proved that Eq. (7) is equivalent to

Γt ≥ 1 + Φ−1(1− ε)
√
n · t (8)

where Φ denotes the cumulative distribution of the standard Gaussian random variable.

Using Eq. (8), the investor could determine the value of Γt by ε. The most violated probability

ε is an intuitive index for the investor, which is similar to the confidence level in the value at risk

(VaR) and the conditional value-at-risk (CVaR) models. The investor could adjust the value of ε

to reflect his/her safety requirement and therefore control the conservation of the solution.

2.3 Dynamic Prospect Theory Value Function

We employ the prospect theory value function to reflect investors’ behavior factors in the

multi-period setting. In the framework of prospect theory (Kahneman and Tversky, 1979), the

value function has three key characteristics. (1) Reference dependence: people evaluate assets by

comparison with a given reference value. (2) Loss aversion: people are more sensitive to losses than

to gains. (3) Diminishing sensitivity: people tend to be risk-averse in the domain of gains, while

risk-seeking in the domain of losses. The prospect theory value function introduced by Kahneman

and Tversky (1979) is expressed by

PV (W ) =

 (W − ŷ)α, W ≥ ŷ

− λ(ŷ −W )β, W < ŷ
(9)

where PV denotes the prospect theory value (PT value) function, W denotes the portfolio wealth;

λ denotes the loss aversion ratio; ŷ denotes the given reference wealth; α and β denote the curvature

parameters for gains and losses respectively. 4

Barberis and Huang (2001) defined a benchmark wealth which could be considered as an

4Tversky and Kahneman (1992) experimentally determined the values of α = β = 0.88, λ = 2.25, which are
considered as appropriate for describing most decision makers’ behavior and used to make optimal decision-makings
(cf. Fan et al., 2013; Krohling and de Souza, 2012).
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investor’s memory of the earlier portfolio wealth. Following this framework, Fortin and Hlouskova

(2011) suggested the benchmark wealth as the portfolio wealth of last period. Furthermore, they

proposed the loss aversion parameters that are dynamically updated. If the current portfolio

wealth is larger than the benchmark wealth, the investor will feel that the portfolio has performed

well, then his/her loss aversion ratio is equal to the pre-defined loss aversion ratio and the given

reference wealth is decreased. On the contrary, if the current portfolio wealth is smaller than the

benchmark wealth, the investor will experience losses, then his/her loss aversion ratio is increased

and the given reference wealth is equal to the pre-defined target wealth. The dynamically updated

loss aversion parameters are given by

λt =


λ0, WR

t ≥ WR
t−1

λ0 + (
WR
t−1

WR
t

− 1), WR
t < WR

t−1

, t = 1, . . . , T (10)

and

ŷt =


WR
t−1

WR
t

W 0
t , WR

t ≥ WR
t−1

W 0
t , WR

t < WR
t−1

, t = 1, . . . , T (11)

where λt denotes the loss aversion ratio at time t, ŷt denotes the given reference wealth at time

t, W 0
t denotes the pre-defined target wealth at time t, λ0 = 2.25 (Tversky and Kahneman, 1992;

Fan et al., 2013; Krohling and de Souza, 2012).

In a multi-period investment problem, an investor usually determines a wealth target over the

whole investment duration at the beginning of the investment (cf. Blake et al., 2013). Let r̄0
t

denote the target return of period t, thus the pre-defined target wealth at time t can be obtained

as W 0
t = W0

∏t
k=1 (1 + r̄0

k), t = 1, . . . , T . By Eqs. (9)-(11), the dynamic prospect theory value

function is defined as

PV (WR
t ) =

 (WR
t − ŷt)α, WR

t ≥ ŷt

− λt(ŷt −WR
t )β, WR

t < ŷt

, t = 1, . . . , T (12)
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where λt =


λ0
t , WR

t ≥ WR
t−1

λ0
t + (

WR
t−1

WR
t

− 1), WR
t < WR

t−1

and ŷt =


WR
t−1

WR
t

W 0
t , WR

t ≥ WR
t−1

W 0
t , WR

t < WR
t−1

.

2.4 Formulation of the model

Generally speaking, an investor’s investment goal is to manage a portfolio in the manner that

maximizes the PT value of the portfolio. More specifically, we quantify the total PT value as a

weighted sum of PT value in each period. The objective function is expressed by

max
T∑
t=1

ωt × PV (WR
t ) (13)

where ωt is the target weight at period t, ωt ≥ 0, t = 1, . . . , T .

Let ci,t denote the linear transaction cost for risky asset ai at time t, i = 1, . . . , n, t = 0, . . . , T−

1, and the linear transaction cost for riskless asset a0 is 0, i.e. c0,t = 0, t = 0, . . . , T − 1.5 Without

loss of generality, suppose that the whole investment process is self-financing, that is, an investor

does not invest additional capital or withdraw the old one during the investment duration. Based

on the discussion above, an investment constraint is given by

n∑
i=0

∆xi,t+
n∑
i=1

ci,t|∆xi,t| = 0, t = 0, . . . , T − 1 (14)

Since the position invested in asset i at time t is an uncertain variable, i = 0, 1, . . . , n, t =

1, . . . , T − 1, we use the robust counterpart to limit the position in each asset, which is known as

the portfolio relative diversity constraints (cf. Calafiore, 2008). The constraints are given as

li ≤
x+R
i,t

WR
t

≤ ui, i = 0, 1, . . . , n, t = 0, . . . , T − 1 (15)

where x+R
0,t = x+

0,t, x
+R
i,0 = x+

i,0, WR
0 = W0, ui and li denote the upper and lower bounds on the

position of asset ai in the portfolio model, respectively.

5Generally, the transaction costs of bonds are included in the par value (The difference between the price a
broker-dealer pays for a bond and the price at which it is sold to the investors is known as the bond’s markup,
which is the transaction cost. With new issues, the broker-dealer’s markup is included in the par value), therefore
investors do not need to pay separate transaction costs. Following Liu (2004) and Bertsimas and Pachamanova
(2008), we assume the transaction cost for riskless asset a0 is 0.
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Following Eqs. (13) - (15), the robust multi-period portfolio model based on prospect theory

is formulated as

max
T∑
t=1

ωt × PV (WR
t ) (16a)

s.t.

n∑
i=0

∆xi,t+
n∑
i=1

ci,t|∆xi,t| = 0, t = 0, . . . , T − 1 (16b)

li ≤
x+R
i,t

WR
t

≤ ui, i = 0, 1, . . . , n, t = 0, . . . , T − 1 (16c)

3 ALMV-PSO Algorithm

Notice that model (16) is a complex nonlinear programming problem. As a result, the tradi-

tional robust optimization techniques (e.g. Ben-Tal and Nemirovski, 1998, 1999; Bertsimas and

Sim, 2004) may fail to obtain the optimal solution. In order to solve the portfolio model effectively,

we develop an ALMV-PSO algorithm.

Particle swarm optimization (PSO) is a population-based stochastic optimization method first

proposed by Kennedy and Eberhart (1995) to solve nonlinear optimization problems. PSO has

some computational advantages such as high efficiency in searching solutions and simpleness to

implement. However, like other population-based algorithms, PSO is easy to be trapped into a

local minima. The main reason for this problem is that the PSO algorithm is likely to lose the

diversity during the searching process. Recently, Chen et al. (2013) proposed a PSO algorithm

with an aging leader and Challengers (ALC-PSO), which introduced an aging leader to increase the

diversity. Following observations from the nature that the mutation operator can also increase the

diversity of a swarm, Pehlivanoglu (2013) designed a new PSO algorithm called multi-frequency

vibrational PSO, which contains the multi-frequency vibrational mutation operator.

To enhance the diversity of the swarm in PSO, the ALMV-PSO algorithm considers both the

aging leader and the multi-frequency vibrational mutation operator. In particular, since the initial

positions based on the random initialization method (cf. Haddar et al., 2015; Garćıa-Hernández

et al., 2015; Liu and Zhang, 2015) are likely to locate in an infeasible regime of the multi-period

portfolio model, to initialize positions of a swarm in a feasible region and with a high level of
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diversity, we design a novel two-stage initialization strategy. Furthermore, the proposed portfolio

model is a constrained optimization problem. For the sake of balancing the objective function

value and the constraint violation function value in PSO algorithm, we also design an improved

stochastic ranking approach, where the stochastic ranking approach proposed by Runarsson and

Yao (2000) is not suitable for the searching rule of PSO algorithm. Next, we introduce the main

operators in ALMV-PSO and the procedure of ALMV-PSO.

3.1 Encoding and Initialization

Let ∆xi,t, the adjustment wealth of risky asset ai at time t, be the decision variable, i = 1, . . . , n,

t = 0, . . . , T − 1. By Eq. (16b), the adjustment wealth of riskless asset a0 at time t is expressed by

∆x0,t = −
( n∑

i=1

∆xi,t+
n∑
i=1

ci,t|∆xi,t|
)
, t = 0, . . . , T − 1 (17)

A solution [∆x1,0, . . . ,∆xn,0; . . . ; ∆x1,T−1, . . . ,∆xn,T−1] of model (16) is encoded as a parti-

cle’s position by a real-valued representation [p0
1,0, . . . , p

0
n,0; . . . ; p0

1,T−1, . . . , p
0
n,T−1]. Let Pk(s) =

[pk1,0(s), . . . , pkn,0(s); . . . ; pk1,T−1(s), . . . , pkn,T−1(s)] and Vk(s) = [vk1,0(s), . . . , vkn,0(s); . . . ; vk1,T−1(s), . . . ,

vkn,T−1(s)] denote the position and the velocity of particle s at iteration k, respectively.

In order to make initial positions of a swarm in a feasible region and with a high level of

diversity, we propose a two-stage initialization strategy, including the multi-period initialization

stage and the diversification stage.

(1) Multi-period initialization stage

The robust formulation of the adjusted wealth for risky asset ai at time t is expressed by

x+R
i,t =

∑t
j=1 ḡi(j, t)ξi,j−1− ĝi(j, t)z∗i,j|ξi,j−1|+ξi,t, where ξi,0 = xi,0 +∆xi,0, ξi,t = ∆xi,t, z∗t represents

the optimal solution in model (6), i = 1, . . . , n, t = 1, . . . , T − 1. It shows that whether x+R
i,t

satisfies Eq. (16c), it depends on the adjustment wealth of both the current period ∆xi,t and

the prior period ∆xi,j, j = 0, . . . , t − 1. Thus, to guarantee that all initial positions are in the

feasible region of model (16), the current period position [p0
1,t, . . . , p

0
n,t] needs to be initialized based

on prior period positions [p0
1,0, . . . , p

0
n,0; . . . ; p0

1,t−1, . . . , p
0
n,t−1]. Following the discussion above, the

multi-period initialization stage is designed as follows: 6

6For notational convenience, let xR0,t = x0,t, x
R
i,0 = xi,0, t = 0, . . . , T − 1, i = 0, . . . , n.
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Step 1. Let s = 1.

Step 2. Let t = 0, and denote the portfolio at time t as [xR0,t, x
R
1,t, . . . , x

R
n,t].

Step 3. Randomly generate an initial position [p0
1,t(s), . . . , p

0
n,t(s)] at time t based on port-

folio [xR0,t, x
R
1,t, . . . , x

R
n,t], where [p0

1,t(s), . . . , p
0
n,t(s)] satisfies Eq. (16c). Furthermore, calculate the

portfolio [xR0,t+1, x
R
1,t+1, . . . , x

R
n,t+1] based on the position [p0

1,0(s), . . . , p0
n,0(s); . . . ; p0

1,t(s), . . . , p
0
n,t(s)].

Step 4. Let t = t + 1. If t ≤ T − 1, then return to Step 3; otherwise, we obtain the initial

position of particle s (denoted by P0(s)), and go to Step 5.

Step 5. Let s = s + 1. If s ≤ Sm, then return to Step 2, where Sm denotes the number of

position generated in the multi-period initialization stage; otherwise, terminate and obtain the Sm

initial positions denoted by Z0
Sm

= {P0(1), . . . ,P0(Sm)}.

(2) Diversification stage

After the multi-period initialization stage, all initial positions are in the feasible region of model

(16). It is well known that positions with a high level of diversity would enhance the performance

of PSO (cf. Pehlivanoglu, 2013; Chen et al., 2013). In order to enhance the diversity of positions,

we choose the S most diversified positions from Z0
Sm

, where S denotes the swarm size in the

ALMV-PSO algorithm. Following the approach of Hassanzadeh et al. (2014), the diversification

stage is described as follows:

Step 1. Calculate πi,t =
(p̄i,t − pi,t)

−1∑T−1
t=0

∑n
i=1 (p̄i,t − pi,t)

−1
, where p̄i,t = max{p0

i,t(s)|s = 1, . . . , Sm},

p
i,t

= min{p0
i,t(s)|s = 1, . . . , Sm}. Randomly select a position from Z0

Sm
, and transfer it into the

set Z0
S, which is used to save the most diversified positions that have been selected.

Step 2. Find Pmax ∈ Z0
Sm

, where Pmax = [pmax
1,0 , . . . , p

max
n,0 ; . . . ; pmax

1,T−1, . . . , p
max
n,T−1], so that Pmax

is the most diversified position from all positions in Z0
S, that is

[ T−1∑
t=0

n∑
i=1

(πi,t|pmax
i,t − pdi,t|)2

] 1
2

= max
P∈Z0

Sm

min
Pd∈Z0

S

[ T−1∑
t=0

n∑
i=1

(πi,t|pi,t − pdi,t|)2

] 1
2

(18)

where P = [p1,0, . . . , pn,0; . . . ; p1,T−1, . . . , pn,T−1], Pd = [pd1,0, . . . , p
d
n,0; . . . ; pd1,T−1, . . . , p

d
n,T−1].

Step 3. Transfer Pmax to Z0
S. If |Z0

S| = S, then terminate and obtain the S diversified positions

denoted by Z0
S = {P0(1), . . . ,P0(S)}; otherwise, return to Step 2.

The initial positions in Z0
S satisfy the constraints in model (16), and have a high level of diver-

sity. We randomly generate the initial velocity of particle s denoted by V0(s) = [v0
1,0(s), . . . , v0

n,0(s);
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. . . ; v0
1,T−1(s), . . . , v0

n,T−1(s)], s = 1, . . . , S, where −V max ≤ v0
i,t(s) ≤ V max, and V max denotes

the maximum value of the velocity.

3.2 Stochastic Ranking

Model (16) is a constrained optimization problem, which needs to handle the constraints in the

searching process. The objective function f and constraint violation function ` are given by

f(Pk(s)) =
T∑
t=1

ωt × PV (WR
t ) (19)

`(Pk(s)) =
T∑
t=1

n∑
i=0

max
{
Ui,t(P

k(s)), 0
}

+
T∑
t=1

n∑
i=0

max
{
Li,t(P

k(s)), 0
}

(20)

where Ui,t(P) =
x+R
i,t

WR
t

− ui, Li,t(P) = li −
x+R
i,t

WR
t

, k = 0, . . . , Kmax, Kmax is the maximum iteration

number.

The penalty function method is the most common method used in constrained optimization

problems, and penalties individuals based on their constraint violation function value (cf. Liu

et al., 2012; Venkatraman and Yen, 2005). In the penalty function method, however, it is very

difficult to find the optimal penalty coefficients for balancing between the objective function value

and the constraint violation function value . To overcome this difficulty, Runarsson and Yao (2000)

proposed a stochastic ranking approach, which introduces a probability factor Pf of using only

the objective function for comparisons in ranking the infeasible regions of the search space. That

is, given any pair of two adjacent individuals, the probability of comparing them according to

the objective function is 1 if both individuals are feasible, otherwise is Pf . The pseudo-code of

stochastic ranking approach proposed by Runarsson and Yao (2000) is illustrated in Fig. 2.

[Insert Figure 2 Here]

The stochastic ranking approach for Runarsson and Yao (2000) is suitable for (µ,λ)-evolutionary

algorithm, which ranks the individuals based on current position and selects the best µ individuals

out of λ individuals for the next generation. However, ALMV-PSO algorithm needs to rank
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the particles based on the historical positions and only selects the best individual. Inspired by

Runarsson and Yao (2000), we design an improved stochastic ranking approach for PSO algorithm.

In the improved stochastic ranking approach, we introduce two probability factors, which are

Pinf and Pobj. The probability factor Pinf stands for the probability of choosing the infeasible indi-

viduals, while the probability factor Pobj stands for the probability of using the objective function

for comparing the infeasible individuals. That is, for the infeasible individuals, the probability

of comparing them according to the objective function is Pobj. Next, the algorithm could choose

an infeasible individual with the probability Pinf . The pseudo-code of the improved stochastic

ranking approach for updating the personal best solution (denoted by pbest) and the global best

solution (denoted by gbest) are illustrated in Fig. 3 and Fig. 4, respectively.

[Insert Figure 3 & Figure 4 Here]

Different from basic PSO algorithm, there is a leader of swarm (denoted by Leader) in ALMV-

PSO. Leader represents the best solution generated by particles during the leader’s lifetime, while

gbest represents the best solution generated by particles during the overall searching process.

Therefore, the update procedure for Leader is similar to the update procedure for gbest.

3.3 Velocity and Position Update

In the ALC-PSO algorithm (Chen et al., 2013), each particle’s velocity and position are updated

through the pbest and the Leader. Following the ALC-PSO, the update rule of velocity and

position in the ALMV-PSO are given by

vk+1
i,t (s) = wvki,t(s) + c1r1(pbestki,t(s)− pki,t(s)) + c2r2(Leaderki,t − pki,t(s)) (21)

pk+1
i,t (s) = pki,t(s) + vk+1

i,t (s) (22)

where w is the inertia weight, both c1 and c2 are the cognitive coefficients, both r1 and r2 are

random numbers uniformly distributed in the interval [0, 1].

15



3.4 Global and Local Mutation

Pehlivanoglu (2013) introduced a multi-frequency vibrational mutation operator, which is used

to conduct the global and local mutation in PSO. While the multi-frequency vibrational mutation

method (Pehlivanoglu, 2013) increases the diversity of swarm, it is not developed for a multi-period

portfolio model, in which case all particles’ positions are likely to be out of the feasible region by

using the global mutation. We develop an alternative global mutation, which is expressed by


pki,t(s) = pki,t(s) + V max× [1 + A1(0.5− randn)δ]

δ =

 1, k = λ× fr1, λ = 1, 2, . . .

0, k 6= λ× fr1, λ = 1, 2, . . .

(23)

where A1 is the amplitude factor of global mutation, randn is a random number distributed in

accordance with N [0, 1] , and fr1 is the frequency of global mutation.

In Eq. (23), each particle moves in the range [V max(1−0.5A1), V max(1+0.5A1)], which makes

the particle tend to search in the feasible region. The local mutation proposed by Pehlivanoglu

(2013) is expressed as


pki,t(q) = gbesti,t[1 + A2(0.5− randn)δ]

δ =

 1, k = λ× fr1, λ = 1, 2, . . .

0, k 6= λ× fr1, λ = 1, 2, . . .

(24)

where q = 1, . . . , Q, Q is the amount of particles executing local mutation, A2 is the amplitude

factor of local mutation, fr2 is the frequency of local mutation.

Pehlivanoglu (2013) shown PSO has better performance to control the local mutation, which

may improve the quality of the particle generated by Eq. (24). We generate Q particles through

Eq.(24) and rank the Q particles by the stochastic ranking approach (Runarsson and Yao, 2000).

The Qs particles, which have the best rank in Q particles, are randomly placed into the new swarm.

3.5 Lifespan Control and New Leader Generation

Based on the leader’s leading power, the ALC-PSO algorithm (Chen et al., 2013) uses an

operator of lifespan control to adjust the leader’s lifespan. Let Θ denote the lifespan of the leader,
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and Θ0 denote the initial value of Θ. We determine the leader’s leading power by the improved

ratio, which is expressed by

Iratio(k) =
f(best−feasible(k))− f(best−feasible(k − 1))

|f(best−feasible(k − 1))|
(25)

where Iratio(k) denotes the improved ratio at iteration k, best−feasible(k) denotes the feasible

particle with the best objective function value during k iterations.

Based on the significance of the leader in terms of its searching performance, scenarios of

improvement are categorized into the following four cases. Case 1: the leader has a good leading

power (Iratio(k) > 10−4). Case 2: the leader has a fair leading power (10−6 < Iratio(k) ≤ 10−4).

Case 3: the leader has a poor leading power (0 < Iratio(k) ≤ 10−6). Case 4: the leader has

no leading power(Iratio(k) = 0). Following the method of Chen et al. (2013), the ALMV-PSO

algorithm adjusts the lifespan based on the above four cases, as described in Fig. 5.

[Insert Figure 5 Here]

Let θ be the age of the leader, and the initial age θ = 0. When the iteration number increases

by 1, the leader’s age also increases by 1. If θ = Θ, then the algorithm needs to generate a new

leader. Different from Chen et al. (2013), we randomly choose a particle from the current swarm

as the new leader. In our approach, the operator of the new leader generation is easy to implement

and makes the learning object to be diversified for the ALMV-PSO algorithm.

3.6 Procedure of ALMV-PSO

Summarizing the aforementioned operators, there are six steps in the ALMV-PSO algorithm:

Step 1. Determine parameters: Sm, S, V max, Kmax, ξmax c1, c2, w, Pf , Pinf , Pobj, fr1, fr2,

A1, A2, Θ0, Q and Qs. Set iteration number k = 0, and successive poor iteration number ξ = 0.7

Step 2. Initial S particles’ positions {P0(1), . . . ,P0(S)}, which follow the two-stage initializa-

tion strategy. Update the pbest, gbest and Leader by the improved stochastic ranking approach.

Set the leader’s age θ = 0, and the lifespan Θ = Θ0.

7While the improved ratio is less than 10−6, we consider that the current iteration has a poor performance. ξmax

denotes the maximum number of the successive poor iteration.
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Step 3. If k = fr1, then execute the operator of the global mutation using Eq. (23) and go to

Step 5; otherwise, go to Step 4.

Step 4. Update the swarm’s velocities and positions using Eq. (21) and Eq. (22) respectively.

When k = fr2, execute the operator of the local mutation using Eq. (24).

Step 5. Update the pbest, gbest and Leader by the improved stochastic ranking approach.

Execute the operator of the lifespan control. Set θ = θ + 1. when θ = Θ, execute the operator of

the new leader generation, set the new leader’s age θ = 0 and the lifespan Θ = Θ0.

Step 6. If Iratio(k) ≥ 10−6, then set ξ = 0; otherwise, set ξ = ξ+1. Set k = k+1. If k ≤ Kmax

and ξ ≤ ξmax, then return to Step 3; otherwise, terminate and output best−feasible(k).8

4 Numerical Illustration

In this section, we illustrate the feasibility of the proposed model in a multi-period problem

and check the effectiveness of the ALMV-PSO algorithm using real market data. Assume that

an investor wants to construct a four-period investment strategy (T = 4), and the length of each

period is 1-quarter. The investment duration is from January 2014 to December 2014. The investor

initially holds $1,000,000 wealth of the riskless asset.

The data set used in this study consists of 136 quarterly returns of all 32 stocks listed in the

current S&P 100 that have complete data during the period of January 1981 to December 2014,

where the data before January 2014 is chosen as the in-sample data. The 3-month U.S. Treasury

bill is used as a riskless asset, thus r̄0,t = 0.0175%, t = 1, 2, 3, 4.9 Suppose that the transaction

cost of risky asset ci,t is 1%, i = 1, . . . , 32, the target weights ωt = 1, the investor’s target return at

each period r̄0
t is 1%, t = 1, 2, 3, 4, and the upper bound ui and the lower bound li on the weight

of asset ai are 0.3 and 0 respectively, i = 0, 1, . . . , 32. Stock price data is available from the Center

for Research in Securities Prices (CRSP).

The parameter settings for ALMV-PSO are described as follows: Sm = 300, V max = 1, 000,

Kmax = 10, 000, ξmax = 1, 000, c1 = c2 = 2, w = 0.4, Pf = 0.45, Pinf = 0.45, Pobj = 0.5, fr1 = 50,

8If ξ > ξmax, we consider that the algorithm has already converged.
9The annualized return of 3-month U.S. Treasury bill is 0.07% on Dec 31, 2013, thus the quarterly return is

0.0175%.
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fr2 = 20, A1 = A2 = 0.5, Θ0 = 50, Q = 30, Qs = 10. 10

4.1 Evaluation of Stock Returns

Following the definition in Bertsimas and Sim (2004) and Gregory et al. (2011), we model

the uncertain return as a random variable that has an arbitrary symmetric distribution in the

interval [ḡi,t − 2σi,t, ḡi,t + 2σi,t], where ḡi,t denotes the mean cumulative return of risky asset ai,

and σi,t denotes the standard deviation of the cumulative return of risky asset ai, i = 1, . . . , 32,

t = 1, 2, 3, 4. The sample period is from January 1981 to December 2013.

4.2 Computational Results and Comparison of Algorithms

To evaluate more precisely the impact of each proposed new component on the ALMV-PSO

algorithm, we present three variants of the PSO algorithm proposed by Kennedy (1997) (PSO-1,

PSO-2, and PSO-3) for comparisons. In the PSO-1 algorithm, the random initialization method

(cf. Haddar et al., 2015; Garćıa-Hernández et al., 2015; Liu and Zhang, 2015) is applied to initialize

the positions of the swarm, and the improved stochastic ranking approach is used. In the PSO-2

algorithm, the penalty method in Liu et al. (2012) is applied to measure the fitness of the swarm,

and the two-stage initialization strategy is used. In the PSO-3 algorithm, both of the two-stage

initialization strategy and the improved stochastic ranking approach are used.

The PSO algorithms are employed to solve model (16) under the value of ε from 0.05 to 0.20,

and all algorithms are run 10 times independently. 11The average objective value, the best objective

value, and the mean CPU running time are reported as indicators for comparing the performance

of different algorithms. The results are shown in Table 1.

[Insert Table 1 Here]

(1) Comparison of PSO-1 and PSO-3

Table 1 shows that the average objective value and the best objective value of PSO-3 are both

better than PSO-1. Since whether x+R
i,t satisfies Eq. (16c) depends on the adjustment wealth of

10All experiments in this paper are conducted in Matlab R2010a on a PC with Intel Core 2 CPU and 4G RAM.
11The value of the most violated probability is determined by investors’ risk preference and the goal of the

investment. The value of ε means that the performance of the portfolio can be achieved up to the probability value
of 1− ε (Bertsimas and Thiele, 2006). By the value of ε, the value of Γt can be determined indirectly using Eq.(8).
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both the current period ∆xi,t and the prior period ∆xi,j, j = 0, . . . , t−1, it is likely that the initial

positions based on the random initialization method are infeasible. The two-stage initialization

strategy enables the investors to make initial positions of a swarm into a feasible region and with

a high level of diversity. By comparing the results of PSO-1 with PSO-3, it shows that the PSO

algorithm combines with the two-stage initialization strategy is more suitable than the random

initialization method to addressing the multi-period portfolio problems.

(2) Comparison of PSO-2 and PSO-3

By comparing the results between PSO-2 and PSO-3 in Table 1, it shows that both of the

average objective value and the best objective value of PSO-3 outperform PSO-2 significantly.

Different from the penalty method which requires a difficult optimization problem to find the

optimal penalty coefficients (Runarsson and Yao, 2000), the improved stochastic ranking approach

automatically balances between the objective function value and the constraint violation function

value for the constrained portfolio problem. Thus, the improved stochastic ranking approach is

more suitable for handling the constrained optimization problems.

(3) Comparison of PSO-3 and ALMV-PSO

From Table 1 above, although the mean CPU time of ALMV-PSO is more than PSO-3, both

of the average objective value and the best objective value of ALMV-PSO are better than PSO-3.

This is in agreement with the no-free-lunch theorem proposed by Wolpert and Macready (1997).

By comparing the performance of ALMV-PSO with PSO-3, it shows that the aging leader and

the multi-frequency vibrational mutation operator can further enhance the performance of PSO.

Therefore, ALMV-PSO is effective to solve the robust multi-period portfolio model.

4.3 Performance of Portfolio Model

Under the real multi-period investment environment, Calafiore (2008) showed that only action

∆X(0) is actually applied at t = 0. At t = 1, the actual outcome of asset returns over the

first period is revealed to the investor, and therefore he/she will reconstruct another multi-period

portfolio taking this knowledge into account. Following Calafiore (2008), the only action ∆X(0)

is taken at t = 0, and then the wealth of assets X(1) is calculated based on the actual return

at period 1. At t = 1, X(1) turns into the initial portfolio and the new multi-period portfolio is

constructed based on the proposed portfolio model. This process is repeated until the multi-period
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investment is finished (t = 4).

(1) Robustness analysis

One of the main goals for the robust optimization approach is to address the issue of invest-

ment performance, where the optimal performance of portfolio model is sensitive to the estimated

parameters. To study the robustness of the proposed portfolio model, we adopt the robustness

measure in Kim et al. (2014) defined by the performance fluctuation from the change in uncertain

parameters. The portfolios that are robust will have small performance fluctuations and therefore

relative low levels for the robustness measure.

In order to discuss the robustness measure of the proposed portfolio model, we compare it

with the nominal portfolio model, where the nominal portfolio model is modeled by Eq. (16) with

Γt = 0, t = 1, 2, 3, 4. The robustness measures of the portfolio models are shown in Table 2.

[Insert Table 2 Here]

By comparing the robust portfolios with the nominal portfolio, Table 2 shows that the ro-

bustness measure of the nominal portfolio is significantly larger than the robust portfolios, and

confirms that the performance of the nominal portfolio is more sensitive to the estimated parame-

ters. Therefore, the nominal portfolio is less preferable for investors in practice. Table 2 also shows

that the portfolio with a larger level of conservation will have a lower level of robustness measure,

which is consistent with the idea of the robust optimization method.

(2) Investment analysis

To further test the effectiveness of the robust multi-period portfolio model, under the real

multi-period investment, the actual wealth and the robust wealth at each period are compared.12

The results are shown in Table 3.

[Insert Table 3 Here]

From Table 3, we find that the actual wealth is larger than the robust wealth at each period.

Therefore, investors can consider the robust wealth as the safety wealth in the real investment,

which is an important feature in wealth management. Moreover, we also find that the ex-post

12The actual wealth is calculated by adding up the actual wealth of assets at each period. The robust wealth is
represented by WR

t at Eq. (5).
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return of the proposed model in Table 3 outperforms the S&P 100 index return of 12.38% in the

investment horizon from January 2014 to December 2014.

Therefore, through the robust multi-period portfolio model based on prospect theory, an in-

vestor can develop a robust multi-period portfolio strategy that satisfies his/her behavioral char-

acteristics and are effective in the real multi-period investment.

5 Conclusion

This paper develops a novel robust multi-period portfolio selection model, which considers

investors’ behavioral characteristics. By integrating the robust theory and prospect theory, a

robust multi-period portfolio considering investors’ behavioral factors is constructed, which not

only addresses the parameter uncertainty, but also features the reference dependence, loss aversion

and diminishing sensitivity. Firstly, considering the uncertainty of security returns, we employ

the robust optimization approach of Bertsimas and Sim (2004) to formulate a robust multi-period

portfolio, which introduces a parameter ε to indirectly adjust the degree of conservatism of the

robust solutions. Secondly, a dynamic prospect theory value function is proposed, where the loss

aversion parameters are updated dynamically. Furthermore, based on prospect theory, a robust

multi-period portfolio that considers investors’ behavioral factors is constructed, which features the

reference dependence, loss aversion and diminishing sensitivity. Thirdly, in order to solve the multi-

period portfolio model, we develop an ALMV-PSO algorithm. In the ALMV-PSO algorithm, an

aging leader and the multi-frequency vibrational mutation operator are employed, which can reduce

the probability of being trapped in local optima. In addition, a two-stage initialization strategy

and an improved stochastic ranking approach for PSO are proposed. The two-stage initialization

strategy guarantees that the initial positions are in the feasible region and with a high level of

diversity. The improved stochastic ranking approach balances between the objective function value

and the constraint violation function value. Finally, a real market data example is given to illustrate

the feasibility of the proposed model and check the effectiveness of the ALMV-PSO algorithm in

a multi-period problem. The results show that the ALMV-PSO algorithm is successful in solving

the proposed model and the proposed model can develop a multi-period strategy, which satisfies

investors’ behavioral characteristics and are effective in the real multi-period investment.
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Compared with three variants of PSO algorithm, the proposed algorithm has three main ad-

vantages: 1) the two-stage initialization strategy is more suitable than the random initialization

method in PSO algorithm to addressing the multi-period portfolio problems. 2) the improved

stochastic ranking approach is more suitable for handling the constrained optimization problems

comparing with the penalty method in the PSO algorithm. 3) the aging leader and multi-frequency

vibrational mutation operator enhance the performance of the PSO algorithm. Additionally, the

proposed robust portfolio is less sensitive to the estimated parameters in comparison with the

nominal portfolio, and the ex-post return of the proposed model outperforms the S&P 100 index

in the investment horizon of the study.

The proposed robust multi-period portfolio model opens future research avenues for further

improvements and incorporation of new constrains in reality that is not considered in the current

model. For example, we have followed the literature to consider a single objective model. There

might be times when a portfolio decision is desired to be with a multi-objective alternative that

simultaneously considers the PT value, liquidation risk, social responsibility and so on. In addition,

the current framework could be naturally extended to incorporate the minimum transaction lots,

tax and cardinality constraints, which exist in real world. Moreover, regime-switching could be

incorporated into the current framework so that the return distributions are dynamic with respect

to different regimes. Finally, the proposed robust multi-period portfolio model can be extended

in light of the new data-driven portfolio method (Calafiore 2013), where the assumption of assets’

distributions is not necessary. These interesting future research topics can be built up on the same

conceptual and technical grounds of our current modeling framework.
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[21] Garćıa-Hernández, L., Palomo-Romero, J. M., Salas-Morera, L., Arauzo-Azofra, A. &

Pierreval, H. (2015). A novel hybird evolutionary approach for capturing decision maker knowledge

into the unequal area facility layout problem. Expert Systems with Applications, 42, 4697-4708.

[22] Gharakhani, M., & Sadjadi, S. (2011). A new approach to robust modeling of the multi-

period portfolio problem. African Journal of Business Management, 5, 9998-10006.

[23] Gregory, C., Darby-Dowman, K., & Mitra, G. (2011). Robust optimization and portfolio

selection: The cost of robustness. European Journal of Operational Research, 212, 417-428.

[24] Guo, W. (2014). Optimal portfolio choice for an insurer with loss aversion. Insurance:

Mathematics and Economics, 58, 217-222.

[25] Haddar, B., Khemakhem, M., Hanafi, S., & Wilbaut, C. (2015). A hybird heuristic for the

0-1 knapsack sharing problem. Expert systems with Applications, 42, 4653-4666.

[26] Hassanzadeh, F., Nemati, H., & Sum, M. (2014). Robust optimization for interactive

multiobjective programming with imprecise information applied to R&D project portfolio selection.

European Journal of Operational Research, 238, 41-53.

[27] Heiman, A., Just, D. R., McWilliams, B. P., & Zilberman, D. (2015). A prospect theory

approach to assessing changes in parameters of insurance contracts with an application to money-

back guarantees. Journal of Behavioral and Experimental Economics, 54, 105-117.

[28] Hoffmann, A. O. I., & Shefrin, H. (2014). Technical analysis and individual investors.

Journal of Economic Behavior & Organization, 107, 487-511.

[29] Jiang, C., Ma, Y., & An, Y. (2013). International portfolio selection with exchange rate

risk: A behavioral portfolio theory perspective. Journal of Banking & Finance, 37, 648-659.

[30] Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica, 47, 263-292.

[31] Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In: Proceedings of

the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948.

26



[32] Kennedy, J. (1997). The particle swarm: Social adaptation of knowledge. In: Proceedings

of the 1997 IEEE International Conference on Evolutionary Computation, pp. 303-308.

[33] Kim, W. C., Kim, M. J., Kim, J. H., & Fabozzi, F. J. (2014). Robust portfolios that do

not tilt factor exposure. European Journal of Operational Research, 234, 411-421.

[34] Krohling, R. A., & de Souza, T. T. M. (2012). Combining prospect theory and fuzzy

numbers to multi-criteria decision making. Expert Systems with Applications, 39, 11487-11493.

[35] Liu, H. (2004). Optimal consumption and investment with transaction costs and multiple

risky assets. The Journal of Finance, 59, 289-338.

[36] Liu, Y. J., Zhang, W. G., & Xu, W. J. (2012). Fuzzy multi-period portfolio selection

optimization models using multiple criteria. Automatica, 48, 3042-3053.

[37] Liu, Y., Fan, Z. P., & Zhang, Y. (2014). Risk decision analysis in emergency response: A

method based on cumulative prospect theory. Computers & Operations Research, 42, 75-82.

[38] Liu, Y. J., & Zhang, W. G. (2015). A multi-period fuzzy portfolio optimization model

with minimum transaction lots. European Journal of Operational Research, 242, 933-941.

[39] Magron, C. (2014). Investors’ aspirations and portfolio performance. Finance Research

Letters, 11, 153-160.

[40] Maillet, B., Tokpavi, S., & Vaucher, B. (2015). Global minimum variance portfolio op-

timisation under some model risk: A robust regression-based approach. European Journal of

Operational Research, 244, 289-299.

[41] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77-91.

[42] Markowitz, H. (2014). Mean-variance approximations to expected utility. European Jour-

nal of Operational Research, 234, 346-355.

[43] Moon, Y., & Yao, T. (2011). A robust mean absolute deviation model for portfolio opti-

mization. Computers & Operations Research, 38, 1251-1258.

[44] Pehlivanoglu, Y. V. (2013). A new particle swarm optimization method enhanced with a

periodic mutation strategy and neural networks. IEEE Transactions on Evolutionary Computa-

tion, 17, 436-452.

[45] Runarsson, T. P., & Yao, X. (2000). Stochastic ranking for constrained evolutionary

optimization. IEEE Transactions on Evolutionary Computation, 4, 284-294.

[46] Shefrin, H., & Statman, M. (2000). Behavioral portfolio theory. Journal of Financial and

Quantitative Analysis, 35, 127-151.

[47] Silva, A., Neves, R., & Horta, N. (2015). A hybrid approach to portfolio composition based

on fundamental and technical indicators. Expert Systems with Applications, 42, 2036-2048.

[48] Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications

to inexact linear programming. Operations Research, 21, 1154-1157.

[49] Takano, Y., & Gotoh, J. (2014). Multi-period portfolio selection using kernel-based control

27



policy with dimensionality reduction. Expert Systems with Application, 41, 3901-3914.

[50] Tiwana, A., Wang, J., Keil, M., & Ahluwalia, P. (2007). The bounded rationality bias in

managerial valuation of real options: Theory and evidence from IT projects. Decision Sciences,

38, 157-181.

[51] Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative represen-

tation of uncertainty. Journal of Risk Uncertainty, 5, 297-323.

[52] Venkatraman, S., & Yen, G. G. (2005). A generic framework for constrained optimization

using genetic algorithm. IEEE Transactions on evolutionary computation, 9, 424-435.

[53] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1, 67-82.

[54] Zhu, S., Fan, M., & Li, D. (2014). Portfolio management with robustness in both prediction

and decision: A mixture model based learning approach. Journal of Economic Dynamics & Control,

48, 1-25.

28



APPENDIX

Table 1: Comparison of different algorithms

ε PSO-1 PSO-2 PSO-3 ALMV-PSO

Mean -192,581.76 -254,827.25 -192,207.81 -190,279.36
0.05 Best -190,210.68 -194,726.24 -189,995.32 -189,292.09

Time (s) 38.19 15.53 44.13 48.29

Mean -135,722.99 -201,386.15 -135,273.49 -132,333.85
0.10 Best -132,254.11 -141,278.99 -131,473.49 -128,545.63

Time (s) 33.93 16.52 37.11 45.96

Mean -87,928.84 -133,064.95 -87,688.95 -85,530.33
0.15 Best -84,373.11 -88,952.73 -83,134.59 -82,097.93

Time (s) 34.67 32.28 38.92 44.91

Mean -46,020.72 -107,895.71 -45,965.19 -39,370.44
0.20 Best -42,390.96 -55,095.03 -42,252.82 -41,948.93

Time (s) 38.03 23.17 39.31 47.02

Note: The table presents the computational result of PSO-1, PSO-2, PSO-3 and ALMV-PSO. All algorithms are

run 10 times independently. The best results among the algorithms are shown in bold.

Table 2: Robustness among Different Portfolios

Portfolio Model
Robust Portfolio

Nominal Portfolio
ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.2

Robust Measure 681,449.18 692,839.18 705,361.11 736,600.37 1,197,378.13

Note: The ALMV-PSO algorithm is run separately 10 times, and the best value is selected to stand for the portfolio

performance. Following the actual action, we solve the robustness measure at each period. In order to reflect the

robustness level over the entire investment, the robustness measure of each period is added up to represent robustness

of the portfolio model. Interested readers can refer to Kim et al. (2014) for a detail discussion about the robustness

measure.
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Table 3: Actual and robust wealth of portfolios

Investment duration ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1/2014 ∼ 3/2014 Actual wealth 1,059,351.67 1,059,661.71 1,060,069.07 1,059,827.36
Robust wealth 973,456.45 983,573.63 990,897.23 997,705.18

4/2014 ∼ 6/2014 Actual wealth 1,102,259.03 1,102,570.77 1,103,064.98 1,102,907.43
Robust wealth 1,016,216.16 1,026,083.34 1,034,025.36 1,043,669.28

7/2014 ∼ 9/2014 Actual wealth 1,129,030.28 1,129,369.16 1,129,743.35 1,129,858.62
Robust wealth 1,048,665.81 1,061,457.44 1,071,070.24 1,080,509.68

10/2014 ∼ 12/2014 Actual wealth 1,146,972.25 1,148,758.41 1,150,411.31 1,153,514.66
Robust wealth 1,110,498.87 1,122,043.84 1,130,292.49 1,137,514.66

Note: The ALMV-PSO algorithm is run separately 10 times, and the best value is selected to stand for the portfolio

performance. The actual wealth is calculated by adding up the actual wealth of assets at each period. The robust

wealth is represented by WR
t at Eq. (5).
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Figure 1: Multi-period investment
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Note: The graph shows the multi-period investment procedure. Suppose at time t, an investor holds the portfolio

X(t), t = 0, . . . , T . The investor could dynamically adjust the portfolio at the end of each period based on the

realized return and updated information about the security market. Let ∆X(t) be the adjustment of portfolio at time

t , t = 0, . . . , T − 1. After the adjustment at time t, we could obtain the adjusted portfolio X+(t) = X(t) + ∆X(t),

t = 0, . . . , T − 1.

Figure 2: Pseudocode of stochastic ranking approach

for s = 1 to S do
for j = 1 to S − 1 do
u← U(0, 1)
if (`(Pk(s)) = `(Pk(s+ 1)) = 0) or (u < Pf ) then

if (f(Pk(s)) < f(Pk(s+ 1))) then
swap(Pk(s), f(Pk(s+ 1)))

fi
else

if (`(Pk(s)) > `(Pk(s+ 1))) then
swap(Pk(s), f(Pk(s+ 1)))

fi
fi

od
if no swap done break fi

od

Note: Stochastic ranking approach using a bubble-sort-like procedure where U(0, 1) is a uniform random number

generator. When Pf = 0 the ranking is an over-penalization and for Pf = 1 the ranking is an under-penalization

(Runarsson and Yao, 2000).
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Figure 3: Pseudocode of the improved stochastic ranking approach for updating
pbest

for s = 1 to S do
if (`(Pk(s)) = 0) then

if (f(pbest−feasible(s)) < f(Pk(s))) then
pbest−feasible(s)← Pk(s)

fi
fi
if (`(Pk(s)) > 0) then
u← U(0, 1)
if (u < Pobj) and (f(pbest−infeasible(s)) < f(Pk(s))) then

pbest−infeasible(s)← Pk(s)
fi
if (u > Pobj) and (`(pbest−infeasible(s)) > `(Pk(s))) then

pbest−infeasible(s)← Pk(s)
fi

fi
u← U(0, 1)
if (u < Pinf ) then

pbest(s)← pbest−infeasible(s)
else

pbest(s)← pbest−feasible(s)
fi

od

Note: Inspired by the stochastic ranking approach (Runarsson and Yao, 2000), we design an improved stochastic

ranking approach for PSO algorithm. While the individual is infeasible, the probability of comparing it according

to the objective function is Pobj . Next, the algorithm could choose an infeasible individual as the pbest with the

probability Pinf . pbest−feasible(s) denotes the personal best of particle s in feasible region. pbest−infeasible(s)

denotes the personal best of particle s in infeasible region.
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Figure 4: Pseudocode of the improved stochastic ranking approach for updating
gbest

feasible← Ø
infeasible← Ø
for s = 1 to S do

if (`(gbest(s)) = 0) then
feasible← feasible ∪ {s}

else
infeasible← infeasible ∪ {s}

fi
od
u← U(0, 1)
if (u < Pinf ) then
u← U(0, 1)
if (u < Pobj) then
z ← argmaxs∈infeasible f(pbest(s))

else
z ← argmins∈infeasible `(pbest(s))

fi
else
z ← argmaxs∈feasible f(pbest(s))

fi
gbest← pbest(z)

Note: In order to select a gbest from pbest(s), s = 1, . . . , S, we divide the pbest(s), s = 1, . . . , S into two parts.

The feasible pbest(s) transfers into feasible, while the infeasible pbest(s) transfers into infeasible, s = 1, . . . , S.

For the infeasible pbest(s), the probability of comparing them according to the objective function is Pobj . Next,

the algorithm could choose an infeasible individual as the gbest with the probability Pinf . Ø denotes an empty

set.
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Figure 5: Lifespan control operator
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Note: Following the method of Chen et al. (2013), we uses a lifespan control operator to adjust the leader’s lifespan.

While the leader has a good leading power (Case 1), the lifespan Θ of the leader increased by 3. While the leader

has a fair leading power (Case 2), the lifespan Θ of the leader increased by 2. While the leader has a poor leading

power (Case 3), the lifespan Θ of the leader increased by 1. While the leader has a no leading power (Case 4), the

lifespan Θ of the leader remains unchanged.
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