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ABSTRACT 

A PROBABILISTIC ECONOMIC AND ENVIRONMENTAL IMPACT ASSESSMENT OF A 

CYANOBACTERIA-BASED BIOREFINERY 

Microbial based biofuels represent a potential promising solution as an environmentally 

favorable transportation fuel. Cyanobacteria have many of the same advantages as microalgae: 

ability for rapid growth in otherwise non-arable regions, suitability for genetic engineering, and 

simple nutritional needs. Additionally, cyanobacteria can be engineered to secrete valuable co-

products that can be harvested independent from the produced biomass. However, little work has 

been done to identify the processes and the economic and environmental impacts associated with 

a large-scale cyanobacteria-to-fuels facility. The present study is a concurrent techno-economic 

and life cycle assessment of a facility that generates fuels and methyl laurate, an oleochemical, 

from the cyanobacterial species Synechocystis sp. PCC 6803. The biorefinery model includes all 

aspects of cultivation, separation of the secreted methyl laurate, biomass harvesting and fuel 

processing via hydrothermal liquefaction (HTL) of the dewatered biomass. The assessments 

leverage Monte Carlo analysis (MCA) to address uncertainty and variability inherent in the most 

significant input parameters, replacing them with probabilistic functions. For the facility 

configuration producing both fuels and the oleochemical co-product, the MCA average minimum 

fuel selling price (MFSP) is $2.47 per liter or $9.34 per gallon of gasoline equivalent (gge) with 

the corresponding average global warming potential determined to be 118 g CO2-eq-MJ-1. The 

case producing only fuels results in an MCA average MFSP of $2.01-L-1 ($7.60-gge-1) and an 

average environmental impact of 100 g CO2-eq-MJ-1. These results are compared to static 
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optimistic and conservative scenario analysis estimates, illustrating the over- and under-

estimation of outcomes associated with non-stochastic methods. Suggested facility 

improvements include increases in pond productivity of both the biomass and methyl laurate oil 

production, as well as improvements to carbon utilization and bio-crude yield from HTL 

processing.  
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INTRODUCTION 

Climate change is largely driven by the emission of greenhouse gases (GHGs), a primary 

source of which is the combustion of fossil fuel-derived diesel and gasoline for transportation 

[1]. Biofuels are an alternative fuel that can be directly substituted for fossil fuels with a 

potentially smaller environmental impact [2], [3]. Algae take up carbon dioxide (CO2) during 

growth and can be converted into biofuels and other valuable bio-products after the biomass is 

harvested and separated from the water. The resulting fuel, converted to a renewable diesel [4]–

[6], can be directly substituted for petroleum-derived diesel. Other products include bio-plastics 

and nutraceuticals, which can be produced concurrently and have higher market values that 

offset the large production process costs [7], [8]. The vast majority of microalgal biofuel studies 

have been performed using autotrophic microalgae species. Microalgae are particularly useful 

organisms for biofuel production because they are often amenable to genetic manipulation, and 

many display high growth rates [9]. Further, they are able to grow in otherwise non-arable areas 

and therefore do not compete for land with food agriculture [10]. Cyanobacteria, a group of 

photosynthetic microbes, represent an emerging area of microbial fuel research. Species from 

genera such as Synechocystis and Synechococcus offer many of the same benefits as microalgae, 

including rapid growth and simple nutrient demands, and are particularly suitable for introducing 

genetic mutations for improved CO2 utilization and production of desired compounds [9], [11], 

[12]. Cyanobacteria are further distinguished from microalgae as some can be genetically 

engineered to secrete valuable products [13] which can reduce the need for energy-intensive 

product harvesting techniques.  

While microalgal and cyanobacterial biofuels have been physically demonstrated at small 

scales, the feasibility and impacts of large scale, commercial implementation have yet to be 
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demonstrated. Sustainability modeling, namely techno-economic analysis (TEA) and life cycle 

assessments (LCA), have been leveraged to evaluate the respective economic and environmental 

impacts of an industrial-scale process [14]. These analyses are predicated on a process model 

that captures the energetic and mass flows through the system and have been implemented with 

microalgae species in over 60 studies, on a wide range of growth architectures, conversion 

methods, and bio-products [14]. Some studies focus on the algal growth and dewatering 

processes alone with the objective of selling the biomass product [15]–[18]. Others consider the 

conversion process only, purchasing dewatered biomass product and selling a biofuel product 

[19]–[21] or another bio-product, such as plastics [8]. Finally, many, including the present study, 

consider the entire pathway, from algal growth through conversion [6], [22]. Compared to that of 

microalgae, the scientific literature is severely lacking in cyanobacteria-specific TEA and LCA, 

despite them being widely identified as a promising fourth generation biofuel [12]. Johnson et al. 

studied the economic impacts of using Anabaena sp. PCC 7120 for production of limonene, a 

biodiesel, followed by anaerobic digestion of the remaining biomass material, reporting facility 

net present values of -$558 and $392 million for a scenario with experimentally demonstrated 

productivity, and one with improved, “best case” productivity, respectively [23]. Markham et al. 

performed a TEA on ethylene produced from a recombinant Synechocystis sp. PCC 6803, using 

photobioreactor growth structures and fractionation of hydrocarbons to produce fuel blend 

stocks, reporting a baseline minimum fuel selling price (MFSP) projection of $15.07-gge-1 and 

respective conservative and optimistic projections of $28.66 and $5.36-gge-1 [24]. Environmental 

impacts of cyanobacterial biofuel systems have been studied within a similar scope. Quiroz-Arita 

et al. assessed the production of three biofuels from Synechocystis sp. PCC 6803, attributing the 

lowest impacts to cyanobacteria-produced ethanol with results between 89.6 and 233.5 g CO2-
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eq-MJ-1 [25]. Nilsson et al. studied a small-scale, 1- ha biorefinery with various growth 

structures and productivities, finding the GHG emissions associated with the secreted n-butanol 

product from engineered cyanobacteria to be between 16.9 and 58.5 g  CO2-eq-MJ-1, for a range 

of growth structures and productivities [26]. While these are some of the lowest footprints 

among cyanobacteria-to-fuels LCA literature, it is extremely unlikely that the modeled location – 

northern Sweden – would have high enough productivity rates for a commercial facility. Finally, 

Smetana et al. performed an LCA for the cyanobacterial species Arthrospira platensis and the 

microalgal species Chlorella vulgaris, generating a variety of products via three modeled 

pathways and comparing their environmental impacts [27]. However, these impacts were 

presented with unconventional units (relative to the annual impact of one European citizen), and 

therefore make any comparisons to this work very difficult. There are presently no studies with 

both TEA and LCA on the cyanobacterial strain presented here (Synechocystis sp. PCC 6803), 

nor any that address the conversion of the remaining biomass via hydrothermal liquefaction 

(HTL), a promising and prominent conversion pathway for wet feedstocks.   

The estimation of facility impacts relies on defining the wide range of input parameters 

related to not only the underlying process but also the economic and environmental 

characteristics. Ultimately, the quality of TEA and LCA depends on the chosen input parameters, 

which are often variable and uncertain. Traditionally, TEA and LCA studies have addressed this 

by reporting conservative, baseline, and optimistic results that are related to a range of inputs in 

the same categories [24], [28], [29]. While this approach reports a range of possible economic 

and environmental outcomes, there is no evidence suggesting which of those outcomes are most 

likely. Monte Carlo analysis (MCA) offers a method for applying stochastic probability to 

previously static models, thereby giving insight to both the full range of possible outcomes and 
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how likely they are to occur [30]–[32]. The results from MCA allow for more specific inferences 

to be made, such as the probability of a certain MFSP being met, or of an environmental burden 

threshold being exceeded. MCA has been applied in a variety of biofuel studies, across a range 

of inputs [28], [31]–[39]. Pérez-López et al. performed a well-documented MCA, based on 

experimental data for three microalgal strains, with probability distributions for a wide variety of 

input parameters related to the process model as well as economic and life cycle data [32]. 

Despite its value to sustainability practitioners, there are currently no cyanobacterial biofuel 

studies that incorporate MCA. Johnson et al. [23] mention probabilistic considerations, but do 

not describe any MCA methods, nor do they offer details about input or output stochastic 

distributions.  

In general, cyanobacteria-based fuels have been largely under-investigated, with either 

TEA or LCA being performed on only a select few species or strains and limited downstream 

processing pathways. Based on the state of the field, there is a need for concurrent TEA and 

LCA of a cyanobacteria-to-fuels facility with secreted products as well as those converted from 

the biomass. This work presents an engineering process model of a cyanobacteria-to-biofuel 

process validated with experimental performance data leveraged for comprehensive TEA and 

LCA. The modeled strain is Synechocystis sp. PCC 6803, which has been engineered to produce 

methyl laurate, a fatty acid methyl ester that can be used as either a drop-in biodiesel or an 

oleochemical. As a biodiesel, the methyl laurate has very similar physical properties to diesel 

from petroleum and can generally be substituted directly in diesel engines. As an oleochemical, 

methyl laurate can be used in a very wide variety of applications including pharmaceutical, 

manufacturing, and as a food additive, solvent, or pesticide [40]. This work is among the first 

cyanobacteria-specific combined TEA and LCA studies (the only for Synechocystis), and the 
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first to model the HTL conversion of cyanobacterial biomass. Further, it is the first that employs 

MCA and statistical methodology to address inherent variability and uncertainty of input 

parameters. These results are directly compared to the more typical, non-stochastic scenario 

analysis results, which estimate the baseline, optimistic and conservative scenarios. This work 

evaluates the accuracy of static scenario analysis and offers recommendations for addressing 

variability and uncertainty in future biorefinery studies.  



6 

METHODS 

1. Process Modeling 

The basis of this work is a foundational process model, which captures all mass and 

energy flows through the system. The system has two product configurations – in the first, the 

methyl laurate is sold as renewable diesel and assumed to have the same selling price as the 

biofuel produced from the conversion of biomass via HTL. In the second configuration, the 

methyl laurate is sold as an oleochemical co-product, and the only fuels sold from the system are 

generated from the biomass. These configurations are referred to as “fuels” and “fuels and co-

product,” respectively. The system boundary is shown in Figure 1, with required mass and 

energy inputs for the various sub-processes.  

 
Figure 1: The system boundary illustrates the processes and inputs captured by the process 
model, broken down into process modules. The mass flows for the methyl laurate and biomass 
are illustrated with blue and green lines, respectively.   

 

1.1 Cultivation 

The cultivation module was modeled closely after the process report of Davis et al., with 

a two-stage inoculation system before the full-size ponds [15]. Due to the genetic engineering of 

the cyanobacteria, the growth ponds were assumed to be covered. The total area of the ponds was 
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2,023 hectares (5,000 acres), and the areal productivity was assumed to range from 12 to 15 g-m-

2-day-1
, based on experimental data from outdoor growth trials. The secreted methyl laurate was 

assumed to be produced as a ratio of the biomass productivity, ranging from 0.25 to 0.50 g-g-1, 

also based on experimental data. The nutrient demands for the system were met by a 

cyanobacteria-specific growth medium (PE-001A), an inexpensive mix that mimics BG-11 [41]. 

The nutrient needs of the ponds were calculated according to the stoichiometric compositions of 

the cyanobacterial biomass and the growth medium. Monoethanolomine, an amino alcohol that 

assists with CO2 uptake, was added to the ponds with the nutrient mix at a concentration of 0.2 

mM. Energetic inputs to the ponds included mixing by a paddlewheel that required 77.1 kWh-ha-

1-day-1.  

In addition to the ponds, the cultivation module included the CO2 delivery system: a five-

foot deep sump sparging system. The CO2 requirements were found in a similar way to nutrient 

requirements, with the carbon content of the cyanobacteria and the off-gassing rate of the 

sparging system. The carbon content of the biomass and methyl laurate product was assumed to 

be 51.4%, and 73%, respectively. The CO2 utilization rate of the system ranged between 20% 

and 40%, with an average of 33% [32], [42]. The sump was calculated to use 46 kJ of electricity 

per kg of CO2 gas to overcome the five-foot depth, and another 36.1 kJ per kg for fans and 

blowers used throughout the facility [42]. The delivered CO2 was assumed to be nearly pure 

(between 97.5% and 100%), sourced from one of a variety of industries detailed by Last and 

Schmick [43]. The biorefinery facility was assumed to be co-located with a facility for one of 

these industries, so no extra transportation of the CO2 was included.  
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1.2 Methyl Laurate Harvest 

The system was operated in a semi-continuous mode with 20% of the pond being 

harvested every day, which corresponds to a volumetric flowrate of 404,600 m3 per day. The 

harvested material was processed through a novel oil separation process before the biomass was 

sent to the dewatering module. First, a dodecane solvent was mixed into the harvested volume in 

an agitation tank, separating the methyl laurate from the biomass by partitioning the methyl 

laurate in the dodecane phase. Then, the lighter dodecane-methyl laurate solution was separated 

from the heavier biomass material by a series of coalescence plates. The energy requirements of 

the agitation tank were estimated to be between 0.04 and 0.1 kW per m3 of throughput [44]. The 

coalescence plates, similar to settlers used for dewatering, were passive and did not require 

energy. The combination of the mixing tank and settling plates is referred to as the mixer-settler. 

After separation, the dodecane-methyl laurate mixture was sent to a distillation column to 

recover the methyl laurate to an assumed purity of 99%. The methyl laurate was stored as either 

a drop-in biodiesel or an oleochemical, depending on the facility configuration. The dodecane 

was recycled within the methyl laurate harvest process with a 99.5% recovery rate. The 

distillation column was modeled in Aspen and estimated to require approximately 1524 kJ of 

heating energy or 0.04 scm (1.4 scf) of natural gas per kg of solution throughput.  

1.3 Biomass Dewatering  

The biomass dewatering process for the produced biomass consisted of three stages: a 

settler followed by a membrane and then a centrifuge. The settler was assumed to bring the 

biomass from 0.07% solids to 1% solids. The membrane achieved 13% solids, and finally the 

centrifuge brought the volume to 20% solids. The dewatering systems required 0, 0.04 and 1.35 

kWh per cubic meter of throughput for the three stages, respectively [15]. As a whole, the 
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dewatering process retained 86% of the biomass, the balance remaining in the clarified water. 

The clarified water was recirculated back to the main ponds for recycling. In all, the system 

retained 99.5% of the biomass [15].  

1.4 Hydrothermal Liquefaction Conversion  

The modeled system used HTL followed by hydro-treatment to convert the dewatered 

biomass to fuel products. The HTL and upgrading module was modeled closely after that of the 

Jones et al. process report [19]. The dewatered biomass was pumped through a preheating system 

and then an HTL plug flow reactor. The resulting products were divided by a filter and three-

phase separator into char, aqueous material, and bio-crude. The bio-crude continued to a hydro-

treating and hydrocracking process, where it was pumped through a series of columns and a 

heater to separate the crude oil into naphtha, diesel, and off-gasses. Meanwhile, the solid char 

was sold for the price of removal from the facility. The aqueous material was cooled and 

returned to the ponds for the purpose of recycling nutrients. This is assumed to be a seamless 

integration [19], [45]. The naphtha and diesel were taken to be stored and the off-gasses were 

processed in an ammonia scrubber. The input flowrate to the HTL system was approximately 17 

kg of dewatered biomass per second, although this varied slightly based on the productivity of 

the pond. The volume of fuels produced from HTL is governed by bio-crude yield, which ranged 

from 30% to 60%, with an average of 40%. For a bio-crude yield of 45%, the combined total 

energy usage of the conversion module was approximately 1,740 kJ per kg ash-free dry weight 

(AFDW) algae throughput, approximately 88.5% of that being heat supplied by natural gas, and 

the balance supplied by electricity.   
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1.5 Storage 

The biofuel products are stored in tanks sized for 24 hours of production, consistent with 

the process design of Davis et al. [15]. There was a separate tank for each product: methyl 

laurate, diesel and naphtha. Additionally, there are tanks to store make-up water, approximately 

3,324 m3 (878,000 gallons). 

2. Techno-economic Analysis 

TEA involves superimposing economic and financial data on the process model data, 

resulting in an estimation of MFSP for the system based on economic assumptions. There are 

three primary types of costs: capital expenses (CAPEX), operational expenses (OPEX) and fixed 

OPEX, such as labor. These expenses are accounted for in a discounted cash flow rate of return 

(DCFROR), which undergoes an iterative solving process to find the fuel selling price at which 

the net present value of the system is zero. This selling price is the minimum volumetric price at 

which the facility will achieve the fixed internal rate of return over the lifetime of 30 years. The 

DCFROR and TEA employed the Nth of a kind (NOAK) economic assumptions, as outlined in 

Table 1.  

Table 1: "Nth of a kind" economic assumptions [46]. All are standard except operation days, 
which have been included as a variable input parameter.   

Parameter Standard value 

Internal rate of return 10% 

Facility debt / equity  60% / 40% total capital  

Facility lifetime 30 years 

Income tax rate 35% 

Interest rate 8% annually  

Debt financing term 10 years 

Working capital 5% fixed capital (excluding land) 

Depreciation schedule  7-year modified accelerated cost 

recovery system  

Construction period  8% year 1 
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60% year 2 

32% year 3 

Plant salvage value  None 

Start-up time 6 months 

Start-up revenue and costs 50% revenue 

75% variable costs 

100% fixed costs 

Indirect capital  60% total installed capital  

Base cost year  2018  

 

2.1 CAPEX  

The majority of the CAPEX estimation for the cultivation, dewatering and storage 

systems followed the process modeling of Davis et al. [15]. Likewise, the HTL and upgrading 

conversion system costs were modeled after that of Jones et al. [19]. However, the current 

system had different volumetric throughput and corresponding size requirements from the source 

literature. Capital costs were found using Equation 1, and brought to 2018 dollars using cost 

indices:  

𝑆𝑐𝑎𝑙𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 =  𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝐴𝑃𝐸𝑋 (𝑆𝑐𝑎𝑙𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑆𝑜𝑢𝑟𝑐𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)𝑛
 Eqn. 1 

Here, 𝑛 is a scaling factor, which varies for each piece of equipment or system. Information 

about specific scaling factors can be found in the work of Davis et al. [15] and Jones et al. [19].  

The harvest module CAPEX was estimated from Brown [47], with the mixer-settler tank 

being priced separately, as well as the distillation columns. The mixer-settler consisted of an 

agitator and a tank sized on the volumetric throughput of the biomass-solvent solution, according 

to Equations 2a through 2c [47]:  𝑀𝑖𝑥𝑒𝑟 ($𝐾) = 3.14(𝐻𝑃)0.40 + 3.33(𝐻𝑃)0.77  Eqn. 2a 𝑇𝑎𝑛𝑘 ($𝐾) = 0.8𝑉0.83
 Eqn. 2b 
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𝑀𝑖𝑥𝑒𝑟 𝑠𝑒𝑡𝑡𝑙𝑒𝑟 ($𝐾) = 1.5(𝑀𝑖𝑥𝑒𝑟 + 𝑇𝑎𝑛𝑘) Eqn. 2c 

Here, 𝐻𝑃 refers to the required horsepower, which is calculated from the mixer-settler energy 

requirement multiplied by the throughput. In equation 2b, 𝑉 is the volumetric capacity of the 

tank. In equation 2c, 1.5 is the install factor, which is the additional cost required for installation 

of the equipment [19].  

The distillation column purchase and installed costs were found similarly, calculated 

according to a pressure vessel cost estimation [47]:  𝑃𝑉 ($𝐾) = 5.18𝑉0.67  Eqn. 3a 𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 ($𝐾) = 1.7(1.5𝑃𝑉) Eqn. 3b 𝑃𝑉 is the capital cost of the pressure vessel, 𝑉 refers to the volumetric capacity of the column, 

and the install factor is 1.7 [19].  

All costs were brought to 2018 dollars using the following equation with the relevant cost 

indices [14]:  

𝐶𝑜𝑠𝑡 𝑖𝑛 2018$ = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 ( 2018 𝐼𝑛𝑑𝑒𝑥𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑌𝑒𝑎𝑟 𝐼𝑛𝑑𝑒𝑥)  Eqn. 4 

 

2.2 Variable OPEX 

Variable operational costs for the system include consumables, such as nutrient 

requirements and CO2, and chemical additives such as the solvent used in the harvest module and 

the hydrogen used for the hydro-treatment following HTL. It also includes all electricity and 

natural gas costs. Similar to CAPEX, much of the OPEX was scaled from source literature, 

particularly Davis et al. [15] and Jones et al. [19], according to Equation 5:  

𝑆𝑐𝑎𝑙𝑒𝑑 𝑂𝑃𝐸𝑋 = 𝑆𝑜𝑢𝑟𝑐𝑒 𝑂𝑃𝐸𝑋 (𝑆𝑐𝑎𝑙𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑆𝑜𝑢𝑟𝑐𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) Eqn. 5 
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2.3 Fixed OPEX 

Fixed operational expenses are costs of the system that are not subject to changes in 

volumetric throughput, such as labor and maintenance. Facility labor includes plant managers, 

engineers, supervisors, and technicians. Facility maintenance was calculated as 3% of the harvest 

and dewatering CAPEX and 0.5% of the other module CAPEXs.  Facility labor requirements 

were found according to the reports from Davis et al. [15] and Jones et al. [19], scaled, and 

brought to 2018 dollars. Both upstream and downstream portions of the facility required plant 

managers, engineers, laboratory technicians and managers, yard employees, and clerks and 

secretaries. The number of roles required for the upstream portions of the plant were scaled on 

facility area, and downstream labor was scaled on volumetric throughput, according to Equations 

6a and 6b.  

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑎𝑏𝑜𝑟 = 𝑆𝑜𝑢𝑟𝑐𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 ) ∗ 𝑆𝑎𝑙𝑎𝑟𝑦 Eqn. 6a 

𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑎𝑏𝑜𝑟 = 𝑆𝑜𝑢𝑟𝑐𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑆𝑜𝑢𝑟𝑐𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ) ∗ 𝑆𝑎𝑙𝑎𝑟𝑦 Eqn. 6b 

An additional labor burden accounted for overhead costs associated with facility employees and 

was assumed to be 90% of the total calculated labor costs, based on the process models from 

Davis et al. [20] and Jones et al. [19].   

3. Life Cycle Assessment  

An LCA was conducted by overlaying life cycle inventory data on the foundational 

process model and was used to find the environmental burdens of the process. Life cycle 

inventory data were accessed using OpenLCA and the ecoinvent v3.4 database [48]. The life 

cycle information (LCI) considered was global warming potential (GWP), quantified through 
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aggregating GHGs. The GHGs were found for each individual consumable, usually per kg for 

mass inputs and in base energetic units for others. The LCIs were determined for all of the 

consumables, electricity, and natural gas used throughout the facility via ecoinvent v3.4. Where 

possible, all LCIs were pulled for cutoff, system processes, which means the processes to create 

the consumable are fully aggregated, and their end use emissions are not assumed. These 

characteristics were then accounted for across the consumables used in the facility and 

normalized on the basis of fuel energy produced by the system, according to the TRACI v2.1 

methodology [49].  

For the fuels case, impacts across the facility were summed and allocated equally per MJ 

of fuel energy as the scenario is limited to producing fuels. In the fuels and co-product case, the 

impacts were allocated based on relevant sub-process modules and economic allocation where 

division based on process is not possible. This approach is consistent with the ISO 14044:2006 

standard [50]. The portion of the facility dedicated only to the biomass-to-fuels pathway 

(dewatering through conversion) was separated from the portion that deals with the methyl 

laurate product. Those emissions were then attributed directly to the produced fuels. The 

cultivation and harvest modules dealt with both the methyl laurate and biomass, and thus those 

impacts were allocated based on the economic value of the two products, according to Equation 

7:  

𝐸𝐹,𝑡𝑜𝑡𝑎𝑙 = (−𝐶𝑈 + 𝐸100 + 𝐸200 + 𝐸600) ( 𝑉𝐹𝑚𝐹𝑉𝑀𝐿𝑚𝑀𝐿 + 𝑉𝐹𝑚𝐹) + 𝐸300 + 𝐸400 Eqn. 7 

Here, 𝐸𝐹,𝑡𝑜𝑡𝑎𝑙 is the total GHG emissions attributed to the fuels, brought to their 100-year CO2 

equivalents. 𝐶𝑈 is the CO2 taken up by the ponds, and 𝐸100, 𝐸200 and 𝐸600 are the CO2 

equivalent emissions from the respective growth, harvest and storage modules that are shared by 

the biomass and methyl laurate. 𝑉𝐹 and 𝑉𝑀𝐿 are the respective volumes of fuel and methyl 
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laurate, and 𝑚𝐹 and 𝑚𝑀𝐿 are the respective market values of those products. 𝐸300 and 𝐸400 are 

the CO2 equivalent emissions from the remaining modules, dewatering and conversion, that are 

totally allocated to the fuels. A more detailed breakdown of the system boundaries inherent in 

this allocation process is shown in the supplementary information (Figure A1), as well as 

impacts resulting from the mass allocation method (Table A1). Because the oleochemical can be 

used for a wide variety of applications, the system boundary for this analysis ends at the delivery 

of the product. Thus, combustion of the methyl laurate was not considered in the co-product 

configuration. Results are presented per MJ of fuel energy, to maintain consistency between 

results and to allow for comparison with the renewable fuel standard and other fuel studies.  

4. Monte Carlo Analysis 

MCA replaces static input parameters with probabilistic distributions, which more 

adequately captures the inherent uncertainty in the model and allows for a greater resolution of 

the model outcomes. To start, uncertain and variable parameters were identified and replaced 

with probabilistic functions. For this work, these parameters were chosen based on their relative 

impact on the model results which was determined through sensitivity analysis. Then, their 

representative input distributions were defined, informed by literature survey and experimental 

data. The chosen input distributions are described in more detail in section 4.1 and can be found 

for specific parameters in Tables A2, A3 and A4 of the supplementary information. Finally, the 

model was simulated with a random sampling of inputs from their respective distributions for 

5000 iterations. This was deemed sufficient by comparison to results of runs with 10,000 

iterations – the differences in output summary statistics were negligible. Results of this analysis 

are shown in Figure A2 and Tables A5 and A6 of the supplementary information.  
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4.1 Parameter selection  

Parameters that were replaced with probabilistic functions were chosen based on the 

system-wide sensitivity analysis. The sensitivity analysis was performed by varying each input 

individually, and finding which parameters were linked to the greatest overall change [30]. This 

is a local sensitivity analysis method, also known as “one-[factor]-at-a-time,” which focuses on 

the influence of individual parameters on the system, and not necessarily on the influence of 

interactions between parameters [30]. Each parameter was varied by ± 50% and the resulting 

MFSP and GWP were recorded on each side. Those with a change in TEA or LCA results 

greater than or equal to 5% were considered significant enough to be included in the MCA. In a 

likewise analysis to iteration number, results with a selection criterion of 5% or greater relative 

impact were compared to that of 1% or greater impact. The differences in summary statistics 

were negligible and the 5% selection criterion was deemed sufficient. These results are presented 

in Figure A3 and Tables A5 and A6 of the supplementary information. This approach is 

consistent with guidance for performing MCA from the United States Environmental Protection 

Agency, which advises that variables identified through sensitivity analysis as non-significant 

may be fixed, although it should be made clear that these parameters are not necessarily 

considered constant [51]. Parameters in this category likely have some variability or uncertainty, 

but they may be left out of the scope of MCA due to their insignificant effect on the system 

outcomes. Further explanation of parameters included in the MCA and their assigned input 

distributions is given in section 4.2.  

4.2 Input distribution selection  

Once the parameters of interest have been elucidated, the probability distributions for 

those parameters are selected based on literature or fitted to experimental data. In general, 
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parameters with little or no data were represented with uniform distributions, which are the least 

specific and give all values of the range equal probability of occurring. Parameters with source 

material or adequate data can be represented with more sophisticated probability distributions. 

Many of the distributions used in the present study were modeled according to experimental or 

literature data and with shapes similar to Pérez-López et al. [32] including pond productivity, 

methyl laurate production, CO2 off-gassing rate and electricity cost. Other parameters were 

represented by probability distributions that have been fitted to data using the @RISK 

distribution fitting tool [52]. This was the case for bio-crude yield from HTL, operation days, 

growth pond CAPEX, and methyl laurate market selling price. Distribution fit was assessed 

using Akaike information criterion (AIC), Bayesian information criterion (BIC), and 

Kolmogorov Smirnov (KS) testing [51], [53], [54]. More details regarding the chosen probability 

distributions are available in Tables A2, A3 and A4 of the supplementary information.   

Most of the parameters highlighted by the sensitivity analysis are considered variable – 

they exist within a known range that is the result of varying assumptions and sources [51], [55], 

[56]. For example, the CAPEX of the growth ponds is variable, due to a range of estimations that 

have been given by different contractors. Similarly, bio-crude yield has been shown 

experimentally to exist within a range between 30% and 60% – it is variable but not uncertain. 

Thus, these input distributions were fit to data found in the literature. Other parameters, 

particularly those associated with the first of a kind aspect of the model, are considered 

uncertain. Uncertain variables are those that have not been studied enough to be prescribed 

specific values from literature [51], [55], [56]. The only parameter deemed uncertain in this 

study is the dodecane solvent concentration, used to separate the methyl laurate from the biomass 

product in the harvest module. The central value for this parameter has been assumed from 
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experimental data and assigned a uniform distribution with a range ± 10% the experimental 

value.   

4.3 @RISK Software 

The software used to perform the MCA is the @RISK software from Palisade, which 

operates within the Microsoft Excel framework and is used to execute the iterative MCA process 

[52]. Upon each iteration, a new value is chosen randomly from the probability distribution for 

each selected input variable. This produces a set of outputs, such as environmental impact and 

financial data. For an MCA of n iterations, there are n outputs for each chosen outcome 

parameter. For the present study, outcomes of interest were MFSP and GWP. The individual 

outputs were aggregated to determine cumulative output distributions for the two metrics. 

Additionally, the @RISK distribution fitting tool was used to generate some of the input 

distributions, as described in section 4.2.  
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RESULTS AND DISCUSSION 

This model considers two cases regarding treatment of the secreted methyl laurate 

product. In one case, it is treated as a biodiesel product and is included in the volume of fuels 

sold at the MFSP. In the other case, it is sold as a co-product with a separate, fixed selling price 

with its own input probability distribution. These cases are referred to as “fuels” and “fuels and 

co-product,” respectively.  

1. Baseline Results  

The following figures show the economic (Figure 2) and environmental (Figure 3) impact 

results for the static baseline scenario. This scenario assumes the average values for all input 

parameters and is used to illustrate the contributions of the individual unit process operations. In 

scenarios with negative contributions (i.e., co-product credits, carbon uptake credits), the net 

impact is denoted with a black diamond.  
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Figure 2: Static baseline economic impact results for the fuels case (left) and fuels + co-products 
case (right). When there are negatively valued bars, such as for co-product credits, the net result 
is illustrated with the black diamond. The net results are $1.89-L-1 ($7.14-gge-1) for the fuels 
case and $2.24-L-1 ($8.47-gge-1) for the fuels and co-products case.  
 

The growth module takes the largest share of the economic burden, followed by methyl 

laurate harvest, for both cases. The first is due to the high capital expenses associated with the 

covered ponds, the energetic demands of the ponds, labor, and nutrient costs. The annual 

fertilizer cost is approximately 2.5 times greater than the annual cost of energy for pond mixing 

by paddle wheel and recirculation of water from the dewatering module, and accounts for nearly 

half of the pond OPEX. Energy used to deliver carbon as CO2 consumes less than 10% of the 

cultivation module OPEX. The ponds make up almost 60% of the total cultivation module 

CAPEX, followed by general construction expenses such as the warehouse and project 

contingency. Next, the harvest module has very high operational costs due to the electricity 

consumption of the mixer-settler, which processes the entire volume of methyl laurate, dodecane 
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solvent, water and biomass. This results in very high operational costs despite similar per-kg 

energy intensity of processes further downstream. For example, the distillation process 

separating methyl laurate from the dodecane solvent is almost 200 times more energetically 

intensive per m3 of throughput but sees 0.1% of the volume that is processed through the mixer-

settler. Capitally, the mixer-settler and distillation columns are approximately equal and each 

account for nearly 30% of the harvest CAPEX. The balance is attributed to other facility 

expenses, similar to that of the cultivation module.  

The large difference in MFSP between the two cases is related to the assumed value of 

the methyl laurate. The average market value was assumed to be $1.78-kg-1, which is not enough 

to achieve parity with the fuels case, nor with conventional fuels benchmarks. To match the 

baseline fuels case selling price of $1.89-L-1 ($7.14-gge-1), the average methyl laurate market 

value must be at least $2.26-kg-1, an almost 20% increase. To achieve parity with conventional 

fuels at $0.80-L-1 ($3-gge-1), the methyl laurate market value must be twice the original value, at 

least $3.78-kg-1. This assumes an average methyl laurate production ratio of 0.33 g-g-1 of 

biomass and a biomass productivity of 13.5 g-m-2-day-1. Leaving the methyl laurate production 

ratio the same and increasing biomass productivity to 25 g-m-2-day-1, the methyl laurate market 

value needs only be $1.92-kg-1 to meet 0.80-L-1 ($3-gge-1) target. Another contributing factor to 

this trend is that treating methyl laurate as a co-product decreases the total volume of fuels, so 

the per-liter costs of individual unit processes increase. While increasing the value of the methyl 

laurate will increase the size of the co-product credit (the dark blue bar in Figure 2), only an 

increase in biomass productivity or bio-crude yield will shrink the per-volume costs for each 

downstream processing module.  
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The environmental impact results shown in Figure 3 are reported as GWP, on the basis of 

CO2 equivalent, which describes the combined GHG emissions from the facility and all 

processes related to the consumables up until their use in the facility. Grams of CO2 equivalent 

(g CO2-eq) is the 100-year GWP – essentially an accounting of the associated GHG emissions, 

weighted according to their individual impact relative to CO2. These emissions are then 

normalized on the basis of produced fuel energy (MJ) – the volume of fuel multiplied by its 

energy content. This allows for direct comparison to other fuel sources, such as petroleum-

derived diesel or gasoline.  

Figure 3: Baseline environmental impact results for the fuels case (left) and fuels and co-
products case (right). The net results, illustrated with black diamonds, are 98 g CO2-eq-MJ-1 and 
115 g CO2-eq-MJ-1, respectively. The renewable fuel standard (RFS) is shown as a red dashed 
line. In the fuels and co-products case, the baseline methyl laurate impact is 3 g CO2-eq-MJ-1 

(not pictured in the figure). 
 

The static baseline impact of the fuels case is 98 g CO2-eq-MJ-1, compared to 115 g CO2-

eq-MJ-1 for the fuels and co-product case, shown in Figure 3. The cultivation, harvest, and 
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conversion modules have the greatest life cycle impact of the facility process modules. However, 

that combination is nearly matched in magnitude by the carbon uptake credit. Carbon uptake 

accounts for the amount of CO2 absorbed in the growth of the cyanobacteria. There is also a 

modest carbon credit in the nutrients returned to the ponds from the aqueous material leaving the 

conversion process. The methyl laurate harvest module is very energetically intensive, 

particularly using heat from natural gas. Additionally, the dodecane solvent used in the harvest 

module has a large LCI, or footprint prior to reaching the biofuel facility, increasing the impact 

of this module. The conversion process is also energetically intensive, with much of that being 

heat delivered by natural gas. However, with less volumetric throughput than the harvest module, 

its overall impact is much smaller in comparison. Combustion of the fuel is assumed to be 

another 72 g CO2-eq-MJ-1 [14] and is attributed to the fuels coming out of the system. This 

addition completes the well-to-wheels system boundary.   

The environmental impact benchmark is the renewable fuel standard (RFS), which is half 

the GHG emissions of petroleum and is equal to 45 g CO2-eq-MJ-1 [57]. The baseline results 

show that the fuels have impacts that are larger than petroleum’s 90 g CO2-eq-MJ-1. This is 

largely due to high energy demands in both the cultivation and methyl laurate harvest modules 

for pond mixing, carbon delivery, and distillation separation of the methyl laurate and biomass. 

Increases in both biomass and methyl laurate productivity can have positive impacts on the 

environmental footprint of the fuels in both cases. Increasing cyanobacteria pond productivity to 

25 g-m-2-day-1 decreases the GWP by 36% (62 g CO2-eq-MJ-1) and 32% (78 g CO2-eq-MJ-1) in 

the fuels and fuels and co-products cases, respectively. Adding to that a 50% increase in methyl 

laurate production ratio to 0.5 g-g-1 brings the GWP down even further to respective impacts of 

55 g CO2-eq-MJ-1 (43% reduction from baseline) and 74 g CO2-eq-MJ-1 (35% reduction). 



24 

Increasing productivity has the most immediate effect for reducing both environmental and 

economic impact and targeting the respective established benchmarks.   

Another important aspect of the LCA results is the allocation of emissions between the 

two products in the fuels and co-products case. As outlined in the methods, the impacts of the 

cultivation and harvest modules are allocated based on the relative market value of the two 

products. As the value of methyl laurate increases, the impacts of the first two modules allocated 

to the fuel product decreases. The results for both cases are presented as the fuel impacts only, 

which allows for comparison between the two cases and also among other fuel studies in the 

field. The baseline methyl laurate impact is 3 g CO2-eq-MJ-1. This very low impact is credited to 

two main factors: first, the portions of the facility allocated between the two products include the 

cultivation module, which has the largest carbon uptake credit. Second, when it is treated as a co-

product, the methyl laurate does not incur a combustion impact like the fuels do, which must be 

included to complete the well-to-wheel system boundary. This further reduces methyl laurate’s 

impact compared to that of the fuel products. The implications of the economic allocation of 

emissions on the facility impacts are further discussed in section 4.2 of the results and 

discussion.  

2. Sensitivity Analysis Results 

A sensitivity analysis was run to determine which parameters were to be included in the 

MCA and to better understand the system dynamics. This involves varying each parameter ± 

50% individually and recording the relative change in the MFSP and GWP from baseline. The 

sensitivity results for the system up to 1% impact are shown in Figure 4 and Figure 5.  
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Figure 4: Facility-wide sensitivity assessment on MFSP. The lighter bars correspond to the fuels 
case, and the darker bars correspond to the fuels and co-product case. Positive green bars mean 
a decrease in that parameter leads to an increase in MFSP and vice versa. Likewise, positive 
blue bars mean an increase in that parameter corresponds to an increase in MFSP. Results are 
included for parameters with impacts greater than or equal to 1%, with those greater than or 
equal to 5% denoted with an asterisk.  



26 

Figure 5: Facility-wide sensitivity assessment on GWP. The lighter bars correspond to the fuels 
case and the darker bars to the fuels and co-product case. Positive red bars mean a decrease in 
that parameter leads to an increase in GWP and vice versa. Likewise, positive brown bars mean 
an increase in that parameter corresponds to an increase in GWP. Results are included for 
parameters with impacts greater than or equal to 1%, with those greater than or equal to 5% 
denoted with an asterisk.  

The most impactful parameters are process inputs, which are those inputs that are directly 

related to mass or energy, as opposed to expenses or life cycle inventory characterizations. The 

largest of these are related to cultivation – pond productivity, operation days, methyl laurate 

production ratio, CO2 utilization efficiency, and growth module CAPEX. Productivity (both of 

the biomass and methyl laurate) and operation days directly affect the amount of biomass, and 
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therefore fuels, that are generated by the system. Both MFSP and GWP are accounted for per 

fuel volume, so it is expected that these parameters have such large impacts on both the 

economic and environmental results. Also related to the cultivation module is CO2 utilization 

efficiency, which governs how much of the delivered CO2 is taken up by the ponds. Importantly, 

this does not have any bearing on the physical CO2 emissions from the facility – any off-gassed 

CO2 is attributed to the co-located source facility. The biorefinery facility only takes credit for 

the CO2 that is taken up, which is dependent on the carbon content of the biomass and therefore 

constant regardless of utilization efficiency. Utilization efficiency solely affects the volume of 

CO2 that must be delivered to the ponds; a decrease in utilization efficiency requires that more 

CO2 be delivered, increasing energy requirements, costs, and emissions. The importance of CO2 

utilization has been noted by many, particularly by Somers et al. who evaluated several CO2 

sources and delivery systems and quantified their impact on MFSP and GWP [42].   

The most impactful economic input is the market value of methyl laurate, which is 

present in both the economic and life cycle sensitivities due to the economic allocation method 

used for calculating GWP. As noted in section 1 of the results and discussion, the market value 

of methyl laurate has a potent effect on both the MFSP and GWP outcomes, especially when 

combined with changes in productivity. This effect is further demonstrated by the high positions 

of pond productivity, methyl laurate production ratio, and methyl laurate market value in the 

sensitivity analysis. Additional economic parameters include growth module CAPEX and 

electricity cost. Growth module CAPEX represents the pond construction and installation costs, 

which are some of the largest CAPEXs in the facility and their range is outlined in Davis et al. 

[15]. Electricity is one of the most prevalent consumables of the system, so it is expected that its 

cost is a high-impact variable. The NOAK financial parameters were not varied in this work – it 
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is already known that those parameters, especially internal rate of return, have very large impacts 

on the system economics [58]. Since these parameters are clearly defined by the NOAK 

assumptions, it was deemed unnecessary to investigate their variation or uncertainty.  

Another notable category of sensitive parameters is the LCIs associated with the 

individual consumables used by the system. Life cycle data is inherently variable due to the wide 

range of assumptions required for calculation and inventory and were included in the sensitivity 

to establish the influence of this variability on system outcomes. The most impactful shown in 

Figure 5 are those of electricity, natural gas, and hydrogen. Electricity and natural gas are two of 

the most widely-used consumables in the facility and hydrogen has a relatively large per-

kilogram individual impact. Therefore, it is expected that these are the most impactful of the 

LCIs.  

Of the most impactful parameters identified by the sensitivity analysis, there are two that 

were not included in the MCA: pond footprint and the number of days between pond harvesting. 

Pond footprint is the surface area of the biomass ponds and governs the amount of biomass 

produced as well as land purchased. Days between harvests are related to the semi-continuous 

pond harvest schedule and directly affect the volume of biomass harvested each day. Decreasing 

the days between harvest means smaller volumes are collected each day, reducing the energetic 

and cost demands of the downstream processing systems. Both of these parameters have been 

left out of the MCA because they are specific to the modeled facility and do not change once 

they have been chosen. That is, once the facility has been constructed and begins operation, the 

pond footprint and harvest schedule are not subject to change. While harvest schedule could 

hypothetically be adjusted seasonally, the current model is resolved at a yearly timescale and 

does not allow for seasonal changes in harvest schedule. Thus, these parameters are neither 
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variable nor uncertain and therefore are not necessary to include in the MCA. Furthermore, their 

inclusion would obscure the range of outcomes due to parameters that are truly variable or 

uncertain. This is consistent with guidance found in the literature [51].  

3. Techno-economic Analysis Results  

After the probabilistic input parameters and their distributions were chosen, the MCA 

process was carried out using the @RISK software. Parameters with 5% or greater impact on 

either the TEA or LCA results were replaced with probabilistic distributions based on 

experimental or literature data, and the model was simulated for 5,000 iterations. The TEA 

results for both product configurations are shown in Figure 6 and Figure 7. The TEA MCA 

results, presented as histograms, are compared to the non-stochastic scenario analysis estimates 

in Figure 6. Then, the per-module costs are shown in Figure 7, for the three scenario analysis 

estimates as well as the 5th and 95th percentile results from the MCA.  

The difference in shape between the two distributions in Figure 6 is due to the large range 

in methyl laurate market value. As discussed in section 1 and highlighted in Figure 4, the methyl 

laurate market value greatly affects the fuel selling price in the fuels and co-products case. This 

parameter widens the output range such that some scenarios have selling prices less than the 

fuels case, but most are still greater than the fuels case. The per-module breakdowns in Figure 7 

show similar results as Figure 4 – the cultivation and methyl laurate harvest modules dominate 

the economics across all scenarios.  
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Figure 6: MCA results for MFSP presented as a dual histogram, compared to the static 
estimates presented with points. The lighter histogram and shapes correspond to the case of 
methyl laurate being sold as biodiesel, while the darker histogram and shapes correspond to the 
case of methyl laurate being sold as an oleochemical co-product. The shapes denote the non-
stochastic (static) conservative, baseline and optimistic scenario estimates. The lines denote the 
empirical cumulative distribution function (eCDF), or cumulative frequency, which is equivalent 
to the empirical non-exceedance probability at the corresponding MFSP on the x-axis.  
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Figure 7: Facility breakdowns for CAPEX and OPEX for the baseline, optimistic, conservative, 
5th and 95th percentile scenarios. For scenarios with co-product credits, the net result is shown 
with a black diamond.  

 

3.1 Fuels case 

Comparison between the MCA and non-stochastic (static scenario) results is the first 

means of analysis presented in this work. The MCA results for the fuels case (Figure 6) show a 

large range in MFSP, between $1.21-L-1 ($4.55-gge-1) and $3.48-L-1 ($13.63-gge-1), with an 

average MCA result of $2.01-L-1 ($7.60-gge-1). The static scenario results suggest even a larger 

range, with respective optimistic and conservative results of $0.96-L-1 ($3.64-gge-1) and $4.67-L-

1 ($17.67-gge-1). These differences demonstrate the extreme compounding effect that scenario 

analysis has on the estimation of system outcomes. The 5th percentile in the fuels case varies 
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from the static baseline result by 19%, or 1.1 standard deviations. By contrast, the optimistic 

estimation varies from the static baseline by 49%, or 2.8 standard deviations. Even the minimum 

MCA result is just 2.0 standard deviations from the static baseline result (a 36% decrease). The 

effect is even more drastic in the conservative scenario, where the conservative estimate is 8.3 

standard deviations from the static baseline result (a 150% increase), while the 95th percentile 

varies by 2.2 standard deviations (a 40% increase). Further, the conservative estimate is 1.3 times 

greater than the MCA maximum result. The large separation between the conservative and 

optimistic static scenario estimations and the tails of the MCA results are entirely due to the 

compounding effect of static scenario analysis. The optimistic and conservative scenarios are 

non-stochastic, and all input parameters are set to their respective best and worst-case values. 

This scenario analysis is standard practice in the literature and results in both under- and over-

estimation of outcomes. The MCA reveals that it is extremely unlikely that all the best or worst 

values are randomly selected at the same time; this combination is never simulated by MCA, 

even in 10,000 iterations (refer to Figure A2 and Tables A5 and A6 for a comparison between 

the 5,000 and 10,000 iterations results).  

In addition to avoiding the compounding effect of scenario analysis, MCA offers more 

refined insights for meeting performance targets. The economic benchmark for parity with 

conventional fuels is $0.80-L-1 (3-gge-1). The MCA results on MFSP show that there is no 

iteration where the fuels scenario meets this benchmark. The approximate probability for 

meeting a more generous selling price of $1.32-L-1 ($5-gge-1) is 0.4%, which is estimated from 

the empirical non-exceedance probability, or the cumulative frequency. Investigating the 5th 

percentile result, considered to represent the minimum expected outcome, sheds light on the 

distance between current facility MFSP and economic targets. The 5th percentile scenario for the 
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fuels case is generated from several advantageous parameters: a high productivity of 13.9 g-m-2-

day-1, a methyl laurate productivity ratio (the ratio of methyl laurate production to the 

cyanobacteria biomass) of 0.44 g-g-1, and a bio-crude yield of 47%. The minimum scenario, with 

a MFSP of $1.21 ($4.59-gge-1), has a biomass productivity of 15.0 g-m-2-day-1, methyl laurate 

production ratio of 0.45 g-g-1, 53% bio-crude yield, and 359 operation days, all at the most 

advantageous end of their respective input distributions. Even with high productivities and 

operation days, the probability of meeting either economic target is very low – improvements to 

the parameters, shifting their respective input distributions to more advantageous ranges, is 

needed if economic parity is to be achieved.  

The minimum and 5th percentile scenarios demonstrate a well-established aspect of 

microalgae biofuels research – that pond productivity is one of the most impactful parameters on 

facility economics [14]. Keeping all other parameters at baseline, increasing pond productivity to 

25 g-m-2-day-1 brings the static baseline MFSP for the fuels case to $1.17-L-1 ($4.42-gge-1), and 

the estimated probability of meeting $0.80-L-1 increases from 0% to 0.02%. Adding to that a 

fixed methyl laurate production ratio of 0.5 g-g-1, the static baseline MFSP for the fuels case 

decreases by 47% to $1.01-L-1 ($3.84-gge-1), and the same probability increases to 0.2%. An 

even larger increase to 35 g-m-2-day-1 (with the average methyl laurate production ratio of 0.375 

g-g-1), yields a static baseline MFSP of $0.92-L-1 ($3.50-gge-1), a 51% decrease from the original 

baseline result. It is noted that this scenario produces similar results to that of a 25 g-m-2-day-1 

pond productivity and a methyl laurate production ratio of 0.5 g-g-1. This highlights a unique 

quality of cyanobacteria – economic parity can be targeted through more manageable 

improvements of both carbon pathways, instead of very large improvements to the biomass 

productivity alone.  
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Another important economic parameter highlighted in the 5th percentile and minimum 

iterations is bio-crude yield, which directly influences the volume of fuel produced. Thus, 

increases in yield lead to decreases in MFSP. The most cost-competitive outcomes (5th percentile 

or better) have bio-crude yields greater than 35%, and average yields of 48%. Bio-crude yield 

varies widely [46] and little research has been done on HTL with cyanobacterial biomass. Better 

defining this parameter would greatly benefit future sustainability studies.  

3.2 Fuels and co-product case  

The effect of static scenario analysis compared to the stochastic approach of MCA is 

demonstrated in similar fashion in this case as was described in the fuels case. The 5th percentile 

result ($1.35-L-1) is 1.2 standard deviations or a 39% decrease from the static baseline result. In 

comparison, the optimistic result (-$0.22-L-1) is 3.4 standard deviations away, a 110% decrease 

from the static baseline result. The minimum MCA result of $0.27-L-1 is an 87% decrease from 

the static baseline. Likewise, the conservative estimate ($7.73-L-1) is 7.5 standard deviations 

from the static baseline, a 246% increase, compared to the 95th percentile outcome ($3.74-L-1) at 

2.1 standard deviations, which is a 67% increase. The conservative estimate is two times larger 

than the 95th percentile result, and 1.4 times larger than the maximum MCA result. The fuels and 

co-product case has a larger range than the fuels case due to the large variation of the methyl 

laurate market value, which is not a factor in the fuels case. It is notable that the static baseline 

result, generated from the average input values, and the average output value of MCA are 

slightly different. This is due to the same phenomenon, with static combinations of inputs not 

precisely describing the stochastic outputs. However, these values are similar enough that the 

static baseline scenario is a reasonable representation of a central expected outcome for the 

purposes of investigating module-specific contributions.  
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The fuels and co-products case has better prospects for achieving economic parity than 

the fuels case due to the production of a high-value co-product. According to the MCA results, 

there is a 0.3% estimated probability of meeting the $0.80-L-1 ($3.00-gge-1) benchmark for the 

co-product case. This probability increases to 4.5% for a target of $1.32-L-1 ($5-gge-1). In a 

similar analysis to the fuels case, the 5th percentile and minimum MCA results yield insights to 

targets for the various input parameters towards meeting economic goals. The 5th percentile 

outcome is generated from a productivity of 14.0 g-m-2-day-1, a methyl laurate production ratio 

of 0.41 g-g-1, bio-crude yield of 36%, 333 operation days, and a methyl laurate market value of 

$2.10-kg-1. The minimum outcome has similarly high productivities of 14.9 g-m-2-day-1 and 0.48 

g-g-1, bio-crude yield of 45%, 340 operation days, and a methyl laurate value of $2.51-kg-1. 

Outcomes with fuel selling prices of $0.80-L-1 or less have average pond productivities of 14.2 

g-m-2-day-1, methyl laurate production ratios of 0.47 g-g-1, 45% bio-crude yield, 332 operation 

days, and methyl laurate market values of $2.53-kg-1. Importantly, fuel selling price outcomes 

less than or equal to $0.80-L-1 that have a low value for one parameter have advantageous values 

for the other parameters.  

As noted in section 1 and in the results described above, pond productivities are the most 

important parameter to leverage for targeting economic parity. An increase in average 

productivity to 25 g-m-2-day-1 yields a static baseline MFSP of $0.89-L-1 ($3.39-gge-1) and the 

probability of meeting the $0.80-L-1 benchmark increases to 32%. An additional increase in the 

methyl laurate production ratio to 0.5 g-g-1 decreases the baseline MFSP by 79% to $0.47-L-1 

($1.79-gge-1), and the probability increases to 65%. While the fuels case is highly unlikely to 

meet the economic benchmark, even with very large increases to the productivity of both 

products, the fuels and co-products case becomes much more advantageous with the same 
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increases. Setting the baseline productivity to 35 g-m-2-day-1 (and maintaining the original 

baseline methyl laurate production ratio) yields a static baseline MFSP of $0.44-L-1 ($1.67-gge-

1), an 80% decrease from the original baseline result. Like the fuels case, this scenario is very 

similar to the one described before (25 g-m-1-day-1 pond productivity and 0.5 g-g-1 methyl laurate 

production ratio), demonstrating the unique benefit of cyanobacteria with secreted products. This 

productivity analysis is consistent with Somers and Quinn [42] and Cruce et al. [14], who find 

that such increases yield much more advantageous MFSPs and are crucial for achieving 

economic parity with fossil fuels. 

Bio-crude yield also affects facility economics, but to a lesser extent than the fuels case. 

The 5th percentile or better outcomes are generated from average bio-crude yields of 45%, 

although yields across the full input range are present. Regardless, as demonstrated by the 

sensitivity analysis results in section 2, bio-crude yield is an impactful parameter that should be 

more precisely defined by future studies.  

The principal conclusions highlighted by these results address both modeling methods 

and improvements towards sustainability targets. First, while static scenario analysis can be 

useful for a preliminary approach to addressing system variability, simulating a random 

combination of scenarios via MCA is a far more realistic portrait of system outcomes. Static 

scenarios should at most be considered extreme bounds of the expected outcomes, and should 

not be cited as results one should expect in application of the modeled technology. Second, 

increases in productivity are absolutely imperative for achieving economic feasibility. 

Encouragingly, cyanobacteria pose an opportunity for bio-engineering more moderate 

improvements to both biomass productivity and secreted volumes that achieve similar targets as 

microalgae with very ambitious improvements to biomass productivity alone. Other important 
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input parameters include bio-crude yield and methyl laurate market value – both of which have 

meaningful effects on the system economics. More refined data are needed in order to better 

define their ranges.   

4. Life Cycle Assessment Results 

The MCA on GWP was run with the same probabilistic inputs for process parameters as 

the TEA, which are outlined in Tables A2, A3 and A4 of the supplementary information. The 

economic and environmental results are produced with the same MCA iterations, so each 

economic result in Figure 6 has a complimentary environmental result in Figure 8. The 

histogram of MCA results is shown in Figure 8, which also includes points for the static 

conservative, baseline and optimistic scenario results for each case. The per-module facility 

results for the 5th and 95th percentile MCA results and the three static scenario analyses are 

shown in Figure 9.  

The shapes of the distributions for the two cases in Figure 8 are very similar as the 

methyl laurate market value has a much smaller impact on the environmental results than the 

economic. Thus, the two systems have nearly the same shape, and the fuels and co-products case 

outcomes are shifted approximately 20 g CO2-eq-MJ-1 higher due to the economic allocation of 

impacts and the reduced volume of fuels being produced. The per-module results for the 

illustrated scenarios reflect that of the baseline results shown in Figure 3 – methyl laurate harvest 

and HTL conversion account for a large part of the burden after the combustion of the fuel 

products. These are partially offset by large carbon uptake credits from the CO2 absorbed by the 

pond.  

The difference in the MCA tails and the optimistic and conservative scenario estimates 

are slightly less pronounced in the LCA compared to the TEA. Put simply, the LCA is less 
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sensitive than the TEA, and therefore undergoes smaller changes with the same variation on 

inputs. This is because LCA methodology only addresses operational consumables, analogous to 

the OPEX in the TEA. However, there is no equivalent to CAPEX in the LCA. While embedded 

emissions of the various equipment throughout the facility can be considered, they were not 

included in the scope of this study as they are expected to be small when amortized over the 30-

year life of the system. Because of this, the LCA results are inherently less sensitive, and 

therefore have less extreme distances between the tails of MCA and the static scenario estimates, 

especially on the optimistic side of the distribution.  

 

Figure 8: MCA results for GWP in the histogram, compared to the static estimates, illustrated 
with shapes. The lighter histogram and shapes correspond to the fuels case, and the darker 
histogram and shapes correspond to the fuels and co-products case. The optimistic, baseline, 
and conservative static scenario estimates are represented with triangles, circles and diamonds, 
respectively. The lines denote the empirical cumulative distribution function (eCDF), or 
cumulative frequency, which is equivalent to the empirical non-exceedance probability at the 
corresponding MFSP on the x-axis. 
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Figure 9: Facility breakdown of GWP, with the net results represented with the black diamonds. 
The dashed red line represents the renewable fuel standard (RFS), which is half the GWP of 
petroleum at 45 g-CO2-eq-MJ-1.  

 

4.1 Fuels case  

The static optimistic result (61 g CO2-eq-MJ-1) is 2.2 standard deviations from the static 

baseline result of 98 g CO2-eq-MJ-1, or a 38% decrease. In comparison, the 5th percentile result 

(75 g CO2-eq-MJ-1) is a 23% decrease from the baseline, and the minimum result (59 g CO2-eq-

MJ-1) is a 39% decrease. Likewise, the static conservative result of 222 g CO2-eq-MJ-1 is 7.5 

standard deviations from the static baseline result, a 127% increase. The 95th percentile result 

(130 g CO2-eq-MJ-1) is only a 33% increase from the static baseline result, while the maximum 
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MCA result (175 g CO2-eq-MJ-1) is a 79% increase. These relative differences are similar to 

those of the TEA, especially on the conservative side of the histogram. 

It is important to note that the 5th and 95th percentile results for the LCA do not occur 

under the same set of input values as the TEA. The 5th percentile MFSP for the fuels case 

corresponds with the approximate 51st percentile LCA result and the 95th MFSP result 

corresponds with the approximate 98th percentile LCA result. Reversed, the inputs generating the 

5th percentile GWP result yield approximately the 10th percentile MFSP result and those 

associated with the 95th percentile GWP generate the approximate 99th percentile MFSP result. In 

general, what is expensive is also energetically intensive and is linked with larger environmental 

burdens. However, certain parameters such as methyl laurate market value or electricity cost can 

reduce the MFSP while the GWP remains high.  

The renewable fuel standard is a GWP of 45 g CO2-eq-MJ-1, which is half that of 

petroleum [57]. The results show there is no outcome that currently meets the renewable fuel 

standard for this case. The lowest 5% of results, which have GWPs of 59 to 75 g CO2-eq-MJ-1 for 

the fuels case, have average productivities of 14 g-m-2day-1 and methyl laurate production ratios 

of 0.45 g-g-1, both at the upper end of their input ranges. As demonstrated in the economic results 

and other work, high productivities have a decreasing effect on the environmental impacts [14]. 

Increasing the baseline productivity to 25 g-m-2day-1 brings the environmental impact to 62 g 

CO2-eq-MJ-1 (a 36% decrease), and an additional increase to the baseline methyl laurate 

production ratio to 0.5 g-g-1, brings the fuels footprint to 55 g CO2-eq-MJ-1 (a 44% decrease). An 

increase in productivity to 35 g-m-2-day-1, keeping the methyl laurate production ratio at 

baseline, results in a GWP of 50 g CO2-eq-MJ-1, which is just over half the original baseline 

GWP. The same effect is present as in the TEA – large increases to productivity alone have 
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similar resulting gains as more moderate increases to that of both the biomass and secreted 

product. While these improvements bring the footprint below that of petroleum’s (90 g CO2-eq-

MJ-1), they are not sufficient for meeting the RFS.  

Another impactful parameter to the facility environmental impact is carbon utilization, 

which has a slightly stronger effect on the environmental results than the economic ones. The 

lowest 5% of the GWP for both cases have average utilization rates of 25%, slightly higher than 

the average utilization efficiency input. CO2 is the primary feedstock to the growth ponds, and 

current utilization rates are between 20% and 40%. Notably, energy requirements, and therefore 

environmental impact, do not increase linearly with off-gassing. As utilization rate decreases, 

especially below 10%, the energy requirement to deliver adequate carbon increases 

exponentially, impacting both the environmental and economic impacts. Utilization efficiency is 

not well-defined in the literature, with assumptions ranging from 0% [32] to 90% [15], [42]. 

According to this model, rates of at least 20% should be targeted for improved fuel impacts.   

Bio-crude yield impacts the environmental and economic results differently – while 

increases in yield correspond with decreases in MFSP, they have the opposite effect on GWP. 

An increase in bio-crude yield increases the fuel yield and the amount of carbon released from 

combustion, making the GWP of the facility larger. Further, as yield decreases, the aqueous 

material returned to the ponds increases, increasing the carbon credit for recycled nutrients. For 

the lowest 5% GWP, average yields for both cases (37% and 42%) are lower than those of the 

lowest 5% of MFSP results, where bio-crude yield rates were generally at the higher end of the 

simulated range. This is also why the distances between the static optimistic and the minimum 

MCA results are much smaller in both cases – the optimistic and conservative bio-crude yields 

are opposite for the TEA and LCA. Setting the optimistic bio-crude yield input to the 
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conservative value (30%) decreases the optimistic scenario result to 49 g CO2-eq-MJ-1, a 19% 

decrease from the original optimistic result. This change also widens the percent change from the 

static baseline result to 50%. Practically, this result is uncomplicated – the more fuels are 

produced and combusted, the higher the GWP will be. However, this is a compelling result that 

highlights the trade-off between economic feasibility and environmental burden. Incorporating 

policies such as financial credits for carbon uptake can likely help alleviate this conflict between 

economic and environmental impacts, although investigating those implications were outside the 

scope of this work. 

4.2 Fuels and co-product case  

In a similar analysis to the fuels case, the static conservative estimate (249 g CO2-eq-MJ-

1) is 7.9 standard deviations or a 117% increase from the static baseline result. This is compared 

to that of the 95th percentile result (148 g CO2-eq-MJ-1) which is 1.9 standard deviations away, or 

a 29% increase from the static baseline result. The distance between the static optimistic result 

(87 g CO2-eq-MJ-1) and the static baseline result is just 1.6 standard deviations, equivalent to a 

24% decrease. The 5th percentile result (93 g CO2-eq-MJ-1) is similar, 1.3 standard deviations 

from the baseline and a 19% decrease. The distance between the optimistic and 5th percentile 

results and the baseline scenario is much smaller than that of the conservative and 95th percentile 

results – this is due to the economic allocation methodology, discussed later in this section.  

Similar to the fuels results, none of the simulated scenarios meet the renewable fuel 

standard of 45 g CO2-eq-MJ-1. The lowest 5% of results, with GWPs of 77 to 93 g CO2-eq-MJ-1, 

have the same average productivities as the fuels case: approximately 14 g-m-2day-1 pond 

productivity and methyl laurate production ratios of 0.45 g-g-1. Bringing the baseline 

productivity to 25 g-m-2day-1 decreases the environmental impact by 32% to 78 g CO2-eq-MJ-1. 
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Adding to that an approximate 50% methyl laurate production ratio increase to 0.5 g-g-1 brings 

the fuels footprint to 74 g CO2-eq-MJ-1 for the fuels and co-products case. A large (61%) 

increase in biomass productivity to 35 g-m-2-day-1 brings the fuels footprint to 66 g CO2-eq-MJ-1, 

a 42% decrease from the original baseline. This is a larger difference from the 25 g-m2-day-1 and 

0.5 g-g-1 combination because increasing the biomass productivity creates a larger relative fuel 

yield when the methyl laurate is being treated as a co-product. Therefore, there are larger gains 

between these two scenarios than when the methyl laurate is being treated as a fuel product.   

The methyl laurate market value is the only economic parameter with bearing in the 

GWP calculation for the fuels and co-product case, due to the economic allocation method for 

the assignment of emissions to the two products. As described in section 3 of the methods, the 

impacts of the cultivation and harvest modules are assigned to the two products according to 

their economic value. This allocation method is generally most advantageous for the fuels’ 

footprint when the methyl laurate has a higher economic value. In the lowest 5% of the GWP 

results for the fuels and co-product case, the average methyl laurate market value is $1.52-kg-1, 

while the value of the fuel products is $1-kg-1 ($3-gge-1). Increasing the methyl laurate market 

value returns small gains in GWP: a value of $3-kg-1 negligibly decreases the fuels footprint to 

114 g CO2-eq-MJ-1, while the methyl laurate footprint increases to 4 g CO2-eq-MJ-1 to 

compensate. The methyl laurate market value has limited effect on the GWP of the fuels, since 

the portion of the facility being allocated is almost completely off-set by the carbon uptake. After 

accounting for the carbon uptake credit, the downstream processing modules make up the largest 

portion of the emissions and are totally allocated to the fuels. Thus, the fuels take on a majority 

of the facility emissions, regardless of the methyl laurate market value. This is confirmed by the 
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fact that the methyl laurate market value has just a 1% impact on GWP, according to the 

sensitivity analysis.  

Despite the small effect of the methyl laurate economic value on the GWP outcomes, it is 

important to discuss the implications of emissions allocation in this work. Emissions allocation is 

a complex aspect of LCA in biorefining systems that produce a concurrent non-fuel co-product – 

it is impossible to know the true impact of the product unless its entire life cycle is known. For a 

facility producing an oleochemical that can be used in any number of processes or products, 

prescribing its end uses, disposal and lifetime is not possible. Allocation methods attempt to 

remedy this issue by assigning proportions of facility impacts to the various products according 

to either their mass, energy content, or economic value. Economic allocation has been chosen to 

account for the products’ respective impacts, which decreases the fuels impact as the economic 

value of the methyl laurate increases. As the co-product’s value increases, it takes on a larger 

portion of the facility’s burdens, effectively decreasing the fuels impact. This relationship 

reverses when the facility impacts are net negative (before combustion of the fuel products), such 

as in the case of large uptake credits for high carbon utilization rates and biomass productivities. 

In that case, as the co-product value increases and the portion of impacts allocated to the fuels 

decreases, the fuels impact increases. Reversed, for a low co-product value that allocates more of 

the burden to the fuels, the fuels impact decreases since the “burden” is in fact negative. While 

this is mathematically consistent, the method breaks down conceptually. Effectively, this 

relationship is suggesting that the best practice in the case of a net-negative facility emissions is 

to sell the co-product for as little as possible, which results in the lowest possible impact for the 

fuels. This is backward from what high-value co-products usually achieve. This result is more an 

artifact of the allocation method than it is a reflection of the realistic impacts of either product. 
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Further, LCA allocation is an imperfect, hypothetical way of assigning impacts and is not well-

suited to facility scenarios with net-negative impacts. While allocation cannot often be avoided 

altogether, it has the potential to obscure the true amount of emissions. Therefore, transparent 

reporting of the original facility emissions and the applied allocation methods is of utmost 

importance.  

To summarize the LCA results, while the fuels case gets closer to the RFS than the fuels 

and co-products case, neither product configuration meets it, illustrating that meeting 

environmental benchmarks poses an even larger challenge to cyanobacterial biofuels than 

achieving economic parity. Furthermore, the LCA results are less sensitive than the TEA, so 

reducing facility emissions towards the RFS will require more systemic adjustments rather than 

point-source improvements. For example, targeting a facility run partially or completely on clean 

energy would be much more effective than specific parameter improvements. Even so, 

productivity increases to both the biomass and the secreted methyl laurate are worth pursuing 

considering their shared significant effects on the environmental and economic impacts of the 

facility.   

5. Discussion of MCA methodology  

While software such as @RISK make executing MCA relatively straightforward, it 

cannot guarantee that the input data are sufficient for an adequate reflection of the system. It is 

the user’s responsibility to ensure that the input distributions being applied are adequately 

reflecting the input parameters, which is ultimately dependent on data availability. The 

distribution fitting tool in @RISK compares multiple fitting criteria and allows the user to select 

fitted distributions to a given data set based on method. However, the tool is only as accurate as 

the data set being used as a basis. Without adequate data, the chosen probability distribution will 
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almost certainly be inaccurate. Data should both be relevant and in high enough supply – sample 

sizes must be large enough to extract meaningful statistics.  

While input distributions generated from large data sets are ideal, that is simply not an 

option for many aspects of the first of a kind technology inherent in the process modeling of 

algae biorefining. It is in these cases that less specific input distributions be employed, such as 

triangular and uniform distributions, which are better suited to parameters with limited to no 

data. The present study uses uniform distributions for process inputs that do not have sufficient 

experimental data, which assume all values in the range have equal probability. Where possible, 

efforts should be made to survey available data and generate meaningful input distributions. 

However, assigning uniform distributions to every parameter still avoids the compounding issue 

of scenario analysis. As this study has demonstrated, the conservative scenario for TEA can be 

up to twice as large as the 95th percentile result, with similar trends on the optimistic side. The 

same trend is observed for the LCA results, but to a lesser extent. Avoiding this compounding 

effect will surely lead to more realistic and informative results going forward.  

The MCA in this work was heavily based on the results of the sensitivity analysis. As 

described in section 4.1, inputs highlighted by the sensitivity as high-impact were given 

probabilistic input distributions. Importantly, these parameters were identified via a first-order 

analysis that captured the impacts of individual parameters but not the interactions between 

parameters. Capturing the latter form of sensitivity requires a global sensitivity analysis, or an 

“all-[factors]-at-a-time” approach, as described by Pianosi, et al. [30]. This type of sensitivity 

analysis is a more complex approach that can highlight additional parameters not captured by the 

local sensitivity analysis. Integrating second-order sensitivity analysis was outside the scope of 

this work, and it is reasonable to assume that the majority of impactful parameters were captured 
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in the first-order sensitivity. However, second-order sensitivity should be included in future work 

to ensure that all influential parameters, both local and global, are being given probabilistic input 

distributions in the MCA.  
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CONCLUSIONS 

The present study evaluates the environmental impact and economic feasibility of a 

cyanobacteria-to-products facility that generates fuels and a methyl laurate oleochemical. The 

economic and environmental outcomes are first limited by productivity. Increases in both 

biomass and methyl laurate productivities would greatly benefit the system toward meeting the 

$0.80-L-1 benchmark and reducing the GWP of the fuels. The environmental burden is also 

disadvantaged by the high off-gassing of delivered CO2, increasing an already energetically 

intensive process. Finally, the bio-crude yield oppositely affects the economic and environmental 

outcomes, with increases correlated with decreases in MFSP but increases in GWP. Higher 

productivity rates could potentially offset incremental increases in bio-crude yield in favor of 

more feasible MFSP and GWP.  

There are two methodological findings of this study. First, that MCA is a useful 

alternative for addressing variability and uncertainty that avoids the maximization and 

minimization of static scenario analysis. It is reasonably straightforward to implement, and while 

using many or all uniform distributions sacrifices some of the probabilistic information, it is still 

a more realistic portrait of the facility outcomes than a non-stochastic analysis. Additionally, 

more specific probability distributions should be informed with adequate data. The second 

methodological finding is that LCA allocation methods are not well-suited to net-negative 

facility emissions. They should be avoided when possible and applied transparently when 

necessary.   
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APPENDIX A: SUPPLEMENTARY INFORMATION 

Life Cycle Allocation Methods  

 

 
Figure A1: LCA allocation boundaries, where modules 100 (Cultivation), 200 (Harvest) and 500 
(Storage) are allocated according to product economic value, and modules 300 (Dewater) and 
400 (Conversion) are associated completely with the fuels.  

 

Table A1: Results of mass and energetic allocation for 5th percentile, baseline, and 95th 
percentile scenarios.  

 Mass allocation Economic allocation 

 5th percentile – baseline – 95th percentile 

Portion of impacts allocated to fuels 51% – 63% – 71% 52% – 54% – 51% 

Portion of impacts allocated to 
methyl laurate 

49% – 38% – 29% 48% – 46% – 49% 

Fuels GWP (g CO2-eq/MJ) 94 – 115 – 161 93 – 115 – 148 

Methyl Laurate GWP (g CO2-
eq/MJ) 

-15 – 3 – 23 -14 – 3 – 38 
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Input Probability Distributions 

 

Table A2: Probability distribution parameters for inputs related to overall process mass and energy. 

Parameter 

(units) 

Chosen 

Distribution 
μ Min Max 

Most 

Likely 
Source Notes 

Pond productivity  

(g-m-2day-1) 
Uniform 13.5 12 15  [S1] 

Pérez-López uses uniform for 

algal yield 

Methyl laurate 

production ratio 
Uniform 0.375 0.25 0.33  [S1] 

Pérez-López uses uniform for 

biomass composition, which is 

analogous to secreted product 

Mixer-settler energy 

requirement  

(kW-m-3) 

Uniform 0.07 0.04 0.1  [S2] 

No information as to which 

value is more likely, only a 

range is given. 

Dodecane concentration  

(L-L-1) 
Uniform 0.001 0.0009 0.0011   

FOAK uncertainty variable – 

vary by 10% 

Flue gas purity Uniform 98.5% 97% 100%  
@RISK fitting 

tool, [S3] 

Applied uniform distribution to 

range found in referenced 

source 

CO2 utilization rate 

(%) 
Triangular 33% 10% 40% 20% [S1] 

Pérez-López uses triangular for 

carbon sequestration but much 

lower, min of 0% max of 16% 

Biocrude yield from 

HTL  

(%) 

Triangular 40% 30% 60% 30% 
@RISK fitting 

tool, [S4], [S5] 

@Risk distribution fit to data 

found in literature, range 

directly matches Chen and 

Quinn 2021. 

Operation days  

(days-yr-1) 
Triangular 320 232 364 364 

@RISK fitting 

tool, [S6] 

Used @risk fitting tool on 

average productivity for the 

Southern US. 
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Table A3: Probability distribution parameters for economic inputs. 

Parameter 

(units) 

Chosen 

Distribution 
μ Min Max 

Most 

Likely 
Source Notes 

Growth module 

CAPEX 
Triangular $3.2M $1.8M $6.0M $1.8M [S7] 

Used @Risk to fit a 

distribution to pond CAPEX 

in Davis et al. 2016 

Electricity cost  

(cts-kWh-1) 
Triangular 6.73 6.39 7.01 6.79 [S1]  

Methyl laurate 

market value  

($-kg-1) 

Triangular $1.78 $0.85 $3.00 $1.50 [S8], [S9] 

Abbas et al. methyl laurate 

and diesel prices from EIA are 

similar, used @Risk to fit a 

distribution to diesel prices 

from 2005 - 2020 
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Table A4: Probability distribution parameters for life cycle characterization inputs in kg-CO2-eq-FU-1. 

Parameter 

(units) 

Chosen 

Distribution 
μ Min Max σ Shift γ β α Source Notes 

Hydrogen LCI 

(kg H2)  
Uniform 10.9 12.9 8.9      [S10] 

Cites the range 8.9 – 

12.9 for hydrogen 

production, doesn’t 
give proabilistic 

information 

Electricity LCI  

(kWh)  
Loglogistic      0.53 0.121 6 [S1] 

Same underlying 

distributions as Pérez-

López, different central 

values as determined 

from ecoinvent 

Natural gas LCI  

(MJ)  
Lognormal 0.01625   0.01625 0.15    [S1] 
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Monte Carlo Analysis methodology 

 

 

Figure A2: This dual histogram shows results for the MCA run with 5,000 iterations in dark grey 
and with 10,000 iterations in light grey. They have the same mean results and very similar 
spread and skew. This suggests that the chosen iteration number of 5,000 is sufficient.  
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Figure A3: The dual histogram shows the MCA results for MFSP (top) and GWP (bottom) for 

the fuels case (left) and fuels + co-product case (right) for inclusion of parameters with at least 

5% sensitivity impacts in light blue and 1% in dark blue. They have almost the same shape, with 

very similar mean results, standard deviation and skew. This suggests the choice to include 

parameters with at least 5% sensitivity impacts was sufficient.  
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Table A5: Summary statistics for the MCA results on TEA in $-L-1 for three combinations of 

MCA run parameters including selection criteria including 1% impacts and 10,000 iterations. 

These are compared to the presented results, which are generated by including parameters with 

5% or greater sensitivity impact and an MCA run of 5,000 iterations. 

 Parameter 
≥5% impacts 

5,000 iterations 
≥5% impacts 

10,000 iterations 
≥1% impacts 

5,000 iterations 

F
u

el
s 

Mean  $2.01 $2.01 $2.02 

Standard Deviation $0.34 $0.34 $0.34 

Skewness 0.5961 0.5779 0.5701 

5th percentile $1.52 $1.51 $1.53 

95th percentile $2.62 $2.61 $2.65 

F
u

el
s 

+
 c

o
-p

ro
d

u
ct

 Mean  $2.47 $2.47 $2.50 

Standard Deviation $0.73 $0.71 $0.72 

Skewness 0.3854 0.5701 0.2898 

5th percentile $1.35 $1.38 $1.36 

95th percentile  $3.74 $3.70 $3.77 

 

Table A6: Summary statistics for the MCA results for three combinations of MCA run 

parameters including selection criteria including 1% impacts and 10,000 iterations. These are 

compared to the presented results, which are generated by including parameters with 5% or 

greater sensitivity impact and an MCA run of 5,000 iterations.  

 Parameter 
≥5% impacts 

5,000 iterations 
≥5% impacts 

10,000 iterations 
≥1% impacts 

5,000 iterations 

F
u

el
s 

Mean 100 100 100 

Standard Deviation 16.6 16.9 16.7 

Skewness 0.4166 0.4430 0.4227 

5th percentile 75 75 73 

95th percentile 130 130 173 

F
u

el
s 

+
 c

o
-p

ro
d

u
ct

 Mean 118 118 118 

Standard Deviation 17.0 17.0 15.6 

Skewness 0.5705 0.5862 0.4255 

5th percentile 93 93 95 

95th percentile  148 148 145 

 



64 

Supplementary Information References  

 

[A1] P. Pérez-López, M. Montazeri, G. Feijoo, M. T. Moreira, and M. J. Eckelman, 

“Integrating uncertainties to the combined environmental and economic assessment of 

algal biorefineries: A Monte Carlo approach,” Sci. Total Environ., vol. 626, pp. 762–775, 

2018. 

[A2] G. Towler and R. Sinnott, Chemical Engineering and Design: Principles, Practice and 

Economics of Plant and Process Design, 2nd ed. Waltham, MA: Butterworth-Heinemann, 

Elsevier Ltd., 2013. 

[A3] G. Last and M. Schmick, “Identification and Selection of Major Carbon Dioxide Stream 

Compositions,” no. June, p. 38, 2011. 

[A4] P. H. Chen and J. C. Quinn, “Microalgae to biofuels through hydrothermal liquefaction: 

Open-source techno-economic analysis and life cycle assessment,” Appl. Energy, vol. 289, 

no. February, p. 116613, 2021. 

[A5] Y. Hu, M. Gong, S. Feng, C. (Charles) Xu, and A. Bassi, “A review of recent 

developments of pre-treatment technologies and hydrothermal liquefaction of microalgae 

for bio-crude oil production,” Renew. Sustain. Energy Rev., vol. 101, no. December 2018, 

pp. 476–492, 2019. 

[A6] J. M. Greene, D. Quiroz, S. Compton, P. J. Lammers, and J. C. Quinn, “A validated 

thermal and biological model for predicting algal productivity in large scale outdoor 

cultivation systems,” Algal Res., vol. 54, no. January, p. 102224, 2021. 

[A7] R. Davis, J. Markham, C. Kinchin, N. Grundl, E. Tan, and D. Humbird, “Process Design 

and Economics for the Production of Algal Biomass: Algal Biomass Production in Open 

Pond Systems and Processing Through Dewatering for Downstream Conversion,” Natl. 



65 

Renew. Energy Lab., no. February, p. 128, 2016. 

[A8] S. K. Abbas, A. M. Belal, S. I. Bushrah, and W. Adeebah, “Production of 60,000 mtpa of 

oleochemical methyl ester from rbd palm kernel oil,” no. December 2015, 2016. 

[A9] U.S. Energy Information Administration, “EIA: Independent Statistics and Analysis: 

Petroleum and other liquids,” 2021. [Online]. Available: 

https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMA_EPD2D_PWG_N

US_DPG&f=M. [Accessed: 03-Sep-2021]. 

[A10] A. Mehmeti, A. Angelis-Dimakis, G. Arampatzis, S. J. McPhail, and S. Ulgiati, “Life 

cycle assessment and water footprint of hydrogen production methods: From conventional 

to emerging technologies,” Environ. - MDPI, vol. 5, no. 2, pp. 1–19, 2018. 

 


