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ABSTRACT 

INVISCID DISTURBANCE DYNAMICS IN BAROTROPIC SHEAR FLOWS 

The inviscid nature of disturbance evolution in shear flows is investigated as an initial-value 

problem within the framework of nondivergent vorticity dynamics. To ensure a basic understanding 

of physical processes, disturbance evolution is first considered in a rectilinear system of simple 

shear. Particular emphasis is placed on identifying how the disturbance evolution depends on the 

zonal wavenumber and on the meridional structure of the initial conditions. 

Insight acquired from t.he rectilinear problem is then applied to a bounded Rankine vortex. 

Here, the dependency of disturbance evolution on the azimuthal wavenumber is of special interest. 

Recent development of a low-frequency balance theory for rapidly rotating vortices has provided 

observational evidence that the low azimuthal wavenumber asymmetries, especially wavenumber one, 

are dominant in the near-vortex region. The results of this work provide further theoretical evidence 

of an inviscid waven mber selection mechanism that preferentially damps the higher wavenumber 

asymmetries. 

The radial structure and location of the initial conditions are found to be critical factors in 

determining how rapidly a disturbance is compressed or elongated. This in turn controls the rate 

of disturbance growth or decay. For swirling flows, a definition of an effective shear that accounts 

for both the radial variations in the initial conditions as well as the radial variation in the angular 

velocity is proposed. Using the reciprocal of this effective shear, time scales for a disturbance to 

decay to half its initial energy, the half-life time, are calculated for initial conditions and symmetric 

wind profiles that are found in hurricanes. 
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Simple shear flow and the bounded Rankine vortex do not admit discrete modal solutions since 

there is no mean state vorticity gradient to support them. The unbounded Rankine vortex is briefly 

considered in order to inveEtigate how the presence of discrete neutral modes modifies the nonmodal 

solutions presented in this work. 
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CHAPTER 1 

INTRODUCTION 

Intense vortices observed in the atmosphere and ocean exhibit a high degree of axisymmetry, 

although they are subject to persistent asymmetric forcing. In hurricanes, the interaction between 

the vortex and environmental asymmetries has implications for spiral band dynamics (Willoughby, 

1977; Guinn and Schubert, 1993) , intensification (or weakening) processes (Molinari, 1992), and 

storm motion (Shapiro and Ooyama, 1990; Shapiro, 1992; and Smith and Weber, 1993). Thus, 

understanding the asymmetric dynamics of intense vortices is critical for understanding the physical 

mechanisms controlling vortex evolut ion. 

Until recently, the full primitive equations have been the favored tool for investigating the three-

dimensional asymmetric dynamics of intense vortices. Formulation of a low-frequency balance theory, 

in which high-frequency gravity and inertial waves are filtered while retaining the pertinent aspects of 

advection, is complicated for rapidly rotating vortices since the time scale of the tangential advection 

is comparable to that of the gravity and inertial waves on the vortex. Shapiro and Montgomery 

(1993, hereafter SM) proposed a three-dimensional asymmetric balance (AB) theory that includes 

the full inertial effects of the rapidly rotating region while filtering the gravity and inertial waves. 

In the vortex environment, AB theory reduces to the quasi-geostrophic balance theory. In the 

absence of asymmetries, AB theory reduces to Eliassen's axisymmetric balance model (Eliassen, 

1951) throughout the vortex. 

SM were able to separate the advective processes from the inertial and gravity waves by defining 

a local Rossby number that accounted for the varying rotation in an intense vortex. This local 

Rossby number was given as the ratio of the orbital frequency to the inertial frequency multiplied 

by the azimuthal wavenumber. Based on observations from Hurricane Gloria (1985), SM showed 

that the square of the local Rossby number is generally less than unity only for wavenumber one 
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in the rapidly rotating region of an intense vortex. A goal in this work is to further explore the 

wavenumber selection mechanism that provides the basis for AB theory. 

To aid in understanding the fundamental physical processes of axisymmetrization, previous 

works using quasi-geostrophic shallow water models and nondivergent barotropic models are now 

reviewed. Melander et al. (1987) studied the axisymmetrization in a quasi-geostrophic shallow water 

model using a pseudospectral formulation. The model was initialized using finite-amplitude elliptical 

vortices with modified 'tophat ' radial profiles. In that paper, a..xisymmetrization was identified 

with the shedding of vorticity filaments outside the nearly axisymmetric vortex core. Rather than 

decompose the results into radial and azimuthal components, t e vortex evolution was diagnosed 

by plotting the aspect ratio of vorticity isolines as a function of time. At early times (t less than 

a few orbital periods) , all aspect ratios decreased towards unity and then began small-amplitude 

oscillations. Melander et al. identified this initial transition with axisymmetrization. 

For the majority of cases they considered, representation of dissipative processes at small scales 

was parameterized using a hyperviscosity formulation in the potential vorticity evolution equation. 

This could conceivably have played a role in the axisymmetrization process. However, by increasing 

the value of the hyperviscosity used in their model, Melander et al . convincingly demonstrated the 

inviscid nature of the axisymmetrization process. 

In a complementary approach, McCalpin (1987) used a reduced-gravity quasi-geostrophic model 

to study axisymmetrization in Gulf Stream rings. The vortex model consisted of finite-amplitude 

azimuthal mode 2 or mode 3 perturbations superposed on an axisymmetric Gaussian basic state. 

McCalpin found that nearly all of the perturbation energy was transferred to the basic state on time 

scales on the order of an orbital period. While only weakly dependent on the perturbation strength, 

the decay time scales were found to be strongly dependent on the strength of the mean fl.ow and the 

azimuthal wavenumber. In particular, the decay time scale for wavenumber three was found to be 

60% faster than that of wavenumber two. 

Like Melander et al., McCalpin parameterized dissipative processes with a hyperviscosity for-

mulation. However, he provided only a limited discussion regarding the effects of diffusion on the 
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symmetrization process. McCalpin calculated a diffusion time scale that appears to be based on 

L 4 /AB , where L is the characteristic horizontal scale and AB is the hyperviscosity coefficient. For 

deformation radius scale waves, his iffusion time scale was found to be 80 years. However, since 

the differential rotation in the vortex rapidly reduces the radial scale of the asymmetries (SM; also 

Sutyrin, 1989), one must not neglect this effect when estimating the diffusion time scale. 

In terms of McCalpin 's model parameters, an estimate of the diffusion time scale that incorpo-

rates the differential rotation is 

where m is the number of orbits traversed by a fluid parcel at the radius of maximum winds (r) 

and n is the azimuthal wavenumber. For AB = 5 x 109 m4s-1 , m = 1, n = 2, and r = 50 km, td is 

found to be approximately 13 hours. In calculating td , it is assumed that the differential rotation 

has already decreased the radial scale of an asymmetry to render basic state quantities effectively 

constant in a first approximation. Based on the results of Melander et al., this occurs in roughly a 

few orbital periods. For a typical run, McCalpin found the perturbation decay time scale to be 1.5 

orbital periods. This suggests that any viscous influence was likely insignificant. 

Both McCalpin and Melander et al. simulated asymmetric vortex evolution using fully nonlinear 

numerical models that generally prevent analytical solutions. While their results represent important 

and meaningful contributions to our understanding of axisymmetrization, basic physical processes 

may be masked by the presence of nonlinear dynamics, diffusion, and the ,B-effect. 

Sutyrin (1989) developed a formal solution for linear disturbance evolution in a quasi-geostrophic 

shallow water model on an f-plane. n this model, the disturbance potential vorticity was conserved 

following fluid particles. For regions where the basic state potential vorticity was identically zero, 

Sutyrin showed that the nonmodal component of the disturbance potential vorticity became oscil-

latory in radius with the oscillations controlled by the differential rotation of the fluid. In addition, 

the radial gradient of the nonmodal disturbance potential vorticity was shown to increase linearly 

with time. Sutyrin asserted that a similar nonmodal disturbance evolution would be observed in 

regions with a continuous and monotonic basic state potential vorticity profile. 
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The linear increase with time of the nonmodal disturbance potential vortic:.ty gradient was 

fundamentally due to the reduction of the radial scale of the disturbance. Sutyrin :::oncluded, then, 

that the symmetrization process was due to the differential rotation of the fluid and was analogous 

to perturbation decay in rectilinear simple shear flow (Case, 1960) . 

Like Melander et al. , 3utyrin did not examine the possibility of an inviscid azimuthal wavenum-

ber selection mechanism nor did he investigate the energy transfer between the asymmetries and the 

circularly symmetric basic state. Identification of these processes is complicated in Sutyrin's model 

since the solution is expressed in terms of an infinite function space operator. 

Carr and Williams (H89, hereafter CW) studied axisymmetrization using an inviscid nondiver-

gent barotropic vortex model. Their evolutionary model consisted of small-amplitude perturbations 

superposed on a steady axisymmetric Rankine flow. CW were primarily interested in the asymmetry 

inducing influences of /3 a::id environmental wind shear. 

CW asserted that the damping rate of perturbations is proportional w the square of the az-

imuthal wavenumber. This conclusion was based on results derived from initial c01:.ditions in which 

both the azimuthal wave::iumber and the radial structure changed simultaneously. CW asserted 

further that their result V1;:as analogous to the dependence of damping on the zonal wavenumber as 

described by Case for plane Couette flow. However, a careful review of Case did not reveal any 

discussion of how the perturbation damping rate and the zonal wavenumber are related. Since this 

relationship is potentially a fundamental aspect of an inviscid wavenumber selection mechanism in 

sheared flows, both Case and CW must be revisited to clarify this issue. 

In this work, the axi...rymmetrization process will be studied as an initial-value problem within 

the framework of inviscid nondivergent vorticity dynamics. Since the curvature Yorticity and the 

curvilinear coordinate system of the swirling problem may complicate understanding of the distur-

bance dynamics, the analogous rectilinear simple shear problem (Case; also Farrell, 1987) will be 

examined first. Identifica-;ion of how the disturbance evolution depends on the zooal wavenumber 

and the meridional struct:ue of the initial condition will be emphasized. 
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CHAPTER 2 

ALGEBRAIC INSTABILITY IN UNBOUNDED SIMPLE SHEAR 

2.1 Introduction 

The purpose of this chapter is to examine the evolution of small-amplitude perturbations in 

simple shear as a first step in the understanding the evolution of asymmetries in a hurricane. Of 

particular interest is how the perturbation evolution depends on the zonal wavenumber and the 

meridional structure of an initial vorticity profile. The flow is assumed unbounded and the model 

employed is the two-dimensional inviscid Euler equations on an /-plane. Since the model is ul-

timately formulated at the level of the vorticity equation, the Coriolis parameter does not affect 

interpretation of results, but is retained for consistency with later chapters. 

Linear perturbation theory is used to decompose the flow into a meridionally varying basic state 

and small perturbation field. Ultimately, the results of this chapter are extended to hurricanes. Since 

observations show that the asymmetric winds in hurricanes are small compared to the symmetric 

tangential wind (SM), the use of linear perturbation theory is justified on observational grounds. 

2.2 Rectilinear Shear Model 

The zonal and meridional momentum equations and continuity equation in Cartesian coordi-

nates are, respectively, 

au au au ap -+ u-+v--fv=--, at ax ay ax 
av av av op - + u- + v- + fu = --, at ax ay oy 

au av -o 
ax+ ay - ' 

(2.la) 

(2.lb) 

(2.lc) 

where x and y are the zonal and meridional coordinates, u and v are the zonal and meridional winds, 

f is the constant Coriolis parameter, and p is the pressure divided by constant density. The Coriolis 
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parameter and pressure may be removed as explicit variables by taking the horizontal curl of the 

momentum equations to give 

(B2.2) 

where 

(B2.3) 

is the vertical component of the vorticity. Equation (B2.2) states that the vorticity is conserved 

following fluid particles. 

Perturbations are brought out explicitly by letting u = u(y) + u' , v = v' , and p = p + p' , 

where an overbar denotes the basic state and a prime denotes a perturbation. Neglecting products 

of primed quantities, the equations of motion and the vorticity equation become 

au1 _au1 ,du , 8p 8p1 

-+u-+v--fv =----, at ax dy ax ax 
8V1 _8V1 

_ I 8p 8p' -+u-+fu+fu =----, at ax 8y ay 
au1 av1 

ax+ ay = o, 
8(1 _8(1 ,d( 
8t + u ax + V dy = 0. 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

Since the basic state alone must be a solution to (2.1) , the momentum equations (2.la, b) give 

(2.5a) 

(2.5b) 

while the continuity equation (B2.lc) and the vorticity equation (B2.2) are trivially satisfied. After 

cancelling the basic state contributions, the linearized system (2.4) becomes 
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For simple shear fl.ow, the basic state wind is given by u = Sy where S is a constant shear (see 

figure 2.1). The basic state vorticity is then 

The equations of motion (2.6a)-(2.6c) become 

0U1 0U1 
I 0p1 

at + Sy ox + (S - f)v = - ox ' 

while the vorticity equation (2.6d) is 

8v1 ov' op' 
-+Sy-+fu' = --, at ax oy 

ou' 8v' -+-=0, ax oy 

8(' 8(' 
-+Sy-=0. at ax 

(B2.7) 

(2.8a) 

(2.8b) 

(2.8c) 

(B2.9) 

The linearized vorticity equation (B2.9) states that the perturbation vorticity is conserved following 

the basic state fl.ow. 

For notational simplicity, primes are now dropped. All quantities are understood to be pertur-

bations unless they have an overbar. Boundary conditions must be specified before (B2.9) can be 

solved. In an infinite domain, u and v be must be bounded as lxl. or IYI becomes arbitrarily large. 

To satisfy continuity (B2.8c), a perturbation streamfunction may be defined such that 

(B2.10) 

Equation {B2.3) becomes 

(B2.ll) 

where the Laplacian operator is defined by 

(B2.12) 

Equation {B2.9) is thus 

(B2.13) 
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There are several methods that can be used to solve (B2.13). The normal mode and initial-value 

approaches are considered below. 

2.3 The Normal Mode Approach 

In the normal mode approach, separable solutions of the form 

1/J(x, Y, t) = \Jl(y)ei(kx+ut) (B2.14) 

are assumed where k is a real zonal wavenumber, <1 is the eigenfrequency, and \Jl(y) is the eigenfunc-

tion. Substituting (B2.14) into (B2.13) and dividing out the common exponential term yields 

(B2.15) 

If the factor <1 + kSy is naively divided out, then (B2.15) has a solution of the form 

(B2.16) 

The boundary conditions for (B2.16) require that \JI be bounded as y - ±oo. The only way to satisfy 

these conditions is if c1 = c2 = 0. Thus, there are no normal modes associated with <1 + kSy i= 0 

and the naive conclusion is that there are only trivial solutions to the problem. To see why this is 

incorrect, note that (B2.15) may also be satisfied if <1 + kSy = 0. At such points, more information 

is needed to integrate (B2.15) for \JI . 

2.4 The Initial-Value Approach 

An alternate solution strategy follows the methodology of Case (1960). Since the basic state 

flow only depends on y , the zonal dependence may be represented by a Fourier integral. The Fourier 

transform pair is given by 

00 

}(k) = J f(x)e- ikx dx , (2.17a) 
-oo 

00 

f (x) = 
2
~ J f(k)e ikx dk ,- (2.17b) 

-oo 
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where k is the zonal wavenumber. Examination of the initial-value problem associated with (B2.13) 

is of interest. This problem is formulated by using the Laplace transform pair, which is given by 

00 

j<q>(q) = J f(t)e-qt dt, 
0 

f(t) = J j<q>(q)eqt dq, 
27ri le 

(2.18a) 

(2.18b) 

where q is the Laplace transform parameter (generally complex) and C denotes a line parallel to the 

imaginary axis that is positioned to the right of all singularities of f(q)(q) . 

The Fourier transform of (B2.13) is 

(B2.19) 

while the Laplace transform of (B2.19) is 

(B2.20) 

The variable ,,Ji0 is the meridional structure of the initial streamfunction for wavenumber k and the 

right side of (B2.20) is the initial vorticity. On dividing through by (q + ikSy) , equation (B2.20) 

may be written as 

( 
0
2 _ k2) ,,ji(q) = (o . 

oy2 q + ikSy 
(B2.21) 

Noting that the Laplace transform of exp(-ikSyt) is 1/(q + ikSy) , the inverse Laplace transform of 

(B2.21) is 

( ::2 _ k2) ,,ji = (oe-ikSty . (B2.22) 

The boundary conditions require that'¢ be bounded as JyJ -+ oo. Recalling the <T parameter from 

the normal mode approach, it is seen that <T = -kSy, or <T + kSy = 0. Unlike the separable normal 

mode solutions which maintain a constant structure in time, the initial-value problem has a time 

dependent meridional structure. 

The differential equation (B2.22) is readily solved by the Green's function method. The Green 's 

function is defined as the solution to 

( ::2 - k2
) G(y, Yo)= o(y - Yo) 

9 
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where 8(y - y0 ) is the Dirac delta function and G(y , y0 ) is bounded as IYI - oo. Using the one--

dimensional form of Green 's Identity, the solution to (B2.22) is then 

00 

'ifJ(k, Yo, t) = J G(y , y0 )(0 (k, y)e-ikSt y dy. (B2.24) 
-oo 

The Green's function is now determined. For y -=ft y0 , equation (B2.23) is homogeneous and the 

general solution in each region is 

(B2.25) 

For simplicity, only the case k 2'.: 0 will be treated explicitly. Applying boundedness at infinity gives 

{ 
Aeky y < y 

G(Y ,Yo) = B -Icy > 0
• e , Y Yo 

(B2.26) 

Two other conditions are needed to uniquely define G(y , y0 ) . Since 'if) is continuous, the Green's 

function is required to be continuous at y = y0 • The second condition is found by integrating 

(B2.23) over a small interva. about y0 • This yields 

(B2.27) 

which becomes 

(B2.28) 

Since G(y , y0 ) is a bounded function on the integration interval, the integral in (B2.28) vanishes as 

€ goes to zero, yielding the jump condition 

(B2.29) 

The Green 's function is now uniquely determined by imposing the continuity and jump conditions 

on (B2.26), giving 

(B2.30) 

Since G(y , y0 ) = G(y0 , y), equation (B2.24) may be written as 

00 

'¢ (k , Y, t) = J G(y, Yo)(o(k , y0 )e-ikSt y 0 dy0 • (B2.31) 
-oo 
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Equation (B2.31) is referred to as the continuous spectrum solution to equation (B2.13) since it 

results from integrating over all advective frequencies -iku(y0 ) spanned by the flow. 

The solution is completed by applying the inverse Fourier transform, yielding 
00 00 

'I/J(x, Y, t) = 2~ J /kz J G(y , Yo)(o(k, y0 )e-ilcSy0 t dy0 dk. (B2.32) 
-X> -oo 

In this chapter and the next, attention is restricted to initial vorticity perturbations of the form 

f(y)e ik.:r: where k. is a pre-specified wavenumber. The Fourier transform of this initial condition is 

f (y)o(k. - k), where o(k. - k) is again he Dirac delta function. When an initial condition of this 

form is substituted into (B2.32) and the integration is performed, the delta function maps every k 

into k • . For simplicity, the delta function will not be explicit in any of the subsequent manipulations 

and k will be used to refer to the wavenumber in both physical and spectral space. With the above 

convention, the solution (B2.32) is written as 
00 

1Pk(x, Y, t) = J G(y , Yo)(o(k , Yo)eik(x-Sya t) dy0 • (B2.33) 
-00 

In (B2.33), the subscript k is a reminder that the delta function has filtered a particular wavenumber 

from the inverse Fourier transform integral. 

Before examining the specific evolution of the perturbation streamfunction for various initial 

vorticity profiles, recall that the problem is inviscid. Thus, all processes are time-reversible. The 

convention will be to define t = 0 as the initial time, t > 0 as future times, and t < 0 as past times. 

2.5 The Plane Wave 

In an infinite domain, a natural choice for an initial condition is one that is periodic. Let 

(B2.34) 

where l0 is the initial meridional wavenumber. The initial vorticity is then 

(B2.35) 

Substituting (B2.35) into (B2.33) and integrating yields 

(B2.36) 
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Taking the real part of (B2.36) gives 

k2 + l2 
1Pk = k2 +(lo_ kSt)2 cos[kx + (l 0 - kSt)y]. (B2.37) 

The quantity l0 - kSt is a time dependent meridional wavenumber, l, which describes the ever-

changing amplitude and meridional structure of the perturbation. The meridional wavenumber and 

time are negatively related so as t increases l decreases. 

As an aid to understanding the evolution of the physical fields, consider the wave vector 

m = (k , l). The magnitude of the wave vector, 1ml, is the total wavenumber of the perturbation. 

The angle the wave vector makes with the zonal axis (measured in a counter clockwise sense from 

the positive x axis) is given by 8 = tan-1(l/k) . The wave vector is perpendicular to the perturbation 

contours, so 8 ranges from -71' /2 to 1r /2. 

The streamfunction evolution described by (B2.37) is qualitatively considered for fixed k and 

l0 • The maximum streamfunction amplitude is (k2 + l~)/k2 and occurs when t = l0 /kS (l = 0) . 

Thus, the streamfunction amplitude grows when t < l0 /kS (l > 0) and it decays for t > l0 /kS 

(l < 0). When the streamfunction amplitude is maximum, the strearnfunction field is parallel to the 

meridional axis and the number of waves in the domain is given by k. Since t and l are negatively 

related, increasing t results in decreasing 8, so the streamfunctio field rotates clockwise. However, 

increasing (decreasing) t results in !ml decreasing (increasing) when t < l0 /kS (t > l0 /kS). Thus, 

when the strearnfunction field is in the growth (decay) phase, the number of waves in the domain 

decreases (increases) . 

Figure 2.2 shows streamfunction contours for k = l0 = l at nondimensional times St = -10.0, 

-1.0, 1.0, and 10.0. When the streamfunction field is in the growth phase, the contours have a 

negative slope. When the streamfunction field is in the decay pha.!':e, the contours have a positive 

slope. The shear for this problem is positive and, thus, has a positive slope (figure 2.1). Comparing 

the slope of the streamfunction contours with the slope of the shear, the streamfunction field tilts 

against the shear in the growth phase while the streamfunction field t ilts with the shear in the decay 

phase. When the streamfunction field is upright, its amplitude is maximum. 

To further quantify the growth and decay, an expression for the perturbation kinetic energy 
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(KE) density is derived. Substituting (B2.37) into (B2 .10) gives the zonal and meridional winds for 

the plane wave streamfunction. These are 

(l0 - kSt)(k2 + l~) . [ 
Uk = k2 +(lo_ kSt) 2 sm kx + (l0 - kSt)y], 

k(k2 + l~) . 
Vk = - k2 +(lo_ kSt)2 sm[kx + (l0 - kSt)y] . 

The KE density is then p(u2 + v2)/2, which gives 

(k2 + l~)2 . 2 
Ek = 2[k2 + (lo _ kSt)2] sm [kx + (l0 - kSt)y] 

where p has been set to one. 

(2.38a) 

(2.38b) 

(B2.39) 

Equation (B2.39) gives a local meas re of the KE density. A more useful measure which isolates 

the temporal evolution of the disturbances is an integrated KE. For the plane wave, the integration 

is performed over one wavelength zonally and meridionally since the integrated KE density over the 

entire plane is infinite. The integration yields 

(B2.40) 

where (Ek) is the KE per wave. This is maximum when l0 - kSt = 0, which gives 

(B2.41) 

Thus, the normalized KE per wave (hereafter, the normalized KE) is 
I 

(B2.42) 

The normalization has been done with the maximum value of the normalized KE rather than the 

initial value so that the normalized KE ranges from zero to one. From (B2.42), the instantaneous 

growth (decay) rate is found to be 

(B2.43) 

Setting the time derivative of (B2.43) to zero gives the maximum growth (decay) rate which occurs 

at St= ,=l + l0 /k . This corresponds to l = ±k, 0 = ±tr/4, and a normalized KE of 0.5 for both 

times. 
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This suggests a natural evolution time-scale for the perturbation energy to decay to half its 

ma.xi.mum energy, the half-life time. For the plane wave perturbation, the half-life time is 1/ S. 

Interestingly, this is independent of k and l0 • Figures 2.3 and 2.4 show the normalized KE and the 

growth (decay) rate as functions of time fork= 1, l0 = l; k = 1, l0 = 2; and k = 2, l0 = 1. These 

figures clearly demonstrate that changing k and 10 merely shifts the energy curve along the time 

a.xis, but do not change the structure of the energy curve. 

The half-life time for sheared disturbances in mid-latitude cyclones, hurricanes, and tornados 

may be estimated as follow~ . Letting U and L denote typical horizontal and temporal scales, the 

half-life time is ~ L/U. In moderate mid-latitude cyclones, U ~ 10 ms-1 and L ~ 1000 km giving 

a horizonatal shear of 10-5 s-1 and a half-life time of about 1 da.y. In the eyewall of a hurricane, 

U ~ 50 ms- 1 and L ~ 50 km . Thus, the horizontal shear is 10- 3 s-1 and the half-life time is about 

15 minutes. Finally, in .a tornado, U ~ 100 ms-1 and L ~ 100 m yielding a horizontal shear of 1 s-1 

and a half-life time of 1 second. These numbers are only approximate, but they serve to illustrate 

how the strength of the shear affects the evolution time-scale. 

Perturbation growth and decay imply an energy transfer to and from the disturbance. Under-

standing of this process is obtained by examining the perturbation kinetic energy equation, which 

is formed by taking the dot p:-oduct of (u,v) with equations (B2 .8a) and (B2.8b). This yields 

8E _oE du o(up) o(vp) - +u- +uv- = --- - --. 
ot ox dy ox oy 

(B2.44) 

Integrating over the perturbation domain gives 

o(E} = -! r UV du dxdy . 
ot JA dy 

(B2.45) 

When the perturbation grows, the left side of (B2.45) is positive. For positive shear, the momentum 

flux term is negative and pert urbation zonal wind is fluxed equatorward. The effect , then, is tha.t 

the shear decreases and the basic state provides energy for the perturbation's growth. When the 

perturbation decays, the left side of (B2.45) is negative. Here, the momentum flux is positive and 

perturbation zonal wind is fluxed poleward. The effect is that the shear increases and the basic state 

strengthens at the expense of he perturbation. 
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From (B2.45) it is seen that the perturbation energy tendency is a nonlinear process since 

it depends on uv. Thus, the perturbation energy is not conserved in the linear problem and the 

basic state energy is viewed as an infinite reservoir. It can be shown from the nonlinear momentum 

equations, though, that the total energy in this system is conserved. 

For the remainder of this work, attention is restricted to disturbance decay, so l0 = 0. The 

equations developed in this section become 

• 2 
(o = -k , 

(k = -k2 cos[k(x - Sty)], 

1 
1/;k = 1 + (St)2 cos[k(x - Sty)], 

-kSt 
Uk= 1 + (St)2 sin[k(x - Sty)], 

-k 
Vk = 1 + (St) 2 sin[k(x - Sty)], 

Ek= 1 + ~~t) 2 sin2 [k(x - Sty)], 

(Ek) 1 
(Ek)o = 1 + (St) 2 ' 

1 d(Ek) -2S2t 
(Ek) ----;ft = 1 + (St)2 . 

(B2.46) 

(B2.47) 

(B2.48) 

(B2.49) 

(B2.50) 

(B2.51) 

(B2.52) 

. {B2.53) 

The upright plane wave initial condition is formally equivalent to a constant initial vorticity profile. 

Thus, perturbations forced by either constant or periodic initial conditions in simple shear flow have 

global energy evolutions that are independent of the zonal wavenumber k. 

2.6 Gaussian Initial Condition 

The plane wave considered in the previous section provides analytical solutions for the per-

turbation evolutio in simple shear. However, transient atmospheric forcings are more realistically 

represented as isolated disturbances. To simulate a short wave trough, a Gaussian initial vorticity 

profile is considered. This is given by 

(B2.54) 

where 1/ ,/a defines the characteristic e-folding length scale of the Gaussian. Unlike the plane 

wave initial condition, when (B2.54) is substituted into (B2.33) , there are no closed form solutions 
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available. 

Using the trapezoidal rule to evaluate the integral, figures 2.5 and 2.6 plot streamfunction and 

vorticity contours, respectively, for the initial vorticity profile ( 0 = exp(-y2). The rows show zonal 

wavenumbers k = l, 2, and 3, respectively, while the columns denote nondimensional times St = 
0.0, 1.0, 2.0, respectively. There are several differences between the Gaussian and the upright plane 

wave cases. For a fixed time, the streamfunction amplitude decreases with increasing k. In addition, 

the figure suggests that that higher wavenumber perturbations decay faster than lower wavenumber 

perturbations. In the upright plane wave, the streamfunction amplitude and the decay rate were 

independent of the zonal wavenumber. Finally, there is a suggestion that for large time, the plane 

wave solution emerges. 

As with the plane wave perturbation, a global measure of the KE is desired. Here, though, the 

meridional integration is from -oo to +oo. Figure 2. 7 shows the normalized KE as a function of 

time for the initial vorticity pron.le ( 0 = exp(-y2). As indicated in figure 2.5, higher wavenumber 

perturbations decay more rapidly than lower wavenumber perturbations. In addition, for increasing k 

or t, the normalized KE curves asymptote to the plane wave solution. Interestingly, the wavenumber 

k = l perturbation decays much slower than all higher wavenumber perturbations. This would not 

be surprising in a viscous fluid . However, in the above results, tbe viscosity is identically zero 

yet higher wavenumber disturbances still decay faster than smaller wavenumber disurbances. This 

suggests a truly inviscid decay mechanism that rapidly damps the higher wavenumbers leaving the 

lower wavenumbers behind. 

To gain further understanding of the zonal wavenumber dependence in the evolution of merid-

ionally confined initial vorticity disturbances, it is instructive to examine the interaction of the three 

terms comprising the integrand of (B2.33). Figure 2.8 shows the Green's function , G(y , y0 ) ; the 

phase functi~n, cos(kSty0 ) ; their product; and the initial vorticity ( 0 = exp(-y~) as functions of 

y0 for zonal wavenumber k = l. Figure 2.9 is the same plot for zonal wavenumber k = 3. In the 

figures , the Green's function is only considered at y = 0 and the -1/2k factor is ignored since it 

is constant in the integration. In addition, the time is chosen so that St = l. As k increases, the 
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Green's function narrows while the phase function oscillates more rapidly. The effect of increasing 

k, then, is for the product of the Green's function and the phase function to become more merid-

ionally confined. For large enough k, the meridional scale of this product is so small that the initial 

vorticity appears effectively constant in the integration. This is reminiscent of the upright plane 

wave solution in which the initial vorticity profile is constant in the integration. Thus, while the 

meridional scale of the initial vorticity generally introduces a dependence on the zonal wavenumber 

in the shear dynamics, for large k the plane wave solution should emerge. 

For increasing k, the plane wave solution may be recovered from a meridionally confined initial 

condition. This can be demonstrated analytically as follows . The streamfunction amplitude in 

Fourier space is 

(B2.55) 
-oo 

As k becomes large, the streamfunction amplitude can be approximated by 
00 

'¢(y) (o(Y) J G(Y ,Yo)e- ikSt y 0 dyo 1 «: k < oo . (B2.56) 
-oo 

This integral may be evaluated exactly giving the approximate streamfunction amplitude 

(B2.57) 

Upon applying the inverse Fourier transform and taking the real part, (B2.57) becomes 

(o(Y) 
'l/Jk = - k2 [l + (St)2] cos[k(x - Sty )], (B2.58) 

so the meridional velocity is 

Vk = k[l ~o/L)2] sin[k(x - Sty)] . (B2.59) 

Now, the zonal velocity is 

__ d(0 (y) cos[k(x - Sty )] _ (o(y)St . [k( _ S )] 
Uk - dy k2 [1 + (St)2] k[l + (St) 2] sm x ty · (B2.60) 

Assuming k large enough bu finite such that the first term on the right side of (B2.60) is small 

compared to the second term, the zonal velocity becomes 

( 0 (y)St . [ ( ] 
Uk - k[l + (St)Z] sm k x - Sty) . (B2.61) 
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The KE density is then approximated by 

(B2.62) 

where the density, p, has been set to one, while the integrated KE is given by 

00 

(Ek) = 2k3[1: (St)2] J (;(y) dy . (B2.63) 
-oo 

Normalizing (B2.63) by its initial value 

(B2.64) 
-oo 

gives the normalized KE for large k 

(Ek) 1 
(Ek)o - 1 + (St) 2 • 

(B2.65) 

This is the normalized KE for the upright plane wave. A physical interpretation for the zonal 

wavenumber dependence is presented at the end of this section. 

Figure 2.5 shows the plane wave solution emerging for large time. As time increases, the phase 

function oscillates more rapidly while the Green's function and initial condition remain unchanged. 

For sufficiently large times, the half-wavelength scale of the phase function is narrow enough so 

that the initial condition appears locally constant which is analogous to the upright plane wave. 

Further, double integration by parts of (B2.55) subject to the boundary conditions reveals the r 2 

dependence of the streamfunction amplitude at large times. 

Figures 2.10 and 2.11 plot perturbation streamfunction and vorticity contours, respectively, for 

zonal wavenumber k = 1. The rows show the fields for initial vorticity profiles ( 0 = exp(-ay2 ) 

where a = 1, 2, and 3, respectively, while the columns denote the fields at nondimensional times St 

= 0.0, 1.0, and 2.0, respectively. Figure 2.12 plots the corresponding normalized KE as a function 

of time and shows that decreasing the meridional scale of the initial condition results in slower 

energy decay. Since the energy decay is related to the half-wavelength scale of the phase function, 

decreasing the scale of the initial condition increases the time required for a given amount of energy 

decay. Thus, small-scale disturbances asymptote to the plane wave solution more slowly than large--

scale disturbances. 
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Physically, disturbance evolution is governed by the conservation of disturbance vorticity so the 

meridional change in he zonal wind across a disturbance controls how rapidly a vorticity disturbance 

is elongated. Because the area of a fluid element does not change in nondivergent fl.ow, an elongating 

vorticity patch implies an attendant decrease in the disturbance meridional scale. The decrease in 

the meridional scale is directly related to the decrease in disturbance energy. Disturbances of large 

meridional extent are elongated more rapidly than those of small meridional extent and, thus, 

decay more rapidly. Since the plane wave solution spans the domain, its meridional length scale 

is effectively infinite. Therefore, the plane wave always decays more rapidly than any meridionally 

localized disturbance. 

In a similar fashion, the dependence on the zonal wavenumber may be explained. For an 

initially upright disturbance, the zonal wavenumber is inversely related to the initial zonal extent of 

a disturbance. Consider two disturbances with the same initial energy and meridional extent where 

one disturbances has twice the initial zonal extent of the other. In a given amount of time, the zonal 

elongation of both disturbances is the same. To conserve area, the change in the meridional scale 

of a disturbance with large zonal extent is less than that of a disturbance with small zonal extent. 

Therefore, a lower wavenumber disturbance decays slower than a higher wavenumber disturbance. 

2.7 Summary 

The evolution of disturbances in unbounded simple shear fl.ow has been examined as a first 

step in understanding the evolution of asymmetries in hurricanes. The system was formulated as an 

initial value problem and two types of initial conditions were considered. For the plane wave initial 

vorticity profile, the disturbance evolution was only a function of time and decayed as r 2 • Since 

transient atmospheric forcings are more realistically represented by isolated disturbances, Gaussian 

initial vorticity profiles were considered. Unlike the plane wave, the evolution of these perturbations 

depended on both the meridional scale and the zonal wavenumber of the initial condition. The 

meridional scale determined how rapidly the disturbance was elongated. Large-scale disturbances 

elongated and, subsequently, decayed more rapidly than small-scale disturbances. The dependence 
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of the evolution on the zonal wavenumber illustrated a truly inviscid mechanism associated with 

differential advection that favors the decay of small-scale disturbances over large-scale disturbances. 
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Fig. 2.1: Simple shear :flow. Arrows show basic state zonal wind vectors , dashed line shows the 
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Fig. 2.10: Perturbation streamfunction for zonal wavenumber k = 1. Panels (a)-(c) show contours 
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CHAPTER 3 

ALGEBRAIC DECAY IN BOUNDED SIMPLE SHEAR 

3.1 Introduction 

The purpose of this chapter is to briefly examine how meridional boundaries alter the evolution 

of perturbations in simple shear fl.ow. Since the evolution of asymmetries in a bounded vortex is 

the topic of the next chapter, investigating the effects of boundaries in the simple shear problem is 

a natural intermediate step. 

3.2 Bounded Rectilinear Shear 

The presence of boundaries does not alter the governing equations used in chapter 2. Neverthe-

less, meridional boundaries provide a convenient length scale that may be used to nondimensionalize 

the equations. Letfng (x ,y) = L(x, y ), ( = S(, and t = t/S where Lis the boundary separation 

and the tildes denote nondimensional quantities, the linearized vorticity equation (B2.9) becomes 

(B3.l ) 

Although the magnitude of the shear is no longer explicit in (B3.l ), the evolutionary time is scaled 

by the shear. Upon application of the Fourier-Laplace transforms defined in chapter 2, equation 

(B3.l) becomes 

(B3.2) 

For notational simplicity, the tildes have been dropped. Unless otherwise noted, all quantities are 

henceforth nondimensional. 

Solutions to (B3.2) depend on the choice of boundaries. Here, the meridional boundaries are 

assumed to be slippery walls at y = a and y = b where a< b. Thus, v(a) = v(b) = 0 to satisfy the no 
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normal flow condition. In terms of a Fourier perturbation streamfunction amplitude, the boundary 

conditions become '¢/(a)= v(b) = 0. 

The Green 's function technique is used to solve (B3.2) subject to the boundary conditions. 

Imposing the continuity and jump conditions from the previous chapter along with the boundary 

conditions yields 

( _ 1 { sinh[k(y- a)] sinh[k(y0 - b)], a~ y y0 

G Y,Yo) - ksinh[k(b- a)] sinh[k(y- b)] sinh[k(yo - a)], Yo~ y :-s; b . 

The solution to (B3.2) is then 
b 

'¢1 = J G(y, Yo)(oe-iktyo dyo, 
a. 

To complete the derivation, the inverse Fourier transform is applied to (B3.4 ) giving 

b 

'l/Jk = J G(y, Yo)(oeik(:r:-tyo) dy0 , 

a. 

where the subscript k is in accord with the convention of chapter 2. 

3.3 Uniform Initial Condition 

(B3.3) 

(B3.4) 

(B3 .5) 

The initial vorticity given by ( 0 = -k2 , which corresponds to the upright plane wave of chapter 

2, is considered first . Substituting ( 0 into (B3.5) yields 

.,. __ l _ { [k( _ )] sinh[k(y - b)] cos[k(x - ta)] - sinh[k(y - a)] cos[k(x - tb)]} 
'flk - 2 cos X ty + · h[k(b )] . l+t mn -a 

(B3.6) 

The first term inside the braces is recognized as the infinite plane wave solution while the second 

term is the boundary correction that ensures 'l/Jk(a) = 'l/Jk(b) = 0. Figure 3.1 plots streamfunction 

contours for initial vorticity ( = -k2 and boundaries at a = -1, b = 1. The rows show k = 1, 

2, and 3, respectively, while the columns denote t = 0.0, 2.0, and 4.0, respectively. The bounda_ry 

correction in (B3.6) decreases the maximum streamfunction amplitude relative to the unbounded 

case since sinh(k(y - b)] :-:::; 0 and - sinh[k(y - a)] 0 for all y, while sinh[k(b - a)] > 0. As 

k increases for a given boundary sepatation, the magnitude of the boundary orrection decreases 

and the maximum streamfunction amplitude increases since the hyperbolic sine in the denominator 
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increases faster than either of the hyperbolic sine terms in the numerator. In the limit k -+ oo, the 

boundary correction goes to zero and the plane wave solution is recovered. 

The evolution of perturbations in a bounded channel forced by a uniform initial vorticity profile 

may be further analyzed by examining the integrated kinetic energy (KE) associated with (B3:6). 

This is given by 

(Ek}= k2 
{ (1 + t2

) + 2{cos[kt(b - a)] - cosh[k(b - a)]} 
2(1 + t2 ) 2 2 k(b - a) sinh[k(b - a)] 

cos[kt(b - a)] cosh[k(b + a)]{sinh(2kb - sinh(2ka)} 
2k(b - a) sinh2 [k(b - a)] 

+ _co_s_[k_t(_b -_a)_] s_in_h_[k_(b_+_a )_]{_c_os_h_(2_kb_)_-_c_os_h_(2_k_a )_} 
2k(b - a) sinh2 [k(b - a)] 

sinh[2k(b - a)] } 
+ 2k(b - a) sinh2 [k(b - a)] . 

(B3.7) 

The first term inside the braces is the energy of the infinite plane wave while the other terms describe 

how the perturbation energy is changed by the presence of boundaries. Since the first term decays as 

r 2 while the remaining terms decay as r 4 , the infinite plane wave solution emerges for increasing t . 

Figure 3.2 shows the normalized KE as a function of time for initial vorticity ( 0 = -k2 for boundaries 

at a= -1 , b = 1. Unlike the infinite plane wave case where the energy decay was independent of 

k , perturbations decay more rapid y with increasing wavenumber for a constant initial condition in 

a bounded channel. Moreover, the k = 1 perturbation decays significantly slower than the higher 

wavenumber perturbations. While very different from the infinite plane wave, disturbance evolution 

for a uniform initial vorticity profile in bounded shear is qualitatively similar to that of an unbounded 

Gaussian initial condition. 

The similarities arise because each problem has a characteristic length scale. In the unbounded 

problem, the initial vorticity profile defined the length scale. For a constant initial condition in a 

bounded channel, the boundary separation defines the length scale. From (B3.6), it is seen that 

changing the boundary separation for a fixed k is equivalent to changing k for a fixed boundary 

separat ion. Thus, as b - a increases, the boundary correct ion term decreases and the maximum 

streamfunction amplitude increases. As expected, in the limit of infinite boundary separation, the 

plane wave solution is recovered. 
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Similar arguments explain the effect of increasing boundary separation on the perturbation 

evolution as described by (B3.7). As b - a increases, the denominators of the boundary terms 

increases more rapidly than the corresponding numerators and the perturbation decays more rapidly. 

In the limit of infinite boundary separation, the plane wave evolution is recovered. Figures 3.1 and 

3.2 can be used to illustrate the described behavior if the plots for k in the figures are reinterpreted 

as plots for b- a. Physically, increasing the boundary separation increases the meridional scale of the 

perturbation. Thus, the perturbation is sheared more and decays more rapidly. This is analogous 

to changing the scale of the Gaussian initial condition of chapter . 2. 

3.4 The Gaussian 

The evolution of perturbations forced by Gaussian initial vorticity profiles in a bounded channel 

is now considered. Since (B3.5) does not admit closed form solutions, the trapezoidal rule is used 

to evaluate the integral. 

Figures 3.3 and 3.4 plot streamfunction and vorticity contours, respectively, for initial vorticity 

( 0 = exp(-y2 ) and zonal wavenumber k = 1. The rows show contours for boundary s~paration b- a 

= 0.2, 2.0, and 20.0, respectively, while the columns show contours for time t = 0.0, 2.0, and 4.0, 

respectively. Note that the bottom row is virtually identical to the unbounded case. In terms of the 

two characteristic length scales, the rows represent b- a« 1/ ./a, b- a~ 1/ ./a, and b-a 1/ ./a, 

respectively. As long as b - a < 1/ ./a, the maximum streamfunction amplitude and the decay rate 

will be decreased relative to the unbounded case. For b - a> 1/,/a., the unbounded evolution may 

be recovered provided b - a i.s sufficiently large to render boundary effects in the Green's function 

negligible. 

Figure 3.5 shows the normalized KE as a function of time for initial vorticity ( 0 = exp(-y2 ) 

and zonal wavenumber k = 1. As was seen for the constant initial condition in the bounded channel, 

increasing the boundary separation increases the decay rate since the perturbation is sheared more. 

The curve corresponding to b-a = 20.0 in figure 3.5 is the decay observed in the unbounded problem 

and does not change for further increases in the boundary separation. At this point, the meridional 
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scale of the perturbation is the characteristic length scale. For this curve to asymptote to the plane 

wave solution at small times, the zonal wavenumber must be increased. 

3.5 Summary 

The evolutionary decay of perturbations in bounded simple shear flow has been examined as 

an initial-value problem. The case of a. uniform vorticity profile was considered first . Relative to 

the unbounded problem of chapter 2, the maximum streamfunction amplitude was smaller and the 

decay rate was slower because the presence of boundaries introduced . a characteristic length scale. · 

The infinite plane wave is not a localized disturbance and, thus, decays faster than any bounded 

disturbance. In the limits of large zonal wavenumber, boundary separation, and time, the infinite 

plane wave solution emerged. 

The case of Gaussian initial vorticity profiles was then examined. For boundary separations 

smaller in scale than the meridional scale of the perturbation, the maximum streamfunction am-

plitude was smaller and the decay was slower relative to the unbounded case. The scale of the 

boundary separation was the characteristic length scale. When the boundary separation was greater 

than the scale of the perturbation, the unbounded evolution was recovered as long as the boundary 

separation was large enough to make the boundary effects in the Green's function negligible. 
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4.1 Introduction 

CHAPTER 4 

AXISYMMETRIZATION IN SWIRLING FLOW 

The purpose of this chapter is to study the axisymmetrization process in a vortex. The objective 

is to extend the results of the previous chapters to a rapidly rotating fluid with radially varying shear. 

The dependence of asymmetric evolution on the azimuthal wavenumber and the radial st ructure of 

an initial vorticity profile is of par icular interest . As in previous chapters, the model employed is 

the inviscid incompressible Euler equations on an f-plane, but here a cylindrical coordinate system 

is chosen to represent the problem. Consistent with observations (SM) , linear perturbation theory 

is used to decompose the flow into a circularly symmetric basic state of swirl and small-amplitude 

asymmetries. 

In formulating the asymmetric vortex model, an appropriate coordinate system must be chosen. 

A natural coordinate system is one that moves with the center of the vortex, i.e., a storm-relative 

coordinate. Following Willoughby (1979) , SM showed that in storm-relative coordinates, vortex 

motion on an f-plane merely modifies the definition of pressure while preserving the form of the 

momentum equations. Since the model adopted below is ultimately formulated at the level of the 

vorticity equation, the storm motion is no longer explicit in the vorticity dynamics and only appears 

in the boundary conditions at infinity. In a Fourier azimuthal representation, storm motion projects 

only onto the azimuthal wavenumber one component. For the simple case of a resting environment, 

the associated winds must coincide with the motion at infinity. All other azimuthal components 

must vanish at infinity. The more common choice of coordinates is the ground-based system. Here, 

vortex motion is explicit in the vorticity dynamics and, for a quiescent environment , all asymmetries 

must vanish at infinity. Unless otherwise stated, a ground-based coordinate system will be adopted. 
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4.2 Swirling Model 

The radial and tangential momentum equations an<;! continuity equation in cylindrical coordi-

nates are, respectively, 

au OU V au v2 op -+u-+---fv- - =--, at or r a>. r or 
OV OV V OV UV l op -+u-+--+ Ju+-=--- , at or r a>. r r a>. 

.!_o(ru)+.!_ov=O, 
r or r a>. 

(4.la) 

(4.lb) 

(4.lc) 

where r and >. are the radius and azimuth, u and v are the radial and azimuthal winds, f is the 

constant Coriolis parameter, and pis the pressure divided by constant density. Explicit dependence 

on the pressure and Coriolis parameter may be removed by taking the horizontal curl of (B4 .la) 

and (B4.lb) . The result is t he vorticity equation, given by 

(B4.2) 

Here ( is the vertical component of the vorticity, defined by 

(B4.3) 

Equation (B4 .3) states that vorticity is conserved following the fluid particles. 

Since intense atmospheric vortices often exhibit weak asymmetries, linea: perturbation theory 

is applied about an axisymmetric basic state of swirl. Let u = u' , v = v(r) + v', and p = p + p' 

where an overbar denotes the basic state and a prime denotes an asymmetry. Neglecting products 

of primed quantities, equations (B4 .la)-(B4.lc) become 

ou' ii ou' v2 2v 8 -+-- -fv-fv' - - - -v' = --(p+p'), at r a>. r r or 
OV

1 ii ov' I dv' I V I l a (- ') -+--+u-+fu +-u =---p+p, ot r 8>. dr r r o>. 
o(ru') ov' 
---a;- + a>. = o. 

(4.4a) 

( 4.4b) 

( 4.4c) 

Noting from (B4.3) that the basic state vorticity is only a function of r, the vorticity equation (B4.2) 

is 

o(' v 8(' d( -+--+u'-=O. ot r 8>. dr (B4.5) 
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Since the basic state variables alone must satisfy (4.1), the momentum equations imply 

_ v2 op -fv- - =--, r or 
op 
a>.. =O, 

(4.6a) 

(4.6b) 

while the continuity and vorticity conservation equations are trivially satisfied. Substituting the 

basic state relations back into (4.4) gives 

ou' V ou' ( 2v) I op' -+--- f+- V ---ot r a>.. r - OT' 

8v' + 8v' + (1 + ! o(rv)) u' =_!op', 
at r a>.. r or r a>.. 

o(ru') 8v' 
~+ a>.. =O. 

(4.7a) 

( 4. 7b) 

(4.7c) 

Defining l = f + 2v/r, ii= f + (, and recalling that f is constant allows the equations of motion 

and the vorticity equation to be written as 

ou' V ou' - I op' 
at + ;: a>.. - ~v = - or ' 
8v' v 8v' 1 op' 
at+;: a>.. +iiu' =-;:a>..' 

o(ru') 8v' 
~+ a>.. =O, 

8(' v 8(' , dii at + ;: 8>.. + u dr = O. 

(4.8a) 

( 4.8b) 

(4.8c) 

(4.8d) 

The quantities ii and l represent the absolute vorticity and the effective Coriolis parameter of the 

symmetric vortex. For notational simplicity, the primes will now be dropped. All quantities will be 

perturbations unless they have an overbar. Attention is now restricted to (B4.8d). 

Equation (B4.8d) is nondimensionalized by defining r = Rm,r, (u,v) = Vm(u ,v), t = Rm./Vmi, 

((, ii)= Vm/Rm.(( , fJ), and>..= .X where Vm is the maximum azimuthal wind , Rm. is the radius of 

maximum winds, and tildes denote dimensionless quantities. Substituting these definitions back into 

equation (B4.8d), the factor V;,,/ R;. is found common to every term. On dividing out this term, 

the nondimensional vorticity equation is formally identical to equation (B4.8d) . Dropping the tildes 

for notational simplicity, the nondimensional linear vorticity equation is 

(B4.9) 
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Unlike the rectilinear problem in simple shear where there was no gradient of the basic state absolute 

vorticity, the perturbation vorticity in a swirling flow is generally not conserved following the basic 

state flow. 

For the rectilinear problem in simple shear, the meridional gradient of the basic state zonal wind 

controlled the perturbation decay. The vorticity tendency was directly related to the advection of 

the vorticity by the basic state zonal wind. For the swirling problem, the vorticity tendency is 

proportional to the advection of the vorticity by the symmetric vortex. The basic state angular 

velocity is playing an analogous role in the swirling environment that the basic state zonal wind 

played in the rectilinear environment. It is therefore anticipated that the radial gradient of the basic 

state angular velocity will control the decay of asymmetries in the swirling vortex. 

Before equation (B4.9) can be solved, boundary conditions must be specified. Since observations 

show that the rotation of a hurricane inside the radius of maximum winds is in approximate solid 

body rotation, the angular velocity gradient is small in that region and little symmetrization is 

expected there. To isolate the basic decay process, a boundary is placed at t he radius of maximum 

winds. While this approach is justified on observational grounds, it also has the mathematical 

advantage of avoiding the geometric singularity associated with the vortex center. Since observations 

also show that asymmetries become comparable to the symmetric azimuthal wind several hundred 

kilometers from the storm center, the linear assumption is adequately satisfied for an outer boundary 

placed so that v (u',v'). In non.dimensional coordinates, r = a denotes the boundary at the radius 

of maximum winds while r = b gives the location of the environmental boundary. The boundaries 

are assumed to be slippery walls at which the normal velocity vanishes. Thus, u(a) = u(b) = 0. 

To ensure that solutions to the vorticity equation (B4.9) satisfy continuity (B4.8c), define a 

perturbation streamfunction such that 

Equation (B4.3) becomes 

l o'l/J 
u=---

r a>.. ' 
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where the Laplacian operator is given by 

The vorticity equation (B4.9) is then 

(B4.12) 

Equation (B4.12) describes the evolution of the system subject to the constraint that the 

azimuthal gradient of the streamfunction vanish on the boundaries. Further transformation of 

this equation is desired to facilitate finding its solutions. Because the azimuthal variable is periodic 

by definition, the azimuthal dependence may be represented by a Fourier series where the Fourier 

transform pair is 
2,r 

](n) = __!___ j f (>.)e-in>. d>. ; 
27T 

0 

n=-oo 

n = ±1, :::::2, ±3, . .. (4.13a) 

n:;60 (4.13b) 

and n is the azimuthal wavenumber. The wavenumber zero contribution is excluded from the above 

definitions because it represents the symmetric component which does not change in the linear 

problem. The Fourier transform will hereafter be applied to asymmetric quantities. As in chapter 2, 

the initial-value problem associated ·th (B4.12) is considered. This is done by using the Laplace 

transform pair, given by 
00 

J<q>(q) = j f(t)e-qt dt 
0 

f(t) = J J<q>(q)eqt dq 
2nJc 

where q and Care the same as defined in chapter 2. 

The Fourier transform of (B4.12) is 

( a . v) [1 a ( a) n2
] A in dr; A -+in- -- r- -- 'lj;---'l/;=0 

ot r r or or r2 r dr 

while the Laplace transform of (B4.15) is 

( . v) [1 a ( a) n
2

] A( > in dfi A( > [1 a ( a) n
2

] A q + in- -- r- - - 'l/; q - --'lj; q = -- r- - - 'l/;o r r or or r2 r dr r or or r2 
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(4.14b) 

(B4.15) 
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with ~o the radial structure of the initial streamfunction for wavenumber n. The right side of 

equation (B4.16) is the initial vorticity for wavenumber n. Upon dividing by q+inv/r, this equation 

can be rewritten 

(B4.17) 

Unlike the rectilinear roblem with zero vorticity gradient, the inverse Laplace transform of 

(B4.17) does not simply result in a differential equation for~ (cf. (B2.22)). Rather, the direct 

inversion of the second term on the left side of (B4.l 7) requires the convolution theorem and yields 

,J; as the argument of a time integral. An alternative solution method for the analogous rectilinear 

problem is described by Ca..c.e (1960) which requires evaluation of a contour integral in the complex 

plane involving a Green's function for (B4.l 7) multiplied by the right side. Ultimately, numerical 

schemes are needed to obtain explicit solutions. Such procedures, and thus the general solution to 

(B4.l 7) , are beyond the scope of this thesis. 

Here, attention is restricted to a specific class of vortices that admit simple solutions. If the 

second term on the left side of the equation is zero, the solution to (B4.l 7) is readily constructed. 

For the geometry considered in this chapter, the Rankine profile (see figure 4.1) given by 

ii = a/r, (B4.18) 

satisifes this requirement since if(r) = f . Equation (B4.18) then becomes 

2 

[!~ (r~) -~J ~(q) = (o . 
r or or r2 q + ian/r2 (B4.19) 

Noting that the Laplace transform of exp(-iant/r2 ) is l/(q+ian/r2 ), the inverse Laplace transform 

of (B4.19) yields 

(B4.20) 

The Green's function method will now be used to solve (B4.20). The equation is first put in standard 

form by multiplying by r, giving 

(B4.21) 
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Recalling that the azimuthal gradient of the streamfunction must vanish on the boundaries in phys-

ical space, the corresponding Fourier-space boundary conditions are then ¢(a)= 'if;(b) = 0. 

The Green's function is defined as the solution to 

[:r (r ! ) -:2

] G(r,p) = 8(r - p). (B4.22) 

If r -:j; p, equation (B4.22) is the homogeneous Euler's equation and the general solution in each 

region is 

G r _ { Ar" + B r-", a :s; r < p 
( ,p) - Cr"+ Dr-", p < r :s; b. (B4.23) 

Thus far , only two conditions have been specified for the problem. Two more are needed to uniquely 

determine G(r, p) . Since 'if; is continuous, the Green's function is required to be continuous at r = p. 

On integrating over a small interval about p, equation (B4.22) becomes 

P+< 
oG oG J n2 

(p + €) or (p + €, P) - (p- €) or (p - €, P) - 7G( r, P) dr = l. (B4.24) 
p-< 

Since G(r, p) is bounded on the integration interval, the integral in (B4.24) vanishes as€ goes to 

zero, yielding 

oG + oG _ _ 1 
!Cl (p , p) - !Cl (p , p) - - . 
ur ur p 

(B4.25) 

The Green's function is uniquely determined by imposing the slippery boundary conditions , conti-

nuity of G(r, p) at r = p, and the jump condition (B4.22). This gives 

(B4.26) 

It is easily verified that G(r,p) = G(p,r) . Thus, in an analogous manner to chapter 2, the solution 

to (B4.21) is 
b 

'if;(r) = J G(r,p)(o(p)e-_iant/p2 pdp. (B4.27) 
a 

In the previous chapters, only init ial vorticity profiles of the form ( 0 = f(y)8(k* - k) were con-

sidered. This. allowed examination of the perturbation evolution on a wavenumber by wavenumber 

basis. A similar strategy is employed here. The initial vorticity will be restricted to functions of 

the form ( 0 = f(r)8(n. - n) where 8 is the Kronecker delta. The effect on the integration will be 
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the same as in the previous chapters. The 8 maps n into n. when the inverse Fourier transform is 

applied. For notational simplicity, the variable n is used to refer to the wave:mmber in both physical 

and Fourier space. With th.is convention, the inverse Fourier transform of equation (B4.27) is 

b 

"Pn = ein>. J G(r, p)(oe-iant/p2 pdp. (B4.28) 
a 

Since exact solutions to (B4.28) cannot generally be found, the trapezoidal rule is used as the 

solution method throughout the remainder of the chapter. Note also that the initial condition in 

(B4.28) is expressed in terms of the initial vorticity. Hereafter, the terms init ial vorticity and initial 

condition will be used interchangeably. Finally, the locations of the boundaries are set at a = 1 and 

b = 10. 

4.3 Initial Conditions 

In order to gain insight into the asymmetric dynamics that are applicable to hurricanes and 

other rapidly rotating vortices, initial vorticity profiles are needed that represent physical processes 

relevant in such vortices. CW motivate four classes of initial conditions. Their analysis is outlined 

below. Consider two-dimensional incompressible inviscid vorticity dynamics on a ,8-plane. In ground-

based coordinates, the governing equation is 

8( . at + v. \7(( + f) = o (B4.29) 

where ( is the vertical component of the vorticity, V is the horizontal wind vector, and 1 is the 

Coriolis parameter given by 

1 =lo+ ,By. (B4.30) 

Here ,B is the linearized latitudinal derivative of the Coriolis parameter at a reference latitude and lo 

is the reference value of 1. Equation (B4.29) may be transformed into a coordinate system moving 

with the storm center through 

\7 = 'v' , 

~=a' -6 -v' at at ' 
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where C(t) is the storm motion vector and the primes denote operations with respect to coordinates 

in the moving frame. 

The velocity is now partitioned into three parts 

(B4.33) 

subject to the following definitions: (a) Vs is a known symmetric fl.ow that is steady in the moving 

reference frame, (b) Ve is a known zonal environmental fl.ow that depends only on latitude and is 

steady in the stationary reference frame, and ( c) Va is an asymmetric fl.ow that represents unknown 

perturbations to the symmetric fl.ow. Using these definitions, the vorticity equation in the moving 

reference frame is 

QI (a - - - I - - I - I I 8t + (Vs + Ve - C ) · "v (a + (Va - C ) · "v ( s + Va · "v ( (a + (e + f ) 

(B4.34) 

The terms have been grouped so that external processes which act to generate (a appear as forcing 

terms on the right side of (B4.34). 

The initial vorticity perturbations are obtained by examining the forcing terms in component 

form. CW define the vectors as follows: 

C = C[cos(>. - o:)r- sin(>. - o:)A], 

(4.35a) 

(4.35b) 

(4.35c} 

where i, r, and X are the zonal, radial, ~d azimuthal unit vectors, respectively. The angle o: is 

the direction of the storm's motion following the convention of Willoughby (1988) . CW note that 

asymmetries can be forced by the term -C • "v' ( s which is the advection of the symmetric vorticity 

by the storm's motion. Grouping this term with the other forcing terms, the vorticity tendency in 

Cartesian coordinates due to these forcings is 

-- ex: -v - + f3 cos>. - u - c - cos>. + r_ . - sm >. 8'(a (8(e ) ( )8(s o(s . ot s oy e :,: &r ,I or (B4.36) 
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where c., = C cos a and Cy = C sin a. To assess the radial structure of the forced response, consider 

the truncated Taylor series expansion of Ue about the position of storm's center 

where 

S _ OUe I 
e - , oy y=O 

a2
ue I /Je =-~ . vy y=O 

The scaling for Vs and d(s/dr may be identified by examining the modified Rankine profile 

The radial derivative of (s is then 

(B4.37) 

(4.38a) 

(4.38b) 

(B4.39) 

(B4.40) 

The Rankine profile used in this chapter is recovered by setting X = I in (B4 .39) . In order to have 

a nontrivial scaling on (B4.40) , however, X cannot be exactly one. It is assumed that for X very 

close to one, the vorticity gradient will be sufficiently small that the perturbation evolution will be 

essentially unaffected. Thus, equation (B4.40) becomes 

(B4.41) 

Examining the first term on the right side of (B4.36) , substituting (B4.38b) and (B4.39) gives 

o(a VmRm( -a ex - -- /3 + f3e)cos.X. t r (B4.42) 

This represents the generation of wavenumber one asymmetry due to the advection of absolute 

environmental vorticity (the {3 terms) by the symmetric vortex. CW refer to this as the '/3-induced 

asymmetry'. An equivalent nondimensional intial condition is then 

A 1 
(o = --, r n = 1. (B4.43) 
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Examining the second term on the right side of (B4.36), substituting the first two terms of 

(B4.37) and (B4.41) gives 

(B4.44) 

where the identities y = r sin A and 2 sin A cos A = sin 2.X have been used. This represents the 

generation of a wavenumber one asymmetry due to the vortex motion relative to the environmental 

wind and a wavenumber two asymmetry due to the linear shearing of the symmetric vortex by 

the relative environmental wind. CW refer to these as the 'motion-induced' and 'shear-induced' 

asymmetries, respectively. Equivalent nondimensional initial conditions are then 

A 1 
Co=-, n = 1; - r3 

A i 
(o=-2, n=2. r 

(B4.45) 

(B4.46) 

The last initial condition used by CW was motivated by a desire to have exact solutions to 

(B4.28). By making the substitution µ = 1/ p2 , it can be shown that an initial vorticity profile of 

the form 

(B4.47) 

admit analytical solutions to the integration (cf. equations (30) and (31) in CW) . These initial 

vorticity perturbations are radially confined to the inner boundary and may be physically interpreted 

as asymmetries forced by convection in the eyewall of tropical cyclones. CW refer to these as 

'convection-induced' asymmetries. 

4.4 Model Results 

Since one of the objectives of this thesis was to address some of the unresolved issues of the 

CW paper, a necessary first step was to be able to reproduce their results . Although their stream-

function fields were easily reconstructed, the integrated kinetic energy plots associated with the four 

initial conditions developed in the previous section were not reproduced exactly. Figure 4.2 is a 

reproduction of figure 4a from CW while figure 4.3 shows the results from this work. Although the 
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trends are the same, the magnitudes and shapes of the curves are different. Specifically, CW show 

a more rapid energy decay for 'convection-induced' initial conditions and a more abrupt transition 

to the asymptotic behavior. The conclusions CW draw from their figure , however, are essentially 

qualitative in nature and can still be obtained from figure 4.3. 

CW provide little information about the numerical model used to generate their results. It is 

likely, then, that the conditions of their experiments have not been exactly duplicated. However, we 

are confident that the results presented in this thesis are robust . The numerical results here have 

been verified to satisfy the momentum and mass conservation equations to ·thin the discretization 

error associated with the trapezoidal rule. Moreover, as the model resolution was increased, the 

results were quadratically convergent (see Appendix B). 

In their paper, CW restrict attention to the initial vorticity profiles developed in the previous 

section. While physically motivated, they change both the radial structu:e and the azimuthal 

wavenumber simultaneously. Using the CW initial conditions as a reference, initial vorticity profiles 

where only one parameter changes at a time are considered. 

Figure 4.4 shows the strea.mfunction fields for an upright initial vorticity distribution ( 0 = 1/r3 

and figure 4.5 shows the corresponding vorticity fields. The rows represent wavenumbers n = l , 

2, and 3, respectively, while the columns designate times t = 0.0, 3.6, and 7.2, respectively. These 

figures show that , with respect to increasing the time or the wavenumber, the rectilinear and swirling 

problems behave similarly. This is not surprising as the Green 's function and the phase function are 

formally identical between the rectilinear and swirling cases. 

While the mathematical solutions are qualitatively similar between the rectilinear and swirling 

cases, there are physical differences in the disturbance evolution between the two systems. Figure 

4.6 shows the energy decay in the rectilinear problem for the initial condition ( 0 = -1 / (y - 11 )3 • 

Figure 4.7 shows the energy decay in the swirling problem for ( 0 = 1/r3 • These plots show that, on 

a wavenumber by wavenumber basis, the energy decays more slowly in the swirling problem than in 

the rectilinear case. In addition, the figures suggest that the difference between the wavenumber one 

disturbance and the higher wavenumber disturbances is more pronounced in the swirling problem. 
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These differences are explained by examining how the shear acts in each system. 

In the rectilinear problem considered in chapter 2, the shear is constant an defines limiting 

values for the energy decay of the perturbation. In particular, the limiting energy decay is given by 

1/[1 + (St) 2] . Thus, the limiting t' me for a perturbation to decay to half its initial energy is t = 1/ S, 

the half-life time. In the swirling problem, however , the shear varies radially and is only a local 

measure of the flow. In order to investigate the limiting integrated energy decay of asymmetries , a 

global measure of the shear is required. 

In simple shear and in the bounded Rankine vortex, the physical process governing disturbance 

evolution is the conservation of vorticity following the basic state flow. In the rectilinear problem of 

chapter 2, the perturbation vorticity is advected by u, the basic state zonal wind. The corresponding 

shear is thus dii/dy . Since the shear is constant, the meridional scale of the perturbation qualitatively 

describes the decay rate for a constant zonal wavenumber. The change in the zonal wind across a 

large-scale perturbat ion is greater than the corresponding change across a small-scale perturbation. 

Thus, the large-scale disturbances decay more rapidly. 

In the swirling problem, the disturbance vorticity is advected by v/r, the basic state angular 

velocity. The corresponding local shear is rdD./dr (SM) where n = v/r . In a Rankine vortex, n is 
equal to 1/r2 and the local shear is equal to -2/r2 • Since the angular velocity does not describe 

solid body rotation, both the radial location and the radial st ructure of the asymmetry are needed 

to describe the decay rate. A plausible candidate for an effective shear that satisfies these conditions 

is 
b -

Jrdn; dr 
dr '> 0 

S eff = a b 

J (odr 
(B4.48) 

a 

The analogous expression in the rectilinear problem reduces to the simple shear definition if du/dy 

is constant. For initial conditions of the form 1/ra , the effective shear is found to be 

2(a - 1) [aa+l - ba+l 
Setr = - ab2(a + 1) aa-1 - ba-1 , 

a2 - b2 
Setr = ab2 ln(b/a) ' a= 1. 

(4.49a) 

(4.49b) 

Appealing to the rectilinear case, the effective shear should define limiting values for the decay rate 
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of asymmetries. In particular, the limiting energy decay should be given by 1/[1 + (Sefft)2]. Thus, 

the limiting asymmetry half-life time should bet= -l/ Self· The limiting energy decay curve is the 

solid line in figure 4. 7. 

Figure 4.8 shows the tntegrated-energy as a function of time for azimuthal wavenumber n = l 

and vorticity profiles ( 0 = 1/ra. where o = 3, 4, 5, and 6. Figure 4.8 confirms the expected behavior 

for the 1/r3 and 1/r4 asymmetries. However, the decay rates for the 1/r5 and 1/r4 asymmetries 

are nearly identical until t :::::: 5.5. In addition, the decay rate for the l/r6 asymmetry is less than 

that for the 1/r4 asymmetry until t :::::: 8.0 and is less than the decay rate for the 1/r5 asymmetry 

for the times plotted. Thus, for initial conditions tightly confined to the inner boundary, there is a 

transient period when the decay rate decreases with decreasing disturbance scale. This resembles the 

rectilinear problem. The decay rate eventually reverts back to increasing with decreasing disturbance 

scale though the cross-over ti.me is later for smaller-scale disturbances. 

This duality may be qualitatively explained as follows . Initially, most of the kinetic energy in the 

asymmetry is concentrated near the inner boundary. The radial change in the energy is so large that 

the basic state angular velocity appears constant in a first approximation. Thus, as in the rectilinear 

problem, decreasing the disturbance scale results in a decrease of the decay rate. However, the inner 

portion of the asymmetry is symmetrized more rapidly than that farther out in the vortex. The 

kinetic energy near the inner boundary is transferred to the basic state much faster than the kinetic 

energy in the storm's environment. The cross-over time occurs when the inner core energy decays to 

the same magnitude as the environmental energy. At this time, the basic state angular velocity no 

longer appears constant. The cross-over time is later for smaller-scale disturbances because it takes 

longer for the inner core kinetic energy to decay to environmental kinetic energy values. 

The initial vorticity profiles considered thus far represent forcings that act nearly continuously 

in a hurricane. It is also of interest to investigate transient forcings that act in hurricanes, such as an 

upper-level short-wave trough or a tropical easterly wave. As a proxy for such forcings, consider a 

Gaussian initial vorticity profile of fixed radial scale. As the vorticity maximum is moved toward the 

vortex center, the effective shear and the decay rate increases due to the increase in the differential 
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rotation. 

The Gaussian initial vorticity profiles considered in this work have been initially upright with 

respect to the local shear. Conse _uently, such disturbances have only had a decay phase. However, 

migratory short-wave troughs, upon encountering a tropical system, are generally not upright with 

respect to the local shear. As an example, consider a trough positioned 300 km east of a tropical 

cyclone in the Northern Hemisphere. Let the trough axis be oriented 30 degrees east of north such 

that the trough leans against the local shear. Recall from chapter 2 that disturbances leaning against 

the shear grow at the expense of the basic state. Thus, while the trough leans against the shear, the 

trough will intensify and the tropical cyclone will weaken. As the trough grows, it rotates counter 

clockwise and becomes maximurµ when it is oriented north-south. Once the trough is upright with 

respect to the local shear, further evolution results in the trough weakening and the tropical cyclone 

intensifying. 

Figures 4.9, 4.10, and 4.11 s ow the asymmetry half-life times for initial vorticity profiles of 1/r2 , 

1/r 3 , and 1/r5 . For each of these profiles, then= 1 asymmetry clearly decays more slowly than all 

higher wavenumber asymmetries. The dotted line in each plot is the asymmetry half-life time -1/ Seff 

for the given initial condition. For the lower wavenumbers, - / S eff significantly underestimates the 

asymmetry half-life time. For the 1/r3 and 1/r5 profiles, the -1/ S eff line adequately defines the 

asymptotic limit of the half-life time for the higher wavenumbers. This suggests that the Seff 

definition of this chapter is applicable to asymmetries which fall off in radius more rapidly than the 

basic state angular velocity. This conclusion has been verified for Gaussian initial conditions. 

The above results refute an assertion made by CW. Based on closed form solutions obtained 

for the convection-induced asymmetries (cf. CW equations (30) and (31) ), CW argue that the 

asymmetry damping rate should be proportional to the square of the wavenumber. If their assertion 

was correct , then as n -+ oo, the damping rate should also become infinite. Thus, the half-life time 

should asymptote to zero. However, the asymmetry half-life plots show that for increasing n , the 

time required for the energy to decay to half its initial value approaches a nonzero constant and 

does not decrease as 1/n2 . 
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4.5 Application to Hurricanes 

The definition for the effective shear presented in the previous section need not be restricted to 

the Rankine vortex. Here the effective shear is evaluated for the analytical profiles v = 1/ra where 

a = 1/3, 1/2, and 2/3. These profiles are better approximations of the symmetric tangential winds 

typically observed in hurricanes than is the Rankine vortex. The effective shear is also calculated for 

the observed 700 mb winds in hurricane Gloria (Montgomery, personal communication, 1994) which 

occurred in 1985. The Gloria data are nondimensionalized using Vm = 57.91 ms-1 and Rm~ 20 km 

corresponding to Gloria's maximum tangential wind and radius of maximum winds, respectively. 

The Gloria winds are given at 10 km intervals and are considered out to 500 km from the storm 

center. Thus, for a nondimensional inner boundary set at a= l , the corresponding outer boundary 

is at b = 25. Figure 4.12 shows the Gloria and analytical symmetric tangential winds. 

Since the effective shear calculation also requires the specification of initial vorticity profiles, 

three types of initial conditions are considered here. The first is a convectively forced asymmetry and 

is confined tightly to the radius of maximum winds. The second is shear-induced asymmetry which 

is also confined to the inner boundary but extends farther out into the vortex than the convection-

induced asymmetry. The final initial condition corresponds to a trough in the environment of the 

vortex several hundred kilometers from the vortex center. Mathematically, these initial conditions 

are given by ( 0 = 1/r5 , 1/r2 , and exp(-(r - 15)2 ), respectively. 

Table 4.1 shows values of Seif and -1/ Seff for the initial voticity profiles and symmetric wind 

profiles above. The values have been dimensionalized using the Hurricane Gloria data cited above. 

The asymmetry half-life times given by -1 / Seff are underestimates of the decay rate. Examination 

of figures 4.9, 4.10, and 4.11 indicate then= 1 asymmetry decays approximately seven times slower 

than the limiting time-scale. Assuming that the n = 1 decay rate approximates the decay rate for an 

atmospheric disturbance, the asymmetries forced in the inner region of a hurricane give up half their 

initial energy in 35-70 minutes for the analytical symmetric winds. The table suggests that similar 

asymmetries in Hurricane Gloria gave up half their initial energy in 40-60 minutes. The Gaussian 

initial vorticity here represents a trough 300 km from the storm center. This feature decays to half 
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its initial energy in 17-35 hours for the analytical symmetric winds. The table suggests that similar 

asymmetries in Hurricane Gloria gave up half their initial energy in 14 hours. 

4.6 Summary 

Wave disturbances on a symmetric vortex have been shown to favor the lower wavenumber 

asymmetries. Disturbances evolve in a similar fashion to their rectilinear counterparts for changes 

in the wavenumber and in time. However, the disturbance evolution for changing radial structure is 

complicated by the change in the basic state angular velocity with radius. In addition to the radial 

scale, the radial location of the initial asymmetry must be known. 

For asymmetries forced in the inner core region of the vortex, decreasing the radial scale of the 

asymmetry increases the effective shear and the decay rate when the environmental portion of the 

kinetic energy is comparable to the inner core portion. When the asymmetry is tightly confined to 

the inner boundary, the kinetic energy near the inner core dominates. The effective shear appears 

constant and further narrowing of the radial scale results in a decreasing decay rate. This transient 

behavior lasts until the kinetic energy near the inner core is reduced to levels comparable to the 

environmental kinetic energy. For asymmetries forced in the environment of the vortex, increasing 

the radial scale of the asymmetry or moving a fixed scale asymmetry towards the inner boundary 

results in an increase of the effective shear and the decay rate. 

Since the shear varies with radius, an integrated measure of the shear is needed to estimate the 

global evolution of asymmetries. The shear definition presented here considers both the basic state 

angular velocity and the initial vorticity profile. Noting that the reciprocal of the rectilinear shear 

defined the limiting time for a perturbation to decay to half its initial energy, the reciprocal of the 

effective shear was expected to define he limiting asymmetry half-life time. This time scale signifi-

cantly underestimated the decay rate or the lower azimuthal wavenumbers for all initial conditions 

considered. However, the decay time scale -1/ Seff reasonably represented the asymptotic limit of 

the asymmetry half-life times for the higher wavenumbers as long as the initial condition fell off in 

radius more rapidly than the basic state angular velocity. 
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Table 4-1: Effective shear values and limiting asymmetry half-life times for various symmetric wind 
profiles. Symmetric wind data from the 700 mb level of Hurricane Gloria are also considered. All 
values have been dimensionalized using Gloria's maximum azimuthal wind (57.91 ms-1 ) and the 
radius of maximum winds (20 km) . 

(o 

1/r5 1/r2 e(r-15)2 /10 

1/rl/3 -2.81 X 10-3 S-l -1. 77 X 10-3 S-l -1.09 X 10- 4 S-l 
5.94 min 9.44 min 2.56 hr 

v 1/rl/2 -3.06 X 10-3 S-l -1.86 X 10-3 S-l -7.83 x 10-5 s-1 

5.45 min 8.96 min 3.55 hr 

1/r2/3 -3.29 X 10-3 S-l -1.94 X 10-3 S-l -5.59 x 10-5 s-1 

5.07 min 8.58 min 4.97 hr 

Gloria - 2.89 X 10-3 S-l -1.81 X 10-3 s-l -1.29 X 10- 4 S-l 
5.76 min 9.23 min 2.15 hr 
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Bounded Rankine Vortex 

2 4 6 8 10 
r 

Fig. 4.1: The nondimensionalized bounded Rankine vortex. 
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Normalized Kinetic Energy 
Bounded Vortex: a=l, b=lO 

Fig. 4.2: Figure 4.(a) from the Carr and Williams (1989) paper. t is a plot of the normalized 
kinetic energy as a function of time for the four initial conditions developed in their paper. The 
curves are the energy decay for: convection-induced (n = 2, dot; n = l dash), motion-induced 
(chaindot), and shear-induced (chaindash) asymmetries. 
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Fig. 4.3: Normalized kinetic energy as a function of time for the four initial conditions developed 
by Carr and Williams (1989) . The curves are the energy decay for: convection-induced (n = 2, dot; 
n = 1, dash) , motion-induced (dot dash) , and shear-induced (dot dot dot dash) asymmetries. 
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Fig. 4.4: Perturbation stream.function field for ( 0 = 1/r3 for the bounded Rankine vortex. The 
columns show contours at times t = 0.0, t = 3.6, and t = 7.2, respectively. Panels (a)-(c) show 
contours for n = I where the contour interval is 1.10 x 10-2 . Panels (d)-(f) show contours for n = 2 
where the contour interval is .67 x 10-3 • Panels (g)-(i) show contours for n = 3 where the contour 
interval is 3.31 x 10-3 • 
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Fig. 4.5: Perturbation vorticity field corresponding to figure 4.4. Note the different axis scales. 
The contour interval is 6.90 x 10-2 . 
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5.1 Summary 

CHAPTER 5 

CONCLUSION 

The inviscid nature of disturbance evolution in sheared flows has been investigated. The problem 

has been studied within the framework of nondivergent vorticity dynamics. Particular emphasis has 

been placed on understanding 'the wavenumber and spatial structure dependencies in perturbation 

evolution. 

A truly inviscid mechanism which favors the decay of high wavenumber perturbations over 

low wavenumber perturbations wa.c; identified. Further, the wavenumber one perturbation decayed 

significantly slower than all other perturbations. In the development of AB theory, SM appealed to 

both observational and computational evidence of a wavenumber selection mechanism as the basis 

for the theory. The results presented here further elucidate the wavenumber selection mechanism 

and provide further theoretical support for the validity of AB theory. 

The spatial structure of the initial conditions was shown to play a significant role in disturbance 

evolution. The spatial scale controlled how rapidly a disturbance sheared and subsequently decayed. 

In the swirling problem, the radial location of the initial condition was an important consideration 

as the shear decreased from the radius of maximum winds. These factors led to the definition of 

an effective shear which accounted for the interaction of the symmetric basic state and the initial 

vorticity profile. As defined here, the effective shear was shown to be an adequate estimate for the 

higher wavenumbers as long as the radial variation of the initial condtion was greater than that of 

the symmetric basic state. However, the effective shear was a significant underestimate for the lower 

wavenumbers. 

Using the effective shear, decay half-life times were estimated on a wavenumber by wavenumber 
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basis. The results clearly demonstrated that the decay half-life times do not decrease as 1/n2 which 

refuted the CW assertion that the damping rate is proportional to the square of the azimuthal 

wavenumber. The effective half-life times for wavenumber one were found to be approximately 

seven times slower than th se forecast by the effective shear. This was used to estimate half-life 

times for tangential wind profiles that are more representative of hurricanes outside their radius 

of maximum winds. These half-life times seemed to be reasonable estimates for the asymmetric 

forcings simulated. 

5.2 Suggested Further Work 

The wind profiles considered did not have a basic state vorticity gradient and, thus , excluded 

discrete normal modes from the solution set. While the interaction of the continuous spectrum 

and the discrete normal modes has been considered for the Eady model (Pedlosky, 1964; Farrell, 

1984), this topic requires further investigation in rapidly rotating vortices. An analytical metho~ 

that extends the Rankine vortex into a uniformly rotating core is briefly considered in Appendix A. 

In addition, a basic state vorticity gradient may be viewed as an effective vortex (3. CW suggested 

that this effective (3 would introduce a retrogression that could counteract the rate of perturbation 

tilting induced by the differ tial rotation. Further work is needed to examine this hypothesis. 

Sutyrin characterized the transfer of energy from the azimuthal perturbations to the circularly 

symmetric basic state as being analogous to the energy cascade to larger scales in two-dimensional 

turbulence. Moreover, he associated the growth of the basic state potential vorticity gradient with 

the transfer of enstrophy to smaller scales. These ideas merit further investigation and quantification. 
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APPENDIX A 

AXISYMMETRIZATION IN UNBOUNDED RANKINE FLOW 

In this appendix, the asymmetric dynamics of an unbounded Rankine vortex are briefly consid-

ered. The nondimensional linearized vorticity equation from chapter 4 is again used to represent the 

system. The inner boundary is now at the origin while the outer boundary is removed to infinity. 

It is assumed that all quantities are bounded at the origin and vanish at infinity. 

When including the region inside the radius of maximum winds, the Rankine profile is given by 

v = { r / a, r ::; a; 
a/r, r 2 a; 

(A.l) 

where a is the nondimensional radius of maximum winds and r is the nondimensional radius. The 

corresponding basic state vorticity profile is 

(={2/a, 
0, 

while the absolute vorticity profile is given by 

r < a; 
r > a; 

__ { R;; 1 + 2/a, 
1J - R-1 

0 ' 

r < a; 
r > a. 

(A.2) . 

(A.3) 

The quantity R;;1 is the inverse Rossby number defined by R;;1 = f Rm,/Vm where f is the Coriolis 

parameter and Vm is the symmetric wind at the radius of maximum winds (Rm,). Figure A.l shows 

v and ij for the full Rankine vortex. 

The discontinuity in the mean state vorticity at r = a effectively introduces another boundary 

to the system. Since this boundary is interior to the fluid , the kinematic and dynamic boundary 

conditions must be satisfied at the disturbed interfacer = a+€, where€ is the interface displacement. 

The kinematic boundary condit ion requires that the normal velocity be continuous while the dynamic 

boundary condition requires that the pressure be continuous at r = a+€, respectively. Consistent 
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with the linearization employed below the matching conditions will be evaluated at r = a. The 

evolution of the disturbed interface may still be determined by integrating 

(A.4) 

at r = a once u' is found. 

For the full Rankine profile (A.2) the linearized vorticity equation of chapter 4 is modified to 

r /a. (A.5) 

To solve (A.5), the discontinuity in the basic state vorticity at r = a must be accounted for. Since 

the problem is linear, the su erposition principle may be used to decompose the solution into two 

parts by letting ( = (s + (i where (s is defined to be smooth for all r and (1 accounts for the 

discontinuity in the basic state vorticity at r = a. The vorticity equation (A.5) is then split into two 

parts 

'fr; 

r # a. 

(A.6a) 

(A.6b) 

Equation (A.6a) is formally identical to the system solved in chapter 4, but with the boundary 

conditions cited above. The corresponding solution in Fourier space is 

00 

'¢s(r, t) = J G(r, p)(s0 (p)e- invt/ p pdp 
0 

where the appropriate Green 's function is 

G(r,p)=-- P : ' _r_p 1 { -n n Q < < 
2n pn_r n, p r < oo, 

and (s 0 (p) is the smooth component of ( at time t = 0. 

The Fourier space equivalent to (A.6b) is 

r /a. 
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Anticipating that the solution to (A.9) will yield the d'screte normal modes which are irrotational 

on both sides of the discontinuity, (1 is assumed separable of the form 

(1 = ')'(t)8(r - a). (A.10) 

Here, ')' is an undetermined temporal multiplier for (1 and 8(r - a) is the Dirac delta function . In 

terms of the streamfunction, equation (A.10) is written 

(A.11) 

The streamfunction is also assumed separable of the form '¢1 = 'Y(t) 1h(r) . Thus, equation (A.11) 

becomes 

( 
d2 z) A dyZ - k 'lt1 = 8(r - a). (A.12) 

For r ¥ a, equation (A.12) is Euler's equation. Two conditions are needed to match the solutions 

in each region across r = a. The first is the kinematic boundary condition requiring that the radial 

velocity, u , be continuous at r = a. Thus, the Fourier streamfunction amplitude must be continuous 

across r = a. The second condition results from integrating (A.12) over a small interval that includes 

r = a. This yields the following jump condition for iii-1 

(A.13) 

Applying the boundary conditions, and the continuity and jump conditions at r = a, yields 

(A.14) 

To complete the derivation, ')' must be determined. The remaining constraint is the dynamic 

boundary condition which requires that the pressure be continuous at r = a. In Fourier space, the 

azimuthal momentum equation is given by 

av inv A _ A in A - + -V + 1JU = --p. at r r 

Evaluating (A.15) on each side of r = a and subtracting gives 
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In terms of the total streamfunction, equation (A.16) becomes 

(A.17) 

Now, from the superpositi n principle, 'if) = 'efJs + ,'111, where 'efJs and its derivatives are everywhere 

smooth by construction. Since '111 is continuous but has a unit jump in its derivative across r = a, 

equation (A.17) simplifies to 

d, i 2in A 

dt + ;(n - 1), = -~1/Js (a, t), (A.18) 

a first-order linear differential equation for ,. Upon multiplying through by the integrating factor 

exp[i(n - l)t/a] and substituting for 'ef}5 (a, t) , equation (A.18) becomes 

00 :t [,ei(n- l}t/a] = _ ~: J G(a,p)(soe[i(n-1 )/a-inii/p]t pdp. 
0 

Integrating in time and then multiplying through by exp[-i(n - l)t/a] gives 

where c1 is the constant of integration at t = 0. Equation (A.20) then yields 

00 A 

,(t) = _ 2n J G(a, p)(s~ e-iniit/p pdp 
a (n-1-anv/p) 

0 

[ + 2n/
00 

G(a,p)(so d] -i(n-l}t/a 'Yo - _ p p e 
a (n-1-anv/p) 

0 

(A.19) 

(A.20) 

(A.21) 

where 'Yo is the initial amplit de of the normal-mode (Rossby) wave. The Fourier streamfunction 

amplitude, 'if), is thus 

00 

'if)= J G(r,p)(soe-iniit/p pdp 
0 

00 A 

+'11 J G(a, p)(so e-invt/ppdp 
1 (n-1-anv/p) 

0 

_ '111 [a,0 + Joo G(a,p)(s~ pdpl e-i{n-l}t/a_ 
2n (n-1-anv/p) 

0 

(A.22) 

where G is given by (A.8) and '111 is given by (A.14). To obtain the physical space streamfunction, 

the inverse Fourier transform must be applied to (A.22). 
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Equation (A.22) is interpreted as follows. The first line may be tentatively identified with the 

continuous spectrum solution and is the analogue of the solution presented in chapter 4. The second 

line is a conversion term that transfers some of the energy in the continuous spectrum solution into 

the discrete mode, which is the third line of the equation. Interestingly, even with no normal mode 

component initially ( 'Yo = 0), the continuous spectrum solution will always project onto the normal 

motie at later t imes (cf. Farrell, 1982). Note that for n = 1, the discrete mode does not rotate on 

the vortex, but rather represents the translation of the basic state vortex. For n =/:. 1, the discrete 

modes rotate slower than the vortex and represent retrogressing Rossby waves at r =a+€. 

Edwards (1994) demonstrated that this model can be extended to an arbitrary number of 

regions of constant basic state vorticity. Sutyrin (1989) developed the quasi-geostrophic shallow 

water equivalent of the multi-region model. However, his formulation did not explicitly describe the 

interaction betw-een the continuous and discrete spectrum solutions. Extension of the above model 

to a quasi-geostrophic shallow water system is of interest as it may prove useful in idealized studies 

of hurricane track. 
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Figure A.1: Panel (a) shows the symmetric tangential winds for the full Rankine vortex. Panel 

(b) is the corresponding abso1ute vorticity using an inverse Rossby number of 0.1. 
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APPENDIX B 

MODEL VERIFICATION 

In this appendix, the verification of t he numerical model is briefly considered. Since the merid-

ional or radial disturbance scale generally changes with time, an estimate of when the disturbance 

scale becomes smaller than the model resolution is desired. In the rectilinear problem of chapter 2, 

the meridional wavenumber of an upright plane wave perturbation was found to be l = -kSt. Thus, 

a meridional wavelength was given by 21r / kSt. Assuming the model resolves perturbations that have 

scales greater than or equal to twice the grid spacing, the model no longer resolves the perturbations 

when 

27r - < 2.6.y 
kSt -

where . .6.Y is the grid spacing, k is the zonal wavenumber, and S is the shear. Thus, 

7r 
St>-- k.6.y 

(B .l) 

(B.2) 

gives an estimate of when the perturbations are no longer resolva le. In chapter 2 and 3, the worst 

model resolution was .6.y = 0.056, corresponding to 361 grid points and integration limits at ±10. 

For k = 3, the model resolution starts becoming inadequate for St 20. 

For the swirling problem, SM have shown that the change in the radial wavenumber with time 

is 

dk dfi 
-=-n-. 
dt dr 

(B .3) 

Here, k is the local radial wavenumber, n is the azimuthal wavenumber, and n is the basic state 

angular velocity. For the Rankine profile (A.l) , equation (B .3) is 

Thus, for a locally upright asymmetry 

dk 
dt = 2n 

r3 . 

k = _ 2nt 
3 • r 
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The model resolution, then., stc1:rts becoming inadequate when 

or, when 

7rr3 t>--. - 2nAr 

(B.6) 

(B.7) 

In chapter 4, the worst model resolution was Ar = 0.05, corresponding to boundaries a = l and 

b = 10 with 181 grid points. Thus, at the radius of maximum winds for n = 3, the asymmetries 

start becoming smaller than the model resolution when t 10. However, at r = 5 and n = 3, the 

asymmetries start becoming unresolvable when t 1300. 

To be consistent with the analytical system, the model results must satisfy the momentum 

equations to within discreti.zation error. Since the trapezoidal rule was used in this work, the 

discretization error should be proportional to the model resolution squared, i.e., model output must 

be at least quadratically convergent. The procedure used to evaluate the model output for the 

swirling problem is briefly presented below. 

For the bounded Ranldne vortex (B4.18), model verification was performed with the Fourier 

space representation of the momentum equations (B4.8a) and (B4.8b) 

(B.8a) 

(B.Bb) 

From (B.8b) , p was found for all radial values at a fixed time. Using centered difference approxima-

tions for all differentiated quantities, the radial gradient of p was calculated and compared to the 

left side of (B.8a). For the shear-induced asymmetry from CW ((0 = -i/r2 , n = 2) and model 

resolutions of Ar= At= 5 x 10-2 at t = 9, the difference between the left and right sides of (B.8a) 

at r = 2.3 was -2.54 x 10-5 _ For double and quadruple the above model res lution, the difference 

was -6.34 x 10-6 and -1.59 x 10-6 , respectively. In each case, as the model resolution doubled, 

the difference decreased by a factor of 4. For the same modei resolutions at r = 1. 7 and t = 5.9, 

the differences were 9.02 x 10-6 , 2.01 x 10-6 , and 4.87 x 10-7 , respectively. The model output was 
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checked for a variety of times, radial locations, and initial vorticity profiles. In all cases, the model 

output was found to be quadratically convergent. 
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