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ABSTRACT 

INTEGRATED ASSESSMENT OF AGRICULTURAL ECOSYSTEMS USING 

SIMULATION-OPTIMIZATION AND MACHINE LEARNING 

 

Agriculture provides many ecosystem services to human society but is also a major cause of 

environmental degradation. The key challenge of modern agricultural production is to meet 

projected increases in global demands for food, water, and energy in sustainable ways. 

Sustainable agricultural production requires integrated decision-support tools and rigorous 

assessment methods to improve the efficiency of natural resource management while minimizing 

its impacts to society and long-term ecosystem health. This dissertation focuses on developing 

methodology and modeling tools to support decision-making for sustainable agricultural resource 

management. The Millennium Ecosystem Assessment is used as a guiding framework for all the 

model development. The dissertation balances between the communication of the integrated 

assessment methodology and the presentation of the modeling techniques through four 

independent case studies. The first study links biogeochemical models with life cycle assessment 

(LCA) to explore the impact of regionally-specific ecosystem carbon stock changes associated 

with cassava cultivation for ethanol production in Vietnam. The second study couples 

biogeochemical models with GIS and optimization algorithms to conduct a high-resolution, 

spatially-explicit trade-off analysis of ecosystem services for irrigated corn production systems 

in the South Platte River Basin, Colorado, USA. The derived modeling platform is named the 

“Agricultural Ecosystem Service Optimization” (Ag-EcoSOpt). The third study integrates LCA 

into the Ag-EcoSOpt for a life-cycle-based optimization of feedstock landscape design for a 

hybrid corn grain- and stover-based ethanol production system at Front Range Energy 
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biorefinery, Windsor, Colorado, USA. The last study develops a surrogate-based optimization 

framework for Ag-EcoSOpt to reduce the computational burden of large-scale landscape 

analyses. The study explores the trade-offs among seven management objectives of the irrigated 

corn production systems in Colorado, USA at different spatial scales. 
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CHAPTER 1. INTRODUCTION 

1.1 SUSTAINABLE AGRICULTURE: THE GUIDING CONCEPT 

Agriculture provides many goods and products such as food, fuel, and fiber to sustain human 

society, but is also a major cause of multiple types of environmental degradation. Agriculture 

occupies about 40% of the Earth's land area with an additional approximately six million 

hectares converted from natural state every year (Swinton et al., 2007; Deininger and Byerlee, 

2011). In developing countries, cultivated land is expected to increase over 47% to meet demand 

for food by 2050 (Fischer and Heilig, 1997). Agricultural activities and land use conversion (e.g., 

deforestation) contribute 19% – 29% of global anthropogenic greenhouse gases (IPCC, 2014; 

Glendining et al., 2009). The agricultural sector accounts for over 70% of global freshwater 

withdrawals, which is more than three times that of industry (23%) and nine times that of 

municipal use (8%) (MA, 2005a). Agriculture is also the main driving force of deforestation, 

biodiversity loss, and soil degradation (Clark and Tilman, 2017); and is the leading source of 

pollution in many countries due to the run-off and leaching of excessive agrochemical use 

(Sutton et al., 2013).  

The key challenge of the modern agricultural production is to meet the projected increases in 

global demand for food, water, and energy in sustainable ways. The impacts of agricultural 

production on ecosystems are likely to increase in the future with ongoing increases in 

population growth and income-dependent dietary shifts towards more meat-based diets (Tilman 

et al., 2011; Springmann et al., 2016). The world population is projected to be about 9.7 billion 

in 2050 (UN, 2017). This will likely result in 70% - 85% increase in the demand for food crops 

and 30% - 85% increase in water demand over the next five decades (MA, 2005a; Brown, 2012). 
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According to Bruinsma, (2009), a population of nine billion people will require an additional one 

billion metric tons of cereals and 200 million metric tons of livestock products as compared to 

2007. In addition, the global production and use of biofuels for energy security will impose 

further pressure on food production, land conversion, water use, biodiversity, and agricultural 

commodity prices (Gasparatos et al., 2011). Meeting the increasing demands for water, food, and 

energy will require improvement in genetic engineering of cropping species as well as the more 

efficient use of natural resources to achieve higher production with minimal impacts to society 

and long-term ecosystem health. The latter requires integrated assessment methods and decision-

support tools that facilitate thorough analysis of agricultural ecosystems. 

This dissertation focuses on developing methodology and modeling tools to support decision 

making for sustainable agricultural resource management. The concept of sustainable agriculture 

is used as the guiding concept for the assessments and model development in all chapters. 

Sustainable agriculture is defined by the 1990 U.S. Farm Bill as an “integrated system of plant 

and animal production practices having a site-specific application that will, over the long term: 

(a) satisfy human food and fiber needs; (b) enhance environmental quality; (c) make efficient use 

of non-renewable resources and on-farm resources and integrate appropriate natural biological 

cycles and controls; (d) sustain the economic viability of farm operations; and (e) enhance the 

quality of life for farmers and society as a whole.” (U.S. Congress, 1990) 

1.2 FRAMEWORK FOR AGRICULTURAL ECOSYSTEM ASSESSMENT 

Conceptual frameworks are needed to facilitate systematic assessments of agricultural 

ecosystems, allowing fair comparisons between different scenarios and conditions to support 

decision-making. A well-designed framework provides a logical structure to guide the evaluation 

of the system of interest. Such a framework ensures that the essential components and linkages 
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of the system are identified and thoroughly addressed (MA, 2005b). The millennium ecosystem 

assessment framework (MA), prepared by 1,360 scientists from 95 countries, provides a 

foundation for holistic research approaches where multiple perspectives (e.g. ecological, 

economic, and institutional) are integrated to assess the effects of decision-making and policies 

on ecosystem sustainability and eventually on human well-being (MA, 2005a). This framework 

is employed to guide the assessments of agricultural ecosystems in this dissertation. The 

framework is briefly summarized below: 

The MA framework emphasizes the linkages among drivers of ecosystem change, ecosystem 

services, and human well-being at multiple geographic and time scales (Fig. 1.1). Ecosystem 

services (ES) are defined as the benefits human obtained from ecosystem, and are often 

classified into four main categories, including supporting, provisioning, regulating, and cultural 

services (MA, 2005a). Supporting services, such as water and nutrient cycles, support the 

normal functioning and production of an ecosystem to provide other ecosystem services; 

provisioning services include products directly obtained from ecosystems such as food, 

biomass, and fresh water; regulating services are the benefits obtained from the regulation of 

ecosystem processes such as climate regulation, water purification, and pollination; and cultural 

services include non-material benefits such as spiritual enrichment, recreation, and aesthetic 

values. The provision mechanism of ES is often explained using a cascade model that includes 

the following stages: biophysical structure or process (generated by biotic/abiotic interactions in 

the ecosystem), function (capability to provide ES), services (flows that connect natural capital 

stocks produced by ecosystems to societal groups that use them), benefit(s) (e.g. nutrition, health, 

safety), and value (monetary and non-monetary) (Fig. 1.2) (Haines-Young and Potschin, 2010). 
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Fig. 1.1. Millennium ecosystem assessment conceptual framework. Source: MA, (2005b). 
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Fig. 1.2. Cascade model of ecosystem service provision. Source: Haines-Young and Potschin, 

(2010). 

Understanding the drivers of ecosystem change is essential to designing interventions that 

harness positive impacts and minimize negative ones. The MA defined a ‘driver’ as any factor 

that changes an aspect of an ecosystem. A direct driver influences ecosystem processes while an 

indirect driver operates by altering one or more direct drivers. The influence of an indirect driver 

on ecosystem change is established by understanding its effect on direct drivers. For a specific 

decision maker, a driver is defined as endogenous if it can be influenced or as exogenous if it 

cannot be controlled by the decision maker. Whether a driver is exogenous or endogenous to a 

decision-maker is dependent upon the spatial and temporal scales.  

The MA suggests assessment of ecosystems be conducted at multiple temporal and spatial scales 

due to the cross-scale interactions of ecosystem services and human well-being. However, it 

emphasizes that the scales need to be appropriate to the process or phenomenon being examined. 
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Coarse resolution assessments can capture bigger pictures with causality effects but may not 

detect fine-resolution processes (such as local patterns or anomalies), which are important to 

identify thresholds and nonlinearities. Finer spatial scales help identify important dynamics of 

the system that might otherwise be overlooked. Likewise, appropriate time scale is crucial for 

ecosystem assessments. If an assessment covers a shorter time period than the temporal scale of 

an ecosystem process, it may not adequately capture the variability associated with long-term 

cycles. 

The MA identifies nine major tasks for conducting an integrated ecosystem assessment 

including: (1) identifying and categorizing ecosystems and their services; (2) identifying links 

between human societies and ecosystem services; (3) identifying the direct and indirect drivers 

of change; (4) selecting indicators of ecosystem conditions, services, human well-being, and 

drivers; (5) assessing historical trends and the current state of ecosystems, services, and drivers; 

(6) evaluating the impact of a change in services on human well-being; (7) developing scenarios 

of ecosystems, services, and drivers; (8) evaluating response options to deal with ecosystem 

changes and human well-being; and (9) analyzing and communicating the uncertainty of 

assessment findings. 

1.3 INTEGRATED TOOLS FOR AGRICULTURAL ECOSYSTEM ASSESSMENT 

Although the MA is a useful road map for ecosystem assessments, the employment of such a 

complex framework for integrated and operational assessments of agricultural ecosystems is 

challenging. First, the MA is an ecosystem-centered framework and thus it lacks focus on life 

cycle and supply chain analysis of provisioning services such as food and fiber, which is 

important for agricultural production systems. Second, the quantification of ES in highly 

segmented ecosystems like agriculture requires fine spatial resolutions and detailed consideration 
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of site-specific conditions such as soils, climate, land use history, and management practices. 

Such quantification is a difficult task that requires thorough understanding of fundamental 

physical and biological processes within the ecosystem. Third, agricultural ecosystem 

management often involves multiple stakeholders as well as complex trade-offs among multiple 

competing services, which requires thorough trade-off analysis and multi-objective optimization. 

Fourth, since agricultural production is highly seasonal, agricultural ecosystem assessments need 

to be timely to support rational decision making. Decision-support tools/platforms that integrate 

life cycle assessment, detailed quantification of ES at field scale, and optimization algorithms are 

necessary for successful implementation of the MA framework in agricultural ecosystem context. 

In addition, those tools need to be agile and fast for meaningful applications in resource 

management decision making. Several decision-support tools have been developed to support the 

implementation of MA framework for sustainable ecosystem management. However, as Bagstad 

et al., (2013) pointed out, those tools were generally designed for landscape-scale operations and 

not intended for site-scale analyses.  

This dissertation focuses on the integration of different decision support tools and methodologies 

to facilitate the efficient implementation of the MA framework for agricultural ecosystem 

assessment (Fig. 1.3). Life cycle assessment is used to evaluate impacts of resource management 

decisions along the supply chains of agricultural ES; process-based biophysical models coupled 

with geographical information system (GIS) are used to quantify ES at fine spatial and temporal 

resolutions, providing continuous feedback between management decisions and ecosystem 

response; multi-objective optimization is used to quantify trade-offs between different 

management options as well as to identify the most efficient agricultural landscape designs to 

maximize ecosystem service provision while minimizing the negative impacts to the ecosystems; 
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and finally machine learning techniques are employed to reduce the computational burdens of 

our modeling platform, allowing its light-weight application for timely decision support. A brief 

description of each separate methods and tools are presented below: 

 

Fig. 1.3. The framework and modeling tools used in this dissertation. 

Life Cycle Assessment 

Life Cycle Assessment (LCA) is defined by the International Organization for Standardization 

(ISO) as studies of the environmental aspects and potential impacts throughout entire life cycle 

of a product, from raw material extraction and acquisition, through energy and material 

production and manufacturing, to use and end of life treatment and final disposal (Finkbeiner et 

al., 2006). The purpose of an LCA is to compare life cycles of products, processes, or services or 

identify parts of the life cycle where the greatest improvements can be made (Roy et al., 2009). 
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An LCA is typically carried out in four interdependent phases including goal and scope 

definition, life cycle inventory (LCI), life cycle impact assessment (LCIA), and interpretation 

(ISO 14044, 2006).  

Goal and scope definition sets out the context of the study, the product or service to be assessed, 

the system boundaries, the reference system, the functional basis for comparison, the analysis 

assumptions and limitations, the allocation methods, and the impact categories. LCI involves the 

creating of an inventory list of all the inputs and outputs related to a “product” functional unit, 

collected from all activities within the system boundary. LCIA is conducted to evaluate the 

significance of potential environmental impacts based on the LCI results. For this, the LCI data 

are characterized and quantified into a limited number of impact categories (e.g., human toxicity, 

global warming, eutrophication) which may then be weighted for importance. The interpretation 

stage summarizes and evaluates the results from LCI and LCIA to draw meaningful conclusions 

and recommendations for decision-making. The integration of ES into LCA will likely require 

creating new impact categories with related calculable indicator(s) and characterization factors 

(Othoniel et al., 2016). 

Process-based biophysical models 

A process-based model is the mathematical representation of the underlying processes that 

characterize the functioning of well-delimited biological systems (Buck-Sorlin, 2013). Process-

based biophysical models such as DayCent (Del Grosso et al., 2000), DNDC (Li et al., 1992), 

and APSIM (Keating et al., 2003) utilize a set of site-specific variables (e.g., biophysical 

conditions, cropping practices, and land use history) as inputs and produce a set of output 

variables (e.g., dry matter production, soil organic carbon, nitrous oxide emission) that describe 

the corresponding system states and functions. These models can capture the fine-scale influence 
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of site-specific weather conditions, soil properties, crop types, cropping practices, and land use 

history that determine the provision of ES (Nguyen et al., 2017). The DayCent (Del Grosso et al., 

2000) and its monthly time-step version, CENTURY (Parton et al., 1994) models are used 

throughout this dissertation to quantify changes in ecosystem functions induced by changes in 

management decisions at farm level. Such results are then used for LCI and trade-off analysis at 

multiple scales. GIS and spatial databases are added to allow spatially-explicit assessments of 

agricultural landscapes. 

Multi-objective optimization 

An optimization includes finding the best solution for some problem given a specific objective 

function and a defined domain (inputs and constraints). When more than one objective is 

considered, the problem becomes a multi-objective optimization. A trade-off is created when 

these objectives conflict with each other. This is often the case of modern agricultural 

ecosystems where many competing objectives such as food and fiber production, carbon storage, 

climate change mitigation, water quality improvement, and biodiversity conservation are 

considered simultaneously. The multi-objective optimization typically generates a set of Pareto-

optimal solutions (also called non-dominated solutions) where any improvement in one objective 

always impairs some others. The collection of all Pareto-optimal solutions is known as the Pareto 

frontier. Several multi-objective optimization algorithms are used in this dissertation including 

the min-max (Hwang et al., 1980), the weighted sum (Fishburn, 1967), and the ε-constraint 

(Haimes et al., 1971) algorithms.  

Machine learning 

Machine learning is a method of data analysis that automates analytical model building. Machine 

learning algorithms give computer systems the ability to “learn” information directly from data 
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without relying on a predetermined equation as a model. These algorithms are often divided into 

two categories including supervised and unsupervised. Supervised algorithms identified patterns 

or relationships between inputs and labeled outputs while unsupervised algorithms can infer a 

function describing a hidden structure from unlabeled data. There are many widely used Machine 

learning algorithms such as decision trees, kriging, polynomial functions, artificial neural 

networks (ANNs), radial basis functions, k-nearest neighbor, and support vector machines. The 

ANNs are employed in this dissertation via a metamodeling technique to create simplified 

surrogate models of DayCent to reduce the simulation time, expertise requirement, and data 

storage of our modeling platform. 

1.4 ORGANIZATION OF DISSERTATION 

According to Nahlik et al., (2012), although numerous ecosystem service frameworks exist in the 

literature, their actual penetration into the decision making process has rarely been observed due 

to obscure concept communication and non-practicality. McIntosh et al., (2011) pointed out that 

the communication of complex systems to stakeholders and decision makers as tools to support 

decisions is a big challenge. Therefore, all following chapters are structured as independent case 

studies balancing between the communication of the assessment methods/frameworks and the 

presentation of our modeling techniques. The chapters are written as standalone journal articles, 

with separate introductions and discussion sections putting the individual results and insights into 

a broader context. 

The dissertation is organized as five separate chapters, including this introductory chapter to 

introduce and highlight the linkages between the following chapters. Chapter 2 is a case study to 

evaluate the impact of ecosystem carbon stock change on greenhouse gas emissions and carbon 

payback periods of cassava-based ethanol in Vietnam. This chapter links CENTURY, a 
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biogeochemical model, with life cycle assessment (LCA) to explore the regionally-specific 

carbon stock changes associated with cassava cultivation for biofuel feedstock in Vietnam. 

Chapter 3 is a trade-off analysis and optimization of ecosystem services and disservices for 

irrigated corn production systems in the South Platte River Basin, Colorado, USA. This chapters 

links DayCent, the daily time step version of the CENTURY model, with GIS and optimization 

algorithms for high-resolution spatially-explicit analyses of ecosystem services in agricultural 

landscapes. The derived modeling platform is named the “Agricultural Ecosystem Service 

Optimization” (Ag-EcoSOpt). Chapter 4 identifies optimum feedstock landscape design for a 

hybrid corn grain- and stover-based ethanol production system at Front Range Energy 

biorefinery, Windsor, Colorado, USA. This chapter integrates LCA into the Ag-EcoSOpt to 

allow life-cycle-based optimization of ecosystem services. Chapter 5 explores the trade-offs 

among seven management objectives of the irrigated corn production systems in Colorado, USA 

at different spatial scales using a surrogate-based optimization framework. This chapter equips 

the Ag-EcoSOpt with machine learning algorithms facilitating metamodeling techniques to 

alleviate the computational burden of large-scale optimizations of agricultural ecosystem 

services. 
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CHAPTER 2. IMPACT OF ECOSYSTEM CARBON STOCK CHANGE ON GREENHOUSE 

GAS EMISSIONS AND CARBON PAYBACK PERIODS OF CASSAVA-BASED ETHANOL 

IN VIETNAM1 

2.1 SUMMARY 

Cassava-based ethanol has been promoted in China and Southeast Asia as an effective means to 

reduce greenhouse gas (GHG) emissions and promote energy security.  However, existing life 

cycle assessments of the environmental impacts of cassava ethanol have used highly-aggregated 

empirical methods to estimate ecosystem C stock changes, which do not capture finer-scale 

characteristics of different cassava growing regions within a country.  We investigated carbon 

debts, GHG emissions, and payback periods for cassava-based ethanol in Vietnam using a life 

cycle assessment approach coupled with the widely-used ecosystem biogeochemical CENTURY 

model.  The model simulated regionally-specific carbon stock changes associated with cassava 

cultivation for biofuel feedstock under different land use change, cassava yield and fertilization 

scenarios. We found that switching land use to cassava production for biofuel substantially 

reduced soil organic carbon in all major cassava growing regions in Vietnam. GHG emissions, 

carbon debts, and payback periods of Vietnam’s cassava ethanol were strongly dependent on 

cassava yield. The mean carbon debt due to direct land use change to cassava production for 

ethanol ranged from 66 to 97 Mg of CO2 per hectare, and the net carbon dioxide equivalent 

emission of cassava-based ethanol ranged from 36 to 95 g MJ-1, depending on the range of 

                                                 
1 This chapter was published in Biomass and BioEnergy Journal, Elsevier.  

Nguyen, T.H., Williams, S., Paustian, K., 2017. Impact of ecosystem carbon stock change on greenhouse gas 

emissions and carbon payback periods of cassava-based ethanol in Vietnam. Biomass Bioenergy 100, 126–

137. https://doi.org/10.1016/j.biombioe.2017.02.009 
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cassava fresh weight yield (from 18 to 60 Mg ha-1).  To repay a carbon debt from direct land use 

change within 25 years, the average fresh weight yield of cassava used as feedstock for ethanol 

production must be above 33 Mg ha-1. 

2.2 INTRODUCTION 

Cassava (Manihot esculenta Crantz) has recently been promoted as a potential feedstock for 

ethanol production in Vietnam and many other parts of Asia, including China and Thailand, due 

to its high yield and low input requirements (Adelekan, 2011; Nguyen et al., 2007; Ou et al., 

2009). Cassava can attain reasonably high yields with minimal irrigation and fertilization, with 

average fresh weight cassava yields in the region ranging from 17.2 – 60.0 Mg ha-1 (Le et al., 

2013; Liu et al., 2013).  The Vietnamese government has set a clear strategy for the development 

of biofuel through 2015 with a broad vision toward 2025. Pursuant to Decision No. 

177/2007/QD-TTg of 2007, the biofuel output target for 2025 is 1.8 Mt year-1, equivalent to 5% 

of projected total fuel demand, with 0.6 Mt year-1 coming from cassava-based ethanol (Decision 

no. 177/2007/QD-TTg of Government of Vietnam, 2007). 

However, questions remain about the overall benefits of cassava-based ethanol on greenhouse 

gas (GHG) reduction and potential negative impacts of cassava production on soil productivity 

due to soil erosion and high nutrient demand (Salami and Sangoyomi, 2013; Howeler, 1991; 

Howeler, 2000). Although GHG mitigation is not currently the main driving force for 

development of biofuels in Asia, the GHG footprint of cassava-ethanol and potential negative 

impacts of cassava as a biofuel feedstock are a concern to policymakers in developing countries 

and should be a consideration when implementing national biofuel expansion plans. 

Consequently, there have been a handful of life cycle assessment (LCA) studies carried out to 

assess the environmental performance of cassava-based ethanol in China, Thailand, and 
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Vietnam. LCA is defined by the International Organization for Standardization (ISO) as an 

analysis of the environmental impacts throughout the entire life cycle of a product, from raw 

material extraction and acquisition, to energy and material production and manufacturing, to use 

and end of life treatment and final disposal (Finkbeiner et al., 2006). Since LCA in the context of 

biofuels is still a relatively recent tool that requires further improvements and standardizations 

(Reap et al., 2008a; Reap et al., 2008b; Efroymson et al., 2013), the LCA results for cassava-

based ethanol in the region vary dramatically between studies (Table 2.1).  

Table 2.1. GHG balance for cassava-based ethanol in Vietnam: a comparison 

Criteria 

Gasoline 

(Wang et 

al., 2012) 

Hu et al., 

(2004) 

Liu et al., 

(2013) 

Leng et 

al., (2008) 

Nguyen et 

al., (2007) 

Silalertruksa and 

Gheewala, (2011) 

Le et al., 

(2013) 

Country  China 
Guangxi, 

China 
China Thailand Thailand Vietnam 

LUC emission 

(g MJ-1) 
      36 – 222 33 

GHG balance 

(g MJ-1) 
94 73 20 – 74  734 46 63 – 313 35 

% of GHG 

reduction  

(vs. gasoline) 

 23 79 – 22 -681 51 33 – (-233)  63 

 

Le et al., (2013) indicated that this variation mainly stemmed from the differences in LCA 

assumptions, and the insufficiency in accounting for direct and indirect land use change (LUC) 

emissions, i.e., the emissions associated with changes in land use due to the cultivation of cassava 

for biofuel feedstock. Indirect land use change (iLUC) is the displacement of existing food 

production systems to new areas as a consequence of the land use change due to biofuel feedstock 

production.  The quantification of iLUC is very complicated as it normally requires the linkage 

between the global economic equilibrium projections and the thorough analysis of land use change 

(Plevin et al., 2010). Therefore, it is often ignored in attributional LCAs like those conducted for 

cassava-based ethanol.  Direct land use change (dLUC) deals with changes in carbon stock (C 
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stock) including vegetation carbon (Cveg) and soil organic carbon (SOC) due to the introduction 

of a new cropping system for biofuel feedstock production that replaces the existing land use at a 

specific site. Direct land use change becomes a problem when carbon-rich ecosystems, such as 

forests and grasslands, are converted to produce feedstock for biofuels. These conversions release 

a significant amount of the carbon that had previously been stored in these ecosystems into the 

atmosphere, creating a “carbon debt” that subsequent biofuel production will have to offset.   

The LUC effects are induced by the production of biofuels and thus must be carefully factored 

into the accounting of biofuel GHG emissions.  Changes in Cveg (aboveground and 

belowground live carbon) are easier to measure or estimate while SOC change is more difficult 

and more expensive to quantify (Bandaranayake et al., 2003). Therefore, SOC has often been 

ignored in many early LCA studies of cassava ethanol (Nguyen et al., 2007; Liu et al., 2013; Hu 

et al., 2004; Leng et al., 2008).  

More recent studies have attempted to address this problem by using simple (Tier 1) empirical 

models developed for the Intergovernmental Panel on Climate Change (IPCC) guidelines for 

national GHG inventories to estimate SOC change due to changes in generic land use types (Le 

et al., 2013; Silalertruksa and Gheewala, 2011; IPCC, 2006). Tier 1 soil C methodology uses 

broad averages for nine globally-defined climatic regions and six classes of soils (IPCC, 2006), 

and was designed to support basic national inventory accounting in countries with minimal data 

and scientific resources. Thus, this approach is poorly-suited for quantifying more locally-

specific impacts on C stock change associated with local weather conditions, soil properties, 

cropping practices, and land use history of a specific location. In addition, the rates of SOC 

change are typically high following land use conversion, and then gradually decrease as SOC 

approaches a new stable state. This dynamic transition affects how GHG emissions associated 
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with feedstock production are analyzed. The Tier 1 method has a fixed time horizon of 20 years, 

over which a constant rate of change is assumed, and thus the method does not capture the more 

dynamic and longer-term changes in soil C stocks that are of interest for computing soil carbon 

debts related to land use change.  

An alternative solution for estimating soil C stock changes is to employ process-based models, 

such as CENTURY (Parton et al., 1994), DAYCENT (Del Grosso et al., 2000), DNDC (Li et al., 

1992), or RothC (Coleman and Jenkinson, 1996). Although these biogeochemical models were 

originally developed for research purposes at field-scale, many of them have been used 

effectively for soil C or GHG estimation at regional to national scales (Ogle et al., 2010; Del 

Grosso et al., 2010). Compared to aggregated empirical models like the IPCC Tier 1 methods, 

these process-based models can better represent site-specific conditions by integrating non-

discrete variables, such as temperature and moisture, and the interactions of biophysical 

characteristics (e.g., climate and soil characteristics). In addition, these models can capture the 

historical influence of land use and management practices on potential future changes in soil C 

stocks (Paustian et al., 2010).  

We investigated GHG emissions from the production stage, carbon debts, and carbon payback 

periods of cassava-based ethanol in Vietnam with an emphasis on soil C stock changes due to 

dLUC. A process-based model (CENTURY) was used to simulate these changes. The model 

takes into account more site-specific factors including climate, soils, cropping practices, land use 

history, and dLUC and produces time series of C stock changes based on dynamic simulation of 

carbon and nitrogen cycling processes in the soil–plant system.  



18 

 

2.3 METHODS  

2.3.1 Modeling the emissions from C stock changes caused by dLUC  

The data on dLUC to cassava cultivation for biofuel feedstock in Vietnam were obtained from 

the survey conducted by Le et al., (2013), and then aggregated into percentages of dLUC to 

cassava by main growing region (North Central, South Central, Central Highlands, and 

Southeast) and by baseline land use type within each region (annuals, perennials, forest, and 

grassland) (Table 2.2). Annuals are defined as land used for crops with a less than one-year 

growing cycle and which must be newly sown or planted for further production after the harvest 

(e.g., rice, maize, wheat, millet, sugarcane, reed, and jute). Perennials are defined as land 

cultivated with long-term crops which do not have to be replanted for several years (e.g., tea, 

coffee, rubber, and citrus). Forests are land spanning more than 0.5 hectares with trees higher 

than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds 

in situ, and grassland are land covered with herbaceous plants with less than 10 percent tree and 

shrub cover (FAO, 2014). The barren land, and denuded hills were also included in the 

grassland. The CENTURY model (Parton et al., 1994) was then used to model the C stock 

changes to cassava for the four baseline land use types in the four cassava growing regions. The 

results were then used to compute the mean carbon debts and annualized emissions from C stock 

changes caused by dLUC to cassava production for biofuel feedstock in Vietnam.  The main 

steps of the modelling process included: (1) model inputs and parameterization; (2) model 

simulation; and (3) calculation of carbon debts and annualized emissions from C stock changes 

caused by dLUC (Fig. 2.1). 

Table 2.2. Percentages of dLUC to cassava cultivation for ethanol production in Vietnam 

Region 

Percentage of 

dLUC to cassava 

by growing region 

Percentage of dLUC to cassava by land use type in each growing 

region 

Annuals Perennials Forest Grassland  
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North Central 8 40.0 12.5 2.5 45.0 

South Central 26 32.0 24.0 10.0 34.0 

Central Highlands 39 16.3 17.5 20.0 46.3 

Southeast 27 36.7 50.0 5.0 8.3 

 

Fig. 2.1. Overview of model inputs and simulation process. 

2.3.1.1 Model descriptions 

The CENTURY model is a general ecosystem biogeochemical model that is widely used to 

simulate ecosystem carbon and nitrogen dynamics (Parton et al., 1988). It is a multi-

compartmental model composed of a soil organic matter/decomposition submodel, a water 

budget model, a grassland/crop submodel, a forest production submodel, and routines to simulate 

a large suite of land management practices (e.g., plant species, planting, harvest, tillage, 

fertilization, irrigation, grazing, etc.) and disturbance events (e.g., land clearing, fire). 

CENTURY uses relatively coarse time steps (monthly for soil organic C and N processes; 

weekly for plant growth and water balance calculations) and thus is intended for simulating 
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medium-  to long-term (annual to centuries) changes in SOC and other ecosystem parameters in 

response to changes in climate, land use, and management (Bandaranayake et al., 2003). 

CENTURY and DAYCENT (the daily time-step version of CENTURY (Parton et al., 1998)) 

have been successfully applied to various ecosystems in various locations throughout the world 

(Cheng et al., 2013; Cerri et al., 2007; Davis et al., 2011; Paustian et al., 1997). Relatively few 

data inputs are required for CENTURY, including monthly maximum/minimum air temperature 

and precipitation, surface soil texture class, and land cover/use data (e.g., vegetation type, 

cultivation/planting schedules, amount and timing of nutrient amendments), which suited the 

conditions of our study (e.g., limited daily weather data for the research locations and study 

regions). 

2.3.1.2 Model inputs and parameterization 

Averaged monthly precipitation, maximum, and minimum temperatures observed at stations in 

Vietnam were obtained from the Statistics and Food Security Database (MARD, 2015a) for 12 

years (2001 - 2013) and then transformed into appropriate formats for CENTURY. We used data 

from five provincial weather stations to represent the four geographical regions (Fig. 2.2). There 

are two weather stations in the North Central region due to its location in a transitional zone 

between two distinct regional weather patterns.  
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Fig. 2.2. Average monthly climate data of five weather stations in Vietnam. 

Table 1.3. Properties of major soil types in Vietnam used to parameter CENTURY 

Soil types Taxonomy pH 
Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Bulk 

density 

(g cm-3) 

Drainage 

Average 

OC 

(%) 

Source 

Sandy Arenosols 5.3 77 12 11 1.51 0.9 0.7 (H. Hoang et al., 2010) 

Alluvial Fluvisols 4.6 23 40 37 1.31 0.8 2.2 (Klinnert and others, 2001) 

Red Ferralsols 4.0 20 27 53 0.85 0.6 5.0 
(Klinnert and others, 2001; 

D’haeze et al., 2003) 

Grey 

Degraded 

Haplic 

Acrisol 
4.3 64 15 21 1.34 0.8 1.0 

(Nguyen and Egashira, 

2008) 

Ferralitic 
Other 

Acrisol 
3.9 40 22 38 0.85 0.7 2.3 (Husson et al., 2001) 
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Major soil types and their properties were obtained from literature (Table 2.3) and were coupled 

with weather data to parameterize the site conditions in CENTURY. We assumed these soil 

characteristics as typical for all cassava growing regions.  

To model the C stock of the baseline land use types before dLUC to cassava cultivation, specific 

sets of soils were assigned to the different land use types for each cassava growing region (Table 

2.4) (Ha, 2010). We modeled broad classes of land use such as annuals, perennials, forest, and 

grassland and assume that each land use type could be represented by the dominant crop/tree 

species. Maize, peanut, sugarcane, cassava, and rice were selected to represent annuals. Their 

cropping proportions in each region (Table 2.4) were calculated based on the planted area data 

obtained from the General Statistics Office of Vietnam (GSOV, 2014). Mixed fruit tree, 

secondary tropical forest, and mixed grass were used to represent perennials, forest, and 

grassland, respectively. Due to the unavailability of soil area proportions for the annuals land use 

type, modeled crops were assumed to be evenly distributed across the corresponding soil types. 

The SOC of the annuals was averaged based on the cropping proportions of the representing 

species. 

Management practices for various crops used in our model simulation, such as planting and 

harvest dates, fertilization, and irrigation, were obtained from Vietnam’s National Center for 

Agricultural Extension databases (MARD, 2015b), as summarized in Table 2.5. 
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Table 2.4. Modeled species with their cropping proportions by region 

Region Land use type Soil type Simulated species 
Cropping 

proportion 

Northern 

Central 
Annuals 

Sandy, Alluvial  

Grey degraded, 

Ferralitic 

Maize 0.12 

Peanut 0.06 

Sugarcane 0.06 

Cassava 0.07 

Alluvial  Rice* 0.69 

Southern 

Central 
Annuals 

Sandy, Alluvial, Grey 

degraded,  

Ferralitic 

Maize 0.1 

Peanut 0.04 

Sugarcane 0.07 

Cassava 0.13 

Alluvial  Rice 0.66 

Central 

Highlands 
Annuals 

Red, Grey degraded  

Ferralitic, Alluvial 

Maize 0.36 

Peanut 0.03 

Sugarcane 0.07 

Cassava 0.21 

Alluvial Rice 0.33 

South East Annuals 

Alluvial,  

Grey degraded,  

Red, Ferralitic 

Maize 0.15 

Peanut 0.04 

Sugarcane 0.07 

Cassava 0.18 

Alluvial  Rice 0.56 

All regions 

Perennials Ferralitic/Red** Mixed fruit tree 1.00 

Forest Ferralitic Secondary tropical forest 1.00 

Grassland Ferralitic Mixed grass  1.00 

Note: *  Rice is only modeled on alluvial soil 

         ** Perennials are modeled on both ferralitic and red soils in Central Highlands. 

 

Table 2.5. Management practices of the modeled species 

Species 

Management 

Growing 

seasona 

Manure addition 

(Mg ha-1) 

Fertilization 

(kg N ha-1) 

Irrigation 

(%)c 

Residue 

removal (%) 

Maize 2 5 100 90 75 

Peanut 2 3 30 90 25 

Sugarcane 8-year rotation 8 100 95 95 

Cassava 1 5 58 75 79 

Rice 2 5 100 100 75 

Mixed fruit tree 8-year rotation 5 120 95 5b 

Note: a Number of growing seasons per year unless specified 

          b Mixed fruit tree is pruned annually and clearcut at the end of the rotation. 

          c Percent of field capacity irrigated 

 

We mainly used CENTURY default parameters (Metherell et al., 1993) for each of the 

ecosystems and crop types in our analysis.  Because of the significant impacts of vegetation 

growth processes on the prediction of SOC dynamics and GHG emissions (Cheng et al., 2014), 

we calibrated the CENTURY’s growth submodels against the reported values from literature for 
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the studied vegetation types. PRDX is a parameter used for calculating potential aboveground 

monthly production as a function of solar radiation, thus representing the genetic potential 

production of different vegetation types or crop varieties. We adjusted the PRDX for each 

vegetation type and simulated growth under different regional climate, soil conditions, and 

standard management practices. Modeled yield or Cveg of each species at national-scale were 

calculated by averaging the regional values, and compared with the literature reported data 

(FAO, 2013; Zemek, 2009) to choose the best values for PRDX. Due to the lack of field 

experiments measuring SOC as a function of land management practices in Vietnam, we were 

not able to directly validate model predictions of SOC changes for the various crop and land use 

types. 

2.3.1.3 Scenarios for the analysis of expanded cassava production 

For a baseline scenario, we used Vietnam’s average cassava yield reported by FAO in 2013 (18 

Mg ha-1) (FAO, 2013), and a fertilizer/pesticide application rate (per ha) of 58 kg of N, 53 kg of 

P2O5, 47 kg of K2O, and 0.23 kg of pesticide (Le et al., 2013). Cassava fields were moderately 

irrigated at 75% field capacity using auto-irrigation function in CENTURY at the time of 

planting. The corresponding baseline Fertilizer-to-Yield ratios (FTYbaseline) were 3.22 kg Mg-1, 

2.94 kg Mg-1
, 2.61 kg Mg-1, and 0.013 kg Mg-1 for N, P2O5, K2O, and pesticide, respectively. 

To represent the relation between yield increase and fertilization rates, we used a simple linear 

equation:  

Fi = (∆Y)*FTYi + Fi_baseline,      Eq. 2.1 

where Fi, FTYi, Fi_baseline are the application rate (kg ha-1), Fertilizer-to-Yield ratio (kg Mg-1), and 

the baseline application rate (kg ha-1) of the fertilizer (or pesticide) i, respectively; ∆Y (Mg ha-1) 

is the difference between the modeled and the baseline yield. 
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We then performed an analysis using a range of the reported cassava yield (from 18 to 60 Mg ha-

1) and a range of FTY (from 50 to 150% of the FTYbaseline) to examine the effects of cassava 

yield improvements and changes in the corresponding fertilizer application on GHG emissions, 

carbon debts, and carbon payback periods. The scenarios with reduced FTY represent the effects 

of future cassava breeding advances and/or improved N management that enhance the yield 

response to nitrogen, while the scenario with the highest FTY represents potentially less efficient 

N utilization as yields increase. The simulated yield and fertilization ranges are specified in 

Table 2.6. Since most of cassava production area in Vietnam is rain-fed, we did not consider the 

variation in the irrigation rate. Instead, irrigation (irrigated at 75% field capacity) and other 

management practices used in this study such as farmyard manure application (5 Mg ha-1) were 

kept constant throughout the sensitivity analysis. In addition, we assumed that these management 

practices were at average levels and were applied uniformly for all cassava growing regions in 

Vietnam.  

Table 2.6. Modeling scenarios  

 FTYa 

range 

Fertilizer 

type 

Lower 

bound 

Upper 

bound 
Fertilization rate equationb 

Yield (Mg ha-1)   18 60 

 

Fertilizer inputs 

(kg ha-1) 

50% 

FTYbaseline 

N 58 126 FN = ∆Y * 1.61 + 58 

P 53 115 FP = ∆Y * 1.47 + 53 

K 47 102 FK = ∆Y * 1.31 + 47 

Pesticide 0.23 0.50 Fpesticide = ∆Y * 0.0065 + 0.23 

150% 

FTYbaseline 

N 58 261 FN = ∆Y * 4.83 + 58 

P 53 239 FP = ∆Y * 4.41 + 53 

K 47 212 FK = ∆Y * 3.92 + 47 

Pesticide 0.23 1.04 Fpesticide = ∆Y * 0.02 + 0.23 

Note: a Fertilizer-to-Yield ratio 

               b See Eq. 2.1 
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2.3.1.4 Model simulations 

Prior to modeling SOC under the cassava system, we set up the baseline SOC for all land use 

types in all cassava growing regions with CENTURY.  Baseline SOC reflects the SOC level 

under the current management practice, and is used to evaluate the magnitude and direction of 

SOC change due to dLUC to cassava production for ethanol. The baseline simulation is 

comprised of two stages: an initial model spin-up followed by a simulation of historical land use. 

The spin-up simulation sets the equilibrium for SOC under natural systems with little or no 

disturbance from human activities, with tropical forest used as the native vegetation. To run the 

model to equilibrium SOC, we simulated tropical forest with default CENTURY parameters for 

10,000 years under locally specific soils and climate data for each region. Subsequently, the 

model was run from this equilibrium condition for each specific historical land use, including 

annuals, perennials, forest, and grassland for each region. A period of 68 years (1945 to 2013) 

was used for the historic and current land use period. The year 1945 was selected because it 

marked the beginning of broad-scale forestland conversion to agricultural use, brought on by 

numerous agricultural policies. The SOC stocks at the end of the historic/current period were 

used as a baseline for comparison with the future projection scenarios of conversion to cassava 

production.  In all cases, the baseline SOC reached new stable states before 2013. The 

experimental simulation started in 2014 when cassava was grown as a replacement for each land 

use type. We then modeled the changes in SOC over time to identify new SOC stable states 

under the cassava growing system. The net changes between baseline and cassava SOC stable 

states, in addition to changes in Cveg between the two systems, were used to calculate the carbon 

debts and annualized GHG emissions due to dLUC to cassava production.  
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2.3.1.5 Calculation of carbon debts and annualized emissions from C stock changes caused by 

dLUC 

The time frame (in years) chosen for our study was the longest transition time for a new SOC 

stable state after converting from a baseline land use to cassava land use. This provides a 

common time frame, beyond which there are no significant net changes in ecosystem C stocks, 

i.e., emissions from dLUC for all land use change scenarios are accounted for within the time 

frame.  Since changes towards a new steady-state soil C stock (under constant climate and 

management conditions) are asymptotic, we defined SOC as reaching an approximate new 

equilibrium after land use conversion (at t=0) once a 5-year period SOC change under the new 

land use was less than 1%, i.e.,  

│ SOC(t−5) – SOC(t) │∗100

SOC(t−5)
 < 1%,    Eq. 2 

where SOC(t-5) and SOC(t) are SOC at time t-5 and t, respectively.  The time (t) in years for the 

longest time interval to a new approximate steady-state as defined in Eq. 2 (for any of the land 

use conversions to cassava) was chosen as the LCA accounting time frame (T).  

The carbon debt due to dLUC from a specific land use to cassava is the difference in C stock 

between that land use and the cassava system at their SOC stable states. Our study reported 

carbon debts in the unit of Mg of carbon dioxide per hectare. The annualized emissions from C 

stock changes caused by dLUC (i.e., the annualized dLUC emissions) were calculated by 

dividing the mean carbon debts by the accounting time frame (T). We separately calculated the 

carbon debt for each baseline land use in each region, and then computed the regionally-

averaged carbon debts based on these individual values, weighted by the percentages of dLUC to 

cassava in each growing region (Table 2.2). Finally, we calculated the mean carbon debt from 
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the regionally-averaged values weighted by the percentages of dLUC to cassava by growing 

region (Table 2.2). 

2.3.2 Calculation of net GHG emissions and payback periods  

2.3.2.1. Calculation of net GHG emissions 

Our study used a standard life cycle assessment approach (Gnansounou et al., 2009a) to calculate 

the net GHG emissions for cassava-based ethanol in Vietnam. We considered three GHGs 

including carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), and reported the GHG 

emissions in CO2 equivalent (CO2eq) by aggregating the individual GHG using their 100-year 

global warming potential values (GWP100) (IPCC, 2006). The functional unit used to compare 

the environmental performance of ethanol and conventional gasoline (CG) was one megajoule 

(MJ). The CO2eq emission of CG used in our study was 94 g MJ-1 (Wang et al., 2012). Our 

analysis employed the cassava-based ethanol production system and associated life cycle 

inventory values described in Le et al., (2013) (Fig. 2.3).  
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Fig. 2.3. Cassava-based ethanol production system in Vietnam.  

Figure adopted from Le et al., (2013). 

 

Net GHG emissions (E) from production and utilization of cassava-based ethanol were 

comprised of three components, stemming from: a) cassava cultivation (Ecp), b) ethanol 

conversion (Ec), and c) transport and distribution (Etd). Since determining the emissions from 

processing and transport (Ec and Etd) was not the focus of our study, we used the results reported 

in Le et al., (2013). The authors employed the guidelines from the IPCC (IPCC, 2006), the 

Harmonized Calculations of Biofuel Greenhouse Gas Emissions in Europe (BioGrace) 

(BioGrace, 2015), and Renewable Energy Directive (RED) (Carré and Intergovernmental Panel 

on Climate Change, 2010) to calculate net CO2eq emissions of 129 g L-1 for the conversion 

process and 31 g L-1 for the distribution and blending process of cassava-based ethanol in 

Vietnam. 

We estimated GHG emissions from the cassava cultivation stage (Ecp) according to equation (3). 

 Ecp = Efertilizer + Epesticide + Ediesel + Eburning + EN2O + Edluc,        Eq. 3 

where Efertilizer is the CO2eq emission from fertilizer use (g L-1), Epesticide the CO2eq emission from 

pesticide use (g L-1), Ediesel the CO2eq emission from diesel consumption (g L-1), Eburning the 

CO2eq emission from burning of cassava residue (g L-1), EN2O the CO2eq emission of N2O from 

managed soils (g L-1), and Edluc the annualized CO2eq emission from C stock changes caused by 

dLUC (g L-1). 

For Efertilizer, Epesticide, Ediesel, and Eburning we used emission factors (EFs) reported in the IPCC 

(IPCC, 2006) and BioGrace guidelines (BioGrace, 2015). Edluc calculations were described above 

(section 2.1.5). Direct N2O emissions from managed soils were calculated from the amount of 
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organic and synthetic N applied as fertilizers, the N in crop residues returned to soils, and any 

additional mineralized N associated with net decreases in total soil organic N stocks (IPCC, 

2006).  Indirect N2O emissions were computed from both fractions of volatized N and leaching 

and runoff of N estimated in the CENTURY simulations. Direct and indirect N2O emissions 

were computed using emission factors in the BioGrace GHG calculation excel tool (version 4c) 

(BioGrace, 2015). 

We allocated total GHG emissions between the main product (ethanol) and coproducts and 

calculated the GHG offset credits (if any) from the utilization of the coproducts. The coproducts 

of the cassava-based ethanol production are distiller’s dried grains with solubles (DDGS), 

biogas, cassava processing residues, and CO2 (Nguyen et al., 2007; Le et al., 2013; Silalertruksa 

and Gheewala, 2011; Leng et al., 2008). According to Leng et al., (2008), 18% of total GHG 

emissions from the production of cassava-based ethanol can be allocated to DDGS.  The biogas 

from the ethanol conversion process is utilized for combustion as a supplemental input energy 

source (Le et al., 2013). Due to the high moisture content (86%) of the cassava processing 

residues, the energy and emission credits of this coproduct used for the replacement of a farm 

fertilizer application was offset by the emissions generated during the transportation of this bulky 

material from ethanol plants to farms (Nguyen and Gheewala, 2008). Le et al., (2013)  reported 

that a CO2eq emission of 490 g L-1 are being collected from the fermentation process for further 

use in other industries, such as those for food and beverage. We argue that this is not a real GHG 

emission offset because CO2 is only temporarily captured and will be released back into the 

atmosphere as soon as the food and beverage products are consumed. Furthermore, there is no 

information regarding the compression and transportation of the collected CO2 to other 

industries. We, therefore, did not consider any GHG offset credit for the CO2 coproduct.  
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2.3.2.2 Calculation of carbon payback period  

Carbon payback period for cassava-based ethanol represents the number of years it takes for the 

carbon savings from avoided fossil fuel combustion (if any) to offset the losses in ecosystem 

carbon from clearing land to grow cassava for biofuel feedstock (Gibbs et al., 2008). Carbon 

payback period (R) was computed according to equation (2.4): 

   R = 
D

S∗P∗LHVe
 ,    Eq. 2.4 

where D is the mean carbon debt (Mg ha-1) calculated in section 2.1.5, S is the avoided CO2eq 

emission due to replacing conventional gasoline (CG) with ethanol (Mg MJ-1), P is the annual 

ethanol productivity (L ha-1 year-1), and LHVe is the low heat value of ethanol (21.1 MJ L-1). S is 

calculated as the difference between GHG emission of CG and that of ethanol, and must be 

greater that zero for carbon payback period to be realized. S*P* LHVe is the annual emission 

reductions by production and utilization of ethanol. The conversion ratio of fresh cassava root 

(kg) to ethanol (L) used in our study was 6:1 (Sriroth et al., 2012). 

2.4 RESULTS 

2.4.1 Calibration of CENTURY’S predicted yield and biomass production  

Table 2.7 shows the CENTURY modeled yields and Cveg together with reported yields from 

literature (in Mg of carbon per hectare) that were used for model calibration. The average 

modeled yields of maize, peanut, rice, cassava, and sugarcane were compared with the average 

yields reported by FAO (2013) for Vietnam (FAO, 2013). FAO reports crop yields in the 

marketed forms of the crops in each country, which are clean and dry weight for cereals (e.g. 

rice, maize) and oil-bearing crops (e.g. peanut), and clean weight with relative high moisture 

contents for roots and tubers (e.g. cassava) and sugar crops (e.g. sugarcane). We reported yields 
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in term of carbon fraction (yield-C) by assuming the carbon content of 40%, and the moisture 

contents of 65%, 70% and 15% for cassava root, sugarcane stalk, and other annual crops 

(including maize, peanut, and rice), respectively (Sriroth et al., 2012; Bakker, 2012). The 

modeled Cveg of mixed fruit tree (representing perennials), secondary tropical forest 

(representing forest), and mixed grass (representing grassland) were compared with those of 

mixed fruit tree, grazed secondary forest, and perennial grass (Chromolaena odorata L.) reported 

by Zemek, (2009) for the Chieng Khoi watershed in Vietnam. The results showed that 

CENTURY was able to adequately represent plant productivity of the chosen species. 

Table 2.7. Comparison between modeled yield-C and Cveg with calibrating literature data 

Species 

CENTURY’s modeled outputs (Mg ha-1)* Calibrating data (Mg ha-1) 

North 

Central 

South 

Central 

Central 

Highlands 
Southeast FAO, (2013) Zemek, (2009) 

Maize 1.3 1.2 1.8 1.6 1.5  

Peanut 0.5 0.3 1.2 1.3 0.7  

Rice 1.5 1.1 2.6 2.5 1.9  

Cassava 2.4 2.1 2.7 2.9 2.5  

Sugarcane 7.5 7.8 7.6 7.5 7.8  

Mixed grass 5.1 4.4 5.7 4.4  4.6 

Mixed fruit tree 12.4 11.6 16.9 16.0  13.0 

Secondary tropical forest 59.4 58.2 62.4 53.1  60.0 

Note: *All the unit are reported in term of Mg of carbon per hectare. 

 

2.4.2 Changes in C stock due to cassava production for ethanol in Vietnam 

Simulated trends in SOC changes for a 40-year time period following conversion to cassava are 

presented in Fig. 2.4. The SOC before conversion to cassava varied by different growing regions 

and baseline land use types. In general, the SOC levels were highest in the southeast and lowest 

in the north central region for all the baseline land uses.  For the different land use types, baseline 

SOC stocks generally differed in the order forest ≈ perennials > grassland > annuals.  Difference 

between the forest and grassland vs annual crop baseline values were least for the central 

highlands region.   
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The conversion of land use to cassava for ethanol decreased SOC for most baseline land uses in 

all regions (Fig. 2.4). The main driving factor is the low carbon inputs from cassava biomass 

residuals (annual crop residuals are often burned onsite), particularly for the conversions from 

non-annual crops where the decrease in C inputs, along with higher decomposition rates with 

tillage, caused the greatest decline in SOC. Only the conversion from other annual crops to 

cassava slightly increased SOC at cassava yields of 57 Mg ha-1 and above.  

 

Fig. 2.4. Changes in SOC due to dLUC to cassava cultivation for bioethanol in Vietnam.  

The filled areas are the SOC difference between the cassava fresh wt. yield of 18 Mg ha-1 and 60 

Mg ha-1. 

 

The predicted rates and magnitudes of SOC changes due to dLUC varied by different cassava 

growing regions and varied according to baseline land uses, due to a number of factors including 
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cassava yield, management practices, soil type, and weather. The rates of SOC change tended to 

be highest in forest, followed by grassland and perennial systems. Most SOC losses occurred 

during the first 5 - 10 years after conversion to cassava. Forest, grassland, and perennials require 

more time than annuals to approach a new SOC stable state after land clearing for cassava 

cultivation. In all scenarios, SOC tended to reach new approximate stable states within the 

maximum of 25 years. We, therefore, selected 25 years as the time frame for our analysis. This 

time frame is also appropriate for the discussion of biofuels policy or budget planning. The 

difference in SOC between the baseline land uses and cassava cultivation at 25 years after 

conversion ranged from 7 – 20 Mg ha-1 at cassava yields of 18 Mg ha-1, and (-2) to 12 Mg ha-1 at 

the maximum considered yield of 60 Mg ha-1 (Fig. 2.5). In most regions (except the Southeast), 

the highest carbon loss occurred when clearing forest to grow cassava, followed by perennials, 

grass, and annuals. SOC stocks under cassava tended to increase as projected yields (hence also 

plant residues) of cassava increased. The difference in SOC stocks between minimum and 

maximum considered cassava yields ranged from 8 – 11 Mg ha-1.  

 

Fig. 2.5. Difference in SOC between baseline land use and cassava at 25 years after conversion. 

Negative values of ∆SOC indicate soil carbon increases. 
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The mean carbon debt of cassava-based ethanol in Vietnam strongly depended on cassava yield 

(Fig. 2.6). Higher yields reduced the carbon debts due to decreases in SOC loss. The mean 

carbon debt due to dLUC to cassava production for ethanol declined linearly from 97 to 66 Mg 

ha-1 corresponding to the increase in cassava yield from 18 to 60 Mg ha-1. 

 

Fig. 2.6. Mean carbon debt as a function of yield for cassava-based ethanol in Vietnam. 

 

2.4.3 Greenhouse gas emission of cassava-based ethanol in Vietnam 

Annualized dLUC GHG emissions of cassava-based ethanol in Vietnam ranged from 10 to 50 g 

MJ-1, and constitutes about 23 - 53% of total net GHG emissions, depending on cassava yield 

and fertilizer application (Fig. 2.7). The net GHG emission of cassava-based ethanol decreased in 

conjunction with an increase in cassava yield and a decrease in fertilization. At the cassava yield 

level of 18 Mg ha-1, the net GHG emission was 95 g MJ-1, indicating no avoided GHG emission 

when replacing CG with ethanol. In fact, the displacement of CG by cassava-based ethanol 

increased the total emission by 1 g MJ-1 at this yield level. With the least fertilizer addition (50% 

FTYbaseline), increasing yield from 18 to 60 Mg ha-1 decreased the net GHG emission from 95 to 

33 g MJ-1, and increased the avoided GHG emission from (-1) to 61 g MJ-1. The GHG emission 
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difference between 50% FTYbaseline and 150% FTYbaseline was higher at higher cassava yield 

levels and reached a maximum at 13 g MJ-1.  

 
Fig. 2.7. Greenhouse gas emissions of cassava-based ethanol in Vietnam under different cassava 

yield and fertilization scenarios. The filled areas are the difference between 50% FTYbaseline and 

150% FTYbaseline. 

 

2.4.4 Carbon payback period for cassava-based ethanol in Vietnam 

Our results showed that payback period declined significantly as cassava yield increased (Fig. 

2.8). This was because of lower carbon debts and greater fossil fuel offset at higher yields. The 

vertical asymptote of payback period is the yield level where the net GHG emission of ethanol is 

equal to that of CG (i.e., payback period reaches infinity). The vertical asymptote of payback 

period for cassava-based ethanol in Vietnam was 18.3 Mg ha-1. There was no payback period 

below this yield level because replacing CG with ethanol increases net GHG emissions. The 

GHG mitigation benefit of cassava-based ethanol starts to be realized above this yield level. 

Payback period was equal to the study time frame (25 years) at the cassava yield of 31 Mg ha-1 
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and 33 Mg ha-1 for 50% FTYbaseline and 150% FTYbaseline, respectively. The most optimistic 

scenario with the highest considered cassava yield (60 Mg ha-1) and 50% FTYbaseline resulted in 

the lowest payback period of 5 years. The effect of fertilization on payback period was 

substantial at lower cassava yields and decreased as yield increased. The difference in payback 

period between 50% FTYbaseline and 150% FTYbaseline ranged from 95 years to 1 year as yield 

varied from 19 to 60 Mg ha-1.  

 
Fig. 2.8. Carbon payback period of cassava-based ethanol in Vietnam under different cassava 

yield and fertilization scenarios. 

2.5 DISCUSSION 

The carbon debt, net GHG emission, and payback period of cassava-based ethanol in Vietnam 

computed based on CENTURY’s modeled dLUC were compared with those calculated based on 

the results from Le et al., (2013) at the same yield level. Using Tier 1 IPCC’s guideline, Le et al., 

(2013) reported an annualized dLUC CO2 emission of 3.89 Mg ha-1 corresponding to a carbon 

debt of 77.84 Mg ha-1 over a 20-year period. To compare the results between the two approaches, 

we recalculated the net GHG emission and payback period using the method presented in section 
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2.2.1 and 2.2.2 with the annualized dLUC emission obtained from Le et al., (2013) at the cassava 

yield of 33 Mg ha-1. The comparison revealed that using Tier 1 IPCC’s guidelines to estimate the 

annualized dLUC emissions for cassava-based ethanol resulted in a reduction of 10.5 Mg ha-1 in 

mean carbon debt, but an increase of 2.56 g MJ-1 in the net GHG emission due to higher 

annualized dLUC emission caused by shorter time frame (20 years). This combination yielded a 

slight reduction in the payback period of 1 year (assuming 150% FTYbaseline) and 1.1 year 

(assuming 50% FTYbaseline).  

Cassava-based ethanol has been internalized in Vietnam’s energy policy for partial replacement 

of conventional fossil fuels, and increased environmental protection (Decision no. 177/2007/QD-

TTg of Government of Vietnam, 2007). However, as shown in our results, the GHG mitigation 

effects of cassava-based ethanol depended strongly on the average cassava feedstock yield. 

Higher yields significantly reduced carbon debts and payback periods. The mean carbon debt 

was paid off within the study time frame of 25 years only at the cassava yields above 33 Mg ha-1 

(Fig. 2.8). This yield level is only attained on farm trials using practices that currently have low 

adoption rates (<10%) (K. Hoang et al., 2010). To maximize the environmental benefit of 

cassava-based ethanol, research and policies should be implemented to improve the average 

cassava yield used for ethanol production. 

Additional factors that affect the estimation for carbon debts and LUC emissions of cassava-

based ethanol include soil erosion and iLUC. Although they were beyond the scope of our study, 

it is worthwhile to discuss their potential impacts on the environmental performance of cassava-

based ethanol. Studies have shown that growing cassava can severely erode the soils, especially 

those planted on hilly terrain (Howeler, 2000). The average soil erosion rate under cassava 

cultivation in the region is 50 Mg ha-1 year-1 (Howeler, 2000; Hill and Peart, 1998; Newson, 
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1997). While erosion could potentially impact crop productivity, and thus lower C inputs from 

residues, its impact as a net source or sink of C with respect to the atmosphere at large scales 

(landscape, region, globe) is a topic of active debate (Harden et al., 2008; Berhe et al., 2007). 

Soil erosion results in the removal of SOC from one site and its subsequent deposition at other 

sites.  The mineralization during transport and landscape deposition of eroded SOC were 

previously thought to be a source of CO2 to the atmosphere (Lal et al., 2004). However, the 

burial of eroded SOC in some depositional environments like lakes, rivers, or oceans may also 

result in a long-term C sequestration due to inhibited C decomposition. The fundamental controls 

on the magnitude of the erosion-induced sink or source are the extremely complex and combined 

effects of erosion and deposition, changes in the rates of SOC decomposition and C inputs in 

eroded or deposited soil (Oost et al., 2007). Thus, erosion impacts of cassava production are 

highly site-specific and require a more detailed analysis to account for the net impact on C stock 

change. 

Indirect LUC could occur when existing agricultural land is converted to cassava production for 

ethanol, causing new land conversions elsewhere to displace the food and feed production. These 

conversions could produce large GHG emissions if carbon-rich ecosystem such as forests are 

converted. In the case of cassava production for biofuel in Vietnam, the conversion of annuals 

and perennials to cassava could potentially induce partial conversion of other land uses such as 

forest and grassland to annuals and perennials, intensification of existing crop production 

systems, increase in import, and demand adjustments by price regulation in agricultural 

commodity market to make up for the reduced supply of annual and perennial products. The 

proportion of each factor and its associated emissions contributing to iLUC effects are highly 

uncertain.  Our simulations showed that land conversion from forest to annuals resulted in an 
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average SOC loss of 11 Mg ha-1 and an average Cveg loss of 58 Mg ha-1, yet conversion from 

forest to perennials resulted in no change in SOC and a Cveg loss of 44 Mg ha-1. In the worst-

case scenario, if 100% of the conversion from annuals and perennials to cassava was replaced by 

forestland conversion, iLUC could add a significant amount of 116 Mg ha-1 to the carbon debt, 

and shift the asymptote for payback period to between 31 Mg ha-1 (assuming 50% FTYbaseline) 

and 35 Mg ha-1 (assuming 150% FTYbaseline) (Fig. 2.9). 

 
Fig. 2.9. Carbon payback period of cassava-based ethanol in Vietnam with iLUC (assuming 

100% of the conversion from annuals and perennials to cassava was replaced by forestland 

conversion). 

2.6 CONCLUSION 

We investigated carbon debts, GHG emissions, and carbon payback periods for cassava-based 

ethanol in Vietnam under different yield and fertilization scenarios for a time frame of 25 years. 

The employment of a biogeochemical model enabled us to do a more spatially-explicit 

qualification of C stock changes due to dLUC to cassava production that accounted for regional 

differences in climate, soil, and baseline management conditions. The fresh weight yield range 

used in our analysis (18 – 60 Mg ha-1) is the realistic yield levels reported in literature. Our 
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results showed that the mean carbon debt due to dLUC to cassava production ranged from 66 to 

97 Mg ha-1. The net GHG emission of cassava-based ethanol with the inclusion of dLUC 

emissions ranged from 33 to 95 g MJ-1, varying as a function of cassava yield (from 18 to 60 Mg 

ha-1) and fertilizer inputs. The cassava yield level above which the GHG mitigation benefit of 

cassava-based ethanol is realized was 18.3 Mg ha-1. To repay the carbon debt from direct land 

use change within 25 years, the average cassava yield used as feedstock for ethanol production 

must be above 33 Mg ha-1. It is recommended that research and policies be implemented to 

increase average feedstock yield to improve the environmental performance of cassava-based 

ethanol.  
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 CHAPTER 3. HIGH-RESOLUTION TRADE-OFF ANALYSIS AND OPTIMIZATION OF 

ECOSYSTEM SERVICES AND DISSERVICES IN AGRICULTURAL LANDSCAPES2 

3.1 SUMMARY 

Agricultural land management often involves trade-offs between ecosystem services (ES) and 

disservices (EDS). Balancing these trade-offs to achieve low-impact production of agricultural 

commodities requires rigorous approaches for quantifying and optimizing ES and EDS, 

reconciling biophysical constraints and different management objectives. In this study, we 

demonstrate a high-resolution spatially-explicit analysis of ES and EDS trade-offs for irrigated 

corn production systems in the South Platte River Basin, Colorado, USA, as a case study. The 

analysis integrated a biogeochemical model (DayCent) with optimization algorithms to assess 

trade-offs between multiple ES and EDS indicators, including net primary production, soil 

organic carbon, water use, nitrogen leaching, and greenhouse gas emissions. Our results show a 

large fraction of total potential system productivity (up to 21 Mg ha-1 year-1) can be realized at 

minimal ecosystem impacts through careful land management decisions. Our analysis also 

explores how different land management objectives imply different landscape configurations. 

3.2 INTRODUCTION 

Although the provision of food and fiber has always been the primary objective of agricultural 

production, agricultural ecosystems can also be managed for other benefits such as climate 

mitigation, water quality improvement, and biodiversity conservation. The collection of these 

                                                 
2 This chapter was published in Environmental Modelling & Software Journal, Elsevier. 

Nguyen, T.H., Cook, M., Field, J.L., Khuc, Q.V., Paustian, K., 2018. High-resolution trade-off analysis and 

optimization of ecosystem services and disservices in agricultural landscapes. Environ. Model. Softw. 107, 

105–118. https://doi.org/10.1016/j.envsoft.2018.06.006 
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benefits are referred as “ecosystem services” (ES) (MA, 2005a). Agricultural ecosystems are 

affected by a variety of human activities involving land use decisions and specific land 

management practices. The negative impacts of humans on these ecosystems can directly reduce 

productivity (e.g. reduced soil fertility and loss of habitat for biodiversity conservation) or 

impose detrimental off-site effects on other ecosystems and human society such as ground water 

pollution from nutrient leaching, pesticide poisoning of non-target species, and increased 

greenhouse gas (GHG) emissions. These negative impacts are known as “ecosystem disservices” 

(EDS) (Zhang et al., 2007). Due to resource limitations (e.g., land, water, nutrients, technology, 

and labor) in agricultural production, there are often trade-offs between and among ecosystem 

services/disservices (hereafter referred as ES-EDS trade-offs). For instance, increasing food and 

fiber production tends to come with higher GHG emissions and nitrogen leaching (Power, 2010). 

The questions of interest are “what is the magnitude of the trade-off, i.e., how much change in 

one ES or EDS would lead to change in other ES and/or EDS?” and “how do we optimize ES-

EDS trade-offs for the most efficient agricultural production?”. Answering these questions is a 

context-dependent exercise that necessitates quantifying agricultural ES and EDS and their 

spatial-temporal dynamics at different scales and levels (de Groot et al., 2010), and integrating 

those results with optimization procedures for trade-off analyses. 

Earlier studies on ES assessments used land cover types as indicators to infer potential values of 

ES and EDS in different landscapes (Maynard et al., 2010; Kershner et al., 2011; Schneiders et 

al., 2012; Bagstad et al., 2013). Subsequently, ES-EDS trade-offs were examined using scenario 

analysis, which facilitates the investigation of drivers of change and the impacts of certain land 

use and land management options on ES and EDS indicators under specifically defined scenarios 

(Volk, 2013). The use of land cover types as ES indicators, while useful for the rapid and cost-
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effective analysis of aggregated watersheds and natural landscapes, falls short of describing the 

underlying ecosystem processes, the temporal and spatial dynamics of the ES and EDS 

provision, and the changes in ES and EDS as a function of varying external factors such as 

management decisions, policy, and market price (Villa et al., 2014). Therefore, it does not allow 

the finer measurements of the ES-EDS trade-off nor support the integration of optimization 

procedures.  

Quantifying ES and EDS is a difficult task that requires thorough understanding of fundamental 

physical and biological processes within the ecosystem. In practice, such understanding is often 

challenged by limited, incomplete, and/or costly field measurements. Furthermore, ecosystem 

responses to external disturbances are highly heterogeneous due to variability in soils, climate, 

land use history, and other site-specific attributes, making interpolation between existing field 

trials with statistical models very difficult. More recent studies overcome these issues by using 

process-based models coupled with geographic information system (GIS) to quantify ES and 

EDS associated with variations in crop rotation schemes and management practices, in a 

spatially-explicit manner (Lautenbach et al., 2013; Kragt and Robertson, 2014; Balbi et al., 

2015). A process-based model is the mathematical representation of the underlying processes 

that characterize the functioning of well-delimited biological systems (Buck-Sorlin, 2013). 

Models such as DAYCENT (Del Grosso et al., 2000), DNDC (Li et al., 1992), and APSIM 

(Keating et al., 2003) can capture the finer-scale influence of site-specific weather conditions, 

soil properties, crop types, cropping practices, and land use history that determine the provision 

of ES and EDS (Nguyen et al., 2017). Although this approach requires calibration, validation, 

setup, and implementation of complex dynamic models, as well as in-field expertise to carry out 

the analysis, it provides more insights into the fundamental physical and biological processes that 
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determine ES and EDS, allowing a continuous feedback between decision-making and the 

corresponding changes in different ES and EDS at multiple spatial scales. 

The use of process-based modeling approaches for ES and EDS quantification, coupled with 

optimization procedures (simulation-optimization) for trade-off analyses, can make decision-

making in natural resource management more effective, efficient, and defensible (Volk, 2013). 

Process-based models can be employed for exploratory quantification of ES and EDS to 

investigate the potential production of an agricultural landscape based on a set of well-defined 

scenarios. The results can then be optimized with mathematical algorithms like the non-

dominated sorting genetic algorithm (NSGA-II) (Lautenbach et al., 2013), simulated annealing 

(Chan et al., 2006), or goal programming (Aldea et al., 2014). ES-EDS trade-offs are often 

presented via simulated Pareto frontiers (also called ‘production possibility frontiers’), which 

define the set of solutions that maximize ES while minimizing EDS given finite available 

resources (i.e. biophysical constraints). Decision makers can then decide on the optimal solutions 

on the Pareto frontier that meet their specific management objectives. 

Although this simulation-optimization approach has been adopted in previous ecosystem service 

studies, we found that most studies focused on the aggregation of ES-EDS trade-offs at regional, 

national, or sub-global levels to inform strategic policy-making (e.g., Lautenbach et al., 2013; 

Lester et al., 2013; Kragt and Robertson, 2014; Balbi et al., 2015; Ewing and Runck, 2015; King 

et al., 2015; Kennedy et al., 2016). Other spatially-explicit studies zeroed in on the tactical 

optimizations of biofuel supply chain and/or biofuel crop production systems at coarse 

resolutions such as land resource unit level (5 square-mile hexagons) (Yu et al., 2014), 

hydrological response units (HRU) (> 204 ha) (Lautenbach et al., 2013), county-level (P.W. 

Tittmann et al., 2010), watershed and sub-basin level (Parish et al., 2012). Only few studies 
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could quantify ES-EDS at finer spatial resolutions, such as field-level (Zhang et al., 2010). 

Besides, these studies often considered a limited number (between 1 - 4) of ES-EDS objectives 

to ease the optimization and visualization. Thus, there is a lack of higher-dimensional trade-off 

analyses at more local scales (i.e., finer spatial, temporal, and management resolutions) to inform 

the direct decision-makers of agricultural ecosystems (e.g., farmers, ranchers, and forest 

landowners) on how they could manage their farms (the principle decision unit in the agricultural 

landscape) for optimal ES and EDS provision. As implied by Zhang et al., (2007) and Power, 

(2010), when it comes to ES-EDS trade-offs in spatially heterogeneous ecosystems like 

agriculture, the devil is really in the details. 

Our study aims at demonstrating the linkages among different components, including the field-

scale and detailed quantification of management-induced ES changes, the landowner’s 

management preferences, and the multiobjective optimizations for rigorous trade-off analyses of 

multiple ES and EDS in agricultural ecosystems. We present this research with a case study on 

high-resolution quantification of ES-EDS tradeoffs and optimization of fertilizer and irrigation 

decisions for irrigated corn production in the South Platte River Basin, Colorado, United States. 

A biogeochemical model (DayCent) was employed for exploratory quantification of five ES and 

EDS, including biomass production, soil carbon storage, water provision, water quality, and 

climate regulation, at the field scale (1 ha). The model simulations considered the effects of site-

specific factors such as soil properties, weather data, and historical (dated back to the 1880s) 

land use and current management practices on the ES and EDS quantification. The simulated 

outputs of ED and EDS were linked with a non-dominated sorting algorithm to construct Pareto 

frontiers quantifying the best possible basin-scale outcomes. We then used linear programming 
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to identify the optimum fertilizer and irrigation rates for each land unit in the basin based on 

different predefined land management objectives. 

3.3 CASE STUDY AND METHOD 

3.3.1 Study site 

Our study focused on the irrigated corn growing area in the South Platte River Basin located 

within north-central Colorado, USA (Fig. 3.1). The region is among the most productive 

irrigated agricultural areas in the state with a majority of fine-loamy soils, average growing 

season evapotranspiration of irritated corn crop of 65 cm reported by the Colorado Agricultural 

Meteorological Network (http://www.coagmet.com/), average growing season precipitation of 31 

cm, and average minimum and maximum growing season temperature of 11.4 and 24.7 oC, 

respectively (Mesinger et al., 2006). The total area of the study region is 116,959 ha, comprising 

33% of all irrigated area in the basin (CDSS, 2010).  

The South Platte River Basin is facing many issues such as water pollution from excessive 

fertilizer run-off and large-scale diversion of limited water resources away from irrigated 

agriculture (dry-up) in order to meet future municipal and industrial (M&I) needs (Water 

Conservation Board, 2010). The South Platte agricultural area ranked first in nitrate 

contamination and second in phosphorus contamination among the 20 major rivers in the US 

(Strange et al., 1999). This is due to the basin’s low capacity of contaminant dilution, which is 10 

times below national average level (Mueller et al., 1995) and the lack of riparian vegetation to 

filter irrigation return flows and feedlot run-off (Loomis et al., 2000). According to the 

Colorado’s Statewide Water Supply Initiative 2010 report (Water Conservation Board, 2010), 

under medium economic development assumptions, the population of the South Platte Basin is 

projected to grow from 3.5 million people in 2008 to 6.0 million people by 2050. This would 
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result in a 136-million-cubic-meter gap in water supply for M&I uses and will likely trigger a 

permanent dry-up of 73,000 to 108,000 ha of irrigated farmland in the basin (Water Conservation 

Board, 2010). The large-scale dry-up of irrigated agriculture land will likely cause significant 

negative economic, social, and environmental impacts to the basin and to the whole state. These 

issues necessitate integrated assessments and better landscape designs to improve the efficiency 

of resource allocation and minimize detrimental impacts on the environment while meeting 

future demands. 

 

Fig. 3.1. Irrigated corn land units with their sand percentage within the South Platte River Basin. 
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The small window on the lower, right corner shows the location of South Platte River Basin in 

Colorado, USA. 

 

3.3.2 DayCent model simulation 

3.3.2.1 DayCent model 

DayCent (Parton et al., 1998) is a daily time step, process-based model that represents 

biogeochemical flows of carbon, nitrogen, and water. It simulates the dynamics of many 

ecosystem processes including changes in soil organic matter, soil water, nutrient cycling, and 

trace gas fluxes (Del Grosso et al., 2002). 

Plant growth (net primary productivity, or NPP) is simulated as a function of nutrient 

availability, soil water and temperature, shading, vegetation type, and plant phenology 

(Metherell et al., 1993). The resulting carbon is then partitioned to different plant components 

(e.g., roots vs. shoots) based on plant type, phenology, soil water content and nutrient 

availability.  

Soil organic matter (SOM) dynamics are simulated for surface litter pools and the top soil layer 

(0-20 cm). SOM is divided into two litter pools (structural and metabolic) and three mineral-

associated organic matter pools (active, slow, and passive) with different potential 

decomposition rates. Microbially-mediated decomposition of litter and SOM are represented as 

functions of substrate availability, substrate quality (lignin content, C/N ratio), soil texture, 

temperature, water availability, and tillage intensity.  

DayCent’s water flow submodel simulates the daily flow of water through the plant canopy, 

litter, and soil layers. Soil water content is simulated for each soil layer throughout the soil 

profile depth (Parton et al., 1998). DayCent also simulates water loss through sublimation of 

snowpack, interception of rainfall by surface litter and the plant canopy, water runoff from 
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infiltration excess, water leaching from the bottom of the soil profile or deep storage, soil 

evaporation, and plant transpiration. 

The soil nitrogen submodel includes processes such as N addition, atmospheric deposition, 

volatilization, leaching, plant uptake, and N mineralization and immobilization. DayCent 

calculates N leaching as a function of soil nitrate (inorganic N leaching) and active soil SOM 

pool decomposition (organic N leaching), soil texture, and the amount of water moving through 

the soil profile. The trace gas submodel of DayCent simulates soil NOx and N2O gas emissions 

from nitrification and denitrification as well as N2 emissions from denitrification. Methane (CH4) 

efflux from soil are also modeled by DayCent. 

The model’s primary inputs are daily maximum and minimum air temperature and precipitation, 

soil texture for each horizon in the soil profile, soil (rooting) depth, land cover/use data (e.g., 

vegetation types, land use history), and management practices (e.g., irrigation, tillage, 

fertilization). The nominal spatial scale for DayCent simulations is one square meter, though 

model results are typically scaled up across larger areas (ha-sized) for which model inputs are 

assumed as uniform (Del Grosso et al., 2008a). The DayCent model has been used previously for 

the simulation of agricultural system productivity, soil carbon, and trace gas emissions 

accounting in a wide variety of US agricultural systems. For example, the model has been 

calibrated and validated across all principal US cropping systems in the process of producing the 

annual Inventory of U.S. Greenhouse Gas Emissions and Sinks (US EPA, 2014). For this study 

region in particular, Zhang, (2016) reported a coefficient of determination (R2) of 0.89 and a root 

mean squared error (RMSE) of 1343 kg ha-1 when comparing the 15-year average DayCent’s 

simulated corn yield with those reported by the National Agricultural Statistics Service (NASS). 
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3.3.2.2 Spatial input databases 

An overview of our methodological approach is presented in Fig. 3.2. Several spatial databases 

were used to create input data for DayCent. Soil and climate data were obtained from the Natural 

Resource Conservation Service Soil Survey Geographic database (SSURGO, NRCS-USDA, 

2014), and the North American Regional Reanalysis database (NARR, Mesinger et al., 2006), 

respectively. For each climate grid cell, a table of daily precipitation, maximum temperature and 

minimum temperature is constructed in a format described in Easter et al., (2005). Soil texture, 

rock fraction, and pH for different soil profile layers of the dominant soil component for each 

map unit were taken directly from the SSURGO database. The bulk density, field capacity, 

wilting point, and saturated hydraulic conductivity were computed using the Saxton equations 

(Saxton et al., 1986). Irrigated land cover data of the South Platte River Basin were obtained 

from the GIS database of Colorado's Decision Support Systems (CDSS, 2010). These three GIS 

layers (soil, climate, and land use) were then intersected and any small slivers (<1 ha) were 

merged into their longest shared-edge neighbors. The intersection created 16,651 polygons of 

various sizes for irrigated corn in the South Platte River Basin, including 1,263 unique 

combinations of soil type and weather data (DayCent input ‘strata’). Each unique stratum was 

simulated with DayCent, and the results were then linked back to their associated landscape 

polygons for further calculation and spatial visualization. To facilitate similar landscape studies, 

we created an ArcGIS add-in toolbox to automate the geospatial data processing for DayCent 

landscape simulation. 
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Fig. 3.2. Overview of our study approach. 

 

3.3.2.3 Simulation of baseline conditions 

Before conducting experimental simulations for each stratum we initialized DayCent using pre-

settlement and historical agricultural land use assumptions at the Major Land Resource Area 

(MLRA) scale as described in Ogle et al., (2010). This is the same procedure used in the 

Inventory of U.S. Greenhouse Gas Emissions and Sinks (US EPA, 2015) and the COMET-

FarmTM system (http://cometfarm.nrel.colostate.edu/). The model initialization included two 

stages: an initial spin-up followed by a simulation of historical land use. The spin-up simulation 

defines steady-state (i.e., equilibrium) soil carbon stocks, assuming little or no disturbance from 

http://cometfarm.nrel.colostate.edu/
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human activities prior to the conversion to agriculture. Grassland was chosen as the native 

vegetation and was simulated with DayCent for 5000 years. Subsequently, the model run was 

extended from this equilibrium condition with historical land use assumptions for each MLRA. 

There were five MLRAs within the study region with different areal coverage percentage, 

including G67B (84.2%), H72 (15.3%), G67A (0.3%), and E49 (0.17%), and E48A (0.03%).  

Based on data compiled by Ogle et al., (2010), a two-year rotation between bare fallow and 

winter wheat was assigned to G67A, G67B, E49, and E48A for the period from 1881 to 1979, 

where plow-out of the native grassland was set to occur in 1880. As for H72, a four-year rotation 

of corn – corn – spring small grain – winter wheat was assigned from 1881 to 1920 and a three-

year rotation of corn – spring small grain – alfalfa was assigned from 1921 to 1979. Typical 

management practices for each crop over time were compiled from various sources (e.g., USDA-

ERS, 1997; USDA-NASS, 2004; Iback and Adams, 1967; Smalley and Engle, 1942). 

To complete the model initialization, we extended the historical baseline conditions from 1980 to 

2015 with a ‘business as usual’ scenario (BAU) for irrigated corn production in Colorado. The 

BAU reflects a system state under current management practice, and is used to evaluate the 

magnitude and direction of change due to subsequent changes in management practices. Corn in 

northern Colorado is usually planted between April 28 and May 20, and harvested between 

October 8 and November 13 (NASS, 2010). The average BAU management practices reported 

by the Economic Research Service’s Agricultural Resource Management Survey Tailored 

Reports (ERS-ARMS, 2010) for Colorado’s irrigated corn crop were 170 kg of nitrogen per 

hectare, 34 cm of irrigated water per growing season, 75% residue removal, and conventional 

tillage.  
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3.3.2.4 Management practice scenarios 

To examine the impacts of N fertilization and irrigation on the provision of different agricultural 

ES and EDS, we ran our forward simulations with N fertilizer and irrigation rates set to 20%, 

40%, 60%, 100%, 120%, 140%, and 160% of the BAU level (68, 102, 136, 170, 204, 238, and 

272 kg of N per ha, and 13.6, 20.4, 27.2, 34.0, 40.8, 47.6, and 54.4 cm water year-1, 

respectively). The permutation of these fertilizer and irrigation rates yielded 49 management 

practice scenarios. We simulated these 49 management practice scenarios for each polygon for a 

30-year period extending from 2016 to 2046. The percentage of stover removal was kept 

constant at the baseline level (75%) and only conventional tillage was considered. We did not 

consider the effects of changes in CO2 concentration and climate on crop production and water 

use efficiency. The combination of 1,263 DayCent input strata and 49 management practice 

scenarios yielded 61,887 DayCent simulations. These simulations were executed in parallel on 

an 18-node, 216-processor cluster computing system at Colorado State University’s Natural 

Resources Ecology Laboratory.  

3.3.2.5 Ecosystem service and disservice indicators 

DayCent simulation outputs were used to estimate multiple ES and EDS indicators for each 

simulation. Soil organic carbon (SOC) and net primary productivity (NPP) were chosen as ES 

indicators representing ecosystem carbon storage and biomass production services, respectively. 

Water use, nitrogen (N) leaching, and greenhouse gas emissions (GHG) were chosen as EDS 

indicators representing water provision, water quality, and climate regulation disservices.  

Since SOC dynamics are a long-term effect of management practices, soil properties, and 

weather conditions, we reported the net change in SOC in Mg of carbon per hectare at the end of 

the simulation period to capture the cumulative effects of changing management practices. Due 
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to the large seasonal variations, other indicators were reported as flow variables averaged over 

the entire analysis, including Mg of carbon dioxide equivalent (CO2e) per hectare per year for 

GHG, kg of nitrogen per hectare per year for N leaching, Mg of dry weight biomass per hectare 

per year for NPP (assuming 43.5 % carbon content (Gesch et al., 2010)), and cm of water per 

year for water use. 

The values of SOC and NPP indicators were taken as direct DayCent outputs while soil GHG 

emission estimates included modeled outputs from DayCent as well as additional models (e.g., 

for indirect N2O emissions) from the U.S. Department of Agriculture entity-scale greenhouse gas 

inventory guidelines (Eve et al., 2014).  Annual net CO2 emission was assumed to come mainly 

from soil microbial respiration of SOC and was computed by taking the difference of SOC levels 

between two consecutive years. Annual N2O emission comprised of direct and indirect N2O 

emissions. The direct N2O emission was reported by DayCent in term of N2O efflux, while the 

indirect N2O emission was computed from NOx efflux, volatilized NH3, and nitrogen leaching 

with the emission factors (EF) of 0.01, 0.01, and 0.075, respectively. Annual N2O and CH4 were 

converted into CO2 equivalents by using 100-year global warming potential values (GWP100) of 

298 and 25, respectively (IPCC, 2006).  N leaching was calculated from the amount of inorganic 

and organic N leached out of the soil profile. Since we did not model the effect of terrain slope 

and stream water flow, the N leaching values only reflected the potential amounts of nitrate that 

can enter the ground water. The ecosystem water use over a growing season was calculated as 

the total amount of water used to sustain all ecosystem processes including evapotranspiration 

(the water utilized by the crop to produce biomass) and other processes such as sublimation (the 

vaporized water from snow and ice), interception by the crop canopy, run-off, and deep drainage.    
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To simplify the indicator comparisons between different management scenarios, we computed 

the area-weighted average value of each indicator using the following equation:  

    Vi =  ∑
𝑎𝑗𝑣𝑗

𝐴

16,651

𝑗=1
 ,   Eq. 3.1 

where: 

Vi = area-weighted average value of an ES or EDS indicator i, 

j = the jth polygon within the landscape, 

𝑎j = the area of the jth polygon within the landscape (ha), 

𝑣j = the value of ES or EDS indicator i of the jth polygon within the landscape, 

𝐴 = the total area of the study region (A = 116,959 ha). 

3.3.3 Calculation of Pareto frontiers and optimization of landscape designs  

To examine the magnitude of trade-offs between NPP and other ES and EDS indicators in the 

study region, we used a simple non-dominated sorting algorithm to identify the Pareto frontier 

for each pair of NPP and ES or EDS indicators (see Appendix A.1). These Pareto frontiers 

illustrate macro trade-offs between NPP and other indicators assuming that management practice 

scenarios were uniformly applied to the landscape (‘uniform management’). In reality, it is of 

greater importance to identify and visualize the optimum landscape design under variable 

management (i.e., the optimum management practice scenario for each polygon within the 

landscape) corresponding to a specific management objective. To do this, we used a linear 

optimization algorithm that seeks to maximize the following objective function: 

    maximize ∑ 𝑐𝑖𝑋𝑖
𝑛
𝑖  ,   Eq. 3.2 

where:  
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Xi = the normalized value of ES (or EDS) indicator i.  Xi = 
𝑥𝑖− 𝑃𝑖 𝑚𝑖𝑛

𝑃𝑖 𝑚𝑎𝑥− 𝑃𝑖 𝑚𝑖𝑛
 , 

xi = the value of ES or EDS indicator i, 

Pi min and Pi max = the population minimum and maximum of ES or EDS indicator i, 

respectively. 

ci = the objective function coefficient (a.k.a., weighting factor) corresponding to Xi, and  

n = total number of ES and EDS indicators considered in the optimization (n <= 5).  

Since all the ES and EDS indicators were expressed in different units and scales, we first 

normalized the indicators to a uniform scale (0 – 1) and used the normalized values in the 

objective function for a fair comparison (Hwang et al., 1980). The optimization algorithm was 

applied to every polygon in the landscape to identify the optimum fertilizer and irrigation rates 

for each individual polygon.  

Seven management objective scenarios representing four different hypothetical management 

objectives by the landowner were chosen for the optimization (Table 3.1). For each scenario, a 

set of objective function coefficients was assigned to the ES and EDS indicators. We limited the 

coefficients to integer numbers that ranged from -2 to 2 in our analysis. The coefficient absolute 

values indicated the importance of one indicator relative to the others in the objective function 

(Eq. 3.2) and the sign of the coefficients reflected the indicator’s direction of change that we 

wanted to optimize. For example, in scenario 2a, increasing NPP and decreasing water use 

(expressed in the normalized unit term) were set to be twice as important as increasing or 

decreasing other indicators. Except for scenario 1, where we equally considered all ES and EDS 

indicators (coefficients = ± 1), other management objective scenarios were biomass-centric (i.e., 

higher positive NPP coefficients) as biomass production is the primary provisioning goal of the 
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study region. In addition, scenarios 2, 3, and 4 focused on reducing EDS (coefficients = -2), 

including water use, N leaching, and GHG, respectively. Among these management objective 

scenarios, the ‘a’ scenarios put additional constraints on the remaining ES and EDS indicators 

while the ‘b’ scenarios excluded them from the optimization (Table 3.1). 

We further compared the EDS footprints between different management objectives. The EDS 

footprint is defined as the amount of EDS indicator produced per unit of NPP. The EDS 

footprints for a polygon under a specific management objective were calculated using the 

following equation: 

   Fi,j,k = 
𝑥𝑖,𝑗,𝑘

𝑁𝑃𝑃𝑗,𝑘
 ,   Eq. 3 

where: 

Fi,j,k = footprint of EDS i for polygon j under management objective scenario k, 

xi,j,k = the value of ES or EDS indicator i for polygon j under management objective scenario k, 

NPPj,k = the value of NPP indicator for polygon j under management objective scenario k. 

The optimization results were mapped for spatial visualization using ArcGIS software (ESRI, 

2014). We performed descriptive statistical analysis (e.g., distribution, central tendency, and 

dispersion) to explore ES and EDS indicators data (see Appendix A.2) and one-way ANOVA 

analysis to test the effects of fertilizer and irrigation on each indicator for better presentation of 

the results (see Appendix A.3). The simulation processes, data analyses, and map generation 

routines were automated using the Python programming language (https://www.python.org/). 

Our derived model was named the “Agricultural Ecosystem Service Optimization” (Ag-

EcoSOpt) for the sake of future studies and development. 

https://www.python.org/
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Table 3.1. Management objective scenarios and the corresponding objective function coefficients 

Management objective 

Management 

objective 

scenario 

Objective function coefficient 

Description 
SOC NPP 

Water 

use 

N 

leaching 
GHG 

Equal optimization of all 

indicators 
1 1 1 -1 -1 -1 

An equal consideration of all ES and EDS indicators 

where one normalized unit increased or decreased of a ES 

is as important as that of other ES or EDS. 

Maximizing NPP and 

minimizing water use 

2a 1 2 -2 -1 -1 
Maximizing NPP and minimizing water use with 

constraints on other ES or EDS. 

2b 0 2 -2 0 0 
Maximizing NPP and minimizing water use without 

constraints on other ES or EDS. 

Maximizing NPP and 

minimizing N leaching 

3a 1 2 -1 -2 -1 
Maximizing NPP and minimizing N leaching with 

constraints on other ES or EDS. 

3b 0 2 0 -2 0 
Maximizing NPP and minimizing N leaching without 

constraints on other ES or EDS. 

Maximizing NPP and 

minimizing GHG 

emissions  

4a 1 2 -1 -1 -2 
Maximizing NPP and minimizing GHG emission with 

constraints on other ES or EDS. 

4b 0 2 0 0 -2 
Maximizing NPP and minimizing GHG emission without 

constraints on other ES or EDS. 

Note: red color represents objective function coefficient of 0 (i.e. no consideration in the optimization), white color represents objective function 

coefficient of 1 or -1, green color represents objective function coefficient of 2 or -2. 
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3.4 RESULTS 

3.4.1 Effects of fertilizer and irrigation on ES and EDS indicators 

There were various combined effects of fertilizer and irrigation on SOC, NPP, N leaching and 

GHG emission (Fig. 3.3). The rate of change of an indicator at a specific irrigation rate is defined 

as the difference in indicator values between the two fertilizer levels (rise/run). Higher fertilizer 

rates resulted in higher SOC, NPP, N leaching, and GHG emission. As the fertilizer rate 

increased, SOC and NPP responded with a decreasing rate of change until a maximum value was 

reached asymptotically, while N leaching and GHG emission rose linearly or with an increasing 

rate of change. Irrigation rate was proportional with the steepness of the slopes of the indicator’s 

response lines/curves. The effects of irrigation on increasing SOC, NPP, and N leaching 

diminished at the irrigation rates above 47.6 cm year-1. We also found that reducing irrigation 

rates amplified net GHG emission within any specific fertilizer level below 238 kg ha-1. This is 

due to the increasing contribution of net CO2 flux from soil C stock change in the total GHG 

emission (see Appendix A.4). 
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Fig. 3.3. Ecosystem services and disservices indicators at different irrigation and fertilizer rates. 

SOC is reported for top soil (0 – 20 cm) at the end of the 30-year simulation period. NPP is the 

30-year average of total above and below ground dry mass at harvest. GHG is the 30-year 

average of all soil-related emissions. N leaching is the 30-year average of nitrate that leached out 

of the soil profile. 

 

Since we did not find statistically significant impacts of fertilizer application rate on total water 

use as determined by one-way ANOVA (F(6, 27502) = 0.00, p = 1.0) (see Appendix A.3), we 

only reported total water use against the irrigation rate averaged across all fertilizer levels (Fig. 

3.4). While water use was linearly correlated with irrigation, different water use components 

responded differently to increasing irrigation rate. In particular, the evapotranspiration increased 

with a decreasing rate and plateaued at the irrigation rate of 34 cm year-1, whereas the water use 

from other processes rose slowly at lower irrigation rates and soared as soon as the 

evapotranspiration leveled off. 
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Fig. 3.4. Average growing season water use by the irrigated corn ecosystem at different irrigation 

rates. The water use was averaged across all fertilizer levels. Other ecosystem processes include 

sublimation, interception by the crop canopy, run-off, and deep drainage. 

 

3.4.2 Trade-offs between NPP and other indicators 

The trade-off between the ES indicators (i.e. NPP and SOC) was a “win-win” situation as 

increasing NPP led to a linear increase in SOC, whereas those between NPP and EDS indicators 

were “win-loss” situations since higher NPP also came with higher EDS (Fig. 3.5). The ‘uniform 

management’ Pareto frontiers for NPP and other EDS revealed convex patterns. This means that 

the marginal improvements of NPP at the higher end will come with exponential penalties on 

environmental performance. While trade-offs between water use and NPP were almost linear, 

frontiers were increasingly convex for N leaching and GHG emissions. All trade-off frontiers 

showed a marked increase in EDS to achieve NPP greater than 21 Mg ha-1 year-1, corresponding 

to average N fertilizer and irrigation rates above 136 kg ha-1 and 40.8 cm year-1, respectively. 

This indicates that a relatively large fraction (>90%) of total potential system productivity can be 

realized, while incurring only a relatively small fraction of total potential disservices through 

proper management practice decisions. 
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Fig. 3.5. Trade-offs between NPP and other ecosystem service and disservice indicators. The 

circles represent management practice scenarios. Pareto frontier lines are based on the uniform 

simulation of management practice scenarios (‘uniform management’). Fertilizer limitation (FL) 

and irrigation limitation (IL) are states on a Pareto frontier at which no further improvement of 

the optimum NPP can be made without adding more fertilizer and irrigation, respectively. 
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Our results also showed the influence of fertilizer and irrigation in achieving certain optimal 

solutions (i.e. scenarios that lie on the Pareto frontiers). The trade-offs between NPP and other 

indicators were affected by fertilizer limitation (FL) and irrigation limitation (IL) which are 

states on a Pareto frontier at which no further improvement of the optimum NPP can be made 

without adding more fertilizer and irrigation, respectively. In the N leaching and GHG 

optimization cases, optimal solutions with NPP below this level were achieved by modulating 

irrigation rates while leaving fertilizer application at a minimum level; additional NPP gains 

beyond this point required increasing N fertilizer application, causing a sharp increase in N 

leaching and N2O-driven GHG emissions. Inappropriate applications of fertilizer and irrigation 

could lead to sub-optimality in ES-EDS trade-offs (i.e., scenarios that do not lie on the Pareto 

frontiers). This sub-optimality was due to either excessive application of irrigation at the FL 

states (FL sub-optimality) or excessive application of fertilizer at the IL states (IL sub-

optimality). FL sub-optimality reduced NPP as irrigation increased while IL sub-optimality 

improved NPP with enormous costs on other ES and EDS with increasing fertilizer. Although we 

found no significant IL sub-optimality in the trade-offs between NPP and SOC (Fig. 5a) and 

between NPP and water use (Fig. 5b), the addition of fertilizer at the IL states demonstrated a 

waste in resource investments. 
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3.4.3 Trade-offs between management objectives 

 

Fig. 3.6. Trade-offs in ecosystem service and disservice indicators between management 

scenarios. Pareto frontier lines are based on uniform management scenarios in section 3.2. The 

labeled points show optimization results for different management objective scenarios defined in 

table 1, where management practices for each land unit in the landscape were optimized. 

 

Fig. 3.6 presents the ES-EDS trade-offs for the optimization of the management practices under 

seven management objective scenarios defined in Table 3.1. In general, we observed slight 

modulations of ES and EDS around the ‘uniform management’ Pareto frontiers, except for the 

objective 2b (unconstrained optimization of NPP and water use) where high sub-optimality in N 

leaching and GHG emissions occurred.  For this scenario (2b), our model allowed higher 

fertilizer application (Table 3.2) because there was no constraint placed on either reducing N 

leaching or GHGs. Our results also showed that allowing variable management during 
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optimization obviously improved landscape performance in terms of N leaching as compared to 

the ‘uniform management’ Pareto frontiers (i.e., objectives 3a, 3b, and 4a in Fig. 3.6c). 

Table 3.2. Landscape-averaged fertilizer and irrigation rates for the management objective 

scenarios 

Management practice 
Management objective scenario 

1 2a 2b 3a 3b 4a 4b 

Fertilizer (kg ha-1) 90 101 228 121 135 115 135 

Irrigation (cm year-1) 28 30 33 37 44 36 47 

 

3.4.4 The spatial distributions of management practices and EDS footprints 

The optimum spatial designs of fertilizer and irrigation rates and the spatial distribution of EDS 

footprints of irrigated corn polygons in the South Platte River Basin were visualized for the 

management objective scenarios with constraints (1, 2a, 3a, and 4a) (Fig. 3.7 & 3.8). Those for 

management objective scenarios 2b, 3b, and 4b can be obtained from Appendix A.5. The 

distributions of optimal fertilizer and irrigation rates were heterogeneous throughout the 

landscape, with many visible clusters of high and low values. While the optimum rates of 

irrigation varied widely from 13.6 to 47.6 cm year-1, those of fertilizer only varied below the 

BAU fertilizer level of 170 kg ha-1. The EDS footprint values also varied greatly within the study 

region depending on the management objective and the EDS indicator. We observed some 

clusters of high EDS footprint values in the areas north of Denver and around the town of Fort 

Morgan. 
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Fig. 3.7. Optimum fertilizer and irrigation rates for irrigated corn area in South Platte River 

Basin. The results are presented for management scenario 1 and the ‘a’ scenarios. 
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Fig. 3.8. Ecosystem disservice footprints for irrigated corn area in South Platte River Basin. The 

results are presented for management objective scenario 1 and the ‘a’ scenarios. 
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3.5. DISCUSSION 

Pressure from the population and industrial expansion in our study region will result in higher 

demands for food, biomass, and water. The question is “how much of a viable productive 

agriculture is possible with declining water supply and what are the environmental impacts?”. To 

answer this, we compared the area-weighted landscape sum of ES and EDS indicators and the 

corresponding management practices under the BAU scenario (Table 3.3) with those from the 

landscape optimization of the seven management objective scenarios (Fig. 3.9). We found that 

ecosystem water use can be reduced by 1.9 – 8.6 % relative to the BAU scenario level through 

lowering irrigation by 3.4 -  17.3%, respectively (objective 1, 2a, and 2b). However, these 

reductions came with either declines in SOC and NPP (objective 1 and 2a) due to reduced N 

fertilization or increases in GHGs and N leaching (objective 2b) due to increased N fertilization. 

This indicated that it was not possible to improve both water use and environmental performance 

at the current and higher corn production level by simply adjusting fertilizer and irrigation 

application rates. However, our results implied that these management practices can be 

modulated to attain higher food and biomass provision at the lowest costs on ecosystems for the 

study region. 

Table 3.3. Landscape sum of ES, EDS, and management practices for the BAU 

management scenario 

Scenario 
Landscape sum of * 

SOC 

(106 Mg) 

NPP 

(106 Mg) 

Water use 

(106 m3) 

GHG 

(103 Mg) 

N leaching 

(106 kg) 

Fertilizer 

(106 kg) 

Irrigation 

(m3) 

BAU 2.45 2.24 708 146 6.07 19.88 398 

Note: * All values are reported on an annual basis. 
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Fig. 3.9. Comparison of the landscape sum of ecosystem service and disservice indicators (a) and 

management practices (b) between different management objective scenarios and the Business-

as-usual (BAU) scenario. 

 

One advantage of the spatially-explicit approaches for ES and EDS quantification is the ability to 

visualize the fine-scale details and the hidden spatial patterns of landscapes (DeAngelis and 

Yurek, 2017). Detailed maps such as Fig. 3.7 and Fig. 3.8 have great utility for research and 

policy applications since they can be used in combination with other spatial layers for more 

complex quantitative spatial analyses and/or to identify potential hotspots (i.e. significant spatial 

clusters of high values) of ecosystem threats for specific policy foci. 

While our study involved a simple optimization problem in a geographically-limited corn 

production landscape, the approach and the resulting model would be equally applicable for 

more complex problems such as those with many constraints, broader scopes, or multiple 

stakeholders. More constraints can be formulated to reflect biophysical barriers of the landscape, 

policy regulation of environmental impacts, and regional or local targets/demands for ecosystem 
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service production. The system boundary can be expanded to include the optimization of 

multiple land cover scenarios or the supply chain optimization of multiple agricultural products. 

The potential for the incorporation of economic optimization in this type of analysis allows not 

only the identification of the economically optimal solutions but also a better representation of 

the farmer’s perspective and influences of the market economy (Lautenbach et al., 2013). The 

involvement of stakeholders in the analysis would help to identify the most preferred problem 

solutions (Miettinen et al., 2008). For instance, our optimization results could be used as the 

Pareto optimal starting points to show to the decision maker. The decision maker would then be 

expected to express preference for ES-EDS trade-offs. The preference information would be 

used to adjust the coefficients of the objective function for a new optimization simulation. This 

process could be iterated until the most desirable solution was attained.  

Our analysis might also have practical implications for direct decision makers like farmers. If 

results of such analysis were made available to farmers, they could adjust their management 

decisions on their own farms accordingly for the most efficient production. Farmers could also 

report ES-EDS trade-offs in their farm planning and budgeting. We believe that making the 

information more available and accessible to stakeholders would be the best way to propagate 

the ES and EDS concepts, boost their communication, and facilitate the sprouting of ES and EDS 

market mechanisms (Paustian et al., 2009). 

Despite the potential advantages of the approach, we do realize some drawbacks in the 

methodology including, but not limited to, the expertise challenge and computational burden of 

the simulation, the discretization of management practice variables, the ambiguousness in the use 

of the objective function coefficients, and the curse of dimensionality. Using process-based 

models like DayCent for detailed quantification of ES and EDS requires some level of model 
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literacy and is computationally expensive for large area simulations. In our case, the analysis 

necessitated much effort for initial model setup and simulation time took several hours on a 

cluster of 216 high-performance computer cores. The infrastructure requirements for this type of 

analysis could impede the adoption of this approach for similar or more complex studies. A 

possible solution to this disadvantage is the integration of the methodology into infrastructure-

ready tools or platforms to enable the flexible replications of ES and EDS analyses. Furthermore, 

in order to alleviate the computational burden, advanced meta-modeling techniques such as 

support vector machine and neural network can be applied to create cost-effective simplified 

surrogates of the detailed process-based models (Wu et al., 2016). Based on these solutions, 

further efforts are being made to prepare the infrastructure for our model (Ag-EcoSOpt). 

The analysis and optimization of ES and EDS based on fixed intervals of the continuous 

fertilizer and irrigation variables (i.e., discretization) might not guarantee actual optimal 

solutions since the solutions were forced to some discretized options. However, it significantly 

reduced the simulation time and supported the quality control of the analysis. Our method also 

used the normalized values of ES and EDS in the objective function with arbitrary objective 

function coefficients. Although, this approach was good enough for the scope of our study 

(finding the optimal landscape designs for pre-defined sets of objective function coefficients 

based on discretized values of fertilizer and irrigation), the unclear relationships between the 

coefficients and actual ES and EDS outcomes are a challenge for more complex analyses. For 

example, one might need to conduct a brute-force search through all possible combinations of 

objective function coefficients to find the specific set that results in a certain level of ES-EDS 

trade-offs. Potential solutions for this problem are to involve the decision maker in interactive 

multi-objective optimization (Wierzbicki et al., 2000), to integrate more sophisticated algorithms 



73 

 

that are capable of coefficients optimization such as Levenberg-Marquardt backpropagation 

(Levenberg, 1944; Marquardt, 1963), or to utilize different optimization solvers that allow the 

consideration of multiple objective functions with constraints and bounds configuration such as 

NSGA-II (Deb, 2011). Last but not least, the employment of this approach for more complex 

studies could be impeded with increasing dimensions of the analyses such as the addition of 

management practice types (e.g. tillage and residue harvest), considered levels for each 

management practice, ES and EDS, management objectives, different land use/cover types, and 

land use/cover change scenarios. Therefore, a careful consideration of the potential trade-offs 

between the scope of analysis and modeling capacity is always recommended for this type of 

study. 

3.6 CONCLUSION 

We demonstrated a robust analysis of ecosystem services (ES) and disservices (EDS) trade-offs 

for the irrigated corn growing area in South Platte River Basin of Colorado. The analysis 

integrated a high-resolution quantification of ES and EDS associated with different fertilization 

and irrigation applications through the use of a process-based biogeochemical model (DayCent), 

the calculation of Pareto frontiers for the trade-offs among multiple ES and EDS considering 

uniform management practices, and the identification of optimum fertilizer and irrigation rates of 

each polygon in the landscape based on different hypothetical management preferences. We 

assessed five ES and EDS indicators including net primary production, soil organic carbon, 

water use, nitrogen leaching, and greenhouse gas emissions. Our results showed the influence of 

management practices and site-specific factors on the provision of the ES and EDS and various 

trade-offs among ES and EDS, management practices, EDS footprints, and management 

objectives. Inappropriate applications of fertilizer and irrigation could lead to sub-optimal trade-
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offs of ES and EDS. Although, the analysis of ES and EDS trade-offs is case-specific, we believe 

that our approach can be adopted for other locations as well as for more complex studies for 

decision support in sustainable agriculture. Further research is encouraged to improve this 

approach and to prepare the infrastructure for its widespread use in public- and private-sector 

decision making. 
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 CHAPTER 4. HIGH-RESOLUTION MULTI-OBJECTIVE OPTIMIZATION OF 

FEEDSTOCK LANDSCAPE DESIGN FOR HYBRID FIRST AND SECOND GENERATION 

BIOREFINERIES. 

4.1 SUMMARY 

Biofuels have been proposed as a potential solution for climate change mitigation. However, 

there exist several barriers, such as “food vs fuel” issues and technological constraints, restricting 

the sustainable commercialization of both first- and second-generation biofuels. Combining 

arable crops and their residues for hybrid first- and second-generation biofuels productions 

provides opportunities to overcome these barriers. This study presents a high-resolution 

quantitative tool to support decision-making in feedstock planning for hybrid biofuel supply 

chains. We demonstrate this work with a case study on optimizing feedstock landscape design 

for a hybrid corn grain- and stover-based ethanol production system at Front Range Energy 

biorefinery, Windsor, Colorado, USA using a life-cycle approach. The case study considered 

three competing design objectives including the minimization of production costs, farm-to-

refinery greenhouse gas emissions (GHG), and nitrogen (N) leaching, subject to constraints in 

land use and biofuel feedstock demand. Social costs of carbon (SC-CO2) and nitrogen leaching 

(SC-NL) were used as weighting factors for GHG and N leaching in the objective function. Our 

results showed a broad win-lose 3D Pareto surface among the three design objectives and various 

modulating patterns of the required feedstock area, management input investments, and corn 

grain- and stover-based ethanol ratio associating with Pareto optimum solutions. Changes in 

feedstock landscape design were most sensitive to the variations of the SC-CO2 between $400 - 
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$800 per Mg CO2e, SC-NL between $0 - $50 per kg N leaching, and their ratio between 0 - 350, 

respectively. 

4.2 INTRODUCTION 

Biofuels have received considerable attention as part of a solution to reduce a nation’s 

dependency on petroleum and reduce net CO2 emissions from fuel use. In particular, the 

European Union has targeted a 10% share of energy from renewable sources, including biofuels, 

by 2020 in the transport sector while the United States Renewable Fuels Standard 2 mandated an 

annual production target of 136 billion liters of biofuels by 2022 (EPA-RFS2, 2010). Biofuels 

can be derived from many sources such as food crops like corn grain and sugarcane (first-

generation) or ligno-cellulosic materials like crop and forest residues or dedicated grasses 

(second-generation).  Comparing to the second-generation, first-generation technology is more 

commercially mature. However, its sustainability is currently debated due to the potential threats 

on food supplies and biodiversity, and consequential impacts of indirect land use change on total 

greenhouse gas (GHG) emissions (Searchinger et al., 2008; Gnansounou et al., 2009; Farrell et 

al., 2006; Reijnders and Huijbregts, 2007; Liska et al., 2009). Second-generation biofuels were 

proposed to solve these problems since they can use non-food sources as feedstock and marginal 

land for feedstock production. Nevertheless, due to the immature market structure and 

conversion technology, commercially viable production of second-generation biofuels is still 

challenging (Awudu and Zhang, 2012).  

Combining arable crops and their residues such as corn grain and corn stover for a hybrid first-

and second-generation biofuels production provides a potential solution to the large-scale and 

sustainable production and use of biofuels. This solution takes advantage of first-generation 

infrastructure but requires less productive land to secure the biomass feedstock, thus imposing 
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less pressure on food commodities and biodiversity. However, this coupling necessitates further 

efforts to design and develop more sustainable and robust biofuel supply chains, emphasizing 

multiple feedstocks production and management. 

Although there has been a relatively large number of works on analyzing and optimizing biomass 

energy supply chains (Yue et al., 2014), we found that most of the studies focused on the sole 

production of first-generation (Zamboni et al., 2009a; Zamboni et al., 2009b; Mele et al., 2011; 

Mele et al., 2009; Dal-Mas et al., 2011; Corsano et al., 2011; Akgul et al., 2011) or second-

generation biofuels (Santibañez-Aguilar et al., 2011; Čuček et al., 2010; Leduc et al., 2010; 

Huang et al., 2010; Parker et al., 2010; Tittmann et al., 2010). There is limited research that 

attempted to optimize biomass supply chain for hybrid first- and second-generation biofuel 

systems (Giarola et al., 2011). In addition, the optimization problems were mainly directed 

towards supply chain logistics, especially the design of transportation network and facility siting, 

using mathematical-programming-based tools such as Mixed Integer Programming. There is an 

obvious dearth of focus on optimizing feedstock cultivation and land management in a spatially-

explicit manner with high spatial and temporal resolutions. We believe that this is important to 

harness the “management swing potential” (Davis et al., 2013) between different biofuel 

feedstocks cultivation, especially in hybrid biofuel systems, for the most cost-effective and 

sustainable biofuel production.  

Formulating optimization problems using mathematical-programming approaches in previous 

studies has advantages in terms of model generalization, simulation efficiency, and exact 

solution search. These approaches also fit many supply chain logistic problems such as 

transportation or process design and operation at strategic and tactical levels. However, for 

higher-resolution optimization of biofuel feedstocks cultivation and land management, these 
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approaches are poorly-suited since it is inadequate to use a set of simplified equations to depict 

the dynamic ecosystem changes induced by different land management. Such changes are the 

results of complex and non-linear interactions among the site-specific weather conditions, soil 

properties, crop types, cropping practices, and land use history (Nguyen et al., 2017). For 

example, high biomass removal for biofuel not only increases the feedstock yield but also affects 

the subsequent farming input requirements, CO2 emissions from carbon stock change, 

susceptibility to erosion and other ecosystem services (Davis et al., 2013). The extent of these 

subsequent impacts depends on topography, feedstock types, weather and soil conditions, and 

many other factors. Accurately capturing these changes in the optimization is the key to finding 

the true optimum solutions for biofuel supply chain design.  

The use of biophysical models offers more detailed quantification of cropping system changes 

associated with the changes in land management (Kragt and Robertson, 2014; Balbi et al., 2015). 

These models such as CENTURY (Parton et al., 1994), DayCent (Del Grosso et al., 2000), 

DNDC (Li et al., 1992), RothC (Coleman and Jenkinson, 1996), and APSIM (Keating et al., 

2003) can better represent site-specific interactions of biophysical characteristics (e.g., climate 

and soil characteristics). They can also capture the current and historical influence of land use 

and management practices on potential future changes in many ecosystem functions such as soil 

carbon stocks (Paustian et al., 2010). The coupling of biophysical models with geographic 

information system (GIS) and optimization algorithms such as the “Agricultural Ecosystem 

Service Optimization” (Ag-EcoSOpt) system (Nguyen et al., 2018) provides useful platforms for 

the spatially-explicit quantification and optimization of agricultural ecosystem service 

provisioning as well as the more specific feedstock production for biofuel supply chains at very 

high spatial resolutions. Ag-EcoSOpt uses a process-based biogeochemical model (DayCent) for 
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exploratory landscape simulations to investigate the production potential of a cropping system. 

The simulated outcomes can then be optimized with mathematical algorithms for different design 

and management objectives. The resulting solutions can be shown and analyzed via maps and 

graphs to support decision-making. Although, this approach is a discrete optimization, fine-scale 

exploratory simulations of the target systems (i.e., better inputs for optimization) will likely 

result in approximate solutions that are very close to the global optimum for any biofuel supply 

chain optimization problems. 

Multi-objective optimization has also been used in many studies to optimize for competing 

objectives within biofuel supply chain design and management (Zamboni et al., 2009a; Corsano 

et al., 2011; Santibañez-Aguilar et al., 2011; Bernardi et al., 2012; Yue et al., 2013). This type of 

optimization typically generates a set of Pareto-optimal solutions (also called non-dominated 

solutions) where any improvement in one objective always impairs some others. The goal of 

multi-objective optimization is to help the decision maker find a solution that is preferable to 

them. We found that most previous studies have focused on the bi-objective optimizations of 

costs and greenhouse gas emissions or water footprints for biofuel supply chain. Only a few 

studies considered more than two design objectives (You et al., 2012; Bernardi et al., 2013). 

When it comes to ecosystem-level impact analysis, Čuček et al., (2012) argued the importance of 

considering other environmental criteria in the supply chain optimization such as nitrogen, land 

use, and biodiversity footprints. 

The main goal of this study was to develop an optimization extension for Ag-EcoSOpt to 

facilitate the spatially-explicit and multi-objective optimization of hybrid biofuel supply chains, 

focusing on the design of feedstock landscape and the identification of optimum land 

management. We present this work with a case study on a tri-objective optimization of feedstock 
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landscape design for a hybrid first- and second-generation ethanol production at Front Range 

Energy biorefinery (FRE), Windsor, Colorado, USA. The case study considered three competing 

objectives including the minimization of production costs, farm-to-refinery greenhouse gas 

emissions, and nitrogen leaching with a life-cycle approach.  

4.3 METHOD 

4.3.1 Study site 

The Front Range Energy (FRE) biorefinery is a local fuel ethanol supplier with a capacity of 

1.51 x 108 L of ethanol per year (~ 40 million U.S. gallons per year). Our analysis assumed that 

FRE can produce both first generation and cellulosic biofuels and that the feedstock comes 

mainly from corn grain and corn stover in the study region. Corn stover is the residue of stalk, 

leaf, husk, and cob left behind following a corn harvest. The targeted feedstock production area 

is comprised of irrigated corn fields in 6 counties within an 80 km-radius (~50 miles) 

surrounding the biorefinery, including Adams, Boulder, Broomfield, Larimer, Morgan, and Weld 

(Fig. 4.1). These counties are located in north-central Colorado, and are among the most 

productive irrigated agricultural regions in the state with a majority of fine-loamy soils, an 

average annual rainfall of 38 cm, an average July high temperature of 30.6 oC, and an average 

January low temperature of -8.5 oC (Mesinger et al., 2006). 
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Fig. 4.1. Irrigated corn land units with the percent sand content of the soils within the study 

region. The blue circle is the 80km-radius buffer around Front Range Energy. 

4.3.2 Scope of the analysis 

The main objective of this case study was to identify the Pareto surface for the trade-offs among 

three competing design objectives including minimization of production costs, farm-to-refinery 

greenhouse gas emissions (GHG), and nitrogen (N) leaching. For each Pareto-optimal solution 

on the surface, we also identified the spatial configuration of the feedstock landscape as well as 

the optimum management practices (e.g., rates of N fertilization, irrigation, stover removal, and 
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tillage intensity) for each corn field in the landscape. The corresponding ratio between grain-

based and stover-based ethanol was also calculated.  

Our study used the life cycle optimization framework outlined in Yue et al., (2013). This 

framework follows the first three phases (goal and scope definition, inventory analysis, and 

impact assessment) of a classical life cycle assessment (LCA) (Finkbeiner et al., 2006), and 

performs the last phase (LCA interpretation) by coupling optimization tools with impact 

assessment. The system boundary for our optimization analysis was from field to biorefinery 

gate. The functional unit used to compare the GHG intensity of ethanol and conventional 

gasoline (CG) was one megajoule (MJ). Farm-to-refinery emissions for grain- and stover-derived 

ethanol were calculated using detailed, high resolution data in our analysis and then extended 

using refinery-to-wheel emissions reported in the literature to estimate the full attributional GHG 

reductions of biofuels relative to CG. The reference life-cycle emission of CG used in our study 

was 94 g MJ-1 (Wang et al., 2012). 

Since corn grain and corn stover were treated as two feedstocks for biofuel production in our 

analysis, we applied the process-level co-product handling method to allocate cost and 

environmental burdens between the two products (Wang et al., 2015). This method assigns the 

burdens of individual process steps within the system boundary to the product that is responsible 

for the existence of those steps. The burdens of the shared steps and components can be allocated 

between co-products based on their energy contents or market values. We compared both energy 

content and market value allocation in our analysis. The energy contents in terms of lower 

heating values (LHV) used for corn grain and corn stover in our study were 15.01 and 16.22 

MBTU Mg-1, respectively (UChicago Argonne, 2015). For market value allocation, we used a 

10-year averaged U.S. corn grain price of $180 Mg-1 reported by Ycharts (https://ycharts.com/) 

https://ycharts.com/
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for the period from 2007 to 2017 and an average stover price of $70 Mg-1 reported by Thompson 

and Tyner, (2011).  

The Agricultural Ecosystem Service Optimization (Ag-EcoSOpt) tool (Nguyen et al., 2018) was 

employed to simulate changes in ecosystem indicators at a high spatial resolution under 

variations in management practices. The Greenhouse Gases, Regulated Emissions, and Energy 

Use in Transportation Model – commonly known as GREET (UChicago Argonne, 2015) - was 

used to calculate emissions associated with farm operations and feedstock transportation. The 

supply chain budgeting was carried out using empirical data. The optimization problem was 

formulated in PuLP (Mitchell et al., 2011), a Python’s linear programing (LP) modeler, and 

solved by CPLEX solver (IBM®, 2017). We used the weighted sum method to iteratively solve 

the multi-objective optimization problem and employed the natural neighbor interpolation 

method to approximate the Pareto surface representing trade-offs among the three design 

objectives. 

4.3.3 Landscape modeling of the study site 

4.3.3.1 Agricultural Ecosystem Service Optimization tool 

The Ag-EcoSOpt tool (Nguyen et al., 2018) includes a core biogeochemical model (DayCent), a 

database of historical land use for U.S. crop land, a geospatial component for the spatially-

explicit processing of inputs and outputs from DayCent’s landscape simulations, and an 

optimization component for land use and land management decision making. The DayCent 

model (Parton et al., 1998; Del Grosso et al., 2000) is the daily time step process-based model 

that simulates the dynamics of biogeochemical flows of carbon and nitrogen among the 

atmosphere, vegetation, and soil. The model has been widely used to study soil carbon and 

nitrogen dynamics, and soil greenhouse gas (CO2, N2O, CH4) emissions especially for 
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agricultural ecosystems (Del Grosso et al., 2002; Delgrosso et al., 2005; Del Grosso et al., 2008a; 

Del Grosso et al., 2008b; Kim et al., 2009; David et al., 2008; US EPA, 2015). 

The site-specific input data needed to initialize and run DayCent include climate (i.e. maximum 

and minimum air temperature, precipitation), soil properties, vegetation types, land use history, 

and management practices (e.g., irrigation, tillage, fertilization). These input data were acquired 

for the study region through the Ag-EcoSOpt’s automated geospatial component from several 

spatial databases (Table 4.1). The shapefiles of these databases were then intersected to create 

4,782 polygons of various sizes representing irrigated corn fields in the study site, including 673 

unique combinations of soil and weather data (DayCent input strata) (Fig. 4.1). Each unique 

stratum was simulated with DayCent and the results were linked back to their associated 

landscape polygons for optimization and spatial visualization. 

For each input stratum, DayCent was initialized using historical land use information from the 

Ag-EcoSOpt database. The database contains pre-settlement and historical agricultural land use 

assumptions for Major Land Resource Areas (MLRA) up to 1979 (Ogle et al., 2010). The 

stratum was then extended with the simulation of a business-as-usual scenario (BAU) for corn 

production from 1980 to 2016. The BAU scenario for Colorado’s irrigated corn crop was 170 kg 

of nitrogen per hectare, 34 cm of irrigated water per growing season, 75% residue removal, and 

conventional tillage (ERS-ARMS, 2010). The exploratory landscape simulation was continued 

from the BAU for a 30-year period (from 2017 – 2047) under the management practice scenarios 

defined in section 4.3.3.2. These simulations were executed in parallel on an 18-node, 216-

processor cluster computing system at the Colorado State University’s Natural Resources 

Ecology Laboratory. The detailed modeling process was described by Nguyen et al., (2018) 
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where the authors used Ag-EcoSOpt to simulate corn production in the South Platte River Basin, 

Colorado, USA.  

Table 4.1. Summary of spatial data inputs 

Spatial 

database 
Data type Year Native Resolution Source 

SSURGO Soils 2014 1:12,000 to 1:63,360 (NRCS-USDA, 2014) 

NARR Daily weather 1979 - 2010 32km (Mesinger et al., 2006) 

MIrAD-US Irrigation extent 2007 250m (Pervez and Brown, 2010) 

Crop Data Layer Crop types 2016 30m (NASS-CDL, 2016) 

 

 

4.3.3.2 Scenarios for exploratory landscape simulations 

Besides the BAU scenario, we performed a combinatorial set of simulations for every corn field 

in the landscape, for a total of 180 management scenarios permuting five N fertilization rates, 

four irrigation rates, three stover removal rates, and three levels of tillage intensity. The five N 

fertilization rates, comprising 70, 110, 150, 190, and 230 kg N ha-1, were chosen to reflect a 

common range of fertilization for irrigated continuous corn in the area (Halvorson et al., 2006). 

Irrigation rates were dynamically calculated from soil-specific field capacity (FC). We simulated 

four levels of irrigation representing full irrigation to 100% FC, and three limited irrigations at 

80%, 60%, and 40% FC. Our limited irrigation scenarios were characterized by the reduction in 

the amount of irrigated water applied. The three rates of stover removal were 22, 52, and 83% of 

the total residue. These rates represented low, moderate and high stover harvest scenarios, 

respectively (Muth Jr. et al., 2013). We also simulated three levels of tillage intensity, including 

conventional tillage (CT), reduced tillage (RT), and no-till (NT). Conventional tillage was 

defined as multiple tillage operations every year with significant soil inversion through 

moldboard plowing. Reduced tillage lessened soil inversion by using chisel plowing. No-till was 
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defined as not disturbing the soil except through the use of fertilizer and seed drills (Ogle et al., 

2010). The outputs from the combinatorial simulation of 181 management scenarios on 4,782 

corn fields in the landscape were used in the optimization. 

4.3.4 Feedstock landscape design objectives 

4.3.4.1 Production costs 

The economic data used for calculating production costs were obtained from different sources 

(Thompson and Tyner, 2011; Vadas and Digman, 2013; Russell et al., 2016; Ibendahl et al., 

2015), as reported in Appendix B1. All the monetary values acquired from the literature were 

adjusted for inflation to 2017 US dollars. The production costs, including farm production costs 

and feedstock transport costs, were calculated for every corn field in the study region. Farm 

production costs included tillage-based fixed costs and variable costs of N fertilization and 

irrigation, land rent, and feedstock-dependent costs for harvest, grain drying, storage, and 

handling. Feedstock transport costs were calculated based on feedstock yields and the transport 

distance from each field to the FRE refinery. The Euclidean distances from fields to the 

biorefinery were calculated through Ag-EcoSOpt’s geospatial component. DayCent reports corn 

grain and harvested stover as grams of carbon per square meter. We converted corn grain and 

harvested stover to Mg of dry weight biomass per hectare per year (averaged over entire 

simulation period) assuming 43.5% carbon content and moisture content of 15.5% for corn grain 

and 20% for harvested stover (Gesch et al., 2010). All commodity prices were treated as 

exogenous and static regardless of management practice changes in the analysis. 

4.3.4.2 Farm-to-refinery greenhouse gas emissions 

The farm-to-refinery GHG emissions associating with biofuel feedstock production included 

soil, farm operation, and feedstock transport emissions. Soil emissions were calculated based on 
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soil-related emission sources modeled with DayCent, including annual CO2, N2O, and CH4 

emissions (Eve et al., 2014). Annual CO2 emission was assumed to come mainly from soil 

microbial respiration of SOC and calculated by taking the difference between SOC levels during 

two consecutive years. Annual N2O emission consisted of direct and indirect N2O emissions. The 

direct N2O emission was reported by DayCent in term of N2O efflux, while the indirect N2O 

emissions were computed from volatilized N (NOx +  NH3) fluxes and nitrogen leaching with the 

emission factors (EF) of 0.01 and 0.075, respectively (Eve et al., 2014). Annual N2O and CH4 

were converted into carbon dioxide equivalent (CO2e) by using their 100-year global warming 

potential values (GWP100) (IPCC, 2006).  

To calculate GHG emissions associated with farm operations and feedstock transportation, we 

used the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model 

(GREET) (UChicago Argonne, 2015). The GREET’s default pathway for Integrated Corn/Stover 

Ethanol was updated with our specific inventory data. GREET’s soil emissions were replaced 

with site-and-management specific values modeled with DayCent. Since we only focused on the 

effects of N fertilizer use, we assumed the same P application rate of 76.21 kg P ha-1 for all 

scenarios. No K fertilizer, manure, or lime applications were simulated in our analysis. The 

amounts of herbicide (7g per Mg of dry wt. corn grain) and insecticide (0.06g per Mg of dry wt. 

corn grain) were taken from the GREET’s default repository for corn farming and were assumed 

as application rates for conventional tillage. The herbicide and insecticide application rates were 

increased by 4% for reduced tillage, and 47% for no-till compared to those of conventional 

tillage, as reported in Penn State Extension (2017).  

The information on fuels used for farm operation was obtained from different sources (Rathke et 

al., 2007; Luo et al., 2009; Vadas and Digman, 2013) to compute the average energy use for 
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different tillage types in our analysis (Appendix B2). The energy use for irrigation was 107,242 

Btu cm-1,  calculated based on the method presented in Martin et al., (2010) assuming an average 

pumping lift of 80-feet and a pump discharge pressure of 45 pounds per square inch.  

Corn grain was assumed to be transported to the stack by medium-heavy duty truck (MHDT) and 

from the stack to the refinery by heavy-heavy duty truck (HHDT). Corn stover was assumed to 

be transported by MHDT from field to the refinery in the form of dry bales. The transportation 

emissions were calculated with GREET’s default emission factors and the Euclidean distances 

from farms to the refinery. The emission factors used in our analysis are summarized in Table 

4.2. The GHG emissions were reported in terms of Mg of CO2e per hectare per year. 

Table 4.2. GREET’s emission factors for farm operation and feedstock transport 

Emission source Unit Emission 

factor 

Farm energy g CO2e MJ-1 90 

N fertilizer g CO2e g-1 3.9 

P fertilizer g CO2e g-1 1.5 

Herbicide g CO2e g-1 20 

Insecticide g CO2e g-1 23 

Storage and handling of stover g CO2e Mg-1 1167 

Corn transportation g CO2e Mg-1 km-1 208 

Stover transportation g CO2e Mg-1 km-1 240 

Corn ethanol refinery-to-wheel emissions  g CO2e MJ-1 35 

Stover ethanol refinery-to-wheel emissions g CO2e MJ-1 16 

 

4.3.4.3 Nitrogen leaching 

Nitrogen (N) leaching due to corn grain and stover production for ethanol was calculated by the 

nitrogen submodel in DayCent. DayCent calculates N leaching as a function of soil nitrate 

(inorganic N leaching) and active soil SOM pool decomposition (organic N leaching), soil 

texture, and the amount of water moving through the soil profile. N leaching was reported in the 
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unit of gram of nitrate-N per square meter by DayCent and was converted to kg of nitrate-N per 

hectare per year averaged over the entire simulation period. 

4.3.5 Multi-objective optimization of feedstock landscape design 

4.3.5.1 Formulation of the optimization problem 

To integrate different competing design objectives for linear programming, we used the weighted 

sum method (WS) (Fishburn, 1967). This method converts a multi-objective optimization 

problem into a single-objective one using a substitute objective function. Each objective was 

assigned a weight relative to its importance in decision-making and the weighted sum of all 

objectives was then be optimized. Since WS method is only applicable when all objectives are 

expressed in the same unit, we monetized GHG emissions and N leaching by multiplying their 

actual values with the corresponding social costs, where the social costs of GHG emissions (SC-

CO2) and N leaching (SC-NL) were defined as the estimated damages to the ecosystem in 

monetary term caused by an incremental increase in CO2e emissions and N leaching, 

respectively (Tol, 2011; Brink and Grinsven, 2011). The multi-objective optimization problem 

was formulated as follows, with detailed nomenclature presented in Table 4.3:  

Let i ∈ {1, …, NF} be the corn fields in the landscape and j ∈ {1, …, MP} be the management 

practice scenarios of each corn field. (NF = 4782, MP = 181). 

For all i, let xi,j ∈ {0, …, 1} be the fraction of field i where management practice scenario j is chosen. 

We assumed that a field can be divided into subfields for multiple management practice scenarios. 

Objective:   

Min ∑ ∑ xi,j ∗ (w1 ∗ Costi,j
MP
j  +  w2

NF
i ∗ (SC-CO2 ∗ GHGi,j) + w3 ∗ (SC-NL ∗ NLi,j)) (Eq 4.1) 

Subject to (s.t.): 

 xi,j ∈ {0, …,1}        (Eq 4.2) 

 ∑ xi,j 
MP
j  ≤ 1, ∀ i ∈ NF      (Eq 4.3)  

TC = ∑ ∑ xi,j ∗ CYi,j
MP
j

NF
i        (Eq 4.4) 

 TS =∑ ∑ xi,j ∗ SYi,j
MP
j

NF
i       (Eq 4.5) 
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 EtOH = TC * CTE + TS * STE      (Eq 4.6) 

 EtOH ≥ minCAP        (Eq 4.7)  

 GHGcp = 
∑ ∑ xi,j∗GHGci,j

MP
j

NF
i

TC∗CTE∗LHVe
      (Eq 4.8) 

GHGsp = 
∑ ∑ xi,j∗GHGsi,j

MP
j

NF
i

TS∗STE∗LHVe
        (Eq 4.9)  

 
GHGgs – (GHGcp + GHGcep)

GHGgs
 * 100 ≥ 20%     (Eq 4.10) 

 
GHGgs – (GHGsp + GHGsep)

GHGgs
 * 100 ≥ 60%     (Eq 4.11) 

 

Table 4.3. Nomenclature of the optimization problem 

Name Description 

Indices 

i Index for fields in the landscape 

j Index for management practice scenarios in field i 

 

Set sizes 

NF Number of corn fields in the landscape (NF = 4782) 

MP Number of considered management practices for each field (MP = 181) 

 

Parameters 

Costi,j Production costs of field i under management practice scenario j ($ year-1) 

GHGi,j Farm-to-refinery GHG emissions of field i under management practice scenario j (Mg CO2e year-1) 

NLi,j N leaching of field i under management practice scenario j (kg N year-1) 

SC-CO2 Social cost of GHG emissions ($ per Mg CO2e) 

SC-NL Social cost of N leaching ($ per kg N) 

w1 Weighting coefficient for production costs 

w2 Weighting coefficient for GHG emissions, set to 1 for convenience (see section 2.4.2) 

w3 Weighting coefficient for N leaching, set to 1 for convenience (see section 2.4.2) 

TC Total corn grain used for grain-based ethanol production (Mg dry wt. mass year-1) 

TS Total harvested stover used for stover-based ethanol production (Mg dry wt. biomass year-1) 

EtOH The total amount of ethanol produced from corn grain and harvested stover (L year-1) 

CTE Corn grain to ethanol ratio (CTE = 429 L Mg-1 (113.4 gallons Mg-1)) 

STE Stover to ethanol ratio (STE = 355 L Mg-1 (93.7 gallons Mg-1)) 

minCAP  Ethanol production capacity of FRE (minCAP = 1.51 x 108 L year-1) 

GHGcp Farm-to-refinery GHG emissions of grain-based ethanol (g CO2e MJ-1)  
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GHGsp Farm-to-refinery GHG emissions of stover-based ethanol (g CO2e MJ-1)  

GHGci,j 
GHG emissions attributed to corn grain production for farm i under management practice scenario j 
(g CO2e Mg-1) 

GHGsi,j 
GHG emissions attributed to stover production for farm i under management practice scenario j (g 

CO2e Mg-1) 

LHVe Lower heating value of ethanol (LHVe = 21.2 MJ L-1) 

GHGcep Refinery-to-wheel GHG emissions of grain-based ethanol (GHGcep = 34 g CO2e L-1) 

GHGsep Refinery-to-wheel GHG emissions of stover-based ethanol (GHGsep = 15 g CO2e L-1) 

GHGgs Well-to-wheel GHG emission of conventional gasoline (GHGgs = 94 g CO2e L-1) 

  

Binary variables 

xi,j 
models the fraction of field i and the corresponding management practice scenario j is chosen in the 

final feedstock landscape for FRE. 

 

The objective (Eq 4.1) represents the minimization of production costs, GHG emissions, and N 

leaching associated with the feedstock production for both grain- and stover-derived ethanol. The 

importance of each design objective in the integrated objective function was expressed by their 

weighting coefficients. The constraints (Eq 4.2) and (Eq 4.3) allow the selection of multiple 

management scenarios for each corn field as long as the sum of their corresponding areal 

fractions does not exceed 1. The constraints (Eq 4.4), (Eq 4.5), (Eq 4.6), and (Eq 4.7) ensure that 

enough corn grain and stover are produced to meet the feedstock demand for 1.51 x 108 L of 

ethanol per year. We assumed that if a field is chosen as a feedstock site, all the corn grain and 

harvested stover from that field will be used for ethanol production. Corn grain and stover 

biomass were converted to ethanol using the conversion ratios of 429 L per Mg of dry weight 

mass of corn grain (~ 113.4 gal Mg-1) and 355 L per Mg of dry weight biomass of corn stover 

(~93.7 gal Mg-1), respectively (UChicago Argonne, 2015). The constraints (Eq 4.8), (Eq 4.9), 

(Eq 4.10), and (Eq 4.11) require at least 20% and 60% reductions in life-cycle GHG emissions of 

grain-based and stover-based ethanol versus conventional gasoline, respectively. This is pursuant 

to the U.S. Environmental Protection Agency’s (EPA) approved fuel pathways under the 
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Renewable Fuel Standard 2 Program (EPA-RFS2, 2010). This set of constraints is driven by the 

co-product handling method and might produce different solutions depending on the allocation 

of GHG emission burdens between corn grain and corn stover.  

4.3.4.2 Pareto surface simulation 

Any adjustment in the weighting coefficients or social costs will likely result in changes in the 

integrated objective value (Eq 4.1), thus generating a different Pareto-optimal solution for the 

landscape design. Varying the weighting coefficients w2 and w3 might be appropriate when one 

wants to examine the trade-offs among the design objectives at a specific valuation of SC-CO2 

and SC-NL. However, for studies that aim to assess the effects of different SC-CO2 and SC-NL 

on optimum landscape designs like ours, the variation of both weighting coefficients and social 

costs might add unnecessary complexities to the analysis. Therefore, we decided to fix the 

weighting coefficients w2 and w3 at 1 while varying SC-CO2 and SC-NL to generate the Pareto-

optimal set. The weighting coefficient w1 was permitted values of 1 and 0 to allow the inclusion 

or exclusion of the production costs objective in the optimization. The steps used to create the 

Pareto-optimal set is shown in Fig. 4.2. Each of the Pareto-optimal solutions can be defined by a 

set of three design objective values (i.e., the landscape summations of production costs, GHG 

emissions, and N leaching), and thus lies on a Pareto surface, which is the 3-D graphical 

presentation of all the Pareto-optimal solutions. The extent of the Pareto surface was identified 

by iteratively solving bi-objective optimization problems (ignoring one objective). When only 

one objective was minimized, the algorithm generated a corner solution representing the 

approximation of global minimum for that objective. We simulated the corner solutions for all 

design objectives based on the setup in Table 4.4.  
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Fig. 4.2. Pareto frontier set simulation where SC-CO2 and SC-NL are social costs of CO2 and N 

leaching.  

Since it is impossible to identify all points on a surface, we used interpolation techniques to 

construct the Pareto surface based on the simulated Pareto-optimal set. The natural neighbor 

interpolation (Sibson, 1981) was employed in this study through gridata function in MATLAB 

curve fitting toolbox (MATLAB and Neural Network Toolbox, 2017). This interpolation is a 

weighted moving average technique that uses geometric relationships between a query point and 

its closest subset of input samples to interpolate a value. The natural neighbor interpolation was 

used instead of other conventional methods such as nearest-neighbor, inverse-distance weighted 

averaging, and kriging because it has been proven to produce good results for unevenly 

distributed input datasets (Sambridge et al., 1995; Ledoux and Gold, 2005), which is one of the 

caveats when using WS method to generate the Pareto trade-off frontiers (Marler and Arora, 

2010; Motta et al., 2012). Similar Pareto frontier approximation techniques have also been 
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applied in other studies (Bramanti et al., 2001; Wilson et al., 2001; Ruzika and Wiecek, 2005; 

Martín et al., 2005). 

Table 4.4. Objective coefficients for corner objective scenarios  

Objective scenario 
Parameters 

w1  SC-CO2 SC-NL 

Minimizing Production costs (minCost) 1 0 0 

Minimizing farm-to-refinery emissions (minGHG) 0 1 0 

Minimizing N leaching (minNL) 0 0 1 

 

Because our scope was to approximate the extent of the Pareto surface, we did not concentrate 

on the refinement of Pareto optimal solutions on the produced Pareto surface. Therefore, our 

method might not guarantee the property of non-dominance for many interpolated data points. 

The fine-tuning of the Pareto front and Pareto surface approximation, especially for nonconvex 

optimization problems with more than two objectives, can be done with more advanced 

algorithms such as adaptive weighted sum (Kim and Weck, 2006), modified normal boundary 

intersection, modified normal constraint (Motta et al., 2012), PAINT (Hartikainen et al., 2012), 

and Interactive Decision Maps (Lotov et al., 2013). 

4.4 RESULTS AND DISCUSSION 

4.4.1 Ecosystem responses to changes in management practices 

Our results showed various trade-offs among ecosystem function indicators induced by changes 

in management practices (Fig. 4.3). Increasing N fertilization resulted in a win-lose situation 

between improving corn grain, harvested stover, and soil organic carbon (SOC) stock and 

increasing soil N2O emissions and N leaching where N fertilizer rates were moderate to low (≤ 

110 kg N ha-1). However, as the N fertilizer rate exceeded 110 kg N ha-1, this trade-off became a 

lose-lose situation where the effects of additional N fertilizer on corn grain, harvested stover, and 
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SOC stock diminished and the negative impacts of N fertilization on elevating soil emissions and 

N leaching linearly increased. While higher irrigation intensified N leaching, the positive impacts 

of irrigation on biomass production increased SOC stocks due to higher C inputs from residues. 

This C credit offset a large portion of soil N2O emissions. The increases in stover removal rate or 

tillage intensity reduced C inputs to soil resulting in lower SOC stocks and higher soil emissions. 

Corn grain yield and N leaching were quite unresponsive to changes in stover removal rate and 

tillage intensity. The complex interactions between ecosystem parameters and management 

practices illustrated the necessity of the subsequent optimizations of the landscape design for 

multi-criteria decision-making. 

 

Fig. 4.3. Changes in ecosystem parameters by (a) N fertilizer rates averaged across other 

management practices; (b) irrigation rates averaged across other management practices; (c) 

stover removal rates averaged across other management practices; (d) tillage intensity averaged 

across other management practices. FC is soil-specific field capacity. Soil organic carbon (SOC) 
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is reported for top soil (0 – 20 cm) at the end of the 30-year simulation period. Corn grain and 

corn stover are reported as 30-year average of dry weight biomass at harvest. Soil GHG 

emissions are the 30-year average of all soil-related CO2e emissions. N leaching is the 30-year 

average of nitrogen that leached out of the soil profile. 

 

4.4.2 Corner solutions of feedstock landscape designs  

We found win-lose trade-offs among different corner design objectives since the minimization of 

one objective exclusively resulted in increases in others (Table 4.5). These design objectives 

corresponded to the situations where single objectives were considered in the optimization. The 

minimum production costs, GHG emissions, and N leaching associated with the feedstock 

production for 1.51 × 108 L year-1 were $4.5 × 107 year-1, 1.8 × 104 Mg CO2e year-1, and 0.06 × 

105 kg N year-1, respectively. The wide variation of each objective value across the objective 

scenarios suggested a large trade-off space for the simultaneous optimizations of the three design 

objectives.  

Table 4.5. Corner solutions of feedstock landscape design for FRE* 

Objective 

scenario 

Objective value 

Production costs 

(×107 $ year-1) 

GHG emissions 

(×104 Mg CO2e year-1) 

N leaching 

(×105 kg N year-1) 

minCost 4.5 3.9 13.3 

minGHG 6.3 1.8 3.7 

minNL 5.9 4.1 0.06 

Note: * The results are a summation of all corn fields in the final landscape based on the feedstock demand for 1.51 

× 108 L year-1. 

 

The corner solutions were obtained using different land management input levels (Table 4.6) and 

spatial configurations (Fig. 4.4). The minimum production costs (minCost) was achieved with 

higher average management inputs but reduced feedstock area. This was because the fixed costs 

increased with increasing number of feedstock sites. To attain minimum GHG emissions 
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(minGHG), lower N fertilizer, irrigation, and stover removal rates were applied to reduce farm 

operation emissions and increase the C credits from SOC stock change. This led to a substantial 

expansion of feedstock area and a higher proportion of grain-based ethanol. To minimize N 

leaching (minNL), the model used low N fertilizer and irrigation rates to reduce N leaching 

sources while increasing stover removal rates to curtail the required feedstock area. No-till was 

dominantly applied as the optimum tillage type in all corner scenarios with 100% of landscape 

under minCost and minGHG scenarios and 94.3% under minNL scenario. The boxplots 

representing the detailed distributions of field management inputs associated with the corner 

solutions are provided in Appendix B3. 

Table 4.6. Landscape average of management inputs for the corner solutions  

Objective 

scenario 

Landscape average* of 
Feedstock area 

(103 ha) 

Grain-based 

ethanol (%) 
N fertilizer 

(kg N ha-1) 

Irrigation 

(cm year-1) 

Stover removal rate 

(%) 

minCost 150 45 83 19.6 61 

minGHG 88 29 22 39.4 85 

minNL 80 23 80 34.4 59 

Note: * To calculate the landscape average of a scenario, each field was weighted by its area and the weighted sum 

was divided by the corresponding feedstock area. 
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Fig. 4.4. Spatial configurations of (a) N fertilization, (b) irrigation, and (c) stover removal rates 

corresponding to Pareto-optimal solutions for the corner objective scenarios (minCost, minGHG, 

and minNL) presented in Table 4.4. The management practice rates are reported on a field-to-

field basis. 

 

4.4.3 Pareto trade-off surface for three design objectives 

The Pareto surface for simultaneous minimization of production costs, farm-to-refinery GHG 

emissions, and N leaching exhibits non-smooth patterns (Fig. 4.5a). The surface’s borders define 

the Pareto frontiers representing trade-offs between each pair of the design objectives (i.e., 

scenarios where one of the weighting coefficients is zero), including Pareto frontiers between 
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production costs and farm-to-refinery GHG emissions (Cost vs. GHG) (Fig. 4.5b), Pareto 

frontiers between production costs and N leaching (Cost vs. NL) (Fig. 4.5c), and Pareto frontiers 

between farm-to-refinery GHG emissions and N leaching (GHG vs. NL) (Fig. 4.5d). The two 

long tails associated with minCost and minNL scenarios suggest that the marginal improvements 

of production costs and N leaching objectives at these ends were accompanied with extreme 

trade-offs from other design objectives. In particular, we found that minimum production costs 

came with maximum N leaching while minimum N leaching corresponded to maximum GHG 

emissions. This was due to the decrease in required feedstock area and the intensification of 

management inputs. The maximum production costs of $7.04 ×107 year-1 was identified on the 

GHG vs. NL frontier at the GHG emission of 2.22 ×104 Mg CO2e year-1and N leaching of 0.46 

×105 kg N year-1. Using different co-product allocation methods did not alter the satisfaction of 

the emission reduction constraints (Eq. 4.10 and 4.11), thus it did not affect the solutions on 

Pareto surface. However, allocation methods influenced the attribution of economic and 

environmental burdens between feedstocks, thus affecting the feedstock costs and environmental 

footprints of corn grain and corn stover associating with the Pareto surface solutions (see 

Appendix B4). 
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Fig. 4.5. Pareto surface for trade-offs among three design objectives. (a) 3D Pareto surface; (b) 

2D projection of the 3D Pareto surface highlighting trade-off between production costs and farm-

to-refinery GHG emissions, (c) 2D projection of the 3D Pareto surface highlighting trade-off 

between production costs and N leaching, (d) 2D projection of the 3D Pareto surface 

highlighting trade-off between N leaching and farm-to-refinery GHG emissions. The 3D Pareto 

surface is colored based on production costs. The colored points show Pareto-optimal solutions 

for scenarios where different social cost of CO2 (SC-CO2) and social cost of N leaching (SC-NL) 

were used as weighting coefficients in the objective functions (Eq. 4.1). 
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4.4.4 Optimum management practices 

The modulation of management practices, feedstock area, and corn grain ethanol percentage to 

attain optimal solutions are given in Fig. 4.6. In general, our model maintained minimal stover 

removal rate while lowering N fertilization and irrigation to minimize GHG emissions whereas it 

retained minimal N fertilization and irrigation while increasing stover removal (thus reducing 

feedstock area) to minimize N leaching. To minimize production costs, our model attempted to 

reduce the feedstock area by orchestrating the rates of change among different management 

practices. For example, we observed constant increases in N fertilization, irrigation, and stover 

harvest when shifting from minNL to minCost scenarios and periodic adjustments of N 

fertilization, irrigation, and stover harvest rates moving along the Cost vs. GHG Pareto frontier. 

The minimum feedstock area required for 1.51 × 108 L year-1 was 19,629 ha corresponding to the 

minCost solution while maximum feedstock area was 47,324 ha obtained at a solution on the NL 

vs. GHG Pareto frontier. This was the situation where reducing N leaching and GHG emissions 

were equally weighted and thus the model sustained the lowest production level. The percentage 

of grain-based ethanol strongly correlated with stover removal (r = -0.98) and ranged from 59% 

to 85% of the total 1.51 × 108 L year-1. 

 

Fig. 4.6. The feedstock area, average management practices, and average corn ethanol 

percentage corresponding to solutions on the Pareto surface. 
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4.4.5 Emission credits from ethanol production 

Based on the Pareto-optimal solutions, our results estimated an average reduction of 51 – 54% 

and 72 – 77% in life-cycle GHG emissions as compared to conventional gasoline for the 

production and utilization of grain-based and stover-based ethanol, respectively (Fig. 4.7). These 

corresponded to the avoided CO2e emissions of 0.44 – 0.46 Mg CO2e Mg-1 for corn grain and 

0.51 – 0.54 Mg CO2e Mg-1 for corn stover used as feedstock for biofuels (Fig. 4.7b), which 

outweighed those achieved by SOC increases as compared to BAU scenario (Fig. 4.7c). We did 

not consider the GHG credits from ethanol production and utilization in the calculation of farm-

to refinery GHG since that requires extrapolations beyond the boundary of our analysis. 

However, if such GHG credits were applied in the analysis, our model would favor the 

intensification of management inputs and stover removal rates to maximize feedstock yields. 

This, in turn, would substantially decrease SOC stocks and might result in potential reductions of 

long term ecosystem health. Therefore, such analysis should be coupled with a SOC objective or 

apply a critical SOC threshold as an optimization constraint to ensure ecosystem sustainability. 

This threshold reflects the SOC concentration (%) below which many soil functions are 

significantly affected. The influences of SOC on ecosystem functioning have been studied for a 

wide range of soils, cropping types, and geographical regions (e.g., Greenland et al., 1975; 

Battiston et al., 1987; Bauer and Black, 1992; Körschens et al., 1998; Balesdent et al., 2000, 

Arshad and Martin, 2002; Loveland and Webb, 2003). These studies suggested that potential 

SOC threshold might range between 1% to 2% for agricultural soils. However, this threshold 

varies significantly depending on climate and soil physical properties. 
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Fig. 4.7. Emission-related results for Pareto-optimal solutions. (a) Emissions reductions of grain- 

and stover-based ethanol as compared to conventional gasoline. (b) Avoided emissions from the 

production and utilization of ethanol attributed to corn grain and corn stover. (c) Emission credits 

due to increases in SOC stock as compared to the business-as-usual scenario attributed to corn 

grain and corn stover. 

 

4.4.6 Effects of social costs on objective trade-offs  

The effects of SC-CO2 and SC-NL on the trade-offs between each pair of the design objectives 

along the Pareto frontiers (a.k.a., the borders of the Pareto surface) are illustrated in Fig. 4.8. We 

did not present such effects for data on the Pareto surface since they required a higher 

dimensional interpolation of the relationships among the weighting coefficient for production 

costs (w1), SC-CO2, and SC-NL. The generation of GHG vs. NL frontier required varying both 

SC-CO2 and SC-NL in the integrated objective function, thus the SC-CO2/SC-NL ratio was used 

in the x-axis (Fig. 4.8c). We limited SC-CO2 between $0 - $5000 per Mg CO2e, SC-NL between 

$0 - $500 per kg N, and the ratio between 0 and 600 to highlight the most dynamic variations in 

the design objective values. Our result indicated that the feedstock landscape design was more 



104 

 

sensitive to changes of SC-CO2 between $400 - $800 per Mg CO2e (Fig. 4.8a), changes of SC-

NL below $50 per kg N (Fig. 4.8b), and changes in SC-CO2/SC-NL ratio below 350 (Fig. 4.8c).  

 

 

Fig. 4.8. Effects of social costs of carbon and N leaching on design objective trade-offs along 

Pareto frontiers. 

We further examined the internalization of SC-CO2 and SC-NL as a mean to estimate 

environmental benefits of GHG emissions and N leaching reduction for biofuel supply chains. 

The literature estimates of social costs of GHG emissions and N leaching varied greatly with SC-

CO2 ranging from $39 - $220 per Mg CO2e (US EPA, 2016; Moore and Diaz, 2015; Tol, 2011; 

Rusu, 2012; Nordhaus, 2017) and SC-NL ranging from < $1 - $56 per kg N (Brink and Van 

Grinsven, 2011; Van Grinsven et al., 2013; Keeler et al., 2016; Compton et al., 2011). We 

compared the solutions for the lower bound (w1 = 1, SC-CO2 = $39 Mg-1, SC-NL = $1 kg-1) and 

upper bound (w1 = 1, SC-CO2 = $220 Mg-1, SC-NL = $56 kg-1) scenarios with that of the control 

scenario (minCost: w1 = 1, SC-CO2 = $0 Mg-1, SC-NL = $0 kg-1) (Fig. 4.5). Our result showed 

that the avoided damages of GHG emission reduction were $0.42 × 105 year-1 and $9.76 × 105 

year-1 and those of N leaching reduction were $3.89 × 105 year-1 and $716.37 × 105 year-1 for 

lower and upper bound scenarios, respectively. These came with the corresponding trade-offs of 

$3.21 × 105 year-1 (0.7%) and $80.32 × 105 year-1 (18%) increases in production costs.  



105 

 

4.5 CONCLUSION 

In this study, we demonstrated a high spatial resolution and multi-objective optimization of 

feedstock landscape design for a hybrid first- and second-generation biofuel supply chain. A 

discrete optimization approach was used in junction with the life cycle optimization framework 

to optimize system outcomes for the cultivation of corn grain and corn stover for ethanol 

production at Front Range Energy biorefinery (FRE), Windsor, Colorado, USA. The analysis 

was formulated as a tri-objective linear programming problem, including minimization of 

production costs, farm-to-refinery greenhouse gas emissions, and nitrogen leaching, subject to 

meeting feedstock demand for the ethanol production capacity of 1.51 x 108 L year-1 (~ 40 

million U.S. gallons per year). In particular, we addressed the questions of (1) how much land 

should be used for feedstock production; (2) where to produce the feedstocks; (3) how much of 

corn grain and corn stover to produce; and (4) what the optimum management practices (e.g., 

rates of N fertilization, irrigation, stover removal, and tillage intensity) are to apply for each corn 

field in the chosen landscape. Our results showed a broad win-lose Pareto surface among the 

three design objectives and various modulating patterns of the required feedstock area, 

management input investments, and grain-based and stover-based ethanol ratio associating with 

optimum solutions on the Pareto surface. Although our model relies heavily on ecosystem 

modeling expertise and advanced computational infrastructure, it could be a useful tool for 

solving many complex resource management problems that require detailed trade-off analysis of 

different objectives at high spatial resolutions. We also believe that the approach and modeling 

platform employed in this site-specific study would be equally applicable for other problems to 

support environmentally-conscious decision making in sustainable resource management for 

biofuel supply chains. 
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CHAPTER 5. SURROGATE-BASED MULTI-OBJECTIVE OPTIMIZATION OF 

MANAGEMENT OPTIONS FOR AGRICULTURAL LANDSCAPES USING ARTIFICIAL 

NEURAL NETWORK 

5.1 SUMMARY 

Simulation-based optimizations are often employed to inform decision makers about the trade-

offs among competing objectives in agricultural production. However, computational limitations 

remain a major barrier to the implementation of these approaches for large-scale analyses. 

Surrogate-based optimization approaches offer potential solutions through the use of 

metamodeling techniques, which substitute the high-fidelity models with its simplified surrogate 

model to reduce simulation time. This study demonstrates the use of a surrogate-based 

optimization framework for large-scale and high-resolution landscape optimization, using 

irrigated corn production systems in Colorado, USA as a case study. An artificial neural network 

was employed to create a surrogate of the DayCent biogeochemical model. Our optimization 

considered the trade-offs among seven different objectives at farm and landscape scales, 

including farm profits, irrigation water use, corn grain, corn stover, soil organic carbon (SOC), 

greenhouse gas (GHG) emissions, and nitrogen leaching. Our results show that the surrogate 

captured greater than 99% of the variations in the DayCent’s simulated outputs. Farm-level 

optimization improved farm profits, SOC, grain yield, and GHG emissions as compared to the 

‘business-as-usual’ scenario. Landscape-level optimization suggested that the regional level of 

irrigation water use could be reduced without affecting both food production and environmental 

performance through careful land management decisions. 
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5.2 INTRODUCTION 

Modern agricultural ecosystems need to be managed for many competing objectives such as food 

and fiber production, carbon storage, climate change mitigation, water quality improvement, and 

biodiversity conservation. Due to the resource constraints (e.g., land, water, nutrients, 

technology, and labor) in agricultural production, simultaneously achieving these management 

goals is not possible. Therefore, multi-objective optimization techniques can inform decision 

makers about possible trade-offs among multiple management objectives and the suite of 

management decisions they need to make to achieve a specific trade-off level. The multi-

objective optimization typically generates a set of Pareto-optimal solutions (also called non-

dominated solutions) where any improvement in one objective always impairs some others. Such 

optimizations are often carried out via simulation-based optimization approaches, which couple a 

single or a bundle of simulation models to quantify ecosystem responses with mathematical 

optimization algorithms to identify the trade-off surface (Wu et al., 2016). However, despite the 

significant improvement of computing power over recent decades, computational limitations 

remain a major barrier to the effective and systematic implementation of this approach, 

especially when process-based simulation models are employed for large-scale analyses in a 

high-resolution and spatially-explicit manner (Lardy et al., 2014).  

The use of process-based ecosystem models provides an efficient and non-intrusive means to 

quantify ecosystem processes and their continuous interactions with decision-making (Nguyen et 

al., 2018). Simulation-based optimizations are often carried out via scenario analysis, for which a 

set of scenarios first needs to be formulated and fed to an ecosystem model for exploratory 

simulations. The results can then be optimized to choose the one that best fits the management 

goals. This approach helps improve decision-making but does not guarantee actual optima since 
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solutions are forced to some discrete options. Besides, the formulation of management scenarios 

and comparison of the simulated results can be time-consuming, laborious, and highly expertise-

driven (Seppelt and Voinov, 2002). 

Another disadvantage of simulation-based optimizations is that using ecosystem models for 

large-scale simulations often require high computational power with clusters of superpower 

machines. This computational burden is magnified when finer spatial resolutions (e.g. field and 

sub-field scales) and more detailed changes in management practices (e.g. fertilization, 

irrigation, and tillage) are considered. In addition, the consideration of many decision variables 

for robust and operational optimization in agricultural resource management can result in very 

large solution search spaces, which require more time and resources to find solutions. These 

challenges make simulation-based optimization approaches extremely costly and infeasible in 

several circumstances. Consequently, the use of process-based simulation models for detailed 

large-scale landscape optimization is impractical in most institutional contexts that require timely 

analysis to support rational decision making (MA, 2005). 

One of the potential solutions to overcome the inefficiency of process-based ecosystem models 

in optimization frameworks while maintaining acceptable prediction accuracies is to employ the 

surrogate-based optimization approaches (Ratto et al., 2012). These approaches use meta-

modeling techniques to substitute the high-fidelity models within an optimization framework 

with its cost-effective simplified surrogate model to reduce simulation time, expertise 

requirement, and data storage (Wu et al., 2016). A surrogate is a model of the detailed model that 

highlights properties of the detailed model itself. Meta-modeling is a data-driven approach, 

which involves fitting a response surface to approximate the relationship between multiple input 

variables and a target output. The replacement of complex models with their surrogates brings 
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many practical benefits. First, the operation of surrogate models is highly cost-effective due to 

the reduction in the simulation time and data storage requirement. Second, they can easily be 

applied across different spatial and/or temporal scales with an acceptable degree of accuracy, 

providing the data corresponding to the new system parameterization are available. Third, with 

higher flexibility and adaptability, surrogate models can be integrated into other processes and 

simulation platforms to achieve a variety of simulation goals such as prediction, optimization, 

validation, and sensitivity analysis (Simpson et al., 2001). 

Although surrogate-based optimization has been widely used in mechanical engineering for a 

long time (Meckesheimer et al., 2002), its application in ecosystem research is still very recent 

(Castelletti et al. 2012). Surrogate models have been employed in various studies such as land 

use and nitrogen fertilizer use distribution (Audsley et al., 2008), pesticide leaching (Stenemo et 

al., 2007), air quality (Carnevale et al., 2012), N2O and nitrogen leaching (Villa-Vialaneix et al., 

2012), and groundwater (Roy et al., 2016). However, incorporating these models into 

optimization frameworks to support decision making is less common, with most applications to 

date dealing with water resource management such as conjunctive surface- and ground-water use 

(Wu et al., 2016) and coastal aquifer management (Kourakos and Mantoglou, 2013; Song et al., 

2018). Despite the on-going development of surrogate-based optimization approaches, to our 

knowledge, there have been no studies that have applied these approaches for large-scale 

agricultural landscape optimization, considering multiple stakeholders and ecosystem services at 

high spatial and temporal resolutions.  

This study aims to demonstrate the use of a surrogate-based optimization framework for 

spatially-explicit trade-off analyses in agricultural landscapes to support resource management 

decision-making. We present our framework with a case study on optimization of the landscape 
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design of management practices for irrigated corn production systems in Colorado, USA. The 

optimization considered the trade-offs among farm profits, irrigation water use, and several 

ecosystem services at a high spatial resolution (field scale) and detailed consideration of 

historical land use (dating back to the 1880s).  

5.3 CASE STUDY AND METHOD 

5.3.1 Study site and problem statement 

Our study focused on the irrigated corn growing area in eastern Colorado, USA (Fig. 5.1). The 

whole area is 298,897 hectare (ha) with a majority of fine-loamy soils. Like many other 

agricultural states, agriculture in Colorado is subjected to the trade-offs among food and biomass 

production, greenhouse gas emissions, water pollution from excessive fertilizer run-off (Strange 

et al., 1999). The allocation of limited water resources to meet the needs of agricultural 

production and municipal and industrial development is also a challenge to the state (Water 

Conservation Board, 2010). In addition, the potential use of crop residues for ligno-cellulosic 

biofuels production in the region introduces another trade-off between the residue harvest and 

the long-term soil health (Wilhelm et al., 2007). The complexity and the multidimensional nature 

of these trade-offs necessitate multi-objective optimizations of land management decisions at 

different levels (farm and landscape) to improve the efficiency of resource allocation and 

minimize negative impacts on the environment while meeting future demands. 
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Fig. 5.1. Irrigated corn land units with the percent sand content of the soils within Colorado state. 

The main objective of this case study was to quantify the trade-offs among seven management 

objectives for irrigated corn production systems in eastern Colorado. These objectives consisted 

of farm profits, irrigation water use, and five ecosystem services including food and biomass 

production, soil carbon storage, water quality, and climate regulation. We also aimed to identify 

the optimal spatial configuration of management practices for the study region corresponding to 

different trade-off levels. The optimization considered farmers’ objective of maximizing farm 

profits and a regional planner’s multi-objectives for maximization of ecosystem services. To 
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quantify the ecosystem services, we used corn grain, corn stover, soil organic carbon (SOC), 

greenhouse gas (GHG) emissions, and nitrogen (N) leaching as indicators representing food and 

biomass production, ecosystem carbon storage, climate regulation, and water quality, 

respectively. For solvability purpose, we structured our analysis as a two-level optimization 

problem.  

At the farm level, we optimized management practices to maximize farm’s profits, subject to 

multiple relative SOC constraints. This constraint defines the percentage increase in SOC due to 

changes in management practices relative to a ‘business-as-usual’ scenario and was used as a 

proxy for long-term soil health. The management practice decision variables considered in our 

analysis were N fertilization (kg N ha-1), irrigation (cm year-1), and residue removal (%) rates. 

Since our previous study (Nguyen et al., in review) of irrigated corn in the region indicated that 

higher tillage intensity negatively impacted SOC stock while insignificantly affecting farm’s 

profit and the yields of corn grain and stover, no-till was used for all corn fields in this 

optimization. Artificial neural networks were employed via a metamodeling technique to rapidly 

predict farm’s SOC, corn grain and stover yields as functions of farm management practices and 

other site-specific variables. The predicted yields and SOC were then used to compute the 

objective (farm profits) and constraint (percentage change in SOC level) functions, respectively. 

Farm-level optimization was formulated as a continuous, bounded, and non-linear programming 

problem, and was iteratively solved for different levels of relative SOC constraint using Fmincon 

solver in the Optimization Toolbox of MATLAB software  (MATLAB and Optimization 

Toolbox, 2017). 

At the landscape level, we carried out a combinatorial multi-objective optimization based on the 

outcomes from farm-level optimizations. For this, the optimized farm-level management 
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practices were simulated with the Agricultural Ecosystem Service Optimization system to derive 

the dataset for landscape-level optimization. We then optimized the farm-level relative SOC 

constraint to maximize the production of corn stover while minimizing GHG emissions and N 

leaching. The landscape-level optimization was subjected to various constraints in corn grain 

production, SOC accumulation, and irrigation water use. Landscape-level optimization was 

carried out using the ε-constraint methods (Haimes et al., 1971) for multi-objective problems. An 

overview of our surrogate-optimization framework is presented in Fig. 5.2. 

 

Fig. 5.2. Overview of the surrogate-based optimization framework employed by our study. 

5.3.2 Metamodeling for farm-level optimization 

5.3.2.1 Agricultural Ecosystem Service Optimization tool 

The Agricultural Ecosystem Service Optimization (Ag-EcoSOpt) tool (Nguyen et al., 2018) was 

used to simulate corn grain and stover yields and farm-level SOC to generate the input dataset 
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for metamodeling. The Ag-EcoSOpt tool is comprised of the DayCent biogeochemical model 

(Del Grosso et al., 2002), a database of historical land use for U.S. cropland (Ogle et al., 2010), a 

geospatial component for spatially-explicit processing of inputs and outputs, and an optimization 

component. Several optimization algorithms such as min-max (Hwang et al., 1980), weighted 

sum (Fishburn, 1967), and ε-constraint (Haimes et al., 1971) were included in Ag-EcoSOpt to 

optimize DayCent’s simulation outputs for land use and land management decision making.  

The DayCent model is a daily time-step process-based model that simulates biogeochemical 

flows of carbon, nitrogen, and water among the atmosphere, vegetation, and soil in many 

different ecosystems. DayCent simulates plant growth as a function of nutrient availability, soil 

water and temperature, shading, vegetation type, and plant phenology (Metherell et al., 1993). 

Grain yield and harvested residue biomass are calculated from the aboveground carbon based on 

a crop-specific harvest index and a user-defined residue removal rate, respectively. Soil organic 

matter (SOM) dynamics are simulated for surface litter pools and the top soil layer (0-20 cm), 

and are represented as functions of substrate availability, substrate quality (lignin content, C/N 

ratio), soil texture, temperature, water availability, and tillage intensity. The model has been 

previously used to predict crop yields, soil carbon dynamics, and greenhouse gas emissions in a 

wide variety of US agricultural systems (e.g., Del Grosso et al., 2008a; Del Grosso et al., 2008b; 

Kim et al., 2009; David et al., 2008; Ogle et al., 2010; US EPA, 2015; Zhang, 2016). 

5.3.2.2 Artificial neural networks 

There are many widely used metamodeling methods such as kriging, polynomial functions, 

artificial neural networks (ANNs), radial basis functions, k-nearest neighbor, and support vector 

machines. Of these methods, ANNs have been shown to be more suitable for CPU-intensive 

applications like optimization because of their high accuracy and low prediction time (i.e., the 
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time needed to obtain new predictions) (Villa-Vialaneix et al., 2012; Roy et al., 2016). Therefore, 

in this analysis we employed ANNs to metamodel DayCent using the input dataset generated by 

Ag-EcoSOpt. 

ANNs (Haykin, 1998) is a machine learning technique that mimics biological nervous systems, 

such as the brain, to identify patterns (classification) or to fit functions (regression). An 

elementary artificial neuron consists of five basic elements, including inputs, input weights, an 

adder, an activation (a.k.a., transfer) function, and an output. The input values are multiplied by 

their weights and the weighted sum computed by the adder is fed to the activation function to 

generate the output, which is propagated to other units in the ANN. The activation function 

limits the range of the output to some finite value and typically falls into one of three categories 

including linear, threshold, and sigmoid. ANNs learn by adapting their input weights to identify 

the underlying input-output relationships from a collection of training examples within a specific 

task domain (Haykin, 1998). The multilayer feedforward neural networks, a.k.a., multilayer 

perceptrons (MLP), are the most widely studied and used neural networks in practice, especially 

for supervised learning problems. A typical MLP consists of at least three layers of neurons, 

including an input layer, one or more hidden layers of sigmoid neurons, and an output layer of 

linear neurons (Fig. 5.3) (Kaastra and Boyd, 1995). MLP training, i.e., the network’s weight 

optimization, is commonly carried out using a gradient-descent based algorithm known as 

backpropagation (Rumelhart et al., 1986). Many studies have shown that MLP of one hidden 

layer with adequate number of neurons can be trained to approximate any measurable function to 

any desired degree of accuracy (Hornik et al., 1989; Funahashi, 1989). As a result, our analysis 

used one-hidden-layer MLP and varied the number of neurons in the hidden layer, via a 

sensitivity analysis, to identify the best network. 
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Fig. 5.3. Schematic presentation of a multilayer perceptron 

5.3.2.3 Scope of metamodeling 

The high computation time of Ag-EcoSOpt’s landscape simulations could mainly be attributed to 

DayCent model initialization and forward simulations. Prior to any forward simulation, DayCent 

needs to be initialized for all farms in the landscape. The model initialization consists of three 

simulation stages including spin-up, base, and ‘business as usual’ (BAU). The spin-up simulation 

(5,000 – 10,000 years) defines the natural steady-state of the land prior to any disturbance from 

human activities. The base simulation (hundreds of years), extended from this equilibrium state, 

reflects the land condition in the distant past. This historical simulation is followed by a BAU 

simulation (<100 years), which represents the land condition under the current management 

regime, and is used to compare with forward simulations into the future. The forward 

simulations, extended from the BAU condition, model different predefined scenarios of changes 

in land use and/or land management to support decision making. This sequential model 

simulation is important for capturing the long-term and cumulative effect of management 

practices, soil properties, and weather data on carbon and nitrogen dynamics.  
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Although the model initialization is imperative, it is repetitive for an area under different 

analyses. Therefore, we carried out initialization simulations for the study region and stored the 

initialized results in our database as the initial conditions for the forward simulations. 

Metamodeling technique was employed to further reduce the computational burden of the 

forward simulations and thus increased the efficacy of large-scale and complex landscape 

optimizations. The scope of our metamodeling is to train an MLP to quickly and accurately 

predict the DayCent’s modeled SOC, corn grain and stover yields at farm level under the forward 

simulations. 

5.3.2.4 Defining inputs and outputs structure  

In this analysis, we used a time frame of 30 years for the forward simulations. The time frame 

was selected to account for the effects of the variation in one cycle of weather data (1980 – 2010) 

from the North American Regional Reanalysis (NARR) climate database used for our model 

simulations (Mesinger et al., 2006). It was also sufficient for soil organic carbon (SOC) to 

approach a new equilibrium after switching management practices from the BAU scenario for a 

fair comparison of SOC and a thorough accounting of annual CO2 emissions. The effects of 

climate change and increases in atmospheric CO2 concentration were not simulated in our study. 

The SOC stock at the end of the forward simulation period and the 30-year-average corn grain 

and stover yields were used as the output variables for metamodeling. These variables are 

efficient to capture both the cumulative effects of changing management practices on SOC 

dynamics and the seasonal variations of yields. SOC was reported in Mg of carbon per hectare 

while corn grain and stover were reported in Mg of dry weight biomass per hectare per assuming 

43.5% carbon content and moisture content of 15.5% for corn grain and 20% for harvested 

stover (Gesch et al., 2010).  
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The DayCent model’s inputs were used as the input variables for metamodeling. The primary 

inputs of DayCent are daily maximum and minimum air temperature and precipitation, soil 

properties for each horizon in the soil profile, soil (rooting) depth, land cover/use data (e.g., 

vegetation types, land use history), and management practices (e.g., irrigation, tillage, 

fertilization). To reduce the number of input variables for faster training of MLP, soil property-

related input variables such as bulk density and textures were averaged across all soil layers. 

Daily min and max temperatures and daily precipitation were also aggregated into growing-

season values and then averaged over the forward simulation timeframe (30 years) before using 

as input for MLP training. The soil organic carbon and soil nitrogen at the end of the BAU 

simulations were used as the input variables that describe the historical land management. The 

list of the input variables used for our MLP metamodel building is given in the Appendix C1.  

5.3.2.5 Design of experiment 

The metamodel input variables were divided into two groups for sampling purposes including 

site-specific and management-specific input variables. Site-specific input variables describe the 

intrinsic properties of a corn field such as temperature and precipitation, soil texture, soil depth, 

and historic conditions. These variables, related to a specific field, do not change during the 

forward simulations of DayCent and thus were sampled based on their spatial locations. 

Management-specific input variables refer to N fertilizer, irrigation, and stover removal rates, 

which were modulated during DayCent forward simulations to measure the response in SOC, 

corn grain and stover yields. They were sampled based on experimental design in each corn 

field. 

The site-specific input data were acquired from several spatial databases including Natural 

Resource Conservation Service Soil Survey Geographic database (SSURGO, NRCS-USDA, 
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2014), the NARR climate database (Mesinger et al., 2006), U.S irrigated land database (Pervez 

and Brown, 2010), and the National Agricultural Statistics Service Crop Data Layer (NASS-

CDL, 2016). The shapefiles of these databases were then intersected to create input polygons of 

various sizes (>1 ha) representing 35,365 virtual irrigated corn fields in the study site (Fig. 5.1), 

including 2707 unique combinations of soil and weather data (DayCent input strata). Only these 

input strata were simulated with DayCent to create dataset for metamodeling. 

The DayCent input strata were initialized with the sequential simulation procedure used in the 

Inventory of U.S. Greenhouse Gas Emissions and Sinks (US EPA, 2015) and the COMET-

FarmTM system (http://cometfarm.nrel.colostate.edu/). Each stratum was first spun up with native 

grassland condition for 5000 years and then extended with the base simulations using the 

historical agricultural land use assumptions for Major Land Resource Area (MLRA) up to 1979 

(Ogle et al., 2010). Finally, they were extended to 2017 using the state-average BAU 

management practices reported by the USDA Agricultural Resource Management Survey for 

Colorado’s irrigated corn crop, which were 170 kg of nitrogen per hectare, 34 cm of irrigated 

water per growing season, 75% residue removal, and conventional tillage (ERS-ARMS, 2010).  

To insure balanced sampling, N fertilizer, irrigation, and residue removal rates were first 

stratified into lower and upper ranges based on the BAU management practice levels and their 

corresponding lower and upper bounds. These bounds were chosen to reflect the possible ranges 

for irrigated, continuous corn in the region (Halvorson et al., 2006), including 0 – 300 kg ha-1 for 

N fertilization, 0 – 70 cm year-1 for irrigation, and 0 – 90% for stover removal. We then sampled 

from these ranges assuming uniform distributions of the management-specific input variables. A 

3 × 2 factorial design (i.e., 3 management practices each at 2 levels) was then employed for each 

DayCent input strata in the landscape. The sampling yielded 21,656 samples (pairs of 

http://cometfarm.nrel.colostate.edu/
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inputs/output) for the metamodeling. All DayCent simulations were conducted in parallel on an 

18-node, 216-processor cluster computing system at the Natural Resource Ecology Laboratory at 

Colorado State University. 

5.3.2.6 Developing the metamodel 

There are four main steps in developing an ANN metamodel including preprocessing data, 

configuring, training, and testing the network (Maier et al., 2010). First, we normalized the input 

and output variables between [-1, 1]. The normalization of input data increases the network 

training efficacy and prevents the saturation effect of large input values on the activation 

functions (Li et al., 2000). The ranges for data normalization depend on the activation functions 

used to configure neural networks. For this analysis, we used hyperbolic tangent sigmoid and 

linear activation functions for the hidden and output layers, respectively. The preprocessed data 

were then randomly partitioned (without replacement) into three subsets including training, 

validation, and test sets. The training set was used to optimize network’s weights and biases; the 

validation set was used to prevent overfitting during network training (“early stopping”) 

(Prechelt, 2012); and the test set was used to evaluate the performance of the trained network. To 

reduce the training and prediction time of the metamodel, we developed a nested MLP to predict 

three output variables simultaneously.  

There is no apparent rule for MLP configuration for a specific problem, and thus “trial and error” 

approach is often employed in practice (Maier and Dandy, 2000). For our study, we conducted a 

sensitivity analysis for the number of input variables, training ratio, and number of neurons in the 

hidden layer to identify the best configuration of the MLP. First, we ran the relative importance 

analysis (Johnson and Lebreton, 2004) on the input variables using a simple configuration of 

MLP with ten hidden neurons. The input variables were then added to the MLP training 
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sequence in the descending order of their relative importance. The relative importance refers to 

the proportional contribution each input variable makes in explaining the variation in the output 

variables, considering both its direct effect (i.e., its correlation with the outputs) and its effect 

when combined with the other input variables (Johnson and Lebreton, 2004). For each input 

variable, importance was calculated as the difference between the accuracy of the full model 

(i.e., including all input variables) and the mean accuracy of all submodels that excluded the 

input variable of interest. The values were normalized against each other so that they sum up to 

100%. For our study, the relative importance analysis was carried out via a sensitivity analysis, 

which was explained in detail in IBM Corp (2015). The training ratio defines the percentage of 

the input dataset that is used to train the MLP. We varied the training ratio from 10% to 70% 

incrementing by a step of 20%. The test set was kept at 20% of the total sample size in all cases. 

The number of neurons was varied between 5 and 60 with an incremental step of 5. The 

sensitivity analysis for MLP configuration was automated and incorporated into Ag-EcoSOpt for 

the sake of future studies. 

The configured MLPs were initialized with random weights sampled from a Gaussian 

distribution with a mean of 0 and a standard deviation of 0.01 and were trained using Levenberg-

Marquardt backpropagation (Marquardt, 1963) for 500 epochs (training iterations) using Neural 

Network Toolbox in MATLAB software (MATLAB and Neural Network Toolbox, 2017). Other 

parameters of the training algorithm were kept at their default values. Our MLP training goal was 

to minimize the mean squared errors (MSE) of the training set (MSEtrain = 0). The training 

stopped if one of the following conditions was met: (1) the number of training iteration 

exceeds 500; (2) the MSE of training set equates zero; (3) the magnitude of the error gradient is 

less than 10-7; and (4) MSE of the validation set has increased more than 6 training iterations 
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since the last time it decreased (early stopping) (Prechelt, 2012). The performance of the trained 

MLP was evaluated using the test set based on the coefficient of determination (R2) and MSE. 

One of the drawbacks of the backpropagation training algorithm is that the network might be 

trapped in some local minima especially for non-smooth error surfaces (Maier et al., 2010). To 

rectify this problem, each MLP configuration was trained 10 times using different random 

weight initialization and the performance means were compared. The final surrogate model was 

selected based on a balance among metamodel accuracy, training and prediction time. 

5.3.2.7 Testing the spatial distribution of prediction errors 

It is important that surrogate models are tested based on their domains of use (Marie and 

Simioni, 2014). Since our objective was to use the selected surrogate model to construct the 

objective and constraint functions for the farm-level optimization of management practices for 

irrigated corn in Colorado, we calculated the root mean squared errors (RMSE) between the 

surrogate model predictions and the DayCent’s outputs for each corn farm. The RMSE was 

computed based on 216 random samples of management practices per farm. The farm-level 

RMSE were then visualized for the whole landscape via maps to identify the spatial pattern of 

metamodeling uncertainty as well as locations of extreme errors.  

5.3.3 Formulation of the optimization problems 

For clarity, hereafter we refer to the farm-related metrics with a prefix “farm” (e.g., farm SOC 

and farm GHG) while the landscape sum of a farm-related metric (i.e., sum of all farms in the 

landscape) will be referred to only by the metric’s name (e.g., SOC and GHG). In the case of 

corn stover and corn grain, the farm-level metrics will be denoted with the suffix “yield” (e.g., 

corn stover yield and corn grain yield) while their landscape summation will be denoted as corn 

stover and corn grain (with no suffix), respectively. For constraint function, we differentiate 
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between the constraint metric (left side of constraint function) and constraint value (right side of 

constraint function). For example, in equation (11), corn grain (i.e., ∑ ∑ Graini,j
M
j  ∗  xi,j

N
i ) is the 

constraint metric and A is the constraint value. Farm profits were calculated as the difference 

between revenues from corn grain and stover and the corresponding farm production costs. Farm 

GHG emissions were computed as the sum of all soil-related and on-farm machinery emissions. 

The calculation of all the metrics and their corresponding data are reported in Appendix C2 using 

the method published in our previous papers (Nguyen et al., 2018; Nguyen et al., in review). 

Our optimization problem can be formulated as follows, with detailed nomenclature presented in 

Table 5.1:  

Farm-level optimization: This is a bounded and non-linear programming problem 

∀ i ∈ N: 

 ∀ j ∈ M: maximizing fp (Fi, Ii, Ri)   (Eq. 5.1) 

Subject to (s.t): 

FLB ≤ Fi ≤ FUB     (Eq. 5.2) 

ILB ≤ Ii ≤ IUB    (Eq. 5.3) 

RLB ≤ Ri ≤ RUB    (Eq. 5.4) 

𝑓𝑠(Fi,Ii,Ri)− bauSOCi 

bauSOCi 
 ≥ dSOCj   (Eq. 5.5) 

Landscape-level optimization: 

Maximize ∑ ∑ Stoveri,j
M
j  ∗ xi,j

N
i   (Eq. 5.6) 

Minimize ∑ ∑ GHGi,j
M
j  ∗  xi,j

N
i    (Eq. 5.7) 

Minimize ∑ ∑ NLi,j
M
j  ∗  xi,j

N
i    (Eq. 5.8) 

Subject to: 

 xi,j ∈ {0, …,1}     (Eq. 5.9) 

 ∑ xi,j 
M
j  ≤ 1, ∀ i ∈ N   (Eq. 5.10) 

 ∑ ∑ Graini,j
M
j  ∗  xi,j

N
i   ≥ A   (Eq. 5.11) 
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∑ ∑ SOCi,j
M
j  ∗ xi,j

N
i   ≥ B   (Eq. 5.12) 

∑ ∑ Irrigationi,j
M
j  ∗  xi,j

N
i   ≤ C   (Eq. 5.13) 

 

Table 5.1. The nomenclature of the optimization problem 

Name Description 

Indices 

i Index for corn fields in the landscape 

j Index for farm’s relative SOC constraint 

 

Set sizes 

N Number of corn fields in the landscape (N = 38,299) 

M Number of considered relative SOC constraints (M = 6) 

 

Parameters 

Flb Lower bound of N fertilizer (Flb = 0 kg ha-1) 

Fub Upper bound of N fertilizer (Fub = 300 kg ha-1) 

Ilb Lower bound of irrigation (Ilb = 0 cm year-1) 

Iub Upper bound of irrigation (Iub = 70 cm year-1) 

Rlb Lower bound of residue removal rate (Rlb = 0 %) 

Rub Upper bound of residue removal rate (Rub = 90%) 

bauSOCi SOC level of the ‘business-as-usual’ scenario in farm i (Mg C ha-1) 

dSOCj Relative SOC constraint dSOCj for farm i, dSOCj ∈ {0%, 10%, 20%, 30%, 40%, 50%} 

Stoveri,j Corn stover produced in farm i under relative SOC constraint dSOCj (Mg biomass year-1) 

GHGi,j GHG emissions of farm i under relative SOC constraint dSOCj (Mg CO2e year-1) 

NLi,j N leaching of farm i under relative SOC constraint dSOCj (kg N year-1) 

Graini,j Corn grain produced in farm i under relative SOC constraint dSOCj (Mg year-1) 

SOCi,j SOC of farm i under relative SOC constraint dSOCj (Mg C) 

Irrigationi,j Irrigation water used by farm i under relative SOC constraint dSOCj (m3 year-1) 

A 
Landscape constraint of corn grain production based on NASS’s 2013 census for irrigated 

corn in Colorado (A = 3.34 x 106 Mg year-1) 

B 
Landscape constraints for SOC. B is the total SOC under the ‘business-as-usual’ scenario 

with tillage changed from conventional to no-till (BAU-NT) (B = 8.19 x 106 Mg C year-1) 

C 
Landscape constraints for irrigation water use based on NASS’s 2013 census for irrigated 

corn in Colorado (C = 1.50 x 109 m3 year-1) 

  

Non-linear functions 
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fp(Fi, Ii, Ri) 
Function measures profits of farm i corresponded to the management practices Fi, Ii, and Hi 

($ ha-1 year-1). 

fs(Fi, Ii, Ri) 
Function measures SOC of farm i corresponded to the management practices Fi, Ii, and Hi 

(Mg C ha-1) 

  

Continuous variables 

Fi N fertilizer rate of farm i (kg ha-1) 

Ii Irrigation rate of farm i (cm year-1) 

Ri Residue removal rate of farm i (%) 

  

Binary variables 

xi,j Fraction of field i under relative SOC constraint dSOCj is chosen in the final landscape. 

 

The objective (Eq. 5.1) represents the maximization of farm profits, which is a non-linear 

function based on farm management practices. The constraints (Eq. 5.2), (Eq. 5.3), and (Eq. 5.4) 

depict the upper and lower bounds for farm N fertilizer, irrigation, and residue removal rates, 

respectively. The constraint (Eq. 5.5) imposed a certain level of relative SOC constraint on the 

farm optimization. The relative SOC constraint for farm i is defined as the percentage increase in 

SOC due to changes in management practices, relative to the ‘business-as-usual’ SOC level of 

that particular farm. To examine the trade-off between farm profits and farm SOC as well as to 

generate fine-scaled scenarios for the landscape optimization, we varied the farm’s relative SOC 

constraint value between 0 - 50%, incrementing by a step of 10%. In other words, each farm in 

the landscape was optimized six times corresponding to six levels of the relative SOC constraint.  

The objectives (Eq. 5.6), (Eq. 5.7), and (Eq. 5.8) define the simultaneous maximization of corn 

stover and minimizations of GHG emissions and N leaching at the landscape level, respectively. 

The constraints (Eq. 5.9) and (Eq. 5.10) allow the selection of multiple relative SOC constraints 

for each corn farm as long as the sum of their corresponding areal fractions does not exceed 1. 

The constraints (Eq. 5.11), (Eq. 5.12), and (Eq. 5.13) require the optimization to at least maintain 
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the empirical production levels of corn grain and SOC while keeping the irrigation water use 

below an empirical amount. The most recent census of U.S agriculture by the National 

Agricultural Statistics Service (NASS) in 2012 reported an average of 11.17 Mg ha-1 and 5029 

m3 ha-1 year-1 for corn grain yield and farm irrigation for irrigated corn in Colorado, respectively 

(NASS, 2012). These corresponded to about 3.34 x 106 Mg year-1 of corn grain and 1.50 x 109 

m3 year-1 of irrigation water use on the landscape level. For SOC, since empirical data were not 

available at state level, we used the simulated landscape sum of SOC under the ‘business-as-

usual’ scenario with tillage adjusted from conventional to no-till. Switching the tillage under the 

‘business-as-usual’ scenario was consistent with the tillage assumption of the optimization while 

placing a more conservative constraint on SOC for sustainability. These empirical/simulated 

values were set as the base constraint values for the landscape multi-objective optimization. 

We also varied the landscape constraint values to examine how improvements in corn grain, 

SOC, and irrigation water saving affected the pareto trade-offs among the landscape objectives 

(i.e., corn stover, GHG emissions, and N leaching). For this, we first carried out different single-

objective optimizations (both maximization and minimization) of the landscape constraint 

metrics (i.e., corn grain, SOC, irrigation water use). These are scenarios where one of the 

constraint metrics was turned into an objective function while the other metrics remained as 

constraints using their base values (Table 5.2). The results from the minimization and 

maximization of a certain constraint metric revealed its feasible value range (FVR) (i.e., [min, 

max]). These ranges were first used to verify the base constraint values (A, B, C). If a base 

constraint value lied beyond the FVR of its corresponding constraint metric (i.e., no feasible 

solution), it would be reset to the mean of the feasible value range before carrying out the 

landscape multi-objective optimization. The ranges between the base constraint values and either 
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the maximum values of corn grain and SOC or the minimum value of irrigation water use were 

defined as the ‘Constraint Improvement Region’ (CIR) (see details in Appendix C6). This was 

because setting the constraint values along these ranges resulted in increases in corn grain and 

SOC and decreases in irrigation water use. To examine the effects of improvements in constraint 

metrics on the landscape multi-objective optimization, we separately varied each constraint value 

along its CIR and observed the changes in the resulting pareto frontiers. 

Table 5.2. Objective and constraint functions of the single-objective optimizations of corn grain, 

SOC, and irrigation water use  

Objective function Constraint functions 

∑ ∑ Graini,j
M
j  ∗ xi,j

N
i                  s.t. 

xi,j ∈ {0, …,1} 

∑ xi,j 
M
j  ≤ 1, ∀ i ∈ N 

∑ ∑ SOCi,j
M
j  ∗  xi,j

N
i   ≥ B 

∑ ∑ Irrigationi,j
M
j  ∗ xi,j

N
i   ≤ C 

∑ ∑ SOCi,j
M
j  ∗  xi,j

N
i                     s.t. 

xi,j ∈ {0, …,1} 

∑ xi,j 
M
j  ≤ 1, ∀ i ∈ N 

∑ ∑ Graini,j
M
j  ∗ xi,j

N
i   ≥ A 

∑ ∑ Irrigationi,j
M
j  ∗ xi,j

N
i   ≤ C 

∑ ∑ Irrigationi,j
M
j  ∗ xi,j

N
i           s.t. 

xi,j ∈ {0, …,1} 

∑ xi,j 
M
j  ≤ 1, ∀ i ∈ N 

∑ ∑ Graini,j
M
j  ∗ xi,j

N
i   ≥ A 

∑ ∑ SOCi,j
M
j  ∗  xi,j

N
i   ≥ B 

Note: Each objective function was used for both maximization and minimization 

 

 

5.4 RESULTS  

5.4.1 Model accuracy 

Our results indicated high accuracy of the surrogate models with appropriate configuration and 

training (Fig. 5.4). The minimum Root Mean Squared Error (RMSE) of test sets for different 

MLP configurations varied from 0.4 – 4.1 Mg C ha-1 for SOC, 0.3 – 3.3 Mg ha-1 for corn grain 
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yield, 0.2 – 2.4 Mg ha-1 for corn stover yield (Fig. 5.4a). These corresponded to the test-set R2 of 

73.6% – 99.5%, 1.7% – 99.4%, and 0.8% – 99.3%, respectively (Fig. 5.4b). The performance of 

the surrogate models was more sensitive to variations in the numbers of input variables and 

hidden neurons as compared to that of training ratio. Improvement in the surrogate performance 

when configuring the MLPs with more than four input variables or 25 hidden neurons came with 

significant increases in training and prediction time. These metrics depict the number of seconds 

taken to train an MLP and to conduct one million predictions using the trained surrogate model, 

respectively. Under the stop rules for MLP training defined in section 5.3.2.6, an MLP took from 

2 seconds to over 15 minutes to train and required less than 1.3 seconds for one million 

predictions. 

 

Fig. 5.4. (a) Minimum Root Mean Squared Error (RMSE) of test sets averaged across different 

train ratios, number of inputs variables, and number of hidden neurons; and their corresponding 

(b) test-set R2, and (c) training and prediction time. The grey horizontal lines in the middle plots 

are the test-set R2= 99% lines. Prediction time is labeled in blue color with parenthesis.  
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The final surrogate model that balances between metamodeling accuracy (i.e., test-set R2 for all 

targets are greater than 99%) and prediction time (i.e., fastest) is presented in Table 5.3. Other 

details including regression plots and MLP’s weight and bias configuration are available in the 

Appendix C3. The final surrogate model exhibited high accuracy with the RMSE less than 0.46 

Mg C ha-1, 0.25 Mg ha-1, and 0.33 Mg ha-1 for SOC, corn stover, and corn grain, respectively. 

The gain in simulation time was substantial as compared to the original DayCent model. While 

the DayCent took about 59.6 ± 0.33 days (extrapolated from 5.15 ± 0.33 second per simulation; 

n=10) for one million simulations on a quad core i7 CPU (2.20GHz and 12Gb RAM), its 

surrogate model only required 0.83 ± 0.08 seconds on the same setup. This indicated that the 

surrogate model was about 6.2 million times faster for our analysis.  

Table 5.3. The configuration and statistics of the chosen surrogate model 
 

SOC 

(Mg C ha-1) 

Stover yield 

(Mg ha-1) 

Grain yield 

(Mg ha-1) 

Train set ratio (%) -------------------- 70 ---------------------- 

Number of input features -------------------- 12 ---------------------- 

Number of hidden neurons -------------------- 25 ---------------------- 

Training time (s) ------------------- 179 ---------------------- 

Prediction time (s) --------------- 0.82 ± 0.08* ---------------- 

RMSE of training set 0.42 0.23 0.30 

RMSE of validation set 0.45 0.24 0.32 

RMSE of test set 0.45 0.22 0.31 

R2 of train set (%) 99.7 99.1 99.2 

R2 of validation set (%) 99.7 99.0 99.1 

R2 of test set (%) 99.7 99.1 99.1 

Note: * The standard deviation was calculated from ten independent batches of one million 

predictions.  
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5.4.2 Input variable importance and dependence 

The BAU’s SOC and management practices appeared to be the most important variables in the 

surrogate model (Table 5.4). Importance was defined as the reduction in prediction accuracy 

(i.e., increase in MSE) when comparing the MSE of the complete model (with all input 

variables) to the average of MSE of all submodels that excluded the input variable of interest. 

This result confirmed the diminishing effect of increasing input variables on accuracy 

improvement (Fig. 5.4).  The dependence plot of the first four most important input variables 

indicated that the output variables responded to variation in input variables in expected trends but 

with different magnitudes (Fig. 5.5). The effects of varying BAU’s SOC and residue removal 

rate on the output variables were quite linear while those of N fertilizer and irrigation followed 

convex curves indicating diminishing management effects at higher investment of management 

practices. Farm SOC seemed to be more influenced by changes in its initial value, whereas corn 

stover and grain yields responded with higher magnitudes under variation in residue removal, 

and N fertilization and irrigation, respectively. 

Table 5.4. Relative importance of the input variable to the surrogate model 
Input variables Unit Relative importance (%) 

BAU’s soil organic carbon Mg C ha-1 30.43 

Residue removal rate % 16.53 

Fertilizer kg N ha-1 15.67 

Irrigation  cm year-1 13.30 

BAU’s soil nitrogen  Mg N ha-1 3.68 

Silt % 3.57 

30-year-average maximum temperature  oC 3.03 

Number of soil layer  2.93 

30-year-average precipitation  cm year-1 2.92 

Sand  % 2.91 



131 

 

Bulk density  g cm-3 2.69 

30-year-average minimum temperature  oC 2.34 

 

 

 

Fig. 5.5. Dependence plot of the first four most important input variables. The dependence plot 

quantified the ranges of MLP predicted outputs averaged across the entire landscape. The left y-

axes were labeled with corn stover yield in Mg dry wt. biomass ha-1 (top) and corn grain yield in 

Mg dry wt. mass ha-1 (bottom with parenthesis). The dependence plots for other input variables 

are available in Appendix C4.  

 

5.4.3 Spatial variation of the predictive errors 

The spatial distributions of the RMSE between DayCent simulated outputs and surrogate model 

predictions indicated a high accuracy of the surrogate model throughout the landscape (Fig. 5.6). 

The 95th percentiles of the RMSE for the prediction of SOC, corn stover and corn grain yields 

were 0.77 Mg C ha-1, 0.37 Mg ha-1, and 0.53 Mg ha-1, respectively. The maps of RMSE spatial 
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distributions revealed higher concentration of sites with lower accuracy (i.e., RMSE above 95th 

percentiles) around areas west of the city of Greeley and east of the town of Sterling. Although, 

our exploratory analysis did not reveal any specific correlation between the input variables and 

the errors (Appendix C5), it might suggest that the aggregation of input variables for more 

efficient metamodeling was not efficient in explaining potential seasonal variations of output 

variables for certain regions in the landscape.  

 

 

Fig. 5.6. Spatial variation of Root Mean Squared Error (RMSE) between surrogate model and 

DayCent for (a) soil organic carbon; (b) corn stover yield; and (c) corn grain yield. The maps 

were colored with three distinct value ranges based on the minimum values, 75th percentiles, 95th 

percentiles, and maximum values to better identify the spatial patterns of the area with high 

prediction error. RMSE was calculated from 216 random samples per corn field. 
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Table 5.5. Average results of farm-level optimization* 

Relative SOC 

constraint 
Profit Stover yield Grain yield SOC Fertilizer Irrigation 

Residue 

removal 
GHG N leaching 

(%) ($ ha-1year-1) (Mg ha-1year-1) (Mg ha-1year-1) (Mg ha-1) (kg ha-1) (cm year-1) (%) (Mg ha-1year-1) (kg ha-1year-1) 

BAU 152 7.2 10.4 22.1 170 34.0 75.0 2.66 45 

BAU-NT** 233 7.2 10.3 27.4 170 34.0 75.0 1.83 31 

0 379 9.1 11.4 25.8 176 48.0 89.2 2.14 51 

10 382 9.1 11.4 25.7 176 48.1 89.0 2.15 51 

20 369 8.4 11.4 27.0 178 48.0 80.1 2.01 51 

30 340 6.7 11.5 29.3 179 47.3 63.6 1.74 48 

40 309 4.9 11.5 31.5 181 46.8 46.6 1.47 47 

50 277 3.1 11.5 33.8 184 46.5 29.5 1.21 46 

Notes:  

*The average results were calculated by dividing the area-weighted sum of farm values over total area. 

** “Business-as-usual” scenario where conventional tillage was converted to no-till. 

Color scales were added to aid the visualization. White-to-green and white-to-red color scales depict metrics whose higher values (green) and lower values 

(white) were assumed to be preferred, respectively. Each column is colored based on its value range with white color being the min value. Black and white 

numbers are values below and above the average, respectively
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5.4.4 Farm-level optimization of profits 

The results associated with farm profits maximization are presented in Table 5.5. The 

optimization improved farm’s profits by 83% to 150% as compared to the BAU scenario. The 

improvements of farm’s profits were due to the lowered production fixed costs of no-till and the 

higher biomass production attained by the intensified fertilization and irrigation. As we imposed 

higher relative SOC constraints, our model reduced irrigation and residue removal rates to satisfy 

SOC constraints while increasing N fertilization rate to improve biomass production for farm 

profits maximization. Residue removal rate was decreased to below the BAU’s level at the 

relative SOC constraint greater than 20%. While both SOC accumulation and GHG emissions 

reduction were significantly improved under all relative-SOC-constrained scenarios as compared 

to the BAU scenario, N leaching was slightly worse due to higher fertilization and irrigation 

rates. When switching from conventional tillage to no-till under the BAU scenario (BAU-NT), 

we observed 54% and 24% increases in farm profits and SOC, and 31% and 32% decreases in 

GHG emissions and N leaching, respectively. 

5.4.5 Feasible value ranges and improvement regions of landscape constraints 

The feasible value ranges of SOC, irrigation water, and corn grain ranged from 7.42 – 10.15 

(×106 Mg C year-1), 1.29 – 1.44 (×109 m3 year-1), and 2.48 – 3.45 (×106 Mg year-1), respectively 

(Table 5.6). The base landscape constraints of SOC and corn grain fell between their feasible 

ranges while the base constraint of irrigation water use laid above its feasible range. This 

indicated that the empirical irrigation constraint had been satisfied through the farm’s profits 

optimizations. Therefore, for the landscape multi-objective optimization, we re-set irrigation 

constraint to the mean of its feasible value range (1.36 ×109 m3 year-1) while maintaining SOC 
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and corn grain constraints at their empirical values of 8.19 ×106 Mg C year-1 and 3.34 ×106 Mg 

year-1, respectively.  

Table 5.6. Feasible value ranges and constraint improvement regions of landscape constraints 

Constraint variables 
Feasible value 

range 

Constrain improvement 

region (CIR) 
Base values* 

SOC (×106 Mg C year-1) 7.42 - 10.15 8.19 – 10.15 8.19 

Irrigation water (×109 m3 year-1) 1.29 – 1.44 1.29 – 1.36 1.50 

Corn grain (×106 Mg year-1) 2.48 – 3.45 3.34 – 3.45 3.34 

Note: * Base values were derived from literature or simulation of BAU scenario under no-till. 

 

5.4.6 Pareto trade-offs 

The pareto surface of trade-offs among corn stover, GHG, and N leaching of irrigated corn 

production in eastern Colorado had a bowed shape revealing three different trade-off patterns 

between different pairs of landscape objectives (Fig. 5.7). While corn stover and GHG displayed 

a straight-forward linear relation (Fig. 5.7d), N leaching-related trade-offs showed more 

complicated relationships with a concave corn stover-N leaching pareto frontier (Fig. 5.7b) and a 

convex GHG-N leaching pareto frontier (Fig. 5.7c). Under the base landscape constraints, the 

maximum amount of corn stover that could be produced was 2.35 ×106 Mg biomass year-1 

bearing the highest impacts on ecosystem at 14.37 ×103 Mg N year-1 and 57 ×104 Mg CO2e year-

1. Improving the environmental performance of the ecosystem was achieved at the trade-off on 

corn stover. The minimum GHG and N leaching was 33.50 ×104 Mg CO2e year-1 and 11.95 ×103 

Mg N year-1 corresponding to the corn stover production of 0.83 (minimum) and 0.96 (×106 Mg 

biomass year-1), respectively. The landscape sum of profits linearly correlated with corn stover 

reaching the maximum of $106.89 ×106 year-1 at the maximum stover production level and the 
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minimum of $80.63 ×106 year-1 at 0.87 ×106 Mg biomass year-1 of corn stover, 33.90 ×104 Mg 

CO2e year-1 of GHG, and 12.02 ×103 Mg N year-1 of N leaching.  

Raising the landscape constraints (i.e., higher SOC and corn grain, and lower irrigation water 

use) worsened corn stover, N leaching, and GHG objectives (Fig. 5.7). Maximum SOC and corn 

grain production and irrigation water saving were obtained at the stover production levels below 

1.1 ×106 Mg biomass year-1 and fell far in the sub-optimal regions of the stover, N leaching and 

GHG trade-off frontiers. The mean-CIR improvement scenarios for SOC and irrigation water 

saving were achieved mainly by decreasing either stover removal rate or irrigation amount 

(Table 5.7), and thus resulted in decreases in corn stover production. The trade-off showed that 

we could improve SOC and reduce irrigation water use to a certain extent without affecting 

either food production or environmental performance of the ecosystem by producing less corn 

stover. Contrarily, although improving food production (mean CIRgrain) did not greatly reduce 

stover or increase GHG emissions, it significantly increased N leaching as showed by the 

shifting of the green dotted lines to the right of the base constraint pareto frontiers (Fig. 5.7b). 

The increase in N leaching under this scenario was due to higher application of both N fertilizer 

and irrigation (Table 5.7). The summary of landscape trade-offs among production constraints 

and optimization objectives was given in the Appendix C6. 
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Fig. 5.7. Pareto trade-off among landscape optimization objectives and constraints. (a) 3D pareto 

surface showing trade-off among corn stover, GHG, and N leaching. The pareto solutions are 

colored based on the sum of farm profits; (b) Pareto trade-off between corn stover and N 

leaching; (c) Pareto trade-off between GHG emissions and N; (d) Pareto trade-off between corn 

stover and GHG emissions. The line shapes are Pareto frontiers. The filled areas defined the 

feasible regions of Pareto trade-offs when varying a constraint value along its Constrain 

Improvement Region (CIR). The min, mean, and max CIR are scenarios where the subscripted 

constraint metric was improved to the min, mean, and max of its CIR, respectively.  
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Table 5.7. Average management practices of landscape trade-off pareto frontiers. 

Pareto 

trade-off  
Constraint scenario 

N fertilizer 

(kg N ha-1) 

Irrigation 

(cm year-1) 

Residue removal 

(%) 

 Max CIRgrain 184 47 37 

 Min CIRirrigation 176 43 32 

 Max CIRsoc 184 46 30 

S
to

v
er

 v
s.

  

N
 l

ea
ch

in
g
 Base 174 44 60 

Mean CIRgrain 177 45 59 

Mean CIRirrigation 174 44 58 

Mean CIRsoc 177 44 50 

G
H

G
 v

s.
 

 N
 l

ea
ch

in
g
 Base 176 43 29 

meanCIRgrain 179 44 31 

meanCIRirrigation 176 43 29 

meanCIRsoc 176 43 29 

S
to

v
er

 v
s.

 G
H

G
 

Base 174 44 51 

meanCIRgrain 177 45 51 

meanCIRirrigation 174 44 48 

meanCIRsoc 176 44 42 

Note: The average of a Pareto frontier was computed from all solutions in that Pareto frontier. The Pareto trade-offs 

and constraint scenarios are corresponded to those in Fig. 5.7. Each column is colored based on its value range with 

white color being the min value. The min, mean, and max CIR are scenarios where the subscripted constraint metric 

was improved to the min, mean, and max of its Constrain Improvement Region (CIR), respectively.  

 

5.4.7 Optimal stover harvest 

Fig. 5.8 shows an example of optimized landscape configuration of residue removal rate at 

different pareto trade-off levels among stover production, GHG emissions, and N leaching, under 

the base landscape constraints. To increase stover production, residue removal rate was first 

increased in the areas around the towns of Yuma, Sterling and Greeley and then the areas around 

Burlington and Lamar. This revealed that more stover could be produced with less environmental 

impacts (i.e., lower environmental footprints) in the upper part as compared to lower part of the 

study region. 
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Fig. 5.8. Landscape configuration of stover removal rates at different trade-off level among 

stover production, GHG emissions, and N leaching. The maps were colored with four distinct 

value ranges based on the minimum values, 25th percentile, 50th percentile, 75th percentile and 

maximum values of all the pareto-optimum solutions. 

 

5.5 DISCUSSION 

The results of our analysis could be used to support decision-making at multiple levels. At farm 

level, farmers (the direct decision makers of agricultural ecosystems) could be informed with the 

optimum levels of resource investment to maximize farm profits and improve soil’s carbon 

storage. Farmers could also adjust their management decisions based on the quantitative trade-

offs among different ecosystem services (e.g., carbon storage and food and biomass production) 
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and disservices (e.g., GHG emissions and N leaching). This increases farm-level efficiency and 

sustainability. Furthermore, as farm-level environmental performance was made available, 

farmers could be encouraged to incorporate these metrics in their farm planning and budgeting, 

allowing more thorough state-wide agricultural statistic reports. At regional level, our results 

could be used to support several applications such as life cycle assessment and supply chain 

optimization of first- and/or second-generation biofuel production, biorefinery sitting, and 

feedstock landscape optimization. They could also be aggregated into county-level or state-level 

assessments to support policy-making and regional planning. For example, different stover 

removal rates could be recommended for different counties to approximate an optimal trade-off 

level among food and biomass production, carbon storage, and environmental impacts (an 

example is given in Appendix C7). 

As argued by Levin (1992), the problem of pattern and scale in ecology and ecosystem science is 

to understand the simultaneous changes that are taking place on many scales. With significant 

gain in simulation time, as exampled by our study, metamodeling allows a model to be used at 

larger scales to explore the spatial and temporal dynamics of interactions among ecosystem 

processes. This advantage also permits simulation-expensive applications like sensitivity analysis 

and optimization, which were conventionally impractical for the original complex models, in 

many cases. While our study demonstrated the metamodeling of the DayCent model for an 

agricultural landscape optimization, our framework would be equally applicable for other 

ecosystem models as well as optimization problems at different scales. Realizing that the 

complexity of such a modeling framework might hinder its practical use, we automated the 

workflow and incorporated it into our Ag-EcoSOpt system to facilitate future analyses. Besides, 
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efforts are being made to integrate other metamodeling techniques and optimization algorithms 

for more dynamic applications of our modeling platform. 

Despite the potential advantages of the framework, we do realize some drawbacks in the 

methodology. First, the computational burden of the metamodeling process was substantial. 

Generating the dataset for metamodeling required the use of a cluster computing system. While 

we could argue that the surrogate model could be trained once for different analyses, this 

computational burden might still challenge the adoption of our metamodeling framework 

especially when the computing infrastructure is not available for a large number of original 

model simulations. However, our results showed that training ratio did not significantly affect 

surrogate model performance (Fig. 5.4 a, b). This indicated that we could have decreased the 

sample size to reduce the computational burden of dataset generation as well as the MLP training 

time. For this, space-filling sampling techniques like Latin Hypercube design (Alam et al., 2004) 

could be used in place of the full factorial design employed by our study.  

Although the training time of each MLP configuration ranged from a couple seconds to 15 

minutes, optimization of MLP configuration via sensitivity analysis required thousands of 

iterative MLP trainings, which was time-consuming. Since our results suggested that a slight 

increase in accuracy could come with a considerable increase in training and prediction time 

(Fig. 5.4), we could set the MSEtrain (training goal) at a certain level above zero (instead of zero) 

to stop MLP training earlier. In addition, the maximum number of neurons in the hidden layer 

could be reduced in future studies. By training a surrogate model for a single crop in a small 

region, we had reduced the crop-specific input variables and many other site- and management- 

specific input variables such as planting dates and fertilization timing. This improved the 

efficiency of the surrogate model. Fig. 5.4a also suggests that training MLP with more than four 
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input variables did not significantly improve the surrogate model accuracy. This implied that 

other input reduction techniques such as principle component analysis could be used to decrease 

number of input variables, thus lower the training time. 

The MLP prediction time could also be improved if farm profits (i.e., the farm-level objective 

function) were directly metamodeled. In our study, simulated corn grain and stover yields were 

first metamodeled and then used to calculate farm profits. While this approach allowed a more 

flexible use of the surrogate model to address changes in economic factors such as commodity 

prices, it slightly increased the prediction time by 8%. The optimizations required more than 24 

hours on a quad core i7 CPU for both farm and landscape levels. For applications where time 

saving is more crucial, reducing intermediate steps is recommended to improve optimization 

efficiency. To further reduce optimization time, we equipped the Ag-EcoSOpt with the ability to 

use the Parallel Computing Toolbox in MATLAB for simultaneous simulation of multiple farm-

level optimization instances when resources are available.  

Our analysis was subject to several sources of uncertainty. By nature, surrogate models inherit 

the uncertainties of the original models, which are those from model input, parameters, and 

structure. In addition, surrogate models suffer from their own structural uncertainty, which was 

measured as the errors between predicted outputs and the modeled outputs. The latter was 

quantified in our study for surrogate model selection. There were also other uncertainties 

associated with the optimization process such as those of economic data. These uncertainties 

would propagate through the system and should be reflected in the output to inform decision 

makers. While the quantification of uncertainty is valuable to decision making, such analysis is 

difficult to include in regional assessments such as this due to a) limited amounts of empirical 

data against which to validate model function, and b) the highly computational-intensive nature 
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of such operations. These challenges are significant enough to fall outside the scope of our study, 

and merit separate thorough studies. However, we note that meaningful sensitivity and 

uncertainty analysis is only possible after a system has been initially characterized, and the 

important potential feedbacks and dependencies identified.  

It is also important to note that the surrogate should not be used outside of the domain for which 

it was designed. In our analysis, the MLP was trained for irrigated corn in eastern Colorado with 

certain bounds of management-specific input variables. The use of the surrogate model for 

another corn growing regions or beyond the management practice bounds is not recommended. 

In these cases, one should follow the framework described in this study to construct and 

thoroughly test surrogate models before employing them for their specific study. Constructing a 

robust surrogate model to be used over larger areas and to predict several outputs for many crop 

species would improve the generalization of the metamodeling. This could also encourage 

studies of broader scopes on larger scales to support strategic decision-making process. 

However, such effort requires laborious data acquisition and processing as well as 

comprehensive experimental designs that encompass all possible input distributions. 

Furthermore, a generic surrogate is likely to be bulky and slow, and thus is inefficient for 

simulation-intensive applications like optimization. Alternatively, simplified surrogate models 

developed for specific problems like ours are more efficient for local and operational decision 

making. Our future efforts will focus on building more generic surrogate models for different 

crops in the U.S. as well as extending the Ag-EcoSOpt’s database to facilitate the adoption of our 

framework for similar resource optimization problems. 

Although multi-level and multi-objective optimization at high spatial resolutions is supposed to 

support decision-making process, we found that communicating the results of such optimization 
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to stakeholders and decision makers is a big challenge. Complicated optimization problems like 

ours could result in thousands of graphs, tables, and maps, which would be difficult to present 

through the traditional communication means such as reports and scientific papers. The use of 

web mapping applications allows integrated and customized presentations of information at 

different scales, serving the needs of multiple stakeholders. Such applications will also permit 

the involvement and feedback from stakeholders for more practical and operational analyses. 

The future development of Ag-EcoSOpt platform will focus on building a web mapping 

application to facilitate the visualization of analyses that employed our platform.  

5.6 CONCLUSION 

In this study, we demonstrated the use of metamodeling techniques in a surrogate-based 

optimization framework for decision support in agricultural resource management. For this, we 

conducted a case study to optimize the management practices of irrigated corn production 

systems in Colorado. The optimization explored the trade-offs among seven objectives at farm 

and landscape scales, including farm profits, irrigation water use, corn grain, corn stover, soil 

organic carbon (SOC), greenhouse gas (GHG) emissions, and nitrogen (N) leaching. The 

Multilayer perceptron (MLP), a feedforward artificial neural network, was employed to create a 

surrogate of the DayCent biogeochemical model. The surrogate model was used to create the 

objective and constraint functions for farm-level optimization. Outputs from farm-level 

optimization were then used to generate scenarios for landscape-level optimization. The 

optimizations were subjected to certain constraints in soil carbon storage, food production and 

irrigation water use. Our results showed that the surrogate model was able to capture above 99% 

variations in the simulated SOC, corn grain and stover yields. In addition, it was 6.2 million 

times faster than the DayCent model and was suitable for use in computationally-intensive 
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applications like sensitivity analysis and optimization. Optimizing management practices at the 

farm-level improved farm profit, SOC, grain yield, and reduced GHG emissions while slightly 

increasing N leaching. Landscape-level optimization resulted in different unique trade-off 

patterns among corn stover, GHG, and N leaching. The optimum stover removal rates were also 

visualized for each corn farm to illustrate the landscape configuration of management practices 

to obtain certain level of trade-offs. We discussed the advantages and disadvantages of our 

surrogate-based optimization framework as well as the potential to couple our framework with 

web mapping applications to facilitate better communication of high spatial-resolution 

optimization results to decision makers. We believe that this combination would encourage the 

participation and feedback from stakeholders for more practical and operational optimization 

analyses to support decision-making in sustainable resource management.  
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APPENDIX A 

A.1 Non-dominated sorting for Pareto frontiers. 
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A.2 Summary statistics of ES and EDS indicators. 

 

SOC NPP 

  
  

Water use Nitrogen leaching 

  

GHG  
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A.3 One-way ANOVA. 

Method: 

 

Null hypothesis: All means are equal 

Alternative hypothesis:  At least one mean is different 

Significance level:      α = 0.05 

Equal variances were not assumed for the analysis. 

 

Factor Information: 

 

Welch’s Tests 

ES/EDS 

indicator 
Fertilizer Irrigation 

SOC F(6, 27501) = 34.12, p < 0.000 F(6, 27502) = 63.02, p < 0.000 

NPP F(6, 27168) = 3414.91, p < 0.000 F(6, 27434) = 18946.82, p < 0.000 

Water use F(6, 27502) = 0.00, p = 1.000 F(6, 27495) = 149594.60, p < 0.000 

N leaching F(6, 27289) = 6666.53, p < 0.000 F(6, 27397) = 2231.40, p < 0.000 

GHG F(6, 27488) = 48677.28, p < 0.000 F(6, 27477) = 171.85, p < 0.000 

 

Interval plots (left) and Post-hoc comparison using Games-Howell method (right) 

SOC: 

 

Factor Levels Values 

Fertilizer amount (kg ha-1) 7 68, 102, 136, 170, 204, 238, 272 

Irrigation amount (cm year-1) 7 13.6, 20.4, 27.2, 34.0, 40.8, 47.6, 54.4 



183 

 

NPP: 

 

 

Water use: 
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Nitrogen leaching: 

 

 

GHG emissions: 
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A.4 Contribution of GHG components to total GHG emissions. 
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A.5 Optimum fertilizer and irrigation rates and EDS footprints.  

A.5.1 Color representation using Jenk natural breaks classifications. 

For better visualization and comparison of continuous data (e.g., EDS footprints) on a series of 

maps, we used the Jenk natural breaks classification method (color scaling) which seeks to 

reduce the variance within classes and maximize the variance between classes (Jenks, 1967). 

Jenk natural breaks classifications were performed on EDS footprint data using the PySAL 

library in Python (https://pypi.python.org/pypi/PySAL). 

For scenario 1 and ‘a’ scenarios  For ‘b’ scenarios 

Method: 

Python library: pysal.esda.mapclassify 

Population of the classification: 66,604 (16,651 

polygons x 4 scenarios) 

Initial solution generation: 100 

Target class: 4 

 

Natural breaks of GHG footprint (kg CO2 Mg-1) 

Lower            Upper                 Count 

=======================================

====== 

               x[i] <=  37.569               14987 

37.569 < x[i] <=  43.294               27593 

43.294 < x[i] <=  54.447               18204 

54.447 < x[i] <= 129.141                5820 

 

Natural breaks of N leaching footprint (kg N Mg-1) 

Lower          Upper                Count 

=======================================

== 

             x[i] <= 0.397               22413 

0.397 < x[i] <= 1.006               26179 

1.006 < x[i] <= 2.031               13211 

2.031 < x[i] <= 8.231                4801 

 

Natural breaks of Water footprint (cm Mg-1) 

Lower            Upper                Count 

=======================================

==== 

             x[i] <=  3.132               19484 

3.132 < x[i] <=  3.338               24044 

3.338 < x[i] <=  3.675               18873 

3.675 < x[i] <= 10.371                4203 

 

Method: 

Python library: pysal.esda.mapclassify 

Population of the classification: 49,953 (16,651 

polygons x 3 scenarios) 

Initial solution generation: 100 

Target class: 4 

 

Natural breaks of GHG footprint (kg CO2 Mg-1) 

 Lower            Upper                 Count 

=======================================

====== 

               x[i] <=  49.129                29956 

49.129 < x[i] <=  71.536                5306 

71.536 < x[i] <=  93.923                8102 

93.923 < x[i] <= 387.061                6589 

 

Natural breaks of N leaching footprint (kg N Mg-1) 

Lower            Upper                Count 

=======================================

==== 

             x[i] <=  2.031                28523 

2.031 < x[i] <=  4.858                8379 

4.858 < x[i] <=  8.888               11274 

8.888 < x[i] <= 45.754                1777 

 

Natural breaks of Water footprint (cm Mg-1)                

Lower            Upper                Count 

=======================================

==== 

              x[i] <=  3.154               15544 

 3.154 < x[i] <=  3.376               16518 

 3.376 < x[i] <=  3.662               12861 

 3.662 < x[i] <= 11.816                5030 

 

 

 

 

https://pypi.python.org/pypi/PySAL
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A.5.2 Optimum fertilizer and irrigation rates for “b” scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 

 

A.5.3 Distribution of EDS footprints for “b” scenarios. 
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A.5.4 Boxplots of EDS footprints. 

 

 

In general, average N leaching footprints tended to be lower for equal optimization of all 

indicators (scenario 1) or constrained optimization of NPP and water use (scenario 2a). Lower 

average water use footprints were obtained under unconstrained optimization of NPP and water 

use (scenario 2b) and constrained optimization of NPP and N leaching (scenario 3a), whereas 

lower average GHG footprints were achieved when optimizing for NPP and GHG emissions 

(scenarios 4a and 4b). 
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APPENDIX B 

B.1 Supply chain budgeting parameters. 

Item Unit 
Conventional 

tillage 

Reduced 

tillage 
No-till 

Fixed costs     

Pre-harvest machinery $ ha-1 224.8 184.2 115.6 

Seeds $ ha-1 281.1 281.1 281.1 

Other fertilizers and Lime $ ha-1 117.4 117.4 117.4 

Herbicide and Insecticide $ ha-1 46.2 47.8 67.7 

Non-Machinery labor $ ha-1 35.0 35.0 35.0 

Irrigation Fixed cost $ ha-1 228.7 228.7 228.7 

Miscellaneous $ ha-1 25.4 25.4 25.4 

Fix costs total $ ha-1 958.7 919.7 871.1 

     

Variable costs   

Fertilizers $ kg-1 1.27 

Irrigation Variable cost $ cm-1 1.31 

Corn Drying $ Mg-1 5.26 

Corn harvest cost $ Mg -1 11.73 

Corn insurance $ Mg -1 3.29 

Stover harvest cost $ Mg-1 15.43 

Stover storage cost $ Mg-1 16.46 

Interest on 1/2 non-land costs % 6.5% 

Land- cash rent equivalent % of total revenue 20% 

Corn hauling per mile $ Mg-1 mile-1 0.20 

Stover loading and unloading cost $ Mg-1 5.87 

Stover transport cost per mile $ Mg-1 mile-1 0.37 
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B.2 Energy use for farm operations. 

Machinery item 
Average diesel use  

(L ha-1) 

Energy* 

(Btu ha-1) 

Moldboard plowing (MP) 34.2 1,281,771 

Chisel plowing (CP) 12.0 448,901 

Planting for tilled system (PT) 6.9 259,920 

Planting for no-till system (PN) 9.8 368,204 

Fertilization (F) 8.0 301,957 

Herbicide and insecticide 

application for tilled system (HT) 
2.0 75,442 

Herbicide and insecticide 

application for no-till system (HN) 
4.0 150,885 

Grain harvest (G) 9.9 371,582 

Stover harvest (S) 9.0 337,802 

Total farm energy use   

Conventional tillage 70.0 2,628,475 

Reduced tillage 47.8 1,795,606 

No-till 40.8 1,530,431 

Note:  Conventional tillage = MP + PT + F + HT + G + S; Reduced tillage = CP + PT + F + HT + G + S; and No-till 

= PN + F + HN + G + S.  

*1 L diesel = 37,533.56 Btu 

 

B.3 Optimum management inputs for the corner solutions.  
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B.4 Footprints of production costs, GHG emissions, and N leaching. 

The average feedstock costs and GHG and N leaching footprints of a feedstock were calculated 

by dividing the corresponding objective value (i.e., production costs, GHG emissions, and N 

leaching) attributed to the production of that feedstock over the total amount of the feedstock 

used for ethanol production. The production costs, GHG emissions, and N leaching were 

attributed to corn grain and corn stover using process-level allocation method based on energy 

contents or market values.  The energy contents in terms of lower heating values (LHV) used for 

corn grain and corn stover in our study were 15.01 and 16.22 MBTU Mg-1, respectively. For 

market value allocation, we used a 10-year averaged U.S. corn grain price of $180 Mg-1 reported 

by Ycharts (https://ycharts.com/) for the period from 2007 to 2017 and an average stover price of 

$70 Mg-1 reported by Thompson and Tyner, (2011).  

 (a) Energy content allocation. 

 

 

 

 

https://ycharts.com/
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(b) Market value allocation. 

 

 

Legend 
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APPENDIX C 

C.1 Input variables used for metamodeling. 

Table C.1.1. Bounds and statistics of input variables. 

Input 
Management-specific 

input variable bounds 

Site-specific input variable statistics 

Min Max Median StdDev 

Fertilizer (kg N ha-1) [0, 300]     

Irrigation (cm year-1) [0, 70]     

Residue removal rate (%) [0, 90]     

Number of soil layer  5 14 13 1.22 

Bulk density (g cm-3)  1.21 1.85 1.42 0.13 

Sand (%)  5.7 96.0 47.7 24.4 

Silt (%)  2.0 70.3 29.0 17.6 

BAU’s soil organic carbon (Mg C ha-1)  7.6 48.9 22.3 6.2 

BAU’s soil nitrogen (Mg N ha-1)  0.9 11.2 3.0 1.4 

30-year-average precipitation (cm year-1)  24.2 38.0 33.4 3.8 

30-year-average maximum temperature (oC)  22.5 28.2 25.2 1.1 

30-year-average minimum temperature (oC)  11.1 14.6 11.9 0.8 

Note: Values between brackets are the minimum and maximum 

 

C.2 Calculation of objective and constraint metrics. 

Farm profits were calculated as the difference between the revenues from corn grain and corn 

stover and the corresponding farm production costs. To calculate revenues, we used a 10-year 

averaged U.S. corn grain price of $180 Mg-1 reported by Ycharts (https://ycharts.com/) for the 

period from 2007 to 2017 and an average stover price of $70 Mg-1 reported by (Thompson and 

Tyner, 2011). Farm production costs included tillage-based fixed costs and variable costs of N 

fertilization and irrigation, land rent, and feedstock-dependent costs for harvest, grain drying, 

storage, and handling. The costs were calculated based on the economic data obtained from 

different sources (e.g., (Thompson and Tyner, 2011; Vadas and Digman, 2013; Russell et al., 

https://ycharts.com/
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2016; Ibendahl et al., 2015) (Table C.2.1). All the monetary values acquired from the literature 

were adjusted for inflation to 2017 US dollars. 

The values of soil organic carbon (SOC) and nitrogen (N) leaching were taken as direct DayCent 

outputs while greenhouse gas (GHG) emissions were calculated from soil-related emissions and 

on-farm machinery emissions. Soil GHG emission estimates included modeled outputs from 

DayCent (annual values of net CO2 emission, CH4, N2O emission, NOx efflux, volatilized NH3, 

and N leaching) as well as additional models (e.g., for indirect N2O emissions) from the U.S. 

Department of Agriculture entity-scale greenhouse gas inventory guidelines (Eve et al. 2014).  

The on-farm machinery emissions were calculated using the Greenhouse Gases, Regulated 

Emissions, and Energy Use in Transportation Model (GREET) (UChicago Argonne, 2015) based 

on the avereage farm energy use for different tillage types in the region (Table C.2.2) and the 

GREET’s default emission factors (Table C.2.3). 

 

Table C.2.1. Economic parameters for farm production costs calculation 

 

Item Unit 
Conventional 

tillage 
No-till 

Fixed costs    

Pre-harvest machinery $ ha-1 224.8 115.6 

Seeds $ ha-1 281.1 281.1 

Other fertilizers and Lime $ ha-1 117.4 117.4 

Herbicide and Insecticide $ ha-1 46.2 67.7 

Non-Machinery labor $ ha-1 35.0 35.0 

Irrigation Fixed cost $ ha-1 228.7 228.7 

Miscellaneous $ ha-1 25.4 25.4 

Fix costs total $ ha-1 958.7 871.1 

    

Variable costs   

Fertilizers $ kg-1 1.27 

Irrigation Variable cost $ cm-1 1.31 
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Corn Drying $ Mg-1 5.26 

Corn harvest cost $ Mg -1 11.73 

Corn insurance $ Mg -1 3.29 

Stover harvest cost $ Mg-1 15.43 

Stover storage cost $ Mg-1 16.46 

Interest on 1/2 non-land costs % 6.5% 

Land-cash rent equivalent % of total revenue 20% 

 

 

Table C.2.2. Energy use for farm operations 

Machinery item 
Average diesel use  

(L ha-1) 

Energy* 

(Btu ha-1) 

Moldboard plowing (MP) 34.2 1,281,771 

Chisel plowing (CP) 12.0 448,901 

Planting for tilled system (PT) 6.9 259,920 

Planting for no-till system (PN) 9.8 368,204 

Fertilization (F) 8.0 301,957 

Herbicide and insecticide 

application for tilled system (HT) 
2.0 75,442 

Herbicide and insecticide 

application for no-till system (HN) 
4.0 150,885 

Grain harvest (G) 9.9 371,582 

Stover harvest (S) 9.0 337,802 

Total farm energy use   

Conventional tillage 70.0 2,628,475 

No-till 40.8 1,530,431 

Note:  Conventional tillage = MP + PT + F + HT + G + S; and No-till = PN + F + HN + G + S.  

*1 L diesel = 37,533.56 Btu 

The energy use for irrigation was 107,242 Btu cm-1,  calculated based on the method presented in 

(Martin et al., 2010) assuming an average pumping lift of 80-feet and a pump discharge pressure 

of 45 pounds per square inch. 

 

Table C.2.3. GREET’s emission factors for farm operation 

Emission source Unit Emission 

factor 

Farm energy g CO2e MJ-1 90 

N fertilizer g CO2e g-1 3.9 



197 

 

P fertilizer g CO2e g-1 1.5 

Herbicide g CO2e g-1 20 

Insecticide g CO2e g-1 23 

Storage and handling of stover g CO2e Mg-1 1167 

 

Table C.2.4. Extra farm management inputs 

Item Unit 
Conventional 

tillage 
No-till 

Phophorus application rate kg ha-1 76.21 76.21 

Herbicide g Mg-1 7 10.29 

Insecticide g Mg-1 0.06 0.09 
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C.3 Extra statistics of the MLP surrogate used in the optimization. 

Table C.3.1. Configuration of weights and biases of the Multilayer perception 

  Input Layer Output Layer 

H
id

d
e
n

 L
a

y
e

r 

Neu-

ron 

BAU's  

SOC 

Residue 

removal 

Fertilizer Irrigation 

BAU's 

 soil N 

Silt 

Max 

temp 

Soil  

layer 

Precip Sand 

Bulk  

density 

Min 

temp 

Bias SOC Stover Grain 

H1 -0.42 0.10 1.53 -0.33 0.72 -0.06 0.04 -0.07 -0.02 -0.09 -0.03 -0.06 2.32 0.96 -1.95 0.81 

H2 1.41 0.00 -0.74 0.76 -2.71 -0.64 0.00 0.14 0.08 -0.59 -0.05 0.07 -1.41 -0.71 -0.67 -1.65 

H3 -0.26 0.17 2.72 0.14 0.13 0.04 -0.12 0.07 0.06 0.12 0.02 -0.07 0.90 0.01 0.03 0.14 

H4 0.43 -0.16 0.12 -0.70 -0.33 1.58 -0.03 0.17 0.20 2.50 1.08 -0.13 -3.38 -0.42 -0.52 -0.66 

H5 0.64 -0.01 0.69 2.46 -1.10 0.16 -0.80 0.84 0.38 -0.56 0.20 0.03 -1.02 0.01 0.03 0.12 

H6 0.36 0.40 0.01 0.76 -0.29 -0.21 -0.06 0.16 0.05 -0.11 0.05 0.11 -1.20 -0.40 1.11 -0.11 

H7 0.68 0.06 -0.62 1.03 -1.23 -0.41 -0.20 0.00 0.21 -0.30 0.12 0.10 -0.74 1.02 0.35 1.63 

H8 -0.80 0.03 0.84 -1.04 0.96 0.35 0.22 0.01 -0.22 0.24 -0.27 -0.12 0.37 1.58 0.62 3.23 

H9 0.89 -0.05 0.33 -0.36 -0.60 -0.30 0.01 0.25 -0.16 -0.27 -0.42 0.00 -1.37 -0.14 -0.11 -0.59 

H10 0.00 -0.04 -0.01 -0.22 0.12 -0.05 0.00 0.11 -0.03 -0.09 0.15 0.19 0.23 0.63 1.72 2.50 

H11 -0.32 0.00 1.45 -1.25 0.68 0.23 0.31 -0.02 -0.20 0.17 -0.13 -0.10 0.12 -0.16 -0.57 -0.79 

H12 -0.03 0.00 -0.10 0.00 0.17 -0.15 0.07 -0.06 -0.11 -0.14 -0.04 0.18 0.08 -1.40 -1.45 -2.55 

H13 -0.33 -0.27 0.04 -0.98 0.01 0.34 0.18 -0.05 -0.16 0.14 -0.14 -0.16 -0.29 0.42 -0.76 0.32 

H14 -0.08 0.08 -0.08 0.23 0.02 -0.03 0.08 0.00 -0.11 0.09 -0.41 0.00 -0.18 1.47 1.35 2.62 

H15 -0.19 -0.02 -0.24 -0.23 0.85 0.16 -0.16 0.82 -0.08 0.56 -0.38 0.09 0.03 -0.04 -0.23 -0.41 

H16 -0.93 0.00 -0.21 -0.31 0.19 1.00 0.07 0.02 -0.17 0.53 -0.59 -0.19 0.53 -1.35 -0.77 -1.44 
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H17 -0.22 0.01 0.01 -0.05 -0.01 0.03 0.02 0.02 -0.01 0.06 -0.08 -0.05 -0.24 -3.63 -1.90 -1.91 

H18 -1.75 0.04 0.85 -0.74 2.58 0.70 0.00 -0.10 -0.13 0.62 -0.27 -0.11 1.01 -0.67 -0.75 -1.78 

H19 0.90 0.00 0.24 0.41 -0.25 -1.07 -0.11 -0.02 0.21 -0.58 0.56 0.21 -0.69 -1.21 -0.60 -1.25 

H20 -0.43 0.24 -0.18 -0.72 0.07 0.32 0.11 -0.14 -0.08 0.19 -0.15 -0.19 0.43 -0.09 1.12 -0.18 

H21 -0.72 0.18 0.97 -1.07 0.70 0.30 0.25 -0.02 -0.20 0.19 -0.25 -0.13 0.16 -0.45 0.77 -0.41 

H22 -0.41 -0.14 1.47 -0.36 0.70 0.02 0.04 -0.08 -0.02 -0.04 -0.07 -0.07 2.27 -0.42 3.07 0.53 

H23 -0.64 0.53 -0.01 0.10 0.07 -0.14 -0.02 -0.04 -0.06 -0.01 -0.11 -0.12 0.67 -0.17 0.31 -0.09 

H24 0.39 -0.05 -0.08 2.39 0.09 -0.59 -0.53 0.12 0.33 -0.44 0.36 0.26 1.21 0.05 0.04 0.60 

H25 0.15 -0.08 -1.65 0.35 -1.49 0.19 -0.04 0.09 0.02 0.25 0.14 0.01 -3.13 0.21 0.43 0.30 

Bias              -1.7 -2.03 -2.78 
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Fig. C.3.1. Regression plots and error histograms of the MLP surrogate model.
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C.4 Extra dependence plots of input variables of the MLP surrogate 

 

Fig. C.4.1. Dependence plot of the last eight input variables. The dependence plot quantified the 

ranges of MLP predicted outputs averaged across the entire landscape. The left y-axes were 

labeled with corn stover yield in Mg dry wt. biomass ha-1 (top in purple) and corn grain yield in 

Mg dry wt. mass ha-1 (bottom in green). 
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C.5 Exploratory analysis of root mean squared errors. 

 

Fig. C.5.1. RMSE of SOC plotted against different site-specific input variables. 

 

 

Fig. C.5.2. RMSE of corn stover plotted against different site-specific input variables. 
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Fig. C.5.3. RMSE of corn grain plotted against different site-specific input variables. 
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Table C.5.1. The SSURGO soil unit and their corresponding site-specific input variable related to higher RMSE of SOC, stover, and 

grain 

SSURGO soil 

map unit 
RMSESOC RMSEStover RMSEGrain # Soil lyr 

Bulk 

density 
Sand (%) Silt (%) BAU SOC BAU N Precip Max temp 

Min 

temp 

94371 2.4 1.0 1.5 13 1.24 15 36 34.3 8.1 24.7 27.2 13.4 

497580 2.1 0.6 1.4 13 1.24 22 28 41.0 10.0 26.4 25.3 11.4 

95480 1.9 1.0 1.0 13 1.28 23 33 31.6 6.7 24.5 26.3 13.9 

94904 1.7 0.7 0.7 14 1.5 26 54 21.9 3.0 34.1 28.2 13.7 

95205 1.7 0.7 0.6 13 1.21 6 46 46.1 11.2 26.4 25.3 11.4 

94371 1.7 0.8 1.2 13 1.24 15 36 34.3 8.1 25.3 27.2 13.4 

94371 1.7 0.7 1.0 13 1.24 15 36 33.9 8.0 24.2 27.6 13.6 

497593 1.7 0.4 1.0 13 1.33 31 33 29.9 7.7 26.4 25.3 11.4 

95483 1.5 0.3 0.8 13 1.79 72 23 8.3 2.9 24.2 27.6 13.6 

94777 1.5 0.5 0.9 13 1.54 56 27 20.2 2.5 35.5 24.9 11.6 

94391 1.5 0.6 1.1 9 1.25 23 29 33.1 7.0 25.3 27.2 13.4 

94777 1.5 0.6 0.8 13 1.54 56 27 19.8 2.4 35.4 24.8 11.9 

95206 1.5 0.5 0.8 13 1.21 6 46 42.0 8.5 26.4 25.3 11.4 

1585853 1.5 0.4 1.0 13 1.24 11 40 36.7 7.4 30.1 25.8 11.8 

94718 1.5 0.7 0.4 13 1.82 94 2 11.2 1.5 24.2 27.6 13.6 

94987 1.5 0.6 0.7 13 1.67 59 24 14.3 1.8 32.9 25.2 11.7 

94971 1.5 1.0 1.1 6 1.42 52 30 21.6 2.5 34.8 24.2 12.1 

497713 1.5 0.5 0.8 13 1.24 22 28 41.0 10.0 26.4 25.3 11.4 

94971 1.5 1.1 1.2 6 1.42 52 30 21.4 2.4 34.9 25.0 12.4 

94573 1.5 0.5 0.6 13 1.53 56 23 19.3 2.4 33.4 24.8 11.3 

95503 1.4 0.6 0.7 13 1.28 9 46 31.0 7.7 24.5 26.3 13.9 

95408 1.4 0.5 1.1 13 1.24 10 42 40.0 6.7 30.1 24.8 12.9 

94718 1.4 0.5 0.6 13 1.82 94 2 11.6 1.5 24.5 27.1 13.5 
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110441 1.4 0.7 1.0 13 1.33 26 31 28.3 4.5 29.0 24.4 11.4 

94775 1.4 1.0 1.0 13 1.66 65 21 18.1 2.2 35.5 24.9 11.6 

497725 1.4 0.6 0.9 13 1.33 31 32 29.6 7.2 26.4 25.3 11.4 

94234 1.4 0.8 0.9 13 1.46 81 11 18.7 2.6 26.6 27.0 13.8 

497724 1.4 0.5 0.8 13 1.33 31 32 29.6 7.2 26.4 25.3 11.4 

95222 1.3 0.4 0.4 13 1.33 44 27 29.6 5.5 26.4 25.3 11.4 

94842 1.3 1.0 1.0 14 1.33 61 18 25.4 3.9 32.1 28.1 13.7 

94716 1.3 0.6 1.3 13 1.24 27 27 34.4 8.1 24.2 27.6 13.6 

94904 1.3 0.7 0.8 14 1.5 26 54 21.8 3.0 34.5 28.0 14.2 

1537056 1.3 0.4 0.8 13 1.25 24 29 36.1 7.4 28.1 24.9 11.9 
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C.6 Constraints for the landscape optimization. 

 

 

Fig. C.6.1. Illustration of Feasible Value Ranges (FVR) and Constraint Improvement Regions 

(CIR) for different landscape constraint metrics. FVR defines the range between min and max 

values of a constraint metric. CIR defines the range between the base and max values for corn 

grain and SOC, or between the base and min values for irrigation water use. 

 

Table C.6.1. Constraint values used for different constraint scenarios  

Constraint scenario 
Corn grain 

(106 Mg dry wt. year-1) 

SOC 

(106 Mg C) 

Irrigation 

(109 m3) 

Symbols on  

Fig. 5.7 

Base 3.34 8.19 1.36  

Mean CIRgrain 3.39 
8.19 1.36 

 

Max CIRgrain 3.45 
 

Mean CIRSOC 
3.34 

9.17 
1.36 

 

Max CIRSOC 10.15 
 

Mean CIRirrigation 
3.34 8.19 

1.32  

Max CIRirrigation 1.29  

Note: The min, mean, and max CIR are scenarios where the subscripted constraint metric was 

improved to the min, mean, and max of its Constrain Improvement Region (CIR), respectively.  
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Table C.6.2. Average production constraints and optimization objectives of landscape trade-off Pareto frontiers 

Pareto 

trade-off 

Constraint 

scenario 

Production Constraints Optimization objectives Percentage 

of total 

area 

(%) 

Grain 
(×106 Mg 

year-1) 

Irrigation 
(×109 m3 

year-1) 

SOC 
(×106 Mg C 

year-1) 

Stover 
(×106 Mg 

biomass year-1) 

GHG 
(×104 Mg 

CO2e year-1) 

NL 
(×103 Mg N 

year-1) 

Profits 
(×$106 

year-1) 

 Max grain 3.45 1.39 9.91 1.08 38.8 14.2 87 100 

 Min irrigation 3.34 1.29 9.78 0.94 34.8 12.5 82 100 

 Max SOC 3.44 1.36 10.15 0.89 35.8 13.8 83 97 

S
to

v
er

 v
s.

 N
 

le
ac

h
in

g
 Base 3.35 1.33 8.66 1.86 48.9 13.0 98 99 

meanCIRgrain 3.39 1.35 8.94 1.74 47.5 13.4 97 100 

meanCIRirrigation 3.34 1.32 8.82 1.69 46.2 12.7 95 98 

meanCIRsoc 3.38 1.33 9.24 1.47 43.1 12.9 92 99 

G
H

G
 v

s.
 N

 

le
ac

h
in

g
 Base 3.34 1.30 9.86 0.87 33.8 12.4 81 97 

meanCIRgrain 3.39 1.32 9.99 0.89 34.7 12.9 83 99 

meanCIRirrigation 3.34 1.30 9.86 0.87 33.8 12.4 81 97 

meanCIRsoc 3.34 1.30 9.86 0.87 33.8 12.4 81 97 

S
to

v
er

 v
s.

 

G
H

G
 

Base 3.34 1.32 9.05 1.52 43.4 12.7 92 98 

meanCIRgrain 3.39 1.34 9.26 1.49 43.5 13.3 93 99 

meanCIRirrigation 3.34 1.31 9.17 1.41 41.7 12.6 90 98 

meanCIRsoc 3.35 1.31 9.45 1.23 39.1 12.6 88 98 

Note: The average of a Pareto frontier was computed from all solutions in that Pareto frontier. The Pareto trade-offs and constraint 

scenarios are corresponded to those in Fig. 5.7. Each column is colored based on its value range with white color being the min value. 

The min, mean, and max CIR are scenarios where the subscripted constraint metric was improved to the min, mean, and max of its 

Constrain Improvement Region (CIR), respectively. The bolded numbers are values of the varied constraint metrics. 
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C.7 Examples of county-level optimum stover removal rates.  

Table C.7.1. County-level optimum stover removal rates at different stover production targets for 

irrigated corn systems in Colorado 

Stover production  

(×106 Mg biomass year-1) 
0.83 0.96 1.60 2.35 

County name Stover removal rate (%) 

Yuma 37 42 63 82 

Weld 36 42 59 74 

Kit Carson 15 16 43 72 

Logan 24 26 66 77 

Morgan 37 47 59 78 

Phillips 26 27 53 82 

Baca 30 32 39 70 

Sedgwick 21 23 57 77 

Prowers 20 22 38 69 

Washington 27 31 60 77 

Cheyenne 21 21 33 71 

Otero 20 34 53 79 

Bent 20 22 29 57 

Pueblo 12 13 26 73 

Larimer 22 32 44 72 

Lincoln 13 14 47 62 

Adams 30 41 48 60 

Elbert 21 29 45 81 

Crowley 34 47 56 80 

Kiowa 28 28 30 53 

Arapahoe 17 20 25 49 

El Paso 33 34 68 74 

Las Animas 24 24 34 85 

Boulder 11 67 67 89 

Fremont 22 22 38 50 

Huerfano 23 28 45 67 

Note: The table is colored from blue to yellow to red based on its value range with blue color 

being the min value. 


