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ABSTRACT 

 

 

 

UNDERSTANDING AND QUANTIFYING THE UNCERTAINTIES IN SATELLITE WARM 

RAIN RETRIEVALS  

 

 

 Satellite-based oceanic precipitation estimates, particularly those derived from the Global 

Precipitation Measurement (GPM) satellite and CloudSat, suffer from significant disagreement 

over regions of the globe where warm rain processes are dominant. Part of the uncertainty stems 

from differing assumptions about drop size distributions (DSDs). Satellite radar-based retrieval 

algorithms rely on DSD assumptions that may be overly simplistic, while radiometers further 

struggle to distinguish cloud water from rain. The aim of this study is to quantify uncertainties 

related to DSD assumptions in satellite precipitation retrievals, contextualize these uncertainties 

by comparing them to the uncertainty caused by other important factors like nonuniform beam 

filling, surface clutter, and vertical variability, and to see if GPM and CloudSat warm rainfall 

estimates can be partially reconciled if a consistent DSD model is assumed. 

 Surface disdrometer data are used to examine the impact of DSD variability on the ability 

of three satellite architectures to accurately estimate warm rainfall rates. Two architectures are 

similar to existing instrument combinations on the GPM Core Observatory and CloudSat, while 

the third is a theoretical triple frequency radar/radiometer architecture. An optimal estimation 

algorithm is developed to retrieve rain rates from synthetic satellite measurements, and it is 

found that the assumed DSD shape can have a large impact on retrieved rain rate, with biases on 

the order of 100% in some cases. To compare these uncertainties against the effects of horizontal 

and vertical inhomogeneity, satellite measurements are also simulated using output from a high-
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resolution cloud resolving model. Finally, the optimal estimation algorithm is used to retrieve 

rain rates from near-coincident observations made by GPM and CloudSat. The algorithm 

retrieves more rain from the CloudSat observations than from the GPM observations, due in 

large part to GPM’s insensitivity to light rain. However, the results also suggest an important 

role for DSD assumptions in explaining the discrepancy. When DSD assumptions are made 

consistent between the two retrievals, the gap in total accumulation between GPM and CloudSat 

is reduced by about 25%. 
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 Motivation 

 Accurate global estimates of precipitation are crucial for properly understanding the 

Earth’s water and energy cycles and how the hydrologic cycle might respond to energy 

imbalances in the future (Andrews et al. 2009; Stephens et al. 2012; Rodell et al. 2015). While 

ground-based radar and gauge networks can provide good estimates over densely populated land 

areas, satellite estimates are necessary over the oceans (Kidd et al. 2017). Satellite missions such 

as the Tropical Rainfall Measurement Mission (TRMM; Kummerow et al. 2000), the Global 

Precipitation Measurment (GPM) mission (Skofronick-Jackson et al. 2017), and CloudSat 

(Stephens et al. 2002) have greatly improved our understanding of the nature and distribution of 

global precipitation, but challenges remain. The uncertainty in the global mean oceanic 

precipitation rate is on the order of 10% (Stephens et al. 2012), but the uncertainty is larger in 

areas of the world where light, warm rain is common (Berg et al. 2010; Andersson et al. 2011; 

Behrangi and Song 2020). This is especially true over the high latitude oceans, as can be seen in 

Figure 1.1. This figure plots zonally averaged oceanic precipitation for one year of data from the 

GPM Ku-band Precipitation Radar (PR), the CloudSat W-band Cloud Profiling Radar (CPR), 

two reanalysis products (ERA-Interim and MERRA2), the Global Precipitation Climatology 

Project dataset (GPCP; Adler et al. 2003), and the Climate Prediction Center Merged Analysis of 

Precipitation (CMAP; Xie and Arkin 1997). Estimates from GPM are much lower over the 

Southern Ocean than the other estimates, and even among the other sources there are large 

disagreements. 
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FIG. 1.1. Zonally-averaged mean oceanic surface precipitation rate for the period Sept. 2014 – 

Aug. 2015 for southern latitudes exceeding 35° South. Estimates come from the GPCP v2.3 

satellite-gauge merged product (black), the GPM Ku precipitation radar (red), the CMAP merged 

product (green), the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-

Interim reanalysis product (light blue), the Modern-Era Retrospective analysis for Research and 

Applications v2 (MERRA-2; dark blue), and CloudSat (purple). 

 

1.2 Limitations of Satellite Precipitation Estimates 

 There are a multitude of factors that contribute to satellite-based precipitation retrieval 

uncertainties, and thus play a role in the wide range of estimates seen in Figure 1.1. All 

atmospheric instruments have some measurement uncertainty, although this is far from the most 

important source of retrieval uncertainty when it comes to warm rain. Ground clutter effects can 
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cause spaceborne radars such as GPM’s DPR and CloudSat’s CPR to miss near-surface 

precipitation (Tanelli et al. 2008; Kidd et al. 2021), and GPM’s reflectivity threshold means that 

it cannot detect precipitation with intensities less than about 0.2 mm/h (Hou et al. 2014). 

Meanwhile, passive microwave (PMW) based approaches struggle to distinguish cloud water 

from rain water (Elsaesser et al. 2017; Greenwald et al. 2018). Radiometers also offer little in the 

way of vertical information and tend to have coarser horizontal resolution than active sensors. 

 There are also several sources of uncertainty that are common to both active (i.e., radar) 

and PMW retrievals. Both active and passive measurements are affected by nonuniform beam 

filling (NUBF) (eg., Nakamura 1991; Graves 1993; Durden et al. 1998). In addition, retrieval 

algorithms must make assumptions about the rain drop size distribution (DSD) that can have 

large effects on retrieved rainfall rates (Lebsock and L’Ecuyer 2011; Liao et al. 2014; Protat et 

al. 2019b). Even dual frequency approaches struggle when drops are small and in the Rayleigh 

regime (e.g., Seto et al. 2021). DSD shapes are far from the only thing that must be assumed in a 

precipitation retrieval algorithm, which is a notoriously under-constrained problem (e.g., 

Stephens and Kummerow 2007). Assumptions must also be made about the vertical structure of 

hydrometeors, cloud droplets, atmospheric temperature and water vapor profiles, surface 

characteristics, and more. 

 

1.3 Outline 

 This dissertation represents an attempt to quantify the effect of the different sources of 

retrieval uncertainty listed above, and to investigate their competing effects on different types of  

satellite measurements. This is done with an eye towards reconciling the divergent estimates of 

warm rain rates from current satellites. Understanding which combinations of satellite 
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measurements are most suspectable to these uncertainties is also important in designing future 

satellite precipitation missions. The dissertation consists of three papers that are either submitted 

or in preparation. Chapter 2 has a specific focus on DSD-related uncertainties. Disdrometer data 

collected from ships around the globe as well as an island site in the Azores are used to 

investigate how DSD assumptions contribute to retrieval uncertainties for three different 

theoretical satellite architectures. Chapter 3 continues this examination but makes use of cloud 

resolving model data to consider other important sources of uncertainty such as NUBF, ground 

clutter, and assumptions about vertical structure. Finally, in Chapter 4 coincident observations 

from GPM and CloudSat are studied. Retrievals are performed on observations from both 

satellites using a consistent algorithm in order to test whether differences in rain rates from 

operational algorithms can be reconciled. 
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CHAPTER 2: HOW ACCURATELY CAN WARM RAIN REALISTICALLY BE 

RETRIEVED WITH SATELLITE SENSORS? PART I: DSD UNCERTAINTIES 

 

 

 

2.1 Introduction  

Warm rain processes are an important part of the hydrologic cycle, especially over the 

oceans where aerosol concentrations tend to be low (Kubar et al. 2009). Observations from the 

CloudSat W-band satellite radar (Stephens et al. 2002) indicate that any given oceanic point may 

be beneath warm clouds between 10 and 50% of the time, with 20 to 40% of these clouds 

containing rain or drizzle at the lowest CloudSat range bin (Nuijens et al. 2017). The probability 

of precipitation is lower than this, due to evaporation below cloud base. For example, Yang et al. 

(2018) found drizzle in over 80% of marine stratocumulus cloud profiles at Graciosa Island, but 

precipitation reached the surface in only about 30% of the profiles. Nuijens et al. (2017) find that 

the greatest warm cloud fractions occur on the east side of the ocean basins as well as to a lesser 

extent over the Southern Ocean. Uncertainties in how the prevalence of low, warm clouds will 

change as the climate warms is one of the largest sources of uncertainty in global climate 

projections (e.g. Zelinka et al. 2020; Mülmenstädt et al. 2021), and several studies (Trenberth 

and Fasullo 2010; Bodas-Salcedo et al. 2014; Kay et al. 2016; Hyder et al. 2018) have noted that 

the Southern Ocean energy balance is poorly represented in global climate models. In this 

context, accurate present-day estimates of precipitation, cloud water, and cloud fraction from 

satellites are very important for evaluating and constraining weather and climate models. 

While the overall uncertainty in the global mean precipitation rate is on the order of 10% 

(Haynes et al. 2009; Stephens et al. 2012), the uncertainty is even greater near the poles (Adler et 

al. 2003; Andersson et al. 2011; Behrangi et al. 2016). One factor that likely contributes is 
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uncertain and simplistic assumptions about drop size distributions (DSDs) for rainfall retrieval 

methods. Many radar-based precipitation retrieval algorithms assume a fixed DSD 

parameterization with only one free parameter (e.g. Haynes et al. 2009), or else merely choose 

between two sets of fixed parameters based on whether the precipitation is judged to be 

convective or stratiform (Lebsock and L’Ecuyer 2011; Duncan et al. 2018). The GPM combined 

algorithm is more flexible, with two free parameters, but still prescribes a constant shape 

parameter (Grecu et al. 2016). In reality, drop sizes do not conform to arbitrary categories but 

rather exist on a spectrum. Meanwhile, radiometers are much more sensitive to the total water 

mass in the atmospheric column than the size of the drops, so cloud/rain partitioning is a major 

challenge (Elsaesser et al. 2017; Greenwald et al. 2018). 

Historically, the relationships prescribed in satellite precipitation algorithms have often 

been based on precipitation observations made over continents or in tropical locations. However, 

recent field campaigns have provided insightful observations at more diverse locations, including 

regions where warm rain processes are very important. The ObseRvations of Aerosols above 

Clouds and their intEractionS project (ORACLES; Redemann et al. 2021) involved many aircraft 

flights observing cloud structure and precipitation characteristics over the southeast Atlantic 

Ocean (Dzambo et al. 2019). Retrievals combining W-band radar reflectivities with polarimeter 

measurements were performed to jointly estimate cloud water path and rain water path, with 

cloud water path uncertainty on the order of 30% but with rain water path uncertainties 

frequently over 100% (Dzambo et al. 2021). The Cloud System and Evolution in the Trades 

campaign (CSET; Albrecht et al. 2019) included the deployment of a W-band airborne radar and 

a lidar to retrieve shallow cumulus cloud structures and precipitation. Sarkar et al. (2020) 

reported that rain drop distributions in CSET tended to shift towards larger drops sizes as the 
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boundary layer deepened, and Sarkar et al. (2021) found that cumulus rain rates retrieved from 

the combined radar/lidar observations tended to be lower than in-situ cloud probe measurements, 

in large part because the assumed raindrop size distribution was too narrow. In the Southern 

Ocean, a series of coordinated projects between 2016-2018 measured precipitation properties 

using in situ probes, radar, lidar, and other instruments (McFarquhar et al. 2021). 

There has also been much work to validate and improve the DSD relationships assumed 

in satellite precipitation algorithms. The version 06A GPM precipitation algorithms are 

documented extensively in Seto et al. (2021). An important difference compared to earlier 

algorithm versions is the use of a DSD constraint that relates the rain rate to the mean drop 

diameter (R-Dm relation). Liao et al. (2020) examined DSD data from several NASA field 

campaigns and arrived at a slightly different R-Dm relation. They found that deviation from the 

R-Dm relation was explained primarily by differences in the normalized intercept gamma 

parameter (NW). Shipboard observations from the Ocean Rainfall and Ice-phase Precipitation 

Measurement Network (OceanRAIN; Klepp et al. 2018) demonstrate significant latitudinal 

variability in oceanic rainfall properties, including the R-Dm relation (Protat et al. 2019a). 

Several studies have explored how DSD assumptions affect rain rates retrieved from 

ground-based radars (e.g. Lee and Zawadzki 2005, Adirosi et al. 2014, van de Beek et al. 2016). 

Fewer authors, however, have quantified the uncertainty in satellite precipitation products 

resulting from their assumptions about DSDs. Lebsock and L’Ecuyer (2011) showed that the 

assumption of a Marshall-Palmer DSD as opposed to a drizzle DSD increased the mean retrieved 

rain rate in the CloudSat 2C-RAIN-PROFILE algorithm by a factor of two, but tested no other 

DSD parameterizations. For the Global Precipitation Measurement Dual Precipitation Radar 

(GPM DPR), Liao et al. (2014) found that using a dual-wavelength technique is able to generally 
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keep estimates of retrieved rain rate within 10% of the true value, but only for rain rates greater 

than about 5 mm/h. More recent studies have reported mixed results. Protat et al. (2019b) 

speculate that high latitude rain rate retrievals from GPM could be significantly biased because 

of erroneous DSD assumptions, while Bringi et al. (2021) conclude that the current DSD 

assumptions “are not a major source of uncertainty” in the GPM combined algorithm.  

Our study is distinct from earlier efforts in that it comprehensively and quantitatively 

estimates the impact of DSD assumptions in satellite precipitation retrieval algorithms. In 

addition, rather than focus on one particular instrument, we study how the DSD-related retrieval 

uncertainties change for different theoretical satellite architectures. This is important, as future 

satellite precipitation missions will have to make choices about what types of instruments to 

include. We construct simulated satellite observations based on surface disdrometer 

measurements and develop an optimal estimation retrieval algorithm to retrieve DSD parameters 

using various combinations of satellite measurements (Section 2.3). We then investigate how 

retrieval errors are affected by sensor uncertainties and detection limits (Section 2.4.1), ancillary 

assumptions about the atmospheric profile (Section 2.4.2), and the limitations of mathematical 

models to adequately capture the variability seen in real-world DSDs (Section 2.5). These 

experiments offer insight into which assumptions made in precipitation retrieval algorithms are 

most consequential, what types of observations are the most important for reducing uncertainty, 

and how future satellite missions could be constructed to reduce uncertainties in the estimation of 

warm rain. 
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2.2 Data Sources and Models 

2.2.1 OceanRAIN 

The OceanRAIN project seeks to mitigate some of the challenges historically faced by in 

situ measurements of oceanic precipitation with the use of high-quality ODM470 optical 

disdrometers (Grossklaus et al. 1998) placed onboard research vessels operating in remote areas. 

The disdrometers are manufactured by Eigenbrodt GmbH & Co. KG in Königsmoor, Germany, 

and measure precipitation occurrence, intensity, accumulation, phase, DSD, and ancillary 

meteorological data at 1-minute intervals. The ODM470 is able to quickly and automatically 

adjust to changing wind conditions to keep the measuring volume perpendicular to the 

instantaneous wind direction. A detailed description of the instrument can be found in Klepp 

(2015). Disdrometer calibration is performed before and after shipboard operations and 

comparisons against a reference rain gauge (ANS410) in light wind conditions yield 

accumulation differences on the order of 2% (Klepp 2015). The ODM470 has been used in 

several studies to evaluate satellite data and reanalysis products (Klepp et al. 2010; Bumke et al. 

2016; Burdanowitz et al. 2018; Protat et al. 2019a). 

We utilize OceanRAIN-M V1.0 data in this study. Raw drop counts from a 1-minute 

collection period are converted into number concentrations, and particles are grouped into 128 

logarithmically-spaced bins ranging in size from 0.0375 mm to 22 mm. Bins 1-12 (up to 0.36 

mm) are set to number concentrations of zero in the OceanRAIN-M V1.0 files because these bins 

can be contaminated by vibrations from the ship (Klepp et al., 2018). We found that a significant 

number of observations (20-70%) also had zero values in size bins 13-17 (up to 0.54 mm), 

suggesting that the data from these bins is not fully reliable. Thus, we disregard these bins as 

well and only rain drops 0.55 mm in size or larger are included. Drizzle drops can be much 
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smaller than this size (Wood 2005), which is why we also run experiments on data from a 2DVD 

disdrometer that is more sensitive to small drops (see Section 2.2.2). For calculating base-case 

uncertainties where DSD representation errors are disregarded, we assume that the DSD can be 

perfectly described by a 3-parameter normalized gamma (NG) distribution of the following form 

(Testud et al., 2001): 

𝑁! = 𝑁"𝑓(𝜇) ' !
!!
(# exp	[−(4 + 𝜇) !

!!
],            (2.1) 

where  

𝑓(𝜇) = 	 $(&'#)"#$
&")(&'#)

.                   (2.2) 

𝑁! is the number concentration in m-3 mm-1 for drops of diameter 𝐷, 𝑁" is the normalized 

intercept parameter, 𝜇 is the “shape parameter,” 𝐷* is the mass spectrum mean diameter, and 

Γ() is the gamma function. The OceanRAIN-M V1.0 files contain values for 𝐷*, 𝑁", and 𝜇 for 

each raining DSD. These parameters are fitted to the binned observations using the technique 

outlined in Testud et al. (2001) and Bringi et al. (2002). To calculate the rain rate from a given 

DSD, one must assume a relationship between drop size and fall speed. The OceanRAIN dataset 

does this according to the parameterization given by Atlas and Ulbrich (1974). For consistency, 

we use this same parameterization to calculate all rain rates considered in this study.  

We use only observations marked as rain definite according to the OceanRAIN 

precipitation phase distinction algorithm (Burdanowitz et al. 2016), a regression method based 

on Koistinen and Saltikoff (1998) with the predictors of temperature, relative humidity, and 99th 

percentile of particle size distribution. We also screen to only include observations with 50 or 

more drops spread across at least 10 size bins. This results in a total of 69,677 raining minutes of 

data. Figure 2.1 shows the spatial distribution of the observations, indicating that many of the 
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observations occurred in previously under sampled areas including the Southern and Arctic 

Oceans. 

 

FIG. 2.1. Distribution of OceanRAIN DSD observations used in this study. On the left is the 

spatial distribution, gridded on a 3 degrees (longitude) by 1.5 degree (latitude) grid and colored 

according to the log10 of the number of 1-minute observations within each grid box. On the right 

is a 1-dimensional histogram with observations summed across each latitude band in 6 degree 

increments.  

 

2.2.2 ARM Eastern North Atlantic Disdrometer Data 

Because of the unreliable OceanRAIN data for drops smaller than 0.55 mm, we also 

make use of DSDs observed at the Atmospheric Radiation Measurement (ARM) Eastern North 

Atlantic (ENA) atmospheric observatory located on Graciosa Island in the Azores. Because the 

ENA site is located far from continental landmasses, we expect the observed DSDs to be 

characteristic of the oceanic DSDs that are of interest to this study. In addition, this region of the 

world is characterized by marine stratocumulus clouds, which are significant producers of warm 

rain (Mülmenstädt et al. 2015; Nuijens et al. 2017; Nelson and L’Ecuyer 2018). We use 1 year 

(Jan. 1 – Dec. 31, 2019) of data from the 2-dimensional video disdrometer (2DVD) located at the 

site, covering drop sizes ranging from 0.1 mm to 10 mm in diameter (Bartholomew 2020). 
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Giangrande et al. (2019) examined data from the same site and found that the 2DVD was better 

than the collocated PARS disdrometer for measuring light rain. As with the OceanRAIN data, 

the DSDs are averaged over a 1-minute observation window and we only use rain definite 

observations with more than 50 individual drops measured. 

2.2.3 Radiative Transfer Models 

 In our experiments, we simulate passive microwave (PMW) brightness temperatures 

(TB), radar reflectivities (Z), and radar two-way path-integrated attenuation (PIA). Simulated TB 

are computed using the MonoRTM radiative transfer model (Clough et al., 2005) in combination 

with the FASTEM6 sea surface emissivity model (Kazumori and English, 2015). For calculating 

the absorption and scattering of upwelling microwave radiation due to hydrometeors, spherical 

cloud and rain drops are assumed and Mie theory (Mie 1908) is used. Simulated Z and PIA come 

from the QuickBeam radar simulator (Haynes et al., 2007). For simplicity, and because of our 

focus on light rain rates, multiple scattering is ignored. Another important source of error in 

satellite retrievals is partial beam filling (eg. Graves 1993). This potential source of retrieval bias 

is ignored in our experiments, but has been studied by several other authors (eg. Durden et al. 

1998; Zhang et al. 2004; Hilburn and Wentz 2008; Tokay and Bashor 2010). An additional real-

world complication that is not addressed in this study is radar surface clutter. GPM radar returns 

below about 1000-1500 m (depending on swath position) have too much noise to accurately 

detect precipitation (Kidd et al. 2021), while CloudSat is blind to precipitation below about 750 

m above the surface (Tanelli et al. 2008). We have ignored these important sources of retrieval 

error in order to focus on DSD-related uncertainties. However, many of them will be addressed 

in Chapter 3 of this dissertation. 
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2.2.4 Ancillary Assumptions 

It is necessary to make many assumptions about the atmospheric column when simulating 

observations from the various satellite architectures. The atmospheric profiles of temperature, 

water vapor, and pressure are interpolated from the US Standard Atmosphere (Minzner 1977). 

We nominally choose a wind speed of 10.0 m/s, a sea surface salinity of 35 parts per thousand, 

and a sea surface temperature (SST) of 285 K. Our experiments are not especially sensitive to the 

choice of these profiles and surface values (assuming that corresponding changes are made to the 

assumptions in the retrieval algorithm). In real life, surface wind speeds and profiles of 

temperature and water vapor can be obtained from nearby or even coincident satellite soundings. 

We chose to use the same atmospheric profiles for each disdrometer observation in order to 

simplify the experimental methods and data sourcing required. We do, however, estimate the 

impact that uncertainties in these ancillary assumptions will have on final retrieved rain rates (see 

Section 2.4.2). We do this by perturbing the variables of temperature, water vapor mixing ratio, 

SST, surface wind speed, and cloud droplet column-averaged effective radius when simulating 

satellite observations. In creating the perturbations we sample from a normal distribution 

centered at zero with a standard deviation of 1.0 K for temperature (including SST), 3.0 m/s for 

surface wind speed, 2.0 𝜇m for cloud droplet effective radius, and 10% of the US Standard 

Atmosphere value at each vertical level for water vapor mixing ratio. 

 

2.3 Methods 

2.3.1 Simulation of Satellite Measurements 

 We consider 3 different theoretical satellite architectures in our experiments. The first 

(Satellite A) is similar to CloudSat, with a 94 GHz nadir-viewing radar that directly gives Z at 
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each range gate, and from which a PIA and a (noisy) TB can be derived (Lebsock and Suzuki 

2016; Mace et al. 2016). The second (Satellite B) is similar to the GPM core satellite, with a 

dual-frequency radar operating at 13.6 and 35.5 GHz (Ku and Ka-band, respectively) and a 

PMW radiometer operating at the same frequencies as the GPM Microwave Imager (GMI; Hou 

et al. 2014). We consider the radar and the radiometer to have the same footprint and to make 

simultaneous observations of the same spot, in order to compare the architectures on the basis of 

the information content that each type of measurement can provide, without introducing footprint 

differences. Finally, the third satellite, Satellite C, has a triple-frequency radar which combines 

the W-band frequency of Satellite A with the Ka and Ku-band frequencies of Satellite C. We 

assume that TB can also be estimated at each of these frequencies at the same footprint of the 

radar, with reduced noise compared to Satellite A. We also assume a heightened detection 

sensitivity of the radar compared to Satellites A and B. Satellite C is meant to represent what 

might be possible with the next generation of precipitation satellites, such as that proposed by 

NASA’s Aerosol, Cloud, Convection, and Precipitation (ACCP) study (NASEM 2018). See 

Tables 2.1 and 2.2 for a breakdown of the type of measurements simulated for each theoretical 

satellite architecture along with the assumed measurement uncertainties and sensitivities. For all 

radars, we assume a vertical resolution of 250 m, as this is the same vertical resolution obtained 

from GPM for matched Ku- and Ka-band footprints, and is very close to the Cloudsat vertical 

resolution of 240 m. 
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TABLE 2.1. Selected radar specifications for the 3 theoretical satellite architectures considered 

in this study. *The reflectivity uncertainty is just a minimum value as the true value also depends 

on the difference between the measured Z and the Z threshold (T), the radar integration time (I), 

and the radar pulse repetition frequency (F; 4.3/ms for all 3 satellites). The equation for the 

reflectivity uncertainty U is then given by 𝑈 =	5𝑁+ + 6&.-&-
√/∙1

[1.0 + 102.3(456)]:+. 

 Radar 

Frequency 

(GHz) 

PIA 

Uncertainty 

(dBZ) 

Z Baseline 

Uncertainty* 

(dBZ) 

Z Threshold 

(dBZ) 

Radar 

Integration 

Time (ms) 

Satellite A 

(Similar to 

CloudSat) 
94.0 1.25 1.0 -30.0 160.0 

Satellite B 

(Similar to 

GPM) 

13.6 1.25 1.0 12.0 29.0 

35.5 1.25 1.0 12.0 42.0 

Satellite C 

(Triple-

Frequency) 

13.6 1.25 1.0 0.0 29.0 

35.5 1.25 1.0 0.0 42.0 

94.0 1.25 1.0 -50.0 160.0 

 

TABLE 2.2. Passive microwave frequencies and measurement uncertainties for the 3 theoretical 

satellite architectures considered in this study. 

 TB Frequencies (GHz) NEDT (K) 

Satellite A 94.0 4.0 

Satellite B 
10.6, 18.7, 23, 37, 

89, 166, 183±3, 183±7 

0.77, 0.6, 0.51, 0.41, 

0.31, 0.65, 0.56, 0.47 

Satellite C 13.6, 35.5, 94.0 1.0, 1.0, 1.0 

 

Since the DSD measurements contain information only at the surface it is necessary to 

artificially create vertical structure above. We assume that the raining column extends uniformly 

from the surface to a height of 1 km, and that cloud water is present from 500 m to 2000 m. The 

amount of cloud water in each vertical level is assumed to increase linearly, as would be 

expected if the cloud droplets were growing adiabatically as they ascended through a layer of 

saturated air (e.g. Miller et al. 2016). For the size of the cloud droplets, we assume an inverse 

exponential size distribution at each level: 

𝑛(𝑑) = 	𝑛2𝑒578.             (2.3) 
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Here 𝑛2 is the intercept parameter and λ is the slope parameter, which can be related to the 

effective radius 𝑟9 by 

𝜆 = -
+:%

.              (2.4) 

We construct the cloud water distribution such that 𝑛2 stays the same throughout the cloud, but 

that 𝑟9 increases toward cloud top, with the additional constraint that the average 𝑟9 for the whole 

cloud is 11 µm. A coordinated intercomparison of satellite cloud data records (Stubenrauch et al. 

2013) found a consistent peak in cloud droplet effective radius at this value, and it is also broadly 

in line with other studies such as Witte et al. (2018) and Sinclair et al. (2021). Figure 2.2 shows 

qualitatively what the vertical profile of cloud and rain looks like. The scenario is highly 

idealized but serves our purposes of evaluating DSD-related retrieval uncertainties. 

 

FIG. 2.2. Schematic of the cloud and rain profiles used in our experiments. The axes of the left 

qualitatively show the vertical profiles of relevant cloud DSD parameters (top; green) and rain 

DSD parameters (bottom; blue). 
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2.3.2 Optimal Estimation Retrieval Algorithm 

From the simulated satellite observations, we use an optimal estimation (OE) retrieval algorithm 

to try to retrieve the cloud liquid water path and the DSD parameters necessary to calculate the 

cloud base rain rate (RR). The method is based on Bayes’ Theorem, 

    𝑃(𝒙|𝒚) = ;<𝒚=𝒙>;(𝒙)
;(𝒚)

 ,      (2.5) 

where 𝐲 is the measurement vector containing all of the observations being considered and 𝐱 is 

the state vector consisting of the hydrometeor properties being retrieved.  

 According to Equation 2.5, in order to find the value of 𝐱 for which the posterior 

probability 𝑃(𝒙|𝒚) is maximized, one should search for the state vector that maximizes the 

product of the a priori probability of that state, 𝑃(𝒙), with the probability of measuring the set of 

observations 𝒚 if 𝒙 was indeed the proper state vector, 𝑃(𝒚|𝒙). As demonstrated by Rodgers 

(2000), if one assumes Gaussian errors, maximizing 𝑃(𝒙|𝒚) is equivalent to minimizing the 

following cost function,	Φ: 

Φ = (𝐱 − 𝐱𝐚)B𝐒𝐚53(𝐱 − 𝐱𝐚) + [𝐲 − 𝒇(𝐱, 𝐛)]B𝐒𝐲53[𝐲 − 𝒇(𝐱, 𝐛)].   (2.6) 

Here 𝒇 is a forward model based on radiative transfer theory that is able to simulate all of the 

observations that make up the observation vector. The vector	𝒃 contains additional ancillary 

information, besides those parameters that make up 𝒙 and are directly solved for, that is required 

by the forward model to simulate the full observation vector.  

The first term of the cost function weights departures of a potential state vector 𝐱 from 

the a priori state vector 𝐱𝐚 by the assumed errors in the a priori state, as described by the a priori 

covariance matrix 𝐒𝐚. Similarly, the second term weights the difference between observations 𝐲 

and forward model output 𝒇(𝐱, 𝐛) by a second error covariance matrix, the 𝐒𝐲 matrix, which 

describes the uncertainties in both the observations and the forward model. Using the Gauss-
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Newton method, we iteratively solve for the value of 𝒙 at which the gradient of the cost function, 

∇DΦ, is equal to zero. For more background on the OE algorithm, see Schulte and Kummerow 

(2019) and Schulte et al. (2020), as the algorithm is based on the same mathematical and 

radiative transfer backbone as the PMW inversion algorithm (CSU 1DVAR) used in those 

studies. This algorithm differs from the CSU 1DVAR in that in retrieves a different set of 

parameters and is built to incorporate radar observations (both Z and PIA) into the observation 

vector in addition to TB.  

The state vector contains 4 parameters: the vertically integrated cloud liquid water path 

(CLWP), the rain water content (RWC) of the DSD, the mass-weighted mean diameter (Dm) of 

the DSD, and the normalized gamma shape parameter (𝜇) of the DSD. CLWP, RWC, and Dm are 

retrieved in logarithmic space because their underlying distributions are not normally distributed, 

but are much closer to a lognormal distribution. RWC, Dm, and 𝜇 are all functions of height in 

reality, but we assume that they are constant throughout the raining column and so can be 

thought of as column averages. The size of the observation vector depends on the satellite 

architecture used as well as the atmospheric profile being considered. It is equal to the number of 

PMW channels in the architecture, plus the number of PIA frequencies, plus the number of valid 

radar observations. A valid radar observation, for these purposes, is one for which the reflectivity 

exceeds the minimum detectable signal for that satellite and radar frequency. 

 The forward model 𝒇(𝐱, 𝐛) uses the same radiative transfer models (i.e., QuickBeam and 

MonoRTM, introduced in Section 2.2.3) that are used for creating simulated satellite 

observations. Because the OE forward model is based on the same code, note that the forward 

model errors are underestimated compared to what would be expected in real-world retrievals. 
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Eliminating this forward model error allows us to isolate other sources of error, such as DSD 

representation error, that are the focus of our study. 

2.3.3 Error Covariance Matrices 

 The 𝐒𝐚 and 𝐒𝐲 matrices are constructed based on the statistics of the related error 

distributions. For example, when using the OceanRAIN disdrometer data, the 𝐒𝐚 matrix contains 

the variance of log10(LWP), log10(RWC), log10(Dm), and 𝜇 found in the OceanRAIN dataset on 

the diagonal, and the covariances between the OceanRAIN parameters make up the off-diagonal 

elements. The 𝐒𝐲 matrix is meant to account for both forward model and sensor uncertainties, 

though in most cases the forward model uncertainty dominates. The forward model uncertainties 

are estimated by comparing the simulated observations produced by the simplified forward 

model against simulations where the various assumptions of the forward model are relaxed (in 

the real world, one could compare against true observations). Then the sensor uncertainties are 

added to create the full 𝐒𝐲 matrix. See Schulte and Kummerow (2019) for more details about the 

construction of covariance matrices. 

 One disadvantage of an OE algorithm is that, even if there were no observation or 

forward model uncertainties, the algorithm would only be guaranteed to converge to the proper 

solution if the problem were linear. Precipitation retrievals are known to be not entirely linear 

(e.g. Stephens and Kummerow 2007). Other retrieval techniques exist that are less subject to 

nonlinearities, such as neural network based algorithms (Beusch et al. 2018; Tang et al. 2018; 

Chen et al. 2019) or Markov Chain Monte Carlo (MCMC) approaches (Posselt et al., 2017; Xu et 

al. 2019). Still, the OE approach provides several benefits. The algorithm is based on physical 

radiative transfer models rather than statistical correlations, retrieval performance can be 

compared across different satellite architectures in a consistent and simple fashion, and the 
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method provides a posteriori error estimates that can be traced directly to the underlying 

uncertainties and the physics of the problem.  In most cases, as explored further in Section 2.4, 

the fundamental uncertainties due to the nonlinearities of rainfall retrieval are much smaller than 

the retrieval errors that result from the other sources of uncertainty that we consider.  

 

2.4 Base Case Uncertainties 

2.4.1 Uncertainties Due to Sensor Noise, Detection Limits, and Nonlinearities 

 In this first experiment, we quantify how sensor limitations affect retrieval errors and 

uncertainties. We use the OceanRAIN NG-fitted DSDs to create simulated satellite observations. 

Because the disdrometer observations do not tell us anything about how much cloud water is in 

the column, we nominally set the column-integrated CLWP so that it is equal to twice the 

column-integrated rain water path (note that the OE algorithm is unaware of this assumed 

relationship and is free to converge to any CLWP value regardless of RWP). Random Guassian 

noise is added to the synthetic observations to simulate the physical limitations of the satellite 

instruments, using the measurement uncertainty values given in Tables 2.1 and 2.2. Then, after 

adding the measurement noise, if a certain radar measurement has a value below the detection 

limits given in Table 2.1, the measurement is set to have no radar echo. This has the effect of 

getting rid of about 6% of cloud-only radar observations for Satellite A, all of the cloud-only and 

about 8% of the rain observations for Satellite B, and reducing Satellite C to only a single (W-

band) frequency for cloud-only observations. The algorithm then retrieves the four elements of 

the state vector, from which the RR is calculated.  

 Figures 2.3-2.5 shows the results of this experiment. Starting with Satellite A, we see that 

even with only W-band observations, the CLWP is well constrained. The retrieval error is quite 
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close to 0% throughout the whole range of CLWP, with an overall retrieval bias (defined as the 

median retrieval error) of 1.2% and an interquartile range (IQR) of errors of 18.2%. The IQR is 

the difference between the 25th percentile and 75th percentile errors. On the other hand, the rain 

water path (RWP) is biased low (-11.0%) and the column-averaged RR also biased slightly low 

(-1.6%), although the RR bias mostly comes from the higher rain rate cases. Both parameters 

show considerable spread. Unsurprisingly, given that it has only a single radar frequency, 

Satellite A shows little skill in retrieving Dm. The retrieved Dm values are clustered quite closely 

around the a priori value (represented by the red dotted line), resulting in overestimation at low 

Dm and underestimation at high Dm. 

 

FIG. 2.3. Density plots of retrieved error in CLWP, RWP, column-averaged RR, and column-

averaged Dm compared to the true value that was used to make the underlying simulated satellite 

observations, for Satellite Architecture A. This experiment considers only sensor noise and 

detection limits as a source of uncertainty. The red dashed line shows the error in Dm that would 

be incurred if the a priori assumption was used. 
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FIG. 2.4. As in Figure 2.3, but for Satellite B. 

 

FIG. 2.5. As in Figure 2.3, but for Satellite C. 
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Satellite B demonstrates more skill at retrieving Dm, and to a lesser extent RWP and RR. 

However, CLWP is not well constrained, with a bias of -4.8% and an IQR of 53.2%. Since cloud 

drops as well as small rain drops fall below the radar detection limits, the architecture struggles 

to differentiate cloud drops from drizzle drops. This underscores the importance of the W-band 

radar for cloud/rain partitioning. Satellite C, on the other hand, does a remarkably good job of 

constraining all of the retrieved quantities of interest. There is less bias in the retrieved CLWC, 

RWP, and RR, and the IQRs are relatively small at 13.2%, 16.6%, and 11.2%, respectively. 

We also ran an experiment in which we input simulated satellite observations directly 

into the retrieval algorithm, without adding sensor noise or detection limits. Thus the only 

limitations faced by the retrieval in this case were the fundamental nonlinearities of the inversion 

problem. The IQRs from these experiments can be seen in Figure 2.6. From these results it is 

clear that the nonlinearities of the problem should not be a major concern, except perhaps for the 

case of retrieving RR and RWP from Satellite A, for which there is a slight negative bias in the 

retrieved values. 

2.4.2 Ancillary Assumption Uncertainties 

In another experiment, we add random noise (see Section 2.2.4 for details) to the 

atmospheric profiles before simulating satellite observations, in order to estimate the uncertainty 

that is introduced into real-world satellite precipitation retrievals by ancillary assumptions. Once 

the satellite observations have been simulated, we add measurement noise, eliminate 

observations below detection limits, and run the OE algorithm with our original assumptions 

about the atmospheric profile intact. The main effect of introducing these uncertainties is, as 

expected, an increase in the IQR of retrieval errors for all satellite architectures. This increase is 

perhaps most pronounced for the retrieval of CLWP from Satellite B, for which the IQR 
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increases from 53.2% to 80.2%. Most of this architecture’s CLWP information comes from TB, 

so errors in the assumed temperature and water vapor profiles cause TB differences that translate 

into increased retrieved CLWP errors. Otherwise, the error biases in this experiment stay close to 

zero, but with a modestly larger spread for most parameters of interest. 

 

FIG. 2.6. Each bar shows the interquartile range, i.e. the 25th, 50th, and 75th percentile of retrieval 

errors, in either CLWP (top), RWP (middle), or column-averaged RR (bottom), for a given 

experiment and satellite architecture. The satellite is indicated by the letter on the x-axis. The 

experiment being considered is indicated by the color of the bars. The blue bars are for 

fundamental nonlinearities only, the red bars add sensor uncertainties and detection limits, and 

the yellow bars add uncertainties in the ancillary assumptions. The purple bars are for the 

experiments with binned OceanRAIN DSDs and the green bars the experiments with binned 

ARM DSDs. 
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2.5 DSD-related Uncertainties 

2.5.1 Experiments with Binned DSDs 

 In these next series of experiments, we explore how DSD assumptions affect retrieval 

uncertainties and biases. First, we simulate satellite observations using the raw drop 

concentrations for each size bin, instead of using the fitted NG DSD parameters from 

OceanRAIN. As discussed in the Data section, we use only rain drops larger than 0.55 mm in 

diameter. As in the base case, we add sensor noise and eliminate observations below detection 

limits, and then use these simulated satellite observations to retrieve the cloud and rain 

parameters, assuming a 3-parameter NG rain DSD. To be consistent, we adjust the forward 

model in the OE algorithm so that it also ignores rain drops smaller than 0.55 mm in size. The 

resulting spread of retrieval errors can be seen in Figure 2.6. Compared to the base case, the 

spread is slightly larger but not by much. This indicates that the NG model can capture the real-

world variability of drop spectra (at least on the larger end of the size range) and is appropriate 

for use in retrieval algorithms, confirming the findings of previous studies (e.g., Testud et al. 

2001, Bringi et al. 2002, Adirosi et al. 2014). Most of the biases are near-zero, with the exception 

being a slight underestimation of RWP and RR for Satellite A, which is also present in the base 

case experiment. Since Satellite A only has W-band observations, and W-band Z tend to saturate 

at moderate rain rates, it would make sense that this architecture could underestimate rain in 

heavier precipitation. 

 To investigate the effect of including smaller drops from 0.1-0.55 mm, we repeat the 

same experiment but use binned DSDs from the ARM ENA site instead of OceanRAIN 

observations. These observations differ from the OceanRAIN observations not only because of 

their inclusion of small drops but also because the frequency of occurrence of very light rain and 
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drizzle is much larger in this dataset compared to the OceanRAIN dataset, as can be seen in 

Figure 2.7. This is consistent with the findings of Giangrande et al. (2019) that the ENA site 

receives a significant portion of its precipitation from marine low clouds and that median 

raindrop sizes at the site are smaller than what is typically seen at other locations around the 

globe. The resulting retrieval errors are larger using the ARM DSDs than the OceanRAIN DSDs, 

especially for RWP and RR (refer again to Figure 2.6). There is also a bit of a retrieval bias. 

While the retrieved RWP is biased only moderately high, the retrieved RR is biased 11.6% to 

36.3% high, depending on the satellite. Thus, while the assumption of a NG DSD works well for 

the retrieval of light to moderate rain from OceanRAIN, it might not be as appropriate for the 

retrieval of drizzle rates. Others have found that the generalized gamma model (Thurai et al. 

2018), which includes a second shape parameter, can more accurately represent the drizzle mode 

of the DSD, although retrieval gains would only be realized if satellite measurements were able 

to accurately detect changes to this parameter. 

 

FIG. 7. Histograms showing the RWC, RR, and Dm distributions for the OceanRAIN and ARM 

East North Atlantic disdrometer datasets. 
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2.5.2 Impacts of Assuming Alternative DSD models 

 The three free parameters of the normalized gamma DSD model allow for most realistic 

DSDs to be reasonably fit by a NG distribution. Most precipitation retrieval algorithms, however, 

do not retrieve 3 DSD parameters. If only one or two radar frequencies are employed, there is a 

reasonable argument to be made that one should only retrieve one or two DSD parameters, as 

otherwise the inversion could be under constrained. Still, using a DSD with fewer free 

parameters will make it harder for the forward model used in the retrieval to mimic the true 

underlying DSD, leading to greater uncertainty in retrieved rain rates. In this section we attempt 

to quantify the uncertainties and biases resulting from assuming 3 alternative DSD models in our 

OE algorithm instead of a 3-parameter NG.  

 The first model we test is a 2-parameter NG model, where we retrieve column-averaged 

RWC and Dm as before but the shape parameter 𝜇 is constrained to always be equal to 3, as in the 

GPM dual-frequency radar precipitation retrieval (Seto and Iguchi 2015). We also test two 

single-parameter models, where we only retrieve column-averaged RWC. The assumptions made 

in the models are then enough to uniquely determine the full drop size spectrum. The first model 

is that of Marshall and Palmer (1948), which was based on raindrop records on dyed filter papers 

from Ottawa, Canada. We use this model as a reference because it is well-known and was used 

in early formulations of the CloudSat 2C-RAIN-PROFILE algorithm (Lebsock and L’Ecuyer 

2011). We also test the model of Abel and Boutle (2012), which is currently used by the 2C-

RAIN-PROFILE algorithm (Lebsock 2018). Both the Marshall-Palmer (MP) and Abel and 

Boutle (AB) models are based on inverse exponential distributions, but differ in how the shape of 

the distribution is related to the overall RWC of the DSD. In the AB model, the intercept 

parameter is related to the slope parameter by the equation  
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𝑁2 = 𝑥3𝜆E&,       (2.7) 

where 𝑥3 is set to 0.22 and 𝑥+ = 2.2. The slope parameter 𝜆 is determined from the rain mass 

mixing ratio 𝑞F by the equation 

𝜆 = 'GH'E(
H)*+I,

(
(

"-.&,        (2.8) 

where 𝜌" and 𝜌JK: are the densities of water and the air parcels, respectively. In the AB model, 

DSDs with a high RWC have a lower intercept parameter (fewer very small drops) than those 

with low RWCs, making up this difference with even more large drops. Under MP assumptions, 

all DSDs have the same intercept parameter (i.e., similar numbers of very small drops), but those 

with a larger RWC have more large drops. 

 We repeat the OceanRAIN binned DSD experiment, but this time assuming these 

different DSDs models in the OE forward model. Figure 2.8 shows the effect that assuming each 

of these simplified DSDs has on retrieval errors. Compared to the control run assuming a 3-

parameter NG, holding 𝜇 fixed doesn’t increase the retrieval uncertainties very much. There is, 

however, a slight tendency to substitute cloud water for rain water, with a high bias in retrieved 

CLWP and a low bias in retrieved RWP (for Satellites A and B). The retrieved rain rate, on the 

other hand, doesn’t show much of a bias for any of the satellite architectures. Both single-

parameter DSD models (in the yellow and purple) yield considerably more retrieval uncertainty 

than the 2 or 3-parameter NG models. In addition, they also lead to a positive bias in retrieved 

RWP and RR, no matter which satellite architecture is considered. This is especially true for the 

AB model, for which the retrieved RWP is biased high by between 17-47% (depending on 

satellite architecture), and the retrieved RR biased high by between 16-33%. Figures 2.9 and 2.10 

show the full retrieval error densities for Satellite C assuming either the 3-parameter NG model 

(Fig. 2.9) or the AB model (Fig. 2.10). Comparing the two figures, it is even more evident that 
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the AB model assumption results in an overestimation of retrieved RWP and RR, especially at 

rain rates less than about 5 mm/h. Meanwhile, the CLWP is consistently biased high and Dm 

consistently biased low.  

 

FIG. 2.8.  IQR of retrieval errors for a given satellite architecture, using a forward model in the 

OE algorithm that assumes either a 3-parameter NG DSD (blue), a 2-parameter NG distribution 

(red), a Marshall-Palmer distribution (yellow), or an Abel & Boutle distribution (purple).  
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FIG. 2.9. As in Figure 2.5, but using OceanRAIN binned DSDs to simulate observations and 

assuming a 3-parameter normalized gamma DSD model in the OE. 

 

 

FIG. 2.10. As in Figure 2.5, but using OceanRAIN binned DSDs to simulate observations and 

assuming the 1-parameter normalized DSD model of Abel and Boutle (2012) in the OE 

algorithm. 
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To test the robustness of these results, we performed the same set of experiments using 

the ENA binned DSDs to simulate satellite observations. In this case the errors seen in the 

OceanRAIN experiment are magnified even more, as shown in Figure 2.11. RR biases are 

around 50% for MP and close to 100% for AB. From these results, it is clear that the DSD 

assumed in a retrieval algorithm can have a very large impact on retrieved RR.  Notably, the AB 

DSD doesn’t seem very appropriate for cases of light rain, which dominate the ARM ENA 

dataset. This could partially explain why CloudSat tends to retrieve more rain over the high 

latitudes than GPM (Behrangi and Song 2020). In both the OceanRAIN and ENA experiments, 

we find that assuming the AB (CloudSat) DSD compared to the 2-parameter NG (GPM) DSD 

leads to retrieved RRs that are about 25-50% higher. 

 

FIG 2.11. As in Figure 2.8, but using ARM ENA disdrometer data for the underlying rain drop 

distributions instead of OceanRAIN.  
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We believe this overestimation from the AB and MP models stems in part from the fact 

that the MP and AB models assume size spectrums that are too heavily concentrated towards 

small drops. Figure 2.12 plots the relationship between RR and Dm in the OceanRAIN and ARM 

datasets, along with the curves that result from the AB and MP models. For reference, we also 

include RR-Dm curves reported by Protat et al. (2019a), Liao et al. (2020), and Seto et al. (2021). 

Both the AB and MP models predict a much higher RR for a given Dm than what is observed in 

either disdrometer dataset or predicted by the other models, indicating a higher overall RWC. Z 

values are most strongly affected by the largest drops in a given rain volume, because in the 

Rayleigh regime reflectivity scales as D6. If the OE algorithm is assuming one of these models, 

the implication is that, in order to create forward modeled reflectivities that match what has been 

observed (i.e. have a similar Dm), the OE must assume a much higher overall RWC. This effect 

is so large that it translates into a higher RR, despite the partially compensating effect that small 

drops fall more slowly than large ones. 
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FIG. 2.12. Frequency distributions of OceanRAIN (top) and ARM (bottom) DSD observations 

according to their rain rate (y-axis) and mass-weighted mean drop diameter (x-axis). The dotted 

curves show the R-Dm relationships reported by several different studies (cited in the text). 
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2.6 Conclusions 

 There are clearly many challenges and uncertainties to deal with in retrieving 

precipitation from a satellite platform, including important ones that we have not dealt with in 

this study, such as surface clutter, frozen hydrometeors, field of view heterogeneities, and 

vertical structures that can differ substantially from the idealized scenario assumed in this study. 

Many of these uncertainties will be quantified in Chapter 3 of this dissertation. It is also likely 

that our use of a priori data biases the retrieval results towards the correct answer, so the 

uncertainties we calculate should be thought of as very much best-case values. Our results 

nevertheless offer important insight into the significance of DSD uncertainty when it comes to 

retrieving rain.  

 One common thread running through all of our experiments is the importance of W-band 

observations for differentiating cloud water from rain water. For satellite architectures A and C, 

both of which include 94 GHz radars, CLWP is generally the easiest of the retrieved variables to 

constrain, but CLWP uncertainties increase greatly for satellite B, which has a tendency to 

substitute rain water for cloud water and vice versa. This is because both cloud droplets and 

drizzle drops tend to have reflectivities below the Ka/Ku detection limit of 12 dBZ. It is thus 

very important that future satellite missions include W-band radar observations. Of the other 

retrieved variables, the DSD shape parameter 𝜇 is the hardest to retrieve accurately, followed by 

the volume weighted mean diameter Dm. For the purposes of deriving rain rate, Dm is much more 

consequential. 

 Fundamental nonlinearities set a lower limit on the retrieval uncertainties one can expect 

from an optimal estimation based retrieval. For satellites B and C, these pale in comparison to 

the other uncertainties considered in this study, while for satellite A, which only has one radar 
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frequency, the nonlinear nature of the inversion problem presents more of a challenge. Adding 

sensor noise and detection limits increases the retrieval uncertainty but does not lead to a 

retrieval bias. We see a similar affect when we consider uncertainties in the ancillary 

assumptions about the surface and atmospheric profile that the retrieval must make in order to 

simulate satellite observations.  

Our assumption of a 3-parameter NG DSD works well for the OceanRAIN disdrometer 

data. However, DSDs from the ARM ENA disdrometer are not as well represented, and the NG 

assumption leads to a positive bias in retrieved rain rate as the retrieval algorithm tends to 

assume the drops are larger than they actually are. Even larger biases result when single moment 

DSD parameterizations are assumed in the retrieval algorithm, including positive biases near 

100% for retrieving rain rate from the ENA disdrometer data. Compared to the two parameter 

NG DSD (used by some GPM algorithms), the single parameter AB model (used by the 

CloudSat 2C-RAIN-PROFILE algorithm) retrieves rain rates that are 25-50% higher, depending 

on satellite architecture. Even between the two simple DSD models we consider, large 

differences in retrieval biases exist. These experiments clearly show that DSD assumptions have 

a large impact on satellite precipitation retrievals.  

Our results are focused on warm rain uncertainties, in that our simulated satellite 

observations include only liquid hydrometeors. We would expect retrieval uncertainties for more 

complicated precipitation types to be larger due to additional nonlinearities and the difficulty in 

accurately modeling ice particle shapes in a forward model. An important caveat is that we 

cannot guarantee that the OceanRAIN and ARM surface observations used in this study resulted 

from warm-rain-only precipitation processes. While ARM ENA observations come 

predominantly from low marine clouds (Giangrande et al. 2019), we have not attempted to 



 36 

exclude DSDs from deep clouds in our analysis. We also caution that we have used surface DSD 

observations, when in reality satellite radars cannot sense below 750 m above the surface (at 

best) due to surface clutter. Given these limitations, we would stop short of saying that any of the 

DSD models considered in this study are definitively “best” for retrieving warm rain. It is 

possible, for instance, that if one were looking at only warm rain processes at 1000 m above the 

surface (where less evaporation of small drops has taken place), the AB model would be more 

appropriate. In this hypothetical, DSD assumptions would still be an important source of 

retrieval bias, since the operational CloudSat and GPM algorithms assume very different R-Dm 

relationships (see Fig. 2.12). Regardless of which one is more correct, the fact that they are so 

different likely explains part of why rain rates retrieved from GPM are lower than those from 

CloudSat in light rain regimes (Behrangi and Song 2020).  

Our findings offer a cautionary tale for all satellite retrieval algorithms. Careful attention 

needs to be paid to DSD assumptions when interpreting and comparing retrieved rain rates. 

Simple DSD parameterizations may not be appropriate, especially for remote, high-latitude 

oceanic regimes. Our work shows that, when multiple radar frequencies are available (such as for 

architecture C in this study), retrieving two or three moments of the DSD can be greatly helpful 

in narrowing retrieval uncertainties because a greater variety of DSD shapes can be described by 

such a model. This should be an important consideration when designing the next generation of 

satellite precipitation missions and algorithms. For missions such as CloudSat, where the limited 

information content of a single frequency radar makes it harder for multiple DSD moments to be 

retrieved, more research is needed into how DSD shapes are regime dependent and whether these 

dependencies could be usefully incorporated into a retrieval algorithm. 

 

 



 37 

CHAPTER 3: HOW ACCURATELY CAN WARM RAIN REALISTICALLY BE 

RETRIEVED WITH SATELLITE SENSORS? PART 2: HORIZONTAL AND VERTICAL 

HETEROGENEITIES 

 

 

 

3.1 Introduction 

Warm rain processes are quite common over the open oceans and have important effects 

on large-scale circulations and on Earth’s radiative energy balance (Kubar et al. 2009; Nuijens et 

al. 2017; Jing and Suzuki 2018; Nelson and L’Ecuyer 2018). However, many warm rain 

dominated regions of the globe feature large discrepancies between satellite rainfall retrievals 

(Berg et al. 2010; Andersson et al. 2011; Behrangi et al. 2016; Behrangi and Song 2020). This 

chapter is the second of a two-part study designed to better understand what the most important 

sources of uncertainty are for the retrieval of warm rain and drizzle, and how the inclusion of 

different satellite measurements affects retrieval uncertainty. This work is particularly relevant as 

NASA plans its next major precipitation measurement mission, tentatively given the name 

Atmosphere Observing System (AOS; Stavros et al. 2021). This mission comes out of NASA’s 

last decadal survey and the desire to design a mission to link the study of aerosols, clouds, 

convection, and precipitation (NASEM 2018). 

In the first part of this study (Chapter 2), we studied several different types of retrieval 

uncertainty using surface disdrometer data from the Ocean Rainfall and Ice-phase Precipitation 

Measurement Network (OceanRAIN; Klepp et al. 2018) and the Atmospheric Radiation 

Measurement (ARM) Eastern North Atlantic (ENA) atmospheric observatory (Giangrande et al. 

2019). We developed an optimal estimation (OE) retrieval algorithm and applied it to synthetic 

observations generated for three different satellite architectures: one similar to the Global 
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Precipitation Measurement (GPM) core observatory (Skofronick-Jackson et al. 2017), one 

similar to CloudSat (Stephens et al. 2002), and one similar to the type of architecture envisioned 

for AOS. We quantified retrieval uncertainties stemming from instrument noise and detection 

limits, uncertainties coming from ancillary assumptions about the atmospheric profile, such as 

the assumed temperature and water vapor profiles, and uncertainties based on the inability of 

assumed drop size distribution (DSD) models to accurately represent the DSD variability seen in 

disdrometer observations. We found that the uncertainties due to DSD assumptions were quite 

significant, with biases in retrieved rain rate approaching 100% for some simple DSD models. 

Disdrometer measurements are valuable because of their ability to accurately measure 

DSD shapes at a particular point. However, other retrieval uncertainties result from the vertical 

structure of the raining column, which is not measurable from a disdrometer alone, or from 

imhomogenity within the satellite field of view, which likewise is hard to determine from a point 

measurement. These other uncertainties are the focus of this chapter, and for that reason we rely 

upon simulations from a state-of-the-art cloud resolving model, the Colorado State University 

(CSU) Regional Atmospheric Modeling System (RAMS; Cotton et al. 2003; Saleeby and van 

den Heever 2013). We use synthetic satellite observations generated from these simulations to 

study three additional sources of retrieval uncertainty: nonuniform beam filling (NUMF), vertical 

variability in the rain and cloud profiles, and the inability to obtain radar reflectivities close to 

the surface due to surface clutter. 

The fact that NUBF can affect the accuracy of precipitation retrievals has been 

recognized for decades. Graves (1993) found that passive microwave (PMW) instruments will 

generally underestimate rain rates due to NUBF. This follows from the fact that the relationship 

between liquid water path and PMW brightness temperatures (TB) tends to be concave down; 
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i.e., increasing the liquid water path from zero by a certain amount x will change the TB by more 

than if x is increased to 2x. On the other hand, the relationship between rain rate and radar 

reflectivity (Z) is concave up (in the Rayleigh regime). Consequently, as demonstrated by 

Nakamura (1991), a rain retrieval algorithm that converts measured radar reflectivities 

(neglecting attenuation) to rain rates will overestimate the rain rate due to NUBF. Meanwhile an 

attenuation-only based method such as the surface reference technique (SRT; Meneghini et al. 

2000) will always underestimate the rain rate, for similar reasons as in the PMW case. The 

underestimation increases as the attenuation increases, due to either heavier rain or a deeper 

raining column. Combining these effects, Durden et al. (1998) found that NUBF overall 

negatively biased rain rate estimates from the Tropical Rainfall Measuring Mission (TRMM) 

precipitation radar, but that this bias came mostly from convection and other high rain rate cases 

where attenuation was significant. Many methods for correcting NUBF effects in satellite 

precipitation retrievals have been proposed or adopted (Zhang et al. 2004; Takahashi et al. 2006; 

Hilburn and Wentz 2008; Short et al. 2015; Grecu et al. 2016), but validating and improving 

NUBF correction algorithms remains a challenge (Iguchi et al. 2009; Leinonen et al. 2015). In 

this chapter, we focus specifically on how NUBF affects the retrieval of light, warm rain, and 

explore how the competing NUBF effects from active and passive measurements behave in 

combination for the three satellite architectures from Chapter 2. 

Additional retrieval complications not dealt with in Chapter 2 include the many 

simplifying assumptions made about the vertical structure of the cloud and rain water. 

Identifying the cloud top height, or especially the cloud bottom height, from a satellite radar or 

radiometer can be challenging. Within the cloud, assumptions must be made about the way the 

cloud water is distributed vertically and the size distribution of the cloud drops, unless these 
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things are explicitly solved for. Perhaps most significantly, Chapter 2 assumed a uniform rain 

DSD. In reality, rain water tends to increase towards cloud base, as falling drops collect smaller 

drops, and then decrease due to evaporation below cloud base, with smaller drops preferentially 

evaporating first (e.g., Comstock et al. 2004; Rapp et al. 2013; Kalmus and Lebsock 2017; Ojo et 

al. 2021). However, retrieving multiple moments of the DSD at each vertical level in a raining 

column may not be feasible due to information content limitations. For this reason, many satellite 

radar retrieval algorithms assume some sort of relationship between DSD parameters in order to 

reduce the number of free variables that must be retrieved. For example, the CloudSat 2C-RAIN-

PROFILE algorithm (Lebsock and L'Ecuyer 2011) assumes an inverse exponential DSD, but the 

intercept and slope parameters are constrained to follow a strict relationship as defined in Abel 

and Boutle (2012), hereafter AB12. This relationship can equivalently be expressed in the form 

of a relationship between rain rate and mass weighted mean diameter (an R-Dm relationship) or 

between rain water content and Dm (RWC-Dm relationship). Many alternative DSD relationships 

meant to reduce the dimensionality of the DSD retrieval problem have been proposed in the 

literature (e.g., Protat et al. 2019a; Liao et al. 2020; Seto et al. 2021). 

Surface clutter is an issue that affects all spaceborne radars. The ocean surface is 

typically two to five orders of magnitude more reflective than hydrometeors (Marchand et al. 

2008). This large signal means that reflection from outside of the nominal radar resolution 

volume can bleed into the radar range bins above the surface, masking precipitation (Durden et 

al. 2001; Marchand et al. 2008; Kubota et al. 2016). For the CloudSat CPR, precipitation below 

about 750 m in height is missed (Tanelli et al. 2008). Surface clutter is even more of a factor for 

GPM, with the lowest reliable range bin around 1000 m at nadir and rising to 1500 m near the 

edge of swath (Kidd et al. 2021). Surface clutter could cause a spaceborne radar to miss shallow 
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precipitation altogether. Even if the top of the raining column is high enough to be detected, 

assumptions must be made about collision-coalescence processes (e.g., Poracchia et al. 2019) 

and/or evaporation (Kalmus and Lebsock 2017) if one wants to estimate the surface rain rate.  

After first describing the RAMS simulations and the OE retrieval that we used (Section 

3.2), we will investigate each of these sources of uncertainty individually. Horizontal NUBF is 

covered in Section 3.3. Vertical inhomogeneity issues, including algorithm assumptions about 

the vertical structure as well as vertical NUBF effects, are addressed in Section 3.4. Section 3.5 

looks at the effects of surface clutter, and in Section 3.6 we combine all of the sources 

uncertainty together and quantify how they would affect retrieval uncertainties for a theoretical 

AOS satellite. Finally, in Section 3.7 we offer conclusions and discuss implications for current 

and future satellite precipitation algorithms. 

 

3.2 Data and Methods 

3.2.1 RAMS Simulations 

 RAMS version 6.0 (Cotton et al. 2003) is a versatile model designed for simulating 

meteorological phenomena at the mesoscale and microscale. For our experiments, it was run on a 

20km X 20km X 4km model domain with a horizontal resolution of 100 m and a vertical 

resolution of 50 m. The simulation was initialized horizontally homogeneously from a composite 

average atmospheric sounding from the Atlantic Trade Wind Experiment (ATEX) (Augstein et 

al. 1973, 1974; Brümmer et al. 1974) with a sea surface temperature of 298 K (Stevens et al. 

2001). ATEX simulations have been used in the past to study warm phase cloud processes (eg., 

Stevens et al. 2001; Xue et al. 2008; Saleeby et al. 2015). Small near-surface potential 

temperature perturbations were applied to break the initial homogeneity. The simulation used 
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doubly periodic horizontal boundary conditions, a turbulent diffusion scheme (Smagorinsky 

1963), the LEAF surface flux model (Walko et al. 2000), and the two-stream Harrington (1997) 

radiation scheme. The simulation was similar to those described in Saleeby et al. (2015), with the 

main difference being the increased horizontal and vertical resolution. 

 The RAMS simulation was performed using two-moment microphysics (Meyers et al. 

1997; Saleeby and Cotton 2004; Saleeby and van den Heever 2013), with the model predicting 

mass mixing ratio and number concentration for each of the hydrometeor categories included in 

the model. Since the simulation lies entirely below the freezing level, the two relevant 

hydrometeor categories are cloud/drizzle droplets and rain drops. Each species is represented by 

a gamma distribution of the form 

𝑁(𝐷) = L/
)(M)

' !
!0
(M53 3

!0
exp '− !

!0
(.         (3.1) 

𝑁(𝐷) is the number concentration of particles of diameter 𝐷, 𝑁N is the total number 

concentration, 𝐷O is the gamma distribution characteristic diameter, and 𝜈 is the gamma 

distribution shape parameter. 𝜈 is set equal to 4 for cloud droplets and 2 for rain drops. To 

calculate the rain rate, we assumed the relationship between drop size and fall speed 

parameterized by Atlas and Ulbrich (1974). This same method is used to calculate all rain rates 

considered in this study.  

As examined in Chapter 2, it should be expected that this double moment microphysical 

model will not perfectly recreate the full range of DSD variability seen in warm rain, especially 

given the limited nature of the ATEX simulation in space and time. However, RAMS has proven 

successful at simulating a wide range of atmospheric phenomena in the past (e.g., Stevens et al. 

2001; Jiang and Feingold 2006; van den Heever et al. 2006; Saleeby et al. 2009; Igel et al. 2013). 

Based on this track record, we believe the simulation can be trusted to give a general sense of 
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how much parameters like the rain rate (RR) and rain water content (RWC), which are targets of 

satellite retrievals, can realistically vary in the horizontal and vertical dimensions for shallow 

oceanic convection. Thus we used surface disdrometer data in Chapter 2 to study DSD-related 

retrieval uncertainties, and in this chapter utilize the very high resolution RAMS simulation to 

study the uncertainties introduced by spatial heterogeneity. 

3.2.2 Simulation of Satellite Observations 

 We simulate satellite observations for the same 3 architectures, coined A, B, and C, as in 

Chapter 2. For each satellite, the vertical resolution is assumed to be 250 m, similar to the 

resolution of GPM and CloudSat. We assume all of the instruments share the same footprint. 

This is not realistic but allows us to separate the effects of different measurement information 

content from resolution differences. We do investigate the result of changing the footprint size 

for each architecture in Section 3.3. The Satellite A measurements are assumed to come from a 

W-band (94 GHz) radar and include TB, path integrated attenuation (PIA), and Z at each range 

gate. Satellite B measurements are made up of TB at each of the 13 channels of the GPM 

Microwave Imager (GMI; Hou et al. 2014) and Z and PIA at Ku- and Ka-band (13.6 GHz and 

35.5 GHz, respectively). Satellite C combines the W-band radar measurements of Satellite A 

with the Ku- and Ka-band measurements of Satellite B, with a heightened detection sensitivity. 

Refer back to Tables 2.1 and 2.2 to see the measurements simulated for each architecture and 

their assumed uncertainties and detection thresholds. 

 From the RAMS model output, synthetic observations are generated for each satellite 

architecture at 15-minute time steps across a total of 8 hours (after the model spin-up period). 

We use the MonoRTM radiative transfer model (Clough et al. 2005), the FASTEM6 sea surface 

emissivity model (Kazumori and English, 2015), and the QuickBeam radar simulator (Haynes et 
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al., 2007). We assume spherical hydrometeors and calculate their absorption and scattering 

properties using Mie theory (Mie 1908). See Chapter 2 for more details on the satellite 

simulation forward model. 

3.2.3 Optimal Estimation 

 The simulated satellite observations are used as input to the optimal estimation (OE) 

retrieval algorithm that was developed in Chapter 2. Given 𝐲, the measurement vector containing 

all of the observations (TB, PIA, and Z) for a given satellite architecture, the goal is to find the 

state vector 𝐱 that maximizes the conditional probability 𝑃(𝒙|𝒚): 
𝑃(𝒙|𝒚) = ;<𝒚=𝒙>;(𝒙)

;(𝒚)
 .        (3.2) 

𝐱 consists of the vertically integrated cloud liquid water path (CLWP) and the vertical profile of 

the 2 DSD parameters: RWC and the mass weighted mean rain drop diameter, Dm. Chapter 2 we 

also retrieved the normalized gamma shape parameter 𝜇. It was found that this parameter was 

hard to retrieve accurately, but also that fixing 𝜇 to a particular value did not have a large effect 

on retrieved rain rate errors, so in this study we set 𝜇 = 1 (this corresponds to the 𝜈 =
2)	assumption in RAMS. Also in Chapter 2, we assumed that RWC and Dm were constant 

throughout the raining column. We maintain that assumption in Section 3.3, when we examine 

horizontal heterogeneity, but relax that assumption in other sections and retrieve a profile of 

RWC and/or Dm. CLWP, RWC, and Dm are all retrieved in logarithmic space instead of linear 

space because their distributions are closer to lognormal than to normal. 

The OE framework also makes use of an a priori state vector, 𝐱𝐚. If one assumes that a 

priori errors, measurement errors, and forward model errors are all Gaussian, then as Rodgers 

(2000) demonstrates, the optimal 𝐱 is found by minimizing the cost function Φ: 
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Φ = (𝐱 − 𝐱𝐚)B𝐒𝐚53(𝐱 − 𝐱𝐚) + [𝐲 − 𝒇(𝐱, 𝐛)]B𝐒𝐲53[𝐲 − 𝒇(𝐱, 𝐛)].   (3.3) 

Here 𝒇(𝐱, 𝐛) represents the forward modeled measurements that are simulated by the retrieval 

algorithm using the state vector 𝐱 and ancillary information 𝐛 for comparison against the actual 

satellite measurements 𝐲. The assumed errors in 𝐱𝐚, and their covariances, are specified by the 𝐒𝐚 

matrix, while the 𝐒𝐲 matrix describes the assumed errors in the matchup between the true 

observations and the forward modeled observations. The solution state is thus constrained both 

by the satellite observations and by the a priori assumptions, weighted by 𝐒𝐚 and 𝐒𝐲. The Gauss-

Newton method is used to solve for atmospheric state at which the gradient of the cost function, 

∇DΦ, is equal to zero.  

 The OE forward model is built upon the same radiative transfer models (i.e., QuickBeam, 

MonoRTM, and FASTEM6) that are used to generate synthetic satellite observations. As noted 

in Chapter 2, this means that forward model errors will be less than should be expected in real 

life. We also assume that the elements of 𝐛 – the temperature and water vapor profiles, plus the 

sea surface temperature and wind speed – are known perfectly by the OE algorithm. These come 

directly from the RAMS model output (in Chapter 2 we show that there is only a modest impact 

to retrieval uncertainties when realistic ancillary assumption errors are taken into account). Still, 

there are some simplifications made in the forward model compared to the satellite simulator, 

which will contribute to the errors in 𝐒𝐲. The most important of these simplifications is the 

handling of cloud water. Because satellites cannot easily detect cloud base, a constant cloud base 

of 500 m is assumed. The cloud water content is assumed to increase linearly up to 2000 m (for 

the Section 3.3 experiments) or to the level at which the W-band reflectivity crosses the -30 dBZ 

threshold (for Section 3.4-3.6 experiments). As in Chapter 2, we assume as inverse exponential 



 46 

size distribution of cloud droplets with an average effective radius (re) for the whole cloud of 11 

µm, consistent with the peak in re found at this value by Stubenrauch et al. (2013). 

 The assumed a priori state 𝐱𝐚 and its covariance matrix 𝐒𝐚 are based mostly upon the 

ARM ENA disdrometer data examined in Chapter 2. The ARM dataset was chosen instead of the 

OceanRAIN dataset because the precipitation measured by ARM comes mostly from warm 

shallow systems (Giangrande et al. 2019) of the same type being simulated by RAMS. In theory, 

the a priori assumptions could also be based on the RAMS statistics themselves but we avoid 

doing this so as not to bias the retrieval algorithm toward the correct answer. We take the mean 

values of RWC and Dm from the ARM dataset and use them as the a priori guesses for RWC and 

Dm in the OE algorithm. The a priori CLWP assumption is nominally set to 100 g/m2, because 

the disdrometer data alone cannot generate CLWP statistics. In testing, we varied this value from 

50-200 g/m2 without much of an effect on retrievals. The diagonal values of 𝐒𝐚 are made up of 

the variances of RWC and Dm found in the ARM data, with off-diagonal elements corresponding 

to the covariance between the two. We then multiply all of the ARM variances and covariances 

by 2, to crudely account for the additional uncertainty inherent in the fact that observational 

statistics from a single disdrometer are being used to retrieve modeled DSDs from a different 

setting. Table 3.1 lists the values of the 𝐱𝐚 state variables, along with their assumed variances. 

The 𝐒𝐲 covariances come from a combination of two sources. Measurement uncertainties 

are generally well-known (see Tables 2.1 and 2.2), but forward model uncertainties are also 

included in 𝐒𝐲 and are both larger and harder to define. This is especially true for a study such as 

this one, where the forward model errors change from one experiment to another as different 

sources of errors are independently considered. For consistency’s sake, we use the same 𝐒𝐲 
matrix for each new experiment, at the risk of overestimating forward model uncertainties for 
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some of the more constrained experiments (the matrix does differ from one satellite architecture 

to another, because they include different instruments). The 𝐒𝐲 values are estimated by 

comparing the full resolution synthetic satellite observations for each architecture to simulated 

observations created based on the highly idealized representation of the cloud and rain profiles 

assumed in the OE forward model, in a manner similar to Duncan and Kummerow (2016).   

Table 3.1 Values used in the a priori state vector xa, along with their assumed uncertainties 

included in the Sa matrix. 

State 

Variable 

A priori 

Value 

Std. Deviation s 

(Sa uses s2) 
Comments 

log10(CLWP) 
2.0 

(100 g/m2) 
0.25 

Nominally chosen such that roughly 95% of 

RAMS profiles with surface RR >0.1 mm/h 

are within 2 s 

log10(RWC) 
-1.43 

(0.037 g/m3) 
1.1 

From ARM ENA disdrometer observations; 

the a priori value applies throughout the 

raining column, if applicable 

log10(Dm) 
-0.13 

(0.74 mm) 
0.45 

From ARM ENA disdrometer observations; 

the a priori value applies throughout the 

raining column, if applicable 

 

3.3 Uncertainties due to Nonuniform Beam Filling  

 In our first set of experiments, we examine specifically the retrieval uncertainties that 

arise due to horizontal sensor resolution. To create synthetic satellite observations, we take the 

rain DSD from the lowest 50-m level of the RAMS simulations and assume this DSD extends 

uniformly up to a height of 1 km. Then the CLWP is specified according to RAMS column, but 

the profile of cloud water is re-calculated so as to match perfectly with the assumptions of the 

OE algorithm; that is, linearly increasing from 500 m to 2 km, with a cloud drop effective radius, 

re, that increases from cloud base to cloud top and a total cloud-average re of 11 µm. Figure 2.2 

from the previous chapter illustrates the cloud and rain columns assumed. We could of course 

use the exact profiles of cloud and rain DSDs from RAMS to simulate satellite observations (and 

we do this in later sections), but for this first case we focus on the same idealized retrieval 
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framework that was used in Chapter 2. We do this to make comparisons to Chapter 2 easier and 

in order to isolate NUBF errors that have strictly to do with horizontal sensor resolution instead 

of vertical structure or forward model representation errors.  

3.3.1 Base Case Uncertainties 

 As a baseline measure of retrieval uncertainties, and for comparison to Chapter 2, we first 

simulate satellite observations at the native 100-m horizontal resolution of RAMS. Sensor noise 

is added, and Z values that fall below detection thresholds eliminated, according to Tables 2.1 

and 2.2. Then we use the OE algorithm to attempt to retrieve back the CLWP, RWC, and Dm for 

each RAMS profile from each satellite architecture. Because the forward model of the OE should 

in theory be able to perfectly recreate the cloud and rain profiles used to make the synthetic 

observations, all retrieval errors must come from one of three sources: sensor noise, fundamental 

nonlinearities, or insufficient information content in the satellite measurements. Fundamental 

nonlinearities in the retrieval problem could cause the algorithm to converge to a local minimum 

of Φ instead of the absolute minimum, while insufficient information content (for example the 

inability of the radars to detect small drops with reflectivities below their respective thresholds) 

will lead the algorithm to converge towards a priori assumptions. 

 Figure 3.1 plots the baseline pixel uncertainties in retrieved CLWP, RWP, RR, and Dm 

for Satellite C, the most capable of the satellite architectures considered. The uncertainties are 

generally similar to what was seen for the base case in Chapter 2, when the underlying DSDs 

came from disdrometer observations instead of a model. However, the spread in results is a bit 

larger, and for the lightest rain rates there is a tendency to overestimate CLWP while 

underestimating RWP (i.e., substitute cloud water for rain water). This leads to a small 

underestimation of RR. This tendency is due to the influence of a priori assumptions about 
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CLWP and Dm. Overall (in terms of medians), retrieved CLWP is biased high by 10.8%, RWP 

biased low by 13.7%, RR biased low by 9.1%, and Dm biased high by 5.4%. The interquartile 

range (IQR) for retrieval errors for each of these parameters is between 11-24%. 

 

FIG. 3.1. Density plots of retrieved error in CLWP, RWP, column-averaged RR, and column-

averaged Dm compared to the true value that was used to make the underlying simulated satellite 

observations, for Satellite Architecture C. This experiment considers only sensor noise and 

detection limits as sources of uncertainty.  

 

 The other two satellite architectures have larger retrieval errors (their IQRs can be seen in 

Figure 3.2). The behavior of Satellite A is similar to Satellite C, with CLWP and Dm biased high 

while RWP and RR are biased low. The biases are slightly larger in magnitude than for Satellite 

C, and the spread in retrieval errors is also larger. Satellite B has a distribution of retrieval errors 

that is unlike the other two architectures. In addition to having a much larger spread of errors, 

retrieved CLWP and Dm are biased low while RWP and RR are biased quite high (40.3% and 

34.1%, respectively). This is due in part to the fact that many of the RAMS DSDs do not 

generate Ku- or Ka- band Z that are above the 12 dBZ reflectivity threshold of the satellite. In 
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fact, only 56% of pixels generate valid Satellite B radar reflectivities. In the remainder of cases, 

Satellite B has only PMW observations available to it and struggles to distinguish between cloud 

water and rain water. The fact that it has a tendency to choose rain water over cloud water is 

probably explained by the fact that CLWP has slightly tighter a priori bounds, so the retrieval is 

more likely to increase rain water than cloud water in response to a TB signal of water in the 

column. For the subset of pixels for which Satellite B does have valid Z, the retrieved RR is still 

biased high but at a more modest 22.8%. 

3.3.2 Effects of Sensor Footprint Size 

 Next we ran a series of experiments designed to quantify how changing the sensor 

footprint size changes retrieval uncertainty. The 100-m horizontal resolution maps of TB, PIA, 

and Z from the base case were averaged together using a boxcar filter at new resolutions of 500 

m, 1 km, 2 km, and 5 km. These new synthetic satellite observations were run through the OE 

algorithm, and the retrieved CLWP, RWP, and RR compared to corresponding values from 

RAMS at each resolution. Figure 3.2 shows that there is a clear trend towards a greater 

underestimation of RWP and RR at lower horizontal sensor resolution. Putting this in the context 

of previous studies such as Durden et al. (1998), this result suggests that for all 3 satellite 

architectures the NUBF effects on radar attenuation and TB, which act to cause underestimation 

of rainfall, outweigh the slightly positive NUBF effect on unattenuated Z. The effect is largest 

for Satellite B, which makes sense given that for many of the pixels it is operating in PMW-only 

mode because the Z are below its detection limit. Compared to averaging retrieved RRs from the 

native resolution retrieval, at 5-km resolution (roughly the resolution of GPM DPR), retrieved 

RRs from Satellite B are about 50% lower, while Satellites A and C are about 40% lower. At 

500-m resolution (equal to the sampling spacing planned for the upcoming EarthCARE satellite; 
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Illingworth et al. 2015), the NUBF effect is much smaller. Retrieved RRs are biased 7% lower 

than native resolution for architectures B and C but only about 1% lower than native resoution 

for Satellite A. The horizontal NUBF effect does not seem to have a large effect on the overall 

spread of retrieval errors; if anything, the IQR of retrieval error actually tends to shrink as the 

footprint grows larger. This is likely due to the fact that averaging reduces variability. 

 

FIG. 3.2. Retrieval errors as a function of horizontal resolution, for each satellite architecture. 

The bars show the interquartile range of the pixel-level retrieval error in either CLWP (top), 

RWP (middle), or RR (bottom). The satellite is indicated by the color of the lines and markers.  
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3.4 Uncertainties due to Vertical Variability 

3.4.1 Assumptions About Vertical Structure  

 In the next set of experiments, actual hydrometeor profiles from RAMS were used to 

simulate satellite observations, instead of assuming the simplified vertical structure of Chapter 2 

and Section 3.3. To isolate the effect of assumptions about vertical structure, without the effect 

of NUBF, we first used RAMS profiles at their native horizontal resolution. All pixels with a 

surface RR greater than or equal to 0.1 mm/h were included (over 10,000 pixels total), and the 

columns were sampled every 250 m in the vertical to match the vertical resolution of the satellite 

radars. As before, random measurement noise was added to the simulated measurements before 

trying to retrieve back the true CLWP, RWP, and profiles of RR and Dm using each satellite 

architecture. 

 First, we let the retrieval algorithm assume the same simplistic scenario assumed in 

Section 3.3; that is, a uniform raining column. The column was assumed to extend from the 

surface up to the point at which the W-band reflectivity first exceeded -10 dBZ (even for 

Satellite B, which does not actually include a W-band radar). The OE algorithm them retrieved a 

single RWC and a single Dm value for the entire column (in other words, the column average). 

As can be seen in Figure 3.3, these assumptions led to a retrieval algorithm that performed quite 

poorly for all satellite architectures. All of the retrieved values tracked in the figure were strongly 

negatively biased (with the one exception of CLWP for Satellite C), and the variability was also 

large. On the other hand, we also tested a version of the retrieval algorithm that attempted to 

retrieve RWC and Dm at every level of the raining column. This version performed slightly 

better; however, estimates of the surface RR were biased low by between 35-45% for all 3 

satellites, and the IQR of retrieval errors was still rather large. This result indicates that assuming 
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a more complex vertical structure isn’t always wise. If there is not enough independent 

information in the measurements to constrain what one is trying to retrieve (as appears to be the 

case here, even for Satellite C), the ill-posed nature of the inversion problem will lead to sub-

optimal results. One possible approach to reduce errors due to vertical variability would be to 

add correlations between vertical levels to the Sa covariance matrix. 

 

FIG. 3.3. Each bar shows the IQR in either CLWP, RWP, surface RR, or surface Dm, for a given 

experiment and satellite architecture. The satellite is indicated by the letter on the x-axis. The 

experiment being considered is indicated by the color of the bars. In the purple experiment only a 

column-average RWC and Dm are retrieved, while in the gold experiment RWC and Dm are 

retrieved at each valid radar range gate. Blue and red show the results when a profile of RWC is 

retrieved and Dm is either retrieved as a column average (blue) or prescribed according to Abel 

and Boutle 2012 (red).  The cyan and magenta experiments use the same retrieval setup as blue 

and red (respectively) but are run on synthetic satellite observations that account for vertical 

nonuniform beam filling. 
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 Next we conducted two experiments in which a full profile of RWC was retrieved, but 

Dm was constrained. In the first (blue lines in Figure 3.3), as compromise between the two 

experiments above, Dm was retrieved as a single column-averaged value. For the triple-frequency 

Satellite C, this led to good results, with the bias in retrieved CLWP, RWP, and surface RR all 

being close to zero. For the other two satellites, there was a tendency to overestimate rain water 

at the expense of cloud water. All three satellites tended to underestimate the surface Dm, which 

makes sense given that Dm at the surface is usually larger than the column average. In the other 

experiment (red lines in Figure 3.3), the RWC profile was retrieved and the profile of Dm 

calculated based on the AB12 relationship. For the surface RR metric, this set of experiments 

had the lowest biases and IQR values.However, the retrieval had a tendency to substitute cloud 

water for rain water higher up in the column. An examination of the RAMS profiles revealed that 

the AB12 RWC-Dm relationship was especially inappropriate for the RAMS profiles at these 

heights. In Figure 3.5, for instance, it can be seen that RWC tends to be higher at 1000 m than at 

the surface, while Dm tends to be much lower, contradicting the AB12 RWC-Dm relationship.  

3.4.2 Vertical NUBF 

For the same reasons that horizontal inhomogeneity can lead to biases in radar retrievals 

of rain, vertical inhomogeneity also increases retrieval uncertainty (it is much less of a concern 

for observables that lack vertical resolution, like TB or PIA). To quantify the effect of vertical 

NUBF, we repeated the exercise of Section 3.4.1 but, instead of sampling the RAMS profiles at 

every 250 m, we simulated radar reflectivities at the 50-m resolution of the RAMS model and 

then averaged the Z to the 250-m resolution of the radars. We performed retrievals using either 

the variable RWC / constant Dm approach or assuming the AB12 RWC-Dm relation. These two 

methods were chosen because they gave the smallest biases in retrieved values of the four 
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methods tested in Section 3.4.1. The error distributions from these experiments are also shown in 

Figure 3.3 (in the cyan and magenta). Including vertical NUBF effects had the tendency to 

reduce retrieved RWP and RR across all satellite architectures, with Satellites B and C affected a 

little bit more strongly. These patterns are consistent with the effects of horizontal NUBF that 

were seen in Section 3.3. 

 

3.5 Uncertainties due to Surface Clutter 

 The experiments of Section 3.4.1 were repeated, except that radar observations from the 

lowest levels of the column were omitted. The simulated surface clutter extended up to either 

500 m, 1 km, or 1500 m. For the purposes of calculating TB and PIA, the OE algorithm assumed 

that the profiles of RWC and Dm were constant from the lowest observable radar range bin down 

to the surface. We ran two sets of experiments, either with a constant Dm assumed throughout the 

column (but RWC retrieved as a profile above the surface clutter), or with the AB12 RWC-Dm 

relation. The IQR of the retrieved RR error at the top of the surface clutter, for each surface 

clutter height, is plotted in Figure 3.4. While the spread in retrieval uncertainty does not 

necessarily increase as the surface clutter depth increases, there is a tendency for the RR to be 

underestimated above the surface. At 1 km in height, the retrieved RR is biased low by between 

20 and 50%. The underestimation effect is slightly lower for Satellite A. 

 Of course, even if a RR retrieval is unbiased at 1 km above the surface, retrieval of the 

surface RR will be subject to additional uncertainties because the RR can change between the 

surface and the top of the surface clutter. This could be due to evaporation, collision/coalescence, 

or both. Retrieval algorithms may or may not try to model these processes to give a more  
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FIG. 3.4. Median and IQR of retrieved RR error, if surface clutter is assumed to extend up to 

various heights. The different satellite architectures are represented by the different colors. The 

heights considered are 0 m, 500 m, 1 km, and 1500 m for all architectures; the error bars are 

slightly offset from these heights to make the differences between the satellites easier to see. The 

experiments on the left were run with the OE algorithm assuming a constant Dm profile, while 

the experiments on the right prescribed a RWC-Dm relationship according to Abel and Boutle 

(2012). 

 

accurate surface rain rate, but even if they do their microphysical models will not perfectly 

represent reality. Rather than test specific microphysical models (since the microphysical models 

used by RAMS are already known), we examine the difference between the rain characteristics 

in RAMS at each of these heights compared to the rain characteristics at the surface, in order to 

give a worst-case scenario of the types of the errors that could be expected in a warm rain 

retrieval algorithm due to surface clutter.  

 Figure 3.5 panels a-c show the RAMS distributions of RWC, Dm, and RR at the surface, 

500 m, 1 km , and 1.5 km. RWC and RR tends to be highest at 1 km, probably due to 

evaporation that occurs below this level. The distribution of Dm, on the other hand, broadens and 

shifts towards higher values as one approaches the surface. As seen in panel d, most pixels 
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feature a small difference in RR between the top of the surface clutter and the surface, but there 

is a long positive tail. About 30% of profiles have a difference between the 1-km RR and the 

surface RR that is larger than 0.2 mm/h. 

 

FIG. 3.5. Histograms of various DSD characteristics from the RAMS simulations, colored by 

height. (a) Rain water content (b) Mass weighted mean diameter (c) Rain rate (d) Difference 

between RR at a given height and the RR at the surface underneath. 

 

3.6 Combined Uncertainties for an AOS-like Satellite 

 In our last experiment, we performed retrievals combining all of the sources of 

uncertainty previously considered: sensor noise and detection thresholds, nonuniform beam 

filling, algorithm assumptions about the cloud and rain structure, and surface clutter. We 

simulated observations for an AOS-like satellite based on the “minimum desired capabilities” 
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specified in Revision E of NASA’s Science and Applications Traceability Matrix (SATM) for 

the AOS mission (available at https://science.nasa.gov/science-pink/s3fs-public/atoms/files/ 

ACCP_SATM_Rel_E_TAGGED.pdf). The SATM specifies W-band (Ka-band) radar 

observations with a minimum detectable radar reflectivity of -25 dBZ (5 dBZ), horizontal 

resolution of 2 km, vertical resolution of 250 m, and measurements extending down to 500 m. 

Note that these Z thresholds are slightly higher than the ones used for Satellite C in previous 

experiments, and that the satellite lacks a Ku-band radar (lower thresholds and a Ku-band are 

included under “desired enhanced capabilities” in the SATM). 

 Synthetic observations were first generated at the native resolution of RAMS, and then 

averaged to the horizontal and vertical resolutions of the AOS-like satellite. Radar observations 

below 500 m were eliminated. CLWP and the RWC profile were retrieved for each 2-km by 2-

km synthetic satellite pixel (sampled from the RAMS grid at every 500 m) using the AB12 DSD 

assumptions. Figure 3.6 shows the surface RR from RAMS (at 2-km resolution), plotted against 

the RR at 500 m retrieved by the OE algorithm, which is assumed to be the same as the surface 

RR. There is a tendency to underestimate the RR, especially for heavier precipitation, which is 

perhaps to be expected given the effects of NUBF. The overall negative bias is -18.6%, with an 

IQR of 55.4% that is considerably larger than the base-case IQR for Satellite C of 15.7% 

calculated in Section 3.3 and seen in Fig. 3.1. The SATM also specifies a desired uncertainty for 

the precipitation rate profile of 100%. Taking this to mean a 100% positive bias or a 50% 

negative bias, relative to RAMS, 81.4% of synthetic AOS-like retrievals fall within these 

bounds. The desired uncertainty range is shown by the dashed red lines in Figure 3.6.  

 We tested adding a Ku-band radar with a minimum detectable reflectivity of 10 dBZ to 

the theoretical AOS satellite (not shown), but there was little improvement in retrieved RR. This 
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suggests that there is not much extra information in the Ku-band if one already has the Ka-band, 

at least for the very light rain considered in this study. 

 

FIG. 3.6. RAMS surface RR, at 2-km resolution, plotted against retrieved RR (left) or retrieved 

RR percentage error (right) from an AOS-like satellite as described in the text. The red dashed 

lines represent the desired uncertainty limits specified in NASA Science and Applications 

Traceability Matrix (SATM). 

 

3.7 Discussion and Conclusions 

 Our analysis reiterates previous findings that NUBF is an important source of error in 

satellite precipitation estimates. We found that, even for shallow warm rain, NUBF effects led to 

a 40-50% negative bias in retrieved RR at the coarsest resolution tested (5 km). One possible 

explanation is that, at the very light RRs of the RAMS simulation, Ku- and Ka- band 

reflectivities do not exceed detection thresholds, but W-band Z still experience attenuation. The 

result is that TB and attenuation affects dominate the NUBF response and underestimation of rain 

occurs. Retrieval biases were much more modest (less than 10%) at 500-m horizontal resolution. 

This seems like a good if ambitious target for future satellite radars, particularly those operating 

at higher frequencies for which smaller footprints are more feasible. 
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 Vertical NUBF errors were found to be smaller, though they still tended to lead to the 

underestimation of RR. More important when it comes to vertical inhomogeneities are the 

assumptions made about the profile of rain water. Assuming a uniform profile of rain led to 

severe negative biases; however, trying to retrieve both RWC and Dm at each level also led to 

poor retrieval performance due to insufficient information content. The optimal solution seems to 

land somewhere in the middle; i.e., retrieving a profile of RWC but making simplifying 

assumptions about the profile of Dm. 

 When it comes to surface clutter, we found that, for this RAMS simulation at least, RRs 

tend to be lower at the surface than slightly above the surface, at 500-1000 m. This is due to 

evaporation below cloud base. The surface RR was at least 0.2 mm/h lower than the rain rate 

above in about 30% of cases, meaning that surface clutter could potentially cause significant 

biases for light rain if one’s target variable is surface rain intensity or frequency. This finding is 

consistent with prior studies (e.g., Rapp et al. 2013). We also found, however, that our retrieval 

tended to underestimate the RR at the top of the surface clutter, a partially compensating error. It 

is not immediately clear whether other precipitation retrieval algorithms should be expected to be 

subject to this sort of effect. 

 Putting it all together, we tested the performance of an AOS-like satellite using NASA’s 

minimum desired capabilities and found that the combined uncertainty would be sufficiently low 

to make the theoretical instrument useful for advancing the study of warm rain. The retrieval 

error fell within the desired uncertainty range over 80% of the time. Still, retrieved RR was 

biased low by almost 20% with a large spread in retrieval errors, particularly at the lightest RRs. 

The overall negative bias should probably not be a surprise, since even in the baseline (Section 

3.3) there was a bias, and because most of the individual sources of uncertainty that we studied 
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individually tended to reduce the retrieved RR. In practice, this bias could hopefully be greatly 

reduced. While it is beyond the scope of this study, a NUBF correction model such as that 

proposed by Short et al. (2015) would improve retrieval accuracy. It would be important to train 

such a model using a globally representative collection of statistics, rather than just a single case 

study. The effects of surface clutter can be mitigated either by radar technological advances that 

reduce surface interference, incorporating better evaporation models, or both. Retrieval 

performance could also likely be improved by making more careful assumptions about the cloud 

drops in the column. 

 In contrast to the simulations from Chapter 2, in which assuming the AB12 DSD 

relationship led to large positive biases in retrieved RR, in this study we found that this 

assumption performed reasonably well. This could be due to the fact that this study was based on 

modeled rain drops, whereas Chapter 2 was based on actually measured drops that tended to be 

larger. Another possible explanation is that the positive AB12 bias found in Chapter 2 was 

counteracted by the large negative bias of NUBF, leading to decent performance overall. More 

work is needed to determine whether the RWC-Dm relationship from AB12 is actually 

appropriate for warm rain.  

 This leads to a larger point, which is that the results from this study should not be taken 

to definitely characterize the errors that affect any current or future precipitation-measuring 

satellite. We’ve made several simplifying assumptions, and a thorough error analysis would rely 

on addition model simulations from varying meteorological regimes. Still, we believe that by 

examining the relative impact of different types of uncertainties on three different satellite 

architectures, we can better understand why current satellite precipitation estimates disagree, and 

better plan for future missions. 
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CHAPTER 4: CAN DSD ASSUMPTIONS EXPLAIN THE DIFFERENCES IN SATELLITE 

  

ESTIMATES OF WARM RAIN? 

 

 

 

4.1 Introduction  

 Satellites play an important role in measuring, predicting, and understanding precipitation 

across the globe. Current precipitation missions such as the Global Precipitation Measurement 

(GPM) mission (Hou et al. 2014; Skofronick-Jackson et al. 2017) and CloudSat (Stephens et al. 

2002) are crucial for monitoring the global hydrologic cycle and constraining climate models, 

especially over the open oceans where rain gauges, disdrometers, and ground-based radar 

observations are rarely available. Satellite observations inform many types of precipitation 

estimates. These include direct estimates from CloudSat (Haynes et al. 2008; Lebsock and 

L’Ecuyer 2011) and GPM (Grecu et al. 2016; Seto et al. 2021) along with the earlier Tropical 

Rainfall Measuring Mission (TRMM; Kummerow et al. 2000), estimates from a constellation of 

passive microwave radiometers (GPROF; Kummerow et al. 2015), and estimates that combine 

observations from a variety of different satellite techniques such as the Global Precipitation 

Climatology Project (GPCP; Alder et al. 2018) and the Climate Prediction Center Merged 

Analysis of Precipitation (CMAP; Xie and Arkin 1997). Over some regions of the globe, there is 

reasonable agreement between seasonally averaged precipitation as estimated from these various 

satellite products, especially when GPM-based and CloudSat-based estimates are combined in 

ways that take advantage of the fact that GPM/TRMM is more sensitivity to moderate and heavy 

precipitation while CloudSat is more sensitive to light precipitation (Behrangi et al. 2014, 

Hayden and Liu 2018). However, over the higher latitudes, as well as over stratocumuluous 

dominated regimes, larger discrepancies exist (Berg et al. 2010; Andersson et al. 2011; Behrangi 
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et al. 2016; Behrangi and Song 2020). In particular, north or south of about 40 degrees in latitude 

there are large differences between zonally averaged oceanic precipitation estimates from the 

GPM combined radar/radiometer algorithm GPM_2BCMB (Grecu et al. 2016) and the CloudSat 

2C-RAIN-PROFILE algorithm (Lebsock and L’Ecuyer 2011). Behrangi and Song (2020) find 

that the GPM estimates can be up to 60-70% (~2 mm/d) lower than the CloudSat estimates at 

these high latitudes. 

 There are undoubtedly many factors contributing to the disagreement among satellite 

precipitation estimates. For example, many light precipitation events do not generate high 

enough Ku- or Ka-band reflectivites (Z) to be detected by the Dual-frequency Precipitation 

Radar (DPR) on the GPM Core Satellite. DPR has a minimum detectable Z of 15.46 dBZ for Ku-

band, 19.18 dBZ for Ka-band matched beam, and 13.71 dBZ for the Ka-band high sensitivity 

beam (Masaki et al. 2021). In terms of rain rates, this corresponds to a nominal threshold of 0.5 

mm/h for Ku-only retrievals and 0.2 mm/h for Ku/Ka retrievals (Kidd et al. 2021). However, Lin 

and Hou (2012) found that, over the continental United States, 43.1% of precipitation occurs 

below 0.5 mm/h and 11.3 % occurs below 0.2 mm/h, with those occurrences accounting for 7% 

and 0.8% of total rain volume, respectively. Over stratocumulus areas and at the high latitudes, 

where drizzle is common, those values are even higher, with as much as 70% of precipitation by 

frequency (or around 25% by volume) occurring at rain rates below 0.5 mm/h (Kidd et al. 2007; 

Giangrande et al. 2019).  CloudSat’s Cloud Profiling Radar (CPR), on the other hand, struggles 

with heavy precipitation. The higher frequency W-band radar is more easily attenuated by water 

vapor, cloud water, and rain water, and multiple scattering is also more of a concern. These 

factors make CPR precipitation estimates at high rain rates unreliable (e.g. Battaglia et al. 2008, 

Berg et al. 2010). The insensitivity of DPR to light precipitation and the attenuation challenges 
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CPR faces in heavy precipitation together form a natural (if only partial) explanation of the 

widely reported result that GPM/TRMM retrievals underestimate light rain rates while CloudSat 

retrievals underestimate heavy rain rates (e.g. Berg et al. 2010, Behrangi et al. 2012, Hayden and 

Liu 2018). 

 Another important consideration is surface clutter. DPR radar returns below about 1000m 

above the surface have too much noise to accurately detect precipitation, rising to up to 1500m 

near the edge of swath or over rough terrain (Kidd et al. 2021). For CloudSat, the lowest range 

bin that can be accurately sensed is around 750m (Tanelli et al. 2008). Thus, each of these radars 

misses some shallow precipitation altogether. For example, Kidd et al. (2021) found that only 

slightly more than 60% of radar profiles over the United Kingdom had rain rates greater than 0.2 

mm/h at 1000m above the surface. Even when the radar can detect the presence of precipitation, 

assumptions must be made to translate the near-surface precipitation rate to the actual 

precipitation rate at the surface. It some cases, collision-coalescence processes act to enhance the 

surface rain rate (Porcacchia et al. 2019), while in drier environments all of the rain detected at 

750m might evaporate before it hits the ground (Rapp et al. 2013).  

 With different sensitivities to light, near-surface, and frozen (or mixed phase) 

precipitation, it is not surprising that there is some discrepancy between GPM and CloudSat 

estimates of precipitation. Still, there are many other factors, such as algorithm assumptions, that 

could be contributing to the underestimation of high latitude precipitation by GPM compared to 

CloudSat. In this chapter we focus on one potential source of uncertainty, the drop size 

distribution (DSD) model assumed by retrieval algorithms, and one particular type of 

precipitation, warm rain. We make use of the CloudSat-GPM coincidence dataset (Turk et al. 

2021) and, using a consistent optimal estimation (OE) framework (thus eliminating many 
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potential sources of discrepancy), we retrieve warm rainfall rates from the CloudSat and GPM 

observations separately. As expected, the GPM retrievals return less overall rain than the 

CloudSat retrievals, but we find that most of the difference disappears when we account for 

surface clutter, radar detection thresholds, and DSD assumptions. We also perform combined 

retrievals that incorporate observations from both GPM and CloudSat. These experiments 

strengthen the argument that DSD assumptions account for part of the GPM/CloudSat rain warm 

discrepancy and offer insight into the kind of retrievals that may be possible with future satellite 

radars.  

 

4.2 Data 

The CloudSat-GPM coincidence dataset, version 1C (Turk et al. 2021), is a compilation 

of products for each near-coincident (within 15 minutes) overpass between CloudSat and GPM 

from March 18, 2014 to September 30, 2016. This time period covers 6502 instances when the 

two satellites, due to their unique orbital geometries, sampled the same scene. Each CPR pixel is 

matched to the pixel contained in the DPR swath whose center is closest in space to the center of 

the CPR pixel. Because the instruments’ footprints are not the same size, this means that many of 

the GPM observations are associated with multiple CloudSat pixels. There is also a slight 

mismatch in vertical resolution for the radars: the DPR vertical resolution is 250 m for matched 

Ku- and Ka-band footprints, while the CPR vertical resolution is 240 m. When matching radar 

bins between CPR and DPR, the matched DPR bin is the bin whose top lies just above a given 

CloudSat bin top.  

Each CloudSat-GPM coincident file contains several individual datasets. GPM products 

are Version 4 (V4) and CloudSat products are Release-5 (R05). We use the CPR profile of radar 
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reflectivity as reported in the 2B-GEOPROF dataset, along with an estimate of two-way 94 GHz 

path integrated attenuation (PIA) due to hydrometeors, which comes from 2C-PRECIP-

COLUMN (Haynes et al. 2009). For GPM, we use the “matched scan” (MS) profiles of Ku- and 

Ka-band reflectivity, along with corresponding PIA values, from 2B.GPM.DPRGMI.CORRA 

(Grecu et al. 2016), while GPM Microwave Imager (GMI) brightness temperatures come from 

1C.GPM.GMI. Auxiliary information used by our retrieval, including the surface wind speed and 

profiles of temperature, pressure, and specific humidity, comes from ECMWF-AUX, i.e., 

interpolated forecast model fields from the European Center for Medium Range Weather 

Forecasts. 

We compare retrieved rain rates from our algorithm with retrieved rain rates reported 

from the GPM_2BCMB radar/radiometer algorithm (Grecu et al. 2016) and the CloudSat 2C-

RAIN-PROFILE algorithm (Lebsock and L’Ecuyer 2011). These values also come from the 

CloudSat-GPM coincidence files (and thus are V4 and R05, respectively). In our analysis, we 

consider CloudSat rain rates at two levels: at the surface and at CPR range bin 5, which we will 

refer to as GPM-base because it corresponds approximately to the lowest DPR range bin 

(~1000m above the surface). The surface values are taken directly from the CloudSat-GPM 

coincidence files. The CloudSat algorithm assumes that evaporation occurs between cloud base 

and the surface according to the parameterization given in Kalmus and Lebsock (2017). For a 

better apples-to-apples comparison with the GPM combined algorithm, which does not include 

sub-cloud evaporation, we also consider GPM-base rain rates from 2C-RAIN-PROFILE. While 

these are not reported directly in the CloudSat-GPM coincidence files, the rain water content 

(RWC) retrieved at each range bin is reported, and from this we calculate the rain rate assuming 
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the DSD parameterization given by Abel and Boutle (2012), which is the same parameterization 

assumed by the 2C-RAIN-PROFILE algorithm. 

 

4.3 Methods 

To retrieve rain rates from the GPM and CloudSat measurements, we use a retrieval 

algorithm based upon the method of optimal estimation (Rodgers 2000). Simpler versions of the 

algorithm meant for non-precipitating scenes are described in Duncan and Kummerow (2016) 

and Schulte et al. (2020). While the mathematical backbone of the algorithm used in this study is 

the same as in those, the current algorithm has several key differences. While earlier versions 

were designed to be used only with passive microwave (PMW) brightness temperature (TB) 

observations, the version described here also incorporates (and indeed emphasizes) Z as well as 

PIA estimates. As in the earlier studies, we retrieve the cloud liquid water path (CLWP), but 

rather than trying to retrieve the water vapor profile, we use the profile from ECMWF as given in 

the CloudSat-GPM coincidence files and instead retrieve the rain water content (RWC) at each 

radar range gate.  

Like other OE algorithms, ours is a Bayesian algorithm that searches for the atmospheric 

state vector (𝒙) that, when processed through a forward model 𝒇 along with assumed ancillary 

information (represented by the vector 𝒃), leads to simulated observations that are most 

consistent with the actual satellite observations 𝐲, subject to measurement and forward model 

uncertainties described by the error covariance matrix 𝐒𝐲. At the same time, 𝒙 is constrained by 

the a priori state vector, 𝐱𝐚, and its assumed uncertainties, described by the error covariance 

matrix 𝐒𝐚. The algorithm tries to find the state vector that maximizes the conditional probability 
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𝑃(𝒙|𝒚), that is, the probability of that state being the correct state given the observed satellite 

measurements, which by Bayes’ Theorem is given by 

    𝑃(𝒙|𝒚) = ;<𝒚=𝒙>;(𝒙)
;(𝒚)

 .      (4.1) 

 Rodgers (2000) showed that, if one assumes Gaussian measurement errors, Gaussian 

forward model errors, and Gaussian errors in 𝐱𝐚, maximizing 𝑃(𝒙|𝒚) amounts to minimizing the  

cost function Φ, given by 

Φ = (𝐱 − 𝐱𝐚)B𝐒𝐚53(𝐱 − 𝐱𝐚) + [𝐲 − 𝒇(𝐱, 𝐛)]B𝐒𝐲53[𝐲 − 𝒇(𝐱, 𝐛)].   (4.2) 

The first term will be smaller the closer a potential solution vector 𝒙 is to the assumed a priori 

state 𝐱𝐚, while the second term will be smaller the closer the forward model output 𝒇(𝐱, 𝐛) is to 

the actual satellite measurements. We use the Gauss-Newton method to iteratively solve for the 

value of 𝒙 at which the gradient of the cost function, ∇DΦ, is equal to zero. In our case, we 

assume we know very little about the a priori state and proscribe 𝐒𝐲 and 𝐒𝐚 such that the second 

term (the agreement with satellite observations) becomes dominant in determining the value of 

Φ. The a priori assumptions are still helpful, however, in that the covariances assumed between 

vertical levels help the algorithm converge to a physically realistic solution.  

4.3.1 State and Observation Vectors 

 The state vector 𝒙 is made up of the column-integrated CLWP plus the RWC at each 

vertical level in the column at which at least one radar frequency has a reflectivity above -20 

dBZ. Specifically, we retrieve log10(CLWP) and log10(RWC) because the OE framework 

assumes Gaussian distributions and these variables are closer to Gaussian when translated into 

logarithmic space. In the normalized gamma drop size distribution experiments (NG_DSD, see  

Section 4.3.3), the state vector also contains two additional parameters, both of which are 

retrieved as column-averaged values. These are the mass-weighted mean rain drop diameter (Dm) 
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and the normalized gamma shape parameter (𝜇), as explained in Chapter 3. The size of 𝒙 thus 

depends both upon the depth of the raining column as well as the DSD model being used. The 

values used for the a priori state vector 𝐱𝐚 are given in Table 4.1. 

Table 4.1. Values used in the a priori state vector xa, along with their assumed uncertainties 

included in the Sa matrix. 

State 

Variable 

A priori 

Value 

Std. Deviation s 

(Sa uses s2) 
Comments 

log10(CLWP) 
2.25 

(178 g/m2) 
0.25 

2C-RAIN-PROFILE assumes log10(CLWP) = 

2.24 + 0.09log10(RRsurf); we choose an apriori 

value that is close to their minimum and set s 

high enough that any possible 2C-RAIN-

PROFILE value is within 1 std. deviation 

log10(RWC) 
-1.12 

(0.076 g/m3) 
3.0 

A priori value is equal to mean from 2C-

RAIN-PROFILE; variance is set very high so 

that the full range of possible RWCs are 

within 1 s 

log10(Dm) 
-0.3 

(0.50 mm) 
0.55 Only used in NG_DSD experiments 

𝜇 4.33 5.6 Only used in NG_DSD experiments 

 

 The makeup of the 𝐲 vector, on the other hand, depends on whether the observations 

being considered come from CloudSat, GPM, or both combined. For the CloudSat-only 

retrievals, 𝐲 consists of the W-band PIA plus the W-band reflectivities from CPR-base up to the 

highest range gate with Z > -20 dBZ. For GPM-only retrievals, 𝐲 contains Tb from the 13 

channels of GMI, Ku- and Ka- band PIA, and all valid DPR reflectivities reported in the 

CloudSat-GPM coincidence file for that pixel (that is, measurements that are both above the 

surface clutter and above DPR detection limits). For combined retrievals, 𝐲 includes all of these 

observations. We acknowledge that the GMI field of view is much larger than that of the DPR, 

especially for the lower frequency channels, and for this reason the forward model errors 

associated with the GMI observations are assumed to be quite high in the 𝐒𝐲 matrix (see Section 
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4.3.4 and Table 4.2). The GMI measurements weakly constrain the total amount of liquid water 

in the column but are much less important to the retrieval than the radar reflectivities or PIA. 

4.3.2 Forward Model 

 For a given state vector, we use a forward model to simulate PMW brightness 

temperatures, radar reflectivities, and radar two-way path integrated attenuation to compare with 

satellite observations from GPM and CloudSat. For simulating TB, we use the MonoRTM 

radiative transfer model (Clough et al. 2005) to calculate gaseous absorption and the FASTEM6 

model to estimate sea surface emissivity (Kazumori and English 2015). We assume spherical 

cloud and rain drops and use Mie theory (Mie 1908) to calculate the absorption and scattering 

from these hydrometeors. For more details on the PMW part of the forward model refer to 

Schulte and Kummerow (2019). For simulating Z and PIA, we use effective reflectivites 

calculated by the QuickBeam radar simulator (Haynes et al. 2007). Both gaseous and 

hydrometeor attenuation is included for calculating Z but only hydrometeor attenuation is 

included in the calculation of PIA, to match the way that PIA is reported in the CloudSat-GPM 

coincidence dataset. Because our aim is to study the impact of DSD assumptions on RR, rather 

than to retrieve perfect RRs, we have neglected multiple scattering in order to simplify the 

radiative transfer calculations. This choice is further justified by the fact that we are mostly 

focused on light rain. However, we note that multiple scattering can be significant at W-band 

radar frequencies (e.g. Battaglia et al. 2008). 

 The forward model requires information about the atmospheric state that is not explicitly 

solved for as part of 𝒙. For example, profiles of temperature, pressure, and specific humidity are 

taken from ECMWF-AUX. The FASTEM6 model requires surface wind speed, wind direction, 

and sea surface temperature, which also come from ECMWF-AUX. We assume that cloud water 



 71 

is uniformly distributed through the depth of the cloud, an assumption that is shared by the 

CloudSat 2C-RAIN-PROFILE algorithm (Lebsock 2018).  We assume an inverse exponential 

size distribution of cloud droplets of the form 

𝑛(𝑑) = 	𝑛2𝑒578,             (4.3) 

where 𝑛2 is the intercept parameter and λ is the slope parameter. λ can be related to the effective 

radius 𝑟9 by 

𝜆 = -
+:%

.              (4.4) 

We assume a constant 𝑟9 throughout the cloud of 11 µm, a value that is broadly in line with 

studies such as Witte et al. (2018) and Sinclair et al. (2021) that sampled stratocumulus clouds. 

𝑛2 is then calculated to give a size distribution that integrates to give the correct CLWP for a 

given state. This representation of cloud water is simplified, and in the absence of precipitation a 

more sophisticated model could be used to retrieve a profile of cloud water and droplet sizes 

more accurately. However, our focus in this chapter is on precipitating scenes, where radar 

reflectivity is dominated by the rain and/or drizzle drops and the cloud water mostly affects the 

attenuation and TB. For these measurements, the total amount of cloud water in the column is 

much more important than the precise vertical distribution or size distribution of the cloud 

droplets. Sensitivity tests assuming a larger or smaller 𝑟9, a lognormal distribution instead of an 

inverse exponential, or a cloud water profile that linearly increased from cloud base to cloud top 

did not significantly change the results of our experiments. 

4.3.3 DSD Models 

 One of the most important assumptions made in the OE forward model is that of the rain 

DSD. We perform experiments assuming three different DSD models. The first (CS_DSD) uses 
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the DSD model assumed by the CloudSat 2C-RAIN-PROFILE algorithm. For the CS_DSD 

experiments, we begin with a DSD that is modeled by a gamma distribution of the form  

𝑁(𝐷) = 	𝑁2𝐷#𝑒5P!,      (4.5) 

where 𝑁(𝐷) is the number concentration of drops with diameter D, 𝑁2 is the intercept parameter, 

𝜇 is the shape parameter, and Λ is the slope parameter. Following Abel and Boutle (2012), this 3-

parameter formulation is reduced to a single free parameter by assuming 𝜇 = 0 and that 𝑁2 and 

Λ are related by the equation 

𝑁2 = 𝑥3ΛE&,          (4.6) 

with 𝑥3 = 0.22 and 𝑥+ = 2.2. In this way any given RWC is uniquely tied to a given distribution 

of rain drops, and thus to a unique RR. The CS_DSD model yields a very high concentration of 

small drops at low RWC, but at higher RWC 𝑁2 and Λ both decrease, yielding a broader 

distribution that is more heavily weighted towards large drops.  

 In another set of experiments (NG_DSD), we use a three parameter normalized gamma 

model (Testud et al. 2001). The normalized gamma distribution is an alternate formulation of a 

gamma distribution given by 

𝑁(𝐷) = 𝑁"𝑓(𝜇) ' !
!!
(# exp	[−(4 + 𝜇) !

!!
],            (4.7) 

where  

𝑓(𝜇) = 	 $(&'#)"#$
&")(&'#)

.                   (4.8) 

This formulation retains the shape parameter 𝜇, but replaces 𝑁2 with 𝑁", the “normalized” 

intercept parameter, and Λ with 𝐷*, the mass spectrum mean diameter. An advantage of the 

normalized gamma distribution is that Dm is a physical quantity that can be directly measured, 

while Λ	has no meaning outside of its mathematical construct. Nonetheless, any combination of 
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𝑁", Dm, and 𝜇 can be expressed by a combination of  𝑁2, Λ, and 𝜇 that yields the exact same size 

distribution. In the NG_DSD experiments, we place no restrictions on 𝑁", Dm, and 𝜇. 

 However, in the third set of experiments (GPM_DSD), 𝜇 is prescribed to be equal to 2. 

This mimics the assumption in the GPM_2BCMB algorithm (Grecu et al. 2016). Furthermore, in 

GPM_2BCMB, 𝐷* and 𝑁" are retrieved in separate steps. 𝐷* is analytically diagnosed from the 

Ku radar reflectivity profile, making assumptions about 𝑁" as described in Grecu et al. (2011), 

and then 𝑁" is retrieved at 9 vertical locations in the raining column, assuming the profile of 𝐷* 

already diagnosed. Rather than try to copy this process, in the GPM_DSD experiments we fix 

𝐷* at each level to be equal to the value reported in the CloudSat-GPM coincidence files, 

leaving 𝑁" as the only free parameter left to be retrieved. 

 Finally, it should be noted that the RWC of a DSD can be obtained from the following 

integral: 

𝑅𝑊𝐶 =	 G
$
𝜌" ∫ 𝑁(𝐷)Q

2 𝐷-𝑑𝐷,    (4.9) 

where 𝜌" is the density of liquid water. This can also be expressed as  

𝑅𝑊𝐶 = 	𝜋𝜌"𝑁" '!!& (
&.          (4.10) 

Thus, it is possible to express any given normalized gamma curve as a function of RWC, 𝐷*, 

and 𝜇. In our testing, we found that the retrieval algorithm performed slightly better when RWC 

was retrieved (and 𝑁" then calculated) than when 𝑁" was one of the retrieved parameters. RWC 

also has the advantage over 𝑁" of being a directly measurable quantity from a disdrometer. 

 To summarize, in the CS_DSD experiments we retrieve a profile of RWC only while 

assuming 𝜇 = 0 and that Eqn. 6 is valid. In the NG_DSD experiments, we retrieve a profile of 

RWC, as well as column-averaged values of 𝐷* and 𝜇. And in the GPM_DSD experiments, we 
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retrieve the RWC profile, prescribe 𝐷* at each level to be equal to the 𝐷* reported by 

GPM_2BCMB, and set 𝜇 = 2. 
4.3.4 Covariance Matrices  

 The diagonal of the 𝐒𝐚 matrix consists of the assumed variance/error in the a priori 

estimates of log10(CLWP), log10(RWC), and (for NG_DSD) log10(Dm) and 𝜇. Table 4.1 lists the 

values used. The assumed variances are designed to be especially broad so that the retrieval can 

capture the full range of rain rates, weighting the observations much more heavily than the a 

priori assumptions. Also included in the 𝐒𝐚 matrix are assumed covariances between the RWC at 

different vertical levels, as one would expect the amount of rain falling through one level of the 

atmospheric column to be correlated to the amount of rain in the adjacent levels. As noted by 

Haynes et al. (2009) and Lebsock and L’Ecuyer (2011), the correlation length scale should 

increase with RR, and thus with PIA. In a manner similar to 2C-RAIN-PROFILE, we use the 

following equation to define the correlation between any two levels i and j: 

𝜌KR = exp	 ' 5|K5R|

3';/T1
(,           (4.11) 

where PIAW is the W-band PIA measured by CloudSat for the pixel in question. For consistency, 

we use this correlation equation even for the GPM retrievals, although for operational retrievals 

without a coincident CloudSat overpass a different method would have to be used. 

 The uncertainties that make up the 𝐒𝐲 matrix are a combination of measurement 

uncertainties, which are well-known, and forward model uncertainties, which are unfortunately 

both larger and harder to define. To estimate these uncertainties, we first used our forward model 

to compute simulated observations using atmospheric profiles that combined the ECMWF-AUX 

information in the CloudSat-GPM coincidence profiles with the cloud and rain profiles retrieved 

by 2C-RAIN-PROFILE. We compared these simulated observations to the actual measurements  
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Table 4.2. Uncertainties assumed in the Sy error covariance matrix, grouped by observation type. 

Observation Type Std. Deviation s (Sy uses s2) Comments 

GMI TB 

10.7/18.7/36.6 GHz h-pol: 30 K 

10.7/18.7/36.6 GHz v-pol: 20 K 

23.8 GHz v-pol: 15 K 

89 GHz and up: 7 K 

Higher frequencies have smaller 

footprints and thus smaller 

uncertainties due to footprint 

heterogeneity 

Z 

GPM Ku- and Ka-band: 4.5 dBZ 

CloudSat W-band: 𝜎 =
55.0 +	\0.5 '1 − K5N

N5U
( 𝑃𝐼𝐴V_+ 

CloudSat forward model uncertainty 

increases with increasing attenuation 

PIA 2.0 dB (all frequencies) 
Best estimate of forward model 

uncertainty 

 

reported from CloudSat and GPM and calculated the variance in the error for each type of 

measurement. While this was our starting point, we also did some light tuning of the values to 

make the distributions of retrieved RR look more realistic. The resulting values are reported in 

Table 4.2. All of the diagonal values of 𝐒𝐲 are constant except for the variances corresponding to 

the W-band reflectivity uncertainties. Because attenuation is strong at this frequency, 

uncertainties grow larger the closer one is to the surface. We approximate this increase in 

uncertainty using the following equation: 

𝑺𝒚,𝒊𝒊 = 5.0 +	\0.5 '1 − K5N
N5U
( 𝑃𝐼𝐴V_+.    (4.12) 

Here i is the level being considered, t is the level of the top of the raining column, and b is the 

level of the bottom of the raining column. Following Lebsock and L’Ecuyer (2011), the off-

diagonal W-band reflectivity covariances are set to 𝑺𝒚,𝒊𝒋 = min	(𝑺𝒚,𝒊𝒊, 𝑺𝒚,𝒋𝒋). This is done because 

forward model errors in the calculation of simulated reflectivity (including attenuation effects) 

are likely to be hightly correlated. All other off-diagonal elements of 𝐒𝐲 (i.e., those including 

measurements other than W-band Z) are assumed to be zero.   

 The 𝐒𝐚 and 𝐒𝐲 covariance matrices are very important in the OE framework, and changes 

to their values can have non-trivial effects on retrieved values. In addition, determining the 
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proper covariances to assume is a difficult task given the many potential sources of forward 

model and observational uncertainties and the rather small number of CloudSat-GPM coincident 

observations of oceanic warm rain that we are considering. We have done our best to make error 

assumptions that are physically plausible, consistent with other observational algorithms 

(particularly 2C-RAIN-PROFILE), and that yield reasonable retrieved rain rates. Admittedly, in 

some cases one could make an equally justifiable but different error assumption and retrieve a 

different rain rate. However, our goal in this chapter is not to validate the retrieved RRs 

themselves but to look at differences that arise when different DSD models are assumed. We are 

confident that the differences we report between DSD experiments are robust, because all of the 

experiments make use of a consistent set of error assumptions.  

 

4.4 Results 

4.4.1 Comparison Between Operational Products 

 Our analysis of the CloudSat-GPM coincidence dataset confirms previous findings that 

CloudSat retrievals include a much higher frequency of occurrence of rain rates below 0.5 mm/h 

than GPM retrievals, and that CloudSat retrieves more accumulated oceanic warm rain than 

GPM. Figure 4.1 shows the frequency of occurrence of various surface rain rates for all oceanic 

warm rain cases in the CloudSat-GPM coincident dataset. For a pixel to be included it must meet 

all of the following criteria: (1) be within the DPR matched swath and over ocean; (2) have a 

cloud-top altitude as indicated by CloudSat that is below the altitude of the 273 K isotherm given 

by ECMWF-AUX; (3) have a non-zero rain rate as reported by at least one of the four satellite 

products considered in our analysis. These products include GPM_2BCMB (Grecu et al. 2016), 

GPROF (Kummerow et al. 2015), the attenuation-based CloudSat 2C-RAIN-COLUMN  
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algorithm (Haynes et al. 2009), and CloudSat 2C-RAIN-PROFILE (Lebsock and L’Ecuyer 

2011). 

 

FIG. 4.1. (Left) Frequency distribution of surface rain rates from pixels seen by both GPM and 

CloudSat from the GPM_2BCMB, GPROF, CloudSat 2C-RAIN-COLUMN, and CloudSat 2C-

RAIN-PROFILE algorithms. (Right) Cumulative distributions of rain rates, scaled so that each 

curve represents that precipitation up to a given rain rate as a percentage of the total amount of 

rain reported by GPM_2BCMB. 

 

  It should also be noted that precipitation frequencies depend on the spatial scale being 

considered. Using a coarser resolution will yield a higher frequency of precipitation overall but a 

lower average precipitation rate per pixel. This complicates comparisons between GPM and 

CloudSat as their radar footprint sizes are different. In theory, the number of consecutive CPR 

pixels that should be averaged together for comparison with a DPR pixel should be somewhere  

between 3 and 11 (Behrangi et al. 2012). The lower limit represents the number of CPR pixels it 

takes to completely cross a single DPR pixel. The upper limit represents the number of CPR 

pixels whose combined area is equal to a single DPR pixel. In Figure 4.1 and in the analysis that 

follows we choose to use an averaging bin of 7 CloudSat pixels when comparing to GPM 
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estimates, as this falls halfway between these two limits. The choice of averaging bin does not 

affect total accumulated precipitation.  

 Figure 4.1 shows that the GPM combined algorithm retrieves precipitation overall less 

frequently than any of the other products, and that retrieved precipitation rates from GPM of 

below 0.2 mm/h are very rare. GPROF includes many more pixels that have a non-zero RR, with 

a distribution that peaks at around 0.1 mm/h but with very few pixels above 2.0 mm/h. 2C-

RAIN-COLUMN yields a similarly high concentration of RRs between 0.02 and 0.5 mm/h; 

however, there are more pixels with RRs between 0.5 and 5.0 mm/h which leads to much more 

accumulated precipitation overall. The distribution from 2C-RAIN-PROFILE includes a greater 

number of high RR pixels than any of the other estimates, but there are far fewer low RR pixels 

than seen by GPROF or 2C-RAIN-COLUMN. Many of these pixels have 2C-RAIN-COLUMN 

rain rates that are above zero at GPM-base, but no surface RR because the evaporation model 

predicts the rain will evaporate before it reaches the ground. 

For the rest of this chapter we will focus on GPM_2BCMB and 2C-RAIN-PROFILE 

estimates, as these are the algorithms that make the most use of the DPR and CPR radars, 

respectively. As can be seen on the righthand side of Figure 4.1, GPM_2BCMB retrieves only 

about 33% of the total surface rain retrieved by 2C-RAIN-PROFILE. In Figure 4.2, we show 

how this gap is greatly reduced by accounting for surface clutter and radar sensitivity 

differences. The red dashed line shows the frequency of RRs from 2C-RAIN-PROFILE at GPM-

base instead of the surface. This greatly reduces the number of high-RR pixels, putting the 

frequency much more in line with GPM_2BCMB estimates. This implies either that GPM misses 

a lot of heavier, near-surface warm rain that is masked by its surface clutter, or that there is 

something about the CloudSat 2C-RAIN-PROFILE algorithm that causes it to overestimate RRs 
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in the lowest levels of the atmosphere. On the other hand, 2C-RAIN-PROFILE includes many 

more RRs below 0.5 mm/h at GPM-base than at the surface. This is presumably because the rain 

is so light that it evaporates before it reaches the surface. All told, using GPM-base estimates 

reduces the total accumulated warm rain from 2C-RAIN-PROFILE to about 175% of the total 

from GPM_2BCMB, instead of about 300% if surface estimates are used. 

Next we attempt to account for radar detection limits. Because the GPM and CloudSat 

observations are only near-coincident, and because whether or not a particular RR is able to be 

seen by DPR is dependent upon the DSD, we do this by forcing the frequency of warm rain 

occurrence from 2C-RAIN-PROFILE at GPM-base to be equal to the frequency of occurrence 

from GPM_2BCMB. That is, since only 5.1% of GPM pixels in our dataset included measurable 

precipitation, we set all but the top 5.1% of RRs from 2C-RAIN-PROFILE to be equal to 0. The 

results are shown by the solid red line in Figure 4.2. This further reduces the discrepancy 

between CloudSat and GPM RRs, such that total accumulated 2C-RAIN-PROFILE  warm rain is 

only 25% higher than GPM_2BCMB. From the accumulation graph, it is clear that most of this 

difference comes at high RRs (above 2.0 mm/h), which are not frequent but that contribute 

significantly to total accumulation. 
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FIG. 4.2. As in Fig. 4.1, but including 2C-RAIN-PROFILE rain rates at GPM-base (dashed red) 

and at GPM-base with the lowest rain rates excluded such that the total rain frequency matches 

GPM_2BCMB (solid red). 

 

 

 

4.4.2 CloudSat-only and GPM-only Retrievals 

 In our next experiment, we perform OE retrievals on either CloudSat-only or GPM-only 

observations, assuming DSDs models that are consistent with the 2C-RAIN-PROFILE and 

GPM_2BCMB algorithms, respectively. Figure 4.3 shows scatterplots of retrieved RR compared 

to the operational algorithms, and Figure 4.4 shows histograms of retrieved RR frequency and 

the total cumulative distributions. Once again, CloudSat estimates have been averaged with a 

boxcar window of 7 pixels and low RRs have been eliminated to force the total rain frequency to 

match GPM. The retrieved rain rates do not track perfectly with the operational algorithms, 

which is expected given that the operational algorithms have years of development underpinning 

them and make assumptions in their forward models (apart from DSD assumptions) that are 

different than the ones made in our OE algorithm. Specifically, our retrieved rain rates are biased  
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FIG. 4.3. Density plots comparing OE retrieved rain rates from GPM-only (left) or CloudSat-

only observations (right) to values from the operational algorithms GPM_2BCMB and Cloudsat 

2C-RAIN-PROFILE, respectively. The GPM-only retrieval only includes cases where there 

exists a valid DPR reflectivity value somewhere in the column, and thus includes far fewer cases 

than the CloudSat-only retrieval. Both OE retrievals assume identical DSD models to the 

operational algorithms to which they are compared. 

 

 

 

 
FIG. 4.4. As in Fig. 4.1, but with distributions included from GPM-only (assuming GPM_DSD) 

and CloudSat-only (assuming CS_DSD) OE retrievals, and with the CloudSat rain frequency 

forced to match that of GPM.  
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high compared to the operational algorithms. Importantly, however, we obtain a similar result to 

what is shown in Figures 4.1 and 4.2 in that more total rain is retrieved from CloudSat than from 

GPM. The gap between CloudSat and GPM estimates is about 17%, similar in magnitude to the 

25% gap seen between 2C-RAIN-PROFILE and GPM_2BCMB. 

4.4.3 GPM Retrievals with Adjusted DSD Assumptions 

 To test the theory that gaps between CloudSat and GPM retrieved rain rates are at least 

partially attributable to differing DSD assumptions, we retrieve rain rates from GPM-only 

observations assuming the NG_DSD and CS_DSD models in addition to the GPM_DSD results 

presented above. Results are shown in Figure 4.5. Assuming the Able and Boutle (2012) DSD of 

CS_DSD shifts the entire population of retrieved rain rates higher. This results in 28% more total 

precipitation being retrieved in the CS_DSD experiment compared to the GPM_DSD 

experiment, a value that is quite similar to the 25% gap between 2C-RAIN-PROFILE and 

GPM_2BCMB. Using NG_DSD, the retrieved rain rates tend to be between the GPM_DSD and 

CS_DSD experiments, with total accumulation about 12% higher than in GPM_DSD. 
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FIG. 4.5. Frequency distributions (left) and cumulative distributions (right) of GPM-only 

retrieved RRs assuming either the GPM_DSD, NG_DSD, or CS_DSD drop size distribution 

models. The cumulative distributions are scaled relative to the total amount of rain accumulation 

from GPM_2BCMB at GPM-base. 

 

4.4.4 Combined Retrievals 

In our last set of experiments, we perform retrievals that incorporate observations from 

both GPM and CloudSat. This can be thought of as a proxy for what a theoretical triple-

frequency spaceborne radar would retrieve, though we caution that the observations in the 

CloudSat-GPM coincidence dataset are not perfectly matched in space and time. Still, using both 

sets of observations gives a sense for how much of the CloudSat/GPM rain rate differences are 

due to the different sensitivities of the satellite instruments, and how much are due to DSD 

assumptions. We perform these combined retrievals using either the CS_DSD or NG_DSD 

assumptions (we cannot use GPM_DSD because no Dm is reported for levels at which DPR 

reflectivities are below the detection thresholds). 

An example of one combined retrieval is shown in Figure 4.6. This particular profile 

illustrates several noteworthy principles. From the radar reflectivity profiles, we see that CPR 

has a greater sensitivity to rain near the surface than DPR, and that CPR measures light rain that 
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reaches much higher than what DPR is able to see. The W-band Z also decreases below 2000 m, 

even as the Ku- and Ka- band Z are increasing, an indication that significant W-band attenuation 

is occurring. The profile of RWC from CloudSat 2C-RAIN-PROFILE is much higher than that 

from GPM_2BCMB, a result that we also see in our own GPM-only and CloudSat-only 

retrievals. This is in large part explained by the fact that GPM_2BCMB assumes much higher 

Dm values than 2C-RAIN-PROFILE. With a greater concentration of large drops assumed, less 

overall rain water is required in order for the simulated DPR reflectivities to reach the levels 

observed (note that Z scales as D6). In the combined NG_DSD retrieval, which settles on a 

column-averaged value for Dm that is somewhat between the CloudSat and GPM results, the 

RWC profile similarly falls in the middle. 

Rain rate distributions from the combined OE retrievals are compared against GPM-only 

and CloudSat-only retrievals in Figure 4.7. The combined retrievals have a greater frequency of 

retrieved RRs landing between 0.5 and 2.0 mm/h. In some cases where the CloudSat 

observations indicate light rain, GPM observations pull the solution towards higher rain rates, 

and vice versa. This could be for either “good” reasons (having more observables reduces the 

overall measurement noise) or unphysical ones (e.g. space and time mismatches). Overall, the 

effect of combining observations is to increase the total about of retrieved warm rain 

accumulation. Another noteworthy result is that the NG_DSD version of the combined retrieval 

retrieves 11% less total accumulated rain than the CS_DSD version. This is consistent with the 

GPM-only results shown in Fig. 4.5 and points once again to the important role that DSD 

assumptions play in satellite warm rain retrievals. 



 85 

 

FIG. 4.6. Example of the combined (3-frequency) retrieval assuming the NG_DSD model. Top 

Left: Profiles of observed (solid) and simulated (dotted) reflectivity at each DPR or CPR radar 

frequency. Top Right: The profile of retrieved RR is the dotted black line. For comparison, blue 

lines show RR profiles from GPM-only retrievals from either GPM_2BCMB or our OE 

assuming GPM_DSD, while red lines show Cloudsat-only retrievals from 2C-RAIN-COLUMN 

or our OE assuming CS_DSD. Bottom Left: As in the previous plot, but for retrieved RWC. 

Bottom Right: Profile of Dm from 2C-RAIN-PROFILE, GPM_2BCMB, and our combined 

retrieval assuming NG_DSD. Note that our retrieval produces only a column-averaged value. 
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FIG. 4.7. As in Fig. 4.5, but with retrieved rain rates from GPM-only (GPM_DSD assumed), 

CloudSat-only (CS_DSD assumed), combined retrieval with CS_DSD assumed, and combined 

retrieval with NG_DSD assumed. 

 

4.5 Discussion and Conclusions 

 Our analysis suggests that a non-trivial portion of the difference in warm RRs retrieved 

by GPM and CloudSat stems from differing DSD assumptions. We can, in fact, use our results to 

roughly partition the GPM/CloudSat discrepancy into three categories: differences in surface 

clutter, differences in sensitivity, and differences in DSD assumptions. The gap between the total 

warm rain estimated from CloudSat 2C-RAIN-PROFILE and from GPM_2BCMB reduces from 

nearly 200% of the GPM_2BCMB total to about 75% when evaluating rain rates at 1000 m 

above the surface instead of using surface estimates (thus eliminating surface clutter differences). 

The gap is further reduced to 25% when accounting for radar sensitivity differences by forcing 

the rain frequencies from the two estimates to match. When using our own OE algorithm, 

making mostly identical algorithm assumptions but retaining differences in DSD models, total 

CloudSat warm rain accumulation is about 17% larger than GPM accumulation. This gap is 
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similar in magnitude to the 25% gap seen in the operational products, but disappears completely  

when we retrieve rain rates from GPM assuming the CloudSat DSD model. 

 The fact that the GPM_DSD and NG_DSD experiments resulted in lower retrieved RRs 

than the CS_DSD experiments is explained by the fact that the CS_DSD model assumes a much 

higher concentration of small rain drops for a given RWC. At first glance, one might think that 

this would result in lower RRs, since small drops fall more slowly than large drops. For a purely 

attenuation-based retrieval, such as 2C-RAIN-COLUMN, this would likely be the result. 

However, when reflectivities are considered, which (in the Rayleigh regime) scale to the power 

of D6, the slower fall speed of small drops is outweighed by the fact that, if smaller drops are 

assumed, a much higher RWC is required in order to give the same Z. These competing effects 

are illustrated nicely in Figure 4.6, where the retrieved RWC at GPM-base from 2C-RAIN-

COLUMN is about twice as high as the retrieved RWC from GPM_2BCMB, but the retrieved 

CloudSat RR at the same level is only about 40% higher than the GPM RR.  

 Which DSD model is the “correct” one to assume in satellite precipitation retrievals? 

That is beyond the scope of this chapter, although in Chapter 2 it was found that the Abel and 

Boutle (2012) DSD relationship did not closely match observed DSDs from the Azores or the 

relationships found in other recent studies looking at disdrometer observations (Protat et al. 

2019b; Liao et al. 2020). Our combined NG_DSD retrievals tend to result in Dm values that are 

somewhere between the CloudSat and GPM value but that track slightly more closely to 

CloudSat. Still, this is somewhat dependent on the apriori value for Dm that is used in the 

retrieval, and we have looked only at warm rain. Results in other types of precipitation could be 

very different. More global observations of oceanic DSDs are needed in order to better 

understand how DSDs vary in different environments. Encouragingly, much progress has been 
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made on this front in recent years. The ORACLES (ObseRvations of Aerosols above Clouds and 

their intEractionS; Redemann et al. 2021) field campaign of 2016-2017 made many aircraft 

flights observing statocumuluous cloud structure, precipitation frequency, and precipitation 

intensity over the southeast Atlantic Ocean (Dzambo et al. 2019). In addition, a series of 

coordinated projects between 2016-2018 used in situ probes, radar, lidar, and other instruments 

to measure precipitation properties, including DSDs, over the Southern Ocean (McFarquhar et al. 

2021). Dolan et al. (2018) identify six dominant modes of DSDs globally, using a network of 

ground-based disdrometer observations. Finally, the Ocean Rainfall And Ice-phase precipitation 

measurement Network (OceanRAIN; Klepp et al. 2018) is a recently compiled in situ ship-based 

ocean precipitation database that is helping to characterize the variability of global DSDs. The 

OceanRAIN dataset exhibits different DSD characteristics at high latitudes compared to other 

parts of the globe and these characteristics translate into different relationships between radar 

observables and RR (Protat et al. 2019a, Protat et al. 2019b, Duncan et al. 2019).  

At any rate, our contention is not that either the GPM_DSD or CS_DSD model is 

definitively more appropriate but rather that they make significantly different assumptions about 

the shape of the rain DSD and that these differences are important for explaining retrieved RR 

differences. If warm rain satellite retrieval uncertainties are to be narrowed, we must not only 

design radars that are better able to sample light rain near the surface, but also work to better 

incorporate our understating of global DSD variability into retrieval algorithms.  
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CHAPTER 5: CONCLUSIONS 

 

 As documented in Chapter 1, there exists significant disagreement between satellite-

based retrieval algorithms in terms of the intensity and frequency of oceanic precipitation. The 

problem is particularly acute over the high latitudes but large discrepancies are also found in 

other regimes where warm rain is common. The goal of this dissertation was firstly to better 

understand the uncertainties affecting different types of satellite measurements, and secondly to 

see if retrieval differences could be resolved if a more consistent set of assumptions was made 

across different satellite sensors. Along the way, we also explored how future satellite 

precipitation missions might be constructed so as to minimize uncertainties in the retrieval of 

warm rain. 

 Critical to all 3 papers presented in this dissertation was the development of an optimal 

estimation retrieval algorithm that is flexible enough to be used to retrieve CLWP and DSD 

parameters from any combination of Z, PIA, and/or TB measurements. With this algorithm it is 

possible to retrieve rain rates from GPM observations, CloudSat observations, or observations 

from any future satellite that makes use of radars and/or radiometers. While OE algorithms are 

not new to geoscience, they have more often in the past been applied to non-precipitating scenes 

or have used either active or passive measurements alone, rather than in combination (e.g., 

Boukabara et al. 2010; Duncan and Kummerow 2016). In the context of this dissertation, the 

algorithm allowed for better comparisons between satellites because it allowed algorithm 

assumptions to be ruled out as the source of discrepancies in retrieved rain rates. Even though the 

algorithm might not be perfectly tuned, comparisons between OE results from different satellite 

architectures are helpful for understanding the differences that exist in operational algorithms. 
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 Chapter 2 focused on DSD-related retrieval uncertainties. Retrievals were run on 

synthetic satellite observations based on surface disdrometer observations. A 3-parameter 

normalized gamma model was able to adequately describe the variability seen in these real-world 

observations. In an idealistic scenario that featured a uniform column of rain, the relevant DSD 

parameters were able to be retrieved from all of the satellite architectures considered, but 

especially well when observations at 3 radar frequencies were available. However, assuming 

simpler DSD models (such as the AB12 model assumed by the CloudSat 2C-RAIN-PROFILE 

algorithm) led to large biases in retrieved RR. This finding led to the hypothesis that differing 

DSD assumptions could plausible explain a significant portion of the disagreement in satellite 

precipitation estimates, a hypothesis that was tested on real data from CloudSat and GPM in 

Chapter 4. 

 Chapter 3 examined other important sources of retrieval uncertainty. High-resolution 

simulations from RAMS were used to study the effects of heterogeneity within the atmospheric 

column. Nonuniform beam filling has a large effect on retrieval accuracy, with uncorrected 

NUBF leading to an underestimation of RR in almost all cases. This is consistent with previous 

studies, but shows that the effect is significant even for non-convective cases. In the simulations, 

NUBF effects were larger for a GPM-like collection of measurements than a CloudSat-like 

collection, and also became more severe as resolution become more coarse. Increasing surface 

clutter also led to negative biases in retrieved RR, which were more severe for the GPM-like 

satellite. Taken in combination, and given GPM’s reduced resolution and greater surface clutter 

compared to CloudSat, these results suggest roles for NUBF and surface clutter in explaining the 

difference in retrieved RR from the two satellites. 
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 In Chapter 4, near-coincident observations from CloudSat and GPM were examined to 

show that the operational GPM_2BCMB product misses about 43% of the total rain volume at 

1000 m above the surface compared to the CloudSat 2C-RAIN-PROFILE product. The 

difference is even larger at the surface, and only slightly more than half of the missing rain can 

be attributed to rain that does not meet GPM’s detection threshold. When the OE algorithm was 

run on either the CloudSat observations or GPM observations alone, using the DSD assumptions 

of each operational algorithm, a similar gap in retrieved rain rate was found. The gap became 

smaller when DSD assumptions were made consistent, however. GPM-retrieved RRs grew larger 

when the AB12 DSD scheme was assumed, while CloudSat-retrieved RRs were reduced when a 

normalized gamma DSD shape was assumed. The results suggest that about 25% of the total gap 

in accumulation between GPM and CloudSat is attributable to DSD assumption differences. The 

remaining gap is likely due to a combination of detection limits, NUBF, surface clutter, and non-

DSD algorithm assumptions. While this dissertation falls short of definitively explaining or 

resolving the high latitude precipitation gap, it has diagnosed several factors that contribute. 

 There are many opportunities for future work that arise from the studies presented here. It 

would be interesting to run the CloudSat 2C-RAIN-PROFILE algorithm assuming an alternative 

DSD relationship. One good candidate might be the RR-Dm relationship proposed by Protat et al. 

(2019b), since it is based on globally collected data. One might expect, given the results of this 

study, that doing so would reduce retrieved RRs from CloudSat. Of course, energy budget 

considerations (e.g., Stephens et al. 2012) suggest that the higher RRs retrieved from CloudSat 

are likely closer to the truth. It could be that there are compensating errors at play, with DSD 

assumptions inflating retrieved RRs but (for example) NUBF compensating for this bias. 
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 The OE algorithm that has been developed also offers many avenues for exploration. 

While this analysis has focused on measurement types and frequencies that are already well-

established, one could use the same framework to search for the combination of measurements 

and frequencies that would offer the most useful information for retrieving warm rain. Several 

useful metrics for this sort of analysis fall out of the OE methodology, including the so-called 

“gain matrix” or a value called the “degrees of freedom of signal”, or DFS (Rodgers 2000). 

There are many improvements that could be made to the algorithm forward model, including 

accounting for multiple scattering (Battaglia et al. 2008), the presence of frozen hydrometeors, or 

NUBF. In any case, the algorithm should prove a useful tool for studying the potential of future 

satellite missions such as the Atmosphere Observing System to reduce uncertainties in the 

estimation of warm rain. 
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