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Experimental and Model Fitting Results
• Ventricular dysfunction is the most common cause of heart failure,

which contributes significantly to the mortality and morbidity in

the modern society1.

• It is well accepted that the right ventricle (RV) is distinct from the

left ventricle (LV) in embryologic origin, anatomy and function2.

However, the differences in biomechanical behavior of the RV and

LV are not well understood.

• The Ogden constitutive model has been found to provide better fits

for soft materials than other models (e.g., the Neo-Hookean and

Mooney-Rivlin models)3. However, it has not been applied for

cardiovascular tissues like myocardium.

• Our goal was to characterize and compare the biaxial mechanical

properties of RVs and LVs from healthy adult sheep via both

experimental and computational approaches.
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Methods: Fresh hearts (n=7) were harvested from 4+ year-old female

sheep without known cardiovascular diseases or defects. Within

several hours of sacrifice, biaxial mechanical tests were performed at

three displacement ratios (2:2, 2:1 and 1:2) in random order after the

preconditioning cycles, using similar methods described previously4.

Elastic modulus (E) was obtained as the slope of the stress-strain

curves. Moreover, stress-strain data was fitted by a modified Ogden

constitutive model4:
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W: Strain Energy Density Function; 𝜆: stretch; 𝐼4: stretch invariants; 𝑎0: referential unit vector;

α: nonlinearity; k: anisotropy; μ: infinitesimal shear modulus;

C: right Cauchy-green strain tensor; J: Jacobian of the deformation, J=det(F); F: deformation gradient tensor

Histology was performed with picrosirius red staining to measure

collagen fiber orientation and content (n=4-5 per group). Student’s t-

test was used and all results are mean±SD.
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• We did not observe differences in intrinsic mechanical properties between LVs and RVs.

• In the high strain region, the RV was stiffer in the circumferential direction compared to the

longitudinal direction (p<0.05). The LV, however, showed comparable stiffness in both

directions in all strain regions. The difference in anisotropic behavior can be partly

attributed to the different collagen fiber orientations between the two ventricles.

• The modified Ogden model provided a good fit and correlation to the experimental data.

LV

RV

k>0: stiffer in the longitudinal direction.

k<0: stiffer in the circumferential direction.
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