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Abstract

Mathematical Models for HIV-1 Viral Capsid Structure and Assembly

HIV-1 (human immunodeficiency virus type 1) is a retrovirus that causes the acquired

immunodeficiency syndrome (AIDS). This infectious disease has high mortality rates, en-

couraging HIV-1 to receive extensive research interest from scientists of multiple disciplines.

Group-specific antigen (Gag) polyprotein precursor is the major structural component of

HIV. This protein has 4 major domains, one of which is called the capsid (CA). These

proteins join together to create the peculiar structure of HIV-1 virions. It is known that

retrovirus capsid arrangements represent a fullerene-like structure. These caged polyhedral

arrangements are built entirely from hexamers (6 joined proteins) and exactly 12 pentamers

(5 proteins) by the Euler theorem. Different distributions of these 12 pentamers result in

icosahedral, tubular, or the unique HIV-1 conical shaped capsids. In order to gain insight

into the distinctive structure of the HIV capsid, we develop and analyze mathematical models

to help understand the underlying biological mechanisms in the formation of viral capsids.

The pentamer clusters introduce declination and hence curvature on the capsids. The

HIV-1 capsid structure follows a (5,7)-cone pattern, with 5 pentamers in the narrow end and

7 in the broad end. We show that the curvature concentration at the narrow end is about

five times higher than that at the broad end. This leads to a conclusion that the narrow end

is the weakest part on the HIV-1 capsid and a conjecture that “the narrow end closes last

during maturation but opens first during entry into a host cell.”

Models for icosahedral capsids are established and well-received, but models for tubu-

lar and conical capsids need further investigation. We propose new models for the tubular
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and conical capsid based on an extension of the Caspar-Klug quasi-equivalence theory. In

particular, two and three generating vectors are used to characterize respectively the lattice

structures of tubular and conical capsids. Comparison with published HIV-1 data demon-

strates a good agreement of our modeling results with experimental data.

It is known that there are two stages in the viral capsid assembly: nucleation (formation

of a nuclei: hexamers) and elongation (building the closed shell). We develop a kinetic model

for modeling HIV-1 viral capsid nucleation using a 6-species dynamical system. Numerical

simulations of capsid protein (CA) multimer concentrations closely match experimental data.

Sensitivity and elasticity analysis of CA multimer concentrations with respect to the associ-

ation and disassociation rates further reveals the importance of CA dimers in the nucleation

stage of viral capsid self-assembly.

Keywords: CA protein, capsid, cone, curvature, dynamical systems, hexamer, HIV-1, icosa-

hedron, pentamer, sensitivity analysis, tube
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CHAPTER 1

Introduction

Viruses are macromolecular organisms that are constituted by at least two parts: genetic

materials (DNA or RNA) and a protein shell that protects the genes, called the capsid. Some

viruses contain an additional layer around the capsid called the envelope [17]. To enter a

cell, a virus goes through a fusion process with the cell membrane. Then the nucleic acid

(and other materials) enter the cell. With some viruses, the genome is completely released

from the capsid during or after penetration. In others, such as retroviruses, the first stages

of the viral replication cycle occur inside the capsid. The major goal of the virion is to

replicate itself using the invaded cell’s material. New viral genomes and viral components

are produced. This can happen in a number of ways depending on the family of virus. Once

the new materials have been produced, they are formed into new virions. The viral material

collects near the surface of the cell, which then undergoes a maturation process where the

capsid reassembles around the DNA or RNA. Once a cell is infected by a virus, it continues

to undergo DNA or RNA synthesis and mitosis, polluting the host with infected cells.

It is well known that viruses are virulent to their host, but viruses can also be used to

benefit the society, since the capsid serves as a platform for synthetic manipulation. Capsid

reassembly properties have been employed to build a new generation of batteries that act as

powerful and highly efficient fuel cells [15]. Virus-like capsids have been created to attach

and selectively release the anticancer drug doxorubicin in cancer patients [17]. They have

also been used as pest control agents, as well as applied to gene therapy [55]. It is also quite

interesting to see that viral capsids and other protein cages can be used as containers for

polymers and nano-particles to make new synthetic materials [20, 22, 35, 57].
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1.1. AIDS, HIV-1 and Retrovirus

AIDS is caused by the human immunodeficiency virus (HIV), which was unknown until

the early 1980’s [63]. Since then, AIDS has become one of the most devastating infectious

diseases to have emerged in recent history, being spread around the world to infect millions

of people. The target of HIV infection is the immune system, which is gradually destroyed.

Once a person becomes infected with HIV, he/she is at high risk for other illness and death

from infections.

The type of HIV that is the cause for almost all infections is known as HIV-1. There

are two main different types of HIV: HIV-1 and HIV-2. HIV-2 is less virulent and is not

as widely spread [1, 63]. The major modes of spread are as a sexually transmitted disease,

needle sharing, and perinatal infection [1, 63]. HIV-1 is not spread by casual contact or by

insect vectors. In this work, unless otherwise specified, HIV refers to HIV-1.

After initial entry of HIV and establishment of infection, the viral replication generally

occurs within the inflammatory cells at the site of infection. The replication quickly shifts

to the lymphoid tissues of the body, including lymph nodes, spleen, liver, and bone marrow.

Primary infection may go unnoticed in at least half of the cases, or the patient may present

with signs and symptoms of a flu-like illness, consisting of fever, malaise, and/or a rash [1].

At this time the disease is mild, and will subside over 1 to 2 months. This is followed by

a long clinical “latent” period. On average, an HIV-infected person may live up to 8 or 10

years before the development of the signs and symptoms of AIDS [63].

To date, there is no cure for HIV infection, although treatments for HIV have been

developed. There have also been major advances in working towards a vaccine and daily

medication, called Pre-Exposure Prophylaxis (PrEP), for prevention. These advances have
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reduced the risk of HIV infection in people who are at high risk by up to 92 % by keeping the

virus from establishing a permanent infection. Yet, there is still much unknown about this

virus that causes AIDS, and only treatment of the symptoms with those already infected

with AIDS or HIV. We aim to better understand the HIV’s life cycle in order to aid in

determining more efficient ways to treat the virus and disease.

1.2. HIV and Gag Proteins

In order to examine HIV’s replication cycle, we first need to understand the virus’s

composition. HIV is composed of several main proteins, such as Env, Pol, Gag, and others

[1, 7, 8, 64]. The focus of this dissertation is aimed at Gag proteins, which is one of the main

structural components.

Gag. Gag (group specific antigen) is essential in the formation of new HIV virions. In

vivo, HIV Gag proteins have numerous and complex roles during the life cycle. These roles

include assembly and virion maturation. In vitro, virus-like particles (VLPs) can sufficiently

assemble with just the Gag proteins of HIV.

Gag has 4 major domains: matrix (MA), capsid (CA), nucleocapsid (NC), and p6 (see

Figure 1.1). Each domain has its own function in the formation of a mature virion. The MA

domain binds to the interior of the plasma membrane (envelope). The CA domain forms

the capsid shell which assembles around the RNA. The NC domain binds to the viral RNA.

Lastly, the p6 is involved in the virion’s budding from the host cell [7, 69].

Retroviral Life Cycle. HIV can only replicate inside of cells. In fact, HIV hijacks

the cell to use the host’s material during replication. HIV utilizes a protein called CD4,

carried on the surface of a cell and receptors to enter the CD4 T cells and macrophages

[1, 4]. The virus is able to invade the cell by sticking to the CD4, allowing the viral envelope
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Figure 1.1. HIV Gag. The Gag domains MA, CA, NC, and p6 are the main
structural components of the HIV particle. The MA domain binds to the
interior of the viral membrane with a spherical shape. The CA domain forms
the viral conical capsid. The NC domain attaches to the RNA. p6 helps the
virion bud from the host cell [4].

and plasma membrane to fuse. Once the virus and cell are fused together, the genomic RNA

and other proteins are released into the cell cytoplasm to start the translation process [1].

Once inside the cell, the HIV enzyme called reverse transcriptase converts the viral RNA

into DNA. This DNA is transported to the cell’s nucleus, where it is integrated into the

human DNA by the HIV enzyme integrase [1]. The host cell transcribes the viral DNA into

viral messenger RNA (mRNA), which then travels to the cytoplasm. Complete copies of

HIV genetic material are contained among the strands of the mRNA. New Gag proteins are

synthesized from the mRNA [47] and travel to the plasma membrane to join the assembly

of new immature virions.

The new viral particles are then released from the cell, by a process known as ‘budding’.

Many viral particles can bud from a cell over the course of time, then begin the process
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of maturation. During maturation, each newly formed immature virion develops the cap-

sid core, which contains RNA and other proteins [7, 69] (see Figure 1.2). This process is

explained in more detail in Chapter 2 section 3.

Figure 1.2. Retroviral Life Cycle. HIV fuses with the host cell’s plasma
membrane and releases its RNA and enzymes in the cytoplasm. HIV’s RNA
is translated to DNA by the enzyme reverse transcriptase. The viral DNA
is integrated into the host cell’s DNA by the enzyme integrase. The host cell
translates the viral DNA into viral mRNA. The mRNA produces Gag proteins
in the cytoplasm, which travel to the cell membrane, the site of assembly of
new immature virions. The virions leave the cell during the budding process,
and develop a core and become infective during maturation [68].

1.3. Mathematical Modeling for Virus Life Cycle

Quantitative description of the HIV life cycle, in particular mathematical models, will

help us understand the mechanisms of the virus. In this section, we discuss two developed

mathematical models that shall provide quantitative characterization of detailed aspects of

HIV reproduction.
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Gag Trimerization at Plasma Membrane. A mathematical model for Gag trimer-

ization at the plasma membrane was created in [52]. It is assumed that Gag proteins arrive

at certain “Gag hotspots,” where HIV virion assembly takes place. Gag proteins arrive as

monomers at a constant rate, then three monomers join to form a trimer. These trimers join

to form higher order mulimers, which bind at the plasma member as a new immature HIV

virion assembles (see Figure 1.2).

The model consists of a nonlinear dynamical system of two ordinary differential equa-

tions. The existence and stability of a unique equilibrium is analytically shown and verified

numerically [52]. In addition, a condition on the model parameters that shift the Gag

monomer-trimer equilibrium towards the trimer state is derived. The lower bound for the

equilibrium association constant Ka for Gag monomers and trimers is also calculated.

Viral Protein Trafficking and Binding. Quantitative results for intracellular traf-

ficking and assembly of gag proteins have critical importance for gaining insights into the

processes of virus replication and for developing novel control strategies [4, 64].

Our recent work [76] has established a model for integrating the simultaneous treatments

of gag monomers and trimers in the dynamical process of transport and binding. The model

characterizes the dynamics of virus trafficking and the transformation between monomeric

and trimeric states by coupling different types of differential equations.

Numerical simulation results show that the gag protein trimers will accumulate at the

membrane of the cell. Numerical results on the time when the first new virions appear

near the cell membrane (Ta) are in very good agreement with published experiment data.

Sensitivity analysis of Ta to the model parameters indicates that the diffusion and transport

process affects the time of initial appearance of HIV-1 virions on the cell membrane.
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1.4. Contribution of This Thesis

This thesis contains three major parts. Here we highlight the efforts and contributions

of each.

Curvature Concentration on HIV Conical Cores. Viral capsids follow the

fullerene-like structure with exactly 12 pentamers by the Euler theorem. Different distri-

butions of the pentamers result in different shapes of capsids. These pentamers introduce

declination and curvature on the capsids [79]. Our model intends to provide an explicit and

quantitative characterization of curvature on virus capsids.

The discrete setting of the Gauss-Bonnet Theorem is applied to viral capsids for calcu-

lating the angle defect at each hexamer and pentamer. For the HIV (5,7)-cone, it is shown

in [42] that the curvature concentration at the narrow end is about five times higher than

that at the broad end. This leads to a conclusion that the narrow end is the weakest part

on the HIV-1 capsid and a conjecture that “the narrow end closes last during maturation

and opens first during entry into a host cell.”

The modeling results should be helpful for better understanding the HIV-1 capsid struc-

ture and the underlying biology. Curvature formalism is novel to the structural virology field

and can be used to rank the stability of (related) capsids.

Generating Vectors for the Lattice Structures of Viral Capsids. Virus capsids

are best described by fullerene-like structures. A fullerene is any molecule composed entirely

of carbon with a distinct cage-like structure defined by a simple 3-valent, n-vertex polyhe-

dron. It is known that viral capsids could be categorized into three major types: icosahedron,

tube, and cone [6, 79]. Though, there are irregular viral capsid shapes which do not fall into
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there three categories. Mathematical models for the three main lattice structures help un-

derstand the underlying biological mechanisms in the formation of viral capsids. While the

models for icosahedral capsids are established and well-received, tubular and conical capsids

are not yet fully understood.

Our work [66] establishes a unified approach for the three common capsid shapes by

extending the Caspar and Klug theory [14] and overcomes the flaw of incomplete closure

when existing models are inappropriately applied [54]. In particular, one generating vec-

tor is needed to build an icosahedron, while two and three generating vectors are used to

characterize respectively the lattice structures of tubular and conical capsids.

Comparison of our models with published HIV-1 data demonstrates a good agreement

of our modeling results with experimental data, validating the new model for a tubular and

conical capsid.

Viral Capsid Nucleation. The major goal of this part is to develop models for

viral capsid assembly. Existing work has modeled viral capsid assembly using one large-size

dynamical system, combining the two substages: nucleation and elongation [30].

Our approach focuses on nuclei growth (nucleation), relatively independent of capsid

elongation. Investigating the nucleation stage first gives this model a unique advantage

for characterizing conditions required to start capsid formation and producing the building

blocks for the mature capsid. It also allows us to examine the favorable and unfavorable

conditions for nucleation.

Since some biological parameters in these models are difficult to measure in experiments,

mathematical analysis enables us to characterize the most important or sensitive parameters.

A 6-species dynamical system model is created based on [37, 85], parameters are estimated
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to fit biological data, sensitivity and elasticity analysis of CA multimer concentrations with

respect to model parameters is performed. The elasticity analysis confirms the biological

experiments that the dimer intermediate is vital for capsid protein self-assembly.

The research presented in this dissertation is partially supported by US National Science

Foundation (NSF), including a research visit at Wuhan University (China) during the sum-

mer of 2014 as an East Asia and Pacific Summer Institute (EAPSI) fellow and the Yates

Graduate Fellowship during the summer of 2015. Research results are also presented in

different forms in [42, 65, 66].
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CHAPTER 2

Biological Problems: HIV-1 Structure and

Assembly

2.1. HIV Virus

The human immunodeficiency virus type 1 (HIV-1) is a retrovirus that causes the ac-

quired immunodeficiency syndrome (AIDS). Due to the exceptionally high mortality rates

through AIDS and the unique structure of HIV-1 virions, HIV-1 virus is an active research

area, see, e.g., [9, 26, 56, 84] and references therein. In this dissertation, we refer to HIV-1

as HIV.

AIDS is a relatively new disease, from the evolutionary point of view. Humans have not

yet been able to adapt to it. HIV attacks T-lymphocytes and macrophages. In particular,

HIV infects and kills CD4+ T helper cells [1, 63], which allow the immune response to fight

against invading pathogens. Individuals left infected and untreated usually develop AIDS

between 8-10 years after infection [63]. AIDS causes most people to have very weak immune

systems; they eventually die of infection due to the body’s inability to heal itself.

HIV is retrovirus and member of the lentivirus family. The virion consists of three parts:

single-stranded genes made from RNA, a protein shell (capsid) that protects the genome

and an envelope composed of lipids. A retrovirus has the additional ability to mutate easily,

in large part due to the error rate of the reverse transcriptase enzyme, which introduces

a mutation approximately once per 2000 incorporated nucleotides [1, 63]. This presents

a big dilemma since high mutation rates lead to the emergence of HIV variants within the

infected person’s cells that can escape immune attack or can resist drug therapy. It is already
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difficult for the immune system to fight off HIV. Over time, different tissues of the body may

harbor differing HIV variants. High mutation rates create a challenge in developing effective

vaccines [1].

To date, HIV is the only known virus forming a conical capsid. The formation of this

conical capsid (Figure 2.1) occurs in the maturation stage and is essential for the virion

to become infectious. Our work is focused on the capsid in two ways: the mature capsid

structure and the dynamics of assembly.

2.2. HIV Capsid Structure

HIV-1 conical core along with other virus capsids are best described by a simple 3-valent,

n-vertex polyhedral surface. Geometrically, the capsid forms a closed surface, consisting of

hexagons and exactly 12 pentagons, according to the Euler theorem. The CA proteins join

together to create the hexagon and pentagon shapes by six (hexamer) and five (pentamer)

Figure 2.1. Illustration of HIV-1 conical capsid.
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proteins. The binding among the CA hexamers and pentamers are further related to the

hinge between the C-terminal domain (CTD) and N-terminal domain (NTD) of the CA

protein [13, 26].

Curvature on Viral Capsids. Existing biological work [25, 44, 61, 79, 81, 82] suggest

that the pentamers introduce sharp declinations in the HIV-1 capsid. It is discussed in [26]

that the angle between adjacent hexamers vary from around 135◦ between two hexamers

connected to the same pentamers at either end of the HIV-1 cone, to around 180◦ in the

more flat region in the middle of the cone (Figure 2.1). It is concluded in [61] that the

rigid-body rotations around these assembly interfaces seem to be sufficient for explaining

the curvature variation on the HIV-1 cone. Recent experimental and modeling studies show

that the HIV-1 capsid narrow end might not close, if conditions are unfavorable [80]. There

arises a need for explicit and quantitative characterization of curvature on virus capsids.

Generating Vectors for the Lattice Structure of Viral Capsids. The icosa-

hedral viral capsid has been extensively studied due to the highly symmetric nature. The

model for icosahedral capsids is established and well-received, but models for tubular and

conical capsids need further investigation. In [54], Nguyen et al. used two generating vectors

for the lattice structure of tubes and cones. However, an important piece of information is

missing for each type of capsid.

(i) For tubes, the previous model has limitations in the height. Multiple well known

tubular viral capsids cannot be completely described by this model. With changes in defini-

tion of the leading scalars, we show more viral capsids are better defined by our new model

presented in this dissertation. (ii) The conical model presented in [54] has a flaw that could

lead to improper closure of the capsids when misused. An additional generating vector is
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needed to guarantee the closure observed in biological experiments. There is a need for more

accurate models for tubular and conical viral capsids. Not only will this lead to a charac-

terization of more general capsids, but give insight on the position of the twelve pentamers

needed for closure.

2.3. HIV Maturation

New HIV virions that form near the plasma membrane of a host cell escape the cell during

the process of budding. Virions undergo a maturation process in order to become infectious

and invade other cells as shown in Figure 2.2. During this stage the virus proteins assemble

into a strong shell, called the capsid, with two substages: nucleation and elongation. The

capsid acts as a protective shell for the DNA or RNA inside the virus and the capsid is in

Figure 2.2. Immature and Mature HIV Virions. About 5, 000 Gag proteins
are spread radially and uniformly inside the immature HIV virion (left). In the
mature HIV virion (right), Gag’s MA domain (yellow) is attached to the inner
layer of the virion’s membrane, while about 1, 500 of the available 5, 000 CA
proteins form the capsid (outer shell) of the virion’s core. The core packages
two strands of viral RNA and other proteins [69].
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its weakest stage during maturation. After the capsid matures, the virus is able to attack

new cells and replicate its DNA or RNA, polluting the host with infected cells. Therefore,

it is of great interest to understand the formation of the capsid, with the goal of developing

innovative antiviral therapies that can break or control capsid development.

Icosahedral Capsid. Models for the assembly of simple icosahedral capsids have

been established in the past, but their extension to retrovirus has been over simplified,

due to the complicated shape of a retroviral capsid. While significant progresses have been

made with regard to understanding the assembly mechanism and structure of HIV-1 capsid

[16, 19, 24, 29, 30, 61, 84], there are many questions yet to be answered.

Nucleation and Elongation. Previous work has modeled the whole process of viral

capsid assembly using one large-size dynamical system [21, 31], combining both the nu-

cleation and elongation phases of the capsid assembly. It has been observed in biological

experiments and exploited in simulations that separate modeling and simulations of nucle-

ation and elongation stages shall help alleviate the difficulty in the aforementioned approach.

Focusing on each stage will bring different perspectives for modeling viral capsid assembly.

Simplifying the models to study nucleation and elongation separately allows us to examine

the favorable and unfavorable conditions for each stage. Since some biological parameters in

these models are difficult to measure in experiments, mathematical analysis will enable us to

characterize which parameters are the most important or sensitive. Therefore, it is of great

interest to understand the nucleation process on its own, before the nuclei form together in

the elongation stage, to form a complete capsid.

Dimer Pathways. Previous models also consider a simplified pathway that only

allows association or dissociation of one monomer at a time [21, 31]. That is, the capsid

14



only changes between n-mer and (n+ 1)-mer. However, there is strong evidence that dimers

form with other dimers [16]. The findings in [60] suggest that even higher order subunits

can assemble with each other. Therefore, there is a need for research focused on exploring

models where larger intermediates can bind with each other.
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CHAPTER 3

Curvature Concentration on Viral Capsids

Viral capsids are best described by a fullerene-like structure. Generally speaking, the

capsids are composed of a varying amount hexamers and exactly 12 pentamers. Small-

size virus capsids tend to conform to the preferred icosahedral symmetry [14, 34]. This

symmetry allows the 12 pentamer groups to be evenly placed on the surface of a sphere.

Although most virus capsids follow the fullerene-like structure, not all virus capsids follow

the icosahedral symmetry. Tubular (spherocylinder) viral capsids have been observed for

Cowpea Chlorotic Mottle Virus and Alfalfa Mosaic Virus, among others. The cone-shaped

HIV capsid is composed of exactly 12 pentamers and approximately 218 hexamers [9, 61, 79].

The murine leukemia virus (MuLV) and Rous sarcoma virus (RSV) also exhibit asymmetry

or irregularity in their capsid structures [32].

3.1. HIV Conical Cores

HIV is the only known virus to date with a conical core. The cone angle of the HIV

capsid has been measured in experiments by dehydrating the core of a virus-like particle

(VLP) onto a carbon grid [24]. It is found that the angle was quantified into the five allowed

values prescribed by the Euler formula

(1) sin(θ/2) = 1− P/6,

where θ is the cone angle and P is the number of pentamers at the narrow end of the

cone, as shown in Figure 3.1. The five angle values (and the corresponding P values) are

θ = 112.9◦(P = 1), θ = 83.6◦(P = 2), θ = 60◦(P = 3), θ = 38.9◦(P = 4), θ = 19.2◦(P = 5).
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Figure 3.1. A: Angles of cones derived from conical hexagonal lattices. B:
The five allowable angles resulting from the conical constructs described in
(A). Allowable cone angles are θ = 112.9◦(P = 1), θ = 83.6◦(P = 2), θ =
60◦(P = 3), θ = 38.9◦(P = 4), θ = 19.2◦(P = 5). C: 19.2◦ fullerene cone
composed of 252 hexagons and 12 pentagons [24].

For convenience, we name these cones as (1,11)-, (2,10)-, (3,9)-, (4,8)-, (5,7)-patterns. It is

also found that the viral core and most synthetic cones exhibited cone angles of approximately

19 degrees [24]. In other words, most HIV-1 cones are in the (5,7)-pattern, but (4,8)-cones

and other unusual types of VLPs have also been observed in experiments [6, 8, 11].

Recently, the unique cone structure of the HIV-1 capsid has been intensively investi-

gated. It is suggested in [13] that the asymmetry and quasi-equivalence exhibiting in conic

and tubular capsids are related to the hinge between the C-terminal domain (CTD) and N-

terminal domain (NTD) of the capsid protein. In [79], it is presented that the 12 pentamers

introduce sharp declinations on the HIV-1 capsid. A line of hexamers connecting two decli-

nations is presented to illustrate the continuously varying curvature. Dihedral angles along

this line are also calculated. These dihedral angles between two subunits (hexamer/hexamer

or hexamer/pentamer) are defined as bite angles. It is discussed in [26] that the bite angle
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between adjacent hexamers vary from around 135◦ between two hexamers connected to the

same pentamers at either end of the HIV-1 cone to around 180◦ in the more flat region in

the middle of the cone. This is also examined in [26], especially the different angles between

the subunits in CA pentamers or hexamers and the approximate pivot point for rotations. It

is concluded in [61] that the rigid-body rotations around these assembly interfaces seem to

be sufficient for explaining the curvature variation on the HIV-1 cone. It is also concluded

in [84] that incorporation of CA pentamers into the surface hexameric lattice induces acute

surface curvature. These studies deepen our understanding of viral capsid structure and viral

assembly mechanism and motivate inhibitors for the formation of critical CA-CA interfaces

in the capsid assembly [27].

There arises a need for a quantitative characterization of curvatures on virus capsids.

This chapter and preprint [42] is the first, as to the authors’ best knowledge, to address such

a need. Furthermore, the concept of curvature concentration is introduced and this quantity

is calculated for the narrow and broad ends of HIV-1 conical capsids. For the HIV (5,7)-,

(4,8)- conical capsids, the results in this chapter show that the narrow end always has the

highest curvature concentration, which is an indication that the narrow end is the weakest

region on the HIV-1 capsid.

3.2. Mathematical Background: Curvature and Discrete Curvature

To understand curvatures on a surface, we need the concept of curvatures on a curve. In

three-dimensional space, the curvature of a curve at a given point is a measure of how fast

the curve changes its direction at that point. A formal mathematical definition for curvature
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is given by

(2) κ =

∣∣∣∣∣d~Tds
∣∣∣∣∣ ,

where ~T is the unit tangent vector and s is the arc length [62].

Continuous Curvatures on a Smooth Surface Let M be a smooth surface and p

be a point on M . The curvatures are characterized and quantified by the shape operator S,

defined as

(3) S = ∪{±Sp : p ∈M}, Sp(~u) = −D~u
~N(p),

where ~N is the unit normal vector field defined in an open neighborhood of the point p on

the given surface M , ~u is any tangent vector to M at p, namely, a tangent vector to a curve

that passes through the point p but is entirely on the surface M . Note that Sp(~u) defines the

negative directional derivative of M at p along the vector ~u. Intuitively, Sp(~u) explains how

the surface M “curves” around the point p. The shape operator of M at p derived from −~u

is −Sp, since it essentially reverses only the direction. Therefore, the shape operator of M

is the union of all Sp at the given point p on M [62]. For a non-planar surface, the Gaussian

curvature is given by the determinant of the operator S.

The principal curvatures of a surface at a given point are the two eigenvalues of the shape

operator S discussed above. Denoted as κ1 and κ2, the principal curvatures measure the

maximum and minimum bending of the surface at a given point, as shown in Figure 3.2.

Mathematically, the Gaussian curvature is

(4) K = κ1κ2,
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Figure 3.2. Left : There are two principal curvatures κ1 and κ2 at a point
p on a smooth surface. Right : For a point on a conic surface, the minimum
principal curvature is κ1 = 0 whereas the maximum curvature is κ2 = 1/r
with r being the radius of the circular section on which the point is located.

the product of the two principal curvatures. These principal curvatures can also be used to

define other terms, e.g., the mean curvature

(5) H =
1

2
(κ1 + κ2).

For example, the Gaussian curvature of a plane at any point is zero, as the plane will

not bend in any direction, that is, κ1 = κ2 = 0 and hence K = κ1κ2 = 0. Cylinders and

cones also have zero Gaussian curvature, since the minimum principal curvature κ1 = 0 in

each shape is zero. The case for a cone is illustrated in Figure 3.2 (right).

For a smooth surface M , the Gauss-Bonnet Theorem (see [62]) asserts that the integral

of the Gaussian curvature on the surface is equal to 2π times the Euler characteristic

(6)

∫∫
M

K(p)dp = 2πχM .
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Triangulation and the Euler Characteristic of a Polyhedral Surface In the

discrete setting, a smooth surface is replaced by a polyhedral surface. The concept of the

discrete Gaussian curvature on a polyhedral surface is based on the triangulation of such a

surface. Triangulation, in this case, is equivalent to the idea of tiling, see [45, 46], in which

the tiles or subsections within one polygon are related by the theory of quasi-equivalence.

For convenience, we assume each tile is equivalent, resulting in similar triangles within each

hexagon and pentagon along the polyhedral surface. Since each polygon is cut into similar

triangles, we call this process triangulation.

Consider a polyhedral surface as a set of polygons (in the space) joined together at their

edges with varying dihedral angles. The most natural way to cut a polyhedral surface into

subsections, is to divide the non-triangular shape into the least amount of similar triangles.

For example, to triangulate a hexagon, one would cut it into six equal pieces or equilateral

triangles, with a common vertex at the center of the hexagon, as shown in Figure 3.3 (left).

Pentagons can be cut in a similar fashion, with five similar triangles having a common vertex

Figure 3.3. Left : A hexagon (in color yellow) and a pentagon (in color red)
are each cut by similar triangles. Right : A hexameric lattice is triangulated
by cutting each hexagon into six equilateral triangles, all sharing the vertex at
the center.
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at the center of each pentagon, see also Figure 3.3 (left). This allows the dihedral angles

along the vertices of the hexagons to be equivalent and angles along the vertices of the

pentagons to be equivalent.

Let M be a polyhedral surface. Denote by V the number of vertices, E the number of

edges, and F the number of faces. The Euler characteristic of a closed polyhedral surface is

given as

(7) χM = V − E + F,

regardless of how the surface is bent. Any closed convex polyhedral surface has an Euler

characteristic χM = 2, see [46, 62]. This characteristic is independent of the choice of

subsections, triangles, or tiles, since it is assumed that each polygon is a planar object.

Discrete Gaussian Curvature on a Polyhedral Surface In the discrete setting,

the Gauss-Bonnet Theorem (see [62]) holds analogously

(8)
∑
v∈D

Kv = 2πχM ; Kv = 2π −
∑
i

θi,

where D is a triangulated region on a given polyhedral surface M , v is a vertex in D, and θi

are the interior angles at v. Each θi is an angle of a triangle adjoined at v. Kv is called the

angle defect at v, which describes the discrete Gaussian curvature at the point.

Viral capsids are examples of closed convex polyhedral surfaces. Their Euler character-

istic is χ = 2, and so the sum of the discrete Gaussian curvatures is 4π. For icosahedral

capsids, the curvature is distributed uniformly over the capsid due to its spherical-like shape.

Non-icosahedral capsids do not share this property. A question then arises: how is the total

curvature of 4π distributed throughout the capsid?
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3.3. Curvature Along Neighboring Subunits

Many known viral capsids have a fullerene-like structure, which is a caged polyhedral

surface composed of CA proteins grouped as hexamers and pentamers (6 and 5 proteins

respectively). The number of hexamers varies for each capsid, depending on the size of

the capsid. However, the number of pentamers always equals 12. This specific number of

pentamers is required by the Euler Theorem to guarantee closure with no holes.

Some viral capsids have icosahedral or cylindrical symmetry. For the former, the pen-

tamers are evenly spaced. For the latter, the pentamers are split into a (6,6)-pattern: 6

pentamers at the bottom, 6 pentamers at the top, and a large number of hexamers between

the two ends.

HIV is unique in its cone shape, mostly in the (5,7) pattern, that is, 5 pentamers at the

narrow end and 7 pentamers at the broad end. In [11], it is demonstrated that HIV-1 VLPs

could have a larger cone angle resulting in a (4,8)-cone shape. Mathematically, there are

five possible cones: (5,7), (4,8), (3,9), (2,10), (1,11), as shown in Equation (1). However,

extreme distributions such as the (2,10)- and (1,11)-cones are rarely seen in the nature [28].

Literature suggests that the pentamers are isolated for stability, each surrounded by a

ring of hexamers. Triangulation of the hexamers and pentamers in the most natural way

leads to only two possible cases for curvature calculations, due to the consistent interior

angles in each polygon.

Case 1 . The first case occurs when a vertex v of a pentamer P is surrounded by two

hexamers H, as shown in Figure 3.4. The triangulation produces six equilateral triangles for

each hexamer and five similar triangles for the pentamer. At the shared vertex, there are a

total of six interior angles, four from the hexamers and two from the pentamer triangulation.
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Figure 3.4. Case 1 : A pentamer is surrounded by hexamers. Around a
pentamer vertex, each triangle inside the pentamer has an interior angle θ =
3π/10 whereas each triangle inside the hexamers has an interior angle θ = π/3.

The interior angles of the triangles in the hexamers have values θi = π/3 for i = 1, 2, 3, 4.

The interior angles in the pentamers have values θi = 3π/10 for i = 5, 6. Then the angle

defect or the discrete Gaussian curvature at v is given by

(9) Kv(P ) = 2π −
6∑
i

θi = 2π − 4
(π

3

)
− 2

(
3π

10

)
=

π

15
.

Notice that the curvature calculation will be the same for each vertex of the pentamers

P , since each vertex of P is also connected to two hexamers with the same triangulation.

Each of the five vertices of P contributes a curvature of π/15, so the total discrete Gaussian

curvature for the entire pentamer P is π/3.

Case 2 . The second case occurs when a hexamer is surrounded by six other hexamers.

Connecting the hexamers creates a flat surface (plane), as shown in Figure 3.3. Considering

the same triangulation used in case one, the interior angles at each vertex v are given by
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θi = 60◦ = π/3 for i = 1, 2, 3, 4, 5, 6. The discrete Gaussian curvature at v is then

(10) Kv(H) = 2π −
6∑
i

θi = 2π − 6
π

3
= 0.

This is expected, as discussed in the examples in Section 3.2, since at least one principal

curvature is zero along a plane and cone. Given exactly 12 pentamers and NH hexamers,

the total discrete Gaussian curvature of the caged cone is

(11) 12 ∗ 5 ∗Kv(P ) +NH ∗ 6 ∗Kv(H) = 4π,

which agrees with the discrete version of the Gauss-Bonnet Theorem (8).

For a cone-shaped capsid, the total curvature is independent of the number of hexamers in

the cone and the curvature is nonzero only at pentamer positions. This implies the position

of each pentamer is related to a location of high curvature on the capsid, introducing sharp

declinations on the capsid as observed in [61, 79].

3.4. Curvature Concentrations on the (5,7)-Cone

Consider the HIV-1 conical capsid as a polyhedral surface M , consisting of hexamers H

and pentamers P . We assume that each vertex of P is surrounded by a pentamer and two

hexamers.

The (5,7)-pattern has been widely reported in experimental observations. This means 5

pentamers at the narrow end of an HIV-1 capsid and 7 pentamers at the broad end of the

capsid. This is the case when the capsid has a cone angle 19.2◦ [6, 8, 11, 24].

The total discrete curvature of the broad end (or the top) is K7P = 7π/3, whereas the

total discrete curvature of the narrow end (or the bottom) is K5P = 5π/3. The middle region
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of the cone is assumed to have only hexamers, so the total discrete curvature of this part

is zero. This could be better understood when considering the middle region of the HIV-1

capsid as a right cone. The principal curvatures at any point on the right cone are given by

κ1 = 0 and κ2 = 1/r (r is the radius of the circular section on which the point is located),

as shown in Figure 3.2. The Gaussian curvature at any point on a right cone is zero.

Another useful metric is the curvature concentration, i.e., curvature per area on a given

surface.

General Formulas. To calculate the curvature concentration, the sum of the areas of

the hexamers and pentamers in each region (the narrow end or the broad end) is considered.

For the (5,7)-cone, there are 5 pentamers in the narrow end and 7 pentamers in the broad

end. Assume that

(A1). These pentamers are isolated;

(A2). For each end, each vertex of a pentamer is surrounded by the pentamer and two

hexamers;

(A3). There are Hn hexamers in one particular end (narrow end or broad end);

(A4). a is the side length of pentamers or hexamers.

Then direct mathematical calculations yield

SA5P (a,Hn) = a2

(
Hn

3
√

3

2
+

5

4

√
5(5 + 2

√
5)

)
,(12)

SA7P (a,Hn) = a2

(
Hn

3
√

3

2
+

7

4

√
5(5 + 2

√
5)

)
.(13)
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Parameter Estimates. The overall height of a HIV-1 capsid was found to be 119±11nm

[11], and the mean diameters of the broad and narrow ends are 56nm and 27nm, respectively

[8]. Using the measurements reported in [9, 11, 61, 79], it is estimated that

• 4% of the hexamers lay at the narrow end;

• 36% of the hexamers are at the broad end;

• the remaining 60% are in the middle region;

with an average of 218 hexamers in each capsid.

Recent cryo-EM results [84] indicate a larger diameter at the narrow end, with an estimate

of 6% of the hexamers at the narrow end, 33% at the broad end, and 61% in the middle

region, with an average of 216 hexamers. The diameter of a hexameric unit was found to be

approximately 9.8nm with a 3.2nm spacing between units in VLPs [11]. For the fullerene-like

structure model, it is assumed that each subunit (pentamer or hexamer) has a side length

6.5nm.

Calculations. For the narrow end of a HIV-1 capsid, the surface area is calculated

using Equation (13), with a range of 216 to 218 hexamers

(14) SA5P (6.5, Hn) ≈ 1, 460± 219nm2.

Similarly, the surface area of the broad end is estimated as

(15) SA7P (6.5, Hn) ≈ 8, 796± 384nm2.
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The curvature concentration is defined as the ratio of the discrete Gaussian curvature per

surface area in each region. For the broad and narrow ends, we have curvature concentrations

(16) CK7P
≈ 8.34× 10−4, CK5P

≈ 3.59× 10−3,

which show that CK5P
is about five times higher than CK7P

. That is, the curvature concen-

tration at the narrow end is about five times higher than that at the broad end.

Curvatures on (4,8)- and Other Type Cones As discussed in the previous sec-

tions, there are five possible cone angles for a cone composed of only hexamers and pentamers,

according to the Euler formula. Although 19.2◦ is the most common cone angle for HIV-1

cores, larger cone angles between 30◦ and 40◦ have also been reported in experimental data

[6, 11, 24]. This implies that HIV-1 cores could form into a cone with 4P at the narrow end

and 8P at the broad end. Both (4,8)- and (3,9)-cones have been seen in graphite nanocones,

although it is thought (2,10)- and (1,11)-cones will not form, due to the high strain at the

narrow end [28].

Based on the same assumptions (A1)-(A4) listed in the previous subsection, the surface

areas of the narrow (4P ) and broad (8P ) ends of a conic capsid are estimated by adding the

surface areas of hexamers and pentamers in each region as follows,

SA4P (a,Hn) = a2

(
Hn

3
√

3

2
+

√
5(5 + 2

√
5)

)
,(17)

SA8P (a,Hn) = a2

(
Hn

3
√

3

2
+ 2

√
5(5 + 2

√
5)

)
,(18)

where again Hn is the number of hexamers in that region and a is the side length of the

pentamers or hexamers.
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For the (4,8)-cone, based on the above formulas, the approximations for the surface areas

are as follows

(19) SA8P ≈ 8, 485nm2, SA4P ≈ 1, 059nm2.

Then the curvature concentrations of the broad and narrow ends are respectively

(20) CK8P
≈ 9.87× 10−4, CK4P

≈ 4× 10−3.

Therefore, CK4P
is about four times higher than CK8P

.

Similar calculations can be performed for curvature concentrations of other cone types.

As the number of P (pentamers) in the narrow end decreases, the surface area and total

curvature for that region will also decrease. As the number of P in the broad end increases,

the surface area and total curvature of that region will increase. This implies that the

curvature concentration at the narrow end will always be greater than the concentration at

the broad end, making the narrow end of the conic capsid the weakest region of the capsid,

regardless of the cone angle.

Relation to Declination. Existing work [25, 44, 61, 79, 81, 82] suggest that the

pentamers introduce sharp declinations on the HIV-1 capsid, as shown in Figure 3.5. This

agrees with our curvature calculations. These sharp declinations occur because the pentamers

are the sources of curvature on the closed capsid. In the middle region of the HIV-1 capsid,

the dihedral angles (angles between the hexamer-hexamer planes) vary but are close to 180◦,

implying there is little to no curvature in that region.
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Figure 3.5. On a caged (5,7)-cone, the 12 pentamers (red) introduce sharp
declinations to close the capsid. The graph of the dihedral angles between the
hexamers shows measurements close to 180◦, implying similarity between the
middle region and a rolled plane [79] (with permission from Elsevier for reuse
of the figure).

Figure 3.6. Modeling and experimental results in [80] show that the HIV-1
capsid narrow end might not close, if conditions are unfavorable [80] (with
permission from Elsevier for reuse of the figure).

3.5. Discussion

Note that the curvature at a point depends on the interior angles of the triangles meeting

there. A dihedral angle in this case is the angle between two triangles in the triangulation

of pentamers or hexamers. By the definition of the discrete Gaussian curvature, for the
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curvature to be 0 at one point, the dihedral angle should be 180◦ (equivalent to κ1 = 0) along

one principal direction. For a cone, this direction usually occurs along the edge straight up

to the broad end, as shown by the κ1 dotted line in Figure 3.2 (right).

Conjecture: HIV-1 Narrow End Closed Last But Opened First. The above

curvature calculations demonstrate that the narrow end of an HIV-1 capsid has the highest

curvature concentration and hence is the weakest part on the capsid. Recent experimental

and modeling studies show that the HIV-1 capsid narrow end might not close, if conditions

are unfavorable [80], as shown in Figure 3.6. These studies lead to our conjecture: the narrow

end of the HIV-1 capsid might be closed last during viral maturation but opened first during

entry into a host cell.
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CHAPTER 4

Generating Vectors for Viral Capsid Lattice

Structures

It is well known that CA hexamers and pentamers form a lattice structure that folds into

a viral capsid. It has been observed that a viral capsid takes an icosahedral, tubular, conical

or irregular shape [17, 43, 54].

4.1. Lattice Structures of Viral Capsids

The icosahedral viral capsid has been extensively studied due to the highly symmet-

ric nature. This is the preferred geometry for viral capsids, since the symmetry allows 60

CA proteins or 12 pentamers to be placed on the surface in an equivalent manner. There

are many viruses whose capsids have more than 60 CA proteins, in fact around thousands

of proteins. In these cases, not all of the subunits (CA proteins) can be placed in equiv-

alent positions. Caspar and Klug’s theory of quasi-equivalence [14] addresses this issue

by classifying icosahedral shells by similar protein neighborhoods rather than subunits. The

Caspar-Klug quasi-equivalence theory allows capsids with multiples of 60 subunits, indicated

by the triangulation (T ) number, to form with icosahedral symmetry. The quasi-equivalence

is demonstrated in the experiment results reported in [84], see Figure 4.1 here in this disser-

tation.

There are also many viruses that have tubular or lozenge-like capsids. Mature HIV-1

cores have cone-shaped capsids [6, 24]. Unlike the icosahedral viral capsids, the structures

of tubular and conical capsids are not yet fully understood.
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Figure 4.1. Illustrations of viral capsids, including both icosahedral and he-
lical viruses [17].

There have been models for the lattice structures of tubular and conical capsids, see

[43, 54] and references therein. However, there are flaws in the Nguyen models [54], where

the tubular model is too restricted and cannot produce the wide arrange of tubular viral

capsid and missed the requirement on the cone height which could result in incomplete cones

if the model is inappropriately applied.

In this chapter, we propose new models for tubular and conical capsids in a unified

fashion based on an extension of the Caspar-Klug quasi-equivalence theory. The new models

are easier than the existing models. When applied to the HIV-1 (5,7)-cone (5 pentagons

in the narrow end and 7 pentagons in the broad end), the capsid properties derived from

our models show good agreement with published experimental data. This demonstrates the

correctness and usefulness of the new models.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews the concepts

of the T -number and generating vector for the icosahedral viral capsid. Section 4.3 presents
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a mathematical model for tubular viral capsids using two generating vectors and three pa-

rameters. Section 4.4 presents a model for conical viral capsids that uses three generating

vectors and four parameters. Further details on the (5,7)- and (4,8)-cones are examined. Ac-

cording to the Euler theorem, there are 3 other possible cone angles for a hexagonal lattice,

but models for the (1,11)-,(2,10)-, and (3,9)-cones are not investigated, since they are rarely

seen in nature without overlapping in a spiral fashion [28]. Section 4.5 compares modeling

results to published experimental data on the HIV-1 conical capsid. Section 4.6 concludes

the chapter with some remarks.

4.2. Generating Vector and T -number for Icosahedral Viral Capsids

This section briefly reviews the concepts of the T -number and generating vector for an

icosahedral viral capsid. This will be helpful for understanding the models for tubular and

conical viral capsids to be discussed in the following sections.

About half of the virus species are found to have an icosahedral capsid [43]. The geometric

structure (symmetry and periodicity) of icosahedral capsids can be well characterized by the

Caspar-Klug quasi-equivalence theory [14].

By the Euler theorem, for a convex polyhedron made of hexagons and pentagons, there

are exactly 12 pentagons. When these 12 pentagons are evenly distributed, an icosahedron

forms, which can be circumscribed into a sphere.

To understand the concepts of the generating vector and T -number, we start with a flat

hexagonal lattice consisting entirely of identical hexagons. As shown in Figures 4.2 and 4.3,

we choose the center of one hexagon as the origin and set the lengths of the basis vectors

~a1,~a2 as 1. It is obvious that the angle between ~a1 and ~a2 is 60◦ and hence their inner

product (dot product) is 〈~a1,~a2〉 = 1
2
. The generating vector, as shown in Figures 4.2 and
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4.3, is defined as a linear combination of the two basis vectors

(21) ~A = h~a1 + k~a2,

where h, k are non-negative numbers (but not both zero).

Figure 4.2. Two basis vectors ~a1,~a2 and one generating vector ~A for a hexag-
onal lattice. In this illustration, h = 1, k = 2 and hence T = h2 + hk+ k2 = 7.
The two hexagons where the starting and ending points of the generating vec-
tor ~A reside will be replaced by two pentagons when the lattice is folded into
an icosahedron.

Figure 4.3. Left : A lattice with (h, k) = (1, 2) and T = h2+hk+k2 = 7. The
dotted lines indicate where to cut the lattice to fold it. Right : The icosahedral
capsid obtained from folding the lattice shown in the left panel. Pentagons are
shown in red. An example for T = 7 is the widely studied bacteriophage HK97
[48].
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Therefore, we have

(22)
| ~A|2 = 〈h~a1 + k~a2, h~a1 + k~a2〉 = h2〈~a1,~a1〉+ 2hk〈~a1,~a2〉+ k2〈~a2,~a2〉

= h2 + hk + k2 =: T,

which is the so-called T -number. Geometrically, the T -number can be understood as the

squared length of each triangle edge in the construction of the icosahedron. This relates

(h, k) to the area of a single triangle by the formula: Area =
√
3
4
T .

There are 20 equilateral triangles used in the construction of an icosahedron, placed

symmetrically on a flat hexagonal lattice, as shown in Figure 4.3. The triangle size depends

on the T -number, with a varying number of hexagons within. Each vertex of a triangle lands

at the center of a hexagon, which is the very position of a pentagon when folded in three

dimensions. The pentagon is formed by cutting a 60◦ wedge from a hexagon then adjoining

the two cut edges. This creates a convex five-sided polygon, whose center is no longer on the

hexagonal plane. Clearly, the T -number measures the distance squared between the centers

of two nearby pentagons.

Figure 4.4 represents another commonly used approach for illustrating the icosahedral

viral capsid. See also Figure 1 of [54]. The lattice structure shown in Figure 4.4 has (h, k) =

(2, 2) and hence a triangulation number of T = h2 + hk + k2 = 12. Each triangle side has

length
√

12, and the vertices lie at the centers of hexagons that will be replaced by pentagons

when folded.

In structural virology, icosahedral capsids are usually described by T (h, k). However,

there is no guaranteed uniqueness for T ≥ 49. For example, (7, 0) and (5, 3) both give

T = 49, see [43]. To classify these virus capsids uniquely, Caspar and Klug [14] proposed a
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Figure 4.4. Another commonly used approach for illustrating icosahedral
viral capsids: Top: The centers of the pentagons form a coarse triangular mesh;
Bottom Left : Two basis vectors and one generating vector with (h, k) = (2, 2)
and T = h2+hk+k2 = 12; Bottom Right : The lattice folds into an icosahedron
with the pentagon centers being the triangle vertices. However, the folded
pentagons and the flat triangles shown in (bottom right) need careful reading.
Actually all pentagons are planar objects. The coarse triangles are used to
locate the pentagons. The hexagons do not lie on the virtual triangles.

reorganization of the T -number, in terms of the P classes. Any class with P > 3 (starting

with T = 7) is skewed so that (h, k) generates a chiral structure mirrored by that created

with (k, h) [14, 43]. Both chiral structures can be produced from this model by recreating

the folding from a mirrored lattice. Further details are excluded from this chapter so we

may focus on the construction of the tube and conical capsids.
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4.3. Generating Vectors for Tubular Viral Capsids

A tubular (spherocylinder) viral capsid has been observed for Cowpea Chlorotic Mottle

Virus and Alfalfa Mosaic Virus, among others. As reported in [6, 11], HIV-1 cores could also

exhibit a tube-like capsid.

A tubular viral capsid consists of only CA protein hexamers and pentamers. The Euler

theorem guarantees exactly 12 pentamers on the capsid, assuming it is a convex polyhedron.

The tubular structure can be considered as cutting an icosahedron in half and extending

the middle region by a hexagonal cylinder. Each end cap is a truncated icosahedron with

exactly 6 pentagons and a varying number of hexagons, determined by the T -number.

The tubular model also follows the Caspar-Klug quasi-equivalence theory. However,

describing the lattice structure of a tubular viral capsid needs two generating vectors: one

to describe the equal distance between the pentagons and the other for the varying height.

First, we define a vector ~A = h~a1 + k ~a2 for the folding of the two end caps. This is the

same as for the construction of an icosahedron. The two caps will be displaced some distance

from each other, in the direction perpendicular to ~A by a new generating vector ~B. The

vector ~B = h~b1 +k~b2 is so defined that its basis vectors ~b1 and ~b2 are respectively orthogonal

to ~a1 and ~a2. Specifically, we have, as shown in Figure 4.5 (left),

~b1 = ~a1 − 2~a2,(23)

~b2 = 2~a1 − ~a2.(24)

The folding template for a tubular viral capsid is shown in Figure 4.5. This is similar to

the template for an icosahedron. The difference is exhibited in the ten triangles located at
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Figure 4.5. Left : Basis vectors and generating vectors. Middle: A lattice
structure with (h, k) = (1, 1), T = h2 + hk + k2 = 3, γ = 9

6
. The dotted lines

indicate where to cut the lattice to fold it. Pentagons are shown in red. Right :
The lattice folds into a tubular capsid.

the center of the folding. They are no longer equilateral. This is due to the displacement of

the end caps, creating an elongated hexagonal tube. Triangle vertices still lie at the centers

of the hexagons that will be replaced by pentagons when folded in three dimensions.

In summary, the tubular folding template is constructed by two generating vectors

~A = h~a1 + k ~a2,(25)

~B = γ(h~b1 + k~b2),(26)

where

γ = r
gcd(h, k)

2T
,(27)

and r is an integer. Here gcd(h, k) is the greatest common divisor of h and k. When γ = 1/2,

this model reproduces an icosahedron described in the previous section.

The derivation for γ is intuitive. The only limitation on the height of a tubular capsid

comes from the construction requirement that ~A must start and end at the center of a
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hexagon. There are multiple positions along the direction of ~A that satisfy this requirement.

If h and k are not co-prime, then these positions do not create unique structures. If fact,

similar positions occur along a triangle edge for every length of
√
T

gcd(h,k)
. Moving in the

direction perpendicular to ~A, there is a hexagon meeting the requirements for every integer

increment of
√
3
2

gcd(h,k)√
T

. Relating this to | ~B|, we have

(28) | ~B| = γ
√

3T = r

√
3 gcd(h, k)

2
√
T

,

and hence

(29) γ = r
gcd(h, k)

2T
.

The model proposed in this chapter is similar to but more general than the tubular model

introduced in [54]. In [54], the two generating vectors are defined as

~A = n(h~a1 + k ~a2),(30)

~B = m(h~b1 + k~b2),(31)

where (h, k) are the same as those for the icosahedral capsid, (n,m) are two non-negative

integers, and b1, b2 are similarly defined (but have opposite directions) as in Equations (23)

and (24). For this model, scaling h~a1 + k ~a2 by a constant n is somewhat unnecessary, since

all variations can be accounted for by varying h and k. Restricting the scaling constant in ~B

to an integer excludes the model from covering several types of virus capsids, for instance,

the occasional tubular shape of HIV-1 [6] and the bacteriophage φ29 [12, 71]. To use the

model in [54] for creating the bacteriophage φ29 capsid shown Figure 4.6 (c), n must be
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Figure 4.6. Tubular (spherocylindrical) capsid with T = 3 and varying γ.
Pentagons are shown in red. From left to right: a: γ = 1

6
, unlikely to occur in

nature, but it is the smallest possible tube that can be created by this model.
b: γ = 3

6
, examples include Cowpea Chlorotic Mottle Virus or Norwalk Virus

[12]. c: γ = 5
6
, seen in bacteriophage φ29 [12, 71]. d : γ = 8

6
, seen in Alfalfa

Mosaic Virus [43].

defined as n = 1 due to the end caps, and m = 5
3

due to the height. Similarly, to use the

model is [54] for creating the Alfalfa Mosaic Virus capsid shown Figure 4.6 (d), n must be

defined as n = 1 due to the end caps, and m = 8
3

due to the height. Neither of these are

valid since both n and m are required to be integers in the model described in [54].

4.4. Generating Vectors for Conical Capsids

A simple cone can be produced by rolling a section of a sheet around its apex and joining

the two open sides. However, a cone created with a hexagonal lattice will not have infinitely

many cone angles. With the hexagonal lattice, the hexagon/pentagon units along the closure

line must match.

The Euler theorem implies that there are five possible cone angles for a hexagonal lattice

as shown below

sin(θ/2) = 1− P/6,(32)
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where θ is the cone angle and P is the number of pentagons located in the narrow end of

the cone. The five angle values (and the corresponding P values) are θ = 112.9◦(P = 1),

θ = 83.6◦(P = 2), θ = 60◦(P = 3), θ = 38.9◦(P = 4), θ = 19.2◦(P = 5), see [24].

For convenience, we name these cones as (1,11)-, (2,10)-, (3,9)-, (4,8)-, (5,7)-cones. In the

notations for (i, j)−, i is the number of pentagons in the narrow region, j is the number of

pentagons in the broad region, and i + j = 12. Most HIV-1 cones are in the (5,7)-pattern,

but (4,8)-cones have also been observed in experiments [6, 9, 11].

As far as what has been discovered, HIV-1 is the only virus with a conical capsid, although

similar phenomena have been observed in carbon nanocones [67].

Generating Vectors for the (5,7)-Cone A (5,7)-cone has the smallest allowed cone

angle formed from a hexagonal lattice. In this subsection, we consider generating vectors or

a folding template for the (5,7)-cone.

For consistency, we consider a generating vector h~a1+k ~a2 scaled by two non-equal integers

to generate the triangles needed for the two end caps of the cone. Without loss of generality,

we assume α < β are such two integers. Let ~A = α(h~a1 + k ~a2) generate the five smaller

equilateral triangles needed to fold the 5 pentamers in the narrow end. A parallel vector

~B = β(h~a1 + k ~a2) is used to generate the six larger identical triangles needed to create the

7 pentamers in the broad end (Figure 4.7).

These equilateral triangles are determined by the T -number and the two additional con-

stants α and β. These triangle vertices have a slightly different meaning than those in the

icosahedral and tubular models. In the icosahedral and tubular models, triangle vertices lie
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Figure 4.7. Left : Three generating vectors are needed for folding a lattice
into a conical capsid: ~A generates the side length of the triangles in the narrow
end of the cone; ~B generates the side length for the triangles in the broad end;
~C ensures the unique height needed for closure. The dotted lines indicate
where to cut the lattice to fold it into a 3-dimensional cone. Pentagons are
shown in red. Right : The lattice on the left panel with (h, k) = (1, 1), T = 3,
(α, β) = (1, 2) folds into a (5,7)-cone.

at the centers of hexagons that will be replaced by pentagons when folded in three dimen-

sions. For the conical capsid, triangle vertices are not necessarily located in pentagons. To

clarify, pentagons are shown in red in Figure 4.7.

However, more information is needed to form a closed (5,7)-cone. Since the generating

vectors are defined on a hexagonal lattice, the model must be positioned correctly to ensure

only hexagons and pentagons are produced during the folding. This occurs when the outer

closure lines in the middle region of the lattice are parallel, as shown by the dotted lines in

the far left and far right of Figure 4.7 (left). Without this requirement, the folding cannot

close correctly. The parallel lines ensure hexamers are matched along the closure line, leading

to a 0◦ declination that produces perfect hexamers in the middle region of the cone. This

necessary addition to the Nguyen model [54] is further explained in the Discussion section.
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To ensure parallel outer edges, a third generating vector, ~C, is needed. Let ~C = q0(h~b1 +

k~b2), where ~b1 and ~b2 are the vectors defined in Equations (23) and (24). Clearly, ~C is

perpendicular to both ~A and ~B.

We introduce a vector ~D = ρ0(h~a1 + k~b2) to generate the distance between the two

neighboring triangles in the bottom of the lattice that do not share a common vertex, as

shown orange in Figure 4.7. This shall allow a parallelogram to be formed in the middle of

the cone. The top and bottom sides of the parallelogram should have the same length, that

is,

(33) 5β
√
T = 5α

√
T + ρ0

√
T ,

and hence

(34) ρ0 = 5(β − α).

Note that the vector length |~C| can be determined in two ways: either from q0|h~b1+k~b2| =

q0
√

3T or from the sum of the height of the triangles generated by ~B and ~D. Setting them

equal yields

(35) q0
√

3T =

√
3

2

(
β
√
T + 5(β − α)

√
T
)
,

and hence

(36) q0 =
1

2
(6β − 5α).
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In summary, three generating vectors are needed for the folding template of a (5,7)-cone:

~A = α(h~a1 + k ~a2),(37)

~B = β(h~a1 + k ~a2),(38)

~C =
1

2
(6β − 5α)(h~b1 + k~b2),(39)

where α < β are two non-negative integers and ~b1 and ~b2 are defined in Equations (23)

and (24). Note that when α = β, this cone model reproduces an icosahedron, with T =

α2 (h2 + hk + k2).

Following the lattice construction, the surface area of the conical capsid is calculated by

summing the areas of the three regions (the broad end, the middle region, the narrow end)

on the lattice used in the folding.

(40)
SA = 5

(√
3
4
| ~B|2

)
+
(

5| ~B||~C| −
√
3
4
| ~D|2

)
+ 5

(√
3
4
| ~A|2

)
(unit2)

=: 15T
√

3 (2β2 − α2) a2 (nm2),

where a multiple of
√

3a gives a conversion between (unit) and (nm), and a is the side length

of a single hexamer in nanometers.

It is assumed that there are exactly six CA proteins in a hexamer with area 3a2
√

3/2(nm2),

given the side length a. Therefore, there are 4
√

3/3a2 CA proteins per (nm2). The total

number of CA proteins for this conical model is given by the surface area multiplied by the

number of CA proteins per area, or

(41) CA = 60T
(
2β2 − α2

)
.
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Subtracting the 60 proteins used to create the pentagons and dividing by 6 (CA proteins

per hexamer) yields the total number of hexamers, NH , on the (5,7)-conical capsid:

(42) NH = 10T
(
2β2 − α2

)
− 10.

Generating Vectors for the (4,8)-Cone and Other Types Cones Literature

[8, 11, 24, 77] showed evidence that the cores of HIV-1 virus like particles (VLPs) have cone

angles between 30◦ and 50◦, which is an indication of existence of the (4,8)-conical capsid.

To maintain symmetry, the center of the narrow end should be a hexagon instead of

a pentagon as seen in the previous (sub)sections. This way, four pentagons can be evenly

spaced around it, The center of the narrow end is created by joining the smaller triangle

tips on the lattice. For the icosahedral, tubular, and (5,7)-conical models, the narrow end

has 5 triangles. When five 60◦ triangle tips are joined, an angular defect is produced. This

results in the formation of a pentagon. However for a (4,8)-cone, six (rather than five)

small triangles are used in the narrow end. When six 60◦ triangle tips are joined, there is

no angular defect. This results in the formation of a hexagon. Similar to the (5,7)-conical

model, triangle vertices are no longer guaranteed positions of pentagons when folded in three

dimensions. This results in a total of 4 pentagons being created in the narrow end.

The broad end is very similar to that of the (5,7)-cone. The only difference is the

addition of a 7th equilateral triangle. This allows eight pentagons to be formed in this

region. Pentagon positions are shown in red in Figure 4.8.

Similar to the (5,7)-cone model, the (4,8)-cone model requires three generating vectors

to ensure proper closure. Vector ~A will determine the size of the smaller triangles located

in the narrow end, a parallel vector ~B will determine the size of the larger triangles located
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in the broad end, and a perpendicular vector ~C determines the unique height, which insures

that the outer closure lines in the middle region of the cone are parallel. This guarantees

proper closure of the cone with only hexagons and pentagons.

We now explain this in detail. To enforce parallel outer edges, we define ~C = q1(h~b1+k~b2).

The constant q1 = 1
4

(7β − 6α) can be derived in a similar way to that for deriving q0 in the

(5,7)-cone model.

We use vector ~D = ρ1(h~a1 + k~b2) to describe distance between two neighboring triangles

that do not have a common vertex. This is similar to the vector ~D defined in the (5,7)-cone

model. Note that in this cone model, there are two pairs of neighboring triangles that do

not share vertex, as shown in Figure 4.8. This shall allow a parallelogram to be formed in

the middle of the cone. The top and bottom sides of the parallelogram should have the same

length. Therefore, we have

(43) 5β
√
T = 6α

√
T + 2ρ1

√
T ,

Figure 4.8. Left : Model for the (4,8)-cone using 3 generating vectors. The
dotted lines indicate where to cut the lattice to fold it into a 3-dimensional
cone. Pentagons are shown in red. Right : A view of the bottom or narrow
end of the (4,8)-cone.

47



and hence

(44) ρ1 =
1

2
(5β − 6α).

Similar to the (5,7)-cone model, there are two ways for expressing the length of the

generating vector ~C = q1(h~b1 + k~b2). Specifically, we have

(45) q1
√

3T =

√
3

2

(
β
√
T +

1

2
(5β − 6α)

√
T

)
,

and hence

(46) q1 =
1

4
(7β − 6α).

In summary, for a (4,8)-cone, the folding template is determined by two pairs of integers

(h, k) and (α, β) (β needs to be strictly even), and three generating vectors:

~A = α(h~a1 + k ~a2),(47)

~B = β(h~a1 + k ~a2),(48)

~C =
1

4
(7β − 6α) (h~b1 + k~b2),(49)

where ~b1 and ~b2 are defined in Equations (23) and (24).
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Based on the above (4,8)-cone model, we can derive the surface area (SA), the number

of proteins (CA), and the number of hexamers (NH) as follows.

(50)
SA = 5

(√
3
4
| ~B|2

)
+
(

5| ~B||~C| −
√
3
2
| ~D|2

)
+ 6

(√
3
4
| ~A|2

)
(unit2)

= 3
√
3

8
T (55β2 − 24α2) a2 (nm2),

CA =
3T

2

(
55β2 − 24α2

)
,(51)

NH =
T

4
(55β2 − 24α2)− 10.(52)

Folding Templates for the (3,9)-, (2,10)-, (1,11)-Cones. According to the Euler

theorem, there are 3 other possible cone angles for a hexagonal lattice, corresponding to a

narrow end with 3, 2, or 1 pentagon(s). The 1P and 2P cones would induce higher strain due

to their non-spherical shapes, thus are unlikely to form in nature [28]. The 3P cone, with a

cone angle 60◦, is the preferred cone angle for the helical cone for graphite [78]. Since these

cones overlap, they would not follow the same construction rules as the isometric models

investigated in this chapter. Therefore, it is unnecessary to construct isometric cones for the

remaining cone angles.

4.5. Comparison of Modeling Results to HIV-1 Data

The formulas for the surface area, number of CA proteins, and number of hexamers on the

(5,7)-cone have already been established in Equations (40-42). Other common measurements

for the (5,7)-cone such as the broad end diameter Db, the narrow end diameter Da, and the
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overall height H, are respectively

Db =
5β
√

3T

π
a (nm),(53)

Da =
5α
√

3T

π
a (nm),(54)

H =
5
√

3T

2π

(
β − α
tan θ

+ (β + α)

)
a (nm),(55)

where a is the side length of a hexamer, α and β are the constants associated respectively

with the scaling of ~A and ~B , T is the triangulation number, and θ = 19.2◦/2.

Equations (53) and (54) can be derived from the lattice construction. Note that the

circumference of the broad end is given by 5| ~B| = 5β
√

3Ta (nm). Similarly, for the narrow

end, the circumference is 5| ~A| = 5α
√

3Ta (nm).

Equation (55) follows from summing the height of the cone with the radii of both

hemispheres. We use the commonly known equation for the opening angle of a right

cone, that is, φ = 2 arctan
(
r
h

)
, where r is the radius and h is the height. This leads to

H = 1
2

(
Db−Da

tan θ

)
+ Db

2
+ Da

2
, where 2θ = φ.

Next we compare modeling results with the experimental data on HIV-1 VLPs reported

in [6, 11].

Comparison with Data in [11]. In [11], it is found that most HIV-1 VLPs cores

exhibit a conical shape with an average cone angle of 22.3◦ ± 6◦, although about 7% VLPs

exhibit tubular morphology and few show amorphous morphology. Measurements for the

overall height, the broad end diameter, and the cone angle were performed for 267 conical

cores. Among the conical capsids with a single core, [11] found that the hexamer diameter

is 9.8(nm) with a 3.2(nm) spacing between repeating hexameric/pentameric units.
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The spacing in the assumption for the hexagon size should be taken into consideration.

This implies that a has a value (9.8 + 3.2)/2 = 6.5(nm). Taking into account of how small

the radius is found to be in this region compared to the length of a [8], it is assumed that

the pentagons are grouped closely together yet still isolated. To explain this tight grouping,

we take (h, k) = (1, 1) for our model defined by Equations (37-39). Similar construction of

the narrow end can be found in [9, 24, 61, 74]. We then take (α, β) = (1, 2). α = 1 also

follows from the narrow end described in [9, 24, 61, 74], while β = 2 is determined from the

size of the broad-end diameter in [11].

With this value for a, the model for the (5,7)-cone with (h, k) = (1, 1) and (α, β) = (1, 2)

produces a conical capsid with properties listed in the 3rd column of Table 4.1.

Comparison with Data in [6]. Among the experimental data on 26 HIV-1 VLPs

reported in [6] are

• 16 VLPs exhibit conical morphology;

• 3 VLPs have tubular morphology;

• The rest have irregular shape.

Among the VLPs with conical morphology, the measurements are found in the 2nd column

of Table 4.2.

To compare the experimental data in [6] to the theoretical results derived from the models

proposed in this chapter, we only require the side length of the hexamers and pentamers.

Table 4.1. Comparison of modeling results with experimental data in [11].

Experimental data Modeling results
Cone angle 22.3◦ ± 6◦ 19.2◦

Cone overall height 119.3(nm) ± 11(nm) 134(nm)
Broad-end diameter 60.7(nm) ± 8(nm) 62(nm)
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Table 4.2. Comparison of modeling results with experimental data in [6].

Experimental data Modeling results
Mean angle 20.1◦ 19.2◦

Mean height 143(nm) 127(nm)
(standard deviation 10.8(nm))

Mean surface area 21,000 (nm2) 20,612(nm2)
(standard deviation 9000(nm2))

Number of hexamers 206 hexamers for each capsid 200
(1300 CA monomers)

[6] reported the surface area of the capsid with an estimated 200 hexamers. Assuming the

hexamers and pentamers have the same side length a, one reaches an estimate a = 6.1465

(nm) for the given surface area. This value is similar to the a value found from the data in

[11]. So we choose the same parameter values for our model described in Equations (37-39).

Then the model for the (5,7)-cone with (h, k) = (1, 1) and (α, β) = (1, 2) yields the results

shown in the 3rd column of Table 4.2.

The comparison with the data in these two papers demonstrate good agreement of our

modeling results with experimental data.

4.6. Discussion

Flaw in the Nguyen Model. In [54], Nguyen et al. used two generating vectors for

the lattice structure of the HIV-1 (5,7) conical capsid. The two generating vectors are

~A = n(h~a1 + k ~a2),(56)

~B = m(h~a1 + k ~a2),(57)

where h, k are two non-negative integers used to determine the T -number and n,m are two

other non-negative integers similar to those in our model. However, an important piece of
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information is missing from this model: the unique height required for closure of the cone.

The required height allows the two outer middle closure lines to be parallel, which in return

match the cut hexagons to form into a pentagon. If these lines are not parallel, then either

a more than 60◦ declination (shown in yellow near the top of Figure 4.9 (left)) or a less

than 60◦ declination (shown in yellow near the bottom of Figure 4.9 (left)) will be produced.

Both cases result in incomplete pentagons formed on the capsid. Shown in Figure 4.9 is an

example of failure in closure.

The geometric models proposed in this chapter are useful for investigating the discrete

curvatures and curvature concentrations on the HIV-1 conical capsids [42]. It is suggested in

[13] that the asymmetry and quasi-equivalence exhibiting in tubular and conical capsids are

related to the hinge between the C-terminal domain (CTD) and N-terminal domain (NTD)

of the capsid protein. This information could be utilized to study the elastic energy on the

capsid and the relationship between curvature and elastic energy.

Figure 4.9. Left : An illustration of a lattice with (h, k) = (1, 1), T = 3,
(n,m) = (1, 2) according to the Nguyen model with only two generating vec-

tors [54], where the two generating vectors ~A and ~B are defined in Equations
(56) and (57). Pentamer positions are shown in red. Incomplete pentagons are
shown in yellow. Right : The lattice folds into an incomplete (5,7)-cone, the
partial hexagons along the outer edges do not match, since the unique height
is not enforced in the Nguyen model.
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CHAPTER 5

Modeling Viral Capsid Assembly

In this chapter, we explore an inexpensive approach for modeling and simulations of viral

capsid assembly. Based on the biological evidence presented in Chapter 2, the assembly

process is viewed in two stages: nucleation and elongation. At the early stage of viral capsid

assembly, lower order CA proteins nucleate into hexamers simultaneously in many locations

within the virion. Then these hexamers further assemble into the viral capsid. Pentamers

might form at the places where it is difficult for a hexamer to form.

We focus on the nucleation stage by investigating the kinetics of nucleation. Specifically,

a 6-species dynamical system model is developed by considering all possible pathways of

association and dissociation. Then biological evidence [10, 16, 29, 49, 79] are used to reduce

the model. Published biological experimental data [60] are utilized to estimate the model

parameters representing the association and disassociation rates. Furthermore, sensitivity

and elasticity analysis are performed to determine which association / dissociation terms are

required during the nucleation stage.

5.1. HIV-1 Maturation

Retrovirus capsid assembly has been observed to undergo two stages: nucleation and

elongation [37], as shown in Figure 5.1. For HIV-1, these occur during the process of mat-

uration, which is the formulation of the cone-shaped core. In principle, the HIV-1 capsid

is composed of two types of units: hexamers and pentamers. Hexamers are the primary

units (Figure 5.2), where the amount of hexamers range between 200-260 in each capsid [6],
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Figure 5.1. Retroviral Lifecycle. HIV fuses with the host cell’s membrane
and releases it’s RNA and enzymes in the cytoplasm. HIV’s RNA is translated
to DNA, integrated into the host cell’s DNA, then translated into viral mRNA.
The mRNA produces the Gag proteins which travel to the membrane. The
virions leave the cell during the budding process, develop a protective capsid
shell and become infectious during maturation [52, 79].

Figure 5.2. Left: HIV-CA n-mer profiles during nucleation. In most ex-
periments reported here, CA subunits (monomers) and 6-mers were the most
prevalent [79]. Right: HIV-CA 6-mers (hexamers). Simulations to obtain
soluble HIV-1 CA hexamers for 3D crystallization [79].
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depending on the size of the conical core. It is known that there are exactly 12 pentamers

for each closed retroviral capsid [17, 74, 79] as shown in Figure 5.3.

The basic building blocks of a HIV viral capsid are capsid (CA) protein subunits, called

monomers. Two monomers form a dimer, a monomer and a dimer form a trimer, so on so

forth, until the first nucleus forms. In the case of HIV-1, we could assume the first nucleus

is a hexamer, since they are most prevalent as shown in Figure 5.3, though under certain

conditions the formulation of pentamers are favored [6, 11]. The formation of the first nucleus

completes the nucleation stage. It has been hypothesized that the elongation stage begins

as more hexamers or pentamers are added to the growing lattice until the CA proteins have

formed the closed protective shell, i.e., a capsid consisting of hexamers and pentamers.

Modeling of viral capsid assembly and more broadly, viral life cycles, is an active and

challenging research area in mathematical biology. Previous work has modeled the whole

process of viral capsid assembly using one large-size dynamical system [85]. But these models

Figure 5.3. Three different capsid lattices: 12 pentamers (red) close the
curved hexagonal lattice in Moloney murine leukemia virus (Mo-MLV), Mason-
Pfizer monkey virus (MPMV) and HIV-1 [79].
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consider a simplified pathway that allows association or dissociation of one capsomer unit

at a time. This approach might be conceptually simple, but the implementation of the

models and computer simulations are difficult, since the dynamical system is of size 1500 or

larger. Additionally, these simplified pathways ignore biological evidence that non-monomer

subunits, such as dimers and higher order n-mers, can assemble with each other [59, 60]. This

past approach has also overlooked the effects and experimental evidence of the nucleation

and elongation stages.

5.2. Existing Work

There is a wide range of biological and mathematical work published on HIV-1 capsid as-

sembly. This section will briefly review this work as well as some of the drawbacks associated

with each model.

Ganser’s Group. Ganser and co-workers studied the structure of the HIV-1 coni-

cal capsid from a biological perspective by creating virus-like particles (VLPs) via election

cryotomography (CryoEM) [6], shown in Figure 5.4. The reconstructions revealed that the

structures and positions of the conical cores within each VLP are unique, though they still

exhibited several consistent features. One being the conical core with an average cone angle

of 19.2◦. Another being the positioning of the base of the capsid to the envelope/MA layer.

[6] also found multiple and nested capsids. These results support the fullerene cone model,

indicating that maturation involves a free re-organization of the capsid shell and not a con-

tinuous condensation of proteins. This implies the assembly process may be template-driven

(See Chapter 4) and the particular cone-shaped capsid is strongly favored.
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Figure 5.4. HIV-1 Virus-Like Particles (VLPs) [6].

Zlotnick’s Group. Zlotnick and his group have been working on characterizing viral

protein assembly for almost two decades [85]. Their work focuses on using differential equa-

tions for the rates of change of the intermediate concentrations of the capsid. These equations

model the capsid assembly as a polymerization reaction, assuming only one monomer at a

time associates or dissociates from the growing structure. Association or disassociation of

higher order intermediates is not considered.

In most of their work, only one forward rate constant kf is used. The backward rate

constants kbn vary depending on the size (n) of the growing capsid and are calculated by the

equation: kbn = kf/Kαn, where Kαn is an association constant. The full equations used are

(58)
d[polymern]

dt
= kf ([polymern−1]− [ploymern])[freesubunit]− kb[polymern].

In simulations, these equations were used to model the formation of a spherical capsid

with T=1, or in other words a dodecahedron, where there are exactly 12 pentamers and no
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hexamers. Numerical solutions were computed with STELLA, using a forth-order Runge-

Kutta method. Both equilibrium assembly (EQ) and kinetically limited (KL) models were

considered. In the EQ model, intermediates form and break apart and the reaction is able to

continue, though kinetic traps are likely. In the KL model, early reaction is slow. The two

models have their own advantages, EQ does not require nucleation and is more appropriate

for an assembly process with weak association energies but KL is able to avoid kinetic

trapping.

In [21], rate equations are used to model assembly of a dodecahedron (12 pentamers, no

hexamers) and icosahedral capsids (30 tetramers). The system of rate equations is formulated

as

(59)
d[m]

dt
= fmsm[u][m− 1]− fm+1sm+1[u][m] + bm+1[m+ 1]− bm[m],

where sm is a degeneracy statistical factor, and fm, bm are forward and backward rates

respectively, for the m-th species.

Zlotnick and Katen reiterate in [37] that virus capsid subunits interact through weak

contact energies, which leads to a dynamic globally stable structure. Assembly is still mod-

eled as a polymerization, although assembly is now divided into the two stages: nucleation

and elongation. There is a lag phase, which ends when the first nucleus forms, then rapid

growth during elongation. During elongation, concurrent nucleation and elongation events

can happen, leading to multiple capsids as seen in vitro. The system equations are similar

to [21], with subunit s, elongation ke and disassociation kd,expressed as

(60)
d[nuc+ n]

dt
= ke,n−1[nuc+ n− 1][s] + kd,n+1[nuc+ n+ 1][s]− ke,n[nuc+ n][s] + · · · .
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They also investigate conditions for kinetic trapping. When forward rates are too high,

the intermediates form too rapidly, creating too many intermediates without forming closed

capsids. Also, if nucleation happens too quickly in comparison to elongation, too many

metastable intermediates are formed. Lastly, “off-path assemblies” can also occur, causing

metastable intermediates as well.

Hagan’s Group. In [30], Hagan presents a review of the theoretical and computa-

tional methodologies that have been used to model the assembly of viral capsids. A new

model is created in attempt to eliminate the kinetic trapping found in [21] from the extreme

differences in the time needed for nucleation versus elongation.

The reaction system of capsid protein subunits, with total concentration ρT , that start

at t = 0 is given by

(61) 1
fρ1


bnuc

2
fρ1


bnuc
· · ·

fρ1


bnuc

nnuc

fρ1


belong

· · ·
fρ1


belong

N,

whereN is the number of subunits (monomers) in a capsid, ρ1 is the concentration of subunits

not yet assembled, and bi is the dissociation rate constant for each stage: nucleation and

elongation.

Time is also distinguished between the two stages: nucleation (τnuc) and elongation

(τelong), where

(62) τelong =
nelong

fρ1 − belong
−
(

belong
fρ1 − belong

)2(
belong
fρ1

)nelong

,

and nelong = N − nnuc with nnuc being the average nucleus size.

60



Similarly, the formula for τnuc can be derived as

(63) τnuc =
nnuc

fρ1 − bnuc
−
(

bnuc
fρ1 − bnuc

)2(
bnuc
fρ1

)nnuc−1

.

However, free subunits are depleted by assembly, so the net nucleation rate never reaches

this value but asymptotically approaches zero as time approaches equilibrium. Again this

system becomes kinetically trapped at a larger concentration ρkt. Kinetic traps arising from

depletion of free subunits has also been seen in experiments on CCMV and HBV [30].

Hagan and Elrad [31] consider rate equation models for capsid assembly developed by

Zlotnick’s group, disregarding malformed capsids. It again assumes only monomers can

associate and dissociate. They define only one forward rate and one backward coefficient for

each intermediate. The model is given by

(64)


dc1
dt

= −2f1c
2
1 + b2c2 +

∑N
n=2−fncnc1 + bncn

dcn
dt

= fn−1c1cn−1 − fnc1cn − bncn + bn+1cn+1

for n = 2, ..., N , where cn is the concentration of intermediates with n subunits, fn, bn are

forward and backward rates respectively for intermediate n.

Despite the simplifications, the rate equations show good agreement with median assem-

bly times of experimental assembly kinetics data. Using this model, they show that the

nucleus size can be determined from the concentration dependence of the assembly half-life.

They also determine that elongation time is dependent on the length of the lag phase.

Each of these models presented focus on the assembly of empty icosahedral viral shells.

Specifically they best describe capsids with T=1, or 12 pentamers and no hexamers. There
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is a need to examine higher order capsid structure dynamics as well as cargo-containing

capsids. Each model also reiterates the time difference between the two maturation stages.

Since there is a need for separate modeling and simulations of nucleation and elongation

stages, we first consider models for nucleation only. This work will further shed light on the

elongation stage for additional shapes and symmetries of capsids.

5.3. Dynamical System Models for Nucleation

Our approach in modeling HIV-1 assembly is to use dynamical systems. Previous models

assume that only single monomers bind or unbind. There is also strong evidence [13, 16, 29]

that dimers form with other dimers. Moreover, non-monomer subunits can assemble with

each other [59, 60]. Therefore, this research is focused on exploring models where larger

intermediates can bind with each other.

The assembly models we consider is related to Zlotnick’s model [85], which is a dynamical

system similar to a population model for interaction species. In our case, each species

represents a particular capsid intermediate or n-mer.

5.3.1. A Nucleation Model of Three Intermediates. A system of three differ-

ential equations, based on the concentrations of subunits, intermediates, and capsids will be

examined. This model only considers the interaction of monomers, (c1), dimers, (c2), and

hexamers, (c6), also referred to as nuclei.

Assumptions.

• Nucleation ends with 6-mer formation. [60, 59] observed little to no existence of

cn, n > 6;

• One forward rate for each species;
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• Multimers can dissociate in the same way they are formed in association.

Variables and Parameters.

• cn is the concentration of the n-mer intermediate;

• fij is the association rate of ci and cj;

• f222 is the association rate for trimer-of-dimer;

• bij is the rate of ci dissociating into two intermediates with cj being the largest

intermediate of the disassociated terms, b62 is for the special case 6-mer dissociates

into three dimers.

Intermediates: Association and Dissociation. We consider one pathway for

the formation of hexamers: Three dimers form together to create a hexamer as shown in

Figure 5.5.

(65) c1 + c1
f11


b21
c2, c2 + c2 + c2

f222


b62

c6.

Full Equations. The assembly model is a dynamical system of first-order, au-

tonomous, nonlinear ordinary differential equations. The rate of change of the concentration

Figure 5.5. Illustration of the second pathway (trimer-of-dimers) for hex-
amer assembly. Protein illustrations are drawn according to PDB 3H47 HIV-1
CA monomer [58].
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of a specific n-mer (monomer, dimer, hexamer) is described in each equation, with respect

to time. The equations for the nucleation phase are given by

(66)



dc1
dt

= 2b21c2 − 2f11c
2
1

dc2
dt

= f11c
2
1 + 3b62c6 − b21c2 − 3f222c

3
2

dc6
dt

= f222c
3
2 − b62c6

Unique Equilibrium. We set the Jacobian determinant to zero as follows

(67)

∣∣∣∣∣∣∣∣∣∣∣
−4f11c1 2b21 0

2f11c1 −b21 − 9f222c
2
2 3b62

0 3f222c
2
2 −b62

∣∣∣∣∣∣∣∣∣∣∣
= 0.

This implies that the equations are not independent. We reduce the system by imposing

the mass conservation condition (the total concentration of the subunits is constant):

(68) c1(t) + 2c2(t) + 6c6(t) = c1(0), ∀t ≥ 0 ⇒ c6(t) =
c1(0)− c1(t)− 2c2(t)

6
.

The reduced system is then

(69)


dc1
dt

= −2f11c
2
1 + 2b21c2

dc2
dt

= f11c
2
1 − 3f222c

3
2 − b21c2 + 1

2
b62 (c1(0)− c1 − 2c2)
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The Jacobian determinant for the reduced system is

(70)

∣∣∣∣∣∣∣∣
−4f11c1 2b21

2f11c1 − 1
2
b62 −b21 − 9f222c

2
2 − b62

∣∣∣∣∣∣∣∣ = 36f11f222c1c
2
2 + 4f11b62c1 + b21b62 6= 0.

Therefore, we conclude that a unique equilibrium exists. Let

(71)

B = b21 + b62 + 9f222c
2
2 + 4f11c1,

C = 36f11f222c1c
2
2 + b21b62 + 4b62f11c1,

D = B2 − 4C,

then the eigenvalues of the Jacobian matrix are

(72) λ± =
−B ±

√
D

2
.

It is assumed that the equilibrium concentrations c1 and c2 are both non-negative and

that the forward and backward rates are all positive. With these assumptions, we have

B > 0, which guarantees the equilibrium to be asymptotically stable if D ≤ 0.

Suppose that D > 0. Then, the equilibrium is unstable when D > B2. But D =

B2−4C < B2, since C > 0 by the assumptions. Therefore, the equilibrium is asymptotically

stable.

In Silico: Parameters. We chose arbitrary values for the forward and backward

coefficients fij and bij. Literature suggests that hexamers are the most stable structure [61],

thus we assume their dissociation into smaller intermediates, b62, is small. It is also known

that monomers are the least stable, since they readily form together to create dimers, thus

we choose f11 to be large. Similarly to hexamers, the dissociation rate of dimers, b21 is small,
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though we can assume b62 < b21, since hexamers are more stable than dimers [79]. Lastly,

it is know that trimers of dimers tend to form together to create hexamers[29], thus f222 is

chosen to be large in magnitude.

In Silico: Initial Values. The initial concentration of c2 and c6 are set to 0. We set

c1(0) = 1300 since on average, 1300 copies of CA are needed for one HIV-1 conical core [6].

Observations. Figure 5.6 shows the n-mer (monomer, dimer, hexamer) values de-

scribed by the dynamical system from time t = 0 to t = 100. These solutions are for the

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400
Concentration of Monomers

t

c 1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40
Concentration of Dimers

t

c 2

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250
Concentration of Hexamers

t

c 6

Figure 5.6. In silico for c1(0) = 1300: Concentration of n-mers from time
t = 0 to t = 100, where c1 is the concentration of monomers, c2 for dimers,
and c6 for hexamers.
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case when the parameter values are set as f11 = 1, b21 = 0.1, f222 = 1, and b62 = 0.01, with

initial conditions c1(0) = 1300 and c2(0) = c6(0) = 0.

The concentration results are as expected. The concentration of monomers quickly de-

creases over time, as the dimers and hexamers are composed from them. There is an initial

spike on the concentration of dimers, as monomers first join to form dimers. Then the dimer

concentration starts to decrease as trimer-of-dimers form into hexamers. Clearly, the hex-

amer concentration is expected to increase over time, which corresponds to the monomers

and dimers forming complete hexamers.

This model is not complicated, but clearly demonstrates one underlying process of hex-

amer formation. Do to the simplicity of this model, we skip the sensitivity and elasticity

analysis so we may move forward to a more in-depth model for capsid nucleation.

5.3.2. Full Six-Intermediate Nucleation Model. As mentioned before, among

the existing work [21, 31, 52], a natural and straightforward approach considers only one

pathway of assembly: only one CA protein (monomer) can assemble with another subunit

at a time, That is, from n-mer to (n+ 1)-mer. Similarly the dissociation is from (n+ 1)-mer

to n-mer. However, there is strong evidence [13, 16, 29] that dimers interact with other

dimers. The findings in [59, 60] suggest that non-monomer subunits can assemble with each

other. Stability analysis in [16] predicts that dimer is an important CA intermediate in self

assembly.

Based on the aforementioned work, we start with a new model by considering all possible

pathways for forming a nucleus, also referred to as a hexamer or 6-mer. Dissociation is also

important, due to high concentrations of intermediates left after nucleation, more terms are
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added to describe the multitude of disassociations for cn. This model and following sections

are incorporated into preprint [65].

Assumptions, Variables, and Parameters. The assumptions, variables, and pa-

rameters in this model are the same as those listed in the three-intermediate nucleation

model.

Full Equations. Here is a system of six ordinary differential equations or a dynamical

system of size six describing the kinetics in the association and dissociation, based on the

above assumptions.

(73)



dc1
dt

= b65c6 + b54c5 + b43c4 + b32c3 + 2b21c2

−f15c1c5 − f14c1c4 − f13c1c3 − f12c1c2 − 2f11c
2
1

dc2
dt

= f11c
2
1 + 3b62c6 + b64c6 + b53c5 + 2b42c4 + b32c3

−b21c2 − 3f222c
3
2 − f24c2c4 − f23c2c3 − 2f22c

2
2 − f21c1c2

dc3
dt

= f12c1c2 + 2b63c6 + b53c5 + b43c4 − b32c3 − 2f33c
2
3 − f23c2c3 − f13c1c3

dc4
dt

= f13c1c3 + f22c
2
2 + b64c6 + b54c5 − b43c4 − b42c4 − f24c2c4 − f14c1c4

dc5
dt

= f14c1c4 + f23c2c3 + b65c6 − b54c5 − b53c5 − f15c1c5

dc6
dt

= f15c1c5 + f33c
2
3 + f222c

3
2 + f24c2c4 − b65c6 − b64c6 − b63c6 − b62c6

5.3.3. Reduced Six-Intermediate Nucleation Model. The full six-intermediate

nucleation model is a six-species dynamical system with 20 parameter values, described in

the previous section. The model considers all possible pathways of two binding intermediates

and one triple bond (trimer-of-dimers) in the association leading to and dissociation down
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from hexamers. Published biological data suggest that this model could be simplified. This

section formulates a reduced model from Equation (79). The assumptions, variables, and

parameters are consistently defined.

Intermediates: Association and Dissociation. The hexamer pathways are based

on the findings presented in [49]. The first pathway [P1] along which monomers join one at

a time was adopted in [21, 31, 52]. “The symmetric appearance (of a hexamer) is suggestive

of symmetric head-to-head dimers,” as shown in Figure 5.7, promoting the trimer-of-dimer

assembly seen in the second pathway [P2]. This is also advocated in [10, 16, 29] and here

illustrated in Figure 5.5. The third pathway [P3] for a hexamer considered in our reduced

model is established based on the discussion in [7, 13, 27, 38, 39, 49, 74]. In particular,

[74] asserts that CA prefers to form both dimers and tetramers. This pathway could also

be considered the “slow” formation of trimer-of-dimers. Instead of three dimers joining

Figure 5.7. Self-assembly snapshots for the HIV-1 CA dimer lattice. Hex-
amers are denoted in green, pentamers in red, and trimer-of-dimers in blue.
Monomers not associated with the three listed structures are omitted from this
figure for clarity [16].
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together simultaneously, two dimers may first form a tetramer quickly followed by a third

dimer joining to create the hexamer. Assuming only these two pathways will eliminate the

parameter f33 and the corresponding backward rate b63 from the model.

Single monomers join:

(74) c1 + c1
f11


b21
c2, c1 + c2

f12


b32
c3, c1 + c3

f13


b43
c4, c1 + c4

f14


b54
c5, c1 + c5

f15


b65
c6.

Trimer-of-dimers as illustrated in Figure 5.5:

(75) c1 + c1
f11


b21
c2, c2 + c2 + c2

f222


b62

c6.

Single binding dimers:

(76) c1 + c1
f11


b21
c2, c2 + c2

f22


b42
c4, c2 + c4

f24


b64
c6.

In addition to hexamer pathways, pentamer pathways must be examined since pentamers

are required for formation of a closed viral capsid [6, 8, 23, 61]. Both pathways for pentamer

formation occur as either a sub-pathway or union of hexamer pathways. Note only con-

sidering these two pentamer pathways allows the elimination of the term f23c2c3, and its

corresponding backward rate term b53c5, from the full model.

This implies there are mainly two pathways for a pentamer:

Single monomers join (seen as part of pathway [P1]):

(77) c1 + c1
f11


b21
c2, c1 + c2

f12


b32
c3, c1 + c3

f13


b43
c4, c1 + c4

f14


b54
c5.
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Dimers and monomer (seen as the union of pathways [P1] and [P3]):

(78) c1 + c1
f11


b21
c2, c2 + c2

f22


b42
c4, c1 + c4

f14


b54
c5.

It is clear that these pathways reduce the emphasis on the trimers. Even though trimers

of MA proteins are predominately observed during the assembly of immature virions [7, 76],

there is not much evidence that the CA proteins prefers trimer formation [2].

Full Equations. The above discussion leads to a reduced 6-species model:

(79)



dc1
dt

= b65c6 + b54c5 + b43c4 + b32c3 + 2b21c2

−f15c1c5 − f14c1c4 − f13c1c3 − f12c1c2 − 2f11c
2
1

dc2
dt

= f11c
2
1 + 3b62c6 + b64c6 + 2b42c4 + b32c3

−b21c2 − 3f222c
3
2 − f24c2c4 − 2f22c

2
2 − f21c1c2

dc3
dt

= f12c1c2 + b43c4 − b32c3 − f13c1c3

dc4
dt

= f13c1c3 + f22c
2
2 + b64c6 + b54c5 − b43c4 − b42c4 − f24c2c4 − f14c1c4

dc5
dt

= f14c1c4 + b65c6 − b54c5 − f15c1c5

dc6
dt

= f15c1c5 + f222c
3
2 + f24c2c4 − b65c6 − b64c6 − b62c6

This reduced 6-species model will be used for numerical simulations of CA protein nu-

cleation. Sensitivity and elasticity of the intermediate concentrations cn(n = 1, . . . , 6) to the

forward and backward rates will be analyzed also (See the section “Results”).
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5.4. MATLAB Implementation

5.4.1. An Optimization Method for Model Parameter Fitting. To obtain val-

ues of the model parameters based on published experimental data, we adopt the Particle

Swarm Optimization (PSO) method [18]. This is a method for optimizing continuous non-

linear functions. PSO has an open source MATLAB implementation, which will be used in

this dissertation to optimize the values of the 16 parameters in the reduced model for viral

capsid nucleation under certain constraints on the forward and backward rates.

PSO is a numerical method based on the stochastic optimization technique developed by

Eberhart and Kennedy [18] in 1995. Since then, it has been widely used in many research

fields, for example, neural network, telecommunications, design, control, signal processing,

power systems, and data mining.

PSO shares similarities with other optimization techniques, for example, the Genetic

Algorithm (GA). Compared to GA, PSO is easier to implement and has fewer parameters to

adjust for reaching an optimal solution. PSO is also able to take real numbers as particles,

in contrast, GA needs to change to binary encoding or special genetic operators. Other

advantages of PSO include making no assumptions about the problem being optimized and

obtaining global optimum solutions.

PSO optimizes a problem by having a population of candidate solutions (particles). It

iteratively tries to improve the solutions with regard to additional constraints by updating

generations until the target is met. In each iteration, the solutions are updated by tracking

two values. One is the best solution or fitness (p) each parameter has achieved, the other is

the best value obtained by any other particle in the population (g1).
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After finding the two best values up to that time, the solutions update their velocities

and positions by the following formulas:

v(i+ 1) = wv(i) + c1r1[p(i)− x(i)] + c2r2[g1(i)− x(i)],(80)

x(i+ 1) = x(i) + v(i+ 1),(81)

where

• w is the initial inertia weight with a default value 0.9;

• v(i) is the particle velocity at iteration i;

• c1, c2 are the local and global best influence weights, respectively, typically set to

c1 = c2 = 2;

• r1, r2 are random variables between (0, 1);

• x(i) is the particle position at iteration i;

• p, g1 are defined as stated before.

A pseudo code for the procedure is shown as follows.

——————————————————————

Begin i := 0;

For each particle

Initialize the particle P(i) = {x1, x2, ..., xN};

Calculate the fitness value of P(i);

If fitness value (p) is better than p in history, replace p;

End.

Choose the particle with the best fitness value and set as g;

For each particle
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Calculate the new velocities and positions (Equations (80-81));

i := i+ 1;

End.

—————————————————————–

5.4.2. Sensitivity & Elasticity Analysis. Sensitivity analysis examines how a sys-

tem’s behavior respond to the changes in its parameters. Sensitivity analysis is useful for

identifying important parameters that require additional investigation or insignificant pa-

rameters that could be eliminated from the model [73, 76].

Sensitivity is computed by finding the derivatives of each solution variable with respect

to each parameter. In other words, the sensitivity of the ith variable (ci) with respect to the

kth parameter (pk) is defined as

(82) Si,k =
∂ci
∂pk

, i = 1, ..., N, k = 1, ..., K,

where N is the size of the system and k is the dimension of the parameter space.

Redefining each equation in the ODE system to be

(83)
dci
dt

= hi(c,p), i = 1, ..., N ; p ∈ Rk,

gives the sensitivity of all variables (ci) with respect to all parameters when the following

ODE system is solved:

(84)
dSi,k
dt

(t) =

(
N∑
n=1

∂hi
∂cn

Sn,k(t)

)
+
∂hi
∂pk

(t), Si,k(0) = 0.
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Sensitivity analysis can yield misleading results when the parameter values vary in a

large range of magnitude. Elasticity describes the rate of change of the relative change in

the size of the variable with respect to the relative size of the parameter. The elasticity of

the ith variable with respect to the kth parameter is defined as

(85) Ei,k(t) =
pk
ci(t)

∂ci
∂pk

(t).

SENSAI [72] is a freely available MATLAB package for performing a forward sensitiv-

ity and/or elasticity analysis on parametrized systems of nonlinear first-order differential

equations. SENSAI evaluates the Jacobian

(86)
∂hi
∂cn

, i, n = 1, ..., N,

and the partial derivatives with respect to the parameters

(87)
∂hi
∂pk

, i = 1, ..., N, k = 1, ..., K,

symbolically using MuPAD, then solves Equation (84) in MATLAB.

5.5. Results

In this section, we first describe the experimental data used in comparison for our model.

Next, we describe the constraints on parameters used to find a good initial guess needed for

the PSO toolbox, when finding the appropriate parameter values. Then, the results from

the PSO parameter fitting are discussed. Lastly numerical simulations are preformed in

MATLAB.
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5.5.1. Use of Biological Experimental Data. It is known from the discussion

in [59, 60, 79] that the structures of CA hexamers are very difficult to obtain because of

the weak interactions holding the hexamers together. Mutant CA hexamers are utilized for

investigation.

[59] compared each mutant hexamer to the HIV-1 CA hexamer given by the Protein Data

Bank (PDB) code 3dik. It was found that four mutants assembling into tubes “appeared

similar in morphology to the wild-type tubes”. Of the four, only two mutants (A14C/E45C in

lane 3 and A42C/T54C in lane 9) had enriched 6-mer bands, which is favorable for hexamer

bonding to create the full lattice.

[59] states that A14C/E45C produces hexamers that are the most similar to wild-type

HIV-1 hexamers, and adding two more mutations gives the more favorable results to con-

struct A14C/E45C/W184A/M185A. However, no data is reported for this construct.

[60] presented a similar study, creating mutant CA protein that faithfully mimic the

hexamer properties of HIV-1 capsid. It was found that the same two mutants A14/E45 and

A14C/E45C/W184A/M185A produced the most realistic results. In this case, it was found

that the latter mutant assembled less efficiently than A14C/E45C alone. Results were also

compared the PDB code 3dik.

Both [59, 60] considered hexamers stabilized by engineering disulfide cross-link (the mu-

tation) A14/E45 with similar results. [60] gives more information about the protein concen-

tration and timing.

In [60], Crosslinked CA A14C/E45C hexamers were prepared by 10 mg/mL protein into

assembly buffer. The buffer was given first with 200 mM β-mercaptoethanol (βME), then

0.2 mM βME, and 20 mM Tris (pH 8). Each step was performed for 8 hours.
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Data was taken from the image D line 5 in [60] (shown Figure 5.8 (right) in this disser-

tation) by using the image processing software ImageJ. Each i-mer was measured five times

to alleviate any discrepancies due to human error. The average of these measurements are

used as our equilibrium concentrations.

5.5.2. Constraints on the Forward and Backward Rates. Before using the

PSO toolbox to optimize the parameters, an initial guess P (1) must be contributed. The

choice of PSO parameters can have a large impact on optimization performance. The fol-

lowing size order relations on the forward and backward rates help find a good initial guess

and set bounds for each parameter.

Constraints on the Forward Rates. The models presented in [21, 37, 85] assume

that only one protein is added (could associate) at a time and all forward rates are equivalent.

In [52], it is assumed fn (equivalent to f1n in our model) increases monotonically with n.

In [59], it is found that monomers assemble spontaneously into a hexamer lattice tube,

Figure 5.8. Left: SDS-PAGE profiles of the assembly reactions [59]
(reprinted with permission from Elsevier). Right: WT stands for wild type,
CC corresponds to A14C/E45C, and CCAA is A14C/E45C/W184A/M185A
[60] (reprinted with permission from Elsevier).
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indicating that the CA proteins tend to form hexamers. Based on these studies, we assume

the forward rates f1n increase as the size of the intermediate increases.

It is expected for f11 to be very small, since the subunit-subunit interactions are inherently

weak [37, 79]. The pentamer subunit is the least stable intermediate, so f15 will be very large

compared to the others [79].

We adopt a similar size order relation as seen in [52], excluding the rates which may not

react the same in our model due to the addition of binding intermediates:

(88) f11 ≤ f12 � f15.

[79] discusses the stability of intermediates and claims that a hexamer is more stable

than a tetramer and a tetramer is more stable than a pentamer. We assume that stability

helps drive intermediate formation and state

(89) f22 ≤ f24 � f15.

For the reduced nucleation model presented in this paper, all the forward rates except f222

have the physical dimension T−1L3M−1, where T is time given in seconds, L3 in milliliters

cubed, and M in milligrams. The forward rate f222 (for trimer-of-dimer) is the only rate

that has a physical dimension T−1(L3M−1)2. It cannot be simply compared to the other

forward rates. [16] notes that the trimer-of-dimers structure is crucial for lattice formation,

and [13, 29] found hexameter formation occurs with increased CA dimer concentration, so

it is expected f222 to be large.

Constraints on Backward Rates. All the backward rates have the physical dimen-

sion T−1.
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The discussion in [13, 16, 29] implies that it is less likely for a dimer to dissociate.

We assume that b21 will be the smallest backward rate. Additionally, the instability of

pentamers [79] implies that the rate of b65 should be low compared to that of other hexamer

disassociations. These lead to the assumptions that

(90) b21 ≤ b65 ≤ b64,

(91) b21 ≤ b65 ≤ b62.

5.5.3. Results of Model Parameter Fitting. We perform parameter fitting, using

the PSO Toolbox, for our reduced 6-species model based on the discussion in [59, 60, 79]

about HIV-1 hexamer formation and the experimental data reported in [60].

The initial guess and bounds are constructed using the relationships defined in the above

section. The PSO toolbox solves the ODE system with these parameters bounds with the

additional condition that the chosen parameter values should produce a solution with con-

centrations close to those measured from the experimental data in Section 5.5.1. PSO is run

10 times due to the randomness involved in Equation (80). Weights are set to the conven-

tional values, with c1 = c2 = 2 and w = 0.9. Iterations are terminated after the max number

of iterations (i = 2000) or by achieving the minimum global error gradient

(92) |g(i+ 1)− g(i)| < 1× 10−25.
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We choose the set of parameters that minimize the error between the experimental data

and the numerical solution. The optimized parameters yield the lowest relative error (0.0125)

are listed in Table 5.1 and ODE solution is compared to the data in Figure 5.9.

5.5.4. Results of Multimer Concentrations (c1, c2, c3, c4, c5, c6). The stability of

equilibria for this model were considered. First, we reduced the system according to the

mass conservation law and our initial condition ~c0 = (1300, 0, 0, 0, 0, 0), which states

(93) c1 + 2c2 + 3c3 + 4c4 + 5c5 + 6c6 = 1300.

Table 5.1. Optimal Parameter Values Chosen for Discussion.

f11 = 0.000556 f12 = 0.004504 f13 = 0.000867 f14 = 0.038226
f15 = 0.179675 f22 = 0.013196 f222 = 0.159765 f24 = 0.061905
b65 = 0.193838 b64 = 0.256905 b62 = 0.993826 b54 = 0.056015
b43 = 0.728455 b42 = 0.719905 b32 = 0.717905 b21 = 0.019094
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Figure 5.9. Concentrations of the intermediates after t = 24×3600 seconds,
with initial value (c1(0), c2(0), c3(0), c4(0), c5(0), c6(0)) = (1300, 0, 0, 0, 0, 0).
ODE solutions with optimized parameters are shown in dark red, data from
[60] are shown in dark blue.
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Using the optimized parameters, the equilibria of the mass conserving model are found

using the solve function in MATLAB. Seventeen solutions were found, though the negative

and imaginary equilibrium points are discarded since they are not biologically relevant. This

reduces the number of physically possible equilibrium points to one. The Jacobian of the

system is computed and evaluated at the equilibrium point. Each eigenvalue is found to have

a negative real part, implying that the equilibrium point shown in Figure 5.10 is stable.

The monomer concentration c1 quickly decreases as the CA proteins bind with ci con-

centrations to form ci+1 intermediates. Note that there is a large initial spike in the dimer

concentration c2, implying many monomer proteins bind together to form dimers first, as

discussed in [7, 13, 27]. The quick decrease in c2 indicates the importance of the dimers in

Figure 5.10. Simulation results. Concentrations of each interme-
diate cn from t = 0 to t = 20 seconds, with ~c(0) =
(c1(0), c2(0), c3(0), c4(0), c5(0), c6(0)) = (1300, 0, 0, 0, 0, 0). Simulations were
performed until t = 24× 3600, although they are not shown here due to early
convergence of the solution. Convergent concentrations agree with the exper-
imental data in [60] as shown in Figure 5.9.
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building higher order n-mers. It is interesting to see a spike in the trimer concentration c3,

decrease, then gradually increase to equilibrium. This will be addressed in the embedded

modeling section. Furthermore, the concentrations cn(n = 4, 5, 6) are gradually increasing

as expected.

5.5.5. Results of Elasticity Analysis. Sensitivity and elasticity analysis is per-

formed for the concentration of n-mer cn (n=1,2,3,4,5,6) with respect to the association and

dissociation rates (forward and backward rates) using the SENSAI MATLAB package [72].

There are a total of 16 forward and backward rates, as shown in Figures 5.11 and 5.12.

The sensitivity of parameters to intermediate concentrations is first considered. These

parameter values (see Table 5.1) vary along three orders of magnitude indicating that a

scaling of the parameter values is necessary and elasticity may be a more appropriate choice

for analysis.

Sensitivity is quantified as a derivative. For six concentrations ci, i = 1, .., 6 and sixteen

parameters pk, k = 1, ..., 16, a total of 96 derivatives are calculated over time. A scaling is

then applied as shown in Equation (85) to define the elasticity.

We first look at the elasticity of parameters to concentrations. Elasticity is considered at

the following times: t = 1× 10−5, 0.03, 0.1, 1, 2, 4, 7, 12. We consider the values at t = 12 to

be equilibrium values. There are rapid changes in the concentration of monomers for t < 1

and so we consider elasticity at three other times before t = 1, then three other times after

but before equilibrium.

The elasticity results tell an expected story. Near the beginning (Figure 5.11), concen-

trations are most elastic to the forward rates, especially f11. This is intuitive since the c1

concentration is rapidly decreasing as the monomers are forming into dimers and trimers,
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Figure 5.11. Elasticity of the n-mer concentration cn with respect to the
association and dissociation rates are evaluated at four times: t = 1 ×
10−5, 0.03, 0.1, 1.
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Figure 5.12. Elasticity of the n-mer concentration cn with respect to the
association and dissociation rates are evaluated at four times: t = 2, 4, 7, 12.

83



as demonstrated in the spikes of c2 and c3 concentrations in Figure 5.10. As time increases,

concentrations become less elastic to these forward rates and become more elastic towards

higher intermediate forward rates, such as f14 and f15 as show in Figure 5.11 (bottom).

There is an equivalent increase in elasticity to the backward rates (Figure 5.12). It is

interesting to note that elasticity to parameters b65 and b64 appear first out of the backward

rates, (Figure 5.11), and remain evident throughout the rest of the time period. Since

hexamers are assumed to be the most stable intermediate, these results could provide insight

on when hexamers disassemble.

Elasticity to association rates f1i, i = 1, ..., 6. The monomer concentration c6

shows the largest elasticity to the forward rate f11 at the start of nucleation. Other concen-

trations also show elasticity to f11 at times, as expected since f11 is the parameter needed for

nucleation to begin. These elasticities decrease as time increases, except for concentrations

c1, c4 where some fluctuation is seen (see Figure 5.11 for c1 and Figure 5.12 for c1, c4). All

other intermediate concentrations follow a similar decreasing in magnitude pattern for each

forward rate f12, starting from larger elasticity then decreasing over time.

Elasticity of c5 to f14 is seen at the start (Figure 5.11), dissipates, then gradually increases

as time approaches equilibrium (Figure 5.12). Concentration c5 also shows consistent elastic-

ity towards parameter f15, implying these two forward rates f14, f15 (and therefore pathway

listed in Equation (74)) may be important in the assembly of a pentamer and hexamer.

Minimal elasticity is seen for any concentration with respect to f13.

Elasticity to association rates f22, f222 and f24. Concentrations c3, c4 both show

elasticity towards parameter f22 at the start of nucleation (Figure 5.11) then elasticity de-

creases as time increases. A similar pattern is seen for c6 with respect to f222 as time
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approaches equilibrium. These results could lead to insights on how important the dimer

intermediate is during assembly (pathways listed in Equations (75) and (76)). The elasticity

of concentrations to parameter f24 is minimal.

Elasticity of parameters to the backward rates. As shown in Figures 5.11

and 5.12, the magnitude of elasticities with respect to the backward rates tend to increase as

the magnitude of elasticities with respect to the forward rates decrease. Elasticity to back-

ward rates b65 appears first (Figure 5.11) and stays evident as time increases. Concentration

c3 has consistent elasticity past t = 2 and c4 has consistent elasticity with respect to b43 from

t = 7 to equilibrium. These results reemphasize that higher order concentrations may prefer

to disassemble one monomer at a time.

Concentrations c4 and c5 show elasticity to parameter b64. This is expected for c4, since

the backward rate b64 is representative of a hexamer disassociating into a tetramer and dimer.

The elasticity for c5 with respect to b64 may be indicative of a pentamer being integrated

into the lattice, from a hexamer, as discussed in [79]. Minimal elasticity is seen for any

concentration with respect to parameters b62, b54, b42, b21.

5.5.6. Model Sensitivity & Embedded Models. Consistent low elasticity over time

could imply that certain parameters are not important in the model for capsid nucleation.

These parameters may not give additional or important information in our model. To test

this claim, embedded models are analyzed to further characterize which parameters are most

important for recreating the dynamics seen in biological experiments. Parameters with low

elasticity are removed from the model, one at a time, to analyze its importance in the model.

The parameter will be deemed important only if the equilibrium solution changes or the time

to equilibrium changes drastically.
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Since elasticities of concentrations with respect to parameters varies significantly during

the transient phase, the largest magnitude of the elasticity for every concentration cn with

respect to parameter pk for 0 < t < 200 is shown in Figure 5.13. We look for parameters

with low elasticity for all concentrations cn. The parameters of question are taken to be

f13, f24, b62, b54, b42, and b21.

Each parameter is removed from the model, one at a time. The ODE system is then

reduced and resolved. Equilibrium solution is evaluated and the relative error between the

new equilibrium (Xr) and the original model equilibrium (X) is calculated. The results

from the embedded modeling are listed in Table 5.2. It is found that parameters f13, b54, b21

can be eliminated from the model individually with a negligible change to the equilibrium

concentrations.

Then, the process was repeated by removing sets of parameters. The relative error of

removing parameter sets are listed in Table 5.3. It holds that all three parameters f13, b54, b21

Figure 5.13. Largest magnitude of elasticity over all time of n-mer concen-
trations cn with respect to the parameters (represented by the magnitude of
the derivative). Low elasticity is seen for parameters f22, f24, b62, b54, b42 and
b21.
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Table 5.2. Relative Error by Removing Individual Parameters.

Parameters f13 f24 b62 b54 b42 b21
||Xr−X||
||X|| 0.0034 0.0479 0.0314 0.0075 0.0537 0.0020

Table 5.3. Relative Error by Removing Parameter Sets.

Parameters f13, b54 f13, b21 b54, b21 f13, b54, b21
||Xr−X||
||X|| 0.0048 0.0021 0.0095 0.0068

can be eliminated from the model simultaneously with a negligible change to the equilibrium

concentrations. This implies these parameters may not be important for nucleation.

Discussion. By removing parameters b54, b21 concentrations c5, c2 are no longer able

to disassociate in this model. Similarly, by removing parameter f13 there is only one pathway

for a tetramer assembly, given by pathway listed in Equation (76), by two dimers. It is inter-

esting to note that all three of these parameters are found only in the traditional pathway,

Equation (74), used in previous models [31, 85]. Removal of these parameters disrupts this

pathway. Calculating the probability of each pathway would be insightful to the usefulness

of the traditional pathway compared to the two novel pathways presented in this chapter for

hexamer assembly: single binding dimers and the trimer-of-dimer pathway (Equations (75)

and (76)).

5.6. Remarks: Biological Implications

In summary, it is quite interesting to note that although no concentrations are elastic

with respect to the parameters removed in the final model (f13, b54, b21), the corresponding

backward/forward rates b43, f15, f11 seem to be important in this model.

Importance of CA Dimers. This chapter focuses on the nucleation stage of viral

capsid assembly. It is different than the existing work [21, 31, 52] that consider mainly one

pathway and add/delete one capsomer unit at a time. Our model considers more pathways
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for association and dissociation and provides more information about the assembly. It is

now revealed by the model that CA dimers indeed play an important role in the nucleation

stage, as reflected in the initial spike in the numerical simulations and analysis showing that

f22, f24, f222 are important parameters for HIV-1 nucleation. This agrees with the findings

in [7, 13, 27, 74].

Model Predictability. Parameters f11, f12, b64 exhibit elasticity in the monomer and

hexamer concentrations c1, c6. These association or dissociation rates correspond respec-

tively to two monomers forming a dimer, a monomer and dimer producing a trimer, and a

hexamer breaking apart into a tetramer and dimer. Looking at the elasticity at different

times also gives insight on when each pathway is the most important. After the initial spike

of dimers, the intermediates become more sensitive to f222 implying the importance of three

dimers forming a hexamer. These results imply that the most important pathways for hex-

amer formation are single monomers joining together and triple binding dimers (pathways

in Equations (74) and (75) discussed in Section 5.3.3). These results demonstrate that our

model has predictability to a certain level.
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CHAPTER 6

Further Work on Modeling Viral Capsid Assembly

6.1. Curvature and Beyond

The curvature characterization presented in this thesis provides a new viewpoint and

could be useful to the field of structural virology, especially in ranking the stability of re-

lated capsids for pleomorphic capsids such as HIV. The conjecture that capsid stability is

inversely related to curvature concentration is worth of further exploration, given the match-

ing observations in HIV electron micrographs [6, 8, 11, 23].

More Experimental Data Desired for Other Types of HIV-1 Conical Cores.

The majority of the existing work on the HIV-1 cone model focuses on the (5,7)-pattern, even

though (4,8)-cones have been observed in experiments [11]. The results in this dissertation

show that the (4,8)-cone has also high contrast of curvature concentrations for the narrow

and broad ends. It should be interesting to examine possibility and stability (or instability)

of formations for different types of cones. It will be helpful for modeling research on HIV-1

cone structure if more detailed and specific experimental data on different types of cones

are available. Typically, both the (5,7)- and the (4,8)-cone statistics get grouped together

during averaging [6, 11]. Yet having independent information on the (4,8)- and other types

of cones will help identify favorable or unfavorable conditions for formation of HIV-1 cone

structure.

Relation of Curvature to Elastic Energy. The modeling research presented in

this dissertation shows that the narrow end of the HIV-1 conical core has the highest cur-

vature concentration for the (5,7)- and (4,8)-patterns. This high curvature concentration is

tightly related to the stress and elastic (bending) energy at the narrow/broad ends. Similar
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conjectures have been analyzed to find that the degree of localization of Gaussian curvature

depends on elastic stiffness [33]. Also, the role of nonzero spontaneous curvature drives the

energy of the 12 pentameric declinations producing the shape of the capsid [54, 53]. This is

further related to the binding of CTD, NTD of the CA protein. Studying the excess energy

shall further shed light on HIV-1 cone structure [67].

Capsids of Other Retroviruses. The concepts and methodology presented in this

dissertation could be applied to other types of viral capsids, e.g., murine leukemia virus

(MuLV) and Rous sarcoma virus (RSV) [32]. The derivation for generating vectors on lattice

structures can be extended to other retroviral capsid shapes. This information could then

be utilized to study the elastic energy on the capsid and the relationship between curvature

and elastic energy. This is a direction for further research.

6.2. Further Modeling of Viral Capsid Nucleation

Biological experiments indicate that separate modeling and simulations of the nucleation

and elongation stages shall help bring in different perspectives for modeling viral capsid

assembly. Simplifying the models to study nucleation and elongation separately allows us to

closely examine the favorable and unfavorable conditions for each stage. Possible topics for

future research on HIV-1 capsid nucleation are identified as follows.

Stochastic Dynamical Systems. Clearly, there exists randomness in the nucleation

stage of viral capsid assembly. The temperature, pH-value, and many other factors in the

environment of assembly affect the association and dissociation rates and hence the formation

of CA hexameters and pentamers. Further research includes investigation of the stochastic

features of nucleation in which stochastic dynamical systems will be an indispensable tool.
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Embedded Modeling. The models established in this dissertation may be modified

and used to further explore the importance of the added pathways. The models should be

compared to the original full model formulated in Chapter 5. Embedded models with a

statistically significant difference in model parameters, sensitivity, or equilibrium to the full

model, will indicate which parameters need to be further examined. This will also shine light

on which pathways could be important for describing nucleation.

6.3. Modeling of Viral Capsid Elongation

Retrovirus capsid assembly has been observed to undergo two stages during maturation:

nucleation and elongation. The investigation of nucleation cannot be completely isolated

from the whole process of viral capsid assembly. There have been kinetic models for full

viral capsid assembly, though these models describe simple icosahedron-shaped capsids [21,

30, 31, 85]. Their extension to retrovirus has been over simplified, due to the complicated

shape of a retroviral capsid.

Cascaded Stochastic Dynamical Systems (CSDS). It is our postulation that at

the early stage of viral capsid assembly, hexamer formation happens simultaneously in many

locations within the virion. Then these hexamers further assemble into the viral capsid.

Pentamers might form at the places where it is difficult for a hexamer to form. This is

the elongation stage. In other words, the products of nucleation serves as a feeding for the

elongation stage. Research involving cascade of kinetics and cascaded stochastic dynamical

systems (CSDS) shall be an exploratory tool for further investigation.

Role of viral RNA in assembly. Many single-stranded RNA viruses, such as HIV,

self-assemble their capsids around their genomes. The roles that the RNA plays in this

assembly process have mostly been ignored. Data from molecular approaches suggest there
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is a strong interaction between the genomic RNA and the CA proteins [75]. The RNA may

guide the capsid into a conformation that is compatible with the underlying geometry of the

virion. This is a direction for further mathematical modeling of the capsid assembly.
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