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Identification and Measurement of Fibers
in Scanning Electron Microscopy Images
Using a High-Order Correlation Process
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Abstract—This work describes the development of a dedicated
system capable of identifying, measuring and counting various
types of fibers and other objects in digitized scanning electron
micrograph (SEM) imagery. The system uses a recursive high
order correlation (HOC) process to extract the corner pixels of
the fibers. The objects are defined by grouping connected corners,
so that morphometric analysis can be performed. The method
developed performs satisfactorily when the density of fibers per
image ranges from low to medium. Simulation results for several
cases are presented, along with a discussion on the capabilities
and limitations of the current version of the system.

Index Terms—Fiberglass identification, image analysis, mea-
surement technology.

I. INTRODUCTION

DIVERSE environmental, clinical, and quality assurance
problems involve the evaluation of airborne particle

distributions originated from materials and objects manufac-
tured with fiberglass. This analysis is performed manually
by observing scanning electron micrograph (SEM) imagery,
finding an adequate observation field, recognizing the objects
of interest, and measuring their geometrical properties using
a reference grid or a pointing device. This task is tedious,
error prone, and sensitive to observer’s bias and eye-fatigue.
It also requires specialized training and expertise in selecting
the fields and picking the relevant objects in the scene. A
dedicated digital image analysis system capable of detecting
and measuring various types of fibers and other objects from
SEM images under different operating conditions is therefore
needed.

A number of conventional pattern recognition schemes may
be applied to this problem [1]. However, in practice, they
can only be partially successful when the density of fibers
in an image is low. Other factors which may contribute to
poor performance of these methods are: substantial variations
in the sizes and shapes of the fibers, fibers can be crossing,
very close together or be overlapping and/or obscured by
other fibers, and large amounts of debris and other background
objects present in the image. These, coupled with a number of
other shortcomings such as sensitivity to different operating
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conditions and computational and speed limitations of the
current pattern recognition systems, motivated this work to
develop more efficient schemes for this problem. A dedicated
system for identification, measurement, and classification of
randomly scattered fibers in SEM images with low to medium
fiber densities will be described in this paper. The development
of such a system requires solving a number of technical issues
ranging from the automated selection of observation fields to
actual image analysis.

A sequence of different processing steps is followed for
studying each image. A preprocessing stage consisting of
thresholding and first-order differentiation is provided for
achieving binary representation of the fiber edges. High-order
spatial correlation (HOC) [2], [3] images are computed in each
of four possible scanning directions. This procedure filters the
fiber edge images by removing pixels that are not embedded in
a consistent set of boundary pixels. The HOC-filtered images
obtained are combined to detect pixels that are likely to
be located in the corners of the fibers and other objects in
the scene. Edge curvature analysis and edge association are
finally used for the definition of individual objects. Section II
below discusses the preprocessing scheme used for image
segmentation. Section III describes the HOC process and how
its results are applied for corner detection, selection and object
identification. In Section IV, a discussion on the performance
of the scheme for different typical cases is presented. Finally,
Section V provides our concluding remarks.

II. PREPROCESSING

A. Data Description

The images studied in this paper are digital versions of SEM
preparations of fiber glass obtained at1000 magnification.
They were digitized at 0.2 m per pixel, providing a total
image size of 512 512 pixels. Gray-scale resolution was
selected at four bits per pixel.

B. Image Segmentation

A fixed-level thresholding operator [4] was selected as
the binarization algorithm based on the fact that most of
the images used in this study exhibited a clearly bimodal
gray-level distribution. The method performs nicely for those
“clean” cases which do not contain debris and high clutter,
but leads to some minor problems when applied to images
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with a high presence of debris and other nonfiber objects. The
decision of keeping a fixed thresholding approach was made
based upon its simplicity and the confidence that the analysis
stages using HOC would be capable of rejecting most of the
nonfiber information.

C. Edge Detection

In selecting the edge detection procedure the criterion was
to use an algorithm that would yield fully connected edges for
any fiber image. Classical edge detection algorithms usually
produce noncontinuous traces to define the boundaries of
objects [4]. These discontinuities would affect the performance
of the subsequent HOC analysis. Given the fact that the
image from which the edges are to be extracted is binary,
a simple procedure can be used to obtain continuous border
lines. Edge computation is performed by evaluating the first-
order differences between consecutive line scans of the image,
and storing the resultant image for further processing. Four
difference images have to be obtained to ensure that the edges
will not have discontinuities. These images correspond to the
row- and column-wise scans, both in the forward and backward
directions, as follows [4]:

(1)

where is the image pixel at the th row and th
column. The resultant images will contain l’s in every position
where an edge has been detected. It is then straightforward to
combine these difference images into the final edge-detected
version, by unit thresholding followed by a logical OR oper-
ation, i.e.,

(2)

where is a hard limiter thresholding function which is
for otherwise .

III. FIBER ANALYSIS USING

RECURSIVE HIGH-ORDER CORRELATION

A. High-Order Correlation Process

The main procedure used throughout the processing of
the SEM images is referred to as the recursive “high-order
correlation” (HOC) process. It provides a reliable mechanism
to find and track sets of pixels that exhibit some consistent
spatial pattern in a binary image. In this perspective, an image
is viewed as a collection of sequential scan lines, moving either
row-wise or column-wise.

A set of pixels, such as the one forming the edge of a
fiber, forms a connected sequence across several of these scan
lines. To identify a correlated pixel set, the spatial correlations
among the points on three consecutive scan lines are formed,
and the consistency in generating correlations in subsequent

scans is determined. The process can be described by the
following recursive equation [2]:

(3)

where is the correlation order; is the
th pixel of the th scan-line of the original image;

is the result of the th-order correlation computation;
is the correlation window, relative

to the th pixel; and ( ) is the correlation window size.
The size of the correlation window defines the shape of the

region of support for the computation of the HOC and hence
the kind of pixel patterns that are to be detected. For instance,
a window size of one will produce nonzero correlations only
for strictly horizontal or vertical pixel patterns. The correlation
order defines the required length of the pixel sequences.
For , the term in the square bracket in (4) represents
the correlation of pixels in three consecutive scan lines, i.e.,

and within the region of support determined
by . If there are at least three nonzero pixels in the relevant
region, one per scan line, the HOC produces
indicating a three-pixel spatial sequence. For , the
term in the square brackets represents the correlation of these
three-pixel sequences, hence determining the correlations in
a five-point sequence when . Consequently,
for a th-order HOC, represents consistent
correlations in a -pixel sequence.

Note that the choice of the order presents a trade-
off between the length of the pixel sequences detected and
the sensitivity to pixel sequences representing segmentation
noise. That is, increasing the order obviously increases the
correlation length, but it also reduces the robustness to reject
pixel sequences that are not located along the boundaries of
fibers. This may result in wrong or missing object detections.
The HOC process of second order was empirically found to
perform optimally for our application. Fig. 1 shows examples
of the HOC of first and second order, with window size three,
applied to an image section containing a fiber boundary.

The resulting image , referred to as the “th-order
correlation image,” is basically a filtered version of the original
image, where only those pixels that lie within consistent
pixel sequences are retained. This filtering action provides an
excellent method for clutter or small debris rejection. As will
be explained in the next section, the filtered images are also
exploited to arrive at an image in which the fiber corners are
identified. If the HOC calculations are performed twice for
each pixel, both in the forward scan direction (4) and in the
backward scan direction [obtained by replacing and
by and in (4), respectively], the occurrence of a
nonzero pixel in the same location for both scans allows for
an even larger, ( )-pixel sequence to be detected.

Embedded in the structure of the HOC computation is the
curvature and angle description of each segment [2]. The
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Fig. 1. Computation of the first and second order HOC for a fiber boundary
segment, using a window size of three pixels. The pixels marked with a dot
are the first ones in the row-wise scan to give zero-valued HOC.

three pixels, one from each consecutive scan line, used for
computing a term of the HOC equation, define a pair of line
segments. The angle between these two segments is the “local”
curvature of the segment given by

(4)

where and are the indices of the pixels within each
of the correlation windows defined in the HOC (4). In this
way, a complete angle description of any given segment is
obtained. The angle information is useful for discriminating
various types of segments depending on their overall curvature.
Additionally, the angle history of the segments can be used to
differentiate the boundaries of straight-line fibers from those
of curved ones and other objects or debris.

Taking into account that the images used for analysis (edges)
are actually highly sparse matrices (for the sample images
considered the pixel densities range from 10% to 35%), a
sparse matrix representation [5] of the edge image economizes
memory usage and processing time, while allowing for the full
vectorization of the HOC algorithm and an improved efficiency
of the implementation. Another benefit is that the sparse matrix
representation keeps track of the pixel location information, so
the retrieval of corner coordinates can be performed without
additional passes over the image.

To collect the basic information for the analysis procedure,
the HOC is computed for the edge image in four different
scanning directions, thus producing four HOC images. These
images are then combined together to obtain a list of pixel
coordinates that might represent fiber corners. Corners are
finally associated, and the fiber count and measurements are
obtained. These steps are described in the following sections.

B. Corner Detection

A HOC image of the fiber edges contains a considerable
amount of information, describing all the available linear
paths. Nevertheless, many of the remaining pixels are of little
use for the purpose of identifying the fibers. This is due to
the fact that most of these pixels lie on linear segments of the

fiber edges, and they do not possess sufficient information for
either locating or identifying the fibers. The same is not true
for those pixels near or at the corners of a fiber. The corner
information is valuable in locating the fibers and performing
measurements on them. Every corner relates a pair of fiber
edges, thus providing structural information that is required
to group the edges into well-defined fibers. Consequently,
locating the possible corner pixels results in an attractive
option for data reduction and overall processing speed gains.

A set of HOC images can be utilized to extract the coordi-
nates of those pixels close to or at the corners of the fibers.
When scanning in any given direction, the filtering action of
the HOC computation will actually remove those pixels that
are found close to or at the corners of the fibers oriented in
that scanning direction. Corner pixels oriented in the row-wise
direction will remain only in one of the row-wise HOC images.
If these images are combined using the XOR operation, the
corner candidates will be retrieved. The same is true for the
column-wise oriented corners. In this way, four HOC scan
results are necessary to detect all the possible corner pixels.
The corner detection operation can therefore be described by
the following expression:

(5)

where are the four HOC images obtained
for row-wise forward, row-wise backward, column-wise for-
ward, and column-wise backward scanning, respectively. The
union operation in (6) mixes the row-wise XOR’ed and
column-wise XOR’ed images to collect all the possible cor-
ners without duplicating them. The nonzero pixels after this
operation are the corner candidates.

For a given size of the correlation window and for a given
order, the number of candidate pixels near any corner may
vary widely. The resulting pixels will be clustered around
each of the fibers’ corners, forming sets from which the
actual corners have to be selected in the subsequent processing
steps. Also, the combination of window length and correlation
order determines the amount of noise rejection in the filtering
process. It is known that the increase in the window size
when performing the HOC generally reduces the noise on
the output images, while increasing the computation time
[2]. Additionally, increasing the window size over five or
seven pixels produces no significant changes to the output
information. Increasing the order of correlation also impacts
the noise rejection ability of the process, but produces very
large sets of possible corner pixels. In the present application, a
second-order HOC process with window size of five pixels was
used for image filtering and pixel reduction, balancing a com-
promise between computation time and detection accuracy.

C. Corner Selection

Once all the potential corners are detected, the next step is to
eliminate any false detections along the fiber sides. The local
curvature information in (4) is used at this point to perform
the refinement task. Only the pixels selected as candidates or
potential corners in the previous processing step are considered
for this analysis, effectively performing an additional amount
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(a) (b) (c)

Fig. 2. Possible cases for corner selection and their acceptance status.

of data reduction. A corner candidate can occur given one of
two possible conditions: either one of the row-wise or column-
wise HOC images was zero for that pixel, as in Fig. 2(a) and
(b), or one image of each scan direction (row- or column-wise)
was zero, as in Fig. 2(c). Each case is treated separately when
refining the corner pixel set.

Corner candidates with a single zero-valued HOC com-
ponent are usually true corner pixels, but there may exist
some pixels, found as part of a linear segment of fiber
boundary, that may also be detected as possible corners
because of the jagged appearance of the digitized linear
segment. To distinguish between these two cases, the
curvature angles, with being the correlation order, measured
along the forward–backward pixel sequence associated with a
corner candidate pixel, are analyzed for consistency. Similar
curvature angles along the pixel sequence indicate the presence
of a linear segment, and thus the candidate can be rejected as
not being a corner pixel. On the other hand, a sequence of
regular curvature measures that breaks at the candidate pixel
to continue in a new, also regular sequence, indicates that the
candidate is indeed a corner. Fig. 2(a) and (b) show these two
conditions, respectively.

When one of each scan direction (row- or column-wise)
HOC components for a candidate pixel is zero, such pixels
are most often close to a corner. Instead of accepting all of
these pixels as actual corners, a proximity criterion is applied
for their selection. Assuming that these pixels are close to
corners, a measure of closeness that can be used is the count
of scan lines that have nonzero pixels within the HOC region
of support. It was found adequate to decide for a corner pixel
when this scan line count was at most one. Fig. 2(c) shows
an example of this condition.

The set of selected corners is scanned for redundancies,
i.e., for pixels that are too close to each other to be considered
as separate corners. A nearest-neighbor clustering procedure
removes these redundancies. A drawback of this procedure is
that corners of some narrow fibers might be merged together,
and the final object identification stage might miss the fiber.

D. Data Association and Fiber Measurement

With the corner pixels selected, the identification of fibers
can be accomplished by performing a search and association
pass over the image. For each selected corner, a Freeman
chain-linking procedure [4] is performed over the edge pixels
in the image, starting from the current selected corner. The
chain-linking procedure allows for systematically and recur-
sively visiting the eight-connected neighbors of a pixel, in

order to track a connected curve. All the pixels in the current
chain are tagged equally in order to identify them as being part
of the same object. The chain is built until it reaches back to
the starting point, or until there are no further pixels to add to
the current chain. In this case, when the chain is not closed, the
corner pixel from which the chain started is rejected as being
an actual object corner. This corner elimination provides an
additional level of noise rejection.

A closed chain represents an actual object in the scene.
All the corner pixels that have previously been selected for
that object will be included in the chain. Therefore, when the
chain-building process is finished, all the selected corners for
a given object share the same tag. In this way, the corners are
associated and the object is completely identified. The chain-
building procedure is repeated for the next nontagged corner
pixel, assigning a new tag to each different chain found, until
all the selected corners are tagged.

All the information for measuring the fibers and other
objects in the image is now available. The data association
pass generates sets of pixels that define the corners of an
object/fiber. These corners form a unique irregular convex
polygon (i.e., its convex hull [5]) that linearly approximates the
edges of such object, and from which geometric measurements
such as width and length can be taken. The ideal case is that
all the polygons associated with fibers are four-sided, but this
is not necessarily the case. Narrow fibers can be sometimes
identified with only two corners, making the width information
unavailable. Regular-sized fibers, that have a rounded, rather
than sharp, corner can be identified with three pixels instead
of four, so the width and length have to be inferred from
the associated triangle. Sets of more than four corners can
be related either to a single fiber with a rounded or curved
boundary, multiple crossing/overlapping fibers, or an object of
unspecified shape. These cases have to be treated in a different
way. Although the basic identification of multiple crossing
and/or overlapping objects is included in the current version
of the analysis software, the issue of correctly identifying them
is yet to be addressed. When the length and width of the
identified objects are available, a simple aspect ratio check
can be performed to classify the objects as either fibers or
other generic particles. Objects with aspect ratios of 3 : 1 or
higher are considered to be fibers. For objects identified with
only two corners (narrow objects) the aspect ratio check is
done considering a width equal to the length of the HOC path.

IV. TEST RESULTS

Twenty-seven SEM images were analyzed in this study.
These images varied in fiber density and amount of debris
present. For analysis purposes, the images were visually clas-
sified in terms of their fiber density into one of two different
cases, which are described in the following sections. It is
important to note that exactly the same processing steps were
applied to every image, regardless of its fiber density.

A. Case 1—Low Fiber Density

A typical sample of this category is shown in Fig. 3. This
is a very clean image, with little amount of debris present.
Because of the good contrast and low background noise,
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Fig. 3. Low-density SEM. Original image and final image showing the different objects detected.

Fig. 4. Medium-high density SEM. Original image and final image showing the different objects detected.

the fixed thresholding segmentation performed adequately in
detecting the individual objects. The corner selection and fiber
identification procedures yielded complete information of the
scene, and most of the fibers were correctly identified and
measured, as shown in Table I(a). The small portion of debris
next to fiber 01 is not detected as an individual object, but is
merged into the polygon defining the fiber, basically because
it is located too close to the actual fiber corner. It turns out that
the impact of this on the fiber width measurement is significant.
This is due to the fact that the fiber measurements are actually
made based on the averages of the lengths of opposite sides of
the polygons enclosing the fibers. Since one of the short sides
is erroneously extended with the merged debris, the decision
based on the aspect ratio classifies this object as a particle
instead of as a fiber.

B. Case 2—Medium-High Fiber Density

Medium-high density cases, an example of which is shown
in Fig. 4 and Table I(b), basically present the same behavior as
the low density ones, except for the appearance of overlapping
or crossing fibers. In the current implementation, crossing
and overlapping fibers are detected as a single object, but
no measurements are provided as they would be meaningless.

Again, the good contrast and low background noise allow for
better identification of all the objects in the scene.

Fig. 5/Table I(c) and Fig. 6/Table I(d) show additional ex-
amples of the medium-high category. These images demon-
strate that the system cannot handle correctly all the narrow
fiber cases. In Fig. 5, due to the fixed thresholding segmen-
tation approach, narrow fibers with poor contrast are lost in
the edge detection phase. Further, this fixed thresholding is
partly responsible for the cases where very close, parallel
fibers are erroneously segmented as a single object. In Fig. 6,
a narrow fiber is missed during the corner selection phase,
because only one corner is selected for it (objects with just
one corner selected are discarded). This is a consequence
of the similarities of the correlation paths associated with
segmentation noise and those that result from fiber edges
being too close to each other as in the narrow fiber cases.
In both situations, multiple correlation paths can be generated.
Since the corner selection algorithm is tuned to reject multiple,
randomly oriented paths, it is possible that an actual narrow
fiber corner result is rejected. It has been described that there
are several provisions for noise rejection throughout different
processing stages, thus increasing the chances that the narrow
fibers will be misdetected.
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Fig. 5. Medium-high density SEM. Original image and final image showing the different objects detected.

Fig. 6. Medium-high density SEM. Original image and final image showing the different objects detected.

C. Limitations

The use of a second-order HOC with window size of five
pixels proved to be effective in reducing the segmentation
noise in all but highly cluttered cases. Even for low density
cases like the one shown in Fig. 3, the highly nonhomogeneous
and cluttered background yields a lot of isolated “edges” that
in some instances are long or close enough to produce nonzero
correlations over the entire HOC region of support. While the
candidate corner detection process rules out many of these
noisy sections, the resultant computational overhead in the
fiber identification process is inevitable. On the other hand, the
HOC parameters selected produce paths that are too short for
detecting corners in the cases where smooth, rounded edges,
rather than sharp, well-defined turns are present. In these cases,
the curvature analysis algorithms cannot detect the corners
adequately, or they may even miss them completely.

The occurrence of segmentation noise is mainly due to the
binarization method being used. It has been shown that fixed
thresholding yields poor results when high-clutter or poor-
contrast cases are processed. An alternative to this method is

being developed where both the first (gradient) and the second
(Laplacian) local derivative information is used to directly find
the edges of the fibers and other relevant objects in the scene,
thus avoiding any binarization step. A better edge detection
algorithm will improve the chances of adequately segmenting
narrow fibers, both by avoiding the low-contrast problems and
allowing for more relaxed corner selection criteria as a result
of the reduced segmentation noise.

The identification of composite objects that correspond to
crossing or overlapping fibers has been successfully imple-
mented in the data association pass. Within this process, the
convex hull of each set of corners that correspond to the same
object is computed. If all the corners are part of the hull, then
the fiber is clearly enclosed in a polygon for which the length
and width measurements can be performed. On the other hand,
if some of the corners lie inside the hull, then the most probable
situation is that this set of corners is describing a composite
object. In the current implementation, if the number of corners
lying inside the hull is less than four, then the object is consid-
ered a single fiber. This introduces some measurement error,
as was described before for the case of object 01 in Fig. 3.
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TABLE I
OBJECTSIDENTIFIED AND ASSOCIATEDMEASUREMENTS FORSEM’s IN FIGS. 3–6

(a)

(b)

(c)

(d)

V. CONCLUSION

An approach to the identification and measurement of fiber-
glass particles in SEM imagery has been presented. Through
the processing of the segmented images using HOC filters
in four different scan directions, almost perfect detection of
the relevant objects in the scene is achieved. Discrimination

among the different types of detected objects is performed
based on basic geometrical measurements. The scheme per-
forms adequately when a low fiber density is observed. For
higher density cases, although the method is able to discrim-
inate composite objects in the scene, additional provisions
have yet to be incorporated for an improved characterization.
The approach is well suited for on-line applications, as the
computations can be realized in a parallel fashion, so that
machine limitations like memory swapping or input/output, are
accounted more for delays than the actual HOC computations
or the data association process.
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