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ABSTRACT

IMPRIMITIVELY GENERATED DESIGNS

Designs are a type of combinatorial object which uniformly cover all pairs in a base set V with

subsets of V known as blocks. One important class of designs are those generated by a permutation

group G acting on V and single initial block b ⊂ V . The most atomic examples of these designs

would be generated by a primitive G. This thesis focuses on the less atomic case where G is

imprimitive.

Imprimitive permutation groups can be rearranged into a subset of easily understood groups

which are derived from G and generate very symmetrical designs. This creates combinatorial

restrictions on which group and block combinations can generate a design, turning a question about

the existence of combinatorial objects into one more directly involving group theory. Specifically,

the existence of imprimitively generated designs turns into a question about the existence of pair

orbits of an appropriate size, for smaller permutation groups.

This thesis introduces two restrictions on combinations of G and b which can generate de-

signs, and discusses how they could be used to more efficiently enumerate imprimitively generated

designs.
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Chapter 1

The title

Notation note

Function application is on the right. The set X’s powerset is denoted XP . The size k subsets of

X are denoted
(

X

k

)

⊂ XP .

1.1 What are designs?

A 2− (v, k, λ) design D (which “design" will refer to in this paper) is a combinatorial structure

consisting of a base set V with v elements and a set of subsets B ⊂
(

V

k

)

⊂ V P (called blocks)

each of size 2 ≤ k < v, such that ∀x ̸= y ∈ V there exist exactly λ many b ∈ B such that x, y ∈ b.

A design encapsulates the concept of taking subsets from a set of objects while making sure

every pair of objects is “connected equally” by those subsets. Specifically when the subsets must

have uniform size. This concept has some direct connections to real situations which will be

discussed later.

1.2 What is imprimitive?

Note that all groups G in this paper are assumed to be permutation groups with underlying set

ΩG.

A transitive permutation group G is imprimitive when there is a nontrivial partition of ΩG

which is preserved by all g ∈ G. Another way of saying this is that the underlying set can be

divided into disjoint subsets (called imprimitivity classes) and if two points are together in one of

those classes then all g ∈ G must map them together inside a class.

An imprimitive G must permute all the partition classes transitively because G is transitive

on points inside those classes. Meaning in particular that the classes must be the same size. So
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imprimitive groups can be thought of as partitioning ΩG into classes ci ∈ C. All elements of G

permute each ci in some way, and then permute the ci.

1.3 What is “ly generated”?

A permutation group G on the base set V and a subset b ⊂ V generate the block set bG =

{bg : g ∈ G}. Since the base set is implied every design can be treated as equivalent to a block set.

And every block set corresponds to a design if and only if every pair of points in V is contained

by the same number of blocks b′ ∈ bG. Designs which can be generated in this way are called

imprimitive designs.

So the paper is about finding initial V , b ⊂ V , and imprimitive G ≤ SymV for which bG

uniformly contains
(

V

2

)

. This is not the same as finding all designs, or even all designs generated

from one block, but that would be hard so we’ll go with this.
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Chapter 2

Wreath products

A wreath product G ≀ H is a group on the base set ΩG × ΩH . It consists of all ways to first

permute each copy of ΩG by (possibly different) g ∈ G and then permute the copies by h ∈ H .

Noteably, for a set V = X × Y , the wreath product SymX ≀ SymY is the maximum subgroup

of SymV defining X × Y as an imprimitivity partition. Every imprimitive group is a subgroup of

some SymX ≀ SymY .

Formally, group elements w ∈ G ≀H can be identified with one h ∈ H in addition to a choice

function f : ΩH → G where jf = gj ∈ G. Then w is defined as the permutation associated with

(f, h) whose action on (i, j) ∈ ΩG × ΩH is (i, j)w = (i(jf), jh) = (igj, jh).

This means that given two group elements w1, w2 ∈ G ≀ H corresponding respectively to

(f1, h1), (f2, h2), the composition w1w2 is the permutation taking (i, j) to (i(jf1)((jh1)f2), jh1h2).

This permutation corresponds to (f, h1h2) where f is defined by (j)f = (jf1)((jh1)f2).

2.1 Explicit design construction

Knowing that all imprimitive designs are generated by a subgroup of some wreath product

ensures that all imprimitive designs can be generated in the following way. The notation will be

used throughout the paper.

Choose a set c and and index set C = {1, 2, ..., n}. The underlying set is defined as the set

product V = c × C. Since C represents a partition of V into imprimitivity classes, ci ⊂ V will

denote the subset (c× {i}) ⊂ (c× C).

Choose a point transitive permutation group G ≤ Symc ≀SymC . Choose a subset b ⊂ V . Then

the block set is defined as bG = {b · g : g ∈ G}.

3



Chapter 3

Powersets and graphs

When discussing combinatorial objects powersets are inevitably important. Relating them to

specific graphs can be convenient.

XP can be viewed as a hypercube with vertex set XP ∼= F2
X and an edge between two

vertices iff the corresponding sets differ by one element. Ie one set is the other union a singleton.

This is known as the Hamming space of dimension |X|. (Unfortunately the Hamming graph is

something else.) The Hamming distance between sets x, y ∈ XP is the length of a shortest path

between x and y in the Hamming space. Since each such path consists of removing all elements

of x − y and adding all elements y − x, one element per edge, the Hamming distance is equal to

|x|+ |y| − 2|x ∩ y|.

A similar family of graphs, known as Johnson graphs, have their vertex set restricted to
(

X

n

)

for some n with an edge between sets x and y iff their intersection is size n− 1. Ie their Hamming

distance is 2. More generally the distance in a Johnson graph is the Hamming distance divided by

2.
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Chapter 4

General facts about designs

Some basic facts about designs won’t be used in this paper but may be helpful for more general

understanding of designs:

Given a point x ∈ V there are v − 1 pairs {x, y} ∈
(

V

2

)

containing x. Each of these are

contained in λ blocks. Blocks will be repeated k − 1 times in the multiset of blocks containing

a pair containing x. So the axioms and parameters of a design already determine r = λ(v−1)
k−1

, an

additional parameter describing how many blocks any point is contained in.

Going further, there are vr combinations of a b ∈ B and a v ∈ b (these are known as “flags").

Dividing out redundancy again |B| = vr
k

= λv(v−1)
k(k−1)

. The equation can alternatively be seen by

thinking of a design as a bipartite graph with vertex sets V and B, and with an edge between

x ∈ V and b ∈ B iff x ∈ b. The number of edges can then either be counted as vr or |B|k.

Fisher’s Inequality states that for any design, |B| ≥ |V |. Or equivalently that r ≥ k. The

truth of the inequality is equivalent to the claim that every subset B ⊂
(

V

k

)

of size |B| < v covers

(

V

2

)

unevenly (for 2 ≤ k < v). The following proof also provides an alternate characterization of

designs relevant to applications.

Theorem 1 (Fisher’s Inequality [1]). A design has |V | ≤ |B|.

Proof. One equivalent way to define a block set is letting B be an abstract set and choosing points

from BP . An injective function f : V → BP can be viewed as choosing which blocks contain a

particular point.

The set of blocks which contains any pair {x, y} ∈
(

V

2

)

is exactly the intersection of xf and yf

in BP . Uniform coverage is equivalent to there being some λ such that every intersection of two

points in V f is in
(

B

λ

)

.
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It was previously seen that any design must have some constant r such that any V f ⊂
(

B

r

)

. If

there are two points in
(

B

r

)

and the intersection of two points is in
(

B

λ

)

, then the distance between

the two points is the constant 2(r − λ).

In summary any block set which can be a design corresponds to some equidistant subset of a

Johnson graph on
(

B

r

)

. A design must fulfill the additional requirement that every b ∈ B has the

same number of points in it so this isn’t an exact equivalence. But additional requirements are not

necessary for the proof because it’s already true that there is no equidistant subset X ⊂
(

B

r

)

such

that |X| > |B|.

Each element x of a uniformly d Hamming distance set X ⊂ F2
B ∼= BP serves as a constraint

on any other point w ∈ F2
B being d Hamming distance from every element of X . For a given

x ∈ X this constraint on a variable w ∈ F2
B is expressible as |{b ∈ B : bx ̸= bw}| = |{b ∈ B :

bx+ bw = 1}| = d. These constraints can be viewed similarly to linear equations where the values

of all but one of the outputs in {b ∈ B : bx ̸= 1}w determine the last value. The expansion of the

constraints to linear equations allows an analogy to dimension.

Embedding F2 into Z (ie sending 0 and 1 in F2 to 0 and 1 in Z) allows an equivalent formulation

of the constraints. Namely, given x, w ∈ F2
B ⊂ ZB, w is d Hamming distance from x iff it satisfies

the equation
∑

b∈B bx+ bw− 2(bx) · (bw) = d, where bw are variables describing w’s coordinates

in ZB and bx are constants 0 or 1 determined by x’s coordinates.

Given the assumption that x and w both have r many 1 coordinates (meaning they are both in

the embedded
(

B

r

)

) the equation simplifies to r − d/2 =
∑

b∈B(bx) · (bw) =
∑

b:bx=1 bw. So the

constraint on vertices of a Johnson graph of being d Hamming distance from x when embedded

in the |B|-dimension module ZB is equivalent to a linear function defining a |B| − 1 dimension

hyperplane in the module. The set of points which are d Hamming distance from all of X is the

intersection of these hyperplanes and the embedded F2
B.

When considering an equidistant set X with distance d, the distance constraint of any x ∈ X

is not implied by the constraints for X − {x}. In particular x is not d distance from itself. So

each hyperplane does reduce the dimension of the intersection by at least 1. The restriction to the
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embedding of F2
B also suggests another restriction given by the equation

∑

b∈B bw = r, which

must be independent if there is a solution to the system of the other equations inside of F2
B.

If w ̸∈ X but is d distance from it then there must be |B| + 1 independent linear equations on

the |B| many variables bw, a contradiction.

The interesting point is that there is an analogue of "dimension" of
(

B

r

)

scaling with the size of

the base set |B| and not affected by r, for 0 < r < |B|.
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Chapter 5

History and connections

5.1 Finite geometry

The Greeks reasoned by starting from a list of assumed axioms and manipulating them to en-

sure their further statements were correct. Euclid produced a list of axioms for standard Euclidean

geometry in what might now be seen as R2, such as one could draw on a sheet of papyrus.

From a modern perspective Euclid’s original axioms might be found wanting. He defined a

point as “that which has no part" and a line as “breadthless length". Slightly more usefully he

related points and lines by saying

• The ends of a line are points.

• A straight line is a line which lies evenly with the points on itself.

• Parallel straight lines are straight lines which, being in the same plane and being produced

indefinitely in both directions, do not meet one another in either direction.

So lines contain points and a pair of points defines a straight line. Also, parallel lines exist and all

other lines intersect. These two ideas would become the foundation of modern geometry.

After Georg Cantor invented set theory in the 1870s it became a popular topic to more rigor-

ously state mathematical problems in terms of axioms about symbols representing sets. Moritz

Pasch gave the first modern axiomatization of Euclidean geometry in Vorlesungen über neuere

Geometrie, declining to define points except as elements of a set, of which lines are subsets. In

particular straight lines of Euclidean geometry are defined as sets which intersect in at most one

point. Furthermore parallel pairs of lines which intersect at no point exist and satisfy further ax-

ioms.

Standard projective geometry is a modification of Euclidean geometry in which all lines meet

at some point. This topic was invented by Pappus of Alexandria and became widely studied by
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Renaissance artists who wanted to understand perspective as the projection of a 3d world onto 2d

human vision caused parallel lines to come together in the distance. Projective geometry was also

given modern axiomatizations, replacing the axioms about parallel lines in standard geometry with

the requirement that all lines intersect in exactly one point.

Later on Gino Fano began applying modern geometrical axiomatization of projective planes to

finite base sets. Along with some non-triviality assumptions and his assumption that all lines have

the same size k, a finite projective plane is a finite set V and a set of subsets B ⊂
(

V

k

)

(called lines)

which satisfy the following axioms:

• Any two distinct points are contained together in exactly one line.

• Any two distinct lines have exactly one point in their intersection.

The study of finite projective planes superseded affine ones presumably because the projective

plane axioms are more symmetrical and were considered prettier. However finite affine planes are

closely related to finite projective planes, with it being possible to convert between an instance of

either type of object and an instance of the other. So in some sense it doesn’t really matter.

Eventually, finite geometry grew into a more general combinatorial subfield: the study of finite

axiomatic structures often defined using some variant of “points" and “lines" but with axioms dif-

fering from those for traditional geometry. The axioms were often informed by specific problems

so that the set of resultant mathematical objects were the possible solutions to the problem

One problem stated previously to the 1870s paradigm shift towards formal logic was Kirkman’s

schoolgirl problem, which was given in 1850. It stated “Fifteen young ladies in a school walk out

three abreast for seven days in succession: it is required to arrange them daily so that no two

shall walk twice abreast." The solution to this problem and most generalizations became known as

Steiner systems, which are designs with λ = 1. (If you want your young ladies to walk such that

any size t subset is only allowed λ many times as opposed to any pair of them you actually want a

t-design.) Eventually, problems more practical than micromanaging the social lives of schoolgirls

were found to be related to designs, leading to them being a major topic in combinatorics.
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This paper specifically discusses block transitive, point imprimitive designs (ie designs gen-

erated by an imprimitive G). Most (but not all) known examples of this type of finite projective

plane are isomorphic to the Desarguesian finite projective planes (finite projective planes obtained

by modifying a vector space). Verifying this is nontrivial even for planes with bounded parameters,

and won’t be discussed in detail.[2] However it is notable that despite other techniques being used

to classify “small" transitive, imprimitive finite projective planes, the same concept of “inner and

outer pairs" introduced by Delandtsheer and Doyen to study block transitive, point imprimitive de-

signs[3] is still foundational to the proof. So the invention of combinatorial designs has contributed

back to the study of classical finite geometry.

5.2 Experiment design

Widespread study of 2-designs originated from Ronald Fisher’s investigation into formally

optimizing scientific experiments.[4]

Ideally, a scientific experiment will isolate every independent variable possibly influencing the

outcome and vary it while keeping every other variable fixed. However, in reality limitations on

resources and experiment specific restrictions will often make such an experiment impossible to

carry out. For instance when doing medical testing it can be difficult to find a large enough set

of monozygotic siblings or human clones to provide identical test conditions. This is exacerbated

when attempting to study the interaction between multiple variables. To get complete information

on how n variables interact it would be necessary to run a number of tests scaling exponentially

with n.

Fisher’s idea was that in cases where complete uniformity or symmetry is not possible it is

still desirable to distribute the inconsistencies in a regular manner so that their effect might be

mitigated or gauged. He discovered that a variety of combinatorial structures, including designs,

could be used to mathematically optimize this “regularity" depending on assumptions about the

specific experiment.
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For a specific example of an experiment which 2-designs are relevant to: When testing combi-

nations of fertilizer composition and plant variety for crop yields it is important to test all combina-

tions simultaneously to control for weather, and to have sufficiently large plots for a decent sample

size. However it is simultaneously desirable to limit the area used in the experiment to minimize

the variance of geography and soil composition.

To account for geography and soil an experimenter might decide not to organize their crops in

the most obvious manner (ie contiguous plots containing each fertilizer and plant combination).

Instead they could decide their primary concern is to compare the yields of different fertilizer/plant

combinations and make the assumption that simultaneous changes to the geography or soil inside

their experiment won’t reverse the comparative inequality between yields of pairs of fertilizer/plant

combinations. Then one way to improve their experiment would be dividing plots into k subsec-

tions and planting a different combination in each. The goal would be to make sure every pair

of distinct combinations is together in some plot so that they can be compared while accounting

for geography. To help mitigate their assumption they could even organize the experiment such

that any two combinations are present in λ > 1 plots together so that they could analyze trends

in comparative yield changing with geography. Furthermore in order to maximize the minimum

amount of data on any pair it might be desirable to make λ a constant and have all pairs present in

exactly λ plots.

More abstractly the set of plant/fertilizer combinations V and the set of plots B can be viewed

as vertices of a bipartite graph. Determining the specifics of the experiment is equivalent to choos-

ing edges between those sets indicating that a combination is going to be planted in a given plot.

The axioms defining a design correspond to desired properties of the experiment. The requirement

than any pair from V be adjacent to a b ∈ B means they would be planted in the same plot and

could be compared while accounting for geography. The requirement that all pairs are adjacent to

exactly λ many b means all pairs can be compared in λ many different plots.

This means that using a graph corresponding to a combinatorial design will achieve the exper-

imenter’s goals. Conversely, having goals equivalent to all the axioms of a combinatorial structure
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will mandate finding an instance of that structure in order to meet those goals. (Technically a fur-

ther assumption has to be made to force a satisfactory experiment to be a design. Different plots

could have the same fertilizer/plant combinations planted and would still be distinct. But two sets

containing the same elements are axiomatically the same set.)

The experiment’s compartmentalization can be taken further. Instead of testing all combina-

tions of fertilizer and plant it might be necessary to only take a sampling of combinations. But a

design can define a relation between the set of plant types and the set of fertilizers such that any

two fertilizers are simultaneously applied to λ many types of plant and can be compared that way.

It may be impossible to grow all necessary pairs simultaneously but arranging the growing periods

with a design can ensure that pairwise comparisons still exist. Etc.

Of course this is not perfect. Testing a function on only a subset of its inputs does not provide

all information about the function. Experiments can only be simplified if the outcome function

has some kind of property which allows untested outcomes to be inferred from the set of tested

outcomes, or if only some information about the outcome function is required. But conversely if

such properties or limitations are present then brute force testing each input might be redundant

and testing a subset of inputs could provide the same information more efficiently.

5.3 Error correcting codes

Discussion of lost and redundant information may be reminiscent of information theory and

error correcting codes. Discussion of equidistant subsets of Hamming spaces may have been more

so. In fact designs are relevant here too.

When electronically transmitting data as a sequence of ones and zeros (ie an element of {0, 1}n)

bits will occasionally get flipped. To deal with this when trying to communicate a particular se-

quence s ∈ {0, 1}n the sender will convert it into a longer sequence s∗ ∈ {0, 1}m where the extra

bits contain redundant information. This way if a bit gets flipped the inconsistency with redundant

information will alert the receiver. With enough redundant information the receiver will even be

able to figure out which bit was flipped and the original s∗ which was sent. And reversing the
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conversion from s∗ to s they will know the intended message. Conversions of sequences s to s∗

with properties that allow retrieval of the original s even when s∗ has bits flipped are known as

error correcting codes.

When considering binary sequences of length m it is common to view them as graph with

vertex set {0, 1}m (the vertices being referred to as ‘words’ or ‘strings’) and an edge between two

vertices when they differ in exactly one coordinate, known as the Hamming space of dimension m.

This is the same Hamming space discussed relating to powersets, since {0, 1}m is isomorphic to

the powerset of an m element set. The Hamming distance between any two words in the graph is

equivalent to the minimum number of bits that must be flipped to convert one sequence to the other.

An error correcting code can be viewed as a selection of vertices or “code words" in a Hamming

space chosen by a function ∗ : {0, 1}n → {0, 1}m.

The method of finding a valid code word s∗ from an arbitrary sequence w ∈ {0, 1}m is to find

the code word with minimum Hamming distance from w. Since it is assumed that bits are flipped

with low probability the closest code word is the most likely sequence to have been sent given

what was received. Ideally every point in the m-dimensional Hamming space will be within some

constant c edges of exactly one code word. Such a code is called “perfect" and is desirable because

it allows every possible received word to be converted to a unique s ∈ {0, 1}n which was the most

probable original message. The set of words within c edges of s∗ are also known as the c-radius

ball around s∗.

As was previously seen designs correspond to equidistant (specifically distance 2(r − λ)) sub-

sets of a Hamming space X ⊂ BP . (Again note that additional conditions are required, meaning

the converse is not necessarily true.) Which makes them not only error correcting codes, but good

ones (assuming X is large and most received strings are covered in some ball) that “spread out"

their error correction as much as possible. The fact that X ⊂
(

B

r

)

gives them the additional prop-

erty that they have the same Hamming distance from the word of all 0’s (known as Hamming

weight). Such codes are called constant weight codes.
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Note that having some bias in sent encoded messages can change the expected effectiveness

of error correction. If all messages sent are constant weight then it doesn’t matter if a code is bad

at correcting a sufficiently asymmetric received string. Such a code will have less error correcting

ability when transmitting the same amount of original information with the same number of mes-

sage bits, compared to a perfect code. However other benefits may outweigh this consideration.

Having constant weight can be desirable in applications where transitions between states are

used to convey information in a continuous medium as opposed to easily parsable discrete strings.

For instance when the sender and receiver of a signal don’t share a reliable clock a larger number of

transitions can help the receiver judge the intended time interval between different bits of informa-

tion. There can also be other medium specific advantages. For instance when communicating with

radio signals people will sometimes alter their frequencies in a predetermined way over the course

of a message, to prevent eavesdropping. If there is a known average of expected wavelengths it can

help the receiver calibrate and better match the sender’s frequencies.

5.4 Explicit examples

Example 1. Fix any vertex set V and a natural number k such that 2 ≤ k ≤ |V |. Let B =
(

V

k

)

.

Then the design D defined by V and B is the complete hypergraph with edges of size k. By

symmetry all pairs of vertices are contained in the same number of edges so it is a design. This is

also known as a trivial design.

Example 2. Let the vertex set V be divided into two equal sized subsets V1∪V2 = V , |V1| = |V2| =

|V |/2 = n. Let k = 3 and B = {X ∪ Y |X ∈
(

V1

2

)

, Y ∈
(

V2

1

)

} ∪ {X ∪ Y |X ∈
(

V1

1

)

, Y ∈
(

V2

2

)

}.

That is, B consists of all pairs from V1 and one element from V2, and vice versa. The pairs of

elements both in one of V1, V2 are contained in exactly n blocks. The pairs of elements one each

from V1, V2 are contained in 2(n− 1) blocks. So V and B form a design iff n = 2(n− 1), meaning

n = |V1| = |V2| = 2.

Example 3. Let the vertex set V be divided into two equal sized subsets V1 ∪ V2 = V , |V1| =

|V2| = |V |/2 = n. Let 5 ≤ k ≤ |V | and B = {X ∪ Y |X ∈
(

V1

2

)

, Y ∈
(

V2

k−2

)

} ∪ {X ∪ Y |X ∈

14



(

V1

k−2

)

, Y ∈
(

V2

2

)

}. That is, B consists of all pairs from V1 together with all order k − 2 subsets of

V2, and vice versa. The pairs of elements both from V1 or V2 are contained in the same number of

blocks. (Specifically in
(

n

k−2

)

+
(

n−2
k−4

)(

n

2

)

blocks.) The pairs of points with one each from V1 and

V2 are contained in the same number of blocks. (Specifically in 2
(

n−1
1

)(

n−1
k−3

)

blocks.) So V,B form

a design iff
(

n

k−2

)

+
(

n−2
k−4

)(

n

2

)

= 2
(

n−1
1

)(

n−1
k−3

)

. It turns out one solution to this equation is n = 8,

k = 6.

The automorphism groups of the last two designs are Symn ≀ Sym2 because they are the freest

possible designs which preserve a given partition of an initial block.
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Chapter 6

Proving things about designs

Since the defining characteristic of designs is uniform covering of
(

V

2

)

, a natural approach to

proving something about a design is to partition
(

V

2

)

and then prove things about the partition.

Specifically, if X and Y partition
(

V

2

)

, then any design satisfies three properties.

• X must be covered uniformly.

• Y must be covered uniformly.

• X and Y must be covered the same amount, on average.

If a condition contradicts any of these properties for any partition of
(

V

2

)

then it must not be

present in a design.

6.1 G is point transitive

For an example of this, consider a corollary of Block’s Lemma[1] (name unrelated). Block

proved a more general fact about linear algebra but this paper presents a proof which is more

thematically consistent with future proofs.

Theorem 2. If bG is a design then G must be transitive.

Proof. If G is not transitive then it respects a partition X ⊔ Y = V . This naturally extends to a

partition of
(

V

2

)

with three sets.
(

X

2

)

,
(

Y

2

)

, and
(

V

2

)

−
(

X

2

)

−
(

Y

2

)

. The last set being all pairs with

one element from X and the other from Y . G must also respect this partition, since it fixes X and

Y setwise.

Similarly b ⊂ V is partitioned into b ∩ X and b ∩ Y ; which extends to a partition of
(

b

2

)

into

(

b∩X
2

)

,
(

b∩Y
2

)

, and
(

b

2

)

−
(

b∩X
2

)

−
(

b∩Y
2

)

.
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For every g ∈ G, bg covers the partition of
(

V

2

)

in the same ratio as b, since bg has the same

number of points in X and Y . This means bG cumulatively covers the partition in the same ratio

as b does.

A necessary requirement for
(

V

2

)

to be covered uniformly by bG is that its partition subsets

are covered proportionally to the number of elements in each subset. This is equivalent to the

requirement that
(

|X|
2

)

:
(

|Y |
2

)

: |X||Y | is the same triple ratio as
(

|b∩X|
2

)

:
(

|b∩Y |
2

)

: |b ∩X||b ∩ Y |.

This can’t be true. There are no numbers m′ > m and n′ > n such that
(

m

2

)

:
(

n

2

)

: mn is

equal to
(

m′

2

)

:
(

n′

2

)

: m′n′. To see this note that
(

n

2

)

scales sub-quadratically while mn scales

quadratically. If
(

n′

2

)

= k2
(

n

2

)

then n′

n
> k. Meaning that if

(

m′

2

)

and
(

n′

2

)

both increase by a factor

of k2 then m′n′

mn
> k2.

An intuitive interpretation of this result is that, even up to scaling, the distribution of pairs in

a partitioned set is uniquely determined by the set and partition sizes. Thus a block distribution

respecting asymmetry in the underlying set (in the sense of the intersection size of blocks with a

partition being invariant) can not be uniform when covering pairs from the underlying set. Since

designs are defined in terms of uniformly covering pairs from the underlying set this means no

such block distribution can be a design.
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Chapter 7

Combinatorial restrictions on designs

7.1 Existence

The values |c|, |C|, and the numerical distribution of b’s k points as subsets of ci already de-

termine whether an imprimitive, block transitive design with those parameters exists, even without

considering any group theory. This is because those values determine whether b covers pairs inside

of and between different ci in the same ratio as those types of pairs exist in all of V .

Delandtsheer and Doyen introduced the idea of using “inner pairs” and “outer pairs” as a par-

tition of
(

V

2

)

to study imprimitive designs.[3] Given V = c × C, the inner pairs pairin are all

pairs {x, y} ∈
(

V

2

)

such that x, y ∈ ci for some i. All remaining pairs are the outer pairs pairout;

{x, y} ∈
(

V

2

)

s.t. ∃ci ̸= cj with x ∈ ci and y ∈ cj .

Any block b contains some number of inner and outer pairs denoted bin = |
(

b

2

)

∩ pairin| and

bout = |
(

b

2

)

∩ pairout|. Any group G preserving C as a partition also preserves the sets pairin and

pairout in
(

V

2

)

. Therefore all blocks b′ ∈ bG in the orbit of b under G have b′in = bin and b′out = bout.

This implies that any set of blocks which are generated by G must cover inner and outer pairs of

C in the same ratio as any one of the blocks. Ie any pair in pairin will be covered bin times by bG

for every bout times bG covers a pair in pairout.

Note that |pairin| = |C||
(

c

2

)

| and |pairout| = |
(

C

2

)

||c|2. So a necessary condition for bG to

evenly cover all pairs of elements in V is that bin : bout = |C||
(

c

2

)

| : |
(

C

2

)

||c|2. In reduced form

bin : bout = |c| − 1 : (|C| − 1)|c|.

Lemma 1. An imprimitively generated block set bG covering the inner and outer pairs propor-

tionally to the size of those sets is equivalent to the truth of bout
bin

= (|C|−1)|c|
|c|−1

.

The same condition is also sufficient for the existence of an imprimitive design. Specifically,

B = b(Symc ≀ SymC) is completely symmetrical relative to C. Any block in B corresponds to

another block in B given any permutations of C and the ci. This implies B covers all of pairin the
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same number of times and all of pairout the same number of times. So B defines a design if and

only if both sets of pairs are covered proportionally to their size.

7.2 Bounds on design parameters

Recall that for a 2− (v, k, λ) design λ refers to the number of times any pair in
(

V

2

)

is covered,

v = |V |, and k = |b| (any block).

Theorem 3 (Delandtsheer, Doyen [3]). Let bG be a design, with imprimitive G. Let c × C ∼= V

define imprimitivity classes of G with |c| ≥ 2 and |C| ≥ 2.

Then there exist positive integers m and n such that |c| =
(k
2
)−n

m
and |C| =

(k
2
)−m

n
. Further-

more, n is the number of inner pairs contained in b and m|c| is the number of outer pairs contained

in b.

The parameters m and n are called Delandtsheer-Doyen parameters and the range of their

possible values over designs is sometimes studied. Rearranging the Delandtsheer-Doyen parameter

formulas implies that if |c| · |C| = |V | > (
(

k

2

)

− 1)2, no m and n satisfying the formula exist. This

is therefore an upper bound on the possible size of block transitive, imprimitive designs with a

given block size.

The theorem’s initial implications about the Delandtsheer-Doyen parameters were already ef-

fectively covered during the discussion of inner and outer pairs:

Any pair of the triple values |c|, |C|, and |V | fixes a ratio |pairin| : |pairout|. Similarly any

pair of n = bin, m|c| = bout, and k = |b| fixes bin : bout. So any pair of parameters from one

triple and a single parameter from the other triple determines necessary values of all parameters,

in order for those parameters to describe a valid design. The statement is specifically providing the

determined n and m|c|, given the triple of values |c|, |C|, and k. And of course both n and m|c|

must be integers.

The remaining implication of the theorem is that m must be an integer. Ie bout must be a

multiple of |c|. This follows from the fact that bin : bout = (|c| − 1) : (|C| − 1)|c| = |c|−1
|C|−1

: |c|,

since |c| and |c| − 1 don’t share factors.
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The specific bound Delandtsheer and Doyen produced isn’t immediately intuitive. However,

recall the proof of Theorem 2 demonstrated that the possible ratios of partition sets are uniquely

determine by |V |. Something similar is true here, except that instead of a ratio only being possible

once it is only possible finitely many times.

The inner:outer pair ratio
|pairout|
|pairin|

= (|C|−1)|c|
|c|−1

is mostly determined by |C| − 1, and adjusted

slightly with multiplication by
|c|

|c|−1
. The possible contributions of different |c| are x+1

x
for natural

numbers x ≥ 1 and so in particular are always within a factor of 2. This means that there is no

choice of different |c| such that partitions with |C| = x and |C| > 2x will have the same inner:outer

ratio.

There are only finitely many ways to partition k points, with each choice producing an in-

ner:outer pair ratio. This determines the possible values of |c| and |C| which also produce that

ratio, and there are basic bounds like the one above showing that values for |c| and |C| which are

too far apart can not produce the same ratio. So the specific bounds aside, it’s not surprising that

a bound exists and there are only finitely many block transitive, point imprimitive designs for a

given k.

Often, people are interested in finding designs with a specific parameters instead of the ex-

istence of more general designs discussed in this paper. In particular finite projective planes are

designs with λ = 1. Better bounds may exist when restricting the particular v, k, and λ values

considered.
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Chapter 8

The Universal Embedding Theorem

Recall ci ⊂ V = (c× C) denotes the subset (c× {i}) ⊂ (c× C).

Consider an arbitrary transitive, imprimitive permutation group G ≤ Symc ≀ SymC . Let H

be the permutation group defined by G’s induced action on C. Let GX denote the subgroup of G

which fixes X ⊂ V setwise. Then for any ci ⊂ c × C let Ni ≤ Symc be the permutation group

defined by Gci’s action on ci. (Technically Gci is acting on ci and Ni is defined under the bijection

c ∼= ci.)

Up to isomorphism Ni is actually independent of i. Ie the action of Gci on ci is isomorphic to the

action of Gcj on cj . This is because G is transitive and preserves the partition {c1, ..., ci, ..., cj, ..., c|C|},

so there is an element g ∈ G mapping the ci elements to the cj elements, meaning Gci = gGcjg
−1

and Gcj are conjugates.

The Universal Embedding Theorem relates G with the Ni and H defined from G.

Theorem 4 (Universal Embedding Theorem; Krasner, Kaloujnine [5][6]). Given a point transitive

G ≤ Symc ≀ SymC and i ∈ C:

G ∼= G′ ≤ Ni ≀H ≤ Symc ≀ SymC .

Proof. Recall all g ∈ Symc ≀ SymC can be associated with a pair g ∼ (f, h) ∈ Symc
C × SymC .

Each pair consists of a choice function f : C → Symc choosing one permutation jf ∈ Symc per

j ∈ C and also a single permutation h ∈ SymC . Conversely every distinct (f, h) permutes c× C

in a distinct way. Intuitively the pairs correspond to internally permuting each of the |C| copies of

c and then permuting the copies. That is, the action of g on c× C can be viewed as independently

acting on each ci ∼= c with the permutation if ∈ Symc, and then permuting the indices by h.

The main idea of this proof is to permute the cj such that they “line up" the isomorphic Nj
∼= Ni

with each other. Meaning for any cj ̸= ci ⊂ V there exists a (f, h) ∼ g′ ∈ G′ st jh = i and

jf = idSymc
. Which would then imply easy conjugation of multiplication by the permuted Nj .
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This will be accomplished by choosing a group element for each j ̸= i which defines an “identity

mapping" from ci to cj .

Explicitly, for each j ̸= i there is some group element gj ∈ G with a corresponding hj ∈ H

such that jhj = i. Fix one such gj for all j ̸= i and let gi be idG. Denote the pair associated with

gj as gj ∼ (fj, hj).

Then define a permutation φ : V → V which permutes each cj by sending all (x, j) ∈ (c×{j})

to (x(jfj), j). φ induces an automorphism of Symc ≀ SymC by permuting the underlying set.

One convenient way to represent this is to view φ as an element of Symc ≀SymC . Specifically,

the (f, h) ∼ φ has h = idH and for all j, jf = jfj . Then φ defines a map Φ : Symc ≀ SymC →

Symc ≀ SymC by gΦ = φ−1gφ, a conjugation of Symc ≀ SymC . As a conjugation Φ maps G ≤

Symc ≀ SymC to an isomorphic subgroup G′ = GΦ and all that is necessary for the theorem to be

true is that G′ ≤ Ni ≀H .

The set of (f, h) which are associated with a g ∈ Ni ≀ H is easily defined. They are exactly

the pairs such that h ∈ H and ∀j ∈ C, jf ∈ Ni. Now consider arbitrary (f, h) ∼ g ∈ G. To see

that (f ′, h) ∼ φ−1gφ ∈ G′ does have all jf ′ ∈ Ni, consider any arbitrary j and let jh = k. So

jf ′ = (jfj)
−1(jf)(kfk).

But this is also how g−1
j ggk permutes ci. Broken apart, g−1

j maps the i coordinate to j while

permuting ci by the inverse of the way gj permutes cj as it is sent to ci. Then g permutes by jf

while sending j to k, and gk permutes by kfk when sending k back to i. All of gj , g, and gk are

elements of G so g−1
j ggk is also an element of G. And the composition fixes i, so g−1

j ggk ∈ Gci ,

meaning (jfj)
−1(jf)(kfk) ∈ Ni.

In fact something stronger is true. Φ was not only an isomorphism but a “permutational iso-

morphism". That is an isomorphism induced by a bijection between the underlying sets of G and

G′ as permutation groups.
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8.1 Why were we talking about this?

Permutationally isomorphic groups will generate isomorphic block sets (when the initial block

is also moved by the permutation). In this case the Universal Embedding Theorem shows that

any point transitive G ≤ Symc ≀ SymC is effectively contained in the wreath product Ni ≀ H .

And only groups with this property must be considered to generate all imprimitive designs, up to

isomorphism. For notational convenience, from now on let all G ≤ N ≀ H ∼= Ni ≀ H (since the

distinction between Ni doesn’t matter to designs, up to isomorphism).

The structure of bG closely echoes that of G. The simplification of G’s structure to something

resembling N ≀ H is therefore helpful when describing its action on an initial block and allows a

description of bG analogous to N ≀H .
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Chapter 9

Group actions on blocks

9.1 Describing arbitrary imprimitive permutation groups

Consider the structure of G ≤ N ≀H from the perspective of (f, h) ∼ g ∈ G. Since G ≤ N ≀H ,

f is a choice of one p ∈ N per i ∈ C. Since G is transitive, for every i, j ∈ C there is a guaranteed

(f, h) ∼ g ∈ G such that ih = j. Because N is the action of G on any fixed cj , for each p ∈ N and

j ∈ C there exists (f ′, h′) ∼ g′ ∈ G such that jh′ = j and jf ′ = p. Composing these produces

a group element gg′ which takes an arbitrary ci to arbitrary cj while permuting by any arbitrary

p ∈ N .

In some sense this means G acts on V similarly to N ≀H . G can map every ci just as freely as

N ≀H does. And because of this it also maps each ci in some way that no K ≀H can for K ⪇ N .

The only difference between G and N ≀H is that while N ≀H can permute each ci in an arbitrary

way simultaneously (it is completely free given the constraints of permuting each ci by a p ∈ N

and C by h ∈ H), G potentially has further restrictions on how it maps multiple ci ̸= cj ∈ C at

the same time.

One way of describing this is that the set of (f, h) ∼ g ∈ N ≀ H is all of NC × H . Ie the set

of all pairs with any f ∈ NC and h ∈ H . By contrast (f, h) ∼ g ∈ G might be restricted to f in

some subset F ⊂ NC . In fact there is further possible complexity.

Example 4. For this example let Cn be the permutation group which acts as a cycle on n ≥ 3

elements. Let the dihedral group Dn be the permutation group which is generated by that cyclic

permutation group and an additional element which “flips” the cycle in the usual way.

Consider the group Dn ≀D3. The set of (f, h) ∼ g ∈ Dn ≀D3 is the complete set of pairs with a

function from {1, 2, 3} to Dn and h ∈ D3. Now consider the subset of pairs (f, h) ∈ S ⊂ Dn ≀D3

where for all i ∈ {1, 2, 3}, if ∈ Cn if and only if h ∈ C3. So conversely if ∈ Dn − Cn iff
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h ∈ D3 − C3. The set S does not contain all f ∈ Dn
{1,2,3} since there exists f with 1f ∈ Cn and

2f ̸∈ Cn.

It can be verified that S corresponds to a transitive strict subgroup G < Dn ≀D3 and that the

N ≀H defined from G is Dn ≀D3.

The example shows that not only could the set of functions f which are part of a pair (f, h) ∼

g ∈ G be restricted, the restriction might not be uniform and could vary further with h.

Inspired by this, for a given G ≤ N ≀ H and any set X ⊂ H let FX denote the set of f such

that there exists h ∈ X with (f, h) ∼ g ∈ G. Also let F = FH .

Then some previously discussed facts can be expressed as follows. (Recall H{i} is the subgroup

of H stabilizing i.)

•
⋃

h∈H F{h} = F ⊂ NC .

• For all i ∈ C, {if : f ∈ F(H{i})} = {if : f ∈ F} = N .

• G ∼=
⋃

h∈H(F{h} × {h}) ⊂ NC ×H ∼= N ≀H .

• G = N ≀H iff ∀h ∈ H , F{h} = NC .

The natural action of G on
⋃

h∈H(F{h} × {h}) (ie itself) has any (f, h) ∼ g ∈ G map the set

F{h′} × {h′} injectively into the set F{h′h} × {h′h}. Since inverses exist this creates a bijection

between F{h′} and F{h′h}. More generally any F{h} and F{h′} have equal size.

Then a corollary of the above facts gives an easy description of the difference between any G

and the corresponding N ≀H .

• For all h ∈ H , |F{h}| = |F{idH}|.

• G = N ≀H iff F{idH} = NC .

9.2 A limitation of this description

However, the set F{idH} does not determine G < N ≀H .
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Example 5. Let N = Dn with n ≥ 3. Let H be any permutation group with a subgroup H ′ < H

of order |H ′| = |H|
2

. Let F{idH} be the set of f ∈ Dn
C such that if ̸∈ Cn for an even number of

i ∈ C . Now consider the set of pairs S = {(f, h) ∈ NC × H : f ∈ F{idH} ⇐⇒ h ∈ H ′}.

That is, all permutations in Dn ≀ H where an even number of cycles were reversed and the set of

cycles was permuted by h ∈ H ′, as well as all permutations where an odd number of cycles were

reversed and the set of cycles was permuted by h ∈ H −H ′.

It can be verified that S corresponds to a transitive strict subgroup G < Dn ≀ H and that the

N ≀H defined from G is Dn ≀H .

In particular, S is exactly the set of (f, h) where f and h have the same parity (in the respective

senses of reversing an even number of cycles / being contained in H ′). Given an initial permutation

(f1, h1), further permuting by any (f2, h2) ∈ S will change the parity of the number of reversed

cycles exactly when f2 ̸∈ F{idH} and multiplication by h2 swaps h1 between the two cosets of H ′

in H exactly when h2 ̸∈ H ′. So permutations g ∈ G ∼= S maintain the relationship between these

two types of parity and G is closed under multiplication.

The example shows that for fixed N = Dn and base set C, groups G with the same F{idH}

can be defined using an arbitrary H and subgroup of size |H ′| = |H|
2

. In particular, some H have

multiple, non-isomorphic subgroups of that size. Using these for the example construction creates

non-permutationally isomorphic G defining the same N , H , and F{idH}.

9.3 Representing blocks

Initial blocks b can be defined by a choice of some subset of c, for each i. Denote the elements

of b in the i coordinate as bi = {x ∈ c : (x, i) ∈ b}. The possible images of bi under the action of

N are biN , the setwise orbit of bi. This could also be viewed as N acting on bi ∈ cP .

Similarly to how group elements g ∈ G correspond to (f, h) with f : C → N , the blocks

b ⊂ V correspond to w : C → cP , which maps coordinates i to sets bi = iw. Alternatively, w can

be augmented by h ∈ H to more easily keep track of the image bG of an initial b. This notation

simply uses h to keep track of permutations of coordinates instead of permuting the outputs of w.
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Explicitly, (w, h) ∈ (cP)C × H is the block b such that bi = (ih−1)w. Ie the block b defined by

taking the b′ with b′i = iw and permuting the coordinates of b′ by h. This augmented definition is

how blocks will be described in this paper.

Note that, unlike the correspondence between (f, h) and g, the correspondence between (w, h)

and b is not a bijection. Different (w, h) could still correspond to the same block since a particular

permutation need not change a given set.

9.4 Acting on blocks

The augmented definition allows for an easier description of the block set generated by (w, h1) ∼

b when acted on by a group of (f, h2) ∼ g ∈ G. For any (w, h1) ∼ b and (f, h2) ∼ g, the image

bg ∼ (w, h1) · (f, h2) is a new block (w′, h1h2) where iw′ = (iw)((ih1)f) = bih1
((ih1)f).

Starting from an initial b ∼ ({i → bi}, idH) and given any g ∼ (f, h), this means that bg ∼

({i → bi(if)}, h). Using the previous section’s description of G, bG ∼= ({i → bi}, idH)(
⋃

h∈H(F{h}×

{h})) = {({i → bi(if)}, h) : h ∈ H, f ∈ F{h}}.

(With the caveat that elements of bG might be represented redundantly over all combinations

of h and f .)

9.5 Redundancy

Something to note about the caveat is that the redundancy is the result of elements of G fixing

b setwise. Ie G{b} could be a nontrivial subgroup. In this case, the fact that G transitively generates

bG means that every other block in bG is fixed by a conjugate subgroup of G{b}.

One implication of this uniform redundancy is that it has no effect on uniform pair coverage.

The pairs in
(

V

2

)

are covered uniformly by the multiset [({i → bi(if)}, h) : h ∈ H, f ∈ F{h}]

iff they are covered uniformly by bG. Each pair is just covered |G{b}| as many times. So one

possible strategy to find designs is to first find multisets generated by b and
⋃

h∈H(F{h} × {h})

which uniformly cover pairs, and then later eliminate duplicates.
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9.6 Converting block sets to pair orbits

The block multisets can be viewed as G acting on b to generate the orbit bG while distinguishing

resulting blocks which were generated by different g ∈ G. (In the future this paper will refer to

these as “multi-orbits” and denote them [bG].) Doing this results in a block multiset satisfying

the coverage axioms iff the corresponding block set does. This means that uniform coverage can

actually be determined by the size of the subset of G which takes an initial b to cover a given pair

in
(

V

2

)

(or the reverse).

The size of the subset of
⋃

h∈H W{h} × {h} which covers an arbitrary pair r ∈
(

V

2

)

is equal to

the number of group elements (f, h) ∼ g ∈ G which takes an initial b ∈
⋃

h∈H W{h} × {h} to an

image bg ⊃ r. Each of these g corresponds to a g−1 ∈ G which takes r to an image rg−1 ⊂ b.

So all pairs
(

V

2

)

are covered a uniform number of times by the block set bG iff all pair multi-orbits

of G’s action on
(

V

2

)

contain the same number of subsets of b. And this happens iff the number of

g ∈ G such that rg ⊂ b is the same for all r ∈
(

V

2

)

.

Lemma 2. Given b ∼ ({i → bi}, idH) and G ∼=
⋃

h∈H Fh × {h} :

The block set bG defines a design iff the multiset [({i → bi(if)}, h) : h ∈ H, f ∈ F{h}] covers

all pairs in
(

V

2

)

the same number of times. That multiset covers a given r ∈
(

V

2

)

once for each

g ∈ G such that r ⊂ bg.

The observation that uniform pair coverage can be equated to proportional inclusion of pair

orbits into b immediately has a nice corollary.[7] If bG is a design then G generates pair orbits

which are contained in the same ratio by b. Adding additional permutations g ∈ SymV to G can

never break apart these orbits, only combine them. So any G′ > G also generates pair orbits that

are covered in the same ratio by b, and all such bG′ are also designs.

9.7 Describing arbitrary imprimitive block sets

It would be convenient to more succinctly list which functions w = {i → bi(if)} create a

valid block (w, h) ∼ b′ ∈ bG, for a given h. When the block set is generated by permutations

G ∼=
⋃

h∈H(F{h} × {h}), the answer is the set {w = {i → bi(if)} : f ∈ F{h}}. So for the
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convenient list, define WX to be {w = {i → bi(if)} : f ∈ FX}. As before W will denote WH .

This definition relates each f ∈ F{h} with the w ∈ W{h} generated by f . Ie (w, h) is the image of

b under the permutation (f, h). So bG ∼=
⋃

h∈H(W{h} × {h}) (up to redundancy).

The orbits biN ⊂
(

c

|bi|

)

of each bi over all blocks in bG have analogous restrictions to the

permutations N ≤ Symc on ci over all g ∈ G.

Under the action of both G and N ≀ H , an arbitrary permutation in N can be applied to any

(bi ×{i}) ⊂ ci, while moving ci from the i to an arbitrary j coordinate. Since each coordinate can

be permuted independently, b(N ≀H) is the set of all possible pairs (w, h) ∈ (cP)C ×H such that

w has only outputs iw ∈ biN . In other words, w is a choice of one element from bi’s orbit under

N , for each i.

Denote this set of functions as U = {w = {i → bi(if)} : f ∈ NC}. Note that this is a superset

of W = {w = {i → bi(if)} : f ∈ F} which is in turn a superset of all W{h} = {w = {i →

bi(if)} : f ∈ F{h}}.

Echoing the relationship between G and N ≀H , bG is a subset of b(N ≀H) ∼= U ×H . W{h} is

the set of combinations of orbit elements that could actually have been arrived at given the action

of F{h} on the chosen bi, so it is a subset of U , which is all possible choices of an element from

each orbit.

9.8 U as a choice of orbits

Note that U only actually depends on N and a choice of its induced set orbits in c (or equiva-

lently induced orbits on cP) to be defined. And conversely any w ∈ U determines the same choice

function of set orbits {i → (iw)N}. Meaning U does not actually require specific bi to be defined.

So U is an implicit choice of orbits in cP without any relation to a specific original block b or

group G ≤ N ≀H .

To make this choice explicit, let Ui denote the orbit (iw)N ⊂ cP where w is an arbitrary

element of U . Furthermore, let U be definable directly as a choice of orbits. Ie, given orbits

Ui ⊂ cP of N ’s induced action on cP , let U = {w ∈ (cP)C : ∀i ∈ C(iw ∈ Ui)}.
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This perspective is useful when attempting to find designs because it delays the more compli-

cated choices of a G ≤ N ≀H and specific b until after the simpler ones of a N ≀H and one of the

many equivalent blocks under that very uniform group’s action. Furthermore, recalling the section

on redundancy, describing coverage in terms of orbits allows coverage to be measured with the

size of subsets of G, rather than blocks.
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Chapter 10

Converting to group theory

10.1 Recapping the problem so far

The goal is to find block transitive, point imprimitive designs. Ie designs generated from one

initial block b and permutation group G, such that G acts imprimitively on the base set V , parti-

tioning it into c × C (with the copies of c denoted ci). It happens that groups which can generate

such designs must be point transitive.

The existence of a design generated by b and the freest imprimitive group partitioning V into

c×C (ie Symc ≀SymC) is purely combinatorial. It is completely determined by the ratio of “inner

and outer pairs” when b is partitioned, compared to the ratio of inner and outer pairs in c×C. The

remaining question is which subgroups of Symc ≀ SymC produce distinct designs.

Any point transitive subgroup G ≤ Symc ≀ SymC can be permuted into a subgroup of the

closely related group N ≀H ≤ Symc ≀ SymC , where H is G’s projection onto C and N is how G

permutes any copy of c when it is not being exchanged with other copies. A notable implication is

that for both G and N ≀H , any ci can by permuted by any element of N while being sent to any cj .

To consider all transitive, imprimitive permutation groups it is enough to consider all N ≀ H

and let G be any transitive subgroup that satisfies the conditions:

• Its projection onto C is H .

• Any ci can by permuted by any element of N while being sent to any cj .

These are necessary and sufficient conditions for G to correspond to N ≀H in the way defined

by the Universal Embedding Theorem.

N ≀ H is the freest group with these properties and can be expressed as the set of all pairs

(f, h) ∈ NC ×H where h ∈ H determines how C is permuted and f is an independent choice of

any p ∈ N to permute each ci by. Any other G considered is a subset.
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For a given G, the f paired with a given h ∈ H such that (f, h) ∼ g ∈ G are sets F{h} ⊂

NC . So G ∼=
⋃

h∈H F{h} × {h}. These F{h} × {h} correspond to conjugates of the subgroup

F{idH} × {idH} and are the same permutations up to conjugation by an element of G. Given an

initial block b, the set of blocks generated by F{h}×{h} are W{h}×{h} and any block set generated

by G is bG ∼=
⋃

h∈H W{h} × {h}.

This representation may redundantly refer to blocks, but it will do so uniformly so that any

uniform covering of
(

V

2

)

by a transitively generated bG corresponds to a valid design.

A block can be viewed as a choice of a subset bi ⊂ ci from each ci. This can also be seen

as a choice of orbits Ui ⊂ cP , followed by a choice of element bi ∈ Ui. The set of all choice

functions from C into a determined set of orbits Ui is denoted U , and can be viewed as all possible

choices of orbit elements after the orbits have been determined. U ×H ∼= b(N ≀H) for any block b

defined by bi ∈ Ui, and U ×H contains all other block sets generated by b and G ≤ N ≀H . (Since

U ×H =
⋃

h∈H U × {h} ⊃
⋃

h∈H W{h} × {h}.)

So the initial goal is equivalent to looking for G ≤ N ≀H (satisfying the universal embedding

conditions), a choice of |C| many orbits Ui from N ’s induced action on cP , and a block b ∼

(w, idH) ∈ U ×H , such that the pair orbits generated by G are contained in b the same proportion

of times.

10.2 What was the point of that?

The point was that the property of all pair orbits being covered an equal proportion of times by

b can be simplified using group theory. Specifically, the set of inner pairs and outer pairs can be

considered separately. The resemblance of G to the very symmetrical N ≀H allows pair orbits on

the larger group G to be looked at as pair orbits in the smaller groups N and H .

Note that a choice of orbits {i → Ui} already determines the ratio of inner and outer pairs

covered by blocks b with components bi ∈ Ui. So choosing N and a choice of its set orbits U

already determines the total inner-outer ratio.
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This means that, given a choice of orbits U with an inner : outer ratio equal to that of c× C, a

block set generated by b ∼ (w, idH) ∈ U ×H and G ≤ N ≀H is a design iff the set of inner pair

multi-orbits all contain the same number of subsets of b and the same is separately true for outer

pair multi-orbits.

10.3 Uniform covering of inner pairs

Inner pairs being covered uniformly can immediately be simplified.

The subsets of G taking ci to various cj are conjugate cosets. In particular, G can exchange the

ci without permutation, so the multi-orbit of s×{i} ⊂ ci can be viewed as the same multi-subset of

cP , repeated in each coordinate. Specifically, the coset of G leaving ci at ci is a subgroup G′ ≤ G

and [s(if) : (f, h) ∼ g ∈ G′] ⊂ cP exactly corresponds to the subset of [s′g : g ∈ G] with

elements in any fixed cj (for nonempty s).

Furthermore, [s(if) : (f, h) ∼ g ∈ G′] ⊂ [cP ] is actually a multiple of the multiset [sN ] =

[sp : p ∈ N ]. This follows from the fact that φ : G′ → N defined by (f, h)φ = if is a group

homomorphism. |G′|/|N | is a constant independent of the original s being considered so for the

sake of verifying uniform inner pair coverage the multi-orbits [s(if) : (f, h) ∼ g ∈ G′] ⊂ [cP ]

can be simplified and replaced by [sp : p ∈ N ].

The net result of these observations is that the multi-orbit of any inner pair r ∈
(

c

2

)

can be

counted as [rN ]× C. The number of times this multi-orbit is contained by b will be the sum over

all i ∈ C of the number of times [rN ] is contained by bi.

Lemma 3. All inner pairs of c× C are evenly covered by bG (with G ≤ N ≀H) if and only if

∑

i∈C

|{p ∈ N : rp ⊂ bi}|

is constant over all r ∈
(

c

2

)

.

Note that this equivalence has nothing to do with a choice of specific b ∈ U . The multi-orbit

[rN ] will intersect u ⊂ c the same number of times for every u ∈ Ui because N also transitively
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generates Ui. The equivalence also has no connection to H . So doing all this has shown that only

choices of c×C, N , and U are relevant to uniform coverage of inner pairs. And recall, only c×C

and the |bi| are relevant to the ratio of inner and outer pair coverage.

The benefit is that when searching for designs, restrictions on c × C, N , and U can be con-

sidered first while verifying uniform inner pair coverage and inner/outer coverage ratio satisfy the

requirements of a design. It is only necessary to check various G ≤ N ≀H and specific choices of

b to determine whether a block set with uniform outer pair coverage exists, and this can occur after

already eliminating any possibilities that violate any other restriction.

10.4 Uniform covering of outer pairs

It is still true that pair coverage can be expressed as the number of sets in a multi-orbit which

are contained by b. So the immediate equivalent to outer pairs being uniformly covered is every

outer pair multi-orbit [{v, v′}G] containing the same number of subsets of b ∈ U .

10.4.1 Understanding outer pair orbits

Consider the outer pair multi-orbits generated by N ≀H . Without loss of generality each outer

pair contains elements (xi, i), (xj, j) ∈ c × C with coordinates i ̸= j ∈ C. The choice of i and j

completely determine an orbit since each copy of c can be permuted independently by N ≀H . The

outer pair orbits of c× C directly correspond to the pair orbits of H on its base set C.

Now consider the outer pair multi-orbits generated by an arbitrary G ≤ N ≀ H . These orbits

are a partition of the orbits generated by N ≀ H . Furthermore, the partition is uniform in a useful

way.

Recall that G can equivalently be expressed as
⋃

h∈H F{h}×{h} . So the multi-orbit generated

by the pair {(xi, i), (xj, j)} is:

[{(xi(if), ih), (xj(jf), jh)} : (f, h) ∈
⋃

h∈H

F{h} × {h}]
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An important observation is that because |F{h}| is independent of h, these pairs are evenly

distributed between h. So any multi-orbit of outer pairs can be evenly projected onto the multi-

orbit of the corresponding {i, j} under the action of H .

10.4.2 Projecting onto C

Let any multi-subset S ⊂ [P(c × C)] be “C-equivalent” to S ′ ⊂ [P(c × C)] exactly when

the multiset of their C coordinates is the same. (This will be referred to as “projecting onto C”.)

Similarly let S ⊂ [P(c×C)] be “C-equivalent” to S ′ ⊂ [PC] when S ′ is exactly the projection of

S onto C.

In particular two pair multi-orbits generated by G on V which project onto the same pair multi-

orbit generated by H on C are “C-equivalent pair multi-orbits”. rG, r′G ∈
(

V

2

)

are C-equivalent

pair multi-orbits iff there are i ̸= j ∈ C such that both rG and r′G contain a pair with one element

in ci and one element in cj .

Specifically, C-equivalent pair multi-orbits will always project onto the same pair multi-orbit

generated by H , with further multiplicity |F{h}|.

Let T ⊂
(

C

2

)

be a pair orbit generated by H . Let R be the set of all pairs r ∈
(

V

2

)

which are

C-equivalent to a pair t ∈ T . Ie R is the set of all outer pairs with C coordinates in the same

H orbit. Another way of viewing R is as a pair orbit generated by N ≀ H . Technically R is not

C-equivalent to T , but T is a constant multiple away from being C-equivalent.

10.4.3 Restricting possible H

In order for each multi-orbit generated by G to be contained in a b the same number of times, the

corresponding orbits must be contained in the same ratio. Because R is partitioned by these orbits,

it is also necessary for all of R to be contained in that ratio. Since R is completely symmetrical

given any specific choice of subsets {b1, b2, ...}, this condition is only dependent on the choice of

values {|b1|, |b2|, ...}. This provides an intermediary restriction when determining which H can

possibly be the projection of a G which generates a design.
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The number of pairs in R contained by any b is
∑

{i,j}∈T |bi||bj|, and the total number of pair is

|c|2|T |. So the only possible H has all pair orbits T maintain that ratio. Also, |c|2 is a constant and

can be canceled when comparing ratios.

Lemma 4. A necessary condition for bG (with G ≤ N ≀H) evenly covering all outer pairs of c×C

is that

∑

{i,j}∈T |bi||bj|

|T |

is constant over all pair orbits T defined by H’s action on C.

Similarly to the previous requirement for inner pairs, this requirement has nothing to do with a

specific choice of b or any other group. It can actually be decided prior to the condition on inner

pairs because that depends on choosing orbits which bi are in, while this condition only depends

on |bi|.

The main difference is that condition being an “if and only if” while this condition is a one

directional “only if”. To actually enumerate designs it will be necessary to find a better restriction

on G and b. (Or just start checking the remaining options with brute force).

10.4.4 What is left to do?

The previous lemma corresponds to whether the “average” of all C-equivalent multi-orbit

equivalence classes are covered uniformly by b. It would still be possible to satisfy the condi-

tion with a C-equivalent set of multi-orbits such that two members have a different number of

elements contained in b, as long as the number of elements in b averages out over all orbits in the

class. If the equation is satisfied then every C-equivalent set of orbits is in some sense covered

uniformly compared to the others. The only remaining condition is that each set of orbits must

internally be uniformly covered.
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Lemma 5. bG uniformly covers outer pairs if and only if the condition from the previous lemma is

satisfied and every two C-equivalent outer pair orbits are contained the same proportion of times

by b.

|{r ∈ O : r ⊂ b}|

|O|
=

∑

{i,j}∈T |bi||bj|

|c|2|T |

This is not a very useful condition. Testing it directly would require determining every indi-

vidual outer pair orbit’s ratio of containment in b. That is the same brute force check that could

have been done 10 pages ago immediately after realizing uniform pair coverage is equivalent to

proportional containment of pair orbits. If that must be found anyway then the information gained

from Lemma 4 is completely pointless.

So why did I waste so much of your time? One answer is that while the seperation of outer pair

testing into Lemmas 4 and 5 is pointless from a purely mathematical standpoint there is a reason

to do so from the perspective of computation.

10.5 An open ended question

It was probably always inevitable that outer pair coverage could not be simplified to the same

extent as inner pair coverage. After all, specific choices of G and b presumably start to matter

somewhere.

Because simplification is difficult, at this point design search becomes more open ended.

Searching will improve alongside ability to select b and G ≤ N ≀ H satisfying uniform outer

pair coverage from other other choices that have not yet been eliminated, as well as ability to

identify when b and G will create an already generated block set and avoid redundant computation.
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Chapter 11

Result

11.1 Theorem

Combining previous lemmas produces the following theorem.

Theorem 5. Let G ≤ Symc ≀SymC be a transitive permutation group acting imprimitively on the

base set V = c × C. Let b ⊂ V be a block and bG the block set generated by G’s action on b.

Then:

By the Universal Embedding theorem it may be assumed that G ≤ N ≀H where the projection

of G satisfies the two conditions:

• The projection of G onto C is H .

• G can permute any ci = c× {i} ⊂ c× C by any p ∈ N while sending it to any cj .

The block set bG defines a design if and only if all the following are true:

1. The ratio of outer and inner pairs is the same for c× C and b.

That is, let outV ⊂
(

V

2

)

be the set of pairs with different C coordinates and inV be the pairs

with the same C coordinate. Let outb = outV ∩
(

b

2

)

and outb = outV ∩
(

b

2

)

. Let bi ⊂ c be the c

coordinates of elements of b which have coordinate i in the C coordinate. So bi×{i} = b∩ci.

Then:

(|C| − 1)|c|

|c| − 1
=

|outV |

|inV |
=

|outb|

|inb|
=

∑

i<j∈C |bi||bj|
∑

i∈C |
(

|bi|
2

)

|

2. All outer pair orbits defined by Symc ≀H acting on V are contained the same proportion of

times by b.

Equivalently, the following expression is constant over pair orbits O of H’s action on C.
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∑

{i,j}∈O |bi||bj|

|O|

3. All inner pairs are contained the same number of times by bG.

Equivalently, the following expression is constant over a representative r ∈ O of every pair

orbit O generated by N ’s action on c.

∑

i∈C

|{p ∈ N : rp ⊂ bi}|

4. All outer pairs r contained in the same orbit r(Symc ≀ H) are covered an equal number of

times by bG. In combination with requirement 2, this implies all outer pairs are covered the

same number of times.

Equivalently, every outer pair orbit O generated by G ≤ N ≀H acting on V is contained by

b the same proportion of times as the pair orbit T , generated by Symc ≀ H , which contains

O.

|{r ∈ O : r ⊂ b}|

|O|
=

∑

{i,j}∈T |bi||bj|

|c|2|T |

Proof. bG is a design if and only if all pairs
(

V

2

)

are covered by the same number of blocks.

Condition 1 is equivalent to inner and outer pairs being contained the same number of times “on

average”. Which is a necessary condition for uniform coverage overall. The equivalence with the

given condition was seen for Lemma 1.

It is necessary for all inner pairs to be covered uniformly. The equivalence in Condition 3 was

seen for Lemma 3.

It is necessary for all outer pairs to be covered uniformly. This was seen to be equivalent to the

necessary and sufficient combination of Conditions 2 and 4, for Lemmas 4 and 5.

These three guarantees of uniform coverage combine to guarantee total uniform coverage, im-

plying bG is a design if they are all true.
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What was the point of breaking the outer pair conditions apart, when in conjunction they’re

equivalent to the immediate condition that all outer pair orbits are contained by b uniformly?

Only the last condition is “global” in the sense that it needs to check the majority of orbits

defined by one of the largest objects which is relevant to the problem (G) and requires a specific

choice of b. (Recall that for condition 3, bi can equivalently be any other element in the same orbit

biN , though the theorem does not explicitly state this.) Prior conditions are more local, only using

N and H instead of G and only requiring more specific detail on b over time.

This matters to the enumeration of designs because the search tree of all possibilities can be

pruned earlier. Put another way, the theorem can almost directly be converted into nested for-loops

that progressively reduce the set of pairs {b, G} which can potentially generate a design.

11.2 Basic Algorithm

Each of the tests 1 through 4 in the preceding theorem do not depend on any structure which is

yet to be defined and not necessary to the test itself. This makes for an easy conversion from the

theorem to a corresponding algorithm which enumerates all designs. Each condition corresponds

to a for-loop.

Notation

“Next case” means to run the next case of the current for-loop. After a for-loop is finished the

algorithm returns to the next case of the previous for-loop. It was written like this to avoid too

much embedding. It can also be viewed as natural for the algorithm to be written like this, since

each condition in the theorem is progressively narrowing down the set of all possibilities.

“|bi|” is being treated as a single variable name. It just coincidentally happens to look like

a later variable name when you delete part of it. So the fact that “|bi|” appears earlier does not

actually mean that the variable “bi” has been decided.
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Pseudocode

For ( integers c, C ):

For ( |C|-tuples of integers 0 ≤ |bi| ≤ |c| ):

If not {

(|C| − 1)|c|

|c| − 1
=

∑

i<j∈C |bi||bj|
∑

i∈C |
(

|bi|
2

)

|

} then next case

For ( transitive H ≤ SymC ):

Define PairOrbitsH

If not constant for all ( O ∈ PairOrbitsH ) {

∑

{i,j}∈O |bi||bj|

|O|

} then next case, else set k to that constant

For ( transitive, imprimitive N ≤ SymC ):

Define PairOrbitsN , |bi|OrbitsN

Choose RepO ∈ O for every O ∈ PairOrbitsN

For ( |C|-tuples of orbits N_Orbiti ∈ |bi|OrbitsN ):

Choose Repi ∈ N_Orbiti for every N_Orbiti

If not constant for all ( O ∈ PairOrbitsN ) {

∑

i∈C

|{p ∈ N : (RepO)p ⊂ Repi}|

} then next case

For ( G ≤ N ≀H ):

Define OuterPairOrbitsG

For ( b ∼= |C|-tuples of bi ∈ N_Orbiti ):

If for all ( O ∈ OuterPairOrbitsG ) {
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|{r ∈ O : r ⊂ b}|

|O|
=

k

|c|2

} then print G, b

11.3 Improving the algorithm

The given algorithm won’t be winning any prizes for coding. It’s seven nested for-loops. A

progressive restriction of which G and b must be considered until the algorithm eventually gives

up and says “just brute force the rest”. So there is room for improvement.

The most obvious starting point is eliminating redundant computation. For instance, putting

an ordering on |C|-tuples of integers and only testing one representative case will eliminate many

permutationally isomorphic block sets. Similar reductions in redundant calculation can be achieved

in other places, but involve more detailed coding and memory usage.

From a mathematical standpoint, there are many short, closed form conditions on combinations

of parameters which this paper completely ignores. It could be a good idea to run parameters by

those conditions before churning out generated orbits, and this becomes increasingly true as the

sizes of the groups grow.

It’s also very plausible additional conditions exist which are similar to the two that were in-

troduced, in that they eliminate cases with less computation than later tests would have required.

Such tests could also be turned into for-loops and nested with the conditions in the theorem. Or

combined and rearranged in other ways by someone who knows more programming than nesting

for-loops.

Finally, even perfect theoretical optimization of the computational complexity of an algorithm

does not guarantee it is the best one. Sometimes an algorithm with a worse theoretical bound on

runtime is used instead of a more mathematically impressive counterpart because back in reality

it runs faster, and that’s what people care about. It is even possible that running the suggested

tests in a different order could provide an immediate improvement to runtime. Taking advantage

of b’s decreasing generality could matter less than some unforseen interaction between a test and
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the distribution of all solutions. Different arrangements of tests would have to be tried to actually

know what works the best.

11.4 Math and computation

Presumably what came before this section was math. There were a lot of pages of set and group

notation for that to not be true. But there’s a significant difference between the resulting theorem

and most published theorems. Every condition here contained a summation. No easily expressible

set of parameters were eliminated. In short, there was no new closed form expression.

Instead, the possible solutions to an infinitely large problem were restricted by the solutions to

two other infinitely large problems. It was not even a reduction. If you want to know about bG,

even if Pythia shows up and tells you that b(N ≀ H) is a design you still have more computing to

do.

That’s not ideal but it is life. As far as humanity can tell, hard computational tasks exist. We

suspect that there will never be nice, closed form expressions telling us about every instance of

every combinatorial object. While that is true there will always be some point where actually

computing every instance of a structure comes down to “just brute force it”. The best you can do

is convert that brute force problem into more tractable ones.

Sometimes those imperfect tests can even come in handy back in the world of pure math.

Throughout the paper I’ve talked about Delandtsheer and Doyen’s invention of inner and outer

pairs, and how it has become a significant idea in finite geometry and design theory. That concept

wasn’t even mentioned in their abstract or introduction. It was just a tool they used to obtain

some closed form bounds. Despite this, the tool is arguably more significant than what the bounds

actually are.
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