TATI CER-84/85-1 COPY 2

WIND-TUNNEL STUDY OF
EXHAUST-INTAKE CROSS CONTAMINATION
AND DISPERSION OF ROOFTOP EMISSIONS,
HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA
(HUP PHASE IV)

by

J. E. $Cermak^1$ and J. A. $Peterka^2$

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

COLLEGE OF ENGINEERING

COLORADO STATE UNIVERSITY

FORT COLLINS, COLORADO

Engineering Sciences

100 总数数数

學以268 上海海绵

CER84-851AP-JECT

WIND-TUNNEL STUDY OF EXHAUST-INTAKE CROSS CONTAMINATION AND DISPERSION OF ROOFTOP EMISSIONS, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA (HUP PHASE IV)

bv

J. E. Cermak¹ and J. A. Peterka²

for

Hospital of the University of Pennsylvania 3400 Spruce Street Philadelphia, Pennsylvania 19104

Fluid Mechanics and Wind Engineering Program
Fluid Dynamics and Diffusion Laboratory
Department of Civil Engineering
Colorado State University
Fort Collins, Colorado 80523

CSU Project 2-95750

July 1984 Modified March 1985 CER84-85JEC-JAP1

Professor-in-Charge, Fluid Mechanics and Wind Engineering Program, and Director, Fluid Dynamics and Diffusion Laboratory, Colorado State University.

²Professor, Department of Civil Engineering, Colorado State University.

ARSTRACT

A wind-tunnel study on a 1:250 scale model of a planned Phase IV addition to the Hospital of the University of Pennsylvania complex and the nearby structures was completed in the Fluid Dynamics and Diffusion Laboratory at Colorado State University. The study was accomplished to determine the concentration of effluents, emitted from various exhausts near and on the proposed addition, at various air intakes and other critical locations. Tracers emitted from individually modelled sources were sampled at 47 receptors for each of eight wind directions to measure the extent of exhaust-intake cross-contamination and dispersion of roof-top emissions. Some "follow-on" tests were also performed with a modified model to determine effluent concentrations at the HUP IV penthouse from selected nearby sources.

Additional wind-tunnel testing included velocity measurements to determine mean and gust winds at selected locations in the vicinity of the Hospital. The pedestrian-level wind data were recorded at 18 different locations for each of 16 wind directions. Selected test conditions were identified for inclusion in a visualization study. Visible smoke plumes, generated at locales of special interest, were recorded on VHS format video cassettes.

The concentration data revealed that the complex contains regions where the air is relatively stagnant. Exhaust gases in these regions experience little, if any, sweeping action from the wind, from any direction, to enhance dispersion. Some interaction between area exhausts and intakes situated on the Phase IV addition, was measured. Any adverse contamination of intake air is dependent upon composition of

the exhaust effluents. The velocity measurements indicated that the new structure should not induce any significant wind related problems for pedestrian traffic in the surrounding area.

TABLE OF CONTENTS

Chapter		Page
	ABSTRACT	i
	LIST OF FIGURES	v
	LIST OF TABLES	х
	LIST OF ABBREVIATIONS AND SYMBOLS	xv
1.0	INTRODUCTION	1
	1.1 Background	1
	1.2 Purpose and Scope	ī
	1.3 Report Organization	2
2.0	EXPERIMENTAL CONFIGURATION	4
	2.1 Model Construction	4
	2.2 Model Sources and Receptors	4
	2.3 Wind Tunnel	6
	2.4 Model Environment	7
	2.5 Similarity Criteria for Dispersion and Models	8
3.0	VELOCITY MEASUREMENTS	11
	3.1 General	11
	3.2 Velocity Measurement Instrumentation	11
	3.3 Atmospheric Boundary Layer Profiles	12
	3.4 Pedestrian-Level Wind Velocities	13
	3.5 Data Analysis	15
	3.6 Summary and Conclusion	16
4.0	CONCENTRATION MEASUREMENTS	17
	4.1 General	17
	4.2 Tracer Gases	17
	4.3 Data Collection Procedures	18
	4.4 Data Analysis	20
	4.5 Sample Calculations	24
	4.6 HUP IV Penthouse Tests	25
	4.7 Cross-Contamination Analyses	27
	4.8 Summary and Conclusions	30
5.0	AIRFLOW VISUALIZATION	34
	5.1 General	34 34
	5.1 General	34 34
	J.2 VISUATIZACION TESUS	34
6.0	REFERENCES	36

<u>Chapter</u>		Page
	APPENDICES (Separately Bound)	
	• APPENDIX A - TABULATION OF CONCENTRATION RATIOS	1
	• APPENDIX B - TABULATION OF DIMENSIONLESS CONCENTRATION COEFFICIENTS (K)	98
	APPENDIX C - TABULATION OF CONCENTRATION RATIOS AND DIMENSIONLESS CONCENTRATION COEFFICIENTS FOR HIP IV PENTHOUSE TESTS	105

LIST OF FIGURES

<u>Figure</u>		Page
2-1	Schematic Overview of Source Groupings which were Modeled in HUP IV Wind-Tunnel Tests	38
2-1a	Source and Receptor Location/Identification for Groups 1 and 2	39
2-1b	Source and Receptor Location/Identification for Group 3 (HUP IV Addition)	40
2-1b(1)	Source and Receptor Location/Identification for Group 3-1	41
2-1b(2)	Source and Receptor Location/Identification for Group 3-2	42
2-1b(3)	Source and Receptor Location/Identification for Group 3-3	43
2-1b(4)	Source and Receptor Location/Identification for Group 3-4	44
2-1b(5)	Source and Receptor Location/Identification for Group 3-C	45
2-1b(6)	Source and Receptor Location/Identification for Group 3-Q	46
2-1b(7)	Source and Receptor Location/Identification for Group 3-R	47
2-1b(8)	Source and Receptor Location/Identification for Group 3-58	48
2-1b(9)	Source and Receptor Location/Identification for Group 3-59	49
2-1b(10)	Source and Receptor Location/Identification for Group 3-60	50
2-1c	Source and Receptor Location/Identification for Group 4	51
2-1d	Source and Receptor Location/Identification for Group 5	52
2 - 1e	Source and Receptor Location/Identification for Groups 6 and 7	53
2-1f	Source and Receptor Location/Identification for Group 8	54

Figure		Page
2-1g	Source and Receptor Location/Identification for Group 9	55
2-1h	Source and Receptor Location/Identification for Group 10	56
2-1i	Source and Receptor Location/Identification for Group 11	57
2-1j	Source and Receptor Location/Identification for Groups 12 and 13	58
2-1k	Source and Receptor Location/Identification for Group 14	59
2-12	Source and Receptor Location/Identification for Group 15	60
2-2	Schematic Overview of Receptors (Intakes) which were Modeled in HUP IV Wind-Tunnel Tests	61
2-3	Environmental Wind Tunnel, Fluid Dynamics and Diffusion Laboratory, Colorado State University	62
2-4	Close-up Photograph of HUP IV Model and Surrounding Building Complex	63
2-5	Upwind View of HUP IV Model Installed in Environmental Wind Tunnel	63
2-6	Schematic of the EWT Test Section	64
2-7	Depiction of Prevailing Wind Speeds at Philadelphia Airport by Percentage of Total Time and Wind Direction	65
3-1	Mean Velocity and Turbulence Profiles Approaching the Model	66
3-2a	Pedestrian Wind Velocity Measurement Locations (No. 1 through 4)	67
3-2b	Pedestrian Wind Velocity Measurement Locations (No. 5 through 19)	68
3-3a	Mean Velocities and Turbulence Intensities at Pedestrian Locations 1 and 2	69
3-3b	Mean Velocities and Turbulence Intensities at Pedestrian Locations 3 and 4	70

<u>Figure</u>		Page
3 - 3c	Mean Velocities and Turbulence Intensities at Pedestrian Locations 5 and 6	71
3-3d	Mean Velocities and Turbulence Intensities at Pedestrian Locations 7 and 8	72
3-3e	Mean Velocities and Turbulence Intensities at Pedestrian Locations 9 and 10	73
3-3f	Mean Velocities and Turbulence Intensities at Pedestrian Locations 11 and 12	74
3-3g	Mean Velocities and Turbulence Intensities at Pedestrian Locations 13 and 14	75
3-3h	Mean Velocities and Turbulence Intensities at Pedestrian Locations 15 and 16	76
3- 3i	Mean Velocities and Turbulence Intensities at Pedestrian Locations 17 and 18	7 7
3 - 3j	Mean Velocities and Turbulence Intensities at Pedestrian Location 19	78
3-4a	Wind Velocity Probabilities for Pedestrian Locations No. 1 through 5	79
3-4b	Wind Velocity Probabilities for Pedestrian Locations No. 6 through 10	80
3-4c	Wind Velocity Probabilities for Pedestrian Locations No. 11 through 15	81
3-4d	Wind Velocity Probabilities for Pedestrian Locations No. 16 through 19	82
4-1	Tracer Gas Certifications	83
4-2	Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Chromatograph	84
4-3a(1)	Location/Identification of Receptors with Concentration Ratios ≥ 0.025 (2.5%) of Source Group 1	85
4-3a(2)	Location/Identification of Receptors with Concentration Ratios ≥ 0.002 (0.2%) of Source Group 2	86
4-3b(1)	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-1	87

<u>Figure</u>		Page
4-3b(2)	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-2	88
4-3b(3)	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-3	89
4-3b(4)	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-4	90
4-3b(5)	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-C	91
4-3b(6)	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-Q	92
4-3b(7)	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-R	93
4-3b(8)	Location/Identification of Receptors with Concentration Ratios ≥ 0.0001 (0.01%) of Source Group 3-58	94
4-3b(9)	Location/Identification of Receptors with Concentration Ratios ≥ 0.00015 (0.015%) of Source Group 3-59	95
4-3b(10)	Location/Identification of Receptors with Concentration Ratios ≥ 0.0001 (0.01%) of Source Group 3-60	96
4-3c	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 4	97
4-3d	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 5	98
4-3e(1)	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 6	99
4-3e(2)	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 7	100

<u>Figure</u>		Page
4-3f	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 8	101
4-3g	Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 9	102
4-3h	Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 10	103
4 - 3i(1)	Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 11	104
4-3i(2)	Expanded View to Locate/Identify Maximum Concentration Ratios Measured at Receptors with Source Group 11 Active	105
4-3j(1)	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 12	106
4-3j(2)	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 13	107
4-3k	Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 14	108
4-32	Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 15	109
4-4a	HUP IV Model Roof Configuration Prior to October 1984 Modification	110
4-4b	HUP IV Model Roof Configuration Subsequent to October 1984 Modification	111
4-5a	Sources on Gates Building from which Identified Types and Quantities of Evaporated Solvents are Exhausted	112
4-5b	Sources on Maloney, Alumni Hall, and Gibson Buildings from which Identified Types and Quantities of Evaporated Solvents are Exhausted	113

LIST OF TABLES

<u>Table</u>		Page
2-1a	Identification of Prototype Sources on the Medical Education Building which were Modeled	115
2-1b	Identification of Prototype Source Groups on HUP IV Building which were Modeled	116
2-1c	Identification of Prototype Sources on the Gates Building which were Modeled	119
2-1d	Identification of Prototype Sources on the Centrex, Gibson, Alumni, Maloney and Piersol Buildings which were Modeled	120
2-1e	Identification of Prototype Sources on the Children's Hospital Building which were Modeled	121
2-1f	Identification of Prototype Sources on the Silverstein Pavilion which were Modeled	122
2-1g	Identification of Prototype Sources on the Donner Building which were Modeled	123
2-1h	Identification of Prototype Sources on the Dulles Building which were Modeled	124
2-1i	Identification of Prototype Sources on the Agnew Building, Ravdin Court, and Silverstein Rad. Infill which were Modeled	125
2-1j	Identification of Prototype Sources on the White and Ravdin Buildings which were Modeled	126
2-1k	Identification of Prototype Sources with 300° Exhausts which were Modeled	127
2-12	Identification of Prototype Sources with 1200°F-2000°F Exhausts (Emergency Generators and Incinerators) which were Modeled	128
2-2	Identification for Model Air Intakes and Ground-level Receptors	129
3-1a	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	131
3-1b	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	132

<u>Table</u>		Page
3-1c	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	133
3-1d	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	134
3-1e	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	135
3-1f	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	136
3-1g	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	137
3-1h	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	138
3-1i	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	139
3-1j	Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV	140
3-2	Percentage Frequency of Wind Direction and Speed, Philadelphia, Pennsylvania, International Airport (1965-1974)	141
3-3	Summary of Wind Effects on People	142
3-4	Greatest Values of Pedestrian Wind Velocities and Turbulence Intensities, Hospital of the University of Pennsylvania, Phase IV	143
4-1	Tabulation of Run Numbers and Model Test Parameters/Tracers	144
4-2	Conversion of Prototype Volume Flow Rates to Model Volume Flow Values	150
4-3a	Identification of Receptors with Measured Concentration Ratios ≥ 0.1 (10%) for Source Groups Listed	151

<u>Table</u>		Page
4-3b	Identification of Receptors with Measured Concentration Ratios ≥ 0.025 (2.5%) for Source Group Listed	152
4-3c	Identification of Receptors with Measured Concentration Ratios \geqq 0.01 (1%) for Source Groups Listed	152
4-3d	Identification of Receptors with Measured Concentration Ratios ≥ 0.002 (0.2%) for Source Group Listed	153
4-3e	Identification of Receptors with Measured Concentration Ratios ≥ 0.00015 (0.015%) for the Source Listed	1 53
4-3f	Identification of Receptors with Measured Concentration Ratios \geq 0.0001 (0.01%) for the Sources Listed	153
4-4a	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#1$	154
4-4b	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#2$	155
4-4c	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-1$	156
4-4d	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-2$	157
4-4e	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-3$	158
4-4f	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-4$	159
4-4g	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3\text{-C}$	160
4-4h	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3$ -Q	1 61

<u>Table</u>		Page
4-4 i	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-R	162
4-4j	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-58	163
4-4k	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-59	164
4-42	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-60	165
4-4m	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #4	166
4-4n	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #5	167
4-40	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #6	168
4-4p	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #7	. 169
4-4q	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #8	. 170
4-4r	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #9	. 171
4-4s	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #10	. 172
4-4t	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#11$. 173
4-4u	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #12	. 174

<u>Table</u>		Page
4-4v	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #13	175
4-4w	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #14	176
4-4x	Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #15	177
4-5	Summary of Maximum Concentration Ratios and Direction of Occurrence from Tables 4-4 by Source Group	178
4-6	Tabulation of Run Numbers Assigned to the "Follow-On" Tests and Model Test Parameters/Tracers	180
4-7	Measured Concentration Ratios (χ) , by Wind Direction, for the Eastern and Western HUP IV Penthouse Air Inlets, for the Source Groups Listed	181
4-8a	Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 4	182
4-8b	Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 5	183
4-8c	Total Solvent Vapor Concentrations (ppm) from Selected Exhausts within Source Group 5	184
4-8d	Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #4 Exhausts	185
4 - 8e	Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #5 Exhausts	186
5-1	Identification of Visualization Data Recorded on VHS Video Cassettes	187

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviations	Definitions
ABL	Atmospheric Boundary Layer
BG	Background
CALFAC	Calibration Factor
calib	calibration
СНОР	Children's Hospital of Pennsylvaina
CSU	Colorado State University
EWT	Environmental Wind Tunnel
FDDL	Fluid Dynamics and Diffusion Laboratory
FID	Flame Ionization Detector
FIGC(GC)	Flame Ionization Gas Chromatograph
GBQC	Geddes-Brecher-Qualls-Cunningham, Architects
HUP IV	Hospital of the University of Pennsylvania, Phase IV
Med Ed	Medical Education Building
NMR	Nuclear Magnetic Resonance
SGP	Scientific Gas Products
SS	Source Strength

Symbols	<u>Definitions</u>	Units
A	equation constant	-
В	building dimension or equation constant	(m), -
D	stack or vent diameter	(m)
E	voltage or exponent (x10 ⁿ)	volts, -
8	gravitational acceleration	(m/sec^2)
Н	stack or vent height	(m)
k	roughness heights for upwind ground surface	(m)

<u>Symbols</u>	Definitions	Units
K	nondimensional concentration	-
n	velocity profile power law exponent, or equation constant	-
Q	volume flow	(gm/sec,m ³ /sec)
t	time duration	(sec)
U	characteristic wind velocity	(m/sec)
U _{ref} , U _r	reference velocity	(m/sec)
U _∞	gradient wind speed	(m/sec)
${\tt U}_{{f s}}$	wind velocity at stack height	(m/sec)
$V_{\mathbf{s}}$	exit velocity of exhaust gas	(m/sec)
z	height	(m)
z _{ref}	reference height	(m)
$\mathbf{z}_{\mathbf{\infty}}$	gradient height	-
Greek		
Δγ	$(\rho_a - \rho_s)g$, specific weight difference	$kg/m^2 \cdot sec^2$)
δ_{a}	boundary layer thickness	(m)
μ	dynamic viscosity	(kg/m·sec)
ρ	density	(kg/m^3)
χ	concentration ratio	-
Subscripts		
а	ambient	
m	model	
p	prototype	
s	emitted gas	
œ	conditions at gradient level	
rms	root-mean-square about the mean	

1.0 INTRODUCTION

1.1 Background

The Hospital of the University of Pennsylvania plans to erect an addition to their medical complex, which is herein referred to as Hospital of the University of Pennsylvania, Phase IV (HUP IV). The proposed facility was designed by Geddes, Brecher, Qualls, Cunningham, Architects (GBQC). The building site (located in the central part of Philadelphia, PA, west-southwesterly of the intersection formed by Spruce Street and Civic Center Boulevard) is almost completely surrounded by other nearby multi-story structures on the university campus. Prominent among them are the Childrens Hospital of Philadelphia (CHOP), the Medical Education Building (Med Ed), the Silverstein Pavilion, and the Ravdin, White, Agnew, Gates, Maloney and Piersol Buildings.

Project managers, associated with the new addition, expressed concerns over the possibility of exhaust-intake cross-contamination and also questioned the dispersion patterns of emissions from the HUP IV roof-top. Impact of the new construction upon pedestrian-level winds was also a matter of concern. Wind-tunnel modeling provides a reasonable and practical method of obtaining dispersion and wind velocity information at the prototype site.

1.2 Purpose and Scope

The Hospital of the University of Pennsylvania contracted with the Fluid Dynamics and Diffusion Laboratory (FDDL) at Colorado State University to perform wind-tunnel investigations of the planned Phase IV addition.

Through experiments conducted on a HUP IV model, installed in a boundary-layer wind tunnel, the investigators' purpose was to:

- (1) Determine the concentration of effluents emitted from various sources near and upon the HUP IV structure at all identified air intakes and other critical locations, for eight wind directions at 45° intervals.
- (2) Measure mean and gust winds at locations of heavy pedestrian traffic in the vicinity of HUP IV, for sixteen wind directions, at 22.5° intervals.
- (3) Document airflow patterns in regions of special interest by means of a visualization study.

The scope of the described investigations was limited to studies in a thermally neutral boundary-layer flow that simulated atmospheric flow over the modelled HUP IV site.

1.3 Report Organization

The remainder of this report is dedicated to documentation of the experimental configuration, modelling techniques, test methods, test parameters, data analysis, data presentation and conclusions. A generalized format follows:

- Chapter 2.0, EXPERIMENTAL CONFIGURATION, contains descriptions
 of the model construction, wind-tunnel configuration, model
 environment, and similar information.
- Chapter 3.0, VELOCITY MEASUREMENTS, provides a record of the modelled atmospheric boundary layer, aerodynamic roughness, and wind-tunnel speed settings. This chapter also contains documentation of the pedestrian-level wind data and its interpretation.
- Chapter 4.0, CONCENTRATION MEASUREMENTS, contains a description of the dispersion tests, data collection-analysis procedures,

sample calculations, presentation of the dispersion data in sets of tables and figures and some conclusions.

- Chapter 5.0, VISUALIZATION STUDY, provides some general comments about smoke tracers and a tabulation of airflows around the model which were documented by video cassette recorder.
- The separately bound appendices contain copies of all the concentration data in two different formats: (1) concentration ratios and (2) dimensionless concentration coefficients.

2.0 EXPERIMENTAL CONFIGURATION

2.1 Model Construction

A circular area approximately 1500 ft in radius about the proposed HUP IV addition was modelled for the wind-tunnel studies. The 1:250 scale model of HUP IV was assembled in the Engineering Research Center's Machine Shop, while the surrounding edifices were produced within the FDDL. All structures were modelled in the detail necessary to provide accurate wind flow patterns over the complex.

The HUP IV model was machined from acrylic plastic to obtain significant detail. The remaining structures were fabricated from two classes of styrofoam materials. Buildings included on the model base only for their geometric shapes were cut from lightweight styrofoam blocks. Those structures which included sources and receptors were made from more dense material and affixed to the removable portion of the base for necessary access to modelled source/receptor "plumbing."

Streets, walkways and similar landmarks, were identified and marked on the model base. All model structures, except HUP IV were painted to provide a suitable background for the visualization studies.

2.2 Model Sources and Receptors

All exhaust sources included in the modelling considerations were identified from Caretsky & Associates, or Penjerdel Refrigeration Co., drawings, which were supplied by the sponsors. A total of 368 prototype sources were represented on the scale model by 129 individual ports. Small clusters of sources were modelled by a single port located at their approximate mid-position, in many cases. Individual prototype sources were modelled, in some instances, where level of interest, discharge rate, location, or other considerations dictated.

The 129 model sources were further organized into 24 source groups to facilitate the dispersion testing. This latter action was accomplished by constructing manifolds which supplied selected groupings of the model sources, in most cases. There were some prototype sources on the HUP IV building which were carried through the modelling phase without grouping, or subgrouping.

Volume flow and exit velocity of the prototype sources were modelled by varying the cross-sectional area of the exhaust ports installed in the model, the manifold outlets, and the inter-connecting tubing. The modelled source exits were capped, as appropriate, to influence directional flow of the exhausts.

In addition to the described exhaust sources, two cooling towers on the Children's Hospital and a large cooling tower on the Silverstein Bldg. were modelled with working fans to simulate the prototype circulation of air.

The prototype exhaust sources which were modelled are described in Tables 2-1a through 2-12. The tabulations include reference numbers from the Caretsky/Penjerdel drawings; the combined exhaust discharges (cfm); a subgroup designation and identification of the test groups. Exhaust sources on the HUP IV Bldg. account for 10 of the 24 test groupings. The HUP IV tests, all identified as Group #3, each possessed an additional identifier. A schematic overview of the general location of each test group (excluding 14 and 15) is contained in Figure 2-1. Groups #14 and 15 are sources of hot exhausts throughout the complex which were grouped together for testing.

The 47 air intakes and ground-level receptors (sampling points) which were incorporated into the model were identified from the

previously referenced Caretsky/Penjerdel drawings and guidance from the sponsor. Each of these receptors are described in Table 2-2 which provides a cross-reference model number to prototype drawing number (or alternate description) and the model structure upon which the sampling point was located. Figure 2-2 contains a schematic presentation of all 47 receptor locations on the HUP IV model. Model numbers with an arrow indicate the sampling point was located on a face of the appropriate structure, while all remaining receptors were located on roofs, or at ground-level.

Figures 2-la through 2-ll are schematic drawings of each of the 24 test groups/sources. In some instances more than one group was included on a single drawing. These schematics provide the location/identification of all sources and receptors within each test group which were modelled. The drawings also depict the approximate location of most prototype sources which were incorporated into the model subgroupings. Circles denote all sources, while a hexagonal symbol identifies each of the receptors. Arrows, again differentiate exhaust/intake ports located on the faces of structures from those located on other surfaces.

2.3 Wind Tunnel

Three large atmospheric boundary layer (ABL) wind tunnels are available in the FDDL at Colorado State University for wind engineering studies. The Environmental Wind Tunnel (EWT), largest of the three tunnels, was used for all tests of the HUP IV model. Selection of the EWT permitted modelling to the largest practicable scale, while including all significant structures in the surrounding area (adjacent structures are an important consideration since they can materially influence airflow patterns). Elevation and plan views of the EWT are contained in Figure 2-3.

The tunnel has a flexible roof which is adjustable in height to maintain a zero pressure gradient along the entire length of the test section. The roof was adjusted after installation of the model, and prior to all testing, to obtain the desired effect.

Thermal stratification in the EWT corresponded to the adiabatic lapse rate in the atmosphere (neutral stratification) since the flow, without boundary heating or cooling, is isothermal.

The HUP IV model and surrounding buildings, affixed to a plywood model base, were installed on the 12 ft diameter EWT downwind turntable and oriented eleven degrees clockwise from true north. Figure 2-4 provides a close-up view of the model, after being situated in the tunnel.

2.4 Model Environment

A large portion of the test section area upstream from the model was covered with uniform roughness constructed from one-inch wooden cubes. The upwind roughness was selected to simulate the proportional roughness associated with the prototype environment.

Spires were installed at the test section entrance to provide a thicker boundary layer than would otherwise be available. The spires were approximately triangular-shaped pieces of 1/2" thick plywood, six inches wide at the base and one inch wide at the top, extending from floor-to-roof of the test section, and positioned broadside to the airflow at 18" intervals. The spires were further modified with cardboard shapes, which extended from 12" to 22" above the floor and one inch on either side of each spire, before the desired boundary layer was obtained. The modelled ABL is further discussed in the following subsection and again in Section 3.0.

Figure 2-5 contains a pictorial presentation of the model on the turntable, the roughness elements installed on the tunnel floor, and the spires at the test section entrance. Figure 2-6 provides further documentation in the form of a scaled drawing of the entire test section length, containing: trip and spire location, floor area covered with roughness, turntable position and pertinent dimensions. (Velocity profile measurement locations, discussed in Section 3.0, are also located on this schematic).

Pertinent theories of ABL and natural wind simulation are contained in references by Cermak (1971, 1982).

2.5 Similarity Criteria for Dispersion and Models

When interest is focused on the behavior of plumes of gases emitted from stacks or vents into a thermally <u>neutral</u> atmosphere the following variables are of primary significance:

 δ_a = thickness of planetary boundary layer

 ρ_a = density of ambient air

 $\Delta\gamma$ = $(\rho_a$ - $\rho_s)g$ --difference in specific weight of ambient air and emitted gas

 μ_a = dynamic viscosity of ambient air

B = typical dimension of building complex

D = stack or vent diameter

H = stack or vent height

k = roughness heights for upwind ground surface

 $\mathbf{U}_{\mathbf{S}}$ = mean speed of ambient wind at height of gas emission

 U_{∞} = gradient wind speed (speed at top of boundary layer)

 V_s = speed of gas emission

Grouping the independent variables into dimensionless parameters with ρ_a , U_s and H as reference variables yields the following parameters upon which the dependent quantities of interest must depend (Lord, 1970):

$$\frac{\delta_a}{H}$$
, $\frac{k}{H}$, $\frac{D}{H}$, $\frac{B}{H}$, $\frac{U_s \rho_a B}{\mu_a}$, $\frac{V_s}{U_s}$, $\frac{\rho_a U_s^2}{\Delta \gamma D}$, $\frac{\rho_a - \rho_s}{\rho_a}$

A laboratory boundary-layer thickness of 1.14 meters was achieved, making the model parameter $(\delta_a/\text{H})_{model}$ approximately equal to that for the real atmosphere, $(\delta_a/\text{H})_{prototype}$. Consideration of the surface roughness (the city) surrounding the hospital site dictated that equality of the surface parameter, k/H, for model and prototype would be satisfied with an exponent n \cong 0.26 in the equation U/U_{ref} = $(\text{Z/Z}_{ref})^n$.

From consideration of winds recorded at Philadelphia International Airport (see Figure 2-7 and Table 3-2), it was determined that a median wind speed of 9.9 miles per hour (14.52 ft/sec), measured at a height of 20 feet, was typical for the Philadelphia area. Using the equation $U/U_{\infty} = (Z/Z_{\infty})^n$, with a value of n = 0.16 (typical of the flat terrain near the airport), a value of gradient wind speed U_{∞} of 26.8 ft/sec was calculated at a height $Z_{\infty} = \delta \cong 920$ feet. This would then be the wind speed at Z_{∞} above the hospital site also. The value of n at the hospital site was estimated to be n = 0.26, because of the greater surrounding surface roughness. On the model, a value of n = 0.26 was achieved, with a δ of 45" (corresponding to 940 feet in the real atmosphere) and similarity of approach flow between model and prototype was thus realized.

The parameters D/H and B/H were equal for model and prototype because of undistorted geometric scaling.

Equal Reynolds numbers, $U_s \rho_a B/\mu_a$, for a large real building complex and a model small enough to fit into any existing wind tunnel cannot be achieved. Fortunately, equality of the Reynolds number is not required for similarity of the model and prototype flow fields so long as the model Reynolds number exceeds a minimum value of approximately 11,000 (Halitsky, 1969). A Reynolds number greater than 19,000 was maintained for the flow around the model HUP IV building, ensuring flow field similarity between model and prototype.

Equality of the velocity ratio, $(V_s/U_s)_m = (V_s/U_s)_p$, could be achieved at any combination of tunnel speed and exhaust flows which maintained this equality, but with the constraints that U_s must be great enough to ensure Reynolds number independence and V_s must be small enough to fall within the range of available flowmeter instruments. A satisfactory compromise was obtained with a wind tunnel speed, $(U_\infty)_m$, of 8 ft/sec. Thus a model U_∞ of 8 ft/sec represented an atmospheric U_∞ of 26.8 ft/sec.

The velocity ratio $V_{\rm S}/U_{\rm S}$ was set at typical values for the various sources and was maintained constant during the tests.

For HUP emissions, $\Delta\gamma$ was considered to be essentially zero (excepting for incinerator emissions); therefore, the parameters $\rho_a U_s^2 (\Delta\gamma D)^{-1}$ and $(\rho_a - \rho_s)/\rho_a$ are infinity and zero, respectively, for both model and prototype, for most sources.

3.0 VELOCITY MEASUREMENTS

3.1 General

Tall structures have historically produced unpleasant wind and turbulence conditions at their bases. The intensity and frequency of objectionable winds in pedestrian areas is influenced both by the structure shape and by the shape and position of adjacent structures.

Techniques have been developed for wind-tunnel modeling of proposed structures which allow the prediction of wind velocities and gusts in pedestrian areas adjacent to buildings. Information on sidewalk-level gustiness allows plaza areas to be protected by design changes before construction, if necessary.

3.2 Velocity Measurement Instrumentation

All velocity measurements were made with a single hot-wire anemometer mounted with its axis vertical. The instrumentation used was a Thermo-Systems constant temperature anemometer (Model 1050) with a 0.001 in. diameter platinum film sensing element 0.020 in. long. Output was directed to the on-line data acquisition system for analysis.

Calibration of the hot-wire anemometer was performed by comparing output with a pitot-static tube also located in the wind tunnel. The calibration data are fit to a variable exponent King's Law relationship of the form

$$E^2 = A + RII^n$$

where E is the hot-wire output voltage, U the velocity and A, B, and n are coefficients selected to fit the data. The above relationship was used to determine the mean velocity at measurement points using the measured mean voltage. The fluctuating velocity in the form $\mathbf{U}_{\mathrm{rms}}$ (root-mean-square velocity) was obtained from

$$U_{rms} = \frac{2 E E_{rms}}{B n U^{n-1}}$$

where $\mathbf{E}_{\mathbf{rms}}$ is the root-mean-square voltage output from the anemometer.

3.3 Atmospheric Boundary Layer Profiles

The approach mean velocity at the model building site must have a vertical profile shape similar to the full-scale flow. The turbulence characteristics of the flows must also be similar.

Mean velocity and turbulence intensity profiles were measured to determine that an approach boundary-layer flow appropriate to the site had been established. Tests were made at a tunnel wind velocity which was well above that required to produce Reynolds number similarity between the model and the prototype, as discussed elsewhere.

Velocity and turbulence profiles are shown in Figure 3-1. These profiles were obtained upstream from the model which are characteristic of the boundary layer approaching the model and at the building site with building removed. The boundary-layer thickness, δ , is shown in Figure 3-1. The corresponding prototype value of δ for this study is also shown on that figure. This value was established as a reasonable height for the study. The mean velocity profile approaching the modeled area has the form

$$\frac{U}{U_{\infty}} = \left(\frac{z}{\delta}\right)^n$$

The exponent n for the approach flow established for this study is also shown in Figure 3-1.

Profiles of longitudinal turbulence intensity in the flow approaching the modeled area are shown on the right side of Figure 3-1. The turbulence intensities are appropriate for the approach mean

velocity profile selected. For the velocity profiles, turbulence intensity is defined as the root-mean-square about the mean of the longitudinal velocity fluctuations divided by the local mean velocity U,

$$TI = \frac{U_{rms}}{U} .$$

3.4 Pedestrian-Level Wind Velocities

Titanium tetrachloride "smoke," released from sources around the model to make flow lines visible, was used to help identify areas where pedestrian-level winds might be a problem.

Mean velocity and turbulence intensity measurements were made 5 to 7 ft (prototype) above the surface at eighteen locations near the building site, for 16 wind directions. A reference pedestrian position, located a short distance away in a relatively undisturbed locale, was also measured. The surface velocity measurements are indicative of the wind environment to which pedestrians at the measurement location would be subjected.

Measurement locations were chosen to determine the degree of pedestrian comfort, or discomfort, near building corners where relatively severe conditions are frequently found; near building openings and on adjacent walks where pedestrian traffic is heavy; and in open plaza areas. The selected locations are depicted in Figures 3-2a and b. Location 1, southwest of the Childrens' Hospital, served as the reference position. Locations 2, 3, 4, 5, and 6 were spaced along Hamilton Walk, west of the Medical Education Building; locations 7 and 8 were beneath the Medical Education Building; locations 9 through 13 were in the open plaza area; locations 14 and 15 adjacent to the base of the

NMR "pyramid"; and locations 16, 17, 18, and 19 near/beneath the Silverstein Pavilion.

Velocity data obtained at each of the pedestrian measurement locations shown in Figures 3-2a and b are contained in Tables 3-1a through 3-1j as mean velocity U/U_{∞} , turbulence intensity $\text{U}_{\text{rms}}/\text{U}_{\infty}$, and largest effective gust

$$U_{\mathbf{pk}} = \frac{U + 3U_{\mathbf{rms}}}{U_{\mathbf{\infty}}}$$

These data are plotted in polar form on Figures 3-3a through 3-3j.

To enable a quantitative assessment of the wind environment, the wind-tunnel data were combined with wind frequency and direction information obtained at the local airport. Table 3-2 shows wind frequency by direction and magnitude obtained from summaries published by the National Weather Service. These data, obtained at an elevation of 20 ft, were converted to velocities at the reference velocity height for the wind-tunnel measurements and combined with the wind-tunnel data (Tables 3-1) to obtain cumulative probability distributions (percent time a given velocity is exceeded) for wind velocity at each measuring The percentage times were summed by wind direction to obtain a percent time exceeded at each measuring position independent of wind direction (but accounting for the fact that the wind blows from different directions with varying frequency). These results are plotted in Figures 3-4a through 3-4d.

Interpretation of the integrated velocity data is aided by a description of the effects of wind of various magnitudes on people. The earliest quantitative description of wind effects was established by Sir Francis Beaufort in 1806 for use at sea and is still in use today.

Several recent investigators have added to the knowledge of wind effects on pedestrians. These investigations along with suggested criteria for acceptance have been summarized by Penwarden and Wise (1975) and Melbourne (1978). The Beaufort scale (from Penwarden), based on mean velocity only, is reproduced as Table 3-3 including qualitative descriptions of wind effects. Table 3-3 suggests that mean wind speeds below 12 mph are of minor concern and that mean speeds above 24 mph are definitely inconvenient. Quantitative criteria for acceptance (from Melbourne) are superimposed as dashed lines on Figures 3-4. The peak gust curves shown on the right in Figures 3-4 are the percent of time during which a short gust of the stated magnitude could occur (say about one of these gusts per hour).

3.5 Data Analysis

Tables 3-1 and Figures 3-3 reveal that the largest values of mean velocity were measured at location 16 where the mean velocity for 11 wind directions were in a 40-55 percent range of the velocity, U_{∞} , at the boundary-layer height. Mean velocities in excess of 0.4 U_{∞} were also recorded for two wind directions at location 18, three directions at location 19, and one wind azimuth at location 8. Maximum U/U_{∞} values of 54.8 percent were measured at both locations 16 and 19. The mean velocity values are not overly large compared to an expected value of approximately 45 percent in an open-country environment.

The largest values of fluctuating velocity, \bar{U}_{rms} , were 13.2 and 14.9 percent at location 18 and a comparable 14.3 and 14.6 percent at location 19. All other measurements were comparable to, or below, a maximum value of 10 to 12 percent of fluctuating velocity, which is typical of an open-country environment.

The maximum peak gusts, represented by the mean plus 3 rms, were obtained at locations 18 and 19 with values of 85.0 and 86.7 percent of U_{∞} , respectively. These values are representative of the 80 to 90 percent maximum gust values expected in an open-country environment.

Integration of the velocity data of Table 3-1 with the local wind data of Table 3-2, for presentation in Figures 3-4 was described in the preceding section. The data from these figures also suggest that the windiest places will be near locations 16 and 19.

3.6 Summary and Conclusion

The ten largest values of velocities, turbulence intensities and gustiness and their locations, which were measured for pedestrian level winds, are contained in Table 3-4.

This data reveals that the most adverse pedestrian-level wind conditions may be expected in the plaza area near the NW corner of the Silverstein Pavilion (location 16) and beneath the pavilion near the eastern exit (location 19).

On the basis of the magnitude of the wind-tunnel data at the measured points, no wind problems are expected, as a result of the new building. Pedestrian comfort along Hamilton Walk, in Miller Plaza and beneath the Medical Education Building and Silverstein Pavilion should remain acceptable.

4.0 CONCENTRATION MEASUREMENTS

4.1 General

Diffusion of gases into the atmosphere is influenced by geometric characteristics such as terrain and man-made structures, in addition to the thermal, dynamic and kinematic considerations for the flow field. Satisfactory techniques have been developed for modelling all of these characteristics which result in a model concentration field that is a congruent replica of the prototype field. The techniques used in acquiring the concentration data for this study are well-established in theory and in practice.

Concentration (dispersion) data were collected for all receptors on the HUP IV model for eight different wind directions at 45° intervals. These measurements were all obtained with a tunnel speed of 2.44 m/s (8 fps). (Scaling of the velocity ratio was discussed in Section 2.0.)

Table 4-1 provides for each source group tested: 1) the run number assigned to each test, 2) the wind direction with reference to true north, 3) the wind velocity of the tunnel, 4) the hydrocarbon tracer with its source strength expressed as a percentage of the total gas mixture, and 5) the volume flow rate of the source groups.

4.2 Tracer Gases

During test planning the decision was made to simultaneously sample the exhausts from two source groups, by using separate hydrocarbon tracers. The neutrally buoyant sources were modelled with a nominal 9 percent Methane, or 10 percent Ethane tracer in a mixture which was equivalent to the molecular weight of air.

The buoyant sources (hot exhausts) were modelled using a minimal amount of tracer (4 percent Methane, 3 percent Ethane) in otherwise pure

Helium. This mixture provided a buoyancy comparable to the 300°F exhausts (Group 14, 3-58 and 3-60) and represents the maximum obtainable with this testing procedure. The hotter exhausts (group #15 and 3-59) were also tested with these buoyant tracer gases. While these hotter exhaust discharges could not be accurately scaled, the resultant data is conservative, representing worst case conditions.

The required tracer gas mixtures were supplied by Scientific Gas Products, Inc., Longmont, Colorado. The gases are certified (see Figure 4-1) by SGP to be accurate within ±2 percent.

4.3 Data Collection Procedures

Tracer gas concentrations were measured at each of the receptors for comparison with the various sources.

The 47 model receptors were all connected to a collection system (which was located adjacent to the wind tunnel) with one-sixteenth I.D. Tygon tubes. The collection system ("Sampler"), which was designed and fabricated in the CSU Engineering Research Center, basically consists of a circular array of syringes, a network of check valves and a manifolded vacuum system, all interconnected, and completing a path from sampling port to gas chromatograph. Sampling time and vacuum pressure of the system are adjustable.

The sampler was calibrated both prior to, and immediately following, the concentration test program to insure proper function of each of the assemblies (tubing, check valve, syringe).

The data acquisition consisted of: 1) setting the proper tunnel wind speed, 2) releasing metered mixtures of tracer gases from the model sources, 3) withdrawing samples of air from the model receptors, and 4) analyzing the samples with a Flame Ionization Gas Chromatograph (FIGC).

Tunnel speed was established by integrating the signal from the tunnel-mounted sensor with a digital voltmeter, over a 100-second interval. Speed was adjusted and the integrations repeated until the desired setting was obtained to a ±2 percent tolerance.

The tracer gases released from the source groups were initially routed through ball-type flow meters to control the volume flows prior to routing to the group manifolds, or individual sources. Calibration of the flow-meters, over their operating range with Helium/air (as appropriate), was used to obtain the proper meter setting. The modelled volume flow rates, sometimes reduced from the prototype values by a square of the scaling factor, were additionally reduced by a factor of ~ 0.299 (8 fps/26.8 fps) for this study to maintain equality of the velocity ratio ($V_{\rm S}/U_{\rm S}$), which was described in subsection 2.5. A tabulation of the prototype and model volume flow rates is contained in Table 4-2.

The tracer gas sampling system consists of a series of fifty 30 cc syringes mounted between two circular aluminum plates. A variable-speed motor raises a third plate, which simultaneously lifts all 50 syringe plungers. A set of check valves and tubing are connected such that airflow from each sampling point passes over the tip of each designated syringe. When the syringe plunger is lifted, a sample from the tunnel is drawn into the syringes. The sampling procedure consists of flushing (taking and expending a sample) the syringe several times after which the test sample is taken. The variable draw rate was set to approximately 60 seconds. Two of the sampler syringes are used to monitor background values of tracer gases which are present/accumulate in the wind tunnel. Readings are obtained for each test run from sampling

ports positioned upwind from the model. These values were subtracted from concentration values measured at the model receptors, as illustrated in subsection 4.5.

The procedure for analyzing air samples from the tunnel is as follows: 1) a 2 cc sample volume drawn from the wind tunnel is introduced into the Flame Ionization Detector (FID), 2) the output from the electrometer (in microvolts) is sent to the Hewlett-Packard 3380 Integrator, 3) the output signal is analyzed by the HP 3380 to obtain the proportional amount of hydrocarbons present in the sample, 4) the record is integrated, and the Methane and Ethane concentrations, as appropriate, are determined, 5) a summary of the integrator analysis (gas retention time and integrated area (µv-s) is printed out on the integrator at the wind tunnel, 6) the integrated (raw) values for each tracer are entered into a computer along with pertinent run parameters, and 7) the computer programs convert the raw data into dimensionless concentration ratios/coefficients.

Photographs of the sampling system and FIGC are shown in Figure 4-2.

4.4 Data Analysis

A common method of analyzing dispersion data is to compare the concentrations measured at the receptors to the source strengths. When the Gas Chromatograph (GC) calibration values are included, a dimensionless concentration ratio, χ , may be obtained,

$$\chi = \frac{\text{RAW-BG}}{\text{CAL FAC}} \times \frac{\text{S.S.}_{\text{calib gas}}}{\text{S.S.}_{\text{tracer gas}}}$$

where,

RAW = GC integrator value of sample at receptor ($\mu v \cdot s$)

BG = background value of tracer gas (µv·s)

CAL FAC = GC integrator value of a calibration gas of known concentration, corrected for differences in molecular weight of the tracer gas, if appropriate (µv·s)

SS = source strength of calibration/tracer gas (ppm).

The concentration ratios (dilution factors) so calculated, at each of the 47 receptors for the various source groups modelled, are contained in the appendix to this report.

Data reduction of the concentration measurements from the HUP IV wind-tunnel study did not include prototype source strengths from any of the modelled source groups. However, a second set of data was generated which will enable the sponsor to evaluate the concentrations at any selected receptor, for any prototype source strength measured at a later date.

These dimensionless concentrations, K, are useful values which are often calculated in the analysis of wind-tunnel dispersion data, since these non-dimensional coefficients can easily be equated to prototype source measurements. A logical extension of the concentration ratios, χ , the non-dimensional concentrations are expressed by,

$$K_{\mathbf{m}} = \left(\frac{\chi u_{\mathbf{r}} H_{\mathbf{r}}^{2}}{Q}\right)_{\mathbf{m}} = K_{\mathbf{p}} = \left(\frac{\chi u_{\mathbf{r}} H_{\mathbf{r}}^{2}}{Q}\right)_{\mathbf{p}}$$

where $\chi = fraction of source strength (\chi_{receptor}/\chi_{source})$.

 u_r = reference velocities (for HUP IV study they are 2.44 m/s for the model and 8.17 m/s for the prototype).

 H_r = reference heights (building height of HUP IV from grade line to roof was selected and are 0.2199 m for the model and 54.965 m for the prototype.

Q = total volume flow rate of the source (cfm or m³/sec).Rearranging the equation,

$$(\chi_{\text{receptor}})_p = K \left(\frac{\chi_{\text{source}} \cdot Q_{\text{source}}}{u_r H_r^2} \right)_p$$

so that the strength of an effluent at any prototype receptor may be calculated by determining pertinent prototype values and multiplying by the appropriate K value.

These latter values are especially useful when only portions of the total volume flow, Q, from a source are objectionable, since these fractional values do not appear in the concentration ratios.

The dimensionless concentration coefficients, K, which were calculated for each of the 47 receptors at eight wind directions, for all the source groups modelled, are also tabulated in the appendix to this report.

The following table is often useful to convert the values tabulated in the appendices, and contained elsewhere in this report, into more easily recognizable or useful terms. Since the computer uses an E to identify an exponent to the base 10, the relationship to decimals and percentages is simply,

^{*}Since a value of .100E-5 would indicate the presence of 1 part at the receptor for each million parts exhausted from the source, values in this range, and smaller, are assumed to be zero.

The collected concentration data was analyzed to ascertain which receptors had received the largest amount of concentration from each source group tested. Since the amount of contamination varied extensively between test groups, the resultant concentration ratios were tabulated into groupings which recognized measurements in excess of 10, 2½, 1, 0.2, 0.015 or 0.01 percent of source strength. This analysis is contained in Tables 4-3a through 4-3f, which identify the wind direction and receptors for which concentration ratios exceeded some indicated value, for the various source groups.

Figures 4-3a through 4-3l are presented as an aid to visualizing which intakes/receptors received the greatest amounts of contamination from each source group. Each figure contains a table identifying all measurements in which the concentration ratio exceeded some arbitrary value, specified in Table 4-3, and the wind directions at which they occurred. The maximum values for each receptor listed, are also plotted on the figure at the appropriate geometric location of the receptor.

With the architect's interest focused upon the Phase IV addition to HUP, the concentration measured at the receptors of this model structure, and also the nearby Gates and Maloney buildings, were evaluated for every modeled source. Based upon an assumption that the maximum contaminant strength from any single source would not exceed 1000 ppm, all measured concentration ratios in excess of .100 E-3 (0.1 ppm contaminant at the receptor) were tabulated in Tables 4-4a through 4-4x for the referenced intakes and eight wind directions.

The maximum values (and direction of occurrence) at each intake are contained in Table 4-5 for each modeled source.* This table provides

^{*}Tables 4-4e and 4-4i were omitted from Table 4-5 because the data are neither representative nor predictable. The data is typical of that obtained when an inadvertent leak in the "plumbing" exists somewhere before the desired exhaust exit. In any event, the concentration ratios from these two sources should be similar to other HUP IV rooftop sources, e.g., Source Groups 3-2 and 3-C.)

prompt identification of the relative magnitudes and locations of the selected exhaust-intake cross-contaminations.

Tabulations similar to Tables 4-4 and 4-5 may be prepared for any combination of sources and receptors of interest from the data contained in the appendices to this report.

4.5 Sample Calculations

The dimensionless concentration ratio, χ , is calculated from the equation

$$\chi = \frac{\text{RAW-BG}}{\text{CAL FAC}} \times \frac{\text{S.S.}_{\text{calib gas}}}{\text{S.S.}_{\text{tracer gas}}}$$

Using Run #1, Wind Direction 000°, Sample Point #1, Source Group #13 as an example:

Given:

RAW-GC reading
$$(\mu v \cdot s) = 1856$$

BG-GC reading
$$(\mu v \cdot s) = 375$$

CAL FAC-GC reading (
$$\mu v \cdot s$$
) x $\frac{M.W. (tracer gas)}{M.W. (calib gas)} = 98,056$

S.S.
$$tracer gas$$
 - 100,000 ppm $C_2^H_6$

so that

$$\chi = \frac{1856 - 375}{98,056 \times \frac{30}{30}} \times \frac{201}{100,000} = .304E-04$$

The dimensionless concentration coefficient, K, follows from the preceding calculation of χ , so that using the same example,

$$K_{\mathbf{m}} = \left(\frac{\chi u_{\mathbf{r}} H_{\mathbf{r}}^2}{Q}\right)_{\mathbf{m}}$$

 $\chi_{\rm m}$ - preceding calculation = .304E-04

$$(u_r)_m$$
 - Table 4-1 = 2.44 m/s
 $(H_r^2)_m$ - assigned constant = .048356 m²
 Q_m - Table 4-1 = .00019498 m³/s

so that

$$K_{\rm m} = \frac{.304E - 04 \times 2.44 \times .048356}{.19498E - 03} = .184E - 01$$

As a further example, if it is known that source group #13, or a certain exhaust within that group; emits effluvium containing .2E-04 (2 x 10⁻⁵) grams of lead per cubic meter (i.e. total grams per second of lead divided by total volume flow rate in cubic meters per second for source group #13 equals .2E-04), the concentration of lead at any given intake may be calculated. Again, using the cited example for Run #1, W.D. 000°, Sample Point #1, and Source Group #13:

$$(\chi_{receptor})_{p} = K \left(\frac{\chi_{source} \times Q_{source}}{u_{r} \times H_{r}^{2}}\right)_{p}$$

$$(X_{source})_{p} - \text{given to be} = .2E-04 \text{ gms/m}^{3}$$

$$(Q_{source})_{p} - \text{Table 4-2} = 40.82 \text{ m}^{3}/\text{s}$$

$$\star (u_{r})_{p} - \text{reference velocity} = 8.17 \text{ m/s}$$

$$(H_{r}^{2})_{p} - \text{assigned constant} = 3021.15 \text{ m}^{2} (= .0484 \times 250^{2})$$

so that

$$\chi_{\text{receptor}} = .184\text{E-01} \quad \frac{.2\text{E-04} \times 40.82}{8.17 \times 3021.15} = .609\text{E-9 gm/m}^3$$

4.6 HUP IV Penthouse Tests

During a 28 August 1984 meeting of HUP, GBQC, Caretsky and CSU representatives, a decision was made to perform additional wind-tunnel tests on a penthouse not originally included on the HUP IV drawings, or model. Subsequent to receipt of updated drawings, and after consultation

 $[\]overline{*0r}$ approximate velocity at which χ_{source} was determined.

with Caretsky & Associates personnel, the HUP IV model was modified to facilitate completion of the additional concentration and visualization tests.

Alterations to the model included the addition of a mechanical room penthouse, relocation of cooling towers and minor changes to rooftop sources. Configurations of the HUP IV rooftop, prior to and after the remodeling, are provided in Figures 4-4a and 4-4b.

The mechanical room penthouse (block E on Figure 4-4b) design included two large air intakes on the west face. An alternate air intake (block F on Figure 4-4b) located atop the penthouse, and containing a large opening to the east and smaller north-south openings, was also modeled.

The five individual cooling towers (1-5 of Figure 4-4a) originally modeled were modified to the two-group (A-B and C-D) configuration depicted on Figure 4-4b. Rooftop sources directly in front of the west-facing penthouse intakes were also relocated.

Exhausts from Source Groups 3-1, 3-2 and 3-Q, all located atop HUP IV, and Source Groups 1, 2, 4 and 5 (Med. Ed., Gates and Maloney buildings) were measured at the two penthouse intake locations. Penthouse intakes, west set (8,9) or east set (5,6), were operated at rated capacity and the intake air was sampled for concentration. Model approach wind velocity was the same as in previous tests.

The basic concentration data representing 10 runs of data are tabulated in Appendix C in a form similar to that for previous data. Identification of run numbers and their associated model test parameters are shown in Table 4-6.

Results of the penthouse concentration measurements are summarized in Table 4-7. Concentration ratios of air inlet to source outlet are

listed for both east intakes (labeled E) and west intakes (labeled W) for each source group and wind direction tested. On the basis of the data presented in Table 4-7, it can be concluded that the east intakes provide the smallest concentrations for HUP IV rooftop emissions. An east intake should provide a more satisfactory intake location from the standpoint of minimizing intake concentrations from the measured sources.

4.7 Cross-Contamination Analyses

Examples of the use of cross-contamination data contained in this report are presented in this chapter. Data on actual emission data from some sources in the hospital complex were received on 6 November 1984. These data reported 8-hr, daily or weekly volumes of various chemicals released from specific sources within the complex. The sources listed were within Source Groups 4 and 5 of the tests reported earlier in this report. Emissions from 2 (sources 116 and 121) of the 13 sources in Group 4 (see Table A-2-1c) and 7 (sources 124, 144, 156, 158, 159, 162, 173) of the 50 sources in Group 5 (see Table A-2-1d) were provided. These source locations are shown in Figures 4-5a and 4-5b.

A series of tables have been prepared which show how specific solvent evaporation rates can be combined with cross-contamination concentration measurements of this report to obtain predicted inlet concentrations in parts per million. Table 4-8a shows the six solvents which were reported to be emitted from the two exhaust locations 116 and 121 of Source Group 4. The liquid solvent evaporation rate provided to us is listed along with the liquid-to-vapor volume ratio for the solvent. Multiplication of the two factors gives the solvent vapor creation (emission) rate. Division of the solvent creation rate by the

total exhaust discharge rate gives the exhaust concentration of each solvent. Table 4-8a gives the exhaust concentration in ppm. Table 4-8b shows the same calculations for the solvent evaporation rates provided to us for 7 exhaust locations of Source Group 5.

It is not known if the emission rates provided represent average evaporation rates to be expected typically every day or a peak emission rate expected say once per year. During any 8-hr period over which the emissions were quoted, it is possible that surges in emission rate would cause concentrations at one exhaust location to be several times the average rate. The above calculations can be modified to examine peak emission rates by multiplying the exhaust solvent vapor concentrations of Tables 4-8a and 4-8b by the ratio of the peak evaporation rate to the quoted rate given in the tables.

Table 4-8c shows the total vapor concentration of various solvents for Source Group 5, accounting for the multiple release locations within the group. The total vapor concentration shown at the right is a weighted average of the individual exhaust concentrations using the individual exhaust discharges as the weight factors. (The value is also found by dividing the total solvent vapor creation rate of Table 4-8b for each solvent by the total discharge rate of the exhausts with that solvent.) The total vapor concentration for Source Groups 4 and 5 accounts only for the 9 exhausts for which concentrations are known. The concentrations have not been assumed to be diluted by the exhausts within a source group for which we do not have emission information.

Tables 4-8d and 4-8e show the conversion of exhaust vapor concentrations just calculated into vapor concentrations at each of the HUP IV rooftop intakes discussed in Section 4.6. Table 4-7 shows that the

concentration ratio for the East inlets for a wind direction of 315 degrees was 0.0026; that for the West inlets was 0.0029. Multiplication of exhaust vapor concentrations by the concentration ratio gives the vapor concentration in ppm at the intake vents for various solvents in the source group. The intake concentrations for this case are quite small.

The ppm intake concentrations for a particular solvent are additive in ppm for Source Groups 4 and 5 (and for any other source groups simultaneously emitting the same solvent vapor. This summed concentration level can then be compared to standards of acceptable levels of concentration on a solvent-by-solvent basis. This comparison cannot be performed with the limited solvent emission data provided to us, unless these represent the only sources of emission of these solvents in the hospital complex.

The analysis performed above can be performed for any combinations of source and receptors that might be desired. In the performance of such calculations, several factors need to be kept in mind. First, individual sources were combined into source groups to obtain concentration ratios. This was done to permit the several hundred sources to be modeled at reasonable cost. Concentration ratios obtained in this way work well for receptors at a distance sufficient for the various emission sources to have been well mixed. For receptors located close to the source group, or even within it, concentration ratios applicable to individual sources could be somewhat different than that for the source group as a whole.

Second, concentration ratios were obtained for a single wind speed representative of average conditions. For other than average winds,

concentration ratios will vary somewhat from average ratios. For higher wind speeds, ratios will typically decrease with increasing wind speeds and can be estimated using K values as discussed in Sections 4.4 and 4.5. For lower wind speeds, concentration ratios could increase or decrease depending on wind speed and atmospheric stability. These variations in concentration ratio were not modeled since the addition of various stabilities and wind speeds to the modeling would have multiplied the cost of the study. Thus, while the concentration ratios are accurate to perhaps 10-15 percent for the conditions modeled, the overall accuracy of concentration predictions will vary by perhaps a factor of 2 or 3 when the atmosphere variabilities are included.

Thirdly, solvent emission rates may vary with peak concentrations substantially higher than average rates. Acceptable levels of concentrations are often specified as an average over a specified time to partially account for these variations.

4.8 Summary and Conclusions

A review of all the concentration data indicated measurements at several receptors which did not vary significantly with wind direction. This implies that regions of relatively stagnant air exist within the complex. In these instances source exhausts are not being swept away, but rather linger in these areas where some portion is eventually drawn into any air intakes in the proximity. The stagnant air regions are caused by the taller buildings which block air flow at lower levels, especially when the taller buildings encircle the region on two or three sides.

Four principle regions of stagnation were identified from the data analysis:

- 1) SW corner of Gates Building, where receptors 13, 14, 15, 16 were located (see Test Group #4).
- 2) SE corner of Gates Building, where receptor 36 was located (see Test Group #10).
- 3) Receptors 37, 38 and 39, located on the west face of the Ravdin Building (see Test Group #11).
- 4) The Ravdin Courtyard, where receptors 42, 43, 44 and 45 were located (see Test Group #11).

Maximum concentration values were observed with a wind direction of 180° for regions (1) and (2) (Gates Building), as might be expected, with the south face of the Gates Building providing a significant impediment to effluent dispersion. However, effluent concentrations measured at most of the other seven wind directions were also of significant size.

The concentration values measured for all wind directions, for regions (3) and (4) (Ravdin Building and Courtyard), were all of comparable size to one another.

An example of an exhaust feeding into a stagnation region can be seen by examining the effluent from Source Group 15. Maximum concentrations recorded from Source Group #15 (which included the pathology exhaust atop the Medical Education Building, along with Emergency Generator exhausts) occurred at receptors 17 and 18, located atop the Maloney Building. The maximum values were recorded with winds from 180 and 225 degrees azimuth, as expected from the relative positions of source and receptor, and suggest that the new facility might increase existing concentrations. The values were approximately one percent of the source strength.

Table 4-5 summarizes the wind-tunnel study results for the HUP IV, Gates and Maloney structures. The heavily outlined portion identifies the HUP IV sources and receptors, since special interest was expressed in the proposed new facility.

The second- and third-level intakes (sampling points 4, 5, 6, 7, 8 and 9), located on the west side of the HUP IV structure, are nearly free of cross-contamination from HUP IV exhausts with the largest receptor concentration measured was less than 0.03 percent of source strength. Some low levels of concentration (~.01 percent to ~.2 percent) were measured at the HUP IV second- and third-level air intakes from other sources in the complex. Most noteworthy, was the contamination from the nearby exhausts of Source Group 5 (Maloney, etc.) buildings. On the whole, the concentration ratios for the HUP IV second- and third-floor air intakes were quite low. Intake concentrations will be low unless the source concentrations of sources with nonzero concentration ratios as measured at intakes 4-9 are very high.

Cross-contamination of the HUP IV rooftop intakes (sample points 10, 11 and 12) appeared to be significantly greater. The largest values measured for the entire study were recorded at these receptors for exhausts from some HUP IV rooftop sources. Measured concentration values approached 45 percent of the source strength. These particular data were obtained at three inlets, each located inside a model cooling tower for sources located immediately adjacent to or within the tower.

Sources 3-58, 3-59 and 3-60 (emergency generator exhaust, incinerator exhaust and kitchen exhaust) on the HUP IV roof were modeled individually as buoyant plumes because of their importance so that their individual effluent cross-contamination to receptors would be

determined. No measurable contamination was noted from these three sources at any HUP intakes. It is possible that small but nonzero concentrations might be measured for very high wind conditions. It is not anticipated that these exhausts will cause problems.

Tests on the modified roof air intakes on the HUP IV indicated that measurable concentrations from some sources would occur at either of the two intakes. However, the east intake provided a better performance overall.

Prediction of concentrations of a specific chemical at any receptor location in the hospital requires more than concentration ratios as measured in this wind-tunnel measurement program. It also required a knowledge of the strength of emissions from the various hospital exhausts and some calculations. Examples of the calculation method were applied in Section 4.7 to emissions from some of the exhausts in Source Groups 4 and 5 to predict their impact on the modified rooftop air intakes on the HUP IV. If the known sources in Groups 4 and 5 are the only significant emissions in the hospital complex, then it can be concluded that intake concentrations will be quite low. However, as discussed in Chapter 7, intake concentrations are additive from all emitting sources at a particular wind direction. Additional calculations following the models of Section 4.5 and Chapter 7 can be readily performed with any desired combination of sources and receptors.

5.0 AIRFLOW VISUALIZATION

5.1 General

Making the airflow visible can be helpful in understanding flow patterns over, around and in the wakes of buildings and other structures. Visualization is often helpful in identifying areas of stagnation, vortices, and related flow characteristics which can influence diffusion rates and wind speeds.

Titanium tetrachloride ($TiCl_4$), which readily reacts with water vapor (H_2^0) in the air to produce titanium dioxide (TiO_2) and hydrochloric acid (HCl), was used for these studies. The titanium dioxide appears as a white "smoke" discernible to the eye and easily photographed, when properly illuminated with tungsten arc-lamps.

5.2 Visualization Tests

Cotton swabs saturated with TiCl₄ were used during the visualization study to reveal airflow patterns in the vicinity of the HUP IV addition and other model structures. In particular, video documentation was focused upon those sources and receptors which, preceding tests revealed, should be further evaluated.

Table 5-1 contains descriptions of all sources and receptors for which flow patterns were recorded on VHS video cassettes. The table also contains a record of the wind azimuth and run number of each tape segment.

The videotapes reveal some of the effects wind direction, source location, and adjacent structures had upon exhaust gas transport and dispersion in the area around the HUP IV addition. Any assessment of airflow derived from the visualization should be treated as qualitative in nature and further substantiation of the concentration data.

NOTE: Videotapes are furnished to the sponsor separately from the test report.

6.0 REFERENCES

- 1. Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Journal, Vol. 9, No. 9, September 1971, pp. 1746-1754.
- Cermak, J. E., "Simulation of the Natural Wind," Preprint 82-518, ASCE Convention and Exhibit, New Orleans, Louisiana, 25-29 October 1982.
- 3. Lord, G. R. and Leutheusser, H. J., "Wind-Tunnel Modeling of Stack-Gas Discharge," in Man and His Environment, Vol. 1 (M.A. Ward, ed.), Pergamon Press, 1970.
- 4. Halitsky, J., "Validation of Scaling Procedures for Wind-Tunnel Model Testing of Diffusion Near Buildings," Report No. TR-69-8, Geophysical Sciences Laboratory, New York University, 1969, p. 90.
- 5. Penwarden, A. D., and Wise, A. F. E., "Wind Environment Around Buildings," Building Research Establishment Report, HMSO, 1975.
- 6. Melbourne, W. H., "Criteria for Environmental Wind Conditions," Jl. Industrial Aerodynamics, Vol. 3, pp. 241-247, 1978.

FIGURES

Figure 2-1. Schematic Overview of Source Groupings which were Modeled in HUP IV Wind-Tunnel Tests

Figure 2-1a. Source and Receptor Location/Identification for Groups 1 and 2

Figure 2-1b. Source and Receptor Location/Identification for Group 3 (HUP IV Addition)

Figure 2-1b(1). Source and Receptor Location/Identification for Group 3-1

Figure 2-1b(2). Source and Receptor Location/Identification for Group 3-2

Figure 2-1b(3). Source and Receptor Location/Identification for Group 3-3

Figure 2-1b(4). Source and Receptor Location/Identification for Group 3-4

Figure 2-1b(5). Source and Receptor Location/Identification for Source 3-C

Figure 2-1b(6). Source and Receptor Location/Identification for Source 3-Q

Figure 2-1b(7). Source and Receptor Location/Identification for Source 3-R

Figure 2-1b(8). Source and Receptor Location/Identification for Source 58

Figure 2-1b(9). Source and Receptor Location/Identification for Source 59

Figure 2-1b(10). Source and Receptor Location/Identification for Source 60

Figure 2-1c. Source and Receptor Location/Identification for Group 4

Figure 2-1d. Source and Receptor Location/Identification for Group 5

Figure 2-1e. Source and Receptor Location/Identification for Groups 6 and 7

Figure 2-1f. Source and Receptor Location/Identification for Group 8

Figure 2-1g. Source and Receptor Location/Identification for Group 9

Figure 2-1h. Source and Receptor Location/Identification for Group 10

Figure 2-1i. Source and Receptor Location/Identification for Group 11

Figure 2-1j. Source and Receptor Location/Identification for Groups 12 and 13

Figure 2-1k. Source and Receptor Location/Identification for Group 14

Figure 2-12. Source and Receptor Location/Identification for Group 15

Figure 2-2. Schematic Overview of Receptors (Intakes) which were Modeled in HUP IV Wind-Tunnel Tests

Figure 2-3. Environmental Wind Tunnel, Fluid Dynamics and Diffusion Laboratory, Colorado State University

Figure 2-4. Close-up Photograph of HUP IV Model and Surrounding Building Complex.

Figure 2-5. Upwind View of HUP IV Model Installed in Environmental Wind Tunnel.

Figure 2-6. Schematic of the EWT Test Section

Figure 2-7. Depiction of Prevailing Wind Speeds at Philadelphia Airport by Percentage of Total Time and Wind Direction

Figure 3-1. Mean Velocity and Turbulence Profiles Approaching the Model

Figure 3-2a. Pedestrian Wind Velocity Measurement Locations (No. 1 through 4)

Figure 3-2b. Pedestrian Wind Velocity Measurement Locations (No. 5 through 19)

Figure 3-3a. Mean Velocities and Turbulence Intensities at Pedestrian Locations 1 and 2

Figure 3-3b. Mean Velocities and Turbulence Intensities at Pedestrian Locations 3 and 4

Figure 3-3c. Mean Velocities and Turbulence Intensities at Pedestrian Locations 5 and 6

Figure 3-3d. Mean Velocities and Turbulence Intensities at Pedestrian Locations 7 and 8

Figure 3-3e. Mean Velocities and Turbulence Intensities at Pedestrian Locations 9 and 10

Figure 3-3f. Mean Velocities and Turbulence Intensities at Pedestrian Locations 11 and 12

Figure 3-3g. Mean Velocities and Turbulence Intensities at Pedestrian Locations 13 and 14

Figure 3-3h. Mean Velocities and Turbulence Intensities at Pedestrian Locations 15 and 16

Figure 3-3i. Mean Velocities and Turbulence Intensities at Pedestrian Locations 17 and 18

Figure 3-3j. Mean Velocities and Turbulence Intensities at Pedestrian Location 19

Figure 3-4a. Wind Velocity Probabilities for Pedestrian Locations No. 1 through 5

Figure 3-4b. Wind Velocity Probabilities for Pedestrian Locations No. 6 through 10

Figure 3-4c. Wind Velocity Probabilities for Pedestrian Locations No. 11 through 15

Figure 3-4d. Wind Velocity Probabilities for Pedestrian Locations No. 16 through 19

Figure 4-1. Tracer Gas Certifications

Figure 4-2. Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Chromatograph.

SOURCE GROUP 1 0.031 (16) 0.025 (180) 0.038 33)(225) 32 (225) o O T 0.149 (090) (3 0.034 (225) WIND 32) (33) 16 (17) 1 3 DIR. 0000 .059 045⁰ .065 090° .149 135° .045 Active Source 180° .025 .031 .081 225° .036 .066 .028 .038 Maximum 270° .050 Concentration 315° Ratio .050 Receptor ((180)-Wind Direction at which the Maximum was

Figure 4-3a(1). Location and Identification of Receptors with Concentration Ratios \geq .025 (2.5%) of Source Group 1

Measured

Figure 4-3a(2). Location and Identification of Receptors with Concentration Ratios ≥ 0.002 (.2%) of Source Group 2

SOURCE GROUP 3-1

Figure 4-3b(1). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-1

SOURCE GROUP 3-2

Figure 4-3b(2). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-2

Figure 4-3b(3). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-3

Figure 4-3b(4). Location and Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-4

Figure 4-3b(5). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-C

Figure 4-3b(6). Location and Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-Q

Figure 4-3b(7). Location and Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-R

Figure 4-3b(8). Location and Identification of Receptors with Concentration Ratios ≥ 0.0001 (.01%) of Source Group 3-58

Figure 4-3b(9). Location and Identification of Receptors with Concentration Ratios ≥ 0.00015 (.015%) of Source Group 3-59

Figure 4-3b(10). Location and Identification of Receptors with Concentration Ratios ≥ 0.0001 (.01%) of Source Group 3-60

Figure 4-3c. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 4

Figure 4-3d. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 5

Figure 4-3e(1). Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 6

Figure 4-3e(2). Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 7

Figure 4-3f. Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 8

Figure 4-3g. Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 9

Figure 4-3h. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 10

Figure 4-3i(1). Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 11

SOURCE GROUP 11

Figure 4-3i(2). Expanded View to Locate/Identify Maximum Concentration Ratios Measured at Receptors with Source Group 11 Active

Figure 4-3j(1). Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 12

Figure 4-3j(2). Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 13

Figure 4-3k. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 14

Figure 4-31. Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 15

Figure 4-4a. HUP IV Model Roof Configuration Prior to October 1984 Modification

Figure 4-4b. HUP IV Model Roof Configuration Subsequent to October 1984 Modification

Figure 4-5a. Sources on Gates Building from which Identified Types and Quantities of Evaporated Solvents are Exhausted

Figure 4-5b. Sources on Maloney, Alumni Hall, and Gibson Buildings from which Identified Types and Quantities of Evaporated Solvents are Exhausted

TABLES

Table 2-1a. Identification of Prototype Sources on the Medical Education Building which were Modeled

Group #1

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	62, 63, 64, 65, 66	6,200
В	69, 70, 71, 73, 74, 75, 76	7,020
С	67, 68, 77, 78, 79, 80	5,090
D	72	3,850
E	82, 83, 84, 85	4,000
\mathbf{F}	86, 87, 89, 90	2,640
G	88, 91, 92, 93, 94	4,080
Н	95, 96, 97	322,900
I	99, 100, 111	33,755
J	101, 102, 103	7,700
L	104, 105, 106	5,800
M	150	7,900
N	152	50,000
Total		460,935

Group #2

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
Α	40	1,200
В	46, 47, 48, 54, 55, 110	4,500
С	56, 57	3,000
D	49, 50, 51, 52, 53, 61	5,355
E	58, 59, 60	2,700
Total		16,755

^{*}Prototype source numbers from Caretsky and Associates, Drawing WS-1, dated 11-21-83.

Table 2-1b. Identification of Prototype Source Groups on HUP IV Building which were Modeled

Group 3-1

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	1, 2, 6, 7, 12, 13	5,900
L	20, 25, 26, 27	38,360
M	17, 18, 19	43,980
N	14, 15, 16	72,290
Total		160,530

Group 3-2

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
В	3, 4, 5, 8, 9, 10, 11	6,250
F	29, 30, 31, 32, 33, 34, 71	251,200
Н	39, 40, 45, 46, 49, 50, 51	5,770
I	41, 42, 43, 44, 52, 53, 54	5,370
K	35, 36, 37	22,870
Total		291,460

^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-2, dated 12-2-83.

Table 2-1b. (Continued)

Group 3-3

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
E	28, 67	251,200
G	38, 47, 48, 68	251,960
0	69	250,000
P	70	250,000
Total		1,003,160

Group 3-4

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
D	21, 22, 23, 72	125,504
J	55, 56, 57	27,256
Total		152,760

^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-2, dated 12-2-83.

Table 2-1b. (Continued)

Sources 3-C, 3-Q, 3-R, 3-58, 3-59, & 3-60

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
С	24, 66	278,600
Q	63, 64, 65	50,975
R	62	11,000
58	58	7,200
59	59	34,000
60	60	40,000

^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-2, dated 12-2-83.

Table 2-1c. Identification of Prototype Sources on the Gates Building which were Modeled

Group #4

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	116	7,000
В	119 (2 of 5 cooling towers)	34,000
С	119 (1 of 5 cooling towers) 118	24,000
D	119 (2 of 5 cooling towers)	34,000
E	121	3,680
F	126	2,300
G	127	2,300
Н	128	2,300
I	130	11,900
J	133	10,600
K	135, 136	11,600
Total		143,680

^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84.

Table A-2-1d. Identification of Prototype Sources on the Centrex, Gibson, Alumni, Maloney & Piersol Buildings which were Modeled

Group #5

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	122	4,600
В	125	1,000
С	123	4,630
D	139, 140	9,200
E	138	11,000
F	141, 142, 143	78,900
G	144	23,600
Н	147, 148, 164, 165	28,520
I	151, 152, 153, 154, 155, 156, 157	3,930
J	158, 159, 161	37,000
K	160, 181, 182, 183, 184, 185, 186	13,300
L	162, 163, 187, 188, 189	11,300
M	170, 171, 172, 173, 174, 175, 176	10,150
N	177, 178, 179	23,000
0	166, 167	15,560
P	168	9,600
Q	169	15,000
Total		300,290

 $[\]pm Source$ numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, 10-26-83, revised 1-24-84.

Table 2-1e. Identification of Prototype Sources on the Children's Hospital Building which were Modeled

Group #6

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
Α	112 (see note)	
В	114	25,000
С	113 (see note)	
Total		25,000

Note: 112 and 113 are cooling towers of large enough size to permit modeling with working fans in the model which draw air from the roof level and discharge upwards.

Group #7

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	115, 116, 117, 118, 119	51,030
В	120, 121, 122, 123, 124, 125	85,721
С	126, 127, 128, 129, 130, 131	38,220
D	132, 133, 134, 135	46,205
E	136, 137, 138, 139, 140	46,185
F	141, 142, 143, 144, 145	52,295
Total		319,656

^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-1, dated 11-21-83.

Table 2-1f. Identification of Prototype Sources on the Silverstein Pavilion which were Modeled

Group #8

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	7, 8, 9, 10, 11	16,475
В	12, 13, 14, 15	15,800
С	19	8,000
D	20, 21, 22, 23	4,000
F	24, 25, 26	16,000
G	28 (see note)	
Н	157, 158	341,800
I	159, 160	341,800
J	30	7,900
K	29, 31, 32	13,285
L	36	53,000
Total		818,060

Note: 28 is a cooling tower of large enough size to permit modeling with working fans in the model which draw air from roof level and discharge upwards.

^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-1, dated 11-21-83.

Table 2-1g. Identification of Prototype Sources on the Donner Building which were Modeled

Group #9

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	106	460
В	107, 108, 109, 110, 111	7,600
С	112, 113	39,100
D	114, 115	2,500
Total		49,660

^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84.

Table 2-1h. Identification of Prototype Sources on the Dulles Building which were Modeled

Group #10

Model ub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
В	82, 83, 84, 85, 86	8,870
С	78, 79, 80	13,800
D	81	1,380
E	87, 88	5,860
F	74, 75, 76, 77, 90	5,100
G	89, 91	1,000
Н	98, 99, 100, 101, 102	11,500
I	71, 72, 73	3,440
J	69, 70	13,800
K	66, 67, 68	2,700
L	60, 61, 62, 63, 64	16,420
N	58, 59	106,400
0	92, 93, 94	31,800
Total		222,070

^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84.

Table 2-1i. Identification of Prototype Sources on the Agnew Building, Ravdin Court, and Silverstein Rad. Infill which were Modeled

Group #11

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	30, 36, 37	21,200
В	38, 39, 40, 41	18,450
С	51, 52, 53, 54, 55	21,240
D	56	8,285
E	44, 47, 48, 49, 50	98,800
F	162, 163	22,000
G	161, 164	302,785
Н	32	27,600
I	25, 26, 27	30,960
J		30,000
K	45	30,000
Total		611,320

^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84.

Table 2-1j. Identification of Prototype Sources on the White and Ravdin Buildings which were Modeled

Group #12

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	7, 8, 9, 10	25,050
В	12	30,000
С	11, 13, 14	12,500
D	20, 22, 23, 24	2,200
E	15, 16, 17, 18, 19	20,900
Total		90,650

Group #13

Model Sub-Group	Prototype Source Numbers*	Exhaust Discharge (cfm)
A	1	34,500
В	3	25,000
C	4, 5, 6	27,000
Total		86,500

^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84.

Table 2-1k. Identification of Prototype Sources with 300° Exhausts which were Modeled

Group #14

Model Sub-Group	Prot	otype Source Numbers*	Exhaust Discharge (cfm)
A	27	Silverstein	60,000
В	60	HUP IV	40,000
С	26	HUP IV	1,500
Total			101,500

^{*}Prototype source numbers from Caretsky & Associates, Drawings WS-1 & 2, dated 11-21-83.

Table 2-12. Identification of Prototype Sources with 1200°F-2000°F Exhausts (Emergency Generators and Incinerators) which were Modeled

Group #15

Model Sub-Group	Prototype Source Numbers			Exhaust Discharge (cfm)
A	124	Gibson	**	25,000
В	43	Ravdin Ct.	**	5,000
С	146	Alumni	**	27,000
D	38	Silverstein	*	3,000
E	43	Med. Ed.	*	3,000
F	Incin Med.	erator NW Corner Ed.	†	18,000
Total				81,000

^{*}Prototype source numbers from Caretsky & Associates, Drawings WS-1 & 2, dated 11-21-83.

^{**}From Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84.

[†]No drawing number--information from March 1984 meeting.

Table 2-2. Identification for Model Air Intakes and Ground-level Receptors

Model Sampling Point	Prototype Structure	Prototype Intake
1	Med. Ed. Building	148
2	_	149
3		150
4	HUP IV Building	2nd Floor O.A. Intake, North
5		2nd Floor O.A. Intake, Middle
6		2nd Floor O.A. Intake, South
7		3rd Floor O.A. Intake, North
8		3rd Floor O.A. Intake, Middle
9		3rd Floor O.A. Intake, South
10		Cooling Tower Intake, North
11		Cooling Tower Intake, Middle
12		Cooling Tower Intake, South
13	Gates Building	129
14		132
15		134
16		137
17	Maloney Building	149
18		150
19	СНОР	146
20		147
21		153 North
22		153 South
23		154
24		155
25		156 South
26		156 North
27	Silverstein Pavilion	5
28		6
29		33
30		37
31	NMR Pyramid	NoneAmbient Air Sample
32	Miller Plaza	NoneAmbient Air Sample
33	Donner Building	103
34		107
35		O.A. Intake

Table 2-2. (Continued)

Model Sampling Point	Prototype Structure	Prototype Intake
36	Dulles Building	95, 96, 97
37	Ravdin Building	30
38	ű	29
39		28
40	Agnew Building	57
41		34
42		42
43	Silverstein Rad.	161
44		162
45		163
46	Ravdin Building	2
47	White Building	21

^{*}All air intakes and ground-level receptors were identified from Caretsky & Associates, or Penjerdel Refrigeration Co. Drawings, previously noted.

Table 3-1a. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 1			
0.00	22.0	10.2	52.5
22.50	24.3	11.5	58.9
45.00	16.2	8.1	40.6
67.50	16.6	8.7	42.7
90.00	25.7	9.7	54.8
112.50	37.0	10.4	68.1
135.00	28.1	8.7	54.2
157.50	27.9	9.7	57.1
180.00	21.0	8.6	46.8
202.50	28.3	8.3	53.3
225.00	32.1	9.5	60.5
247.50	27.9	8.3	5 2.9
270.00	27.3	8.4	52.6
292.50	32.5	9.4	60.7
315.00	18.1	9.6	47.0
337.50	25.4	11.3	59.1
Location 2			
0.00	13.2	6.6	33.0
22.50	21.6	10.8	53.9
45.00	22.9	8.8	49.4
67.50	11.0	5.0	26.2
90.00	9.1	4.3	22.0
112.50	19.2	9.6	47.9
135.00	16.4	8.4	41.7
157.50	30.2	11.8	65.6
180.00	24.7	8.9	51.3
202.50	28.6	9.8	58.0
225.00	23.6	8.8	49.9
247.50	19.8	9.1	47.1
270.00	18.8	8.9	45.5
292.50	17.6	7.8	40.9
315.00	21.3	9.6	50.1
337.50	29.8	11.6	64.6

Table 3-1b. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 3			
0.00	9.1	3.7	20.0
22.50	17.5	6.9	38.1
45.00	26.8	8.8	53.3
67.50	20.2	7.3	42.1
90.00	14.5	6.7	34.6
112.50	16.3	6.1	34.5
135.00	16.7	6.4	35.9
157.50	19.1	6.1	37.4
180.00	30.0	7.8	53.3
202.50	31.1	8.5	56.6
225.00	27.9	9.3	55.8
247.50	10.4	5.2	25.9
270.00	7.7	3.2	17.3
292.50	12.7	5.8	30.2
315.00	12.7	5.6	29.5
337.50	13.3	6.8	33.6
Location 4			
0.00	22.0	10.3	53.0
22.50	33.0	11.3	66.9
45.00	15.6	8.1	39.9
67.50	10.1	4.8	24.4
90.00	16.7	7.3	38.6
112.50	11.3	5.4	27.4
135.00	11.4	5.3	27.4
157.50	10.1	4.4	23.4
180.00	14.9	6.8	35.3
202.50	27.0	6.7	47.2
225.00	23.0	8.1	47.2
247.50	10.3	4.8	24.7
270.00	10.8	4.8	25.3
292.50	11.5	5.5	28.0
315.00	25.1	10.1	55.3
337.50	38.7	11.6	73.4

Table 3-1c. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 5			
0.00	15.6	6.9	36.1
22.50	20.6	8.4	45.9
45.00	19.4	8.1	43.8
67.50	23.3	7.5	45.8
90.00	22.9	7.9	46.7
112.50	22.7	6.4	42.0
135.00	22.9	7.1	44.3
157.50	23.9	7.5	46.3
180.00	23.5	7.5	46.1
202.50	19.4	7.1	40.7
225.00	15.2	6.2	33.8
247.50	14.8	5.7	32.0
270.00	15.1	5.9	32.6
292.50	14.3	6.4	33.4
315.00	16.2	7.4	38.3
337.50	21.4	9.6	50.3
Location 6			
0.00	18.3	6.6	38.1
22.50	13.3	5.2	28.9
45.00	9.1	3.1	18.4
67.50	11.4	3.7	22.4
90.00	10.7	3.3	20.5
112.50	11.1	3.4	21.4
135.00	10.0	2.9	18.7
157.50	11.0	3.4	21.3
180.00	11.7	3.5	22.3
202.50	11.6	3.6	22.6
225.00	9.8	3.3	19.8
247.50	8.3	3.0	17.4
270.00	9.6	4.7	23.7
292.50	19.4	9.6	40.2
315.00	21.3	8.5	46.9
337.50	23.6	11.0	56.5

Table 3-1d. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 7			
0.00	20.1	7.7	43.1
22.50	17.5	5.0	32.5
45.00	13.9	3.4	24.2
67.50	12.4	2.9	21.2
90.00	12.1	2.8	20.5
112.50	13.8	3.2	23.5
135.00	10.1	3.6	21.0
157.50	9.6	3.3	19.4
180.00	8.5	3.2	18.2
202.50	10.1	4.0	22.1
225.00	12.1	5.7	29.3
247.50	22.2	9.6	50.9
270.00	21.0	10.4	52.3
292.50	19.0	8.5	44.6
315.00	28.4	11.6	63.2
337.50	20.6	10.5	52.3
Location 8			
0.00	16.3	4.8	30.7
22.50	9.9	3.8	21.3
45.00	14.2	7.0	35.1
67.50	9.2	4.1	21.6
90.00	8.5	3.8	20.1
112.50	8.5	3.4	18.7
135.00	18.5	6.3	37.4
157.50	17.8	4.1	30.1
180.00	23.3	7.3	45.3
202.50	18.2	6.7	38.4
225.00	19.0	6.6	38.8
247.50	24.9	7.3	46.8
270.00	25.7	7.1	47.0
292.50	34.5	7.6	57.3
315.00	40.2	9.4	68.3
337.50	32.6	8.3	57.4

Table 3-le. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 9			
0.00	7.7	2.9	16.3
22.50	5.9	1.9	11.6
45.00	6.8	2.5	14.4
67.50	7.6	2.6	15.6
90.00	6.4	2 .2	12.9
112.50	5.1	1.9	10.7
135.00	12.1	4.8	26.4
157.50	8.5	3.9	20.4
180.00	20.9	6.9	41.6
202.50	20.9	8.1	45.3
225.00	15.7	7.8	39.1
247.50	9.5	4.4	22.7
270.00	16.1	8.0	40.2
292.50	6.4	2.4	13.7
315.00	5.4	1.5	10.0
337.50	9.1	5.5	25.7
Location 10			
0.00	5.7	1.5	10.2
22.50	9.7	4.4	22.9
45.00	10.3	4.9	25.1
67.50	8.5	3.2	18.2
90.00	6.4	2.5	13.9
112.50	6.1	2.3	12.8
135.00	14.9	5.3	30.7
157.50	8.8	4.5	22.2
180.00	16.4	6.8	36.7
202.50	15.6	6.5	34.9
225.00	11.0	5.4	27.1
247.50	9.9	4.3	22.8
270.00	13.3	6.2	32.0
292.50	18.3	8.4	43.7
315.00	15.5	6.9	36.0
337.50	14.8	6.3	33.6

Table 3-1f. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINE (PERCENT)
Location 11			
0.00	5.7	2.4	13.0
22.50	10.6	4.6	24.5
45.00	9.3	4.8	23.7
67.50	8.7	4.3	21.5
90.00	7.2	3.1	16.4
112.50	6.2	2.2	12.9
135.00	14.8	5.9	32.5
157.50	14.7	6.6	34.6
180.00	24.4	9.0	51.4
202.50	23.7	9.4	51.8
225.00	17.2	8.0	41.2
247.50	12.9	6.2	31.5
270.00	12.2	7.1	33.5
292.50	10.2	3.7	21.2
315.00	8.7	2.7	16.7
337.50	10.9	5.5	27.6
Location 12			
0.00	5.2	1.9	10.8
22.50	7.7	3.2	17.3
45.00	7.6	2.8	15.9
67.50	6.3	2.2	12.9
90.00	7.6	2.8	16.0
112.50	10.6	3.4	21.0
135.00	19.4	7.3	41.3
157.50	12.4	5.4	28.7
180.00	17.3	9.1	44.6
202.50	17.3	8.0	41.2
225.00	13.4	6.9	34.1
247.50	15.8	7.1	37.0
270.00	15.2	6.3	34.0
292.50	10.9	4.9	25.5
315.00	9.0	3.1	18.4
337.50	8.8	5.0	23.7

Table 3-1g. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 13			
0.00	5.4	2.3	12.2
22.50	9.9	5.2	25.6
45.00	12.5	6.7	32.7
67.50	11.4	5.9	29.0
90.00	8.0	3.6	19.0
112.50	7.4	2.7	15.7
135.00	14.4	7.5	36.9
157.50	17.6	9.5	46.2
180.00	14.6	7.7	37.8
202.50	11.4	5.6	28.2
225.00	12.0	5.5	28.5
247.50	11.0	4.6	24.9
270.00	9.7	4.1	21.9
292.50	12.3	6.1	30.5
315.00	18.3	6.9	39.1
337.50	14.4	7.5	37.0
Location 14			
0.00	11.3	6.8	31.7
22.50	11.6	4.8	26.1
45.00	11.7	5.6	28.4
67.5 0	10.2	4.5	23.8
90.00	9.7	3.3	19.7
112.50	11.3	4.1	23.7
135.00	21.4	5.6	38.2
157.50	23.8	7.4	46.0
180.00	11.9	5.5	28.5
202.50	16.7	5.9	34.3
225.00	13.9	5.2	29.3
247.50	10.6	4.1	22.9
270.00	12.7	5.2	28.4
292.50	18.6	6.0	36.5
315.00	14.1	5.0	29.1
337.50	22.1	11.4	56.3

Table 3-1h. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 15			
0.00	5.0	2.1	11.4
22.50	8.0	3.8	19.5
45.00	9.1	4.3	22.1
67.50	7.3	3.3	17.3
90.00	8.0	4.5	21.5
112.50	8.7	4.3	21.5
135.00	11.5	5.8	28.9
157.50	10.8	5.4	27.0
180.00	19.5	7.4	41.6
202.50	22.1	7.3	43.9
225.00	23.3	7.3	45.1
247.50	23.0	7.2	44.4
270.00	22.3	6.8	42.8
292.50	17.6	7.3	39.6
315.00	14.7	4.5	28.1
337.50	9.1	4.7	23.3
Location 16			
0.00	43.8	8.2	68.4
22.50	46.1	7.7	69.2
45.00	48.6	6.9	69.2
67.50	47.3	6.0	65.3
90.00	54.8	6.5	74.4
112.50	44.8	5 .5	61.3
135.00	45.8	6.6	65.6
157.50	45.4	6.9	66.1
180.00	35.7	7.8	59.2
202.50	38.8	7.4	60.9
225.00	35.8	9.3	63.8
247.50	29.7	8.6	55.5
270.00	34.3	8.0	58.4
292.50	44.0	5.8	61.4
315.00	45.2	5.7	62.4
337.50	50.1	8.1	74.2

Table 3-1i. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 17			
0.00	18.5	6.1	36.9
22.50	17.2	5.9	34.8
45.00	21.0	6.8	41.5
67.50	19.6	6.4	38.9
90.00	14.5	5.4	30.9
112.50	13.4	4.9	28.0
135.00	20.0	9.8	49.4
157.50	12.0	5.7	29.0
180.00	12.6	4.5	26.2
202.50	15.7	5.5	32.3
225.00	17.8	6.8	38.1
247.50	22.6	8.9	49.1
270.00	16.6	5.9	34.3
292.50	18.4	5.7	35 .5
315.00	19.0	6.0	36.9
337.50	16.0	5.2	31.5
Location 18			
0.00	22.9	5.9	40.7
22.50	29.8	7.2	51.2
45.00	40.4	9.7	69.4
67.50	46.7	12.8	85.0
90.00	36.0	13.2	75.7
112.50	35.9	14.9	80.7
135.00	18.4	8.1	42.7
157.50	19.9	8.9	46.5
180.00	21.7	9.3	49.4
202.50	15.2	7.6	38.0
225.00	11.7	5.8	29.0
247.50	8.3	3.6	19.1
270.00	8.8	4.1	21.1
292.50	10.9	5.4	27.0
315.00	12.9	6.0	31.0
337.50	21.4	5.8	38.9

Table 3-1j. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV

WIND AZIMUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
Location 19			
0.00	28.7	7.5	51.2
22.50	42.1	6.9	62.7
45.00	54.8	10.6	86.7
67.50	51.9	11.6	86.7
90.00	32.3	14.3	75.1
112.50	35.9	14.6	79.8
1 35.00	14.9	7.4	37.1
157.50	19.9	8.7	46.0
180.00	29.1	8.7	55.2
202.50	24.2	8.1	48.6
225.00	22.4	8.0	46.4
247.50	15.4	6.6	35.2
270.00	17.4	6.9	38.1
292.50	10.2	3.8	21.7
315.00	12.1	5.3	28.0
337.50	15.6	6.9	36.4

Table 3-2. Percentage Frequency of Wind Direction and Speed, Philadelphia, Pennsylvania, International Airport (1965-1974)

Season: Annual Number of Observations: 29,211 Height of Measurement: 20 ft.

Velocity levels in MPH.

Direction	0-3	4-7	8-12	13-18	19-24	25-31	32+	Total
N	.30	2.00	3.60	2.00	.20	0.00	0.00	8.10
NNE	.20	.60	1.20	.90	. 20	0.00	0.00	3.10
NE	.20	.60	1.10	1.00	. 20	0.00	0.00	3.20
ENE	. 20	1.00	2.20	2.00	.30	0.00	0.00	5.80
E	. 40	1.70	2.60	1.10	. 10	0.00	0.00	6.00
ESE	.40	1.50	1.00	.20	0.00	0.00	0.00	3.10
SE	. 40	1.40	1.00	.30	0.00	0.00	0.00	3.10
SSE	. 40	1.50	1.00	.30	0.00	0.00	0.00	3.30
S	.80	2.40	2.60	1.20	. 10	0.00	0.00	7.20
SSW	.50	1.60	2.00	.90	. 10	0.00	0.00	5.00
SW	.60	3.60	5.20	2.10	.30	0.00	0.00	11.70
WSW	.60	2.90	3.10	1.20	.10	0.00	0.00	7.90
W	.80	3.10	3.40	2.40	.70	.20	0.00	10.60
WNW	. 40	1.70	2.80	2.80	.80	. 20	0.00	8.70
NW	.30	1.40	2.10	2.60	.70	.10	0.00	7.10
NNW	. 20	1.20	2.00	1.60	.30	0.00	0.00	5.40
CALM	.60	0.00	0.00	0.00	0.00	0.00	0.00	.60
TOTAL	7.30	28.30	37.10	22.60	4.00	.60	.10	100.00

Table 3-3. Summary of Wind Effects on People

	Beaufort Number	Speed (mph)	Effects
Calm, light air	0, 1	0-3	Calm, no noticeable wind
Light breeze	2	4-7	Wind felt on face
Gentle breeze	3	8-12	Wind extends light flag Hair is disturbed Clothing flaps
Moderate breeze	4	13-18	Raises dust, dry soil and loose paper Hair disarranged
Fresh breeze	5	19-24	Force of wind felt on body Drifting snow becomes airborne Limit of agreeable wind on land
Strong breeze	6	25-31	Umbrellas used with difficulty Hair blown straight Difficulty to walk steadily Wind noise on ears unpleasant Windborne snow above head height (blizzard)
Near gale	7	32-38	Inconvenience felt when walking
Gale	8	39-46	Generally impedes progress Great difficulty with balance in gusts
Strong gale	9	47-54	People blown over by gusts

Note: Table from Penwarden and Wise (1975), p. 40.

Table 3-4. Greatest Values of Pedestrian Wind Velocities and Turbulence Intensities, Hospital of the University of Pennsylvania, Phase IV

Loc	Az	Mean	RMS	M+3RMS
UMEAN/UI	NF (Percent)			
16	90.0	54.8	6.5	74.4
19	45.0	54.8	10.6	86.7
19	67.5	51.9	11.6	86.7
16	337.5	50.1	8.1	74.2
16	45.0	48.6	6.9	69.2
16	67.5	47.3	6.0	65.3
18	67.5	46.7	12.8	85.0
16	22.5	46.1	7.7	69.2
16	135.0	45.8	6.6	65.6
16	157.5	45.4	6.9	66.1
URMS/UIN	F (Percent)			
18	112.5	35.9	14.9	80.7
19	112.5	35.9	14.6	79.8
19	90.0	32.3	14.3	75.1
18	90.0	36.0	13.2	75.7
18	67.5	46.7	12.8	85.0
2	157.5	30.2	11.8	65.6
2	337.5	29.8	11.6	64.6
19	67.5	51.9	11.6	86.7
7	315.0	28.4	11.6	63.2
4	337.5	38.7	11.6	73.4
UMEAN+3*	RMS/UINF (Percent	<u>)</u>		
19	45.0	54.8	10.6	86.7
19	67.5	51.9	11.6	86.7
18	67.5	46.7	12.8	85.0
18	112.5	35.9	14.9	80.7
19	112.5	35.9	14.6	79.8
18	90.0	36.0	13.2	75.7
19	90.0	32.3	14.3	75.1
16	90.0	54.8	6.5	74.4
16	337.5	50.1	8.1	74.2
4	337.5	38.7	11.6	73.4

Table 4-1. Tabulation of Run Numbers and Model Test Parameters/Tracers

Run #	Wind Dir.	Wind VEL (m/s)	Source Group #	Tracer %	Volume Flow (m ³ /s)	Source Group #	Tracer %	Volume Flow (m ³ /s)
1	000	2.44	12	8.97M	.204E-3	13	10.0E	.195E-3
2	045							
3	090							
4	135							
5	180							
6	225							
7	270							
8	315							
9	000	2.44	4	8.97M	.324E-3	5	10.0E	.630E-3
10	045							
11	090							
12	135							
13	180							
14	225							
15	270							
15R	270							
16	315							

Table 4-1. (Continued).

Run #	Wind Dir.	Wind VEL (m/s)	Source Group #	Tracer %	Volume Flow (m ³ /s)	Source Group #	Tracer %	Volume Flow (m ³ /s)
17	000	2.44	2	8.97M	.378E-4	1	10.0E	.104E-2
18	045						÷	
19	090							
20	135							
21	180							
22	225							
23	270							
24	315							
-								
25	000	2.44	6	9.04M	.564E-4	7	9.98E	.720E-3
26	045							
27	090							
28	135							
29	180							
30	225							
31	270							
32	315							
			nningan 1885 - y 1886 ann an Ionae Arbeit an Io					

Table 4-1. (Continued).

Run #	Wind Dir.	Wind VEL (m/s)	Source Group #	Tracer %	Volume Flow (m ³ /s)	Source Group #	Tracer	Volume Flow (m ³ /s)
33	000	2.44	11	9.04M	.138E-2	9	9.98E	.112E-3
34	045							
35	090							
36	135							
37	180							
38	225							
39	270							
40	315							
41	000	2.44	14	4.02M	.237E-3	15	2.98E	.183E-3
42	045							
43	090							
44	135							
45	180							
46	225							
47	270							
48	315							
						www.		

Table 4-1. (Continued).

Run # 	Wind Dir.	Wind VEL (m/s)	Source Group #	Tracer %	Volume Flow (m ³ /s)	Source Group #	Tracer %	Volume Flow (m ³ /s)
49	000	2.44	3-58	4.02M	.162E-4	3-59	2.98E	.766E-4
50	045							
51	090							
52	135							
53	180							
54	225							
55	270							
56	315							
57	000	2.44	10	9.04M	.501E-3	3-60	2.98E	.902E-4
58	045							
59	090							
60	135							
61	180							
62	225							
63	270							
64	315							

Table 4-1. (Continued).

Run #	Wind Dir.	Wind VEL (m/s)	Source Group #	Tracer %	Volume Flow (m ³ /s)	Source Group #	Tracer %	Volume Flow (m ³ /s)
65	000	2.44	3Q	9.04M	.115E-3	8	9.98E	.184E-2
66	045							
67	090							
68	135							
69	180							
70	225							
71	270							
72	315							
73	000	2.44	3C	9.04M	.628E-3	3-1	10.0E	.362E-3
74	045							
75	090							
76	135							
77	180							
78	225							
79	270							
80	315							

Table 4-1. (Continued).

Run #	Wind Dir.	Wind VEL (m/s)	Source Group #	Tracer %	Volume Flow (m ³ /s)	Source Group #	Tracer %	Volume Flow (m ³ /s)
81	000	2.44	3-2	9.04M	.657E-3	3-4	10.0E	.344E-3
82	045							
83	090							
84	135							
85	180							
85R	180							
86	225							
87	270							
88	315							
89	000	2.44	3R	9.04M	.248E-4	3-3	10.0E	.226E-2
90	045							
91	090							
92	135							
93	180							
94	225							
95	270							
96	315							

Table 4-2. Conversion of Prototype Volume Flow Rates to Model Volume Flow Values

Source	Prototype Vo	lume Flow, Qp	Model Volum	ne Flow, Q _m
Group	cfm	m³/s	cc/min	m ³ /s
1	460,935	217.54	62,339	.104E-2
2	16,755	7.91	2,265	.378E-4
3-1	160,530	75.76	21,711	.362E-3
3-2	291,460	137.55	39,419	.657E-3
3-3	1,003,160	473.44	135,673	.226E-2
3-4	152,760	72.10	20,660	.344E-3
3 - C	278,600	131.49	37,679	.628E-3
3 - Q	50,975	24.06	6,894	.115E-3
3-R	11,000	5.19	1,488	.248E-4
3 - 58	7,200	3.40	974	.162E-4
3-59	34,000	16.05	4,598	.766E-4
3-60	40,000	18.88	5,410	.902E-4
4	143,680	67.81	19,433	.324E-3
5	279,370	131.85	37,784	.630E-3
6	25,000	11.80	3,381	.564E-4
7	319,206	150.65	43,168	.720E-3
8	818,060	386.08	110,639	.184E-2
9	49,660	23.44	6,716	.112E-3
10	222,070	104.81	30,033	.501E-3
11	611,320	288.51	82,677	.138E-2
12	90,650	42.78	12,256	.204E-3
13	86,500	40.82	11,699	.195E-3
14	105,000	49.55	14,201	.237E-3
15	81,000	38.23	10,955	.183E-3

Table 4-3a. Identification of Receptors with Measured Concentration Ratios \geq 0.1 (10%) for Source Groups Listed

					.D.			
S.G.	000°	045°	090°	135°	180°	225°	270 °	315°
1			3/.149					
3-1	11/.323 12/.146	11/.340 10/.203 12/.186	11/.338 10/.234	11/.267 10/.216	11/.317 10/.285	10/.277 11/.266	11/.269 10/.263 12/.122	10/.280 11/.248
3-2	12/.393 10/.233 11/.218	12/.405 11/.300 10/.118	12/.415 11/.100	12/.421	12/.391 11/.280 10/.197	12/.383 11/.289	12/.450 11/.226 10/.182	12/.410 11/.211
3-3	12/.220	12/.240	12/.224	12/.222	12/.208	12/.237	12/.160	12/.216
3-C		10/.139	10/.141	10/.108			10/.111	
4	15/.300	15/.300	15/.280	15/.311	15/.407	15/.286	15/.301	15/.324 14/.161
5			17/.178 16/.174 18/.167	17/.263 18/.218 16/.216				17/.280 18/.229
7		20/.190	20/.172					20/.120
8	28/.277 27/.136 29/.110	29/.114	28/.204 27/.156	28/.243 27/.232 29/.112	27/.268 28/.249 29/.109	28/.257 27/.233 29/.216	27/.274 28/.254	27/.216 28/.212
10		36/.102	36/.342		36/.402	36/.258	36/.303	36/.329
11	43/.555 42/.395 45/.297 38/.280 39/.255 46/.246 37/.220	43/.521 42/.369 38/.334 39/.318 37/.257 45/.202 44/.176 31/.109	43/.528 42/.382 38/.319 39/.280 40/.129 45/.129 44/.107	43/.548 42/.408 38/.332 39/.301 37/.214 44/.161 40/.106	43/.551 42/.416 38/.264 39/.253 37/.230 44/.227 45/.222 40/.171	43/.555 42/.372 38/.267 40/.264 39/.254 37/.250 45/.194 44/.177	43/.550 42/.352 38/.282 39/.270 37/.258 45/.230 44/.216 40/.168	43/.550 42/.394 45/.317 44/.281 39/.254 38/.228 37/.173 40/.149
14	11/.162 10/.127	11/.296			11/.164	11/.170	11/.174	11/.168

Table 4-3b. Identification of Receptors with Measured Concentration Ratios ≥ 0.025 (2.5%) for the Source Group Listed

				W	.D.			
S.G.	000°	045°	090°	135°	180°	225°	270°	315°
1	3/.059	3/.065	3/.149	3/.045	3/.081 17/.031 16/.025	3/.066 33/.038 1/.036 32/.028	3/.050	3/.050

Table 4-3c. Identification of Receptors with Measured Concentration Ratios \geq 0.01 (1%) for Source Groups Listed.

					.D.			
S.G.	000°	045°	090°	135°	180°	225°	270°	3 15°
3-4	12/.011	12/.018 11/.016			11/.029 10/.028 12/.018	11/.024 12/.021 10/.017	12/.019	12/.017
3-Q			12/.026 11/.022	10/.031 11/.028				
3-R			33/.011				33/.021	
6				19/.020		20/.014		
9	33/.022 34/.015 29/.013	34/.021 33/.019 29/.013	29/.030	45/.011	45/.012 44/.011 37/.010	33/.011	34/.019	33/.017
12		44/.013 45/.013 38/.010	37/.011 38/.011 39/.011 44/.010					
13	46/.014	27/.018 28/.016			46/.042 38/.023 38/.022 45/.020 42/.019 44/.017 39/.013			
15					16/.011	17/.011 18/.010		

Table 4-3d. Identification of Receptors with Measured Concentration Ratios ≥ 0.002 (0.2%) for the Source Group Listed

				W.]	D.			
S.G.	000°	045°	090°	135°	180°	225°	270°	315°
2		12/.0020				32/.0070		
_		,			·	1/.0049		
					;	33/.0039		
						34/.0024		
<u></u>								

Table 4-3e. Identification of Receptors with Measured Concentration Ratios ≥ 0.00015 (.015%) for the Source Listed

				W.]).			
S.G.	000°	045°	090°	135°	180°	225°	270°	315°
59	20/.00023 19/.00021	3/.00027	2/.00019 17/.00015					20/.00028 25/.00020 24/.00017
								26/.00017

Table 4-3f. Identification of Receptors with Measured Concentration Ratios ≥ 0.0001 (.01%) for the Sources Listed

				W.I).			
S.G.	000°	045°	090°	135°	180°	225°	270°	315°
58	11/.00063							
	43/.00043							
	42/.00022							
	38/.00018							
	37/.00017							
	39/.00016							
	45/.00014							
	44/.00012							
60	12/.00014		18/.00015					28/.00024
	-	•	17/.00013					27/.00023
								30/.00013
								26/.0001
								25/.0001

Table 4-4a. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #1

Wind					HUP IV						Ga	tes		Malo	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	.194E-3	0	0	0	0	0	.527E-3	.583E-2	.124E-1	0	0	.257E-2	.829E-2	.195E-2	.179E-2
045	.218E-3	.104E-3	0	0	0	0	0	.744E-2	.247E-1	0	0	.238E-2	.608E-2	.772E-2	.561E-2
090	.688E-2	.357E-3	.105E-3	0	0	.114E-3	0	0	.134E-3	0	0	.373E-3	.984E-2	.115E-1	. 106E-1
135	.111E-3	. 195E-3	0	0	0	.152E-3	0	0	0	0	0	. 292E-2	.184E-1	.172E-1	. 169E-1
180	.184E-3	.347E-3	0	0	0	.217E-3	.807E-2	.791E-2	.679E-2	0	0	.185E-1	.250E-1	.306E-1	. 138E-2
225	.162E-3	0	0	0	0	0	.620E-2	.757E-2	.894E-2	0	0	.873E-3	.242E-2	.177E-2	.194E-2
270	.123E-3	0	0	0	0	0	.260E-3	.706E-3	.345E-3	0	0	0	0	0	0
315	0	0	0	0	0	0	0	.337E-3	.811E-3	0	0	0	0	0	0

Table 4-4b. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #2

Wind					HUP IV						Gate	es		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000			0	0	0	0	0	.259E-3	.629E-3	0	.111E-3	.437E-3	.336E-3	0	0
045			0		0	0	0	.511E-3	.197E-2	0	0	.294E-3	.317E-3	.437E-3	.314E-3
090		0	0	0	0	0	0	0	0	0	0	.107E-3	.587E-3	.728E-3	.683E-3
135	0	0	0	0	0	0	0	0		0	0	.215E-3	. 191E-2	.167E-2	. 153E-2
180	0	0	0	0		0	.480E-3	.493E-3	.513E-3	0	0	.104E-2	.145E-2	. 164E-2	0
225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	0 .	0	0	0	0		0	.168E-3	.620E-3	0	0	0	0		0
315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4-4c. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-1

Wind					HUP IV						Ga	tes		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	.828E-1	.323E+0	. 146E+0	.515E-3	0	0	0	0	0
045	0	0	0	0	0	0	.203E+0	.340E+0	.186E+0	.438E-3	0	.153E-3	.269E-3	.411E-3	.308E-
090	0	0	0	0	0	0	.234E+0	.338E+0	.527E-2	.176E-3	0	.112E-3	.721E-3	.257E-2	. 263E-
135	0	0	0	0	0	0	.216E+0	.267E+0	.233E-1	0	0	.416E-3	.161E-2	.367E-2	.351E-
180	0	0	0	0	0	0	.285E+0	.317E+0	.392E-1	.230E-3	0	.435E-3	.631E-3	.340E-3	.415E-
225	0	0	0	0	0	0	.277E+0	.266E+0	.157E-1	0	0	0	0	0	0
270	0	0	0	0	0	0	.263E+0	.269E+0	.122E+0	.311E-3	0	0	0	0	0
15	0	0	0	0	0	0	.280E+0	.248E+0	.404E-1	. 183E-3	0	0	0	0	0

Table 4-4d. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-2

Wind					HUP IV						Gate	es		Mal	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	o	0	0	0	.233E+0	.218E+0	.393E+0	.474E-3	0	0	0	0	0
045	0	0	0	0	0	0	.118E+0	.300E+0	.405E+0	.448E-3	.112E-3	0	.124E-3	.173E-3	.126E-3
090	0	0	0	0	0	0	.768E-1	.100E+0	.415E+0	.468E-3	0	.119E-3	. 107E-2	.269E-2	.259E-2
135	0	0	0	0	0	0	.723E-1	.613E-1	.421E+0	.658E-3	0	.902E-3	.327E-2	.107E-1	.104E-1
180	0	0	0	0	0	0	.197E+0	.280E+0	.391E+0	.523E-3	.147E-3	.983E-3	.128E-2	.741E-3	.869E-3
225	0	0	0	0	0	0	.833E-1	.289E+0	.383E+0	.517E-3	.120E-3	0	0	0	0
270	0	0	0	0	0	0	.182E+0	.226E+0	.450E+0	.604E-3	0	0	0	0	0
315	0	0	0	0	0	0	.916E-1	.211E+0	.410E+0	.467E-3	0	0	0	0	0

⁰ in Table 4-4 indicates value less than .999E-4.

Table 4-4e. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-3

Wind					HUP IV						Gate	es		Malo	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	.838E-2	.374E-1	.525E-1	.743E-2	.429E-1	.725E-1	.260E-1	.742E-1	.220E+0	.979E-3	.273E-3	.142E-2	.805E-2	.303E-2	.273E-2
045	.869E-2	.298E-1	.672E-1	.742E-2	.396E-1	.522E-1	.349E-1	.323E-3	.240E+0	.619E-3	.210E-3	.272E-3	.490E-2	.518E-2	.462E-2
090	.935E-2	.310E-1	.682E-1	.805E-2	.396E-1	.730E-1	.391E-2	.494E-1	.224E+0	.545E-3	.216E-3	.135E-2	.117E-1	.130E-1	.134E-1
135	.957E-2	.282E-1	.691E-1	.829E-2	.366E-1	.739E-1	.164E-1	.806E-1	.222E+0	.591E-3	.145E-3	.783E-3	.194E-2	.148E-2	.146E-2
180	.100E-1	.308E-1	.674E-1	.851E-2	.385E-1	.700E-1	.319E-1	.748E-1	.208E+0	.592E-3	.170E-3	.120E-2	.322E-2	.128E-2	.137E-2
225	.965E-2	.212E-1	.705E-1	.863E-2	.270E-2	.744E-1	.155E-1	.580E-1	.237E+0	.657E-3	.232E-3	.208E-2	.382E-2	.901E-3	.108E-2
270	.708E-2	.210E-1	.502E-1	.661E-2	.238E-1	.436E-1	.108E-1	.303E-1	.160E+0	.469E-3	.538E-3	.136E-1	.240E-1	.758E-2	.795E-2
315	.868E-2	.258E-1	.600E-1	.843E-2	.315E-1	.634E-1	.147E-1	.493E-1	.216E+0	.710E-2	.184E-3	.131E-2	.126E-1	.249E-3	. 154E-3

159

Table 4-4f. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-4

Wind					HUP IV						Ga	tes		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	.527E-2	.508E-2	.114E-1	0	0	0	0	0	0
045	0	0	0	0	0	0	.576E-3	.158E-1	.184E-1	0	0	0	0	0	0
090	0	0	0	0	0	0	.340E-3	.407E-3	.321E-2	0	0	0	.350E-3	.469E-3	.442E-3
135	0	0	0	0	0	0	. 165E-2	.902E-3	.529E-2	0	0	.187E-3	.590E-3	.180E-2	. 174E-2
180	0	.123E-3	.241E-3	0	.135E-3	.291E-3	.275E-1	.286E-1	.179E-1	0	0	.371E-3	.514E-3	.300E-3	.337E-3
225	0	0	0	0	0	0	.170E-1	.244E-1	.212E-1	0	0	0	0	0	0
270	0	0	0	0	0	0	.602E-2	.836E-2	.189E-1	0	0	0	0	0	0
315	0	0	0	0	0	0	.443E-2	.962E-2	.165E-1	0	0	0	.104E-3	0 .	0

Table 4-4g. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-C

Wind	HUP IV										Gate	Maloney			
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	.590E-1	.141E-1	.476E-1	.144E-3	0	0	0	0	0
045	0	0	0	0	0	0	.139E+0	.183E-1	.601E-1	0	0	0	0	0	0
090	0	0	0	0	0	0	.141E+0	.125E-1	.132E-2	0	0	0	.129E-3	.466E-3	. 458E-
135	0	0	0	0	0	0	.108E+0	.401E-2	.425E-2	0	0	.108E-3	.345E-3	.969E-3	.906E-
180	0	0	0	0	0	0	.807E-1	. 136E-1	.307E-1	0	0	0	.141E-3	0	0
225	0	0	0	0	0	0	.810E-1	.681E-2	.205E-1	0	0	0	0	0	0
270	0	0	0	0	0	0	.111E+0	.890E-2	.753E-1	0	0	0	0	0	0
315	0	0	.111E-3	0	0	.104E-3	.524E-1	.592E-2	.503E-1	.174E-3	.107E-3	0	0	0	0

Table 4-4h. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-Q

Wind	HUP IV										Ga	Maloney			
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
045	0	0	0	0	0	0	0	.108E-3	.296E-2	0	0	0	0	0	0
090	0	0	0	0	0	0	.437E-3	.216E-1	.263E-1	0	0	0	.357E-3	.587E-3	.543E-3
135	0	0	0	0	0	0	.311E-1	.275E-1	.998E-3	0	0	.158E-3	.512E-3	. 185E-2	. 184E-2
180	0	0	0	0	0	0	.220E-3	0	0	0	0	0	0	0	0
225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0,	0	.198E-3	0	0	. 0	0	0	0	0
315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4-4i. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-R

Wind Dir.		HUP IV										Gates				
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
000	0	.324E-3	.603E-3	0	.366E-3	.627E-3	.697E-3	. 142E-2	.273E-2	0	0	0	0	0	0	
045	0	.266E-3	.574E-3		.346E-3	.597E-3	.651E-3		.277E-2	0	0	0	0	0	0	
090	0	.274E-3	.586E-3	0	.345E-3	.637E-3	.820E-3	.725E-3	.233E-2	0	0	0	.128E-3	.287E-3	.291E-3	
135	0	.243E-3	.594E-3	0	.315E-3	.644E-3	. 125E-2	. 152E-2	.217E-2	0	0	0	0	0	0	
180	0	.265E-3	.579E-3	0	.331E-3	.610E-3	.958E-3	.131E-2	.206E-2	0	0	0	0	0	0	
225	0	.182E-3	.606E-3	0	.248E-3	.646E-3	.226E-2	.231E-2	.258E-2	0	0	0	0	0	0	
270	0	.181E-3	.430E-3	0	.204E-3	.380E-3	.502E-3	.185E-2	.215E-2	0	0	.119E-3	.209E-3	0	0	
315	0	.224E-3	.515E-3	0	.270E-3	.549E-3	.296E-3	.102E-2	.225E-2	.241E-3	0	0	.101E-3	0	0	

Table 4-4j. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-58

Wind					HUP IV						Gat	es		Mal	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	° 0	0	0	0	0	0	0	0		0	0	0	0	0
045	0	0	0		0	0	0	0	0	0	0	0	0	0	0
090	0	0	0	0		0	0	0	0	0	0	0	0	0	0
135	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						All mea	sured valu	es less th	an 0.100 E	-3					
180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
315	0	0	0	0	0	0	0	0	0	0	0	0	0		0

Table 4-4k. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-59

Wind					HUP IV						Gat	es		Male	oney	
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
000	o	0		0	0	0	0	0	0	0	0	0	0	0	0	
045	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
090	0	0	0	0		0		0	0	0	0	0	0	.149E-3	.141E-3	_
135	0	0	0	0	0	0		0	0	0	0	0	0	.104E-3	.101E-3	ä
180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
225	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Table 4-4ℓ. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-60

Wind			` *		HUP IV						Gat	es		Mal	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0		0	0	0	0	0	0	0	0	0	0	0	0
045	0	0	0 .	0	0	0				0	0	0	0	0	0
090	0		0			0	40 40			0	0	0	0	.110E-3	0
135	0	0	0	0	0	0	0		0	0	0	0	0	.133E-3	.145E-
180	0		0	0	0	0	0		0	0	0	0	0	0	0
225							and 400								
270	0	0	0	0	0	0	***			0	0	0	0	0	0
315	0	0	0	0		0	0	0	0		0	0	0	0	0

Table 4-4m. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #4

Wind					HUP IV						Gate	es		Malo	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000		0	0	0	0	0	.349E-1	.216E-1	.132E-1	.182E-2	.712E-1	.300E+0	.858E-1	.849E-2	. 795E-2
045	0	0	0	0	0	0	.602E-2	.579E-2	. 187E-2	.177E-2	.724E-1	.300E+0	.490E-1	.254E-1	. 226E-1
090	0	0	0	0	0	0	0	0	0	.192E-2	.808E-1	.280E+0	.524E-1	.329E-1	.355E-1
135	0	.186E-3	0	0	0	0	.512E-3	0	0	.174E-2	.734E-1	.311E+0	.519E-1	.512E-2	.568E-2
180		.111E-3	0	0	0	0	.374E-2	.783E-3	.111E-3	.274E-2	.881E-1	.407E+0	.606E-1	.123E-2	.124E-2
225	0	0	0	0	0	0	.292E-3	0	0	.390E-2	.916E-1	.286E+0	.601E-1	.199E-2	. 277E-2
270	0	0	0	0	0	0	.475E-3	.374E-3	0	.399E-2	.948E-1	.301E+0	.907E-1	.477E-2	.454E-2
315	0	0	0	0	0	0	.503E-2	.272E-2	.209E-2	.197E-2	.161E+0	.324E+0	.883E-1	.272E-3	.195E-

⁰ in Table 4-4 indicates value less than .999E-4.

Table 4-4n. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #5

Wind					HUP IV						Gate	es		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000		.247E-3	0	.637E-3	0	.535E-3	.105E-2	.394E-2	.638E-2	0		.610E-3	.998E-1	.462E-1	.387E-1
045	.402E-3	.317E-3	0	.678E-3	0	.946E-3	0	.400E-2	.104E-1	0		.796E-3	.943E-1	.539E-1	.524E-1
090	.464E-3	.462E-3	0	.713E-3	0	.112E-2	0	.114E-3	.110E-3	0		.104E-2	.174E+0	.178E+0	. 167E+0
135	.286E-3	.174E-2	0	.424E-3	.267E-3	.711E-3	0	0	0	0	***	.415E-2	.216E+0	.263E+0	. 218E+0
180	.567E-3	.875E-3	0	.125E-2	0	.430E-3	.597E-2	.457E-2	.119E-2	0	.335E-3	.446E-2	.153E-1	.494E-1	. 453E-1
225	.448E-3	.735E-3	0	.809E-3	0	.406E-3	.698E-2	.388E-2	.230E-2	0	.126E-2	.863E-2	.559E-1	.581E-1	.558E-1
270	.310E-3	.159E-3	0	.464E-3	0	.140E-2	.960E-2	.493E-2	.238E-2	0	.175E-2	.107E-1	.389E-1	.774E-1	.885E-1
315	.293E-3	.286E-3	0	.489E-3	0	.721E-3	.947E-2	.153E-1	.219E-1	0	•••	.476E-3	.519E-1	.280E+0	.229E+

Table 4-4o. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #6

Wind					HUP IV						Gat	es			oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	o	0	o	0	0	0	o	0	0
045	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
090	0	0	0	0	0	0		40.40	0	0	0	0	0	0	0
135	0	0	0	0	0	0	.133E-3	.283E-3	.518E-3	0	0	0	.386E-3	.543E-3	.521E-
180							0	0	0			0	0	0	0
225	0	0	0	0	0	0	0	0	0	~-	0	0	0	0	0
270	0	0	0	0	0	0	0	***	0	0	0	0	. 0	0	0
15	0	0	0	0	0	0	0	0	0		0	0	0	0	0

Table 4-4p. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #7

Wind					HUP IV						Ga	tes		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0
045	0	0	0	0	0	0	0	0	.213E-3	0	0	0	.102E-3	0	0
090	0	0	0	0	0	0	0	0	0	0	0	0	.587E-3	.800E-3	.750E-3
135	0	.100E-3	0	0	0	0	.370E-2	.764E-2	.124E-1	0	0	.101E-2	.622E-2	.818E-2	.783E-2
180	0	0	0	0	0	0	.125E-2	.712E-3	.740E-3	0	0	0	0	0	0
225	0	0	0	0	0	0	0	0	0		0	0	0	0	0
270	0	0	0	0	0	0	0		0	0	0	0	0	0	0
315	0	0	0	0	0	0	0	0	0		0	0	0	0	0

Table 4-4q. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #8

Wind					HUP IV						Ga	tes		Malo	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
045	0	0	0	o	0	0	0	0	.369E-3	0	0	0	0	0	0
090	0 ,	0	0	0	0	0	.119E-3	.259E-3	.440E-3	0	0	.189E-3	.240E-2	.337E-2	.314E-2
135	0	.212E-3	0	0	0	0	.405E-1	.477E~1	.507E-1	.177E-3	0	.173E-2	.496E-2	.134E-1	.131E-1
180	0	0	0	0	0	0	.105E-2	.543E-3	.399E-3	0	0	0	0	0	0
225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0	0		0	0	0	0	0	o o	0
315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4-4r. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #9

Wind					HUP IV						Gat	es		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
045	0	0	0	0		0	0	0	.595E-3	0	0	0	.165E-3	.124E-3	0
090	0	0	0	0	0	0		0	0	0	0	0	.282E-3	.360E-3	.335E-
135	0	0	0	0	0	0	.200E-2	.123E-2	.610E-3	0	0	0	.120E-3	.475E-3	.496E-
180	0		0	0	0	0	.120E-3	0	0	0	0	0	0	0	0
225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0	.234E-3	.483E-3	0	0	0	0	0	0	0
315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

⁰ in Table 4-4 indicates value less than .999E-4.

Table 4-4s. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #10

Wind					HUP IV						Ga	tes		Malo	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0		0	o	0	.952E-3	.781E-3	. 198E-2	0	0	0	0	0	0
045	0	0	0	0	0	0	.510E-2	.327E-2	.453E-2	0	0	.421E-3	.559E-3	.751E-3	.683E-
090	0	0	0	0	0	0	.745E-2	.665E-2	.376E-2	0	0	.154E-3	.973E-3	.251E-2	. 247E-
135	0	0	0	0	0	0	.874E-2	.116E-2	.212E-3	0	0	.516E-3	.351E-3	.165E-2	.173E-
180	0	0	0	0	0	0	.239E-2	.349E-3	0	0	0	0	0	0	0
225	0	0	0	0	0	0	.903E-3	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0	.160E-2	.529E-2	.309E-3	0	0	0	0	0	0
15	0	0	0	0	0	0	0	.132E-3	.570E-3	0	0	0	0	0	0

Table 4-4t. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #11

Wind					HUP IV						Ga	tes		Male	oney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	o	0	o	0	0	0	.474E-3	0	0	0	0	0	0
045	0	0	0	0		0	.717E-3	.125E-2	.507E-2	0	0	.600E-3	.124E-2	.140E-2	.118E-
090	0	0	0	0	0	0	.106E-1	.157E-1	. 167E-1	0	0	.316E-3	.404E-2	.626E-2	.589E-
135	0 .	0	0	0	0	0	.957E-2	.549E-2	.305E-1	0	0	.107E-2	.999E-3	.399E-2	.428E-
180	0	0	0	0		0	.954E-3	.247E-3	0	0	0	0	0	0	0
225	0	0	0	0	0	0	.342E-3	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0	.227E-2	.448E-2	.304E-3	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	.618E-3	0	0	0	0	0	0

Table 4-4u. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #12

Wind					HUP IV						Ga	tes		Male	ney
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	0	.834E-3	.971E-3	.680E-3	0	0	0	0	0	
045	0	0	0	0	0	0	0	.177E-2	.432E-3	0	0	0	.106E-3	0	0
090	0	0	0	0	0	.101E-3	.254E-2	.291E-2	.200E-2	0	0	.129E-3	.382E-3	.710E-3	.715E-
135	0	0	0	0	0	0	0	0	0	0	0	.101E-3	0	.251E-3	.275E-
180	0	0	0	0	0	0	.116E-3	.328E-3	0	0	0	0	0	0	0
225	0	0	0	0	0	0	.156E-3	.919E-3	0	0	0	0	0	0	0
270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4-4v. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #13

				HUP IV						Ga	tes		Male	oney
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	0	o	0	0	0			0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	. 196E-3	0	0	0	0	0	0
0	0	0	0	0	0	.920E-3	.203E-2	.257E-2	0	0	0 .	.474E-3	.596E-3	.569E-3
0	0	0	0	0	0	.132E-2	.346E-3	0	0	0	.193E-3	.128E-3	.532E-3	.576E-3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .920E-3 0 0 0 0 0 0 .132E-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .920E-3 .203E-2 0 0 0 0 0 .132E-2 .346E-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 10 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 203E-2 .257E-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 10 11 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 .920E-3 .203E-2 .257E-2 0 0 0 0 0 0 .132E-2 .346E-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 10 11 12 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 0 .920E-3 .203E-2 .257E-2 0 0 0 0 0 0 0 .132E-2 .346E-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 6 7 8 9 10 11 12 13 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 0 0 1920E-3 .203E-2 .257E-2 0 0 0 0 <	4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0	4 5 6 7 8 9 10 11 12 13 14 15 16 17 0

⁰ in Table 4-4 indicates value less than .999E-4.

Table 4-4w. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #14

Wind					HUP IV					Gates				Maloney	
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	.117E-3	0		.127E-3	.127E+0	.162E+0	.701E-1	.103E-3	.176E-3	.122E-3	.293E-3	.121E-3	. 177E-:
045	0	0	0	0	0	0	.195E-2	.296E+0	.129E-1		0	.532E-3	.122E-3	.133E-3	0
090	0	0	0	0	0	0	.128E-2	.169E-1	.180E-3	0	0	0	.505E-3	.155E-2	.159E-
135	0	0	0	0	0	0	.245E-2	.547E-2	.631E-2	0	0	.200E-3	.762E-3	.302E-2	.285E-
180	0	0	0	0	0	0	.577E-1	.164E+0	.344E-3	0	0	.144E-3	.204E-3	.136E-3	. 157E-
225	0	0	0	0	0	0	.322E-1	.170E+0	.404E-3	0	0	0	0	0	0
270	0	0	0	0	0	0	.925E-2	.174E+0	.524E-2	0	0	0	0	0	0
315	0	0	0	0	0	0	.187E-1	.168E+0	.260E-2	0	0	0	0	0	0

Table 4-4x. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #15

Wind					HUP IV						Gate	es		<u>Maloney</u>	
Dir.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
000	0	0	0	0	0	o	.269E-3	.148E-2	.274E-2	0	0	.169E-2	.826E-2	. 162E-2	. 142E-2
045	0	0	0	0	0	0	0	.207E-2	.666E-2		0	.196E-2	.558E-2	.447E-2	.330E-2
090	0	0	0	0	0	0	0	0	0	0	0	.316E-3	.555E-2	.692E-2	.653E-2
135	0	0	0	0	0	0	.162E-3	.362E-3	.621E-3	. 0	0	.584E-3	.503E-2	.427E-2	. 385E-2
180	0	.141E-3	0	0	0	0	.347E-2	.200E-2	.133E-2	0	.139E-3	.751E-2	.108E-1	.935E-2	.944E-2
225	0	0	0	0	0	0	.578E-2	.422E-2	.458E-2	0	.121E-3	.215E-2	.777E-2	.111E-1	. 103E-1
270	0	.238E-3	0	0	0	.821E-3	.279E-2	.140E-2	.283E-2	0	.126E-3	.280E-2	.453E-2	.699E-2	.610E-
315	0	.283E-3	0	0	0	0	.153E-2	.235E-2	.656E-2	0	0	.680E-3	.409E-2	.903E-3	.476E-

⁰ in Table 4-4 indicates value less than .999E-4.

Table 4-5. Summary of Maximum Concentration Ratios and Direction of Occurrence from Tables 4-4 by Source Group

Source	INTAKE	S]	HUP IV					Gat	es			oney
Group	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	090° .688E-2	090° .357E-3	090° .105E-3	0 0	0	180° .217E-3	180° .807E-2	180° .791E-2	045° .247E-1	0	0 0	180° .185E-1	180° .250E-1	180° .306E-1	135° .169E-1
2	0 0	0 0	0 0	0	0 0	0 0	180° . 480E-3	045° .511E-3	045° .197E-2	0	000° .111E-3	180° .104E-2	135° . 191E-2	135° .167E-2	135° . 153E-2
3-1	0 0	0	0 0	0 0	0 0	0	180° .285E+0	045° .340E+0	045° .186E+0	000° .515E-3	0 0	180° .435E-3	135° .161E-2	135° .367 E- 2	135° .351E-2
3-2	0	0	0 0	0 0	0 0	0 0	000° .233E+0	045° .300E+0	270° .450E+0	135° .658E-3	180° .147E-3	180° .983E-3	135° .327E-2	135° .107E-1	135° .104E-1
3-3	Omitte	eđ.													
3-4	0 0	180° .123E-3	180° .241E-3	0	180° .135E-3	180° .291E-3	180° .275E-1	180° .286E-1	270° .189E-1	0	0 0	180° .371E-3	135° .590E-3	135° .180E-2	135° .174E-2
3-C	0	0	315° .111E-3	0 0	0 0	315° .104E-3	090° .141E+0	045° .183E-1	270° .753E-1	315° .174E-3	315° .107E-3	135° .108E-3	135° .345E-3	135° .969E-3	135° .906E-3
3 - Q	0 0	0	0 0	0 0	0	0 0	135° .311E-1	135° .275E-1	090° .263E-1	0	0 0	135° .158E-3	135° .512E-3	135° .185E-2	135° .184E-2
3-R	Omitte	ed ·													
3-58	All Va	lues less	than 0.100E	E-3											
3-59	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	090° .149E-3	090° .141E-3
3-60	0 0	0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	135° .133E-3	135° .145E-3

0 indicates value less than .999E-4.

Table 4-5. Summary of Maximum Concentration Ratios and Direction of Occurrence from Tables 4-4 by Source Group (Continued)

Source	INTAKI	ES			HUP IV						Gate	es		Male	oney
Group	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
4	0 0	135° .186E-3	0	0	0	0	000° .349E-1	000° .216E-1	000° .132E-1	270° .399E-2	315° .161E+0	180° .407E+0	270° .907E-1	090° .329E-1	090° .355E-1
5	180° .567E-3	135° .174E-2	0	180° .125E-2	135° .267E-3	270° .140E-2	270° .960E-2	315° .153E-1	315° .219E-1	0 0	270° .175E-2	270° .107E-1	135° .216E+0	315° .280E+0	315° .229E+0
6	0	0	0	0 0	0	0	135° .133E-3	135° .283E-3	135° .518E-3	0 0	0 0	0	135° .386E-3	135° .543E-3	135° .521E-3
7	0 0	135° .100E-3	0	0 0	0	0	135° .370E-2	135° .764E-2	135° .124E-1	0 0	0	135° .101E-2	135° .622E-2	135° .818E-2	135° .783E-2
8	0 0	135° .212E-3	0	0 0	0	0	135° .405E-1	135° .477E-1	135° .507E-1	135° .177E-3	0	135° .173E-2	135° .496E-2	135° .134E-1	135° .131E-1
9	0 0	0	0	0 0	0	0	135° .200E-2	135° .123E-2	135° .610E-3	0	0 0	0	090° .282E-3	135° .475E-3	135° .496E-3
10	0 0	0	0	0 0	0	0	135° .874E-2	090° .665E-2	045° .453E-2	0 0	0 0	135° .516E-3	090° .973E-3	090° .251E-2	090° .247E-2
11	0 0	0	0	0	0	0	090° .106E-1	090° .157E-1	135° .305E-1	0 0	0 0	135° .107E-2	090° .404E-2	090° .626E-2	090° .589E-2
12	0 0	0	0	0 0	0 0	090° .101E-3	090° .254E-2	090° .291E-2	090° .200E-2	0	0 0	090° .129E-3	090° .382E-3	090° .710E-3	090° .715E-3
13	0 0	0	0	0 0	0 0	0	135° .132E-2	090° .203E-2	090° .257E-2	0 0	0 0	135° .193E-3	090° .474E-3	090° .596E-3	135° .576E-3
14	0 0	0	000° .117E-3	0	0 0	000° .127E-3	000° .127E+0	045° .296E+0	000° .701E-1	000° .103E-3	000° .176E-3	045° .532E-3	135° .762E-3	135° .302E-2	135° .285E-2
15	0 0	315° .283E-3	0	0	0	270° .821E-3	225° .578E-2	225° .422E-2	045° .666E-2	0	180° .139E-3	180° .751E-2	150° .108E-1	225° .111E-1	225° .103E-

⁰ indicates value less than .999E-4.

Table 4-6. Tabulation of Run Numbers Assigned to the "Follow-On" Tests and Model Test Parameters/Tracers

Run #	Wind Dir.	Wind Vel. (m/s)	Source Group #	Tracer (%-Type)	Volume Flow (m ³ /s)	Source Group #	Tracer (%-Type)	Volume Flow (m ³ /s)
201 201R 202	270° 270° 225°	2.44	2	9.01M	.378E-4	1	9.99E	.104E-2
203 203R 204	270° 270° 315°		4	9.01M	.324E-3	5	9.99E	.630E-3
208	090°					3-Q	9.99E	.115E-3
209 210 211	270° 315° 225°		3-1	9.01M	.362E-3	3-2	9.99E	.657E-3

Table 4-7. Measured Concentration Ratios (χ) , by Wind Direction, for the Eastern and Western HUP IV Penthouse Air Inlets, for the Source Groups Listed

		W.	D.	
S.G.	090°	225°	270°	315°
1		E/.345E-2 W/.304E-2	E/.347E-2 W/.142E-2	
2		E/.195E-3 W/.875E-4	E/.180E-3 W/.107E-3	
3-1		E/.847E-3 W/.146E-2	E/.118E-1 W/.151E-1	E/.270E-1 W/.118E-1
3-2		E/.446E-1 W/.127E+0	E/.438E-1 W/.177E+0	E/.418E-1 W/.162E+0
3-Q	E/.207E-1 W/.227E-1			
4			E/.104E-2 W/.582E-3	E/.262E-2 W/.286E-2
5			E/.401E-2 W/.454E-2	E/.255E-2 W/.479E-2

NOTE: Where test runs were repeated, the most conservative values were tabulated.

Table 4-8a. Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 4

Solvent	Liquid Solvent Evaporation Rate (m1/8-hr)	K*	Solvent Vapor Creation Rate (ml/8-hr)	Exhaust Discharge (m ³ /8-hr)	Exhaust Solvent Vapor Concentration (ppm)
Acetone	100	326.5	32,650	50,019	.653
Ether	5	231.2	1,156	50,019	.023
Ethyl Acetate	40	245.1	9,804	95,145	.103
Methanol	1	592.5	593	95,145	.006
Trimethyl Benzene	4	174.9	700	95,145	.007
Xylene	1	198.9	199	95,145	.002
	Acetone Ether Ethyl Acetate Methanol Trimethyl Benzene	Solvent Evaporation Rate (m1/8-hr) Acetone 100 Ether 5 Ethyl Acetate 40 Methanol 1 Trimethyl Benzene 4	Solvent Evaporation Rate (ml/8-hr) K* Acetone 100 326.5 Ether 5 231.2 Ethyl Acetate 40 245.1 Methanol 1 592.5 Trimethyl Benzene 4 174.9	Solvent Evaporation Rate (m1/8-hr) K* Creation Rate (m1/8-hr) Acetone 100 326.5 32,650 Ether 5 231.2 1,156 Ethyl Acetate 40 245.1 9,804 Methanol 1 592.5 593 Trimethyl Benzene 4 174.9 700	Solvent Evaporation Rate (m1/8-hr) K* Creation Rate (m1/8-hr) Discharge (m³/8-hr) Acetone 100 326.5 32,650 50,019 Ether 5 231.2 1,156 50,019 Ethyl Acetate 40 245.1 9,804 95,145 Methanol 1 592.5 593 95,145 Trimethyl Benzene 4 174.9 700 95,145

^{*}Solvent Liquid-to-Vapor Volume Ratio

Table 4-8b. Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 5

Exhaust #	Solvent	Liquid Solvent Evaporation Rate (ml/8-hr)	K*	Solvent Vapor Creation Rate (ml/8-hr)	Exhaust Discharge (m ³ /8-hr)	Exhaust Solvent Vapor Concentration (ppm)
125	Ethanol	8	411.0	3,288	13,592	. 242
	Formaldehyde	4	651.4	2,606	13,592	. 192
	Propylene Oxide	7	355.0	2,485	13,592	.183
144	Acetone	5	326.5	1,633	320,773	.005
	Ethanol	7,445	411.0	3,059,895	320,773	9.54
	Formaldehyde	960	651.4	625,344	320,773	1.95
	Methanol	20	592.5	11,850	320,773	.037
	Toluene (Readi-Solv")	300	225.8	67,740	320,773	.211
	Xylene	3,140	198.9	624,546	320,773	1.95
156, 158	Ethyl Ether	200	231.2	46,240	25,145	1.84
& 162	Methylene Chloride	50	375.0	18,750	25,145	.746
159	Chloroform	10	298.1	2,981	15,631	. 191
	Ethyl Acetate	30	245.1	7,353	15,631	.470
	Hexane	20	183.8	3,676	15,631	.235
173	Acetonitrile	25	459.5	11,488	28,543	. 402
	Chloroform	10	298.1	2,981	28,543	. 104
	Ethyl Acetate	10	245.1	2,451	28,543	.086
	Ethyl Ether	5	231.2	1,156	28,543	.040
	Methanol	10	592.5	5,925	28,543	.208
	Toluene	20	225.8	4,516	28,543	.158

^{*}Solvent Liquid-to-Vapor Volume Ratio

Table 4-8c. Total Solvent Vapor Concentrations (ppm) from Selected Exhausts within Source Group #5

	**		. 4. 1 4 . 79	1	`	Total Vapor
	vap	or Concentr	#158,	nausts (pp	<u>m)</u>	the Exhausts
Solvent	#125	#144	#162	#159	#173	(ppm)
Acetone		.005				.005
Acetonitrile					.402	. 402
Chloroform				. 191	. 104	. 134
Ethanol	.242	9.54				9.16
Ethyl Acetate				.470	.086	.222
Ethyl Ether			1.84		.040	.883
Formaldehyde	. 192	1.95				1.87
Hexane				.235		.235
Methanol		.037			.208	.051
Methylene Chloride			.746			.746
Propylene Oxide	.183					.183
Toluene		.211			. 158	.207
Xylene		1.95				1.95

Table 4-8d. Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #4 Exhausts

Solvent	Exhaust Vapor Concentrations		Vapor Concentrations for East Inlets		Vapor Concentrations for West Inlets
(Exhaust #)	(ppm)	χ*	(ppm)	χ**	(ppm)
Acetone (121)	.653	.0026	.001698	.0029	.001894
Ethyl Acetate (116)	.103		.000268		.000299
Ethyl Ether (121)	.023		.000060		.000067
Methanol (116)	.006		.000016		.000017
Trimethyl Benzene (116)	.007		.000018		.000020
Xylene (116)	.002		.000005		.000006

^{*}Concentration ratio measured for worst wind conditions (315°) = .0026.

^{**}Concentration ratio measured for worst wind conditions (315°) = .0029.

Table 4-8e. Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #5 Exhausts

Solvent	Exhaust Vapor Concentrations	7/ *	Vapor Concentrations for East Inlets	مارسان	Vapor Concentrations for West Inlets
Solvent	(ppm)	χ*	(ppm)	χ**	(ppm)
Acetone	.005	.00401	.00002	.00480	.00002
Acetonitrile	. 402		.00161		.00193
Chloroform	.134		.00054		.00064
Ethanol	9.16		.0367		.0440
Ethyl Acetate	.222		.00089		.00107
Ethyl Ether	.883		.00354		.00424
Formaldehyde	1.87		.00750		.00898
Hexane	.235		.00094		.00112
Methanol	.051		.00020		.00024
Methylene Chloride	.746		.00299		.00358
Propylene Oxide	.183		.00073		.00087
Toluene	.207		.00083		.00099
Xylene	1.95		.00782		.00936

^{*}Concentration ratio measured for worst wind conditions (270°) = .00401.

^{***}Concentration ratio measured for worst wind conditions (315°) = .00480.

Table 5-1. Identification of Visualization Data Recorded on VHS Video Cassettes

Run No.	Description	Wind Direction
	CASSETTE #1	
1	Med. Ed. Incinerator Source	225°
2	Med. Ed. Incinerator Source	180°
3	HUP IV Cooling Towers	180°
4	HUP IV Cooling Towers	225°
5	HUP IV Cooling Towers	270°
6	HUP IV Cooling Towers	315°
7	HUP IV Cooling Towers	360°
8	HUP IV Cooling Towers	045°
9	HUP IV Cooling Towers	090°
10	HUP IV Cooling Towers	135°
11	Source Group 11	135°
12	Source Group 11	180°
13	Source Group 11	225°
14	Source Group 11	270°
15	Source Group 11	315°
16	Source Group 11	360°
17	Source Group 11	045°
18	Source Group 11	090°
10	Takahar 26 Garraga Wariad	
19	Intakes 36 - Sources Varied	090°
20	Intakes 36 - Sources Varied	135°
21	Intakes 36 - Sources Varied	180°
22	Intakes 36 - Sources Varied	225°
23	Intakes 36 - Sources Varied	270°
24	Intakes 36 - Sources Varied	315°
25	Intakes 36 - Sources Varied	360°
26	Intakes 36 - Sources Varied	045°
27	Intakes 13, 14, 15, 16 - Sources Varied	045°
28	Intakes 13, 14, 15, 16 - Sources Varied	090°
29	Intakes 13, 14, 15, 16 - Sources Varied	135°
30	Intakes 13, 14, 15, 16 - Sources Varied	180°
31	Intakes 13, 14, 15, 16 - Sources Varied	225°
32	Intakes 13, 14, 15, 16 - Sources Varied	270°
33	Intakes 13, 14, 15, 16 - Sources Varied	315°
34	Intakes 13, 14, 15, 16 - Sources Varied	360°
35	Intakes 37, 38, 39 - Sources Varied	360°
36	Intakes 37, 38, 39 - Sources Varied	045°
37	Intakes 37, 38, 39 - Sources Varied	090°

Table 5-1. continued.

Run No.	Description	Wind Direction
	CASSETTE #2	
38	Intakes 37, 38, 39 - Sources Varied	135°
39	Intakes 37, 38, 39 - Sources Varied	180°
40	Intakes 37, 38, 39 - Sources Varied	225°
41	Intakes 37, 38, 39 - Sources Varied	270°
42	Intakes 37, 38, 39 - Sources Varied	315°
101	Intakes HUP IV Penthouse - Sources 1 & 2	225°
102	Intakes HUP IV Penthouse - Sources 1 & 2	270°
103	Intakes HUP IV Penthouse - Sources 4 & 5	270°
104	Intakes HUP IV Penthouse - Sources 4 & 5	315°
105	Intakes HUP IV Penthouse - Source 3	315°
106	Intakes HUP IV Penthouse - Source 3	270°
107	Intakes HUP IV Penthouse - Source 3	225°
108	Intakes HUP IV Penthouse - Source 3-Q	090°

NOTE 1: Runs 101 through 108 were made subsequent to October 1984 modifications to HUP IV rooftop configuration.

NOTE 2: Counter number and run times were supplied in a separate Video Log. $\,$

TATI CBR-84|85-1a copy 2

WIND-TUNNEL STUDY OF
EXHAUST-INTAKE CROSS CONTAMINATION
AND DISPERSION OF ROOFTOP EMISSIONS,
HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA
(HUP PHASE IV)

- APPENDICES -

by

J. E. Cermak¹ and J. A. Peterka²

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

COLLEGE OF ENGINEERING

COLORADO STATE UNIVERSITY

FORT COLLINS, COLORADO

Parinty day Toleron.

,种以及及自由

型和地位。Library

WIND-TUNNEL STUDY OF EXHAUST-INTAKE CROSS CONTAMINATION AND DISPERSION OF ROOFTOP EMISSIONS, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA (HUP PHASE IV)

- APPENDICES -

by

J. E. Cermak¹ and J. A. Peterka²

for

Hospital of the University of Pennsylvania 3400 Spruce Street Philadelphia, Pennsylvania 19104

Fluid Mechanics and Wind Engineering Program
Fluid Dynamics and Diffusion Laboratory
Department of Civil Engineering
Colorado State University
Fort Collins, Colorado 80523

CSU Project 2-95750

July 1984 Modified March 1985 CER84-85JEC-JAP1a

Professor-in-Charge, Fluid Mechanics and Wind Engineering Program, and Director, Fluid Dynamics and Diffusion Laboratory, Colorado State University.

²Professor, Department of Civil Engineering, Colorado State University.

APPENDIX A

TABULATION OF CONCENTRATION RATIOS

W. D. 000°

	SOURCE GROUP #12	SOURCE GROUP #13 CONCENTRATION RATIO
SAMPLE PT.	CONCENTRATION RATIO	
12456789012345678012345678901234567890123444444444444444444444444444444444444	3544444333344446*234332222233333222224 00004444333344446*234332222223333322222545222224 0000000000000000000000000	4 * 55555555555555555555555555555555555

W. D. 045°

SOURCE GROUP #12

SOURCE GROUP #13

PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456780123456789012345678901234567	2324444423443243333222222333221244321124 	2325555555444444224333371123222533522225552222555552222555555555

W. D. 090°

SOURCE

SOURCE

	GROUP #12	GROUP #13
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890100000000000000000000000000000000000	2324444 -0032444 -004444 -100444 -100444 -1487066 -100444 -1004	23255555555555555222453222254422222500005555555555

W. D. 135°

SOURCE	
GROUP	
#12	

SOURCE GROUP #13

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
12345678901234567801234567890123444444444444444444444444444444444444	555555555555444553425244455555555555555	5555555234553333545555544442352222222222

W. D. 180°

SOURCE

SOURCE

SAMPLE PT.	GROUP #12	GROUP #13 CONCENTRATION RATIO
	CONCENTRATION RATIO	
1234567890123456789012345678901234567890123456789012345678901234567	0545444 0545562 05455444 05562 0645562 0645562 0645562 0645562 0645562 0645562 064562 0645562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 064562 06462 064562 064	05555555554455555544555555445555555555

W. D. 225°

SOURCE
GROUP
#12

SOURCE GROUP #13

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
12345678901234567	4454444 -0044444 -004444 -004444 -004444 -00444	5655555555555555555666655345555456433445344331465555555555

W. D. 270°

SOURCE
GROUP
#12

SOURCE GROUP #13

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	• 210 •	**************************************
45 46 47	•141E-03 •312E-03 •118E-03	• 446Ē - 03 • 199Ē - 01 • 254Ē - 04

W. D. 315°

SOURCE

SOURCE

	GROUP #12	GROUP #13
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789012345678901234567890123467	**************************************	5655555555555555555555533445535544444454

W. D. 000°

SOURCE

	GROUP #4	GROUP #5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123567890123444444444444444444444444444444444444	02244545411121011222333355444353322414555545566 	21234343432224*3111343333444553532*444*55555555555555555555

W. D. 045°

	SOURCE GROUP #4	SOURCE GROUP #5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	32244444222210111=	412333434352114*31111*444433555555554544555555555555

W. D. 090°

	SOURCE GROUP #4	SOURCE GROUP #5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901234567890123456789012345678901234567	05334454545455555445555544555554455555445555	0123343424334*20000344*4454544444555454455445642126294536294445445554544554454455545445554544555454

W. D. 135°

SOURCE GROUP

	#4	#5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567	**349EE=-00101223455** **31838897EE=-00101223455** **1338897EE=-000101223455** **131111883EE=-0005** **1111883EE=-0005** **1111883EE=-0005** **1111883** **111883** **111883** **111883** **11188**	513324333344445 * 200003344444444444444444444444444444444

W. D. 180°

SOURCE GROUP #4

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901123456789011234567890123456789012333333333333333333333333333333333333	**************************************	### Part
42 42 44 45 46 47	•669E-05 •121E-04 •127E-04 •132E-04 •243E-05	•118E-04 •199E-04 •207E-04 •244E-04 •419E-05

W. D. 225°

SOURCE

	GROUP #4	GROUP #5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901123456780112345678901234567890123456789012345678901234567	044*545555344210122455555345555435333424344554364555553455555435333424344555555435555345555534555553455555555	212334343222242211144444444443333332233331423333526947855956888006391825553163225937754790825047863213259377547908250478655553163213125353547547908250478659178659

RUN #15R

W. D. 270°

SOURCE GROUP #4

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890123456780123456789012344444	44455554334210122444444444442342333324233335 040405554334210122444444444442342333324233335 040405554955542555555656 041666644775409816161616161616161616161616161616161616	32233343422222421111333444443333332223222

W. D. 315°

SAMPLE

SOURCE	SOURCE
GROUP	GROUP
# 4	# 5
CONCENTRATION	CONCENTRATION
RATIO	RATIO

PT. -308E--033 -1015E--033 -1293EE--033 -2984E--03 -1884E--03 -4884E--01 -4884E--01 -4884E--01 -5558 12345678901123 14151617 ***** 1222222222222333335556 1222222222222333335556

W. D. 000°

SOURCE	SOURCE
GROUP	GROUP
#2	#1
ONCENTRATION	CONCENTRATI
RATIO	RATIO

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	• 703 • 338 • * * * * * * * * * * * * * * * * * * *	221344444321442222342245555324443*55454445554566666666666666666666666
4 /	*****	

W. D. 045°

SOURCE

	GROUP #2	GROUP #1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901234567	• 10533 * 57 * 66532 * 67 * * * * * * * * * * * * * * * * *	311334444555545555454544544555545 -001334444555545 -001334444552222453454545445544555546 -001334444455222245 -0013344444555465 -001334444455222245 -00133444455222245 -00133444455222245 -00133444455222245 -001334444552455554 -001334444554455554 -001334444554455554 -001334444554455554 -001334444554455554 -0013344445554 -0013344445554 -0013344445554 -00133444455554 -00133444455554 -00133444455554 -00133444455554 -00133444455554 -00133444455554 -00133444455554 -00133444455554 -0013344455554 -0013344455554 -0013344455554 -00133444554 -0013344455554 -0013344455554 -0013344455554 -0013344455554 -0013344455554 -0013344455554 -00133444554 -0013344455554 -0013344455554 -0013344455554 -0013344455554 -00133444554 -001334445 -001334445 -00134454 -0013

W. D. 090°

SOURCE
GROUP
#2

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890123456789012345678901234567890123456789012345678901234567	**33**5666555555***********************	3202333443443443211445344445555454532443*55454544445555629875284684253456607138832693223*80538557269************************************

W. D. 135°

SOURCE	
GROUP	
#2	

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
123456789011345678901234567890100000000000000000000000000000000000	*****	•144E=U3
<u> </u>	•587E-03 •143E-03	•326E = 02
3	•143E-03 •806E-06	•326E-02 •446E-01 •111E-03
<u> </u>	• 204E - 04	1955-03
Š	•627F=06	•223E-04
7	•403E-06	•214E-04
8	.627E-06 .403E-06 .179E-05 .118E-04	•446E-01 •111E-03 •195E-03 •223E-04 •214E-04 •152E-03 •155E-04
9	•118E-04	•152E-03
10	•112E-05 •112E-05 •940E-06 •493E-06 •151E-04 •215E-03	•155E-04 •292E-04 •169E-04
11	●74UL=U6	•272E-04
13	● 47JE = UD - 1515 = ñ4	•188E-04
15	•1316-04 •215F-03	•292E-02
16	•191E-02	•184E-01
17	•167E-02	•172E-01
18	•153E-02	•292E - 02 •194E - 01 •172E - 01 •169E - 01 •494E - 04
19	•255E-05	•494E-04
20	• 1515 - 03 • 1915 - 02 • 1675 - 02 • 1535 - 02 • 2555 - 05 • 1795 - 06	.846E-05 .143E-03
21	•801E-U5	•143E - 03
24	.851E-06 .358E-06 .179E-06 .896E-07	-05 -05 -03 -03 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05
24	-896F-07	.793F-05
25	*****	•429E-05
26	****** •537E-06	•812E-05
27	*****	.812E-05 .478E-05 .414E-05
28	•448E-07 •152E-05	•4145-05 •2625-04
29	•152E=05	•262E=04 •456E=05
30 31	•134E-06 •851E-06	•436E-03
32	-226F-04	• 973E-04
33	•152E-05	•973E-04 •477E-04
34	• 851E - 06 • 226E - 04 • 152E - 05 • 228E - 05 • 125E - 05	•439E-04
35	•125E-05	•614E-04
36	•851E-06 •582E-06	•148E-04
37	•582E-06	•321E-04 •347E-04
30 30	.107E-05 .448E-06	.248E-04
40	473F=04	•984E-03
41	• 473E - 04 • 148E - 05	•984E-03 •276E-04
42	•452E=05	.248E-04 .248E-03 .276E-04 .879E-04 .211E-04 .303E-04
43	•313E-06	•211E-04
44	•761E-06 •493E-06	•303E-04
45	•493E-06	•327E-04
4 b	•134E-05 •179E-06	•1795-04 •1205-05
4 /	◆1/7t=06	•12UE-US

W. D. 180°

	SOURCE GROUP #2	SOURCE GROUP #1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	2336465**	211333444322224411124445544444444323333444433443344795547755539869155351883557789551625549788314684795533166847955318508479553185084795531850847955318508479553185084795531850847955318508479789789850848991555577899551551662664323718553318553318553318553318553318553318532855789959676125662123778553968479553185662133785132557899596761256621337851325578995967612566213378513255789959676125662133785132557899595967612566213378513256621337851325578995959676125662133785132566213378513256621337857857857857857857857857857857857857857

W. D. 225°

SOURCE	SOURCE
GROUP	GROUP
#2	#1
CONCENTRATION	CONCENTRATIO
RATIO	RATIO

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890123456789012345678901234567890123456789012345678901234567	2 *** 66665644464444457 ** 6** 64343532222334322235 ********************************	11113444422224432222345555442324211122211123111124

W. D. 270°

SOURCE GROUP #2

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456890123456789012345678901234567	054466667**433555556546**6655333555533633334633333****	2213444455333345444223*********************

W. D. 315°

SOURCE GROUP #2

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	5546666654465456633343333333344445556655554666666554465666333433333333	431444444433344444433222222222222222222

W. D. 000°

SOURCE GROUP #6

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	**65556665566665555522**43365664**54655**6667556667** **59800656564994658065664**54655**6667556669** **98700656564994658065EE**** **139891113437958*** **13437955**** **31716**28314312EE*** **317726*** **86691431795*** **136621**3257499*** **86691431795*** ***** ****** ****** ****** ***** ****	054344444444444444444444444444444444444

W. D. 045°

SOURCE

	GROUP #6	GROUP #7
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567	**************************************	*324444445434445445444544456846666666666666

W. D. 090°

SOURCE

SAMPLE PT.	GROUP #6 CONCENTRATION RATIO	GROUP #7 CONCENTRATION RATIO

W. D. 135°

SOURCE

SAMPLE PT.	GROUP #6 CONCENTRATION RATIO	GROUP #7 CONCENTRATION RATIO

W. D. 180°

SOURCE

SAMPLE PT.	GROUP #6 CONCENTRATION	GROUP #7 CONCENTRATION
	1234567890123456789012345678901234567890123456789012345678901234	*****
4	*****	• 401E-04
4	****	2055-05
5	****	• 264E-05 • 273E-05 • 244E-05
Š	*****	•273E-05
7	*****	•244E-05
8	*****	•110E - 05
9	****	•284E - 05
10	•412E-04	•125E-02 •712E-03
11	•183E-04	•712E-03
12	•168E=04	•740E-03
13	*****	•495Ë-05 •213E-05
14	•205E-05	•213E-05 •270E-04
13	• 146E - 05	- 635F = 04
17	•148E-05	•635E-04 •629E-04
1ี่ หั	-141F-N5	•684E-04
19	•125E-02 •655E-03 •228E-06	•483E-01
20	•655E-03	•164E-01
21	•228E-06	•488E-04
22	*****	•966F - 05
23	*****	•111E-04 •282E-05
25	***	•282E-05
26	*****	•585E-05
21	•121E-02 •130E-02 •809E-03	•157E-01 •168E-01 •552E-02
29	•130E-02 •809F=03	•160E-31 •552F-02
30	•506E-04	•305E-03
31	•865E-06	-579F-04
32	•255E-05	•152E-03
33	-244F-04	-113F-02
34	•202E - 04 •182E - 06	•923E-03 •541E-04
3 5	•182E-06	•541E-04
36	•261E-04	•801E-03
37	•225E-03 •217E-03	•336E-02 •328E-02
38	•217E-03	•328t=02
39	•11/E-03 •160E-03	•165E-02 •165E-02 •233E-02 •240E-04
4 U 4 1	•319E-06	-240F-04
42	•220E-03	-328F-02
43	8645-04	-141F-02
44	•864E-04 •186E-03	-305E-02
45	•218E-G3	•343E-02
46 47	•683E-05	328E-02 -141E-02 -305E-02 -343E-02 -104E-03
47	****	****

W. D. 225°

SOURCE

SAMPLE PT.	GROUP #6 CONCENTRATION RATIO	GROUP #7 CONCENTRATION RATIO

W. D. 270°

	SOURCE GROUP #6	SOURCE GROUP #7
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	567566667 * 765566632564 43335366656655665556667114066612 * 212426124113434445121433673536665665556655566555665558865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665	04*555555555555555555555555555555555555

W. D. 315°

SOURCE
GROUP
#6

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	• 18	45444444445555**44444444444445555**444444

W. D. 000°

SOURCE

GROUP

SOURCE

GROUP

	#11	#9
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	44344444444444444444444444444444444444	005555555555555555522223334333142221122********************

W. D. 045°

	SOURCE GROUP #11	SOURCE GROUP #9
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567901234567890123456789012345678901234567	42144432244322212122233111301221200011000034 004444322212121222331113012212200011000034 8077688291757642221212223312233294755764222222222222222222222222222222222	5325555555435543342423333555**142221112**************************

W. D. 090°

SOURCE GROUP #11

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890123456789012345678901234567	02144444111144322224133334322141112200000034-001444444111144322224133334322114112200000034-0014444441111443222241333343221441112200000034-001444444111144322224413333432214411112200000034-0014444444111144322224413333432221444411112200000034-001444444411114432222441333343222792112211111111111111111111111111111	532555555**44455544555441422222***********

W. D. 135°

SOURCE GROUP #11

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567890123456789012345678901234567	043344444422144222344334433443344444444221444232234433443	54455555223555433334355555443553422322222222

W. D. 180°

SOURCE

SAMPLE PT.	GROUP #11 CONCENTRATION RATIO	GROUP #9 CONCENTRATION RATIO

W. D. 225°

	SOURCE GROUP #11	SOURCE GROUP #9
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789011234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012344444667	44544443454444555335555533113244333320000200013 	*5555555555555555555555555555555555555

W. D. 270°

	SOURCE GROUP #11	SOURCE GROUP #9
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789012345678901234678901234567890123444444444444444444444444444444444444	45**4444444444444444444444444444444444	55455555334555555543555544422445555122222**222235500000000000000000000000000

W. D. 315°

SOURCE

	GROUP #11 CONCENTRATION RATIO	GROUP #9 CONCENTRATION RATIO
SAMPLE		
PT.		
1	•536E-04	•632E-06
2	• 312E - 05 • 812E - 05 • 712E - 05 • 385E - 04 • 319E - 04 • 362E - 04	•218E-07 •553E-05
4	•385E-04	.392F-06
5	•319E-04	•653E-06 •240E-06
6 7	• 384E - 04	•610E-06
8	-405E-04	•566E - 06
9	• 356E = 04	•610E-06
10	•121E-04 •863E-04 •618E-03	•109E-05 •950E-05
12	•618E-03	-658F-04
13	• 394E - 04 • 369E - 04	•129E-05 •588E-06
15	-241E-04	•632E-04 •392E-05 •453E-05
16	•287E-04	•392E-05
17	•116E-04 •942E-05	• 390E = 05
19	•268E-02	•390E-05 •675E-03
20	•167E-01 •519E-03	•202E-02 •847E-04
21	▲168F=03	-189F-04
23	•662E-03 •222E-02	•113E-03
24	•222E-02 •474E-02	.415E-03 .405E-03
26	•508E-02	
27	▲384F-01	•177E-02
28 29	.383E-01 .765E-02	•192E-02 •312E-02
30	•516E - 02	•334E-03
31	• 262Ē-02 • 120E-03	•365E-03 •177E-02 •192E-02 •312E-02 •334E-03 •123E-03 •465E-04
32 33	• 340 = -01	
34	-111F-01	•732E - 02
35	• 274E - 03 • 916E - 02	•411E-04 •637E-04
37	•173E+00	*****
38	•228E+00	****
39 40	•274Ē+00 •149E+00	****
41	•278E-02	*****
1234567890123444444444444444444444444444444444444	•394Ë+00 •550E+00	*****
4 3	▲281F+00	****
45 46	•317E+00 •131E-01	******* •179E-03
46 47	•131E-01 •196E-03	*****
71	41 732 00	

W. D. 000°

	SOURCE GROUP #14	SOURCE GROUP #15
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	• 11935 • 11936 • 1	*224455543225522222333343355333553336*53334* *000000000000000000000000000000000

W. D. 045°

	SOURCE GROUP #14	SOURCE GROUP #15
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890124567890123456789012345678901234567890123456789012345678901234567		*2254555452252222343433554435533335222355542245 *000000000000000000000000000000000000

W. D. 090°

	SOURCE GROUP #14	SOURCE GROUP #15
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	**033445545 **003445545 **0005 **11005 **110	62254554444447532224444545554435333444422354432245

W. D. 135°

SOURCE GROUP #14

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	**44545554222453322565565**555364422532223432225************************	63454555443333553222244555555555454433533553333553333553333553333553333553333

W. D. 180°

SOURCE
GROUP
#14

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	- 44	*2243544422224321224444555555544445433434343434398EEEEEEEEEEEEEEEEEEEEEEEEE

W. D. 225°

SOURCE
GROUP
#14

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1 2345678901234567890123456789012345678901234567		6235455554222432211445555553435322333422223548666555542665555343532333222334222235486665396969696969696969696969696969696969

W. D. 270°

SOURCE
GROUP
#14

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
12345678901234567890123456789012345678901234567	544555552024444455555442123443353334433332500000000000044444555554421234433533344333325005641504455555244433333325025641504561625656466666666666666666666666666666	5225532222243554422243322222342222353460355463849719EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

W. D. 315°

SOURCE GROUP #14

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	555545555102444453244333322223342322243322225 005564555551022444453244333322222342322243322225 00945EEEE	533553554422224432332223322233333333333

W. D. 000°

SOURCE GROUP #58

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
12345678901234567890123456789012345678901234567	**65556334**5555555454454454545**********	**55555**555544445544445544445544445544445544445554444

W. D. 045°

	SOURCE GROUP #58	SOURCE GROUP #59
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	65466654665555566555665556655566555665	*43565556545554444455446****************

W. D. 090°

SOURCE

GROUP

SOURCE

GROUP

SAMPLE PT.	#58	#59
	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567901234567890012345678901234567890100000000000000000000000000000000000	5445555545555445555444555 00445555555555	534455555 * 66555533344576566555665556655566555565556555565

W. D. 135°

SOURCE GROUP #58

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567890123456789012345678901234567	055556565555655556555566555565556555565555	555555555554433344555566555655555555555

W. D. 180°

SOURCE

GROUP

SOURCE

GROUP

	#58	#59
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789012345678901234567890123456789012345678901234567	05566666666666666666666666666666666666	55555555555555555555555555555555555555

W. D. 225°

SOURCE
GROUP
<i>#</i> 58

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890123444444444444444444444444444444444444	06666666666666666666666666666666666666	55555555555555555555555555555555555555

W. D. 270°

	SOURCE GROUP #58	SOURCE GROUP #59
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	19666666666666666666666666666666666666	5555555555555555555554555544555554455555

W. D. 315°

SOURCE GROUP #58

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
12345678901234567890123456789012345678901234567890123456789012345678901234567	0566656666555665566*6444555455555554445644445566656566665555665566*64445554555	55555555555555555555555555555555555555

W. D. 000°

SOURCE

GROUP

#10

SOURCE

GROUP #60

	11.10	1100	
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO	
1234567890100000000000000000000000000000000000	45455 * 55533255555221222233222112222234222235 -000455 * 55533255555221222233222112222234222235 -000455 * 55533255555221222233222312222234222235 -00046 * 555332555555221222233222332223322235 -00046 * 555332555555221222332223322233222332223	05555555555555555555555555555555555555	

W. D. 045°

	SOURCE GROUP #10	SOURCE GROUP #60
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789011234567890112345678901123456789012222222222333333333333333333333333333	-721-004 -721-0	555*5555555555555555555555555555555555

W. D. 090°

SOURCE

GROUP

SOURCE

GROUP

	#10	#60
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	• 1022 • 1022 • 1022 • 1022 • 1033 • 1044 • 1054 • 1054 • 1054 • 1054 • 1055 • 1055	**************************************

W. D. 135°

SOURCE

SAMPLE PT.	GROUP #10	GROUP #60 CONCENTRATION RATIO
	CONCENTRATION RATIO	
1234567890123444444444444444444444444444444444444	• 2964 • 2964 • 2964 • 2965 • 2162 • 2163 • 2162 • 2162 • 2162 • 2162 • 2162 • 2162 • 2162 • 2163 • 2163	55555555555555555555555555555555555555

W. D. 180°

SOURCE GROUP #10

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	- 7005544555566455645556656566565665656656	*5555555555555555555555555555555555555

W. D. 225°

SOURCE GROUP #10

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
PT. 1234567890112345678901123456789012222222222222333333333333333333333333		
42 43 44 45 46 47	•214E-01 •249E-02 •140E-04	*****

W. D. 270°

SOURCE GROUP #10

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1 2 3 4 5 6	.100E-04 .121E-05 .805E-06 .778E-05 .662E-05 .621E-05 .760E-05	•145E-05 •181E-05 •448E-05 •354E-05 •246E-05 •275E-05 •376E-05 •333E-05 •289E-05
12345678901234567890123456789012345678901234567	•104E-04 •519E-05 •160E-02 •529E-03 •760E-05 •679E-05 •434E-05 •331E-05 •362E-05	******* •419E-05 -340E-05
16 17 18 19 20 21 22	•626E-06 •179F-05	3499E-05 -564E-05 -470E-05 -149E-04 -160E-04 ******
23 24 25 26 27 28 29	•130E-05 •133E-03 •107E-05 •411E-05 •111E-03 •138E-03 •803E-04 •706E-05	-144E-055 -114E055 -1238E055 -1633E055 -3311E055 -311E055 -318E055
30 31 32 33 34 35 36	• 211E - 04 • 2590E - 05 • 165E - 05 • 765E - 01 • 413E - 01 • 383E - 04 • 303E + 00 • 276E - 02 • 227E - 02 • 114E - 01	-188E-05 -376E-05 ******* ******
339 40 41 42 43	• 27 6 - 02 • 22 7 6 - 02 • 13 1 6 - 01 • 20 6 6 - 03 • 67 7 5 - 02 • 87 1 6 - 02 • 25 7 6 - 02 • 32 7 6 - 02	****** *398E=05 ******* *******
45 46 47	• 257E-02 • 327E-02 • 432E-03 • 398E-05	****** •528E-05 •108E-05

W. D. 315°

SOURCE

	GROUP #10	GROUP #60
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1 2345678901234567890123456789012345678901234567	46655555555555562235332211222301112311124-0-0005555555622353322112223011123111124-0-000364293555562235332211222301112311124456332202974399073500690946179188173798732221284257352221284257352231227881553942573225540555405554055540555405554055540555	55566665*6565*5555544565553333434***5**********

W. D. 000°

SOURCE GROUP #3Q

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	-1056 -1006	44444444444444444444444444444444444444

W. D. 045°

	SOURCE GROUP #3Q	SOURCE GROUP #8
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901234567890123456789012345678901234567	532555555325544443345335532344444455555555	43244444444444444444444444444444444444

W. D. 090°

	SOURCE GROUP #3Q	SOURCE GROUP #8
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	532555531144433333545555223344*44555544455545 	4214444333344322221323334400111223333333333

W. D. 135°

SOURCE	
GROUP	
#3Q	

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	545545551113553322555555652233343333346 	423444411134221134434440000112111134455512121221212121212121212121212121212

W. D. 180°

SOURCE	SOURCE
GROUP	GROUP
#3Q	#8
CENTRATION	CONCENTRATI

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	0556555534555555554566666*2233454453333335333353333533335333333333	44444444423344444234444000012333321111311124

W. D. 225°

	SOURCE GROUP #3Q	SOURCE GROUP #8
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789012345678901234567890123456789012345678901234567	55665555555555555555555555555555555555	44444444444444444444444444444444444444

W. D. 270°

	SOURCE GROUP #3Q	SOURCE GROUP #8
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567890123456789012345678901234567	•105 ****** •1065 •1065 •1066	455444444435444444424544320001134334322222224000134554444444442454432000113433432222222401345694466402366738854310284444245444424544442396677059142216362332233221122322228452773932967705914219398416366402366766944664023667388543102844442396677059142216366640001128854310284444584445939667705914221636664001128854310284444584444584119398416366640011288541666640011288541666640011288541666664001128854166666400112885416666664001128854166666666666666666666666666666666666

W. D. 315°

	SOURCE GROUP #3Q	SOURCE GROUP #8
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567890123456789012345678901234567	**************************************	*644444444454444431343222000112433444444444444444444

W. D. 000°

	SOURCE GROUP #3C	SOURCE GROUP #3-1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	044444411134444343435455454444444555461119688761944444454555147361546330154544444987619444498761944449876194444987619497044449876194970444498761949704444987619497044449876194970444498761949772116415467719483321544444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949776494988898988989898898989898989898989898	454555545100034444433343343343343434444443444335947361EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

W. D. 045°

SOURCE GROUP #3C

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	443444445544555545454444554455445544554	148880000000000000000000000000000000000

W. D. 090°

SOURCE
GROUP
#3C

1	-04
18	234332244444454333444444454454444444444

W. D. 135°

SOURCE

GROUP

SOURCE

GROUP

	#3C	#3 - 1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1 23 45 67 89 11123 45 67 89 111211111111111111111111111111111111	44544444444444444444444444444444444444	44544440001444322224444543334444343333444436

W. D. 180°

SOURCE

	GROUP #3C	GROUP #3-1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901234567890123456789012345678901234567	54544444411114445555445554545534444444455554455534545553444444	5444440001343333344444333344453445311113857204551929111138572045514053416242428EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

W. D. 225°

SOURCE GROUP

SOURCE

GROUP

	#3C	#3-1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	14444444444444444444444444444444444444	57**55555500014444445545544445544533334343444445542576677539179285453682574837748396829764 ***********************************

W. D. 270°

SOURCE

GROUP

SOURCE

GROUP

	#3C	#3-1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890100000000000000000000000000000000000	-45590444-00214-0045555455-0044-0044-0044-0044-0044-0	45545500003444444444444444335311367117639121488075063744444351137117639211688075063744444351131313911466211488075063782211678211678211678221167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821

W. D. 315°

SOURCE

SOURCE

SAMPLE PT.	GROUP #3C CONCENTRATION RATIO	GROUP #3-1 CONCENTRATION RATIO

W. D. 000°

SOURCE

SOURCE

SAMPLE PT.	GROUP #3-2 CONCENTRATION RATIO	GROUP #3-4 CONCENTRATION RATIO

W. D. 045°

SOURCE
GROUP
#3-2

SOURCE GROUP #3-4

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890123456789012345678901234567	043244440000334333334443354555464349055544453645559956555995645555995655559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455555956655559566555595665555956655556555565655556565555656555656555656	5435555543114444445544544554455455555555

W. D. 090°

SOURCE

GROUP

SOURCE

GROUP

	#3-2	#3-4
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	1235445910003432224444455555545555545555455554555	003355566643332554333555656***4445554666476666**5**66666**5**6666**5**6835555**********

W. D. 135°

SOURCE

GROUP

SOURCE

GROUP

SAMPLE PT.	#3-2 CONCENTRATION RATIO	#3-4 CONCENTRATION RATIO

RUN #85R

W. D. 180°

SOURCE

SOURCE

SAMPLE PT.	GROUP #3-2	GROUP #3-4
	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567890123456789012345678901234567	**************************************	*34433443311114433333344444444444444444

W. D. 225°

SOURCE

GROUP

SOURCE GROUP

	#3-2	#3-4
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
12345678901234567890123456789012345678901234567	-004 -005 -004 -004 -004 -004 -004 -004	534555511114444445545544443333333333434333434333434333333

W. D. 270°

SOURCE

SOURCE

	GROUP #3-2	GROUP #3-4 CONCENTRATION RATIO
SAMPLE PT.	CONCENTRATION RATIO	
1 2345678901234567890123456789012467	455444440000344444554534533333433335433335433333433335433333433333543333343333543333343333543333343333543333543333354333335433335543333554333355433335543333554333355433335543333554333355433355433355433335543333554333355	0534455555552221445544445555555344453333444433336 -000000000000000000000000000000000

W. D. 315°

SOURCE

SOURCE

SAMPLE PT.	GROUP #3-2 CONCENTRATION RATIO	SOURCE GROUP #3-4 CONCENTRATION RATIO

W. D. 000°

SOURCE GROUP #3R SOURCE GROUP #3-3

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
12345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890100000000000000000000000000000000000	**************************************	42222112111111111111111111111111111111

W. D. 045°

SOURCE

SOURCE

	GROUP	GROUP
	#3R	#3 - 3
SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
123456789000000000000000000000000000000000000	****** • 456E=04	•272E-04 •107E-02
3	.831E-04	•137E-02
4	•717E - 04	•869E-02
5	•266Ë-03 •574E-03	•298E-01 •672E-01
7	*****	•742E-02
8	•346E-03	•396E-01 •522E-01
10	•597E-03 •651E-03	•522E-01 •349E-01
11	****	•323E - 03
12	•277E-02	•240E+00
13	•416Ē-05 •708E-06	•619E-03 •210E-03
15	•208E-05	•210E-03 •272E-03
16	•528E-04	•490E - 02
17	•605E−04 •516E−04	•518Ë-02 •462Ë-02
18 19	• 272E - 04	• 462E = 02 • 243E = 02
20	•128E-05 •179E-03	• 243E - 02 • 267E - 03
21	•179E=03	•117E-01 •178E-01
22 23	•167E-03 •918E-04	•1/8E-01
24	•839E-04	•946E-02
25	****** •973E=06	•151E-03 •188E-03
25 27	●フ/JE=Uti	•687E-04
28	*****	•667E-04
29	•185E-03	•198E-01
31	****** •128E-03	•730E-04 •138E-01
32	•213E-03	•125E-01
33	•888E-02 •452E-02	•266E-01
34 35	• 452£ + U2 • 654F = 03	•677E-01 •679E-01
36	•654E-03 •472E-02	•175E-01
37	•108E-04	•782E-03
38 39	.871E-05 .200E-04	.889E-03 .249E-02
ĂÓ	•336E-05	•368E-03
41	•686E-04	•777E-02
42 63	•902E-05 •707E-04	•557E-03 •818E-02
44	•349E-05	•378E-03
45 46	•345E-05	•356E-03
46 47	•150E-05 •274E-04	•461E=04 •336E=02
7 /	• £ 1 TL = U T	•335E-02

W. D. 090°

	SOURCE GROUP #3R	SOURCE GROUP #3-3
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123444444444444444444444444444444444444	0443433333255443335533445*	422221121033221113331122233 -00211212102103322111333112223 -0021122102332323232323232323232323232323

W. D. 135°

SOURCE

SOURCE

	GROUP	GROUP
	#3R	#3-3
SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1	•532E-06	•375E-04
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16	•142E-04 •497E-05	•161E-02 •543E-03
4	-812F-04	•957F - 02
5	• 243E - 03	•282E-01 •691E-01
6 7	•594E - 03 •706E-04	•6715-01 •829F-02
8	•315E=03	•829E-02 •366E-01
9	•644E-03	•739E-01
1 1	•125E=02 •152F=02	•164E-01 •806E-01
12	•125E-02 •152E-02 •217E-02 •408E-05	•222E+00
13	•408E-05	•222E+00 •591E-03 •145E-03
15	• 355Ē = 05 • 199Ē = 04	•145E-03 •783E-03
16	•189E-04	-194F-02
17	•317E-04 •330E-04	•148E-02 •146E-02
19	•452E-05	•473E-03
20	•359E=05	•369E - 03
21	•909E-04 •169E-03	•160E-01 •195E-01
23	• 328E-04	• 193E - 01 • 378E - 02 • 180E - 02
24	•156E+04	•180E-02
25 24	• 359E - 05 • 452E - 05	•386E-03 •449E-03
27	•346E - 05 •333E - 05	- 338F-03
28	•333E-05	•332E-03
29 30	•267E-03 •537E-05 •221E-03	•302E-01 •610E-03
31	•221E-03	•253E-01
32	•248E-03 •195E-03	•283E-01 •140E-01
33 34	-440F - 03	•140E-01 •377E-01
35	•759E-04 •313E-02	•910E-02 •387E-01
36	•313E=02 ******	•387E-01
38	539E−04	•584E-02 •591E-02 •586E-02 •307E-02
39	.539E-04 .525E-04 .155E-03	•586E-02
40	•155E=U3 •694E=04	•307E-02 •770E-02
42	•495E-04	•363E-02
178901234567890123456789012345644444444444444444444444444444444444	•109E-03	•124E-01
44	• 488E - 04 • 460E - 04	•535E-02 •503E-02
46	•665E-05	•503E - 03
47	•362Ē-04	•422E-02

W. D. 180°

SOURCE GROUP #3R

SOURCE GROUP #3-3

SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
1234567890123456789012345678901234567890123456789012345678901234567	045433490 0645433491 0645433491 0645433491 0645433491 0645433491 0645433491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 06454333491 0645433491 06454344491 0645434491 0645434491 0645434491 064543491 0645434491 0645434491 06454391 06454391 064	#22311121112111122222222222222222222222

W. D. 225°

	SOURCE GROUP #3R	SOURCE GROUP #3-3
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
123456789012345678901234567890123456789012345678901234567890123444444444444444444444444444444444444	*5643343322255445555444433322*244444333344**********	**23221122110212222222222222222222222222

W. D. 270°

SOURCE GROUP #3R SOURCE GROUP #3-3

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	5454334333222553344545545444454312*24603343332225533445455454444554312*2*4443444344523332225533445455455455455455455455455455455455	423221121222222222222222222222222222222

W. D. 315°

SOURCE GROUP #3R SOURCE GROUP #3-3

SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
1234567890100000000000000000000000000000000000	**************************************	0334211221 0334211221 00334211221 00334211221 0033322222121221221 003332222222222

APPENDIX B

TABULATION OF DIMENSIONLESS CONCENTRATION COEFFICIENTS (K)

W. D. 000°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
124567890123456780123456789012345678901234567	19376629250765090111233275035032013486753258144 1193766482017554762044373399158243585389354894572 2011221220361222115327767158243585389351221052872 41 9943243555032112177033 11 49933	0021111101000011113**10100100100000011111212121111111111	1 5660238853149397272480105116350346577751567756 83444444334855443325585204605422355108272481053 52 992767156985674644364446053 7513644446053 21 7 241	1 * 2233222 * * 3222223 * 000000111023223 * 232323212 * * 12232222 * * * 3222223 * 0000001110232223 * 232323212 * * 12232222 * * * * * * * * * * * * * * * *

W. D. 045⁰

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	8340047827870187397367059855676286900883662043 4588967119296553837173513598556762869883662043 759476829965538322177391331751229812048818183765686 4111111123222611820218522388423468112466113 41129234 14907 27 111439307 221 1237	10011111111111111111111111111111111111	8544340970941512488501174605534533518586073552 908988886049915787038871204971858647188898 20 1322401385677751467407862 508238 52 22 801287112 812 2551 1 22 882 21 122 122	110222222310221111001120011000031111222211102 00000222222310221111000112110000031111222211002 ++++++++++++++++++ EEEEEEEEEE

W. D. 090°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	53181292888219608215092555626911659670733427707408095129848821960825556149722184559022872523308673338457523111143523676596707483836732872523322330867333397774523111143523676765883368732892287199455395132213221945539513221945539513221945539513221945539513221945539513221322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194555395132219455539513221945553951322194555395132219455555555555555555555555555555555555	924111111111111111111111111111111111111	932831514995117371759407365 9328111888957845976365105751499517371759407365 9328111888957842776365105751499511528569 599513939841972118889497711759469 4992 7 6314416380897711759469 11 22138469 11 124891152869 11 124891152869 11 124891152869 11 13376	10122222201122100002012222211120001112211110211112110222222

W. D. 135°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123444444444444444444444444444444444444	021410978478244497682018771157982315356509764818123562451505580841882145910751766435003976481898888888888888888888888888888888888	22222222222222112211002222222222222222	7720108780698346123831248646419299567065847651 88967666635688987882860075534104894788812144933 473 96688 1 223 1136 19808316671949370 53 84567 223445	22222222222222222222222222222222222222

W. D. 180°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	8904031810072771215559984032174667803557348565 69793392957203390467893091595056535730753448565 11 138 11 1322112 1 138 11 81 322112	22222112111031112222222123321123222220011111111	89496752486395801977772530985152307450076052957 93221223223355667432222368216152307450076052957 41	22222222222222222222222222222222222222

W. D. 225°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567801234567890123456789012345678901234567	1623372865548808831610250581473010115495564420 75858969257839634556426993861147301011549556440577 75858969259199893068925975322476470577 11212242 2211 9 11 11 923831157822 21 22 2211 9 11 21 221	112111111111111111122021112202111200000110000011 010211111111	17536067311110204470882730616356583857070520031 4448532815524033667782117326055180964669328752 44444444444444444533345976656974041996583137 52 52 77 17	2332233223322233333221122222222232111221

W. D. 270°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678012345678901234567890123444444444444444444444444444444444444	38641111460926080954944844615803584503315974141 22222222211118 11122111153 4664127774983 11122211118 11122111153 3164127774483	11121111111111111111111111111111111111	8583716464106356756265108015590080101783265560 77778888888798877777777775828663843599817766229021 112011201 76	23322222222222222222222222222222222222

W. D. 315°

		Source Group 12		Source Group 13
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678012345678901234567890123467	2111900618661165074502966939017216143700096513 777777777885877778771877899225522763770083387457858 221111 62 1897 182786	23322222222222222222222222222222222222	635609844698210534007282922988121635710127045 54455555544655544852696255595436494677866600963 5942 7 2211 212106 5	23322222222222222222222222222222222222

W. D. 000°

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1235678901234567890123456789012345678901234567	48994576065450000008047821753291521977953457415 6119792064450000000000000000000000000000000000	001222222110232110000100221102001011222232222233 000122222221102322110000100221102001011222232222233 ++	248781428604000004959041084328064013970486024 239395984460400004959041084328064013970984471 413418562988731555555 56 353355332532 48 1 2 24897 295000 9 62 3 12 24897 2550 2 34 12 12 4218	01111202000012*0211120010022221210*21*22222222

W. D. 045⁰

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	594900743027260000097456679994554340825402876562 294937524560000097456679994554340825402876562 428111 1 159522567224 177288741095521938 9805521901822058245161 31244179484 1147 1259018219799888878 1125917 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110222222110023211 * 212102223222210022232122222222222222222	5374161240000986701350621471123835554075653 1336665321373 20043124670375517443363554499145222 1206665802256672269411112121211111111111111111111111111	210112020202012*0221*22210232323232222222222

W. D. 090°

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	5664888297125100000000000000000000000000000000000	20012222221 	5889911944375100000019277751333028853738922528 278742701546576 483377211888977589611212918808709 278733225443762 022707121889971420414124688112291621636 28522 3 5 522702 28522 3 5 8887	211111202020211232222222222222222222222

W. D. 135°

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	4946535095648000002199304293437938591335942942 3378760458791837609261499304293437938591335942942 181151121221929235521111111111112121111834115121 20773121 6771111	**0221431200130232111123**3**3332**3**21312220001**********	776408591474010000005913446403691985568729862944 7396245826453 9004641238038462755574205800617267 3356232555445222128590198132036880182 4118 213 43 25839179554444443344534444466034443 959922 113 919	2111021102222 * 022211222222222222222222

W. D. 180°

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	93002767932646000063990046690705901331852186005 168 311763823914349654406590705901331852186005 188288288222 1111445343543645545553 1883 1883		72007593457854000004827401254390617913526199642 553002212364580017053873320917485745745705387333333333333333333333333333333333	21110022011011002101111222222222222222

W. D. 225⁰

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	60056663975644000004812592531517353767087215558 77 1185419606477824770050250184826373404985294443 11 11111721827745444465373404985294443 899624411111111111114184333161893 923 161	21 * 223222201212320122222222222222222222222	8408092246259800005986757636355304198610861523 9867922681244515488605170139744032216189258695808 94403640515449999444919999607986832161892534636515 59723 4 2210883066433333464530089534533003 311 35554 222	01010202110002012222222222221211011000011200100013 +++000002011202222222222222212110011000011200100013 EFFER ++++++++++++++++++++++++++++++++++

RUN #15R

W. D. 270°

Source

Source

		Group 4		Group 5
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	5279572198781200008004156403653255351300553756071902284341586846231069504654794269679503222 1111111111111111111111111111111111	21222222100111232111122222211111112002000001011103++-++++	966292729849970000060634440514228000412402363494 6698968853723557396671884768043587588941231999 4121822259602118974563 4121 2 63202180741845458617944258447974563 421 4750 134 134	01011212010020112211111110000110000011000003 0++++++-+-++

W. D. 315°

		Source Group 4		Source Group 5
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456780123456789012345678901234567	4777748884224000000000000000000000000000	1111222222100002321100110001111011111111	94092069049000000009353645932745901120669812 6417702525251516900000935536459327459011206698812 14631426125479903 377109553131072477083127949679514801 2460 2694231299102357714627211119367 3774231 2111111 11	01011212011111 * 11220100000000000010111112111102 +++++++-++++++++++++++++++++++++

W. D. 000°

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	279 8888735637834642036777607320552803978092642 279 88882588563783464203677760732005528039777777777777777777777777777777777777	0001 ++001 ++0001 ++0001 ++0001 ++0001 	8100082938099154164899861537707104656009376495976338885194666111175337749467106137398422662924235715335649432915846222222222222222222222222222222222222	0111122222101220000012020331310221**3323222332*** +++

W. D. 045⁰

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123444444444444444444444444444444444444	564039531940522873230936254635563011170073301559 746 777717581886422910889999999962512900991200908 42 27707 11	1001*23*2321110000102*1311**************	57701666995089781082129822675630068339913939523 435853756310452853444588794804153192523561455408 19953844474785553447033334345456334434443344 4011 55 1866 1 48 31 1232	11111122222300122000002312000333323202222*33222233220000000000

W. D. 090°

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	00083093241035334036216489651649866408171087860 9457666666763078866766666666666666666666666	**************************************	00027002002758786339678241491645360567339315416 921104828622039598514592781099997152361218025334 8494026261269997549857342466494238622157952996664 29424 2932 4539 1	1020112212212211112312223333232310221*332322233333 -00000000000000000000000000

W. D. 135⁰

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890134567890123456789012345678901234567	0006427813996952352762060892173296712841955982 77604092510928818490999808829092310001942890919 33 1 5374 4333	*10212221222222222222222222222222222222	0501219174508595787786221554553038220181374978 66005724259208723322261031525457689235942314568 9457713339333382714393000808888891864312759760146 1887 1887	1011122212222011123123333323212222222222

W. D. 180°

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	(AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	0 0 0 0 5 5 2 1 2 1 1 2 5 1 7 0 5 6 1 3 5 1 9 4 1 1 6 1 2 4 6 4 4 0 2 9 2 2 1 7 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11121222*1111121110022*****232*02011100000010200002* +++0-0000001111111111111111111111111111	700072901111555547166054253290151508246643728599486292472356272189640094327237562721898440988655556566863655543580330777551426768119886555565668636555435223104155333333333333333333333333333333333	0111112221000022111102222332222101111121222111122++++

W. D. 225°

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	OIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	0 0 0 9 1 4 8 2 5 4 5 5 6 9 0 7 6 0 3 1 6 1 4 4 1 8 0 8 6 5 9 5 5 5 5 6 5 2 2 7 5 5 5 5 6 5 2 2 2 7 5 8 4 1 1 8 9 8 6 5 5 5 5 5 5 8 1 0 0 6 0 3 7 4 8 0 0 0 4 6 6 6 6 7 6 4 1 8 9 8 6 5 5 5 5 5 5 8 1 0 0 6 0 3 9 4 1 7 5 3 7 4 8 0 0 0 4 6 6 6 7 6 4 1 8 5 2 1 3 2 1 2 2 4 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	2**3223220000210111123*2*21000011221111111111	0000685575957517512216800968781380729760398142399177536188707297603981423991775361887817156438713089159488411371167744446337156446494444447716456009687529664471187752661744444444444444444444444444444444444	111112222220012210001233232201020111001111011110222222000122100001233232320010201110011110111102222222000122332323232

W. D. 270⁰

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456890123456789012345678901234567	2867977212612297955500212523692675796392123930 557111111371140942152 2258934856342521623791911 1555555593655325216237919110 44521612297955500212523692675796392123930	22132333*10012112*2221000012210101012**	84444231000504571932570222814480841808066642333 64720537462466666367239333945639214295867239368193945639214235632122374600396819392328018528018529312 7499311113365211223652122374600396819312 13111236321122374500766819312 122 1113243519293288117245829 1236529122232814351929328111236529	000112222221112222220001*22211111110000100000120011102 0000000000

W. D. 315°

		Source Group 2		Source Group 1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	60315167232962354424307162800981545010580577167 160000099492091610527276835520751287915390603959 15555545561557555643779279099361111766645566654 69613143233244212	22022222222002111222110000100000001011113221111100000000	3542031516774222477476111778665385174114056720935 66146733334809754115622573195171595237688536299 257212112682124326314837983108449376881175535 8877578586314434937688112546751 13 533 1522 5125 1	2111122222211222221000001000001010121222222

W. D. 000°

		Source Group 6		Source Group 7
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	38677646022394424940080784331564232130976452169 5555555555556665569 822555585685555555555555555555555555555	*2222222222222222222222222222222222222	52740567227280974520053979953982797735368488190 2088777775697757958749851286947060443344969755643 24322222222344498512869470650346400840891161 242222222234445200710006503442332233223322 115 5 13 3011 11	32122222222222222222222222222222222222

W. D. 045⁰

		Source Group 6		Source Group 7
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	96449093240738497250003221289081970176659397378 81411211204834006577 2802999 09032890091100088 4 57 5366555 666665566666655 4 57 52 51 51	**10022222321222112221***1132***********	42459494296781002730008351780619261629730746152 00978565562377768727847188893573508939990389887039108 3233333335352334765288893517806798931067628267830 13 13 14 15 1653 14 1653 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18	*10222222321222112222010022222*212222*223222234******************

W. D. 090°

		Source		Source
		Group 6		Group 7
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	71670660660005982320048821144646464572790248825029 04527726302338055341055551290923173553245812 2903377333335538730 320333232333223324533 23 129111111111111222295 1821111111111111111111 11 63 32	**************************************	86081693411902731410084776135236673902634582927 2608754360558297523800553899190745460845142439201 31533333333334996220819513569910687006682218 46 22335182743343343473643333377733 32 588 11	20002222222222222222222222222222222222

W. D. 135°

Source

		Group 6		Group 7
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567890123456789012345678901234567	90141170872345484310454775189630057458847920734 91995708723454843104547775189630057458847920734 977 1 13721129813119 1 11641233322112233 1 1164123322112233	**002123220001220001212222221211000100000000	44220018144055959450390748357490720802742444360 1316443359957435383015523345274288561440833773556869 3083733551890668587943559544984370041437574356869 21771767215297132 2177176707 6857132 2177176707 6857132 2177176707 6857132	31021222201112201112211222222222121100100

W. D. 180°

		Source Group 6		Source Group 7	
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION	
1234567890123456789012356789012345678901234567	7186869003078741500045816903985423304006963098 788777777822888741500045816903985423304006963098 7981 11 15534 5245 85 7981 11 15534 5245	**************************************	21100718766002461570046253558970535793620314278 40366665648176743627790676453149872815718999958 2442222223555854232267645314849936436771223 533 94 17 772 11 1 1 11 11 11 11 11	*2233333300003321111112222331101210002000002000001 *000000003321111112222331100121000200000000	

W. D. 225⁰

		Source Group 6		Source Group 7
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	57006293319704348302335364477002290183240040759655555555555555555555555555555555555	223222222333*222233302122200111022221322222223322222333*222233302122220011102222222222	1 1 8 6 5 7 7 6 9 8 9 3 7 9 9 10 0 4 4 5 10 0 4 4 5 10 10 4 4 5 10 10 4 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10	222222222222222222121222200110022212200012

W. D. 270°

	Source		Source	
		Group 6		Group 7
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	30579716264645471710535676194177599631670668253 965766766555568066555117791597534656356600853580166 40 1133333 6 11 11 11 1	2342222233**33222233021210110021232222222222	93124485962914070019600077876833501386612620008 21112555544619282252350594468954440336490071599 21111111111111111111111111111111111	2*233333334*3333323121222200011102322*211232121103 0*2323333333333333323121222200011102322*2110232121103 0*23233333333333333333332312122200011102322*2110232121103 0*232333333333333333333333231212220000111022322*2110232121103 0*232333333333333333333333333333323121222000111102322*2110232121103 0*2323333333333333333333333333323121222000111102322*2110232121103 0*2323333333333333333333333333333323121222000111102322*2110232121103 0*232333333333333333333333333333333231212222000111102322*21112322121103 0*23233333333333333333333333333333333

W. D. 315⁰

		Source Group 6		Source Group 7
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567890123457	9770900926542008933304393588128385122794796 977090090777762307794296665574630988887778 5556566555566655946669969665557555566655555 29 1859 2 2221 1	23*2222223333*222233300221211112122221222	1019517031649683264012754870348106362981465528 7173760752974332669374702324154977727667594193127 22222222222222222222222222222222222	23322222222222222222222222222222222222

W. D. 000°

		Source Group 11		Source Group 9
SAMPLE PT.	(AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	244278063399898893480000000000000000000000000000	22122222222222222222222222222222222222	49977210779.60223149277069559420000000000000000000000000000000000	22122222222222111000110002111221********

W. D. 045⁰

Source

		Group 11		Group 9
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567901234567890123456789012345678901234567	0127131885577936980395882655060000000000000000000000000000000	20122221000210000101000111111110001002221022212 -++++++++++++++++++++++++	776418381594248883631452130007000000000000000000000000000000000	2012222210221001111000022**2111221********

W. D. 090°

		Source Group 11		Source Group 9
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	7118618958085256612749147038980900000000000000000000000000000000	201222220112210000211111220001211110002222200221212 -+++++	79223584001530445912758206426040000000000000000000000000000000	201222222*1122100001101122112111********

W. D. 135⁰

		Source Group 11		Source Group 9
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012356789012345678901234567	1599885652796300625204417531988565279630062520441753198855652796300625204417531988531445931639751121326114295913322143203896264413556663970669821216 216 2289 4 7 11157362 92389 4 7 11157363638	2112222220001221100012112212201000012221022 	43665148747955130434250375632485940000000000979412112292922235 22 21 14321 221 14321 1 44	2112222221102210000102222211002011121111212

W. D. 180°

Source

		Group 11		Group 9	
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION	
1234567890123456789012356789012345678901234567	5607190159407541923390964441252525244000000000024 2895856527963006262044417531622445931639751192 289585552604366693653854178000314622445931639751192 132611429591332143203144593600718942292 8 5632648841778942292 8 5635566982 111457363100158 4 7 111457363100158	2112222222200122110001212221221000001222102201122000000	436651487479551304342503756324859400000000079172112292225770122222298731768582923 8215504 952 451235 7 72665832923 8215504 952 22 22 21 14321 1 44	2112222211022100001022222110201110111111	

W. D. 225°

		Source Group 11		Source Group 9
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	0156208936658420348187507646229800700000000015822109936252064645935301979805999920469152715615 119435353410432909829009053344930655905344489638 11 11111118111111	2232222212322223331113333311110223111022222222	104957910629389173409191525644410005000001010005 13151667777478675974554 61335560063366228292 488240 131511111112223861 24589771280572081 830415 88 1 84 58689 29522 14 99 1962 0 535 1 441	42222222222222222222222221111111222211111

W. D. 270°

		Source Group 11		Source Group 9
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234678901234567	856026122351496004867547180406576600000000000000000000000000000000	23 * 222222000122233331143223101110223112222202211223* 22222223333114322310111022311222220222112223113222214375375300413359797111EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	79799255470444036654807727765205151050001130000013 1242222171622223335721482172917341151050000113 022 42 1397 2 20907 77653 12 74 82117 66063 32 32 32 32 32 32 32 32 32 32 32 32 32 3	22122222222222222222222222222222222222

W. D. 315⁰

		Source Group 11		Source Group 9
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567890123444444444444444444444444444444444444	019495390951696790832554049000000000000000000000000000000000	23322222222222222222330111100011101010222202221121000011101010222222	14693563135154245348263388430000000001111111111111111111111111	342333333321123322220111000011110012111**********

W. D. 000°

		Source Group 14		Source Group 15
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	11939011687762228581821782745643608966535027148 7752584702593997226014431998655372252367533996055 121111 121312131259 1123123121122221 242 2 256 11111 22221 242 2	2111111 *1222111011001101101101111111111	93257397106942223942035425748601000454431696491 183343226969393205790546988090027775741322696279 18334322880823789261704122118269627775741322696279 1000000000000000000000000000000000000	*11212221100122111000001002211000000112200003*200002**********

W. D. 045⁰

Source

		Group 14		Group 15
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890124567890123456789012345678901234567	6156193553005590835591882912561187588645315562 6147679055300559083777777777958377349092844807286635622187287588522111237777777778436 11114877284482912561187588645315562 112377777777777777777778436 1111487778436 1111487778436 1111487778436 1111487778436 1111487778436 111148777777777777777777777777777777777	2000222220311111020110020112111120001122+ -++	6960153819006585474739000356275344282342115798 1517182234293349149166666228742473892463303465694 19 1	*1021222221121121111011022110220001120000222111222********

W. D. 090°

		Source Group 14		Source Group 15
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	679946117712646907480033943785945059594384974742677798367068174800339437859450595943849747426777983267059696666667626887777632807176766316	**************************************	25605885239179304524365736327073809480640889058 14328856869217904437551079446506849009239293970921 144 1 4427111 6 21111 912 865 11 44271111 6 21111 9121 111	3002122211111420111112222221102011111101022100022 -+++++

W. D. 135⁰

Source

Group 15

Source

Group 14

SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	3 44713107776175020849211883468832615821059002919 557768667118275020849211883468832615821059002919 723337659570666666666662678991665 43176599166 43176599166 256 2798 3 21 1116 7068	**************************************	79331510243950780903611806280832555662501914975 147212238304229526772222211225123842744037278747 10 1 258 7751 258 7655	30121222210000220111112222222222122201210000022012122221000022012222212222012220122222100000220121000002201222222

W. D. 180°

Source

		Group 14		Group 15
AMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	78911220781303779762531620320935072358150254840118888888275599204588998877777777001878885284460330517	021122222220012101122222222112210001000	97657816393051710231371456471705373750636416198 222721455710815709444433334473456637859746223044 50 2 1678 2045619 14 2 421 0425 11111	*11112222111102111122222222112211121021010022 *++

W. D. 225°

		Source Group 14		Source Group 15
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567	8641650036006526262317876139400357799782810079076661522788097722909662323286873634819850160790790713348134446666666665188817770969399126027223	22222332220121111122223232100001220100000000	626614353798575394443759012142740489019332588272 158242213702200706998104305689919157167506718951 76 1 17661 19497 311 22322362123 649282 2 1756 20497 311 221 3213 64978 1113 1133	310212221111121111111222222220110001100

W. D. 270°

		Source Group 14		Source Group 15
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	66127880459818204472485911879191266721646354264 69666566677110948275020202443811803303139893786899 97511169911068666674026167876374725230105 10486667438118033139893786899 11166778763774725230105 104866778763744721553443	2122232321211211121222221110022000001100000000	715549052453249914272153508372441718819060585973 183223516149424479114272153508372441718819060585973 1832316149028679192222223424626818196613040848499902 18313 3698 2221 12974486077 799432 221 1297433167 421341	2102022101010121111122222221110010100110011002 -++-+

W. D. 315⁰

		Source Group 14		Source Group 15
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	34364239160190467276955791414224604402670026020 56666666936877797604113339402420933133007666765512 8156 816 16 16 16 16	22222222222222222222222222222222222222	238 51 6341 21 112 1 1232 44632 44632 15161951369 4207618411327531679397679604833923733 64232 4426820283194407952431232 4463 21 112 1	300202211011120100011100100000000000000

W. D. 000°

Source

		58		59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	53375783594488283146559704579652491704378362407556555555655667567567557775776666613126676865 161 2221 2411	**2111221122112211221122112211221122112	5181901797870772220785742193626877732308455787234 4597513346167428335124930725470207111781060299999 34444444679447742331 11 11 11 11 11 11 11 11 11 11 11 11	**2122*22211122100000001211121001111111* **0000**********

W. D. 045⁰

		Source 58		Source 59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567	433356125284578164173553832412385946925428128846 450444445784445554444555445554444997764937744	210222*321002211112222112311121200001200002*+00222*3210022111122221123111212000002*+00222*3210022211122221123111212000002*	184147614646135849392012414702221527574990935701 1471111128112433452157112221123221221111122211 3	*10222222311222211111222113 *221322112 *2223222212 * *1002222222311222211111222113 *221322112 * *10022222223112222111111222113 *221322112 * *10022222223112222111111222113 *22132222212 * *1004566666666666666666666666666666666666

W. D. 090°

		Source 58		Source 59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567901234567890123456789012345678901234567	23322731896907168546419813269023904735929818225965555555555788444444445555455845477654796654	10001111111111111111111111111111111111	87531032536347154210643873999237774494125566113 17771785668748154210643873999237777449412556611384 161033 122	20122222 * 3 2221000011232233222321122122223222222222

W. D. 135°

		Source 58		Source 59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	OIMENSIONLESS CONCENTRATION
12545678901234567890123456789012345678901234567	74292676915270030577857722007162100060877843593998988889445444544444444444445444544477664696654	11121222211222210000 ** * 22222221111222000002001012 	57872697205979436091240442348746806133989187370 11111111	2222222222 * 322211001112222233322113222 * 222222222222222222

W. D. 180°

		Source 58		Source 59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	51747135307025153454253121192182951446236036747 8088888842288028888888888980899976278189087 45444444466664444444444444444444444444	21222222222222222222222222222222222222	47916890995175421638536478047383411345121601098 11111 1 7411123333221111 11111 111111111111111111	22222222222222111111122222222122222222

W. D. 225⁰

		Source 58		Source 59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	723644333471698431343323010318260519206311643966 888888881107888888888989999998376399570187 4444446674444444444444444444444444444	22222222222222222222222222222222222222	73112001809581238253285856807563958474633627899 022101110 21111333790979991260046406005422377718 111111111 111111111111111111111111	22222222222222222222211222122212221222

W. D. 270°

		Source 58		Source 59
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	73023100084602187919186491591206138956336921660 8888888888428887778787879778179958718345887546977794	2222222222111222222221*22011121100001200002 	77612701462581768305928553880533144717914961764 11071108011111111121 2 114311 121 14421122336 1 114311 121 14421122336	22222222222222222222222212221122112211

W. D. 315⁰

		Source 58		Source 59
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	66023708349956603889895316320354886526409190593 8788887878938788887706492605453809888856357320247 4444444444444154444449154698755565444444666554796654	2222222222211122222 * 20001100001110122000120001	11111111111111111111111111111111111111	22222222222222222222222222222222222222

W. D. 000°

		Source Group 10		Source 60
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	58566381873691485344073015094960116097417113157 20771177575607664378899537435224443376697417111285210111111128512876548618220004146279 832657654861822001872200041480 1122 1122 1122 1122 1123 1122 1123 1236199401116097417113157 112128510372200041480 112128511372200041480 112128511372200041480 12128511372200041480 12128511372200041480 121285113157	23122**2220000223233111000011121020000111000112 ****	9512247925484576564919071624170111181728911116133 22222122241222222253 2002221 2 2 22212 21 22	22222222222222222222222222222222222222

W. D. 045°

		Source Group 10		Source 60
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	868367207664329882255070485148300833036499527771 36871607664329882255070485148300833036499522771 11114255456949297272722656256273974330522765 26 1170 11114 2 23 4 8595227152811821 2 23 4 20652 2 234 2 23 4 20652 2 234	2012222210122100013110030121020001111000013 -+	581140317511405672561004562374111115165412448725 18 434444 55386556 535002150 4 313 5451311 22 22222 2222233 23222222 2 222 2222222	22*22222****2222222*****2**2222222222****

W. D. 090°

		Source Group 10		Source 60
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	22258486142224756099201817454049195410637113073048174909422247560992018174540687491476637113078539411111112570111111228667079592916687491476687491111117990060399211111111111111111111111111111111111	202222221102210001311124201121021011212 -++	119417111111111111111111111111111111111	*122*2********************************

W. D. 135°

		Source Group 10		Source 60
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	012530969128629484000017533310035549530000000000000000000000000000000	22222222222222222222222222222222222222	2118584090032471282355817665854182211111111111137 778999909547108282358907777993770798 0 77 22222222332223366024422522222223223	0222222223*222110011222222222222222**********

W. D. 180°

Source

Source

		Group 10		60
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567890123456789012345678901234567	52614034948606449221026165814874672000010268630 853524573554263054316328883377136592168606009951 111111111111111111111111111111111	22222222222222222222222222222222222222	0102015336038905714598230055849939500000000000 166661 2766889914653 449335843 111112 11111112311111 1111111111111111	**************************************

W. D. 225°

		Source Group 10		Source 60
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	2888890723687776877773675164165489802209740255727368888888888888788388857859598882684736557851641654898022097402557273888888888888887883888578597889421365470055136751641654898022097402557273888888888888888888888888888888888	23333333333333333333333333333333333333	125 121 121 131 131 131 131 131 131 131 131	2 × 2 × × × × × × × × × × × × × × × × ×

W. D. 270⁰

		Source Group 10		Source 60
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567	9239345710855729698954397952377243200075062019741111208388427745128100599666467344013534446051723873631111111111111111111111111111111111	233222220112222333313331331112222322000011110003 	385271593111100218941305969696951111111111111168 448756766 87790824 48544669695 1111111 11111111111111111111111111111	22222222222222222222222222222222222222

W. D. 315⁰

		Source Group 10		Source 60
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	1 11111133117390863537446730769074020603517668 29901230122333022294949126747088015995358501576035 111011133110009797201267483602009772555760336 14455944254242772553574682 144559442542421 33331 82482 7	2433333221033333333300111000011012111121 	3493905126301144260908477774397411101111111111148 14445 5589831635788667677 6 4 33 111111 111113911215634382 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22223332*22222*222211231200001****2**********

W. D. 000°

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	019355741466046686400353820000005055724240948951710011114081100000840031352538123 155097845071696666666666666666786765	2323**3332214***************************	4063048794026710888500537720000000464005968221235 57542846310228339694126443815550080004441540860345127879 5455555555555446548721255170360451156666656866894 94229363219066 11 941 12698 3 624	23222222222222222222222222222222222222

W. D. 045⁰

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	7464930652438655534963038040600902325420229033965405555459741573183544668011178611195410985197820666 1121931 35 3512 11 66555665555 25 1121931 35 3512 11	2012222222222222221111000120022010111111	2718969833982193503266177740800618884385178951209441256395259334558997124812595842252549079846505266133333332683335556394561561490557444333333344323176444	21022222222222222222222222222222222222

W. D. 090°

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789032345678901234567	56209737096187585416141941000303046830963460899 557676666133275573467008881565399652 084906688507797 92 17691 18324 2 996312 1 1 45	201222222222222221110000021222221100011 * 1112222212 -++	848048750284088121086709810009810382063751111776 655291826052000056455261637264451302314723573730 64214303992521190489323169054818956191984790783 799 11165993231690548113923969294783 115481672073394749835001112 11 1118 1 120624	2000222222112211000111011122210000111122111122 -++00000222222112211000111011122210000111122111122 -+++00000011101112211122

W. D. 135⁰

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	1824466574009111039310914050000779900807691430140 557606664646620411757698668355507594 89375887728886 562 41111 802 144 442	21221222222222222222222222222321100001000013 	041440878239093491659321300000148800301616212053 9751782290634934703094278860244529680689689 412526577783427886095588881689689089684 94 1 82193 495335339116064452968888888 8113 265 4610737741945522669821 8113 265 501 115 21 10288274 4622 111 111 112	201222211112000001222233222110011011010101112 -+

W. D. 180°

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (ARE)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	77758678767724870441108555555 19770848155 5555555555666636555555 377168848155 52 2 555555 19770848155 5406 1 65189161096 5 5426 1 65422 5345 5	22222222222222222222222222222222222222	31407027461118506819966481000034907785839628808 478341188715071428824766415718872625321781567345930 443444444555955542718841577680827 522 445539555955542711229784277017600827 6452478787878787878787878787878787878787878	2222222211122222222211201111111120111222222

W. D. 225⁰

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	46868294858878975294312249000052321441546165170 9862022215997229777888898777014145057095194093003 5556666666685556655555567371766146230377093003 1 6025 11 77748 61439 1 454	22322222222222222222222222222222222222	88385760392726756246374174000046306191725065290 91715773519071046698067210726030320582447939986 94355555544455444387444909252888908509705161 4436721138795694829159371957 4436827 10191 10851 62871 1191 1200	22322222222222222222222222222222222222

W. D. 270°

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	188201212124272018379923531194000576326466302069720 18820121124921098889870774472981946466302069720 544555551865554444454545877747519622113551288198 51355 27 72211 311134 551 2 1	2**23222310222233***1**3**2111002310301111201110** 11***4630351252****0**2111000231033333512133****0**66886363747729112011133****0**668863637477291128821** -***30****0**668863637477291768881***0**22624687477291128821** -***30****0**0**0**0**0**0**0**0**0**0**0	755660306737605571484103148000759781181697414433 9148839673760557148363836385600759781181697484303338620166278856007288175 112221111111111111111111111111111111	23322222222222223320332310221122100122010002

W. D. 315⁰

		Source 3Q		Source Group 8
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	01207250489626019406473474000053380063816282673 555666666709556655843939953094073108400373575575084247 55555555555555550267630474037392395357462474 681 14006152616936720 17812 11888413 2 11	**************************************	215593241082516111194485488000026886652291674982 572444434161158233445419325640724870273831 2235333344443333334474014355896644446774313 33444433533334443333333474014355896644446744313 3386985 1	*43222233222233332223112210002211122222222

W. D. 000°

			Source 3C		Source Group 3-1
SAMPLE PT.		RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	3	44289914500096802103313635960594038719581065129 11286207294976311449883405675979975415648855441065129 112862323419772116098815779975415648855441065129 11286232321211623133 1 1222634111121111111111111111111111111111	22221111112212222222222222222222222222	116163094120083431871441678808263138797167522225539 11191674128516936154444167880826314428202212601 111111111111111111111111111111	22222222222222222222222222222222222222

W. D. 045⁰

		Source 3C		Source Group 3-1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	31934827500087042758424189928405009290048664772 07911412340848733158838326287688887249911702204395 22611141245634873311111111142222111111 1121 111431 11 111 111 6022 0443	11122222221212222222222222222222222222	59673539100031196145174828081751622971002282117 183332224275166343434289812936376008000135484848 1801122427511663694785162711123106686622971002282117 1401111153604769478517611166331915111111 1211112 40072 1111 1211125 9554 111	00002222222222222222222222222222222222

W. D. 090°

		Source 3C		Source Group 3-1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	450222824000027526085859307740024110917785352365 827566453688547885797197109729400295731238988637517 54111111111111111111111111111111111	11222222221022211112322222323232121122222221 	427621768000080710737183669989674496817565936452 22845333324151058807750528377502361508877565998892094 1431111184183537032111311105821415111111 3411111 642 111 111 111 111 111 111 111 111 111 11	21122222222311111000011221011212222221122222

W. D. 135°

		Source 3C		Source Group 3-1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	238000109000233975858556444805324874293269900404905984939466356691360023342447312341575698433420040494035882155941136394135211111111111115111112222111111111111	2232222222222222222211000232222322222222	528081251000783053577738888718878084964331372357 5280812512652777830535777388887188780849644331372357 13115159769682082221037574418134993467016278367610972 49125539481421111115975889934670183367610988 1766 1766 1766 111	21221222221111001111222221112222111222214

W. D. 180°

		Source 3C		Source Group 3-1
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	2308157780000061916115000684570874966342763537906 19291103077661916623922252193447966342763537906 1111111507488103926090019935990922903246086101655 77077 17367	32322222221112211111232222332323232121222222	747428634000385029731429225493669141780005616478199007812330444692191111279538189281181555113365	21222222222222222222222222222222222222

W. D. 225°

Source

Source

		3C		Group 3-1
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	216146517000339805890029876384685222232799661221 85756257818448689870652396666710793881766037559 11215726535959775582205716566867079388176637559 816 816 816 11 11 11 11 11 11 11 11 11 11 11 11 1	22222212212111122222332222322221122111111	94858177600047946112439798315393184867193688046 52143747976000479461124397983153983184867193688046 52143342933118799546338733733283869603150304480 4054211 7653 7463 7463 7463 7463 7463 7463 7463	24*22222222222222222222222222222222222

W. D. 270°

Source

Source

		3C		Group 3-1
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	836984984000615496719981473394188143120042291910111154451332943222111131118322015639663042291911111111111111561322212311687	22322222222222222222222222222222222222	246024400000049126972115442056311707077618397324 2880742780000632877762087442056311707077618397324 11011803863287776208749092844452407109649535727748 110129853554202111111113333211154424401226 2221111111113333211154424401226 326771	22222222222222222222222222222222222222

W. D. 315⁰

		Source 3C		Source Group 3-1
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	424748784000473531291449885210004624005763243808811122323791614947497428936018465889174613221140222300235131766142980188111	2222111111111111112211222111100001001000211100002 	05547173300021341487449918335552319321623234182 6145471733000215414487449918335552319321623234182 11224344432007468399888355299228846220752381 1124344433552992228846327538663 132649332221223423870548951666757538663 144587 15707 1687 1707 1717	23322222222222222222222222222222222222

W. D. 000°

		Source Group 3-2		Source Group 3-4
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	92390033500007135883078888375212420932168342759607 3322212252366197009773923212256530769198449911221122565307691984499112284177881125653076919844991128412130 1124112151396261112411130 112411130 112411130 112411130	22222222222222222222222222222222222222	76054885700018441143531935489272913999868977338 7378987810004409661103240337574797560988891352450080 179331 1411198430367479756686891352450080 4333 225	22222222221112221212121132221221321332233223 00000000000000000000000000000

W. D. 045°

Source

Source

		Group 3-2		Group 3-4
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	17437373449100018455838654238647458142098223492086 134373734495596624373847765460335217581824411070836 111111111111111111111111111111111111	20022222222222222222222222222222222222	63899559700082822559064521222445629133985896805 6406876617128858562398599043970805550877941855552 45 17022 2443 23 111 2 3 246 78	2102222201112111222211332222332222222222

W. D. 090°

Source

Source

		Group 3-2		Group 3-4
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	67547509650078323588424536107255920518489156533 782995749169971230098638003031227379401899899870 777390042620509865800303122273794018999870 76911342666655 72381 265 1 3 3 3 3 3 12 12 12 1 2 1 2 1 2 1 2 1	20002222222222222222222222222222222222	802211897900048955327995041111509872950440059630 2762312992969053748547788 58795048636908410 8893 43 1130225121 10372588636908411 8893 11690 1620 111 4112112 11111 122	301322333200123200003323333***22232134143333****************

W. D. 135°

		Source Group 3-2		Source Group 3-4
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	03468376640080932836594550598050854886439336355 2018650298093283659455050854886439336355 20197212314778309495705612983555971805206555915638915739 121112574783911111111111111111567166174539 32 1116617453 63821 2743 63821 2743	21321222222222222222222222222222222222	67418161330068840603259720047260353320215546027 716627666678112471876665660359754353320215546027 5 1 7481 9842 744 288	213222222001221000022222332111211212122222222

RUN #85R

W. D. 180°

		Source Group 3-2		Source Group 3-4
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	5407397220006016793389588947892309979470812446992978122429988874532119117706221570124004052150224964 9201612242429743210111111240040521502210111112771242429702111111 21 11133719111667111161 9427	21222222222222222222222222222222222222	29850857300000041188260482868179635495477192327 95467903120505854669947049847141947909373735815 407746162551207299665569057902541636498373735815 344559550709164177944565544456334544567585555 2 1 11934 22111 1 111511	**************************************

W. D. 225°

		Source Group 3-2		Source Group 3-4
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	92305023340006147559412151629302633812494678516 108242423556640972276796452122344449468856316771 111224235566611114 1811111 9411922579226649 82661 33 52212 5 119	2232222122221122221122221222220022000001001	44250547570005799455285872342932259189912570115784056677799401921628679562504855316678128545234 6166677799401921628679562504885316678128545245 5549 719 719	2122222211112222222222222111211011011011

W. D. 270°

		Source Group 3-2		Source Group 3-4
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
123456789012345678901234567890123456789012345678901234567	97850176400039242960260057073724469470195505025 176999999133363944296026005770 30 9402470195505025 27110121 4 2 1 2267193340297 1 5 75 45111121 4 2 1 2266 1 2 842261 5 5 5 4511 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23322222222222222222222222222222222222	56272909200054207490121049058020207707129008064 94959951144886378597455081 18 208288913315798 7 123 39443344453236578745326 45 208288913315798 7 124 2272 2 578745326 45 2088598913315798 7 124 898 9 6 7 52 238	21222222211112222222222222222222222222

W. D. 315°

Source

Source

		Group 3-2		Group 3-4
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	788155170000933344899730646679864124099993323742 488481871740833845971546234782527841849499993322572414 11111114803953093029600130635944693013602205224617 7667111111 3241301467308046922416015992613 13 14477542 83 2355 3465 22 1	23322222222222222222222222222222222222	719297211800071541898424327778078557627227345289 9879291346262371541898424327574095308557627227345289 987921199726420331340084243275409530855762722437999 111 9151 283139227891466665772203235 0577 1133347 247	222222222211111221121111111111111112221111

W. D. 000°

		Source 3R		Source Group 3-3
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	98787000000016408504695315191176370031342159111 9235363219729004848451095315191176370031342159111 11284291602354916044491245491 12842911115072701109 113611136111211111111111111111111111111	**1101101101101101010101010101010101010	3448368000000012017961504344898089720062884365638 54875896997521401179615043448980897200628843650438 51778735916901430179226726984754643866529377001430 98956513131107112662324555551345141239529333888732 37743014243 311114843 10 01314343243 11 4 6 22 211333	31101101101111211110000000001111011111111

W. D. 045°

Source

Source

		3R		Group 3-3
SAMPLE PT•	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
1234567890123456789012345678901234567	731811010601046739759166702610658270547361499849 5642465 403 1694473661244646299888582705473611499849 12263 845 3 11111 4422 4 351257 7 1618016662 1 11 6 2 2 1 10 2 2 1 10	**************************************	934670008000055895222940156427412510519783403161 3281764769301055895222940156427412510519783403161 3260063596287312525955180697487505156666635741197959727 56100308287312525955180691851569888442949977860980 44133845 2 2221 5844 1 58442949977860940 113 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	211011011111211110000010000222212000111100100

W. D. 090°

		Source 3R		Source Group 3-3
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	83952000000183399315451041600500000023186959270 57826742808955839065255044 746365000000231817135199 14263284962 367 7421 7 1884433222 21333 1 11152 367 7421 1 51222 21333 1	200001101111212100002*12112212000010 000001101111212100002*12112212000010 0000011011111212100002*121122112000010 0000011011111212100002*121122112000010000010 00000110111111212100002*1211221122000010000010 0000011121121121121121121121121121121121	11936000000917442231111060050000081647751407001936000009174422311110600500000816477584600750318915772539455239216454845772599783945454549208484519290871958181521640211197581111060050000081647766278846132279882009711419208441977581111060050000008164776627884611227982009711969211111111111111111111111111111111	2100110110121110000110112212110110110110

W. D. 135°

		Source 3R		Source Group 3-3
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	0909500000000875310983709063090000002113529584 586319708000000875310983709063090000002113529584 58637445599222855555564984201 779950482350 253275849 11 241 6 564021 711321211 1	2110110111011101110101002*000000010 ++++++++++0000111111111010102*000000010 5666666666666666666666666666666666666	014820000000081120708037241700600000040683445679897566964988112070803724117006000000406834456772523913621498988222077779802215560481172133338603772417793 3977722517822111560481777746333386048117131362662131522 2	21101101101101101010100000000000000000

W. D. 180⁰

Source

Source

		3R		Group 3-3
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	7538200000009019291673870968009000006908874163 93550452540004848157177654886668553151926783280156530 263274206 1 1234 1 1234 1 1234	21101101111111111111111111111111111111	4573800000097690614278648990440000055389000604 848378621005976930403964296485992531895391521 447314851687099178980204940002370318859921912055080779 81774500790331556622236049400037905611540888749779 441482457 1 551 6 4092112055080529 11 5 2	21101110111121212101111100001111111101000000

W. D. 225⁰

		Source 3R		Source Group 3-3
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	7980700000065557085566347213010901626866133742 575362211477666927648222285223496389 039866002095 244265128 1 11 1 5666 022212342312 11 15555 1 5666 022212342312	**1200010112222121011110012110110122**200000000	9217100000032096369991650813680500211159380582 92317100000032096369991650813680500211159380582 93621757800077320963699991650888859133159380582 616217579738222803264205087675968885119135346441633559 4003437832774209562400220088564881501913394667289 11395629211617711 1139528991111131161687	*1201100121100111100001001101110100000000

		Source 3R		Source Group 3-3
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	3774500045000058825512965955676663001012613417807 50701717308058825512965955676663001012613417807 14027712966618114248865955676663001012613417807 1402771477678981497477677844191 1444776778981497778991607477677844191 144477677899165916663001012613417807	20100100111121100000110022** -+-++++++++++++++++++++++++++++++++	2 12 17 1 1 3756	2010110110110101000111000011000011000011000110011001100111011010

W. D. 315⁰

		Source 3R		Source Group 3-3
SAMPLE PT.	RAW (AREA)	DIMENSIONLESS CONCENTRATION	RAW (AREA)	DIMENSIONLESS CONCENTRATION
12345678901234567890123456789012345678901234567	782590820550176449199511117548752025785759440530 55517521990923447952126393774965437746614728239496588 55522627315 2 21111119911181125523311 3211 1 25 2 2111111991181125523311 3211	*2*01101111212102210000000111010101112000000	967847082079041946175681404996408200618446613895 967834220479041946175681404996408200618446613895 10713296212594215836574152064799122479988309948 113296211127366262561214021443567799122489633467110 42183496313 5 2331 4 7220886439314657110 12 20 10 13 3 5 1	32201101101202101211000001111111111100001010110 +++++++

APPENDIX C

TABULATION OF CONCENTRATION RATIOS AND DIMENSIONLESS CONCENTRATION COEFFICIENTS FOR HUP IV PENTHOUSE TESTS

	SOURCE GROUP #2	SOURCE GROUP #1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
5	.180E-03	.320E-02
6	.176E-03	.320E-02
8	.107E-03	.123E-02
9	.104E-03	.121E-02
SAMPLE	DIMENSIONLESS	DIMENS IONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.562E+00	.363E+00
6	.551E+00	.363E+00
8	.334E+00	.140E+00
9	.324E+00	.137E+00

RUN #201R

W. D. 270°

SOURCE

SOURCE

. 39 3E+00

.394E+00

.158E+00

.161E+00

	GROUP #2	GROUP #1
SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
5	.160E-03	. 346E-02
6	.159E-03	. 347E-02
8	.792E-04	. 139E-02
9	.802E-04	. 142E-02
SAMPLE	D IMENS IONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION

.501E+00

.497E+00

.247E+00

.250E+00

5

6

8

9

W. D. 225⁰

	SOURCE GROUP #2	SOURCE GROUP #1
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
5	.195E-03	.345E-02
6	.188E-03	. 329E-02
8	. 875E-04	.304E-02
9	.869E-04	.290E-02
SAMPLE	DIMENSIONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.608E+00	.391E+00
6	.586E+00	. 373E+00
8	.273E+00	.345E+00
9	.271E+00	. 328E+00

	SOURCE GROUP #4	SOURCE GROUP #5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
5	. 99 3E - 0 3	.401E-02
6	.992E-03	. 39 3E-02
8	.563E-03	.454E-02
9	.551E-03	.449E-02
SAMPLE	DIMENSIONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.361E+00	. 751E+00
6	.361E+00	.735E+00
8	.205E+00	.850E+00
9	.201E+00	.841E+00

RUN #203R

	SOURCE GROUP #4	SOURCE GROUP #5
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
5	.103E-02	.374E-02
6	. 104E-02	.376E-02
8	.582E-03	.430E-02
9	.576E-03	.434E-02
SAMPLE	DIMENSIONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.376E+00	.701E+00
6	.379E+00	.703E+00
8	.212E+00	.806E+00
9	.210E+00	. 813E+00

W. D. 315⁰

	SOURCE	SOURCE
	GROUP #4	GROUP #5
SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
5	.259E-02	.255E-02
6	.262E-02	.254E-02
8	.282E-02	.479E-02
9	.286E-02	.476E-02
SAMPLE	D IMENS IONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.943E+00	.478E+00
6	.953E+00	.477E+00
8	. 10 3E+01	.897E+00
9	.104E+01	.892E+00

W. D. 090°

SOURCE GROUP #3-Q

SAMPLE PT.	CONCENTRATION RATIO	
5	.517E-04	
6	.580E-04	
8	.227E-01	
9	.226E-01	

SAMPLE PT.	DIMENSIONLESS CONCENTRATION	
5	.531E-01	
6	.595E-01	
8	.233E+02	
9	.232E+02	

W. D. 270°

	SOURCE GROUP #3-1	SOURCE GROUP #3-2
SAMPLE PT.	CONCENTRATION RATIO	CONCENTRATION RATIO
5	.117E-01	.435E-01
6	.118E-01	.438E-01
8	.150E-01	.176E+00
9	.151E-01	.177E+00
SAMPLE	DIMENSIONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.380E+01	.780E+01
6	.386E+01	.787E+01
8	.490E+01	.315E+02
9	.493E+01	. 319E+02

W. D. 315⁰

	SOURCE GROUP #3-1	SOURCE GROUP #3-2
SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
5	.269E-01	.415E-01
6	.270E-01	.418E-01
8	.117E-01	.162E+00
9	.118E-01	.162E+00
SAMPLE	DIMENSIONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.878E+01	.746E+01
6	.879E+01	.752E+01
8	.381E+01	.292E+02
9	.385E+01	.291E+02

W. D. 225°

SOURCE

SOURCE

	GROUP #3-1	GROUP #3-2
SAMPLE	CONCENTRATION	CONCENTRATION
PT.	RATIO	RATIO
5	.847E-03	.442E-01
6	.832E-03	.446E-01
8	.146E-02	.126E+00
9	.145E-02	.127E+00
SAMPLE	DIMENSIONLESS	DIMENSIONLESS
PT.	CONCENTRATION	CONCENTRATION
5	.276E+00	.793E+01
6	.271E+00	.800E+01
8	.476E+00	.227E+02
9	.474E+00	.228E+02