TATI CER-84/85-1 COPY 2 WIND-TUNNEL STUDY OF EXHAUST-INTAKE CROSS CONTAMINATION AND DISPERSION OF ROOFTOP EMISSIONS, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA (HUP PHASE IV) by J. E. $Cermak^1$ and J. A. $Peterka^2$ FLUID MECHANICS AND WIND ENGINEERING PROGRAM COLLEGE OF ENGINEERING **COLORADO STATE UNIVERSITY** FORT COLLINS, COLORADO Engineering Sciences 100 总数数数 學以268 上海海绵 CER84-851AP-JECT # WIND-TUNNEL STUDY OF EXHAUST-INTAKE CROSS CONTAMINATION AND DISPERSION OF ROOFTOP EMISSIONS, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA (HUP PHASE IV) bv J. E. Cermak¹ and J. A. Peterka² for Hospital of the University of Pennsylvania 3400 Spruce Street Philadelphia, Pennsylvania 19104 Fluid Mechanics and Wind Engineering Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523 CSU Project 2-95750 July 1984 Modified March 1985 CER84-85JEC-JAP1 Professor-in-Charge, Fluid Mechanics and Wind Engineering Program, and Director, Fluid Dynamics and Diffusion Laboratory, Colorado State University. ²Professor, Department of Civil Engineering, Colorado State University. #### ARSTRACT A wind-tunnel study on a 1:250 scale model of a planned Phase IV addition to the Hospital of the University of Pennsylvania complex and the nearby structures was completed in the Fluid Dynamics and Diffusion Laboratory at Colorado State University. The study was accomplished to determine the concentration of effluents, emitted from various exhausts near and on the proposed addition, at various air intakes and other critical locations. Tracers emitted from individually modelled sources were sampled at 47 receptors for each of eight wind directions to measure the extent of exhaust-intake cross-contamination and dispersion of roof-top emissions. Some "follow-on" tests were also performed with a modified model to determine effluent concentrations at the HUP IV penthouse from selected nearby sources. Additional wind-tunnel testing included velocity measurements to determine mean and gust winds at selected locations in the vicinity of the Hospital. The pedestrian-level wind data were recorded at 18 different locations for each of 16 wind directions. Selected test conditions were identified for inclusion in a visualization study. Visible smoke plumes, generated at locales of special interest, were recorded on VHS format video cassettes. The concentration data revealed that the complex contains regions where the air is relatively stagnant. Exhaust gases in these regions experience little, if any, sweeping action from the wind, from any direction, to enhance dispersion. Some interaction between area exhausts and intakes situated on the Phase IV addition, was measured. Any adverse contamination of intake air is dependent upon composition of the exhaust effluents. The velocity measurements indicated that the new structure should not induce any significant wind related problems for pedestrian traffic in the surrounding area. # TABLE OF CONTENTS | Chapter | | Page | |---------|---|----------| | | ABSTRACT | i | | | LIST OF FIGURES | v | | | LIST OF TABLES | х | | | LIST OF ABBREVIATIONS AND SYMBOLS | xv | | 1.0 | INTRODUCTION | 1 | | | 1.1 Background | 1 | | | 1.2 Purpose and Scope | ī | | | 1.3 Report Organization | 2 | | 2.0 | EXPERIMENTAL CONFIGURATION | 4 | | | 2.1 Model Construction | 4 | | | 2.2 Model Sources and Receptors | 4 | | | 2.3 Wind Tunnel | 6 | | | 2.4 Model Environment | 7 | | | 2.5 Similarity Criteria for Dispersion and Models | 8 | | 3.0 | VELOCITY MEASUREMENTS | 11 | | | 3.1 General | 11 | | | 3.2 Velocity Measurement Instrumentation | 11 | | | 3.3 Atmospheric Boundary Layer Profiles | 12 | | | 3.4 Pedestrian-Level Wind Velocities | 13 | | | 3.5 Data Analysis | 15 | | | 3.6 Summary and Conclusion | 16 | | 4.0 | CONCENTRATION MEASUREMENTS | 17 | | | 4.1 General | 17 | | | 4.2 Tracer Gases | 17 | | | 4.3 Data Collection Procedures | 18 | | | 4.4 Data Analysis | 20 | | | 4.5 Sample Calculations | 24 | | | 4.6 HUP IV Penthouse Tests | 25 | | | 4.7 Cross-Contamination Analyses | 27 | | | 4.8 Summary and Conclusions | 30 | | 5.0 | AIRFLOW VISUALIZATION | 34 | | | 5.1 General | 34
34 | | | 5.1 General | 34
34 | | | J.2 VISUATIZACION TESUS | 34 | | 6.0 | REFERENCES | 36 | | <u>Chapter</u> | | Page | |----------------|--|------| | | APPENDICES (Separately Bound) | | | | • APPENDIX A - TABULATION OF CONCENTRATION RATIOS | 1 | | | • APPENDIX B - TABULATION OF DIMENSIONLESS CONCENTRATION COEFFICIENTS (K) | 98 | | | APPENDIX C - TABULATION OF CONCENTRATION RATIOS AND DIMENSIONLESS CONCENTRATION COEFFICIENTS FOR HIP IV PENTHOUSE TESTS | 105 | # LIST OF FIGURES | <u>Figure</u> | | Page | |---------------|---|------| | 2-1 | Schematic Overview of Source Groupings which were Modeled in HUP IV Wind-Tunnel Tests | 38 | | 2-1a | Source and Receptor Location/Identification for Groups 1 and 2 | 39 | | 2-1b | Source and Receptor Location/Identification for Group 3 (HUP IV Addition) | 40 | | 2-1b(1) | Source and Receptor Location/Identification for Group 3-1 | 41 | | 2-1b(2) | Source and Receptor Location/Identification for Group 3-2 | 42 | | 2-1b(3) | Source and Receptor Location/Identification for Group 3-3 | 43 | | 2-1b(4) | Source and Receptor Location/Identification for Group 3-4 | 44 | | 2-1b(5) | Source and Receptor Location/Identification for Group 3-C | 45 | | 2-1b(6) | Source and Receptor Location/Identification for Group 3-Q | 46 | | 2-1b(7) | Source and Receptor Location/Identification for Group 3-R | 47 | | 2-1b(8) | Source and Receptor Location/Identification for Group 3-58 | 48 | | 2-1b(9) | Source and Receptor Location/Identification for Group 3-59 | 49 | | 2-1b(10) | Source and Receptor Location/Identification for Group 3-60 | 50 | | 2-1c | Source and Receptor Location/Identification for Group 4 | 51 | | 2-1d | Source and Receptor Location/Identification for Group 5 | 52 | | 2 - 1e | Source and Receptor Location/Identification for Groups 6 and 7 | 53 | | 2-1f | Source and Receptor Location/Identification for Group 8 | 54 | | Figure | | Page | |--------|--|------| | 2-1g | Source and Receptor Location/Identification for Group 9 | 55 | | 2-1h | Source and Receptor Location/Identification for Group 10 | 56 | | 2-1i | Source and Receptor Location/Identification for Group 11 | 57 | | 2-1j | Source and Receptor Location/Identification for Groups 12 and 13 | 58 | | 2-1k | Source and Receptor Location/Identification for Group 14 | 59 | | 2-12 | Source and Receptor Location/Identification for Group 15 | 60 | | 2-2 | Schematic Overview of Receptors (Intakes) which were Modeled in HUP IV Wind-Tunnel Tests | 61 | | 2-3 | Environmental Wind Tunnel, Fluid Dynamics and Diffusion Laboratory, Colorado State University | 62 | | 2-4 | Close-up Photograph of HUP IV Model and Surrounding Building Complex | 63 | | 2-5 | Upwind View of HUP IV Model Installed in Environmental Wind Tunnel | 63 | | 2-6 | Schematic of the EWT Test Section | 64 | | 2-7 | Depiction of Prevailing Wind Speeds at Philadelphia Airport by Percentage of Total Time and Wind Direction | 65 | | 3-1 | Mean Velocity and Turbulence Profiles Approaching the Model | 66 | | 3-2a | Pedestrian Wind Velocity Measurement Locations (No. 1 through 4) | 67 | | 3-2b | Pedestrian Wind Velocity Measurement Locations (No. 5 through 19) | 68 | | 3-3a | Mean Velocities and Turbulence Intensities at Pedestrian Locations 1 and 2 | 69 | | 3-3b | Mean Velocities and Turbulence Intensities at Pedestrian Locations 3 and 4 | 70 | | <u>Figure</u> | | Page | |---------------|---|------------| | 3 - 3c | Mean Velocities and Turbulence Intensities at Pedestrian Locations 5 and 6 | 71 | | 3-3d | Mean Velocities and Turbulence Intensities at Pedestrian Locations 7 and 8 | 72 | | 3-3e | Mean Velocities and Turbulence Intensities at Pedestrian Locations 9 and 10 | 73 | | 3-3f | Mean Velocities and Turbulence Intensities at Pedestrian Locations 11 and 12 | 74 | | 3-3g | Mean Velocities and Turbulence Intensities at Pedestrian Locations 13 and 14 | 75 | | 3-3h | Mean Velocities and Turbulence Intensities at Pedestrian Locations 15 and 16 | 76 | | 3- 3i | Mean Velocities and Turbulence Intensities at Pedestrian Locations 17 and 18 | 7 7 | | 3 - 3j | Mean Velocities and Turbulence Intensities at Pedestrian Location 19 | 78 | | 3-4a | Wind Velocity Probabilities for Pedestrian Locations No. 1 through 5 | 79 | | 3-4b | Wind Velocity Probabilities for Pedestrian Locations No. 6 through 10 | 80 | | 3-4c | Wind Velocity Probabilities for Pedestrian Locations No. 11 through 15 | 81 | | 3-4d | Wind Velocity Probabilities for Pedestrian Locations No. 16 through 19 | 82 | | 4-1 | Tracer Gas Certifications | 83 | | 4-2 | Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Chromatograph | 84 | | 4-3a(1) | Location/Identification of Receptors with Concentration Ratios ≥ 0.025 (2.5%) of Source Group 1 | 85 | | 4-3a(2) | Location/Identification of Receptors with Concentration Ratios ≥ 0.002 (0.2%) of Source Group 2 | 86 | | 4-3b(1) | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-1 | 87 | | <u>Figure</u> | | Page | |---------------|--|------| | 4-3b(2) | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-2 | 88 | | 4-3b(3) | Location/Identification of Receptors with Concentration Ratios
≥ 0.1 (10%) of Source Group 3-3 | 89 | | 4-3b(4) | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-4 | 90 | | 4-3b(5) | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-C | 91 | | 4-3b(6) | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-Q | 92 | | 4-3b(7) | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-R | 93 | | 4-3b(8) | Location/Identification of Receptors with Concentration Ratios ≥ 0.0001 (0.01%) of Source Group 3-58 | 94 | | 4-3b(9) | Location/Identification of Receptors with Concentration Ratios ≥ 0.00015 (0.015%) of Source Group 3-59 | 95 | | 4-3b(10) | Location/Identification of Receptors with Concentration Ratios ≥ 0.0001 (0.01%) of Source Group 3-60 | 96 | | 4-3c | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 4 | 97 | | 4-3d | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 5 | 98 | | 4-3e(1) | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 6 | 99 | | 4-3e(2) | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 7 | 100 | | <u>Figure</u> | | Page | |------------------|---|------| | 4-3f | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 8 | 101 | | 4-3g | Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 9 | 102 | | 4-3h | Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 10 | 103 | | 4 - 3i(1) | Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 11 | 104 | | 4-3i(2) | Expanded View to Locate/Identify Maximum Concentration Ratios Measured at Receptors with Source Group 11 Active | 105 | | 4-3j(1) | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 12 | 106 | | 4-3j(2) | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 13 | 107 | | 4-3k | Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 14 | 108 | | 4-32 | Location/Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 15 | 109 | | 4-4a | HUP IV Model Roof Configuration Prior to October 1984 Modification | 110 | | 4-4b | HUP IV Model Roof Configuration Subsequent to October 1984 Modification | 111 | | 4-5a | Sources on Gates Building from which Identified Types and Quantities of Evaporated Solvents are Exhausted | 112 | | 4-5b | Sources on Maloney, Alumni Hall, and Gibson
Buildings from which Identified Types and
Quantities of Evaporated Solvents are Exhausted | 113 | # LIST OF TABLES | <u>Table</u> | | Page | |--------------|--|------| | 2-1a | Identification of Prototype Sources on the Medical Education Building which were Modeled | 115 | | 2-1b | Identification of Prototype Source Groups on HUP IV Building which were Modeled | 116 | | 2-1c | Identification of Prototype Sources on the Gates Building which were Modeled | 119 | | 2-1d | Identification of Prototype Sources on the Centrex, Gibson, Alumni, Maloney and Piersol Buildings which were Modeled | 120 | | 2-1e | Identification of Prototype Sources on the Children's Hospital Building which were Modeled | 121 | | 2-1f | Identification of Prototype Sources on the Silverstein Pavilion which were Modeled | 122 | | 2-1g | Identification of Prototype Sources on the Donner Building which were Modeled | 123 | | 2-1h | Identification of Prototype Sources on the Dulles Building which were Modeled | 124 | | 2-1i | Identification of Prototype Sources on the Agnew Building, Ravdin Court, and Silverstein Rad. Infill which were Modeled | 125 | | 2-1j | Identification of Prototype Sources on the White and Ravdin Buildings which were Modeled | 126 | | 2-1k | Identification of Prototype Sources with 300° Exhausts which were Modeled | 127 | | 2-12 | Identification of Prototype Sources with 1200°F-2000°F Exhausts (Emergency Generators and Incinerators) which were Modeled | 128 | | 2-2 | Identification for Model Air Intakes and Ground-level Receptors | 129 | | 3-1a | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 131 | | 3-1b | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 132 | | <u>Table</u> | | Page | |--------------|--|------| | 3-1c | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 133 | | 3-1d | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 134 | | 3-1e | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 135 | | 3-1f | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 136 | | 3-1g | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 137 | | 3-1h | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 138 | | 3-1i | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 139 | | 3-1j | Pedestrian Wind Velocities and Turbulence
Intensities for Hospital of the University of
Pennsylvania, Phase IV | 140 | | 3-2 | Percentage Frequency of Wind Direction and Speed, Philadelphia, Pennsylvania, International Airport (1965-1974) | 141 | | 3-3 | Summary of Wind Effects on People | 142 | | 3-4 | Greatest Values of Pedestrian Wind Velocities and Turbulence Intensities, Hospital of the University of Pennsylvania, Phase IV | 143 | | 4-1 | Tabulation of Run Numbers and Model Test Parameters/Tracers | 144 | | 4-2 | Conversion of Prototype Volume Flow Rates to Model Volume Flow Values | 150 | | 4-3a | Identification of Receptors with Measured Concentration Ratios ≥ 0.1 (10%) for Source Groups Listed | 151 | | <u>Table</u> | | Page | |--------------|---|-------------| | 4-3b | Identification of Receptors with Measured Concentration Ratios ≥ 0.025 (2.5%) for Source Group Listed | 152 | | 4-3c | Identification of Receptors with Measured Concentration Ratios \geqq 0.01 (1%) for Source Groups Listed | 152 | | 4-3d | Identification of Receptors with Measured Concentration Ratios ≥ 0.002 (0.2%) for Source Group Listed | 153 | | 4-3e | Identification of Receptors with Measured Concentration Ratios ≥ 0.00015 (0.015%) for the Source Listed | 1 53 | | 4-3f | Identification of Receptors with Measured Concentration Ratios \geq 0.0001 (0.01%) for the Sources Listed | 153 | | 4-4a | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#1$ | 154 | | 4-4b | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#2$ | 155 | | 4-4c | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-1$ | 156 | | 4-4d | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-2$ | 157 | | 4-4e | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-3$ | 158 | | 4-4f | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3-4$ | 159 | | 4-4g | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3\text{-C}$ | 160 | | 4-4h | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#3$ -Q | 1 61 | | <u>Table</u> | | Page | |--------------|---|-------| | 4-4 i | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-R | 162 | | 4-4j | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-58 | 163 | | 4-4k | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-59 | 164 | | 4-42 | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-60 | 165 | | 4-4m | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #4 | 166 | | 4-4n | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #5 | 167 | | 4-40 | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #6 | 168 | | 4-4p | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #7 | . 169 | | 4-4q | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from
Source Group #8 | . 170 | | 4-4r | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #9 | . 171 | | 4-4s | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #10 | . 172 | | 4-4t | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group $\#11$ | . 173 | | 4-4u | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #12 | . 174 | | <u>Table</u> | | Page | |---------------|---|------| | 4-4v | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #13 | 175 | | 4-4w | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #14 | 176 | | 4-4x | Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #15 | 177 | | 4-5 | Summary of Maximum Concentration Ratios and Direction of Occurrence from Tables 4-4 by Source Group | 178 | | 4-6 | Tabulation of Run Numbers Assigned to the "Follow-On" Tests and Model Test Parameters/Tracers | 180 | | 4-7 | Measured Concentration Ratios (χ) , by Wind Direction, for the Eastern and Western HUP IV Penthouse Air Inlets, for the Source Groups Listed | 181 | | 4-8a | Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 4 | 182 | | 4-8b | Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 5 | 183 | | 4-8c | Total Solvent Vapor Concentrations (ppm) from Selected Exhausts within Source Group 5 | 184 | | 4-8d | Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #4 Exhausts | 185 | | 4 - 8e | Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #5 Exhausts | 186 | | 5-1 | Identification of Visualization Data Recorded on VHS Video Cassettes | 187 | # LIST OF ABBREVIATIONS AND SYMBOLS | Abbreviations | Definitions | |---------------|--| | ABL | Atmospheric Boundary Layer | | BG | Background | | CALFAC | Calibration Factor | | calib | calibration | | СНОР | Children's Hospital of Pennsylvaina | | CSU | Colorado State University | | EWT | Environmental Wind Tunnel | | FDDL | Fluid Dynamics and Diffusion Laboratory | | FID | Flame Ionization Detector | | FIGC(GC) | Flame Ionization Gas Chromatograph | | GBQC | Geddes-Brecher-Qualls-Cunningham, Architects | | HUP IV | Hospital of the University of Pennsylvania, Phase IV | | Med Ed | Medical Education Building | | NMR | Nuclear Magnetic Resonance | | SGP | Scientific Gas Products | | SS | Source Strength | | Symbols | <u>Definitions</u> | Units | |---------|---|-------------| | A | equation constant | - | | В | building dimension or equation constant | (m), - | | D | stack or vent diameter | (m) | | E | voltage or exponent (x10 ⁿ) | volts, - | | 8 | gravitational acceleration | (m/sec^2) | | Н | stack or vent height | (m) | | k | roughness heights for upwind ground surface | (m) | | <u>Symbols</u> | Definitions | Units | |-----------------------------------|---|------------------------------| | K | nondimensional concentration | - | | n | velocity profile power law exponent, or equation constant | - | | Q | volume flow | (gm/sec,m ³ /sec) | | t | time duration | (sec) | | U | characteristic wind velocity | (m/sec) | | U _{ref} , U _r | reference velocity | (m/sec) | | U _∞ | gradient wind speed | (m/sec) | | ${\tt U}_{{f s}}$ | wind velocity at stack height | (m/sec) | | $V_{\mathbf{s}}$ | exit velocity of exhaust gas | (m/sec) | | z | height | (m) | | z _{ref} | reference height | (m) | | $\mathbf{z}_{\mathbf{\infty}}$ | gradient height | - | | Greek | | | | Δγ | $(\rho_a - \rho_s)g$, specific weight difference | $kg/m^2 \cdot sec^2$) | | δ_{a} | boundary layer thickness | (m) | | μ | dynamic viscosity | (kg/m·sec) | | ρ | density | (kg/m^3) | | χ | concentration ratio | - | | Subscripts | | | | а | ambient | | | m | model | | | p | prototype | | | s | emitted gas | | | œ | conditions at gradient level | | | rms | root-mean-square about the mean | | #### 1.0 INTRODUCTION #### 1.1 Background The Hospital of the University of Pennsylvania plans to erect an addition to their medical complex, which is herein referred to as Hospital of the University of Pennsylvania, Phase IV (HUP IV). The proposed facility was designed by Geddes, Brecher, Qualls, Cunningham, Architects (GBQC). The building site (located in the central part of Philadelphia, PA, west-southwesterly of the intersection formed by Spruce Street and Civic Center Boulevard) is almost completely surrounded by other nearby multi-story structures on the university campus. Prominent among them are the Childrens Hospital of Philadelphia (CHOP), the Medical Education Building (Med Ed), the Silverstein Pavilion, and the Ravdin, White, Agnew, Gates, Maloney and Piersol Buildings. Project managers, associated with the new addition, expressed concerns over the possibility of exhaust-intake cross-contamination and also questioned the dispersion patterns of emissions from the HUP IV roof-top. Impact of the new construction upon pedestrian-level winds was also a matter of concern. Wind-tunnel modeling provides a reasonable and practical method of obtaining dispersion and wind velocity information at the prototype site. #### 1.2 Purpose and Scope The Hospital of the University of Pennsylvania contracted with the Fluid Dynamics and Diffusion Laboratory (FDDL) at Colorado State University to perform wind-tunnel investigations of the planned Phase IV addition. Through experiments conducted on a HUP IV model, installed in a boundary-layer wind tunnel, the investigators' purpose was to: - (1) Determine the concentration of effluents emitted from various sources near and upon the HUP IV structure at all identified air intakes and other critical locations, for eight wind directions at 45° intervals. - (2) Measure mean and gust winds at locations of heavy pedestrian traffic in the vicinity of HUP IV, for sixteen wind directions, at 22.5° intervals. - (3) Document airflow patterns in regions of special interest by means of a visualization study. The scope of the described investigations was limited to studies in a thermally neutral boundary-layer flow that simulated atmospheric flow over the modelled HUP IV site. #### 1.3 Report Organization The remainder of this report is dedicated to documentation of the experimental configuration, modelling techniques, test methods, test parameters, data analysis, data presentation and conclusions. A generalized format follows: - Chapter 2.0, EXPERIMENTAL CONFIGURATION, contains descriptions of the model construction, wind-tunnel configuration, model environment, and similar information. - Chapter 3.0, VELOCITY MEASUREMENTS, provides a record of the modelled atmospheric boundary layer, aerodynamic roughness, and wind-tunnel speed settings. This chapter also contains documentation of the pedestrian-level wind data and its interpretation. - Chapter 4.0, CONCENTRATION MEASUREMENTS, contains a description of the dispersion tests, data collection-analysis procedures, sample calculations, presentation of the dispersion data in sets of tables and figures and some conclusions. - Chapter 5.0, VISUALIZATION STUDY, provides some general comments about smoke tracers and a tabulation of airflows around the model which were documented by video cassette recorder. - The separately bound appendices contain copies of all the concentration data in two different formats: (1) concentration ratios and (2) dimensionless concentration coefficients. #### 2.0 EXPERIMENTAL CONFIGURATION #### 2.1 Model Construction A circular area approximately 1500 ft in radius about the proposed HUP IV addition was modelled for the wind-tunnel studies. The 1:250 scale model of HUP IV was assembled in the Engineering Research Center's Machine Shop, while the surrounding edifices were produced within the FDDL. All structures were modelled in the detail necessary to provide accurate wind flow patterns over the complex. The HUP IV model was machined from acrylic plastic to obtain significant detail. The remaining structures were fabricated from two classes of styrofoam materials. Buildings included on the model base only for their geometric shapes were cut from lightweight styrofoam blocks. Those structures which included sources and receptors were made from more dense material and affixed to the removable portion of the base for necessary access to modelled source/receptor "plumbing." Streets, walkways and similar landmarks, were identified and marked on the model base. All model structures, except HUP IV were painted to provide a suitable background for the visualization studies. #### 2.2 Model Sources and Receptors All exhaust sources included in the modelling considerations were identified from Caretsky & Associates, or Penjerdel Refrigeration Co., drawings, which were supplied by the sponsors. A total of 368 prototype sources were represented on the scale model by 129 individual ports. Small clusters of sources were modelled by a single port located at their approximate mid-position, in many cases. Individual prototype sources were modelled, in some instances, where level of interest, discharge rate, location, or other considerations dictated. The 129 model sources were further organized into 24 source groups to facilitate the dispersion
testing. This latter action was accomplished by constructing manifolds which supplied selected groupings of the model sources, in most cases. There were some prototype sources on the HUP IV building which were carried through the modelling phase without grouping, or subgrouping. Volume flow and exit velocity of the prototype sources were modelled by varying the cross-sectional area of the exhaust ports installed in the model, the manifold outlets, and the inter-connecting tubing. The modelled source exits were capped, as appropriate, to influence directional flow of the exhausts. In addition to the described exhaust sources, two cooling towers on the Children's Hospital and a large cooling tower on the Silverstein Bldg. were modelled with working fans to simulate the prototype circulation of air. The prototype exhaust sources which were modelled are described in Tables 2-1a through 2-12. The tabulations include reference numbers from the Caretsky/Penjerdel drawings; the combined exhaust discharges (cfm); a subgroup designation and identification of the test groups. Exhaust sources on the HUP IV Bldg. account for 10 of the 24 test groupings. The HUP IV tests, all identified as Group #3, each possessed an additional identifier. A schematic overview of the general location of each test group (excluding 14 and 15) is contained in Figure 2-1. Groups #14 and 15 are sources of hot exhausts throughout the complex which were grouped together for testing. The 47 air intakes and ground-level receptors (sampling points) which were incorporated into the model were identified from the previously referenced Caretsky/Penjerdel drawings and guidance from the sponsor. Each of these receptors are described in Table 2-2 which provides a cross-reference model number to prototype drawing number (or alternate description) and the model structure upon which the sampling point was located. Figure 2-2 contains a schematic presentation of all 47 receptor locations on the HUP IV model. Model numbers with an arrow indicate the sampling point was located on a face of the appropriate structure, while all remaining receptors were located on roofs, or at ground-level. Figures 2-la through 2-ll are schematic drawings of each of the 24 test groups/sources. In some instances more than one group was included on a single drawing. These schematics provide the location/identification of all sources and receptors within each test group which were modelled. The drawings also depict the approximate location of most prototype sources which were incorporated into the model subgroupings. Circles denote all sources, while a hexagonal symbol identifies each of the receptors. Arrows, again differentiate exhaust/intake ports located on the faces of structures from those located on other surfaces. #### 2.3 Wind Tunnel Three large atmospheric boundary layer (ABL) wind tunnels are available in the FDDL at Colorado State University for wind engineering studies. The Environmental Wind Tunnel (EWT), largest of the three tunnels, was used for all tests of the HUP IV model. Selection of the EWT permitted modelling to the largest practicable scale, while including all significant structures in the surrounding area (adjacent structures are an important consideration since they can materially influence airflow patterns). Elevation and plan views of the EWT are contained in Figure 2-3. The tunnel has a flexible roof which is adjustable in height to maintain a zero pressure gradient along the entire length of the test section. The roof was adjusted after installation of the model, and prior to all testing, to obtain the desired effect. Thermal stratification in the EWT corresponded to the adiabatic lapse rate in the atmosphere (neutral stratification) since the flow, without boundary heating or cooling, is isothermal. The HUP IV model and surrounding buildings, affixed to a plywood model base, were installed on the 12 ft diameter EWT downwind turntable and oriented eleven degrees clockwise from true north. Figure 2-4 provides a close-up view of the model, after being situated in the tunnel. #### 2.4 Model Environment A large portion of the test section area upstream from the model was covered with uniform roughness constructed from one-inch wooden cubes. The upwind roughness was selected to simulate the proportional roughness associated with the prototype environment. Spires were installed at the test section entrance to provide a thicker boundary layer than would otherwise be available. The spires were approximately triangular-shaped pieces of 1/2" thick plywood, six inches wide at the base and one inch wide at the top, extending from floor-to-roof of the test section, and positioned broadside to the airflow at 18" intervals. The spires were further modified with cardboard shapes, which extended from 12" to 22" above the floor and one inch on either side of each spire, before the desired boundary layer was obtained. The modelled ABL is further discussed in the following subsection and again in Section 3.0. Figure 2-5 contains a pictorial presentation of the model on the turntable, the roughness elements installed on the tunnel floor, and the spires at the test section entrance. Figure 2-6 provides further documentation in the form of a scaled drawing of the entire test section length, containing: trip and spire location, floor area covered with roughness, turntable position and pertinent dimensions. (Velocity profile measurement locations, discussed in Section 3.0, are also located on this schematic). Pertinent theories of ABL and natural wind simulation are contained in references by Cermak (1971, 1982). #### 2.5 Similarity Criteria for Dispersion and Models When interest is focused on the behavior of plumes of gases emitted from stacks or vents into a thermally <u>neutral</u> atmosphere the following variables are of primary significance: δ_a = thickness of planetary boundary layer ρ_a = density of ambient air $\Delta\gamma$ = $(\rho_a$ - $\rho_s)g$ --difference in specific weight of ambient air and emitted gas μ_a = dynamic viscosity of ambient air B = typical dimension of building complex D = stack or vent diameter H = stack or vent height k = roughness heights for upwind ground surface $\mathbf{U}_{\mathbf{S}}$ = mean speed of ambient wind at height of gas emission U_{∞} = gradient wind speed (speed at top of boundary layer) V_s = speed of gas emission Grouping the independent variables into dimensionless parameters with ρ_a , U_s and H as reference variables yields the following parameters upon which the dependent quantities of interest must depend (Lord, 1970): $$\frac{\delta_a}{H}$$, $\frac{k}{H}$, $\frac{D}{H}$, $\frac{B}{H}$, $\frac{U_s \rho_a B}{\mu_a}$, $\frac{V_s}{U_s}$, $\frac{\rho_a U_s^2}{\Delta \gamma D}$, $\frac{\rho_a - \rho_s}{\rho_a}$ A laboratory boundary-layer thickness of 1.14 meters was achieved, making the model parameter $(\delta_a/\text{H})_{model}$ approximately equal to that for the real atmosphere, $(\delta_a/\text{H})_{prototype}$. Consideration of the surface roughness (the city) surrounding the hospital site dictated that equality of the surface parameter, k/H, for model and prototype would be satisfied with an exponent n \cong 0.26 in the equation U/U_{ref} = $(\text{Z/Z}_{ref})^n$. From consideration of winds recorded at Philadelphia International Airport (see Figure 2-7 and Table 3-2), it was determined that a median wind speed of 9.9 miles per hour (14.52 ft/sec), measured at a height of 20 feet, was typical for the Philadelphia area. Using the equation $U/U_{\infty} = (Z/Z_{\infty})^n$, with a value of n = 0.16 (typical of the flat terrain near the airport), a value of gradient wind speed U_{∞} of 26.8 ft/sec was calculated at a height $Z_{\infty} = \delta \cong 920$ feet. This would then be the wind speed at Z_{∞} above the hospital site also. The value of n at the hospital site was estimated to be n = 0.26, because of the greater surrounding surface roughness. On the model, a value of n = 0.26 was achieved, with a δ of 45" (corresponding to 940 feet in the real atmosphere) and similarity of approach flow between model and prototype was thus realized. The parameters D/H and B/H were equal for model and prototype because of undistorted geometric scaling. Equal Reynolds numbers, $U_s \rho_a B/\mu_a$, for a large real building complex and a model small enough to fit into any existing wind tunnel cannot be achieved. Fortunately, equality of the Reynolds number is not required for similarity of the model and prototype flow fields so long as the model Reynolds number exceeds a minimum value of approximately 11,000 (Halitsky, 1969). A Reynolds number greater than 19,000 was maintained for the flow around the model HUP IV building, ensuring flow field similarity between model and prototype. Equality of the velocity ratio, $(V_s/U_s)_m = (V_s/U_s)_p$, could be achieved at any combination of tunnel speed and exhaust flows which maintained this equality, but with the constraints that U_s must be great enough to ensure Reynolds number independence and V_s must be small enough to fall within the range of available flowmeter instruments. A satisfactory compromise was obtained with a wind tunnel speed, $(U_\infty)_m$, of 8 ft/sec. Thus a model U_∞ of 8 ft/sec represented an atmospheric U_∞ of 26.8 ft/sec. The velocity ratio $V_{\rm S}/U_{\rm S}$ was set at typical values for the various sources and was maintained constant during the tests. For HUP emissions, $\Delta\gamma$ was considered to be essentially zero (excepting for incinerator emissions); therefore, the parameters $\rho_a U_s^2 (\Delta\gamma D)^{-1}$ and $(\rho_a - \rho_s)/\rho_a$ are infinity and zero, respectively, for both model and prototype, for most sources. #### 3.0 VELOCITY MEASUREMENTS #### 3.1 General Tall structures have historically produced unpleasant wind and turbulence conditions at
their bases. The intensity and frequency of objectionable winds in pedestrian areas is influenced both by the structure shape and by the shape and position of adjacent structures. Techniques have been developed for wind-tunnel modeling of proposed structures which allow the prediction of wind velocities and gusts in pedestrian areas adjacent to buildings. Information on sidewalk-level gustiness allows plaza areas to be protected by design changes before construction, if necessary. #### 3.2 Velocity Measurement Instrumentation All velocity measurements were made with a single hot-wire anemometer mounted with its axis vertical. The instrumentation used was a Thermo-Systems constant temperature anemometer (Model 1050) with a 0.001 in. diameter platinum film sensing element 0.020 in. long. Output was directed to the on-line data acquisition system for analysis. Calibration of the hot-wire anemometer was performed by comparing output with a pitot-static tube also located in the wind tunnel. The calibration data are fit to a variable exponent King's Law relationship of the form $$E^2 = A + RII^n$$ where E is the hot-wire output voltage, U the velocity and A, B, and n are coefficients selected to fit the data. The above relationship was used to determine the mean velocity at measurement points using the measured mean voltage. The fluctuating velocity in the form $\mathbf{U}_{\mathrm{rms}}$ (root-mean-square velocity) was obtained from $$U_{rms} = \frac{2 E E_{rms}}{B n U^{n-1}}$$ where $\mathbf{E}_{\mathbf{rms}}$ is the root-mean-square voltage output from the anemometer. #### 3.3 Atmospheric Boundary Layer Profiles The approach mean velocity at the model building site must have a vertical profile shape similar to the full-scale flow. The turbulence characteristics of the flows must also be similar. Mean velocity and turbulence intensity profiles were measured to determine that an approach boundary-layer flow appropriate to the site had been established. Tests were made at a tunnel wind velocity which was well above that required to produce Reynolds number similarity between the model and the prototype, as discussed elsewhere. Velocity and turbulence profiles are shown in Figure 3-1. These profiles were obtained upstream from the model which are characteristic of the boundary layer approaching the model and at the building site with building removed. The boundary-layer thickness, δ , is shown in Figure 3-1. The corresponding prototype value of δ for this study is also shown on that figure. This value was established as a reasonable height for the study. The mean velocity profile approaching the modeled area has the form $$\frac{U}{U_{\infty}} = \left(\frac{z}{\delta}\right)^n$$ The exponent n for the approach flow established for this study is also shown in Figure 3-1. Profiles of longitudinal turbulence intensity in the flow approaching the modeled area are shown on the right side of Figure 3-1. The turbulence intensities are appropriate for the approach mean velocity profile selected. For the velocity profiles, turbulence intensity is defined as the root-mean-square about the mean of the longitudinal velocity fluctuations divided by the local mean velocity U, $$TI = \frac{U_{rms}}{U} .$$ #### 3.4 Pedestrian-Level Wind Velocities Titanium tetrachloride "smoke," released from sources around the model to make flow lines visible, was used to help identify areas where pedestrian-level winds might be a problem. Mean velocity and turbulence intensity measurements were made 5 to 7 ft (prototype) above the surface at eighteen locations near the building site, for 16 wind directions. A reference pedestrian position, located a short distance away in a relatively undisturbed locale, was also measured. The surface velocity measurements are indicative of the wind environment to which pedestrians at the measurement location would be subjected. Measurement locations were chosen to determine the degree of pedestrian comfort, or discomfort, near building corners where relatively severe conditions are frequently found; near building openings and on adjacent walks where pedestrian traffic is heavy; and in open plaza areas. The selected locations are depicted in Figures 3-2a and b. Location 1, southwest of the Childrens' Hospital, served as the reference position. Locations 2, 3, 4, 5, and 6 were spaced along Hamilton Walk, west of the Medical Education Building; locations 7 and 8 were beneath the Medical Education Building; locations 9 through 13 were in the open plaza area; locations 14 and 15 adjacent to the base of the NMR "pyramid"; and locations 16, 17, 18, and 19 near/beneath the Silverstein Pavilion. Velocity data obtained at each of the pedestrian measurement locations shown in Figures 3-2a and b are contained in Tables 3-1a through 3-1j as mean velocity U/U_{∞} , turbulence intensity $\text{U}_{\text{rms}}/\text{U}_{\infty}$, and largest effective gust $$U_{\mathbf{pk}} = \frac{U + 3U_{\mathbf{rms}}}{U_{\mathbf{\infty}}}$$ These data are plotted in polar form on Figures 3-3a through 3-3j. To enable a quantitative assessment of the wind environment, the wind-tunnel data were combined with wind frequency and direction information obtained at the local airport. Table 3-2 shows wind frequency by direction and magnitude obtained from summaries published by the National Weather Service. These data, obtained at an elevation of 20 ft, were converted to velocities at the reference velocity height for the wind-tunnel measurements and combined with the wind-tunnel data (Tables 3-1) to obtain cumulative probability distributions (percent time a given velocity is exceeded) for wind velocity at each measuring The percentage times were summed by wind direction to obtain a percent time exceeded at each measuring position independent of wind direction (but accounting for the fact that the wind blows from different directions with varying frequency). These results are plotted in Figures 3-4a through 3-4d. Interpretation of the integrated velocity data is aided by a description of the effects of wind of various magnitudes on people. The earliest quantitative description of wind effects was established by Sir Francis Beaufort in 1806 for use at sea and is still in use today. Several recent investigators have added to the knowledge of wind effects on pedestrians. These investigations along with suggested criteria for acceptance have been summarized by Penwarden and Wise (1975) and Melbourne (1978). The Beaufort scale (from Penwarden), based on mean velocity only, is reproduced as Table 3-3 including qualitative descriptions of wind effects. Table 3-3 suggests that mean wind speeds below 12 mph are of minor concern and that mean speeds above 24 mph are definitely inconvenient. Quantitative criteria for acceptance (from Melbourne) are superimposed as dashed lines on Figures 3-4. The peak gust curves shown on the right in Figures 3-4 are the percent of time during which a short gust of the stated magnitude could occur (say about one of these gusts per hour). #### 3.5 Data Analysis Tables 3-1 and Figures 3-3 reveal that the largest values of mean velocity were measured at location 16 where the mean velocity for 11 wind directions were in a 40-55 percent range of the velocity, U_{∞} , at the boundary-layer height. Mean velocities in excess of 0.4 U_{∞} were also recorded for two wind directions at location 18, three directions at location 19, and one wind azimuth at location 8. Maximum U/U_{∞} values of 54.8 percent were measured at both locations 16 and 19. The mean velocity values are not overly large compared to an expected value of approximately 45 percent in an open-country environment. The largest values of fluctuating velocity, \bar{U}_{rms} , were 13.2 and 14.9 percent at location 18 and a comparable 14.3 and 14.6 percent at location 19. All other measurements were comparable to, or below, a maximum value of 10 to 12 percent of fluctuating velocity, which is typical of an open-country environment. The maximum peak gusts, represented by the mean plus 3 rms, were obtained at locations 18 and 19 with values of 85.0 and 86.7 percent of U_{∞} , respectively. These values are representative of the 80 to 90 percent maximum gust values expected in an open-country environment. Integration of the velocity data of Table 3-1 with the local wind data of Table 3-2, for presentation in Figures 3-4 was described in the preceding section. The data from these figures also suggest that the windiest places will be near locations 16 and 19. # 3.6 Summary and Conclusion The ten largest values of velocities, turbulence intensities and gustiness and their locations, which were measured for pedestrian level winds, are contained in Table 3-4. This data reveals that the most adverse pedestrian-level wind conditions may be expected in the plaza area near the NW corner of the Silverstein Pavilion (location 16) and beneath the pavilion near the eastern exit (location 19). On the basis of the magnitude of the wind-tunnel data at the measured points, no wind problems are expected, as a result of the new building. Pedestrian comfort along Hamilton Walk, in Miller Plaza and beneath the Medical Education Building and Silverstein Pavilion should remain acceptable. #### 4.0 CONCENTRATION MEASUREMENTS #### 4.1 General Diffusion of gases into the atmosphere is influenced by geometric characteristics such as terrain and man-made structures, in addition to the thermal, dynamic and kinematic considerations for the flow field. Satisfactory techniques have been developed for modelling all of these characteristics which result in a model concentration field that is a congruent replica of the prototype field. The techniques used in acquiring the concentration data for this study are well-established in theory and in practice. Concentration (dispersion) data were collected for all receptors on the HUP IV model for eight different
wind directions at 45° intervals. These measurements were all obtained with a tunnel speed of 2.44 m/s (8 fps). (Scaling of the velocity ratio was discussed in Section 2.0.) Table 4-1 provides for each source group tested: 1) the run number assigned to each test, 2) the wind direction with reference to true north, 3) the wind velocity of the tunnel, 4) the hydrocarbon tracer with its source strength expressed as a percentage of the total gas mixture, and 5) the volume flow rate of the source groups. #### 4.2 Tracer Gases During test planning the decision was made to simultaneously sample the exhausts from two source groups, by using separate hydrocarbon tracers. The neutrally buoyant sources were modelled with a nominal 9 percent Methane, or 10 percent Ethane tracer in a mixture which was equivalent to the molecular weight of air. The buoyant sources (hot exhausts) were modelled using a minimal amount of tracer (4 percent Methane, 3 percent Ethane) in otherwise pure Helium. This mixture provided a buoyancy comparable to the 300°F exhausts (Group 14, 3-58 and 3-60) and represents the maximum obtainable with this testing procedure. The hotter exhausts (group #15 and 3-59) were also tested with these buoyant tracer gases. While these hotter exhaust discharges could not be accurately scaled, the resultant data is conservative, representing worst case conditions. The required tracer gas mixtures were supplied by Scientific Gas Products, Inc., Longmont, Colorado. The gases are certified (see Figure 4-1) by SGP to be accurate within ±2 percent. #### 4.3 Data Collection Procedures Tracer gas concentrations were measured at each of the receptors for comparison with the various sources. The 47 model receptors were all connected to a collection system (which was located adjacent to the wind tunnel) with one-sixteenth I.D. Tygon tubes. The collection system ("Sampler"), which was designed and fabricated in the CSU Engineering Research Center, basically consists of a circular array of syringes, a network of check valves and a manifolded vacuum system, all interconnected, and completing a path from sampling port to gas chromatograph. Sampling time and vacuum pressure of the system are adjustable. The sampler was calibrated both prior to, and immediately following, the concentration test program to insure proper function of each of the assemblies (tubing, check valve, syringe). The data acquisition consisted of: 1) setting the proper tunnel wind speed, 2) releasing metered mixtures of tracer gases from the model sources, 3) withdrawing samples of air from the model receptors, and 4) analyzing the samples with a Flame Ionization Gas Chromatograph (FIGC). Tunnel speed was established by integrating the signal from the tunnel-mounted sensor with a digital voltmeter, over a 100-second interval. Speed was adjusted and the integrations repeated until the desired setting was obtained to a ±2 percent tolerance. The tracer gases released from the source groups were initially routed through ball-type flow meters to control the volume flows prior to routing to the group manifolds, or individual sources. Calibration of the flow-meters, over their operating range with Helium/air (as appropriate), was used to obtain the proper meter setting. The modelled volume flow rates, sometimes reduced from the prototype values by a square of the scaling factor, were additionally reduced by a factor of ~ 0.299 (8 fps/26.8 fps) for this study to maintain equality of the velocity ratio ($V_{\rm S}/U_{\rm S}$), which was described in subsection 2.5. A tabulation of the prototype and model volume flow rates is contained in Table 4-2. The tracer gas sampling system consists of a series of fifty 30 cc syringes mounted between two circular aluminum plates. A variable-speed motor raises a third plate, which simultaneously lifts all 50 syringe plungers. A set of check valves and tubing are connected such that airflow from each sampling point passes over the tip of each designated syringe. When the syringe plunger is lifted, a sample from the tunnel is drawn into the syringes. The sampling procedure consists of flushing (taking and expending a sample) the syringe several times after which the test sample is taken. The variable draw rate was set to approximately 60 seconds. Two of the sampler syringes are used to monitor background values of tracer gases which are present/accumulate in the wind tunnel. Readings are obtained for each test run from sampling ports positioned upwind from the model. These values were subtracted from concentration values measured at the model receptors, as illustrated in subsection 4.5. The procedure for analyzing air samples from the tunnel is as follows: 1) a 2 cc sample volume drawn from the wind tunnel is introduced into the Flame Ionization Detector (FID), 2) the output from the electrometer (in microvolts) is sent to the Hewlett-Packard 3380 Integrator, 3) the output signal is analyzed by the HP 3380 to obtain the proportional amount of hydrocarbons present in the sample, 4) the record is integrated, and the Methane and Ethane concentrations, as appropriate, are determined, 5) a summary of the integrator analysis (gas retention time and integrated area (µv-s) is printed out on the integrator at the wind tunnel, 6) the integrated (raw) values for each tracer are entered into a computer along with pertinent run parameters, and 7) the computer programs convert the raw data into dimensionless concentration ratios/coefficients. Photographs of the sampling system and FIGC are shown in Figure 4-2. # 4.4 Data Analysis A common method of analyzing dispersion data is to compare the concentrations measured at the receptors to the source strengths. When the Gas Chromatograph (GC) calibration values are included, a dimensionless concentration ratio, χ , may be obtained, $$\chi = \frac{\text{RAW-BG}}{\text{CAL FAC}} \times \frac{\text{S.S.}_{\text{calib gas}}}{\text{S.S.}_{\text{tracer gas}}}$$ where, RAW = GC integrator value of sample at receptor ($\mu v \cdot s$) BG = background value of tracer gas (µv·s) CAL FAC = GC integrator value of a calibration gas of known concentration, corrected for differences in molecular weight of the tracer gas, if appropriate (µv·s) SS = source strength of calibration/tracer gas (ppm). The concentration ratios (dilution factors) so calculated, at each of the 47 receptors for the various source groups modelled, are contained in the appendix to this report. Data reduction of the concentration measurements from the HUP IV wind-tunnel study did not include prototype source strengths from any of the modelled source groups. However, a second set of data was generated which will enable the sponsor to evaluate the concentrations at any selected receptor, for any prototype source strength measured at a later date. These dimensionless concentrations, K, are useful values which are often calculated in the analysis of wind-tunnel dispersion data, since these non-dimensional coefficients can easily be equated to prototype source measurements. A logical extension of the concentration ratios, χ , the non-dimensional concentrations are expressed by, $$K_{\mathbf{m}} = \left(\frac{\chi u_{\mathbf{r}} H_{\mathbf{r}}^{2}}{Q}\right)_{\mathbf{m}} = K_{\mathbf{p}} = \left(\frac{\chi u_{\mathbf{r}} H_{\mathbf{r}}^{2}}{Q}\right)_{\mathbf{p}}$$ where $\chi = fraction of source strength (\chi_{receptor}/\chi_{source})$. u_r = reference velocities (for HUP IV study they are 2.44 m/s for the model and 8.17 m/s for the prototype). H_r = reference heights (building height of HUP IV from grade line to roof was selected and are 0.2199 m for the model and 54.965 m for the prototype. Q = total volume flow rate of the source (cfm or m³/sec).Rearranging the equation, $$(\chi_{\text{receptor}})_p = K \left(\frac{\chi_{\text{source}} \cdot Q_{\text{source}}}{u_r H_r^2} \right)_p$$ so that the strength of an effluent at any prototype receptor may be calculated by determining pertinent prototype values and multiplying by the appropriate K value. These latter values are especially useful when only portions of the total volume flow, Q, from a source are objectionable, since these fractional values do not appear in the concentration ratios. The dimensionless concentration coefficients, K, which were calculated for each of the 47 receptors at eight wind directions, for all the source groups modelled, are also tabulated in the appendix to this report. The following table is often useful to convert the values tabulated in the appendices, and contained elsewhere in this report, into more easily recognizable or useful terms. Since the computer uses an E to identify an exponent to the base 10, the relationship to decimals and percentages is simply, ^{*}Since a value of .100E-5 would indicate the presence of 1 part at the receptor for each million parts exhausted from the source, values in this range, and smaller, are assumed to be zero. The collected concentration data was analyzed to ascertain which receptors had received the largest amount of concentration from each source group tested. Since the amount of contamination varied extensively between test groups, the resultant concentration ratios were tabulated into groupings which recognized measurements in excess of 10, 2½, 1, 0.2, 0.015 or 0.01 percent of source strength. This analysis is contained in Tables 4-3a through 4-3f, which identify the wind direction and receptors for which concentration ratios exceeded some indicated value, for the various source groups. Figures 4-3a through 4-3l are presented as an aid to visualizing which intakes/receptors received the greatest amounts of contamination from each source group. Each figure contains a table identifying all measurements in which the concentration ratio exceeded some arbitrary value, specified in Table 4-3, and the wind directions at which they occurred. The maximum values for each receptor listed, are also plotted on
the figure at the appropriate geometric location of the receptor. With the architect's interest focused upon the Phase IV addition to HUP, the concentration measured at the receptors of this model structure, and also the nearby Gates and Maloney buildings, were evaluated for every modeled source. Based upon an assumption that the maximum contaminant strength from any single source would not exceed 1000 ppm, all measured concentration ratios in excess of .100 E-3 (0.1 ppm contaminant at the receptor) were tabulated in Tables 4-4a through 4-4x for the referenced intakes and eight wind directions. The maximum values (and direction of occurrence) at each intake are contained in Table 4-5 for each modeled source.* This table provides ^{*}Tables 4-4e and 4-4i were omitted from Table 4-5 because the data are neither representative nor predictable. The data is typical of that obtained when an inadvertent leak in the "plumbing" exists somewhere before the desired exhaust exit. In any event, the concentration ratios from these two sources should be similar to other HUP IV rooftop sources, e.g., Source Groups 3-2 and 3-C.) prompt identification of the relative magnitudes and locations of the selected exhaust-intake cross-contaminations. Tabulations similar to Tables 4-4 and 4-5 may be prepared for any combination of sources and receptors of interest from the data contained in the appendices to this report. ## 4.5 Sample Calculations The dimensionless concentration ratio, χ , is calculated from the equation $$\chi = \frac{\text{RAW-BG}}{\text{CAL FAC}} \times \frac{\text{S.S.}_{\text{calib gas}}}{\text{S.S.}_{\text{tracer gas}}}$$ Using Run #1, Wind Direction 000°, Sample Point #1, Source Group #13 as an example: Given: RAW-GC reading $$(\mu v \cdot s) = 1856$$ BG-GC reading $$(\mu v \cdot s) = 375$$ CAL FAC-GC reading ($$\mu v \cdot s$$) x $\frac{M.W. (tracer gas)}{M.W. (calib gas)} = 98,056$ S.S. $$tracer gas$$ - 100,000 ppm $C_2^H_6$ so that $$\chi = \frac{1856 - 375}{98,056 \times \frac{30}{30}} \times \frac{201}{100,000} = .304E-04$$ The dimensionless concentration coefficient, K, follows from the preceding calculation of χ , so that using the same example, $$K_{\mathbf{m}} = \left(\frac{\chi u_{\mathbf{r}} H_{\mathbf{r}}^2}{Q}\right)_{\mathbf{m}}$$ $\chi_{\rm m}$ - preceding calculation = .304E-04 $$(u_r)_m$$ - Table 4-1 = 2.44 m/s $(H_r^2)_m$ - assigned constant = .048356 m² Q_m - Table 4-1 = .00019498 m³/s so that $$K_{\rm m} = \frac{.304E - 04 \times 2.44 \times .048356}{.19498E - 03} = .184E - 01$$ As a further example, if it is known that source group #13, or a certain exhaust within that group; emits effluvium containing .2E-04 (2 x 10⁻⁵) grams of lead per cubic meter (i.e. total grams per second of lead divided by total volume flow rate in cubic meters per second for source group #13 equals .2E-04), the concentration of lead at any given intake may be calculated. Again, using the cited example for Run #1, W.D. 000°, Sample Point #1, and Source Group #13: $$(\chi_{receptor})_{p} = K \left(\frac{\chi_{source} \times Q_{source}}{u_{r} \times H_{r}^{2}}\right)_{p}$$ $$(X_{source})_{p} - \text{given to be} = .2E-04 \text{ gms/m}^{3}$$ $$(Q_{source})_{p} - \text{Table 4-2} = 40.82 \text{ m}^{3}/\text{s}$$ $$\star (u_{r})_{p} - \text{reference velocity} = 8.17 \text{ m/s}$$ $$(H_{r}^{2})_{p} - \text{assigned constant} = 3021.15 \text{ m}^{2} (= .0484 \times 250^{2})$$ so that $$\chi_{\text{receptor}} = .184\text{E-01} \quad \frac{.2\text{E-04} \times 40.82}{8.17 \times 3021.15} = .609\text{E-9 gm/m}^3$$ ### 4.6 HUP IV Penthouse Tests During a 28 August 1984 meeting of HUP, GBQC, Caretsky and CSU representatives, a decision was made to perform additional wind-tunnel tests on a penthouse not originally included on the HUP IV drawings, or model. Subsequent to receipt of updated drawings, and after consultation $[\]overline{*0r}$ approximate velocity at which χ_{source} was determined. with Caretsky & Associates personnel, the HUP IV model was modified to facilitate completion of the additional concentration and visualization tests. Alterations to the model included the addition of a mechanical room penthouse, relocation of cooling towers and minor changes to rooftop sources. Configurations of the HUP IV rooftop, prior to and after the remodeling, are provided in Figures 4-4a and 4-4b. The mechanical room penthouse (block E on Figure 4-4b) design included two large air intakes on the west face. An alternate air intake (block F on Figure 4-4b) located atop the penthouse, and containing a large opening to the east and smaller north-south openings, was also modeled. The five individual cooling towers (1-5 of Figure 4-4a) originally modeled were modified to the two-group (A-B and C-D) configuration depicted on Figure 4-4b. Rooftop sources directly in front of the west-facing penthouse intakes were also relocated. Exhausts from Source Groups 3-1, 3-2 and 3-Q, all located atop HUP IV, and Source Groups 1, 2, 4 and 5 (Med. Ed., Gates and Maloney buildings) were measured at the two penthouse intake locations. Penthouse intakes, west set (8,9) or east set (5,6), were operated at rated capacity and the intake air was sampled for concentration. Model approach wind velocity was the same as in previous tests. The basic concentration data representing 10 runs of data are tabulated in Appendix C in a form similar to that for previous data. Identification of run numbers and their associated model test parameters are shown in Table 4-6. Results of the penthouse concentration measurements are summarized in Table 4-7. Concentration ratios of air inlet to source outlet are listed for both east intakes (labeled E) and west intakes (labeled W) for each source group and wind direction tested. On the basis of the data presented in Table 4-7, it can be concluded that the east intakes provide the smallest concentrations for HUP IV rooftop emissions. An east intake should provide a more satisfactory intake location from the standpoint of minimizing intake concentrations from the measured sources. ## 4.7 Cross-Contamination Analyses Examples of the use of cross-contamination data contained in this report are presented in this chapter. Data on actual emission data from some sources in the hospital complex were received on 6 November 1984. These data reported 8-hr, daily or weekly volumes of various chemicals released from specific sources within the complex. The sources listed were within Source Groups 4 and 5 of the tests reported earlier in this report. Emissions from 2 (sources 116 and 121) of the 13 sources in Group 4 (see Table A-2-1c) and 7 (sources 124, 144, 156, 158, 159, 162, 173) of the 50 sources in Group 5 (see Table A-2-1d) were provided. These source locations are shown in Figures 4-5a and 4-5b. A series of tables have been prepared which show how specific solvent evaporation rates can be combined with cross-contamination concentration measurements of this report to obtain predicted inlet concentrations in parts per million. Table 4-8a shows the six solvents which were reported to be emitted from the two exhaust locations 116 and 121 of Source Group 4. The liquid solvent evaporation rate provided to us is listed along with the liquid-to-vapor volume ratio for the solvent. Multiplication of the two factors gives the solvent vapor creation (emission) rate. Division of the solvent creation rate by the total exhaust discharge rate gives the exhaust concentration of each solvent. Table 4-8a gives the exhaust concentration in ppm. Table 4-8b shows the same calculations for the solvent evaporation rates provided to us for 7 exhaust locations of Source Group 5. It is not known if the emission rates provided represent average evaporation rates to be expected typically every day or a peak emission rate expected say once per year. During any 8-hr period over which the emissions were quoted, it is possible that surges in emission rate would cause concentrations at one exhaust location to be several times the average rate. The above calculations can be modified to examine peak emission rates by multiplying the exhaust solvent vapor concentrations of Tables 4-8a and 4-8b by the ratio of the peak evaporation rate to the quoted rate given in the tables. Table 4-8c shows the total vapor concentration of various solvents for Source Group 5, accounting for the multiple release locations within the group. The total vapor concentration shown at the right is a weighted average of the individual exhaust concentrations using the individual exhaust discharges as the weight factors. (The value is also found by dividing the total solvent vapor creation rate of Table 4-8b for each solvent by the total discharge rate of the exhausts with that solvent.) The total vapor concentration for Source Groups 4 and 5 accounts only for the 9 exhausts for which concentrations are known. The concentrations have not been assumed to be diluted by the exhausts within a source group for which we do not have emission information. Tables 4-8d and 4-8e show the conversion of exhaust vapor concentrations just calculated into vapor concentrations at each of the HUP IV rooftop intakes discussed in Section 4.6. Table 4-7 shows that the concentration ratio for the East inlets for a wind direction of 315 degrees was 0.0026; that for the West inlets was 0.0029. Multiplication of exhaust vapor concentrations by the concentration ratio gives the vapor concentration in ppm at the intake vents for various solvents in the source group. The intake concentrations for this case are quite small. The ppm intake concentrations for a particular solvent are additive in ppm for Source Groups 4 and 5 (and for any other source groups simultaneously emitting the same solvent vapor. This summed concentration level can then be compared to standards of acceptable levels of concentration on a solvent-by-solvent basis. This comparison cannot be performed with the limited solvent emission
data provided to us, unless these represent the only sources of emission of these solvents in the hospital complex. The analysis performed above can be performed for any combinations of source and receptors that might be desired. In the performance of such calculations, several factors need to be kept in mind. First, individual sources were combined into source groups to obtain concentration ratios. This was done to permit the several hundred sources to be modeled at reasonable cost. Concentration ratios obtained in this way work well for receptors at a distance sufficient for the various emission sources to have been well mixed. For receptors located close to the source group, or even within it, concentration ratios applicable to individual sources could be somewhat different than that for the source group as a whole. Second, concentration ratios were obtained for a single wind speed representative of average conditions. For other than average winds, concentration ratios will vary somewhat from average ratios. For higher wind speeds, ratios will typically decrease with increasing wind speeds and can be estimated using K values as discussed in Sections 4.4 and 4.5. For lower wind speeds, concentration ratios could increase or decrease depending on wind speed and atmospheric stability. These variations in concentration ratio were not modeled since the addition of various stabilities and wind speeds to the modeling would have multiplied the cost of the study. Thus, while the concentration ratios are accurate to perhaps 10-15 percent for the conditions modeled, the overall accuracy of concentration predictions will vary by perhaps a factor of 2 or 3 when the atmosphere variabilities are included. Thirdly, solvent emission rates may vary with peak concentrations substantially higher than average rates. Acceptable levels of concentrations are often specified as an average over a specified time to partially account for these variations. ## 4.8 Summary and Conclusions A review of all the concentration data indicated measurements at several receptors which did not vary significantly with wind direction. This implies that regions of relatively stagnant air exist within the complex. In these instances source exhausts are not being swept away, but rather linger in these areas where some portion is eventually drawn into any air intakes in the proximity. The stagnant air regions are caused by the taller buildings which block air flow at lower levels, especially when the taller buildings encircle the region on two or three sides. Four principle regions of stagnation were identified from the data analysis: - 1) SW corner of Gates Building, where receptors 13, 14, 15, 16 were located (see Test Group #4). - 2) SE corner of Gates Building, where receptor 36 was located (see Test Group #10). - 3) Receptors 37, 38 and 39, located on the west face of the Ravdin Building (see Test Group #11). - 4) The Ravdin Courtyard, where receptors 42, 43, 44 and 45 were located (see Test Group #11). Maximum concentration values were observed with a wind direction of 180° for regions (1) and (2) (Gates Building), as might be expected, with the south face of the Gates Building providing a significant impediment to effluent dispersion. However, effluent concentrations measured at most of the other seven wind directions were also of significant size. The concentration values measured for all wind directions, for regions (3) and (4) (Ravdin Building and Courtyard), were all of comparable size to one another. An example of an exhaust feeding into a stagnation region can be seen by examining the effluent from Source Group 15. Maximum concentrations recorded from Source Group #15 (which included the pathology exhaust atop the Medical Education Building, along with Emergency Generator exhausts) occurred at receptors 17 and 18, located atop the Maloney Building. The maximum values were recorded with winds from 180 and 225 degrees azimuth, as expected from the relative positions of source and receptor, and suggest that the new facility might increase existing concentrations. The values were approximately one percent of the source strength. Table 4-5 summarizes the wind-tunnel study results for the HUP IV, Gates and Maloney structures. The heavily outlined portion identifies the HUP IV sources and receptors, since special interest was expressed in the proposed new facility. The second- and third-level intakes (sampling points 4, 5, 6, 7, 8 and 9), located on the west side of the HUP IV structure, are nearly free of cross-contamination from HUP IV exhausts with the largest receptor concentration measured was less than 0.03 percent of source strength. Some low levels of concentration (~.01 percent to ~.2 percent) were measured at the HUP IV second- and third-level air intakes from other sources in the complex. Most noteworthy, was the contamination from the nearby exhausts of Source Group 5 (Maloney, etc.) buildings. On the whole, the concentration ratios for the HUP IV second- and third-floor air intakes were quite low. Intake concentrations will be low unless the source concentrations of sources with nonzero concentration ratios as measured at intakes 4-9 are very high. Cross-contamination of the HUP IV rooftop intakes (sample points 10, 11 and 12) appeared to be significantly greater. The largest values measured for the entire study were recorded at these receptors for exhausts from some HUP IV rooftop sources. Measured concentration values approached 45 percent of the source strength. These particular data were obtained at three inlets, each located inside a model cooling tower for sources located immediately adjacent to or within the tower. Sources 3-58, 3-59 and 3-60 (emergency generator exhaust, incinerator exhaust and kitchen exhaust) on the HUP IV roof were modeled individually as buoyant plumes because of their importance so that their individual effluent cross-contamination to receptors would be determined. No measurable contamination was noted from these three sources at any HUP intakes. It is possible that small but nonzero concentrations might be measured for very high wind conditions. It is not anticipated that these exhausts will cause problems. Tests on the modified roof air intakes on the HUP IV indicated that measurable concentrations from some sources would occur at either of the two intakes. However, the east intake provided a better performance overall. Prediction of concentrations of a specific chemical at any receptor location in the hospital requires more than concentration ratios as measured in this wind-tunnel measurement program. It also required a knowledge of the strength of emissions from the various hospital exhausts and some calculations. Examples of the calculation method were applied in Section 4.7 to emissions from some of the exhausts in Source Groups 4 and 5 to predict their impact on the modified rooftop air intakes on the HUP IV. If the known sources in Groups 4 and 5 are the only significant emissions in the hospital complex, then it can be concluded that intake concentrations will be quite low. However, as discussed in Chapter 7, intake concentrations are additive from all emitting sources at a particular wind direction. Additional calculations following the models of Section 4.5 and Chapter 7 can be readily performed with any desired combination of sources and receptors. ### 5.0 AIRFLOW VISUALIZATION #### 5.1 General Making the airflow visible can be helpful in understanding flow patterns over, around and in the wakes of buildings and other structures. Visualization is often helpful in identifying areas of stagnation, vortices, and related flow characteristics which can influence diffusion rates and wind speeds. Titanium tetrachloride ($TiCl_4$), which readily reacts with water vapor (H_2^0) in the air to produce titanium dioxide (TiO_2) and hydrochloric acid (HCl), was used for these studies. The titanium dioxide appears as a white "smoke" discernible to the eye and easily photographed, when properly illuminated with tungsten arc-lamps. ## 5.2 Visualization Tests Cotton swabs saturated with TiCl₄ were used during the visualization study to reveal airflow patterns in the vicinity of the HUP IV addition and other model structures. In particular, video documentation was focused upon those sources and receptors which, preceding tests revealed, should be further evaluated. Table 5-1 contains descriptions of all sources and receptors for which flow patterns were recorded on VHS video cassettes. The table also contains a record of the wind azimuth and run number of each tape segment. The videotapes reveal some of the effects wind direction, source location, and adjacent structures had upon exhaust gas transport and dispersion in the area around the HUP IV addition. Any assessment of airflow derived from the visualization should be treated as qualitative in nature and further substantiation of the concentration data. NOTE: Videotapes are furnished to the sponsor separately from the test report. ### 6.0 REFERENCES - 1. Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Journal, Vol. 9, No. 9, September 1971, pp. 1746-1754. - Cermak, J. E., "Simulation of the Natural Wind," Preprint 82-518, ASCE Convention and Exhibit, New Orleans, Louisiana, 25-29 October 1982. - 3. Lord, G. R. and Leutheusser, H. J., "Wind-Tunnel Modeling of Stack-Gas Discharge," in Man and His Environment, Vol. 1 (M.A. Ward, ed.), Pergamon Press, 1970. - 4. Halitsky, J., "Validation of Scaling Procedures for Wind-Tunnel Model Testing of Diffusion Near Buildings," Report No. TR-69-8, Geophysical Sciences Laboratory, New York University, 1969, p. 90. - 5. Penwarden, A. D., and Wise, A. F. E., "Wind Environment Around Buildings," Building Research Establishment Report, HMSO, 1975. - 6. Melbourne, W. H., "Criteria for Environmental Wind Conditions," Jl. Industrial Aerodynamics, Vol. 3, pp. 241-247, 1978. FIGURES Figure
2-1. Schematic Overview of Source Groupings which were Modeled in HUP IV Wind-Tunnel Tests Figure 2-1a. Source and Receptor Location/Identification for Groups 1 and 2 Figure 2-1b. Source and Receptor Location/Identification for Group 3 (HUP IV Addition) Figure 2-1b(1). Source and Receptor Location/Identification for Group 3-1 Figure 2-1b(2). Source and Receptor Location/Identification for Group 3-2 Figure 2-1b(3). Source and Receptor Location/Identification for Group 3-3 Figure 2-1b(4). Source and Receptor Location/Identification for Group 3-4 Figure 2-1b(5). Source and Receptor Location/Identification for Source 3-C Figure 2-1b(6). Source and Receptor Location/Identification for Source 3-Q Figure 2-1b(7). Source and Receptor Location/Identification for Source 3-R Figure 2-1b(8). Source and Receptor Location/Identification for Source 58 Figure 2-1b(9). Source and Receptor Location/Identification for Source 59 Figure 2-1b(10). Source and Receptor Location/Identification for Source 60 Figure 2-1c. Source and Receptor Location/Identification for Group 4 Figure 2-1d. Source and Receptor Location/Identification for Group 5 Figure 2-1e. Source and Receptor Location/Identification for Groups 6 and 7 Figure 2-1f. Source and Receptor Location/Identification for Group 8 Figure 2-1g. Source and Receptor Location/Identification for Group 9 Figure 2-1h. Source and Receptor Location/Identification for Group 10 Figure 2-1i. Source and Receptor Location/Identification for Group 11 Figure 2-1j. Source and Receptor Location/Identification for Groups 12 and 13 Figure 2-1k. Source and Receptor Location/Identification for Group 14 Figure 2-12. Source and Receptor Location/Identification for Group 15 Figure 2-2. Schematic Overview of Receptors (Intakes) which were Modeled in HUP IV Wind-Tunnel Tests Figure 2-3. Environmental Wind Tunnel, Fluid Dynamics and Diffusion Laboratory, Colorado State University Figure 2-4. Close-up Photograph of HUP IV Model and Surrounding Building Complex. Figure 2-5. Upwind View of HUP IV Model Installed in Environmental Wind Tunnel. Figure 2-6. Schematic of the EWT Test Section Figure 2-7. Depiction of Prevailing Wind Speeds at Philadelphia Airport by Percentage of Total Time and Wind Direction Figure 3-1. Mean Velocity and Turbulence Profiles Approaching the Model Figure 3-2a. Pedestrian Wind Velocity Measurement Locations (No. 1 through 4) Figure 3-2b. Pedestrian Wind Velocity Measurement Locations (No. 5 through 19) Figure 3-3a. Mean Velocities and Turbulence Intensities at Pedestrian Locations 1 and 2 Figure 3-3b. Mean Velocities and Turbulence Intensities at Pedestrian Locations 3 and 4 Figure 3-3c. Mean Velocities and Turbulence Intensities at Pedestrian Locations 5 and 6 Figure 3-3d. Mean Velocities and Turbulence Intensities at Pedestrian Locations 7 and 8 Figure 3-3e. Mean Velocities and Turbulence Intensities at Pedestrian Locations 9 and 10 Figure 3-3f. Mean Velocities and Turbulence Intensities at Pedestrian Locations 11 and 12 Figure 3-3g. Mean Velocities and Turbulence Intensities at Pedestrian Locations 13 and 14 Figure 3-3h. Mean Velocities and Turbulence Intensities at Pedestrian Locations 15 and 16 Figure 3-3i. Mean Velocities and Turbulence Intensities at Pedestrian Locations 17 and 18 Figure 3-3j. Mean Velocities and Turbulence Intensities at Pedestrian Location 19 Figure 3-4a. Wind Velocity Probabilities for Pedestrian Locations No. 1 through 5 Figure 3-4b. Wind Velocity Probabilities for Pedestrian Locations No. 6 through 10 Figure 3-4c. Wind Velocity Probabilities for Pedestrian Locations No. 11 through 15 Figure 3-4d. Wind Velocity Probabilities for Pedestrian Locations No. 16 through 19 Figure 4-1. Tracer Gas Certifications Figure 4-2. Photographs of (a) the Gas Sampling System, and (b) the HP Integrator and Chromatograph. ## SOURCE GROUP 1 0.031 (16) 0.025 (180) 0.038 33)(225) 32 (225) o O T 0.149 (090) (3 0.034 (225) WIND 32) (33) 16 (17) 1 3 DIR. 0000 .059 045⁰ .065 090° .149 135° .045 Active Source 180° .025 .031 .081 225° .036 .066 .028 .038 Maximum 270° .050 Concentration 315° Ratio .050 Receptor ((180)-Wind Direction at which the Maximum was Figure 4-3a(1). Location and Identification of Receptors with Concentration Ratios \geq .025 (2.5%) of Source Group 1 Measured Figure 4-3a(2). Location and Identification of Receptors with Concentration Ratios ≥ 0.002 (.2%) of Source Group 2 ## SOURCE GROUP 3-1 Figure 4-3b(1). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-1 ## SOURCE GROUP 3-2 Figure 4-3b(2). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-2 Figure 4-3b(3). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-3 Figure 4-3b(4). Location and Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-4 Figure 4-3b(5). Location and Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 3-C Figure 4-3b(6). Location and Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-Q Figure 4-3b(7). Location and Identification of Receptors with Concentration Ratios ≥ 0.01 (1%) of Source Group 3-R Figure 4-3b(8). Location and Identification of Receptors with Concentration Ratios ≥ 0.0001 (.01%) of Source Group 3-58 Figure 4-3b(9). Location and Identification of Receptors with Concentration Ratios ≥ 0.00015 (.015%) of Source Group 3-59 Figure 4-3b(10). Location and Identification of Receptors with Concentration Ratios ≥ 0.0001 (.01%) of Source Group 3-60 Figure 4-3c. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 4 Figure 4-3d. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 5 Figure 4-3e(1). Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 6 Figure 4-3e(2). Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 7 Figure 4-3f. Location/Identification of Receptors with Concentration Ratios ≥ 0.1 (10%) of Source Group 8 Figure 4-3g. Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 9 Figure 4-3h. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 10 Figure 4-3i(1). Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 11 ## SOURCE GROUP 11 Figure 4-3i(2). Expanded View to Locate/Identify Maximum Concentration Ratios Measured at Receptors with Source Group 11 Active Figure 4-3j(1). Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 12 Figure 4-3j(2). Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 13 Figure 4-3k. Location/Identification of Receptors with Concentration Ratios \geq 0.1 (10%) of Source Group 14 Figure 4-31. Location/Identification of Receptors with Concentration Ratios \geq 0.01 (1%) of Source Group 15 Figure 4-4a. HUP IV Model Roof Configuration Prior to October 1984 Modification Figure 4-4b. HUP IV Model Roof Configuration Subsequent to October 1984 Modification Figure 4-5a. Sources on Gates Building from which Identified Types and Quantities of Evaporated Solvents are Exhausted Figure 4-5b. Sources on Maloney, Alumni Hall, and Gibson Buildings from which Identified Types and Quantities of Evaporated Solvents are Exhausted TABLES Table 2-1a. Identification of Prototype Sources on the Medical Education Building which were Modeled Group #1 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|----------------------------|----------------------------| | A | 62, 63, 64, 65, 66 | 6,200 | | В | 69, 70, 71, 73, 74, 75, 76 | 7,020 | | С | 67, 68, 77, 78, 79, 80 | 5,090 | | D | 72 | 3,850 | | E | 82, 83, 84, 85 | 4,000 | | \mathbf{F} | 86, 87, 89, 90 | 2,640 | | G | 88, 91, 92, 93, 94 | 4,080 | | Н | 95, 96, 97 | 322,900 | | I | 99, 100, 111 | 33,755 | | J | 101, 102, 103 | 7,700 | | L | 104, 105, 106 | 5,800 | | M | 150 | 7,900 | | N | 152 | 50,000 | | Total | | 460,935 | Group #2 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | Α | 40 | 1,200 | | В | 46, 47, 48, 54, 55, 110 | 4,500 | | С | 56, 57 | 3,000 | | D | 49, 50, 51, 52, 53, 61 | 5,355 | | E | 58, 59, 60 | 2,700 | | Total | | 16,755 | ^{*}Prototype source numbers from Caretsky and Associates, Drawing WS-1, dated 11-21-83. Table 2-1b. Identification of Prototype Source Groups on HUP IV Building which were Modeled Group 3-1 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | A | 1, 2, 6, 7, 12, 13 | 5,900 | | L | 20, 25, 26, 27 | 38,360 | | M | 17, 18, 19 | 43,980 | | N | 14, 15, 16 | 72,290 | | Total | | 160,530 | Group 3-2 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|----------------------------|----------------------------| | В | 3, 4, 5, 8, 9, 10, 11 | 6,250 | | F | 29, 30, 31, 32, 33, 34, 71 | 251,200 | | Н | 39, 40, 45, 46, 49, 50, 51 | 5,770 | | I | 41, 42, 43, 44, 52, 53, 54 | 5,370 | | K | 35, 36, 37 | 22,870 | | Total | | 291,460 | ^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-2, dated 12-2-83. Table 2-1b. (Continued) Group 3-3 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | E | 28, 67 | 251,200 | | G | 38, 47, 48, 68 | 251,960 | | 0 | 69 | 250,000 | | P | 70 | 250,000 | | Total | | 1,003,160 | Group 3-4 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------
---------------------------|----------------------------| | D | 21, 22, 23, 72 | 125,504 | | J | 55, 56, 57 | 27,256 | | Total | | 152,760 | ^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-2, dated 12-2-83. Table 2-1b. (Continued) Sources 3-C, 3-Q, 3-R, 3-58, 3-59, & 3-60 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | С | 24, 66 | 278,600 | | Q | 63, 64, 65 | 50,975 | | R | 62 | 11,000 | | 58 | 58 | 7,200 | | 59 | 59 | 34,000 | | 60 | 60 | 40,000 | ^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-2, dated 12-2-83. Table 2-1c. Identification of Prototype Sources on the Gates Building which were Modeled Group #4 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------------|----------------------------| | A | 116 | 7,000 | | В | 119 (2 of 5 cooling towers) | 34,000 | | С | 119 (1 of 5 cooling towers) 118 | 24,000 | | D | 119 (2 of 5 cooling towers) | 34,000 | | E | 121 | 3,680 | | F | 126 | 2,300 | | G | 127 | 2,300 | | Н | 128 | 2,300 | | I | 130 | 11,900 | | J | 133 | 10,600 | | K | 135, 136 | 11,600 | | Total | | 143,680 | | | | | ^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84. Table A-2-1d. Identification of Prototype Sources on the Centrex, Gibson, Alumni, Maloney & Piersol Buildings which were Modeled Group #5 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge (cfm) | |--------------------|-----------------------------------|-------------------------| | A | 122 | 4,600 | | В | 125 | 1,000 | | С | 123 | 4,630 | | D | 139, 140 | 9,200 | | E | 138 | 11,000 | | F | 141, 142, 143 | 78,900 | | G | 144 | 23,600 | | Н | 147, 148, 164, 165 | 28,520 | | I | 151, 152, 153, 154, 155, 156, 157 | 3,930 | | J | 158, 159, 161 | 37,000 | | K | 160, 181, 182, 183, 184, 185, 186 | 13,300 | | L | 162, 163, 187, 188, 189 | 11,300 | | M | 170, 171, 172, 173, 174, 175, 176 | 10,150 | | N | 177, 178, 179 | 23,000 | | 0 | 166, 167 | 15,560 | | P | 168 | 9,600 | | Q | 169 | 15,000 | | Total | | 300,290 | $[\]pm Source$ numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, 10-26-83, revised 1-24-84. Table 2-1e. Identification of Prototype Sources on the Children's Hospital Building which were Modeled Group #6 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | Α | 112 (see note) | | | В | 114 | 25,000 | | С | 113 (see note) | | | Total | | 25,000 | Note: 112 and 113 are cooling towers of large enough size to permit modeling with working fans in the model which draw air from the roof level and discharge upwards. Group #7 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|------------------------------|----------------------------| | A | 115, 116, 117, 118, 119 | 51,030 | | В | 120, 121, 122, 123, 124, 125 | 85,721 | | С | 126, 127, 128, 129, 130, 131 | 38,220 | | D | 132, 133, 134, 135 | 46,205 | | E | 136, 137, 138, 139, 140 | 46,185 | | F | 141, 142, 143, 144, 145 | 52,295 | | Total | | 319,656 | ^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-1, dated 11-21-83. Table 2-1f. Identification of Prototype Sources on the Silverstein Pavilion which were Modeled Group #8 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | A | 7, 8, 9, 10, 11 | 16,475 | | В | 12, 13, 14, 15 | 15,800 | | С | 19 | 8,000 | | D | 20, 21, 22, 23 | 4,000 | | F | 24, 25, 26 | 16,000 | | G | 28 (see note) | | | Н | 157, 158 | 341,800 | | I | 159, 160 | 341,800 | | J | 30 | 7,900 | | K | 29, 31, 32 | 13,285 | | L | 36 | 53,000 | | Total | | 818,060 | Note: 28 is a cooling tower of large enough size to permit modeling with working fans in the model which draw air from roof level and discharge upwards. ^{*}Prototype source numbers from Caretsky & Associates, Drawing WS-1, dated 11-21-83. Table 2-1g. Identification of Prototype Sources on the Donner Building which were Modeled Group #9 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | A | 106 | 460 | | В | 107, 108, 109, 110, 111 | 7,600 | | С | 112, 113 | 39,100 | | D | 114, 115 | 2,500 | | Total | | 49,660 | ^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84. Table 2-1h. Identification of Prototype Sources on the Dulles Building which were Modeled Group #10 | Model
ub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |-------------------|---------------------------|----------------------------| | В | 82, 83, 84, 85, 86 | 8,870 | | С | 78, 79, 80 | 13,800 | | D | 81 | 1,380 | | E | 87, 88 | 5,860 | | F | 74, 75, 76, 77, 90 | 5,100 | | G | 89, 91 | 1,000 | | Н | 98, 99, 100, 101, 102 | 11,500 | | I | 71, 72, 73 | 3,440 | | J | 69, 70 | 13,800 | | K | 66, 67, 68 | 2,700 | | L | 60, 61, 62, 63, 64 | 16,420 | | N | 58, 59 | 106,400 | | 0 | 92, 93, 94 | 31,800 | | Total | | 222,070 | ^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84. Table 2-1i. Identification of Prototype Sources on the Agnew Building, Ravdin Court, and Silverstein Rad. Infill which were Modeled Group #11 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | A | 30, 36, 37 | 21,200 | | В | 38, 39, 40, 41 | 18,450 | | С | 51, 52, 53, 54, 55 | 21,240 | | D | 56 | 8,285 | | E | 44, 47, 48, 49, 50 | 98,800 | | F | 162, 163 | 22,000 | | G | 161, 164 | 302,785 | | Н | 32 | 27,600 | | I | 25, 26, 27 | 30,960 | | J | | 30,000 | | K | 45 | 30,000 | | Total | | 611,320 | | | | | ^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84. Table 2-1j. Identification of Prototype Sources on the White and Ravdin Buildings which were Modeled Group #12 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | A | 7, 8, 9, 10 | 25,050 | | В | 12 | 30,000 | | С | 11, 13, 14 | 12,500 | | D | 20, 22, 23, 24 | 2,200 | | E | 15, 16, 17, 18, 19 | 20,900 | | Total | | 90,650 | Group #13 | Model
Sub-Group | Prototype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|---------------------------|----------------------------| | A | 1 | 34,500 | | В | 3 | 25,000 | | C | 4, 5, 6 | 27,000 | | Total | | 86,500 | ^{*}Prototype source numbers from Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84. Table 2-1k. Identification of Prototype Sources with 300° Exhausts which were Modeled Group #14 | Model
Sub-Group | Prot | otype Source Numbers* | Exhaust Discharge
(cfm) | |--------------------|------|-----------------------|----------------------------| | A | 27 | Silverstein | 60,000 | | В | 60 | HUP IV | 40,000 | | С | 26 | HUP IV | 1,500 | | Total | | | 101,500 | ^{*}Prototype source numbers from Caretsky & Associates, Drawings WS-1 & 2, dated 11-21-83. Table 2-12. Identification of Prototype Sources with 1200°F-2000°F Exhausts (Emergency Generators and Incinerators) which were Modeled Group #15 | Model
Sub-Group | Prototype Source Numbers | | | Exhaust Discharge
(cfm) | |--------------------|--------------------------|-------------------------|----|----------------------------| | A | 124 | Gibson | ** | 25,000 | | В | 43 | Ravdin Ct. | ** | 5,000 | | С | 146 | Alumni | ** | 27,000 | | D | 38 | Silverstein | * | 3,000 | | E | 43 | Med. Ed. | * | 3,000 | | F | Incin
Med. | erator NW Corner
Ed. | † | 18,000 | | Total | | | | 81,000 | ^{*}Prototype source numbers from Caretsky & Associates, Drawings WS-1 & 2, dated 11-21-83. ^{**}From Penjerdel Refrigeration Co., Drawings 2582-1 & 2, dated 10-26-83, revised 1-24-84. [†]No drawing number--information from March 1984 meeting. Table 2-2. Identification for Model Air Intakes and Ground-level Receptors | Model
Sampling Point | Prototype Structure | Prototype Intake | |-------------------------|----------------------|-------------------------------| | 1 | Med. Ed. Building | 148 | | 2 | _ | 149 | | 3 | | 150 | | 4 | HUP IV Building | 2nd Floor O.A. Intake, North | | 5 | | 2nd Floor O.A. Intake, Middle | | 6 | | 2nd Floor O.A. Intake, South | | 7 | | 3rd Floor O.A. Intake, North | | 8 | | 3rd Floor O.A. Intake, Middle | | 9 | | 3rd Floor O.A. Intake, South | | 10 | | Cooling Tower Intake, North | | 11 | | Cooling Tower Intake, Middle | | 12 | | Cooling Tower Intake, South | | 13 | Gates Building | 129 | | 14 | | 132 | | 15 | | 134 | | 16 | | 137 | | 17 | Maloney Building | 149 | | 18 | | 150 | | 19 | СНОР | 146 | | 20 | | 147 | | 21 | | 153 North | | 22 | | 153 South | | 23 | | 154 | | 24 | | 155 | | 25 | | 156 South | | 26 | | 156 North | | 27 | Silverstein Pavilion | 5 | | 28 | | 6 | | 29 | | 33 | | 30 | | 37 | | 31 | NMR Pyramid | NoneAmbient Air Sample | | 32 | Miller Plaza | NoneAmbient Air Sample | | 33 | Donner Building | 103 | | 34 | | 107 | | 35 | | O.A. Intake | Table 2-2. (Continued) | Model
Sampling Point | Prototype Structure | Prototype Intake | |-------------------------|---------------------|------------------| | 36 | Dulles Building | 95, 96, 97 | | 37 | Ravdin Building | 30 | | 38 | ű | 29 | | 39 | | 28 | | 40 | Agnew Building | 57 | | 41 | | 34 | | 42 | | 42 | | 43 | Silverstein Rad. | 161 | | 44 | | 162 | | 45 | | 163 | | 46 | Ravdin Building | 2 | | 47 | White Building | 21 | ^{*}All air intakes and ground-level receptors were
identified from Caretsky & Associates, or Penjerdel Refrigeration Co. Drawings, previously noted. Table 3-1a. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 1 | | | | | 0.00 | 22.0 | 10.2 | 52.5 | | 22.50 | 24.3 | 11.5 | 58.9 | | 45.00 | 16.2 | 8.1 | 40.6 | | 67.50 | 16.6 | 8.7 | 42.7 | | 90.00 | 25.7 | 9.7 | 54.8 | | 112.50 | 37.0 | 10.4 | 68.1 | | 135.00 | 28.1 | 8.7 | 54.2 | | 157.50 | 27.9 | 9.7 | 57.1 | | 180.00 | 21.0 | 8.6 | 46.8 | | 202.50 | 28.3 | 8.3 | 53.3 | | 225.00 | 32.1 | 9.5 | 60.5 | | 247.50 | 27.9 | 8.3 | 5 2.9 | | 270.00 | 27.3 | 8.4 | 52.6 | | 292.50 | 32.5 | 9.4 | 60.7 | | 315.00 | 18.1 | 9.6 | 47.0 | | 337.50 | 25.4 | 11.3 | 59.1 | | Location 2 | | | | | 0.00 | 13.2 | 6.6 | 33.0 | | 22.50 | 21.6 | 10.8 | 53.9 | | 45.00 | 22.9 | 8.8 | 49.4 | | 67.50 | 11.0 | 5.0 | 26.2 | | 90.00 | 9.1 | 4.3 | 22.0 | | 112.50 | 19.2 | 9.6 | 47.9 | | 135.00 | 16.4 | 8.4 | 41.7 | | 157.50 | 30.2 | 11.8 | 65.6 | | 180.00 | 24.7 | 8.9 | 51.3 | | 202.50 | 28.6 | 9.8 | 58.0 | | 225.00 | 23.6 | 8.8 | 49.9 | | 247.50 | 19.8 | 9.1 | 47.1 | | 270.00 | 18.8 | 8.9 | 45.5 | | 292.50 | 17.6 | 7.8 | 40.9 | | 315.00 | 21.3 | 9.6 | 50.1 | | 337.50 | 29.8 | 11.6 | 64.6 | Table 3-1b. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 3 | | | | | 0.00 | 9.1 | 3.7 | 20.0 | | 22.50 | 17.5 | 6.9 | 38.1 | | 45.00 | 26.8 | 8.8 | 53.3 | | 67.50 | 20.2 | 7.3 | 42.1 | | 90.00 | 14.5 | 6.7 | 34.6 | | 112.50 | 16.3 | 6.1 | 34.5 | | 135.00 | 16.7 | 6.4 | 35.9 | | 157.50 | 19.1 | 6.1 | 37.4 | | 180.00 | 30.0 | 7.8 | 53.3 | | 202.50 | 31.1 | 8.5 | 56.6 | | 225.00 | 27.9 | 9.3 | 55.8 | | 247.50 | 10.4 | 5.2 | 25.9 | | 270.00 | 7.7 | 3.2 | 17.3 | | 292.50 | 12.7 | 5.8 | 30.2 | | 315.00 | 12.7 | 5.6 | 29.5 | | 337.50 | 13.3 | 6.8 | 33.6 | | Location 4 | | | | | 0.00 | 22.0 | 10.3 | 53.0 | | 22.50 | 33.0 | 11.3 | 66.9 | | 45.00 | 15.6 | 8.1 | 39.9 | | 67.50 | 10.1 | 4.8 | 24.4 | | 90.00 | 16.7 | 7.3 | 38.6 | | 112.50 | 11.3 | 5.4 | 27.4 | | 135.00 | 11.4 | 5.3 | 27.4 | | 157.50 | 10.1 | 4.4 | 23.4 | | 180.00 | 14.9 | 6.8 | 35.3 | | 202.50 | 27.0 | 6.7 | 47.2 | | 225.00 | 23.0 | 8.1 | 47.2 | | 247.50 | 10.3 | 4.8 | 24.7 | | 270.00 | 10.8 | 4.8 | 25.3 | | 292.50 | 11.5 | 5.5 | 28.0 | | 315.00 | 25.1 | 10.1 | 55.3 | | 337.50 | 38.7 | 11.6 | 73.4 | Table 3-1c. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 5 | | | | | 0.00 | 15.6 | 6.9 | 36.1 | | 22.50 | 20.6 | 8.4 | 45.9 | | 45.00 | 19.4 | 8.1 | 43.8 | | 67.50 | 23.3 | 7.5 | 45.8 | | 90.00 | 22.9 | 7.9 | 46.7 | | 112.50 | 22.7 | 6.4 | 42.0 | | 135.00 | 22.9 | 7.1 | 44.3 | | 157.50 | 23.9 | 7.5 | 46.3 | | 180.00 | 23.5 | 7.5 | 46.1 | | 202.50 | 19.4 | 7.1 | 40.7 | | 225.00 | 15.2 | 6.2 | 33.8 | | 247.50 | 14.8 | 5.7 | 32.0 | | 270.00 | 15.1 | 5.9 | 32.6 | | 292.50 | 14.3 | 6.4 | 33.4 | | 315.00 | 16.2 | 7.4 | 38.3 | | 337.50 | 21.4 | 9.6 | 50.3 | | Location 6 | | | | | 0.00 | 18.3 | 6.6 | 38.1 | | 22.50 | 13.3 | 5.2 | 28.9 | | 45.00 | 9.1 | 3.1 | 18.4 | | 67.50 | 11.4 | 3.7 | 22.4 | | 90.00 | 10.7 | 3.3 | 20.5 | | 112.50 | 11.1 | 3.4 | 21.4 | | 135.00 | 10.0 | 2.9 | 18.7 | | 157.50 | 11.0 | 3.4 | 21.3 | | 180.00 | 11.7 | 3.5 | 22.3 | | 202.50 | 11.6 | 3.6 | 22.6 | | 225.00 | 9.8 | 3.3 | 19.8 | | 247.50 | 8.3 | 3.0 | 17.4 | | 270.00 | 9.6 | 4.7 | 23.7 | | 292.50 | 19.4 | 9.6 | 40.2 | | 315.00 | 21.3 | 8.5 | 46.9 | | 337.50 | 23.6 | 11.0 | 56.5 | Table 3-1d. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 7 | | | | | 0.00 | 20.1 | 7.7 | 43.1 | | 22.50 | 17.5 | 5.0 | 32.5 | | 45.00 | 13.9 | 3.4 | 24.2 | | 67.50 | 12.4 | 2.9 | 21.2 | | 90.00 | 12.1 | 2.8 | 20.5 | | 112.50 | 13.8 | 3.2 | 23.5 | | 135.00 | 10.1 | 3.6 | 21.0 | | 157.50 | 9.6 | 3.3 | 19.4 | | 180.00 | 8.5 | 3.2 | 18.2 | | 202.50 | 10.1 | 4.0 | 22.1 | | 225.00 | 12.1 | 5.7 | 29.3 | | 247.50 | 22.2 | 9.6 | 50.9 | | 270.00 | 21.0 | 10.4 | 52.3 | | 292.50 | 19.0 | 8.5 | 44.6 | | 315.00 | 28.4 | 11.6 | 63.2 | | 337.50 | 20.6 | 10.5 | 52.3 | | Location 8 | | | | | 0.00 | 16.3 | 4.8 | 30.7 | | 22.50 | 9.9 | 3.8 | 21.3 | | 45.00 | 14.2 | 7.0 | 35.1 | | 67.50 | 9.2 | 4.1 | 21.6 | | 90.00 | 8.5 | 3.8 | 20.1 | | 112.50 | 8.5 | 3.4 | 18.7 | | 135.00 | 18.5 | 6.3 | 37.4 | | 157.50 | 17.8 | 4.1 | 30.1 | | 180.00 | 23.3 | 7.3 | 45.3 | | 202.50 | 18.2 | 6.7 | 38.4 | | 225.00 | 19.0 | 6.6 | 38.8 | | 247.50 | 24.9 | 7.3 | 46.8 | | 270.00 | 25.7 | 7.1 | 47.0 | | 292.50 | 34.5 | 7.6 | 57.3 | | 315.00 | 40.2 | 9.4 | 68.3 | | 337.50 | 32.6 | 8.3 | 57.4 | Table 3-le. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 9 | | | | | 0.00 | 7.7 | 2.9 | 16.3 | | 22.50 | 5.9 | 1.9 | 11.6 | | 45.00 | 6.8 | 2.5 | 14.4 | | 67.50 | 7.6 | 2.6 | 15.6 | | 90.00 | 6.4 | 2 .2 | 12.9 | | 112.50 | 5.1 | 1.9 | 10.7 | | 135.00 | 12.1 | 4.8 | 26.4 | | 157.50 | 8.5 | 3.9 | 20.4 | | 180.00 | 20.9 | 6.9 | 41.6 | | 202.50 | 20.9 | 8.1 | 45.3 | | 225.00 | 15.7 | 7.8 | 39.1 | | 247.50 | 9.5 | 4.4 | 22.7 | | 270.00 | 16.1 | 8.0 | 40.2 | | 292.50 | 6.4 | 2.4 | 13.7 | | 315.00 | 5.4 | 1.5 | 10.0 | | 337.50 | 9.1 | 5.5 | 25.7 | | Location 10 | | | | | 0.00 | 5.7 | 1.5 | 10.2 | | 22.50 | 9.7 | 4.4 | 22.9 | | 45.00 | 10.3 | 4.9 | 25.1 | | 67.50 | 8.5 | 3.2 | 18.2 | | 90.00 | 6.4 | 2.5 | 13.9 | | 112.50 | 6.1 | 2.3 | 12.8 | | 135.00 | 14.9 | 5.3 | 30.7 | | 157.50 | 8.8 | 4.5 | 22.2 | | 180.00 | 16.4 | 6.8 | 36.7 | | 202.50 | 15.6 | 6.5 | 34.9 | | 225.00 | 11.0 | 5.4 | 27.1 | | 247.50 | 9.9 | 4.3 | 22.8 | | 270.00 | 13.3 | 6.2 | 32.0 | | 292.50 | 18.3 | 8.4 | 43.7 | | 315.00 | 15.5 | 6.9 | 36.0 | | 337.50 | 14.8 | 6.3 | 33.6 | Table 3-1f. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINE
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 11 | | | | | 0.00 | 5.7 | 2.4 | 13.0 | | 22.50 | 10.6 | 4.6 | 24.5 | | 45.00 | 9.3 | 4.8 | 23.7 | | 67.50 | 8.7 | 4.3 | 21.5 | | 90.00 | 7.2 | 3.1 | 16.4 | | 112.50 | 6.2 | 2.2 | 12.9 | | 135.00 | 14.8 | 5.9 | 32.5 | | 157.50 | 14.7 | 6.6 | 34.6 | | 180.00 | 24.4 | 9.0 | 51.4 | | 202.50 | 23.7 | 9.4 | 51.8 | | 225.00 | 17.2 | 8.0 | 41.2 | | 247.50 | 12.9 | 6.2 | 31.5 | | 270.00 | 12.2 | 7.1 | 33.5 | | 292.50 | 10.2 | 3.7 | 21.2 | | 315.00 | 8.7 | 2.7 | 16.7 | | 337.50 | 10.9 | 5.5 | 27.6 | | Location 12 | | | | | 0.00 | 5.2 | 1.9 | 10.8 | | 22.50 | 7.7 | 3.2 | 17.3 | | 45.00 | 7.6 | 2.8 | 15.9 | | 67.50 | 6.3 | 2.2 | 12.9 | | 90.00 | 7.6 | 2.8 | 16.0 | | 112.50 | 10.6 | 3.4 | 21.0 | | 135.00 | 19.4 | 7.3 | 41.3 | | 157.50 | 12.4 | 5.4 | 28.7 | | 180.00 | 17.3 | 9.1 | 44.6 | | 202.50 | 17.3 | 8.0 | 41.2 | | 225.00 | 13.4 | 6.9 | 34.1 | | 247.50 | 15.8 | 7.1 | 37.0 | | 270.00 | 15.2 | 6.3 | 34.0 | | 292.50 | 10.9 | 4.9 | 25.5 | | 315.00 | 9.0 | 3.1 | 18.4 | | 337.50 | 8.8 | 5.0 | 23.7 | Table 3-1g. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 13 | | | | | 0.00 | 5.4 | 2.3 | 12.2 | | 22.50 | 9.9 | 5.2 | 25.6 | | 45.00 | 12.5 | 6.7 | 32.7 | | 67.50 | 11.4 | 5.9 | 29.0 | | 90.00 | 8.0 | 3.6 | 19.0 | | 112.50 | 7.4 | 2.7 | 15.7 | | 135.00 | 14.4 | 7.5 | 36.9 | | 157.50 | 17.6 | 9.5 | 46.2 | | 180.00 | 14.6 | 7.7 | 37.8 | | 202.50 | 11.4 | 5.6 | 28.2 | | 225.00 | 12.0 | 5.5 | 28.5 | | 247.50 | 11.0 | 4.6 | 24.9 | | 270.00 | 9.7 | 4.1 | 21.9 | | 292.50 | 12.3 | 6.1 | 30.5 | | 315.00 | 18.3 | 6.9 | 39.1 | | 337.50 | 14.4 | 7.5 | 37.0 | | Location 14 | | | | | 0.00 | 11.3 | 6.8 | 31.7 | | 22.50 | 11.6 | 4.8 | 26.1 | | 45.00 | 11.7 | 5.6 | 28.4 | | 67.5 0 | 10.2 | 4.5 | 23.8 | | 90.00 | 9.7 | 3.3 | 19.7 | | 112.50 | 11.3 | 4.1 | 23.7 | | 135.00 | 21.4 | 5.6 | 38.2 | | 157.50 | 23.8 | 7.4 | 46.0 | | 180.00 | 11.9 | 5.5 | 28.5 | | 202.50 | 16.7 | 5.9 | 34.3 | | 225.00 | 13.9 | 5.2 | 29.3 | | 247.50 | 10.6 | 4.1 | 22.9 | | 270.00 | 12.7 | 5.2 | 28.4 | | 292.50 | 18.6 | 6.0 | 36.5 | | 315.00 | 14.1 | 5.0 | 29.1 | | 337.50 | 22.1 | 11.4 | 56.3 | Table 3-1h. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 15 | | | | | 0.00 | 5.0 | 2.1 | 11.4 | | 22.50 | 8.0 | 3.8 | 19.5 | | 45.00 | 9.1 |
4.3 | 22.1 | | 67.50 | 7.3 | 3.3 | 17.3 | | 90.00 | 8.0 | 4.5 | 21.5 | | 112.50 | 8.7 | 4.3 | 21.5 | | 135.00 | 11.5 | 5.8 | 28.9 | | 157.50 | 10.8 | 5.4 | 27.0 | | 180.00 | 19.5 | 7.4 | 41.6 | | 202.50 | 22.1 | 7.3 | 43.9 | | 225.00 | 23.3 | 7.3 | 45.1 | | 247.50 | 23.0 | 7.2 | 44.4 | | 270.00 | 22.3 | 6.8 | 42.8 | | 292.50 | 17.6 | 7.3 | 39.6 | | 315.00 | 14.7 | 4.5 | 28.1 | | 337.50 | 9.1 | 4.7 | 23.3 | | Location 16 | | | | | 0.00 | 43.8 | 8.2 | 68.4 | | 22.50 | 46.1 | 7.7 | 69.2 | | 45.00 | 48.6 | 6.9 | 69.2 | | 67.50 | 47.3 | 6.0 | 65.3 | | 90.00 | 54.8 | 6.5 | 74.4 | | 112.50 | 44.8 | 5 .5 | 61.3 | | 135.00 | 45.8 | 6.6 | 65.6 | | 157.50 | 45.4 | 6.9 | 66.1 | | 180.00 | 35.7 | 7.8 | 59.2 | | 202.50 | 38.8 | 7.4 | 60.9 | | 225.00 | 35.8 | 9.3 | 63.8 | | 247.50 | 29.7 | 8.6 | 55.5 | | 270.00 | 34.3 | 8.0 | 58.4 | | 292.50 | 44.0 | 5.8 | 61.4 | | 315.00 | 45.2 | 5.7 | 62.4 | | 337.50 | 50.1 | 8.1 | 74.2 | Table 3-1i. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 17 | | | | | 0.00 | 18.5 | 6.1 | 36.9 | | 22.50 | 17.2 | 5.9 | 34.8 | | 45.00 | 21.0 | 6.8 | 41.5 | | 67.50 | 19.6 | 6.4 | 38.9 | | 90.00 | 14.5 | 5.4 | 30.9 | | 112.50 | 13.4 | 4.9 | 28.0 | | 135.00 | 20.0 | 9.8 | 49.4 | | 157.50 | 12.0 | 5.7 | 29.0 | | 180.00 | 12.6 | 4.5 | 26.2 | | 202.50 | 15.7 | 5.5 | 32.3 | | 225.00 | 17.8 | 6.8 | 38.1 | | 247.50 | 22.6 | 8.9 | 49.1 | | 270.00 | 16.6 | 5.9 | 34.3 | | 292.50 | 18.4 | 5.7 | 35 .5 | | 315.00 | 19.0 | 6.0 | 36.9 | | 337.50 | 16.0 | 5.2 | 31.5 | | Location 18 | | | | | 0.00 | 22.9 | 5.9 | 40.7 | | 22.50 | 29.8 | 7.2 | 51.2 | | 45.00 | 40.4 | 9.7 | 69.4 | | 67.50 | 46.7 | 12.8 | 85.0 | | 90.00 | 36.0 | 13.2 | 75.7 | | 112.50 | 35.9 | 14.9 | 80.7 | | 135.00 | 18.4 | 8.1 | 42.7 | | 157.50 | 19.9 | 8.9 | 46.5 | | 180.00 | 21.7 | 9.3 | 49.4 | | 202.50 | 15.2 | 7.6 | 38.0 | | 225.00 | 11.7 | 5.8 | 29.0 | | 247.50 | 8.3 | 3.6 | 19.1 | | 270.00 | 8.8 | 4.1 | 21.1 | | 292.50 | 10.9 | 5.4 | 27.0 | | 315.00 | 12.9 | 6.0 | 31.0 | | 337.50 | 21.4 | 5.8 | 38.9 | Table 3-1j. Pedestrian Wind Velocities and Turbulence Intensities for Hospital of the University of Pennsylvania, Phase IV | WIND
AZIMUTH | UMEAN/UINF
(PERCENT) | URMS/UINF
(PERCENT) | UMEAN+3*URMS/UINF
(PERCENT) | |-----------------|-------------------------|------------------------|--------------------------------| | Location 19 | | | | | 0.00 | 28.7 | 7.5 | 51.2 | | 22.50 | 42.1 | 6.9 | 62.7 | | 45.00 | 54.8 | 10.6 | 86.7 | | 67.50 | 51.9 | 11.6 | 86.7 | | 90.00 | 32.3 | 14.3 | 75.1 | | 112.50 | 35.9 | 14.6 | 79.8 | | 1 35.00 | 14.9 | 7.4 | 37.1 | | 157.50 | 19.9 | 8.7 | 46.0 | | 180.00 | 29.1 | 8.7 | 55.2 | | 202.50 | 24.2 | 8.1 | 48.6 | | 225.00 | 22.4 | 8.0 | 46.4 | | 247.50 | 15.4 | 6.6 | 35.2 | | 270.00 | 17.4 | 6.9 | 38.1 | | 292.50 | 10.2 | 3.8 | 21.7 | | 315.00 | 12.1 | 5.3 | 28.0 | | 337.50 | 15.6 | 6.9 | 36.4 | Table 3-2. Percentage Frequency of Wind Direction and Speed, Philadelphia, Pennsylvania, International Airport (1965-1974) Season: Annual Number of Observations: 29,211 Height of Measurement: 20 ft. Velocity levels in MPH. | Direction | 0-3 | 4-7 | 8-12 | 13-18 | 19-24 | 25-31 | 32+ | Total | |-----------|------|-------|-------|-------|-------|-------|------|--------| | N | .30 | 2.00 | 3.60 | 2.00 | .20 | 0.00 | 0.00 | 8.10 | | NNE | .20 | .60 | 1.20 | .90 | . 20 | 0.00 | 0.00 | 3.10 | | NE | .20 | .60 | 1.10 | 1.00 | . 20 | 0.00 | 0.00 | 3.20 | | ENE | . 20 | 1.00 | 2.20 | 2.00 | .30 | 0.00 | 0.00 | 5.80 | | E | . 40 | 1.70 | 2.60 | 1.10 | . 10 | 0.00 | 0.00 | 6.00 | | ESE | .40 | 1.50 | 1.00 | .20 | 0.00 | 0.00 | 0.00 | 3.10 | | SE | . 40 | 1.40 | 1.00 | .30 | 0.00 | 0.00 | 0.00 | 3.10 | | SSE | . 40 | 1.50 | 1.00 | .30 | 0.00 | 0.00 | 0.00 | 3.30 | | S | .80 | 2.40 | 2.60 | 1.20 | . 10 | 0.00 | 0.00 | 7.20 | | SSW | .50 | 1.60 | 2.00 | .90 | . 10 | 0.00 | 0.00 | 5.00 | | SW | .60 | 3.60 | 5.20 | 2.10 | .30 | 0.00 | 0.00 | 11.70 | | WSW | .60 | 2.90 | 3.10 | 1.20 | .10 | 0.00 | 0.00 | 7.90 | | W | .80 | 3.10 | 3.40 | 2.40 | .70 | .20 | 0.00 | 10.60 | | WNW | . 40 | 1.70 | 2.80 | 2.80 | .80 | . 20 | 0.00 | 8.70 | | NW | .30 | 1.40 | 2.10 | 2.60 | .70 | .10 | 0.00 | 7.10 | | NNW | . 20 | 1.20 | 2.00 | 1.60 | .30 | 0.00 | 0.00 | 5.40 | | CALM | .60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .60 | | TOTAL | 7.30 | 28.30 | 37.10 | 22.60 | 4.00 | .60 | .10 | 100.00 | Table 3-3. Summary of Wind Effects on People | | Beaufort
Number | Speed
(mph) | Effects | |-----------------|--------------------|----------------|--| | Calm, light air | 0, 1 | 0-3 | Calm, no noticeable wind | | Light breeze | 2 | 4-7 | Wind felt on face | | Gentle breeze | 3 | 8-12 | Wind extends light flag
Hair is disturbed
Clothing flaps | | Moderate breeze | 4 | 13-18 | Raises dust, dry soil and
loose paper
Hair disarranged | | Fresh breeze | 5 | 19-24 | Force of wind felt on body Drifting snow becomes airborne Limit of agreeable wind on land | | Strong breeze | 6 | 25-31 | Umbrellas used with difficulty Hair blown straight Difficulty to walk steadily Wind noise on ears unpleasant Windborne snow above head height (blizzard) | | Near gale | 7 | 32-38 | Inconvenience felt when walking | | Gale | 8 | 39-46 | Generally impedes progress
Great difficulty with balance
in gusts | | Strong gale | 9 | 47-54 | People blown over by gusts | Note: Table from Penwarden and Wise (1975), p. 40. Table 3-4. Greatest Values of Pedestrian Wind Velocities and Turbulence Intensities, Hospital of the University of Pennsylvania, Phase IV | Loc | Az | Mean | RMS | M+3RMS | |----------|-------------------|----------|------|--------| | UMEAN/UI | NF (Percent) | | | | | 16 | 90.0 | 54.8 | 6.5 | 74.4 | | 19 | 45.0 | 54.8 | 10.6 | 86.7 | | 19 | 67.5 | 51.9 | 11.6 | 86.7 | | 16 | 337.5 | 50.1 | 8.1 | 74.2 | | 16 | 45.0 | 48.6 | 6.9 | 69.2 | | 16 | 67.5 | 47.3 | 6.0 | 65.3 | | 18 | 67.5 | 46.7 | 12.8 | 85.0 | | 16 | 22.5 | 46.1 | 7.7 | 69.2 | | 16 | 135.0 | 45.8 | 6.6 | 65.6 | | 16 | 157.5 | 45.4 | 6.9 | 66.1 | | URMS/UIN | F (Percent) | | | | | 18 | 112.5 | 35.9 | 14.9 | 80.7 | | 19 | 112.5 | 35.9 | 14.6 | 79.8 | | 19 | 90.0 | 32.3 | 14.3 | 75.1 | | 18 | 90.0 | 36.0 | 13.2 | 75.7 | | 18 | 67.5 | 46.7 | 12.8 | 85.0 | | 2 | 157.5 | 30.2 | 11.8 | 65.6 | | 2 | 337.5 | 29.8 | 11.6 | 64.6 | | 19 | 67.5 | 51.9 | 11.6 | 86.7 | | 7 | 315.0 | 28.4 | 11.6 | 63.2 | | 4 | 337.5 | 38.7 | 11.6 | 73.4 | | UMEAN+3* | RMS/UINF (Percent | <u>)</u> | | | | 19 | 45.0 | 54.8 | 10.6 | 86.7 | | 19 | 67.5 | 51.9 | 11.6 | 86.7 | | 18 | 67.5 | 46.7 | 12.8 | 85.0 | | 18 | 112.5 | 35.9 | 14.9 | 80.7 | | 19 | 112.5 | 35.9 | 14.6 | 79.8 | | 18 | 90.0 | 36.0 | 13.2 | 75.7 | | 19 | 90.0 | 32.3 | 14.3 | 75.1 | | 16 | 90.0 | 54.8 | 6.5 | 74.4 | | 16 | 337.5 | 50.1 | 8.1 | 74.2 | | 4 | 337.5 | 38.7 | 11.6 | 73.4 | Table 4-1. Tabulation of Run Numbers and Model Test Parameters/Tracers | Run
| Wind
Dir. | Wind
VEL
(m/s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | |----------|--------------|----------------------|----------------------|-------------|---------------------------------------|----------------------|-------------|---------------------------------------| | 1 | 000 | 2.44 | 12 | 8.97M | .204E-3 | 13 | 10.0E | .195E-3 | | 2 | 045 | | | | | | | | | 3 | 090 | | | | | | | | | 4 | 135 | | | | | | | | | 5 | 180 | | | | | | | | | 6 | 225 | | | | | | | | | 7 | 270 | | | | | | | | | 8 | 315 | | | | | | | | | 9 | 000 | 2.44 | 4 | 8.97M | .324E-3 | 5 | 10.0E | .630E-3 | | 10 | 045 | | | | | | | | | 11 | 090 | | | | | | | | | 12 | 135 | | | | | | | | | 13 | 180 | | | | | | | | | 14 | 225 | | | | | | | | | 15 | 270 | | | | | | | | | 15R | 270 | | | | | | | | | 16 | 315 | | | | | | | | Table 4-1. (Continued). | Run
| Wind
Dir. | Wind
VEL
(m/s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | |----------|--------------|----------------------|---|-------------|---------------------------------------|----------------------|-------------|---------------------------------------| | 17 | 000 | 2.44 | 2 | 8.97M | .378E-4 | 1 | 10.0E | .104E-2 | | 18 | 045 | | | | | | ÷ | | | 19 | 090 | | | | | | | | | 20 | 135 | | | | | | | | | 21 | 180 | | | | | | | | | 22 | 225 | | | | | | | | | 23 | 270 | | | | | | | | | 24 | 315 | | | | | | | | | - | | | | | | | | | | 25 | 000 | 2.44 | 6 | 9.04M | .564E-4 | 7 | 9.98E | .720E-3 | | 26 | 045 | | | | | | | | | 27 | 090 | | | | | | | | | 28 | 135 | | | | | | | | | 29 | 180 | | | | | | | | | 30 | 225 | | | | | | | | | 31 | 270 | | | | | | | | | 32 | 315 | | | | | | | | | | | | nningan 1885 - y 1886 ann an Ionae Arbeit an Io | | | | | | Table 4-1. (Continued). | Run
| Wind
Dir. | Wind
VEL
(m/s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | Source
Group
| Tracer | Volume
Flow
(m ³ /s) | |----------|--------------|----------------------|----------------------|-------------|---------------------------------------|----------------------|--------|---------------------------------------| | 33 | 000 | 2.44 | 11 | 9.04M | .138E-2 | 9 | 9.98E | .112E-3 | | 34 | 045 | | | | | | | | | 35 | 090 | | | | | | | | | 36 | 135 | | | | | | | | | 37 | 180 | | | | | | | | | 38 | 225 | | | | | | | | | 39 | 270 | | | | | | | | | 40 | 315 | | | | | | | | | 41 | 000 | 2.44 | 14 | 4.02M | .237E-3 | 15
| 2.98E | .183E-3 | | 42 | 045 | | | | | | | | | 43 | 090 | | | | | | | | | 44 | 135 | | | | | | | | | 45 | 180 | | | | | | | | | 46 | 225 | | | | | | | | | 47 | 270 | | | | | | | | | 48 | 315 | | | | | | | | | | | | | | | www. | | | Table 4-1. (Continued). | Run
#
 | Wind
Dir. | Wind
VEL
(m/s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | |--------------|--------------|----------------------|----------------------|-------------|---------------------------------------|----------------------|-------------|---------------------------------------| | 49 | 000 | 2.44 | 3-58 | 4.02M | .162E-4 | 3-59 | 2.98E | .766E-4 | | 50 | 045 | | | | | | | | | 51 | 090 | | | | | | | | | 52 | 135 | | | | | | | | | 53 | 180 | | | | | | | | | 54 | 225 | | | | | | | | | 55 | 270 | | | | | | | | | 56 | 315 | | | | | | | | | 57 | 000 | 2.44 | 10 | 9.04M | .501E-3 | 3-60 | 2.98E | .902E-4 | | 58 | 045 | | | | | | | | | 59 | 090 | | | | | | | | | 60 | 135 | | | | | | | | | 61 | 180 | | | | | | | | | 62 | 225 | | | | | | | | | 63 | 270 | | | | | | | | | 64 | 315 | | | | | | | | Table 4-1. (Continued). | Run
| Wind
Dir. | Wind
VEL
(m/s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | |---|--------------|----------------------|----------------------|-------------|---------------------------------------|----------------------|-------------|---------------------------------------| | 65 | 000 | 2.44 | 3Q | 9.04M | .115E-3 | 8 | 9.98E | .184E-2 | | 66 | 045 | | | | | | | | | 67 | 090 | | | | | | | | | 68 | 135 | | | | | | | | | 69 | 180 | | | | | | | | | 70 | 225 | | | | | | | | | 71 | 270 | | | | | | | | | 72 | 315 | | | | | | | | | 73 | 000 | 2.44 | 3C | 9.04M | .628E-3 | 3-1 | 10.0E | .362E-3 | | 74 | 045 | | | | | | | | | 75 | 090 | | | | | | | | | 76 | 135 | | | | | | | | | 77 | 180 | | | | | | | | | 78 | 225 | | | | | | | | | 79 | 270 | | | | | | | | | 80 | 315 | | | | | | | | | *************************************** | | | | | | | | | Table 4-1. (Continued). | Run
| Wind
Dir. | Wind
VEL
(m/s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | Source
Group
| Tracer
% | Volume
Flow
(m ³ /s) | |----------|--------------|----------------------|----------------------|-------------|---------------------------------------|----------------------|-------------|---------------------------------------| | 81 | 000 | 2.44 | 3-2 | 9.04M | .657E-3 | 3-4 | 10.0E | .344E-3 | | 82 | 045 | | | | | | | | | 83 | 090 | | | | | | | | | 84 | 135 | | | | | | | | | 85 | 180 | | | | | | | | | 85R | 180 | | | | | | | | | 86 | 225 | | | | | | | | | 87 | 270 | | | | | | | | | 88 | 315 | | | | | | | | | 89 | 000 | 2.44 | 3R | 9.04M | .248E-4 | 3-3 | 10.0E | .226E-2 | | 90 | 045 | | | | | | | | | 91 | 090 | | | | | | | | | 92 | 135 | | | | | | | | | 93 | 180 | | | | | | | | | 94 | 225 | | | | | | | | | 95 | 270 | | | | | | | | | 96 | 315 | | | | | | | | Table 4-2. Conversion of Prototype Volume Flow Rates to Model Volume Flow Values | Source | Prototype Vo | lume Flow, Qp | Model Volum | ne Flow, Q _m | |---------------|--------------|---------------|-------------|-------------------------| | Group | cfm | m³/s | cc/min | m ³ /s | | 1 | 460,935 | 217.54 | 62,339 | .104E-2 | | 2 | 16,755 | 7.91 | 2,265 | .378E-4 | | 3-1 | 160,530 | 75.76 | 21,711 | .362E-3 | | 3-2 | 291,460 | 137.55 | 39,419 | .657E-3 | | 3-3 | 1,003,160 | 473.44 | 135,673 | .226E-2 | | 3-4 | 152,760 | 72.10 | 20,660 | .344E-3 | | 3 - C | 278,600 | 131.49 | 37,679 | .628E-3 | | 3 - Q | 50,975 | 24.06 | 6,894 | .115E-3 | | 3-R | 11,000 | 5.19 | 1,488 | .248E-4 | | 3 - 58 | 7,200 | 3.40 | 974 | .162E-4 | | 3-59 | 34,000 | 16.05 | 4,598 | .766E-4 | | 3-60 | 40,000 | 18.88 | 5,410 | .902E-4 | | 4 | 143,680 | 67.81 | 19,433 | .324E-3 | | 5 | 279,370 | 131.85 | 37,784 | .630E-3 | | 6 | 25,000 | 11.80 | 3,381 | .564E-4 | | 7 | 319,206 | 150.65 | 43,168 | .720E-3 | | 8 | 818,060 | 386.08 | 110,639 | .184E-2 | | 9 | 49,660 | 23.44 | 6,716 | .112E-3 | | 10 | 222,070 | 104.81 | 30,033 | .501E-3 | | 11 | 611,320 | 288.51 | 82,677 | .138E-2 | | 12 | 90,650 | 42.78 | 12,256 | .204E-3 | | 13 | 86,500 | 40.82 | 11,699 | .195E-3 | | 14 | 105,000 | 49.55 | 14,201 | .237E-3 | | 15 | 81,000 | 38.23 | 10,955 | .183E-3 | Table 4-3a. Identification of Receptors with Measured Concentration Ratios \geq 0.1 (10%) for Source Groups Listed | | | | | | .D. | | | | |------|---|--|---|---|--|--|--|--| | S.G. | 000° | 045° | 090° | 135° | 180° | 225° | 270 ° | 315° | | 1 | | | 3/.149 | | | | | | | 3-1 | 11/.323
12/.146 | 11/.340
10/.203
12/.186 | 11/.338
10/.234 | 11/.267
10/.216 | 11/.317
10/.285 | 10/.277
11/.266 | 11/.269
10/.263
12/.122 | 10/.280
11/.248 | | 3-2 | 12/.393
10/.233
11/.218 | 12/.405
11/.300
10/.118 | 12/.415
11/.100 | 12/.421 | 12/.391
11/.280
10/.197 | 12/.383
11/.289 | 12/.450
11/.226
10/.182 | 12/.410
11/.211 | | 3-3 | 12/.220 | 12/.240 | 12/.224 | 12/.222 | 12/.208 | 12/.237 | 12/.160 | 12/.216 | | 3-C | | 10/.139 | 10/.141 | 10/.108 | | | 10/.111 | | | 4 | 15/.300 | 15/.300 | 15/.280 | 15/.311 | 15/.407 | 15/.286 | 15/.301 | 15/.324
14/.161 | | 5 | | | 17/.178
16/.174
18/.167 | 17/.263
18/.218
16/.216 | | | | 17/.280
18/.229 | | 7 | | 20/.190 | 20/.172 | | | | | 20/.120 | | 8 | 28/.277
27/.136
29/.110 | 29/.114 | 28/.204
27/.156 | 28/.243
27/.232
29/.112 | 27/.268
28/.249
29/.109 | 28/.257
27/.233
29/.216 | 27/.274
28/.254 | 27/.216
28/.212 | | 10 | | 36/.102 | 36/.342 | | 36/.402 | 36/.258 | 36/.303 | 36/.329 | | 11 | 43/.555
42/.395
45/.297
38/.280
39/.255
46/.246
37/.220 | 43/.521
42/.369
38/.334
39/.318
37/.257
45/.202
44/.176
31/.109 | 43/.528
42/.382
38/.319
39/.280
40/.129
45/.129
44/.107 | 43/.548
42/.408
38/.332
39/.301
37/.214
44/.161
40/.106 | 43/.551
42/.416
38/.264
39/.253
37/.230
44/.227
45/.222
40/.171 | 43/.555
42/.372
38/.267
40/.264
39/.254
37/.250
45/.194
44/.177 | 43/.550
42/.352
38/.282
39/.270
37/.258
45/.230
44/.216
40/.168 | 43/.550
42/.394
45/.317
44/.281
39/.254
38/.228
37/.173
40/.149 | | 14 | 11/.162
10/.127 | 11/.296 | | | 11/.164 | 11/.170 | 11/.174 | 11/.168 | Table 4-3b. Identification of Receptors with Measured Concentration Ratios ≥ 0.025 (2.5%) for the Source Group Listed | | | | | W | .D. | | | | |------|--------|--------|--------|--------|------------------------------|--|--------|--------| | S.G. | 000° | 045° | 090° | 135° | 180° | 225° | 270° | 315° | | 1 | 3/.059 | 3/.065 | 3/.149 | 3/.045 | 3/.081
17/.031
16/.025 | 3/.066
33/.038
1/.036
32/.028 | 3/.050 | 3/.050 | Table 4-3c. Identification of Receptors with Measured Concentration Ratios \geq 0.01 (1%) for Source Groups Listed. | | | | | | .D. | | | | |------|-------------------------------|-------------------------------|--|--------------------|---|-------------------------------|---------|--------------| | S.G. | 000° | 045° | 090° | 135° | 180° | 225° | 270° | 3 15° | | 3-4 | 12/.011 | 12/.018
11/.016 | | | 11/.029
10/.028
12/.018 | 11/.024
12/.021
10/.017 | 12/.019 | 12/.017 | | 3-Q | | | 12/.026
11/.022 | 10/.031
11/.028 | | | | | | 3-R | | | 33/.011 | | | | 33/.021 | | | 6 | | | | 19/.020 | | 20/.014 | | | | 9 | 33/.022
34/.015
29/.013 | 34/.021
33/.019
29/.013 | 29/.030 | 45/.011 | 45/.012
44/.011
37/.010 | 33/.011 | 34/.019 | 33/.017 | | 12 | | 44/.013
45/.013
38/.010 | 37/.011
38/.011
39/.011
44/.010 | | | | | | | 13 | 46/.014 | 27/.018
28/.016 | | | 46/.042
38/.023
38/.022
45/.020
42/.019
44/.017
39/.013 | | | | | 15 | | | | | 16/.011 | 17/.011
18/.010 | | | Table 4-3d. Identification of Receptors with Measured Concentration Ratios ≥ 0.002 (0.2%) for the Source Group Listed | | | | | W.] | D. | | | | |---------|------|----------|------|------|------|----------|------|------| | S.G. | 000° | 045° | 090° | 135° | 180° | 225° | 270° | 315° | | 2 | | 12/.0020 | | | | 32/.0070 | | | | _ | | , | | | · | 1/.0049 | | | | | | | | | ; | 33/.0039 | | | | | | | | | | 34/.0024 | | | | <u></u> | | | | | | | | | Table 4-3e. Identification of Receptors with Measured Concentration Ratios ≥ 0.00015 (.015%) for the Source Listed | | | | | W.] |). | | | | |------|------------------------|----------|-----------------------|------|------|------|------|-------------------------------------| | S.G. | 000° | 045° | 090° | 135° | 180° | 225° | 270° | 315° | | 59 | 20/.00023
19/.00021 | 3/.00027 | 2/.00019
17/.00015 | | | | | 20/.00028
25/.00020
24/.00017 | | | | | | | | | | 26/.00017 | Table 4-3f. Identification of Receptors with Measured Concentration Ratios ≥ 0.0001 (.01%) for the Sources Listed | | | | | W.I |). | | | | |------|-----------|------
-----------|------|------|------|------|-----------| | S.G. | 000° | 045° | 090° | 135° | 180° | 225° | 270° | 315° | | 58 | 11/.00063 | | | | | | | | | | 43/.00043 | | | | | | | | | | 42/.00022 | | | | | | | | | | 38/.00018 | | | | | | | | | | 37/.00017 | | | | | | | | | | 39/.00016 | | | | | | | | | | 45/.00014 | | | | | | | | | | 44/.00012 | | | | | | | | | 60 | 12/.00014 | | 18/.00015 | | | | | 28/.00024 | | | - | • | 17/.00013 | | | | | 27/.00023 | | | | | | | | | | 30/.00013 | | | | | | | | | | 26/.0001 | | | | | | | | | | 25/.0001 | Table 4-4a. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #1 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Malo | oney | |------|---------|----------|---------|---|--------|---------|---------|---------|---------|----|----|----------|---------|---------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | .194E-3 | 0 | 0 | 0 | 0 | 0 | .527E-3 | .583E-2 | .124E-1 | 0 | 0 | .257E-2 | .829E-2 | .195E-2 | .179E-2 | | 045 | .218E-3 | .104E-3 | 0 | 0 | 0 | 0 | 0 | .744E-2 | .247E-1 | 0 | 0 | .238E-2 | .608E-2 | .772E-2 | .561E-2 | | 090 | .688E-2 | .357E-3 | .105E-3 | 0 | 0 | .114E-3 | 0 | 0 | .134E-3 | 0 | 0 | .373E-3 | .984E-2 | .115E-1 | . 106E-1 | | 135 | .111E-3 | . 195E-3 | 0 | 0 | 0 | .152E-3 | 0 | 0 | 0 | 0 | 0 | . 292E-2 | .184E-1 | .172E-1 | . 169E-1 | | 180 | .184E-3 | .347E-3 | 0 | 0 | 0 | .217E-3 | .807E-2 | .791E-2 | .679E-2 | 0 | 0 | .185E-1 | .250E-1 | .306E-1 | . 138E-2 | | 225 | .162E-3 | 0 | 0 | 0 | 0 | 0 | .620E-2 | .757E-2 | .894E-2 | 0 | 0 | .873E-3 | .242E-2 | .177E-2 | .194E-2 | | 270 | .123E-3 | 0 | 0 | 0 | 0 | 0 | .260E-3 | .706E-3 | .345E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .337E-3 | .811E-3 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4b. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #2 | Wind | | | | | HUP IV | | | | | | Gate | es | | Male | oney | |------|-----|---|---|---|--------|---|---------|---------|---------|----|---------|---------|----------|----------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | | | 0 | 0 | 0 | 0 | 0 | .259E-3 | .629E-3 | 0 | .111E-3 | .437E-3 | .336E-3 | 0 | 0 | | 045 | | | 0 | | 0 | 0 | 0 | .511E-3 | .197E-2 | 0 | 0 | .294E-3 | .317E-3 | .437E-3 | .314E-3 | | 090 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .107E-3 | .587E-3 | .728E-3 | .683E-3 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | .215E-3 | . 191E-2 | .167E-2 | . 153E-2 | | 180 | 0 | 0 | 0 | 0 | | 0 | .480E-3 | .493E-3 | .513E-3 | 0 | 0 | .104E-2 | .145E-2 | . 164E-2 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 . | 0 | 0 | 0 | 0 | | 0 | .168E-3 | .620E-3 | 0 | 0 | 0 | 0 | | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4c. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-1 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Male | oney | |------|---|---|---|---|--------|---|---------|---------|----------|----------|----|---------|---------|---------|---------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | .828E-1 | .323E+0 | . 146E+0 | .515E-3 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .203E+0 | .340E+0 | .186E+0 | .438E-3 | 0 | .153E-3 | .269E-3 | .411E-3 | .308E- | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .234E+0 | .338E+0 | .527E-2 | .176E-3 | 0 | .112E-3 | .721E-3 | .257E-2 | . 263E- | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .216E+0 | .267E+0 | .233E-1 | 0 | 0 | .416E-3 | .161E-2 | .367E-2 | .351E- | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .285E+0 | .317E+0 | .392E-1 | .230E-3 | 0 | .435E-3 | .631E-3 | .340E-3 | .415E- | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .277E+0 | .266E+0 | .157E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .263E+0 | .269E+0 | .122E+0 | .311E-3 | 0 | 0 | 0 | 0 | 0 | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | .280E+0 | .248E+0 | .404E-1 | . 183E-3 | 0 | 0 | 0 | 0 | 0 | Table 4-4d. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-2 | Wind | | | | | HUP IV | | | | | | Gate | es | | Mal | oney | |------|---|---|---|---|--------|---|---------|---------|---------|---------|---------|---------|----------|---------|---------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | o | 0 | 0 | 0 | .233E+0 | .218E+0 | .393E+0 | .474E-3 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .118E+0 | .300E+0 | .405E+0 | .448E-3 | .112E-3 | 0 | .124E-3 | .173E-3 | .126E-3 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .768E-1 | .100E+0 | .415E+0 | .468E-3 | 0 | .119E-3 | . 107E-2 | .269E-2 | .259E-2 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .723E-1 | .613E-1 | .421E+0 | .658E-3 | 0 | .902E-3 | .327E-2 | .107E-1 | .104E-1 | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .197E+0 | .280E+0 | .391E+0 | .523E-3 | .147E-3 | .983E-3 | .128E-2 | .741E-3 | .869E-3 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .833E-1 | .289E+0 | .383E+0 | .517E-3 | .120E-3 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .182E+0 | .226E+0 | .450E+0 | .604E-3 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | .916E-1 | .211E+0 | .410E+0 | .467E-3 | 0 | 0 | 0 | 0 | 0 | ⁰ in Table 4-4 indicates value less than .999E-4. Table 4-4e. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-3 | Wind | | | | | HUP IV | | | | | | Gate | es | | Malo | oney | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | .838E-2 | .374E-1 | .525E-1 | .743E-2 | .429E-1 | .725E-1 | .260E-1 | .742E-1 | .220E+0 | .979E-3 | .273E-3 | .142E-2 | .805E-2 | .303E-2 | .273E-2 | | 045 | .869E-2 | .298E-1 | .672E-1 | .742E-2 | .396E-1 | .522E-1 | .349E-1 | .323E-3 | .240E+0 | .619E-3 | .210E-3 | .272E-3 | .490E-2 | .518E-2 | .462E-2 | | 090 | .935E-2 | .310E-1 | .682E-1 | .805E-2 | .396E-1 | .730E-1 | .391E-2 | .494E-1 | .224E+0 | .545E-3 | .216E-3 | .135E-2 | .117E-1 | .130E-1 | .134E-1 | | 135 | .957E-2 | .282E-1 | .691E-1 | .829E-2 | .366E-1 | .739E-1 | .164E-1 | .806E-1 | .222E+0 | .591E-3 | .145E-3 | .783E-3 | .194E-2 | .148E-2 | .146E-2 | | 180 | .100E-1 | .308E-1 | .674E-1 | .851E-2 | .385E-1 | .700E-1 | .319E-1 | .748E-1 | .208E+0 | .592E-3 | .170E-3 | .120E-2 | .322E-2 | .128E-2 | .137E-2 | | 225 | .965E-2 | .212E-1 | .705E-1 | .863E-2 | .270E-2 | .744E-1 | .155E-1 | .580E-1 | .237E+0 | .657E-3 | .232E-3 | .208E-2 | .382E-2 | .901E-3 | .108E-2 | | 270 | .708E-2 | .210E-1 | .502E-1 | .661E-2 | .238E-1 | .436E-1 | .108E-1 | .303E-1 | .160E+0 | .469E-3 | .538E-3 | .136E-1 | .240E-1 | .758E-2 | .795E-2 | | 315 | .868E-2 | .258E-1 | .600E-1 | .843E-2 | .315E-1 | .634E-1 | .147E-1 | .493E-1 | .216E+0 | .710E-2 | .184E-3 | .131E-2 | .126E-1 | .249E-3 | . 154E-3 | 159 Table 4-4f. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-4 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Male | oney | |------|---|---------|---------|---|---------|---------|----------|---------|---------|----|----|---------|---------|---------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | .527E-2 | .508E-2 | .114E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .576E-3 | .158E-1 | .184E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .340E-3 | .407E-3 | .321E-2 | 0 | 0 | 0 | .350E-3 | .469E-3 | .442E-3 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | . 165E-2 | .902E-3 | .529E-2 | 0 | 0 | .187E-3 | .590E-3 | .180E-2 | . 174E-2 | | 180 | 0 | .123E-3 | .241E-3 | 0 | .135E-3 | .291E-3 | .275E-1 | .286E-1 | .179E-1 | 0 | 0 | .371E-3 | .514E-3 | .300E-3 | .337E-3 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .170E-1 | .244E-1 | .212E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .602E-2 | .836E-2 | .189E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | .443E-2 | .962E-2 | .165E-1 | 0 | 0 | 0 | .104E-3 | 0 . | 0 | | | | | | | | | | | | | | | | | | Table 4-4g. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-C | Wind | HUP IV | | | | | | | | | | Gate | Maloney | | | | |------|--------|---|---------|---|---|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | .590E-1 | .141E-1 | .476E-1 | .144E-3 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .139E+0 | .183E-1 | .601E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .141E+0 | .125E-1 | .132E-2 | 0 | 0 | 0 | .129E-3 | .466E-3 | . 458E- | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .108E+0 | .401E-2 | .425E-2 | 0 | 0 | .108E-3 | .345E-3 | .969E-3 | .906E- | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .807E-1 | . 136E-1 | .307E-1 | 0 | 0 | 0 | .141E-3 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .810E-1 | .681E-2 | .205E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .111E+0 | .890E-2 | .753E-1 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | .111E-3 | 0 | 0 | .104E-3 | .524E-1 | .592E-2 | .503E-1 | .174E-3 | .107E-3 | 0 | 0 | 0 | 0 | Table 4-4h. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-Q | Wind | HUP IV | | | | | | | | | | Ga | Maloney | | | | |------|--------|---|---|---|---|----|---------|---------|---------|----|-----|---------|---------|----------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | .108E-3 | .296E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .437E-3 | .216E-1 | .263E-1 | 0 | 0 | 0 | .357E-3 | .587E-3 | .543E-3 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .311E-1 | .275E-1 | .998E-3 | 0 | 0 | .158E-3 | .512E-3 | . 185E-2 | . 184E-2 | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .220E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0, | 0 | .198E-3 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4i. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-R | Wind
Dir. | | HUP IV | | | | | | | | | | Gates | | | | | |--------------|---|---------|---------|---|---------|---------|----------|----------|---------|---------|----|---------|---------|---------|---------|--| | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | | 000 | 0 | .324E-3 | .603E-3 | 0 | .366E-3 | .627E-3 | .697E-3 | . 142E-2 | .273E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | | 045 | 0 | .266E-3 | .574E-3 | | .346E-3 | .597E-3 | .651E-3 | | .277E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | | 090 | 0 | .274E-3 | .586E-3 | 0 | .345E-3 | .637E-3 | .820E-3 | .725E-3 | .233E-2 | 0 | 0 | 0 | .128E-3 | .287E-3 | .291E-3 | | | 135 | 0 | .243E-3 | .594E-3 | 0 | .315E-3 | .644E-3 | . 125E-2 | . 152E-2 | .217E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | | 180 | 0 | .265E-3 | .579E-3 | 0 | .331E-3 | .610E-3 | .958E-3 | .131E-2 | .206E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | | 225 | 0 | .182E-3 | .606E-3 | 0 | .248E-3 | .646E-3 | .226E-2 | .231E-2 | .258E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | | 270 | 0 | .181E-3 | .430E-3 | 0 | .204E-3 | .380E-3 | .502E-3 | .185E-2 | .215E-2 | 0 | 0 | .119E-3 | .209E-3 | 0 | 0 | | | 315 | 0 | .224E-3 | .515E-3 | 0 | .270E-3 | .549E-3 | .296E-3 | .102E-2 | .225E-2 | .241E-3 | 0 | 0 | .101E-3 | 0 | 0 | | Table 4-4j. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-58 | Wind | | | | | HUP IV | | | | | | Gat | es | | Mal | oney | |------|---|-----|---|---|--------|---------|------------|------------|------------|----|-----|----|----|-----|------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | ° 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | All mea | sured valu | es less th | an 0.100 E | -3 | | | | | | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | Table 4-4k. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-59 | Wind | | | | | HUP IV | | | | | | Gat | es | | Male | oney | | |------|---|---|---|---|--------|---|----|----|----|----|-----|----|----|---------|---------|---| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | | 000 | o | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 090 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | .149E-3 | .141E-3 | _ | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | .104E-3 | .101E-3 | ä | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Table 4-4ℓ. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #3-60 | Wind | | | ` * | | HUP IV | | | | | | Gat | es | | Mal | oney | |------|---|---|------------|---|--------|---|---------|----|----|----|-----|----|----|---------|--------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 . | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 | | 0 | | | 0 | 40 40 | | | 0 | 0 | 0 | 0 | .110E-3 | 0 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | .133E-3 | .145E- | | 180 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | | | | | | | and 400 | | | | | | | | | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | *** | | | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | Table 4-4m. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #4 | Wind | | | | | HUP IV | | | | | | Gate | es | | Malo | oney | |------|---|---------|---|---|--------|---|---------|---------|----------|---------|---------|---------|---------|---------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | | 0 | 0 | 0 | 0 | 0 | .349E-1 | .216E-1 | .132E-1 | .182E-2 | .712E-1 | .300E+0 | .858E-1 | .849E-2 | . 795E-2 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .602E-2 | .579E-2 | . 187E-2 | .177E-2 | .724E-1 | .300E+0 | .490E-1 | .254E-1 | . 226E-1 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .192E-2 | .808E-1 | .280E+0 | .524E-1 | .329E-1 | .355E-1 | | 135 | 0 | .186E-3 | 0 | 0 | 0 | 0 | .512E-3 | 0 | 0 | .174E-2 | .734E-1 | .311E+0 | .519E-1 | .512E-2 | .568E-2 | | 180 | | .111E-3 | 0 | 0 | 0 | 0 | .374E-2 | .783E-3 | .111E-3 | .274E-2 | .881E-1 | .407E+0 | .606E-1 | .123E-2 | .124E-2 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .292E-3 | 0 | 0 | .390E-2 | .916E-1 | .286E+0 | .601E-1 | .199E-2 | . 277E-2 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .475E-3 | .374E-3 | 0 | .399E-2 | .948E-1 | .301E+0 | .907E-1 | .477E-2 | .454E-2 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | .503E-2 | .272E-2 | .209E-2 | .197E-2 | .161E+0 | .324E+0 | .883E-1 | .272E-3 | .195E- | | | | | | | | | | | | | | | | | | ⁰ in Table 4-4 indicates value less than .999E-4. Table 4-4n. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #5 | Wind | | | | | HUP IV | | | | | | Gate | es | | Male | oney | |------|---------|---------|---|---------|---------|---------|---------|---------|---------|----|---------|---------|---------|---------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | | .247E-3 | 0 | .637E-3 | 0 | .535E-3 | .105E-2 | .394E-2 | .638E-2 | 0 | | .610E-3 | .998E-1 | .462E-1 | .387E-1 | | 045 | .402E-3 | .317E-3 | 0 | .678E-3 | 0 | .946E-3 | 0 | .400E-2 | .104E-1 | 0 | | .796E-3 | .943E-1 | .539E-1 | .524E-1 | | 090 | .464E-3 | .462E-3 | 0 | .713E-3 | 0 | .112E-2 | 0 | .114E-3 | .110E-3 | 0 | | .104E-2 | .174E+0 | .178E+0 | . 167E+0 | | 135 | .286E-3 | .174E-2 | 0 | .424E-3 | .267E-3 | .711E-3 | 0 | 0 | 0 | 0 | *** | .415E-2 | .216E+0 | .263E+0 | . 218E+0 | | 180 | .567E-3 | .875E-3 | 0 | .125E-2 | 0 | .430E-3 | .597E-2 | .457E-2 | .119E-2 | 0 | .335E-3 | .446E-2 | .153E-1 | .494E-1 | . 453E-1 | | 225 | .448E-3 | .735E-3 | 0 | .809E-3 | 0 | .406E-3 | .698E-2 | .388E-2 | .230E-2 | 0 | .126E-2 | .863E-2 | .559E-1 | .581E-1 | .558E-1 | | 270 | .310E-3 | .159E-3 | 0 | .464E-3 | 0 | .140E-2 | .960E-2 | .493E-2 | .238E-2 | 0 | .175E-2 | .107E-1 | .389E-1 | .774E-1 | .885E-1 | | 315 | .293E-3 | .286E-3 | 0 | .489E-3 | 0 | .721E-3 | .947E-2 | .153E-1 | .219E-1 | 0 | ••• | .476E-3 | .519E-1 | .280E+0 | .229E+ | Table 4-4o. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #6 | Wind | | | | | HUP IV | | | | | | Gat | es | | | oney | |------|---|---|---|---|--------|---|---------|---------|---------|----|-----|----|---------|---------|--------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | o | 0 | 0 | 0 | o | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | | 40.40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .133E-3 | .283E-3 | .518E-3 | 0 | 0 | 0 | .386E-3 | .543E-3 | .521E- | | 180 | | | | | | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ~- | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | *** | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | Table 4-4p. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #7 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Male | oney | |------|---|---------|---|---|--------|---|---------|---------|---------|----|----|---------|---------|---------|---------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .213E-3 | 0 | 0 | 0 | .102E-3 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .587E-3 | .800E-3 | .750E-3 | | 135 | 0 | .100E-3 | 0 | 0 | 0 | 0 | .370E-2 | .764E-2 | .124E-1 | 0 | 0 | .101E-2 | .622E-2 | .818E-2 | .783E-2 | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .125E-2 | .712E-3 | .740E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | Table 4-4q. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #8 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Malo | oney | |------|-----|---------|---|---|--------|---|---------|---------|---------|---------|----|---------|---------|---------|---------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11
 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | .369E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 090 | 0 , | 0 | 0 | 0 | 0 | 0 | .119E-3 | .259E-3 | .440E-3 | 0 | 0 | .189E-3 | .240E-2 | .337E-2 | .314E-2 | | 135 | 0 | .212E-3 | 0 | 0 | 0 | 0 | .405E-1 | .477E~1 | .507E-1 | .177E-3 | 0 | .173E-2 | .496E-2 | .134E-1 | .131E-1 | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .105E-2 | .543E-3 | .399E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | o o | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4r. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #9 | Wind | | | | | HUP IV | | | | | | Gat | es | | Male | oney | |------|---|---|---|---|--------|---|---------|---------|---------|----|-----|----|---------|---------|--------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | .595E-3 | 0 | 0 | 0 | .165E-3 | .124E-3 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | .282E-3 | .360E-3 | .335E- | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .200E-2 | .123E-2 | .610E-3 | 0 | 0 | 0 | .120E-3 | .475E-3 | .496E- | | 180 | 0 | | 0 | 0 | 0 | 0 | .120E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .234E-3 | .483E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⁰ in Table 4-4 indicates value less than .999E-4. Table 4-4s. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #10 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Malo | oney | |------|---|---|---|---|--------|---|---------|---------|----------|----|----|---------|---------|---------|---------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | | 0 | o | 0 | .952E-3 | .781E-3 | . 198E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .510E-2 | .327E-2 | .453E-2 | 0 | 0 | .421E-3 | .559E-3 | .751E-3 | .683E- | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .745E-2 | .665E-2 | .376E-2 | 0 | 0 | .154E-3 | .973E-3 | .251E-2 | . 247E- | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .874E-2 | .116E-2 | .212E-3 | 0 | 0 | .516E-3 | .351E-3 | .165E-2 | .173E- | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .239E-2 | .349E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .903E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .160E-2 | .529E-2 | .309E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .132E-3 | .570E-3 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4t. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #11 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Male | oney | |------|-----|---|---|---|--------|---|---------|---------|----------|----|----|---------|---------|---------|--------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | o | 0 | o | 0 | 0 | 0 | .474E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 045 | 0 | 0 | 0 | 0 | | 0 | .717E-3 | .125E-2 | .507E-2 | 0 | 0 | .600E-3 | .124E-2 | .140E-2 | .118E- | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .106E-1 | .157E-1 | . 167E-1 | 0 | 0 | .316E-3 | .404E-2 | .626E-2 | .589E- | | 135 | 0 . | 0 | 0 | 0 | 0 | 0 | .957E-2 | .549E-2 | .305E-1 | 0 | 0 | .107E-2 | .999E-3 | .399E-2 | .428E- | | 180 | 0 | 0 | 0 | 0 | | 0 | .954E-3 | .247E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .342E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .227E-2 | .448E-2 | .304E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .618E-3 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4u. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #12 | Wind | | | | | HUP IV | | | | | | Ga | tes | | Male | ney | |------|---|---|---|---|--------|---------|---------|---------|---------|----|----|---------|---------|---------|--------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | 0 | .834E-3 | .971E-3 | .680E-3 | 0 | 0 | 0 | 0 | 0 | | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .177E-2 | .432E-3 | 0 | 0 | 0 | .106E-3 | 0 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | .101E-3 | .254E-2 | .291E-2 | .200E-2 | 0 | 0 | .129E-3 | .382E-3 | .710E-3 | .715E- | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .101E-3 | 0 | .251E-3 | .275E- | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .116E-3 | .328E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .156E-3 | .919E-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4v. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #13 | | | | | HUP IV | | | | | | Ga | tes | | Male | oney | |---|-----------------------|-----------------------------|---------------------------------------|---------------------------------------|---|---|---|--|--|--|---
--|--|---| | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 0 | 0 | o | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 196E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | .920E-3 | .203E-2 | .257E-2 | 0 | 0 | 0 . | .474E-3 | .596E-3 | .569E-3 | | 0 | 0 | 0 | 0 | 0 | 0 | .132E-2 | .346E-3 | 0 | 0 | 0 | .193E-3 | .128E-3 | .532E-3 | .576E-3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 5 6 7 8 0 | 4 5 6 7 8 9 0 | 4 5 6 7 8 9 10 .920E-3 0 0 0 0 0 0 .132E-2 0 | 4 5 6 7 8 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .920E-3 .203E-2 0 0 0 0 0 .132E-2 .346E-3 0 | 4 5 6 7 8 9 10 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 203E-2 .257E-2 0 | 4 5 6 7 8 9 10 11 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 .920E-3 .203E-2 .257E-2 0 0 0 0 0 0 .132E-2 .346E-3 0 | 4 5 6 7 8 9 10 11 12 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 0 .920E-3 .203E-2 .257E-2 0 0 0 0 0 0 0 .132E-2 .346E-3 0 | 4 5 6 7 8 9 10 11 12 13 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196E-3 0 0 0 0 0 0 0 0 0 1920E-3 .203E-2 .257E-2 0 < | 4 5 6 7 8 9 10 11 12 13 14 15 16 0 | 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 | ⁰ in Table 4-4 indicates value less than .999E-4. Table 4-4w. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #14 | Wind | | | | | HUP IV | | | | | Gates | | | | Maloney | | |------|---|---|---------|---|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | .117E-3 | 0 | | .127E-3 | .127E+0 | .162E+0 | .701E-1 | .103E-3 | .176E-3 | .122E-3 | .293E-3 | .121E-3 | . 177E-: | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | .195E-2 | .296E+0 | .129E-1 | | 0 | .532E-3 | .122E-3 | .133E-3 | 0 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | .128E-2 | .169E-1 | .180E-3 | 0 | 0 | 0 | .505E-3 | .155E-2 | .159E- | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .245E-2 | .547E-2 | .631E-2 | 0 | 0 | .200E-3 | .762E-3 | .302E-2 | .285E- | | 180 | 0 | 0 | 0 | 0 | 0 | 0 | .577E-1 | .164E+0 | .344E-3 | 0 | 0 | .144E-3 | .204E-3 | .136E-3 | . 157E- | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .322E-1 | .170E+0 | .404E-3 | 0 | 0 | 0 | 0 | 0 | 0 | | 270 | 0 | 0 | 0 | 0 | 0 | 0 | .925E-2 | .174E+0 | .524E-2 | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 0 | 0 | 0 | 0 | 0 | 0 | .187E-1 | .168E+0 | .260E-2 | 0 | 0 | 0 | 0 | 0 | 0 | Table 4-4x. Tabulation of Concentration Ratios (χ) Measured at HUP IV, Gates & Maloney Building Intakes from Source Group #15 | Wind | | | | | HUP IV | | | | | | Gate | es | | <u>Maloney</u> | | |------|---|---------|---|---|--------|---------|---------|---------|---------|-----|---------|---------|---------|----------------|----------| | Dir. | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 000 | 0 | 0 | 0 | 0 | 0 | o | .269E-3 | .148E-2 | .274E-2 | 0 | 0 | .169E-2 | .826E-2 | . 162E-2 | . 142E-2 | | 045 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .207E-2 | .666E-2 | | 0 | .196E-2 | .558E-2 | .447E-2 | .330E-2 | | 090 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .316E-3 | .555E-2 | .692E-2 | .653E-2 | | 135 | 0 | 0 | 0 | 0 | 0 | 0 | .162E-3 | .362E-3 | .621E-3 | . 0 | 0 | .584E-3 | .503E-2 | .427E-2 | . 385E-2 | | 180 | 0 | .141E-3 | 0 | 0 | 0 | 0 | .347E-2 | .200E-2 | .133E-2 | 0 | .139E-3 | .751E-2 | .108E-1 | .935E-2 | .944E-2 | | 225 | 0 | 0 | 0 | 0 | 0 | 0 | .578E-2 | .422E-2 | .458E-2 | 0 | .121E-3 | .215E-2 | .777E-2 | .111E-1 | . 103E-1 | | 270 | 0 | .238E-3 | 0 | 0 | 0 | .821E-3 | .279E-2 | .140E-2 | .283E-2 | 0 | .126E-3 | .280E-2 | .453E-2 | .699E-2 | .610E- | | 315 | 0 | .283E-3 | 0 | 0 | 0 | 0 | .153E-2 | .235E-2 | .656E-2 | 0 | 0 | .680E-3 | .409E-2 | .903E-3 | .476E- | ⁰ in Table 4-4 indicates value less than .999E-4. Table 4-5. Summary of Maximum Concentration Ratios and Direction of Occurrence from Tables 4-4 by Source Group | Source | INTAKE | S | | |] | HUP IV | | | | | Gat | es | | | oney | |--------------|-----------------|-----------------|-----------------|--------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|--------------------------|------------------| | Group | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 1 | 090°
.688E-2 | 090°
.357E-3 | 090°
.105E-3 | 0
0 | 0 | 180°
.217E-3 | 180°
.807E-2 | 180°
.791E-2 | 045°
.247E-1 | 0 | 0
0 | 180°
.185E-1 | 180°
.250E-1 | 180°
.306E-1 | 135°
.169E-1 | | 2 | 0
0 | 0
0 | 0
0 | 0 | 0
0 | 0
0 | 180°
. 480E-3 | 045°
.511E-3 | 045°
.197E-2 | 0 | 000°
.111E-3 | 180°
.104E-2 | 135°
. 191E-2 | 135°
.167E-2 | 135°
. 153E-2 | | 3-1 | 0
0 | 0 | 0
0 | 0
0 | 0
0 | 0 | 180°
.285E+0 | 045°
.340E+0 | 045°
.186E+0 | 000°
.515E-3 | 0
0 | 180°
.435E-3 | 135°
.161E-2 | 135°
.367 E- 2 | 135°
.351E-2 | | 3-2 | 0 | 0 | 0
0 | 0
0 | 0
0 | 0
0 | 000°
.233E+0 | 045°
.300E+0 | 270°
.450E+0 | 135°
.658E-3 | 180°
.147E-3 | 180°
.983E-3 | 135°
.327E-2 | 135°
.107E-1 | 135°
.104E-1 | | 3-3 | Omitte | eđ. | | | | | | | | | | | | | | | 3-4 | 0
0 | 180°
.123E-3 | 180°
.241E-3 | 0 | 180°
.135E-3 | 180°
.291E-3 | 180°
.275E-1 | 180°
.286E-1 | 270°
.189E-1 | 0 | 0
0 | 180°
.371E-3 | 135°
.590E-3 | 135°
.180E-2 | 135°
.174E-2 | | 3-C | 0 | 0 |
315°
.111E-3 | 0
0 | 0
0 | 315°
.104E-3 | 090°
.141E+0 | 045°
.183E-1 | 270°
.753E-1 | 315°
.174E-3 | 315°
.107E-3 | 135°
.108E-3 | 135°
.345E-3 | 135°
.969E-3 | 135°
.906E-3 | | 3 - Q | 0
0 | 0 | 0
0 | 0
0 | 0 | 0
0 | 135°
.311E-1 | 135°
.275E-1 | 090°
.263E-1 | 0 | 0
0 | 135°
.158E-3 | 135°
.512E-3 | 135°
.185E-2 | 135°
.184E-2 | | 3-R | Omitte | ed · | | | | | | | | | | | | | | | 3-58 | All Va | lues less | than 0.100E | E-3 | | | | | | | | | | | | | 3-59 | 0
0 | 0 | 0
0 | 0
0 | 0
0 | 0 | 0
0 | 0
0 | 0
0 | 0 | 0
0 | 0
0 | 0
0 | 090°
.149E-3 | 090°
.141E-3 | | 3-60 | 0
0 | 0 | 0 | 0
0 | 0
0 | 0
0 | 0 | 0
0 | 0
0 | 0 | 0
0 | 0 | 0
0 | 135°
.133E-3 | 135°
.145E-3 | 0 indicates value less than .999E-4. Table 4-5. Summary of Maximum Concentration Ratios and Direction of Occurrence from Tables 4-4 by Source Group (Continued) | Source | INTAKI | ES | | | HUP IV | | | | | | Gate | es | | Male | oney | |--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Group | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 4 | 0
0 | 135°
.186E-3 | 0 | 0 | 0 | 0 | 000°
.349E-1 | 000°
.216E-1 | 000°
.132E-1 | 270°
.399E-2 | 315°
.161E+0 | 180°
.407E+0 | 270°
.907E-1 | 090°
.329E-1 | 090°
.355E-1 | | 5 | 180°
.567E-3 | 135°
.174E-2 | 0 | 180°
.125E-2 | 135°
.267E-3 | 270°
.140E-2 | 270°
.960E-2 | 315°
.153E-1 | 315°
.219E-1 | 0
0 | 270°
.175E-2 | 270°
.107E-1 | 135°
.216E+0 | 315°
.280E+0 | 315°
.229E+0 | | 6 | 0 | 0 | 0 | 0
0 | 0 | 0 | 135°
.133E-3 | 135°
.283E-3 | 135°
.518E-3 | 0
0 | 0
0 | 0 | 135°
.386E-3 | 135°
.543E-3 | 135°
.521E-3 | | 7 | 0
0 | 135°
.100E-3 | 0 | 0
0 | 0 | 0 | 135°
.370E-2 | 135°
.764E-2 | 135°
.124E-1 | 0
0 | 0 | 135°
.101E-2 | 135°
.622E-2 | 135°
.818E-2 | 135°
.783E-2 | | 8 | 0
0 | 135°
.212E-3 | 0 | 0
0 | 0 | 0 | 135°
.405E-1 | 135°
.477E-1 | 135°
.507E-1 | 135°
.177E-3 | 0 | 135°
.173E-2 | 135°
.496E-2 | 135°
.134E-1 | 135°
.131E-1 | | 9 | 0
0 | 0 | 0 | 0
0 | 0 | 0 | 135°
.200E-2 | 135°
.123E-2 | 135°
.610E-3 | 0 | 0
0 | 0 | 090°
.282E-3 | 135°
.475E-3 | 135°
.496E-3 | | 10 | 0
0 | 0 | 0 | 0
0 | 0 | 0 | 135°
.874E-2 | 090°
.665E-2 | 045°
.453E-2 | 0
0 | 0
0 | 135°
.516E-3 | 090°
.973E-3 | 090°
.251E-2 | 090°
.247E-2 | | 11 | 0
0 | 0 | 0 | 0 | 0 | 0 | 090°
.106E-1 | 090°
.157E-1 | 135°
.305E-1 | 0
0 | 0
0 | 135°
.107E-2 | 090°
.404E-2 | 090°
.626E-2 | 090°
.589E-2 | | 12 | 0
0 | 0 | 0 | 0
0 | 0
0 | 090°
.101E-3 | 090°
.254E-2 | 090°
.291E-2 | 090°
.200E-2 | 0 | 0
0 | 090°
.129E-3 | 090°
.382E-3 | 090°
.710E-3 | 090°
.715E-3 | | 13 | 0
0 | 0 | 0 | 0
0 | 0
0 | 0 | 135°
.132E-2 | 090°
.203E-2 | 090°
.257E-2 | 0
0 | 0
0 | 135°
.193E-3 | 090°
.474E-3 | 090°
.596E-3 | 135°
.576E-3 | | 14 | 0
0 | 0 | 000°
.117E-3 | 0 | 0
0 | 000°
.127E-3 | 000°
.127E+0 | 045°
.296E+0 | 000°
.701E-1 | 000°
.103E-3 | 000°
.176E-3 | 045°
.532E-3 | 135°
.762E-3 | 135°
.302E-2 | 135°
.285E-2 | | 15 | 0
0 | 315°
.283E-3 | 0 | 0 | 0 | 270°
.821E-3 | 225°
.578E-2 | 225°
.422E-2 | 045°
.666E-2 | 0 | 180°
.139E-3 | 180°
.751E-2 | 150°
.108E-1 | 225°
.111E-1 | 225°
.103E- | ⁰ indicates value less than .999E-4. Table 4-6. Tabulation of Run Numbers Assigned to the "Follow-On" Tests and Model Test Parameters/Tracers | Run
| Wind
Dir. | Wind
Vel.
(m/s) | Source
Group
| Tracer
(%-Type) | Volume
Flow
(m ³ /s) | Source
Group
| Tracer
(%-Type) | Volume
Flow
(m ³ /s) | |--------------------|----------------------|-----------------------|----------------------|--------------------|---------------------------------------|----------------------|--------------------|---------------------------------------| | 201
201R
202 | 270°
270°
225° | 2.44 | 2 | 9.01M | .378E-4 | 1 | 9.99E | .104E-2 | | 203
203R
204 | 270°
270°
315° | | 4 | 9.01M | .324E-3 | 5 | 9.99E | .630E-3 | | 208 | 090° | | | | | 3-Q | 9.99E | .115E-3 | | 209
210
211 | 270°
315°
225° | | 3-1 | 9.01M | .362E-3 | 3-2 | 9.99E | .657E-3 | Table 4-7. Measured Concentration Ratios (χ) , by Wind Direction, for the Eastern and Western HUP IV Penthouse Air Inlets, for the Source Groups Listed | | | W. | D. | | |------|------------------------|------------------------|------------------------|------------------------| | S.G. | 090° | 225° | 270° | 315° | | 1 | | E/.345E-2
W/.304E-2 | E/.347E-2
W/.142E-2 | | | 2 | | E/.195E-3
W/.875E-4 | E/.180E-3
W/.107E-3 | | | 3-1 | | E/.847E-3
W/.146E-2 | E/.118E-1
W/.151E-1 | E/.270E-1
W/.118E-1 | | 3-2 | | E/.446E-1
W/.127E+0 | E/.438E-1
W/.177E+0 | E/.418E-1
W/.162E+0 | | 3-Q | E/.207E-1
W/.227E-1 | | | | | 4 | | | E/.104E-2
W/.582E-3 | E/.262E-2
W/.286E-2 | | 5 | | | E/.401E-2
W/.454E-2 | E/.255E-2
W/.479E-2 | NOTE: Where test runs were repeated, the most conservative values were tabulated. Table 4-8a. Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 4 | Solvent | Liquid Solvent Evaporation Rate (m1/8-hr) | K* | Solvent Vapor
Creation Rate
(ml/8-hr) | Exhaust
Discharge
(m ³ /8-hr) | Exhaust
Solvent Vapor
Concentration
(ppm) | |-------------------|--|---|---|--|---| | Acetone | 100 | 326.5 | 32,650 | 50,019 | .653 | | Ether | 5 | 231.2 | 1,156 | 50,019 | .023 | | Ethyl Acetate | 40 | 245.1 | 9,804 | 95,145 | .103 | | Methanol | 1 | 592.5 | 593 | 95,145 | .006 | | Trimethyl Benzene | 4 | 174.9 | 700 | 95,145 | .007 | | Xylene | 1 | 198.9 | 199 | 95,145 | .002 | | | Acetone Ether Ethyl Acetate Methanol Trimethyl Benzene | Solvent Evaporation Rate (m1/8-hr) Acetone 100 Ether 5 Ethyl Acetate 40 Methanol 1 Trimethyl Benzene 4 | Solvent Evaporation Rate (ml/8-hr) K* Acetone 100 326.5 Ether 5 231.2 Ethyl Acetate 40 245.1 Methanol 1 592.5 Trimethyl Benzene 4 174.9 | Solvent Evaporation Rate (m1/8-hr) K* Creation Rate (m1/8-hr) Acetone 100 326.5 32,650 Ether 5 231.2 1,156 Ethyl Acetate 40 245.1 9,804 Methanol 1 592.5 593 Trimethyl Benzene 4 174.9 700 | Solvent Evaporation Rate (m1/8-hr) K* Creation Rate (m1/8-hr) Discharge (m³/8-hr) Acetone 100 326.5 32,650 50,019 Ether 5 231.2 1,156 50,019 Ethyl Acetate 40 245.1 9,804 95,145 Methanol 1 592.5 593 95,145 Trimethyl Benzene 4 174.9 700 95,145 | ^{*}Solvent Liquid-to-Vapor Volume Ratio Table 4-8b. Conversion of Liquid Solvent Evaporation Rates (ml/8-hr) to Solvent Vapor Concentrations (ppm) in Selected Exhausts of Source Group 5 | Exhaust
| Solvent | Liquid Solvent
Evaporation Rate
(ml/8-hr) | K* | Solvent Vapor
Creation Rate
(ml/8-hr) | Exhaust
Discharge
(m ³ /8-hr) | Exhaust
Solvent Vapor
Concentration
(ppm) | |--------------|--------------------------|---|-------|---|--|--| | 125 | Ethanol | 8 | 411.0 | 3,288 | 13,592 | . 242 | | | Formaldehyde | 4 | 651.4 | 2,606 | 13,592 | . 192 | | | Propylene Oxide | 7 | 355.0 | 2,485 | 13,592 | .183 | | 144 | Acetone | 5 | 326.5 | 1,633 | 320,773 | .005 | | | Ethanol | 7,445 | 411.0 | 3,059,895 | 320,773 | 9.54 | | | Formaldehyde | 960 | 651.4 | 625,344 | 320,773 | 1.95 | | | Methanol | 20 | 592.5 | 11,850 | 320,773 | .037 | | | Toluene
(Readi-Solv") | 300 | 225.8 | 67,740 | 320,773 | .211 | | | Xylene | 3,140 | 198.9 | 624,546 | 320,773 | 1.95 | | 156, 158 | Ethyl Ether | 200 | 231.2 | 46,240 | 25,145 | 1.84 | | & 162 | Methylene Chloride | 50 | 375.0 | 18,750 | 25,145 | .746 | | 159 | Chloroform | 10 | 298.1 | 2,981 | 15,631 | . 191 | | | Ethyl Acetate | 30 | 245.1 | 7,353 | 15,631 | .470 | | | Hexane | 20 | 183.8 | 3,676 | 15,631 | .235 | | 173 | Acetonitrile | 25 | 459.5 | 11,488 | 28,543 | . 402 | | | Chloroform | 10 | 298.1 | 2,981 | 28,543 | . 104 | | | Ethyl Acetate | 10 | 245.1 | 2,451 | 28,543 | .086 | | | Ethyl Ether | 5 | 231.2 | 1,156 | 28,543 | .040 | | | Methanol | 10 |
592.5 | 5,925 | 28,543 | .208 | | | Toluene | 20 | 225.8 | 4,516 | 28,543 | .158 | ^{*}Solvent Liquid-to-Vapor Volume Ratio Table 4-8c. Total Solvent Vapor Concentrations (ppm) from Selected Exhausts within Source Group #5 | | ** | | . 4. 1 4 . 79 | 1 | ` | Total Vapor | |--------------------|-------|-------------|---------------|------------|-----------|--------------| | | vap | or Concentr | #158, | nausts (pp | <u>m)</u> | the Exhausts | | Solvent | #125 | #144 | #162 | #159 | #173 | (ppm) | | Acetone | | .005 | | | | .005 | | Acetonitrile | | | | | .402 | . 402 | | Chloroform | | | | . 191 | . 104 | . 134 | | Ethanol | .242 | 9.54 | | | | 9.16 | | Ethyl Acetate | | | | .470 | .086 | .222 | | Ethyl Ether | | | 1.84 | | .040 | .883 | | Formaldehyde | . 192 | 1.95 | | | | 1.87 | | Hexane | | | | .235 | | .235 | | Methanol | | .037 | | | .208 | .051 | | Methylene Chloride | | | .746 | | | .746 | | Propylene Oxide | .183 | | | | | .183 | | Toluene | | .211 | | | . 158 | .207 | | Xylene | | 1.95 | | | | 1.95 | Table 4-8d. Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #4 Exhausts | Solvent | Exhaust Vapor
Concentrations | | Vapor Concentrations
for East Inlets | | Vapor Concentrations
for West Inlets | |----------------------------|---------------------------------|-------|---|-------|---| | (Exhaust #) | (ppm) | χ* | (ppm) | χ** | (ppm) | | Acetone
(121) | .653 | .0026 | .001698 | .0029 | .001894 | | Ethyl Acetate (116) | .103 | | .000268 | | .000299 | | Ethyl Ether
(121) | .023 | | .000060 | | .000067 | | Methanol
(116) | .006 | | .000016 | | .000017 | | Trimethyl Benzene
(116) | .007 | | .000018 | | .000020 | | Xylene
(116) | .002 | | .000005 | | .000006 | ^{*}Concentration ratio measured for worst wind conditions (315°) = .0026. ^{**}Concentration ratio measured for worst wind conditions (315°) = .0029. Table 4-8e. Solvent Vapor Concentrations (ppm) at HUP IV Penthouse Air Intakes (East and West) from Source Group #5 Exhausts | Solvent | Exhaust Vapor
Concentrations | 7/ * | Vapor Concentrations
for East Inlets | مارسان | Vapor Concentrations
for West Inlets | |--------------------|---------------------------------|-------------|---|--------|---| | Solvent | (ppm) | χ* | (ppm) | χ** | (ppm) | | Acetone | .005 | .00401 | .00002 | .00480 | .00002 | | Acetonitrile | . 402 | | .00161 | | .00193 | | Chloroform | .134 | | .00054 | | .00064 | | Ethanol | 9.16 | | .0367 | | .0440 | | Ethyl Acetate | .222 | | .00089 | | .00107 | | Ethyl Ether | .883 | | .00354 | | .00424 | | Formaldehyde | 1.87 | | .00750 | | .00898 | | Hexane | .235 | | .00094 | | .00112 | | Methanol | .051 | | .00020 | | .00024 | | Methylene Chloride | .746 | | .00299 | | .00358 | | Propylene Oxide | .183 | | .00073 | | .00087 | | Toluene | .207 | | .00083 | | .00099 | | Xylene | 1.95 | | .00782 | | .00936 | ^{*}Concentration ratio measured for worst wind conditions (270°) = .00401. ^{***}Concentration ratio measured for worst wind conditions (315°) = .00480. Table 5-1. Identification of Visualization Data Recorded on VHS Video Cassettes | Run No. | Description | Wind Direction | |---------|---|----------------| | | CASSETTE #1 | | | 1 | Med. Ed. Incinerator Source | 225° | | 2 | Med. Ed. Incinerator Source | 180° | | 3 | HUP IV Cooling Towers | 180° | | 4 | HUP IV Cooling Towers | 225° | | 5 | HUP IV Cooling Towers | 270° | | 6 | HUP IV Cooling Towers | 315° | | 7 | HUP IV Cooling Towers | 360° | | 8 | HUP IV Cooling Towers | 045° | | 9 | HUP IV Cooling Towers | 090° | | 10 | HUP IV Cooling Towers | 135° | | 11 | Source Group 11 | 135° | | 12 | Source Group 11 | 180° | | 13 | Source Group 11 | 225° | | 14 | Source Group 11 | 270° | | 15 | Source Group 11 | 315° | | 16 | Source Group 11 | 360° | | 17 | Source Group 11 | 045° | | 18 | Source Group 11 | 090° | | 10 | Takahar 26 Garraga Wariad | | | 19 | Intakes 36 - Sources Varied | 090° | | 20 | Intakes 36 - Sources Varied | 135° | | 21 | Intakes 36 - Sources Varied | 180° | | 22 | Intakes 36 - Sources Varied | 225° | | 23 | Intakes 36 - Sources Varied | 270° | | 24 | Intakes 36 - Sources Varied | 315° | | 25 | Intakes 36 - Sources Varied | 360° | | 26 | Intakes 36 - Sources Varied | 045° | | 27 | Intakes 13, 14, 15, 16 - Sources Varied | 045° | | 28 | Intakes 13, 14, 15, 16 - Sources Varied | 090° | | 29 | Intakes 13, 14, 15, 16 - Sources Varied | 135° | | 30 | Intakes 13, 14, 15, 16 - Sources Varied | 180° | | 31 | Intakes 13, 14, 15, 16 - Sources Varied | 225° | | 32 | Intakes 13, 14, 15, 16 - Sources Varied | 270° | | 33 | Intakes 13, 14, 15, 16 - Sources Varied | 315° | | 34 | Intakes 13, 14, 15, 16 - Sources Varied | 360° | | 35 | Intakes 37, 38, 39 - Sources Varied | 360° | | 36 | Intakes 37, 38, 39 - Sources Varied | 045° | | 37 | Intakes 37, 38, 39 - Sources Varied | 090° | Table 5-1. continued. | Run No. | Description | Wind Direction | |---------|--|----------------| | | CASSETTE #2 | | | 38 | Intakes 37, 38, 39 - Sources Varied | 135° | | 39 | Intakes 37, 38, 39 - Sources Varied | 180° | | 40 | Intakes 37, 38, 39 - Sources Varied | 225° | | 41 | Intakes 37, 38, 39 - Sources Varied | 270° | | 42 | Intakes 37, 38, 39 - Sources Varied | 315° | | 101 | Intakes HUP IV Penthouse - Sources 1 & 2 | 225° | | 102 | Intakes HUP IV Penthouse - Sources 1 & 2 | 270° | | 103 | Intakes HUP IV Penthouse - Sources 4 & 5 | 270° | | 104 | Intakes HUP IV Penthouse - Sources 4 & 5 | 315° | | 105 | Intakes HUP IV Penthouse - Source 3 | 315° | | 106 | Intakes HUP IV Penthouse - Source 3 | 270° | | 107 | Intakes HUP IV Penthouse - Source 3 | 225° | | 108 | Intakes HUP IV Penthouse - Source 3-Q | 090° | NOTE 1: Runs 101 through 108 were made subsequent to October 1984 modifications to HUP IV rooftop configuration. NOTE 2: Counter number and run times were supplied in a separate Video Log. $\,$ TATI CBR-84|85-1a copy 2 WIND-TUNNEL STUDY OF EXHAUST-INTAKE CROSS CONTAMINATION AND DISPERSION OF ROOFTOP EMISSIONS, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA (HUP PHASE IV) - APPENDICES - by J. E. Cermak¹ and J. A. Peterka² FLUID MECHANICS AND WIND ENGINEERING PROGRAM COLLEGE OF ENGINEERING **COLORADO STATE UNIVERSITY** FORT COLLINS, COLORADO Parinty day Toleron. **,种以及及自由** 型和地位。Library # WIND-TUNNEL STUDY OF EXHAUST-INTAKE CROSS CONTAMINATION AND DISPERSION OF ROOFTOP EMISSIONS, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA (HUP PHASE IV) - APPENDICES - by J. E. Cermak¹ and J. A. Peterka² for Hospital of the University of Pennsylvania 3400 Spruce Street Philadelphia, Pennsylvania 19104 Fluid Mechanics and Wind Engineering Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523 CSU Project 2-95750 July 1984 Modified March 1985 CER84-85JEC-JAP1a Professor-in-Charge, Fluid Mechanics and Wind Engineering Program, and Director, Fluid Dynamics and Diffusion Laboratory, Colorado State University. ²Professor, Department of Civil Engineering, Colorado State University. ## APPENDIX A TABULATION OF CONCENTRATION RATIOS ## W. D. 000° | | SOURCE
GROUP
#12 | SOURCE
GROUP
#13
CONCENTRATION
RATIO | |---|---|--| | SAMPLE
PT. | CONCENTRATION RATIO | | | 12456789012345678012345678901234567890123444444444444444444444444444444444444 | 3544444333344446*234332222233333222224
00004444333344446*234332222223333322222545222224
0000000000000000000000000 | 4 * 55555555555555555555555555555555555 | W. D. 045° SOURCE GROUP #12 SOURCE GROUP #13 | PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | |--|--|--| | 1234567890123456780123456789012345678901234567 | 2324444423443243333222222333221244321124
 | 2325555555444444224333371123222533522225552222555552222555555555 | W. D. 090° SOURCE SOURCE | | GROUP
#12 | GROUP
#13 |
---|--|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION RATIO | | 12345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890100000000000000000000000000000000000 | 2324444
-0032444
-004444
-100444
-100444
-1487066
-100444
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-10044
-1004 | 23255555555555555222453222254422222500005555555555 | ## W. D. 135° | SOURCE | | |--------|--| | GROUP | | | #12 | | SOURCE GROUP #13 | SAMPLE | CONCENTRATION | CONCENTRATION | |--|---|--| | PT. | RATIO | RATIO | | 12345678901234567801234567890123444444444444444444444444444444444444 | 555555555555444553425244455555555555555 | 5555555234553333545555544442352222222222 | # W. D. 180° SOURCE SOURCE | SAMPLE
PT. | GROUP
#12 | GROUP
#13
CONCENTRATION
RATIO | |---
--|--| | | CONCENTRATION RATIO | | | 1234567890123456789012345678901234567890123456789012345678901234567 | 0545444
0545562
05455444
05562
0645562
0645562
0645562
0645562
0645562
0645562
064562
0645562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
064562
06462
064562
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
06462
064 | 05555555554455555544555555445555555555 | ## W. D. 225° | SOURCE | |--------| | GROUP | | #12 | SOURCE GROUP #13 | SAMPLE | CONCENTRATION | CONCENTRATION | |---|--|--| | PT. | RATIO | RATIO | | 12345678901234567 |
4454444
-0044444
-004444
-004444
-004444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444
-00444 | 5655555555555555555666655345555456433445344331465555555555 | ## W. D. 270° | SOURCE | |--------| | GROUP | | #12 | SOURCE GROUP #13 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION RATIO | |---|---|---| | 1234567890123444444444444444444444444444444444444 | • 210
• | ************************************** | | 45
46
47 | •141E-03
•312E-03
•118E-03 | • 446Ē - 03
• 199Ē - 01
• 254Ē - 04 | ## W. D. 315° SOURCE SOURCE | | GROUP
#12 | GROUP
#13 | |--------------------------------------|--|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION RATIO | | 123456789012345678901234567890123467 | ************************************** | 5655555555555555555555533445535544444454
 | ## W. D. 000° SOURCE | | GROUP
#4 | GROUP
#5 | |--|---|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 123567890123444444444444444444444444444444444444 | 02244545411121011222333355444353322414555545566
 | 21234343432224*3111343333444553532*444*55555555555555555555 | W. D. 045° | | SOURCE
GROUP
#4 | SOURCE
GROUP
#5 | |--|------------------------|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | |
1234567890100000000000000000000000000000000000 | 32244444222210111= | 412333434352114*31111*444433555555554544555555555555 | ## W. D. 090° | | SOURCE
GROUP
#4 | SOURCE
GROUP
#5 | |---|--|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 12345678901234567890123456789012345678901234567 | 05334454545455555445555544555554455555445555 | 0123343424334*20000344*4454544444555454455445642126294536294445445554544554454455545445554544555454 | W. D. 135° SOURCE GROUP | | #4 | #5 | |---------------------------------------|---|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567890123456789012345678901234567 | **349EE=-00101223455** **31838897EE=-00101223455** **1338897EE=-000101223455** **131111883EE=-0005** **1111883EE=-0005** **1111883EE=-0005** **1111883** **111883** **111883** **111883** **11188** | 513324333344445 * 200003344444444444444444444444444444444 | ## W. D. 180° SOURCE GROUP #4 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |--|--|--| | 12345678901123456789011234567890123456789012333333333333333333333333333333333333 | ************************************** | ### Part | | 42
42
44
45
46
47 | •669E-05
•121E-04
•127E-04
•132E-04
•243E-05 | •118E-04
•199E-04
•207E-04
•244E-04
•419E-05 | W. D. 225° SOURCE | | GROUP
#4 | GROUP
#5 | |--|---|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION RATIO | | 12345678901123456780112345678901234567890123456789012345678901234567 | 044*545555344210122455555345555435333424344554364555553455555435333424344555555435555345555534555553455555555 |
212334343222242211144444444443333332233331423333526947855956888006391825553163225937754790825047863213259377547908250478655553163213125353547547908250478659178659 | #### RUN #15R W. D. 270° SOURCE GROUP #4 | SAMPLE | CONCENTRATION | CONCENTRATION | |---|---|---| | PT. | RATIO | RATIO | | 1234567890123456780123456789012344444 | 44455554334210122444444444442342333324233335
040405554334210122444444444442342333324233335
040405554955542555555656
041666644775409816161616161616161616161616161616161616 | 32233343422222421111333444443333332223222 | W. D. 315° SAMPLE | SOURCE | SOURCE | |---------------|---------------| | GROUP | GROUP | | # 4 | # 5 | | CONCENTRATION | CONCENTRATION | | RATIO | RATIO | PT. -308E--033 -1015E--033 -1293EE--033 -2984E--03 -1884E--03 -4884E--01 -4884E--01 -4884E--01 -5558 12345678901123 14151617 ***** 1222222222222333335556 1222222222222333335556 ## W. D. 000° | SOURCE | SOURCE | |--------------|-------------| | GROUP | GROUP | | #2 | #1 | | ONCENTRATION | CONCENTRATI | | RATIO | RATIO | | | | | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | |---|---|---| | 1234567890123444444444444444444444444444444444444 | • 703 • 338 • * * * * * * * * * * * * * * * * * * * | 221344444321442222342245555324443*55454445554566666666666666666666666 | | 4 / | ***** | | W. D. 045° SOURCE | | GROUP
#2 | GROUP
#1 | |---|---|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 12345678901234567 | • 10533 * 57 * 66532 * 67 * * * * * * * * * * * * * * * * * |
311334444555545555454544544555545
-001334444555545
-001334444552222453454545445544555546
-001334444455222245
-0013344444555465
-001334444455222245
-00133444455222245
-00133444455222245
-00133444455222245
-001334444552455554
-001334444554455554
-001334444554455554
-001334444554455554
-001334444554455554
-0013344445554
-0013344445554
-0013344445554
-00133444455554
-00133444455554
-00133444455554
-00133444455554
-00133444455554
-00133444455554
-00133444455554
-00133444455554
-0013344455554
-0013344455554
-0013344455554
-00133444554
-0013344455554
-0013344455554
-0013344455554
-0013344455554
-0013344455554
-0013344455554
-00133444554
-0013344455554
-0013344455554
-0013344455554
-0013344455554
-00133444554
-001334445
-001334445
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-00134454
-0013 | ## W. D. 090° | SOURCE | |--------| | GROUP | | #2 | | SAMPLE | CONCENTRATION | CONCENTRATION | |---|---|--| | PT. | RATIO | RATIO | | 1234567890123456789012345678901234567890123456789012345678901234567 | **33**5666555555*********************** | 3202333443443443211445344445555454532443*55454544445555629875284684253456607138832693223*80538557269************************************ | ## W. D. 135° | SOURCE | | |--------|--| | GROUP | | | #2 | | | SAMPLE | CONCENTRATION | CONCENTRATION | |--|--|--| | PT. | RATIO | RATIO | | 123456789011345678901234567890100000000000000000000000000000000000 | ***** | •144E=U3 | | <u> </u> | •587E-03
•143E-03 | •326E = 02 | | 3 | •143E-03
•806E-06 | •326E-02
•446E-01
•111E-03 | | <u> </u> | • 204E - 04 | 1955-03 | | Š | •627F=06 | •223E-04 | | 7 | •403E-06 | •214E-04 | | 8 | .627E-06
.403E-06
.179E-05
.118E-04 | •446E-01
•111E-03
•195E-03
•223E-04
•214E-04
•152E-03
•155E-04 | | 9 | •118E-04 | •152E-03 | | 10 | •112E-05
•112E-05
•940E-06
•493E-06
•151E-04
•215E-03 | •155E-04
•292E-04
•169E-04 | | 11 | ●74UL=U6 | •272E-04 | | 13 | ● 47JE = UD
- 1515 = ñ4 | •188E-04 | | 15 | •1316-04
•215F-03 | •292E-02 | | 16 | •191E-02 | •184E-01 | | 17 | •167E-02 | •172E-01 | | 18 | •153E-02 | •292E - 02
•194E - 01
•172E - 01
•169E - 01
•494E - 04 | | 19 | •255E-05 | •494E-04 | | 20 | • 1515 - 03
• 1915 - 02
• 1675 - 02
• 1535 - 02
• 2555 - 05
• 1795 - 06 | .846E-05
.143E-03 | | 21 | •801E-U5 | •143E - 03 | | 24 | .851E-06
.358E-06
.179E-06
.896E-07 | -05
-05
-03
-03
-05
-05
-05
-05
-05
-05
-05
-05
-05
-05 | | 24 | -896F-07 | .793F-05 | | 25 | ***** | •429E-05 | | 26 | ******
•537E-06 | •812E-05 | | 27 | ***** | .812E-05
.478E-05
.414E-05 | | 28 | •448E-07
•152E-05 | •4145-05
•2625-04 | | 29 | •152E=05 | •262E=04
•456E=05 | | 30
31 | •134E-06
•851E-06 | •436E-03 | | 32 | -226F-04 | • 973E-04 | | 33 | •152E-05 | •973E-04
•477E-04 | | 34 | • 851E - 06
• 226E - 04
• 152E - 05
• 228E - 05
• 125E - 05 | •439E-04 | | 35 | •125E-05 | •614E-04 | | 36 | •851E-06
•582E-06 | •148E-04 | | 37 | •582E-06 | •321E-04
•347E-04 | | 30
30 | .107E-05
.448E-06 | .248E-04 | | 40 | 473F=04 | •984E-03 | | 41 | • 473E - 04
• 148E - 05 | •984E-03
•276E-04 | | 42 | •452E=05 | .248E-04
.248E-03
.276E-04
.879E-04
.211E-04
.303E-04 | | 43 | •313E-06 | •211E-04 | | 44 | •761E-06
•493E-06 | •303E-04 | | 45 | •493E-06 | •327E-04 | | 4 b | •134E-05
•179E-06 | •1795-04
•1205-05 | | 4 / | ◆1/7t=06 | •12UE-US | ## W. D. 180° | | SOURCE
GROUP
#2 | SOURCE
GROUP
#1 | |---|------------------------
--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890123444444444444444444444444444444444444 | 2336465** | 211333444322224411124445544444444323333444433443344795547755539869155351883557789551625549788314684795533166847955318508479553185084795531850847955318508479553185084795531850847955318508479789789850848991555577899551551662664323718553318553318553318553318553318553318532855789959676125662123778553968479553185662133785132557899596761256621337851325578995967612566213378513255789959676125662133785132557899595967612566213378513256621337851325578995959676125662133785132566213378513256621337857857857857857857857857857857857857857 | W. D. 225° | SOURCE | SOURCE | |---------------|--------------| | GROUP | GROUP | | #2 | #1 | | CONCENTRATION | CONCENTRATIO | | RATIO | RATIO | | SAMPLE | CONCENTRATION | CONCENTRATION | |---|---|--| | PT. | RATIO | RATIO | | 1234567890123456789012345678901234567890123456789012345678901234567 | 2 *** 66665644464444457 ** 6** 64343532222334322235 ******************************** | 11113444422224432222345555442324211122211123111124
 | #### W. D. 270° SOURCE GROUP #2 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |--|--|---| | 1234567890123456890123456789012345678901234567 | 054466667**433555556546**6655333555533633334633333**** | 2213444455333345444223********************* | W. D. 315° SOURCE GROUP #2 | SAMPLE | CONCENTRATION | CONCENTRATION | |--|--|---| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | 5546666654465456633343333333344445556655554666666554465666333433333333 | 431444444433344444433222222222222222222 | W. D. 000° SOURCE GROUP #6 | SAMPLE | CONCENTRATION | CONCENTRATION | |--|---|---| | PT. | RATIO | RATIO | |
1234567890100000000000000000000000000000000000 | **65556665566665555522**43365664**54655**6667556667** **59800656564994658065664**54655**6667556669** **98700656564994658065EE**** **139891113437958*** **13437955**** **31716**28314312EE*** **317726*** **86691431795*** **136621**3257499*** **86691431795*** ***** ****** ****** ****** ***** **** | 054344444444444444444444444444444444444 | W. D. 045° SOURCE | | GROUP
#6 | GROUP
#7 | |---------------------------------------|--|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890123456789012345678901234567 | ************************************** | *324444445434445445444544456846666666666666 | ## W. D. 090° SOURCE | SAMPLE
PT. | GROUP
#6
CONCENTRATION
RATIO | GROUP
#7
CONCENTRATION
RATIO | |---------------|---------------------------------------|---------------------------------------| | | | | W. D. 135° SOURCE | SAMPLE
PT. | GROUP
#6
CONCENTRATION
RATIO | GROUP
#7
CONCENTRATION
RATIO | |---------------|---------------------------------------|---------------------------------------| | | | | ## W. D. 180° SOURCE | SAMPLE
PT. | GROUP
#6
CONCENTRATION | GROUP
#7
CONCENTRATION | |---------------|--|---| | | | | | | 1234567890123456789012345678901234567890123456789012345678901234 | ***** | | 4 | ***** | • 401E-04 | | 4 | **** | 2055-05 | | 5 | **** | • 264E-05
• 273E-05
• 244E-05 | | Š | ***** | •273E-05 | | 7 | ***** | •244E-05 | | 8 | ***** | •110E - 05 | | 9 | **** | •284E - 05 | | 10 | •412E-04 | •125E-02
•712E-03 | | 11 | •183E-04 | •712E-03 | | 12 | •168E=04 | •740E-03 | | 13 | ***** | •495Ë-05
•213E-05 | | 14 | •205E-05 | •213E-05
•270E-04 | | 13 | • 146E - 05 | - 635F = 04 | | 17 | •148E-05 | •635E-04
•629E-04 | | 1ี่ หั | -141F-N5 | •684E-04 | | 19 | •125E-02
•655E-03
•228E-06 | •483E-01 | | 20 | •655E-03 | •164E-01 | | 21 | •228E-06 | •488E-04 | | 22 | ***** | •966F - 05 | | 23 | ***** | •111E-04
•282E-05 | | 25 | *** | •282E-05 | | 26 | ***** | •585E-05 | | 21 | •121E-02
•130E-02
•809E-03 | •157E-01
•168E-01
•552E-02 | | 29 | •130E-02
•809F=03 | •160E-31
•552F-02 | | 30 | •506E-04 | •305E-03 | | 31 | •865E-06 | -579F-04 | | 32 | •255E-05 | •152E-03 | | 33 | -244F-04 | -113F-02 | | 34 | •202E - 04
•182E - 06 | •923E-03
•541E-04 | | 3 5 | •182E-06 | •541E-04 | | 36 | •261E-04 | •801E-03 | | 37 | •225E-03
•217E-03 | •336E-02
•328E-02 | | 38 | •217E-03 | •328t=02 | | 39 | •11/E-03
•160E-03 | •165E-02
•165E-02
•233E-02
•240E-04 | | 4 U
4 1 | •319E-06 | -240F-04 | | 42 | •220E-03 | -328F-02 | | 43 | 8645-04 | -141F-02 | | 44 | •864E-04
•186E-03 | -305E-02 | | 45 | •218E-G3 | •343E-02 | | 46
47 | •683E-05 | 328E-02
-141E-02
-305E-02
-343E-02
-104E-03 | | 47 | **** | **** | #### W. D. 225° SOURCE | SAMPLE
PT. | GROUP
#6
CONCENTRATION
RATIO | GROUP
#7
CONCENTRATION
RATIO | |---------------|---------------------------------------|---------------------------------------| | | | | ## W. D. 270° | | SOURCE
GROUP
#6 | SOURCE
GROUP
#7 | |--|--|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |
1234567890100000000000000000000000000000000000 | 567566667 * 765566632564 43335366656655665556667114066612 * 212426124113434445121433673536665665556655566555665558865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 9454528658865 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 * 94545286665 | 04*555555555555555555555555555555555555 | # W. D. 315° | SOURCE | |--------| | GROUP | | #6 | | SAMPLE | CONCENTRATION | CONCENTRATION | |--|---------------|---| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | • 18 | 45444444445555**44444444444445555**444444 | ## W. D. 000° SOURCE **GROUP** SOURCE **GROUP** | | #11 | #9 | |---|--|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567890123444444444444444444444444444444444444 | 44344444444444444444444444444444444444 | 005555555555555555522223334333142221122******************** | ## W. D. 045° | | SOURCE
GROUP
#11 | SOURCE
GROUP
#9 | |--|---|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567901234567890123456789012345678901234567 | 42144432244322212122233111301221200011000034
004444322212121222331113012212200011000034
8077688291757642221212223312233294755764222222222222222222222222222222222 |
5325555555435543342423333555**142221112************************** | ## W. D. 090° SOURCE GROUP #11 | SAMPLE | CONCENTRATION | CONCENTRATION | |---------------------------------------|---|--| | PT. | RATIO | RATIO | | 1234567890123456789012345678901234567 | 02144444111144322224133334322141112200000034-001444444111144322224133334322114112200000034-0014444441111443222241333343221441112200000034-001444444111144322224413333432214411112200000034-0014444444111144322224413333432221444411112200000034-001444444411114432222441333343222792112211111111111111111111111111111 | 532555555**44455544555441422222*********** | W. D. 135° SOURCE GROUP #11 | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION RATIO | |---|---|--| | 1234567890123456789012345678901234567890123456789012345678901234567 | 043344444422144222344334433443344444444221444232234433443 | 54455555223555433334355555443553422322222222 | #### W. D. 180° SOURCE | SAMPLE
PT. | GROUP
#11
CONCENTRATION
RATIO | GROUP
#9
CONCENTRATION
RATIO | |---------------|--|---------------------------------------| | | | | #### W. D. 225° | | SOURCE
GROUP
#11 | SOURCE
GROUP
#9 | |--|---|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 123456789011234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012344444667 | 44544443454444555335555533113244333320000200013
 | *5555555555555555555555555555555555555 | ## W. D. 270° | | SOURCE
GROUP
#11 | SOURCE
GROUP
#9 | |--|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION RATIO | | 123456789012345678901234678901234567890123444444444444444444444444444444444444 | 45**4444444444444444444444444444444444 | 55455555334555555543555544422445555122222**222235500000000000000000000000000 | ## W. D. 315° SOURCE | | GROUP
#11
CONCENTRATION
RATIO | GROUP
#9
CONCENTRATION
RATIO | |---|--|--| | | | | | SAMPLE | | | | PT. | | | | 1 | •536E-04 | •632E-06 | | 2 | • 312E - 05
• 812E - 05
• 712E - 05
• 385E - 04
• 319E - 04
• 362E - 04 | •218E-07
•553E-05 | | 4 | •385E-04 | .392F-06 | | 5 | •319E-04 | •653E-06
•240E-06 | | 6
7 | • 384E - 04 | •610E-06 | | 8 | -405E-04 | •566E - 06 | | 9 | • 356E = 04 | •610E-06 | | 10 | •121E-04
•863E-04
•618E-03 | •109E-05
•950E-05 | | 12 | •618E-03 | -658F-04 | | 13 | • 394E - 04
• 369E - 04 | •129E-05
•588E-06 | | 15 | -241E-04 | •632E-04
•392E-05
•453E-05 | | 16 | •287E-04 | •392E-05 | | 17 | •116E-04
•942E-05 | • 390E = 05 | | 19 | •268E-02 | •390E-05
•675E-03 | | 20 | •167E-01
•519E-03 | •202E-02
•847E-04 | | 21 | ▲168F=03 | -189F-04 | | 23 | •662E-03
•222E-02 | •113E-03 | | 24 | •222E-02
•474E-02 | .415E-03
.405E-03 | | 26 | •508E-02 | | | 27 | ▲384F-01 | •177E-02 | | 28
29 | .383E-01
.765E-02 | •192E-02
•312E-02 | | 30 | •516E - 02 | •334E-03 | | 31 | • 262Ē-02
• 120E-03 | •365E-03
•177E-02
•192E-02
•312E-02
•334E-03
•123E-03
•465E-04 | | 32
33 | • 340 = -01 | | | 34 | -111F-01 | •732E - 02 | | 35 | • 274E - 03
• 916E - 02 | •411E-04
•637E-04 | | 37 | •173E+00 | ***** | | 38 | •228E+00 | **** | | 39
40 | •274Ē+00
•149E+00 | **** | | 41 | •278E-02 | ***** | | 1234567890123444444444444444444444444444444444444 | •394Ë+00
•550E+00 | ***** | | 4 3 | ▲281F+00 | **** | | 45
46 | •317E+00
•131E-01 | *******
•179E-03 | | 46
47 | •131E-01
•196E-03 | ***** | | 71 | 41 732 00 | | W. D. 000° | | SOURCE
GROUP
#14 | SOURCE
GROUP
#15 | |---|--|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890123444444444444444444444444444444444444 | • 11935
• 11936
• 1 | *224455543225522222333343355333553336*53334* *000000000000000000000000000000000 | ## W. D. 045° | | SOURCE
GROUP
#14 | SOURCE
GROUP
#15 | |--|------------------------|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890124567890123456789012345678901234567890123456789012345678901234567 | | *2254555452252222343433554435533335222355542245 *000000000000000000000000000000000000 | ## W. D. 090° | | SOURCE
GROUP
#14 | SOURCE
GROUP
#15 |
--|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890100000000000000000000000000000000000 | **033445545
**003445545
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**00045
**0005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**11005
**110 | 62254554444447532224444545554435333444422354432245 | W. D. 135° SOURCE GROUP #14 | SAMPLE | CONCENTRATION | CONCENTRATION |
--|--|---| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | **44545554222453322565565**555364422532223432225************************ | 63454555443333553222244555555555454433533553333553333553333553333553333553333 | # W. D. 180° | SOURCE | |--------| | GROUP | | #14 | | SAMPLE | CONCENTRATION | CONCENTRATION | |--|---------------|---| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | - 44 | *2243544422224321224444555555544445433434343434398EEEEEEEEEEEEEEEEEEEEEEEEE | # W. D. 225° | SOURCE | |--------| | GROUP | | #14 | | | | SAMPLE | CONCENTRATION | CONCENTRATION | |---|---------------|--| | PT. | RATIO | RATIO | | 1
2345678901234567890123456789012345678901234567 | | 6235455554222432211445555553435322333422223548666555542665555343532333222334222235486665396969696969696969696969696969696969 | W. D. 270° | SOURCE | |--------| | GROUP | | #14 | | SAMPLE | CONCENTRATION | CONCENTRATION | |---|--|---| | PT. | RATIO | RATIO | | 12345678901234567890123456789012345678901234567 | 544555552024444455555442123443353334433332500000000000044444555554421234433533344333325005641504455555244433333325025641504561625656466666666666666666666666666666 | 5225532222243554422243322222342222353460355463849719EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE | W. D. 315° SOURCE GROUP #14 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |--|--|---| |
1234567890100000000000000000000000000000000000 | 555545555102444453244333322223342322243322225 005564555551022444453244333322222342322243322225 00945EEEE | 533553554422224432332223322233333333333 | W. D. 000° SOURCE GROUP #58 | SAMPLE | CONCENTRATION | CONCENTRATION | |---|---|--| | PT. | RATIO | RATIO | | 12345678901234567890123456789012345678901234567 | **65556334**5555555454454454545********** | **55555**555544445544445544445544445544445544445554444 | W. D. 045° | | SOURCE
GROUP
#58 | SOURCE
GROUP
#59 | |---|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890123444444444444444444444444444444444444 | 65466654665555566555665556655566555665 | *43565556545554444455446**************** | W. D. 090° SOURCE **GROUP** SOURCE **GROUP** | SAMPLE
PT. | #58 | #59 | |--|---|---| | | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567901234567890012345678901234567890100000000000000000000000000000000000 | 5445555545555445555444555
00445555555555 | 534455555 * 66555533344576566555665556655566555565556555565 | W. D. 135° SOURCE GROUP #58 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |---|--|---| | 1234567890123456789012345678901234567890123456789012345678901234567 | 055556565555655556555566555565556555565555 | 555555555554433344555566555655555555555 | W. D. 180° SOURCE **GROUP** SOURCE GROUP | | #58 | #59 | |---|--|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 123456789012345678901234567890123456789012345678901234567 | 05566666666666666666666666666666666666 | 55555555555555555555555555555555555555 | W. D. 225° | SOURCE | |-------------| | GROUP | | <i>#</i> 58 | | SAMPLE | CONCENTRATION | CONCENTRATION | |---|--|--| | PT. | RATIO | RATIO | |
1234567890123444444444444444444444444444444444444 | 06666666666666666666666666666666666666 | 55555555555555555555555555555555555555 | W. D. 270° | | SOURCE
GROUP
#58 | SOURCE
GROUP
#59 | |--|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890100000000000000000000000000000000000 | 19666666666666666666666666666666666666 | 5555555555555555555554555544555554455555 | W. D. 315° SOURCE GROUP #58 | SAMPLE | CONCENTRATION | CONCENTRATION | |---|--|--| | PT. | RATIO | RATIO | | 12345678901234567890123456789012345678901234567890123456789012345678901234567 | 0566656666555665566*6444555455555554445644445566656566665555665566*64445554555 | 55555555555555555555555555555555555555 | #### W. D. 000° SOURCE **GROUP** #10 SOURCE GROUP #60 | | 11.10 | 1100 | | |--|---|--|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | | 1234567890100000000000000000000000000000000000 | 45455 * 55533255555221222233222112222234222235
-000455 * 55533255555221222233222112222234222235
-000455 * 55533255555221222233222312222234222235
-00046 * 555332555555221222233222332223322235
-00046 * 555332555555221222332223322233222332223 | 05555555555555555555555555555555555555 | | W. D. 045° | | SOURCE
GROUP
#10 | SOURCE
GROUP
#60 | |---
--|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION RATIO | | 123456789011234567890112345678901123456789012222222222333333333333333333333333333 | -721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-004
-721-0 | 555*5555555555555555555555555555555555 | W. D. 090° SOURCE **GROUP** SOURCE **GROUP** | | #10 | #60 | |--|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | |
1234567890100000000000000000000000000000000000 | • 1022
• 1022
• 1022
• 1022
• 1033
• 1044
• 1054
• 1054
• 1054
• 1054
• 1055
• 1055 | ************************************** | W. D. 135° SOURCE | SAMPLE
PT. | GROUP
#10 | GROUP
#60
CONCENTRATION
RATIO | |---|--|--| | | CONCENTRATION RATIO | | | 1234567890123444444444444444444444444444444444444 | • 2964
• 2964
• 2964
• 2965
• 2162
• 2163
• 2162
• 2162
• 2162
• 2162
• 2162
• 2162
• 2162
• 2163
• 2163 | 55555555555555555555555555555555555555 | W. D. 180° SOURCE GROUP #10 | SAMPLE | CONCENTRATION | CONCENTRATION | |--|--|--| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | - 7005544555566455645556656566565665656656 | *5555555555555555555555555555555555555 | W. D. 225° SOURCE GROUP #10 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |---|----------------------------------|------------------------| | PT.
1234567890112345678901123456789012222222222222333333333333333333333333 | | | | 42
43
44
45
46
47 | •214E-01
•249E-02
•140E-04 | ***** | W. D. 270° SOURCE GROUP #10 | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | |---|---|--| | 1
2
3
4
5
6 | .100E-04
.121E-05
.805E-06
.778E-05
.662E-05
.621E-05
.760E-05 | •145E-05
•181E-05
•448E-05
•354E-05
•246E-05
•275E-05
•376E-05
•333E-05
•289E-05 | | 12345678901234567890123456789012345678901234567 | •104E-04
•519E-05
•160E-02
•529E-03
•760E-05
•679E-05
•434E-05
•331E-05
•362E-05 | *******
•419E-05
-340E-05 | | 16
17
18
19
20
21
22 | •626E-06
•179F-05 | 3499E-05
-564E-05
-470E-05
-149E-04
-160E-04
****** | | 23
24
25
26
27
28
29 | •130E-05
•133E-03
•107E-05
•411E-05
•111E-03
•138E-03
•803E-04
•706E-05 | -144E-055
-114E055
-1238E055
-1633E055
-3311E055
-311E055
-318E055 | | 30
31
32
33
34
35
36 | • 211E - 04
• 2590E - 05
• 165E - 05
• 765E - 01
• 413E - 01
• 383E - 04
• 303E + 00
• 276E - 02
• 227E - 02
• 114E - 01 | -188E-05
-376E-05

****** | | 339
40
41
42
43 | • 27 6 - 02
• 22 7 6 - 02
• 13 1 6 - 01
• 20 6 6 - 03
• 67 7 5 - 02
• 87 1 6 - 02
• 25 7 6 - 02
• 32 7 6 - 02 | ******
*398E=05

******* | | 45
46
47 | • 257E-02
• 327E-02
• 432E-03
• 398E-05 | ******
•528E-05
•108E-05 | #### W. D. 315° SOURCE | | GROUP
#10 | GROUP
#60 | |---|--|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1
2345678901234567890123456789012345678901234567 | 46655555555555562235332211222301112311124-0-0005555555622353322112223011123111124-0-000364293555562235332211222301112311124456332202974399073500690946179188173798732221284257352221284257352231227881553942573225540555405554055540555405554055540555 | 55566665*6565*5555544565553333434***5********** | W. D. 000° SOURCE GROUP #3Q | SAMPLE | CONCENTRATION | CONCENTRATION | |--|---|--| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 |
-1056
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006
-1006 | 44444444444444444444444444444444444444 | ## W. D. 045° | | SOURCE
GROUP
#3Q | SOURCE
GROUP
#8 | |---|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 12345678901234567890123456789012345678901234567 | 532555555325544443345335532344444455555555 | 43244444444444444444444444444444444444 | ## W. D. 090° | | SOURCE
GROUP
#3Q | SOURCE
GROUP
#8 | |--|---|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890100000000000000000000000000000000000 | 532555531144433333545555223344*44555544455545
 | 4214444333344322221323334400111223333333333 | W. D. 135° | SOURCE | | |--------|--| | GROUP | | | #3Q | | | | | | SAMPLE | CONCENTRATION | CONCENTRATION | |--|---|---| | PT. | RATIO | RATIO | |
1234567890100000000000000000000000000000000000 | 545545551113553322555555652233343333346
 | 423444411134221134434440000112111134455512121221212121212121212121212121212 | W. D. 180° | SOURCE | SOURCE | |------------|-------------| | GROUP | GROUP | | #3Q | #8 | | CENTRATION | CONCENTRATI | | SAMPLE | CONCENTRATION | CONCENTRATION | |--|--|--| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | 0556555534555555554566666*2233454453333335333353333533335333333333 | 44444444423344444234444000012333321111311124
 | # W. D. 225° | | SOURCE
GROUP
#3Q | SOURCE
GROUP
#8 | |---|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 123456789012345678901234567890123456789012345678901234567 | 55665555555555555555555555555555555555 | 44444444444444444444444444444444444444 | # W. D. 270° | | SOURCE
GROUP
#3Q | SOURCE
GROUP
#8 | |---|---|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890123456789012345678901234567890123456789012345678901234567 | •105 ****** •1065 •1065 •1066
•1066 | 455444444435444444424544320001134334322222224000134554444444442454432000113433432222222401345694466402366738854310284444245444424544442396677059142216362332233221122322228452773932967705914219398416366402366766944664023667388543102844442396677059142216366640001128854310284444584445939667705914221636664001128854310284444584444584119398416366640011288541666640011288541666640011288541666664001128854166666400112885416666664001128854166666666666666666666666666666666666 | #### W. D. 315° | | SOURCE
GROUP
#3Q | SOURCE
GROUP
#8 | |---|--|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567890123456789012345678901234567890123456789012345678901234567 | ************************************** | *644444444454444431343222000112433444444444444444444 | # W. D. 000° | | SOURCE
GROUP
#3C | SOURCE
GROUP
#3-1 | |--|---|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567890100000000000000000000000000000000000 | 044444411134444343435455454444444555461119688761944444454555147361546330154544444987619444498761944449876194444987619497044449876194970444498761949704444987619497044449876194970444498761949772116415467719483321544444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949704444987619497044449876194970444498761949776494988898988989898898989898989898989898 | 454555545100034444433343343343343434444443444335947361EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE | W. D. 045° SOURCE GROUP #3C | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |---|---|---| | 1234567890123444444444444444444444444444444444444 | 443444445544555545454444554455445544554 | 148880000000000000000000000000000000000 | W. D. 090° | SOURCE | |--------| | GROUP | | #3C | | 1 | -04 | |----|---| | 18 | 234332244444454333444444454454444444444 | #### W. D. 135° SOURCE **GROUP** SOURCE **GROUP** | | #3C | #3 - 1 | |--|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1
23
45
67
89
11123
45
67
89
111211111111111111111111111111111111 | 44544444444444444444444444444444444444 | 44544440001444322224444543334444343333444436
 | ## W. D. 180° SOURCE | | GROUP
#3C | GROUP
#3-1 | |---|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 12345678901234567890123456789012345678901234567 | 54544444411114445555445554545534444444455554455534545553444444 | 5444440001343333344444333344453445311113857204551929111138572045514053416242428EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE | # W. D. 225° SOURCE
GROUP SOURCE **GROUP** | | #3C | #3-1 | |--|--|---| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890100000000000000000000000000000000000 | 14444444444444444444444444444444444444 | 57**55555500014444445545544445544533334343444445542576677539179285453682574837748396829764 *********************************** | #### W. D. 270° SOURCE **GROUP** SOURCE **GROUP** | | #3C | #3-1 | |--|---|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 1234567890100000000000000000000000000000000000 | -45590444-00214-0045555455-0044-0044-0044-0044-0044-0 |
45545500003444444444444444335311367117639121488075063744444351137117639211688075063744444351131313911466211488075063782211678211678211678221167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821167821 | ### W. D. 315° SOURCE SOURCE | SAMPLE
PT. | GROUP
#3C
CONCENTRATION
RATIO | GROUP
#3-1
CONCENTRATION
RATIO | |---------------|--|---| | | | | ### W. D. 000° SOURCE SOURCE | SAMPLE
PT. | GROUP
#3-2
CONCENTRATION
RATIO | GROUP
#3-4
CONCENTRATION
RATIO | |---------------|---|---| | | | | W. D. 045° | SOURCE | |--------| | GROUP | | #3-2 | SOURCE GROUP #3-4 | SAMPLE | CONCENTRATION | CONCENTRATION | |---------------------------------------|---|--| | PT. | RATIO | RATIO | | 1234567890123456789012345678901234567 | 043244440000334333334443354555464349055544453645559956555995645555995655559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455559956455555956655559566555595665555956655556555565655556565555656555656555656 | 5435555543114444445544544554455455555555 | W. D. 090° SOURCE GROUP SOURCE **GROUP** | | #3-2 | #3-4 | |---|---|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567890123444444444444444444444444444444444444 | 1235445910003432224444455555545555545555455554555 | 003355566643332554333555656***4445554666476666**5**66666**5**6666**5**6835555********** | W. D. 135° SOURCE **GROUP** SOURCE **GROUP** | SAMPLE
PT. | #3-2 CONCENTRATION RATIO | #3-4 CONCENTRATION RATIO | |---------------|--------------------------|--------------------------| | | | | ### RUN #85R W. D. 180° SOURCE SOURCE | SAMPLE
PT. | GROUP
#3-2 | GROUP
#3-4 | |---|--|---| | | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 1234567890123456789012345678901234567890123456789012345678901234567 | ************************************** | *34433443311114433333344444444444444444 | ### W. D. 225° SOURCE **GROUP** SOURCE GROUP | | #3-2 | #3-4 | |---|--|---| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 12345678901234567890123456789012345678901234567 | -004
-005
-004
-004
-004
-004
-004
-004 | 534555511114444445545544443333333333434333434333434333333 | #### W. D. 270° SOURCE SOURCE | | GROUP
#3-2 | GROUP
#3-4
CONCENTRATION
RATIO | |---|---|---| | SAMPLE
PT. | CONCENTRATION RATIO | | | 1
2345678901234567890123456789012467 | 455444440000344444554534533333433335433335433333433335433333433333543333343333543333343333543333343333543333543333354333335433335543333554333355433335543333554333355433335543333554333355433355433355433335543333554333355 | 0534455555552221445544445555555344453333444433336
-000000000000000000000000000000000 | ### W. D. 315° SOURCE SOURCE | SAMPLE
PT. | GROUP
#3-2
CONCENTRATION
RATIO | SOURCE
GROUP
#3-4
CONCENTRATION
RATIO | |---------------|---|---| | | | | W. D. 000° SOURCE GROUP #3R SOURCE GROUP #3-3 | SAMPLE | CONCENTRATION | CONCENTRATION |
---|--|--| | PT. | RATIO | RATIO | | 12345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890100000000000000000000000000000000000 | ************************************** | 42222112111111111111111111111111111111 | ### W. D. 045° SOURCE SOURCE | | GROUP | GROUP | |---|----------------------------|----------------------------| | | #3R | #3 - 3 | | SAMPLE | CONCENTRATION | CONCENTRATION | | PT. | RATIO | RATIO | | 123456789000000000000000000000000000000000000 | ******
• 456E=04 | •272E-04
•107E-02 | | 3 | .831E-04 | •137E-02 | | 4 | •717E - 04 | •869E-02 | | 5 | •266Ë-03
•574E-03 | •298E-01
•672E-01 | | 7 | ***** | •742E-02 | | 8 | •346E-03 | •396E-01
•522E-01 | | 10 | •597E-03
•651E-03 | •522E-01
•349E-01 | | 11 | **** | •323E - 03 | | 12 | •277E-02 | •240E+00 | | 13 | •416Ē-05
•708E-06 | •619E-03
•210E-03 | | 15 | •208E-05 | •210E-03
•272E-03 | | 16 | •528E-04 | •490E - 02 | | 17 | •605E−04
•516E−04 | •518Ë-02
•462Ë-02 | | 18
19 | • 272E - 04 | • 462E = 02
• 243E = 02 | | 20 | •128E-05
•179E-03 | • 243E - 02
• 267E - 03 | | 21 | •179E=03 | •117E-01
•178E-01 | | 22
23 | •167E-03
•918E-04 | •1/8E-01 | | 24 | •839E-04 | •946E-02 | | 25 | ******
•973E=06 | •151E-03
•188E-03 | | 25
27 | ●フ/JE=Uti | •687E-04 | | 28 | ***** | •667E-04 | | 29 | •185E-03 | •198E-01 | | 31 | ******
•128E-03 | •730E-04
•138E-01 | | 32 | •213E-03 | •125E-01 | | 33 | •888E-02
•452E-02 | •266E-01 | | 34
35 | • 452£ + U2
• 654F = 03 | •677E-01
•679E-01 | | 36 | •654E-03
•472E-02 | •175E-01 | | 37 | •108E-04 | •782E-03 | | 38
39 | .871E-05
.200E-04 | .889E-03
.249E-02 | | ĂÓ | •336E-05 | •368E-03 | | 41 | •686E-04 | •777E-02 | | 42
63 | •902E-05
•707E-04 | •557E-03
•818E-02 | | 44 | •349E-05 | •378E-03 | | 45
46 | •345E-05 | •356E-03 | | 46
47 | •150E-05
•274E-04 | •461E=04
•336E=02 | | 7 / | • £ 1 TL = U T | •335E-02 | ### W. D. 090° | | SOURCE
GROUP
#3R | SOURCE
GROUP
#3-3 | |---|----------------------------|--| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |
1234567890123444444444444444444444444444444444444 | 0443433333255443335533445* | 422221121033221113331122233
-00211212102103322111333112223
-0021122102332323232323232323232323232323 | ### W. D. 135° SOURCE SOURCE | | GROUP | GROUP | |--|--|--| | | #3R | #3-3 | | SAMPLE | CONCENTRATION | CONCENTRATION | | PT. | RATIO | RATIO | | 1 | •532E-06 | •375E-04 | | 1
2
3
4
5
6
7
8
9
10
11
12
3
14
15
16 | •142E-04
•497E-05 | •161E-02
•543E-03 | | 4 | -812F-04 | •957F - 02 | | 5 | • 243E - 03 | •282E-01
•691E-01 | | 6
7 | •594E - 03
•706E-04 | •6715-01
•829F-02 | | 8 | •315E=03 | •829E-02
•366E-01 | | 9 | •644E-03 | •739E-01 | | 1 1 | •125E=02
•152F=02 | •164E-01
•806E-01 | | 12 | •125E-02
•152E-02
•217E-02
•408E-05 | •222E+00 | | 13 | •408E-05 | •222E+00
•591E-03
•145E-03 | | 15 | • 355Ē = 05
• 199Ē = 04 | •145E-03
•783E-03 | | 16 | •189E-04 | -194F-02 | | 17 | •317E-04
•330E-04 | •148E-02
•146E-02 | | 19 | •452E-05 | •473E-03 | | 20 | •359E=05 | •369E - 03 | | 21 | •909E-04
•169E-03 | •160E-01
•195E-01 | | 23 | • 328E-04 | • 193E - 01
• 378E - 02
• 180E - 02 | | 24 | •156E+04 | •180E-02 | | 25
24 | • 359E - 05
• 452E - 05 | •386E-03
•449E-03 | | 27 | •346E - 05
•333E - 05 | - 338F-03 | | 28 | •333E-05 | •332E-03 | | 29
30 | •267E-03
•537E-05
•221E-03 | •302E-01
•610E-03 | | 31 | •221E-03 | •253E-01 | | 32 | •248E-03
•195E-03 | •283E-01
•140E-01 | | 33
34 | -440F - 03 | •140E-01
•377E-01 | | 35 | •759E-04
•313E-02 | •910E-02
•387E-01 | | 36 | •313E=02
****** | •387E-01 | | 38 | 539E−04 | •584E-02
•591E-02
•586E-02
•307E-02 | | 39 | .539E-04
.525E-04
.155E-03 | •586E-02 | | 40 | •155E=U3
•694E=04 | •307E-02
•770E-02 | | 42 | •495E-04 | •363E-02 | | 178901234567890123456789012345644444444444444444444444444444444444 | •109E-03 | •124E-01 | | 44 | • 488E - 04
• 460E - 04 | •535E-02
•503E-02 | | 46 | •665E-05 | •503E - 03 | | 47 | •362Ē-04 | •422E-02 | W. D. 180° SOURCE GROUP #3R SOURCE GROUP #3-3 | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | |---|--|---| | 1234567890123456789012345678901234567890123456789012345678901234567 | 045433490
0645433491
0645433491
0645433491
0645433491
0645433491
0645433491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
06454333491
0645433491
06454344491
0645434491
0645434491
0645434491
064543491
0645434491
0645434491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
064543491
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
06454391
064 | #22311121112111122222222222222222222222 | ### W. D. 225° | | SOURCE
GROUP
#3R | SOURCE
GROUP
#3-3 | |---|--|--| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 123456789012345678901234567890123456789012345678901234567890123444444444444444444444444444444444444 | *5643343322255445555444433322*244444333344********** | **23221122110212222222222222222222222222 | ### W. D. 270° SOURCE GROUP #3R SOURCE GROUP #3-3 | SAMPLE | CONCENTRATION | CONCENTRATION |
--|---|---| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | 5454334333222553344545545444454312*24603343332225533445455454444554312*2*4443444344523332225533445455455455455455455455455455455455 | 423221121222222222222222222222222222222 | W. D. 315° SOURCE GROUP #3R SOURCE GROUP #3-3 | SAMPLE | CONCENTRATION | CONCENTRATION | |--|--|--| | PT. | RATIO | RATIO | | 1234567890100000000000000000000000000000000000 | ************************************** | 0334211221
0334211221
00334211221
00334211221
0033322222121221221
003332222222222 | ### APPENDIX B TABULATION OF DIMENSIONLESS CONCENTRATION COEFFICIENTS (K) # W. D. 000° | | | Source
Group 12 | | Source
Group 13 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 124567890123456780123456789012345678901234567 | 19376629250765090111233275035032013486753258144
1193766482017554762044373399158243585389354894572
2011221220361222115327767158243585389351221052872
41 9943243555032112177033
11 49933 |
0021111101000011113**10100100100000011111212121111111111 | 1
5660238853149397272480105116350346577751567756
83444444334855443325585204605422355108272481053
52 992767156985674644364446053
7513644446053
21 7 241 | 1 * 2233222 * * 3222223 * 000000111023223 * 232323212 * * 12232222 * * * 3222223 * 0000001110232223 * 232323212 * * 12232222 * * * * * * * * * * * * * * * * | # W. D. 045⁰ | | | Source
Group 12 | | Source
Group 13 | |--|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 8340047827870187397367059855676286900883662043
4588967119296553837173513598556762869883662043
759476829965538322177391331751229812048818183765686
4111111123222611820218522388423468112466113
41129234 14907
27 111439307
221 1237 | 10011111111111111111111111111111111111 | 8544340970941512488501174605534533518586073552
908988886049915787038871204971858647188898
20 1322401385677751467407862 508238
52 22 801287112 812 2551
1 22 882 21 122 122 | 110222222310221111001120011000031111222211102
00000222222310221111000112110000031111222211002
++++++++++++++++++
EEEEEEEEEE | ### W. D. 090° | | | Source
Group 12 | | Source
Group 13 | |--|--|---|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 53181292888219608215092555626911659670733427707408095129848821960825556149722184559022872523308673338457523111143523676596707483836732872523322330867333397774523111143523676765883368732892287199455395132213221945539513221945539513221945539513221945539513221945539513221322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194553951322194555395132219455539513221945553951322194555395132219455555555555555555555555555555555555 | 924111111111111111111111111111111111111 | 932831514995117371759407365
9328111888957845976365105751499517371759407365
9328111888957842776365105751499511528569
599513939841972118889497711759469
4992 7 6314416380897711759469
11 22138469
11 124891152869
11 124891152869
11 124891152869
11 13376 | 10122222201122100002012222211120001112211110211112110222222 | ## W. D. 135° | | | Source
Group 12 | | Source
Group 13 | |--|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123444444444444444444444444444444444444 | 021410978478244497682018771157982315356509764818123562451505580841882145910751766435003976481898888888888888888888888888888888888 | 22222222222222112211002222222222222222 | 7720108780698346123831248646419299567065847651
88967666635688987882860075534104894788812144933
473 96688 1 223 1136 19808316671949370
53 84567 223445 | 22222222222222222222222222222222222222 | ## W. D. 180° | | | Source
Group 12 | | Source
Group 13 | |--|--|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 8904031810072771215559984032174667803557348565
69793392957203390467893091595056535730753448565
11 138 11 1322112
1 138 11 81 322112 | 22222112111031112222222123321123222220011111111 | 89496752486395801977772530985152307450076052957
93221223223355667432222368216152307450076052957
41 | 22222222222222222222222222222222222222 | ## W. D. 225° | | | Source
Group 12 | | Source
Group 13 | |--|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567801234567890123456789012345678901234567 | 1623372865548808831610250581473010115495564420
75858969257839634556426993861147301011549556440577
75858969259199893068925975322476470577
11212242 2211 9 11 11 923831157822
21 22 2211 9 11 21 221 | 112111111111111111122021112202111200000110000011
010211111111 | 17536067311110204470882730616356583857070520031
4448532815524033667782117326055180964669328752
44444444444444444533345976656974041996583137
52
52
77
17 | 2332233223322233333221122222222232111221
 | # W. D. 270° | | |
Source
Group 12 | | Source
Group 13 | |--|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678012345678901234567890123444444444444444444444444444444444444 | 38641111460926080954944844615803584503315974141
22222222211118 11122111153 4664127774983
11122211118 11122111153 3164127774483 | 11121111111111111111111111111111111111 | 8583716464106356756265108015590080101783265560
77778888888798877777777775828663843599817766229021
112011201
76 | 23322222222222222222222222222222222222 | ## W. D. 315° | | | Source
Group 12 | | Source
Group 13 | |---|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678012345678901234567890123467 | 2111900618661165074502966939017216143700096513
777777777885877778771877899225522763770083387457858
221111 62 1897 182786 | 23322222222222222222222222222222222222 | 635609844698210534007282922988121635710127045
54455555544655544852696255595436494677866600963
5942 7
2211 212106
5 | 23322222222222222222222222222222222222 | ## W. D. 000° | | | Source
Group 4 | | Source
Group 5 | |--|---|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1235678901234567890123456789012345678901234567 | 48994576065450000008047821753291521977953457415
6119792064450000000000000000000000000000000000 | 001222222110232110000100221102001011222232222233 000122222221102322110000100221102001011222232222233 ++ | 248781428604000004959041084328064013970486024
239395984460400004959041084328064013970984471 413418562988731555555 56 353355332532
48 1 2 24897 295000 9 62 3 12 24897 2550 2 34 12 12 4218 | 01111202000012*0211120010022221210*21*22222222 | # W. D. 045⁰ | | | Source
Group 4 | | Source
Group 5 | |---|---|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 594900743027260000097456679994554340825402876562
294937524560000097456679994554340825402876562
428111 1 159522567224 177288741095521938 9805521901822058245161
31244179484 1147 1259018219799888878
1125917 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 110222222110023211 * 212102223222210022232122222222222222222 | 5374161240000986701350621471123835554075653
1336665321373 20043124670375517443363554499145222
1206665802256672269411112121211111111111111111111111111 | 210112020202012*0221*22210232323232222222222 | ## W. D. 090° | | | Source
Group 4 | | Source
Group 5 | |---|---|--------------------------------|--|---| | SAMPLE PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 5664888297125100000000000000000000000000000000000 | 20012222221
 | 5889911944375100000019277751333028853738922528
278742701546576 483377211888977589611212918808709
278733225443762 022707121889971420414124688112291621636
28522 3 5 522702
28522 3 5 8887 | 211111202020211232222222222222222222222 | ## W. D. 135° | | | Source
Group 4 | | Source
Group 5 | |---|--|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 4946535095648000002199304293437938591335942942
3378760458791837609261499304293437938591335942942
181151121221929235521111111111112121111834115121
20773121
6771111 | **0221431200130232111123**3**3332**3**21312220001********** | 776408591474010000005913446403691985568729862944
7396245826453 9004641238038462755574205800617267
3356232555445222128590198132036880182
4118 213 43 25839179554444443344534444466034443
959922 113 919 | 2111021102222 * 022211222222222222222222 | # W. D. 180° | | | Source
Group 4 | | Source
Group 5 | |--|---|--------------------------------|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 93002767932646000063990046690705901331852186005
168 311763823914349654406590705901331852186005
188288288222
1111445343543645545553
1883
1883 | | 72007593457854000004827401254390617913526199642
553002212364580017053873320917485745745705387333333333333333333333333333333333 | 21110022011011002101111222222222222222 | # W. D. 225⁰ | | | Source
Group 4 | | Source
Group 5 | |--|---|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 60056663975644000004812592531517353767087215558
77 1185419606477824770050250184826373404985294443
11 11111721827745444465373404985294443
899624411111111111114184333161893
923
161 | 21 * 223222201212320122222222222222222222222 | 8408092246259800005986757636355304198610861523
9867922681244515488605170139744032216189258695808
94403640515449999444919999607986832161892534636515
59723 4 2210883066433333464530089534533003
311 35554
222 | 01010202110002012222222222221211011000011200100013 +++000002011202222222222222212110011000011200100013 EFFER ++++++++++++++++++++++++++++++++++ | ### RUN #15R ## W. D. 270° Source Source | | | Group 4 | | Group 5 | |--|---|---|---|---| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 5279572198781200008004156403653255351300553756071902284341586846231069504654794269679503222
1111111111111111111111111111111111
 21222222100111232111122222211111112002000001011103++-++++ | 966292729849970000060634440514228000412402363494
6698968853723557396671884768043587588941231999
4121822259602118974563
4121 2 63202180741845458617944258447974563
421 4750
134 134 | 01011212010020112211111110000110000011000003 0++++++-+-++ | ### W. D. 315° | | | Source
Group 4 | | Source
Group 5 | |--|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456780123456789012345678901234567 | 4777748884224000000000000000000000000000 | 1111222222100002321100110001111011111111 | 94092069049000000009353645932745901120669812
6417702525251516900000935536459327459011206698812
14631426125479903 377109553131072477083127949679514801
2460 2694231299102357714627211119367
3774231 2111111 11 | 01011212011111 * 11220100000000000010111112111102 +++++++-++++++++++++++++++++++++ | ### W. D. 000° | | | Source
Group 2 | | Source
Group 1 | |---|---|---|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 279
8888735637834642036777607320552803978092642
279
88882588563783464203677760732005528039777777777777777777777777777777777777 | 0001
++001
++0001
++0001
++0001
++0001
 | 8100082938099154164899861537707104656009376495976338885194666111175337749467106137398422662924235715335649432915846222222222222222222222222222222222222 | 0111122222101220000012020331310221**3323222332*** +++ | ## W. D. 045⁰ | | | Source
Group 2 | | Source
Group 1 | |---|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123444444444444444444444444444444444444 | 564039531940522873230936254635563011170073301559
746 777717581886422910889999999962512900991200908
42 27707 11 | 1001*23*2321110000102*1311************** | 57701666995089781082129822675630068339913939523
435853756310452853444588794804153192523561455408
19953844474785553447033334345456334434443344
4011
55 1866 1 48
31 1232 | 11111122222300122000002312000333323202222*33222233220000000000 | # W. D. 090° | | | Source
Group 2 | | Source
Group 1 | |---|--|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 00083093241035334036216489651649866408171087860
9457666666763078866766666666666666666666666 | ************************************** | 00027002002758786339678241491645360567339315416
921104828622039598514592781099997152361218025334
8494026261269997549857342466494238622157952996664
29424
2932
4539
1 | 1020112212212211112312223333232310221*332322233333
-00000000000000000000000000 | ## W. D. 135⁰ | | | Source
Group 2 | | Source
Group 1 | |--|--|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890134567890123456789012345678901234567 | 0006427813996952352762060892173296712841955982
77604092510928818490999808829092310001942890919
33 1 5374
4333 | *10212221222222222222222222222222222222 | 0501219174508595787786221554553038220181374978
66005724259208723322261031525457689235942314568
9457713339333382714393000808888891864312759760146
1887
1887 | 1011122212222011123123333323212222222222 | ## W. D. 180° | | | Source
Group 2 | | Source
Group 1 | |---|---|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | (AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 0 0 0 0 5 5 2 1 2 1 1 2 5 1 7 0 5 6 1 3 5 1 9 4 1 1 6 1 2 4 6 4 4 0 2 9 2 2 1 7 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 2 2 3 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11121222*1111121110022*****232*02011100000010200002* +++0-0000001111111111111111111111111111 | 700072901111555547166054253290151508246643728599486292472356272189640094327237562721898440988655556566863655543580330777551426768119886555565668636555435223104155333333333333333333333333333333333 | 0111112221000022111102222332222101111121222111122++++ | ## W. D. 225° | | | Source
Group 2 | | Source
Group 1 | |---|---|---|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | OIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 0 0 0 9 1 4 8 2 5 4 5 5 6 9 0 7 6 0 3 1 6 1 4 4 1 8 0 8 6 5 9 5 5 5 5 6 5 2 2 7 5 5 5 5 6 5 2 2 2 7 5 8 4 1 1 8 9 8 6 5 5 5 5 5 5 8 1 0 0 6 0 3 7 4 8 0 0 0 4 6 6 6 6 7 6 4 1 8 9 8 6 5 5 5 5 5 5 8 1 0 0 6 0 3 9 4 1 7 5 3 7 4 8 0 0 0 4 6 6 6 7 6 4 1 8 5 2 1 3 2 1 2 2 4 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | 2**3223220000210111123*2*21000011221111111111 | 0000685575957517512216800968781380729760398142399177536188707297603981423991775361887817156438713089159488411371167744446337156446494444447716456009687529664471187752661744444444444444444444444444444444444 | 111112222220012210001233232201020111001111011110222222000122100001233232320010201110011110111102222222000122332323232 | ## W. D. 270⁰ | | | Source
Group 2 | | Source
Group 1 | |--|--|---
--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456890123456789012345678901234567 | 2867977212612297955500212523692675796392123930
557111111371140942152 2258934856342521623791911
1555555593655325216237919110
44521612297955500212523692675796392123930 | 22132333*10012112*2221000012210101012** | 84444231000504571932570222814480841808066642333
64720537462466666367239333945639214295867239368193945639214235632122374600396819392328018528018529312
7499311113365211223652122374600396819312
13111236321122374500766819312
122 1113243519293288117245829
1236529122232814351929328111236529 | 000112222221112222220001*22211111110000100000120011102
0000000000 | ## W. D. 315° | | | Source
Group 2 | | Source
Group 1 | |---|---|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 60315167232962354424307162800981545010580577167
160000099492091610527276835520751287915390603959
15555545561557555643779279099361111766645566654
69613143233244212 | 22022222222002111222110000100000001011113221111100000000 | 3542031516774222477476111778665385174114056720935
66146733334809754115622573195171595237688536299
257212112682124326314837983108449376881175535
8877578586314434937688112546751
13 533 1522 5125 1 | 2111122222211222221000001000001010121222222 | # W. D. 000° | | | Source
Group 6 | | Source
Group 7 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 38677646022394424940080784331564232130976452169
5555555555556665569 822555585685555555555555555555555555555 | *2222222222222222222222222222222222222 | 52740567227280974520053979953982797735368488190
2088777775697757958749851286947060443344969755643
24322222222344498512869470650346400840891161
242222222234445200710006503442332233223322
115 5 13
3011 11 | 32122222222222222222222222222222222222 | ## W. D. 045⁰ | | | Source
Group 6 | | Source
Group 7 | |---|--|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 96449093240738497250003221289081970176659397378
81411211204834006577 2802999 09032890091100088
4 57 5366555 666665566666655
4 57 52 51 51 | **10022222321222112221***1132*********** | 42459494296781002730008351780619261629730746152
00978565562377768727847188893573508939990389887039108
3233333335352334765288893517806798931067628267830
13
13
14
15
1653
14
1653
14
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | *10222222321222112222010022222*212222*223222234****************** | ## W. D. 090° | | | Source | | Source | |---|--|--|--|--| | | | Group 6 | | Group 7 | | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 71670660660005982320048821144646464572790248825029
04527726302338055341055551290923173553245812
2903377333335538730 320333232333223324533 23
129111111111111222295 1821111111111111111111 11
63 32 | ************************************** | 86081693411902731410084776135236673902634582927
2608754360558297523800553899190745460845142439201
31533333333334996220819513569910687006682218
46 22335182743343343473643333377733 32
588 11 | 20002222222222222222222222222222222222 | ## W. D. 135° Source | | | Group 6 | | Group 7 | |---|--|--|---|---| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567890123456789012345678901234567 | 90141170872345484310454775189630057458847920734
91995708723454843104547775189630057458847920734
977 1 13721129813119 1 11641233322112233
1 1164123322112233 | **002123220001220001212222221211000100000000 | 44220018144055959450390748357490720802742444360
1316443359957435383015523345274288561440833773556869
3083733551890668587943559544984370041437574356869
21771767215297132
2177176707 6857132
2177176707 6857132
2177176707 6857132 | 31021222201112201112211222222222121100100 | ## W. D. 180° | | | Source
Group 6 | | Source
Group 7 | | |--|---|--|---|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | | 1234567890123456789012356789012345678901234567 | 7186869003078741500045816903985423304006963098
788777777822888741500045816903985423304006963098
7981 11 15534 5245
85 7981 11 15534 5245 | ************************************** | 21100718766002461570046253558970535793620314278
40366665648176743627790676453149872815718999958
2442222223555854232267645314849936436771223
533
94
17
772
11
1 1 11
11
11
11
11 | *2233333300003321111112222331101210002000002000001
*000000003321111112222331100121000200000000 | | ## W. D. 225⁰ | | | Source
Group 6 | | Source
Group 7 | |---|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 57006293319704348302335364477002290183240040759655555555555555555555555555555555555 | 223222222333*222233302122200111022221322222223322222333*222233302122220011102222222222 | 1 1 8 6 5 7 7 6 9 8 9 3 7 9 9 10 0 4 4 5 10 0 4 4 5 10 10 4 4 5 10 10 4 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10 | 222222222222222222121222200110022212200012
 | ## W. D. 270° | | Source | | Source | | |---|--
--|---|---| | | | Group 6 | | Group 7 | | SAMPLE PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 30579716264645471710535676194177599631670668253
965766766555568066555117791597534656356600853580166
40 1133333 6
11 11 11 1 | 2342222233**33222233021210110021232222222222 | 93124485962914070019600077876833501386612620008
21112555544619282252350594468954440336490071599
21111111111111111111111111111111111 | 2*233333334*3333323121222200011102322*211232121103 0*2323333333333333323121222200011102322*2110232121103 0*23233333333333333333332312122200011102322*2110232121103 0*232333333333333333333333231212220000111022322*2110232121103 0*232333333333333333333333333333323121222000111102322*2110232121103 0*2323333333333333333333333333323121222000111102322*2110232121103 0*2323333333333333333333333333333323121222000111102322*2110232121103 0*232333333333333333333333333333333231212222000111102322*21112322121103 0*23233333333333333333333333333333333 | # W. D. 315⁰ | | | Source
Group 6 | | Source
Group 7 | |--|---|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567890123457 | 9770900926542008933304393588128385122794796
977090090777762307794296665574630988887778
5556566555566655946669969665557555566655555
29 1859 2
2221 1 | 23*2222223333*222233300221211112122221222 | 1019517031649683264012754870348106362981465528
7173760752974332669374702324154977727667594193127
22222222222222222222222222222222222 | 23322222222222222222222222222222222222 | ## W. D. 000° | | | Source
Group 11 | | Source
Group 9 | |---|--|--|---|--| | SAMPLE
PT. | (AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 244278063399898893480000000000000000000000000000 | 22122222222222222222222222222222222222 | 49977210779.60223149277069559420000000000000000000000000000000000 | 22122222222222111000110002111221******** | ## W. D. 045⁰ Source | | | Group 11 | | Group 9 | |--|---|--|---|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567901234567890123456789012345678901234567 | 0127131885577936980395882655060000000000000000000000000000000 | 20122221000210000101000111111110001002221022212
-++++++++++++++++++++++++ | 776418381594248883631452130007000000000000000000000000000000000 | 2012222210221001111000022**2111221******** | ## W. D. 090° | | | Source
Group 11 | | Source
Group 9 | |---|--|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 7118618958085256612749147038980900000000000000000000000000000000 | 201222220112210000211111220001211110002222200221212
-+++++ | 79223584001530445912758206426040000000000000000000000000000000 | 201222222*1122100001101122112111******** | # W. D. 135⁰ | | | Source
Group 11 | | Source
Group 9 | |--|--|---|--|---| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012356789012345678901234567 | 1599885652796300625204417531988565279630062520441753198855652796300625204417531988531445931639751121326114295913322143203896264413556663970669821216 216 2289 4 7 11157362 92389 4 7 11157363638 | 2112222220001221100012112212201000012221022
 | 43665148747955130434250375632485940000000000979412112292922235
22 21 14321 221 14321 1 44 | 2112222221102210000102222211002011121111212
 | ## W. D. 180° Source | | | Group 11 | | Group 9 | | |--|--|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | | 1234567890123456789012356789012345678901234567 | 5607190159407541923390964441252525244000000000024
2895856527963006262044417531622445931639751192
289585552604366693653854178000314622445931639751192
132611429591332143203144593600718942292
8 5632648841778942292
8 5635566982
111457363100158
4 7 111457363100158 | 2112222222200122110001212221221000001222102201122000000 | 436651487479551304342503756324859400000000079172112292225770122222298731768582923 8215504
952 451235 7 72665832923 8215504
952 22 22 21 14321 1 44 | 2112222211022100001022222110201110111111 | | ## W. D. 225° | | | Source
Group 11 | | Source
Group 9 | |---|---|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 0156208936658420348187507646229800700000000015822109936252064645935301979805999920469152715615
119435353410432909829009053344930655905344489638
11 11111118111111 | 2232222212322223331113333311110223111022222222 | 104957910629389173409191525644410005000001010005
13151667777478675974554 61335560063366228292 488240
131511111112223861 24589771280572081 830415
88 1 84 58689 29522
14 99 1962 0 535
1 441 | 42222222222222222222222221111111222211111 | ## W. D. 270° | | | Source
Group 11 | | Source
Group 9 | |--|--|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234678901234567 | 856026122351496004867547180406576600000000000000000000000000000000 | 23 * 222222000122233331143223101110223112222202211223* 22222223333114322310111022311222220222112223113222214375375300413359797111EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE | 79799255470444036654807727765205151050001130000013
1242222171622223335721482172917341151050000113
022 42 1397 2 20907 77653
12 74 82117 66063
32 32 32 32 32 32 32 32 32 32 32 32 32 3 | 22122222222222222222222222222222222222 | ## W. D. 315⁰ | | | Source
Group 11 | | Source
Group 9 |
---|--|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567890123444444444444444444444444444444444444 | 019495390951696790832554049000000000000000000000000000000000 | 23322222222222222222330111100011101010222202221121000011101010222222 | 14693563135154245348263388430000000001111111111111111111111111 | 342333333321123322220111000011110012111********** | ## W. D. 000° | | | Source
Group 14 | | Source
Group 15 | |---|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 11939011687762228581821782745643608966535027148
7752584702593997226014431998655372252367533996055
121111 121312131259 1123123121122221 242 2
256
11111 22221 242 2 | 2111111 *1222111011001101101101111111111 | 93257397106942223942035425748601000454431696491
183343226969393205790546988090027775741322696279
18334322880823789261704122118269627775741322696279
1000000000000000000000000000000000000 | *11212221100122111000001002211000000112200003*200002********** | ## W. D. 045⁰ Source | | | Group 14 | | Group 15 | |--|---|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890124567890123456789012345678901234567 | 6156193553005590835591882912561187588645315562
6147679055300559083777777777958377349092844807286635622187287588522111237777777778436
11114877284482912561187588645315562
112377777777777777777778436
1111487778436
1111487778436
1111487778436
1111487778436
1111487778436
111148777777777777777777777777777777777 | 2000222220311111020110020112111120001122+
-++ | 6960153819006585474739000356275344282342115798
1517182234293349149166666228742473892463303465694
19 1 | *1021222221121121111011022110220001120000222111222******** | ### W. D. 090° | | | Source
Group 14 | | Source
Group 15 | |---|--|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 679946117712646907480033943785945059594384974742677798367068174800339437859450595943849747426777983267059696666667626887777632807176766316 | ************************************** | 25605885239179304524365736327073809480640889058
14328856869217904437551079446506849009239293970921
144 1 4427111 6 21111 912 865
11 44271111 6 21111 9121 111 | 3002122211111420111112222221102011111101022100022
-+++++ | ## W. D. 135⁰ Source Group 15 Source Group 14 | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | |---|---|--|--|---| | 12345678901234567890123456789012345678901234567 | 3 44713107776175020849211883468832615821059002919
557768667118275020849211883468832615821059002919
723337659570666666666662678991665
43176599166
43176599166
256 2798 3 21 1116 7068 | ************************************** | 79331510243950780903611806280832555662501914975
147212238304229526772222211225123842744037278747
10 1 258 7751
258 7655 | 30121222210000220111112222222222122201210000022012122221000022012222212222012220122222100000220121000002201222222 | # W. D. 180° Source | | | Group 14 | | Group 15 | |---|---|---|--|--| | AMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 78911220781303779762531620320935072358150254840118888888275599204588998877777777001878885284460330517 | 021122222220012101122222222112210001000 | 97657816393051710231371456471705373750636416198
222721455710815709444433334473456637859746223044
50 2 1678 2045619
14 2 421 0425
11111 | *11112222111102111122222222112211121021010022
*++ | # W. D. 225° | | | Source
Group 14 | | Source
Group 15 | |---------------------------------------|--|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567 | 8641650036006526262317876139400357799782810079076661522788097722909662323286873634819850160790790713348134446666666665188817770969399126027223 | 22222332220121111122223232100001220100000000 | 626614353798575394443759012142740489019332588272
158242213702200706998104305689919157167506718951
76 1 17661 19497 311 22322362123 649282
2 1756 20497 311 221 3213 64978
1113 1133 | 310212221111121111111222222220110001100 | ## W. D. 270° | | | Source
Group 14 | | Source
Group 15 | |---|--|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 66127880459818204472485911879191266721646354264
69666566677110948275020202443811803303139893786899
97511169911068666674026167876374725230105
10486667438118033139893786899
11166778763774725230105
104866778763744721553443 | 2122232321211211121222221110022000001100000000 | 715549052453249914272153508372441718819060585973 183223516149424479114272153508372441718819060585973 1832316149028679192222223424626818196613040848499902 18313 3698 2221 12974486077 799432 221 1297433167 421341 | 2102022101010121111122222221110010100110011002
-++-+ | ## W. D. 315⁰ | | | Source
Group 14 | | Source
Group 15 | |---|--|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 |
34364239160190467276955791414224604402670026020
56666666936877797604113339402420933133007666765512
8156
816
16
16
16
16 | 22222222222222222222222222222222222222 | 238 51 6341 21 112 1 1232 44632 44632 15161951369 4207618411327531679397679604833923733 64232 4426820283194407952431232 4463 21 112 1 | 300202211011120100011100100000000000000 | # W. D. 000° Source | | | 58 | | 59 | |---|--|---|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 53375783594488283146559704579652491704378362407556555555655667567567557775776666613126676865
161
2221 2411 | **2111221122112211221122112211221122112 | 5181901797870772220785742193626877732308455787234
4597513346167428335124930725470207111781060299999
34444444679447742331 11 11 11 11 11 11 11 11 11 11 11 11 | **2122*22211122100000001211121001111111* **0000********** | # W. D. 045⁰ | | | Source
58 | | Source
59 | |---------------------------------------|---|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567 | 433356125284578164173553832412385946925428128846
450444445784445554444555445554444997764937744 | 210222*321002211112222112311121200001200002*+00222*3210022111122221123111212000002*+00222*3210022211122221123111212000002* | 184147614646135849392012414702221527574990935701
1471111128112433452157112221123221221111122211
3 | *10222222311222211111222113 *221322112 *2223222212 * *1002222222311222211111222113 *221322112 * *10022222223112222111111222113 *221322112 * *10022222223112222111111222113 *22132222212 * *1004566666666666666666666666666666666666 | ## W. D. 090° | | | Source
58 | | Source
59 | |--|--|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567901234567890123456789012345678901234567 | 23322731896907168546419813269023904735929818225965555555555788444444445555455845477654796654 | 10001111111111111111111111111111111111 | 87531032536347154210643873999237774494125566113
17771785668748154210643873999237777449412556611384
161033
122 | 20122222 * 3 2221000011232233222321122122223222222222 | ## W. D. 135° | | | Source
58 | | Source
59 | |---|---|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | OIMENSIONLESS
CONCENTRATION | | 12545678901234567890123456789012345678901234567 | 74292676915270030577857722007162100060877843593998988889445444544444444444445444544477664696654 | 11121222211222210000 ** * 22222221111222000002001012
 | 57872697205979436091240442348746806133989187370
11111111 | 2222222222 * 322211001112222233322113222 * 222222222222222222 | ## W. D. 180° | | | Source
58 | | Source
59 | |---|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 51747135307025153454253121192182951446236036747
8088888842288028888888888980899976278189087
45444444466664444444444444444444444444 | 21222222222222222222222222222222222222 | 47916890995175421638536478047383411345121601098
11111 1 7411123333221111 11111 111111111111111111 | 22222222222222111111122222222122222222 | ## W. D. 225⁰ | | | Source
58 | | Source
59 | |---|---|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 723644333471698431343323010318260519206311643966
888888881107888888888989999998376399570187
4444446674444444444444444444444444444 | 22222222222222222222222222222222222222 | 73112001809581238253285856807563958474633627899
022101110 21111333790979991260046406005422377718
111111111 111111111111111111111111 | 22222222222222222222211222122212221222 | ## W. D. 270° | | | Source
58 | | Source
59 | |---|---|---|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 73023100084602187919186491591206138956336921660
8888888888428887778787879778179958718345887546977794 | 2222222222111222222221*22011121100001200002
 | 77612701462581768305928553880533144717914961764
11071108011111111121 2 114311 121 14421122336
1 114311 121 14421122336 | 22222222222222222222222212221122112211 | # W. D. 315⁰ | | | Source
58 | | Source
59 | |---|--|--|--|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 66023708349956603889895316320354886526409190593
8788887878938788887706492605453809888856357320247
4444444444444154444449154698755565444444666554796654 | 2222222222211122222 * 20001100001110122000120001 | 11111111111111111111111111111111111111 | 22222222222222222222222222222222222222 | ## W. D. 000° | | | Source
Group 10 | | Source
60 | |---|---|---|---|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 58566381873691485344073015094960116097417113157
20771177575607664378899537435224443376697417111285210111111128512876548618220004146279
832657654861822001872200041480
1122
1122
1122
1122
1123
1122
1123
1236199401116097417113157
112128510372200041480
112128511372200041480
112128511372200041480
12128511372200041480
12128511372200041480
121285113157 | 23122**2220000223233111000011121020000111000112
**** | 9512247925484576564919071624170111181728911116133
22222122241222222253 2002221 2 2 22212 21 22 | 22222222222222222222222222222222222222 | ## W. D. 045° | | | Source
Group 10 | | Source
60 | |---
--|---|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 868367207664329882255070485148300833036499527771
36871607664329882255070485148300833036499522771
11114255456949297272722656256273974330522765
26 1170 11114 2 23 4 8595227152811821
2 23 4 20652 2 234
2 23 4 20652 2 234 | 2012222210122100013110030121020001111000013
-+ | 581140317511405672561004562374111115165412448725
18 434444 55386556 535002150 4 313 5451311
22 22222 2222233 23222222 2 222 2222222 | 22*22222****2222222*****2**2222222222**** | # W. D. 090° | | | Source
Group 10 | | Source
60 | |---|---|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 22258486142224756099201817454049195410637113073048174909422247560992018174540687491476637113078539411111112570111111228667079592916687491476687491111117990060399211111111111111111111111111111111111 | 202222221102210001311124201121021011212
-++ | 119417111111111111111111111111111111111 | *122*2******************************** | # W. D. 135° | | | Source
Group 10 | | Source
60 | |---|---|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 012530969128629484000017533310035549530000000000000000000000000000000 | 22222222222222222222222222222222222222 | 2118584090032471282355817665854182211111111111137
778999909547108282358907777993770798
0 77
22222222332223366024422522222223223 | 0222222223*222110011222222222222222********** | ## W. D. 180° Source Source | | | Group 10 | | 60 | |---|--|--|--|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567890123456789012345678901234567 | 52614034948606449221026165814874672000010268630
853524573554263054316328883377136592168606009951
111111111111111111111111111111111 | 22222222222222222222222222222222222222 | 0102015336038905714598230055849939500000000000
166661 2766889914653 449335843
111112 11111112311111 1111111111111111 | ************************************** | ## W. D. 225° | | | Source
Group 10 | | Source
60 | |---|---|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 2888890723687776877773675164165489802209740255727368888888888888788388857859598882684736557851641654898022097402557273888888888888887883888578597889421365470055136751641654898022097402557273888888888888888888888888888888888 | 23333333333333333333333333333333333333 | 125
121
121
131
131
131
131
131
131
131
131 | 2 × 2 × × × × × × × × × × × × × × × × × | # W. D. 270⁰ | | | Source
Group 10 | | Source
60 | |---------------------------------------|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 1234567890123456789012345678901234567 | 9239345710855729698954397952377243200075062019741111208388427745128100599666467344013534446051723873631111111111111111111111111111111111 | 233222220112222333313331331112222322000011110003
 | 385271593111100218941305969696951111111111111168
448756766 87790824 48544669695
1111111 11111111111111111111111111111 | 22222222222222222222222222222222222222 | # W. D. 315⁰ | | | Source
Group 10 | | Source
60 | |---|--|--|--|---| | | | | | | | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 1 11111133117390863537446730769074020603517668
29901230122333022294949126747088015995358501576035
111011133110009797201267483602009772555760336
14455944254242772553574682
144559442542421
33331 82482
7 | 2433333221033333333300111000011012111121
 | 3493905126301144260908477774397411101111111111148
14445 5589831635788667677 6 4 33
111111 111113911215634382 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22223332*22222*222211231200001****2********** | ## W. D. 000° | | | Source
3Q | | Source
Group 8 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 019355741466046686400353820000005055724240948951710011114081100000840031352538123 155097845071696666666666666666786765 | 2323**3332214*************************** | 4063048794026710888500537720000000464005968221235
57542846310228339694126443815550080004441540860345127879
5455555555555446548721255170360451156666656866894
94229363219066 11
941 12698
3 624 | 23222222222222222222222222222222222222 | # W. D. 045⁰ | | | Source
3Q | | Source
Group 8 | |---|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 7464930652438655534963038040600902325420229033965405555459741573183544668011178611195410985197820666 1121931 35 3512 11 66555665555 25 1121931 35 3512 11 | 2012222222222222221111000120022010111111 | 2718969833982193503266177740800618884385178951209441256395259334558997124812595842252549079846505266133333332683335556394561561490557444333333344323176444 | 21022222222222222222222222222222222222 | ## W. D. 090° | | | Source
3Q | | Source
Group 8 | |---|---|---|---
--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789032345678901234567 | 56209737096187585416141941000303046830963460899
557676666133275573467008881565399652 084906688507797
92
17691 18324 2 996312 1 1
45 | 201222222222222221110000021222221100011 * 1112222212
-++ | 848048750284088121086709810009810382063751111776
655291826052000056455261637264451302314723573730
64214303992521190489323169054818956191984790783
799 11165993231690548113923969294783
115481672073394749835001112 11 1118 1 120624 | 2000222222112211000111011122210000111122111122
-++00000222222112211000111011122210000111122111122
-+++00000011101112211122
 | # W. D. 135⁰ | | | Source
3Q | | Source
Group 8 | |---|---|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 1824466574009111039310914050000779900807691430140
557606664646620411757698668355507594 89375887728886
562 41111
802 144
442 | 21221222222222222222222222222321100001000013
 | 041440878239093491659321300000148800301616212053
9751782290634934703094278860244529680689689
412526577783427886095588881689689089684
94 1 82193 495335339116064452968888888
8113 265 4610737741945522669821
8113 265 501
115 21 10288274 4622
111 111 112 | 201222211112000001222233222110011011010101112
-+ | ## W. D. 180° | | | Source
3Q | | Source
Group 8 | |---|--|--|---|---| | SAMPLE
PT. | RAW
(ARE) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 77758678767724870441108555555 19770848155
5555555555666636555555 377168848155
52 2 555555 19770848155
5406 1 65189161096 5
5426 1 65422 5345 5 | 22222222222222222222222222222222222222 | 31407027461118506819966481000034907785839628808
478341188715071428824766415718872625321781567345930
443444444555955542718841577680827
522
445539555955542711229784277017600827
6452478787878787878787878787878787878787878 | 2222222211122222222211201111111120111222222 | # W. D. 225⁰ | | | Source
3Q | | Source
Group 8 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 46868294858878975294312249000052321441546165170
9862022215997229777888898777014145057095194093003
5556666666685556655555567371766146230377093003
1 6025 11 77748 61439
1 454 | 22322222222222222222222222222222222222 | 88385760392726756246374174000046306191725065290
91715773519071046698067210726030320582447939986
94355555544455444387444909252888908509705161
4436721138795694829159371957
4436827
10191
10851 62871
1191
1200 | 22322222222222222222222222222222222222 | ### W. D. 270° | | | Source
3Q | | Source
Group 8 | |---|--|---|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 188201212124272018379923531194000576326466302069720
18820121124921098889870774472981946466302069720
544555551865554444454545877747519622113551288198
51355 27 72211 311134
551 2 1 | 2**23222310222233***1**3**2111002310301111201110** 11***4630351252****0**2111000231033333512133****0**66886363747729112011133****0**668863637477291128821** -***30****0**668863637477291768881***0**22624687477291128821** -***30****0**0**0**0**0**0**0**0**0**0**0 | 755660306737605571484103148000759781181697414433
9148839673760557148363836385600759781181697484303338620166278856007288175
112221111111111111111111111111111111 | 23322222222222223320332310221122100122010002 | # W. D. 315⁰ | | | Source
3Q | | Source
Group 8 | |---|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 01207250489626019406473474000053380063816282673
555666666709556655843939953094073108400373575575084247
55555555555555550267630474037392395357462474
681 14006152616936720 17812
11888413 2 11 | ************************************** | 215593241082516111194485488000026886652291674982
572444434161158233445419325640724870273831
2235333344443333334474014355896644446774313
33444433533334443333333474014355896644446744313
3386985
1 | *43222233222233332223112210002211122222222 | # W. D. 000° | | | | Source
3C | | Source
Group 3-1 | |---|---|---|--|--|--| | SAMPLE
PT. | | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 3 | 44289914500096802103313635960594038719581065129
11286207294976311449883405675979975415648855441065129
112862323419772116098815779975415648855441065129
11286232321211623133 1 1222634111121111111111111111111111111111 | 22221111112212222222222222222222222222 | 116163094120083431871441678808263138797167522225539
11191674128516936154444167880826314428202212601
111111111111111111111111111111 | 22222222222222222222222222222222222222 | # W. D. 045⁰ | | | Source
3C | | Source
Group 3-1 | |---|---|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 31934827500087042758424189928405009290048664772
07911412340848733158838326287688887249911702204395
22611141245634873311111111142222111111 1121 111431 11 111 111 6022
0443 | 11122222221212222222222222222222222222 |
59673539100031196145174828081751622971002282117
183332224275166343434289812936376008000135484848
1801122427511663694785162711123106686622971002282117
1401111153604769478517611166331915111111 1211112
40072 1111 1211125
9554 111 | 00002222222222222222222222222222222222 | ## W. D. 090° | | | Source
3C | | Source
Group 3-1 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 450222824000027526085859307740024110917785352365
827566453688547885797197109729400295731238988637517
54111111111111111111111111111111111 | 11222222221022211112322222323232121122222221
 | 427621768000080710737183669989674496817565936452
22845333324151058807750528377502361508877565998892094
1431111184183537032111311105821415111111 3411111
642 111
111 111
111 111 111 111 111 111 11 | 21122222222311111000011221011212222221122222
 | ## W. D. 135° | | | Source
3C | | Source
Group 3-1 | |---|---|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 238000109000233975858556444805324874293269900404905984939466356691360023342447312341575698433420040494035882155941136394135211111111111115111112222111111111111 | 2232222222222222222211000232222322222222 | 528081251000783053577738888718878084964331372357
5280812512652777830535777388887188780849644331372357
13115159769682082221037574418134993467016278367610972
49125539481421111115975889934670183367610988
1766
1766
1766
111 | 21221222221111001111222221112222111222214
 | ## W. D. 180° | | | Source
3C | | Source
Group 3-1 | |---|---|--|--|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 2308157780000061916115000684570874966342763537906
19291103077661916623922252193447966342763537906
1111111507488103926090019935990922903246086101655
77077
17367 | 32322222221112211111232222332323232121222222 | 747428634000385029731429225493669141780005616478199007812330444692191111279538189281181555113365 | 21222222222222222222222222222222222222 | # W. D. 225° Source Source | | | 3C | | Group 3-1 | |---|--|---|---|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 216146517000339805890029876384685222232799661221
85756257818448689870652396666710793881766037559
11215726535959775582205716566867079388176637559
816
816
816
11
11
11
11
11
11
11
11
11
11
11
11
1 | 22222212212111122222332222322221122111111 | 94858177600047946112439798315393184867193688046
52143747976000479461124397983153983184867193688046
52143342933118799546338733733283869603150304480
4054211
7653
7463
7463
7463
7463
7463
7463
7463 | 24*22222222222222222222222222222222222 | # W. D. 270° Source Source | | | 3C | | Group 3-1 | |---|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 836984984000615496719981473394188143120042291910111154451332943222111131118322015639663042291911111111111111561322212311687 | 22322222222222222222222222222222222222 | 246024400000049126972115442056311707077618397324
2880742780000632877762087442056311707077618397324
11011803863287776208749092844452407109649535727748
110129853554202111111113333211154424401226
2221111111113333211154424401226
326771 | 22222222222222222222222222222222222222 | # W. D. 315⁰ | | | Source
3C | | Source
Group 3-1 | |---|---|---|---|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 424748784000473531291449885210004624005763243808811122323791614947497428936018465889174613221140222300235131766142980188111 | 2222111111111111112211222111100001001000211100002
 | 05547173300021341487449918335552319321623234182
6145471733000215414487449918335552319321623234182
11224344432007468399888355299228846220752381
1124344433552992228846327538663
132649332221223423870548951666757538663
144587
15707
1687
1707
1717 | 23322222222222222222222222222222222222 | ### W. D. 000° | | | Source
Group 3-2 | | Source
Group 3-4 | |---|--|--|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 92390033500007135883078888375212420932168342759607
3322212252366197009773923212256530769198449911221122565307691984499112284177881125653076919844991128412130
1124112151396261112411130
112411130
112411130
112411130 | 22222222222222222222222222222222222222 | 76054885700018441143531935489272913999868977338
7378987810004409661103240337574797560988891352450080
179331 1411198430367479756686891352450080
4333 225 | 22222222221112221212121132221221321332233223
00000000000000000000000000000 | ## W. D. 045° Source Source | | | Group 3-2 | | Group 3-4 | |---|---|--|--|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 17437373449100018455838654238647458142098223492086
134373734495596624373847765460335217581824411070836
111111111111111111111111111111111111 | 20022222222222222222222222222222222222 | 63899559700082822559064521222445629133985896805
6406876617128858562398599043970805550877941855552
45
17022 2443 23 111 2 3
246
78 |
2102222201112111222211332222332222222222 | ## W. D. 090° Source Source | | | Group 3-2 | | Group 3-4 | |---|---|--|--|--| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 67547509650078323588424536107255920518489156533
782995749169971230098638003031227379401899899870
777390042620509865800303122273794018999870
76911342666655
72381 265 1 3 3 3 3 3 12 12 12 1 2 1 2 1 2 1 2 1 | 20002222222222222222222222222222222222 | 802211897900048955327995041111509872950440059630
2762312992969053748547788 58795048636908410 8893
43 1130225121 10372588636908411 8893
11690 1620
111 4112112 11111
122 | 301322333200123200003323333***22232134143333**************** | # W. D. 135° | | | Source
Group 3-2 | | Source
Group 3-4 | |---|--|--|---|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 03468376640080932836594550598050854886439336355
2018650298093283659455050854886439336355
20197212314778309495705612983555971805206555915638915739
121112574783911111111111111111567166174539
32 1116617453
63821 2743
63821 2743 | 21321222222222222222222222222222222222 | 67418161330068840603259720047260353320215546027
716627666678112471876665660359754353320215546027
5 1 7481 9842
744 288 | 213222222001221000022222332111211212122222222 | #### RUN #85R ## W. D. 180° | | | Source
Group 3-2 | | Source
Group 3-4 | |---|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 5407397220006016793389588947892309979470812446992978122429988874532119117706221570124004052150224964 9201612242429743210111111240040521502210111112771242429702111111 21 11133719111667111161 9427 | 21222222222222222222222222222222222222 | 29850857300000041188260482868179635495477192327
95467903120505854669947049847141947909373735815
407746162551207299665569057902541636498373735815
344559550709164177944565544456334544567585555
2 1 11934 22111
1 111511 | ************************************** | # W. D. 225° | | | Source
Group 3-2 | | Source
Group 3-4 | |---|--|---|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 92305023340006147559412151629302633812494678516
108242423556640972276796452122344449468856316771
111224235566611114 1811111 9411922579226649
82661 33 52212 5 119 | 2232222122221122221122221222220022000001001 | 44250547570005799455285872342932259189912570115784056677799401921628679562504855316678128545234
6166677799401921628679562504885316678128545245
5549
719
719 | 2122222211112222222222222111211011011011 | ## W. D. 270° | | | Source
Group 3-2 | | Source
Group 3-4 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 123456789012345678901234567890123456789012345678901234567 | 97850176400039242960260057073724469470195505025
176999999133363944296026005770 30 9402470195505025
27110121 4 2 1 2267193340297 1 5 75
45111121 4 2 1 2266 1 2 842261 5 5 5
4511 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 23322222222222222222222222222222222222 | 56272909200054207490121049058020207707129008064
94959951144886378597455081 18 208288913315798 7 123
39443344453236578745326 45 208288913315798 7 124
2272 2 578745326 45 2088598913315798 7 124
898 9 6 7 52
238 | 21222222211112222222222222222222222222 | ## W. D. 315° Source Source | | | Group 3-2 | | Group 3-4 | |---|--|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 788155170000933344899730646679864124099993323742
488481871740833845971546234782527841849499993322572414
11111114803953093029600130635944693013602205224617
7667111111 3241301467308046922416015992613
13 14477542 83 2355 3465
22 1 | 23322222222222222222222222222222222222 | 719297211800071541898424327778078557627227345289
9879291346262371541898424327574095308557627227345289
987921199726420331340084243275409530855762722437999
111 9151 283139227891466665772203235
0577 1133347
247 | 222222222211111221121111111111111112221111 | ## W. D. 000° | | | Source
3R | | Source
Group 3-3 | |---|--|---|--|---| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 98787000000016408504695315191176370031342159111
9235363219729004848451095315191176370031342159111
11284291602354916044491245491
12842911115072701109
113611136111211111111111111111111111111 | **1101101101101101010101010101010101010 | 3448368000000012017961504344898089720062884365638
54875896997521401179615043448980897200628843650438
51778735916901430179226726984754643866529377001430
98956513131107112662324555551345141239529333888732
37743014243
311114843
10 01314343243
11 4 6 22
211333 | 31101101101111211110000000001111011111111 | # W. D. 045° Source Source | | | 3R | | Group 3-3 | |---------------------------------------|---|--|---|---| | SAMPLE
PT• | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | |
1234567890123456789012345678901234567 | 731811010601046739759166702610658270547361499849 5642465 403 1694473661244646299888582705473611499849 12263 845 3 11111 4422 4 351257 7 1618016662 1 11 6 2 2 1 10 2 2 1 10 | ************************************** | 934670008000055895222940156427412510519783403161
3281764769301055895222940156427412510519783403161
3260063596287312525955180697487505156666635741197959727
56100308287312525955180691851569888442949977860980
44133845 2 2221 5844 1 58442949977860940
113 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 211011011111211110000010000222212000111100100 | ### W. D. 090° | | | Source
3R | | Source
Group 3-3 | |---|---|--|--|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 83952000000183399315451041600500000023186959270
57826742808955839065255044 746365000000231817135199
14263284962 367 7421 7 1884433222 21333 1
11152 367 7421 1 51222 21333 1 | 200001101111212100002*12112212000010
000001101111212100002*12112212000010
0000011011111212100002*121122112000010
0000011011111212100002*121122112000010000010
00000110111111212100002*1211221122000010000010
0000011121121121121121121121121121121121 | 11936000000917442231111060050000081647751407001936000009174422311110600500000816477584600750318915772539455239216454845772599783945454549208484519290871958181521640211197581111060050000081647766278846132279882009711419208441977581111060050000008164776627884611227982009711969211111111111111111111111111111111 | 2100110110121110000110112212110110110110 | ## W. D. 135° | | | Source
3R | | Source
Group 3-3 | |---|--|---|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 0909500000000875310983709063090000002113529584
586319708000000875310983709063090000002113529584
58637445599222855555564984201 779950482350
253275849
11 241 6 564021 711321211 1 | 2110110111011101110101002*000000010
++++++++++0000111111111010102*000000010
5666666666666666666666666666666666666 | 014820000000081120708037241700600000040683445679897566964988112070803724117006000000406834456772523913621498988222077779802215560481172133338603772417793 3977722517822111560481777746333386048117131362662131522 2 | 21101101101101101010100000000000000000 | ## W. D. 180⁰ Source Source | | | 3R | | Group 3-3 | |---|--|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 7538200000009019291673870968009000006908874163
93550452540004848157177654886668553151926783280156530
263274206
1 1234
1 1234
1 1234 | 21101101111111111111111111111111111111 | 4573800000097690614278648990440000055389000604
848378621005976930403964296485992531895391521
447314851687099178980204940002370318859921912055080779
81774500790331556622236049400037905611540888749779
441482457
1 551
6 4092112055080529
11 5 2 | 21101110111121212101111100001111111101000000 | # W. D. 225⁰ | | | Source
3R | | Source
Group 3-3 | |---|---|---|--|---| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 7980700000065557085566347213010901626866133742
575362211477666927648222285223496389 039866002095
244265128 1 11 1 5666 022212342312
11 15555 1 5666 022212342312 | **1200010112222121011110012110110122**200000000 | 9217100000032096369991650813680500211159380582
92317100000032096369991650813680500211159380582
93621757800077320963699991650888859133159380582
616217579738222803264205087675968885119135346441633559
4003437832774209562400220088564881501913394667289
11395629211617711
1139528991111131161687 | *1201100121100111100001001101110100000000 | | | | Source
3R | | Source
Group 3-3 | |---|---|--|------------------|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 3774500045000058825512965955676663001012613417807
50701717308058825512965955676663001012613417807
14027712966618114248865955676663001012613417807
1402771477678981497477677844191
1444776778981497778991607477677844191
144477677899165916663001012613417807 | 20100100111121100000110022** -+-++++++++++++++++++++++++++++++++ | 2 12 17 1 1 3756 | 2010110110110101000111000011000011000011000110011001100111011010 | # W. D. 315⁰ | | | Source
3R | | Source
Group 3-3 | |---|---|--|---|--| | SAMPLE
PT. | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | RAW
(AREA) | DIMENSIONLESS
CONCENTRATION | | 12345678901234567890123456789012345678901234567 | 782590820550176449199511117548752025785759440530
55517521990923447952126393774965437746614728239496588
55522627315 2 21111119911181125523311 3211
1 25 2 2111111991181125523311 3211 | *2*01101111212102210000000111010101112000000 | 967847082079041946175681404996408200618446613895
967834220479041946175681404996408200618446613895
10713296212594215836574152064799122479988309948
113296211127366262561214021443567799122489633467110
42183496313 5 2331 4 7220886439314657110
12 20 10 13 3 5 1 | 32201101101202101211000001111111111100001010110
+++++++ | #### APPENDIX C TABULATION OF CONCENTRATION RATIOS AND DIMENSIONLESS CONCENTRATION COEFFICIENTS FOR HUP IV PENTHOUSE TESTS | | SOURCE
GROUP #2 | SOURCE
GROUP #1 | |---------------|------------------------|------------------------| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 5 | .180E-03 | .320E-02 | | 6 | .176E-03 | .320E-02 | | 8 | .107E-03 | .123E-02 | | 9 | .104E-03 | .121E-02 | | | | | | SAMPLE | DIMENSIONLESS | DIMENS IONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .562E+00 | .363E+00 | | 6 | .551E+00 | .363E+00 | | 8 | .334E+00 | .140E+00 | | 9 | .324E+00 | .137E+00 | #### RUN #201R # W. D. 270° SOURCE **SOURCE** . 39 3E+00 .394E+00 .158E+00 .161E+00 | | GROUP #2 | GROUP #1 | |--------|-----------------|---------------| | SAMPLE | CONCENTRATION | CONCENTRATION | | PT. | RATIO | RATIO | | 5 |
.160E-03 | . 346E-02 | | 6 | .159E-03 | . 347E-02 | | 8 | .792E-04 | . 139E-02 | | 9 | .802E-04 | . 142E-02 | | SAMPLE | D IMENS IONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | .501E+00 .497E+00 .247E+00 .250E+00 5 6 8 9 ## W. D. 225⁰ | | SOURCE
GROUP #2 | SOURCE
GROUP #1 | |---------------|------------------------|------------------------| | SAMPLE
PT. | CONCENTRATION
RATIO | CONCENTRATION
RATIO | | 5 | .195E-03 | .345E-02 | | 6 | .188E-03 | . 329E-02 | | 8 | . 875E-04 | .304E-02 | | 9 | .869E-04 | .290E-02 | | | | | | SAMPLE | DIMENSIONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .608E+00 | .391E+00 | | 6 | .586E+00 | . 373E+00 | | 8 | .273E+00 | .345E+00 | | 9 | .271E+00 | . 328E+00 | | | SOURCE
GROUP #4 | SOURCE
GROUP #5 | |---------------|---------------------|------------------------| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 5 | . 99 3E - 0 3 | .401E-02 | | 6 | .992E-03 | . 39 3E-02 | | 8 | .563E-03 | .454E-02 | | 9 | .551E-03 | .449E-02 | | | | | | SAMPLE | DIMENSIONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .361E+00 | . 751E+00 | | 6 | .361E+00 | .735E+00 | | 8 | .205E+00 | .850E+00 | | 9 | .201E+00 | .841E+00 | #### RUN #203R | | SOURCE
GROUP #4 | SOURCE
GROUP #5 | |---------------|---------------------|------------------------| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 5 | .103E-02 | .374E-02 | | 6 | . 104E-02 | .376E-02 | | 8 | .582E-03 | .430E-02 | | 9 | .576E-03 | .434E-02 | | | | | | SAMPLE | DIMENSIONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .376E+00 | .701E+00 | | 6 | .379E+00 | .703E+00 | | 8 | .212E+00 | .806E+00 | | 9 | .210E+00 | . 813E+00 | ## W. D. 315⁰ | | SOURCE | SOURCE | |--------|-----------------|---------------| | | GROUP #4 | GROUP #5 | | | | | | SAMPLE | CONCENTRATION | CONCENTRATION | | PT. | RATIO | RATIO | | 5 | .259E-02 | .255E-02 | | 6 | .262E-02 | .254E-02 | | 8 | .282E-02 | .479E-02 | | 9 | .286E-02 | .476E-02 | | | | | | SAMPLE | D IMENS IONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .943E+00 | .478E+00 | | 6 | .953E+00 | .477E+00 | | 8 | . 10 3E+01 | .897E+00 | | 9 | .104E+01 | .892E+00 | | | | | W. D. 090° SOURCE GROUP #3-Q | SAMPLE
PT. | CONCENTRATION
RATIO | | |---------------|------------------------|--| | 5 | .517E-04 | | | 6 | .580E-04 | | | 8 | .227E-01 | | | 9 | .226E-01 | | | SAMPLE
PT. | DIMENSIONLESS CONCENTRATION | | |---------------|-----------------------------|--| | 5 | .531E-01 | | | 6 | .595E-01 | | | 8 | .233E+02 | | | 9 | .232E+02 | | # W. D. 270° | | SOURCE
GROUP #3-1 | SOURCE
GROUP #3-2 | |---------------|----------------------|------------------------| | SAMPLE
PT. | CONCENTRATION RATIO | CONCENTRATION
RATIO | | 5 | .117E-01 | .435E-01 | | 6 | .118E-01 | .438E-01 | | 8 | .150E-01 | .176E+00 | | 9 | .151E-01 | .177E+00 | | | | | | SAMPLE | DIMENSIONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .380E+01 | .780E+01 | | 6 | .386E+01 | .787E+01 | | 8 | .490E+01 | .315E+02 | | 9 | .493E+01 | . 319E+02 | # W. D. 315⁰ | | SOURCE
GROUP #3-1 | SOURCE
GROUP #3-2 | |--------|----------------------|----------------------| | SAMPLE | CONCENTRATION | CONCENTRATION | | PT. | RATIO | RATIO | | 5 | .269E-01 | .415E-01 | | 6 | .270E-01 | .418E-01 | | 8 | .117E-01 | .162E+00 | | 9 | .118E-01 | .162E+00 | | SAMPLE | DIMENSIONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .878E+01 | .746E+01 | | 6 | .879E+01 | .752E+01 | | 8 | .381E+01 | .292E+02 | | 9 | .385E+01 | .291E+02 | ## W. D. 225° SOURCE SOURCE | | GROUP #3-1 | GROUP #3-2 | |--------|---------------|---------------| | | | | | SAMPLE | CONCENTRATION | CONCENTRATION | | PT. | RATIO | RATIO | | 5 | .847E-03 | .442E-01 | | 6 | .832E-03 | .446E-01 | | 8 | .146E-02 | .126E+00 | | 9 | .145E-02 | .127E+00 | | | | | | | | | | SAMPLE | DIMENSIONLESS | DIMENSIONLESS | | PT. | CONCENTRATION | CONCENTRATION | | 5 | .276E+00 | .793E+01 | | 6 | .271E+00 | .800E+01 | | 8 | .476E+00 | .227E+02 | | 9 | .474E+00 | .228E+02 | | | | |