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ABSTRACT 
 
 
 

COMPUTATIONAL TOOLS TO IDENTIFY CORRELATES OF VACCINE-INDUCED 

PROTECTION AGAINST TUBERCULOSIS 

 
 
 

Tuberculosis is a significant threat to human health. While the BCG vaccine exists to protect 

children from disseminated forms of tuberculosis, it fails to protect against pulmonary 

tuberculosis. Thus, a better vaccine is needed. However, the immune system in response to 

tuberculosis and the BCG vaccine is incompletely understood. We sought to develop novel 

analysis methods to help understand the immune system. This dissertation describes an analysis 

tool, cyto-feature engineering, that rapidly identifies flow cytometry immune cell populations 

utilizing experimental controls. The tool was corroborated through testing the pipeline on 

different types of flow cytometry datasets. Cyto-feature engineering was then utilized to 

understand the immune response to two immunomodulatory drugs—losartan and propranolol—

when used in conjunction with the BCG vaccine. This study identified an increase in T cell 

responses due to drug administration, but ultimately failed to decrease bacterial burden in the 

lung and spleen. Other studies employed a new method for identifying immune cells correlated 

with various metabolites in the context of tuberculosis. The method can be utilized to generate 

hypotheses from secondary data sources and gain new biological insight. Using this method, we 

identified a potential correlation between CD45RA and arachidonic acid metabolism which 

could serve as a potential target for future vaccination studies. The research outlined in this 

dissertation will hopefully lead to better immunological analyses of data and the development of 

a better tuberculosis vaccine.  
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CHAPTER 1 — REVIEW OF THE LITERATURE 

 

Background 

Prior to the recent Covid-19 pandemic in 2020-2021, tuberculosis remained the world’s leading 

cause of death from an infectious agent.1,2 In 2019 alone, 1.4 million people died from the 

disease, which is caused by the bacteria Mycobacterium tuberculosis (MTB).2 While tuberculosis 

is not commonly reported in the United States, in high-burden countries, such as India, about 10 

million people fall ill with TB each year.2 With the emergence of multidrug-resistant (MDR) and 

extensively drug-resistant (XDR) MTB in the last few decades, MTB is a persistent threat to 

global health. However, there are still many unknowns about MTB and the immune response. It 

is imperative to develop a better understanding of the immune system in response to MTB 

infection so that we can prevent millions of deaths each year.  

 

First administered in 1921, the bacille Calmette-Guérin (BCG) vaccine is commonly 

administered to prevent active MTB infection in countries with a high prevalence of tuberculosis. 

While the vaccine protects children from tuberculosis meningitis and miliary disease, it only 

confers variable protection against pulmonary tuberculosis in adults.3,4 It is not fully understood 

why this variability exists, but some reasons point to host genetic differences, divergent BCG 

strains, and the existence of non-tuberculosis mycobacteria (NTM) in the environment.5-7 Further 

studies have noted that vaccines administered farther away from the equator confer better 

protection.8 Despite the ongoing research, it is unclear how these factors and many others impact 

the inadequate BCG vaccine protection. 
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As the current BCG vaccine is substandard, many groups have been working to develop better 

tuberculosis vaccines or vaccination strategies. Initial vaccine testing often involves in vitro 

studies followed by experimental infections with animal models such as mice. In these studies, 

the colony forming units (CFUs) are used to assess the bacterial burden and determine if the 

animals are able to limit bacterial replication better. Flow cytometry and metabolomics are other 

techniques that can be used to investigate, respectively, the immune cells and small molecules 

elicited due to either vaccines or infection. However, current methods to characterize immune 

cells are labor intensive and highly variable. Additionally, few computational tools exist that are 

able to combine all of these experimental outputs for a holistic view of the study.   

 

There are many different unknowns such as how MTB interacts with and evades the immune 

response and why BCG does not adequately protect. To answer questions about how the 

complex immune system responds to MTB infection and vaccines, there are a number of 

questions one must ask themselves before beginning an experiment. Due to the $1.1 billion 

tuberculosis funding deficit, do I have the funding to perform an experiment?9,10 How will the 

MTB and BCG strain affect the results as both can elicit different immune responses? Moreover, 

how will vaccination route and timing affect protection? As all animal models are an imperfect 

representation of humans, which animal model should I use? As all techniques and analyses have 

explicit biases that can affect readouts, what measurements, techniques, and analyses should I 

use to answer my question? Finally, do I have the patience and time to wait 4-6 weeks for MTB 

to grow on agar plates? Some relevant aspects about tuberculosis and these factors are described 

here in this literature review. 
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Tuberculosis: Epidemiology, Disease Outcomes, Diagnosis, Treatments 

Epidemiology 

There are three primary factors that affect epidemiology of a disease: pathogen factors, 

environmental factors, and host factors. Pathogen factors, such as virulence and drug resistance, 

can greatly affect the distribution and incidence of MTB. For example, certain MTB strains such 

as HN878 are more virulent than others (discussed in more detail in the `MTB Bacteria and 

Immune Response` section). Additionally, multidrug-resistant (MDR) and extensively drug-

resistant (XDR) tuberculosis strains are increasingly becoming common.11 These strains are 

typically resistant to the drugs isoniazid and rifampin which can prolong treatment times and 

provide longer contagious periods for MTB to infect others.11 Environmental factors that can 

increase the risk of developing active TB include air pollution and overcrowded living 

conditions.12 For every 10µg/m3 increase in the air pollutant sulfur dioxide, there is a 4.6% 

increase in pulmonary tuberculosis incidence.13 Additionally, host factors such as co-infections 

and comorbidities can also increase the risk that an infected person will advance to active 

disease. High-risk individuals include those who are immunocompromised, taking medications 

for organ transplants, or undergoing chemotherapy. For example, patients with Human 

Immunodeficiency Virus (HIV) are 18 times more likely to develop active tuberculosis 

infection.14 Other common risk factors include malnutrition, Vitamin D deficiency and 

diabetes.12,15,16 People with Vitamin D deficiency are 5 times more likely to develop 

tuberculosis, and those with diabetes mellitus are 3 times more likely to develop tuberculosis.15,16 

These comorbidities can shift the probability that a person develops active infection and 

contribute to the complexity of understanding the immune response.  
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Disease outcomes 

There are two outcomes of MTB infection: latent infection and active infection. People with 

latent tuberculosis are infected with MTB, but asymptomatic, whereas active tuberculosis 

infection is associated with many non-specific symptoms such as fever, cough, weight loss, and 

night sweats.17 While only 5-10% of people infected with MTB will develop active disease, it is 

still not known why some people develop active disease and others maintain latent 

tuberculosis.18   

 

Once infected, tuberculosis disease can manifest in different forms. The most common form is 

pulmonary tuberculosis which affects the lungs.19 Other disseminated forms such as miliary 

tuberculosis where bacteria enter the bloodstream and travels to other organs and meningeal 

tuberculosis which causes inflammation of the membranes around the brain and spinal cord also 

exist.19,20 These disseminated forms of tuberculosis are particularly difficult to diagnose due to 

the limited tools available.21 

 

Diagnosis 

Because of the nonspecific tuberculosis symptoms, it can be difficult to quickly diagnose 

patients. Diagnostic methods include sputum microscopy and culturing, tuberculin skin tests, and 

molecular PCR tests. Some of these methods can take weeks to diagnose or require follow-ups in 

the hospital which can be challenging in resource-limited areas. Historically, sputum microscopy 

and culturing have been used in low- and middle-income countries.22 Sputum microscopy 

involves coughing up sputum and visualizing bacteria with a microscope. This microscopy 

method only has a 34-80% sensitivity, and when there are less than 10,000 bacilli per milliliter, it 
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is highly unlikely that MTB will be diagnosed.23,24 For confirmatory microscopy results, the 

clinic must then culture the bacteria for up to 6 weeks to confirm that the bacteria is in fact 

MTB.25 The Mantoux tuberculin skin test is an alternative diagnostic that involves injecting 

purified protein derivative (PPD) from MTB into the arm and examining reactivity.26 If a person 

has been exposed to MTB, their body will respond to the PPD antigens and begin swelling at the 

site of PPD administration.26 Test positivity is measured by inspecting this diameter of firm 

swelling.26 However, it often gives false positive results in patients who have been vaccinated 

with BCG.27 This removes the utility of the test in many areas because countries with high 

tuberculosis-burden often have high BCG-vaccination rates.28 This test also requires a follow-up 

visit to a clinic within 48-72 hours, making it troublesome for patients who live far away.26 

Importantly, recent advances in technology have offered a new, rapid diagnostic. The Xpert 

MTB/RIF PCR test is now recommended by the World Health Organization, if available.29 The 

Xpert MTB/RIF PCR test can diagnose MTB and drug resistance to rifampin in 2 hours.30 With a 

sensitivity of 85% and specificity of 98%, the Xpert provides a better alternative to conventional 

diagnostic methods.31 Despite these recent advances, diagnosis is only the first step in treating 

TB. 

 

Treatment 

Although tuberculosis is generally considered a treatable disease, treatment can be a lengthy, 

brutal process. Patients are treated with multiple drugs for a minimum of 6 months. A typical 

regimen includes taking four drugs—isoniazid, rifampin, pyrazinamide, and ethambutol—in 

combination for two months, followed by isoniazid and rifampin for four additional months.32 

This rigorous drug regimen can be toxic, causing liver and kidney injury, and has upsetting side 



 6 

effects such as nausea, vomiting, and diarrhea, among others.33-35 Further, the use of these drugs 

must be monitored to prevent the emergence of multidrug-resistant (MDR) and extensively drug-

resistant (XDR) tuberculosis.  

 

In addition to the complications with MDR and XDR emergence, the treatment of tuberculosis is 

exceedingly expensive. In the United States, it costs approximately $17,000 to treat a single 

tuberculosis patient.36 The cost, however, skyrockets when an MDR or XDR case is identified, 

costing $134,000 and $430,000 per patient, respectively.36 Therefore, a vaccine that can prevent 

disease and this rigorous treatment would be a powerful tool in the fight against MTB. 

 

MTB Bacteria and Immune Response 

While research has been ongoing for decades, there are still many unknowns regarding specific 

defense mechanisms of MTB and how the immune system can be modulated to fight MTB 

infection. It is known that certain immune cells play important roles in infection, but conflicting 

research has shown both protective and non-protective qualities of most cell types and it is not 

known which combination of cell responses are needed to elicit superior immunity.  

 

Bacteria  

As MTB has been co-evolving with humans for at least 15,000 years, it has developed numerous 

mechanisms for evading the host immune response.37 Mycobacterium tuberculosis is unique in 

that it is a Gram-positive bacteria, but it also retains properties of Gram-negative bacteria.38 This 

means that the exceptionally thick layer of peptidoglycan typical of a Gram-positive bacteria and 

the outer lipid membrane typical of a Gram-negative bacteria provide additional defense against 
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antibiotics.38 MTB uses these layers and a variety of mechanisms and pathways to evade the 

immune response. One example is the MTB secretory systems which contribute to virulence. 

Secretory systems ESX 1-5 release proteins that help MTB establish infection through breaking 

the phagosomal membrane, disrupting phagosome maturation, and curtailing MHC II antigen 

presentation.39,40 All of these components and many others help MTB multiply and play a role in 

pathogenicity.  

 

Different strains of MTB also have varying levels of pathogenicity and virulence that can affect 

laboratory results based on the specific strain used. Much of the previous work studying MTB 

has used two laboratory strains—H37RV and Erdman.41 H37RV was isolated from a patient in 

1905, and Erdman was isolated in 1945.41 In the decades since they have been isolated, the lab 

strains have been passaged many times. Each of these passages has the opportunity for genetic 

mutations to occur. Thus, these strains may now be more suited to a laboratory setting and non-

representative of the genetic heterogeneity present in the world.41 To better represent the relevant 

MTB strains currently circulating in the world, more recent clinical strains, such as those from 

the Beijing family, are being used to evaluate the immunopathogenesis of this disease. These 

Beijing strains are characterized by high virulence and drug resistance.42 It is also thought that 

these strains may be more resistant to the BCG vaccine or that BCG vaccination may even 

facilitate spread of Beijing strains.43,44 A more recently isolated Beijing strain, HN878 is 

increasingly being used now in research. HN878 is an MTB strain that is characterized by high 

virulence; it caused 60 tuberculosis cases in Houston, TX from 1995-1998.41,45 Because the 

HN878 strain has not been passaged for over 100 years like H37RV, it more closely resembles 
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the MTB that is circulating and involved in active infections. Therefore, HN878 may be an 

advantageous MTB strain to use in research. 

 

Innate Immune Response 

The innate immune response is generally considered the first line of defense against an invading 

pathogen. MTB is transmitted through airborne particles when an infected person coughs or 

sneezes and is considered highly transmissible as it only takes 1-10 bacilli to become infected.46 

Once inhaled by an uninfected individual, the bacteria travel from the mouth or nose to the 

alveoli in the lungs. At this point, immune cells including neutrophils, alveolar macrophages, and 

dendritic cells use pattern recognition receptors to recognize specific pathogen-associated 

molecular patterns (PAMPs) on foreign bacteria. Once recognized, the bacteria are then 

phagocytosed. From here, the innate and adaptive immune response are intimately linked 

through a series of complex interactions. 

 

Neutrophils are one of the first lines of defense against foreign particles such as bacteria. When 

neutrophils phagocytose bacteria, they can kill invading intracellular pathogens through releasing 

bactericidal proteins, reactive oxygen species, and nitric oxide.47,48 Neutrophils can also trap and 

kill extracellular bacteria through releasing neutrophil extracellular traps (NETs).49 While these 

structures are efficient killers, they can also cause tissue damage in the surrounding tissue.49 

There is conflicting information on the role of neutrophils in MTB infection. Some studies show 

that neutrophils may be unable to effectively kill MTB.50,51 Researchers consider this ability for 

MTB to reside within neutrophils but not be killed as a potential mechanism for MTB to hide 

from other phagocytic cells.51 However, other studies show that neutrophil levels are associated 
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with tuberculosis protection.52 This points to an interactive role that neutrophils may play with 

other protective cells.52 This interactive role can be shown through the fact that neutrophils 

present antigens to T lymphocytes and promote dendritic cell maturation by binding to dendritic 

cells.52 Neutrophils also attract dendritic cells, monocytes, and lymphocytes by releasing 

cytokines and chemokines; these cells can, in turn, offer protection.52 In these ways, neutrophils 

play an important role in initiating the immune response, though more research is still needed to 

further elucidate neutrophilic MTB concealment and how this contributes to MTB clearance. 

 

Macrophages recognize pathogen-associated molecular patterns (PAMPs) on MTB via Toll-like 

receptors (TLR)—primarily TLR2, TLR4, and TLR9.53 TLR2 recognizes lipids such as 

lipoarabinomannan and mannosylated phosphatidylinositol in the cell wall of MTB and 

lipoproteins such as LpqH and LprG found in MTB membrane vesicles.53 On the other hand, 

TLR4 binds with lipopolysaccharide found in Gram-negative bacteria, as well as lipomannan and 

mycobacterial proteins.53 Finally, TLR9 recognizes undermethylated CpG motifs in MTB 

DNA.53 The activation of these receptors causes downstream activation of NF-kB which initiates 

the production of pro-inflammatory cytokines such as TNF, IL-1, and IL-12.53 These cytokines 

trigger apoptosis of the macrophages and recruit other immune cells such as neutrophils and 

dendritic cells to the lungs. Additionally, IL-12 secreted by the macrophages promotes the 

production of IFN- by T cells and NK cells.53 Another role that macrophages play is in 

granuloma formation. Infected macrophages release cytokines that recruit other macrophages, 

neutrophils, B cells and T cells.54 The cells aggregate around the infected macrophages, and this 

mass of cells becomes fibrotic, walling itself off to infection.53 While these granulomas can 

prevent MTB from dispersing to other areas of the lung, they also provide a location inaccessible 
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to drugs where the bacteria can grow.55,56 The primary type of granuloma in TB is the caseous 

granuloma, though others such as necrotizing neutrophilic, non-necrotizing, and fibrotic also 

exist.57 Caseous granulomas are formed around a necrotic area with a layer of macrophages and 

an outermost layer of T cells and B cells.57 Non-necrotizing granulomas, however, are primarily 

composed of macrophages.57 These granuloma types can either be protective or can promote 

transmission of MTB. For example, granulomas with high numbers of neutrophils after 

granuloma necrosis can lead to transmission of MTB.58 However, granulomas with fibrotic tissue 

can sequester MTB, controlling growth.58 Thus, macrophages can exhibit both protective 

qualities through release of pro-inflammatory cytokines and MTB sequestration and non-

protective qualities by providing a niche for MTB to grow and disseminate. 

 

When dendritic cells uptake bacteria, the cells mature and migrate to the draining lymph node 

where they present the bacterial antigens to naive T cells.59 Depending on the costimulatory 

molecules and Major Histocompatibility Complex (MHC), dendritic cells stimulate the 

activation of CD8 T cells (through MHCI) and differentiation of CD4 T cells (through MHCII) 

into Th1, Th2, or regulatory T cells which then migrate to the lungs.59 Once back at the site of 

infection, these cells produce cytokines that are either able to control infection or assist it. Some 

studies show that MTB-infected dendritic cells secrete IL-12 and IFN-, which induces the 

production of IFN-.60 This IFN- has been shown to inhibit MTB replication and induce 

apoptosis of macrophages with high MTB bacterial loads.60,61 However, other studies show that 

MTB-infected dendritic cells have impaired maturation and ability to induce antigen-specific T 

cells, thereby hindering the immune response to MTB.62,63 Consequently, while we know that 
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dendritic cells are crucial for protection, it is not fully understood how MTB modulates dendritic 

cell ability to fight infection. 

 

Adaptive Immune Response 

The pathogen-specific adaptive immune response develops after encountering a pathogen for the 

first time. This adaptive immune response is generally composed of T cells and B cells, 

described below.  

 

T cells develop in the thymus and are considered naive until they first encounter antigens 

presented by dendritic cells in the lymphoid organs.64 These T cells then undergo clonal 

expansion and can differentiate into various T cell subsets specified by the cytokines present 

during antigen exposure.64 Following activation, the T cells enter the bloodstream and travel to 

peripheral tissues to fight infection.64 

 

As evidenced through depletion studies, CD4 T cells are critical for controlling MTB infection.65 

CD4 T cells are capable of producing both proinflammatory and anti-inflammatory cytokines. In 

the presence of IL-12 and IFN-, CD4 T cells differentiate into T Helper 1 (Th1) cells.66 Th1 

cells are generally associated with combating intracellular pathogens.66 In the context of 

tuberculosis, Th1 cells produce cytokines which are important in controlling MTB infection.67 

However, the cytokines IFN- and TNF- alone are not enough to protect against MTB. Another 

cell type produced in response to infection are T Helper 2 (Th2) cells. Th2 cells generally 

combat extracellular pathogens and are involved in allergic inflammation; they are unable to 

protect against MTB infection.68 Th2 cells express IL-4, IL-5, and IL-13 and are induced by 
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presence of IL-4.66 GATA3, a Th2 regulator, suppresses differentiation of cells into Th1, and T-

bet, a Th1 regulator, suppresses differentiation of cells into Th2.66,69 Thus, a delicate equilibrium 

is formed between Th1 and Th2 cells. An additional cell type important during infection are 

Regulatory T cells (Treg). Tregs produce IL-10, an anti-inflammatory cytokine that regulates the 

inflammatory response.70 The timing and number of these Tregs is crucial. If too many Tregs 

infiltrate at the beginning of infection, they can downregulate inflammation and the protective 

immune response too much and allow pathogens to establish chronic infection.71 However, if 

there are too few Tregs, especially late in infection, inflammation caused by immune cells can 

lead to tissue damage.71 Similarly, a balance of Tregs is needed to control infection and prevent 

tissue damage. While we know that a balance of Th1, Th2, and Tregs is essential, there is a need 

to understand the optimal number of Th1, Th2, and Tregs necessary for protection. 

 

CD8 T cells have two main effector functions to kill infected cells. The first function is to release 

cytotoxic granules such as perforin, a protein that binds to the plasma membrane of target cells 

and forms pores, and granzymes.64 Cytotoxic granzymes can then initiate the caspase pathway 

and programmed cell death.64 The role of granzymes and perforin in MTB infection is contested. 

Some research shows that these granules are capable of both killing extracellular MTB and 

reducing the number of viable intracellular MTB.72 Additional research shows that CD8 T cells 

utilize perforin to lyse MTB infected macrophages.73 However, conflicting evidence has shown 

that the loss of perforin in knockout mice does not affect the course of MTB infection.74 This 

may be explained by a perforin-independent method by human MTB-specific CD8 T cells for 

killing MTB.75 The second mechanism for killing infected cells involves producing cytokines, 

such as IFN-, TNF-, and IL-10. While IFN- can initiate apoptosis in infected macrophages, 
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TNF- can initiate either apoptosis or necrosis of target cells.61,76 Whereas apoptosis results in 

decreasing the viability of MTB, necrosis is actually a mechanism by which MTB can escape 

macrophages and disseminate.77 Thus, the expression of TNF- can have opposing effects on the 

pathogenicity of MTB. Additionally, although IL-10 is typically considered an anti-inflammatory 

cytokine, recent human studies have identified antigen-specific CD8 T cells that produce Th2 

cytokines such as IL-10; these cells have been shown to inhibit MTB growth and activate B 

cells.78 Thus CD8 T cells play an important role in conjunction with other immune cells in 

combating MTB infection, but more research is needed to understand the optimal MTB killing 

mechanisms. 

 

Memory T cells are a subset of long-lived antigen-specific CD4+ or CD8+ T cells that can 

provide protection upon reexposure.79 While it is not fully understood how memory T cells are 

generated, there is evidence to support the theory that memory T cells are derived from effector 

cells.80,81 There are four main types of memory T cells—effector memory, central memory, and 

tissue-resident memory, and stem-cell like memory—which vary in their function and homing 

abilities. Effector memory T cells are typically found in circulation and peripheral tissues such as 

the lungs, skin, and gut.82,83 As these cells are found at initial sites of infection, they provide a 

first line of defense against an invading pathogen.82 It has been shown that BCG can elicit the 

production of these effector memory T cells which are crucial for protection.84 Tissue-resident 

memory T cells, on the other hand, are maintained in specific tissues and do not recirculate.85,86 

In this way, they can also act as the first line of defense against pathogens. Increases in these 

tissue-resident memory T cells in the lungs have been associated with better protection from 

MTB.87,88 If the initial site of infection is not contained, central memory cells can fight off 
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pathogens in lymphoid organs such as the lymph nodes, spleen, and bone marrow.82,83 It has been 

shown that CD4+ KLRG- IL-2+ central memory T cells can control MTB growth even when the 

population is boosted late in infection.89 However, it is hypothesized that BCG does not 

adequately establish central memory T cells populations following vaccination.84 Finally, stem 

cell-like memory T cells are capable of proliferating and differentiating into multiple different 

memory phenotypes.90 During MTB infection, these stem cell-like memory T cells are induced 

and produce Th1 cytokines, which may offer protection.91 Interestingly, all of these cell types 

seem to have certain plasticity with the ability for central memory and effector T cells to 

differentiate into tissue-resident memory T cells.85 While these cell types have all been shown to 

have some protective capabilities, there is a need for more research to elucidate the specific 

levels of each cell type required for protection. 

 

While the utility of B cells in fighting MTB infection has only recently been recognized, there is 

increasing evidence to support the important role of B cells in fighting MTB infection through 

production of antibodies, secretion of cytokines, and presentation of antigens. During 

development, B cells undergo VDJ recombination in which a set of unique, diverse antigen 

receptors are produced.92 This allows the B cells to recognize a variety of different molecules. B 

cells are then activated when their B cell receptor binds to antigens; the B cells class switch, 

allowing them to produce either IgA, IgG, or IgE.92 These antibodies bind to foreign material and 

can neutralize pathogens, target cells for opsonization or lyse bacterial cells through activating 

the complement system.93 In MTB infection, antibodies produced by B cells play a role in 

defense by targeting extracellular MTB for opsonization.94,95 B cells also secrete a variety of pro-

inflammatory and anti-inflammatory cytokines that can modulate the immune response.96 Two 
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examples of cytokines produced by B cells are IL-6 and IL-21. The production of IL-6 by B cells 

promotes polarization of Th1 cells, and IL-21 recruits T cells to the lungs and promotes CD8+ T 

cell priming.93,96,97 These T cells can then proliferate and kill MTB at the site of infection in the 

lungs. Finally, activated B cells can promote dendritic cell maturation and present MTB antigens 

to CD4+ T cells.98,99 Due to the neglect for MTB B cell research for many years, there is a need 

for more concerted efforts to understand the full capacity of B cells to fight MTB infection. 

 

While extensive research has been performed to better understand the immune response to MTB, 

there are still many questions about how the immune system responds and protects against MTB 

infection. Thus, it is challenging to develop a vaccine or boosting strategy because a protective 

profile of cells does not yet exist. 

 

Vaccines 

Vaccines are crucial for eliminating diseases. In the development of a vaccine, there are many 

factors that can affect efficacy including the type of vaccine, the vaccination route, and the 

timing of vaccine administration. All of these factors also play a role in the lengthy timeline for 

developing a vaccine. Specific to the BCG, differing efficacy of vaccine strains also affect 

research and protection against MTB across the world. These factors are described briefly below. 

 

Types of Vaccines 

There are three main types of vaccines typically tested to combat MTB disease: 1) live, 

attenuated vaccines, 2) inactivated/killed vaccines, and 3) subunit/recombinant vaccines. 
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Attenuated live vaccines are composed of live bacteria or viruses that have been weakened to the 

point that they are incapable of causing disease.100 As these bacteria and viruses can replicate and 

similarly mimic natural infection, they typically produce a strong, long-lasting immune 

response.100 There are multiple ways to develop an attenuated vaccine. Traditionally, bacteria 

were cultured and passaged many times until they were less virulent or unable to cause disease in 

humans.101 This is how BCG was initially produced by Albert Calmette and Camille Guérin. 

They cultured Mycobacterium bovis, a Mycobacteria similar to MTB that causes disease in 

cattle, in a medium of ox bile, glycerin, and potato until the bacteria no longer caused 

tuberculosis in animal models.102 Now with the use of CRISPR/Cas9, genes relating to 

pathogenicity can be deleted to create a safer version of a replicating virus or bacteria while 

preserving many of the epitopes.103,104 An example of a live, attenuated tuberculosis vaccine 

developed in this way is the ESX5 KO. This vaccine utilizes an MTB mutant with the ESX5 

secretion system deleted.105 This attenuated vaccine has shown to be protective against MTB 

when used in conjunction with BCG in both mice and guinea pigs.105 One disadvantage of live 

attenuated vaccines is that they have the ability to mutate and revert back to a pathogen that can 

cause disease.100 Another disadvantage is that these vaccines must maintain cold-chain, and they 

may not be suitable for immunocompromised individuals.100  

 

Inactivated or killed vaccines typically use chemicals or heat to eradicate a pathogen’s ability to 

replicate.106 Because the pathogen cannot replicate or cause disease, they have better safety 

profiles for immunocompromised individuals than live vaccines.106 However, because their 

protection is not as long lasting, a booster may be needed.106 A heat-killed Mycobacterium 

vaccae vaccine for tuberculosis was tested in the 1990s, and while it was capable of stimulating 
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production of CD8+ T cells in vitro, it did not offer significant protection in human clinical 

studies.107,108 

 

Subunit or recombinant vaccines utilize specific parts of a pathogen, such as proteins and 

antigens, to generate an immune response.109 They typically create a strong immune response to 

that specific antigen, however, because they only contain some parts of a pathogen, they are not 

as immunogenic as inactivated or live vaccines.110 Thus, these subunit vaccines can be given to 

immunocompromised individuals because the subunits of a pathogen alone cannot cause 

disease.109 Recombinant vaccines, specifically, insert the DNA of an antigen into bacteria, yeast, 

or cells to stimulate the immune response.111 MVA85A is an example of a recombinant vaccine 

tested against MTB. It is composed of a modified Vaccinia Ankara virus that expresses the 

protein 85A found in Mycobacterium tuberculosis.112 While the vaccine showed promise in 

protecting against MTB in animals, it proved ineffective in human trials.112  

 

Vaccination route 

The route of administration can greatly affect the efficacy of vaccines. There are six main 

vaccination routes: intradermal, subcutaneous, intramuscular, oral, intranasal, and intravenous. 

While intradermal vaccines are injected into the dermis, or top layer of skin, subcutaneous 

vaccines are delivered to the subcutaneous tissue which lies between the skin and the muscles 

(Figure 1.1). Intramuscular vaccines are injected into the muscle. Vaccines with adjuvants that 

cause strong local inflammation are typically given intramuscularly to avoid skin irritation.113 

Oral and intranasal vaccines are advantageous in that there is relatively no pain involved in these 

vaccinations which are delivered to the mouth and nose, respectively. Fairly uncommon for 
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vaccines, intravenous injections are injected directly into the veins to rapidly enter the 

bloodstream. 

  

Figure 1.1: Vaccination route figure from “Clinical Procedures for Safer Patient Care” by 

Glynda Rees Doyle and Jodie Anita McCutcheon, used under a CC BY 4.0.114 Vaccination 
routes illustrating intramuscular, subcutaneous, intravenous, and intradermal injections.  
 

Typically, BCG is given to neonates via an intradermal injection.113 In a recent paper by Darrah 

et al., researchers compared MTB protection from intradermal, aerosolized, and intravenous 

BCG immunization in non-human primates.115 Intravenous vaccination induced more antigen-

specific T cells, and six out of the ten intravenously vaccinated animals had no detectable MTB 

or signs of infection following infection.115 However, intravenous delivery of BCG to neonates 

has many challenges including ease of delivery.116 Even an intradermal injection is supposedly 

difficult to administer to babies.113 If an oral or intranasal vaccination route exhibited protective 

qualities, they may provide a better alternative to an intravenous or intradermal injection as they 

would be easier to administer to babies. 

 

 

 

https://creativecommons.org/licenses/by/4.0/
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Vaccination Timing 

Another factor to consider in developing vaccine studies is timing. Typically, the BCG vaccine is 

given at birth, but studies have shown that pushing back the time from birth to 10 weeks can 

increase the numbers of BCG-specific T cells that express IFN-, TNF-, and IL-2.117 When 

considering a BCG boosting strategy the complexity of identifying the optimal time to give both 

the BCG and booster vaccine greatly increases. 

 

Vaccine Development 

The average time for vaccine development is 10-15 years.118 This vaccine development pipeline 

has six main stages (Figure 1.2). Traditionally, in the discovery research phase, basic laboratory 

research is performed to identify target antigens of interest, which may take 2-4 years.119 In the 

preclinical stage, experiments are performed in vitro in cells and then, if promising, in animal 

models.120 Research can then move into vaccine trials in humans after approval by the FDA to 

begin testing. Phase I trials determine the safety of the vaccine in fewer than 100 individuals.120 

Phase II trials increase the number of participants to the hundreds and test the dosing, 

immunogenicity, and safety.120 Finally, in Phase III trials, vaccines are tested to determine 

efficacy, side effects, and safety in a larger group of thousands of patients.120 These vaccine trials 

can be exceedingly expensive and on average there is only a 6% percent chance of success.121 

The cost of moving a vaccine from preclinical trials through the end of Phase 2a trials can cost 

on average $31-68 million.121  
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Figure 1.2: Vaccine Development and Timeline. It can take between 10-15 years for vaccines 
to move from the discovery phase through FDA approval. 
 

In August 2020, there were 14 tuberculosis vaccine candidates in clinical trials.122 The most 

promising candidate is M72/AS01E which has shown about a 50% efficacy in preventing active 

TB infection during Phase II trials.2 However, further studies in Phase III need to be conducted 

to confirm these results. 

 

BCG Strain Efficacy 

When Calmette and Guérin successfully created the BCG vaccine by serially passaging 

Mycobacterium bovis, the vaccine was disseminated to various laboratories across the world.123 

These strains were further passaged and genetically divergent daughter strains were produced.123 

The different strains produce distinct immune responses, different rates of adverse events and 

susceptibility to anti-tuberculosis drugs, and varying efficacy against MTB.7 Despite the wide-

spread use of BCG, there is insufficient research to determine which BCG strain has the best 

protection.7 This paucity of data is due to many complexities. For example, there is surprisingly 

little documentation on the strains that countries utilize, and some countries use multiple strains 

of BCG to vaccinate individuals.7 Therefore, in designing vaccine studies, the specific BCG 

strain used can significantly impact results.  
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Animal Models 

Although animal models cannot provide direct comparisons to human infection, it is not possible 

to test every potential vaccine or treatment on humans first. While humans are the only natural 

hosts of MTB, animal models can nevertheless provide valuable information about general 

pathogenesis and immunity.124 Four animal models used in MTB research are described briefly 

below—mouse, guinea pig, minipig, and non-human primate. 

 

Mice are commonly used in MTB studies for a multitude of reasons. They are inexpensive, easy 

to house, multiply quickly and can be genetically manipulated to study specific immune 

functions. There are similarly extensive immunological reagents for use in the murine model. 

Different strains of mice have varying susceptibility to MTB. C57BL/6 are more resistant to 

MTB than BALB/c mice which are more resistant than C3Heb/FeJ mice.125,126 However, one 

advantage of C3Heb/FeJ mice is that they form granuloma types that are more similar to humans 

such as necrotic tubercles.127 Each of these mouse strains upregulates different genes and elicits 

varying levels of immune cells and can be used to study different aspects of disease and better 

understand susceptibility to disease.128 While mice are a cost effective and simple model to work 

with, they do not exactly replicate human immunology and pathology. For example, mice do not 

develop latent infection.129 Further, many mouse models used in studies are inbred. These inbred 

models offer advantages in that they are genetically similar, so the output measures have lower 

variability, and the results are more likely to be reproducible.130 However, results with these 

mice do not account for genetic diversity exhibited in the real world. Recent innovations in the 

field of animal research have led to the development of a “Collaborative Cross” mouse 

population. The Collaborative Cross (CC) consists of recombinant inbred mouse lines derived 
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from eight inbred founder strains.131 This has led to high genetic variation within the CC strain 

which more closely mimics human genetic diversity.131 Nonetheless, using these mice in 

research requires larger sample sizes due to greater result variability. 

 

Guinea pigs are another animal model used to study MTB. Guinea pigs can become infected with 

MTB after very low doses (20-50 bacilli), making them highly susceptible to MTB; almost all 

low-dose infections result in terminal endpoints 30 weeks after infection.132 Guinea pigs also 

exhibit pathology more similar to humans than mice. Lesions in guinea pigs can progress to 

necrosis similar to humans.133 This is an important factor in MTB research as human necrotic 

tissue can shelter live MTB bacteria and offer protection from drugs.134 Guinea pigs are also 

capable of producing CD1-restricted T cells.135 In humans, group 1 CD1 molecules play an 

important role in MTB protection by presenting mycobacterium lipids and antigens to T cells.135 

Mice do not have these group1 CD1 molecules, providing another advantage to the guinea pig 

model.135 However, there are few immunological reagents commercially available for guinea 

pigs.  

 

Minipigs are another MTB animal model that have recently undergone evaluation.136-138 They are 

capable of coughing and sneezing, and natural transmission of MTB from infected to uninfected 

animals co-housed together has also been shown.136  Physiologically, minipigs also have a highly 

similar lung structure to humans, and pathology in infected minipigs shows human-like 

heterogeneity of pulmonary lesions.136 Pigs also produce double positive (CD4+ CD8+) T cells 

like those found in humans.139,140 In non-human primates, these double positive cells have been 

shown to exhibit cytolytic markers and Th1 cytokines and may play an important role in 
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controlling MTB infection.141 However, there are few immunological reagents available for 

minipigs. Another limitation with the minipig model is that they must be housed in large animal 

facilities as the adult minipigs can weigh between 45 and 220 pounds (depending on the 

breed).142 Moreover, due to funding scarcity, few studies have been conducted with MTB and 

minipigs to solidify the minipig as a satisfactory animal model for tuberculosis.  

 

Non-human primates infected with MTB most closely resemble human disease as non-human 

primates are genetically, physiologically, and immunologically similar to humans.124 Typically, 

vaccines and therapies are tested in other animal models before proceeding to use in non-human 

primates. Unlike other animal models, macaques exhibit both latent and chronic progressive 

infection.124 They also develop a variety of lesions highly similar to human disease.55 However, 

these animals are expensive and there are relatively few facilities in the US that can house these 

animals and perform these experiments.55,143  

 

Techniques and Tools for Studying Mycobacterium tuberculosis 

In MTB research, there are a variety of tools used to characterize the immune response, study 

disease state, and identify small molecules. The two main techniques—flow cytometry and 

metabolomics—utilized in this dissertation are described here. 

 

Flow cytometry 

Flow cytometry is an example of a technique used to analyze the properties of cells. Cells are 

stained with fluorescently conjugated antibodies and directed single file through a flow 

cytometer. A laser light source excites the fluorescent antibodies causing them to emit light that 
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can then be measured. This gives information on the type and function of cells present in a 

sample.  

 

Traditional analysis of flow cytometry data occurs on two-dimensional plots. Manual selection 

of cells on these plots, often referred to as “gating”, is how cell populations are identified. This 

has typically been done using controls called Fluorescence Minus One (FMOs).144 These 

samples contain all of the markers within a panel except for one. This allows the user to know 

the amount of spillover from other fluorescent markers into each channel. A gate is placed 

around this negative population in FMOs and can be subsequently copied onto all samples 

(Figure 1.3). While this method has traditionally been used to gate cells, it is both subjective and 

time consuming.  

 

Figure 1.3: Using FMOs to gate a sample. The CD28 FMO contains all markers within the 
panel except for CD28 (left). Therefore, a threshold gate can be placed to show that any signal 
greater than what is shown in the FMO plot should be positive. This gate can then be copied onto 
the sample to identify the percentage of cells that express CD28 (right). 
 

Efforts have been made to develop tools to analyze flow cytometry data more efficiently. Some 

of these tools include t-Distributed Stochastic Neighbor Embedding (t-SNE) and flow Self 

Organizing Maps (FlowSOM), among others.  
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t-SNE is a machine learning algorithm that transforms high-dimensional data into two-

dimensional or three-dimensional plots.145 It utilizes a Gaussian probability distribution to 

calculate similarities between data points.145 While it is able to retain local similarities within the 

data, global similarities are often lost.146 Further, this method is typically computationally 

intensive; it requires downsampling, or random sampling, to select only some of the cells from 

each sample.147 While this shortens the amount of time to run the algorithm, important 

information can be lost.147 This method also has difficulties identifying rare cells as many of the 

cells are removed in downsampling. Recent optimization in the code, referred to as opt-SNE, has 

reduced the computation time and improved data resolution, but datasets must still be 

downsampled and rare populations may still be lost.147  

 

FlowSOM is another machine learning algorithm developed in 2015.148 It clusters cells into 

nodes based on similar marker expression. It then builds a minimal spanning tree to connect 

nodes that are most similar. While this algorithm provides great information on overall trends in 

the data, because each node is an average of all of the cells within the node, rare populations are 

often lost. Additionally, the expression of each marker within a node is not representative of all 

cells within the node.  

 

While both of these analysis methods can provide information on the structure of the flow 

cytometry data, they are not able to incorporate important controls such as FMOs to determine 

positive and negative expression of markers. Further, these methods are not able to easily 

incorporate other data from the experiment such as colony forming units.  
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Metabolomics  

Metabolomics is another measure that can be used to study disease in humans or animals. 

Metabolites are small molecules formed during metabolism. Identification of metabolites during 

disease can help aid in diagnosis. It can also help understanding the underlying processes that are 

occurring during health and infection. 

 

While genes give us valuable information on encoded capabilities, genes are subject to 

epigenetic changes.149 Proteins, created from genes, give a closer look at processes taking place, 

but proteins are subject to post-translational changes.149 Metabolites give us the most accurate 

representation of what is happening both inside and outside of cells. There are a variety of 

metabolites and metabolic pathways that play a role in MTB infection. MTB has also been 

shown to cause changes in cellular metabolic pathways that in turn affect cell function.150 

 

One machine used to study metabolomics is Liquid Chromatography-Mass Spectrometry (LC-

MS). LC-MS utilizes the physical separation of liquid chromatography with mass analysis in 

mass spectrometry to detect compounds in a sample.151 Samples are injected into the liquid 

chromatography portion of the machine and analytes are separated based on interactions with the 

stationary phase such as polarity. The strength of these interactions determines how quickly the 

analytes flow through the column. The time it takes for these analytes to flow through the 

column is called retention time. The analytes are then vaporized and charged to an ionized state 

where magnetic fields are used to record the mass-to-charge ratio and abundance of each ion. 
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Analysis of metabolomics data requires peak detection to pick out the different components in 

the sample.152,153 Next, peaks are aligned across samples to correct for differing retention 

times.152,153 After alignment, hundreds or thousands of t-tests are used to calculate the differences 

between experimental groups.152,154 The analytes with differences can then be putatively 

identified or a pathway analysis can be run to determine the putative pathway differences 

between groups. One limitation of this method is that it is a univariate method for identifying 

interesting metabolites. In many experiments, there are covariates of interest that cannot be 

accounted for with this method such as time point and vaccination status. Furthermore, these 

methods cannot be combined with other dependent variables obtained during the experiment 

such as abundances of immune cells or bacterial burden. 

 

Research Rationale and Research Aims 

There is a deep need to develop a better tuberculosis vaccine. In order to do this, we must better 

understand the relationship between the immune response, MTB, and candidate vaccines. These 

relationships can be examined using novel tools to help us gain additional knowledge. The 

research outlined in this dissertation has three main goals: 

 

Specific Aim 1: To develop a flow cytometry analysis pipeline that aids in identification of 

immune cell populations. Hypothesis: Researchers using this pipeline will be able to analyze data 

more efficiently and with less bias. In addition, results will be comparable to traditional gating 

analysis methods.  
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Specific Aim 2: To test a novel BCG vaccination boosting strategy utilizing two drugs—losartan 

and propranolol. Hypothesis: The use of losartan and propranolol will induce better protection 

against Mycobacterium tuberculosis infection by reducing inflammation, enhancing antigen 

presentation, and promoting T cell polarization to Th1 cells. 

 

Specific Aim 3: To use a novel integrative metabolomics approach to identify correlations 

between immune cells and metabolites during Mycobacterium tuberculosis infection. 

Hypothesis: There are metabolic profiles correlated with immune cells that can be identified via 

a novel flow cytometry and metabolomics analysis. Further, metabolites associated with 

glycolysis, the pentose phosphate pathways, and amino acid synthesis pathways will have a 

positive correlation with activated T cells. 

 

The research in this dissertation aims to provide tools for analyzing large preclinical datasets and 

understanding how the immune system responds to both MTB and vaccines. These tools can 

hopefully provide researchers with new insights that can lead to better tuberculosis vaccines. 
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CHAPTER 2— CYTO-FEATURE ENGINEERING: A PIPELINE FOR FLOW CYTOMETRY 

ANALYSIS TO UNCOVER IMMUNE POPULATIONS AND ASSOCIATIONS WITH 

DISEASE*1 

 
 
 
Introduction 

Flow cytometers can now analyze up to 50 parameters (antigens, size, granularity, cytokines, 

transcription factors, etc.) per cell and millions of cells per sample.1 Conventional flow 

cytometry data analysis uses manual gating of cells on 2D plots to distinguish populations 1-2 

dimensions at a time; this makes it both subjective and time consuming (up to 15 hours per 

experiment).2 Better methods are therefore critically needed to take full advantage of this 

powerful technology. Researchers have responded with open-source tools, including tools for 

automated gating to remove user input bias (e.g., OpenCyto) and tools to identify and cluster cell 

populations concurrently using all parameters (e.g., FlowSOM, t-SNE).3-5 While powerful 

advances, these new tools lack a straightforward way to integrate data from important technical 

controls or to compare resulting cell population with other experimental measurements. Work is 

ongoing across several research groups to extend existing open-source tools to address some of 

these gaps. CytoCompare and Cytofast, for example, focus on data analysis after clustering.6,7 

However, few tools exist that allow users to incorporate the many flow cytometry controls 

 
* Much of this work was published in Scientific Reports: Fox, A., Dutt, T.S., Karger, B. et al. Cyto-Feature 
Engineering: A Pipeline for Flow Cytometry Analysis to Uncover Immune Populations and Associations 
with Disease. Sci Rep 10, 7651 (2020). https://doi.org/10.1038/s41598-020-64516-0. It was published 
under a Creative Commons license; a copy of this license can be found here: 
http://creativecommons.org/licenses/by/4.0/. We have added an additional section “Testing available flow 
cytometry analysis techniques” which discusses other methods that we tested before ultimately 
developing the pipeline described in the paper to the supplemental materials. 

https://doi.org/10.1038/s41598-020-64516-0
http://creativecommons.org/licenses/by/4.0/
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required for good data acquisition and analysis, and the output from the clustering tools available 

is often difficult for immunologists to interpret. 

 

We have developed an end-to-end method for analyzing flow cytometry data that aims to address 

these limitations. For flow cytometry data, a parameter often represents a biologically binary 

phenomenon—that a marker is present or missing on a cell. While variation exists in the flow 

cytometry measurements for that parameter, within cells in each binary group, that within-group 

variation is often uninformative noise. Our pipeline leverages this underlying biology—it uses 

feature engineering to create from the original data to create binary features for whether each cell 

has a positive or negative value for each marker. It does this using either external thresholds 

identified based on Fluorescence Minus One controls (FMOs) or the availability to separate the 

data based on clear population separation. The pipeline therefore identifies cell populations 

based on positive/negative combinations of each flow cytometry marker, a description that is 

readily interpretable by immunologists. 

 

In four main steps, the pipeline: (1) cleans the data for live, single cells; (2) feature engineers the 

data based on FMO cutoffs or population separation; (3) analyzes the flow cytometry samples for 

all populations present in the sample and filters to populations above a population size threshold; 

(4) visualizes resulting populations through heatmaps of cell phenotypes and time series plots 

within experimental groups. Furthermore, it allows the use of statistical testing to identify cell 

populations associated with other experimental measurements (e.g., disease burden as measured 

through colony forming units) and novel populations induced by any experimental or clinical 

condition. All steps in the pipeline are modular, allowing each to be modified or replaced 
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depending on the research question and features of the experimental data. As a case study, we 

illustrate the pipeline on a study involving Mycobacterium bovis Bacille Calmette-Guérin 

(BCG)-vaccinated or control (Phosphate buffered saline (PBS)-injected) C57BL/6 mice infected 

with Mycobacterium tuberculosis (M. tuberculosis). We further validate the pipeline analyzing 

human whole blood for B and T cells. 

 

Materials and Methods 

Experimental Setup. The experiment was designed to compare T cell populations between 

BCG-vaccinated and control PBS-vaccinated mice following infection with M. tuberculosis. The 

populations could then be compared to the bacterial load (CFUs) to associate the immune cells 

with disease. 

 

Animals. C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME). The 

mice were retained in a BSL-3 facility at Colorado State University, and all experimental 

protocols were approved by the Institutional Animal Care and Use Committee at Colorado State 

University. All methods were carried out in accordance with relevant guidelines and regulations 

for care and use of laboratory animals. 

 

Vaccinations. Mice were vaccinated subcutaneously with 1 x 106 CFU M. bovis BCG Pasteur or 

100 µL of phosphate buffered saline (PBS) (Corning, Corning, NY). 

 

Mycobacterium tuberculosis Infection. Twelve weeks after vaccination, mice were aerosol 

challenged with M. tuberculosis HN878 grown in 7H9 broth and stored at -80°C. The M. 
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tuberculosis was suspended in PBS and aerosolized using an aerosol chamber. Aerosolization 

delivered 164 CFU/animal confirmed via plating whole lung homogenates on the same day of 

infection. 

 

Tissue Preparation.  Mice were euthanized by CO2 inhalation. The superior and middle lung 

lobes were removed and digested with DNase I- type IV Bovine (500 units/ml; Sigma-Aldrich, 

St. Louis, MO)/ Liberase (0.5 mg/mL; Sigma-Aldrich, St. Louis, MO) at 37°C for 30 minutes.  

The lungs were strained through a 70µm cell strainer and treated for 1 minute with Red Blood 

Cell Lysing Buffer (Sigma-Aldrich, St. Louis, MO) to lyse erythrocytes. Complete DMEM, 

composed of 500 mL of 1x DMEM (Corning, Corning, NY), 45 mL of fetal bovine serum (Atlas 

Biologicals, Fort Collins, CO), 4.5 mL MEM non-essential amino acids (Corning, Corning, NY), 

4.5 mL of Penicillin Streptomycin (10,000 units/mL Penicillin, 10,000 µg/mL Streptomycin; 

ThermoFisher Scientific, Waltham, MA), and 4.5 mL of L-glutamine (Sigma-Aldrich, St. Louis, 

MO), is then added to neutralize the solution. Lung cells were resuspended in 500 µL of PBS 

(Corning, Corning, NY). 

 

Flow cytometry and analysis. Following single-cell suspension of lung cells in PBS, cells were 

stimulated with 1x BD Golgi Stop, a protein transport inhibitor (BD Biosciences, Cat# 554724) 

in complete media for 3 hours in a 37 °C incubator. Cells were then washed with PBS and 

incubated with a 1:2,000 dilution of Zombie-NIR viability stain (BioLegend, San Diego, CA) for 

15 minutes in the dark at room temperature. After a wash with FACS Staining buffer (PBS 

(Corning, Corning, NY) containing 2% Fetal Bovine Serum (Atlas Biologicals, Fort Collins, CO) 

and 0.05% sodium azide (Thermo Fisher Scientific, Waltham, MA)), cells were incubated for 
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30 minutes at 4 °C with a fluorescently-labeled surface antibody cocktail containing a 1:200 

dilution of FC Block (See Appendix 1: Supplemental Table 2.4). Following a wash with FACS 

staining buffer, cells were incubated with 150 µL of 1x Permeabilization/Fixation buffer 

(Invitrogen, Carlsbad, CA) for 1 hour at room temperature. Cells were subsequently washed with 

150 µL of 1x permeabilization buffer (Invitrogen, Carlsbad, CA) before being incubated with an 

intracellular cytokine antibody cocktail overnight at 4 °C in the dark. Cells were then washed and 

finally resuspended in 1x permeabilization buffer. Eighteen markers were used to analyze 

memory T cell expression: Sca-1, CD3, CD62L, CD122, CD28, PD-1, CD103, CD44, CD4, 

CD8, CTLA-4, CD27, CD153, KLRG-1, IL-17, IFN-, IL-10, and TNF-α (Appendix 1: 

Supplemental Table 2.4). Antibodies and reagents were purchased from BD Biosciences, 

BioLegend, or Thermo Fisher Scientific. 100,000 events were collected per sample on a Cytek 

Aurora Flow Cytometer (Cytek, Fremont, CA) and analyzed with FlowJo version 10.5.2 

software and the cyto-feature engineering pipeline. Cell populations were identified by feature 

engineering of cells by phenotype and confirmed via traditional gating methods. Prior to the 

development of the pipeline, other flow cytometry analysis methods were also tested (Appendix 

1: Supplemental Text T2.1). 

 

Bacterial burden. One third lungs were placed in a Bullet Blender Blue (NextAdvance, Troy, 

NY) and homogenized at speed 8 for 4 minutes. Tissue homogenate was plated at a 1:5 dilution 

on 7H11 agar plates. The limit of detection is 15 CFUs for lungs. 

 

Human clinical data. Human clinical data was obtained and processed as previously 

described.8-10 All experimental protocols involving human subjects were approved by the Ethics 



 45 

Committee of the Institute of Medical Research of the Faculty of Medicine at the University of 

Antioquia and adhere to the ethical principles outlined in the Declaration of Helsinki. EDTA-

anticoagulated (4 mL) whole cells were obtained from peripheral blood of healthy volunteers 

aged 20-30 years, after written informed consent to participate. Most of them worked in the Sede 

de Investigación Universitaria (SIU) at Universidad de Antioquia and signed a written informed 

consent approved by the Ethics Committee of the Institute of Medical Research of the Faculty of 

Medicine at the University of Antioquia. They declared that they were not taking any medication 

and that they had neither an autoimmune nor active infectious disease.  

 

Thirty microliters of whole blood cells suspended in 100 µL eBioscience™ Flow Cytometry 

Staining Buffer (Catalog number:  00-4222-26) and stained with fluorochrome-conjugated 

mouse anti-human 0,5 µL CD45-PE-Cy7 (Clone HI30), 5 µL CD3-PE (Clone: OKT3), 7 µL 

CD19-Alexa Fluor® 488 (Clone: HIB19) and 5 µL CD27-APC (Clone M-T271) monoclonal 

antibodies for twenty minutes at room temperature. Erythrocytes were lysed with 300 μL of 

OptiLyse Buffer for 10 minutes and 300 μL of sterile deionized water for an additional 10 

minutes. The acquisition was performed in an LSR Fortessa II™ flow cytometer.  

 

Statistical analysis and reproducible code. Statistical significance for CFUs was determined 

using unpaired t-tests (p < 0.05) using the ggpubr package, R version 3.6.2. The R and package 

versions can be found in Appendix 1: Supplemental Figure S2.6.  

 

Data Availability. The datasets generated during and/or analyzed during the current study are 

available online. The flow cytometry data can be found at Flow Repository: 
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https://flowrepository.org/id/RvFrMfWyY0wR3ZM3cvlsAsQPBmAOXmMUzURGm1D8V0Sh

qSNnH2UCrPdpttuoqNS4. All other data can be found at: 

https://github.com/aef1004/cyto-feature_engineering in the “data” folder. 

  

Code Availability. Code to analyze the data and produce the graphs can be found at: 

https://github.com/aef1004/cyto-feature_engineering  

 

Results 

The workflow for the analysis pipeline includes reading flow cytometry data output, cleaning 

and feature engineering this data, performing data visualization, and performing hypothesis 

testing through integrating other experimental measurements (Figure 2.1). Each step is described 

in detail below, and a route map describing the method can be found in Appendix 1: 

Supplemental Figure S2.1.  

 

Cleaning data with gating input  

Flow cytometers use a standardized file format for outputting data, the .fcs file, which includes 

cell measurements, metadata describing data collection, and the Median Fluorescent Intensities 

(MFIs) of the fluorescently-conjugated antibodies of fluorescent probes.11 Multiple .fcs files 

generated from an experiment can be read into R and manipulated as a “flowSet” object.12 Our 

pipeline begins by reading experimental data into a “flowSet” object, then cleaning the data 

using the openCyto package (Figure 2.1). This package provides infrastructure for the use of 

reproducible algorithms to gate cells based on marker density.3 However, it alone is unable to 

control for instances where clumps of cells pass through the flow cytometer lasers, producing 

https://flowrepository.org/id/RvFrMfWyY0wR3ZM3cvlsAsQPBmAOXmMUzURGm1D8V0ShqSNnH2UCrPdpttuoqNS4
https://flowrepository.org/id/RvFrMfWyY0wR3ZM3cvlsAsQPBmAOXmMUzURGm1D8V0ShqSNnH2UCrPdpttuoqNS4
https://github.com/aef1004/cyto-feature_engineering
https://github.com/aef1004/cyto-feature_engineering
https://github.com/aef1004/cyto-feature_engineering
https://github.com/aef1004/cyto-feature_engineering
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erroneous results and subsequently skewing the data. To address this phenomenon, the pipeline 

incorporates the “SingletGate” function from the flowStats package, removing doublet or larger 

cell clumps.13 The pipeline then funnels the data through the “mindensity” function, selecting for 

leukocytes via a threshold filter that distinguishes between populations based on cell density.3 

Finally, a “mindensity” gate is used with a live/dead stain, to filter to data captured for live cells.3 

The data is next converted from a “flowSet” object into a dataframe object that complies with the 

“tidy data" standards, allowing further pipeline steps to draw on the powerful suite of “tidyverse” 

tools in R.14 

 

Feature engineering using FMOs 

 FMOs are often used in manual gating to control for spillover events, which are common during 

flow cytometry data collection.15 Take for example a panel consisting of 10 markers with 

different fluorophores. When excited, each of those 10 markers fluoresce at different intensities 

along the light spectrum. However, though they have different spectrums, tails of these 

spectrums can overlap. This overlap can lead to noise within a parameter’s measurements, and in 

extreme cases to the detection of false positives/negatives for presence or absence of a marker. 

FMOs are created experimentally; by running new samples where each sample has one marker 

removed, all cells are guaranteed to be truly negative on that marker. With FMOs, we can 

therefore identify a threshold for the maximum parameter values possible for true negative 

marker signal on cells to determine marker presence in fully stained samples.15 Incorporation of 

FMOs greatly reduces the subjectivity of manual gating and helps support unbiased analysis of 

flow cytometry data. Despite the importance of FMOs for accurate analysis, few flow cytometry 

computational tools exist that incorporate them into unsupervised analysis.16 
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Figure 2.1: Pipeline workflow. Initial data cleaning is performed on all FMOs and samples. A 
singlet gate on the root population gates out doublets (top panel under “Data Cleaning”). Debris 
is removed from the samples with a “mindensity” gate from the R package openCyto (middle 
panel under “Data Cleaning”), and then the live cells (those negative for Zombie NIR) are gated, 
also using a “mindensity” gate (bottom panel under “Data Cleaning”). The data is then feature 
engineered into binary data based on FMOs. It is then filtered to a smaller number of populations 
that may help answer a research question, such as CD3+ cells. Finally, the data is visualized and 
statistically analyzed, for phenotype identification, population correlation, cell percentage, and 
population and CFU correlation. 
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Our pipeline processes the data from FMOs to include in further analysis. Traditionally, FMOs 

have been manually gated to identify the upper threshold of a parameter’s value for negative 

cells. In our pipeline, we instead automate this analysis of the FMOs, measuring the threshold as 

the 99th percentile of the parameter values in each FMO (Figure 2.2). Noise can originate from 

very small particles or debris that pass through the flow cytometer. In an ideal world, a 100% 

threshold could be used, but in reality, the 99% threshold is used to account for this random 

noise. The user can assess this 99% threshold with the FMO plots in Figure 2.2 and adjust the 

thresholds if need be. The 99th percentile values are then saved and subsequently funneled into 

feature engineering of binary features (negative/positive) for each marker in the experimental 

data. 

 

Feature engineering identifies all cell phenotypes present in the samples  

Features are measurements in a dataset, such as the MFIs used in flow cytometry. Feature 

engineering is a machine learning technique that uses the original features in a dataset, possibly 

with the integration of external knowledge or data, to create new features that make the data 

easier to understand.17,18 
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Figure 2.2: Numerical feature engineering of FMOs. The 18 FMOs are shown with the 
individual marker MFI expression on the x-axis and Side Scatter (SSC-A) on the y-axis. The 
black vertical line indicates the 99th percentile threshold for identifying positive versus negative 
cells (i.e., 99% of the data is located to the left of the line in each plot). These thresholds are used 
on the subsequent samples to feature engineer new parameters on whether a cell positively or 
negatively expresses each marker. 
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For flow cytometry, FMOs can add information about the possible range of expression 

measurements for cells that are truly negative for a marker. The threshold identified by FMOs 

can be used to create new, binary features that capture whether the expression of each marker is 

positive or negative for the cell, thus simplifying overly redundant, continuous MFI data with 

noise resulting from spillover. In the pipeline, we feature engineer each parameter using the 

thresholds identified from the FMOs, so that positive expression on cells (values above the FMO 

cutoff) equal 1, and negative cells equal 0. 

 

For each cell in the experimental data, the cell phenotype is then identified based on the set of 

marker expressions (0’s and 1’s) of each population. Eighteen markers were used to elucidate 

memory T cell populations including markers for terminal differentiation and exhaustion in 

the M. tuberculosis case study. The pipeline identifies all cell populations (i.e., combinations of 

negative and positive marker expression values) for which at least one sample includes at least 

one cell. A total of 12,122 cell populations were identified in the samples for this study 

(Appendix 1: Supplemental Figure S2.2). As this number of populations is still very large, the 

data can be filtered to look at a smaller subset of the populations. In this case, we are specifically 

looking for CD3+ T cells that may mediate protection against M. tuberculosis infection. 

Immunologically, a protective population is unlikely to be present only in extremely small 

numbers. Therefore, in the filtering step of our pipeline we chose to filter to CD3+ T cell 

populations with population percentages greater than 0.5% in at least one sample (Figure 2.3a). 

This analysis filtered the cells to look specifically at larger populations, but an alternative filter 

could be used to look at rare populations that compose <0.1% of the sample, for example. 

 



 52 

The pipeline then classifies specific lineages and subsets of cells according to marker expression 

(Appendix 1: Supplemental Tables 2.1 and 2.2).19,20 The pipeline identifies cell phenotypes that 

may be overlooked in manual analysis, due to combinations of markers that are uncommon (e.g., 

cells classified as “unknown” in this analysis) or combinations that have not yet been linked to a 

disease or condition of interest. In the case study, for example, there are six populations that 

express CD153; CD153 has only recently been shown to shown to mediate protection against M. 

tuberculosis.21 These six double-negative populations likely would not have been gated for in a 

manual gating scheme, as thus far, the marker has only been shown to be present on CD4+ T 

helper cells.21 

While we used T cell lineages and subsets in the case study analysis, the pipeline could easily be 

modified for different panels. If a panel aims to identify myeloid cells, they could be classified 

by lineage as macrophages, neutrophils, dendritic cells, and then subset further, for example, by 

alveolar macrophages and interstitial macrophages. 

 

Correlation Between Identified Populations  

The pipeline then visualizes a correlation matrix comparing the percentage of cells in each of the 

populations (Figure 2.3b). This allows users to explore associations between cell populations. 

This plot can also allow for identifying unusual populations that do not behave like other 

populations within the same lineage. In the case study example, populations 21 and 28, which are 

T helper cell populations, are negatively correlated or uncorrelated with the other T helper cells 

(populations 19–31), and instead have patterns more similar to the identified double-negative cell 

populations. These are the only identified cell populations outside the  
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Figure 2.3: Feature engineering identifies CD3+ phenotypes and correlates identified 
populations. (a) The heatmaps show the CD3+ phenotypes that constitute greater than 0.5% of 
the live leukocytes in at least one sample. Green indicates positive expression, and blue indicates 
negative expression of all 18 markers used for analysis in the flow cytometry experiment on the 
x-axis. The plots are separated by four different CD3+ lineages based on CD4 and CD8 
expression (double negative immune cells, T helper cells, cytotoxic T cells, and double positive 
T cells). The “cell” column classifies cells as either central memory, effector, T stem-cell like 
memory, or unknown cells that need to be explored further. The “resident” column indicates if 
the population is a resident cell, as determined by expression of CD103. (b) The correlation 
across study samples between the percentage of cells in each population can be used to see the 
similarities and differences between different populations. Yellow indicates high positive 
correlation and purple is high negative correlation. Populations are grouped by cell lineages, and 
each number on the x-axis and y-axis identifies a separate cell population, corresponding to the 
population numbers in Figure 2.3a. 
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double-negative cells that are negative for interferon-gamma (IFN-) expression. Importantly, 

IFN- is well known to be strongly associated with protection against M. tuberculosis.22 As these 

cell populations do not behave similarly to the other T helper cells, they may be a good candidate 

for further, more targeted exploration in later experiments. 

 

Visualizing the percentage of cells in each population  

Whereas less modular pipelines may provide more limited options for visualizations at later 

stages of analysis, our pipeline’s modularity and its use of a common “tidy” data format provide 

the researcher wide flexibility to create visualizations suited to their research question and data 

characteristics through the ggplot2 package.14 For this study, the percentage of cells in each 

population at each time point is plotted to compare the dynamic changes in populations over time 

and between groups (Figure 2.4). Some populations may steadily increase or decrease over time, 

while others behave in unexpected ways. Comparing the two groups, we can see that some cell 

populations (e.g., population 20) are similar over time regardless of vaccination status. It is also 

possible to elucidate differences based on cell lineages. For example, the largest differences in 

population percentages occurs at Day 30 post-infection, before BCG-vaccination protection 

begins to wane.23 This difference primarily occurs in the double-negative CD3+ immune cell 

populations. This example visualization, and its accompanying code, is just one application of 

visualizations that could be created at this step of the workflow (see Appendix 1: Supplemental 

Figure S2.3 for two more examples). 
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Figure 2.4: Time series of percentage of cells in each population. Each small plot shows the 
time series of a single cell population identified in the pipeline at the three measured time points 
post-infection. Separate lines are shown for vaccinated (“BCG”) versus control mice. Each point 
represents average cell populations across all mouse replicates (4–5 per time point and 
vaccination status). The small plots give cell populations in the same order as Figures 2.3 and 
2.5, with population identification numbers corresponding across the three plots. The background 
color of each plot matches the cell lineages plotted in Figure 2.3a. 
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Integrating cell population measurements with other experimental measurements  

At this stage, the pipeline allows the integration of cell population measurements with other data 

from the experiment, such as lesion scores or gene expression. In the M. tuberculosis study, 

bacterial burden (expressed as log10-transformed Colony Forming Units (CFUs)) is a 

measurement of the number of bacteria found in the lung. These CFU measurements were found 

to vary between experimental groups in the case study data, with significantly higher bacterial 

burden at days 30, 60, and 90 post-infection in the control group compared to the vaccinated 

group (Figure 2.5a). It is of interest to investigate if certain cell populations identified through 

the pipeline, are associated with this measurement of bacterial burden, as this might help to 

identify cell populations possibly indicative of the host’s response to infection with or without 

vaccination. 

 

For this case study, the pipeline investigates associations between CFUs and cell populations 

using scatterplot visualizations and linear regression (Figure 2.5b). It tests the null hypothesis of 

a slope of zero for CFUs regressed on cell population size within a mouse’s lung (Figure 2.5b 

and Appendix 1: Supplemental Table 2.3). Further, the coefficient of determination (r2) was 

estimated between the CFUs and each cell population. This analysis identified that cells that co-

express CD44, CD153, and IFN- (populations 5, 7, 8) could be candidates for future 

experimental studies. They are potentially protective against M. tuberculosis infection, as a 

decreased bacterial burden is associated with a higher percentage of these populations. 
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Figure 2.5: Populations associated with bacterial burden. (a) The log-10 M. tuberculosis 
CFUs in each mouse at each time point is shown, separated into vaccinated (“BCG”) and control 
groups. Unpaired t-tests were used to calculate statistical significance (p < 0.05). (b) Each small 
plot shows the association between a specific cell population and bacterial burden across all 
samples for the experiment. The small plots give cell populations in the same order as Figures 
2.3 and 2.4, with population identification numbers and lineage colors corresponding across the 
three plots. The x-axis in each small plot gives the percentage of cells in a population, with each 
point providing the measurement from a single mouse. The y-axis gives the log-10 M. 

tuberculosis CFUs for that mouse. Estimates of how well the linear models fit the data between 
cell population sizes and log-10 CFUs are given on each plot (“r2”).  
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In this section of the pipeline, the user can modify the statistical model and visualization used in 

the case study for a wide range of alternatives. For example, the linear model fit in this step of 

the example pipeline is based on an assumption of linearity in the relationship between cell 

populations and CFUs, but exploratory analysis might identify that this assumption is incorrect. 

In this case, since the pipeline is modular, the code fitting the linear models can be replaced  

with R code to fit non-linear or non-parametric models. Further, the pipeline allows users to add 

analysis steps at this point. For example, when performing multiple statistical tests there is an 

increased possibility of identifying false statistically relevant comparisons.24 The user might 

want to adjust the acceptable p-values for the multiple comparisons made in fitting linear models 

for each cell population. The pipeline could be extended with the Benjamin and Hochberg False 

Discovery Rate correction (Appendix 1: Supplemental Table 2.3) or other multiple testing 

corrections (e.g., Bonferroni or Benjamini & Yekutieli).25-27 

  

Population validation via manual gating  

As with the development of any new tool to analyze data, the pipeline must be tested against a 

traditional method, in this case, manual gating, to ensure that similar patterns and populations are 

captured in both analyses. To investigate if the estimated cell population sizes were similar 

between the automated and manual gating, a population for which we observed a relatively high 

percentage of cells (population 3) was manually gated (Appendix 1: Supplemental Figure S2.4). 

The percentage of cells in each of the populations at the different time points are very similar to 

the percentages calculated in this analysis pipeline with an average absolute difference of 0.26%. 

There is also a very high correlation coefficient (ρrs = 0.99, p<0.01), indicating a strong positive 

association between the manual and pipeline gating (Appendix 1: Supplemental Figure S2.4).  
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 Running time  

Measurements for running time were made on a computer with 32GB RAM and a 4.2 GHz Intel 

Quad Core i7 processor. The initial data files contain a total of 7,299,424 cells (1.24GB); the 

FMO files contain 2,641,651 cells (0.57GB). Following gating, there were 468,754 cells from 

the FMOS and 1,023,402 cells from the sample data. These 1 million data points were input to 

the feature engineering algorithm. From the gating steps and feature engineering, through 

producing the plots in Figure 2.3a and Appendix 1: Supplemental Figure S2.2, the analysis script 

took 2.7 minutes running time. Half of this was spent on the gating steps (1.01 min). The running 

time was also evaluated based on the number of input cells to the feature engineering algorithm 

(Appendix 1: Supplemental Figure S2.5). It analyzes roughly 10,000 cells per second. 

  

Testing pipeline with clinical human whole blood  

Another dataset analyzing clinical human whole blood in a healthy individual was used to 

confirm the utility of this pipeline. This data was collected and compensated on a Fortessa II 

with a panel comprised of 5 markers: CD45, CD3, CD19, HLA-DR, and CD27. When used side-

by-side, FMOs are a more robust depiction of the fluorescent marker composition in a sample as 

they account for spillover from other channels. However, it is not always possible to run FMOs. 

When there is good separation between the positive and negative populations within a marker, it 

is acceptable to base the MFI cutoffs on the sample data.15 The “mindensity” function from 

the openCyto package was used on the sample to determine thresholds for the feature 

engineering (Figure 2.6a). Following feature engineering, a total of 19 populations were 

identified in the sample (Figure 2.6b). The CD45+ populations, or leukocytes, were filtered and 

subset according to B cell and T cell lineages (Figure 2.6c). The percentage of cells in each of 
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the populations is shown in Figure 6d. Finally, the comparison of the percentage of cells between 

the manual gating and the automated pipeline indicated high similarity between the two methods 

(Figure 2.6e,f). The Spearman correlation coefficient (ρrs) between the two methods is 0.96 with 

a p-value < 0.001. There is therefore slightly more discrepancy between automated and manual 

gating for this dataset compared to the murine lung cells, although the ranking agreement 

between the two methods is still very high. The use of this clinical dataset shows the utility and 

flexibility of the pipeline for conventional flow cytometry without the need for FMOs. 
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Figure 2.6: Testing the pipeline with human clinical samples. The data is first transformed so 
that it is viewable on a linear axis. (a) A “mindensity” gate from the R package openCyto is then 
used to determine the cutoff for positive and negative MFIs. (b) The data is feature engineered 
based on these cutoffs and identifies a total of 19 different populations. (c) The populations are 
then filtered to only view the leukocytes, or CD45+ populations. These populations are further 
subset by lineage. (d) The percentage of cells in each population is displayed. (e,f) Each 
population was manually gated in FlowJo and the difference in the percentage of cells from 
manual gating and the automated pipeline was compared. A table and plot compare the 
differences for each of the populations. Each point on the plot indicates a measurement for one 
of the 14 populations identified. The x-axis represents the value for the percentage of cells found 
via the automated pipeline, while the y-axis represents the percentage of cells found via manual 
gating. The y = x line through the center of the plot indicates where the points would be located 
if both of the gating methods output identical values. The Spearman correlation coefficient (ρrs) 
comparing the methods and the p-value are displayed at the top left of the plot. 
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Discussion 

The exploration of large and complex biological datasets requires steps of simplification and 

aggregation; scientific research is improved if these steps draw on biological knowledge and 

principles, rather than relying exclusively on subject-agnostic statistical techniques. Flow 

cytometers generate data with continuous measurements of an underlying binary phenomenon, 

with much of the added noise in measurements due to spillover from other channels. FMO 

controls can be used to informatively distinguish negative and positive cell populations for a 

marker in flow cytometry data and are used for this purpose commonly in traditional manual 

gating. However, they have not yet been integrated with the open-source tools being created to 

improve objectivity and efficiency of flow cytometry analysis. As with any simplification step, 

the pipeline presented here does lose some of the information inherent in the original 

measurements. In cells that are positive for a marker, for example, the measurement of 

expression density may have some biological meaning, which is lost in creating binary 

distinctions in the feature engineering. Future development of this pipeline could focus on 

extending the methods to help explore meaningful variation among the positive values for a 

marker. In the case of markers in which there is low, intermediate, and high expression, the 99th 

percentile FMO cutoff could be used to determine the negative population. From here, a function 

like “mindensity” used to analyze the clinical data could be used to determine the minimum 

density between the intermediate and high population, thus splitting the marker into three 

expression levels. If a more continuous expression level is of interest, instead of using the 

“mindensity” function to separate the positive markers into intermediate and high expression, the 

continuous marker expression could be retained. 
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This pipeline’s modularity adheres to the Unix philosophy of combining small tools that each 

perform a discrete task to solve complex problems.28 Excellent tools already exist in the R 

ecosystem, both specific to flow cytometry data (e.g., to perform initial gating on samples) and 

for more general data visualization and modeling. Rather than developing a “fixed” pipeline, 

where pre-existing tools are encapsulated within a framework that does not allow easy 

modifications or substitutions of steps in the pipeline, this pipeline is based on the principle of 

combining these existing tools from the R ecosystem. We designed this pipeline to use a 

common data format in later steps, which makes it useful to a variety of researchers, as it is easy 

to adapt with common R tools. For example, in the visualization and statistical testing stages, 

different statistical models and plots can easily be substituted for the linear regression that is 

used for the data described here. Another advantage of this modular pipeline is that it can be used 

on clinical and research cytometry samples from either conventional or spectral flow cytometers. 

An added strength of the pipeline is that, since it is computationally simple, it does not require 

down-sampling of the raw flow cytometry data. For clustering algorithms that are 

computationally intensive (e.g., t-SNE), it is often necessary to down-sample data by taking a 

random sample of the data in order to improve computation time.29,30 This manipulation of data 

can lead to the masking of novel discoveries. Each sample has a different total live leukocyte cell 

count allowing us to consider percentage of cells rather than total cell count throughout the 

pipeline. As our goal is to identify immune cells that are biologically involved in the protection 

against disease, we filtered the cell populations to those comprising >0.5% of cells in at least one 

sample. In this case, even if only one animal in a group has a high percentage of cells in a certain 

population, it will be maintained to compare against all groups. In other contexts, for example, in 

cancer research where the goal is to identify very rare cell types, this percentage could be 
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decreased with a low-set filter (e.g., to maintain populations with <5 cells). The filtering and the 

feature engineering analyze the data in a way that makes it immediately interpretable to 

immunologists without the hassle and bias of manually looking for populations of interest or 

trying to understand complex clusters from other methods. 

Another advantage of the pipeline is its ability to compile additional flow cytometry datasets. 

Other multiparametric approaches, such as UMAP and t-SNE, typically assign cells to unnamed 

clusters.5,31 To compile replicated data, these methods map additional data back to the original 

data. Unlike these approaches, cyto-feature engineering does not assign data to unnamed 

clusters, but rather keeps groupings explicitly tied to specific, named markers in the original 

data. Provided that replicated or additional data contains the same markers as the original data, it 

can be seamlessly added to the pipeline by adding the data to the data folder. Any additional cell 

populations identified will be added to the plots when the analysis is run. Further, the data with 

cyto-feature engineering does not need to be manually gated to determine statistical significance 

between populations. Statistical analysis is a built-in feature that can be calculated based on the 

identified populations. 

Researchers have an inherent bias in the types of cells they gate when analyzing flow cytometry 

data. By identifying all phenotypes present in the dataset, this pipeline allows users to analyze a 

variety of populations in an unbiased manner. These cell types, such as the CD153+ cells in the 

murine lung data, may have gone undiscovered if not for the use of this fast and reproducible 

pipeline. Importantly, this analysis pipeline relies on high quality flow cytometry methodology, 

and/or FMO samples, as well as, strong panel design. Spillover from other channels can greatly 

impact the analysis, so researchers must ensure that the controls are prepared correctly. 
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The analysis pipeline described here, allows for the use of necessary and rigorous technical 

controls in flow cytometry. The pipeline is able to identify populations that may not be normally 

gated. Provided that the samples and controls remain constant, the automated pipeline analysis 

will consistently produce the same results, removing person-to-person bias. Further, this pipeline 

drastically reduces the amount of time typically required to analyze flow cytometry data. 

Overall, this strategy is envisioned to help identify the elusive nature of cellular phenotypes 

through fast and accurate analysis of flow cytometry data. 
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CHAPTER 3 — IMMUNOMODULATORY DRUGS AS VACCINES AGAINST 

MYCOBACTERIUM TUBERCULOSIS 

 

 

 

Introduction 

It is estimated that one quarter of the world’s population is infected with the bacteria 

Mycobacterium tuberculosis (MTB), killing an estimated 1.4 million people each year.1 The only 

licensed vaccine currently available against tuberculosis (TB) is the Bacille Calmette–Guérin 

(BCG) which is a live-attenuated strain of Mycobacterium bovis. While BCG vaccine confers 

protection against meningitis and disseminated TB in children, it fails to protect from pulmonary 

TB and the reactivation of latent infection.2 Therefore, an improved vaccination boosting 

strategy is desperately needed.  

Research efforts to develop a better vaccine regimen have focused on immunomodulation, or 

ways to modify the immune response. One approach is to combine the BCG vaccine with drugs 

that are already FDA-approved. This method of repurposing drugs is beneficial both to patients 

and the pharmaceutical industry as it bypasses the lengthy, expensive drug safety clinical trials. 

This brings safe treatments to patients faster and costs pharmaceutical companies less money. 

 

An example of immunomodulators currently used in vaccines are adjuvants. Adjuvants are 

additional constituents added to vaccines that induce a stronger immune response. These 

adjuvants typically produce non-specific inflammation and recruit antigen presenting cells to the 

draining lymph nodes.3 In many cases, this inflammation is favored to achieve the desired 

immune response. However, recent work has shown that high doses of vaccine adjuvants can 
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cause migration of neutrophils and monocytes that suppress T cell responses and actually 

decrease the desired immune response.3 As a potential remedy, Mitchell et al. demonstrated that 

blocking monocyte recruitment to the lymph nodes can increase both the cellular and humoral 

immune responses to vaccination. This is thought to be true in the case of BCG. During BCG 

vaccination, it is hypothesized that the large influx of inflammatory cells leads to the rapid 

killing of BCG.4 This rapid killing decreases antigen presentation, and thus, T cell responses.4 

Therefore, we believe if we reduce inflammation, macrophages will be exposed to antigen for 

longer which will help generate better T cell memory.  

 

Losartan is an example of an angiotensin receptor blocker drug that has been shown to reduce 

inflammatory monocyte recruitment. While losartan is an FDA-approved drug for treating high 

blood pressure, recent studies have elucidated losartan’s immunological effects. Cancer studies 

have shown losartan inhibits migration of CCL2-stimulated CCR2+ monocytes, cells that have 

been shown to promote metastasis when recruited to the lung.5,6 Other studies have shown that 

losartan’s anti-inflammatory immunomodulatory effects impede the development of pro-

inflammatory monocytes.7 This has been confirmed in studies where losartan reduces murine 

inflammatory macrophages and micro-metastases.5 Longitudinal studies have also demonstrated 

that the use of angiotensin-converting enzyme inhibitors (ACEi), inhibitors that similarly impede 

the renin angiotensin system, are associated with a decreased risk of active TB.8 In pneumonia, 

lower mortality associated with the use of these ACEis is due to the ACEi’s ability to modulate 

the immune response and decrease levels of pro-inflammatory IL-6.9-11 Thus, losartan provides a 

good candidate for reducing the number of inflammatory monocytes during vaccination. 
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Another drug, propranolol, could also be effective in modulating the immune response to 

vaccines by increasing T cell responses. Propranolol is a β1- and β2-adrenergic receptor 

antagonist used to lower blood pressure. In addition to being found on cells in the heart, kidney, 

and airway smooth muscles, β-2 adrenergic receptors are also found on immune cells such as 

Th0, Th1 and B cells.12,13 Typically, catecholamines such as epinephrine or norepinephrine, bind 

to and activate these β-adrenergic receptors, causing an increase in heart rate (Figure 3.1). This 

typical stimulation of receptors on antigen presenting cells and T lymphocytes promotes Th2 

responses through inhibition of IL-12.14 However, propranolol competitively binds these 

receptors, effectively lowering heart rate and blood pressure. It has been shown that blocking the 

typical β-adrenergic receptor signaling pathway, such as with a drug like propranolol, leads to an 

increase in CD4 T cell proliferation and protective Th1 cytokines.15,16 The addition of β2-

adrenergic antagonists have also been shown to increase antigen presentation by dendritic cells.17 

This increased antigen presentation can lead to a better T-cell mediated response. β2 antagonists 

can increase CD8+ effector memory T cell expression of IFN-, TNF- secretion, and cytolytic 

abilities, and propranolol treatment, specifically, has been shown to increase CD8+ T cell 

expression of T-bet, IFN-, and GzmB.18,19 

 

Our goal in this study was to determine if losartan and propranolol, when used with the BCG 

vaccine, could induce better protection against MTB infection. Specifically, we hypothesize that 

decreasing the number of inflammatory monocytes recruited to the lungs during vaccination will 

generate a better cell mediated and memory response. Losartan should reduce this influx of 

inflammatory macrophages, allowing dendritic cells to perform antigen presentation and thus 
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better T cell activation. We also hypothesized that propranolol would promote T cell polarization 

to Th1 cells and enhance cytolytic capabilities of CD8+ T cells.  

 

 
Figure 3.1: Effects of catecholamines and propranolol binding to β-adrenergic receptors. 

 

Methods 

Experimental Setup. The experiment was designed to determine if two drugs — propranolol 

and losartan — can act as immunomodulators in conjunction with the BCG vaccine to induce 

better protection against MTB. Drugs and vaccinations were administered as detailed in Figure 

3.2. Mice received drugs either orally or via intraperitoneal injections two days prior to receiving 

the BCG vaccine. Mice in the injection groups received drugs for a total of eight days. Oral 

drugs were given weekly for four weeks. Lung and spleen tissue were taken at days -22, -1 

before MTB infection and days 21 and 56 post infection. Bacterial burden and immune cell 

infiltration were quantified. 
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Figure 3.2: Experimental Design. A timeline of the administered drugs, vaccinations, and time 
points are detailed. 
 

Animals. C57BL/6 mice were purchased from the Jackson Laboratory. The mice were 

maintained at a BSL-2 facility at Colorado State University until one week prior to infection with 

Mycobacterium tuberculosis. At which point they were transferred to a BSL-3 facility. Animals 

were acclimated for at least one week and fed water and chow ad libitum. All experimental 

protocols were approved by the Institutional Animal Care and Use Committee at Colorado State 

University. 

 

BCG Vaccination. Mice were subcutaneously vaccinated with 5 x 104 colony forming units 

(CFU) Bacille Calmette-Guérin, Pasteur strain.  

 

Drug Administration. Drugs were reconstituted in sterile biological grade water and sterile 

filtered with a 0.22 µm filter. Injections were reconstituted in phosphate buffer saline (PBS) and 

100 µL was administered intraperitoneally. Losartan was injected daily at 60 mg/kg/day, while 

propranolol was given daily at 10 mg/kg/day.5,15 The systemic bioavailability of losartan after 

oral ingestion is about 33% causing us to increase the dose in the water.20 For oral dosing, drugs 

were reconstituted in purified drinking water at the following concentrations: 200 mg/kg/day of 

losartan and/or 10 mg/kg/day of propranolol. The water was changed weekly. 
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Mycobacterium tuberculosis infection. Mice were infected via aerosol route with MTB HN878 

using a Glas-Col apparatus (Terre Haute, IN) calibrated to deliver 50-100 bacilli per mouse. 

Mice received 50 CFU/mouse as confirmed via plating whole lung homogenates on 7H11 agar 

plates following the aerosol.  

 

Animal euthanasia, necropsy, and tissue preparation. On the days of the experiment, mice 

were euthanized using CO2 asphyxiation and lungs and spleens were harvested. Lung lobes were 

perfused with PBS prior to generating single-cell suspension. Lung and spleen tissues were 

prepared for single-cell suspension according to the protocol described by Fox et al.21 

 

Flow cytometry and analysis. Multi parametric spectral flow cytometry was performed to 

analyze the immune cell phenotype changes during the course of drug treatment with and 

without infection. Since we want to evaluate a broad range of innate and adaptive cell types, we 

created two flow panels. The first panel contained 14 surface markers, showing an overview of 

the different cells present: CD11c, CD3, NK1.1, Ly6G, CD45, CD14, Ly6C, CD11b, CD4, CD8, 

CD19, CCR, CD64, and viability dye. The second panel contained a combination of 19 surface 

markers and transcription factors to analyze the presence of different types of T cells: Sca-1, 

CD3, CD62L, FoxP3, CD28, PD-1, ROR-YT, GATA3, CD103, CD44, CD69, CD4, CD25, 

CD8, T-bet, CD27, CD153, KLRG-1, and viability dye. Before staining, we counted the cells on 

an LSRII as described in Fox et al. so that we could calculate total numbers.21 To begin the 

staining process, cells were first stained with 1/2000 dilution of Zombie-NIR (fixable viability 

dye) and subsequently washed with fluorescence activated cell sorting staining buffer (FACS). 
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The surface markers and 1/200 dilution of FC receptor block were added and incubated for 30 

minutes at 4°C and then washed with FACS. For the first panel that contained only surface 

markers, 4% paraformaldehyde (PFA) was added to the samples for 20 minutes, washed with 

FACS and then transferred to tubes. For the intracellular staining of transcription factors in the 

second panel, 1x FoxP3 transcription factor fix/perm buffer (ebiosciences) was added to the cells 

and incubated for 1 hour. The cells were subsequently washed with 1x FoxP3 Permeabilization 

buffer and the transcription factor antibodies were added and incubated overnight at 4°C. The 

following day, the cells were washed with FoxP3 Permeabilization buffer and transferred to flow 

cytometry tubes. 50,000 events for lungs and 100,000 events for spleen cells per sample were 

acquired on a 4-laser Cytek Aurora. Flow cytometry data was analyzed using the cyto-feature 

engineering pipeline.22 

 

BCG and MTB Bacterial burden. Fifty percent of the whole lung and 50% of the spleens were 

homogenized in PBS in a bullet blender (Next Advanced) for 4 minutes at speed 8. Homogenates 

were serially diluted in PBS at a dilution factor of 5 and plated on 7H11 agar plates.  CFUs were 

counted after incubating plates for 5 weeks at 37°C. 

 

Results 

Use of losartan and propranolol did not reduce MTB bacterial burden 

The goal of this experiment was to evaluate if the drugs losartan and propranolol could modulate 

the immune response to MTB, decrease MTB load in the lungs, and provide better protection 

than BCG alone. For this reason, we were able to use Dunnett’s analysis to determine statistical 

significance from the BCG group. Comparisons were made for both the lung and spleen organs 
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and at each of the time points. The drugs did not affect the presence of live BCG present in the 

organs following vaccination (Figure 3.3). After infection, the only difference exhibited was in 

the PBS group which had significantly higher MTB CFUs in the lungs at day 21 than the BCG 

group. These results show that the vaccines in conjunction with the drugs did not control MTB 

infection better than the BCG vaccine alone. 

 

Drugs affect the total numbers of cells that infiltrate the organs 

To assess the general influx of cells into the organs, total numbers of live leukocytes were 

calculated using the counting bead protocol found in Fox et al. 2020.21 At day -22 the BCG 

group had a higher number of cells in the lung compared to all of the other groups (Figure 3.4). 

This suggests that losartan and propranolol reduced the influx of cells to the lungs.  
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Figure 3.3: Higher CFUs in the PBS group compared to the BCG group at day 21 in the 

lung. The log10 CFUs for either the (a) live BCG vaccine at days -22 and -1 or (b) MTB 
infection at days 21 and 56 in each mouse is shown. The CFUs in the lungs are shown on the top 
row and the spleen is shown on the bottom row. Dunnett’s analysis was performed to all groups 
to the BCG group (*p<0.05). Los: Losartan, Prop: Propranolol, PL: Propranolol + Losartan 
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Figure 3.4: Total numbers of cells in the organs. The total numbers of cells in the (a) lungs 
and (b) spleens is displayed in the bar charts, faceted by the time points. Dunnett’s test was used 
to calculate statistically significant differences between the BCG group and all other groups (*p 
< 0.05). 
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Before infection, the lung PBS control group had lower total cell counts (day -22: 7.3 x 105 ± 2.4 

x 105 cells, day -1:  1.7 x 106 ± 4.9 x 105 cells) compared to the BCG group (day -22: 9.8 x 105 ± 

3.3 x 105 cells, day -1:  3.3 x 106 ± 3.8 x 106 cells), but after infection, the cell counts were 

significantly higher. This is consistent with what we would expect as the BCG vaccine was able 

to induce proliferation of cells in response to the vaccine stimulus. After the PBS group is 

aerosolized with MTB, the immune response ramps up to handle the infection. At day 56, while 

the lung PBS group had more cells compared to the BCG group, all of the groups except for the 

losartan injection had significantly fewer cells. At this time point, there were no differences in 

CFU counts. For this reason, it does not appear as if the sheer number of cells in the lungs had an 

effect on the bacterial burden.  

 

The number of cells in the spleen maintained a more constant number compared to the lungs 

over the course of the study (Figure 3.4). Interestingly, at day 21 the number of cells in the BCG 

group is significantly higher (1.1 x 108 ± 4.4 x 107 cells) than all of the other groups. However, 

by day 56 the number of cells in the BCG group decreases to a similar level as the PBS group. 

 

In both the lung and spleen, the drug groups were unable to produce high levels of cells as shown 

in the BCG group. While these differences did not ultimately have a difference on the bacterial 

burden, we wanted to explore the composition of the cell populations to determine the types of 

cells produced. 
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Losartan increases the numbers of specific immune cell populations in the lungs compared 

to the BCG group  

Both predefined and data-driven analyses were used to identify the flow cytometry cell 

populations. For the predefined analysis, cell phenotypes were determined according to 

predefined combinations of positive and negative expression of various markers (Appendix 2: 

Supplemental Table 3.1). This analysis identified populations that we anticipated seeing in the 

lungs. 

 

Based on the predefined analysis, most differences between groups occurred at day -22, after the 

mice had received both the BCG vaccination and drugs (Figure 3.5, Appendix 2: Supplemental 

Table 3.2). The losartan groups tended to have the largest differences in comparison to the BCG 

group. In particular, in the lungs the losartan injection group had higher numbers of alveolar 

macrophages, monocytes, B cells, CD4 and CD8 T cells, T Helper 1, Regulatory T cells, and 

Effector T cells at day -22 compared to the BCG group. The oral losartan group similarly had 

higher numbers of naive T cells, T Helper 1 cells, and central memory T cells at this time point. 

Both of these groups had lower total numbers of cells in the lungs than the BCG group at day -

22, showing that the increase in these cell types is not due to differences in the total number of 

cells in the organ. This suggests that losartan is able to mount a greater immune response early 

during, and after administration of the drug, and that losartan is acting as an immunomodulator 

that aids in the recruitment of beneficial immune cells in order to clear infection. We expected to 

see an increase in T cell activation in the losartan groups and a decrease in inflammatory 

macrophages. The losartan groups supported this theory at day -22 with an increase in CD4, 

CD8, effector T cells, Th1 cells. However, we did not see a decrease in inflammatory 
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macrophages in these groups; in fact, we saw an increase in alveolar macrophages in the losartan 

injection group at day -22. Further, these changes in cell numbers did not affect the final 

outcome as these cell types did not sustain high levels after infection at days 21 and 56. By day 

56, there are no differences in total numbers of predefined phenotypes between BCG and any of 

the other groups. 

 

 

Figure 3.5: Predefined Lung Phenotypes Over Time. The lung phenotypes were assessed by 
identifying cells that we expected to see in our samples. The total number of cells in each of the 
groups over time is shown in the small plots where each small plot is a different cellular 
phenotype. Dunnett’s test was used to calculate statistically significant differences between the 
BCG group and all other groups. Due to the high number of statistically significant differences (p 
< 0.05), the differences in total numbers are shown in Appendix 2: Supplemental Table 3.2.  
 

Immunomodulatory drugs affect the number of dendritic cells, monocytes, and CD8 T cells 

in the lungs as evidenced through data-driven analysis of general populations 
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While looking at predefined flow cytometry phenotypes provides valuable information, we also 

wanted to use an approach to allow the data to tell us the unique phenotypes present. Data-driven 

analysis was performed using cyto-feature engineering which identifies all combinations of 

markers that form a phenotype in a sample.22 For the data-driven general lung analysis, 4,715 

populations were initially identified in the sample. These populations were filtered to those for 

which at least one sample contains greater than 2% of the cells— reducing the number of 

populations to 43 (Figure 3.6a).  

 

At day -22 in the general lung analysis, there were significantly higher numbers of CD11b+ 

myeloid-derived dendritic cell population (Population 43: CD45+ CD11b+ CD11c+ Ly6C+ and 

negative for all other markers in panel) in the losartan injection group compared to the BCG 

group (Figure 3.6b, Appendix 2: Supplemental Table 3.3). This same population was similarly 

increased at day 21 in both the PBS and oral propranolol-losartan (PL) groups compared to BCG. 

As described in the literature review, dendritic cells play a crucial role in linking the innate and 

adaptive immune response by presenting antigens to T cells and promoting differentiation of 

naive T cells into T Helper cells.23 These T Helper cells in-turn create a positive feedback loop 

by releasing cytokines that promote the differentiation of more T Helper cells.23 We similarly 

saw higher numbers of T Helper 1 cells (Th1) in the predefined lung analysis corroborating these 

results. These Th1 cells are capable of secreting IFN- which in turn activates macrophages that 

can phagocytose and kill MTB.24 However, if differentiation of different T Helper cells such as 

Th17 are induced, the positive feedback loop can lead to inflammation and tissue damage.24 

Th17 cells, in particular, contribute to TB pathology.24 
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Two other CD8+ Ly6G+ Ly6C+ populations (population 10: CD45+ CD3+ CD8+ Ly6G+ 

Ly6C+ and negative for all other markers in panel) and population 11: CD45+ CD3+ CD8+ 

Ly6G+ Ly6C+ CCR2+ and negative for all other markers in panel) were found to be increased in 

the oral groups (losartan oral and propranolol oral) at day -22, and in the PBS group at day 21 

(Figure 3.6b). Research by Matsuzaki et al. has shown that Ly6G/Ly6C+ CD8+ memory T cells 

produce IFN- and exhibit cytotoxic abilities.25 While these cells were initially elicited by the 

oral drugs at day -22, the populations decreased rapidly and were not induced to the same levels 

after infection. 

 

Interestingly, a number of cell types that were higher in the losartan groups at day -22 were 

similarly higher in the PBS group at day 21 in comparison to the BCG control.  For example, 

Populations 15, 20, 21, 23, and 42 were increased in the losartan injection group at day -22. 

These same populations were higher in the PBS groups compared to the BCG groups at day 21. 

Population 15 (CD45+ CD19+ Ly6C+ CD3- and negative for all other markers in panel) is likely 

a plasma cell capable of producing antibodies and anti-inflammatory cytokines such as IL-10 and 

IL-35.26-28 Populations 20, 21, 23, and 42 are monocytes/dendritic cells. While the losartan-BCG 

vaccinated mice had activated plasma cells, monocytes, and dendritic cells at day -22, because 

the PBS control group had not encountered a vaccine/infection before, we expected to see these 

populations only after MTB infection. 
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Figure 3.6: Data-driven Evaluation of General Populations in the Lungs (a) The heatmap 
shows the feature engineered flow cytometry lung phenotypes that make up at least 2% of a 
sample. Green indicates positive expression and blue indicates negative expression of each 
maker on the x-axis used in the analysis. (b) The total number of cells in each of the groups over 
time is shown in the small plots where each small plot is a different phenotype corresponding to 
the populations listed in (a). Dunnett’s test was used to calculate statistically significant 
differences between the BCG group and all other groups. Due to the high number of statistically 
significant differences (p < 0.05), the differences in total numbers are shown in Appendix 2: 
Supplemental Table 3.3.  
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Losartan and propranolol increase the number of CD8+ T cells in the lungs as shown 

through data-driven T cell analysis  

While the general analysis allowed us to look at a variety of different cells in the lungs, we 

wanted to take a closer look at the specific types of T cells present.  Cyto-feature engineering 

identified 23,159 unique populations in the T cell panel lung samples. The populations were 

filtered to cells that express CD3 and for which at least one sample contains said population 

greater than 1%. This resulted in 22 populations (Figure 3.7a). The most differences occurred at 

D-22 in the losartan groups (both losartan injection and losartan oral) (Figure 3.7b, Appendix 2: 

Supplemental Table 3.4), confirming the findings in the predefined analysis. A CD3+ CD8+ 

CD44+ KLRG1+ Tbet+ cell (Population 19) is particularly of interest as it was increased in both 

losartan groups compared to the BCG group. The presence of CD44, KLRG1, and Tbet points to 

the fact that this cell population is a terminally differentiated effector T cell with low memory 

potential.29,30 These results appear to show that losartan has increased the adaptive immune 

response to BCG. If there are terminally differentiated effector T cells present, it means that cells 

were activated first that then pushed the development of terminally differentiated cells. However, 

because this cell type was only present at elevated levels in the time point before infection, it 

likely did not play a role in combating infection. Population 14 (CD3+ CD8+ CD4- CD44- 

CD62L+ Sca1- CD103+ Tbet- and negative for all other markers in panel) is also of merit as it 

had higher numbers in oral groups (oral losartan and oral propranolol) at day -22, the PBS group 

at day -1, and the oral losartan group at day 56. Population 14 exhibits markers that are 

reminiscent of both naive T cells and tissue-resident cells.31 It is possible that we captured this 

population of cells as they differentiated from naive T cells to tissue-resident cells.32 These 
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tissue-resident memory cells serve as a first line of defense against an invading pathogen and are 

associated with MTB protection.33,34 

 

Propranolol decreases the numbers of B cells and T cells in the spleen 

Compared to the lungs, there were not nearly as many differences in the predefined phenotypes 

between groups at the early time points in the spleen (Appendix 2: Supplemental Table 3.5). At 

day 21 post infection, however, there were more differences in cell types. Particularly in the 

propranolol oral group, there were decreased numbers of NK cells, monocytes, inflammatory 

macrophages/monocytes, B cells, CD4 T cells, CD8 T cells, T Helper 1, T Helper 2, Regulatory 

T cells, central memory, effector memory, and stem-cell like memory T cells in comparison to 

the BCG group (Figure 3.8). At this time point, there are similarly fewer total cells in the spleen 

in this group compared to the BCG group. However, all of the other groups that had fewer total 

cells did not show the same decreased cell type counts. While we expected the propranolol 

groups to show an increase in Th1 and CD4 T cells, these results show the opposite in the oral 

propranolol group. It appears as though oral propranolol dosing delays the response to MTB 

infection because by day 56, the Th1 and CD4 T cells had similar numbers to the BCG group. 

Interestingly at day 56, the groups that received propranolol injections (propranolol-losartan [PL] 

injection and propranolol injection) had fewer neutrophils in the spleen, potentially showing 

lower levels of inflammation. This is consistent with cancer literature that has shown that 

propranolol reduces the influx of neutrophils to primary tumors.35 Similarly, at day 56, MTB has 

disseminated to the spleen. While it is true that we want a certain level of neutrophils to recruit 

other cells to the site of infection, depleting neutrophils late in infection does not affect MTB 

burden in the spleen.36  
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Figure 3.7: Data-driven Analysis of T cells in Lungs.  (a) The heatmap shows the feature 
engineered flow cytometry lung phenotypes that are CD3+ and make up at least 1% of a sample. 
Green indicates positive expression and blue indicates negative expression of each maker on the 
x-axis used in the analysis. (b) The total number of cells in each of the groups over time is shown 
in the small plots where each small plot is a different phenotype corresponding to the populations 
listed in (a). Dunnett’s test was used to calculate statistically significant differences between the 
BCG group and all other groups. Due to the high number of statistically significant differences (p 
< 0.05), the differences in total numbers are shown in Appendix 2: Supplemental Table 3.4.  
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Figure 3.8: Predefined Spleen Phenotypes Over Time. The spleen phenotypes were assessed 
by identifying cells that we expected to see in our analysis. The total number of cells in each of 
the groups over time is shown in the small plots where each small plot is a different phenotype. 
Dunnett’s test was used to calculate statistically significant differences between the BCG group 
and all other groups. Due to the high number of statistically significant differences (p < 0.05), the 
differences in total numbers are shown in Appendix 2: Supplemental Table 3.5.  
 

Losartan-Propranolol injection group exhibited lower numbers of B cells in the spleen in 

comparison to the BCG group as evidenced through the data-driven analysis of general 

populations 

3,838 general spleen populations were identified via feature engineering and filtered to 23 

populations that make up 1% of at least one sample (Figure 3.9a). The most differences in the 

spleen occurred at D21. There were significantly more CD45+ CD19+ CD11b+ cells (Population 

12) in the BCG group compared to all of the drugged groups except for the oral losartan 
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regardless of the drug administration route at day 21 (Figure 3.9b, Appendix 2: Supplemental 

Table 3.6). Research has shown that the majority of B cells that express CD27 also express 

CD11b, making it likely that this is a memory B cell population.37 Upon re-exposure to an 

antigen, memory B cells are able to swiftly differentiate into plasma cells that can produce 

antibodies.38 The oral propranolol group also had 12 different populations at D21 with 

significantly fewer cells compared to the BCG group. By D56, there were only differences 

between the BCG group and the propranolol-losartan (PL) injection group with lower cell counts 

in various B cell populations including Population 8 which resembles activated B cells (CD45+ 

CD19+ CD3- and negative for all other markers in panel), Population 10, which are functional B 

cells (CD45+ CD19+ CD14+ CD3- and negative for all other markers in panel), Population 11, 

an interesting natural killer-like B cell (CD45+ CD19+ CD14+ NK1.1+ CD3- and negative for 

all other markers in panel), and Population 14, B cells expressing CCR2 (CD45+ CD19+ CCR2+ 

CD3- and negative for all other markers in panel) in the propranolol-losartan (PL) injection 

group. As described previously, B cells play a role in T cell differentiation through the secretion 

of polarizing cytokines.39 B cells themselves can also present antigens to T cells; this ability has 

been shown to play a role in BCG immunity.40 Another role for B cells is demonstrated through 

the increasing evidence that shows that MTB may be susceptible to antibodies.41 However, these 

differences in B cells did not impact protection as there were no differences in the bacterial 

burden in the mice. 
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Figure 3.9: Data-driven Evaluation of General Populations in the Spleen (a) The heatmap 
shows the feature engineered flow cytometry lung phenotypes that make up at least 1% of a 
sample. Green indicates positive expression and blue indicates negative expression of each 
maker on the x-axis used in the analysis. (b) The total number of cells in each of the groups over 
time is shown in the small plots where each small plot is a different phenotype corresponding to 
the populations listed in (a). Dunnett’s test was used to calculate statistically significant 
differences between the BCG group and all other groups. Due to the high number of statistically 
significant differences (p < 0.05), the differences in total numbers are shown in Appendix 2: 
Supplemental Table 3.6.  
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Propranolol affects central memory and tissue-resident T cell numbers in the spleen as 

shown through data-driven evaluation of T cells  

Taking a closer look at the T cells in the spleen, we filtered the 24,703 spleen T cell populations 

to 13 populations after removing populations that do not express CD3 or make up less than 1% 

of a sample (Figure 3.10a). Compared to BCG, both of the groups that received propranolol 

orally (oral propranolol and oral PL) had lower numbers of two central memory T cell 

populations characterized by CD3+ CD4+ CD44+ CD62L+ Sca1+ CD27+ CD28+ Tbet+ and 

negative for all other markers in panel (population 6) and CD3+ CD4+ CD44+ CD62L+ Sca1+ 

CD27+ CD28+ Tbet- and negative for all other markers in panel(population 7) at day 21 (Figure 

3.10, Appendix 2: Supplemental Table 3.7). Interestingly at day 56, the oral propranolol group 

had a higher number of a similar, but slightly different central memory T cell population 

(Population 2: CD3+ CD4+ CD44+ CD62L+ Sca1+ CD27+ Tbet+ and negative for all other 

markers in panel) that rapidly expanded 18 times from day 21 to day 56.  Central memory T cells 

are often found in lymphoid tissues such as the spleen where they rapidly proliferate upon 

secondary exposure to antigens.42 Adoptive transfer of antigen-specific central memory T cells 

have also shown to be protective against tuberculosis disease in mice.43 This suggests that the 

rapid expansion seen in the oral propranolol group could be protective, though no differences 

were shown in the CFUs at this time point.  

 

Interestingly, at day 56, the oral propranolol group interestingly had significantly higher numbers 

of tissue-resident cells (Population 8: CD3+ CD8+ CD44- CD62L+ CD103+ CD27+ and 

negative for all other markers in panel, Population 11: CD3+ CD8+ CD44+ CD62L+ CD103+ 

CD27+ and negative for all other markers in panel) in comparison to the BCG group. Similar to 
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Population 14 in the T cell lung data, Population 8 appears to be cells that are transitioning from 

a naive phenotype to a tissue-resident phenotype. Once more, Population 11 may be central 

memory cells that are actively differentiating into tissue-resident cells.44 Tissue-resident cells are 

non-circulating cells that reside in tissue for prolonged periods of time so that they can respond 

upon secondary infection. Studies have shown that increases in tissue-resident memory T cells 

are associated with a decrease in MTB bacterial burden.33,45 While we did not see this in our 

study, it is possible had we continued the study to a later time point, we would have seen a 

decrease in bacterial burden in these groups. 
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Figure 3.10: Data-driven Evaluation of T cells in the Spleen. (a) The heatmap shows the 
feature engineered flow cytometry lung phenotypes that are CD3+ and make up at least 1% of a 
sample. Green indicates positive expression and blue indicates negative expression of each 
maker on the x-axis used in the analysis. (b) The total number of cells in each of the groups over 
time is shown in the small plots where each small plot is a different phenotype corresponding to 
the populations listed in (a). Dunnett’s test was used to calculate statistically significant 
differences between the BCG group and all other groups. Due to the high number of statistically 
significant differences (p < 0.05), the differences in total numbers are shown in Appendix 2: 
Supplemental Table 3.7.  
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Discussion 

As discussed previously, there is a need for a better tuberculosis vaccine. The purpose of this 

study was to modify the immune response to BCG—using the drugs losartan and propranolol—

to induce better protection against Mycobacterium tuberculosis. In this study, we identified 

various cell types elicited in the lungs and spleens of BCG or PBS vaccinated mice treated with 

or without our immunomodulatory drugs and challenged with MTB.  

 

In response to MTB infection, neutrophils and alveolar macrophages are the first line of 

defense.46 These cells release cytokines to promote chemotaxis of other macrophages, dendritic 

cells, and neutrophils to the site of infection. Eight to twelve days after infection, dendritic cells 

migrate to the lymph nodes to present antigens to T cells.46 Fourteen to seventeen days after 

infection, these activated T cells migrate to the lungs to fight the infection.46 Therefore, we 

would expect to see high levels of T cells in the lungs at day -22, which is two–three weeks after 

BCG vaccination. We also observed some differences at day 21 after infection, primarily in the 

PBS group. This is due to the fact that this group had not been primed with a previous 

vaccination, and thus was generating an initial immune response to vaccination with an influx of 

monocytes, dendritic cells, and T cells. We did not see many differences in the immune cell 

populations in the lungs at day 56. This is aligned with the fact that BCG protection generally 

wanes by day 60.47 In comparison to the lungs, the immune response in the spleen is generally 

delayed because MTB disseminates to the spleen about two weeks after infection.48 Therefore, 

we saw many differences in immune cells at days 21 and 56 in the spleen soon after MTB 

appeared.  
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Looking at the cell populations that exhibited lasting differences at day 56, there were lower 

numbers of splenic neutrophils in the propranolol injection groups (propranolol-losartan injection 

and propranolol injection). This decrease in inflammation could be due to the anti-inflammatory 

characteristics that propranolol has shown to exhibit in human cells through quenching IL-13 and 

TNF- cytokines.49 We saw 11 differences in cell types in the spleen at day 56 between BCG 

and other groups across all of the analyses. Interestingly, all of these groups received propranolol 

(oral propranolol, injected propranolol, and injected propranolol-losartan). However, we only 

saw 2 differences in the lung at day 56, and both of these differences were in losartan groups 

(oral losartan and oral propranolol-losartan). Propranolol was able to induce more changes in the 

spleen while losartan had more effects in the lungs. 

 

We expected the losartan groups to show a decrease in the influx of inflammatory macrophages 

which would lead to slower killing of BCG. This slower killing would allow more time for 

antigens to be presented to T cells, and thus an increase in T cell activation. While we saw an 

initial increase at day -22 in various T cell populations in the lung (CD4, CD8, effector, Th1 

cells), these cells did not maintain high levels after infection. However, it is possible that these 

cells were initiating an activation cascade by releasing cytokines and chemokines, which we did 

not evaluate in our current study. This could potentially be assessed in future studies. Further, 

contrary to what Regan et al. demonstrated in micro-metastases studies, the use of losartan did 

not appear to reduce murine inflammatory macrophages/monocytes during MTB infection in this 

study. This could potentially be explained by the different animal models used in both studies. 

Regan et al. utilized BALB/c mice whereas we used C657BL/6 mice. BALB/c mice have been 

shown to induce a greater influx of inflammatory cells to the lungs during MTB infection than 
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C57BL/6 mice.50 Therefore, it is possible that losartan was able to reduce this increased influx in 

BALB/c mice to a lower baseline level using losartan. We further hypothesized that propranolol 

would promote T cell polarization to Th1 cells and increase CD8+ T cell cytolytic abilities. We 

actually saw a decrease in the Th1 cells in the oral propranolol group at day 21, but by day 56, 

the numbers had increased to similar levels as the BCG group. Interestingly, we saw an increase 

in CD8+ Ly6G+ T cells in the oral propranolol group at day -22. Research by Matsuzaki et al. 

has shown that Ly6G+ CD8 T cells exhibit cytotoxic effects.25 Therefore, it appears as though 

our hypothesis was partially correct, though this increase in cells was not present after infection 

and did not affect MTB burden.  

 

While B cells have previously been overlooked in MTB research, there is increasing evidence 

that B cells play a role in protection. In this study we saw decreased levels in a variety of B cells 

in the PL injection group compared to the BCG control group after infection at day 56 in the 

spleen. Particularly of interest is the CCR2+ B cell population (Spleen-Population 14). It has 

been shown that CCR2 is present on immature B cells in the spleen; as the B cells mature, they 

lose CCR2.51 This expression of CCR2 reduces chemotaxis of immature B cells to other organs 

such as the lymph nodes.51 Perhaps these immature B cells would have matured at a later time 

point to help fight the MTB infection. Another fascinating B cell identified in this analysis was 

an NK-like B cell (Spleen-Population 11). NK-like B cells have recently been recognized as a 

subpopulation of B cells.52 These cells are primarily found in the spleen and mesenteric lymph 

nodes and produce proinflammatory IL-12 and IL-18.52 These secreted cytokines work together 

to enhance the Th1 response. While IL-12 plays a role in the differentiation of Th1 cells and can 

modulate the natural killer response, IL-18 promotes IFN- production by Th1 cells.53,54 Up until 
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day 56, the levels of NK-like B cells were relatively high. If we had been able to sustain higher 

numbers of NK-like B cells at day 56, maybe we would have seen increases in Th1 cell numbers 

and better protection from MTB. 

 

Throughout the data-driven flow analysis, we identified cell populations that exhibited cell 

markers of multiple known T cell types (e.g., Population 8 in the spleen that expressed both 

naive T cell markers and tissue-resident markers). These cells are typically difficult to identify 

using traditional manual gating techniques. It is possible that at our experimental time points we 

took a snapshot of the cell populations as they differentiated from one cell type to another.  

 

One limitation of the study was that we had a very small sample size per group (n=3). This 

significantly reduced the power of all of our statistical analysis. Further, we could have extended 

the timeline of the study to include a time point around day 75. In our analysis, we saw a rapid 

increase in a central memory population in the oral propranolol group from day 21 to day 56. In 

the same group, we saw cells that were potentially differentiating from naive T cells into tissue-

resident cells. Both of these cell types may play a role in protection, but we may have captured 

the data too early. Another limitation of our study is that we did not include groups that received 

Propranolol and Losartan without BCG vaccination or without infection to understand the effect 

of the individual drugs on the immune response. However, adding these groups would have 

greatly increased the number of mice beyond the feasibility of this study. 

 

Despite the differences that we saw in activated T cells, macrophages, and neutrophils before 

infection in groups that received the drugs, there were no differences in the bacterial burden of 
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the animals after day 21. Therefore, it does not appear as if losartan and propranolol produced a 

lasting effect on the immune system. This could be due to dosage, administration of drugs, or 

timing. Additional studies would need to be performed to determine if the use of these drugs can 

aid in tuberculosis protection. 

 

  



 100 

REFERENCES 

 

 

 

1. World Health Organization. (October 2020). Global Tuberculosis Report 2020. 

2. World Health Organization. BCG Vaccine. 

3. Mitchell, L.A., Henderson, A.J., and Dow, S.W. (2012). Suppression of Vaccine 

Immunity by Inflammatory Monocytes. Journal of Immunology 189, 5612-5621. 

10.4049/jimmunol.1202151. 

4. Moliva, J.I., Turner, J., and Torrelles, J.B. (2017). Immune Responses to Bacillus 

Calmette-Guerin Vaccination: Why Do They Fail to Protect against Mycobacterium 

tuberculosis? Frontiers in immunology 8, 407-407. 10.3389/fimmu.2017.00407. 

5. Regan, D.P., Coy, J.W., Chahal, K.K., Chow, L., Kurihara, J.N., Guth, A.M., Kufareva, 

I., and Dow, S.W. (2019). The Angiotensin Receptor Blocker Losartan Suppresses 

Growth of Pulmonary Metastases via AT1R-Independent Inhibition of CCR2 Signaling 

and Monocyte Recruitment. Journal of Immunology 202, 3087-3102. 

10.4049/jimmunol.1800619. 

6. Qian, B.Z., Li, J.F., Zhang, H., Kitamura, T., Zhang, J.H., Campion, L.R., Kaiser, E.A., 

Snyder, L.A., and Pollard, J.W. (2011). CCL2 recruits inflammatory monocytes to 

facilitate breast-tumour metastasis. Nature 475, 222-U129. 10.1038/nature10138. 

7. Merino, A., Alvarez-Lara, M.A., Ramirez, R., Carracedo, J., Martin-Malo, A., and 

Aljama, P. (2012). Losartan prevents the development of the pro-inflammatory 

monocytes CD14(+)CD16(+) in haemodialysis patients. Nephrology Dialysis 

Transplantation 27, 2907-2912. 10.1093/ndt/gfr767. 

8. Wu, J.Y., Lee, M.T.G., Lee, S.H., Tsai, Y.W., Hsu, S.C., Chang, S.S., and Lee, C.C. 

(2016). Angiotensin-Converting Enzyme Inhibitors and Active Tuberculosis: A 

Population-Based Study. Medicine 95, e3579. 10.1097/md.0000000000003579. 

9. Mortensen, E.M., Nakashima, B., Cornell, J., Copeland, L.A., Pugh, M.J., Anzueto, A., 

Good, C., Restrepo, M.I., Downs, J.R., Frei, C.R., and Fine, M.J. (2012). Population-

Based Study of Statins, Angiotensin II Receptor Blockers, and Angiotensin-Converting 

Enzyme Inhibitors on Pneumonia-Related Outcomes. Clinical Infectious Diseases 55, 

1466-1473. 10.1093/cid/cis733. 

10. Gullestad, L., Aukrust, P., Ueland, T., Espevik, T., Yee, G., Vagelos, R., Froland, S.S., 

and Fowler, M. (1999). Effect of high- versus low-dose angiotensin converting enzyme 

inhibition on cytokine levels in chronic heart failure. Journal of the American College of 

Cardiology 34, 2061-2067. 10.1016/s0735-1097(99)00495-7. 

11. Antunes, G., Evans, S.A., Lordan, J.L., and Frew, A.J. (2002). Systemic cytokine levels 

in community-acquired pneumonia and their association with disease severity. European 

Respiratory Journal 20, 990-995. 10.1183/09031936.02.00295102. 

12. Scanzano, A., and Cosentino, M. (2015). Adrenergic regulation of innate immunity: a 

review. Frontiers in Pharmacology 6, 171. 10.3389/fphar.2015.00171. 

13. Emeny, R.T., Gao, D., and Lawrence, D.A. (2007). beta 1-adrenergic receptors on 

immune cells impair innate defenses against Listeria. Journal of Immunology 178, 4876-

4884. 10.4049/jimmunol.178.8.4876. 

14. PaninaBordignon, P., Mazzeo, D., DiLucia, P., Dambrosio, D., Lang, R., Fabbri, L., Self, 

C., and Sinigaglia, F. (1997). beta(2)-agonists prevent Th1 development by selective 



 101 

inhibition of interleukin 12. Journal of Clinical Investigation 100, 1513-1519. 

10.1172/jci119674. 

15. Mohammadpour, H., MacDonald, C.R., Qiao, G., Chen, M., Dong, B., Hylander, B.L., 

McCarthy, P.L., Abrams, S.I., and Repasky, E.A. (2020). B2 adrenergic receptor-

mediated signaling regulates the immunosuppressive potential of myeloid-derived 

suppressor cells. Cancer Research 80. 10.1158/1538-7445.sabcs19-p3-01-02. 

16. Ashrafi, S., Shapouri, R., Shirkhani, A., and Mahdavi, M. (2018). Anti-tumor effects of 

propranolol: Adjuvant activity on a transplanted murine breast cancer model. 

Biomedicine & Pharmacotherapy 104, 45-51. 10.1016/j.biopha.2018.05.002. 

17. Seiffert, K., Hosoi, J., Torii, H., Ozawa, H., Ding, W.H., Campton, K., Wagner, J.A., and 

Granstein, R.D. (2002). Catecholamines inhibit the antigen-presenting capability of 

epidermal Langerhans cells. Journal of Immunology 168, 6128-6135. 

10.4049/jimmunol.168.12.6128. 

18. Estrada, L.D., Agac, D., and Farrar, J.D. (2016). Sympathetic neural signaling via the 

beta 2-adrenergic receptor suppresses T-cell receptor-mediated human and mouse 

CD8(+) T-cell effector function. European Journal of Immunology 46, 1948-1958. 

10.1002/eji.201646395. 

19. Bucsek, M.J., Qiao, G.X., MacDonald, C.R., Giridharan, T., Evans, L., Niedzwecki, B., 

Liu, H.C., Kokolus, K.M., Eng, J.W.L., Messmer, M.N., et al. (2017). beta-Adrenergic 

Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in 

CD8(+) T Cells and Undermines Checkpoint Inhibitor Therapy. Cancer Research 77, 

5639-5651. 10.1158/0008-5472.can-17-0546. 

20. Ruddy, M.C., and Kostis, J.B. (2005). Angiotensin II Receptor Antagonists. 

21. Fox, A., Dutt, T.S., Karger, B., Obregon-Henao, A., Anderson, G.B., and Henao-

Tamayo, M. (2020). Acquisition of High-Quality Spectral Flow Cytometry Data. Current 

protocols in cytometry 93, e74-e74. 10.1002/cpcy.74. 

22. Fox, A., Dutt, T.S., Karger, B., Rojas, M., Obregon-Henao, A., Anderson, G.B., and 

Henao-Tamayo, M. (2020). Cyto-Feature Engineering: A Pipeline for Flow Cytometry 

Analysis to Uncover Immune Populations and Associations with Disease. Scientific 

Reports 10. 10.1038/s41598-020-64516-0. 

23. Kim, B., and Kim, T.H. (2018). Fundamental role of dendritic cells in inducing Th2 

responses. Korean Journal of Internal Medicine 33, 483-489. 10.3904/kjim.2016.227. 

24. Lyadova, I.V., and Panteleev, A.V. (2015). Th1 and Th17 Cells in Tuberculosis: 

Protection, Pathology, and Biomarkers. Mediators of Inflammation 2015, 854507. 

10.1155/2015/854507. 

25. Matsuzaki, J., Tsuji, T., Chamoto, K., Takeshima, T., Sendo, F., and Nishimura, T. 

(2003). Successful elimination of memory-type CD8(+) T cell subsets by the 

administration of anti-Gr-1 monoclonal antibody in vivo. Cellular Immunology 224, 98-

105. 10.1016/j.cellimm.2003.08.009. 

26. Khodadadi, L., Cheng, Q., Radbruch, A., and Hiepe, F. (2019). The Maintenance of 

Memory Plasma Cells. Frontiers in Immunology 10, 721. 10.3389/fimmu.2019.00721. 

27. Rao, M., Valentini, D., Poiret, T., Dodoo, E., Parida, S., Zumla, A., Brighenti, S., and 

Maeurer, M. (2015). B in TB: B Cells as Mediators of Clinically Relevant Immune 

Responses in Tuberculosis. Clinical Infectious Diseases 61, S225-S234. 

10.1093/cid/civ614. 



 102 

28. Dang, V.D., Hilgenberg, E., Ries, S., Shen, P., and Fillatreau, S. (2014). From the 

regulatory functions of B cells to the identification of cytokine-producing plasma cell 

subsets. Current Opinion in Immunology 28, 77-83. 10.1016/j.coi.2014.02.009. 

29. Lazarevic, V., Glimcher, L.H., and Lord, G.M. (2013). T-bet: a bridge between innate 

and adaptive immunity. Nature Reviews Immunology 13, 777-789. 10.1038/nri3536. 

30. Samji, T., and Khanna, K.M. (2017). Understanding memory CD8(+) T cells. 

Immunology Letters 185, 32-39. 10.1016/j.imlet.2017.02.012. 

31. Corgnac, S., Boutet, M., Kfoury, M., Naltet, C., and Mami-Chouaib, F. (2018). The 

Emerging Role of CD8(+) Tissue Resident Memory T (T-RM) Cells in Antitumor 

Immunity: A Unique Functional Contribution of the CD103 Integrin. Frontiers in 

Immunology 9, 1904. 10.3389/fimmu.2018.01904. 

32. Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-

Ramos, J., Lauzurica, P., Mueller, S.N., Stefanovic, T., et al. (2013). The developmental 

pathway for CD103(+)CD8(+) tissue-resident memory T cells of skin. Nature 

Immunology 14, 1294-+. 10.1038/ni.2744. 

33. Copland, A., Diogo, G.R., Hart, P., Harris, S., Tran, A.C., Paul, M.J., Singh, M., Cutting, 

S.M., and Reljic, R. (2018). Mucosal Delivery of Fusion Proteins with Bacillus subtilis 

Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guerin. Frontiers 

in Immunology 9, 346. 10.3389/fimmu.2018.00346. 

34. Hart, P., Copland, A., Diogo, G.R., Harris, S., Spallek, R., Oehlmann, W., Singh, M., 

Basile, J., Rottenberg, M., Paul, M.J., and Reljic, R. (2018). Nanoparticle-Fusion Protein 

Complexes Protect against Mycobacterium tuberculosis Infection. Molecular Therapy 26, 

822-833. 10.1016/j.ymthe.2017.12.016. 

35. Wrobel, L.J., Bod, L., Lengagne, R., Kato, M., Prevost-Blondel, A., and Le Gal, F.A. 

(2016). Propranolol induces a favourable shift of anti-tumor immunity in a murine 

spontaneous model of melanoma. Oncotarget 7, 77825-77837. 

10.18632/oncotarget.12833. 

36. Pedrosa, J., Saunders, B.M., Appelberg, R., Orme, I.M., Silva, M.T., and Cooper, A.M. 

(2000). Neutrophils play a protective nonphagocytic role in systemic Mycobacterium 

tuberculosis infection of mice. Infection and Immunity 68, 577-583. 

10.1128/iai.68.2.577-583.2000. 

37. Kawai, K., Tsuno, N.H., Matsuhashi, M., Kitayama, J., Osada, T., Yamada, J., Tsuchiya, 

T., Yoneyama, S., Watanabe, T., Takahashi, K., and Nagawa, H. (2005). CD11b-

mediaited migratory property of peripheral blood B cells. Journal of Allergy and Clinical 

Immunology 116, 192-197. 10.1016/j.jaci.2005.03.021. 

38. Lyashchenko, K.P., Vordermeier, H.M., and Waters, W.R. (2020). Memory B cells and 

tuberculosis. Veterinary Immunology and Immunopathology 221, 110016. 

10.1016/j.vetimm.2020.110016. 

39. Harris, D.P., Haynes, L., Sayles, P.C., Duso, D.K., Eaton, S.M., Lepak, N.M., Johnson, 

L.L., Swain, S.L., and Lund, F.E. (2000). Reciprocal regulation of polarized cytokine 

production by effector B and T cells. Nature Immunology 1, 475-482. 10.1038/82717. 

40. Rijnink, W.F., Ottenhoff, T.H.M., and Joosten, S.A. (2021). B-Cells and Antibodies as 

Contributors to Effector Immune Responses in Tuberculosis. Frontiers in Immunology 

12, 640168. 10.3389/fimmu.2021.640168. 



 103 

41. Achkar, J.M., Chan, J., and Casadevall, A. (2015). Role of B Cells and Antibodies in 

Acquired Immunity against Mycobacterium tuberculosis. Cold Spring Harbor 

Perspectives in Medicine 5, a018432. 10.1101/cshperspect.a018432. 

42. Orme, I.M., and Henao-Tamayo, M.I. (2018). Trying to See the Forest through the Trees: 

Deciphering the Nature of Memory immunity to Mycobacterium tuberculosis. Frontiers 

in Immunology 9, 461. 10.3389/fimmu.2018.00461. 

43. Vogelzang, A., Perdomo, C., Zedler, U., Kuhlmann, S., Hurwitz, R., Gengenbacher, M., 

and Kaufmann, S.H.E. (2014). Central Memory CD4(+) T Cells Are Responsible for the 

Recombinant Bacillus Calmette-Gu,rin Delta ureC::hly Vaccine's Superior Protection 

Against Tuberculosis. Journal of Infectious Diseases 210, 1928-1937. 

10.1093/infdis/jiu347. 

44. Enamorado, M., Khouili, S.C., Iborra, S., and Sancho, D. (2018). Genealogy, Dendritic 

Cell Priming, and Differentiation of Tissue-esident Memory CD8(+) T Cells. Frontiers in 

Immunology 9, 1751. 10.3389/fimmu.2018.01751. 

45. Perdomo, C., Zedler, U., Kuehl, A.A., Lozza, L., Saikali, P., Sander, L.E., Vogelzang, A., 

Kaufmann, S.H.E., and Kupz, A. (2016). Mucosal BCG Vaccination Induces Protective 

Lung-Resident Memory T Cell Populations against Tuberculosis. Mbio 7, e01686-16. 

10.1128/mBio.01686-16. 

46. O'Garra, A., Redford, P.S., McNab, F.W., Bloom, C.I., Wilkinson, R.J., and Berry, 

M.P.R. (2013). The Immune Response in Tuberculosis. In Annual Review of 

Immunology, Vol 31, D.R. Littman, and W.M. Yokoyama, eds. (Annual Reviews), pp. 

475-527. 10.1146/annurev-immunol-032712-095939. 

47. Ordway, D.J., Shang, S.B., Henao-Tamayo, M., Obregon-Henao, A., Nold, L., Caraway, 

M., Shanley, C.A., Basaraba, R.J., Duncan, C.G., and Orme, I.M. (2011). Mycobacterium 

bovis BCG-Mediated Protection against W-Beijing Strains of Mycobacterium 

tuberculosis Is Diminished Concomitant with the Emergence of Regulatory T Cells. 

Clinical and Vaccine Immunology 18, 1527-1535. 10.1128/cvi.05127-11. 

48. Chackerian, A.A., Alt, J.M., Perera, T.V., Dascher, C.C., and Behar, S.M. (2002). 

Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes 

the initiation of T-cell immunity. Infection and Immunity 70, 4501-4509. 

10.1128/iai.70.8.4501-4509.2002. 

49. Hajighasemi, F., and Mirshafiey, A. (2016). Regulation of inflammatory cytokines in 

human immunocompetent cells by propranolol in vitro. European Respiratory Journal 48. 

10.1183/13993003.congress-2016.PA1083. 

50. Adam, L., Lopez-Gonzalez, M., Bjork, A., Palsson, S., Poux, C., Wahren-Herlenius, M., 

Fernandez, C., and Spetz, A.L. (2018). Early Resistance of Non-virulent Mycobacterial 

Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial 

Cathelicidin Camp. Frontiers in Immunology 9, 1939. 10.3389/fimmu.2018.01939. 

51. Flaishon, L., Becker-Herman, S., Hart, G., Levo, Y., Kuziel, W.A., and Shachar, I. 

(2004). Expression of the chemokine receptor CCR2 on immature B cells negatively 

regulates their cytoskeletal rearrangement and migration. Blood 104, 933-941. 

10.1182/blood-2003-11-4013. 

52. Wang, S., Xia, P.Y., Chen, Y., Huang, G.L., Xiong, Z., Liu, J., Li, C., Ye, B.Q., Du, Y., 

and Fan, Z.S. (2016). Natural Killer-like B Cells Prime Innate Lymphocytes against 

Microbial Infection. Immunity 45, 131-144. 10.1016/j.immuni.2016.06.019. 



 104 

53. Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive 

immunity. Nature Reviews Immunology 3, 133-146. 10.1038/nri1001. 

54. Nakanishi, K. (2018). Unique Action of Interleukin-18 on T Cells and Other immune 

Cells. Frontiers in Immunology 9, 763. 10.3389/fimmu.2018.00763. 

 
 
  



 105 

CHAPTER 4 — NOVEL TECHNIQUE TO STUDY IMMUNOMETABOLISM DURING 

MYCOBACTERIUM TUBERCULOSIS INFECTION 

 

 

Introduction 
 
Despite over 100 years of research, there is still a mystery surrounding the key immune cell 

players in tuberculosis infection and vaccination.1,2 Different research points to both protective 

and non-protective qualities of most cells. Thus, it is not understood which immune cells need to 

be elicited to develop a better vaccine. One approach to a more complete understanding of the 

immune system is through immunometabolism. Immunometabolism is a relatively new field of 

research, emerging in the last two decades. The term immunometabolism refers to the study of 

metabolic pathways that play a role in immune cell populations. Various immune cells require 

metabolites to grow, proliferate, and activate.3 As such, immune cells and metabolites are 

intimately involved. 

 

One way to study immunometabolism and the immune system is through comparing different 

data observed over the course of an experiment. However, while these experiments are critical to 

understanding the science, they can be both expensive and time consuming. Another pathway to 

gain scientific knowledge is through making better use of data that has already been collected. 

Large databases containing terabytes of experimental data exist.4 Much of this data is publicly 

available, making it accessible and affordable for hypothesis generation. There has also been a 

push from the National Institutes of Health to gain new immunological insights from existing 

datasets.5 Thus, it is important to extract more knowledge and ensure better use of difficult-to-

collect and costly data.  
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Two tools used to study immunometabolism are flow cytometry and liquid chromatography-

mass spectrometry (LC-MS). Flow cytometry is a tool used to quantify immune cells present in 

the organs, tissues, or bodily fluids of animals. Traditionally, flow cytometry data has been 

analyzed with manual gating on biaxial plots, taking considerable time and becoming 

increasingly difficult with higher numbers of recorded marker parameters. With the invention of 

unsupervised methods such as FlowSOM and cyto-feature engineering, extensive work has been 

performed on developing tools to efficiently analyze large flow cytometry datasets.6,7 On the 

other hand. LC-MS and LC-MS/MS are used to study immunometabolism and identify 

molecular compounds and metabolites within samples. These tools can be used to explore 

chemical compounds, drug and toxin metabolites, and metabolic pathways. The traditional way 

to analyze LC-MS data is to pre-process the data using packages such as ‘xcms’ to identify 

peaks, and then perform a series of t-tests to compare the fold change of metabolic density 

between two experimental groups such as control and treated.8-10 While this method is beneficial 

in identifying key molecular differences between groups, it does not account for measurable 

dependent variables and confounding factors. While there has been extensive research on 

analyzing flow cytometry and metabolomics data separately, little research has been done 

integrating the two and comparing flow cytometry immune cell populations with metabolomics.  

 

Flow cytometry and metabolomics techniques can be used to understand potential relationships 

between immune cells and metabolic pathways. Though we may not identify exact metabolites 

of interest, metabolites and biochemicals serve as tags for these metabolic pathways and can 

capture information on whether these pathways are upregulated or downregulated. There is clear 
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evidence that metabolic pathways produce metabolites and amino acids (precursors to 

metabolites) that are required for T cell activation and proliferation. Specifically, research has 

shown that activated T cells utilize glucose and glutamine through a pathway called glycolysis, 

as well as NADPH generated through the pentose phosphate pathway, to proliferate.11 Further, 

amino acid synthesis pathways utilize small molecules produced in both glycolysis and the 

pentose phosphate pathway to produce amino acids necessary for activated T cells to 

function.12,13 For example, CD8+ T cell responses diminish when there is a low abundance of the 

amino acid methionine.14 Another amino acid, alanine, is also required to activate naive and 

memory T cells.13 To measure the activation of these cells, SLA-DQ, a class II swine leukocyte 

antigen found on T cells and antigen presenting cells, can be used.15-18 By identifying 

relationships between immune cells and metabolites, these cells and metabolites can be targeted 

for drugs and vaccines. 

 

In this paper, we introduce a novel technique for correlating immune cell populations with 

metabolomics data in the context of a tuberculosis vaccine study from 2015. The technique 

exhibits the utility of re-analyzing old datasets, though it can also be used on new data sources 

that utilize LC-MS or LC-MS/MS data and have additional numerical dependent variables such 

as flow cytometry or gene expression data.  We developed two hypotheses: 1) we would identify 

metabolic profiles correlated with immune cells with this novel methodology 2) we would see an 

association between activated T cells expressing SLA-DQ and glycolysis, the pentose phosphate 

pathways, and amino acid synthesis pathways. We expected to see these differences in the 

vaccinated group and after infection because of the increased T cell activation due to the 
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vaccination and infection. Regardless of the initial study outcome, the technique can be used to 

gain knowledge and generate hypotheses using dependent variables. 

 

Methods 

Experimental Setup. Neonatal minipigs were either left unvaccinated or vaccinated with BCG; 

they were subsequently infected with Mycobacterium tuberculosis (Figure 4.1). Blood was 

collected at two time points, pre-infection and post-infection, for subsequent flow cytometry and 

metabolomics analysis. 

 

Figure 4.1: Experimental timeline. Minipigs were either vaccinated with BCG (Bacille 
Calmette-Guérin) or left unvaccinated two days after birth. Blood was collected approximately 
12 weeks later at a pre-infection time point. The minipigs were subsequently infected with 
Mycobacterium tuberculosis (MTB). Finally, blood from a post-infection time point was 
collected 30 days after infection. 
 

Animals. Two pregnant Sinclair minipigs were purchased from Sinclair Bio-Resources 2-3 

weeks before expected farrowing dates. Ten healthy neonatal piglets were used for the study as 

described in Ramos et al 2019.17 All experimental protocols were approved by the Institutional 

Animal Care and Use Committee at Colorado State University. 

 

Vaccinations. Five minipigs randomly distributed across piglets from the two mothers were 

intradermally vaccinated at the base of the tail 48-hours after birth with 0.05ml Bacille Calmette-
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Guérin (Statens Serum Institute, Copenhagen, Denmark). Five piglets remained unvaccinated to 

serve as controls. This early vaccination mimics human neonatal vaccination timelines.  

 

Mycobacterium tuberculosis infection. Five months post-birth, the minipigs were inoculated 

with an aerosolized target dose of 25 CFU of the virulent W-Beijing Mycobacterium tuberculosis 

HN878 as described in Ramos et al. 2017.19 

 

Blood collection. Blood was collected from minipigs at two time points, once before infection at 

84 days, and again post-infection at 180 days. The pre-infection time point at day 84, was chosen 

for two reasons. First, at this age minipigs are considered adolescents and thus the immune 

response is more mature. Further, it occurs about 12 weeks after BCG vaccination which is 

around the time when BCG-specific T cell levels peak in humans (around 10 weeks post-

vaccination).20 The post-infection time point at day 30 was chosen because BCG protection is 

generally observed 30 days following infection in mice, though this protection wanes over 

time.21 Blood samples were taken so that the animals did not need to be sacrificed at each time 

point.  The blood samples were separated into peripheral blood mononuclear cells (PBMCs) for 

flow cytometry analysis and serum for metabolomics analysis.  

 

PBMC Preparation. Approximately 2ml of blood was collected into heparin tubes from each 

animal. Separation of peripheral blood mononuclear cells (PBMC) was performed using 

LympholyteÒ Cell-Separation medium (Cedarlane) following manufacturer’s recommendations. 

PBMC were then placed in RPMI-1640 medium with supplements and 10% FBS (cRPMI) in 96 
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well plates at 106 cells/ml. The PBMC were incubated for 18 hours at 37°C in 5% CO2 in cRPMI 

before use in flow cytometry analysis. 

 

Flow Cytometry and Analysis. Flow cytometry was used to assess the specific immune cells in 

the PBMCs. The panel included 8 surface markers which can be used to characterize the specific 

immune cells: CD3, CD4, CD8, CCR7, SLADQ, CD172, CD45RA, live-dead stain (Fixable 

Viability Stain 510). Staining was performed as described in Ramos et al. 2019. Two time points 

were assessed in this analysis: 12 weeks post-birth and 30 days post infection. Cells were first 

gated on single live leukocytes and then analyzed with a cyto-feature engineering pipeline.7 

CCR7 was removed from analysis because it was not difficult to determine the cutoff between 

the positive and negative populations from the data. The pipeline analysis resulted in a data 

frame where each row is a different live cell from a sample characterized by the combination of 

positive and negative expression of each marker denoted as either a 1 (positive) or 0 (negative).  

 

Metabolomics and Analysis. 

Samples for metabolomics were prepared following previous publications with minor 

modification.22-24 Briefly, serum samples collected from minipigs were thawed on ice and 

metabolites were extracted from an aliquot of serum using LC-MS grade methanol (final 

concentration 75%, v/v) containing internal standards (phenylalanine d5 175 ng/mL, 1-methyl 

tryptophan 37 ng/mL and arachidonoyl amide 30 ng/mL) for protein precipitation. Samples were 

incubated at -20°C for one hour, brought back to room temperature, and vortexed briefly. The 

samples were centrifuged at 14,000 rpm at room temperature for 30 minutes. Supernatant was 

transferred to new Eppendorf tubes and dried under vacuum. The dried metabolite residue was 
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suspended in 50% methanol and centrifuged at 14,000 rpm for 30 minutes. The supernatant was 

transferred to vials and 6µL of sample was subjected to LC-MS analysis. Quality control (QCs) 

samples were prepared by pooling an aliquot of serum and processed along with experimental 

samples. The QC samples were analyzed at the beginning of the experiment and following every 

5 samples. 

 

The Agilent 1290 series LC system was used to carry out analysis of extracted metabolites with 

gradient elution mode using solvent A (0.1% formic acid in water) and solvent B (0.1% formic 

acid in acetonitrile). Samples were injected at a composition of mobile phase 98% solvent A and 

2% solvent B, and held for 2.5 minutes.  Solvent B was then raised to 40% at the 15-minute time 

mark and to 98% at the 25-minute time mark. This condition was maintained until the 33-minute 

time point before returning to the initial solvent composition at 34 minutes. Post-run was set to 8 

minutes for this analysis. Metabolites were separated chromatographically on an Atlantis T3 

column (2.1 x 150mm, 3µm, Waters) with a mobile phase flow rate of 0.300 mL/min. Column 

oven temperature and autosampler temperature were 35°C and 4°C, respectively. 

 

Eluent from the LC system was directed to the time-of-flight mass spectrometer (MS-TOF, 

model 6230, Agilent Technologies) equipped with an electrospray ionization system. The 

following instrumental parameters were set for MS analysis: capillary voltage = 4000; 

fragmentor voltage = 120; drying gas temperature = 330°C; drying gas flow = 11 L/min; 

nebulizer pressure = 45 psig. Data was acquired in positive ion mode at a scan range of 75 -1700 

m/z and scan rate of 1.5 spectra/sec. The mass spectrometer was tuned to verify the performance 
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of the instrument before beginning the sample analysis. Instrument control, data acquisition and 

analysis were ascertained by MassHunter software (Agilent Technologies).  

 

With this LC-MS method we would expect to identify a variety of metabolites including amino 

acids, polar lipids, and simple carbohydrates. However, some of the settings can bias our results. 

For example, it can be difficult to analyze hydrophobic lipids due to the extraction protocol and 

LC-MS method. Further, with the use of a positive ion mode, metabolites that typically ionize in 

a negative mode are not recorded.25 Therefore, some of our metabolites of interest could be 

outside of our viewing window. 

 

The LC-MS raw (Agilent .d file) data files were converted to mzML files using open source 

Proteowizard software.26 These data files were then processed by xcms software in the R 

programming environment.9 The centWave algorithm in xcms was used to detect 

chromatographic peaks. The molecular features were grouped across the samples, and the 

features were further considered only if they were present in more than 40% of samples in at 

least one sample class (i.e., pre-infection group, post-infection group, vaccinated group, 

unvaccinated group). Molecular features can vary in their retention time across LC runs; this 

retention time variability was corrected using the obiwarp algorithm.27 A table with integrated 

values for each aligned peak, which provides measures of the intensity of each measured 

metabolite feature in each sample was saved as a .csv file for further statistical analysis.  
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The metabolomics were further analyzed using a pipeline whose development is described in the 

Results; further tools used in the developed pipeline were the Human Metabolome DataBase 

Version 4.0, MetaboAnalyst 5.0, and R version 4.0.2.  

 

Results 

Broad overview of analysis pipeline 

To understand relationships between immune cells and metabolites in the context of a 

tuberculosis vaccine study, we developed a novel pipeline to identify associations between 

immune cell populations and metabolite pathways in data collected from BCG-vaccinated versus 

unvaccinated minipigs before and after infection with Mycobacterium tuberculosis (MTB). The 

pipeline begins with separate pre-processing of flow cytometry and metabolomics data to prepare 

the two types of data for integrated analysis (Figure 4.2). The two data types are then integrated 

by correlating the flow cytometry immune cell populations with the metabolomics molecular 

features: after reducing the dimensions of the metabolomic data with a principal components 

analysis, we fit multiple linear regression models, with controls included for sampling time point, 

for every combination of metabolite principal component and immune cell population. This 

allows us to identify principal components of the metabolomics data that are associated with 

variation in immune cell populations in a sample. Once we have identified principal components 

of the metabolite measurements that are associated with immune cell populations, we utilize the 

variable loadings to identify the specific molecular features that are drivers of that principal 

component.28 These molecular features can then be used to either identify putative metabolomic 

pathways (i.e., pathways that, if linked with the immune cell population, would be consistent 

with the data observed through metabolomics) or perform a more targeted analysis of specific 

metabolite features with LC-MS/MS. As an additional step, to clarify that associations identified 
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as interesting are not spurious results of the multiple comparisons applied through testing, we 

create global p-value histograms for each immune cell population.  

 

 
Flow cytometry pre-processing and data exploration with cyto-feature engineering 

The first step in the flow cytometry analysis workflow was to identify immune cells and markers 

of interest. These can be utilized to form correlations with the metabolomics data to gain insight 

on important biological relationships. Flow cytometry results for the minipig data were analyzed 

via three methods: 1) singular marker expression 2) predefined cellular phenotypes 3) data-

driven cellular phenotypes. Analysis of Covariance (ANCOVA) tests were used to test 

differences both between vaccinated and unvaccinated minipigs and pre- and post- infection. 

Singular marker expression looked at the overall expression of the 6 flow markers used to 

analyze the cells. While there were no differences in the singular marker expression between the 

unvaccinated and vaccinated minipigs pre- and post- infection, there were differences across all 

animals, unvaccinated and vaccinated from pre-infection to post-infection, with significantly 

higher levels of CD172, CD45RA, and SLA-DQ after infection (Figure 4.3). There were also 

significantly lower levels of CD4 after infection.  
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Figure 4.2: Analysis pipeline workflow. Both flow cytometry and metabolomics data are 
recovered from an experiment. Flow cytometry data is analyzed with a cyto-feature engineering 
pipeline that identifies all immune cell populations present in the data. Concurrently, 
metabolomics data is processed to identify peaks and then molecular features in the data. 
Metabolomics data is then analyzed with a principal components analysis (PCA) to reduce the 
number of dimensions. Regression models are created to identify correlations between each 
principal component and immune cell population. The high-importance metabolites associated 
with the principal components for the significant linear models are determined based on loading 
cutoffs. Finally, a pathway analysis is performed with the high-importance metabolites to 
identify the specific metabolic pathways correlated with the cell populations. Alternatively, a 
targeted analysis for specific metabolites could be performed if the metabolomics data is from an 
LC-MS/MS experiment. As an additional check, global p-value histogram analyses for each 
immune cell population are used to confirm that there are compelling correlations between the 
immune cells and molecular features within the dataset. 
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Figure 4.3: Singular marker expression of PBMCs pre- and post-infection via flow 

cytometry. The percentage of live leukocytes expressing each marker is displayed on the y-axis 
with the two time points on the x-axis. Asterisks indicate statistically significant differences 
between groups (* p < 0.05). 
 

We then analyzed predefined phenotypes, which are classified as a combination of positive and 

negative expression of two markers (CD4 and CD8). These predefined phenotypes can shed light 

on general populations that we expect to see in the minipigs, mainly CD4 T cells (CD4+ CD8-), 

CD8 T cells (CD4- CD8+), double negative T cells (CD4-CD8-) and double positive T cells 

(CD4+ CD8+). Again, there were similarly no differences in the predefined phenotypes between 

vaccinated and unvaccinated minipigs, but there were differences across all animals when 

comparing pre- and post-infection, with higher levels of double negative T cells and lower levels 

of CD4 T cells after infection (Figure 4.4). 
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Figure 4.4: Predefined PBMC cellular phenotypes pre- and post-infection via flow 

cytometry. The percentage cells in each population is displayed on the y-axis with the two time 
points on the x-axis. Asterisks indicate statistically significant differences between groups (* p < 
0.05). 
 

Finally, we used an approach to allow data-driven identification of cellular phenotypes, also 

known as populations, present in the minipigs. This allows us to identify populations that we 

may not expect to see in the data. Using the cyto-feature engineering method described in Fox et 

al., 63 immune cell phenotypes were identified.7 These phenotypes are described as all possible 

negative and positive expression combinations of markers within a sample. These phenotypes 

were then filtered down to only cells that were CD3+ and constituted at least 1% of one sample, 

which resulted in 25 phenotypes (Figure 4.5a). These cellular populations are numbered to keep 

track of them (e.g., Pop1, Pop2), but the interpretation of these populations is based on the 

combination of positive and negative markers (i.e., Pop1 is a CD3+CD4-CD8-CD45RA-

SLADQ-CD172- cell). While there was only one difference between the vaccination groups (in 
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Pop3: CD3+CD45RA+SLADQ+CD4-CD8-CD172-), there were statistically significant 

differences between the two time points in 22 of the 25 populations (Figure 4.5b). 

 

 

Figure 4.5: Data-driven PBMC cell populations pre- and post-infection via flow cytometry. 
(a) Cyto-feature engineering was used to identify 25 unique populations that express CD3 and 
constitute greater than 1% of the live leukocytes in at least one sample. Green indicates positive 
expression of a marker on the x-axis and blue indicates negative expression of a marker. (b) 
Each small plot corresponds to a cell population described in a. The percentage of cells in each 
population is displayed on the y-axis with the two time points on the x-axis. Asterisks indicate 
statistically significant differences between groups (* p < 0.05). 
 

Thus, in total, there were 35 flow cytometry immune cell populations of interest based on this 

analysis: 6 singular marker expression populations, 4 predefined cellular phenotypes, and 25 
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data-driven cellular phenotypes. These 35 flow cytometry immune cell populations will be 

referenced further in these analyses. 

 

Metabolomics pre-processing, data exploration, and PCA dimension reduction 

Metabolomics LC-MS data was initially pre-processed with the R package ‘xcms’ to identify 

molecular features present in the minipigs. A total of 4,504 molecular features were identified. 

Because this number is too high to try to identify each of the individual metabolites, we tested a 

variety of methods for filtering to the most relevant molecular features. 

 

Principal component analysis (PCA) was used to visualize the high-dimensional metabolomics 

data and reduce the data to 19 principal components (Appendix 3: Supplemental Figure S4.1). 

Representative PCA plots are shown in Figure 4.6. About 50% of the variance in the data can be 

explained by principal components 1 and 2. There was a lot of overlap in similarities when 

comparing the vaccinated to unvaccinated minipigs, but there was separation between the pre-

infection and post-infection time points along PC1 and PC2. This is very similar to what we saw 

in the flow cytometry when comparing vaccination status and time point. 
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Figure 4.6: Metabolomics PCA Plot. Differences between the pre-infection and post-infection 
time points were recognized along PC2 while separation on the PC plots due to vaccination 
status was not. 
 
Regression modelling 

After a brief exploration of the immune cell population and metabolomics data, we moved into 

the data integration stage. When preparing for regression modelling, we could use simple linear 

models to correlate each molecular feature with each cell population, but we would encounter the 

multiple comparisons problem.29 When multiple comparisons are made (such as in this case 

where 4,504 comparisons are made for each of the 35 immune cell populations), there is a high 

probability that the number of statistically significant features is inflated due to chance. To 

account for this multiple comparison issue, we reduced the number of correlations and inferences 

made by utilizing dimensionality reduction methods. Dimensionality reduction is a common 

technique that transforms high-dimensional data to low-dimensional data while maintaining key 

information.30 Principal components analysis is an example of dimensionality reduction which 

reduces the number of features in data but retains information on variance in the data.  Therefore, 
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we can reduce the dimensions of the metabolite data by using the 19 principal components rather 

than the 4,504 individual molecular features in our regression modelling. 

 

Regression modelling frameworks are incredibly flexible and allow us to control for many 

different factors. Because we did not see any differences between the vaccinated and 

unvaccinated animals in our preliminary analysis, we did not include a control for vaccination 

status in our regression modelling. However, we saw differences between the two time points. 

The goal of this analysis was to identify changes in immune cell populations that can be 

explained by changes in various metabolites; this relationship should remain the same regardless 

of time point. We used an interaction linear model first to weed out the pairs where the 

relationship between immune cells and molecular features was different for the two time points. 

We then moved to a less complex additive linear regression model to determine which markers 

and metabolites were correlated. These regression modeling steps are described below. 

 

We performed linear regressions on each of the 19 principal components with the 35 immune 

cell populations to see if the flow cytometry results were correlated with each principal 

component, adjusting for time point interactions. This interaction linear model (Eq. 1) was used 

to determine if the interaction between the principal components (PC) value and the immune cell 

percentage was different based on the timepoints; this interaction model allowed there to be a 

different relationship at the two time points. 

 

                                                   𝑌 =  𝛽0  +  𝛽1𝑋1 + 𝛽2𝑋2  +  𝛽3𝑋1𝑋2                                (Eq. 1) 

Where 𝑌: Immune cell percentage; 𝑋1 : PC value, 𝑋2: Time point 
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If a molecular feature is truly correlated with an immune cell population, we would expect to see 

the same or at least very similar correlation regardless of confounding factors such as time 

points. Thus, we filtered to correlations where the p-value for the interaction between PC value 

and time point was not significant (p>0.05) meaning that the relationship between the PC value 

and the immune cell percentages was not consistent across time points. This removed six 

correlations that were not of interest. From here, we could use a less complex additive linear 

model after removing the six correlations where there was an interaction between the time point 

and PC value (Eq. 2). 

 

                                                           𝑌 =  𝛽0  +  𝛽1𝑋1 + 𝛽2𝑋2                                          (Eq. 2) 

Where 𝑌: Immune cell percentage; 𝑋1 : PC value, 𝑋2: Time point 

 

After filtering our additive linear model to those where the p-value < 0.01 for the correlation 

between immune cell percentage and PC value, there were 13 immune cell-principal component 

pairs (Table 4.1). 
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Table 4.1: Statistically significant additive linear model pairs. The table displays the immune 
cell population-principal component pairs in which the p-value for the slope is significant (p < 
0.01) for an additive linear model. 
 

 

 

When visualizing the 13 correlation plots, we observed that some of the pairs identified in this 

analysis had very low or non-existent immune cell populations pre-infection. Because the goal of 

this analysis was to identify correlations where the relationship remained regardless of time 

point, we then filtered these populations to those where both of the time points exhibited 

variability in both the immune cell and metabolomics observations. This resulted in 4 immune 

cell-principal component pairs (Figure 4.7). 
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Figure 4.7: Immune cell-principal component pairs for which there was a correlation 

between the observations, and variability in both observations. The x-axis in each small plot 
gives the principal component value for PC4, and the y-axis gives the percentage of cells in each 
of the respective flow cytometry immune cell populations. Additive linear models are shown for 
the two time points: pre-infection and post-infection, where each point represents a minipig. 
Pop10: CD3+CD8+CD4-CD45RA-SLADQ-CD172-; Pop16: CD3+CD4+CD8-CD45RA-
SLADQ-CD172-; Pop19: CD3+CD4+CD45RA+CD8-SLADQ-CD172- 
 

Gathering high-importance metabolites associated with principal components 

All of the significant correlations occurred between immune cell populations and PC4. PC4 is a 

measure of the molecular features, so we could then go back into this principal component and 

see which of the specific molecular features were driving this component. We could do this by 

visualizing the loading that each molecular feature has on the principal component. If the loading 

for a molecular feature is near 0, then it has little effect on the principal component, but if the 

loading is highly positive or highly negative, it has a greater effect. We then compiled the 

molecular features that had a large impact on PC4, mainly those with loading ≥ 0.03 and ≤ -0.03 
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(Figure 4.8). For PC4, there were 140 molecular features with loading ≥ 0.03 and 171 molecular 

features with loading ≤ -0.03.  

 

Figure 4.8: Histogram of the loadings of the molecular features (MF) that contribute to 

PC4. The x-axis denotes the loadings of the molecular features, and the y-axis denotes the 
number of molecular features with each loading. Red lines indicate the cutoffs for molecular 
features considered “important” and used in further analyses. 
 

Pathway analysis 

While it is not possible to definitely identify metabolites using LC-MS data, a pathway analysis 

can be used to identify putative pathways that are plausible and consistent with our data. To 

perform the putative pathway analysis, we utilized the list of molecular features that had large 

impacts on PC4. The mz masses were queried on the Human Metabolome Database to identify 

all possible metabolites for each mz value. MetaboAnalyst’s pathway analysis was then used to 

identify the putative pathways. The list of features for the highly positive and highly negative 

loadings for PC4 were sent through MetaboAnalyst separately. The Homo sapiens (KEGG) 

reference genome was used because a minipig reference genome does not exist. Hypergeometric 

tests were used to calculate p-values for the probability that each of the pathways was identified. 
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The list of putative pathways was then filtered to those in which in the p-value ≤ 0.01 (Table 

4.2).  

Table 4.2: Significant putative pathways correlated with flow cytometry immune cell 

populations. The “Metabolites in Pathway” denotes the total number of metabolites in the 
pathway on the MetaboAnalyst database where the “identified metabolites” gives the number of 
metabolites putatively identified in the data.  
 

 

This pathway analysis identified three metabolic pathways—arachidonic acid metabolism, 

linoleic acid metabolism, arginine and proline metabolism—that were consistent with the data. 

Arachidonic acid metabolism had the lowest p-value out of these three pathways. For 

arachidonic acid metabolism, there were 29 metabolites that were consistent with patterns in our 

molecular feature data. This is not to say that all 29 of these metabolites were found in our data, 

but it is plausible that some of these metabolites were present. 

 

Biological Significance 

Interestingly, we potentially identified 29 out of 36 metabolites present in the MetaboAnalyst 

database associated with arachidonic acid metabolism (Figure 4.9, Appendix 3: Supplemental 

Table 4.1). When we drilled back down to the original molecular features that were associated 

with arachidonic acid metabolism, we saw a negative correlation between the relative abundance 

of the metabolites and the percentage of cells that express CD45RA (Figure 4.10). 
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Figure 4.9: Simplified arachidonic acid metabolism plot adapted from MetaboAnalyst and 

KEGG. The nodes in lavender are the metabolites that were putatively identified in our analysis 
while the metabolites highlighted in yellow were not. KEGG IDs for each of the metabolites can 
be found in Appendix 3: Supplemental Table 4.1. 
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Figure 4.10: Molecular features potentially associated with arachidonic acid metabolism 

have a negative relationship with CD45RA. Each small plot shows the association between a 
different molecular feature and CD45RA. The x-axis in each small plot gives the relative 
metabolite expression, and the y-axis gives the percentage of cells that express CD45RA.  
 

CD45RA is a marker that is expressed both on naive T cells (CD45RA+ CCR7+), but also a 

subset of effector memory T cells that re-express CD45RA upon stimulation (CD45RA+ CCR7-

).31 Similarly, we can see that generally, post-infection, there is a higher percentage of CD45RA+ 

cells. This could potentially be explained by the fact that there is stimulation due to infection in 

the minipig that promotes the differentiation of naive T cells to effector memory T cells. 

Arachidonic acid metabolism, on the other hand, produces a variety of small molecules such as 

prostaglandins, eicosanoids, and leukotrienes that can greatly affect immune cell function. For 
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example, leukotriene B4 has been shown to increase chemotaxis of effector T cells, but not naive 

or central memory T cells.32,33 With the chemotaxis of effector T cells to the tissue, we may 

expect to see a lower level of CD45RA cells present in the blood as these cells have already 

migrated to the infected tissue. While it is not possible to know if any of the metabolites 

identified in this analysis are definitely Leukotriene B4, this could explain why we see a lower 

CD45RA expression when arachidonic acid metabolism, and therefore, leukotriene B4, is 

increased. 

 

P-value histograms and family-wise error rate  

As a supplemental check, we wanted to confirm that there is compelling evidence to support the 

theory that the metabolites were correlated with various immune cell populations in our data. 

Because there were 4,504 molecular features, there are many opportunities to detect correlations 

that are just due to chance. We used standard statistical methods that focus on family-wise error 

rates to determine if the number of strong correlations are expected. For each of the 35 immune 

cell populations, we performed linear regressions with each of the 4,504 molecular features and 

created a p-value histogram that shows the p-values for each of the 4,504 test comparisons 

(Figure 4.11). By doing this, we could visualize the family of tests for each immune cell 

population under the null hypothesis that there are no correlations between the immune cells and 

molecular features.  
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Figure 4.11: Histograms of p-values associated with correlation plots. Each histogram plot 
shows all of the p-values for the correlation of an immune cell population with each molecular 
feature. The red line represents our statistically significant p-value cut off ( = 0.01) and the blue 
line represents the false discovery rate.  
 

Some tests are going to be positive just as a result of chance–in that case we would see 

something like the left plot on Figure 4.11 where there is a fairly uniform distribution of p-values 

from 0-1. With high statistical power and statistically significant results, we would expect our 

results to have a peak below our statistically significant p-value cut off–showing that there is 

likely a correlation between the immune cells and the metabolites (Figure 4.11, right). This does 

not necessarily mean that every single test below our p-value cutoff is true, but we can calculate 

the false discovery rate (FDR) (Eq. 3) to estimate the fraction of false rejections.  

 

                                        𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 =  2∗ (# 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 > 0.5) ∗𝛼# 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 𝛼                              (Eq. 3) 

 

This false discovery rate cannot show which of the tests below our statistically significant p-

value cutoff are true and which are due to chance, but we can estimate the percentage that are 

true. There was a large difference in the range of FDR values (1.8%-36.2%) based on each 

immune cell populations (Table 4.3). Based on this data, we can see that there are certain 
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immune cell populations such as Pop15 (CD3+CD8+SLADQ+CD172+CD4-CD45RA-) where 

there are clear correlations between the immune cell populations and molecular features because 

of the peak below our p-value cutoff and the low FDR. Therefore, we can confirm that there are 

interesting correlations occurring.  

 

When we compare the results of the four correlations identified through our regression modelling 

to the corresponding FDRs, all of the immune cells and metabolites that we interrogated have a 

FDR less than 15%. This cannot guarantee that the correlations we identified are true but 

provides more evidence to support our theory that the immune cells and metabolic pathways that 

we identified are correlated. 
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Table 4.3: False Discovery Rate for each immune cell population. Table showing each of the 
immune cell populations and the number of molecular features that are correlated with the 
immune cells (column: Number p-values ≤ 0.01), the number of p-values calculated to be false 
within this number (column: False Discovery Number), and the calculated False Discovery Rate. 
The table is arranged by the population type and then ascending false discovery rate. 
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Discussion 

Although the purpose of the primary experiment was to identify immunological and metabolic 

differences between vaccinated and unvaccinated minipigs in response to Mycobacterium 

tuberculosis infection, we did not see differences between the vaccinated and unvaccinated 

minipigs at either of the time points in either the flow cytometry or metabolomics data. This 

could potentially be due to the low BCG vaccine dose administered. As expected, we did see 

differences in both the flow cytometry and metabolomics data before and after infection. 

 

Although the primary experiment was unsuccessful in terms of seeing differences between 

vaccinated and unvaccinated animals, we were able to re-analyze the data with new techniques to 

gain new knowledge. We originally hypothesized that we could identify metabolic profiles 

correlated with immune cells through this novel flow cytometry and metabolite analysis 

pathway. We similarly hypothesized that we would see correlations between T cells expressing 

SLADQ, and glycolysis, the pentose phosphate pathway, and amino acid synthesis pathways. 

While we were not able to identify metabolites relating to these pathways, the analysis described 

here offered a few promising leads. We discovered correlations of CD45RA+ cells, Pop10 

(CD3+CD8+CD4-CD45RA-SLADQ-CD172-), Pop16 (CD3+CD4+CD8-CD45RA-SLADQ-

CD172-), and Pop19 (CD3+CD4+CD45RA+CD8-SLADQ-CD172-) with arginine and proline 

metabolism, arachidonic acid metabolism, and linoleic acid metabolism. In particular, we found 

the negative relationship between CD45RA and arachidonic acid metabolism. Because we were 

testing so many comparisons, it is possible that this correlation was spurious, but we could use 

this as a driver for future experiments to specifically test this relationship. If we can establish that 

this relationship is true, and that the CD45RA+ cells shown here are primarily effector memory 
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T cells, increasing arachidonic acid metabolism during vaccination could improve vaccine 

efficacy by promoting chemotaxis of these cells to the lungs. To corroborate these results, future 

research could utilize the marker CCR7 in addition to CD45RA to monitor chemotaxis and 

identify levels of naive T cells (CD45+ CCR7+), central memory T cells (CD45RA- CCR7+), 

and effector memory T cells (CD45+ CCR7-) both in the blood and in the lungs. These cells 

could then be cell-sorted and LC-MS/MS could be run to confirm that leukotriene B4 or other 

specific arachidonic acid metabolites are correlated with CD45RA expression.  

 

This novel technique utilizes two measurable dependent variables to identify interesting trends in 

the data. As long as there is variation in the observations, we are able to utilize this method and 

identify valuable information from the data. Another advantage of this pipeline is that it 

considers multiple comparison problems in two ways. First, it uses global p-value histograms to 

confirm that there are indeed correlations of interest between observations. It also utilizes 

principal components to represent molecular features which greatly reduces the dimensions of 

the data.  This innovative approach to selecting molecular features, can be used to putatively 

identify pathways as described in this paper or to identify molecular features to run through 

further LC-MS/MS analysis. Unfortunately, in this experiment, we were unable to perform LC-

MS/MS due to low sample volume. However, this technique and pathway analysis can still be 

used for generating a hypothesis for future experiments.  

 

 The analysis could have been improved if we had a larger sample size. There was noise in the 

data, meaning that there may be some cases where the slopes in the regression modelling were 

not considered significant due to this noise. Samples sizes are generally determined to power an 
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initial hypothesis. However, when utilizing secondary data, the power may decrease when testing 

different hypotheses. Another limitation is that we utilized the Human Metabolome Database 

instead of a minipig metabolome database. While there are many similar metabolites in both 

humans and minipigs, we could have missed some minipig-specific metabolites using the human 

database. 

 

Leveraging secondary datasets to understand immunometabolism can help in the fight against 

infectious diseases, and to develop better vaccines and treatments, as highlighted by the recent 

call from the NIH to take full advantage of secondary datasets.5 The technique described here 

allows for the use of measurable dependent variables to identify correlations in data and 

considers multiple comparison issues. Overall, this technique can help advance our 

immunometabolism knowledge using secondary datasets. 
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CHAPTER 5 — CONCLUDING REMARKS 
 
 
 
Tuberculosis is still a disease that kills more than 1.4 million people every year. The current 

vaccine does not adequately protect against pulmonary tuberculosis, and it is not fully 

understood why the BCG vaccine fails to offer sufficient protection. Ongoing research focuses 

on which immune cells or correlates of protection are necessary to improve protection. Thus, the 

goals of our studies were 1) to develop a flow cytometry analysis pipeline that utilizes feature 

engineering and aids in identification of immune cell population 2) to test a novel BCG 

vaccination boosting strategy utilizing two drugs—losartan and propranolol and 3) to use a novel 

integrative metabolomics approach to identify correlations between immune cells and 

metabolites during Mycobacterium tuberculosis infection.  

 

Novel flow cytometry computational tools can aid in identification of immune cell 

populations 

Flow cytometers can now analyze up to 50 parameters per cell and millions of cells per sample; 

however, conventional methods to analyze data are subjective and time-consuming. To address 

these issues, we have developed a novel flow cytometry analysis pipeline to identify a plethora 

of cell populations efficiently. Coupled with feature engineering and immunological context, 

researchers can immediately extrapolate novel discoveries through easy-to-understand plots. The 

R-based pipeline uses Fluorescence Minus One (FMO) controls or distinct population 

differences to develop thresholds for positive/negative marker expression. The continuous data is 

transformed into binary data, capturing a positive/negative biological dichotomy often of interest 

in characterizing cells. Next, a filtering step refines the data from all identified cell phenotypes to 
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populations of interest. The data can be partitioned by immune lineages and statistically 

correlated to other experimental measurements. The pipeline’s modularity allows customization 

of statistical testing, adoption of alternative initial gating steps, and incorporation of other 

datasets. Validation of this pipeline through manual gating of two datasets (murine splenocytes 

and human whole blood) confirmed its accuracy in identifying even rare subsets. Lastly, this 

pipeline can be applied in all disciplines utilizing flow cytometry regardless of cytometer or 

panel design. The code is available at https://github.com/aef1004/cyto-feature_engineering. 

Though work is ongoing, future studies could focus on further developing the pipeline into a 

comprehensive R package that is submitted to Bioconductor. 

 

BCG boosting with immunomodulatory drugs, losartan and propranolol, does not induce 

better protection against Mycobacterium tuberculosis infection  

A better boosting strategy for the BCG vaccine is desperately needed. The purpose of this study 

was to modify the immune response to BCG—using the drugs losartan and propranolol—to 

induce better protection against Mycobacterium tuberculosis. This boosting strategy was tested 

in C57BL/6 mice that were subsequently infected with Mycobacterium tuberculosis. We 

hypothesized that losartan would reduce the number of inflammatory monocytes to the lungs and 

allow better antigen presentation and thus better T cell activation. We further hypothesized that 

propranolol would promote T cell polarization to Th1 cells and enhance cytolytic capabilities of 

CD8+ T cells. We conceived that these immunomodulatory effects would offer better protection 

against MTB and reduce the bacterial burden. While this boosting strategy induced higher levels 

of T cells (Th1, CD8+, CD4+) in the losartan groups and the propranolol oral groups after 

administration of the drugs, we did not see a reduction in inflammatory monocytes. Further, 

https://github.com/aef1004/cyto-feature_engineering
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these high T cell numbers did not sustain after infection, and the boosting strategy did not reduce 

the bacterial burden in the mice that received the immunomodulatory drugs. Future studies could 

further explore the dosage and timing of immunomodulatory drug administration. 

 

 

Novel analysis method identifies potential correlations between immune cell populations 

and metabolic pathways. 

Immunometabolism is an important field to understand the immune response to infection. We 

developed a new method for identifying correlations between immune cells and metabolites. The 

new method utilizes global p-value histogram analyses and PCA clustering to account for 

multiple comparison issues. It further utilizes linear models with the principal components from 

a PCA analysis to identify correlations. The high-importance metabolites from these principal 

components can be identified and correlated with specific immune cells. We hypothesized that 

we could utilize this novel method to identify correlations between metabolic profiles and 

immune cells. We further hypothesized that metabolites associated with glycolysis, the pentose 

phosphate pathways, and amino acid synthesis pathways would have a positive correlation with 

activated T cells. While we did not identify this specific correlation, we putatively identified four 

immune cell populations (CD45RA+ cells, CD3+ CD4+ CD8- CD45RA- SLADQ- CD172- 

cells, CD3+ CD8+ CD4- CD45RA- SLADQ- CD172- cells, and CD3+ CD4+ CD45RA+ CD8- 

SLADQ- CD172- cells) correlated with arginine and proline metabolism, arachidonic acid 

metabolism, and linoleic acid metabolism. Future studies could conclude if CD45RA and 

memory T cells are negatively correlated with arachidonic acid metabolism through the use of 
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cell sorting and LC-MS/MS. If this is corroborated, the link between CD45RA and arachidonic 

acid metabolism could be used as a potential target for future vaccination studies. 

 

Concluding remarks 

The road ahead is a long one, but collectively these studies have increased both our knowledge 

and workflows for tuberculosis research. The cyto-feature engineering pipeline can be used to 

reduce bias in analyses and time spent analyzing data. The new method for correlating 

metabolites with immune cells can also be used to gain insight from secondary datasets and 

generate hypotheses. Although the immunomodulatory vaccine study did not offer increased 

protection against MTB, studies like these are important to understand the immune response. 

Further, other scientists can learn from this study and either adjust their study accordingly or 

avoid repeating it. The fight for a better vaccine has been a long one, but cumulatively, these new 

analysis tools and immunological knowledge will help in the fight against MTB and other 

infectious diseases.   
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APPENDIX 1 — SUPPLEMENTAL MATERIALS FOR CYTO-FEATURE ENGINEERING: 
A PIPELINE FOR FLOW CYTOMETRY ANALYSIS TO UNCOVER IMMUNE 

POPULATIONS AND ASSOCIATIONS WITH DISEASE CYTO-FEATURE 
ENGINEERING: A PIPELINE FOR FLOW CYTOMETRY ANALYSIS TO UNCOVER 

IMMUNE POPULATIONS AND ASSOCIATIONS WITH DISEASE 
 

 
 

Supplemental Figure S2.1: Pipeline route map. The route map details the workflow of the 
pipeline based on the samples acquired and the visualiations and hypothesis testing of interest. 
The packages used at each of the stages are noted as follows: (1) ncdfFlow: to read in the flow 
cytometry data to R, openCyto: to facilitate automated gating for data cleaning, ggcyto: to 
visualize the initial gating strategy, tibble: to convert the S4 flow data object to a data frame, 
flowCore: to transform the data if needed, dplyr: to tidy the data (2) quantile: to perform the 99% 
FMO threshold cutoff (3) openCyto: to calculate the minimum density between the positive and 
negative cell populations (4) pheatmap: to plot the identified cell populations (5) superheat: to 
find correlations between different cell populations (6) ggplot2: to plot cell population 
abundances and changes in abundances over time (7) stats: to perform linear regressions, 
calculate p-values, and execute multiple comparison testing, ggplot2: to plot the cell abundances 
against other data from the experiment. 
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Supplemental Figure S2.2: Identification of all phenotypes in the lung samples. After feature 
engineering the data, 12,122 total populations were identified. Each row represents a unique cell 
phenotype, where green indicates positive expression and blue indicates negative expression of 
each marker.  
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Supplemental Figure S2.3: Alternative visualizations for cell percentages. All of the plot 
backgrounds denote the cell lineages as described in Figure 2.3a. The day 30 data was used for 
all of the plots in this figure. a) Box plots show the distribution of the percentage of cells in each 
population. b) Bar plots show the average percentage of cells in the two experimental groups in 
each population. 
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Supplemental Figure S2.4: Confirmation of populations via manual gating. (a) Population 3, 
defined by CD3+ CD44+ Sca1+ IFN-+ CD8- CD27- CD28- CD62L- CD69- CD103- CD122- 
CD153- CTLA4- IL10- IL17- KLRG1- PD1- TNF-, was manually gated in FlowJo using the 
FMOs. (b) The difference in the percentage of cells in population 3 for each mouse at each time 
point was calculated, as well as the absolute average difference. (c) A comparison of manual and 
pipeline gating results for this population. Each point represents the measurements of population 
3 in a single mouse. The points’ position on the x-axis gives the population 3 measurement based 
on the pipeline while the position on the y-axis gives the population based on manual gating. The 
diagonal line provides a reference of x = y (i.e., where points would fall if results from manual 
and pipeline gating were identical). The Spearman correlation coefficient (ρrs) and p-value are 
displayed on the plot. 
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Supplemental Figure S2.5: Linear running time for feature engineering algorithm. The x-
axis displays the number of cells that are put into the feature engineering algorithm and the y-
axis displays the amount of time in seconds that it takes to compute the feature engineering using 
the input number of cells.  
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Supplemental Figure S2.6: Cyto-feature engineering pipeline session info. The R and 
package versions used for this manuscript are listed. 
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Supplemental Table 2.1: Definition of T cell lineages. The markers used to classify the T cell 
lineages are denoted in the “Associated Markers” column. 
 

 
 
 
Supplemental Table 2.2: Definition of T cell types. The markers used to classify the T cell 
types are denoted in the “Associated Markers” column. 
 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 150 

Supplemental Table 2.3: Adjusted p-values for populations associated with bacterial 

burden. The r squared and p-values for the linear regression lines in Figure 2.5b are displayed 
for each population. The Benjamini and Hochberg False Discovery Rate correction is used to 
adjust the p-values based on the multiple tests that are performed. The significance column 
depicts if the adjusted p-value is less than 0.05. 
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Supplemental Table 2.4: Flow cytometry antibodies. The T cell Surface panel antibody 
cocktail is prepared in FACS staining buffer with a 1:10 dilution of Brilliant Violet Buffer (BD). 
The T cell Intracellular panel antibody cocktail is prepared in permeabilization buffer. 
 
T cell Panel – Surface 

Fluor Marker Dilution Catalog Clone RRID 

BB515 Sca-1 1:1000 BD: 8127577 D7 RRID: AB_2739218 

Alexa 532 CD3 1:50 Invitrogen: 58-0032-82 17A2 RRID: AB_11217479 

PE Dazzle 594 CD62L 1:500 BioLegend: 104448 MEL-14 RRID: AB_2566163 

PE Cy5 CD122 1:100 BioLegend: 123220 TM-β1 RRID: AB_2715962 

PerCP Cy5.5 CD28 1:50 BioLegend: 102114 37.51 RRID: AB_2073850 

PerCP e710 PD-1 1:100 Invitrogen: 46-9981-82 RMP1-30 RRID: AB_11151142 

APC R700 CD103 1:200 BD: 565529 M290 RRID: AB_2739282 

APC Fire750 CD44 1:1000 BioLegend: 103062 IM7 RRID: AB_2616727 

BV480 CD4 1:100 BD: 565634 RM4-5 RRID: AB_2739312 

BV570 CD8 1:100 BioLegend: 100739 53-6.7 RRID: AB_10897645 

BV605 CTLA-4 1:50 BioLegend: 106323 UC10-4B9 RRID: AB_2566467 

BV650 CD27 1:100 BioLegend: 124233 LG.3A10 RRID: AB_2687192 

BV711 CD153 1:50 BD: 740751 RM153 RRID: AB_2740419 

BV785 KLRG-1 1:100 BD: 565477 2F1 RRID: AB_2739256 

 
T cell Panel – Intracellular 

Fluor Marker Dilution Catalog Clone RRID 

PE IL-17 1:100 BioLegend: 506904 TC11-18H10.1 RRID: AB_315464 

PE Cy7 IFN- 1:100 Invitrogen: 25-7311-
82 

XMG1.2 RRID: AB_469680 

BV421 IL-10 1:100 BioLegend: 505021 JESS-16E3 RRID: AB_10900417 

Pacific 
Blue/e450 

TNF- 1:100 BioLegend: 506318 MP6-XT22 RRID: AB_893639 
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Supplemental Text T2.1 

Testing available flow cytometry analysis techniques 

Prior to the development of this pipeline, we tested a variety of methods to analyze flow 

cytometry data more efficiently than with manual gating. We primarily tested two publicly 

available methods—t-SNE and FlowSOM. 

 

t-SNE, as previously described in the literature review, stands for t-Distributed Stochastic 

Neighbor Embedding. It is capable of transforming high-dimensional data to low dimensional 

plots.1 In the context of flow cytometry, it does this by identifying clusters of cells based on 

similarity of marker expression. While this method is useful in exploring data and identifying 

hidden patterns, it does not allow for automated population identification or automated sample 

comparisons.2 Thus, it is primarily a data exploration and visualization technique. This technique 

is also computationally intensive; samples must first be “downsampled,” or randomly sampled, 

to reduce the number of data points.3 This can cause the loss of rare, but valuable populations of 

interest. Further, analysis and separation of data is highly dependent on the specific markers 

used. While t-SNE is good at separating cells in flow cytometry panels where there are not many 

overlapping markers (e.g., a panel to differentiate between T cells, B cells, and NK cells), it has 

more difficulties stratifying cells that may co-express similar markers (e.g., a panel that contains 

many different activation markers) (Figure S2.7).4 Additionally, when visualizing populations 

like those in Figure S2.7, the populations must be manually gated and then applied to the t-SNE. 

While t-SNE has utility in initial data exploration, we wanted a method that did not have to 

utilize manual gating, would retain our data without downsampling, and could utilize controls. 
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Figure S2.7: T-SNE comparison (a) Adapted from FlowJo t-SNE documentation website.5 t-
SNE showing good separation of different immune cell populations (b) t-SNE example of bad 
separation of immune cell populations due to overlap of many markers. 
 

 
FlowSOM (Flow Self-Organizing Map), is another technique that we tested for flow cytometry 

analysis. FlowSOM is a visualization aid for clustering and dimensionality reduction.6 It operates 

by training a self-organizing map (SOM) (Figure S2.8a). It starts by initializing a set number of 

nodes, or clusters, by pulling several random cells from the data.6 It then compares every 

subsequent cell to each of the initialized nodes.6 The interrogated cell will join the “nearest 

neighbor” node, or the node to which it is most similar, and the node phenotype will become an 

average of the cells within it.6 After the SOM has been developed, the nodes are connected in a 
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minimal spanning tree according to similarity between nodes.6 The nodes can further be 

clustered into “metaclusters” that exhibit similar marker expression.6 Because the resulting nodes 

from the FlowSOM are a heterogenous mixture of cells which are described as an average of all 

the cells within the node, it can be difficult to interrogate specific cell types of interest or rare 

cells. Another issue with this method is that some markers generally have low expression on 

cells and others have high expression levels. This can cause specific markers to appear as though 

there is no expression on the cells, such as the case of PDL1 in Figure S2.8b. We tested 

normalization methods to scale the data so that the lowly expressed and highly expressed 

markers were not misrepresented. One normalization method involved scaling the data by 

subtracting the average expression of a particular marker and dividing by the standard deviation 

(Figure S2.8c). While this conveyed more information about what is considered high expression 

and low expression for a particular marker, the visualization still lacked important data from 

controls such as FMOs. We also developed an additional analysis process that collected the 

number of cells in each group and calculated fold changes between groups (Figure S2.8d). 

However, we could not perform statistical analyses on specific populations of interest. While 

FlowSOM offered some advantages over t-SNE in that we did not need to perform any manual 

gating, it still did not allow for the incorporation of FMO controls. 

 

Both t-SNE and FlowSOM have their advantages and disadvantages. Ultimately, we wanted a 

method that could utilize our FMO controls to identify positive and negative expression on cells 

and could utilize statistical analyses to quantify differences between groups and allow for the 

incorporation of external data. Thus, we developed a pipeline that could fulfill these 

requirements. 
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Figure S2.8: FlowSOM Testing. (a) FlowSOM map. The background color for the nodes 
displays the assigned metaclusters 0 through 14. Within each node, pie charts show the average 
marker expression of cells within the node. The size of the nodes indicates the number of cells 
within each cluster. (b) Heatmap of the average marker expression level in each metacluster. The 
x-axis displays the ten flow cytometry markers in the panel, and the y-axis shows the different 
metaclusters that match with those shown in Figure S2.8a. Red indicates high expression level of 
a particular marker and blue indicates low expression. (c) Heatmap of the normalized data for the 
average marker expression level in each metacluster. The data is normalized by subtracting the 
average expression of a particular marker and dividing by the standard deviation. (d) Heatmap of 
the fold change in the abundance of cells in each metacluster between two experimental groups. 
Pink indicates large fold differences between the groups and dark green indicates little or no 
differences in the number of cells between groups.  
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APPENDIX 2 — SUPPLEMENTAL MATERIALS FOR IMMUNOMODULATORY DRUGS 

AS VACCINES AGAINST MYCOBACTERIUM TUBERCULOSIS 

 
 
 

 

Supplemental Figure S3.1: Lung Predefined Phenotypes 

Supplemental Figure S3.2: Spleen Predefined Phenotypes 
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Supplemental Table 3.1: Markers used to determine cell phenotypes for the predefined 

cells 
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Supplemental Table 3.2: Statistically significant differences in predefined lung predefined 

populations in the lungs. There were 19 statistically significant differences between the groups. 
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Supplemental Table 3.3: Statistically significant differences in data-driven populations in 

the general lung analysis. There were 55 statistically significant differences between the 
groups. 
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Supplemental Table 3.4: Statistically significant differences in data-driven populations in 

the T cell lung panel. There were 21 statistically significant differences between the groups.
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Supplemental Table 3.5: Statistically significant differences in predefined populations in 

the spleen. There were 17 statistically significant differences between the groups. 
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Supplemental Table 3.6: Statistically significant differences in data-driven populations in 

the general spleen analysis. There were 21 statistically significant differences between the 
groups. 
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Supplemental Table 3.7: Statistically significant differences in data-driven populations in 

the T cell spleen panel. There were 17 statistically significant differences between the groups. 

 
 
 

 
 
 
 
 
 
 



 165 

 
APPENDIX 3 — SUPPLEMENTAL MATERIALS FOR NOVEL TECHNIQUE TO STUDY 

IMMUNOMETABOLISM DURING MYCOBACTERIUM TUBERCULOSIS INFECTION 

 
 
 

 

Supplemental Figure S4.1: Scree plot displaying the proportion of variance accounted for by 
each of the 19 principal components in the principal components analysis. 
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Supplemental Table 4.1: Summary of Arachidonic acid metabolites and associated KEGG IDs. 

 



 167 

APPENDIX 4 — ACQUISITION OF HIGH-QUALITY SPECTRAL FLOW CYTOMETRY 
DATA#2 

 
 
 
Significance Statement 

With new high-throughput flow cytometry, data analysis has become highly complex. Using 

open-source software, it is now possible to explore these large datasets, simplifying the 

seemingly complex data. However, to perform these analyses, sample preparation, staining 

procedure, and use of controls must follow rigorous protocols. In this Current Protocols article, 

we describe the best practices for preparation and acquisition of spectral flow cytometry samples. 

Following this protocol will lead to clean results that can be used with the cyto-feature 

engineering data analysis pipeline described previously. 

 

Abstract 

Flow cytometry allows for the visualization of physical, functional, and/or biological properties 

of cells including antigens, cytokines, size, and complexity. With increasingly large flow 

cytometry panels able to analyze up to 50 parameters, there is a need to standardize flow 

cytometry protocols to achieve high quality data that can be input to analysis algorithms. 

Without this clean data, algorithms may incorrectly categorize the cell populations present in the 

samples. In this protocol, we outline a comprehensive methodology to prepare samples for 

polychromatic flow cytometry.  The use of multiple washing steps and rigorous controls creates 

high-quality data with good separation between cell populations. Experimental data acquired 

 
# This appendix has been published in Current Protocols of Cytometry: Fox, A., Dutt, T. S., 
Karger, B., Obregón-Henao, A., Anderson, G. B., & Henao-Tamayo, M. (2020). Acquisition of 
high-quality spectral flow cytometry data. Current Protocols in Cytometry, 93, e74. doi: 
10.1002/cpcy.74. 
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using this protocol can be analyzed via computational algorithms that perform end-to-end 

analysis. 

 

Basic Protocol 1: Preparation of single-cell suspension for flow cytometry  

Support Protocol 1: Lung preparation  

Support Protocol 2: Counting cells on a flow cytometer  

Basic Protocol 2: Surface and intracellular flow cytometry staining  

Support Protocol 3: Single-color bead controls 

 

Introduction 

High-dimensional flow cytometry data, containing excess of 15 parameters, is difficult to 

analyze using conventional analysis methods such as manual gating of cells on 2-dimensional 

plots. In the past decade, researchers have worked to develop data analysis tools for flow 

cytometry. However, data input must be reliable for these tools to accurately analyze it. By 

executing this current protocol, it will be possible to acquire clean flow cytometry data that can 

be input into data analysis pipelines. With increasingly complex flow cytometry development, it 

is important to acquire data following a very strict and reproducible flow cytometry staining 

procedure to ensure high quality data prior to analysis. By the end of this protocol, the high-

quality flow cytometry data and controls are ready to be entered into and analyzed using a cyto-

feature engineering pipeline.1 

 

Basic Protocol 1 describes how to prepare single-cell suspension for flow cytometry after 

harvesting either lung or spleen from an animal. This protocol can further be modified to harvest 
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cells from other organs. Basic Protocol 2 describes how to discriminate between live and dead 

cells using a viability dye and stain cells with surface and intracellular markers.   

 

Strategic planning 

Prior to employing this protocol for an experiment, the flow cytometry panel should be 

optimized for the user’s flow cytometer to ensure there is no overlap between different 

fluorophores. Users should familiarize themselves with their flow cytometer configuration and 

the possible combination of fluorophores that can be used with that cytometer. Panel design will 

be based on this configuration and possible fluorophores. Excellent resources for panel design 

include the website FluoroFinder and a recent publication in Current Protocols.2,3 

 

BASIC PROTOCOL 1: Preparation of single-cell suspension for flow cytometry 

Introductory paragraph 

In this protocol, tissues are dissociated into single-cell suspension in preparation for flow 

cytometry. Whole tissue is macerated through a cell strainer after which red blood cells are 

lysed. Note this protocol should occur in a biosafety cabinet to prevent sample contamination 

and ensure technician safety.  

 

Reagents, Solutions, and Test Animals  

● Lung of mouse 

● Spleen of mouse 

● DMEM 1x with 4.5g/L glucose without L-glutamine, sodium pyruvate (Corning, cat# 15-

017-CV) 
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● Red Blood Cell (RBC) Lysing Buffer (Sigma, cat# R7757) 

● Complete media (see recipe) 

● Phosphate Buffered Saline (VWR, cat. No. 45000-446) 

 

Hardware and Instruments 

● Biosafety cabinet (e.g., Labconco Type A2) 

● 70 μm Cell Strainers (Corning, cat# 352350) 

● 60 x 15 mm Petri Dishes (Thermo Fisher Scientific, cat# AS4051) 

● 3 mL LuerLok Syringes (BD Biosciences, cat# 309657) 

● 5 mL serological pipets (Thermo Fisher Scientific, cat# 170355) 

● Motorized Serological Pipette Filler (SCILOGEX, cat# 740200029999) 

● 15 mL Conical Tubes (Thermo Fisher Scientific, cat# 12565269) 

● Tabletop Centrifuge (e.g., Beckman Coulter Allegra 6) 

● 1 mL Pipettor (Sigma Aldrich, cat# EP3124000121) 

● 1 mL Pipet Tips (VWR, cat# 83007-382) 

● 10 mL serological pipets (Thermo Fisher Scientific, cat# 170356) 

● Flow cytometer (e.g., BD LSR-II) 

● 200 μL pipettor (Sigma Aldrich, cat# EP3124000083) 

● 200 μL pipet tips (VWR, cat# 53508-810) 

● 96-well plates with V-bottom (Sigma Aldrich, cat# M9686) 

● Paper towels (Supply Works, cat# SCAHB9201) 
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Protocol steps 

1. Harvest spleen and lung into 1 mL of DMEM media in a 15 mL conical tube. 

Organs may be required for multiple experimental tests. In this case, we take ½ 

spleen and two of the lung lobes for flow cytometry. The remaining lung lobes and 

spleen are utilized for enumerating colony forming units or other downstream 

applications. However, this could be modified according to the experimental 

design and goal. 

 For lungs, follow Supplemental Protocol 1 prior to step 2 below. 

2. Add organ and liquid into 70 μm cell strainer placed inside a petri dish.  

3. Macerate organs using 3 mL plunger in order to pass cells through the strainer mesh.  

Remove the 3 mL plunger from the 3 mL syringe and use only the non-rubber side 

of the plunger. 

4. Flush cell strainer mesh with 5 mL of DMEM media and harvest cells from the Petri Dish 

after resuspending. Transfer cells back into the 15 ml conical tube. 

5. Centrifuge cells at 380 G-force for 10 min at 4°C. 

The RPM (revolutions per minute) for specific centrifuges can be calculated with 

the following equation where g is the g-force and Radius is the radius of the rotor 

in centimeters. 𝑔 = (1.118 ×  10−5) ×  𝑅𝑎𝑑𝑖𝑢𝑠 ×  𝑅𝑃𝑀2 

6. Discard supernatant and resuspend cell pellet in 1 mL RBC lysing buffer – incubate for 1 

minute at room temperature. 

During the incubation time, cells should be mixed by running the 15 mL conical 

tubes against the grate of the biosafety cabinet, disrupting the pellet. 
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7. Add 6 mL of complete media to dilute RBC lysing buffer. 

8. Centrifuge cells at 380 G-force for 10 min at 4°C. 

9. Discard supernatant by gently flipping tube upside down. 

10. Resuspend cells in PBS and keep at 4°C while counting.  

 Resuspend spleens in 800 µ l of PBS and lungs in 400 μL of PBS. 

11.  Count cells in each tube using a flow cytometer (See Supplemental Protocol 2). 

 Alternatively, cells could be counted with a hemocytometer or cell counter, but 

this method is more time consuming.  

12. Adjust cell suspension to 2 x 107 cells/mL for spleen and 5 x 106 cells/mL for lung.  

13. Add 200 μL of lung cells (1 x 106 total cells) or 100 µl of spleen cells (2 x 106 total cells) 

to each well of a 96-well plate (Figure A.1). 

There should be a well for every stained sample, a well for every Fluorescence 

Minus One control (FMO), a single well that will not be stained (Unstained), and 

a single well that will only be stained with live-dead (Zombie-NIR) stain. Single-

color controls will also need to be stained, but beads can be used for these 

controls (see support protocol 3). Due to different levels of autofluorescence and 

viability, each organ requires the following controls: FMOs, unstained cells, and 

live-dead staining. To run these controls for each organ, cells can be pooled from 

different experimental groups or biological replicates within a group.  

14. Centrifuge plates at 380 G-force for 10 min at 4°C. 

At this point, it should be possible to see a pellet of cells at the bottom of each 

well. 

15. Remove supernatant by gently tapping the liquid out of the wells onto a paper towel. 
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16. Wash cells by adding 100 μL of PBS to each well and centrifuge at 380 G-force for 10 

minutes at 4°C. 

This wash minimizes any residual protein in the sample, which can quench the 

Zombie NIR viability stain. 

17. Remove supernatant by gently tapping the liquid out of the wells onto a paper towel. 

 

 

 

 

Figure A.1: Cell plate layout with controls. Example of the required cell samples for flow 
cytometry. Note that there will be a second plate with beads used for single-color controls 

 

SUPPORT PROTOCOL 1: Lung Preparation 

Introductory paragraph  

To maximize cell yield and viability, lungs must first be enzymatically digested before 

dissociation and cell suspension. Collagen in the lungs’ extracellular matrix will be digested to 

improve cell dissociation when macerating through a 70 μm cell strainer. Inevitably, some cells 
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lyse and release DNA during this procedure. DNase is included in the dissociation buffer to 

digest released DNA and minimize the formation of a viscous material trapping the cells. If this 

protocol is conducted properly, single-cell suspensions with a cell viability >70-80% will be 

obtained from the lungs. 

 

Reagents, Solutions, and Test Animals  

● Lung sample 

● 70% ethanol 

● DMEM 1x with 4.5g/L glucose without L-glutamine, sodium pyruvate (Corning, cat# 15-

017-CV) 

● 2x DNase/Liberase (see recipe) 

 

Hardware and Instruments 

● Biosafety cabinet (e.g., Labconco Type A2) 

● 60 x 15 mm Drosophila Supplies Small Petri Dishes (Thermo Fisher Scientific, cat# 

AS4051) 

● Razor blades (VWR, cat # 55411-050) 

● 37°C incubator 

 

Protocol steps 

1. Make superficial cuts in the lung in a petri dish using 2 razors (rinse razors with 70% 

ethanol and then DMEM). 
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Use one razor to hold tissue in place and the other to chop.  Move tissue and chop 

in a crosshatch pattern.  Be careful not to chop tissue too deep—the tissue needs 

to be kept whole. 

2. Transfer lungs and liquid back into the 15 mL conical tubes. 

3. Add 1 mL of 2x DNase/Liberase to each tube and incubate at 37°C for 30 minutes. 

The final concentration per sample of Liberase is 0.25 mg/mL and the 

concentration per sample of DNase is 0.125 mg/mL. 

 

SUPPORT PROTOCOL 2: Counting Cells on Flow Cytometer 

Introductory paragraph 

To calculate the total number of cells obtained from an organ, the cells must be counted. Unless 

cell death is a readout, dead cells are usually excluded from this analysis as dead cells tend to be 

more autofluorescent and bind antibodies nonspecifically. Dead cells are stained with a viability 

dye such as 7-AAD, which binds to DNA in dead cells with compromised cell membranes. 

Therefore, live cells are those in which there is no 7-AAD present. Fluorescent counting beads of 

known concentration are added to the samples to determine the ratio of beads to live cells. For 

convenience, two different viability dyes (7-AAD and Zombie-NIR) were used in this protocol: 

7-AAD to count cells on the cytometer and Zombie-NIR to analyze samples after 

surface/intracellular staining. This staining approach will be required when counting cells using 

equipment that does not have a laser to detect Zombie-NIR. One viability dye could, however, be 

used for both procedures upon further optimization. One advantage of using 7-AAD for the 

counting procedure is that it allows for quicker counting analysis as it can directly be added to 
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flow tubes without washing steps. If this protocol is conducted properly, the concentration of live 

leukocytes in each sample can be calculated. 

 

Reagents, Solutions, and Test Animals  

● FACS Staining Buffer (see recipe) 

● 7-AAD Viability Staining (Thermo Fisher, cat# 00-6993-50) 

● CountBright Absolute Counting beads (Thermo Fisher, cat# C36950) 

 

Hardware and Instruments 

● Biosafety cabinet (e.g., Labconco Type A2) 

● 5 mL Polypropylene round bottom flow tubes (VWR, cat# 60819-794) 

● Flow cytometer (e.g., LSR II) 

 

Protocol steps 

1. For each sample, add 200 µL of FACS Staining Buffer with 0.025 µg of 7-AAD to a flow 

tube. 

2. Add 25 µL of counting beads and 25 µL of cells to each tube from step 1. 

3. Collect 50,000 events on the flow cytometer. 

Ensure gains (voltages) for FSC and SSC allow for both the beads and cells to be 

seen on the plots (See Figure A.2). This can be visualized by setting the SSC-A 

axis to log-scale. 

4. Place a gate around the beads and count the number of beads as shown in Figure A.2. 

5. Gate the cells based on live leukocytes as shown in Figure A.2. 



 177 

6. Calculate the volume of PBS to add to each sample based on the desired cell 

concentration using the following calculations. An example is provided in Table A.1. 

a. Sample volume: Volume in which the cells are suspended (e.g., 400 µL of PBS 

for lungs or 800 µL of PBS for spleen) 

b. Bead concentration/µL: Concentration of beads per µL (this information is 

written on the vial of beads. Note that bead concentration may vary between 

different lots and should be modified accordingly.) 

c. # Beads: Number of beads based on gating (see Figure A.2) 

d. # Live Leukocytes: Number of live leukocytes based on gating (see Figure A.2) 

e. Acquired Volume of Beads (µL): Calculated volume based on dividing the # 

Beads by the Bead Concentration/µL 

f. Total # Live Leukocytes: Calculated by multiplying the sample volume by the # 

Live Leukocytes and dividing by acquired volume of beads. (As beads and cells 

were added at a 1:1 ratio (step 2), the volume of acquired beads and acquired cells 

should be the same) 

g. Desired # cells/mL: Desired concentration of cells per mL for the experiment 

h. Volume to Add (mL): Calculated by dividing the Total # Live Leukocytes/mL 

by desired # of cells/mL and subtracting the sample volume 
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Figure A.2: Cell counting gating strategy. This figure shows placement of the bead gate and the leukocyte gate following cell 
counting on a flow cytometer. The leukocytes are further gated to limit cells to the live leukocytes. 
 

Table A.1: Example of Calculations for determining the number of live cells in a sample. 

Sample 

ID 

Sample 

volume 

(µL) 

Bead 

concentration/

µL 

# 

Beads 

# Live  

Leukocytes 

Acquired 

Volume of 

Beads 

Total # 

Live  

Leukocytes 

Desired # 

Cells/mL 

Volume to 

Add (mL) 

Spleen 800 1040 590 28,933 0.57 4.08E7 2E7 1.24 
Lung 400 1040 2,519 21,942 2.42 3.62E6 5E6 0.32 
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BASIC PROTOCOL 2: Surface and Intracellular Flow Cytometry Staining  

Introductory paragraph  

In this protocol, an initial 6-hour incubation with a Protein Transport Inhibitor prevents 

intracellular proteins from being secreted, causing the accumulation of such proteins in cells. 

This allows for the intracellular proteins to be stained. Following this incubation, anti-mouse 

CD16/32 is added to block FC-receptors on leukocytes, which prevents non-specific antibody 

binding. Dead cells are then stained using the viability dye, Zombie-NIR, and surface antibodies 

are added. To stain for intracellular markers, fixation/permeabilization buffer is added to allow 

antibodies to pass through the plasma membrane. If this protocol is conducted properly, cells 

stained with the fluorophore-marker pairs can be visualized on a flow cytometer. 

 

If the panel only contains surface markers, the 6-hour incubation with a Protein Transport 

Inhibitor and steps with Permeabilization/Fixation can be skipped. If so, cells are simply blocked 

with anti-CD16/32, stained with Zombie-NIR, and then stained with surface antibodies. 

Thereafter, cells are washed with FACS Staining Buffer and fixed by incubating with 4% PFA 

for 20 minutes.  

 

Reagents, Solutions, and Test Animals  

● 1000X Protein Transport Inhibitor [BD GolgiStop] (BD Biosciences, cat# 554724) 

● Complete Media (see recipe) 

● Phosphate Buffered Saline (VWR, cat# 45000-446) 

● Zombie-NIR Fixable Viability Kit (VWR, cat# 10761-492) 

● FACS Staining Buffer (see recipe) 
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● Anti-mouse CD16/32 (Biolegend, cat# 101330) 

● T cell surface antibody cocktail (see recipe) 

● FMOs (see recipe) 

● Perm/Fix buffer (see recipe) 

● 1X Permeabilization buffer (see recipe) 

● T cell intracellular antibody cocktail (see recipe) 

 

Hardware and Instruments 

● Biosafety cabinet (e.g., Labconco Type A2) 

● 10 μL pipettor (Sigma Aldrich, cat# EP3124000024) 

● 10 μL pipet tips (Thermo Fisher Scientific, cat# 2707454) 

● Motorized Serological Pipette Filler (SCILOGEX, cat# 740200029999) 

● 5 mL serological pipets (Thermo Fisher Scientific, cat# 170355) 

● 37°C CO2 incubator (e.g., VWR water-jacketed CO2 incubator) 

● Tabletop Centrifuge (e.g., Beckman Coulter Allegra 6) 

● Paper towels (Supply Works, cat# SCAHB9201) 

● 200 μL pipettor (Sigma Aldrich, cat# EP3124000083) 

● 200 μL pipet tips (VWR, cat# 53508-810) 

● 5 mL Polypropylene round bottom flow tubes (VWR, cat# 60819-794) [note that 

polystyrene tubes may need to be used depending on the cytometer] 

 

Protocol steps 

1. Prepare a 1X solution of Protein Transport Inhibitor (GolgiStop) in Complete Media. 
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2. Add 100 µl of above prepared media with the Protein Transport Inhibitor to each well on 

the 96-well plate containing pelleted cells. 

3. Incubate plate in a CO2 incubator set at 37°C for 6 hours. 

4. Remove plate from incubator and centrifuge at 380 G-force for 10 minutes at 4°C. 

All centrifugations will be at 380 G-force for 10 min at 4°C. 

5. Remove supernatant by gently tapping the liquid out of the wells onto a paper towel. 

6. Wash cells by adding 100 μL of PBS to each well and centrifuging at 380 G-force for 10 

minutes at 4°C. 

7. Remove supernatant by gently tapping all of the liquid out of the wells onto a paper 

towel, being careful not to disrupt the pellet. 

8. Add 100 µl of Zombie-NIR live/dead stain (1:2000) dilution in PBS to each well except 

for the “Unstained Sample well” and incubate for 15 minutes at room temperature in the 

dark. 

Zombie-NIR must be diluted in PBS rather than FACS Staining Buffer because the 

FACS Staining Buffer contains Fetal Bovine Serum that quenches the Zombie 

signal. Note that all further steps should take place in the dark so that the 

fluorescently labeled antibodies are not photobleached.  

9. Centrifuge cells at 380 G-force for 10 minutes at 4°C and remove the supernatant. 

10. Wash cells by adding 100 μL of FACS Staining Buffer and centrifuge at 380 G-force for 

10 minutes at 4°C. 

11. Remove supernatant. 

12. Wash cells again by adding 100 μL of FACS Staining Buffer and centrifuge at 380 G-

force for 10 minutes at 4°C. 
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13. Remove supernatant. 

14. Incubate cells with FACS Staining Buffer containing 2.5 μg/mL of anti-mouse CD16/32 

for 20 minutes at 4°C. 

This antibody blocks non-specific FC receptor binding. 

15. Centrifuge cells at 380 G-force for 10 minutes at 4°C and remove the supernatant. 

16. Add the T cell surface marker antibody panel to all the sample wells. Also add the 

appropriate surface marker FMOs to the wells.  

Do not add intracellular antibodies at this point.  

17. Incubate cells at 4°C for 30 minutes in the dark. 

18. Centrifuge cells at 380 G-force for 10 minutes at 4°C and remove the supernatant. 

19. Wash cells by adding 150 μL of FACS Staining Buffer and centrifuge at 380 G-force for 

10 minutes at 4°C. 

20. Remove supernatant. 

21. Add 150 µl of 1X Perm/Fix buffer and incubate for 1 hour at room temperature. 

22. Centrifuge the cells at 380 G-force for 10 minutes at 4°C and wash the cells with 150 µl 

of 1X Permeabilization Buffer.  

23. Remove supernatant. 

24. Centrifuge cells at 380 G-force for 10 minutes at 4°C and wash cells with 150 µl of 

Permeabilization Buffer again. 

25. Remove supernatant. 

26. Add 100 µl of the T cell intracellular antibody cocktail and intracellular FMO antibodies 

cocktail to respective wells. 

27. Incubate plate overnight at 4°C in dark. 
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The Next Day 

1. Centrifuge cells at 380 G-force for 10 minutes at 4°C. 

2. Wash cells by adding 150 µl of Permeabilization Buffer and centrifuge at 380 G-force for 

10 minutes at 4°C. 

3. Remove supernatant. 

4. Suspend cells in 100 μL of Permeabilization Buffer. 

5. Transfer cells to flow cytometry tubes that contain an additional 200 μL of 

Permeabilization Buffer. 

6. Read samples on a flow cytometer. 

 

SUPPORT PROTOCOL 3: Single-Color Bead Controls 

Introductory paragraph 

Single-color bead controls, also known as reference controls, are used to visualize the spectral 

signature for each fluorophore on the flow cytometer. Because spectral unmixing is dependent on 

clear separation of positive and negative populations and an exact spectra match, beads are often 

used. Each marker in the flow cytometry panel must have a single-color control made. If this 

protocol is conducted properly, there should be a positive and negative population with clear 

separation on the flow cytometer. Further, the spectral signature for each single-color control 

should be unique. This will allow the flow cytometer to perform spectral unmixing on the 

samples. 
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Reagents, Solutions, and Test Animals  

● Individual stains (see supplemental for list of antibodies) 

● UltraComp eBeads (Fisher, cat# 01-2222-42) 

● 96-well plates with V-bottom (Sigma Aldrich, cat# M9686) 

● FACS Staining Buffer (see recipe) 

 

Hardware and Instruments 

● 10 μL pipettor (Sigma Aldrich, cat# EP3124000024) 

● 10 μL pipet tips (Thermo Fisher Scientific, cat# 2707454) 

● 200 μL pipettor (Sigma Aldrich, cat# EP3124000083) 

● 200 μL pipet tips (VWR, cat# 53508-810) 

● Tabletop Centrifuge (e.g., Beckman Coulter Allegra 6) 

● 5 mL Polypropylene round bottom flow tubes (VWR, cat# 60819-794) 

● Cytek Aurora Flow Cytometer 

 

Protocol steps 

1. Prepare individual stains by adding the appropriate antibody dilution to 100 µL of FACS 

Staining Buffer. 

2. Add 1 drop of UltraComp beads for each single-color control to wells on a 96-well plate. 

3. Centrifuge beads at 380 G-force for 10 minutes at 4°C.  

4. Remove supernatant by gently tapping the liquid out of the wells onto a paper towel. 

5. Add 100 µL of the individual stains to each well. 

6. Incubate for 10 minutes at room temperature. 
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7. Centrifuge beads at 380 G-force for 10 minutes at 4°C.  

8. Remove supernatant. 

9. Wash beads by adding 100 μL of FACS Staining Buffer and centrifuge again at 380 G-

force for 10 minutes at 4°C. 

10. Remove supernatant by gently tapping the liquid out of the wells onto a paper towel. 

11. Wash beads again by adding 100 μL of FACS Staining Buffer and centrifuge again at 380 

G-force for 10 minutes at 4°C. 

12. Remove supernatant. 

13. Add 100 µL FACS Staining buffer to each well and transfer the samples to flow tubes 

that contain 200 µL FACS Staining buffer. 

 

Reagents and Solutions 

2x DNAse/Liberase 

Materials 

● Liberase (5.2 Wunch units/mg) (Sigma, cat# 5401127001) 

● DMEM 1x with 4.5g/L glucose without L-glutamine, sodium pyruvate (Corning, cat# 15-

017-CV) 

● DNase I [type IV Bovine] (3,000 units/mg) (Sigma, cat# D5025-150KU) 

● 50 mL Conical Tubes (Thermo Fisher Scientific, cat# 12565270) 

 

Protocol steps 

1. Mix 100 mg of Liberase (520 units) and 50 mg of DNase (150,000 units) in DMEM 

and adjust the total volume to equal 200 mL. 
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2. Mix the solution well and aliquot into conical tubes based on experimental needs 

taking into consideration that each lung sample will require 1 mL of this solution. 

3. Store at -80°C. 

 

Complete Media 

Materials 

● DMEM 1x with 4.5g/L glucose without L-glutamine, sodium pyruvate (Corning, cat# 15-

017-CV) 

● MEM Nonessential amino acids 100X (Corning, cat# 25-025-CI) 

● Penicillin streptomycin (Thermo Fisher Scientific, cat# 15140-122) 

● L-glutamine (Thermo Fisher Scientific, cat# 25030081) 

● Heat-inactivated Fetal Bovine Serum (Thermo Fisher Scientific, cat# MT35011CV) 

 

Protocol steps 

1. Add 4.5 mL MEM amino acids, 4.5 mL Penicillin streptomycin, 4.5 mL L-glutamine, 

and 45 mL Fetal Bovine Serum to the bottle of 500 mL 1x DMEM in a sterile hood. 

2. Store at 4°C. 

 

FACS Staining Buffer 

Materials 

● Heat-inactivated Fetal Bovine Serum (Thermo Fisher Scientific, cat# MT35011CV) 

● Phosphate Buffered Saline (VWR, cat. No. 45000-446) 

● Sodium Azide (Fisher Chemical, cat# S2271-25) 



 187 

Protocol steps 

1. Add 10 mL of Fetal Bovine Serum to a 500mL bottle of PBS. 

2. Weight 0.25 g of Sodium Azide and add to the PBS/FBS solution. 

3. Store at 4°C. 

 

FMOs 

Materials 

● Same materials as those listed in T cell surface antibody cocktail and T cell intracellular 

antibody cocktail 

Protocol steps 

1. Create one FMO for every marker in the flow cytometry panel. 

2. Add a 1:10 dilution of Brilliant Stain buffer and the appropriate dilutions of all the 

markers except for one to FACS Staining Buffer to make up a 100 μL volume. 

The surface FMOs will be prepared in FACS Staining Buffer and the intracellular 

FMOs will be prepared in Permeabilization Buffer. 

 

1X Perm/Fix Buffer 

Materials 

● Fixation/Permeabilization Concentrate (Thermo Fisher Scientific, cat# 501129082) 

● Fixation/Permeabilization Diluent (Thermo Fisher Scientific, cat# 501129081) 

Protocol steps 

1. Add 1-part Fixation/Permeabilization Concentrate to 3-parts Fixation/Permeabilization 

Diluent. 
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Example: 12.5 mL concentrate + 37.5 mL diluent 

2. Store at 4°C 

 

1X Permeabilization Buffer 

Materials 

● Permeabilization Buffer 10X (Invitrogen, cat# 00-8333-56) 

● Sterile Deionized Water 

 

Protocol steps 

1. Add 1-part Permeabilization Concentrate to 9-parts Sterile Deionized Water. 

Example: 5 mL Perm buffer + 45 mL water 

2. Store at 4°C. 

 

T cell intracellular antibody cocktail 

Materials (see Table A.2) 

● Permeabilization Buffer (see recipe) 

● Anti-mouse IL-17A, PE (BioLegend Cat# 506904, RRID: AB_315464) 

● Anti-mouse IFN-, PE Cyanine 7 (Thermo Fisher Scientific Cat# 25-7311-82, RRID: 

AB_469680) 

● Anti-mouse IL-10, Brilliant Violet 421 (BioLegend Cat# 505021, RRID: AB_10900417) 

● Anti-mouse TNF-, Pacific Blue (BioLegend Cat# 506318, RRID: AB_893639) 

● Anti-mouse CD16/32 (Biolegend, cat# 101330) 
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Table A.2: Antibodies and concentrations for T cell intracellular antibody cocktail 

 

Fluorophore Marker Clone Effective Concentration 

PE IL-17A TC11-18H10.1 2 μg/mL 

PE Cy7 IFN- XMG1.2 2 μg/mL 

BV421 IL-10 JES5-16E3 1 μg/mL 

Pacific Blue/e450 TNF- MP6-XT22 5 μg/mL 

- CD16/32 93 2.5 μg/mL 

 

 

Protocol steps 

1. Prepare intracellular antibody cocktail in permeabilization buffer.  

Brilliant Violet Buffer does not need to be added to this cocktail because there is 

only 1 Brilliant Violet stain present.  

2. Add the antibodies at the dilution listed above. 

3. Store at 4°C in the dark.  

Protect antibody cocktail from the light. 

 

T cell surface antibody cocktail  

Materials (See table A.3) 

● FACS Staining Buffer (see recipe) 

● Brilliant Stain Buffer (BD Biosciences, cat# 566349) 

● Rat Anti Ly-6A/E, BB515 (BD Biosciences Cat# 565397, RRID: AB_2739218) 

● Anti-mouse CD3, Alexa Fluor 532 (Thermo Fisher Scientific Cat# 58-0032-82, RRID: 

AB_11217479) 

● Anti-mouse CD62L, PE/Dazzle 594 (BioLegend Cat# 104448, RRID:AB_2566163) 



 190 

● Anti-mouse CD122, PE/Cy5 (BioLegend Cat# 123220, RRID: AB_2715962) 

● Anti-mouse CD28, PerCP/Cyanine 5.5 (BioLegend Cat# 102114, RRID: AB_2073850) 

● Anti-mouse PD-1, PerCP-eFluor 710 (Thermo Fisher Scientific Cat# 46-9981-82, RRID: 

AB_11151142) 

● Anti-mouse CD103, APC-R700 (BD Biosciences Cat# 565529, RRID: AB_2739282) 

● Anti-mouse CD44, APC/Fire 750 (BioLegend Cat# 103062, RRID: AB_2616727) 

● Anti-mouse CD4, Brilliant Violet 480 (BD Biosciences Cat# 565634, RRID: 

AB_2739312) 

● Anti-mouse CD8, Brilliant Violet 570 (BioLegend Cat# 100739, RRID: AB_10897645) 

● Anti-mouse CD152, Brilliant Violet 605 (BioLegend Cat# 106323, RRID: AB_2566467) 

● Anti-mouse CD27, Brilliant Violet 650 (BioLegend Cat# 124233, RRID: AB_2687192) 

● Anti-mouse CD153, Brilliant Violet 711 (BD Biosciences Cat# 740751, RRID: 

AB_2740419) 

● Anti-mouse KLRG-1, Brilliant Violet 786 (BD Biosciences Cat# 565477, RRID: 

AB_2739256) 

● Anti-mouse CD16/32 (Biolegend, cat# 101330) 

 

Protocol steps 

1. Prepare surface antibody cocktail in FACS Staining Buffer with a 1:10 dilution of 

Brilliant Violet Buffer. 

If two or more brilliant violet dyes are used together, it is important to add 

Brilliant 
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Violet Buffer and FACS Staining Buffer together before adding antibodies to 

avoid aggregation of the antibodies labeled with brilliant violet dyes.  

2. Add the antibodies at the dilution listed above. 

3. Store at 4°C in the dark. 

The antibody cocktail should be protected from light, for instance by wrapping in 

tin foil. 
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Table A.3: Antibodies and concentrations for T cell surface antibody cocktail 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fluorophore Marker Clone Effective Concentration 

BB515 Ly-6A/E (Sca-1) D7 0.2 μg/mL 

Alexa Fluor 532 CD3 17A2 4 μg/mL 

PE Dazzle 594 CD62L MEL-14 0.4 μg/mL 

PE Cy5 CD122 TM-𝛽1 2 μg/mL 

PerCP Cy5.5 CD28 37.51 4 μg/mL 

PerCP e710 PD-1 RMP1-30 2 μg/mL 

APC R700 CD103 M290 1 μg/mL 

APC Fire750 CD44 IM7 0.2 μg/mL 

BV480 CD4 RM4-5 2 μg/mL 

BV570 CD8 53-6.7 1 μg/mL 

BV605 CD152 (CTLA-4) UC10-4B9 4 μg/mL 

BV650 CD27 LG.3A10 2 μg/mL 

BV711 CD153 RM153 2 μg/mL 

BV786 KLRG-1 2F1 2 μg/mL 

- CD16/32 93 2.5 μg/mL 



 193 

Commentary 

Background 

Flow cytometry is a technique used to analyze the physical, functional and/or biological 

properties of cells including antigens, cytokines, size, and granularity. Cells are stained with 

fluorophore-conjugated antibodies. The cells are then sent single file through the flow cytometer, 

where a laser light source excites the fluorescently tagged antibodies, which can then emit light 

that is measured.4  

 

Traditionally flow cytometry has only been able to examine a handful of parameters at a time. 

However, with the advent of spectral flow cytometry, there has been a large increase in the 

number of possible parameters that can be measured. Traditional analysis methods for flow 

cytometry include manual selection (gating) of cells on two-dimensional plots, often using 

expensive software such as FlowJo or FCS Express.5 While these programs are user-friendly, 

they lack the ability to analyze high-dimensional data quickly and efficiently. Researchers and 

computational biologists have been working to develop analysis tools that utilize feature 

engineering, clustering, and dimensionality reduction algorithms to address this complex data. 

However, to ensure accurate results with these tools, data needs to be acquired following very 

strict flow cytometry staining procedures, leading to clean and accurate data before analysis. 

Further, it is crucial that the correct controls are collected, and the flow cytometer is calibrated to 

a set standard.  

 

With all types of flow cytometry, single-color controls are required for data acquisition. In 

conventional flow cytometry, these controls are used to build the compensation matrix. In 
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spectral flow cytometry, these controls are used to perform spectral unmixing, which separates 

the expression of similar fluorophore emissions based on the entire emission spectra of each 

individual fluorophore. This allows for multiple fluorophore-marker pairs to be used that would 

be indistinguishable with the same number of lasers on a traditional flow cytometer.6  

 

Fluorescent Minus One controls, or FMOs, are an example of a “best practice” control used in 

both conventional flow cytometry and spectral flow cytometry.7 FMOs contain all the markers in 

a flow cytometry panel except for one. For example, if a panel contains 4 markers (e.g., CD45, 

CD3, CD4, CD8), then a CD45 FMO would contain CD3, CD4, and CD8, but not CD45. These 

controls allow for the user to account for any spillover from other fluorophores into the specific 

marker channel that is of interest.7 These FMOs allow users to place informed “gates” around 

populations that are either negative or positive for a marker. 

 

Critical Parameters 

There are multiple factors that influence the success of these protocols. 

 

Protocol 1: Preparation of single-cell suspension for flow cytometry 

While using razors to perform crosshatch cuts in the lungs, careful movements should be used to 

ensure lungs are not cut into pieces. There should only be imprints of the razors into the lungs 

rather than full cuts through the lungs. If the lungs are digested into small pieces following 

incubation with DNase/liberase, it is difficult to macerate them through the 70 μm filter.  
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Special attention should also be paid to the controls used in these experiments. These controls, 

which include FMOs and single-color beads, are critical in both spectral unmixing on the 

cytometer and determination of positive and negative populations during data analysis. There 

should be 1 FMO and 1 single-color control for every fluorophore-marker pair in an experiment.  

 

 

Protocol 2: Surface and intracellular flow cytometry staining 

Panel design is a highly important step prior to flow cytometry staining. Note that the same 

antibody clone and fluorochrome should be used for subsequent sampling to standardize the 

fluorescent signal. Ferrer-Font et al. and Mahnke & Roederer et al. describe in detail how to 

design and optimize a flow cytometry panel.3,8 

 

Performing a pilot optimization study is highly recommended to ensure that the fluorophore-

marker pairs do not overlap in emission wavelength on a conventional cytometer or spectral 

signatures on a spectral cytometer. If the signatures are too similar, there will be a problem with 

spectral unmixing or signal overlap. In this case, change one of the problematic fluorophores to 

another that is not in use. Otherwise, the panel’s complexity must be reduced.  

 

Low or no signal in certain markers can be due to low marker expression on cells. In this case, 

the cells can be stimulated with PMA-ionomycin. Another check for the low signal would be to 

perform antibodies dilution series (example dilutions: 1:50, 1:100, 1:200, 1:400, 1:800), to rule 

out insufficient antibody concentration. If there is still low expression, the fluorophore could be 

too dim for the marker. It may be best to try a brighter fluorophore-marker pair.8  
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Particularly when using fixation/permeabilization steps, there can be an increase in cell 

autofluorescence. This autofluorescence can mask signal of other markers, particularly dim ones, 

if the proper controls are not used. The unstained sample should be used to assess 

autofluorescence, meaning that all steps (except for the addition of fluorescent antibodies) should 

be performed on these cells, including the fixation/permeabilization, anti-mouse CD16/32, and 

washes.  

 

Tandem dyes, such as PE/Cy5 or APC/Fire750, are fluorescent molecules comprised of two 

covalently bound fluorophores, in which the energy emitted by one fluorophore excites the 

second one. While these dyes have largely increased the number of fluorophores available for 

use in flow cytometry, special attention should be paid to their properties. It is not uncommon for 

tandem dyes to degrade or decouple. This can occur when the fluorophores are exposed to light, 

long fixation and permeabilization steps, or if the tandem dyes are not properly stored at 4°C.9  

 

During the staining procedure, extra precaution should be used in the washing steps. If a washing 

step is omitted, there may not be good separation between populations. Particularly in the 

dimension of Zombie-NIR, there cannot be any protein present in the diluent. Proteins, such as 

those from fetal bovine serum (FBS), Bovine Serum Albumin (BSA), or those released during 

red blood cell lysis can bind to Zombie-NIR, therefore lowering its effective concentration. 

Hence, washing cells with PBS prior to adding Zombie-NIR is a crucial step. 
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Troubleshooting 

Table A.4: Description of possible problems, causes, and solutions for the flow cytometry cell preparation and acquisition. 

 

Problem Potential Cause Potential Solution 

No cells on flow cytometer Cells were knocked out of the plate 
when performing the wash steps 
 
Cytometer is clogged 

When decanting supernatant, tap more gently 
 
 
Run 10% bleach or 33% Contrad through the cytometer 
until the clog is removed 

Fluorescent signal in the negative 
population of the single-color bead 
control 

Non-specific binding of antibody to 
negative beads 

Wash the beads with FACS Staining Buffer again to 
remove non-specific binding on the negative beads  

Spectral signature of single-color 
control does not match expected 
signature for the fluorophore 

Contamination of control with 
another fluorescent antibody 
 
Tandem dye degraded 

Re-prepare control 
 
 
Replace tandem dye with new vial  

High proportion of cells are dead Cells left in DNAse/liberase for too 
long 
 
Cells left in RBC lysing buffer for 
too long 
 
Centrifuged too long and too hard 
 
Cells incubated with Protein 
Transport Inhibitor for too long or 
too high of a concentration 

Reduce the amount of time in the DNAse/liberase 
 
 
Reduce the amount of time in the RBC lysing buffer 
 
 
Reduce the centrifuge speed and/or time 
 
Reduce the amount of time or concentration of Protein 
Transport Inhibitor 

Fluorophore spill-over into other 
channels 

Spectra of two markers is 
indistinguishable 

Substitute a different fluorophore-marker pair 
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Low signal in certain markers 

Marker expression might be too 
low or inexistent  
 
 
Experimental design (e.g., time 
point or vaccine stimulation) does 
not elicit certain markers 
 
Markers chosen were too dim 
 
 
Tandem dyes degraded or 
decoupled  

Check that the marker is supposed to be expressed in 
the particular cells or animal model 
 
 
Choose a time point closer to vaccination or stimulate 
the cells with PMA-ionomycin 
 
 
Choose a brighter fluorophore for the specific marker 
or optimize dilution used 
 
Use a new vial of the tandem dye 

Not a clear separation in the 
live/dead sample stain 

Residual protein left in the media is 
binding to and quenching Zombie-
NIR 
 
Single-color control does not 
contain both positive and negative 
populations 
 

Add additional washing step with PBS prior to staining 
with Zombie-NIR 
 
 
Use ArC Amine Reactive Compensation Bead Kit 
(Thermo Fisher, cat# A10346) to run single-color live-
dead control 

Bad separation between negative 
and positive populations 

Antibody concentration is either too 
high or too low 
 
Unbound antibodies were not 
adequately washed from the 
samples 

Optimize dilution of antibodies 
 
 
Add additional centrifugation and PBS wash 

 



 199 

Statistical Analysis 

The flow cytometry data acquired following this protocol can be used with almost any type of 

statistical analysis. The single-color controls are used either for spectral unmixing in the case of 

spectral flow cytometry, or the development of a compensation matrix in conventional flow 

cytometry. The FMOs can be utilized either in manual gating strategies in FlowJo or 

FCSExpress, or in the novel analysis pipeline, cyto-feature engineering.1 The cyto-feature 

engineering is an end-to-end analysis pipeline that can further form correlations between flow 

cytometry data and additional readouts. The data can also be analyzed with other tools such as 

OpenCyto, which implements automated gating, FlowSOM, which creates self-organizing maps, 

or t-SNE which performs dimensionality reduction.10-12 To compare differences in marker 

expression or cell populations (defined by combinations of markers) between experimental 

groups, statistical tests such as Analysis of Variance (ANOVA) and Tukey Honest Significant 

Difference (HSD) can be used. 

 

Understanding Results 

After gating each sample and FMO on single cells, leukocytes, and live cells, the gates on the 

FMOs can be placed. An example of a good FMO (Figure A.3) is shown with CD4. Note that the 

cells are concentrated in a cluster and are not very spread out. When this FMO gate is placed on 

a sample, there is also clear separation between the two populations (Figure A.3).  

 

An example of spillover is shown in Figure A.4. This problem can be diagnosed by plotting the 

marker of question against the other markers. A hallmark sign of spillover is signal expression 

along the line Y=X. In this case, a different fluorophore must be substituted.  
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Figure A.3: Good fluorescence minus one (FMO) sample and gating strategy. An example 
of a good FMO is shown (left), in which the cells are tightly clustered and there is no expression 
of CD4 (as expected). The gate is placed on the negative CD4 population in the CD4 FMO and 
copied onto subsequent samples. There is further good separation between the positive and 
negative populations in the sample (right). 
 

 

 

Figure A.4: Bad fluorescence minus one (FMO) sample due to spillover. An example of a 
bad FMO is shown, in which the population is spread across the x-axis (left). The source of the 
problem can be diagnosed by visualizing the marker vs. other panel markers (middle and right). 
The curved shape of the CD69 in the BV510 channel vs. PE/Dazzle 594 channel and the Pacific 
Blue channel shows that there is spillover from the other channels. 
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The single-color reference controls should display low signal in the negative population and a 

positive spectral signature identical to the fluorophore of interest (Figure A.5). If there is signal 

in the negative population, then there may be non-specific binding of the antibody to the negative 

beads (Figure A.6). Further, if the spectral signature does not match the expected signature 

exactly, there may be contamination from other fluorophores (Figure A.7). In both of these cases, 

the single-color controls should be re-run. 

 

 

Figure A.5: Good single-color control with beads. A good APC Fire 750 single-color control 

with beads is shown. (a) The negative spectral signature should not show any signal. (b) The 
positive spectral signature should match the expected fluorophore spectral signature exactly. 
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Figure A.6: Bad single-color control due to fluorescent signal in negative population. (a) An 
example is shown where the fluorescent signal in the negative population is low indicating that 
the single-color control has been run properly. (b) There is fluorescent signal (indicated in the 
red box) in the negative population indicating that there may be non-specific binding of the 
fluorophore. The BV711 single-color control should be prepared again and rerun. 
 

 

Figure A.7: Bad single-color control due to incorrect spectral signature. (a) The expected 
APC Fire 750 spectral signature is shown. (b) In the sample, the spectral signatures do not 
match. This is an example of APC signal in the APC Fire-750 single-color control. The control 
should be prepared again. 
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Complete analysis of the data acquired using this protocol can be found in the manuscript 

currently under review at “Cyto-feature engineering: a pipeline for flow cytometry analysis to 

uncover immune populations and associations with disease.” The code to analyze the data can be 

found here: https://github.com/aef1004/cyto-feature_engineering. 

 

Time Considerations 

The time required for these protocols depends on the number and type of samples. In protocol 1, 

it takes about 1.5 hours to prepare one sample from tissue harvesting to adding cells to a plate for 

staining. However, if it is the lung tissue being stained, 30 minutes should be added to this time 

due to the incubation with DNAse/liberase. 

 

To perform intracellular cytokine staining, an initial incubation step of 6 hours must occur. 

Following this incubation, it takes approximately 4.5–5 hours to stain. The plate must then sit 

overnight with the intracellular antibodies. The next day washing steps take approximately 30 

minutes. Finally, it takes approximately 1-2 minutes to read one sample with 100,000 cells (with 

an initial concentration of 500,000 cells per tube).  

 

Internet Sources 

This website contains the code to analyze flow cytometry data using the Cyto-feature 

engineering analysis method. https://github.com/aef1004/cyto-feature_engineering 

 

  

https://github.com/aef1004/cyto-feature_engineering
https://github.com/aef1004/cyto-feature_engineering
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LIST OF ABBREVIATIONS 
 
 
ACEi – Angiotensin-Converting Enzyme Inhibitors 
 
ANCOVA – Analysis of Covariance  
 
ANOVA – Analysis of Variance  
 
BCG – Bacille Calmette-Guérin 
 
BSA – Bovine Serum Albumin  
 
CC – Collaborative Cross 
 
CFU – Colony Forming Units 
 
FACS – Fluorescence Activated Cell Sorting Staining Buffer 
 
FBS – Fetal Bovine Serum  
 
FDR – False Discovery Rate  
 
FlowSOM – Flow Self-Organizing Map 
 
FMO – Fluorescence Minus One 
 
HIV – Human immunodeficiency virus 
 
HSD – Honest Significant Difference  
 
LC-MS – Liquid Chromatography-Mass Spectrometry  
 
MDR – Multidrug-Resistant  
 
MF – Molecular Features  
 
MFI – Median Fluorescent Intensities  
 
MHC – Major Histocompatibility Complex 
 
MS-TOF – Time-of-Flight Mass Spectrometer  
 
MTB – Mycobacterium tuberculosis 
 
NET – Neutrophil Extracellular traps 
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NTM – Non-Tuberculosis Mycobacteria  
 
PAMP – Pathogen-associated molecular pattern 
 
PBMC – Peripheral Blood Mononuclear Cells  
 
PBS – Phosphate Buffered Saline  
 
PC – Principal Component 
 
PCA – Principal Components Analysis 
 
PFA – Paraformaldehyde  
 
PL – Propranolol-Losartan  
 

PPD – Purified Protein Derivative 
 
QC – Quality Control 
 
RBC – Red Blood Cell  
 
RPM – Revolutions Per Minute 
 
SOM – Self-Organizing Map 
 
TB – Tuberculosis 
 
Th1 – T Helper 1 cells  
 
Th2 – T Helper 2 cells  
 
Treg – Regulator T cells  
 
t-SNE – t-Distributed Stochastic Neighbor Embedding 
 
XDR – Extensively Drug-Resistant 
 
 
 
 


	While we used T cell lineages and subsets in the case study analysis, the pipeline could easily be modified for different panels. If a panel aims to identify myeloid cells, they could be classified by lineage as macrophages, neutrophils, dendritic cel...

