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ABSTRACT 

 

HETEROGENEOUS COMPUTING ENVIRONMENT CHARACTERIZATION 

AND THERMAL-AWARE SCHEDULING STRATEGIES TO OPTIMIZE 

DATA CENTER POWER CONSUMPTION 

Many computing systems are heterogeneous both in terms of the performance of their 

machines and in terms of the characteristics and computational complexity of the tasks that 

execute on them. Furthermore, different tasks are better suited to execute on specific types of 

machines. Optimally mapping tasks to machines in a heterogeneous system is, in general, an NP-

complete problem. In most cases, heuristics are used to find near-optimal mappings. The 

performance of allocation heuristics can be affected significantly by factors such as task and 

machine heterogeneities. In this thesis, different measures are identified to be used in quantifying 

the heterogeneity of HC systems and the correlation between the performance of the heuristics 

and these measures is shown.  

The power consumption of data centers has been increasing at a rapid rate over the past 

few years. Motivated by the need to reduce the power consumption of data centers, many 

researchers have been investigating methods to increase the energy efficiency in computing at 

different levels: chip, server, rack, and data center. Many of today’s data centers experience 

physical limitations on the power needed to run the data center. The first problem that is studied 

in this thesis is maximizing the performance of a data center that is subject to total power 

consumption and thermal constraints. A power model for a data center that includes power 

consumed in both Computer Room Air Conditioning (CRAC) units and compute nodes is 

considered. The approach in this thesis quantifies the performance of the data center as the total 
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reward collected from completing tasks in a workload by their individual deadlines. The second 

problem that is studied in this research is how to minimize the power consumption in a data 

center while guaranteeing that the overall performance does not drop below a specified 

threshold. For both problems, novel optimization techniques for assigning the performance states 

of compute cores at the data center level to optimize the operation of the data center are 

developed. The assignment techniques are divided into two stages.  The first stage assigns the P-

states of cores, the desired number of tasks per unit time allocated to a core, and the outlet CRAC 

temperatures. The second stage assigns individual tasks as they arrive at the data center to cores 

so that the actual number of tasks per unit time allocated to a core approaches the desired number 

set by the first stage. 
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Chapter 1 

1. Introduction 

Heterogeneous Computing (HC) systems studied in this thesis are ones that consist of a 

set of different machines that have varying capabilities. These machines are used to execute a set 

of heterogeneous tasks that vary in their computational complexity. Heuristics are used to assign 

tasks to machines in an HC system to optimize some objectives. The objectives considered in 

this research are the makespan (in Chapter 2), the power consumption (in Chapter 4), and the 

reward collected from completing tasks by their individual deadline (in Chapter 4).  

Chapter 2 presents three statistical measures that can be used to quantify the 

heterogeneity of computing systems. These measures are the coefficient of variation (COV), 

skewness (third moment), and kurtosis (fourth moment). The coefficient of variation has been 

used in [AlS00] to generate simulated heterogeneous environments. We show how to use COV 

as one measure for quantifying the heterogeneity of existing heterogeneous environments. The 

importance of using the three statistical measures is demonstrated through simple task allocation 

examples and simulations. We show the correlation between the statistical measures and the 

performance of some greedy allocation heuristics. This correlation can be used to make better 

decisions about the most appropriate heuristic for a given HC system and the potential 

performance of an HC system.  

In Chapter 3, we identify three properties that heterogeneity measures should have and 

propose measures that have these properties. These measures are the machine performance 

homogeneity (MPH), task easiness homogeneity (TEH), and task-machine affinity (TMA). To 

illustrate the intuition behind MPH, TEH, and TMA, we show some simple HC systems that 
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consist of two machines and two task types and where they fall within the range of all possible 

values of the three measures. We use information from the integer and floating point SPEC 

benchmarks (SPEC CINT2006Rate and SPEC CFP2006Rate [Spe06]) to construct HC systems. 

These systems illustrate how environments constructed from real world task types and machines 

can have widely varying values for each of the measures proposed in Chapter 3.  

The power consumption of data centers has been increasing at a rapid rate over the past 

few years. Further, many of today’s data centers experience physical limitations on the power 

needed to run the data center. The first problem that we study in Chapter 4 is maximizing the 

performance of a data center that is subject to total power consumption and thermal constraints. 

We consider a power model for a data center that includes power consumed in both Computer 

Room Air Conditioning units and compute nodes. Our approach quantifies the performance of 

the data center as the total reward collected from completing tasks in a workload by their 

individual deadlines. The second problem that we study in this research is how to minimize the 

power consumption in a data center while guaranteeing that the overall performance does not 

drop below a specified threshold. For both problems, we develop novel optimization techniques 

for assigning the performance states of compute cores at the data center level to optimize the 

operation of the data center. The assignment techniques are divided into two stages.  The first 

stage assigns the P-states of cores, the desired number of tasks per unit time allocated to a core, 

and the outlet CRAC temperatures. The second stage assigns individual tasks as they arrive at the 

data center to cores so that the actual number of tasks per unit time allocated to a core 

approaches the desired number set by the first stage. 
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Chapter 2 

2. Statistical Measures for Quantifying Task and Machine 

Heterogeneities 

2.1. Introduction 

We study heterogeneous computing (HC) systems that consist of a set of different 

machines that have varying capabilities. These machines are used to execute a set of 

heterogeneous tasks that vary in their computational complexity. Many of today’s 

supercomputers are heterogeneous, e.g., the Extreme Scale Systems Center (ESSC) at Oak Ridge 

National Laboratory (ORNL). Furthermore, many of the homogeneous systems today may 

become heterogeneous in the future by adding new processing units with different capabilities 

than the existing ones.  

The Estimated Time to Compute (ETC) each task on each machine in an HC system is 

arranged in an ETC matrix, where entry ETC(i, j) is the estimated execution time of task i on 

machine j when executed alone. The assumption of such ETC information is a common practice 

in resource allocation research (e.g., [BaS01, DhA02, GhY93, KaA98, KhP93, SiY96, XuN01]). 

An ETC matrix for a given HC system can be obtained from user supplied information, 

experimental data, or task profiling and analytical benchmarking [AlB05, GhY93, KhP93, 

XuN01].  

Machine heterogeneity is the degree to which the execution time of a given task varies 

A preliminary version of portions of this chapter appeared in [AlM11b]. 
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for different machines (the variation along the same row of an ETC matrix). Analogously, task 

heterogeneity is the degree to which the execution times of different tasks vary for the same 

machine (the variation along the same column) in the ETC matrix.  

In an HC system, tasks should be mapped (allocated) to the available machines in a way 

that optimizes some performance objective (e.g., [BaS01, BaV01, BrS01, BrS08, BuP97, 

ChM10, KiH06, MaA99, MeS07, MiF00, WuS00]). Mapping tasks to machines in HC systems 

has been shown to be, in general, an NP-complete problem [Cof76, Fer89, IbK77]. Hence, many 

heuristics have been developed for allocating tasks to machines in HC systems. The performance 

of allocation heuristics and the HC system is affected by several factors one of which is the level 

of machine heterogeneity [BrS01, ChM10]. Therefore, quantifying the heterogeneity of a given 

environment will allow the selection of a heuristic that is the most appropriate. 

In most previous work (e.g., [AlS00, BrS01, CaJ09, EsA09, HuY09, KhA06]), either the 

range of the execution time values or their coefficient-of-variation (COV) was used as a measure 

of the heterogeneity to generate ETC matrices for simulation studies. These measures do not 

completely represent the possible variation in heterogeneity. For example, many ETC matrices 

with the same COV can have other statistical properties that are vastly different and that may be 

highly correlated with the performance of a mapping heuristic. Furthermore, these measures 

were intended for quantifying the heterogeneity of existing HC systems.  

The contributions of this chapter are the use of: (1) different statistical measures to 

quantify task and machine heterogeneities for existing HC systems, (2) simple mapping 

examples and synthetic data analysis that demonstrate the importance of these measures, and (3) 

regression trees to predict the most appropriate heuristic for a given HC system based on its 
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heterogeneity. The regression trees demonstrate the importance of the heterogeneity measures in 

significantly reducing the error in predicting the most appropriate heuristic.  

The remainder of this chapter is organized as follows. The procedures for each of the 

studied heuristics are given in Section ‎2.2. In Section ‎2.3, we describe different statistical 

measures for quantifying heterogeneity. Heuristic selection based on the heterogeneity measures 

is discussed in Section ‎2.4. Synthetic data analysis to demonstrate heuristic selection based on 

heterogeneity is given in Section ‎2.5. Section ‎2.6 discusses related work. Conclusions are given 

in Section ‎2.7. 

2.2. Heuristics 

The task mapping problem that we study in this chapter is a static one (i.e., task mapping 

decisions are made before any task is executed). Further, there are no inter-task dependences. 

This mapping problem has been studied widely (e.g., [ArH98, IbK77, WuS00, WuS01]). The 

makespan of a task mapping is the latest finish time among all machines, where a lower 

makespan is better. We study five heuristics to derive task mappings that minimize the 

makespan: Min-Min [IbK77], Max-Min [IbK77], Sufferage [MaA99], MCT (minimum 

completion time) [ArH98], and KPB (k-percent best) [MaA99]. The performance of the 

heuristics is quantified by the makespan.  

The Min-Min heuristic passes through the unmapped tasks twice. In the first pass, for 

each task, it finds the machine that gives the minimum completion time. In the second pass, it 

finds the task with the minimum overall completion time and maps it to the minimum completion 

time machine identified in the first pass. The two passes are repeated until all tasks are assigned. 

The pseudocode of the Min-Min heuristic is given in Figure ‎2.1. The Max-Min heuristic is 

similar to Min-Min except that in the second pass instead of mapping the task that has the  
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do the following steps while there are unmapped tasks 

(1) for each unmapped task, determine the machine that gives the task its minimum 

completion time. 

(2) among the task-machine pairs determined in (1), map the task that has the minimum 

overall completion time to the corresponding machine. 

(3) update the ready times of each machine  

Figure ‎2.1. The pseudocode of the Min-Min heuristic.  

minimum completion time it maps the task that has the maximum completion time (i.e., Max-Min 

starts by assigning the tasks with longer execution times). 

The sufferage heuristic attempts to minimize the makespan by assigning every task to its 

best machine, but when multiple tasks want the same machine it gives preference to the task that 

would “suffer” the most if it were not assigned to that machine. The sufferage value of a given 

task is the difference between its completion time on the machine with the second earliest 

completion time and the completion time on the machine with the earliest completion time. The 

pseudocode of the sufferage heuristic is given in Figure ‎2.2.  

As the name implies, the MCT heuristic loops thought all of the tasks in arbitrary order 

and assigns each task to the machine that gives the minimum completion time for that task. The 

KPB heuristic also loops through the tasks in arbitrary order. However, for a given task, KPB 

considers a subset of machines for mapping that task. The subset is formed by picking the k-

percent of all of the machines that have the best (lowest) execution time for that task. Within the 

k-percent best machines the task is assigned to the machine with the minimum completion time. 

The k value is a parameter that can be set by the user. For the purpose of illustration, we used a k 

value of 0.75.  
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do the following while there are still unmapped tasks: 

(1) for each machine find the set of tasks that have their minimum completion time on 

this machine: 

        (a) if the size of the set is one, then assign the corresponding task to the machine. 

        (b) if the size of the set is greater than one, then assign the task with the highest 

sufferage value to the corresponding machine. 

(2) update the ready times for all the machines. 

Figure ‎2.2. The pseudocode of the sufferage heuristic. 

2.3. Measuring Heterogeneity  

2.3.1. Introduction 

In this section, we illustrate how three statistical measures are used to quantify the 

heterogeneity of an HC system represented by an ETC matrix. These statistical measures are: (a) 

coefficient of variation, (b) skewness, and (c) kurtosis.  

The following variables will be used in the calculation of each of the statistical measures: 

T is the number of tasks to be mapped, M is the number of machines in the system, and 
(t)

i is the 

mean ETC of task i over all machines, given by 



M

j

i ji
M 1

(t) ),(ETC
1

 .  The mean ETC of all 

tasks on machine j, 
(m)

j , is given by 



T

i

j ji
T 1

(m) ),(ETC
1

 . The standard deviation of the ETC of 

task i over all machines,
(t)

i , is given by 



M

j

ii ji
M 1

2(t)(t) )),(ETC(
1

 . The standard deviation 

of the ETC of all tasks on machine j,
(m)

j , is given by 



T

i

jj ji
T 1

2(m)(m) )),(ETC(
1

 . 
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2.3.2. Coefficient of Variation 

The COV has been used in [AlS00] to generate ETC matrices with different task and 

machine heterogeneities. For a set of values with standard deviation   and mean  , the COV is 

given by 



COV . Let 

(t)

iV for task i be the COV over all machines, given by
(t)

(t)
(t)

i

i
iV




 . Let 

(m)

jV  

for machine j be the COV over all tasks, given by
(m)

(m)

(m)

j

j

jV



 . Task heterogeneity as measured 

by the Average Task COV (ATC) is given by MV
M

j

j /ATC
1

(m)








 



. Machine heterogeneity as 

measured by the Average Machine COV (AMC) is given by TV
T

i

i /AMC
1

(t)









 



. 

Although both ATC and AMC quantify the variation of the execution time values, they 

do not indicate whether most of the values are less than or greater than the mean, and whether 

the variation is caused by many values having an average deviation from the mean, or a small 

number of values having a large deviation from the mean. These are quantified by skewness and 

kurtosis, respectively. Sections ‎2.4 and ‎2.5 describe how skewness and kurtosis may have an 

effect on the performance of heuristics. Using these measures we may be able to select a more 

appropriate heuristic for an HC system. 

2.3.3. Skewness  

The skewness of a set of values measures the degree of asymmetry of the values over the 

mean [PrF88]. Skewness corresponds to the third moment of a distribution. Positive skewness 

means that most of the values are below the mean and negative skewness means that most of the 

values are greater than the mean. 
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Let 
(t)

iS  for task i be the skewness over all machines, given by

3(t)

1

3(t)(t) )/()),(ETC(
1

i

M

j

ii ji
M

S  







 



. Let 
(m)

jS  for machine j be the skewness over all tasks, 

given by
3(m)

1

3(m)(m) )/()),(ETC(
1

j

T

i

jj ji
T

S  







 



. Task heterogeneity as measured by the Average 

Task Skewness (ATS) is given by MS
M

j

j /ATS
1

(m)









 



. Machine heterogeneity as measured by the 

Average Machine Skewness (AMS) is given by TS
T

i

i /AMS
1

(t)









 



. 

2.3.4. Kurtosis  

The kurtosis of a set of values measures the extent to which the deviation is caused by a 

small number of values having extreme deviations from the mean versus a large number of 

values having modestly sized deviations [PrF88]. Kurtosis corresponds to the fourth moment of a 

distribution. Higher values of kurtosis indicate that the standard deviation is caused by fewer 

values having extreme deviations. The definition of kurtosis that we use is the excess kurtosis 

[PrF88]. Excess kurtosis equals kurtosis minus 3. This makes the excess kurtosis of the Gaussian 

(normal) distribution equal to 0. 

Let 
(t)

iK  for task i be the kurtosis over all machines, given by

3)/()),(ETC(
1 4(t)

1

4(t)(t) 

























 



i

M

j

ii ji
M

K  . Let 
(m)

jK  for machine j be the kurtosis over all tasks, 

given by 3)/()),(ETC(
1 4(m)

1

4(m)(m) 















 



j

T

i

jj ji
T

K  . Task heterogeneity as measured by the 
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Average Task Kurtosis (ATK) is given by 



M

j

jK
M 1

(m)1
ATK . Machine heterogeneity as measured 

by the Average Machine Kurtosis (AMK) is given by 



T

i

iK
T 1

(t)1
AMK . 

2.4. Heuristic Selection 

2.4.1. Overview 

This section illustrates how the heterogeneity measures can be used to make heuristic 

selection decisions based on the heterogeneity of an HC system. Section ‎2.4.2 illustrates the 

correlation that ATS and ATK may have with the performance of Max-Min and Min-Min 

heuristics by using simple mapping examples. Heuristic selection decisions based on a single 

heterogeneity measure and based on multiple heterogeneity measures are illustrated in Sections ‎0 

and ‎0, respectively. 

2.4.2. Simple Mapping Examples 

The Min-Min and Max-Min heuristics have been studied widely (e.g., [AlK08, BrS01, 

BrS08, DiC01, GhM05, IbK77, JiL05, KaU07, MaA99, WuS00]). Therefore, in this section, we 

selected these two heuristics to illustrate how skewness and kurtosis may affect the performance 

of the two heuristics using some simple task mapping examples.  

Figure ‎2.3 shows a scenario in which the Max-Min heuristic outperforms the Min-Min 

heuristic for high values of ATS. The ETC shown in Figure ‎2.3 has a positive ATS value of 0.62. 

A pictorial representation of the assignments made by each heuristic is given in the figure. The 

makespan of the mapping produced by the Min-Min heuristic is 44 and the makespan of the 

mapping produced by Max-Min is 36.  
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Figure ‎2.3. An example that illustrates a situation where the Max-Min heuristic outperforms the 

Min-Min heuristic for an ETC matrix with high positive ATS. Shown in the figure are the ETC 

matrix, the values of the statistical measures for the matrix, and a pictorial representation of the 

mappings produced by the Max-Min and the Min-Min heuristics. 

Although Min-Min performs better than Max-Min in most cases (e.g., [BrS01, BrS08]), 

Max-Min usually has better performance than Min-Min when there are many shorter tasks than 

there are longer ones, i.e., the corresponding ETC matrix has high positive task skewness. This is 

because Max-Min starts by assigning the longer tasks to their best machine.  

An example where Min-Min outperforms Max-Min for an ETC matrix with negative 

ATS is given in Figure ‎2.4. The ETC in the figure has a negative ATS value of –0.23. A pictorial 

representation of the mapping produced by each heuristic is given in the figure. The makespan of 

the mapping produced by Min-Min is 46 and the makespan of the mapping produced by Max-

Min is 56. 

To show how kurtosis of an ETC matrix may impact the performance of the two 

heuristics, we compare the examples given in Figures ‎2.5 and ‎2.6. The ETC matrices in both 

figures have an ATS value that is 0 or close to 0. Therefore, using the ATS will result in the 

same heuristic selection decision. However, using the ATK, better decisions can be made.  

The ETC matrix in the Figure ‎2.5 has a high ATK value of 0.92 (compared to the kurtosis 

of the normal distribution which is 0 and the uniform distribution which is –1.2). In Figure ‎2.5,  
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Figure ‎2.4. An example that illustrates a situation where the Min-Min heuristic outperforms the 

Max-Min heuristic for an ETC matrix with negative ATS. Shown in the figure are the ETC 

matrix, the values of the statistical measures for the matrix, and a pictorial representation of the 

mappings produced by the Min-Min and the Max-Min heuristics. 

 

Figure ‎2.5. An example that illustrates the situation where the Max-Min heuristic outperforms 

the Min-Min heuristic for an ETC matrix with high ATK and low ATS. Shown in the figure are 

the ETC matrix, the values of the statistical measures for the matrix, and a pictorial 

representation of the mappings produced by the Max-Min and the Min-Min heuristics. 

the Max-Min heuristic outperforms Min-Min. A pictorial representation of the mapping 

produced by both heuristics is given in the figure. The makespan for the mapping produced by 

Max-Min is 212 and the makespan for the mapping produced by Min-Min is 243. Although ATS 

for the ETC matrix in this figure is 0, the ETC matrix still has the property that there are few 

tasks that have a high execution time compared to the rest of the other tasks.  

An example where Min-Min outperforms Max-Min for an ETC matrix with low ATK is 

given in Figure ‎2.6. The ETC in the figure has a low ATK value of –0.72. A representation of the 
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mappings produced by the two heuristics is given in the figure. The makespan of the mapping 

produced by Min-Min is 197 and the makespan of the mapping produced by Max-Min is 212.  

2.4.3. Selection Based on One Measure 

One way to make heuristic selections is to identify a single measure that has the most 

correlation with the performance of the studied heuristics, and then identify the ranges of values 

within which a heuristic performs better. This method is a simple method and the selection 

decisions based on it are straightforward. However, in some cases this method may lead to a high 

number of wrong decisions. Consider the example in Figure ‎2.7. This figure represents the 

performance of two heuristics A and B relative to the values of two heterogeneity measures 1 and 

2. For selections based on a single measure, the best measure to use is measure 1 and the best 

decisions can be made if heuristic A is used when the value of measure 1 is between 0.5 and 1.0, 

and heuristic B is used otherwise.  The number of wrong decisions in this case will be 24. The 

next section illustrates how a regression tree can be used to make better decisions based on  

 

 

Figure ‎2.6. An example ETC matrix that illustrates the situation where the Min-Min heuristic 

outperforms the Max-Min heuristic for an ETC matrix with low kurtosis. Shown in the figure are 

the ETC matrix, the values of the statistical measures for the matrix, and a pictorial 

representation of the mappings produced by the Max-Min and the Min-Min heuristics. 



 

14 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

M
ea

su
re

 2

Measure 1

0.5 1.0

1.2

1= Heuristic A is better

0= Heuristic B is better

 

Figure ‎2.7. An example to illustrate heuristic selection decisions.  

multiple measures, which will result in no wrong decisions if it is used to combine both measures 

1 and 2 to make heuristic selection decisions for Figure ‎2.7. 

2.4.4. Selection Based on Multiple Measures 

A regression tree [BrF84] is a technique used to predict the outcome of a dependent 

variable based on a number of input variables. Regression trees are binary. The nodes of the tree 

represent yes/no questions about the input variables. If the answer to a question is yes, then the 

path along the left edge is followed, otherwise, the path along the right edge is followed. The 

question at each subsequent node is answered until a leaf node is reached. The leaf node 

represents a prediction of the value of the dependent variable based on the input variables. The 

prediction is simply the average of all of the values of the dependent variable that belong to that 

node.  

Following the CART technique proposed in [BrF84], a regression tree is constructed by 

recursive partitioning of the data. At the beginning of the partitioning procedure, the question 
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that will lead to the least error (quantified by the mean square error of the prediction) in the 

prediction is considered the root node of the tree. After the first partition, two sub-problems are 

created. Each sub-problem is solved in a similar manner as the original problem. A node is 

considered for partitioning if the following two conditions are true: 1) the number of values that 

belong to that node is greater than the minimum node size, and 2) there exists a split that leads to 

a decrease in the overall mean square error greater than or equal to the minimum decrease in 

error. Both minimum node size and minimum decrease in error are parameters set by the user. 

The minimum node size value that we have used is 500 and the minimum decrease in error value 

that we have used is 0.01 

The regression tree for the example in Figure ‎2.7 is given in Figure ‎2.8. Measure 1 is at 

the root of the tree because it is the one that has the most correlation with the heuristics’ 

performance, i.e., choosing the first split of based on the measure 1 results in the least error. This 

regression tree has 100% accuracy for the values in Figure ‎2.7.  

To show how the performance of other heuristics is correlated with the statistical 

measures, we studied ETC matrices generated randomly and that have more tasks and machines 

than the matrices presented in this section. In the next section, we describe the result of the study. 

Measure 1 < 0.5

Measure 1 < 0.1

Measure 2 < 1.2

Measure 2 < 1.2

Y

N

0 1Measure 2 < 1.2

1 0 0 1

Y

Y

NN

NN

Y

Y

 
Figure ‎2.8. The regression tree that corresponds to the example given in Figure ‎2.7. 
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2.5. Synthetic Data 

2.5.1. ETC Matrix Generation  

Each of the ETC matrices that was used in this section was generated via the coefficient-

of-variation-based method (CVB) proposed in [AlS00]. The CVB method uses the COV to 

represent task and machine heterogeneity. To generate an ETC matrix, the CVB method takes 

three parameters: (a) task COV, (b) machine COV, and (c) the mean task execution time.  

The CVB method uses the Gamma distribution [Gub06] to generate the ETC values of an 

ETC matrix. The gamma distribution has a positive skewness. Furthermore, the COV, skewness, 

and kurtosis of the gamma distribution are correlated. Therefore, to show the effect of different 

combinations of COV, skewness, and kurtosis we have used the following seven distributions to 

generate the ETC values: 1) uniform, 2) gamma, 3) exponential, 4) Chi-square, 5) Cauchy, 6) 

normal, and 7) modified gamma distribution (described later in this section). Each of the 

distributions has different correlations between the COV, skewness, and kurtosis. The parameters 

of each of the distributions can be calculated based on the mean and COV values. The mean and 

COV values used to generate the ETC matrices are different for different simulations. The 

Cauchy distribution does not have a mean value. Therefore, the median was used as an estimate 

of the mean value. Any generated random value that is less than or equal to 0 is discarded.  

 The modified gamma distribution is obtained from the gamma distribution by truncating 

it at an upper limit value, normalizing it, and then inverting it. The truncation and normalization 

are done by discarding any generated values that have values higher than the upper limit. The 

inversion is done by subtracting the generated values from the upper limit value. Therefore, the 

modified gamma distribution will have negative skewness. The upper limit value equals the 

mean of the gamma distribution multiplied by an upper limit multiple u that is greater than 1. For 
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our studies, we used u = 2. The procedure for generating the modified gamma distribution is 

depicted in Figure ‎2.9. Each ETC matrix used in the simulations has 128 tasks and eight 

machines.  

After each ETC matrix was generated using a specific mean, task COV, and machine 

COV, we calculated the statistical measures of the generated ETC matrix to obtain their actual 

values. The actual average machine and average task COV values of the generated ETC may 

differ from those used to generate the ETC matrix due to a finite number of values being 

generated. The maximum value of the COV was selected to be 1.5, based on preliminary 

experiments that showed no significant changes in performance among the heuristics studied for 

ETCs with larger COVs. 

2.5.2. Data Analysis: Scatterplots  

The scatterplots shown in this section represent a way to make heuristic selection 

decisions based on one measure. Figure ‎2.10 shows the correlation between the relative 

makespan of Min-Min to Max-Min and the ATS. Because of the correlation between the COV  

 

 

Figure ‎2.9. The procedure for generating the modified gamma distribution, (a) the gamma 

distribution, (b) the truncation of the gamma distribution at the upper limit value based on u=2 

(i.e. the upper limit value will be twice the mean), (c) the normalization of the truncated 

distribution, and (d) the final modified gamma distribution (inverted). 



 

18 

 

and the skewness of the gamma distribution, we do not know if ATS affects the relative 

makespan, or if the effect of ATS is a result of it being correlated with ATC and only ATC 

having the effect on the relative makespan. Therefore, in Figure ‎2.10, we used both the modified 

gamma distribution and the gamma distribution to generate the ETC matrices. These two 

distributions have different correlations between their skewness and COV. Some of the ETC 

matrices (generated using the modified gamma distribution) have negative ATS values and have 

high ATC values; for those ETC matrices, Min-Min performs better than Max-Min. However, 

the ETC matrices (generated using the gamma distribution) that have high positive ATS values 

also have high ATC values; for those ETC matrices, Max-Min performs better. Therefore, we 

can see that there is a correlation between the ATS and the relative makespan of Min-Min to 

Max-Min.  

For both distributions, the mean value was fixed at 20, the machine COV was fixed at 

0.1, and the task COV was increased from 0.01 to 1.5. After the ETC matrices were generated, 

the actual ATS value was calculated for each ETC matrix. As shown in the figure, Max-Min 

outperforms Min-Min for ATS values greater than 1.4. However, for ATS values less than 0.5, 

 

 

Figure ‎2.10. Scatterplot of the relative makespan of Min-Min to Max-Min for 1445 ETC 

matrices generated using both the gamma distribution and the modified gamma distribution. The 

CVB machine COV in this figure is fixed at 0.1 and the CVB task COV is increased from 0.01 to 

1.5 for both distributions. 
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Min-Min always outperforms Max-Min. We do not see a decrease in the relative makespan of 

Min-Min for negative ATS ETC matrices. This is because ETC matrices with negative ATS have 

very few tasks that have low execution times and the majority of the tasks have execution time 

values close to the mean task execution time. Therefore, making better choices of assigning the 

few low execution time tasks will not lead to a large performance gain.  

The effect of AMC on the relative makespan of Min-Min to Max-Min is shown in 

Figure ‎2.11. The gamma distribution was used to generate the ETC matrices in the figure. The 

mean ETC value was fixed at 20, the task COV was fixed at 0.7, and the machine COV was 

increased from 0.01 to 1.5. Min-Min almost always outperforms Max-Min for AMC values 

greater than 0.5. The reason Min-Min’s performance relative to Max-Min’s performance 

becomes better as the AMC value increases is because as the AMC increases the average 

difference between the best performing machine and the worst one becomes larger. Therefore, a 

task that has a lower execution time for a specific machine will have a higher ratio between the 

execution time on the best machine and the execution time on other machines. Assigning those 

tasks first (which Min-Min does) will result in a lower makespan.  

The scatterplots in this section represent a simple way to compare the relative makespan 

and make heuristic selection decisions based on only one measure. In the next section, we show 

how regression trees can be used to compare the relative makespan of heuristics based on all of 

the six heterogeneity measures. 

2.5.3. Data Analysis: Regression Trees 

In our study, we have used regression trees to predict whether a heuristic is better than 

another for a specific ETC matrix based on the values of the heterogeneity measures for that  
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Figure ‎2.11. Scatterplot of the relative makespan of Min-Min to Max-Min for 925 ETC matrices 

generated using the gamma distribution. The task COV is fixed at 0.7, and the machine COV is 

increased from 0.01 to 1.5. 

matrix. We have generated 100,000 ETC matrices randomly from the seven distributions 

described in Section ‎2.5.1. The mean ETC value used to generate the matrices is 500. The 

machine COV and the task COV values used to generate each matrix were sampled from a 

uniform distribution between the values of 0 and 1.5. For each matrix, the makespan of each of 

the five studied heuristics is calculated.  

For any two heuristics A and B, let b be a variable that may have a value of either 0 or 1, 

such that if the makespan of B is less than A, then b = 0, otherwise, b = 1. Each regression tree in 

this section attempts to predict the value of b for two heuristics based on the heterogeneity values 

of the corresponding ETC matrices. The values at the leaf nodes of each tree represent the 

average of b for the ETC matrices that belong to that node. The closer the values are to 0 or 1 the 

better the prediction. For a given leaf node, if the predicted value of b is greater than 0.5, then we 

will consider using heuristic A for all ETC matrices that belong to that node, otherwise, we will 

use heuristic B.  

Figure ‎2.12 shows the regression tree that attempts to predict the value of b when 

heuristic A is Max-Min and heuristic B is sufferage. The value in each of the leaf nodes 

represents the ratio of the number of times that Max-Min was better or equal to sufferage for all 
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ETC matrices that belong to that node. Therefore, the number of wrong predictions of the tree 

can be calculated as follows. First, for each of the leaf nodes that have a value less than 0.5, 

multiply the node value by the number of ETC matrices that belong to that node, then sum across 

these leaf nodes. This value represents the number of times that we have chosen sufferage when 

Max-Min had better or equal performance. Second, for each of the leaf nodes that have a value 

greater than 0.5, multiply (1 – node value) by the number of ETC matrices that belong to that 

node, and then sum across these leaf nodes. This value represents the number of times that we 

have chosen Max-Min when we should have chosen Sufferage. The total number of wrong 

predictions is the sum of the values obtained by the previous two steps. For the regression tree in 

Figure ‎2.12, the total number of wrong predictions is 1064.  

Among all of the 100,000 ETC matrices, sufferage is better than Max-Min for 95,252 of 

them. Therefore, without any knowledge about the values of the heterogeneity measures, a 

reasonable prediction would be to always use sufferage which will lead to 4748 wrong 

predictions. However, if we use the tree in Figure ‎2.12, the number of wrong predictions can be 

reduced by 78%. In addition, for each of the leaf nodes 1, 2, and 3, choosing Max-Min rather 

than sufferage decreased the makespan. Node 3 has the highest average decrease in makespan for 

each ETC matrix that belongs to that node; the average decrease is 10.3%. Nodes 1 and 2 have 

less average decrease in the makespan. Note that the skewness measures did not have significant 

effect on the decision of which of the two heuristics to use. Therefore, they were not used to 

partition any node.  
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Figure ‎2.12. The regression tree for Max-Min vs. Sufferage. The percentages below some of the 

leaf nodes represent the average decrease in the makespan achieved by using Max-Min rather 

than Sufferage for each ETC matrix that belongs to that node. Each of the values in the nodes is 

rounded to two decimal places except when that results in a 0 value. 

Figure ‎2.13 shows the regression tree for the same b used in Figure ‎2.12. However, in 

that tree, only the COV measures were used to make predictions. The number of wrong 

predictions in that tree is 2255. Therefore, using the kurtosis measures in Figure ‎2.12 reduced the 

number of wrong predictions by 53%.  

We have also built a regression tree for predicting the value of b when heuristic A is 

Max-Min and heuristic B is MCT. This tree is given in Figure ‎2.14. For this tree, only three of 

the measures where used to make decisions, namely, AMC, ATC, and ATK. The regression tree 

when heuristic A is Max-Min and heuristic B is KPB is identical to the one in Figure ‎2.14. This is 

due to the similarity between the procedures of both heuristics.  

It is important to note that the results shown in this section apply for the distributions 

used to generate the ETC matrices. Other HC systems that have ETC matrices that belong to 

different underlying distributions may have different regression trees. For such systems, the  
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Figure ‎2.13. The regression tree for Max-Min vs. Sufferage when only the COV measures are 

used.  

AMC < 0.08

ATC < 0.19 ATC < 0.04

0.35 0.92 AMC < 0.70 AMC < 0.15

0.80 0.34 ATC < 0.76

0.34 0.34

ATK < 42.47

0.34 AMC < 0.51

0.63 0.08

Y

Y Y

Y Y

Y Y

Y

N

NN

N N

N

N

N

 

Figure ‎2.14. The regression tree for Max-Min vs. MCT.  

average percentage decrease in the makespan when using a regression tree compared to using a 

heuristic H all the time can be computed as follows. First, multiply the average percentage 

decrease in makespan at each leaf node where H is not chosen by the number of ETC matrices 

that belong to that node. Then, take the average across all leaf nodes where H is not chosen. 

Finally, divide the result by the total number of ETC matrices used to construct the tree. 
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2.6. Related Work 

ETC matrices were previously used with different degrees of heterogeneity (e.g., [AlB05, 

BaS01, BrS01, BrS08, MaA99, WuS00]). Most of these ETC matrices were generated by the 

range-based method described in [BrS01] and the CVB method described in [AlS00]. Therefore, 

depending on which method was used, heterogeneity was assumed to be either the range of the 

execution time values, or the COV.  

Regression trees have been used widely in machine learning, decision making, pattern 

recognition, and data mining. For example, in [CoR10], a number of machine learning 

techniques including regression trees have been used to predict the performance of total order 

broadcast algorithms in systems running heterogeneous workloads. A number of workload and 

system characteristics were used as input variables for predicting the performance in terms of 

message delivery latency and throughput. Another example of using regression trees is given in 

[PoC08]. In that work, the authors propose the use of regression trees to predict the performance 

of transactional memory workloads based on different hardware transactional memory design 

dimensions and multicore microarchitecture configuration.  

2.7. Conclusions 

In this chapter, we proposed a number of statistical measures to quantify the 

heterogeneity of HC systems. A method to calculate each of the measures for an existing ETC 

matrix was described. The impact that the heterogeneity measures may have on the performance 

of five different heuristics was demonstrated through simple examples. In addition, ETC 

matrices generated randomly via seven different distributions have been used to show how using 

regression trees to analyze the information provided by the heterogeneity measures allows us to 

make better heuristic selection decisions.  
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Chapter 3 

3. Characterizing Heterogeneous Environments using Singular 

Value Decomposition 

3.1. Introduction 

Many computing environments are heterogeneous, i.e., they consist of a number of 

different machines that vary in their computational capabilities. These machines are used to 

execute task types that vary in their computational requirements. Different task types can be 

better suited to different machine architectures. Further, while a machine A may be better than a 

machine B for one task type, it may not be better for another task type; performance is a function 

of the interaction of a machine’s capabilities and a task type’s requirements. We use the term 

task type to refer to an executable program than can be run many times. A task is an instance of a 

task type that is executed once. 

It is common to arrange the estimated time to compute (ETC) of task types on machines 

in an ETC matrix. Entry (i, j) in the ETC matrix represents the ETC of task type i on machine j. 

The ETC values can be based on user supplied information, experimental data, or task profiling 

and analytical benchmarking (e.g., [AlB05, FrS93, GhY93, KhP93, MaB99, YaA93, YaK94]). 

The determination of ETC values is a separate research problem; the assumption of such ETC 

information is a common practice in resource allocation research (e.g., [BaS01, BrS11, DhA02, 

GhY93, KaA98, KhP93, LeP95, SiY96, XuN01]). An ETC value is the estimated time to 

A preliminary version of portions of this chapter appeared in [AlM10, AlM11a]. 
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compute a given task type on a given machine when it is run alone. 

Quantifying the heterogeneity of a heterogeneous computing (HC) environment is 

important and has multiple useful applications. Examples of such applications include, predicting 

the performance of HC environments [ChM10], selecting appropriate heuristics to use in an HC 

environment based on its heterogeneity as shown in Chapter 2, “what-if studies” to identify the 

effect of adding/removing task types or machines from an HC system on its heterogeneity, and 

generating ETC matrices for simulation studies that span the entire range of heterogeneities 

[AlM10]. The purpose of this chapter is to provide heterogeneity measures that can be used as a 

standard way to compare different heterogeneous computing environments.  

Although characterizing the heterogeneity of HC environments is important, there has not 

been much research in this area. In [AlS00, BrS01], methods for generating HC environments, 

based on ETC matrices, for simulation studies were proposed. The method in [AlS00] has been 

used widely, e.g., in [CaJ09, EsA09, HuY09, KhA06]. However, these methods do not deal with 

the problem of characterizing the heterogeneity of existing HC environments. To the best of our 

knowledge there is no other research that deals with the problem of identifying standard 

measures for quantifying the heterogeneity of computing environments. 

There can be many methods to characterize the heterogeneity of an HC environment. In 

addition, the measured value of the heterogeneity of the environment may vary widely depending 

on the methods used. Therefore, we are motivated to determine standard measures of 

heterogeneity. 

We have identified some properties that heterogeneity measures should have. These 

properties directed our choice of the heterogeneity measures. First, a heterogeneity measure 

should match intuition and common beliefs about heterogeneity. Second, it should not be 
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affected by multiplying the ETC matrix by a scaling factor. This is because the ETC values can 

be represented in different time units (e.g., seconds vs. minutes). Third, when multiple measures 

are used to examine different aspects of heterogeneity, they should be as independent as possible 

of each other (i.e., we should be able to change the value of one of the measures independent of 

the others). There is no value of having two or more measures that are totally correlated. It would 

be sufficient to just use one of them. For example, if the standard deviation was used to represent 

the heterogeneity of a set of values, then there is no value of using the variance as another 

measure of heterogeneity because both measures will be totally correlated.  

In this chapter, we introduce three measures for characterizing the heterogeneity of 

computing environments. These measures are: machine performance homogeneity (MPH), task 

easiness homogeneity (TEH), and task-machine affinity (TMA).  

We have identified a computational procedure that puts a matrix, which represents an HC 

environment, in standard form. The standard form enables us to have the three independent 

heterogeneity measures: MPH, TEH, and TMA (satisfying the third property for heterogeneity 

measures). Putting the matrix in standard form also allows us to simplify the calculation of the 

TMA.  

In summary, the contributions of this chapter are: a) to introduce three heterogeneity 

measures, b) to illustrate how the singular value decomposition (SVD) can be used to calculate 

TMA, c) to determine a standard matrix form that keeps the three measures independent and 

allows a simplified calculation of TMA, and d) to illustrate how the measures can be used to 

analyze some real world environments obtained from the SPEC benchmarks. 

The rest of this chapter is organized as follows. Section ‎3.2 discusses the singular value 

decomposition. The proposed three heterogeneity measures are given in Section ‎3.3. Section ‎3.4 
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gives examples of heterogeneous environments to illustrate the motivation behind the measures 

that we have introduced in this chapter. Examples of HC environments that are based on real 

world data from the SPEC benchmarks are given in Section ‎3.5. Section ‎3.6 describes the special 

cases of HC environments for which the standard form matrix cannot be determined. Finally, 

conclusions are presented in Section ‎3.7. 

3.2. Singular Value Decomposition 

Singular value decomposition (SVD) is a standard matrix decomposition that can be 

performed on any arbitrary matrix [GoV89] that is used widely for determining the rank or 

condition number of a matrix, computing the best low-rank matrix approximation, and solving a 

host of pattern recognition problems for a wide range of applications. For an m-by-n real matrix 

A, there exists a factorization in the form:  

       , (‎3.1) 

where U is an m-by-m orthogonal matrix,   is an m-by-n diagonal matrix with non-negative 

entries in descending order, V is an n-by-n orthogonal matrix, and 
T

 denotes the transpose. The 

diagonal values of the matrix   are the singular values, denoted σi, such that 

 σ   σ    σ   .  

The magnitudes of the singular values represent the degree of linear dependence among 

the columns (or rows) of a matrix. The number of singular values is equal to min(m,n). For our 

application, it is more common to have more task types than machines so that the number of 

singular values will be equal to n, the number of columns (machines). The SVD of a matrix with 

m > n can be calculated in O(mn
2
) operations. Section  3.3.5 illustrates how the SVD is used to 
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calculate the TMA. For the purposes of this chapter, m = T, is the number of task types and  

n = M, is the number of machines. 

3.3. Heterogeneity Measures 

3.3.1. Estimated Computation Speed Matrix 

Another way of representing an HC environment is by using an estimated computation 

speed (ECS) matrix. The ECS matrix can be obtained from an ETC matrix by taking the 

reciprocal of each entry in the ETC matrix, i.e., 

  C   ,         C  ,    (‎3.2) 

Entry (i, j) of the ECS matrix represents the amount of task type i that can be completed 

in a unit time on machine j. Therefore, larger entries in the ECS matrix correspond to more 

powerful machines for a specific task type. 

In some HC environments, some machines may not be able to run specific task types 

because of specific task type requirements (e.g., specific architecture requirements or operating 

system requirements). In the ECS matrix, if task type i cannot run on machine j, then entry (i, j) 

will be equal to 0. The corresponding entry in the ETC matrix would be equal to  . Both the 

ETC and ECS matrices are non-negative matrices. Although individual entries in the ECS matrix 

can be equal to 0, there cannot be columns with all 0 entries or rows with all 0 entries because 

both cases correspond to a machine that cannot execute any task type or a task type that cannot 

be executed on any machine, respectively.  

3.3.2. Machine Performance Homogeneity 

One way to measure the performance of a machine is by the sum of the values along the 

corresponding column in the ECS matrix. For example, the performance of machine 1 for the 
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ECS matrix in Figure ‎3.1 is 17. Higher column sums correspond to machines with better 

performance for the given task types in the ECS matrix. The performance of machine j, MPj, for 

an ECS matrix with T task types is given by 

 MP   ∑  C   ,    . 
    (‎3.3) 

Clearly, if all the machines’ performances are equal, then we have a completely 

homogeneous computing environment in terms of machine performance. However, when the 

performances are not equal, there can be a number of different ways to combine the performance 

values to measure machine performance homogeneity (or heterogeneity).  

Let the machines of the ECS matrix be sorted in ascending order of their performance 

(i.e., the columns are ordered in ascending order of their sums). We define the machine 

performance homogeneity (MPH) measure to be equal to the average ratio of a machine 

performance to its next better performing machine, i.e., for an ECS matrix with M machines, 

 MPH   
∑ (MP MP   ⁄ )
 - 
   

   
. (‎3.4) 

The MPH of the ECS matrix in Figure ‎3.1 is 0.52. 

The weighting factor (wti) of task type i can be used to represent a number of 

characteristics (e.g., the importance of the task type, the number of times that a task type is 

executed, or the probability that a task type will be executed). Similarly, the weighting factor 

 

 
m1 m1 m1 

t1 6 10 20 

t2 5 3 10 

t3 3 5 13 

t4 3 4 40 

Figure ‎3.1. An example ECS matrix to illustrate how machine performance is calculated.  
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(wmj) of machine j can be used to represent a number of characteristics (e.g., security level of that 

machine).  

The weighting factors are incorporated in the equations for calculating each of the 

measures presented in this chapter. These factors make the measures more flexible, which 

enables them to be applied to a wide variety of environments. Therefore, the formula for 

calculating machine j’s performance, when weighting factors are used, can be generalized to 

 MP     
∑    

 C   ,    
     (‎3.5) 

 

3.3.3. MPH Compared to Other Measures 

We compare MPH with other possible measures and show that MPH has the first 

property of a heterogeneity measure (i.e., it matches the intuition about heterogeneity) while the 

other measures do not have that property. Other possible measures include: 1) the ratio, R, of the 

performance of the lowest performance machine to that of the highest performance one, as a 

measure of homogeneity (i.e., higher values correspond to more homogeneous environments),  2) 

the geometric mean
1
,
 
G, of the ratios of the performance of the lower performance machine to 

that of the higher performance machine in each pair of adjacent machines in the ECS matrix, as a 

measure of homogeneity, and 3) the coefficient of variation
2
, COV, of the machines’ 

performances, as a measure of heterogeneity. All of the above measures have the second 

property of a heterogeneity measure (i.e., they are not affected by scaling the performances by a 

common factor). 

 
1
 The geometric mean of a set of n values ai is given by (∏   

 
   )   . 

2
 The COV of a set of a set of n values ai with standard deviation S and mean μ is given by S/ μ. 
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Figure ‎3.2 shows four examples of possible machines’ performances of HC environments with 

five machines. Intuitively, Environment 1 is the most heterogeneous because none of the 

machines performances are equal. Environments 2 and 3 have the same heterogeneity because 

they both have four machines with the same performance and the ratio of the performance of the 

most powerful machine and the performance of the least powerful one is 1/16. Environment 4 

has three machines that have the same performance. Therefore, it is less heterogeneous than 

environment 1 and more heterogeneous that environments 2 and 3. In the figure, the values of 

each of the measures for each of the environments are given. The only measure that matches 

intuition is the MPH measure. Both measures, G and R, capture the heterogeneity between the 

highest performance machine and the lowest performance machine. However, they do not 

capture the spread of the performance of the intermediate machines. 

3.3.4.  Task Easiness Homogeneity  

The easiness of a task type is quantified by the sum of the ECS values of that task type 

over all machines (i.e., the corresponding row sum in the ECS matrix). Task types with higher 

row sums are considered easier (i.e., they can be computed faster). Because the easiness of task 

Environment 1.  
1, 2, 4, 8, 16 
MPH = 0.5, R =  0.06, G = 0.5, COV = 0.88 
Environment 2.  
1, 1, 1, 1, 16 
MPH = 0.77, R =  0.06, G = 0.5, COV = 1.5   
Environment 3.  
1,16, 16, 16, 16 
MPH = 0.77, R =  0.06, G = 0.5, COV = 0.46  
Environment 4.  
1, 4, 4, 4, 16 
MPH = 0.63, R =  0.06, G = 0.5, COV = 0.90  

Figure ‎3.2. Machines’ performances of example HC environments. 
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types can vary widely, a measure of task type easiness is needed. In this section, we present a 

measure for task type easiness homogeneity (TEH) and show how it is calculated. 

For the canonical ECS matrix, let both the machine performances and task easiness 

values be sorted in ascending order. Formally, the canonical form ECS matrix is a matrix where 

1. MP  MP    for          , and 

2.                        . 

The calculation procedure for TEH is similar to that of MPH. However, the homogeneity 

is calculated for task types (rows). Let TEi be the easiness of task type i. The general formula for 

calculating task type easiness, when weighting factors are used, is  

        
∑    

 C   ,    
     (‎3.6) 

Following the same intuition behind MPH, we use a TEH measure that is equal to the 

average ratio of a task type’s easiness to its next task type’s easiness. The general TEH formula 

for a canonical ECS matrix is given by 

   H  
∑ (        ⁄ )
 - 
   

   
. (‎3.7) 

Both, MPH and TEH take values in the interval (0, 1]. 

3.3.5. Task-Machine Affinity 

MPH and TEH represent one aspect of heterogeneity; however, it they do not capture the 

case where various sets of task types are better suited to run on different sets of machines (i.e., 

task-machine affinity). For example, the two ECS matrices in Figure ‎3.3 are completely 

homogeneous in terms of machine performance and task easiness. However, the ECS in 

Figure ‎3.3 (b) is heterogeneous in the sense that some of the machines are better suited to 
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execute different sets of task types. Therefore, in order to represent this different aspect of 

heterogeneity we introduce the TMA measure.   

Let a standard ECS matrix be an ECS matrix with equal row sums and equal column 

sums. In the next subsection, we describe a procedure to obtain the standard ECS matrix. The 

standard ECS matrix is both task type and machine homogeneous, which enables us to calculate 

TMA independent of MPH and TEH (i.e., we satisfy the third property of a heterogeneity 

measure).  

For a standard ECS matrix with T task types and M machines, there are min(T,M) 

singular values. For a given ECS matrix with equal row sums and equal column sums, a lower 

column (or row) correlation will correspond to larger values of the non-maximum singular 

values relative to σ1 and an intuitively higher value of TMA. Therefore, we use the following 

formula to calculate TMA: 

  M  (
∑ σ 
min  ,  
   

(min( , )  )
) σ ⁄ . (‎3.8) 

 
m1 m2 m3 

t1 10 10 10 

t2 10 10 10 

t3 10 10 10 

(a) 

 
m1 m2 m3 

t1 5 10 20 

t2 20 5 10 

t3 10 20 5 

(b) 

Figure ‎3.3. Two example ECS matrices to demonstrate task-machine affinity: (a) an ECS matrix 

where there is no affinity between task types and machines, and (b) an ECS matrix that has a 

high degree of affinity between task types and machines.  
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3.3.6. The Standard ECS Matrix 

To make the TMA measure independent of MPH and TEH, we compute the singular 

values from a standard ECS matrix where all the column sums are equal, and all the row sums 

are equal (i.e., the standard matrix is both machine and task type homogeneous). In this section, 

we illustrate how such a standard ECS matrix can be computed from an ECS matrix with all 

positive elements, which we will refer to as a positive matrix. 

The problem of row and column normalization has appeared in other applications. For 

example, the requirement for row and column sum normalization occurs in the practical problem 

of estimating doubly stochastic matrices for certain types of Markov random processes. 

Motivated by this problem, Sinkhorn [Sin64] proved that for any positive square matrix A, there 

are two diagonal matrices D1 and D2 such that D1AD2 is doubly stochastic. In other words, given 

any positive square matrix, one can suitably scale the individual rows and columns in such a way 

that each row and column sums to the same value. Furthermore, the diagonal matrices D1 and D2 

are unique up to scalar multiplication. 

While Sinkhorn's theorem and its proof specifically apply to positive square matrices, the 

results can also, after suitable modifications, be used to convert a positive rectangular matrix 

through a series of row and column normalizations into a positive matrix with the property that 

the row sums are equal and the column sums are equal. This is illustrated in Appendix A. Hence, 

we have the following result. 

Theorem 1. For a T   M ECS matrix with positive elements, there are diagonal matrices 

D1 and D2 such that, for any nonzero scalar k, D1(ECS)D2 is a positive matrix whose rows each 

sum to Mk and whose columns each sum to Tk. Furthermore, D1 and D2 are unique up to scalar 

multiples. 
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Sinkhorn provided an iterative procedure to obtain the required diagonal matrices and 

proved that the procedure converged. A similar iterative procedure is also applied in this work. 

3.3.7. Simplified TMA Calculation 

The singular values of the standard ECS matrix are related to the column sums and row 

sums. The following theorem shows that for a specific choice of the row sums and the column 

sums the maximum singular value of the standard ECS matrix will always be 1.  

Theorem 2. For a T   M ECS matrix with the property that each row sums to √  ⁄  and 

each column sums to √  ⁄ , the largest singular value is equal to 1. 

The proof of Theorem 2 is given in Appendix B. If we let k (in Theorem 1) be equal to 

√    , then it follows that we can convert an ECS matrix to a standard one that has the column 

sums equal to √  ⁄  and the row sums equal to √  ⁄ . The maximum singular value of that 

standard ECS matrix will be equal to 1. This enables us to rewrite the equation for TMA 

(Equation 3.8) in the following simpler form 

  M  ∑ σ (min( , )   )⁄min  ,  

   . (‎3.9) 

We use an iterative procedure to normalize the ECS matrix. The iterative approach 

generates a series of ECSk matrices. The procedure switches between row normalization and 

column normalization until it converges to a row and column normalized matrix. The matrix 

ECSk is defined by 

  C  (   )  {

√  ⁄  C    ( ,  )

∑  C    ( ,  )
 
   

       , , , 

√  ⁄  C    ( ,  )

∑  C    ( ,  )
 
   

      , , , 
. (‎3.10) 
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In cases where the ECS matrix contains zero-valued elements, the iteration defined by the 

previous equation may not converge. This will be discussed further in Section ‎3.6‎3.6. 

3.4. Contrived Illustrative Examples 

To further illustrate the intuition behind MPH, TEH, and TMA, we show, in Figure ‎3.4, 

some simple 2   2 ECS matrices and where they fall within the range of all possible values of 

the three measures. The examples have near extremal values for each of the measures. Entries 

with 0 values in the ECS matrix represent task types that cannot be executed on specific 

machines. 

Intuitively, matrices A, B, C and D all have a very high task-machine affinity because 

there is at least one task type that can only be executed on one machine (i.e., that task type has 

the highest affinity to the corresponding machine). The TMA measure reflects this intuition. All 

these matrices have a TMA value of 1. Matrix C is already a standard matrix. The second 

singular value of that matrix is 1. When the procedure in Equation 3.10 is applied to matrices A, 

B, and D they all converge to the standard form of C. In contrast, matrices E, F, G, and H all 

have no task-machine affinity because the performance ratio of machines 1 and 2 is the same for 

both task types. The TMA value for these matrices is 0.  

Matrices C, D, G, and H are all nearly homogeneous in terms of machine performance. 

The performances of both machines are nearly homogeneous over both tasks. All the matrices 

have high MPH values. In contrast, matrices A, B, E, and F are all very heterogeneous in terms 

of machine performance. For all four matrices, the performance of machine 2 is much better than 

machine 1. These matrices have low MPH values.  

Matrices A, C, E, and G are all nearly homogeneous in terms of task type easiness. They 

have high TEH values. In contrast, the task types of matrices B, D, F, and H are all very 
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heterogeneous. For all four matrices, task type 1 is much more difficult than task type 2. The four 

matrices have low TEH values. 

3.5. Example ECS Matrices from SPEC Benchmarks  

In this section, we show examples of ETC matrices extracted from the integer and 

floating point SPEC benchmarks (SPEC CINT2006Rate and SPEC CFP2006Rate) [Spe06]. The 

matrices illustrate how environments constructed from real world task types and machines can 

have widely varying values for each of the measures proposed in this chapter. Note that the 

benchmarks were used for illustration purposes only and the measures proposed in this chapter 

can be applied to any HC environment that is represented by an ETC matrix.  

The SPEC CINT2006Rate consists of twelve task types. The SPEC CFP2006Rate 

consists of 17 task types. We have extracted the peak runtime values for five different machines. 

The machines have processors that have different architectures and are produced by different 

manufacturers. Figure 3.5 shows the five different machines. Figures 3.6 and 3.7 show the peak 

runtime values of each of the five machines for the SPEC CINT2006Rate and SPEC 

CFP2006Rate benchmarks, respectively. 

Figure ‎3.8 shows two example 2   2 ETC matrices extracted from the values in Figures 

3.6 and 3.7. The figures also show the values for each of the measures. The two matrices are 

almost identical in terms of machine performance homogeneity. However, the task type 

difficulty and task-machine affinity of the two matrices vary. The task types of matrix (a) are 

more homogeneous than the ones of matrix (b). Because the ratios of the performances of the 

two machines of matrix (b) vary widely for each task type, the TMA value for that matrix is  
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MPH
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TMA
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1

G (1,1,0)
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E

0

1000

1

B(0.01,0.01,1)

F

1

0 100
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A(0.05,1, 0.98)

G

100

0 1

100

D (1,0.05, 0.98)

H 

Coordinates (MPH, TEH, TMA)

 

Figure ‎3.4 Example extreme 2   2 ECS matrices with extremal values of each of the three 

measures: MPH, TEH, and TMA.  
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high. In contrast, the ratios of the performances of the two machines are very close for each of 

the task types of matrix (a). 

We also have calculated the values of the three measures for the entire CINT matrix and 

the entire CFP matrix. The values are shown in Figures 3.6 and 3.7. The machine performance 

homogeneity and the task type easiness of both matrices are almost identical. However, for the 

floating point applications in the CFP matrix, task types have more affinity to machines than that 

of the integer applications in the CINT matrix. 

The iterative normalization procedure for the CFP and CINT matrices converged in 7 and 

6 iterations, respectively. Every iteration consists of one column normalization followed by one 

row normalization. The procedure stops when the maximum error in any column or row norm is 

less than 1/10
8
.  

The benchmarks presented in this section are for general purpose CPUs. We expect HC 

environments that consist of special purpose computing resources (e.g., accelerators and 

GPGPUs) and tasks that are better suited to run on these resources to have higher TMA values 

and lower TEH and MPH values. 

3.6. Issues with Standard Form Matrices  

In the ECS matrix, it may be desirable to have entries equal to 0 that correspond to 

machines that cannot execute specific task types. However, when the ECS matrix has some 

entries that are equal to 0, the iterative normalization procedure described in Section ‎3.3.7 is not 

guaranteed to converge to a standard ECS matrix. Consider the following ECS matrix 

 (
   

   

   

). (‎3.11) 
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m1 = ASUS TS100-E6 (P7F-X) server system (Intel Xeon X3470) 

m2 = Fujitsu SPARC Enterprise M3000  

m3 = CELSIUS W280 Intel Core i7-870 

m4 = ProLiant SL165z G7 (2.2 GHz AMD Opteron 6174) 

m5 = IBM Power 750 Express (3.55 GHz, 32 core, SLES) 

Figure ‎3.5. The five machines used from the SPEC benchmarks. 

 
m1 m2 m3 m4 m5 

400.perlbench 625 974 627 563 1159 

401.bzip2 971 1592 988 956 1363 

403.gcc 642 1166 631 626 1026 

429.mcf 267 946 266 463 416 

445.gobmk 639 1124 642 719 957 

456.hmmer 300 1698 205 391 920 

458.sjeng 768 1756 779 912 1235 

462.libquantum 537 686 548 431 523 

464.h264ref 1082 1814 1092 1095 1804 

471.omnetpp 557 1450 569 698 1850 

473.astar 707 1235 714 699 1179 

483.xalancbmk 414 758 415 414 793 

TEH = 0.90   MPH = 0.82    TMA = 0.07 

Figure ‎3.6. SPEC CINT2006Rate Data. 

In its current form, this matrix is not normalized because the second row and third 

column sums are both 2 while the other row and column sums are 1. It can be shown that there 

exists no combination of row and column normalizations to convert this matrix to a standard 

ECS matrix. To see this, observe that although row and column normalizations affect the values 

of the individual elements of the ECS matrix, zero-valued elements remain zero-valued elements  
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m1 m2 m3 m4 m5 

410.bwaves 677 1776 664 1238 528 

416.gamess 777 2701 778 1267 2522 

433.milc 845 2210 851 1056 1104 

434.zeusmp 694 1132 706 741 1034 

435.gromacs 576 838 592 481 1061 

436.cactusADM 859 1204 845 105 345 

437.leslie3d 704 1507 711 1207 499 

444.namd 657 979 678 648 789 

447.dealII 589 893 596 518 764 

450.soplex 509 1635 520 1018 441 

453.povray 253 465 264 319 451 

454.calculix 531 954 551 471 1227 

459.GemsFDTD 855 2431 874 1420 1588 

465.tonto 693 1122 724 626 1146 

470.lbm 1102 1348 1150 892 940 

481.wrf 964 1349 939 858 1621 

482.sphinx3 1694 2887 1668 1298 3148 

TEH = 0.91    MPH = 0.83   TMA = 0.13. 

Figure ‎3.7. SPEC CFP2006Rate Data. 

 
m4 m5 TEH=0.16  

471.omnetpp 698 1850 MPH=0.31 

436.cactusADM 105 345 TMA=0.05 

(a) 

 
m1 m4 TEH=0.28 

436.cactusADM 859 105 MPH=0.30 

450.soplex 509 1018 TMA=0.60 

(b) 

Figure ‎3.8. Example 2   2 ETC matrices extracted form the SPEC CINT2006Rate and 

CFP2006Rate benchmarks. The values for each of the measures are given for both matrices. 

and non-zero elements remain non-zero elements for any combination of row and column 

normalization. Consequently, those elements that are equal to 0 will remain 0 for any 

combinations of row and column normalizations. Therefore, if there was a normalized version of 

this ECS matrix, each of the four nonzero elements must equal 1 so that the first and last row 
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sums are 1 and the first two column sums are 1. However, this results in the original matrix, 

which is clearly not normalized due to the fact that, unlike the other row and column sums, the 

second row and third column sums are not equal to 1.  

The authors of [MaO68] have presented a sufficient condition for a matrix to be row and 

column normalized. We summarize their results here.  

A square matrix A with non-negative elements is said to be decomposable if there are 

permutation matrices P and Q such that PAQ has the block form 

 (
    
      

) (‎3.12) 

where A11 and A22 are square matrices. In other words, a matrix A with non-negative elements is 

decomposable if one can reorder the rows and columns so as to obtain the above form. If one 

cannot do this, then the matrix is said to be fully indecomposable. For any square matrix A with 

non-negative elements that is fully indecomposable, there exists diagonal matrices D1 and D2 

such that D1AD2 has equal row sums and equal column sums. An example of a simple matrix that 

fails the above condition is the matrix in Equation 3.11. This matrix is decomposable because it 

can be placed in the block form of Equation 3.12 by moving the last column to the front to obtain 

 (
   

   

   

). (‎3.13) 

The upper left 1   1 matrix is A11 and the lower right 2   2 matrix is A22 matrix.  

Note that while being indecomposable is a sufficient condition for being able to row and 

column normalize a positive matrix, it is not a necessary condition. This is illustrated by a 

diagonal matrix with positive elements on its diagonal. Such matrices are already in the 
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decomposable form given in Equation 3.12, but they can be easily converted into the identity 

matrix through row and column normalization to obtain the desired form.   

The case for rectangular matrices with non-negative components is handled in a similar 

way. In this case, consider an m   n matrix A with m < n (for the case when m > n, one can 

transpose, do the row and column normalizations, and transpose back). In this case, one says that 

A is fully indecomposable if every m   m sub-matrix of A is fully indecomposable. In future 

work, we will investigate evaluating the TMA for ECS matrices that cannot be row and column 

normalized. 

3.7. Conclusions  

In this chapter, we introduced three heterogeneity measures: machine performance 

homogeneity, task easiness homogeneity, and task-machine affinity. We identified three 

properties that heterogeneity measures should have and show how our three measures possess 

these properties. The intuition behind each of the measures is shown through many illustrative 

examples and ones extracted from the SPEC benchmarks. We have also explained the 

importance of keeping the three measures independent. We illustrated how an iterative row and 

column normalization procedure can be used to keep the measures independent.  
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Chapter 4 

4. Power and Thermal-Aware Workload Allocation in 

Heterogeneous Data Centers  

4.1. Introduction  

Over the last decade, the power consumption of data centers has been increasing at a 

rapid rate. In a report by the EPA [Epa07], it is estimated that the power consumed by servers 

and data centers has more than doubled between the years 2000 and 2006. In 2006, it is 

estimated that the power consumed by servers and data centers was 61 billion kWh, which is 

equal to 1.5% of the total U.S. electricity consumption that year. This amounts to $4.5 billion in 

annual electricity costs, equivalent to the power consumption costs of 5.8 million average U.S. 

households. Motivated by the need to reduce the power consumption of data centers, many 

researchers have been investigating methods to increase the energy efficiency in computing at 

different levels: chip, server, rack, and data center (e.g., [AbV10, ApY11, AyM01, BeA12, 

ChG10, GaC11, JaM11, KiS08, LiH06, MoC05, PaT10, ToW09, YoA11]).  

In some cases, there are physical limitations on the amount of power available for data 

centers. For example, Morgan Stanley is no longer able physically to get the power needed to run 

a new data center in Manhattan [BrR10]. In a survey of data centers [FiH08], 31% identify 

power availability as a key factor limiting server deployment. The EPA report also indicates that 

about 50% of the power consumed in data centers is due to the infrastructure for power delivery 

and cooling. Therefore, minimizing the power consumed by the cooling infrastructure, can lead 

A preliminary version of portions of this chapter appeared in [AlP12]. 
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to significant overall power savings.  

This chapter studies two problems. In Problem 1, we maximize the performance of a data 

center that is subject to both a total power consumption constraint (Pconst) and thermal 

constraints. The power consumption of the data center is the sum of the power consumption of 

both Computer Room Air Conditioning (CRAC) units and compute nodes. We quantify the 

performance of the data center as the total reward collected from completing tasks in a workload 

by their individual deadlines. We consider a data center in the steady state where task flow rates, 

temperatures at compute nodes and CRAC units, and the power consumption of compute nodes 

become constant. Therefore, the performance is equivalently quantified by the total rate at which 

reward is collected (the total reward rate). In Problem 2, we minimize the power consumption of 

a data center while guaranteeing that the total reward rate does not drop below a specified 

threshold (Rconst
1
).  

Performance states (P-states) of cores provide a trade-off between the power consumed 

by a core and its performance [Hew10]. Lower P-states consume more power and provide better 

performance. The relationship between the performance and power consumption of the P-states 

is non-linear. In most cases, the lowest P-state (P0) is not the P-state with the best trade-off 

between performance and power consumption [LoS01, XiL08]. 

P-state assignments in data centers are mainly done at the compute node level. In cases 

where the workload fluctuates, the P-state of one or more cores is increased when the node’s 

utilization drops below a specified threshold (e.g., [ElK02, PaS06, ToW08]). However, in a 

power or performance constrained data center where the workload assigned to a core is constant, 

the utilization of each core (that is not turned off) in a specific P-state will be close to 100% to 

 
1
 Appendix F provides a list of notations used in this chapter 
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avoid idle time. This is because we want to execute as many tasks as possible to obtain the 

maximum performance for a given power consumption. In this chapter, we show that our 

technique of assigning the P-states when considering the whole data center increases the overall 

performance (in terms of increased reward or reduced power consumption) of the data center.  

The power consumed by compute nodes in the data center is dissipated as heat that is 

removed by the CRAC units. Our approach of assigning tasks and P-states to cores is thermal 

aware as it considers the temperature evolution effects of P-state assignments, which in turn 

affects the power consumed by the CRAC units. For both problems studied in this chapter, we 

show how each assignment can be expressed as an exact optimization problem. The P-state 

assignment part of the problem introduces integer constraints. The integer constraints make each 

assignment problem not scalable with respect to the number of cores in the data center. A simple 

relaxation of the integer constraints may introduce additional binary constraints that make each 

assignment problem not scalable. To address this, we propose novel and scalable assignment 

techniques for both problems. Each technique involves solving a set of scalable optimization 

problems. Our techniques are compared against a technique that only considers putting a core in 

the lowest P-state or turning off the core. We show that using our techniques results in notable 

performance improvements.  

In summary, we make the following novel contributions. Our first contribution is that we 

model data centers that are either power constrained or reward constrained. The second 

contribution is that we express each assignment problem at the data center level as an 

optimization problem that includes P-state assignment. The decisions of this optimization 

problem are: the P-states of cores, the desired number of tasks per unit time allocated to a core, 

and the outlet CRAC temperatures. The known solution techniques to both optimization 
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problems are not scalable due to integer constraints imposed by the P-states. The third 

contribution is a scalable assignment technique to find near-optimal solutions for each problem. 

The fourth contribution is a dynamic scheduler that assigns tasks to cores such that the actual rate 

of task execution is as close as possible to the desired rate. Finally, the fifth contribution of this 

chapter is showing, through simulations, the performance gains of applying our techniques to 

solve Problems 1 and 2 as opposed to current techniques.  

The rest of this chapter is organized as follows. Section ‎4.2 discusses related work. The 

data center model is described in Section ‎4.3. In Section ‎4.4, the thermal constraints in the data 

center are described. The assignment problems and our solution to the problems are given in 

Section ‎4.5. Section ‎4.6 describes the simulation set up. Simulation results are shown in 

Section ‎4.7. Future work is given in Section ‎4.8. Section ‎4.9 gives the conclusions. 

4.2. Related Work  

In [ToW09], a control system for minimizing the power consumption in blade server 

enclosures is proposed. The power consumption of the blade server is minimized using three 

techniques: blade server consolidation, adjusting the speeds of the fans, and assigning P-states to 

processors. The P-state assignment is based on a simple utilization-based technique. A processor 

is assigned a P-state so that the utilization is never higher than 80%. However, as discussed in 

the introduction, this technique is not effective in a power or performance constrained data center 

because the utilization of each core should be close to 100%. The other two techniques (blade 

server consolidation and adjusting the speeds of the fans) can be used in future work in 

combination with our assignment technique to reduce the power consumption. 

In [PaT10], it is shown that using an integrated approach to managing the cooling and 

computational resources in a data center is more efficient than if the two resources were 
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managed independently. Their technique is similar to ours in that it trades-off power 

consumption with reward (from QoS). They trade-off power by deciding the amount of compute 

resources will be turned on at a compute node. In this chapter, we extend that work in two 

directions. First, we consider a power constrained data center and a reward constrained data 

center. Second, we show how assigning P-states at the data center level results in improved 

performance.  

The P-state assignment problem for optimizing some objective in a computer system has 

been studied widely (e.g., [ApY11, AyM01, CaR05, XiL08, YoA11, YuV08]). The primary 

difference between our work and these studies is that our work considers the power consumed by 

the CRAC units in addition to the power consumed by compute nodes. 

The thermal-aware scheduling problem has been previously researched (e.g., [AbV10, 

ChG10, MoC05, PaG10]). However, unlike our study, none of these papers consider P-state 

assignment.  

Many other techniques to increase the energy efficiency of data centers exist. For 

example, the Open Compute Project started by Facebook proposes the following two techniques: 

1) using a 480V electrical distribution system to reduce energy loss and 2) reusing hot aisle air in 

the winter to heat offices. Another example proposed by the Sustainable Ecosystems Research 

Group at HP is to use water evaporation for cooling instead of using compressors. Many of these 

techniques can be used in conjunction with our technique to obtain further performance gains.   
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4.3. Data Center Model  

4.3.1. Overview 

In this section, we give a detailed description of the workload and the different 

components of the data center. Data centers are typically arranged in a hot-aisle/cold-aisle 

configuration, as depicted in Figure ‎4.1. CRAC units draw hot air from the top and deliver cold 

air through the perforated floor tiles in the cold aisles. Compute nodes draw air from the cold 

aisles. The power consumption of compute nodes causes the temperature inside of the compute 

nodes to rise. The hot air inside a compute node is expelled into the hot aisle. Due to complex air 

flow patterns in a data center, some of the hot air exiting a compute node re-circulates into 

another compute node.  

4.3.2. Workload 

We assume that we have a set of T known task types. The arrival rate of tasks of type i is 

given by λi. A reward ri is collected for completing a task of type i by the task’s individual 

deadline. The deadline of a task of type i is given by: deadline = arrival time + di. The value of di 

would be specified by the user. In addition, we assume tasks can be dropped if their deadlines 

cannot be satisfied. The goal of Problem 1 is to maximize the total reward that is collected given 

a constraint on the total power consumption of the data center (the power consumption of 

compute nodes and CRAC units). The goal of Problem 2 is to minimize the total power 

consumption given a constraint on the total reward collected. 

4.3.3. Compute Nodes 

Let the number of compute nodes in the data center be NCN. Each compute node has a  
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Figure ‎4.1. A hot-aisle/cold-aisle data center layout. 

number of identical cores. Each compute node j belongs to a specific compute node type NTj. 

Compute nodes with the same type are identical (i.e., they have the same number and type of 

cores, and the same power consumption characteristics). The characteristic of compute nodes 

(e.g., number of cores, the power consumption properties, and/or the computational performance 

of cores) differs across compute node types. The total number of cores in the data center is 

NCORES. We use a global index for cores. Let CTk be the type of the compute node to which 

core k belongs. Because all cores within a compute node are identical, we also refer to CTk as 

being the type of core k. 

The power consumption of a compute node is the sum of its base power consumption and 

the power consumption of its cores. The base power consumption is used to model non-compute 

devices (e.g., disks, fans). The power consumed by the non-compute devices is not affected by 

the utilization of the cores [MuV07]. Let Bj be the base power consumption of a compute node of 

type j. We assume that compute nodes are not turned off during the execution of a workload. 
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Therefore, the base power consumption will always be incurred even if the compute node is not 

executing any tasks.  

Each core of type j in the data center can be put in one of ηj P-states. P-state 0 is the P-

state with the highest clock frequency and highest power consumption. Each consecutive P-state 

has a lower clock frequency and lower power consumption. We also consider the case where we 

can turn off the core. We model the case where the core is turned off by adding one additional P-

state to the available P-states of a core. The turned-off P-state will be the highest P-state (e.g., for 

cores with P-states from P0 to P5, the turned-off state will be P6). The power consumption of a 

core of type j running in P-state k is πj,k. In some cases, the power consumption of a core is also a 

function of the task type that it executes. For example, I/O intensive tasks usually consume less 

power than other tasks [MuV07]. In this work, we assume that the power consumption of a core 

is dependent on its type and P-state alone. However, it is possible to extend our model to capture 

the effect of a task type (e.g., I/O or compute intensive task types) on core power consumption. 

A third index would have to be added to π to represent the effect of a task type on the power 

consumption of a core. 

Let PSk be the assigned P-state of core k. Let coresj be the set of indices of cores that 

belong to compute node j. The power consumption of compute node j, PCNj, is given by: 

 PC           ∑ π   ,P       cores     (‎4.1) 

The first term refers to the baseline power for a compute node j of type     and the second term 

refers to the active operational power that depends on the P-state. 
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4.3.4. Estimated Computational Speed 

We assume that the estimated computational speed (ECS) of a task of type i on a core of 

type j running in P-state k, ECS(i, j, k), is known. ECS(i, j, k) represents the number of tasks of 

type i that can be completed per time unit on a core of type j when running in P-state k. The 

estimated computational speed is equal to the reciprocal of the estimated time to compute (ETC) 

[AlM10, AlM11a]. The assumption of ETC information is a common practice in resource 

allocation research (e.g., [BaS01, DhA02, GhY93, KaA98, KhP93, SiY96, XuN01]). The ETC 

values for a given system can be obtained from user supplied information, experimental data, or 

task profiling and analytical benchmarking [AlB05, GhY93, KhP93, XuN01]. Obviously, when 

the core is turned-off, the ECS of a task of any type is 0, i.e., ECS(i, j, ηj−1) = 0 for all i and j.  

4.3.5. Computer Room AC Units 

We assume that the number of CRAC units in a data center is NCRAC. CRAC units are 

used to remove the heat generated by the compute nodes. The power consumed by a CRAC unit 

is equal to the ratio of the amount of heat removed at that CRAC unit to the Coefficient of 

Performance (CoP) of that CRAC unit [MoC05].   

The amount of heat removed by a CRAC unit i depends on the inlet air temperature, 

 C  C
 

in
 (which is directly affected by the heat generated by compute nodes), and the assigned 

outlet air temperature,  C  C
 

out
 (which is the temperature of the cool air to be generated by the 

CRAC). Let ρ be the density of air, Cp be the specific heat capacity of air, and FCRACi be the 

air flow rate at CRAC unit i.  The amount of heat removed per unit time at CRAC unit i is equal 

to [TaM06]:  

 ρ Cp  FCRACi ( C  C 
in   C  C 

out
). (‎4.2) 
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The CoP of a CRAC unit is a function of its outlet temperature [MoC05]. The power consumed 

by CRAC unit i, PCRACj, is given by [MoC05] 

 PC  C  
ρ Cp FC  C  ( C  C 

in
- C  C 

out)

CoP( C  C 
out)

    (‎4.3) 

When the inlet air temperature of a CRAC unit is less than or equal to the assigned outlet 

temperature (there is no heat to be removed) the power consumption is 0. 

4.4. Thermal Constraints 

Due to the law of energy conservation, the power consumed at a compute node will be 

dissipated as heat causing an increase in the temperature of the air going through the compute 

node. To maintain the reliability of the CRACs and compute nodes, CRAC units must remove 

the heat generated by the compute nodes so that the inlet air temperature of the CRACs and 

compute nodes are kept at or below a redline temperature. Let TCNin

   
 and TCNout

     
 be the inlet and 

outlet air temperatures at compute node i, respectively. Let FCNi be the air flow rate at compute 

node i. The outlet air temperature of compute node i is given by [TaM06] 

  C  
out    C  

in
 (

PC  

ρ Cp FC  
) .   (‎4.4) 

Air flow patterns in data centers are complex. The inlet temperatures of CRAC units and 

compute nodes are affected by the outlet temperatures of other CRAC units and compute nodes 

[TaM06]. Let  

 
out [ C  C 

out
      C  C C  C

out
  C  

out
    C  C 

out ]
 
 

and  

 
in [ C  C 

in
      C  C C  C

in
  C  

in
    C  C 

in ]
 
. 
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Using the “ bstract Heat Flow Model” proposed in [ aM  ], we can compute each element of 

 
in as a linear combination of the elements of  out, i.e.,  

  
in    out    (‎4.5) 

The values in matrix A can be estimated using sensor measurements [TaM06]. Let  redline be the 

vector of redline temperature constraints on inlet air temperatures, which gives the constraint 

  
in   

redline    (‎4.6) 

The inequality is element-wise (i.e., element i in vector  inmust be less than or equal to element i 

in vector  redline) 

4.5. Assignment Problems 

4.5.1. Overview 

Given a workload composed of a set of tasks arriving at different times, the goal of 

assignment Problem 1 is to maximize the total reward rate subject to a constraint on the 

maximum total power consumption. The goal of assignment Problem 2 is to minimize the power 

consumption of the data center subject to a constraint on the minimum reward rate. Both 

problems are subject to thermal constraints (i.e., the redline temperatures at the inlets must not be 

exceeded). The decisions that both assignment problems must make are: 1) the P-states of cores, 

2) the task to core assignments, and 3) the outlet temperatures of the CRAC units.  

Because we assume the arrival rates of task types remain constant, the decision variables 

will remain constant. If the arrival rates change, then we will have another optimization problem 

that we will have to solve to obtain the new values of the decision variables.  
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Temperature evolution in the data center is in orders of minutes, while the execution of a 

task is in orders of seconds or milliseconds. To make workload assignments tractable, previous 

research (e.g., [AdV10, PaT10]) has used a two-stage assignment approach. The first stage 

manages the power and the thermal evolution in the data center, while the second stage performs 

workload balancing. In this chapter, we apply the two-stage assignment approach for both of our 

assignment problems. In the first stage, our approach assigns the P-states of cores, the desired 

execution rate of task types on cores, and the outlet temperatures of CRAC units. The first stage 

guarantees that the thermal constraints and the power constraint for Problem 1 or the reward 

constraint for Problem 2 are not violated. In the second stage, our approach implements a 

dynamic scheduler that assigns tasks to cores so that the actual execution rate of each task type 

on each core approaches the desired execution rate set by the first step. The dynamic scheduler 

can also make the decision to drop a task. The two-stage assignment is depicted in Figure ‎4.2. 

In Subsection ‎4.5.2, we focus on the first-stage assignment problem for solving Problem 

1. The difference between the first-stage assignment for Problem 1 and Problem 2 is shown in 

Subsection ‎4.5.3. In Subsection ‎4.5.4, we propose a dynamic scheduler to assign incoming tasks 

to cores.  

4.5.2. First-Stage Assignment: Problem 1 

Overview 

In the following subsection (problem formulation), we formulate the assignment problem 

as an exact mixed integer nonlinear program (MINLP). Because the solution techniques for 

solving the exact MINLP are not scalable, we propose a scalable technique to find near-optimal 

solutions. The technique divides Stage 1 into three steps. The first step assigns power budgets to  
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Figure ‎4.2. The assignment problem in the data center. The first stage assigns the outlet 

temperatures of CRAC units, the P-states of cores, and the desired execution rate of task types on 

cores. The second stage assigns the incoming tasks to cores based on the desired execution rate 

set by the first step or drops tasks that cannot make their deadline.  

compute nodes, CRAC outlet temperatures, and the fraction of time each core spends running 

tasks of each type. The second step converts the power budget assignment into a P-state 

assignment for each core. Finally, Step 3 uses the exact P-state assignment in Step 2 to assigns 

the desired execution rate of each task type on each compute node.  

Problem Formulation 

The decisions made at the first stage are: the outlet temperature of each CRAC unit 

( C  C 
out

), the P-state of each core (PSk), and the desired rate of executing tasks of each type 

on each core. The desired rates are organized in a matrix ER. Entry ER(i, k) represents the 
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desired execution rate of tasks of type i on core k. Once a P-state of a core is assigned, we 

assume that it is not changed.  

The following equation shows the assignment problem for Problem 1: 

 maximize ∑ (  ∑     ,    CO   
   ) 

     (‎4.7) 

subject to: 

1. ∑   ( ,  )  C ( , C  , P  ) 
 
        ,      , ,  CO   . 

2.   ( ,  )         C   , C  ,P          ,      , ,   and      , ,  CO   . 

3. ∑     ,    CO   
        λ ,         , ,    

4. ∑ PC  
 C 
      ∑ PC  C 

 C  C
        const. 

5.  in   
redline. 

The objective function is the total reward rate. The first constraint guarantees that the 

desired execution rate of task types on a core will not exceed the core’s ability to complete the 

tasks. When the estimated execution time of a task of type i on a core of type j running in P-state 

k (i.e., 1/ECS(i, j, k)) is greater than di, no task of type i can make its deadline on core k even if 

its execution starts immediately after its arrival. Therefore, if 1/ECS(i, j, k) > di, then Constraint 

2 guarantees that ER(i, k) = 0 to avoid executing tasks of type i on core k. Constraint 3 

guarantees that the sum of the desired execution rate of a task type on all cores does not exceed 

its arrival rate. The power constraint is guaranteed by Constraint 4. Finally, Constraint 5 

guarantees the thermal constraints.  

Note that there are two cases where ECS values can be 0. First, when PSk is the turned-

off P-state, the ECS of any task type on core k is 0. Second, a core type may not be able to 

execute certain task types (for example, due to certain required software not being installed on 

the corresponding node type). When an ECS value is 0, 1/ECS will not be defined. However, we 

can solve this issue by assuming that the  C  value is a “small enough” positive number.  
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The problem in Equation 4.7 is a MINLP for the following two reasons. First, the above 

problem contains integer constraints due to the requirement that the P-states be integers. Second, 

the measured CoP of the CRAC units at the HP Labs Utility Data Center as a function of CRAC 

output temperature, τ, is given by [MoC05] 

 CoP(τ)    .    τ     .    τ    .     (‎4.8) 

For this CoP, the power consumption of the CRAC units (Equation 4.3) is nonlinear (and non-

convex), which makes constraint 4 a nonlinear (and non-convex) constraint. 

MINLPs belong to the class of NP-hard problems. Finding the optimal solution of such 

problems is computationally infeasible for large problem sizes. For example, consider a compute 

node that has 32 cores and that each core can be put in one of 5 P-states. This gives us 5
32

 ≈  .  × 

10
22

 P-state assignment combinations.  

In the following subsections, we show how the Stage 1 assignment is divided into three 

steps to relax the integer P-state constraints. In the first step, instead of assigning P-states to 

cores, we assign power consumption to cores. This makes the assignment problem simpler. The 

decision variables in the first step are the power consumption of each compute node, the outlet 

temperature of each CRAC unit, and the fraction of time each compute node spends on tasks of 

each type. The second step converts the compute node power assignment into a P-state 

assignment. The third step assigns the desired execution rate of each task type on each core for 

the P-state assignment obtained from the second step.  

Step 1 Assignment 

Relaxing the integer P-state constraint means that we allow a core to be assigned a 

continuous P-state value rather than a discrete one. Therefore, we have to define core power 

consumption and ECS functions for continuous P-states. Another equivalent assignment problem 
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is to assume that cores can be assigned a continuous power value between zero and the power 

consumption in P-state 0. We use this equivalent assignment problem because it makes the 

representation of the assignment problem easier (we relate power directly with performance), 

and it eliminates the need to define power consumption functions for continuous P-states.  

For the relaxed problem, the ECS of a task of type i on core k is a continuous function of 

the power consumption of the core. Let PCOREk be the power assigned to core k. Let 

C
 C 

       
 PCO     be the ECS for a task of type i running on a core of type j as a continuous function 

of PCOREk. To minimize the difference between the integer solution and the relaxed solution of 

the Step 1 assignment, we select C
 C 

        
 so that it goes through the points 

 π , ,  C   ,  ,    ,  ,  π ,η   
,  C   ,  , η

 
   ). 

Each of these points is the power consumption of a P-state and the ECS at that P-state. 

Intuitively, one can view the value of C
 C 

       
 when PCOREk is not equal to the power consumption 

of any P-state, is to assume that the core can switch between a P-state with power consumption 

lower than PCOREk and a P-state with a power consumption higher than PCOREk such that the 

average power consumption is equal to PCOREk. Therefore, we chose to represent C
 C 

       
 using a 

piecewise linear function.  

For example, assume a core of type j with four P-states. The power consumption of P-

states 0, 1, 2, and 3 is 0.15, 0.1, 0.05, and 0 Watts (W), respectively. The ECS values for task 

type i for each of the four P-states are 1.2, 0.9, 0.5, and 0, respectively. The C
 C 

       
 function is a 

linear piecewise function that goes through the points (0, 0), (0.05, 0.5), (0.1, 0.9), and (0.15, 

1.2). This function is shown in Figure ‎4.3.  

Because for both Problems 1 and 2 a higher ECS value will result in a better solution, if 

the C
 C 

       
 function is concave, then the computational expense of the optimization can be greatly 
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reduced by representing the C
 C 

       
 function with linear constraints. The C

 C 

       
 function, however, is 

not guaranteed to be concave. In that case, an equivalent representation is only achieved by 

introducing additional binary constraints.  The introduction of the binary constraints would make 

the Stage 1 optimization problem computationally infeasible for a large number of cores. For 

instance, consider the example shown in Figure ‎4.4 where the number of P-states is four (i.e.,  

ηj = 4). The ECS values for the P-states 0, 1, 2, and 3 are 1.2, 0.9, 0.2, and 0, respectively. This 

C
 C 

       
 function is not a concave function.  

The non-concavity of a  
 C 

       
function is caused by a P-state that has an ECS to power 

consumption ratio that is less than its next lower P-state. We call this P-state a “bad” P-state. For 

the C
 C 

        
function in Figure ‎4.4. P-state   is a “bad” P-state because the ratio of its ECS to its 

power consumption is 4, where the ratio of P-state  ’s  C  to its power consumption is 9. If we 

ignore P-state    the “bad” P-state), then the C
 C 

       
 function will be concave. This case is shown in 

Figure ‎4.5. We ignore “bad” P-states  i.e., do not assign a core a “bad” P-state) so that we can 

reduce the computational complexity of the Step 1 assignment. 

In general, when the “bad” P-states are not ignored, the Step 1 assignment will still avoid 

“bad” P-states. For example, consider the case where a compute node of type j has two cores. 

Assume that the compute node can assign a maximum of 0.1 W total power to its cores. Assume 

that there is only one task type and it has a reward of 1, i.e., ri = 1. If the function in Figure ‎4.4 is 

the ECS of that compute node, then the optimal solution in this case would be to put one of the 

cores in P-state 1 (i.e., assign 0.1 W power to it) and the other in P-state 3 (i.e., assign 0 W power 

to it). This will result in a total reward rate of  .  , which is the same as when “bad” P-states are 

ignored. It should be noted that the optimal value when the “bad” P-states are ignored is never 

better than the optimal value when the “bad” P-states are not ignored. 
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Figure ‎4.3. An example  
 C 

       
 function. 

 

Figure ‎4.4. An example of a non-concave C
 C 

       
 function. 

 

Figure ‎4.5. An illustration of the calculation of the C
 C 

       
function in Figure 4.4 when the “bad” P-

state is ignored. 

Let DF(i, k) be the desired fraction of time that core k spends executing tasks of type i. 

The desired execution rate of task type i on core k, ER(i, k), is equal to  
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DF(i, k)  
 C 

         
 PCO    . 

The Step 1 (relaxed) optimization problem is obtained from Equation 4.7 by replacing 

ER(i, k) with  

DF(i, k)  
 C 

         
 PCO     

and  C ( , C  , P  ) with  
 C 

         
 PCO      The effect of Constraint 2 is captured by 

considering a P-state k of core type j a “bad” P-state for task type i if       C   ,  ,   . 

Equation 4.9 and its constraints represent the Step 1 optimization problem.  

 maximize ∑ (  ∑  F( ,  ) 
 C 

       
 PCO    

 CO   
   ) 

     (‎4.9) 

subject to:  

1. ∑  F( ,  ) 
        ,      , ,  CO   . 

2. ∑  F( ,  ) 
 C 

       
 PCO    

 CO   
        λ ,      , ,  . 

3. ∑ PC  
 C 
      ∑ PC  C 

 C  C
       const. 

4.  in   
redline. 

 

Because all the cores within a compute node are homogenous, we can reduce the time to 

find a solution for Equation 4.9 by assuming that all cores within a compute node will be 

assigned the same value of DF for each task type and the same power consumption (PCO   ). 

This reduces the size of matrix DF and the number of ECS functions to be equal to T·NCN. 

The problem in Equation 4.9 is an NLP. To avoid locally optimal solutions that have 

∑  F( ,  ) 
      < 1 (i.e., core k is not fully utilized), we substitute the inequality in Constraint 1 

with an equality. Even with this change, a solution to Equation 4.9 may be locally (and not 

globally) optimal. Different locally optimal solutions may be obtained from different initial 
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starting points. Therefore, we try multiple random starting points. Details on how we decided on 

the number of random start points are in Section ‎4.7 (simulation results).  

Step 2 Assignment 

The purpose of the Step 2 assignment is to convert the power assigned to a core k into a 

P-state. The solution to Step 1 guarantees that the power and thermal constraints are satisfied. 

Therefore, the power consumption at any compute node should be kept at or below the power 

consumption that resulted from the Step 1 assignment. We design the following heuristic to 

convert the PCOREk values into a P-state assignment: 

1. For each core k, assign it the highest possible P-state that results in a power consumption 

greater than or equal to PCOREk.  

2. For each compute node j 

While the power consumption calculated by Equation 1 is greater than the power 

consumption that resulted from Step 1 

Increase the P-state of the core with the smallest P-state the next non-bad P-states.  

Because the C
 C 

       
 functions are concave, the ECS to power consumption ratio of a P-state 

will always be lower than or equal to that of a higher P-state. Therefore, in Step 2 of the 

procedure above we increase the P-state of the core with the lowest P-state. In cases where there 

are multiple task types assigned to a core, we only ignore the bad P-states of the task type that 

gives the most reward rate on that core.  

Step 3 Assignment 

In Step 3, we solve Equation 4.7 to determine the optimal desired execution rate of task 

types on cores (i.e., the optimal ER matrix) using the outlet temperature of CRACs that is 
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determined in Step 1 and the discrete P-state assignment determined in Step 2, which make the 

solution to Equation 4.7 a simple linear program (LP).  

4.5.3. First-Stage Assignment: Problem 2 

The exact formulation of the first-stage assignment for Problem 2 is similar to the 

formulation of Problem 1 (given in Equation 4.7) except that the objective function for Problem 

2 is to minimize power consumption subject to a constraint on the minimum total reward rate. 

The exact formulation of Problem 2 is also a MINLP. Therefore, we propose a three-step 

approach for solving Problem 2. Similar to the first step of Problem 1, the first step of Problem 2 

uses the C
 C 

       
 functions to relax the integer P-state assignment constraints.   

Step 2 of the first-stage assignment for Problem 2 converts the power consumption 

assignment of cores into a discrete P-state assignment. To guarantee that the total reward rate 

constraint is not violated, the conversion at a specific compute node j must guarantee that the 

cores in their assigned P-states will collectively be capable of executing task types at a rate that 

is greater than or equal to the total desired execution rate that is set by Step 1 for compute node j.  

A simple way to guarantee that the total reward rate constraint is not violated at a 

compute node j is to assign each core in compute node j to the highest possible P-state that 

results in power consumption greater than or equal to PCOREk. This guarantees the total reward 

rate constraint because we assume that ECS(i, j, p) > ECS(i, j, p + 1). 

One may be able to improve this simple P-state assignment (i.e., reduce the power 

consumption) by incrementing the P-state of some cores. However, incrementing the P-state of 

any core will require reassigning the desired execution rate of task types among the compute 

node cores so that the total reward rate constraint is satisfied. We show how a mixed integer 
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program can be used to find the optimal P-state assignment that satisfies the total reward rate 

constraints.  

Let the reassigned desired execution rates of task types on cores be arranged in matrix 

RER. Entry RER(i, k) represents the reassigned desired execution rate of task type i on core k. 

For cores in compute node j, the following mixed integer program finds the optimal P-state 

assignment and reassigned desired execution rates for cores that belong to compute node j: 

 minimize ∑ π   ,P      cores ,      cores    (‎4.10) 

subject to: 

1. ∑    ( ,  )  C ( , C  , P  ) 
 
        ,     cores . 

2.    ( ,  )         C   , C  ,P          . 

     , ,   and     cores . 

3. ∑    ( ,  )    cores 
   ∑   ( ,  )    cores 

,       , ,  . 

Constraints 1 and 2 are similar to Constraints 1 and 2 in Equation 7. Constraint 3 

guarantees that the total available execution rate for each task type at compute node j is greater 

than or equal to the total desired execution rate set by Step 1. The problem in Equation 4.10 

contains integer constraints due to the P-state assignment that makes it computationally 

intractable for many of today’s compute nodes that contain a large number of cores. However, 

for a fixed P-state assignment, the problem in Equation 4.10 is a LP feasibility problem. We use 

the LP feasibility problem to test whether a specific P-state assignment satisfies the total reward 

rate constraints. 

We designed the following procedure to convert the power consumption of cores into a 

P-state assignment: 

1. For each core k, assign it the highest possible P-state that results in power consumption 

greater than or equal to PCOREk.  
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2. For each compute node j 

a. Until a feasible solution exists for Problem 4.10 

Increase the P-state of the core with the smallest P-state to the next non-bad P-state. 

The output of Step 2 is a P-state assignment and the matrix RER (which now becomes the 

new ER). Similar to Step 2 of Problem  ,  tep   of Problem   avoids “bad” P-states. 

The P-state assignment of Step 2 may violate the thermal constraints. Therefore, Step 3 

solves the exact optimization problem for Problem 2. Because the P-state and desired execution 

rates are determined, the exact optimization problem becomes an NLP (due to the power 

consumption of CRAC units).   

4.5.4. Second Stage Assignment 

The second stage assignment for both Problems 1 and 2 is the same. The dynamic 

scheduler at the second step keeps track of the actual execution rate of each task type on each 

core in matrix AER. The goal of the dynamic scheduler is to make the ratio of AER(i, k)/TC(i, k) 

as close as possible to 1 for each task type i and core k.  

For each incoming task t, the dynamic scheduler maps t to a core that can complete it 

before its deadline and has the minimum AER(i,k)/TC(i,k) value that is less than or equal to 1. If 

no such core exists, then the dynamic scheduler drops t. 

4.6. Simulation Setup  

4.6.1. Overview 

We conducted simulation studies to evaluate the effectiveness of our assignment 

technique. In this section, we show how the parameters of the simulations were generated.  
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4.6.2. Compute Nodes 

In our simulations, we used a varying number of compute nodes. Each compute node 

belongs to one of two compute node types based on two 7U servers listed in the 

SPECpower_ssj2008 results [Spe08]. The first compute node type is based on the HP ProLiant 

DL785 G5 server. This server has eight AMD Opteron 8381 HE processors with four cores in 

each processor. The second compute node type is based on the NEC Express5800/A1080a-S 

server. This server has four Intel Xeon X7560 processors. Each processor has eight cores. Table 

4.1 lists the parameters of both node types. Details on how the values of the parameters were 

obtained are in Appendix C.  

We used a uniform random variable to assign a node type to compute nodes. Each 

compute node type has an equal probability of being assigned to a compute node.  

4.6.3. ECS Matrices 

The estimated computation speed values are arranged in a three-dimensional ECS matrix. 

These dimensions represent task types, node types, and P-states. In a real world environment, the 

ECS values can be based on user supplied information, experimental data, or task profiling and 

analytical benchmarking (e.g., [AlB05, FrS93, GhY93, KhP93, MaB99, YaA93, YaK94]). The 

following paragraphs discuss how we generated synthetic ECS data for the purposes of our 

simulations.  

In our simulations, we have eight task types, two compute node types, and four P-states 

(not including the turned-off P-state). First, we generate a two dimensional ECS matrix for P-

state 0. The columns represent the node types and the rows represent the task types. The ratio of 

the performance of node type 1 to node type 2 is 0.6 (this is based on the number of server side 

Java operations per second each node type can perform [Spe08]). Therefore, we assumed that the 
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TABLE  4.1. PARAMETERS OF THE TWO NODE TYPES USED IN SIMULATIONS 

node type 1 2 

base power consumption (kW) 0.353  0.418 

number of cores 32 32 

number of P-states 4 4 

power consumption of P-state 

0 (kW) 
0.01375 0.01625 

clock frequencies of P-states 

(MHz) 
2500, 2100, 1700, 800 

2666, 2200, 1700, 

1000 

air flow rate (m
3
/s) 0.07 0.0828 

 

average ECS over all task types for node types 1 and 2 is 0.6 and 1, respectively. Let NTYPES 

be the number of compute node types in the data center. The easiness of a task type i ,   
 
, is 

assumed to be equal to the sum of the ECS values over all node types for P-state 0, i.e., 

     ∑  C ( ,  ,  )   P 
     . For illustration purposes, we assume that the easiness for task type i 

is half that of task type i + 1. Let rand[a, b] be a uniform random variable in the interval [a, b]. 

Entry (i, j) in the two-dimensional ECS for P-state 0 is the product of the average ECS for task 

type i, the average ECS for node type j, and a variation factor rand[    C ,     C ]. The 

variation factor is used so that the affinity between task types and node types differs across the 

types. The value of  
 C 

 that we used is 0.1. 

Let fj,k be the clock frequency of a core of type j running in P-state k. In many cases, the 

ECS of task types on cores is not exactly proportional to clock frequency. For example, reducing 

the clock frequency will have less impact on the ECS of a task that is I/O bound versus a task 

that is CPU bound. Therefore, we use a parameter Vprop so that the ECS of a task type on a core 

type is not exactly proportional to the clock frequency of the P-states. The ECS is extended in the 

third dimension by using  
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  C ( ,  ,  )    C ( ,  ,  )  
  ,  

  ,  
 rand[       ,        ]   (‎4.11) 

We used two different values for       in different sets of simulations, i.e., 0.1 and 0.3.  

Using Equation 4.11 may result in a P-state that has a higher ECS value for a specific 

task type and a specific core type than a lower P-state. To prevent this case, if an entry (i, j, k) is 

higher than entry (i, j, k − 1), then we generate a random number rand[       ,        ] for 

 C ( ,  ,  )  until it is less than  C ( ,  ,    ). We start by generating the ECS for P-state 1 

then P-state 2 and so on. 

4.6.4. Task Types 

The number of task types in all of our simulations is assumed to be eight. The easiness of 

a task type i,    , is assumed to be equal to its average ECS value over node types. The reward 

for completing a task of type i by its deadline is assumed to be equal to the reciprocal of its 

easiness, i.e.,  

         ⁄      (‎4.12) 

The above reward value is used for the purposes of our simulations. Note that the reward value is 

not required to be equal to the reciprocal of task easiness for our assignment technique to work.   

Now we show how the di values that are used to calculate the deadline of individual tasks 

are generated. Let MinECSi and MaxECSi be the minimum and maximum ECS values for task 

type i over all core types and all P-states except the turned-off P-state. MinECSi is given by  

 Min C     min [ C ( ,  , η   )  ]         P       (‎4.13) 

MaxECSi is given by 

 Max C     max[ C ( ,  ,  ) ]         P      (‎4.14) 
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The value of  di is given by  

       .  rand[ Max C  ⁄ ,  Min C  ⁄ ].   (‎4.15) 

We used Equation 4.15 to compute di because it guarantees that there is at least one core 

type that can make the deadline of a task of type i. There is also a chance of generating a task 

type such that some of its tasks’ deadlines can be met by all core types running at their lowest 

frequency.   

The last parameter that needs to be generated for a task type is its arrival rate, λi. Let 

SumECSi be the ECS obtained for a task type i if all cores in the data center are used equally by 

every task type and all cores are running in P-state 0. The value of SumECSi is given by 

  um C    ∑  C ( , C  , )  ⁄ CO   
     (‎4.16) 

Our goal is to assign arrival rates for task types such that the data center can complete all 

the arriving tasks when running at full capacity (i.e., all cores in P-state 0) but would be 

oversubscribed if there is a power constraint (i.e., there is not enough power to run all cores in P-

state 0). This is not simple to achieve. Therefore, we use SumECSi to approximate the arrival 

rates. In addition, to introduce some randomness in the assigned arrival rate of task type i, we use 

a parameter, Varrival. Once the arrival rate for a task type is assigned, it remains constant. The 

arrival rate of task type i is given by 

 λ     um C     rand[   arrival,    arrival]. (‎4.17) 

The value of          that we used is 0.3.  

4.6.5. Cross Interference Coefficients  

In [TaM06], for two compute nodes i and j, the cross interference coefficient, αi,j, is the 

percentage of air recirculated from compute node i to compute node j. Computational Fluid 
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Dynamics (CFD) simulations were used in [TaM06] to obtain cross interference coefficients for 

a small data center (ten racks with five compute nodes in each rack, and one CRAC unit). The 

time consumed for a single run of a CFD simulation was about an hour with a CFD simulation 

required for each of the 50 compute nodes [TaM06]. In our simulations, we use 150 compute 

nodes and three CRAC units. The amount of time to run the CFD simulations for each data 

center in our simulations is prohibitive. In Appendix D, we show how an LP feasibility problem 

can be used to generate the cross interference coefficients. Our goal is not to propose a method of 

calculating the cross interference coefficients for a real data center. Rather, our goal is to 

generate cross interference coefficients for simulation studies that are based on realistic 

information about the air flows in data centers.  

4.6.6. Power and Thermal Constraints 

To set a reasonable power constraint in our simulations for Problem 1, we need to find 

the minimum and maximum power consumption of the data center. The minimum power 

consumption occurs when all cores in the data center are turned off. The maximum power 

consumption occurs when all cores are running in P-state 0. The minimum and maximum power 

consumption of the data center can be found using the NLP problem below solved for the two 

extreme values of PC  . The solution for this problem will provide the power consumption 

bounds of the data center. The decision variables are the outlet temperatures of CRAC units. 

Because it is an NLP problem, our solution to the problem will not necessarily provide the global 

minimum. Therefore, the solutions are considered an upper bound of the minimum and 

maximum power consumption of the data center. 

minimi e[∑ PC  
 C 
    ∑ PC  C 

 C  C
   ] (‎4.18) 
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subject to 

 
in   

redline 

 

Let Pmin and Pmax be the upper bounds on the minimum and maximum power 

consumption of the data center, respectively. Let Φ be a “power multiplier” that takes values in 

the interval [0, 1]. The power multiplier allows us to select a power constraint that is between the 

minimum and the maximum power consumption bounds. The power constraint, Pconst, is given 

by  

 Pconst = Pmin + (Pmax – Pmin) · Φ (‎4.19) 

The redline inlet air temperature was set at 25° Celsius for compute nodes and 40° Celsius for 

CRAC units.  

4.6.7. Total Reward Constraint  

To set a reasonable total reward rate constraint for Problem 2, we need to find the 

maximum possible total reward rate that occurs when all cores are running in P-state 0. Let 

FRAC(i, j) be the average fraction of a core in compute node j that is used to execute task of type 

i. The effective number of cores at compute node j that are used to execute tasks of type i, E(i, j), 

is equal |cores |F  C( ,  ). The maximum reward rate can be found using the following LP: 

 maximi e∑ ∑    C ( ,  ,  ) (    )
 C 
   

 
    (‎4.20) 

subject to  

1. ∑  C ( ,  ,  ) (    ) C 
     λ ,         . 

2. ∑  (    ) 
     |cores |,           C . 

3.  in   
redline. 
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4.6.8. CRAC units 

In our simulations, we assumed that there are three homogeneous CRAC units. The CoP 

for each CRAC unit is given by Equation 4.8. The air flow rate of each CRAC unit is set so that 

the sum of the air flow rates of the compute nodes is equal to the sum of the flow rates of the 

CRAC units. The layout of the data center is given in Figure 4.1. 

4.7. Simulation Results 

4.7.1. Comparison Overview 

One may choose to run all cores in the data center in P-state 0 without considering the 

power consumption implications. Although this approach is simple and will result in the highest 

reward rate, it may violate the power constraint and result in a lower reward rate per power 

consumption. We show this in the next subsection.  

We performed simulations for the first-stage assignment problem and compared our 

technique with a technique that only considers putting a core in P-state 0 or turning off the core. 

The authors in [PaT10] show how the fraction of the computational resources at a compute node 

can be used to compute the power consumption of a compute node and the QoS obtained from 

that compute node. Our techniques solve different assignment problems than the technique in 

[PaT10] and our techniques consider P-state assignments. We adapt the technique in [PaT10] by 

relating the fraction of compute resources (cores) used at a compute node to the reward rate 

obtained from that compute node and the total power consumed at that node as described by 

Equations 4.21 and 4.22. We compare our techniques with the one described in Equation 22.    

The power consumption of compute node j is given by  

 PC          π   , ∑  (    ) 
     (‎4.21) 
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The reward rate for a task of type i at compute node j is equal to    C ( ,  ,  ) (    )  The 

comparison technique for solving Problem 1 is given by  

 maximi e∑ ∑    C ( ,  ,  ) (    )
 C 
   

 
    (‎4.22) 

subject to  

1. ∑  (    ) 
     |cores |,           C . 

2. ∑  C ( ,  ,  ) (    ) C 
     λ ,         . 

3. ∑ PC  
 C 
       ∑ PC  C 

 C  C
      const. 

4.  
in   

redline.   .       

The effective number of cores used at a compute node must not exceed the total number 

of cores at that compute node. This is guaranteed by Constraint 1. Constraint 2 guarantees that 

the execution rate for a task type is not higher than its arrival rate. Constraints 3 and 4 are the 

power and thermal constraints, respectively. The deadline constraints can be dealt with by setting 

 (    )     whenever        C   ,   
 
,     Equation 4.22 is an NLP problem due to the power 

consumption of CRAC units. The comparison technique for solving Problem 2 is similar to the 

comparison technique for solving Problem 1 except that the objective is to minimize power 

consumption while guaranteeing that the total reward rate does not drop below Rconst.  

The problem formulation in Equation 4.22 (based on [PaT10]) is similar to our Step 1 

formulation in Equation 4.9. However, Equation 4.22 only considers P-state 0 whereas Equation 

4.9 considers multiple P-states including P-state 0. Therefore, Equation 4.9 considers a superset 

of the P-state assignment options compared to Equation 4.22. Therefore, the optimal assignment 

of Equation 4.9 should be better than or equal the optimal assignment of Equation 4.22. Two 

examples where the assignments of Equations 4.9 and Equation 4.22 have the same objective 
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value are: a) when cores in the data center have only one P-state (i.e., P-state 0), and b) when the 

all P-states except P-state   are “bad” P-states.   

4.7.2. Results 

Overview 

We have conducted simulations to compare our technique against the one described in 

Equation 4.22. We illustrate the effect of the following three parameters on the performance: 1) 

static power consumption of cores, 2) the variation of the ECS values from being proportional to 

the clock frequency of cores, and 3) the reward and power constraints. Note that the static power 

consumption is part of the total power consumption of a core and is different than the base power 

consumption of a compute node. The static power consumption is part of the second term in 

Equation 1. The total power consumption of a compute node is equal to the sum of its base 

power consumption and the sum of the static and dynamic power consumption of its cores. The 

results in this section show the percentage increase in the reward rate or the percentage decrease 

in the power consumption that our technique achieves in comparison to the one described in 

Equation 4.22.  

Random Starting Points 

Because the Step 1 assignments of both Problems 1 and 2 are NLPs, their solutions may 

be locally optimal. The quality of the locally optimal solution is affected by the starting point of 

the NLP optimization. To determine an appropriate number of starting points to use, we have 

conducted 20 simulations, each using 100 randomly generated starting points. For each 

simulation, we determined the number of random starting points needed to obtain a solution that 

is within 1% of the best solution. The upper limit of a 95% confidence interval of the number of 
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solutions was 11.45, so we used 11 random starting points for our simulations and one starting 

point that is the solution of Equation 4.22. 

The Problem in Equation 4.22 is a NLP due to the power consumption of the CRAC 

units. Therefore, the solutions to the problems may be locally optimal. A brute force discretized 

optimization of a problem that has three CRAC units, 150 compute nodes, and eight task types, 

is computationally intractable. However, tests on smaller problems, i.e., two CRAC units, 40 

compute nodes, and eight task types, have shown no improvement. Therefore, we only use a 

single starting point to find the solution to Equation 4.22. 

Main Results for Problems 1 and 2 

Figures 4.6 and 4.7 show the percentage increase in the reward rate for Problem 1 and the 

percentage reduction in power consumption for Problem 2 that our technique achieves. Each bar 

in Figures 4.6 and 4.7 represents the average of 20 simulations. Error bars are added to show a 

95% confidence interval around the average.  

Both figures show that as the static power consumption of P-state 0 increases, the relative 

performance of our technique decreases. Because P-state 0 runs at a higher voltage and 

frequency, the percentage of dynamic power consumption is usually higher than that of the other 

P-states. Therefore, the static power as a percentage of the overall power consumption for the 

other P-states will be higher compared to that of P-state 0. The static power consumption is not 

related to the frequency, so the higher P-states will have a lower performance (in terms of clock 

frequency) to power consumption ratio compared to P-state 0. When the performance to power 

consumption ratio of P-state 0 is the highest among all the P-states, the assignment technique of 

Equation 4.22 will perform as well as our technique. The static power percentages for all the P-

states of each node type are shown in Table 4.2. The static power consumption of the P-states in 
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each node type is calculated using the static power of P-state 0. For our simulations, we assumed 

three different static power consumption percentages for P-state 0 (10, 20, and 30%). Refer to 

appendix C for details about the calculation of the static power. 

Figures 4.6 and 4.7 also show that the relative performance of our technique increases as 

      increases from 0 to 0.3. For a given core type, a higher value of       gives a higher 

affinity of P-states to task types (i.e., some P-states will be better suited for specific task types 

than others). Therefore, more reward rate per power consumption can be obtained by matching 

task types with their better suited P-states.  

The reason that our technique achieves higher increase in reward rate for Problem 1 

compared to the decrease in power consumption for Problem 2 is that there is a lower bound on  

 

Figure ‎4.6. This figure shows the results for Problem 1 (maximizing reward rate). The average 

percentage improvement obtained by using the three-step assignment given in Section ‎4.5.2 

versus the assignment that is based on [PaT10] (given in Equation 4.22) is shown. A 95% 

confidence interval is shown for each average percentage improvement. The static power 

consumption of P-state 0 as a percentage of the total processing core power consumption is 

increased from 10% to 30%. Each group of columns compares the results when the value of  prop 

is 0, 0.1, and 0.3. The number of compute nodes, task types, and CRAC units for each simulation 

is 150, eight, and three, respectively.  
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Figure ‎4.7. This figure shows the results for Problem 2 (minimizing power consumption). The 

average percentage improvement obtained by using the three-step assignment given in 

Section ‎4.5.3 versus the assignment that is based on [PaT10] (given in Equation 4.22) is shown. 

A 95% confidence interval is shown for each average percentage improvement. The static power 

consumption of P-state 0 as a percentage of the total processing power consumption is increased 

from 10% to 30%. Each group of columns compares the results when the value of       is 0,0.1, 

and 0.3. The number of compute nodes, task types, and CRAC units for each simulation is 150, 

eight, and three, respectively. 

TABLE  4.2. STATIC POWER CONSUMPTOIN OF P-STATES OF CORES IN EACH NODE TYPE AS A 

PERCENTAGE.  

 
node type 1  

(P-state 1, 2, 3) 

node type 2 

(P-state 1, 2, 3) 

P-state 0 static power =10% 12.3, 15.6,  31.0% 12.5, 16.6,  27.5% 

P-state 0 static power =20% 24.0,  29.3,  50.2% 24.4, 31.0, 46.0% 

P-state 0 static power =30% 35.1,  41.5,  63.4% 35.6, 43.5, 59.4% 
 

the minimum power. The lower bound occurs when all cores are turned off and all compute 

nodes are only consuming the base power. However, the minimum reward rate of the data center 

is zero, which also happens when all cores are turned off. Because the minimum power is greater 

than zero, Problem 2 leaves less opportunity for improvement than Problem 1. If we do not 

consider the minimum power consumption of the data center for both our technique and the 

technique in Equation 4.22, then percentage power reduction that our technique achieves over 

the technique in Equation 22 will be on average 1.58 times higher on average.  
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The simple approach of running all cores in the data center at P-state 0 will result in a 

violation of the power constraint for Problem 1 and higher power consumption for Problem 2. 

For example, when P-state 0 static power is 10% of its total power consumption and       is 0.1, 

the simple approach resulted in a violation of the power constraint by 42% for Problem 1 and a 

power consumption of 75% higher than our approach for Problem 2.  

Effect of Power and Reward Constraints 

We also have conducted simulations to show the effect of increasing the power and 

reward constraints on the performance of our techniques. For these simulations, the static power 

consumption of P-state 0 was set to 10% of its total power consumption and       was set to 0.3. 

These simulations are shown in Figures 4.8 and 4.9.  

As the power constraint gets tighter (i.e., the power multiplier value gets lower) the 

relative performance of our technique improves. This is because when power is scarce, managing 

it intelligently can lead to substantial performance gains. As the power constraint gets looser, our 

technique will start assigning lower P-states to take advantage of the available power.  Therefore, 

the performance of our technique will be closer to the performance of the technique in Equation 

4.22 until they are both equal when the power multiplier is equal to 1.  

As shown in Figure 4.9, when the reward constraint is low, the relative performance of 

our technique is low. This is because there is a lower bound on the minimum power consumption 

of the data center. However, as the reward constraint increases, the power needed to satisfy the 

reward rate constraint becomes higher and more power savings can be obtained using our 

technique. Even when the reward rate constraint is at 90% of the maximum possible, our 

technique achieves 8.6% improvement. When the reward rate constraint is 100% of the 

maximum possible, both our technique and the one in Equation 4.22 will run all cores in the data  
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Figure ‎4.8. This figure shows the percentage increase in reward rate that our approach archives 

over the technique in Equation 4.22 and the reward rate per power consumption for our 

technique for Problem 1 (maximizing reward rate). The power multiplier is increased from 0.1 to 

1 with a step of 0.1. The static power of P-state 0 is 10% and       is 0.3. Each point in the 

figure represents a simulation case for one data center. The number of compute nodes, task types, 

and CRAC units for each simulation is 150, eight, and three, respectively. 

 

Figure ‎4.9. This figure shows the percentage reduction in power consumption that our approach 

archives over the technique in Equation 4.22 and the reward rate per power consumption for our 

technique for Problem 2 (minimizing power). The reward rate as a percentage of the maximum 

possible reward rate is increases from 10% to 100%. The static power of P-state 0 is 10% and 

      is 0.3. Each point in the figure represents a simulation case for one data center. The number 

of compute nodes, task types, and CRAC units for each simulation is 150, eight, and three, 

respectively. 

center at P-state 0 to satisfy the constraint.  Therefore, our approach will have no reward rate 

improvements. Figures 4.8 and 4.9 also show the reward rate per power consumption ratio for 

different power and reward rate constraints. When the power multiplier is low (i.e., tighter power 
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constraint) or the reward rate constraint is low (i.e., looser reward rate constraint) both solutions 

to Problem 1 and Problem 2 are driven to consume less power and collect less reward. Because 

of the minimum power consumption of the data center is not zero, the ratio of the reward rate to 

power consumption decreases more with the reduction in reward rate than it does increase with 

the reduction in total power consumption. This explains the low reward rate to power 

consumption ratio when the power multiplier is low or the reward rate constraint is low. 

There are two reasons that cause the ratio of reward rate to power consumption to decline 

for a higher value of a power constraint for Problem 1 or a higher value of a reward rate 

constraint for Problem 2. The first reason is that our technique will run the cores at lower P-states 

that are not power efficient so that all the power that is available is used (in Problem 1) or the 

reward rate constraint is satisfied (in Problem 2). The second reason is that our technique will 

assign tasks of types that have low reward rates because all the higher reward rate tasks are fully 

assigned. The simple approach of running all cores in the data center at P-state 0 will be 

equivalent to the case where the reward rate constraint is 100% of the maximum and the case 

where the power multiplier is 1. The simple approach will result in a reward rate per power 

consumption ratio equal to 19.43 that is less than the highest ratio which is equal to 21.6 for 

Problem 1(Figure 4.8) and 21.4 for Problem 2 (Figure 4.9).  

Scalability Analysis 

In our approach, the step that consumes the most time is Step 1. We conducted a 

scalability analysis for the execution time of Step 1 for Problem 1 (the execution time for 

Problem 2 was similar to Problem 1). Table 4.3 shows the execution times in seconds for 

different numbers of compute nodes. The number of task types remains fixed at eight task types. 

In Table 4.4, we have increased the number of task types as the number of compute nodes was 
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increased. The execution times for each case in both Tables 4.3 and 4.4 are averaged across five 

simulation runs. All the simulations were run on a laptop computer with a Core i7 processor 

running at a clock frequency of 2.8 GHz. The number of CRAC units was fixed at three CRAC 

units.  

Tables 4.3 and 4.4 show that the execution time is sensitive to both the number of task 

types and the number of compute nodes. Recall that the task type arrival rate is a function of the 

number of cores and the number of task types (see Equation 16). As the number of task types 

increases the arrival rate of each task type decreases. However, the total workload remains 

constant.  

Because the calculation of Step 1 is done offline (i.e., the assignment decisions are made 

before tasks arrive) based on estimated task arrival rates obtained from historical data for each 

task type, it is feasible to execute it for a longer time compared to online techniques. 

Furthermore, if Step 1 is parallelized (for example, by calculating the solutions to multiple 

starting points in parallel), then the time consumed by it can be significantly reduced.  

Unexecuted Workload 

Because of the power constraint in Problem 1 and the reduction of power consumption in 

Problem 2, a portion of the workload will not be executed. Tables E.1 and E.2 in Appendix E 

give the percentages of unexecuted tasks of each type for our technique versus the technique in 

Equation 4.22. 

Two cases for each combination of static power consumption and Vprop are given. Table 

E.1 shows the percentage of unexecuted tasks for Problem 1 and Table E.2 shows the percentage 

of unexecuted tasks for Problem 2.   

The task types that are not executed are the ones with low reward per power consumption  
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TABLE  4.3. EXCUTION TIMES FOR STEP 1 OF PROBLEM 1 AS THE NUMBER OF COMPUTE NODES 

VARIES.  

number of nodes number of task types average execution time (seconds) 

30 8 42 

90 8 679 

150 8 2771 

210 8 3688 

270 8 9575 
  

TABLE  4.4. EXCUTION TIMES FOR STEP 1 OF PROBLEM 1 AS THE NUMBER OF COMPUTE NODES AND 

THE NUMBER OF TASK TYPES VARY.  

number of nodes number of task types average execution time (seconds) 

30 2 10 

90 5 181 

150 8 2771 

210 11 12242 

270 14 134842 

 

ratio. In many cases, these task types were the same for our technique and the technique in 

Equation 4.22. However, there are some cases were this was not the case. This is because our 

technique considers higher P-states that may have a better reward per power consumption for 

different task type than the technique in Equation 4.22.  

Both our technique and the technique in Equation 4.22 execute more tasks for Problem 1 

compared to Problem 2. This is because in Problem 1 the goal is to execute as many tasks as 

possible to maximize the reward. However, in Problem 2 the goal is to minimize the power 

consumption which will result in less tasks being executed because we are not concerned with 

collecting reward at a rate higher than the reward rate constraint. 

Summary 

Our results show an average improvement over the comparison technique of up to 17% 

for Problem 1 (maximizing reward) and up to 9% for Problem 2 (minimizing power). Higher 

percentage increase in reward rate can be achieved for data centers with tighter power 
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constraints. Because today’s data centers are large, these improvements can mean hundreds of 

thousands of dollars in additional revenue or power savings. For example, the average cost of 

electricity in the U.S. for the industrial sector is $0.0688/kWh [Eia12]. If we achieve 9% power 

savings in a data center that has an average power consumption of 5 MW, then that will result in 

about $271,395 in annual savings.  

4.8. Future Work 

In this study, we selected a reward value for task types to be the reciprocal of the task 

easiness. Therefore, easier tasks will have lower reward. In future work, we will study other 

possible task type rewards and their effect on the improvements that our technique can achieve.  

4.9. Conclusions 

In this chapter, we study two assignment problems. The first problem maximizes the 

reward collected for completing tasks by their deadlines with a constraint on the maximum total 

power consumption. The second problem minimizes power consumption with a constraint on the 

minimum reward rate. We show how the P-states can be assigned at the data center level and 

divide each assignment problem into two stages. The first stage assigns the P-states of cores, the 

desired number of tasks per unit time allocated to a core, and the outlet CRAC temperatures. The 

second stage assigns individual tasks as they arrive at the data center to cores so that the actual 

number of tasks per unit time allocated to a core approaches the desired number set by the first 

stage.  

We formulate the first-stage assignment as a MINLP. Because the MINLP is not scalable 

with respect to the number of cores, we propose a multi-step, scalable assignment technique. At 
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the second stage, we propose a dynamic scheduler to assign tasks entering the data center to 

cores.  

In many data centers where static and dynamic core power consumptions are considered, 

P-state 0 is not the P-state with the highest performance to power consumption ratio. Therefore, 

using the assignment techniques in this chapter will result in a better total reward over a 

technique that choses between putting a core in P-state 0 or turning it off. 

 We conducted simulations to show the effectiveness of our technique over a technique 

based on [PaT10] which did not consider multiple P-states. In some cases, our technique 

achieved 17% average improvement for the problem of maximizing reward and 9% average 

improvement for the problem of minimizing the power consumption. In a large data center, these 

improvements can mean hundreds of thousands of dollars in additional revenue from additional 

productivity (Problem 1) or power savings (Problem 2). 
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Chapter 5 

5. Conclusions  

This thesis describes two problems. The first problem is how to quantify heterogeneity of 

computing environments.  In Chapter 2, we proposed three statistical measures to quantify the 

heterogeneity. We demonstrated the impact that the heterogeneity measures may have on the 

performance of task assignment heuristics and how these measures can be used to select a task 

assignment heuristic that is best suited for a computing environment based on its heterogeneity.  

In Chapter 3, we identified three properties that heterogeneity measures should have. 

Using these properties, we proposed three heterogeneity measures: (a) machine performance 

homogeneity, (b) task easiness homogeneity, and (c) task-machine affinity. We demonstrated 

how the SVD is used to calculate the task-machine affinity.  We illustrated how an iterative row 

and column normalization procedure can be used to keep the measures independent (an 

important property that a heterogeneity measures should have).  

The second problem that we study in this research is power and thermal-aware workload 

allocation in constrained data centers. In Chapter 4, we described two workload allocation 

(assignment) problems. The first allocation problem is concerned with maximizing the reward 

collected for completing tasks by their individual deadline subject to a constraint on the 

maximum total power consumption. The second allocation problem is concerned with 

minimizing the total power consumption of a data center subject to a constraint on the minimum 

total reward rate.  
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In the simulations that we conducted, our technique achieved up to 17% average increase 

in reward rate for the problem of maximizing reward and 9% average decrease in power 

consumption for the problem of minimizing the power consumption compared to a technique 

that considers only running a core in P-state 0 or turning-off the core. In a large data centers, 

these improvements can mean hundreds of thousands of dollars in additional revenue from 

improved productivity (Problem 1) or power savings (Problem 2). 
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Appendix A 
Theorem 1 can be restated using standard matrix notation as: 

Theorem A. Let A be an m   n matrix with positive elements and let k be a given nonzero 

scalar. Then there exists an m   m diagonal matrix D1 and an n   n diagonal matrix D2 such 

that the matrix D1AD2 has the property that each of its rows sums to nk and each of its columns 

sums to mk. Furthermore, D1 and D2 are unique up to a scalar multiple. 

Proof. For simplicity, we will prove the result for a 2   3 matrix A. The general m   n 

case readily follows using the same approach. Consider a 3   2 array of A matrices given by the 

partitioned matrix 

 ̃  [
  

  

  

]  

Applying Sinkhorn's theorem to this 6   6 positive matrix, one obtains 6   6 diagonal 

matrices E and F such that  

 ̃    ̃  [

 ̃   ̃  

 ̃   ̃  

 ̃   ̃  

] 

 

is a positive matrix whose rows and columns sum to 1. The diagonal matrices E and F can be 

written as E = diag(E1, E2, E3) and F = diag(F1, F2) where E1, E2, and E3 are 2   2 diagonal matrices 

and F1 and F2 are 3   3 diagonal matrices. Consider now the 6   3 matrix 

 ̅  [

 ̅ 

 ̅ 

 ̅ 

]  [

 ̃    ̃  

 ̃    ̃  

 ̃    ̃  

]  [

 ̃  

 ̃  

 ̃  

]   [

 ̃  

 ̃  

 ̃  

] 

where  ̅   ̃    ̃   for i = 1, 2, 3. Like  ̃, the six rows of  ̅ each sum to 1 but the three 

columns of  ̅ each sum to 2 instead as each column of  ̅ is a sum of two columns of  ̃. Next, 
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consider the 2   3 matrix    ̅   ̅   ̅ . The column sums of M match the column sums 

of  ̅ while the row sums of M are given by adding the corresponding rows sums of  ̅ ,  ̅ , and 

 ̅ . Hence, each row of M has a sum of 3 and each column has a sum of 2. Next, note that  

M  ∑ ∑  ̃  
 
   

 
   . Because  ̃        , we have  

  ∑∑     

 

   

 

   

 (∑  

 

   

) (∑  

 

   

)  

 Setting    ∑   
 
    and    ∑   

 
    results in two diagonal matrices D1 and D2 such 

that M = D1AD2 has row sums equal to 3 and column sums equal to 2. Lastly, scaling either D1 or 

D2 by k gives the desired result. The fact that E = diag(E1, E2, E3) and F = diag(F1, F2) are unique 

up to a scalar multiple implies the same for D1 and D2. Extending the same approach to the m × n 

case is now obvious. ■ 
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Appendix B 
As in Appendix A, Theorem 2 is restated using standard matrix notation. 

Theorem B. Let A be an m   n matrix with non-negative elements with the property that each 

row sums to r and each column sums to c. Then mr = nc, and the largest singular value of A is 

√ c  with a corresponding input singular vector v = 1 √ ⁄  1  1 
 
 and output singular vector 

u  1 √ ⁄  1  1 
 
, respectively. Furthermore, if the matrix is scaled so that     √  ⁄  and 

    √  ⁄ , then the largest singular value is equal to 1. 

Proof. The equality mr = nc follows from the fact that both values are equal to the sum of 

the mn elements of A. The fact that √ c is a singular value with corresponding input and output 

singular vectors v =  √ ⁄ [    ]
 
 and u   √ ⁄ [   ]

 
, respectively, readily follows from 

the facts that mr = nc,       √ c , and     √ c .  

To show that √ c is in fact the largest singular value, suppose that w is an input singular 

vector associated with the largest singular value. This means that w is a unit vector that 

maximizes ||Aw|| over the set of all unit n-vectors.  

We claim that we can assume that the components of w are non-negative. Obviously, we 

can assume that at least one component of the unit vector w is positive since either w or –w can 

serve as the input singular vector. Suppose that w has at least one positive and at least one 

negative component. Since A is a matrix with non-negative elements, each component of the 

vector Aw is a non-negative combination of the components of w. Hence, changing the signs of 

all the negative components of w will not decrease the magnitudes of the individual components 

of Aw and will not change the norm of w. We thus obtain another unit vector z, whose 

components are equal to the absolute values of the corresponding components of w, with the 
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property that ||Az|| > ||Aw||. By the assumption that ||Aw|| is the largest value over all unit n-

vectors, we conclude that the value ||Az|| = ||Aw|| is the largest singular value of A and that the 

resulting vector z is an input singular vector associated with the largest singular value. We then 

take the resulting vector z as our new vector w so that the components of w are non-negative. 

Now if the largest singular value is different than √ c, then the input singular vectors w 

and v must be orthogonal. However, this is impossible as the dot product of w and v is clearly 

positive. We thus conclude that √ c is the largest singular value. The last part of the theorem is 

obtained by applying an appropriate scaling to the matrix A. ■ 
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Appendix C 
In this appendix, we show how the parameters for two compute node types used in the 

simulations (Table 4.1) are obtained. The first compute node type is based on the HP ProLiant 

DL785 G5 server. This server has eight AMD Opteron 8381 HE processors with four cores in 

each processor. We assumed that the power consumption of the processor is 0.055 kW. This is 

based on the thermal design power (TDP) numbers found in the AMD data sheet [Amd10].  At 

100% utilization, the power consumption of the server was 0.793 kW. To obtain the base power 

consumption (B1) of this server, we subtracted the total power consumed by the 8 processors 

from the power consumption at 100%. The base power consumption is equal to 0.353 kW.  

The AMD Opteron processor has 4 P-states. The frequencies of P-states 0, 1, 2, and 3 are 

2500, 2100, 1700, and 800 MHz, respectively. The supply voltages of the P-states are 1.325, 

1.25, 1.175, and 1.025 V, respectively. To obtain P-state 0 power consumption of an individual 

core, the total power consumption of the processor is divided by the number of cores. Therefore, 

the power consumption of P-state 0 is 0.01375 kW. The power consumption of a core is due to 

static and dynamic power consumption. In [BuS00], the authors show that the static power 

consumption for a core is equal to a constant multiplied by the supply voltage. Let β be this 

constant. The dynamic power is calculated by the standard CMOS dynamic power dissipation 

formula. If S is the number of transistor switches per clock cycle, CL is the capacitive load, fj,k is 

the clock frequency of a core of type j running in P-state k and Vj,k is the supply voltage of a core 

of type j running in P-state k, then the dynamic power consumption of a core of type j running in 

P-state k is equal to S              
 . We assume that S     is a constant and is not dependent on 

the P-state. Let SC = S    . The total core power consumption, πj,k, is given by 

 π       C          
  β     .  (C.1) 
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In our simulations, we assume that the static power consumption as a percentage of the 

total power consumption for P-state 0 is known. Therefore, SC and β in Equation C.1 can be 

calculated for each core type and the power consumption of the other P-states can be calculated 

by substituting SC, β, the frequency of each P-state, and the supply voltage of each P-state.  

The air flow rate at node type 1 is assumed to be 0.07m
3
/s. This will guarantee that the 

maximum increase in temperature of the air going through a node of type 1 will be 9.4° Celsius 

or 17° Fahrenheit. We assume that the air density is equal to 1.205 kg/m
3 

and the specific heat 

capacity of air is 1 (in reality,
 
the density of air and its specific heat capacity depend on multiple 

factors such as pressure and temperature). 

The second node type is an NEC Express5800/A1080a-S server. This server has four 

Intel Xeon X7560 processors. Each processor has eight cores. The frequency of P-state 0 is 2666 

MHz. We assumed there are four P-states and the frequencies of P-states 1, 2, and 3 are 2200, 

1700, and 1000 MHz. The supply voltage for P-states 0 is assumed to be 1.35 V (this is based on 

Intel Xeon E7540 processor that has the same feature size). The voltages of P-states 1, 2, and 3 

are assumed to be 1.268, 1.18, 1.056 V, respectively. The calculation of the other parameters of 

the second node type is similar to calculation of the parameters of the first node type.  
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Appendix D 
In this appendix, we describe how an LP feasibility problem can be used to generate the 

cross interference coefficients. As opposed to [TaM06], in our simulations the data centers 

contain more than one CRAC unit. Therefore, the cross interference coefficients must include the 

CRAC units in addition to the compute nodes. We assume that the first NCRAC i and j indices in 

αi,j are CRAC units. If      C  C, then αi,j is the percentage of air flow generated from CRAC 

unit i, otherwise, αi,j is the percentage of the air flow generated from compute node i – NCRAC. 

Similarly, if      C  C, then αi, j is the air flow recirculated into CRAC unit j, otherwise, αi, j is 

the air flow recirculated into compute node j – NCRAC.  

The exit coefficient ECi is the percentage of air flow of compute node i that goes into 

CRAC units [TaM06]. Recirculation coefficient RCi is the percentage of the air flow at the inlet 

of compute node i that is recirculated from the outlet of other compute nodes [TaM06]. The 

position of a compute node within a rack affects its EC and RC. Compute nodes at the bottom of 

a rack will have a low RC (most if its inlet air comes from the perforated tiles) and a low EC 

(most of its air is recirculated into compute nodes). Compute nodes at the top of the rack have a 

high EC and a high RC. Compute nodes in [TaM06] are labeled A-E. Node A is at the bottom of 

the rack and node E is at the top of the rack. Table D.1 shows the ranges of EC and RC for each 

node label based on the CFD simulations in [TaM06]. 

Because we have more than one CRAC unit in our simulations, for each compute node, 

we will have an exit coefficient per CRAC unit. Let ECi,j be the exit coefficient of compute node 

i for CRAC unit j. 

Usually a data center is arranged in a hot aisle/cold aisle fashion. Figure ‎4.1 shows the data 

center layout that we assumed for our simulations. Assuming that CRAC unit i faces hot-aisle i, 
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the EC for a compute node whose outlet air goes into hot-aisle i will have a greater EC to CRAC 

unit i than to any other CRAC unit. Let MinECl and MaxECl be the minimum and maximum EC 

for a compute node with label l (as shown in Table D.1). Let MinRCl and MaxRCl be the 

minimum and maximum RC for a compute node with label l (as shown in Table D.1). Let Lj be 

the label of compute node j. Let HAj be the hot-aisle to which compute node j belongs (i.e., 

compute node j’s outlet air goes into hot-aisle HAj). For simplicity, we assume that M(i, j) is the 

percentage of the EC of a compute node in hot aisle i that goes to CRAC unit j. Let F be the 

vector of air flow rates F = [FCRAC1,  , FC  CNCRAC, FCN1,  , FC NCN]
T
. Let α be the 

matrix of the cross interference coefficients. 

The LP feasibility problem for generating the cross interference coefficients is given by 

Find α  

subject to 

1. ∑ α ,     ,
 C  C  C 
              C  C  C  

2. ∑ α         
 

 C  C  C 
   ,           C  C  C  

3. Min C  
M(H  ,  )   α   C  C,  ,          C  and           C  C 

4. α     C  C,    Max C  
M(H  ,  ) ,          C  and           C  C 

5. Min C  
 ∑ α     C  C       C  C

 C 
     Min C  

,           C      

TABLE D.1. THE RANGES OF EC AND RC FOR DIFFERENT COMPUTE NODE LABELS. 

Label EC range RC range 

A 30-40% 0-10% 

B 30-40% 0-20% 

C 40-50% 10-30% 

D 70-80% 30-70% 

E 80-90% 40-80% 
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6.  

The sum of the percentages of the air flows generated from a CRAC unit or a compute 

node must equal to 1. This is guaranteed by Constraint 1. Constraint 2 guarantees that the sum of 

the air flows at the inlet of a CRAC unit or a compute node is equal to its air flow rate. 

Constraints 3 and 4 guarantee that the sum of the exit coefficients at a compute node is within the 

range shown in Table D.1, and that the percentages set by matrix M are satisfied. The range of 

the recirculation coefficients for each node is guaranteed by Constraint 5. 

  



 

110 

 

Appendix E 

TABLE E.1. PERCENTAGE OF UNEXECUTED TASKS IN EACH TYPE FOR PROBLEM 1. 

simulatio

n # 

static 

power 
Vprop Technique T1 T2 T3 T4 T5 T6 T7 T8 

1 10 0 
Ours 0 0 100 0 53 0 100 100 

Equation 22 0 0 73 0 81 0 100 100 

2 10 0 
Ours 0 0 0 0 0 100 100 93 

Equation 22 0 0 0 0 0 100 100 83 

1 10 10 
Ours 100 0 0 100 100 0 8 0 

Equation 22 100 69 0 100 100 0 0 0 

2 10 10 
Ours 100 0 35 45 0 0 0 88 

Equation 22 0 0 96 100 5 0 0 100 

1 10 30 
Ours 0 0 0 4 91 24 9 65 

Equation 22 0 100 0 0 100 16 0 81 

2 10 30 
Ours 82 0 89 75 0 0 0 0 

Equation 22 14 100 100 100 0 0 0 0 

1 20 0 
Ours 0 0 100 0 45 0 100 100 

Equation 22 0 0 73 0 81 0 100 100 

2 20 0 
Ours 16 0 0 0 0 95 100 60 

Equation 22 0 0 0 0 0 100 100 93 

1 20 10 
Ours 100 0 41 32 0 0 100 24 

Equation 22 100 69 0 100 100 0 0 0 

2 20 10 
Ours 0 0 0 48 0 100 0 100 

Equation 22 0 0 96 100 5 0 0 100 

1 20 30 
Ours 0 0 13 0 100 0 5 97 

Equation 22 0 100 0 0 100 16 0 81 

2 20 30 
Ours 73 0 45 100 0 0 0 51 

Equation 22 14 100 100 100 0 0 0 0 

1 30 0 
Ours 0 0 100 0 53 0 100 100 

Equation 22 0 0 73 0 81 0 100 100 

2 30 0 
Ours 0 0 0 0 0 100 100 83 

Equation 22 0 0 0 0 0 100 100 93 

1 30 10 
Ours 100 0 0 100 100 0 34 0 

Equation 22 100 69 0 100 100 0 0 0 

2 30 10 
Ours 0 0 45 19 0 100 0 100 

Equation 22 0 0 96 100 5 0 0 100 

1 30 30 
Ours 73 0 92 0 0 0 0 0 

Equation 22 14 100 100 0 0 0 0 0 

2 30 30 
Ours 0 0 41 0 100 0 5 95 

Equation 22 16 0 100 0 78 0 0 100 
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TABLE E.2. PERCENTAGE OF UNEXECUTED TASKS IN EACH TYPE FOR PROBLEM 2. 

simulation 

# 

static 

power 
Vprop Technique T1 T2 T3 T4 T5 T6 T7 T8 

1 10 0 
Ours 0 0 90 0 86 62 100 93 

Equation 22 0 19 100 0 100 0 100 100 

2 10 0 
Ours 44 75 0 35 0 100 83 66 

Equation 22 100 12 0 0 0 100 100 100 

1 10 10 
Ours 100 0 56 100 100 15 67 0 

Equation 22 100 100 0 100 100 0 58 0 

2 10 10 
Ours 0 8 89 100 89 25 0 94 

Equation 22 17 0 100 100 100 0 0 100 

1 10 30 
Ours 0 100 20 100 56 0 47 100 

Equation 22 76 100 100 0 0 0 100 0 

2 10 30 
Ours 100 95 59 0 0 100 46 0 

Equation 22 100 92 0 100 0 0 100 0 

1 20 0 
Ours 0 27 90 0 100 0 100 100 

Equation 22 0 19 100 0 100 0 100 100 

2 20 0 
Ours 93 82 0 16 0 77 100 47 

Equation 22 100 12 0 0 0 100 100 100 

1 20 10 
Ours 28 0 100 100 87 2 0 100 

Equation 22 17 0 100 100 100 0 0 100 

2 20 10 
Ours 0 0 68 84 4 100 100 35 

Equation 22 0 0 100 100 0 100 83 0 

1 20 30 
Ours 0 81 28 0 97 65 0 100 

Equation 22 0 100 0 0 100 70 0 100 

2 20 30 
Ours 100 0 100 100 0 29 0 85 

Equation 22 100 100 100 100 18 0 0 0 

1 30 0 
Ours 0 0 80 35 88 28 100 100 

Equation 22 0 19 100 0 100 0 100 100 

2 30 0 
Ours 0 88 0 53 0 81 100 83 

Equation 22 100 12 0 0 0 100 100 100 

1 30 10 
Ours 100 41 0 100 100 0 94 0 

Equation 22 100 100 0 100 100 0 58 0 

2 30 10 
Ours 8 0 50 100 84 58 0 100 

Equation 22 17 0 100 100 100 0 0 100 

1 30 30 
Ours 0 60 5 0 100 91 0 100 

Equation 22 0 100 0 0 100 70 0 100 

2 30 30 
Ours 99 0 100 100 29 0 0 100 

Equation 22 100 100 100 100 18 0 0 0 
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Appendix F 

TABLE F.1. TABLE OF NOTATIONS. 

Notation Description 

α Matrix of the cross interference coefficients 

αi,j 

cross interference coefficient between CRAC unit i (or compute node i  – 

NCRAC if i is greater than NCRAC) and CRAC unit j (or compute node j  – 

NCRAC if j is greater than NCRAC) 

ηj  Number of P-states of core type j 

λi Arrival rate of task type i 

πj,k Power consumption of core type j running in P-state k 

ρ Density of air 

Φ Power multiplier that is used to select a power constraint 

AER(i, k) Actual execution rate of tasks of type i on core k 

Bj Base power consumption of a compute node type j 

C
 C 

       
 PCO     

ECS for a task of type i running on a core of type j as a continuous function of 

PCOREk 

CL Capacitive load 

CoP(τ) Coefficient of performance of a CRAC as a function of its outlet temperature τ   

coresj Set of indices of cores that belong to compute node j 

Cp Specific heat capacity of air 

CTk Type of compute node that core k belongs to (equivalently, it is the type of core 

k) 

di A value that is added to the arrival time of a task to obtain its individual deadline 

DF(i, k) Desired fraction of time that core k spends executing tasks of type i 

E(i, j), 
Effective number of cores at compute node j that are used to execute tasks of 

type i 

ECi,j Exit coefficient of compute node i for CRAC unit j 

ECS(i, j, k) Estimated computation speed of task type i on core type j running in P-state k 

ER(i, k) Desired execution rate of tasks of type i on core k 

F Vector of air flow rates ([FCRAC1,  , FC  CNCRAC, FCN1,  , FC NCN]
T) 

fj,k Clock frequency of a core of type j running in P-state k 

FCNi Air flow rate at compute node i 

FCRACi Air flow rate at CRAC unit i 

FRAC(i, j) 
Fraction of compute resource (i.e., the number of cores) used at compute node j 

used to execute tasks of type i 

HAj Hot-aisle to which compute node j belongs 

Lj Label of compute node j 

M(i, j) Percentage of the EC of a compute node in hot aisle i that goes to CRAC unit j 

MaxECl Maximum exit coefficient for a compute node with label l 

MaxECSi 
maximum ECS for task type i over all core types and all P-states except the 

turned-off P-state 

MaxRCl Maximum RC for a compute node with label l 

continue table on next page 
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Notation Description 

MinECl Minimum exit coefficient for a compute node with label l 

MinECSi 
minimum ECS for task type i over all core types and all P-states except the 

turned-off P-state 

MinRCl Minimum RC for a compute node with label l 

NCN Number of compute nodes in the data center 

NCORES Total number of cores in the data center 

NCRAC Number of CRAC units in the data center 

NTj Type of compute node j 

NTYPES Number of compute node types 

PCNj Power consumption of consumption node j  

Pconst Total power constraint for Problem 1 

PCOREk Power assigned to core k 

Pmax Upper bound on the maximum power consumption of the data center 

Pmin Upper bound on the minimum power consumption of the data center 

PSk Assigned P-state of core k 

ri Reward for completing a task of type i by its individual deadline 

  

rand[a, b] Uniform random variable in the interval [a, b] 

RCi 
Percentage of the air flow at the inlet of compute node i that is recirculated from 

the outlet of other compute nodes 

Rconst Reward rate constraint for Problem 2 

RER(i, k) Reassigned desired execution rate of task type i on core k 

S Number of transistor switches per clock cycle 

SC Product of S and    

SumECSi 
ECS obtained for a task type i if all cores in the data centers are used equally by 

every task type and all cores are running in P-state 0 

T Number of task types 

 
in 

Vector of inlet air temperatures 

([ C  C 
in
      C  C C  C

in
  C  

in
    C  C 

in
]
 
) 

 
redline Vector of redline temperature constraints on inlet air temperatures 

 
out 

Vector of outlet air temperatures 

([ C  C 
out
      C  C C  C

out
  C  

out
    C  C 

out
]
 
) 

TCNin

   
 Inlet air temperature at compute node i 

TCNout

     
 Outlet air temperature at compute node i 

TCRACin

   
 Inlet air temperature at CRAC unit i 

TCRACout

     
 Outlet air temperature at CRAC unit i 

TEi Task type i easiness 

Vj,k Supply voltage 

Varrival 
Variation parameter used to introduce some randomness in the assigned arrival 

rates of task types  

continue table on next page 
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Notation Description 

  C  
Parameter used to obtain a variation factor to generate the ECS matrix for P-state 

0 

Vprop 
Parameter used to control the variation factor so that the ECS is not exactly 

proportional to the clock frequency 

 

 

 


