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ABSTRACT 
 
 
 

INVESTIGATING POTENTIAL GROUNDWATER OUTFLOWS: 

COTTONWOOD SUB-BASIN, JOSHUA TREE NATIONAL PARK, CALIFORNIA USA 
 

 
 

 This study utilizes Electrical Resistivity Tomography (ERT) to investigate potential 

groundwater outflows of the Cottonwood sub-basin (CsB) in Joshua Tree National Park (JOTR), 

California. Southern JOTR depends on one groundwater well (LUB-23) screened in an 

unconfined aquifer unlike the northern section which obtains its water from the municipal water 

system of the town of Joshua Tree. Depth to water was reported at 67m (219 ft) below ground 

surface (bgs) in 2017, a drop of almost 15m (49 ft) since installation in 1958. This variability in 

water level drives the need for a definitive water budget particularly since there is only one 

groundwater well. To contribute to developing a water budget, this study focused on 

investigating a potential groundwater connection between the CsB and the larger neighboring 

Pinto Basin. Interpretation of the subsurface resistivity models showed lack of a groundwater 

connection (or lack of contiguous low resistivity distribution) thus, this study concludes there is 

no groundwater connection or underflow at the boundary of the CsB and the Pinto Basin. 

Depth to water readings, which confirmed the water table was at 58m (190 ft) bgs. 

suggest the reported depth to water of 67m (219 ft) did not likely represent the static water level.  

Water quality and stable isotope analyses of groundwater samples were collected and compared 

to analyses performed from 2009 showing little variability over the 9-year period between 

sampling. Thus, no indications that pumping has modified chemistry or isotope composition. 
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1. INTRODUCTION 

 

 Within the Joshua Tree National Park (JOTR) in southern California (Figure 1-1), the 

majority of infrastructure water is provided from the municipal water system from the town of 

Joshua Tree, CA. Currently, the southern part of the park obtains its water supply from a 

groundwater well located in the Cottonwood sub-basin of the Pinto Basin. This well has been 

referred to by many different names, but will herein be referred to as LUB-23 (LUB-23 refers to 

the Mathany’s identification of it as a Low-Use Basin well in the 2012 publication on 

groundwater quality) (Mathany, et al., 2012). Installed in 1958, LUB-23 provides water for the 

Cottonwood visitor center, park employee housing, and southern infrastructure for the park such 

as water treatment and storage (Figure 1-2). Recently, an initiative has developed to expand the 

Cottonwood visitor center in JOTR in order to accommodate a greater tourism presence. This 

potential growth drives the need to have an accurate water budget for an area with only one 

groundwater well.  

Previous geophysical studies indicate that local groundwater which supplies LUB-23 is 

likely contained within a small sub-basin of the larger Pinto Basin, Cottonwood sub-basin, which 

is 5% the size of the Pinto Basin, at ~8,900 hectares in size compared to ~165,000 hectares 

(22,000 – 407,000 acres) (Figure 1-3; Karst & Rice, 2018). Overland flow from precipitation in 

the surrounding mountains concentrates into the Smoke Tree Wash (the primary surface drainage 

in the area of interest) and percolates into the Cottonwood sub-basin (Figure 1-4).  Powell’s 

geologic interpretation (2001) of the Cottonwood sub-basin infers several faults near the 

boundary of the Cottonwood sub-basin and the Pinto basin. Weir & Bader (1963) suggest that 

faults could create a localized change in hydraulic gradient which may set conditions for a 
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groundwater connection across this boundary (Weir & Bader, 1963). A groundwater connection 

between the basins could serve as an additional outflow previously unidentified, but if it 

currently exists, it likely has existed since before development.   

In 2018, park personnel reported the depth to water in LUB-23 production well at 67m 

(219 ft) below ground surface (bgs), a drop of approximately 15m (49 ft) over several decades 

(Karst & Rice, 2018). A water budget analysis performed by Karst and Rice (2018) suggested 

that groundwater pumping alone would not cause such declines, but does not detail potential 

underflows from the Cottonwood Basin. Karst and Rice (2018) cited potential causes of water 

level declines that include underflows via a fault controlled-spillway or LUB-23 becoming 

inefficient from blocked or clogged screens. Karst and Rice (2018) also proposed a location to 

place a second groundwater well in the Cottonwood Sub-basin to serve as a contingency well, 

monitoring well, or primary production well. The well siting recommendation was based on 

gravity data acquired in 2007 to determine the deepest part of the basin arguing it is the most 

advantageous location for the second well (Langenheim et al., 2016).  

Measured water level declines at LUB-23 may reflect substantial changes in aquifer 

storage, highlighting the need to better characterize water budget components. This present study 

investigated the presence of faulting and groundwater connections between the Cottonwood sub-

basin and Pinto Valley but not what may have caused the connection.  

The overall motivation behind this study is to compliment the research conducted by the 

National Park Service in 2018 and contribute to a refined hydrogeologic conceptual model. 

There are two conceptual scenarios that would result in the presence of a groundwater 

connection between the Cottonwood sub-basin and the Pinto Basin by a fault-controlled 

spillway. Scenario A is the circumstance where the local water table responds to recharge and, at 
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some point, the water table rises above a fault boundary to the adjoining basin, and creates a 

groundwater connection (Figure 1-5).  Scenario B is the circumstance where there is a 

groundwater connection into the Pinto Basin by means of flow through fractures in the basin-

bounding fault (Figure 1-5).   

Bense et al (2013) highlight the uncertainty in the ability to determine hydrogeology 

characteristics and influences in fault zone areas. Faults can act as conduits allowing fluid 

transport and is fundamental to understanding influences on hydrogeological characteristics to 

include groundwater flow (Sibson, 1981). At shallow depths fluid properties do not influence 

geologic processes of fault behavior as they do at greater depths as a result of fluid pressure. 

Therefore, it is easier to predict groundwater behavior from the geologic properties of the fault 

(Sibson et al., 1975). The primary characteristics of interest would be the hydraulic gradient and 

the resulting permeability of the fault due to compaction and deformation. Ultimately the fault 

zone could act as a conduit for groundwater flow or as a barrier to isolate one basin from the 

other. A conceptual illustration of fault architecture (Figure 1-6) shows how, depending on the 

degree of deformation, faults can contribute to isolating or acting as a conduit (Bense, et al., 

2013). Thus, characterizing a fault zone can prove informative and help understand the 

hydrogeologic relationships. 

Electrical Resistivity Tomography (ERT) was used to investigate the groundwater 

connections between the basins and to validate the recommendations of a secondary well site by 

Karst and Rice (2018). ERT was chosen because it is minimally invasive (being minimally 

invasive is of importance because the study area is in designated federally protected wilderness 

area), can image to the desired resolution and to the depth estimated for the bedrock surface, and 

can show groundwater connections in the subsurface.  
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The use of ERT to investigate faults can be informative as is evidenced in Monahan’s 

investigation of the Los Osos fault zone in southern California, a study area with similar climate, 

stratigraphy, and fault frequency as JOTR (Monahan, 2013). She found strong lateral contrasts 

that inferred a dipping fault as well as low resistivity zones that correlated with saturated alluvial 

deposits. The success of using ERT is in its ability to differentiate between sediment layers and 

illustrate the orientation of the fault between the hanging wall and the foot wall (Monahan, 

2013). Therefore, this study investigating a potential fault-controlled spillway in JOTR will use 

ERT to try to identify these same characteristics in the survey area. 

 To contribute to data needed to perform a water budget, the objectives of this study are 

to: (1) investigate groundwater connections between the Cottonwood sub-basin and the Pinto 

Basin using ERT, (2) investigate the efficiency of LUB-23, (3) conduct an analysis of water 

quality at LUB-23, and (4) evaluate the recommendation of a secondary well site by Karst and 

Rice (2018).  Water quality analyses were also conducted through geochemical sampling to show 

any evidence of groundwater contamination or suggestions that the well is drawing water from 

new sources compared to 2009 sampling. Using a well sounder and subsurface camera, a well 

investigation was conducted to identify any potential characteristics that would inhibit the 

efficient operation of the groundwater pump or screening of LUB-23. 

 
 
 
 
 

 



5 

 
 

Figure 1-1. Joshua Tree National Park Orientation. Modified from source credit: National Park Service: Joshua Tree 
National Park (https://www.nps.gov/jotr/planyourvisit/maps.htm) 
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Figure 1-2. Cottonwood Area Infrastructure. 

Figure 1-3. Cottonwood Sub-Basin Orientation, Joshua Tree National Park, California. 
Source credit: National Park Service – Lake Mead National Recreation Area GIS Office, 
April 2018. 
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Figure 1-4. Smoke Tree Wash Orientation with approximated faults indicated (Powell, 2001) 
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Figure 1-5. Fault-Controlled groundwater connection concept. Conceptual illustrations of a 
fault-controlled groundwater connection also known as a fault-controlled spillway. Scenarios 
are: no groundwater connection [top], over-fault groundwater connection [middle], or through-
fault groundwater connection [bottom]. 
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Figure 1-6. Fault architecture in faults with 
soft-sediment deformation at shallow depths 
Source Credit: Heynekamp et al., 1999. 
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2. BACKGROUND 

 

2.1 Site Description 

 JOTR is located in southern California bordering the Mojave and Sonoran deserts (Figure 

2-1) of the Transverse Ranges in California (Powell, 2015). The principal basin of JOTR is the 

Pinto Basin and within the Pinto Basin there are several sub-basins. Key contributing studies in 

JOTR have combined several sub-basins and have referred to them as the Joshua Basin Water 

District (JBWD). However, for clarity, this study only focuses on the interaction between the 

Cottonwood sub-basin and the Pinto Basin (Nishikawa et al., 2004). The principal area of 

interest for this study is the Cottonwood sub-basin on the southcentral fringe of the Pinto Basin 

(Figure 1-3) underlying ~8,900 hectares (~22,000 acres) of the park. In most studies, the 

Cottonwood sub-basin is included in and referred to as the Pinto Basin. Only in more recent 

studies has it been identified as a research area of interest and labeled as the Cottonwood sub-

basin. It is bounded on nearly all sides by the Eagle Mountains to the east, Hexie and 

Cottonwood Mountains to the north and west, and the Cottonwood Mountains to the south 

(Figure 2-2). We assume, similar to Karst & Rice’s (2018) conclusions, that these mountain 

boundaries isolate the Cottonwood sub-basin from any other groundwater system to the south or 

west. The potential fault-controlled spillway identified by Karst & Rice (2018) is in the northeast 

area of this sub-basin.  

This research found a relief of approximately 24m per km in the center of the 

Cottonwood sub-basin and leveling off significantly to the northeast at a gradient of 8m per km. 

These findings are consistent with previous studies in the area for surface conditions. 

Hydrogeological analysis by Weir & Bader (1963), however, indicate a southward hydraulic 
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gradient for subsurface flow, until water accumulates in the deeper alluvial deposits (Weir & 

Bader, 1963). The totality of the field work conducted herein was located in wilderness washes 

or relatively flat / graded terrain at an average elevation of 900m (~2950 ft) above sea level. This 

supports the presumption that overland flow in washes originating in the Cottonwood sub-basin 

could flow into the Pinto Basin due to topographic relief. However, hydrogeologic studies 

indicate that once water has infiltrated the subsurface outside of the wash, it will be retained in 

the Cottonwood sub-basin (Weir & Bader, 1963).  

2.2 Geologic setting  

The Cottonwood sub-basin is part of the Pinto Valley which is mainly comprised of 

alluvium (Kunkel, 1963). The deposits in this valley vary in ages from Precambrian to 

Quaternary. The alluvial and lacustrine deposits consist mainly of clay, silt, sand, and gravel with 

interbedded basalt at greater depths (Scharf, 1935). The mountains, that act as natural boundaries 

for subsurface flows, are a mix of Jurassic and pre-Cretaceous aged rock and are predominantly 

igneous (granitic) (Jenkins, 1938). The presence of fractures or evidence of any underflows 

(aside from the Cottonwood Springs outflow) have yet to be defined for this area. 

Geologic formations in the area of the Cottonwood sub-basin can be divided into nine 

stratigraphic layers. From oldest to youngest these layers are: basement complex, old alluvial 

deposits, olivine basalt, Pinto formation, older alluvium, lacustrine deposits, younger alluvium, 

playa deposits, and sand (Weir & Bader, 1963). The basement complex is likely Precambrian 

metamorphic rock intruded by igneous rock (Miller, 1938). Old alluvial deposits are inter-

layered silt and sand units. The olivine basalt is in places interbedded with the old alluvial 

deposits and where exposed tends to be vesicular. The Pinto formation is composed primarily of 

Pleistocene lacustrine deposits. The maximum thickness is unknown, but it has been suggested 
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by Scharf (1935) there are at least two primary layers, 45 meters of sedimentary deposits and 45 

meters of interbedded basalt, displaced by faulting (Scharf, 1935). The older alluvium layer is 

interbedded by lacustrine and clay deposits and is displaced by faulting and deformed by folding 

with an estimated thickness of ~57m (~187ft) between depths from surface of ~16-74m (~51-

243ft) (Weir & Bader, 1963). The lacustrine deposits that overlie the older alluvium consist of 

poorly sorted sand, silt, and clay. Younger alluvium is very shallow and is either only a few 

meters thick, or not present in some areas between the most recent playa deposits. The playa 

deposits and sand are very thin layers that sit as the most recent layer of deposits. No 

permanently saturated areas are known to exist above the lacustrine deposits (Weir & Bader, 

1963). The stratigraphic interpretation of Weir & Bader is consistent with the driller’s logs of 

LUB-23 taken in 1958 (Figure 2-2). However, it must be noted that the depth of the Cottonwood 

sub-basin varies greatly and most depths are estimated and not known due to lack of studies in 

the area. 

LUB-23 was drilled in 1958. The original driller’s log refers to LUB-23 as well 4S/11E-

27Q (Cottonwood Pass Well). These logs (Table 2-1 & Figure 2-3) subdivide the stratigraphy 

into three main categories: younger alluvium, older alluvium, and basement complex. This early 

estimate is similar to the nine subdivisions determined by Weir & Bader (1963). Younger 

alluvium is reported to be approximately 18m (60ft) thick with older alluvium consisting of 

mostly boulders and clay with a thickness of 47m (155ft) reaching a total of 65m (215ft) bgs. 

The well extends into what they refer to as a basement complex consisting of boulders, clay, and 

gravel reaching a total depth of 122m (403ft) and is perforated from ~63m-122m (~208 – 403ft) 

(Weir & Bader, 1963). 
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Scharf suggests that principal volumes of water are stored in the older alluvium layer and 

in the interbedded Pinto formation (Scharf, 1938). In 1963 the groundwater level in LUB-23 was 

at a static level of 51m (170ft) bgs and the zone of saturation was estimated to be about 71m 

(233ft) thick (Weir & Bader, 1963). The most recent water budget computation to include an 

estimated groundwater storage capacity was conducted for the Cottonwood sub-basin in 2018 by 

the National Park Service (NPS). Based on varying reported groundwater levels, the range of 

storage capacity was estimated to be between 0.07km3 and 0.10km3 (56,000 ac-ft and 84,000 ac-

ft) (Karst & Rice, 2018). Potential outflows are estimated to be evapotranspiration, groundwater 

extraction, and subsurface outflow (via fault-induced springs) that result in a change of storage 

between 1973m3/yr and 2837m3/yr (1.6 ac-ft/yr and 2.3 ac-ft/yr) (Karst & Rice, 2018). The high 

end of the estimated change in storage (which includes all outflows) would not result in the 

observed water level declines of more than ~15m (49ft) if outflows were limited to 

evapotranspiration, legitimate groundwater extraction, and identified spring outflows. There has 

been no evidence of illegitimate groundwater extraction in the Cottonwood sub-basin of Joshua 

Tree National Park, and is assumed not to be an influence for this study. 

2.3 Faulting & Seismic Activity 

 Since the North American Plate and Pacific Plate are both made of continental rock and 

similar density, neither will subduct below the other (Trent & Hazlett, 2002). With no subduction 

these two plates slowly negotiate around each other by sliding past, creating the San Andreas 

Fault. This one large fault sets conditions for zones of faulting throughout the area in addition to 

pull apart basins as a result (Aydin & Nur 1982). Networks of faults are common in the Mojave 

Desert and many existing fault-bounded sub-basins have large variance in water levels 

(Bedrosian et al., 2013). Second only to the San Andreas Fault, the Pinto Mountain Fault is one 
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of the most prominent faults in the JOTR area and is located at the northern edge of the Pinto 

Basin (Trent & Hazlett, 2002). For comparison from another study, evidence shows the Pinto 

Mountain Fault separates the Copper Mountain sub-basin (CMSB) from the Pinto Basin. 

Elevation at CMSB is lower than the Pinto Basin and depth to water in the Copper Mountain 

sub-basin has a depth to water 21-30m (70-100ft), below the surface of the Pinto Basin (Lewis, 

1972). Thus, similar to the Copper Mountain sub-basin relationship with the Pinto Basin, we 

would expect to see distinct variance in groundwater levels in the research area between the 

Cottonwood sub-basin and the larger Pinto Basin being fault separated basins. In this study, the 

Cottonwood sub-basin sits at higher elevation than the neighboring Pinto Basin to the northeast 

and it’s possible that fracturing in inferred faults has created an avenue for groundwater to flow 

into the Pinto Basin. Water table elevation at LUB-23 is 842m above sea level, and the surface 

elevation of the Pinto Basin is 865m near the boundary of the two discussed basins. In the 

general research area, the Porcupine Wash and Smoke Tree Wash faults (Figure 2-2) are the 

primary east-west oriented faults. The Porcupine Wash fault is approximately 4.3km (2.7 miles) 

north of the Smoke Tree Wash fault zone, and not relatively influential to a relationship between 

the Cottonwood sub-basin and the Pinto Basin. The Smoke Tree Wash fault zone does have the 

potential to be a direct influence on groundwater connection between the Cottonwood sub-basin 

and the Pinto Basin. Thus, it is the primary zone considered in this study. The Smoke Tree Wash 

fault zone has three primary faults running east to west, likely a system of dip-slip or extensional 

normal faults, consistent with being a pull-apart basin (Powell, 2001). Additional faulting is most 

evident on the northern edge of the Eagle Mountains (south of this study area), and is 

characterized by an eastward oriented scarp (Kunkel, 1963). Despite a hydraulic gradient that 

brings subsurface waters to aggregate in the alluvial deposits, Weir & Bader (1963) suggest that 
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groundwater from the Cottonwood sub-basin could move slowly through or over the fault zones 

northeastward into the Pinto Basin due to a localized change in hydraulic gradients induced by 

faulting (Weir & Bader, 1963). This is a substantiating rationale for the purpose and scope of this 

research. Besides groundwater extraction the only groundwater outflow that has been identified 

conclusively is from the fault zones that contribute source waters for springs. Fault-zones can 

allow groundwater to rise on the upslope side of the fault and this occurs at the Cottonwood 

Springs as the only known outflow besides groundwater extraction (Trent & Hazlett, 2002).  

Valley fill depth interpretation from gravity data is imposed over the outline of the 

Cottonwood sub-basin to show depth and shape of the basin (Figure 2-5), suggesting that the 

Cottonwood sub-basin (in vicinity of the Smoke Tree Wash) is a pull apart basin (Langenheim, 

2016). Factors that contribute to this are: (1) length is twice its width, (2) depth greater than 

100m, and (3) basin length oriented in the same direction of the Smoke Tree fault (Aydin & Nur, 

1982). Continual evolution of pull apart basins can develop separate faults being joined to create 

a larger basin. This potential for complex fault system interaction is the rationale for 

investigating the potential presence of a fault-controlled spillway, as discussed later in the 

background section. 

Similar sub-basins in JOTR are fault-bounded. Three specific examples include the 

Copper Mountain sub-basin, the Warren sub-basin, and the Twenty-nine Palms sub-basin. All 

three sub-basins have water level elevations that are higher than the water elevations in the Pinto 

basin that it borders, by hundreds of feet (Nishikawa et al., 2004). Dissimilar to the Cottonwood 

sub-basin, there is a greater potential in these sub-basins to have groundwater connections 

because saturated depths are close to the boundaries between the basins. In the study area, valley 

fill depth and saturated thickness of the Cottonwood sub-basin is more than 2km away from the 
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boundary. However, in these three sub-basins the faulting has caused deformation and 

cementation which can create barriers to flow (Nishikawa et al., 2004). The similar concept 

could be applied to the Cottonwood sub-basin and this study investigates whether or not a 

groundwater connection could exist through a potential barrier to flow.  Additionally, this will 

help contribute to understanding characteristics of the sub-basin that inform a more refined water 

budget, particularly since there is limited hydrogeologic information in the study area as 

compared to the Northern part of the park (where the Copper Mountain, Warren, and Twenty-

nine Palms sub-basins are located). 

If there has been a groundwater connection via a fault-controlled spillway between the 

Cottonwood sub-basin and the Pinto Basin, it is likely that it has existed since before LUB-23 

was installed in 1958. Therefore, it would not be a new underflow just an undocumented 

underflow. However, albeit the unlikely scenario, it is possible that recent seismic activity has 

induced fractures or avenues of groundwater flow between the basins. According to the USGS 

earthquake monitoring service, JOTR has experienced more than 500 earthquakes in the last 

year. The largest earthquake of recent time has been a 7.3 magnitude earthquake in 1992 (USGS, 

2019). The amount of seismic activity and tectonic movement in the region could be contributors 

to creating fractures or avenues to provide groundwater connections between basins. 

An objective of this study is to identify the presence or lack of a groundwater connection which 

could be attributed to fractures in a fault between the basins, but this study is not investigating 

the cause, only the presence. 

2.4 Hydrogeology 

Precipitation is the only source of recharge to the Cottonwood sub-basin. According to 

the Western Regional Climate Center (WRCC), JOTR has an average high temperature of 26.4° 
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C (79.6° F) and an average low of 10.6° C (51.2° F) with the hottest months of July and August 

averaging over 37.8° C (100° F). Classified as an arid climate, precipitation data lists an annual 

high average of 207mm (8.18”) and an annual low of 59mm (2.33”) from data collected 1959 

through 2012 (WRCC, 2019). Only 21 total days of calendar year 2018 experienced 

precipitation. These amounts totaled 180mm (7.1”) at the Joshua Tree 2.0 Weather Station, 

(~60km from the research study area) with 59mm (2.34”) of precipitation coming in one event 

on 13 October 2018 (6 weeks prior to data collection for this research) according to the National 

Oceanic & Atmospheric Administration (NOAA). Groundwater recharge is predominantly from 

precipitation during the winter months (January-February 2018; November-December 2018) but, 

in 2018 precipitation only totaled 57mm (2.25”). Thus, precipitation events vary greatly year to 

year and water levels may be sensitive to these variations. It is important to note, however, 

variations in precipitation occur greatly within the park itself due to elevation. According to data 

from 2006-2017, average annual precipitation recorded by the Cottonwood Canyon station is 

approximately 114.3mm (4.5 inches) of precipitation annually (Karst & Rice, 2018). The 

Cottonwood Canyon meteorological station (KCAEAGLE) is no longer in service as of January, 

2018. There are no current precipitation stations that provide specific data, but it has been 

suggested that southern areas of the park when receiving 50-76mm (2-3”) of rain will have rains 

of 101-127mm (4-5”) in the northwestern area of the park (Weir & Bader, 1963). Therefore, 

official climatic precipitation values may overestimate the cumulative value of precipitation for 

this area of interest. 

There are no perennial streams or bodies of water in the Cottonwood sub-basin. 

However, the area is prone to flooding when high intensity or long-term precipitation events 

occur in the mountains. These events result in the washes that are evident in the topography of 
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the area (Campbell & Campbell, 1935). The frequency and location of playas in this area of 

JOTR has not been documented but the area does have a history of known playa deposits (Weird 

& Bader, 1963). 

Two different depths to water were used in conjunction with estimated depths to bedrock 

(from gravity data) to estimate storage capacity in Karst & Rice’s 2018 water budget model of 

the Cottonwood sub-basin aquifer (Karst & Rice, 2018). The range of depth was estimated using 

seismic data (depth to water 51m or 170ft bgs) and the observed depth to water (67m or 219ft) to 

determine storage potential (Langenheim et al., 2016). Thus, 1.0x108m3 and 6.9x107m3 

(84,000ac-ft and 56,000ac-ft) is the estimated storage when assuming the sub-basin is primarily 

sand and gravel with drainable porosity as is understood from known stratigraphic analysis. 

Karst & Rice (2018) assumed a specific yield value of 0.15 in their calculations (Karst & Rice, 

2018).  

Natural recharge in JOTR as a whole to include the Cottonwood groundwater sub-basin 

is limited. Besides potential recharge underflow the only source of ground water in the 

Cottonwood sub-basin is precipitation. Infiltrating water percolates through the pores to the 

water table (Kunkel, 1963). Recharge to the Cottonwood sub-basin is derived mostly from runoff 

from the precipitation events over the encircling mountain ranges via infiltration and is estimated 

to be approximately 11.4cm (4.5in) annually for calculations. Total recharge estimates were 

determined through two methods. First, using groundwater modeling estimates from a 2004 

study combined with the approximated area of the Cottonwood sub-basin; precipitation indicated 

a potential total recharge between 1.0x105m3/yr and 1.8x105m3/yr (85-150 ac-ft/yr) (Karst & 

Rice, 2018) (Nishikawa et al., 2004). The chloride mass balance (CMB) method was used as a 

second estimate suggesting recharge was between 7.4 x104m3/yr - 1.0x105m3/yr (60-85ac-ft/yr) 
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(Karst & Rice, 2018). The CMB is a tracer technique used to estimate groundwater recharge 

under steady-state conditions by comparing total chloride deposition from the surface to the 

concentration in groundwater (Naranjo et al., 2015). When recharge rates are low in comparison 

to total precipitation (due to the overland flow of the local washes) CMB is generally more 

reliable than the water balance method (Scanlon et al., 2002). One additional inflow includes 

septic return, estimated to be approximately 2100m3/yr (1.7ac-ft/yr) (Karst & Rice, 2018). 

Ultimately, the lowest estimate and highest estimate will be used for the range of annual recharge 

to the Cottonwood sub-basin: 7.4 x104m3/yr – 1.8x105m3/yr (60-150ac-ft/yr) (Karst & Rice, 

2018). 

Spring outflows at the Cottonwood springs are estimated to be 3700m3/yr (3ac-ft/yr). 

(Sada & Jacobs, 2008). Groundwater extraction averaged over 2015 and 2016 was 4934m3/yr 

(4ac-ft/yr) (Karst & Rice, 2018). Evapotranspiration is estimated to be 3700m3/yr (3ac-ft/yr), 

campground and recreational use is estimated to be approximately 2700m3/yr (2.2ac-ft/yr), and 

employee housing is estimated to be 1600m3/yr (1.3ac ft/yr) (Karst & Rice, 2018). Although it is 

assumed that there are no subsurface inflows into the Cottonwood sub-basin, it is assumed that 

there is 7.0 x104m3/yr – 1.8 x105m3/yr (57-147ac ft/yr) as subsurface outflow. This large amount 

would replicate conditions we see over time. Without this large outflow, the aquifer water table 

would be rising over time. Including this assumed value, we see a decline in about 2800m3/yr 

(2.3ac/ft yr). However, it is unknown the avenue this outflow takes. A full water budget 

accounting authored by Karst & Rice (2018) is seen in Table 2-2.  

Park personnel report that the water level has declined in the LUB-23 well from 51m 

(170ft) bgs when it was installed in 1958 to about 67m (219ft) bgs over the last few years. The 

reason for this decline can only be speculated at this point since groundwater extraction and 
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spring discharge would not cause this decline on its own (Karst & Rice, 2018). Poor well screen 

conditions, faulting losses, and interbedded impermeable layers (clays) could contribute to a 

larger cone of depression around the well or aggregate water declines (Karst & Rice, 2018). Our 

research focused on investigating groundwater connections between the Cottonwood sub-basin 

and the Pinto Basin in order to better characterize the hydrogeological relationship at the 

boundary. 

2.5 Previous research and data collection 

Numerous studies (Nishikawa et al., 2004, Kunkel, 1963, Weir & Bader, 1963, Mathany 

et al., 2012, and Bedrosian et. al, 2013) have been conducted with respect to groundwater flow, 

basin evolution, and geologic setting for the entirety of the Joshua Tree National Park, but 

limited information is available specifically tailored to the Cottonwood sub-basin and the relative 

interaction of groundwater with its geologic surroundings. The earliest primary investigation 

inclusive of the Cottonwood area was by Weir & Bader in 1963. Water source reconnaissance 

was conducted by Mendenhall in 1909 that investigated and documented outflow of Cottonwood 

Springs (Mendenhall, 1909). In 1912, Harder investigated the Eagle Mountains and further 

documented Cottonwood Springs (Harder, 1912). In 1935 Scharf investigated the geologic units 

in the area with an archeological study of Pinto Basin (Campbell & Campbell, 1935). 

Unpublished reports from J.V. Lewis in 1941 and 1942 documented the alluvial deposits in the 

area and Kunkel conducted a hydrologic and geologic reconnaissance of Pinto Basin in 1960 

(Kunkel, 1963). 

In 2000, the U.S. Geological Survey (USGS) began groundwater flow studies in JOTR, 

but focused on the relationship between the Copper Mountain sub-basin and the Joshua Basin 

Water District at large (Nishikawa, et al., 2004). Additional NPS and USGS data collection 
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efforts concentrated on water quality data such as the baseline data collected in 2001 by the NPS 

and groundwater quality data by the USGS in 2009 (Mathany, et al., 2012). Powell in 

conjunction with the USGS has conducted the most extensive work, mapping the geological 

characteristics of JOTR for over ten years with such contributions as the current Porcupine Wash 

7.5° quadrangle geologic map (Figure 2-6), fault zone maps, and a geodatabase for reference 

(Powell, 2001 & 2015). A 2013 study focused on the Pinto Mountain Fault and varying depth to 

water measurements on either side (Bedrosian, et al., 2013). Using time domain electromagnetic 

(TDEM) inversion, this study investigated hydrogeological characteristics of the fault zone in the 

northern part of JOTR. Although TDEM is distinctly different from ERT, using means of 

electrical investigation in the aridity of Joshua Tree appears to be reliable. This particular study 

attempted to use a 600m long ERT survey, but data was considered unreliable when they were 

plagued with high contact resistance (Bedrosian, et al., 2013). This result prompted the 

preparation to improve contact resistance, which was accomplished using a localized salt water 

solution around electrodes. 

Of particular importance to this study to interpret an alternate well location was isostatic 

gravity gradient data and seismic refraction data for the Cottonwood sub-basin. The isostatic 

gravity data from Langenheim et al., 2016, consisted of 89 individual measurements using an 

absolute gravimeter that contributed to constructing that valley fill depth interpretation. Seismic 

refraction data (discussed later) also collected by Langenheim et al. (2016), was instrumental in 

interpreting the resistivity data, and confirming depth to water readings. This was collected along 

the relatively same path as one of the ERT surveys (Survey A) and extended 1100m providing a 

seismic interpretation which we compliment with the resistivity data. 
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This research is in response to the need identified by the USGS and NPS for further 

geophysical investigation of the boundary conditions between the Cottonwood sub-basin and the 

Pinto Basin (Karst & Rice, 2018).  
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Table 2-1. Driller’s logs for LUB-23, source credit: Weir & Bader, 1963. 
Within the source credit LUB-23 is referred to as the Cottonwood Pass 
Well (4S/11E-27Q1). 
 Thickness 

(ft)
Total Depth 

(ft)

60 60

55 115
20 135
43 178
5 183

32 215

16 231
54 285
20 305
98 403Clay, some gravel

Soft, probably more water
Gravel, boulders, clay
Boulders, clay

Description

Basement Complex (?) residuum

Older Alluvium

Younger Alluvium

Boulders, clay, very rough, water
Clay, pure
Clay, boulders
Sand, clay content
Boulders, clay content

Sand, gravel

Table 2-2. Cottonwood sub-basin water budget. Source Credit: Karst & Rice, 2018. 
 Low Recharge 

Estimate
High Recharge 

Estimate

Recharge from Precipitation 60 150
Subsurface Inflow 0 0
Septic System Return Flow 1.7 1.7
Subtotal 61.7 151.7

Evapotranspiration (ET) 3 3
Groundwater Extraction

          Visitor Center 2.2 2.2
          Employee Housing 1.3 1.3
          Campground / Irrigation 0.5 0.5

Subsurface outflow 57 147

-2.3 -2.3

Groundwater Inflows (ac-ft/yr)

Groundwater Outflows (ac-ft/yr)

Change in Groundwater Storage (ac-ft/yr)
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Figure 2-1. Joshua Tree National Park Desert Boundaries. Relation to the Mojave & 
Sonoran deserts. Modified from source credit: National Park Service, Mitzi Harding. 
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Figure 2-2. Basin & Fault Orientation. Cottonwood sub-basin area approximation interpolated from Powell, 2001 and 
National Park Service – Lake Mead National Recreation Area GIS Office, April 2018 Map # JOTR 156 144170. 
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Figure 2-3. Estimated stratigraphy illustration interpreted from driller’s logs 
of LUB-23, refer to Table 2-1 for complete description and depths. 

Figure 2-4. Faulting in southern California. Illustration 
modified from source (Trent & Hazlett, 2002). Smoke 
Tree Wash Fault Zone and the Cottonwood sub-basin are 
directly south of the Porcupine Wash Fault. 
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Figure 2-5. Valley Fill Depth. Valley fill depth estimated from the gravity data and an inferred location of a bedrock 
spillway in the Smoke Tree Wash fault zone. Source credit: National Park Service – Lake Mead National Recreation Area 
GIS Office, April 2018 Map # JOTR 156 144170 



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6. Geological Map: Porcupine Wash 7.5° quadrangle map authored by Powell, 
2001. Source credit: Modified from the USGS geologic quadrangle map at: 
https://pubs.er.usgs.gov/publication/ofr0130 
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3. METHODOLOGY 

 

 This study has four objectives (1) investigate groundwater connections between the 

Cottonwood sub-basin and the Pinto Basin, (2) investigate causes of potential inefficiency of 

LUB-23, (3) conduct water quality analysis, and (4) validate the NPS recommendation for a 

secondary well. These objectives will be accomplished using three primary methodologies. 

Direct current (DC) electrical resistivity tomography (ERT) was used to map subsurface 

resistivity characteristics of the Cottonwood sub-basin for objectives (1) and (4). Depth to water 

in LUB-23 was determined by visual confirmation with a snaking camera and confirmed with a 

well sounder while investigating objective (2). The potential inefficiency was partially assessed 

from camera observations, a well sounder, and brief pump test. Appendix 3 includes field data 

collection photos. For objective (3), geochemical analysis commercial off the shelf (COTS) 

probes were used to determine well water temperature, pH, dissolved oxygen and specific 

conductance. Hach method 8203 was used to determine alkalinity and water samples were 

collected to determine general chemistry and stable isotope values through requisitioned lab 

analysis.  

3.1 Electrical Resistivity Tomography (ERT). 

Gravity and seismic geophysical techniques have been used previously in the 

Cottonwood sub-basin area, in a complimentary approach for this study. Electrical resistivity 

(ER) provides a high-resolution image of subsurface characteristics at smaller scale and is a 

technology made available by the National Park Service for use in this research. Since ERT has 

not been used in this area previously, it provides reinforcing data to corroborate the findings 

from the gravity and seismic data. In addition to being minimally invasive, ERT has been proven 
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successful from other similar studies for: (1) arid climates, (2) investigating fault zones, and (3) 

depth to water investigations (Ammar, et al., 2018). Since we are trying to replicate investigative 

success of those three characteristics, ERT was chosen as the technology for investigation. 

ERT consists of the raw data from ER combined with interpretive analysis to create a 

model illustrating subsurface characteristics. ER measures the potential of subsurface materials 

to resist electrical flow by injecting low frequency electrical currents into the ground and 

measuring the values of resistance to the current in Ω (ohm) meters through the electrical path 

(Brinley, 2015). Electrical resistivity is determined by how the properties of the material affect 

the ratio of voltage potential compared to electrical current (Reynolds, 1997). An inversion 

algorithm to an inverse problem is then solved to illustrate a model correlated to the data 

(Oldenburg and Li, 1999). Basically, the resistivity (R) multiplied by the currents (I) that were 

passed between electrodes equals the potential difference (V). This is also referred to as Ohm’s 

Law or V = (I) * (R). With ERT we will inject a current, measure the difference, and it will 

provide the subsequent resistivity of the subsurface. Inversion is the process of mapping how the 

subsurface resistivity is distributed from collected data to understand subsurface geology (with a 

close correlation). The results of the data collection plus the model illustration is considered ERT 

or a subsurface tomographic model. Since, high resolution and accurate data are desired, two key 

concepts were taken into consideration to determine the setup and execution of the arrays. The 

first concept, depth of investigation (DOI), defines a depth that is considered to be interpretively 

accurate and ultimately drove the design for electrode spacing and survey length. Advanced 

Geosciences Inc. (AGI) indicates that accurate data can be acquired at a depth 20% of the survey 

length (AGI, 2009). The second concept, array execution is how the injected current is applied 

and measured from the physical setup of electrodes. This can be accomplished by using an 
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electrical resistivity meter which sends electrical currents into the ground and measures the 

resulting potential, providing a resistivity measurement in Ωm. This study utilized the Advanced 

Geosciences Incorporated (AGI) manufactured SuperstingTM. These concepts working together 

were optimized to yield the greatest depth of data with the highest possible degree of accuracy. 

The AGI SuperstingTM is an electrical resistivity meter used to scan an image of the 

subsurface of the earth with the ability through applied software to visualize the results 

(SuperstingTM, 2019). The SuperstingTM used for this study was the version model R8. R8 refers 

to the number of channels that the receiver can use at once, therefore making it a multi-channel 

capability. The number of channels reduces the amount of time for the selected array to be 

completed. For instance, with 8 channels one array can be run on each channel, thus, over 

thousands of iterations, the number of channels reduces the amount of time it takes to collect 

data. The layout of equipment required for this study was: 2x deep cycle marine batteries to 

power the system, 1x SuperstingTM Receiver, 1x switch box, 4x ERT electrode (10m spacing) 

land cables, 56x metal stakes, and 1x laptop (Figure 3-1). A full array consists of 4x electrode 

land cables extended as far as they can (560m). Each electrode land cable in this study has 14x 

electrode connections spaced 10m apart. Thus, each electrode land cable is 140m in length. With 

4x fully extended electrode land cables, the longest array possible to be performed at once is 

560m. The electrode land cables are connected to each other and the electrode cable switch box 

is always located in the center of the array. The switch box distributes the current through the 

electrode land cable and is also connected to the SuperstingTM which tells the switch box what to 

do and receives the potential measurements for data interpretation. 

Measuring resistivity is accomplished by placing at least two conducting metal electrodes 

into the ground and passing an electrical current from one, through the ground to the next (Figure 
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3-3). It is necessary that the electrodes can effectively pass current, which introduces a very 

important characteristic of ERT to distinguish. Essential to understanding the concepts and 

results herein, is the difference between contact resistance and resistivity. Simplifying the two 

concepts, contact resistance can be seen as how well the electrode connects to the ground and 

how efficiently it can pass an electrical current into the subsurface. The lower the contact 

resistance value the better the contact. Resistivity on the other hand, is the resulting analysis of 

the subsurface and returns a value that indicates the relative electrical resistance characteristic of 

the material. Due to the dry conditions of the area of interest, it was likely we would encounter 

low contact resistance. In order to improve this, a salt water solution was applied to an electrode 

(see all contact resistance measurements for this study in Appendix 1).  The salt water solution 

had a mixing ratio of 147.4 grams of salt per 3.78L of water (or 1x 26oz. can of salt added to a 5-

gallon water jug / backpack sprayer). Prior to data collection for each array, contact resistance 

was measured. In each instance the contact resistance yielded higher than desired values thus, 

every electrode in this study was saturated with a salt water solution to improve the contact 

resistance. Refer to Appendix 1 for all contact resistance measurements that were used in the 

final collection of data for this study. 

There are multiple styles of arrays that are conducted in different fashions based on what 

the desired outcomes are. In basic terms, most arrays employ four electrodes at once: two current 

electrodes that transmit (inject) the current (I) into the ground, and two electrodes that measure 

the potential (V). The distance between electrodes, how they are moved during iterations, 

transmitter vs. receiver separation, and the symmetry or lack of symmetry are the main 

differences between array variations. Discussed briefly will be five of the more commonly used 

arrays. (1)The Wenner array, (2)Schlumberger array, (3)pole-dipole array, (4)dipole-dipole 
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array, and (5)strong gradient array (Figure 3-2). The Wenner array has been used for one-

dimensional vertical soundings. An advantage of using this array is the high signal strength but 

has a disadvantage of low efficiency in data acquisition, due to single channel utilization 

(Cubbage, Noonan, & Rucker, 2017), in addition to being very labor intensive as all electrodes 

need to be displaced and repositioned for each iteration.  

In the Schlumberger array, the four electrodes are placed in a line, centered on a 

midpoint, with the receiving dipole 1/10th the separation of the transmitters. The two exterior 

electrodes inject the current and the two interior electrodes measure the potential. The midpoint 

remains the same whereas the injecting current electrodes are displaced for further iterations. 

(Ojo & Olorunfemi, 2018).  

Dipole to dipole is one of the more commonly used arrays given the advent of more 

sophisticated inversion modeling. Resistivity data is plotted at the midpoint between the two 

dipole, basically providing an intersection data point. The data are then contoured for a 

representative illustration of the subsurface while inversion software calculates the resistivity 

values to create an inversion model (Edwards, 1977). Dipole to Dipole has become the standard 

high-resolution array utilized for resistivity analysis.  

The Pole-Dipole array is similar to the Schlumberger in design and employment except 

for that a receiver is moved outside the transmitter dipole and beyond (displaced up to and 

beyond 5-10 times the size of the survey area for consecutive iterations). Pole-dipole arrays have 

far less depth penetration than the dipole to dipole array (Barker, 1989).  

The gradient array is a variation of the Schlumberger array. The gradient array is used to 

measure the potential using a dipole between two fixed current electrodes. The gradient array is 

best used with a multichannel resistivity system to take simultaneous measurements with the 
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different potential electrode pairs at different locations (AGI, 2009). The Strong Gradient array is 

a subset of the Gradient array and imposes that the receiver dipole is 1/10th the separation of the 

transmitter dipole (similar to the Schlumberger array) (Aizebeokhai, & Oyeyemi (2014). 

 Considering the previously discussed array designs available, this study defaulted to a 

2004 study which concluded that dipole-dipole strong gradient array has the best resolution at 

depth (Stummer, et al., 2004). The array design used was a combination of dipole-dipole and 

strong gradient, which is referred to by AGI as the Total Field Array. This would give us the 

outcome of desired depth with desired resolution.  

The more electrodes in a survey and the greater the distance between electrodes will yield 

a wider and deeper inversion model. Although 3-dimensional (length – depth – width) analysis is 

possible using ERT, only 2-dimensional (length – depth) analysis was utilized. We connected the 

AGI SuperstingTM to the switch box which connected the electrode land cables to electrodes at 

10m intervals to measure and record all resistivity measurement. The longer the spacing between 

electrodes the greater depth potential for analysis; 10m spaced electrodes is the greatest distance 

available for this study. The SuperstingTM was employed at its greatest length potential, 560m 

long with 56 electrodes spaced 10m apart. The SuperstingTM was positioned in the center of the 

four lines for each execution of an array while executing a roll-along approach (moving the first 

25% of the array, or first line from the beginning to the end) multiple times, using the dipole-

dipole / strong gradient array. 

Two surveys were planned and designed to accomplish the research goals (see Appendix 

2 for precise UTM coordinates for both survey locations). Survey A was to provide subsurface 

information to confirm findings from previous studies for the best location for an alternate well 

(Karst and Rice, 2018). The second survey, Survey B, was to provide subsurface characteristics 
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in the vicinity of the inferred fault zone near the boundary to the Pinto Basin. Wilderness and 

topographic constraints limited equipment transportation and setup; thus, the investigation was 

confined to the local wash when setting up Survey B. Total ERT survey length for Survey A & 

Survey B totaled 840m and 960m, respectively. (Figure 3-4). 

Before resourcing and setup, an understanding of how deep of an investigation desired 

was needed to be known. AGI estimates that best depth with resolution can be determined from 

20% of the total length of the array (AGI, 2018). Ultimately, the design should be tailored to be 

able to see to the deepest part of the basin. The USGS estimated with seismic refraction data that 

depth to bedrock for the entirety of the Cottonwood sub-basin was greatest at 274m bgs (Figure 

3-5). From Figure 3-5, it is clear that LUB-23 was drilled in one of the shallower areas of the 

surveyed line. Despite penetrating approximately 75m of saturated layers, a secondary well could 

be located at the deepest part of the basin that would penetrate into an area with ~150m of 

saturated thickness. This could potentially limit vulnerability due to recharge fluctuations in the 

future. Therefore, the ERT survey design is to attempt to validate the seismic refraction findings. 

For Survey A, 274m was the target depth which would result in a 1.3km array length. Although 

this was the intended length, time constraints and topography limited array length to 840m but 

did include part of the interpreted deepest part of the basin. With the estimated range of depth to 

water at LUB-23 being between 52-67m (170-219ft), the array design would be able to confirm 

the recommendation for secondary well siting provided by the NPS in 2018 (Karst & Rice, 

2018).  

For Survey B, gravity data suggests that the valley fill depth is but a fraction of the area 

of Survey A at an estimated 25m bgs (Figure 2-4) (Langenheim, et al., 2016). Thus, Survey B 

was designed at a minimum length of 125m, but was executed at 960m. This extension was 
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designed in the interest of confirming or denying the presence of fault-like characteristics that 

could suggest the presence, or lack thereof, a fault-controlled spillway into the Pinto Basin or a 

groundwater connection between the basins. Survey A consisted of two roll-alongs, or three total 

array executions, totaling a length of 840 meters and Survey B consisted of three roll-alongs or 

four total array executions, totaling a length of 980 meters; see Figure 3-6 for a conceptual 

illustration of this process and Figure 3-4 for survey paths employed. Tomography in this study 

is used to illustrate the interpretation of collected data from the ER, and the associated 

EarthImager 2D software from AGI was used to render resistivity inversion to provide ERT for 

the area of interest (AGI, 2009).  

Survey A originated approximately 265m north of the current Cottonwood sub-basin well 

in the Smoke Tree Wash. The resistivity electrodes were run south along the graded but 

unimproved road. The entirety of the line was oriented in a north to south direction. A galvanized 

metal subsurface pipe acted as the transmission line from the well to the treatment and storage 

infrastructure to the south. This subsurface pipe could introduce uncertainty and is discussed 

later in the data interpretation. A solar panel farm measuring approximately 11m2 is adjacent to 

the well as the primary power source. A generator house provides the original power to the well 

but now acts as a contingency power source. A spigot for unknown purposes or design was 

installed when LUB-23 was installed in 1958. According to park service personnel, this spigot 

has been leaking for decades and has created a continually recharged pool measuring 1m2 in 

vicinity of the ERT line. This is only mentioned in this study as it was believed it may interfere 

with ERT results. All electrodes were saturated with the salt water solution to improve contact 

resistance.  
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Survey B took place mostly in a runoff wash with less than 10m of relief. The last 190m 

of a total length of 980 was outside of the Smoke Tree Wash in order to maintain the integrity of 

a southwest to northeast orientation at an approximate azimuth of 75° magnetic. The same 

procedure to saturate in immediate proximity of the electrode was used for all electrodes in 

Survey B. A higher average Ωm contact resistance test vs. Survey A prompted an attempt to 

improve contact resistance in the wash in the investigation was taking place in. In this instance a 

shallow cavity was dug, lined with aluminum foil, replaced & saturated the soil, and then drove 

the electrode through this concentrated solution pocket. This in effect would limit the percolation 

of the saturation solution and attempt to improve contact with the ground. The resulting contact 

resistance test yielded no appreciable improvement; therefore, saturation by itself remained the 

only application to improve contact resistance.  

3.2 ERT inversion methodology & data interpretation 

 ERT collects data through electrical resistivity methods, and the associated inversion 

provides an illustration or tomographic perspective. Thus, the overall practice and employment is 

considered Electrical Resistivity Tomography (ERT). The interpretation of data is accomplished 

through inversion with the subsurface resistivity distribution as the model parameter.  

The electrical resistivity methodology described indicates how the difference between the initial 

injected current and its potential difference (voltage) between two electrodes was measured. The 

goal of inversion is a map (tomography) from raw data to modeling. Inversion reconstructs the 

subsurface resistivity distribution from the raw data by mapping from data space to model space 

from measured voltage and current data (AGI, 2009).  

 Utilizing EarthImager 2D software from AGI, there are numerous settings and options 

that can be employed to create a subsurface resistivity distribution. The following is a quick 
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summary of the main parameters and settings used with the inversion software, specifically the 

parameters changed from default settings. The continuous Resistivity Profiler (CRP) module is 

recommended for roll-along ERT surveys, in order to best converge aggregate data versus a 

singular collection domain (AGI, 2009). Overall, most default settings were maintained but in 

the initial settings spikes in data were removed along with negative resistivity measurements. 

Spike data is considered an isolated anomaly in an array within the apparent resistivity. With 

thousands of data points, a particular area of the subsurface has dozens of iterations interpreting 

that particular spot. If all but one of the data points measures the same or approximate resistivity, 

that one anomaly would be considered a spike. Spike data therefore is easily identifiable and 

likely not accurate. EarthImager 2D removes this spike data (if that option is selected) when 

running the inverse model, or automatic calibration, of the data. Negative values are common in 

ERT, and are usually encountered when there are subsurface metallic objects. Despite removing 

negative values, the presence of subsurface metallic objects can still interfere with the overall 

interpretation of resistivity data. We altered the smoothness and dampening factors from the 

default 10 to a value of 100. The smoothness and dampening factors can be interpreted as 

LaGrange multipliers that balance misfit data and model constraints. When noisy data is 

expected, a larger multiplier should be used in order to interpret a smoother result. The 

dampening factor can range from 0 to 10000 and AGI recommends a smoothness and dampening 

factor of 10 for surface data collection, and a value of 100 for ERT data (AGI, 2009). These two 

factors balance data misfit and when noisy data is expected it helps for a smooth convergence of 

data for a more accurate result. Ultimately, all the data should converge, similar to an iterative 

solver. According to AGI, for ERT, 10-15 iterations should be run for data to converge and to 

avoid infinite loops so the number of iterations was set to 15 (AGI, 2009). The inversion 
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modeling for this study never exceeded four iterations to achieve a smooth convergence of data, 

contributing to confidence in the collected data and subsequent modeling. The accuracy of the 

resulting profile can be gaged by acknowledging the Root Mean Squared (RMS) error value and 

L2 values for data misfit. RMS does not indicate the percentage of number of bad points but 

rather an average data misfit over all of the measurements, thus representative of the quality of 

fit between the model and the actual measured values. L2 is a measure of data misfit, and refers 

more to the convergence of the data, reflecting unity of the data with the profile. When the L2 

value is 1.0 or less, the inversion is considered converged. However, it is recommended that the 

data inversion is more dependent on the RMS value rather than L2. Focusing on data 

convergence (checking the option for L2-Norm) could result in neglecting to consider the 

reduction of the RMS value, and focus on L2. Ultimately, for an accurate profile the goal is a 

balance of an RMS value below 5% and an L2 value close to or less than 1. With these values it 

ultimately means that the true model varies relatively little from the inversion model. 

 The data inversion modeling as discussed will yield a profile of ohm-m contours. The 

color palette chosen for the profiles are red to blue with decreasing resistivity respectively. Solid 

red would suggest high resistivity and dark blue would suggest low resistivity. For the purposes 

of this research we will interpret that any resistivity measurements between 3-100 Ωm could be 

moist substrates that include clayey, wet clay, silty soils and clay, sandy soils and gravels 

(Burger et al., 2006). Resistivity measurements beyond 100Ωm can include any number of 

geologic circumstances and each observation that could prove a circumstance likely has an 

exception. The scope of this research is to identify wet to moist layers if possible and contribute 

to the body of knowledge for understanding the subsurface, but will not be identifying the 

subsurface geology as resistivity ranges for geologic materials are very non-specific (Table 3-1). 
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3.3 Geochemical Collection & Processing Methodology 

 Well water temperature, pH, specific conductance, alkalinity, dissolved oxygen, general 

chemistry, and stable isotope composition were determined using water samples collected from 

LUB-23 pre-treatment. The source for collecting the groundwater, was a spigot that was 

connected directly to the well transmission line that was housed inside the generator house. 

 Two Oakton multi-parameter PC Testr 35 probes were used to measure water 

temperature, pH, and conductance in order to provide dual-source confidence. Both were 

calibrated the day of measuring. An Extech DO600 ExStik II dissolved oxygen (DO) meter was 

used to measure DO and was calibrated the same day of measuring with elevation calibration 

considerations (900m / 2953 ft above sea level). Hach method 8203 was followed to determine 

alkalinity of the water whereas general chemistry and stable isotopes values of LUB-23 

groundwater were requisitioned from Test America Labs, Irvine, CA. 

 In order to ensure as much air has been removed from the sample line as possible, the 

spigot was turned on and remained on for several minutes until a continuous and smooth flow 

was evident. A brass adapter was used to connect the spigot to PVC tubing in order to facilitate 

efficient means of collection. Two 500 mL Nalgene bottles were filled with sample water and 

allowed to settle to ensure no air bubbles were present. After 5 minutes, approximately 150 mL 

were poured from each bottle into two separate glass beakers that could accommodate the probes 

to measure. The same methodology was used to collect sample water to measure dissolved 

oxygen. Several samples were collected for general chemistry in accordance with the Test 

America sampling and packing protocol. All samples for requisitioned analysis were packed on 

ice and sent the same day via commercial courier to Test America. All samples in this study were 

compared to water quality analysis from samples taken in 2009 from LUB-23. The stable 
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isotopes compared were Deuterium (δ2H) and δ18O. Chemicals sampled included cations, anions, 

some metals with general chemistry measuring the total dissolved solids and alkalinity. 

3.4 Well observation data methodology 

 Two tools were available to determine depth to water in LUB-23, as well as to attempt to 

assess the condition of the well. First was a 500 ft WL500 well sounder and second used was a 

digital camera attached to a power and optics line small enough to navigate through the well cap. 

The well sounder and camera were used in tandem to confirm observations and provide a high 

level of confidence for data acquired.  
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Table 3-1. Common materials and their respective resistivity found 
using ERT. Source credit: AGI, 2008. 
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Figure 3-1. AGI SuperstingTM Equipment. Layout to include associated peripherals.  
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Figure 3-2. ERT Array Orientation. A visual illustration of varying electrical resistivity array 
designs. Source credit: AGI, 2017 (https://www.agiusa.com/blog/comparison-11-classical-
electrode-arrays) 
 

Figure 3-3. Conceptual illustration of Employing an ERT Array. Source credit: P. 
Chandra http://www.aquiferindia.org/Surface_Geophysical_Methods.aspx 
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Figure 3-4. Completed Survey Arrays. Illustration of the ERT survey arrays completed in this study, proposed well 
location, and local Smoke Tree Wash faulting as interpreted from Powell, 2001. 
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Figure 3-5. Seismic refraction data. Cottonwood sub-basin with LUB-23 labeled, primarily 
along the unimproved road and extending ~250m beyond. Source credit: Langenheim, et al., 
2016. 
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Figure 3-6. ERT Roll-Along Conceptual Illustration. Both survey approaches in this 
study are illustrated. 
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4. RESULTS 
 

 The results of ERT inversion modeling using Earthimager 2D software show a contoured 

interpretation of the associated resistivity distribution of the subsurface. In this section we will 

describe the resistivity model and how it changes by location. Particularly, we will describe 

certain zones that are relevant to understanding how water could flow in the Cottonwood sub-

basin and how it relates to the investigation and overall study. 

4.1 ERT Results: Survey A.  

 Survey A was 840m in total with 600m along a graded but unimproved road and 240m in 

a wash north of LUB-23 (Figure 3-4). Considerations that may have affected results for this 

survey include a solar panel farm with associated subsurface electrical infrastructure in proximity 

to the well, the subsurface well water transmission line, and a continually dripping spigot that 

leaks water from LUB-23 (Figure 4-1). Lack of records from when the well was installed do not 

show where this transmission line. It is currently assumed by park personnel that a galvanized 

metal pipe is in the area between the well (LUB-23) and the generator house, then proceeds 

south toward the visitor center infrastructure on the western-most side of the road (referred to as 

“Path of Survey A” in Figure 4-1). 

A contact resistance test was performed before collecting any data and again after each 

roll-along (Figure 3-6). The values in Survey A for contact resistance range from approximately 

425 - 3,300 Ωm. These values are very good for the environment being employed, as it falls 

within the threshold of reliable contact resistance readings according to AGI (AGI, 2009). As 

previously described, the application of a salt water solution provided the best possible contact 

resistance given the climate and surface conditions. 
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Figure 4-2 represents the data misfit histogram for collected data in Survey A. Survey A 

analyzed a total of 2,069 data points. Each data point is a measurement of resistivity at a certain 

location based on the dipole-dipole strong gradient array approach. Of these 2,069 data points, 

61 points (2.9%) of data was excluded from the analysis as removal of these values returned the 

best RMS and L2 combination for model accuracy. The process to determine what data were to 

be removed was trial and error. Several iterations of running the data selecting different data to 

exclude were run to determine which complete data set yielded the lowest RMS with an L2 close 

to 1. This process also included a model with all data with no removal or spikes, negative values, 

or noisy data. Ultimately, removing 61 data points as illustrated in Figure 4-2 provided a model 

resulting in a data misfit cross-plot Figure 4-3. The RMS of this array was 2.58% with an L2 of 

0.73, meeting the threshold of having relatively minimized error and well converged data. 

Figure 4-4 represents the resistivity contours of the subsurface for Survey A inversion. 

Figure 4-5 is the same figure as 4-4 but with added location identifiers to aid in referring to 

specific sections. Refer to Figure 4-5 for the following observations. Location (A) is a saturated 

area with a resistivity less than 40Ωm, with consistent depth as it progresses longitudinally, but 

only remains consistent when data is collected in the wash. This layer averages a thickness of 

13.5m and starts at a depth bgs of 13.5m and extends to 27m bgs. This low resistivity layer is 

absent when the survey transitions from the wash to the road. Location (B) has the highest 

resistivity in the area at 150 Ωm, and remains consistently parallel to the wash at a depth 

approximately 41m bgs. Location (C) is a very low resistivity area approximately 27m thick 

starting at a depth ~13.5m below ground surface and has a longitudinal width of approximately 

40m. Location (D) is a relatively contiguous high resistivity area between 60-150Ωm, 

overlapping the border between the wash and the road. This location consists of two high 
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resistivity areas (both at ~150 Ωm) connected by a moderately resistant layer (relative to the 

area) at ~60Ωm. This area also suggests the presence of a fault. Consistent with Powell’s 

interpretation of faults in the area as well as the clear sediment change and angled orientation 

consistent with a fault caused by extension in a pull-apart basin. Location (E) are relatively 

uniform fluctuations or oscillations in resistivity measurements nearly identical to electrode 

locations at shallow depth (less than 5m). These fluctuations occur in the road area directly 

above what has been referred to as the deepest part of the basin (between 330m-430m 

longitudinally from the start of Survey A). Location (F) is a large low resistivity area less than 35 

Ωm at 400m into the survey, located underneath the road with an observed thickness of at least 

50m thick. Location (G) is a relatively uniform low resistivity area (less than 80Ωm throughout). 

4.2 ERT Results: Survey B. 

 A contact resistance test was performed before collecting any data for Survey B and 

again after each roll-along as described in Figure 3-6. To reiterate, all electrodes for all surveys 

were saturated with salt water solution to help improve this contact resistance. The range of 

contact resistance in Survey B ranged from 1000 Ωm through 7500Ωm with the average ranging 

from 2500-3200 Ωm; which is considered usable and accurate. With higher contact resistance 

readings, we expected to have a larger abundance of noisy or spike data. However, being in 

wilderness with no anthropogenic influences (like Survey A) this expectation was relatively 

offset to return minimal data that was excluded from modeling. In the arid environment of 

collection, the collected contact resistances were within the threshold of useable and reliable. 

According to AGI, any data collected that has a contact resistance of greater than 10,000Ωm 

should be dismissed as a poorly installed electrode (AGI, 2009). Ideally, an adequate contact 

resistance is less than 5,000Ωm. The highest contact resistance we had for Survey B was 7,500 
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Ωm with the majority of measurements falling between 2,500 and 3,200 Ωm. Approximately 5% 

of data had a contact resistance greater than 5,000 Ωm and less than 1% was greater than 6,500 

Ωm. This summary of contact resistance values was better than expected (even when using the 

salt water solution) and provides usable and accurate data  

Figure 4-6 represents the data misfit histogram and Figure 4-7 represents the data misfit 

cross-plot for collected data in Survey B. Survey B collected 2,524 data points. The same trial 

and error approach was used similar to the data misfit removal of bad data for Survey A. Of the 

collected 2,524 data points, 165 points (6.5%) were omitted as bad values. The RMS of 2.7% 

and L2 of 0.81 reflects quality data with good convergence. 

Figure 4-8 presents the inverted resistivity contours for Survey B. Figure 4-9 is the same 

figure as 4-8 but with added location identifiers to aid in referring to specific sections.  Refer to 

Figure 4-9 for the following observations. Location (A) is a very low resistivity layer with a 

resistivity measuring less than 50 Ωm. It has an average thickness between 7-10m at an average 

shallow depth between 10m - 13.5m bgs. This low resistivity area exists parallel to a high 

(relative) resistivity layer beneath it (between 100-408 Ωm). This layer persists from the start of 

the survey for approximately 700m beneath the Smoke Tree Wash until the higher resistivity 

layer beneath it is absent. Location (B) is a high (relative) resistivity layer ranging between 100-

408Ωm with the majority of the area having a resistivity measure greater than 300Ωm. Location 

(C) is an area of low resistivity (less than 100Ωm) bridging between two relatively higher 

resistivity areas. This low resistivity layer is uniform in resistivity from the surface to a depth of 

at least 109m bgs and is approximately 110m in longitudinal width. Location (D) is a higher 

resistivity area on average with an approximate measure of ~125Ωm and is located outside of the 
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wash. Location (E) is representative of uniform fluctuations or oscillations in readings near the 

surface correlating to electrode locations.  

4.3 Geochemical Results 

 Table 4-1 outlines the water quality analysis from 2009 samples and the resulting values 

from this study in 2018 respectively. Two Oakton meters were used in order to validate the 

respective, providing confidence in measurements. These meters were used to measure 

temperate, pH, conductivity, and dissolved oxygen with only minor variations between the two 

different meters. Test America Labs was responsible for the water quality analysis as indicated in 

Table 4-1 measuring metals, anions, and general chemistry; a full list of methods and results is 

located in Appendix 4. 

4.4 Well Observation Results 

 Utilizing a snaking camera and well sounder, a visual inspection was conducted on the 

interior of the well to a total depth of approximately 70m (231 ft) bgs. For clarification, the video 

investigated to a depth of 71.30m (234 ft), however, the entry into the well casing was .73m 

(2.4ft) above the ground surface with a total of 71.3m (234ft) of cabling extended from the spool. 

After taking into consideration the height above ground surface that the camera enters the well 

casing, we measured a depth to water of 58.5m (190.78 ft) bgs. 

 Figure 4-10 illustrates a short pump drawdown and recovery test. A 15-minute pump and 

recovery test was conducted which showed a near instantaneous recovery and drawdown 

relationship. This behavior suggests the screening of the well is not clogged and is in adequate 

working order. 
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LUB-23 Water Quality Comparison 2009 vs. 2018 
   

Water Quality Parameter 2009 2018 
Dissolved Oxygen (mg/L) 7.60 6.44 

Water Temperature °C 15 16.7 
pH [F] 7.7 7.9 

Specific Conductance [F] (µS/cm) 428 451 
Alkalinity [F] (mg/L as CaCO3) 120 101 [H] 

Chloride (mg/L) 40.1 38 
Nitrate (mg/L) 1.47 1.5 

Fluoride (mg/L) 2.9 2.8 
Sulfate (mg/L) 26.9 27 
Boron (mg/L) 0.16 0.13 

Calcium (mg/L) 36.5 34 
Magnesium (mg/L) 6.9 6.7 

Potassium (mg/L) 1.75 1.7 
Sodium (mg/L) 39.50 37 

Aluminum (µg/L) ND 9.5 
Arsenic (µg/L) 2.1 2.2 
Barium (µg/L) 43 36 
Copper (µg/L) ND 1.1 

Lead (µg/L) ≤ 0.04 ND 
Iron (µg/L) 9 ND 

Manganese (µg/L) 2 0.83 
Uranium (µg/L) 3.46 3 

Zinc (µg/L) 237 63 
Alkalinity as CaCO3 [L] (mg/L) 123 120 

Bicarbonate Alkalinity as CaCO3 [L] (mg/L) 149 120 
δ2H (‰ relative to VSMOW) -70.8 -71 

δ18O (‰ relative to VSMOW) -9.78 -9.8 
   

[F] – Field Measurement 
[L] – Lab Measurement 
[H] – Hach Method 8203 
2009 – Source Credit: Methany et al., 2012 
2018 – Outsourced water quality analysis conducted by Test America Labs (Irvine, CA Job   

ID: 440-225417-1), except where indicated 
ND – Not detected 

 

 

Table 4-1. LUB-23 Water Quality & Isotope Analysis (2009 vs 2018) 
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Figure 4-1. LUB-23 Site Orientation.  
 

Figure 4-2. Survey A: Data Misfit Histogram.  
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Figure 4-3. Survey A: Data Misfit Cross-Plot. Measured vs. Predicted Resistivity Values. 
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Figure 4-4. Survey A: Unmodified Resistivity Inversion Results 
 

Figure 4-5. Survey A: Interpreted Resistivity Inversion Results 
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Figure 4-7. Survey B: Data Misfit Cross-Plot. Measured vs. Predicted Resistivity Values.  
 

Figure 4-6. Survey “B” data misfit histogram. 
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 Figure 4-9. Survey B: Interpreted Resistivity Inversion Results. 
 

Figure 4-8. Survey B: Unmodified Resistivity Inversion Results. 
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Figure 4-10. LUB-23 Pump Drawdown & Recovery Test. Cottonwood sub-basin, Joshua Tree 
National Park (29NOV18).  
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5. DISCUSSION 
 

5.1 ERT Discussion: Survey A 

 Refer to Figure 4-5 to visualize the following interpretations of data. Location A of 

Survey A is a wet or saturated layer directly beneath the wash and averages a resistivity 

measurement of approximately 40Ωm. This layer begins at approximately ~13.5m bgs and 

averages ~13.5m thick. This layer is likely the result of infiltration from overland flow on 13 

October 2018 (6 weeks prior to data collection) which was an event of 60mm (2.34”) of 

precipitation, nearly 33% of all the precipitation that fell in the area in 2018. The existence of 

this layer is directly correlated (and parallel) to the wash as it ceases to exist when measurements 

are taken outside of the wash. This could be a result of a more permeable subsurface and the 

infiltrating waters are able to travel deeper into the subsurface, or more likely, that overland flow 

is contained within the washes of the area limiting the likelihood for the concentration of 

subsurface waters outside of the washes. A study in the very arid Gidron Wadi area of Israel 

observed similar low resistivity areas that were interpreted as perched subsurface water that 

underlie ephemeral streams (Winters, et al., 2015). With similar climate and aridity to this study 

area this finding supports the interpretation of this low resistivity layer being a non-persistent 

underflow. The arid Smoke Tree Wash could be characterized as similar in nature to ephemeral 

streams substantiating the interpretation of this low resistivity area as saturated. 

 Location B has the highest relative resistivity in the area (150Ωm). The previously 

described saturated layer seems to be perched above it. However, it cannot be determined 

whether the saturated thickness would continue to infiltrate further into this higher resistivity 

area with this data collection alone. This increase in resistivity could indicate an area of lower 

permeability or a change in sediment type. The resistivity contour indicates a change to this 
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higher resistivity layer at a depth of 41m (134 ft). The driller’s logs for LUB-23 (Table 2-1) 

show that at 41m (135ft) bgs, the subsurface transitions from boulders and clay content to sand 

and clay content. Published works suggest that dry sand and gravel has a resistivity between 600-

10,000Ωm but since the subsurface stratigraphy appears to be consistent with respect to 

transition areas, we can assume that the resistivity of the described young alluvium is either 

lower than 600Ωm as indicated or the recent precipitation event has altered the inherent 

resistivity in this area. 

 Location C (transition point from wash to road), is an extremely low resistivity area and 

likely the result of an underground transmission line. Measured at 240m from the start of the 

survey it is close to where LUB-23 is located (270m from the start of the survey). Schematics 

and record keeping have not been acquirable for LUB-23 with respect to the subsurface 

infrastructure and transmission. However, the circular shape in the approximate area where it 

would be expected to be (generator house next to the well), suggests this to be the transmission 

line. Furthermore, the transmission line is known to be a galvanized metallic pipe and further 

brings into question the validity of data in this area. Some indications of this is the circular 

extension of the low resistivity area into the surrounding higher resistivity area, marked by a 

dashed black line in Figure 4-5. Referencing the driller’s logs from Table 2-1 reinforces the 

probability of interference. The logs note increasing resistivity areas as shallow as 35m (115ft) 

bgs where we should expect higher resistivity readings based on the lithology differences. 

However, relatively low and uniform resistivity readings extend to depths of about 60m (196ft) 

bgs in a spherical and odd shape around the assumed transmission line. The presence of a solar 

panel farm is also at the 240m (787ft) position from survey start, at the same area of this low 

resistivity circular area. The solar panels are connected to the subsurface pump in LUB-23 and is 
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the primary power source. However, the subsurface pump is connected to the generator house as 

well to be run as a contingency. The subsurface electrical infrastructure is not well recorded for 

park personnel to access, so it is not known the extent of possible interference in this area. The 

reliability of data immediately surrounding the possible transmission line and in its immediate 

proximity is low and should be dismissed from interpretation. 

 Location D (on road), has relative higher resistivity appears to be a contiguous element 

extending from the same section as location A. Uncertainty is increased in this assessment due to 

the questionably lower resistivity in the area immediately under the assumed transmission line.  

 Location E (near surface, occurring both in wash and on road), shows several fluctuations 

or oscillations in a general “U” shape extending down from the surface that have a lower 

resistivity than its surroundings. These areas are uniform in distance and directly correlate to 

electrode placement. These oscillations are likely attributed to the application of the salt water 

solution at each electrode every 10m. They may be due to the sharp resistivity gradient around 

high and low contact resistance and the assumption of low noise in the inversion. Therefore, data 

interpretation at and immediately below the surface should be disregarded but, data beneath 

approximately 5m is deemed good (Greenwood, Jason, 2019).  These oscillations extend 

approximately 5m into the subsurface and are also found in Survey B (later discussed). 

 Location F (on road), suggests a low resistivity zone (34Ωm and less) starts at 370m into 

the survey and begins at a depth of 60m (196ft) bgs extending to at least 109m (357ft) bgs. It is 

likely that this is the saturated zone of the basin and the saturated thickness extends to bedrock 

depth and is connected to the adjacent saturated area at similar depth at 670m from survey start. 

This saturated area at 400m from the survey start point is the same location where Karst & Rice 

(2018) recommended a second site for a well to be placed as an alternate or secondary well 
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(Karst & Rice, 2018). This area has also been determined to be the deepest part of the basin 

according to seismic refraction data and isostatic gravity data (Langenheim et al., 2016). In terms 

of available saturated areas along the length of the road capable of joining the existing 

infrastructure, this study agrees with this alternate location as the best recommendation. 

 Location G (on road), has a generally low resistivity throughout the subsurface 

distribution. Localized areas of higher resistivity suggest a change in sediment which is 

consistent with Weir & Bader’s (1963) interpretation of having dispersed areas of clay and 

lacustrine deposits amongst the younger and older alluvium. Nothing suggests saturation in this 

area until you reach depths of 100m bgs. 

 Another observation includes a leaking spigot at approximately 262m from the start point 

of the survey (Figure 4-1) connected directly to LUB-23. It has been consistently leaking since, 

what is assumed to be, 1958. A consistent pool approximately 1m2 persists year-round, to the 

point it has created its own small ecosystem. It does not appear to have influenced ERT data nor 

can we see resistivity evidence to this point but 262m is also at the area of uncertainty from the 

assumed transmission line.   

5.2 ERT Discussion: Survey B 

 Refer to Figure 4-9 to visualize the following interpretations of data. At Location A of 

Survey B (within a wash) a relatively shallow layer is observed with a resistivity value averaging 

between 14.5Ωm and 55Ωm. At a depth bgs ranging from 5m bgs to 15m bgs this layer has 

thickness of approximately 13.5m. This layer extends nearly 700m or the longitudinal distance of 

the array that was surveyed in the wash. The existence of this layer is directly correlated (and 

parallel) to the wash as it ceases to exist when measurements are taken outside of the wash. The 
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likely interpretation for this layer is overland flow is contained within the washes of the area 

limiting infiltration to the subsurface outside of the washes. 

 Location B (in wash), a high resistivity area with an average resistivity between 177Ωm 

and 408Ωm. In this location the high resistivity area starts at a shallower depth around 27m bgs 

but extends to at least 109m bgs. Isostatic gravity data are consistent with the ERT findings as 

this area of the Cottonwood sub-basin is interpreted as shallow respective to the valley fill depth 

(Langenheim et al., 2016). The area surveyed is placed along the peripheries of the Cottonwood 

sub-basin and the Pinto Basin in order to help refine the hydrogeologic relationship between the 

two basins.  Bedrock for this area is defined as granite or metamorphic rock which would have a 

resitivity at least 2-3 orders of magnitude greater than collected data. This resistivity 

measurement averaging at 500Ωm is consistent with consolidated sand and gravel units. 

 Location C (mostly out of wash), has a moderate (relative) resistivity layer starting at 

670m from the start of the survey to 800m from the start. A consistent resistivity measurement of 

77Ωm begins at ground surface and extends to at least 109m below ground surface which 

suggests unconsolidated younger alluvial deposits but are not wet or saturated. This uniformity 

and clear divide between stratigraphic areas could indicate a fault, particularly since this survey 

is in an inferred fault zone. The near vertical interpretation of this resistivity area suggests that it 

is not, as we would expect to see a normal fault from extension with a hanging and foot wall 

similar to Figure 1-5. If a fault, it could also imply that BD are one unit that has been divided 

by C. 

 Location D (out of wash), shows a higher resistivity area northeast of where Survey B 

started with an average resistivity value approximately 125Ωm. This could be the beginning of 

the Pinto Basin as the relationship between location B  C  D appears to be two distinct areas 
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separated by location C, or as mentioned, C is a divider between what would be a contiguous 

layer B D. 

 Location E, shows oscillations in resistivity that have a “U” shape stretching into the 

subsurface are uniformly spaced when present, correlating to electrode placement. These 

oscillations are likely the result of the application of a high salt content solution in vicinity of the 

electrode in order to improve contact resistance, as discussed above.  

5.3 Comparisons and Findings 

 The shallow wet layer is shared between both surveys. Its path is directly attributed to 

being in a wash, and is likely the infiltrated overland flow from the 13 October 2018 

precipitation event. Both washes in both surveys are also underlain by a higher resistivity layer 

although the resistivity of these layers between to the two surveys are different suggesting a 

change in the composition of the layer. The difference in resistivity is approximately 250Ωm. 

Since resistivity is not a precise measurement tool for substrate identification, the measured 

resistivities can indicate a range of possible materials. The relatively low resistivity suggests 

unconsolidated alluvial deposits which would remain consistent with the driller’s logs and other 

interpreted geological characteristics. Furthermore, resistivity increases as the level of 

consolidation increases in unconsolidated materials. 

The subsurface high resistivity layers that lie beneath the low resistivity layer in both 

surveys are quite different with respect to resistivity measurements. The resistivity values of the 

higher resistance area in Survey B are nearly 2.5x greater than the area in Survey A, and it also 

extends from depth closer to the surface. This trend is consistent with exposed bedrock in the 

local vicinity, as the uplifting or folding of bedrock could bring higher resistivity layers closer to 

the ground surface. The older the alluvial deposits become, the greater the resistivity 
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measurements tend to be as a result of deformation, compaction, and cementation. From 

geological interpretation we know the older alluvial deposits are closer to bedrock, and could 

suggest that these measured higher resistivity areas are on top of the bedrock. Since this 

measured area is only 109m at depth, the potential for bedrock to be below these materials is 

consistent with all available data.  The exposed bedrock in vicinity of the study area in addition 

to the aforementioned interpretation of the high resistivity areas could indicate that a 

groundwater connection between the two basins is unlikely. 

Both surveys show evidence of oscillations at electrode locations that provide good 

evidence of localized lowering of resistivity due to the introduction of a salt water solution to the 

natural environment. This observation is most apparent when the natural subsurface in vicinity of 

the electrode has a higher resistivity such as that in Survey A around 340m from the start of the 

survey. 

5.4 Geochemical Discussion 

 This study compared the 2009 water quality analysis from the Mathany et al. (2012) and 

this analysis in 2018, presented in Table 4-1. No significant variation in major ion values were 

evident over the 9-year span between sampled measurements, suggesting that pumping has not 

pulled in water of varying compositions from other areas or any groundwater contamination 

events have occurred. 

 Regarding stable isotopes of water, δD (Deuterium) is measured at -71 ‰ relative to 

Vienna Standard Mean Oceanic Water (VSMOW) and δ18O is -9.80 ‰ relative to VSMOW. 

These stable isotope values are nearly identical to the values sampled in 2009 (Mathany, 2012). 

The resulting comparison to the global meteoric water line (GMWL) (δ2H = 8δ18O + 10‰) 

shows that it shares a relatively comparable fractionation compared to the GMWL (Figure 5-1). 
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Surface or near surface evaporation causes water to become progressively enriched in these 

isotope values since the isotopes 2H and 18O are heavier and less susceptible to evaporation. In 

the event the sampled waters experience evaporative fractionation, they would become more 

isotopically enriched, which would plot to the right of and below the GMWL. Since the 

measurement shows little enrichment or deviation from the GMWL it does not appear that 

evaporation has had a significant effect on this recharge. JOTR maintains one of the lowest 

humidity averages in the country. For 2018, average annual humidity measurements range 

between 21-42% humidity (NOAA, 2018) in JOTR, being relatively low for the United States. 

Thus, recharge events to the aquifer likely occurred during cooler and wetter periods. This 

observation is consistent with the Pleistocene lacustrine deposits that are below the young 

alluvium but above the old alluvium in the subsurface according to Weir & Bader (1963). 

Precipitation collection and isotope analysis could help provide information on modern recharge.  

5.5 Potential Routes of Groundwater Contamination 

 The results of geochemical analysis (Table 4-1) indicates there has not been any 

contamination to this groundwater. All parameter values measured are the same or very close as 

sampled 9 years ago, suggesting little variation from pumping of groundwater. The only known 

potential area for contamination is the leach fields from the Cottonwood visitor center septic 

system. Figure 5-2 shows both the current leach field and the proposed leach field locations. 

Proposed leach fields will be greater than 2x larger than the current leach field. The groundwater 

well is 4.27 km (2.66 miles) from the current leach fields and approximately the same distance 

for the proposed new leach fields. However, hydrogeologic conditions and current leach field 

installation practices will likely remove any contaminants well in advance of water being 

withdrawn that is tied to the leach field. One primary indication of septic system failure would be 
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increased nitrate levels in groundwater and between sampling in 2009 and 2018 nitrate levels 

remain consistent at 1.5 mg/L (Mathany et al., 2012). Lack of contamination indications or any 

illnesses has not prompted any investigation into fecal coliforms nor has this study investigated 

such.  This does not mean other contaminates are not present in the LUB-23, such as emerging 

organic contaminants (EOC), and may be an area of interest to investigate in the future. 

5.6 Well Observations Discussion 

 Observations during the well investigation do not suggest any clogging or circumstances 

that would interfere with the function of a screened well. Particulates become more evident with 

increasing depth, but not to a degree that should inhibit function. Although the investigation did 

not continue to the total depth of the well, nothing indicates poor performance. 

 Poor well performance was one of the potential rationales as to why the water level in 

vicinity of LUB-23 seemed to be dropping. In 2018 Park Service personnel reported a depth to 

water at LUB-23 of 67m (219 ft) bgs. This investigation found depth to water of 58m (191 ft) 

bgs, almost ~9m (30ft) difference. The difference between these two water levels cannot be 

explained within the limits and course of this research. Seasonal variations, an improper reading, 

or fluctuations of outflows and inflows could explain the large difference in water level readings. 

The original water level when LUB-23 was installed in 1958 was 52m (170ft) bgs. With the 

Cottonwood springs outflow and over 50 years of groundwater extraction, this 6m (20ft) decline 

is not unreasonable but presents evidence for concern for how future groundwater extraction 

from this small sub-basin is managed; small changes could result in a large impact. 

 The current measure of LUB-23 water level further substantiates the lack of a 

groundwater connection. The surface elevation is higher at LUB-23 (~900m above sea level asl) 

and lower near the fault zone (~890m asl) bordering the Pinto Basin. With the observed water 



69 

level at 52m (170ft) bgs and exposed bedrock near the fault zone, it is unlikely the basin could 

possibly fill to a point to spill over. The bedrock in this area is impermeable and there is no 

evidence that suggest cracks or fractures that could facilitate through flow. 
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Figure 5-1. Global Meteoric Water Line (GMWL) comparison to LUB-23 measured stable 
isotopes of deuterium (2H) and 18O. GMWL source credit: Clark & Fritz, 1997. 
 

Figure 5-2. Existing and proposed leach fields for the septic system at the Cottonwood 
Visitor Center. 
 

 (-9.8 ‰, -71 ‰) 
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6. CONCLUSIONS 

  

The purpose of this study was to investigate potential groundwater connections between 

the Cottonwood sub-basin and the Pinto Basin. The area chosen to conduct this investigation was 

an area determined by Karst & Rice (2018) as a potential fault zone, or most likely area for a 

connection to exist (Karst & Rice, 2018). If there was a groundwater connection between the 

Pinto Basin and the Cottonwood sub-basin via a fault-controlled spillway, we would expect to 

see two basic observations. First, evidence of a groundwater connection between the two basins 

and second, evidence of faulting. The conceptual scenarios of faulting conditions were referred 

to as Scenario A and Scenario B (Figure 1-5). However, the resulting resistivity contours do not 

show any evidence of a groundwater connection in the area where the survey was conducted. 

Additional corroborating evidence for a lack of a groundwater connection is the exposure of 

bedrock in the near vicinity of the surveys and water levels. The water table of the Cottonwood 

sub-basin is well below bedrock elevations and high resistivity areas near the fault zone 

investigated with ERT. With the shallow depth to high resistivity layers, the exposure of bedrock 

in the vicinity, lack of a groundwater connection, and lack of faulting identified, this study 

concludes there is not a groundwater connection as an outflow from the Cottonwood sub-basin to 

the Pinto Basin. Therefore, the investigation has determined without a groundwater connection 

or definitive evidence of faulting, a fault-controlled spillway does not currently exist between the 

Cottonwood sub-basin and the Pinto Basin. 

The reported depth to water of the aquifer of 219 ft was one of the following: (1) an 

incorrect measurement (2) taken while the pump was active or (3) an accurate reading and the 

water table rose nearly 30ft. During the course of this research the water level was logged at 



72 

190ft bgs which is ~30ft closer to the surface than what was previously reported at 219ft bgs. 

When the pump and recovery test was conducted, it was logged that while the pump was 

operating the water level declined to a maximum depth of 198.68 ft bgs after the pump was 

operating for only 15 minutes. If the water level was taken while the pump was operating, it 

would not reflect an accurate static water table, as is intended. 

Karst & Rice (2018) suggested a secondary location for an observation well or alternate 

well as labeled in Figure 3-4 (Karst & Rice, 2018). Existing seismic and gravity data in addition 

to the ERT results from this study reinforce the recommendation that the alternate well to be 

south of LUB-23 along the road in the deepest part of the Cottonwood sub-basin consistent with 

its approximate placement in Figure 3-4.  

A proposed explanation by Karst & Rice (2018) regarding the decline in water table also 

noted that the well screen could be clogged, which reduces the efficiency of the well and may 

promote the appearance of a declining water table over time (Karst & Rice, 2018). Following a 

short pumping test as well as visually observing the well screening with a subsurface camera, 

there does not appear to be any degradation of efficiency in LUB-23 despite its 60-year age. 

Geochemical and stable isotope analyses indicate that there has been little or no change 

since 2009, suggesting that the volume of water extracted from LUB-23 is minor compared to 

the volume of water in the aquifer and there are no contaminant concerns.  
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7. RECOMMENDATIONS 

 

 An understanding of the precipitation vs. infiltration in Cottonwood sub-basin would help 

refine a more accurate water budget. It appears, that when there is overland flow through the 

washes, a lot of potential recharge is lost to the Pinto Basin and could contribute to the outflow 

assumption in the water budget by Karst & Rice (2018). Understanding how much recharge is 

retained in the Cottonwood sub-basin from a precipitation event could help to develop an 

accurate water budget and gauge sustainable groundwater development. Current data may be 

misrepresentative of the specific area of interest regarding recharge potential, due to the lack of 

local gaging stations. A thorough understanding of the hydraulic gradient throughout the sub-

basin would aid in determining ground water flow directions and rates.  

Groundwater modeling could be of benefit to see how much of the shallow infiltration 

flows to the deeper parts of the Cottonwood sub-basin versus flowing out into the Pinto Basin. 

For example, the observed saturation layer from the recent precipitation event (Figure 4-9, 

Location A) shows evidence that saturated area above higher resistivity layer is not permanent. 

The water may travel out of the Cottonwood sub-basin since the local hydraulic gradient at 

shallow depths follows the topographic relief of the Cottonwood sub-basin to the Pinto Basin. To 

be able to quantify this would contribute to improving the development of a local water balance. 

ERT collection utilizing longer arrays should be completed to better confirm the deepest 

areas of bedrock in addition to broadening the scope of ERT utilization into 3 dimensions. 

Executing a box technique may be able to provide a more comprehensive understanding of the 

subsurface in the fault zone to reinforce the findings of this research and specifically identify the 

presence of faults. A box technique in ERT utilizes multiple lines to create a 3-dimensional 
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model that includes length, width, and depth. This study utilized 2-dimensional analysis. 

Employing an ERT survey that can visualize down to the depth of bedrock in the Pinto Basin 

along the boundary of the Cottonwood sub-basin and the Pinto Basin would be substantially 

useful definitively proving the relationship between these two basins. 

By suggesting that there is not a fault-controlled spillway between the Cottonwood sub-

basin and the Pinto basin, we contribute to Karst and Rice’s assumption that the Cottonwood 

sub-basin is isolated from underflows (both in and out) in not just the south and west, but in the 

area surveyed in this studies (northeast) (Karst & Rice, 2018). 

On 13 October 2018, 2.33” of rain fell in the vicinity of the Cottonwood sub-basin which 

caused flash flooding and destroyed parts of the primary roadway and infrastructure in the 

southern part of the park. It would be of benefit to conduct future studies in the fluvial 

geomorphological sense and gauging the characteristics of runoff to better prepare, improve, or 

alleviate future vulnerabilities to flash flooding; similar to the study by Bastawesy et al (2019) in 

eastern Egypt. 

A monitoring or secondary well in the location recommended by Karst & Rice (2018) 

would be beneficial to observe and confirm the drawdown data of this aquifer to determine 

transmissivity and specific yield. It could also be used as a contingency well in the event one 

well becomes inoperable, as this one well feeds the entirety of the southern park. A useful course 

of action would be to install a new well at the indicated location and turn LUB-23 into a 

monitoring well. 
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APPENDIX 1. CONTACT RESISTANCE MEASUREMENTS 
 
 
 

 
 
 
 
 
 

Figure 7-1. Contact resistance for each electrode for each array 
run for Survey A. 
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Figure 7-2. Contact resistance for each electrode for each array run for Survey B. 
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APPENDIX 2. FIELD DATA COLLECTION LOCATIONS 
 
 
 
 

Location Description UTM Zone UTM Easting UTM Northing 
Cottonwood Well (LUB-23) 11S 0609628 3739114 
Cottonwood Visitor Center 11S 0608920 3734895 
Leaking Spigot 11S 0609598 3739136 
Generator House 11S 0609612 3739145 
Solar Panel Farm 11S 0609627 3739137 
Cottonwood Springs 11S 0610255 3733598 
Well Storage Tank 11S 0609254 3734090 
UTM: Universal Transverse Mercator coordinate system 

 
  
 

ERT Survey A Locations 
Point ID Point Description UTM Zone UTM 

Easting 
UTM 

Northing 
Elevation(m) 

0001 Start Point 11S 0609740 3739356 891 
0002 Start of 2nd line 11S 0609663 3739232 899 
0003 Start of 3rd line 11S 0609602 3739099 907 
0004 Start of 4th line 11S 0609559 3738959 911 
0005 Start of 5th line 11S 0609512 3738822 915 
0006 Start of 6th line 11S 0609472 3738689 917 
0007 End Point 11S 0609425 3738552 919 

 
 
 

ERT Survey B Locations 
Point ID Point Description UTM Zone UTM 

Easting 
UTM 

Northing 
Elevation(m) 

0008 Start Point 11S 0610691 3740104 889 
0009 Start of 2nd line 11S 0610834 3740137 887 
0010 Start of 3rd line 11S 0610977 3740155 887 
0011 Start of 4th line 11S 0611120 3740186 885 
0012 Start of 5th line 11S 0611255 9740235 884 
0013 Start of 6th line 11S 0611388 3740305 882 
0014 Start of 7th line 11S 0611526 3740338 881 
0015 End Point 11S 0611659 3740345 881 

 
 
 
 
 

Table 8-1. UTM locations for locations referenced in study 

Table 8-2. UTM locations for electrode land cable points for Survey A 
 

Table 8-3. UTM locations for electrode land cable points for Survey B 
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APPENDIX 3. DATA COLLECTION PHOTOS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-1. Photo of the Generator House. Tyler 
Gilkerson (left) and John Boyle (right); prior to 
setup 11/26/18. 
 

Figure 9-2. John Boyle installing an 
electrode into the ground for Survey A, 
along the road. 11/26/18. 
 

Figure 9-4. John Boyle setting up the AGI 
SuperstingTM at the center point of Array 1 
of Survey A along the road. 11/26/18. 
 

Figure 9-3. John Boyle (background), Mary 
(center), and Tyler Gilkerson (right) unraveling 
electrode land cable lines setting up Survey A. 
11/26/18. 
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Figure 9-5. Steven Rice (left) and John Boyle (right) 
recording contact resistance measurements for 
Survey A. 11/26/18. 
 

Figure 9-6. John Boyle utilizing the 5-
Gallon backpack sprayer with salt-water 
solution to saturate electrodes in order to 
improve contact resistance. 11/26/18. 
 

Figure 9-7. Dr. William Sanford (top center), John Boyle (top right), and Steven Rice (right) 
reviewing initial inversion resistivity for Array 1, Survey A. 11/26/18. 
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Figure 9-10. John Boyle (background left), Dr. William Sanford (background right), Steven 
Rice (center) and Luke Sabala (JOTR Science Div) (left), inspect lines and run initial contact 
resistance tests for Survey B. 11/27/18. 

Figure 9-8. Dr. Sanford (left), Tyler Gilkerson 
(center-right), and Steven Rice (right) hauling 
equipment into the Wilderness for Survey B. The 
most difficult and time-consuming part of this 
study. 11/27/18. 
 

Figure 9-9. Tyler Gilkerson using the 5-
gallon backpack sprayer to saturate the 
electrodes to help improve contact 
resistance for Survey B. 
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Figure 9-11. A length of Survey B in the wash after applying the salt water solution to the 
electrodes in order to improve contact resistance. 11/27/18. 
 

Figure 9-12. John Boyle (left), Dr. William 
Sanford (left-center), Steven Rice (right-
center), and Luke Sabala (right) discussing the 
meaning of the initial inversion results for 
Survey B. 11/27/18. 
 

Figure 9-13. Steven Rice (left), John Boyle 
(left-center), Dr. William Sanford (right-
center), and Allison Dunkel (right) setting up 
the digital camera to inspect inside LUB-23. 
11/28/18 
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Figure 9-14. Steven Rice and Allison Dunkel lowering the digital camera into LUB-23. 11/28/18. 
 

Figure 9-15. Camera screenshot inside LUB-23 at a spool length of 20.3 ft, and 17.9 ft below 
ground surface (the well entry point is 2.4 ft above ground surface). 11/28/18. 
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Figure 9-17. A spigot inside the generator 
house that is connected to LUB-23 well water 
(pre-treatment). This is the source for water 
sampled for geochemical analysis.  
 

Figure 9-18. Photo of the solar panel farm. 
 

Figure 9-16. Camera screenshot inside LUB-23 at a spool length of 192.8 ft. Notice the water 
level just below the camera. The precise reading at that water level is 193.18 ft from spool or 
190.78 ft bgs. 
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Figure 9-19. John Boyle (left) and Dr. William 
Sanford (right) using Hach Method 8203 to 
determine alkalinity of LUB-23 well water. 
11/28/18.  

Figure 9-21. The leaking spigot near the generator house, a continual small pool of water is 
present year-round. 
 

Figure 9-20. John Boyle using the Oakton 
multi-parameter PC Testr-35 to measure 
pH, conductance, water temperature, and 
dissolved oxygen of LUB-23 well water. 
11/28/18.  
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APPENDIX 4: Test America Methods & Results 
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