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I. INTRODUCTION 

1.1 General 

The determination of model parameters is an important aspect in 

the mathematical modeling of system response. The performance of a 

model is very much dependent on the results of model calibration. A 

systematic and reliable method for estimating model parameters must 

precede practical applications of a model. 

In the application of a mathematical model, the identification 

of model parameters is often dependent on an optimization scheme. The 

dependency on the optimization scheme may be reduced if the model is 

formulated according to the physical significance. For either a 

"black box" model or a simulation model considering physical signifi

cance, the calibration of a model is necessary when the model contains 

unknown parameters. The parameters of a "black box" model are not 

physically significant and hence, they are usually not predictable. 

While the ranges of parameters of a simulation model with physical 

significance are well imposed by physical conditions or measured data, 

the exact values of the parameters which produce correct model response 

are usually not available. Hence, the model calibration is generally 

inevitable for most of the modeling problems. 

The simplest calibration technique is the trial and error method. 

Except for some models which contain parameters with very narrow 

searching ranges, the trial and error procedure is inefficient for 

most of the problems. An efficient procedure is apparently needed for 

the model calibration. 
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1.2 Review of Model Calibration Techniques 

There are many optimization techniques available for the purpose 

of model calibration. However, the usefulness of a particular optimi-

zation technique is very much dependent on the formulation of the 

model being calibrated. 

Before reviewing the methods, it is necessary to define the 

standard model calibration problem in a mathematical form. This 

problem is 

Minimize F(Xl ,X2, ••• ,XN ) 
P 

Subject to 

X~ < X. < X~ for i = 1.2 .••• ,N 
1- 1- 1 "'" P 

in which N is the number of unknown parameters in a model, 
p 

(1) 

X.'s(i=1,2, ••• ,N) 
l. P are the unknown parameters, F(Xl ,X2, ••• ,XN ) is 

p 
parameters, the objective function which is a function of Xl,X2' ••. '~ 

p 
and X~ and X~ are respectively the lower and the upper limits of 

l. 1 u 
the ith parameter. Usually the constrained regions (X~ ~ Xi ~ Xi) 

l. 

are much larger than the searched regions, thus, the constraints are 

not active. In this case, the problem may be simplified as an uncon-

strained minimization problem (Himmelb1au, 1972). 

The optimization function F is usually defined as the sum of the 

squares of deviations between the simulated and the measured response. 

The available optimization techniques for model calibration can 

be categorized into the following seven methods. 



3 

Least Square Method. This is a very common technique and is only 

useful when F is of a quadratic and of explicit form. Overton (1968) 

approximated a unit hydrograph by a Fourier series having seven 

components and formulated F to be a quadratic and explicit equation. 

Applying the method of least square, he estimated a set of optimum 

parameters utilizing analytical solutions. 

Univariate Search. This search method, intuitively the simplest, 

seeks the optimum value of F by changing only one of the parameter 

values at a time until the line optimum for that parameter is found. 

This results in search directions that are always parallel to the 

orthogonal coordinate axes. When all N parameter directions have 
p 

been searched successively, a cycle is complete, and the search 

pattern is repeated starting with the best values of the X. 
1 

found so 

far. Beard (1967) presented a more sophisticated version of this 

method by gradually reducing the number of the X. 
1 

values that are 

changed during anyone cycle, only those parameters that have the 

greatest effect on F being changed. The major weakness of this 

simple procedure is that it cannot optimize satisfactorily on problems 

where the response surface contours form a ridge structure inclined to 

the parameter axes. Such formations are common whenever there is some 

degree of dependence between parameters. 

Rotating Coordinate Search. This search technique is often called 

Rosenbrock's (1960) method. The first cycle of this method is the same 

as for the univariate search. However, instead of continually searching 

the coordinates corresponding to the directions of the independent 

variables, an improvement is made after one cycle of the coordinate search 

by lining the search directions up into an orthogonal system, with the 
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overall step on the previous stage as the first building block for the 

new search coordinates. This method rapidly lines up along a ridge, 

avoiding the weakness of the univariate search method. Ibbitt and 

O'Donnell (1971) concluded that Rosenbrockts method (1960) is the most 

effective of the nine methods they used for fitting the hydrologic 

catchment model described by Dawdy and O'Donnell (1965). 

Conjugate Qirection Search. This technique (Powell (1964), 

Zangwill (1967)), although applicable to nonquadratic objective func-

tions, was developed to find the optimum of quadratic functions in a 

finite number of steps. This method utilizes a property of ellipses 

that the direction through the tangent points of two parallel lines 

and two concentric ellipses passes through the center of the elliptical 

system. The limitation in using this technique is that F must be an 

explicit and differentiable function, which is generally not true for 

model calibration problems. 

Gradient Search Method. This method is also called the method of 

steepest descent. The search begins by calculating the partial 

derivatives of F with respect to each component X. at some initial 
1 

point. (For a nondifferentiab1e function, the partial derivatives can 

be approximated by a numerical method.) The vector of these derivatives 

is the gradient direction vector which represents the direction of 

maximum instantaneous rate of the gradient and it gives the direction 

for optimization but not the magnitude of the step size to take. The 

optimum step size in that direction can be determined by any effective 

one-dimensional search technique (see Himme1blau, 1972). Recently, 

Tuffuor and Labadie (1974) applied this technique to calibrate a 

rainfall-runoff model. This technique is applicable whenever the 
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dimension of the optimization problem is small and the partial 

derivatives can be easily evaluated. 

Quasilinearization Method. Quasilinearization is a technique that 

facilitates the reverse solution of a system of differential equations. 

It involves decoupling the system of differential equations by linear

ization into a series of initial value problems that may be repetitively 

solved in such a way that their solution converges to the solution of 

the original problem. Labadie and Dracup (1969) utilized this technique 

to estimate the parameters of a lumped watershed model. Yeh and Tauxe 

(1971) also successfully used this technique to calibrate an aquifer 

simulation model. As reported by Tuffuor and Labadie (1974) that the 

primary disadvantage of quasilinearization is its instability in solu

tions whenever a poor initial guess is chosen. 

OPSET Method. OPSET program was developed by Liou (1970) for 

computerized selection of watershed parameter values for the Stanford 

Watershed Model. Liou (1970) reported that standard optimization tech

niques proved infeasible and other methods, which were based on the 

results of parameter sensitivity studies, were used. Basically, this 

program uses measurable watershed characteristics, climatological data 

and measured streamflow data to find the optimum set of parameters 

which define the various flow and storage functions. The optimization 

is done in two phases, a rough phase which uses large time increments, 

and a phase in which the results are refined by using finer time 

increments. This is because the rough phase may provide a very good 

initial approximation without requiring too much computer time. 

The objective function in the parameter identification problem is 

generally not differentiable with respect to the parameters. This is 
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due to the reason that the function is complicated with mathematical 

expressions and usually cannot be represented by a single equation. 

As the function is not differentiable, the optimization schemes using 

derivatives cannot be applied. An algorithm without using derivatives 

is often necessary for the calibration of a mathematical model. 

In this study Powell's unidimensional minimization technique 

(Powell, 1964) is modified for use in calibrating the model with only 

one unknown parameter. The modifications on this technique have 

improved its efficiency_ In addition, the Rosenbrock's (1960) optimi

zation scheme is modified by coupling this modified Powell's unidimen

sional search technique to calibrate the model having multiple unknown 

parameters. The Rosenbrock's (1960) optimization technique is used 

because it is by far the most promising and efficient method for fitting 

a hydr~logic model (Ibbitt and O'Donnell, 1971) and it also does not use 

derivatives of functions. 



7 

II. ONE-DIMENSIONAL CALIBRATION TeCHNIQUE 

2.1 Description of Method 

The one-dimensional search technique is a fundamental component of 

any multidimensional search technique. A good unidimensional search 

technique is necessary not only for solving one-dimensional problems 

but also for improving multidimensional search techniques. 

There are various methods for unidimensional searches. For 

example, uniform search, dichotomous search, Fibonacci search, Golden 

Section search, DSC unidimensional search and Powell's unidimensional 

minimization (Himme1b1au, 1972). After a survey of these available 

methods, a method modified from Powell's unidimensional minimization 

method is developed in this study_ The major modifications are to con-

sider the convexity of the objective function and to allow constrained 

minimization problems. 

For the one-dimensional problem, the functional representation is 

Minimize F (X) 
X 

Subject to (2) 

in which X is the unknown parameter, and Xt and Xu are respectively 

the lower and the upper limits of this parameter. 

The method developed in this study is carried out using the first 

three points obtained in the direction of search. The X corresponding 

to the minimum of the quadratic function is determined, and these qua-

dratic approximations are continued until the minimum of F (X) is 

located to the required preCision. The steps of the search are as 

follows (see Fig. 1): 
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a* = 

9 

Step 1. From the base vector X(l) compute 

X(2) = X(l) + AX 

Step 2. Compute F(x(l)) and F (X(2)) 

Step 3. Determine the third point required for quadratic 

approximation. 

When F (x(l)) is greater than F (x(2)), let 

X(3) = X(l) + 2AX if X(l) + 2AX < X 
.,.... u 

and 

X(3) = X if X(l) + 28X > X 
u u 

When F (x(l)) is less than or equal to F (x(2)), let 

X(3) = X(l) - 8X if x(l) - AX > X 
-1 

and 

Step 4. Compute F (X(3)). 

Step 5. Check the convexity of the quadratic equation, the 

optimal coefficient a* can be determined by 

(3) 

(4) 

(5) 

(6) 

(7) 

(X(2)_X(3)) F (x(l)) + (X(3)_x(1)) F (X(2)) + (X(1)_x(2)) F (x(3)) 
(x(1)_X(2)) (x(2)_x(3)) (x(1)_x(3)) 

(8) 

If a* > 0 the function is convex and the search is 

continued at step 6. 

If a* < 0 the function is concave, let 
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and return to step 3 and resume the search with the 

following information 

X(l) = X 
a 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Step 6. Estimate the value of X at the minimum of F (X), X*. 

Compute the other optimal coefficient using 

- a* 

Then, estimate X* by 

b* X* = --2a* 

If X1 ~ X* ~ Xu' the constraints are satisfied and 

the search is continued at step 7. 

(16) 

(17) 
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If X* > Xu or X* < Xl' the constraint is violated and the 

boundary point is used as optimum value of X, i.e., 

(18) 

and 

(19) 

Step 7. Compute F(X*). 

Step 8. Termination of the search 

Let XO = whichever of {x(l), X(2), XeS)} corresponds 

to the smallest F (X). The termination of search is 

made if 

I _ F (X*) 
F (Xo) < € 

in which € is the convergence tolerance. If the 

convergence criterion is not satisfied, the search is 

(20) 

repeated returning to step 3 with the following information. 

Let 

Xa = Min. {Xo,X*} (21) 

~ = Max {Xo,X*} (22) 

AX = ~- X (23) a 

X(l) = X a 
(24) 

F eX (1)) = F (X ) a (25) 

X(2) = \ (26) 

F (x(2)) = F (~) (27) 
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A computer program was developed to perform the above procedures. 

The listing of the computer program is given in Appendix A (PROGRAM 

UNIMO) and the flow chart is given in Fig, 2. The computer program 

is written in FORTRAN IV extended and has been tested on the CDC 6400 

Computer at Colorado State University. 

2.2 Instruction for Use 

A detailed description of the input and output of the program is 

given herein. However, the input and output information required to 

evaluate the objective function are not given because they vary 

with models to be calibrated. 

2.2.1 Input Data 

The input to the program includes the title of the problemJ the 

maximum limit of number of stage search, the numerical identification for 

contrOlling the output, the initial estimate of the vector, the initial 

step size of the search, the upper bound of the vector, the lower bound 

of the vector, and the convergence tolerance. There are only two input 

cards. They are described. 

(a) Title Card, One card with Format (20A4) 

Column Mnemonic Name 

1-80 TITLE 

Description 

Heading of the problem, which 
may consist of any alphabetical 
characters or numbers of 80 words. 

(b) Information Card, One card with Format (2110, 4FIO,S EI03) 

Column Mnemonic Name 

1-10 M5T 

11-20 IPT 

Description 

Maximum limit of number of stage 
search (number of quadratic 
approximation) .. 

Numerical identification for 
controlling output information. 
= 0, only the final answer 
is printed .. 
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INPUT A:-JD OUTPUT NECESSARY INFOn:-'IATIO:-J 

EVALUATE THE OBJECTIVE FUNCTION FOR THE FIRST TWO POINTS 

DETlmMINE THE TmRIl POINT REQUHH:O 
FOR APPROXIMATIO~ 

ELUtINATE PREMATURE TE~fINATION DUE 
TO EQUAL VALUES AT TWO END POINTS 

IN TIlE FIRST SEARCH 

NO 
INCREASE STEP >-----..... LENGTH 

DETERMINE TUE MINIMUM OF TIm QUADRATIC FUNCTION 

NO SET TIiE MINIMUM 
AT l'UE BOUND 

YES 

SET TUE FIRST TWO POINTS 

Fig. 2 FLOW CHART OF PROGRAM UNIMO 



2.2.2 
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Column Mnemonic Name 

21-30 XA 

31-40 DX 

41-50 XUPL 

51-60 XLOL 

61-70 EPS 

OutEut Information 

Description 

= 1, intermediate values 
of each stage search 
are printed 

Initial estimate of the 
vector 

Intial step size of 
search 

Upper limit of the vector 

Lower limit of the vector 

Convergence tolerance 

The output from this computer program includes (1) all input 

data, (2) number of stage search, (3) intermediate values at the end 

of each stage search, (4) number of function evaluation, (5) optimum 

value of the objective function, and (6) optimum estimate of the 

vector. The Fortran labels of key output are listed below. 

Mnemonic Name 

NS 

NEF 

FSTA 

XSTA 

2.3 Example 

Description 

Number of stage search or number 
of quadratic approximation 

Number of function evaluation of the 
objective function 

Optimum value of the objective function 

Optimum estimate of the vector 

For simplicity a simple function is used as an example to 

demonstrate the application of the method. 
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In Fig. 3 the path of the search for the minimization of the 

following function by PROGRAM UNIMO is given. 

Equation 28 is often called the "Rosenbrocktf function 

The initial estimate of the vector X(l) is -2.0, the upper 

limit is 10.0, the lower limit is -10,0, the convergence tolerance, 

(28) 

€, is 1.OxlO-3 and the initial step size of search, ~X, is 0.5. The 

calibration results are: X* = 1.0, F (X*) = 2.5xlO-28 and the number 

of function evaluation is 30. 
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F( X) 
leGend 
() Stage Search 

---.. Search Path 

~----~----~--~~~--~-----. X -2 -I 0 

Fig. 3 Search path for the sample problem 



17 

III. MULTI-DIMENSIONAL CALIBRATION TECHNIQUE 

3.1 Description of Method 

Rosenbrock's method (1960) is an iterative procedure in which small 

steps are taken during the search in orthogonal coordinates. Instead 

of continually searching the coordinates corresponding to the directions 

of the independent variables, an improvement of search is made after 

one cycle of coordinate search by lining the search directions up into an 

orthogonal system, with the overall step of the previous stage as the 

first building block for the new search coordinates. Rosenbrock (1960) used 

an unconstrained dichotomous search to determine the search along a 

direction and generated the orthonormal set of directions by Gram-

Schmidt procedure (Himmelblau, 1972). 

In this study the Rosenbrock's optimization scheme (Rosenbrock, 

1960) is modified by coupling the unidimensional search technique 

presented in Section II and by considering constrained minimization 

problems. In addition, Palmer's method (Palmer, 1969) for generating 

a new set of orthonormal search directions is used. 

Let Y be a vector of [Xl' X
2

, ••• , ~ 1. The method developed 
p (k+l) 

in this study locates the vector Y of the (k+l)-th stage by Y . 

by successive unidimensional searches from the vector Y of the k-th 

stage y(k) along a set of orthonormal directions 
A(k) 
SN • For the initial stage, k = 0, the directions 
A p 
S~O) are taken to be parallel to the axes of Xl' X2, .•. , XN • More 

p p 
specifically let y~k) indicate that the point at which F (y~k) is 

1 1 

a minimum in the direction of s~k), for each stage (k) there are 
1 

Np vectors yik) and Np optimal values of the objective function 

F (yik». From the initial vector y~k) J determine optimal step 
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length A~(k) in the direction of sik) 

is a minimum and let y(k) = yCk) + A*(k) 
101 

so that F (y{k) + A * (k) S (k)) 
011 

~ Ck) (k) 
51 • Then from YI ' determine 

A*(k) so that F(y(k) + A*(k) S(k)) is a minimum and let 
2 1 2 2 

y(k) = y(k) + A*Ck) gCk) The search pattern is generalized as follows; 
2 1 22· 

from y~k)l' determine A~Ck) in the direction of S~k) so that 
1- 1 1 

F CYi5~) + A;Ck) sik)) is a minimum and let yik) = Yi~l + A~(k) sik). 

The search is repeated sequentially, always starting from the last 

immediate point in the sequence until all Y., i=l, ••• N are determined. 
1 p 

The unidimensional search technique developed in Section II is used to 

determine the optimal step length A~(k). This constrained unidimensional 
1 

search technique makes the multi-dimensional search method applicable 

in the constrained minimization problem described in Eq. 1. 

After the kth stage has been completed, the vectors for the new 

search directions are computed at the point y~k+l) = y~k). Palmer's 
p 

method (Palmer, 1969), for generating a new set of search direction is 

used in this study. His method is as follows. 

for 1 < i < N 
- P 

(29) 

in which A(k) is the vector from yCk) t y(k+l) ACk) is the vector 
1 0 0 0 ' 2 

from yCk) to yCk+l) and so on. ACk) represents the overall move 
101 

from stage k to stage Ck+l), A~k) represents the overall move less 

the progress made during the search in direction sik), etc. Then 

for 2 < i < N 
- P 

in which I I I I is the norm of the vector and 

(30) 



S(k+l) 
1 

If A. *l(k) = 0, S~k+l) = 
1.- 1. 

terminated when 
FcY (k+l)) 

N 

~(k) 
S. 1 1.-

1 - P < £ 
F(Y )(k) 

N 
p 
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(31) 

*(k) unless L A. = o. The search is 
1. 

(32) 

A computer program was developed to carry out the above procedure. 

In this program, the vector is normalized so that the ranges of the 

vector are within 0.0 and 1.0. The listing of the computer program is 

given in Appendix B. (PROGRAM BROSEN). Figure 4 gives a flow chart 

of the program. The computer program is written in FORTRAN IV EXTENDED 

and has been tested on CDC 6400 Computer at Colorado State University. 

3.2 Instruction for Use 

Presented in the following is a detailed description of the input 

and output information of the program. The input and output requirement 

for the objective function are not given because they are varied with 

models to be calibrated. 

3.2.1 Input Data 

The input to the program includes title of the problem, number 

of variables (or parameters), maximum limit of number of stage search, 

maximum limit of number of cycle search (number of stage search for 

unidimensional search), numerical identification for controlling output, 

convergence tolerance, initial estimate of the vector, initial step sizes 

of search, upper and lower bounds of the vector. There are three types 

of input cards which are described as follows. 
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INPUT ANP OUTPtrt NI:f,flSSARY I NfO_f ION 

SET 11IE INITIAL SEARCH DIRECTION 

eVALUATE THE OBJECTIVE FUNCTION 

r-
I 
I 
I 
I 
I 
i 
I , 
i 
I 
I 
I 
I 
t 
I 
J 
I 
I L ____ _ 

NO 

CALCULATE NEW SEARCH DIRECTION 

YES 

Fig. 4 FLOW CHART OF PROGRAM BROSEN 



(a) 

(b) 

ec) 
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Title Card, One card with Format (20A4) 

Colwnn Mnemonic Name 

1-80 TITLE 

Information Card, One card with Format 

Colwnn Mnemonic Name 

1-10 N 

11-20 MST 

21-30 MeL 

31-40 IPT 

41-50 EPS 

Description 

Heading of the problem, 
which may consist of any 
alphabetical characters 
or number of 80 words. 

(4110, EI0.3) 

= 

= 

= 

Description 

Number of variables (or 
parameters) 

Maximum limit of number 
of stage search (number 
of changing orthonormal 
directions) 

Maximum limit of number 
of cycle search (number 
of quadratic approxima
tion in the unidimensional 
search) 

Numerical identification 
for controlling output 
information 
0, only the final answer 
is printed 
1, intermediate values 
of each stage search are 
printed 
2, intermediate value 
of each stage and cycle 
search are printed 

convergence tolerance 

Vector Card, One card with Format (4F10.5) for every variable 

Column Mnemoni c Name DescriEtion 

1-10 V(I) Initial estimate of the I-th 
variable of the vector 

11-20 0(1) Initial step size of search 
along I-th search direction 



Column 

21-30 

31-40 

3.2.2 Output ·Information 
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Mnemonic Name 

VUP(I) 

VLO(I) 

Description 

Upper limit of the I-th 
variable of the vector 

Lower limit of the I-th 
variable of the vector 

The output from this computer program includes (1) all input 

data, (2) number of stage search, (3) intermediate values at the end 

of each stage and cycle search, (4) number of function evaluation, 

(5) optimum value of the objective function, and (6) optimum estimate 

of the vector. The Fortran labels of key output are listed below. 

Mnemonic Name Description 

NS Number of stage search or number of changing 
search directions 

NEF Number of function evaluation of the objective 
function 

PO Optimum value of the objective function 

V(I) Optimum estimate of the vector 

3,3 Example 

The number of function evaluations for the Rosenbrock's function 

(Rosenbrock, 1960) by the proposed algorithm is 30, which is much less 

than 206 function evaluations by the original Rosenbrockts method 

(Himmelblau, 1972). A sample problem with three variables is given 

herein for illustration. 

The function is defined as 

(33) 

This function is highly interactive among variables which is 

common for model calibration problems. 
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The initial estimate of the vector is 

Y~O) = [5.0, 2.0, 7.0] 

The upper botmd of the vector is 

Y = [10.0, 10.0, 10.0] 
u 

The lower bound of the vector is 

Yt = [-10.0, -10.0, ~lO.O] 

The convergence limit, e: = 10-3 

(34) 

(35) 

(36) 

The search paths for each stage are given in Table 1. This table 

shows the applicability of the proposed algorithm for the problem with 

highly interactive parameters. 
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Table 1. Summary of Search Path for Each Stage 
of a Multi-dimensional Search Problem 

Current Cumulative No. 
Objective Function 

Stage Current Vector Function Evaluation 
Xl X2 X3 

0 5.000 2.000 7.000 0.178 X 103 0 

1 2.000 8.000 3.600 0.392 x 10 2 16 

2 7.005 8.220 3.386 0.549 x 10 1 29 

3 8.142 7.709 3.435 0.295 x 10 1 42 

4 7.871 7.366 3.336 0.252 x 10 1 53 

5 5.847 2.751 
0 68 5.950 0.694 x 10 

6 4.213 4.278 2.112 0.198 x 10 -1 81 

7 4.004 4.005 2.002 0.628 x 10 -5 96 

8 4.000 4.000 2.000 0.101 x 10 -7 114 

9 4.000 4.000 2.000 0.685 x 10 -9 130 

10 4.000 4.000 2.000 0.378 x 10 -9 145 

11 4.000 4.000 2.000 0.352 x 10 -9 158 

12 4.000 4..,000 2.000 0.309 x 10 -9 172 

13 4.000 4.000 2.000 0.222 x 10 -9 185 

14 4.000 4.000 2.000 0.385 x 10-10 201 

15 4.000 4.000 2.000 0.376 x 10-10 215 

16 4.000 4.000 2.000 0.376 x 10-10 227 
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IV. APPLICATION STRATEGY 

4.1 General 

The purpose of calibrating a mathematical model is to find a 

set of model parameters which produce correct system response. In 

other words, before applying a mathematical model, unknown model 

parameters should be selected so that the model performs as well as 

possible within the constraints imposed by physical conditions or 

measured data.. The selection of the ftbest U set of model parameters 

requires some kind of ranking basis. This basis is usually evaluated 

by a function called "objective function" (Eq. 1). The selection of 

an objective function and the recommended procedure for calibrating a 

complicated model are discussed as follows. 

4.2 Objective Function 

Two different objective functions which are commonly used are 

given below. 

4.2.1 Sum of Squares of Deviations 

This objective function is defined by the following equation 

(37) 

e in which N is the number of observations, R. (Xl,X2' ••• ~) is the 
1. p 

estimated system response utilizing the mathematical model and the 

values of model parameters of [Xl ,X2, ..• XN ] for the ith observation, 

o p. F and R. is the measured system response of the ith observat1on. or 
1 

example, R7 is the estimated water yield at the ith day from a water-
1. 

balance simulation model and R? is the observed water yield at the 
1. 

ith. day. 
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This objective function is analogous to the residual variance of 

a regression analysis. Mathematically speaking, equal weights are 

placed on all of the observations. However, in reality, this tends to 

place greater weight on the observation with a larger value which can 

be viewed by the following. 

From Eq. 37: 

aF 
aR~ 

1 
I = 

in which I I is the absolute value. 

Equation 38 shows that the effect of the ith observation 

(38) 

o R. on 
1 

the value of the objective function F is directly proportional to the 

absolute difference between the estimated value and the measured value. 

This value is usually larger for the observation with a larger 

quantity. Therefore, a greater weight is usually placed on the 

observation with a larger value. This is often a desirable condition 

for modeling a hydrologic or hydraulic system because an event with a 

larger quantity is usually more important in considering a design risk. 

4.2.2 Sum of Squares of Logarithmic Deviations 

The objective function is given below. 

(39) 

According to Dawdy et al. (1972), the logarithms of observation 

values are used because the prediction errors are generally more nearly 

equal in percentage than they are in absolute terms. The logarithmic 

transformation is meant to make the error of estimation more comrnensur-

able for th'e large and the small observation quantities. This can be 

explained as follows. 



From Eq. 39: 

= 2 
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e 
Ri (XI ,X2,···XN ) 

--------------p- - I 

The ratios of the estimated value to the measured value are 

(40) 

generally nearly equal. From Eq. 40 it can be shown that the effects 

of different observations on the value of F are nearly the same. 

Thus, this objective function makes the error of estimation more 

commensurable for the large and the small observation quantities. This 

is desirable when the smaller observation values are as equally 

important as the larger observation quantities. 

4.3 Recommended Procedure 

In a complicated mathematical model, there are often too many 

unknown parameters which need to be calibrated. The larger the number 

of model parameters the more difficult the calibration problem will be. 

This is because of more interactions among parameters. It is viable to 

decompose the optimization problem into various sequential probe1ms 

with a smaller number of unknown parameters. This decomposition 

should be done according to the physical significance and the results 

of parameter sensitivity. For example, the water and sediment routing 

model developed by Simons et a1. (1975) contains parameters governing 

various system responses such as water routing and yield, wash load 

yield, and bed material load routing and yield. The calibration should 

be made sequentially according to these various system responses. The 

recommended procedures are given herein. 

a) Water Routing and Yield 

Step 1. Identify parameters governing the water yield. 
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Step 2. Based on the results obtained in Step 1, estimate 

the optimum set of parameters governing the water 

routing. 

Step 3. Let the results obtained in Step 2 be the initial 

estimate, reca1ibrate the model considering both the 

water yield and water routing. The objective 

function can be assumed as the following 

F = 8F1 + (1-8)F2 (41) 

in which e is the weighting factor, FI is the 

objective function representing water yield, and F2 

is the objective function representing water routing. 

An appropriate value of 8 is 0.5. 

b) Sediment Routing and Yield 

Step 4. Based on the optimum parameters governing water 

routing and yield, identify parameters governing 

wash load routing and yield. 

Step 5. From the set of parameters obtained in Step 4, esti

mate the optimum set of parameters governing bed

material load. 

Step 6. Let the set of parameters obtained in Step 5 be the 

initial estimate, find the optimum set of parameters 

considering both the wash load and the bed-material 

load routing and yield. A similar objective 

function to Eq. 41 can be used, i.e., 

(42) 



29 

in which FS and F4 are respectively objective 

functions representing wash load and bed-material 

load sediment yield. 

An example of the calibration results of the above procedures was 

given by Simons et al. (1975). 
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v. S~RY 

A one-dimensional calibration technique modified from Powell's 

(1964) unidimensional minimization method is proposed to calibrate one

dimensional models. This unidimensional method is further applied to 

modify the Rosenbrock's (1960) method for the calibration of models 

with multiple parameters. This modification shortened computer time 

compared with the original Rosenbrack's method. 

Both one-dimensional and multi-dimensional calibration techniques 

are formulated to deal with bound constraints (i.e., the upper and 

lower bounds). These bound constraints are usually imposed on the 

mathematical models by physical conditions or measured data. 

It is found that the objective function based on the sum of squares 

of deviations generally places more weight on the observations with 

larger absolute quantities. This would provide a safer design 

considering a risk analysis. The objective function based on the sum 

of squares of logarithmic deviations would make the error of estimation 

more commensurate for the large and the small observation quantities. 

This would be desirable when the smaller observation values are as 

equally important as the larger observation quantities. 

For calibrating a complicated system, it is recommended that the 

calibration problem be decomposed into various sequential calibration 

problems with a much smaller number of unknown parameters. 
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LISTING OF COMPUTER PROGRAM UNIMO 
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PROGRAM UNIMO (INPUT.OUTPUT, 

PROGRAM UNIMO C!NPUT.OUTPUT, UNI 10 
C UNf 20 
C THIS PROGRAM SOLVES ONE-DIMENSIONAL CONSTRAINED MINIMIZATION UN! 30 
C PROBLEM BY SUCCESS lYE QUADRATIC APPROXIMATION UNI 40 
C THE CONS~RAINTS ARE THE UPPER AND LOWER 80UNDS OF THE YECTOR UNf 50 
C THE USER MUST SUPPLY A SUBROUTINE OBJECT FOR EVALUATION OF THE UNI 60 
C OBJECTIVE FUNCTION UNI 70 
C NOTATIONS FOR INPUT AND OUTPUT INFORMATION UNI 80 
C TITLE - ALPHABETICAL OR NUMERICAL IDENTIFICATION OF THE PROBLEM UNI 90 
C MST • MAXIMUM LIMIT OF NUMBER OF STAGE SEARCH UNI 100 
C IPT • NUMERICAL IDENTIFICATION FOR OUTPUT CONTROL UN! 110 
C IPT • 0 --- ONLY THE FINAL ANSWER IS PRINTED UNI 120 
C 1PT • 1 --- INTERMEDIATE VALUES OF EACH 5TA8£· SEARCH ARE PRINTED UNI 130 
C XA - INITIAL GUESS OF THE VECTOR UNI 140 
C OX • INITIAL STEP-SIZE UNI 150 
C XUPL • UPPER BOUND UNI 160 
C XLOL • LOWER BOUND UNI 170 
C EPS • CONVERGENCE TOLERANCE UNI 180 
C UNI 190 

DIMENSION Eel), Y(3), TITLE(24) UNI 200 
C UNI 210 
C INPUT AND OUTPUT NECESSARY INFORMATION UN! 220 
C UNI 230 

READ 118. TITLE UNI 240 
PRINT 119, TITLE UNI 250 
READ 120, MST.IPT,XA,OX,XUPL,XLOl.£PS UNI 260 
PRINT 121, ~A.XUPl,XLOL.EPS UNI 270 

C UNI 280 
C STARTING OF STAGE SEARCH UNI 290 
C UNI 300 

NEF=O UNI 310 
NS=O UNI 320 
CALL OBJECT (VALUE.HEF.X., UNI 330 
A-VALUE UNI 340 
XB=XA+OA UNI 350 
CALL OBJECT (VALUE.NEF.xa) UNi 360 
a-YALUE UNI 370 

C UNI 380 
C DETERMINE THE THIRD POINT REQUIRED FOR APPROXIMATION UN! 390 
C UNI 400 

IF (A.GT.8) GO TO 104 UN! 410 
101 XC=XA-OX UN! .20 

IF (XC.GE.XLOL) GO TO 102 UNI 430 
XC=XLOL UNl 440 

102 CALL OBJECT «VALUE.MEf.XC' UNI 450 
C=VALUE UN! 460 
Yel)=XC UNI 470 
V(2)=XA UNI 480 
Y(3)~XB UNI 490 
E(I):C UNI 500 
E(2)=A UNI 510 
E(3)=B UNI 520 
IF (C.LT.A) 60 TO 103 UNI 530 
XINf=XA UNI 540 
FIN'-. UNI 550 
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PROGRAM UNIMO (INPUT.OUTPUT' 

GO TO 107 
10l XINFcXC 

FINF-C 
GO TO 101 

104 XC-XA+2.*OX 
IF (XC.LE.XUPL' 60 TO lOS 
XC-XUPL 

105 CALL OBJECT (VALUE.NEF.XC' 
C=VAlUE 
Y Cl )=XA 
Y(2'aX8 
ye31=XC 
Eel,a. 
f(2'=B 
E(3)=C 
IF CC.LT.I' GO TO 106 
XIN'.XB 
FINF-e 
GO TO 101 

106 XINF=XC 
FIN'=C 

C ELIMINATE PREMATURE TERMINATION DUE TO EQUAL VALUES AT TWO END 
C POINTS IN THE 'IRST SEARCH 
C 

c 

107 OfF-Eel)-Ee3' 
IF (NS.GT.0.OR.A8SCDEF'.GT.£PS' GO TO 101 
ox-o.s-ox 
YCZ).YCU+OX 
CALL 081oi£CT CVALUE.HE',VC!') 
[(l)cVALUE 
YCl'cXIN' 
E(3'=FINF 
OFfaEfl)-Ee3. 
IF cEe2'.GT.FI"') GO TO 108 
XINF·Y(2' 
FIN'·E«2, 

C CHECK THE CONVEXITY OF THE QUADRATIC FUNCTION 
C 

108 Ala CV(I)-Y(2')*CY(2)-Ye3"*(YCl'-YC3)' 
IF (A8SeAl).EQ.0.) GO TO 109 
A2.£(1'*CVl2,-yi3')+EeZ'·CV(3'·YC1»+EC3'*CV(I'-VC!', 
SA-A2/Al 
IF CSA.GE ••• , GO TO 110 
o.--yel,-Vel' 
X.-Yel) 
AcEC'1 ) 
XPaY(3) 
B-[(3) 
.IF eOEF .Gl • .0.' 80 TO 104 
GO TO 101 

10. XST.-XINF 
FST.-'IN' 
GO TO 117 

UNI 560 
UN! 510 
UN! 580 
UN! 590 
UNI 600 
UN! 610 
UN! 620 
UNI 630 
UNI 640 
UNI 650 
urn 660 
UNf 610 
UN! 680 
UN! 690 
UNI 100 
UN! 110 
UN! 120 
UNI 130 
UNI 740 
UNl 750 
UNt 760 
UN! 110 
UNI 780 
UNI 790 
UNI 800 
UN! 810 
UNI 820 
UNI 830 
UNI 840 
UNI 850 
UN! 860 
UNI 810 
UNI 880 
UNI 890 
UN! 900 
UNI 910 
UNI 920 
UNI 930 
UNI 940 
UNI 950 
UNI 960 
UN! 910 
UN! 980 
UNI 990 
UNI 1000 
UNI 1010 
UNI 1020 
UNI 1030 
UNI 1040 
UNI 1050 
UNI 1060 
UNI 1010 
ONI 1080 
UNI 1090 
UNI 1100 



36 

PROGRAM UNIMO (INPUT,OUTPUT' 

C 
C DETERMINE THE MINIMUM OF THE QUADRATIC FUNCTION 
C 

C 

110 SB=(E(1)-[(2"/CY(I'-Y(2,,-SA*CY(I'.Y(2') 
XSTA="SB/(2.*SA) 
IF (XSTA.GE.XLOL.ANO.XSTA.lE.XUPL' 80 TO 112 
IF (OEF.GT.O.) GO TO 111 
XSTA=XLOL 
GO TO 112 

111 XSTA=XUPL 
112 NS=NS+l 

CALL OBJECT (VALUE,NEF.XSTA' 
FSTAaVALUE 
IF (F~TA.LE.'INF' GO TO 113 
XTE"'.~STA 
XSTA:XINF 
XINFaXT£M 
FTEMaFSTA 
FSTA=FINF 
FINF·fTEM 

113 IF (IPT.[Q.O) GO TO 114-
PRI~T 122 
PAINT 123, NS 
PRINT 122 
PRINT 124, XSTA,FSTA 

C CHECK IF THE VALUE IS SATISFIEO WITH CONVERGENCE TOLERANCE 
C 

C 

114 OX=ABSeXINF-XSTA' 
IF (OX.EQ.O.) GO TO 111 
IF «(l.-FSTA/FINF).LE.£PS) 10 TO 117 
IF (NS.LT.MST, eo TO 115 
PRINT 122 
PRINT 125. M5T 
PRINT 124, X5TA,FSTA 
STOP 

115 IF (XSTA.6T.XINFJ GO TO 116 
XA-XSTA 
A=FSTA 
XB-XINF 
B-FINF 
GO TO 101 

116 XA.~INF 
A=FINF 
X8=XSTA 
B=FSTA 
GO TO 104 

C A MINIMUM HA$ BEEN FOUND 
C 

C 

117 PRINT 122 
PRINT 126. NS,N!F 
PRINT 127. FSTA.XSTA 
STOP 

UNI 1110 
UNI 1120 
UNI 1130 
UNI 1140 
UNI 1150 
UNI 1160 
UNI 1170 
UNI 1180 
UNI 1190 
UNI 1200 
UNI 1210 
UNI 1220 
UNI 1230 
UNI 1240 
UNI 1250 
UNI 1260 
UNI 1210 
UNI 1280 
UNI 1290 
UNI 1300 
UNI 1310 
UNI 1320 
UNI 1330 
UNI 1340 
UNI 1350 
UNI 1360 
UNI 1310 
UNI 1380 
UNI 1390 
UNI 1400 
UNI 1410 
UNI 1420 
UNI 1430 
UNI 1440 
UNI 1450 
UNI 1460 
UNI 1470 
UNI 1480 
UNI 1490 
UNI 1500 
UNI 1510 
UNI 1520 
UNI 1530 
UNI 1540 
UNI 1550 
UNI 1560 
UNI 1510 
UNI 15AO 
UNI 1590 
UNJ 1600 
UNJ 1610 
UNI 1620 
UNI 1630 
UN! 1640 
UNI 1650 
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PROGRAM UNJMO (INPUT,OUTPUT' 

118 FOR~AT (20A4) UN! 1660 
119 FOR~AT (lHlIIII140X,20A4) UNI 1610 
120 FORMAT (2110,4FI0.5,El0.3) UNI 1680 
121 FORMAT (1135X,39HTHE INITIAL VECTOR CHOSEN 8Y THE USER .,FI0.51141UNI 1690 

lX,21HUPPER LIMIT OF THE VECTOR .,FIO.5114IX.21HLOWER LIMIT OF THE UNI 1100 
2V£CTOR .,Fl0.SI144X,23HCONVERGENCE TOLERANCE .,EI0.3) UNI 1110 

122 FORMAT (/40X,40Ho •••••••••••••• o •••••••••••••••••••••••• ) UNI 1120 
123 FORMAT (1148X,18HSTAGE SEARCH -----,15) UNI 1130 
124 FORMAT CI145X,20HTHE CURRENT VECTOR .,FIO.51134X,32HTHE CURRENT OBUNl 1140 

IJ[CTIVE FUNCTION .,£20.8) UNI 1150 
125 FORMAT (1140X,18HOO NOT CONVERGE IN,15,SX,14HSTAGE SEARCHES) UNI 1760 
)26 FORMAT (11.aX,24HA MINIMUM HAS BEEN fOUNOI141X.lOHTOTAL NUMBER OF UNI 1170 

1STAIE SfA.CH .,ISII39«,llHTOTAL NUMBER 0' FUMCTtoN EVALUATION a,I5UNt 1180 
2) UNJ 1190 

127 'ORMAT (1IlaX,23HOPTIMIZATION 'UNCTION a,E20.11148X,14H'INAL VECTOUNI 1800 
lR -.'10.5, UNI 1810 

C UN! 1820 
END UNI 1830 



38 

SUBROUTINE OBJECT (VALUE,NE',I) 

SUBROUTINE OBJECT CVALUE.NE'.X) 08J 10 
C OBJ 20 
C THIS FUNCTION EVALUATES THE VALUE 0' THE OBJECTIVE 'UNCTION 08J 30 
C 08J 40 

NEF=NEF.l OBJ SO 
VALUE-Cl.-X'··2·Cl.-X·X)··2 OBJ 60 
RETURN OBJ 10 

C 08J 80 
END 08J 90 
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APPENDIX B 

LISTING OF COMPUTER PROGRAM BROSEN 
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PROGRAM BROSEN (INPUT,OUTPUT' 

PROGRAM BROSEN CINPUT,OUTPUT) BRO 10 
C BRO 20 
C THIS PROGRAM SOLVES CONSTRAINED MINIMIZAtION PROBLEM RRO 30 
C THE CONST~AINTS ARE LIMITED TO BOUND CONSTRAINTS, OR UPPER AND BRO 40 
C LOWER BOUND BRO 50 
C THE SOLUTION TECHNIQUE IS A MIX APPLICATION OF THE ORIGINAL BRO 60 
C ROSENBROCK METHOD, POWELL MINIMIZATION. AND PALMER VERSION OF BRO 70 
C GENERATING NEW SEARCH DIRECTIONS BRO 80 
C THE USER MUST SUPPLY' SUBROUTINE OBJECT fOR EVALUATION Of THE BRO 90 
C OBJECTIVE FUNCTION BRO 100 
C NOTATIONS FOR INPUT AND OUTPUT INfORMATION BRO 110 
C TITLE = ALPHABETICAL OR NUMERICAL IDENTIFICATION Of THE PROBLEM BRO 120 
C N • NUMBER OF. V~RIA8LES BRO 130 
C MST • MAXIMUM LIMIT Of NUMBER Of STAGE SEARCH BAO 140 
C MCL • MAXIMUM LIMIT Of NUM8ER OF CYCLE SEARCH BRO ISO 
C IPT • NUMERICAL IDENTIfICATION FOR OUTPUT CONTROL BRO 160 
C IPT • 0 --- ONLY THE FINAL ANSWER IS PRINTED BRO 170 
C IPT • 1 --- INTERMEDIATE VALUES Of EACH STAGE SEARCH ARE PRINTED BRO 180 
C IPT = 2 --- INTERMEDIATE VALUES Of EACH CYCLE SEARCH ARE PRINTED BRO 190 
C EPS - CONVERGENCE TOLERANCE BASED ON THE CHANGE OF OBJECTIVE 8RO 200 
C FUNCTION BRO 210 
C EPX = CONVERGENCE TOLERANCE FOR CYCLE SEARCH 8RO 220 
C V • INITIAL GUESS OF THE VECTOR BRO 230 
C VUP - UPPER LIMIT OF THE VECTOR BRO 240 
C VLO D LOWER LIMIT OF THE VECTOR BRO 250 
C X - NORMALIZED INITIAL GUESS OF THE VECTOR BRO 260 
C PO • OPTIMUM VALUE Of THE OBJECTIVE fUNCTION BRO 270 
CHEF • NUMBER OF F~NCTION EVALUATION BRO 280 
e NS - NUM8ER OF STAGE SEARCH BRO 290 
C BRO 300 

DIMENSION A(10). B(10'. C(10). OCI0'. ZeIO). TITLEC20' 8RO 310 
COMMON OLtOX .PO.VALUE.N.NE',S« 10. 10) .x no).v c 10' .VUP C 10' .VLOC 10' eRO 320 
COMMON IUNII MCL,EPX BRO 330 

C BRO 340 
C INPUT AND OUTPUT NECESSARY INFORMATION BRO 350 
C BRO 360 

REAO 120. TtTLE BRO 310 
PRINT 121. TITLE ARO 380 
READ 122. N,MST.MCl,IPT.EPS BRO 390 
PRINT ll3, N.EPS BRO 400 
READ 124. eYCl).O·(I),vwpeJ).VLOCX).I-l.N' BRO 410 
PRINT 125 BRO 420 
PRINT 126. CI.VUPCI),VlOCI).l-l.N' BRO 430 
PRINT 127 BRO 440 
PRINT 128, CI,V(1),I-l.N' BRO 450 
PRINT 119 BRO 460 
PRINT 128, eI,OeI).I-l.N' BRO 410 

e BR.O 480 
EPX-IO.·EPS BRO 490 

C BRO 500 
C NORM~lZE THE V~OR BRO 510 
C BRO 520 

00 101 I-1.N BRO 530 
XCI)-CVC!)-VLOCI)'/CVUPCI'-VLOCI» BRO 540 

101 CONTINUE BAO 550 
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PROGRAM BROSEN (INPUT,OUTPUT, 

C SRO 560 
C SET THf INITIAL SEARCH orUCTION RRO 510 
C BRO S80 

00 103 lal,H BRO 590 
00 102 JallN 8RO 600 

Sct,~)aO. RRO 610 
IF C~.EO.I' SCI.J,al. BRO 620 

102 CONTINUE BRO 630 
103 CONfl"UI BRO 640 

C SRO 650 
C STARTING OF STAGE SEARCH BRO 660 
C BRO 610 

NS-O BRO 680 
NEf=O eRO 690 
C~LL OBJ£CT (1.0.) BRO 700 
PO-VALUE BRO 710 

104 HS-NS-l BRO 120 
09J-PO BRO 730 
If CIPT.EQ.O' GO TO 105 BAO 140 
PRJNT 129 BRO 7S0 
PRINT 130. HS BRO 160 

lOS 00 lOT lel.N BRO 770 
Dx=oeJ) BRO 780 
CA~l UNIMO (I) BRO 790 
IF (IPT.NE.2) GO TO 106 BRO 800 
PRINT 131. I BRO 810 
PRINT 132, PO eRO 820 
PRINT 128. CJt,CJ'.J-l,N) BRO 830 

106 Z(I).OL 8RO 840 
OCI'-ABSCIL. BRO 850 

101 CONTINUI BRO 860 
e BRO 810 
C tHECtS IF THE RESULT IS SATISFIED VITH THE PRIASSIINID CONvtRItNCE BRO 880 
C TOLERANCt BRO 890 
C BRO 900 

IF C~.-PO/08J).LE.£PS) GO TO 118 SRO 910 
C BRO 920 
C CHECK IF THE NUMBER OF STAGI SEARCH GRIATER THAN ASSIGNED LIMIT BRO 930 
C BRO 940 

IF (NS.LT.MST' .0 TO 108 BRO 950 
PRINT l2. BRO 960 
PRINT 133. MST BRa 970 
PRINT 132. PO BRO 980 
PRINT 128. «,.vel,.t-I.N, BRO 990 
STOP BRa 1000 

108 PRINT 129 BRO 1010 
PRINT 134, NE' RRO 1020 
PRtNT 132. PO RRO 1030 
PRINT 128. el.V(l"t-l.N) BRa 1040 

c BRO 1050 
C CALCUL·,T! NEW SEARCH DIRECTtON FOR NEXT STAGE SEARCH BRO 1060 
C PALMERS VERSION IS USED TO COMPUTE THE NEW OlR!CTION BRO 1010 
C BRO 1080 

DO 117 I-l.H BRO 1090 
SUMA-I. BAO 1100 
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PROGRAM BROSEN (INPUT.OUTPut) 

00 110 Jal,H 
A(J)=O. 
00 109 KaI.N 

A(d.-AeJ).Z(K)·SCK.J) 
109 CONTINU£ 

SUMA=SUMA·A(J'··2 
110 CONTINU£ 

AA=SORT(SUMA) 
IF (AA.EQ.O.) GO TO 104 
IF Cl.EQ.l) GO TO 112 
IF (ABStZel-I)l.LE.!PS) GO TO 114 
OA-l./SQRTCAS··2-AA··2, 
RAaAB/AA 
CAaDA-RA 
CS-OA/RA 
00 111 Jal.N 

C eJ) -s n 'J) 
S(tfJ,aAe~)·C'·8CJ)·C' 
8CJ)·A'",) 

111 CONTINUE 
80 TO 116 

112 00 113 Jal.N 
C(J)=SeI.J) 
s u • .J) -. ("') 'AA 
BeJ)aAC"') 

113 CONTINUE 
GO TO 116 

114 00 115 ... -l,N 
CTEM-S U ,.J' 
S ( I ,'" ) aC C \on 
C(J)aCTEM 
B(d)aA(") 

115 CONTltfUE 
116 AB-AA 
117 CONTINUE 

GO TO 104 

C A MINIMUM HAS BEEN FOUND 
C 

C 

118 PRtNT 129 
PRINT 135. NS'.NEF 
PRINT 136. PO 
PRINT 128. (I.Vel).I-I,N' 
STOP 

119 FORM~T CI141X.25HTHE CHOSEN ST£P SIZES ARE' 
120 FORMAT (20A4) 
121 FORMAT CIHIIIII140X.20A4) 
122 FORMAT (4110,EI0.3) 
123 FORMAT (1147X,21HNUHBER OF VARIABLES -.ISI144X,23HCONVERGEHCE 

lRA'NCE a.EI0.3) 
.24 FORMAT (4FI0.S) 
125 FORMAT (1144X.33HUPPER AND LOWER BOUNDS OF VECTORS) 
126 FORMAT C/IOX.4CI6.2F12.S» 
127 FORMAT C1140X.40HTHE INITIAL VECTOR CHOSEN IY THE USER IS) 

BRO 1110 
BRa 1120 
RRO 1130 
RRO 1140 
BRO I1S0 
BRO 1160 
BRO 1170 
BRO 11QO 
B~O 1190 
8~O 1200 
SRO 1210 
BRO 122,0 
BRO 1230 
BRO 1240 
BRO 1250 
BRO 1260 
BRO 1210 
SRt) 1280 
.SRO 1290 
BRO 1300 
BRO 1310 
BRO 1320 
8RO 1330 
SRO 1340 
BRO 1350 
BRO 1360 
BRO 1370 
8RO 1380 
BRO 1390 
8RO 1400 
BRO 1410 
BRO 1420 
BRO 1430 
BRO 1440 
SRO 1450 
BRO 1460 
RRO 1410 
BRO 1480 
RRO 1490 
BRO 1500 
BRO 1510 
BRO 1520 
BRO 1530 
BRO 1540 
BRO 1550 
BRO 1560 
BRO 1570 
BRO 1580 
BRO 1590 

TOLEBRO 1600 
BRO 1610 
BRO 1620 
BRO 1630 
BRO 1640 
BRO 1650 
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PROGRAM BROSEN (INPUT,OUTPUT' 

128 FORMAT (/18X,S(tS,FI2.S)) BRO 1660 
129 FORMAT (/40X,40H** •••••••••••••••••••••••••••••••••••••• , 8RO 1610 
130 FORMAT CI148X.18HSTAGE SEARCH -----.15' BRO 1680 
131 FORMA' (1140X,34HCYCLE SEARCH ALONG DIRECTION -----,15) BRO 1690 
132 FORMAT (1134X,3lHTHE CURRENT Oa~ECTIVE FUNCTION a.E20.81150X,21HTH8RO 1100 

IE CUR~ENT veCTOR IS) BRO 1110 
133 FOR~AT C/140X,18HOO NOT CONVERGE IN.15.SX.14HSTAGE SEARCHES) BRO 1120 
134 FORMAT (1136X,4lHTHE CURRENT NUMBER Of fUNCTION EVALUATION .,15) BRO 1130 
135 FORMAT (114&X,24HA MINIMUM HAS BEEN fOUNDI141X,30HTOTAL NUMBER Of BRO 1740 

ISTAGE SEARCK •• ISlll9X.37HTOTAL NUMBER OF fUNCTION EVALUATION -.ISSRO 1150 
2, BRO 1760 

136 FORMAT (1138X,23HOPTIMIZATION FUNCTION .,E2'.81150X,15HFINA~ VECTOBRO 1710 
lA IS) BRO 1780 

C BRO 1790 
END BRO 1800 
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SUBROUTINE UNIMO (IP' 

SUBROUTINE UNIMO (IP' UNl 10 
C UNI 20 
C THIS SUBROUTINE DETERMINES THE OPTIMAL STEP SIZI ALONG A D!RECTIONUN! 30 
C UN! 40 

DIMENSION E(3), V(3) UNI 50 
COMMON Ol,DX,PO,VAlUE,N,NEF,S(10.lO',XCIO,.VCIO',VUPCI0"VLO(10) UNI 60 
COMMON IUNII MCL.EPX UNI 10 

C UNI 80 
C SET UP UPPER AND LOWER LIMITS UNI 90 
C UN! 100 

XUPL=1.0E+IO VNI 110 
XLOL--l.OE+10 UNI 120 
DO 102 t=l.N UNI 130 

IF (SCIP.l).Ea.o.) 60 TO 102 UNI 140 
IF (SlIP.I).LT.O.) GO TO 101 UNI 150 
XT[Ma'YUPCI'-VCI')/SCIP.!, UNI 160 
IF (XTEM.LT.XUPl' XUPLaXTEM UNI 110 
XTEMaCVLOCI'-VCI)'JSCIP,I, UNI 180 
If eXTEM.GT.XLOl' XLOl-XTEM UNI 190 
GO TO 102 UNI 200 

101 XTEMaCVUPCI)-VCI»/SCIP.I' UN! 210 
IF (XTEM.GT.XLOL) XLOL-XTEM UNI 220 
XT£MaCVLO(!'-VCI))/SCIP,I) UN! 230 
IF elTEN.LT.XUPL) XUPL-XTEM UNI 240 

102 eONT;INUE UNI 250 
NCaO UNI 260 
XA=O. UNI 210 
.=PO UNI 280 
XS=XA+OX UNI 290 
IF CX~.LE.XUPL) GO TO 103 UNI 300 
XB=XUPL UNJ 310 
Dx-xe UNl 320 

103 CALL 08JECT (1~.X8) UNI 330 
B-YALUE UNI 340 

C UNI 350 
C OETERMI~E THE THIi40 POINT REQUIRED FOR APPROXIMATION UNI 360 
C UNI 310 

IF (A.GT.8, GO TO 101 UNI 380 
104 XCaXA-OX UNI 390 

IF (XC.GE.XLOL) GO TO 105 UNI 400 
XC-XLOl UNI 410 

105 CALL OeJECT (I~.XC) UNI 420 
C=YALUE UNI 430 
V(l)=XC UNI 440 
Y(2,=XA UNI 450 
V(3'=X8 UNI 460 
E(1)=C UNI 410 
E(2)·. UNI 480 
£(3'=9 UNI ~94 
IF (C.t..T.A' 60 TO 106 UNI 500 
XINF-XA UNI 510 
FIN'sA UNI 520 
GO TO 110 UNI 530 

116 XINF-XC UNI 540 
FINF-C UNI 550 



c 

4S 

SUBROUTINE UNIMO (IP' 

GO TO 110 
107 XC-XA.2.*OX 

IF CXC.LE.XUPL' GO TO 10. 
XC-XUPL 

108 C~lL 08~£CT tIP,XC) 
C-vALUE 
Y (1)&)(A 
Y(2)aX8 
Y(3).XC 
E (1)-A 
E(2)-S 
E(3)·C 
IF (C.LT.S) 60 TO 1'9 
XINF-XB 
fINF:8 
GO TO ~,10 

109 XINF-xe 
FtNFeC 

C ELIMINATE PREMATURE TERMINATION DUE TO EQUAL VALUES AT TVO END 
C POINTS IN THE FIRST SEARCH 
C 

C 

110 OfFaE(1)-[(3' 
IF eNC.GT .0.OR.AaScOt', .eT.EPJU 60 TO 111 
DX-O.S*OX 
y (2).Y U» +DX 
CALL 084ECT (IP,YC2» 
E(Z)·VALUE 
Yel'-XINF 
E(3)-FIN' 
DEF-E« U -E (3' 
IF (E(2).ST.FIN') 60 TO 111 
XINY.Y(2) 
'INF-E(2) 

C CHEC~ THE CONVEXITY 0' THE QUADRATIC fUNCTION 
C 

C 

111 Al-(~.1)-Y(2)'.(YC2)-Y(3')*(Y(1)-y,3') 
IF (A8SCA1'.EQ~0.' GO TO 112 
AZ-E(1)*(YCZ'-Y(3»+EC2)*C'C3t-Ytl)'+EC3'*(Y(l,-YCZ', 
SA=AZ/AI 
IF (SA.G£.O.) GO TO 113 
ox=y (3) -y n, 
XA=Y(1) 
Ar=£ Cl) 
X8-Y(3) 
a-E(3) 
IF (DEF.GT.4., GO TO 107 
GO TO 104 

1'12 XSTA-XINF 
FSTA-FINF 
GO TO 119 

C DETERMINE THE MINIMUM OF THE QUADRATIC fUNCTION 
C 

UNI 560 
UN! 570 
UNI 580 
UN! 590 
UNI 600 
UNI 610 
UNI 620 
UNI 630 
UNl 640 
UNI 650 
UNI 660 
UNI 610 
UNI 680 
UNI 690 
UNI ·100 
UNI 110 
UNI 120 
UNI 130 
UNI 140 
UNI 150 
UNI 160 
UNI 170 
UNI 180 
UNI 190 
UNI 800 
UNI 810 
UNI 820 
UNI 830 
UNI 840 
UNI 8S0 
UNI 860 
UNI 810 
UNI 880 
UNI 890 
UNI 900 
UNI 910 
UNf 920 
UNI 930 
UNI 940 
UNl 950 
UNI 960 
UNf 910 
UNI 980 
UNI 990 
UNI 1000 
UNI 1010 
UNI 1020 
UNI 1030 
UNI 1040 
UNI 1050 
UNI 1060 
ONI 1010 
UNI 1080 
UNI 1090 
UNJ 1100 



c 
c 
c 

C 

c 

113 

114 
115 

116 

117 

118 

119 

lZ0 
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S8s (E(IJ-E(Z»)/CY(I)-YCZ»)-SA·CY(1).YC2» 
XSTAs-SB/(Z.·SA) 
IF (XSTA.GE.XLOL.AND.XSTA.~E.XUPLJ GO TO 115 
IF (OfF.GT.O.) GO TO 114 
XSTA=XLOL 
GO TO 115 
XSTAeXUPL 
NC-HC·1 
CALL 09J£CT (IP,XSTA' 
f'STA-VALUE 
IF (FSTA.LE.FINF) GO TO 116 
XTEMaXSTA 
XSTAaXINF 
XINF=XTEM 
f'TEM::FSTA 
f'STAaFINF 
f'INF=FTEM 
IF (Cl.-FSTA/F1NF).LE.EPX' GO TO 119 
OXeA8SeXINF-XSTA) 
If' (NC.LT.MeL) 60 TO 117 
PRINT 121 
P~INT 122. MCL.IP 
STOP 
IF CXST4.GT.XINf, GO TO 118 
XA-XSTA 
AafSTA 
X8 e XI-NF 
8=FI .... F 
GO TO 10. 
XAaXINF 
AaFINF 
xa-xSTA 
B-FSTA 
GO TO 1.07 

A MINIMUM HAS BEEN FOUND 

DLcXSTA 
POcFSTA 
00 120 l-l,N 

X(I)~X(I).XSTA*S(IP,I) 
V(I)aVLOCI).X(I)·CVUP(IJ-VLOCI» 

CONTINUE 
RETURN 

UN! 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNl 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UN! 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNJ 
UN! 
UNl 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UNI 
UN! 
UNI 
UNI 
UNI 
UNI 

121 FORMAT C/40X,.OH •••••••••••••••••••••••••••••••••••••••• ) UNI 
122 FORMAT C1128X.18HOO NOT CONVERGE IN.I5.5X,36HCYCLE SEARCHES ALONG UNt 

IDIRECTION -----'15) UNI 

ENO 
UNI 
UNI 

1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1310 
1380 
1390 
1400 
1410 
1420 
1430 
}440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1510 
1580 
1590 
If)OO 
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c 
C 
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SUBROUTINE OBJECT CIP,Z) 

THIS SUBROUTINE DETERMINES THf VALUE Of' OBJECTIVE 'UNCTION 

DIMENSION T(10'. Y(10) 
COMMON DL,DX.PO.VALUE,N,NE,.SCIO.I0',XCIO',VCIO).VUPCIO"VLOCl0' 
NEFeMEF.t 
DO 101 l=l.N 

TtI,aXCI)·Z*SCIP,I' 
Y(I)·VLOCl)+TCI)ttCVUP(I)-VLOCI)' 

101 cONtINUE 
VALUE-,Y(1)-Y(Z),··Z.'YC2'-2.·YC3"··!+CYC3)-2., •• 2 
RETURN 

END 

08J 
08J 
OSJ 
08J 
08J 
08J 
08J 
08J 
08J 
08J 
OBJ 
08J 
08" 
08-1 
08" 

10 
20 
30 
40 
SO 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
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