PROCEDURE FOR ESTIMATING MODEL PARAMETERS
OF A MATHEMATICAL MODEL

Prepared for
USDA FOREST SERVICE
ROCKY MOUNTAIN FOREST AND RANGE
EXPERIMENT STATION
F1agstaff, Arizona

Prepared by
D. B. Simons

Associate Dean for Engineering Research and Professor of Civil Engineering
and
R. M. Li

Assistant Professor of Civil Engineering

Civil Engineering Department Engineering Research Center Fort Collins, Colorado 80523

AUTHORIZATION

This research is sponsored by the USDA Forest Service, Rocky Mountain Forest and Range Experiment Station and supported with matching funds from the Colorado State University Experiment Station. The investigations are being conducted in accordance with the Research Agreement No. 16-541-CA between the Rocky Mountain Forest and Range Experiment Station and Colorado State University. D. Ross Carder is the authorized project leader for the Rocky Mountain Forest and Range Experiment Station and Daryl B. Simons is the principal investigator for Colorado State University. The period of agreement is from May 1, 1975 to December 31, 1976.

In accordance with the project contract and the study plan, this report on the model calibration procedure is submitted.

TABLE OF CONTENTS
Section Page
AUTHORIZATION i
I. INTRODUCTION 1
1.1 General 1
1.2 Review of Model Calibration Techniques 2
Least Square Method 3
Univariate Search 3
Rotating Coordinate Search 3
Conjugate Direction Search 4
Gradient Search Method 4
Quasilinearization Method 5
OPSET Method 5
II. ONE-DIMENSIONAL CALIBRATION TECHNIQUE 7
2.1 Description of Method 7
2.2 Instruction for Use 12
2.2.1 Input Data 12
2.2.2 Output Data 14
2.3 Example 14
III. MULTI-DIMENSIONAL CALIBRATION TECHNIQUE 17
3.1 Description of Method 17
3.2 Instruction for Use 19
3.2.1 Input Data 19
3.2.2 Output Information 22
3.3 Example 22
IV. APPLICATION STRATEGY 25
4.1 General 25
4.2 Objective Function 25
4.2.1 Sum of Squares of Deviations 25
4.2.2 Sum of Squares of Logarithmic Deviations 26
4.3 Recommended Procedure 27
V. SUMMARY 30
REFERENCES 31
APPENDIX A--LISTING OF COMPUTER PROGRAM UNIMO 33
APPENDIX B--LISTING OF COMPUTER PROGRAM BROSEN 39

I. INTRODUCTION

1.1 General

The determination of model parameters is an important aspect in the mathematical modeling of system response. The performance of a model is very much dependent on the results of model calibration. A systematic and reliable method for estimating model parameters must precede practical applications of a model.

In the application of a mathematical model, the identification of model parameters is often dependent on an optimization scheme. The dependency on the optimization scheme may be reduced if the model is formulated according to the physical significance. For either a "black box" model or a simulation model considering physical significance, the calibration of a model is necessary when the model contains unknown parameters. The parameters of a "black box" model are not physically significant and hence, they are usually not predictable. While the ranges of parameters of a simulation model with physical significance are well imposed by physical conditions or measured data, the exact values of the parameters which produce correct model response are usually not available. Hence, the model calibration is generally inevitable for most of the modeling problems.

The simplest calibration technique is the trial and error method. Except for some models which contain parameters with very narrow searching ranges, the trial and error procedure is inefficient for most of the problems. An efficient procedure is apparently needed for the model calibration.

1.2 Review of Model Calibration Techniques

There are many optimization techniques available for the purpose of model calibration. However, the usefulness of a particular optimization technique is very much dependent on the formulation of the model being calibrated.

Before reviewing the methods, it is necessary to define the standard model calibration problem in a mathematical form. This problem is

$$
\begin{align*}
& \text { Minimize } F\left(x_{1}, x_{2}, \ldots, x_{N_{p}}\right) \\
& x_{1}, x_{2}, \ldots, x_{N_{p}} \tag{1}
\end{align*}
$$

Subject to

$$
x_{i}^{\ell} \leq x_{i} \leq x_{i}^{u} \text { for } i=1,2, \ldots, N_{p}
$$

in which N_{p} is the number of unknown parameters in a model, $X_{i}{ }^{\prime} s\left(i=1,2, \ldots, N_{p}\right)$ are the unknown parameters, $F\left(X_{1}, X_{2}, \ldots, X_{N_{p}}\right)$ is the objective function which is a function of $x_{1}, x_{2}, \ldots, x_{N_{p}}$ parameters, and X_{i}^{ℓ} and X_{i}^{u} are respectively the lower and the upper limits of the ith parameter. Usually the constrained regions $\left(X_{i}^{\ell} \leq X_{i} \leq x_{i}^{u}\right)$ are much larger than the searched regions, thus, the constraints are not active. In this case, the problem may be simplified as an unconstrained minimization problem (Himmelblau, 1972).

The optimization function F is usually defined as the sum of the squares of deviations between the simulated and the measured response.

The available optimization techniques for model calibration can be categorized into the following seven methods.

Least Square Method. This is a very common technique and is only useful when F is of a quadratic and of explicit form. Overton (1968) approximated a unit hydrograph by a Fourier series having seven components and formulated F to be a quadratic and explicit equation. Applying the method of least square, he estimated a set of optimum parameters utilizing analytical solutions.

Univariate Search. This search method, intuitively the simplest, seeks the optimum value of F by changing only one of the parameter values at a time until the line optimum for that parameter is found. This results in search directions that are always parallel to the orthogonal coordinate axes. When all N_{p} parameter directions have been searched successively, a cycle is complete, and the search pattern is repeated starting with the best values of the X_{i} found so far. Beard (1967) presented a more sophisticated version of this method by gradually reducing the number of the X_{i} values that are changed during any one cycle, only those parameters that have the greatest effect on F being changed. The major weakness of this simple procedure is that it cannot optimize satisfactorily on problems where the response surface contours form a ridge structure inclined to the parameter axes. Such formations are common whenever there is some degree of dependence between parameters.

Rotating Coordinate Search. This search technique is often called Rosenbrock's (1960) method. The first cycle of this method is the same as for the univariate search. However, instead of continually searching the coordinates corresponding to the directions of the independent variables, an improvement is made after one cycle of the coordinate search by lining the search directions up into an orthogonal system, with the
overall step on the previous stage as the first building block for the new search coordinates. This method rapidly lines up along a ridge, avoiding the weakness of the univariate search method. Ibbitt and 0^{\prime} Donnell (1971) concluded that Rosenbrock's method (1960) is the most effective of the nine methods they used for fitting the hydrologic catchment mode1 described by Dawdy and 0'Donne11 (1965).

Conjugate Direction Search. This technique (Powell (1964), Zangwill (1967)), although applicable to nonquadratic objective functions, was developed to find the optimum of quadratic functions in a finite number of steps. This method utilizes a property of ellipses that the direction through the tangent points of two parallel lines and two concentric ellipses passes through the center of the elliptical system. The limitation in using this technique is that F must be an explicit and differentiable function, which is generally not true for model calibration problems.

Gradient Search Method. This method is also called the method of steepest descent. The search begins by calculating the partial derivatives of F with respect to each component X_{i} at some initial point. (For a nondifferentiable function, the partial derivatives can be approximated by a numerical method.) The vector of these derivatives is the gradient direction vector which represents the direction of maximum instantaneous rate of the gradient and it gives the direction for optimization but not the magnitude of the step size to take. The optimum step size in that direction can be determined by any effective one-dimensional search technique (see Himmelblau, 1972). Recently, Tuffuor and Labadie (1974) applied this technique to calibrate a rainfall-runoff model. This technique is applicable whenever the
dimension of the optimization problem is small and the partial derivatives can be easily evaluated.

Quasilinearization Method. Quasilinearization is a technique that facilitates the reverse solution of a system of differential equations. It involves decoupling the system of differential equations by linearization into a series of initial value problems that may be repetitively solved in such a way that their solution converges to the solution of the original problem. Labadie and Dracup (1969) utilized this technique to estimate the parameters of a lumped watershed model. Yeh and Tauxe (1971) also successfully used this technique to calibrate an aquifer simulation mode1. As reported by Tuffuor and Labadie (1974) that the primary disadvantage of quasilinearization is its instability in solutions whenever a poor initial guess is chosen.

OPSET Method. OPSET program was developed by Liou (1970) for computerized selection of watershed parameter values for the Stanford Watershed Model. Liou (1970) reported that standard optimization techniques proved infeasible and other methods, which were based on the results of parameter sensitivity studies, were used. Basically, this program uses measurable watershed characteristics, climatological data and measured streamflow data to find the optimum set of parameters which define the various flow and storage functions. The optimization is done in two phases, a rough phase which uses large time increments, and a phase in which the results are refined by using finer time increments. This is because the rough phase may provide a very good initial approximation without requiring too much computer time.

The objective function in the parameter identification problem is generally not differentiable with respect to the parameters. This is
due to the reason that the function is complicated with mathematical expressions and usually cannot be represented by a single equation. As the function is not differentiable, the optimization schemes using derivatives cannot be applied. An algorithm without using derivatives is often necessary for the calibration of a mathematical model.

In this study Powell's unidimensional minimization technique (Powell, 1964) is modified for use in calibrating the model with only one unknown parameter. The modifications on this technique have improved its efficiency. In addition, the Rosenbrock's (1960) optimization scheme is modified by coupling this modified Powell's unidimensional search technique to calibrate the model having multiple unknown parameters. The Rosenbrock's (1960) optimization technique is used because it is by far the most promising and efficient method for fitting a hydrologic model (Ibbitt and 0^{\prime} Donnell, 1971) and it also does not use derivatives of functions.

II. ONE-DIMENSIONAL CALIBRATION TECHNIQUE

2.1 Description of Method

The one-dimensional search technique is a fundamental component of any multidimensional search technique. A good unidimensional search technique is necessary not only for solving one-dimensional problems but also for improving multidimensional search techniques.

There are various methods for unidimensional searches. For example, uniform search, dichotomous search, Fibonacci search, Golden Section search, DSC unidimensional search and Powell's unidimensional minimization (Himmelblau, 1972). After a survey of these available methods, a method modified from Powell's unidimensional minimization method is developed in this study. The major modifications are to consider the convexity of the objective function and to allow constrained minimization problems.

For the one-dimensional problem, the functional representation is

$$
\underset{X}{\operatorname{Minimize}} \quad F(X)
$$

Subject to

$$
x_{\ell} \leq x \leq x_{u}
$$

in which X is the unknown parameter, and X_{ℓ} and X_{u} are respectively the lower and the upper limits of this parameter.

The method developed in this study is carried out using the first three points obtained in the direction of search. The X corresponding to the minimum of the quadratic function is determined, and these quadratic approximations are continued until the minimum of $F(X)$ is located to the required precision. The steps of the search are as follows (see Fig. 1):

Fig. 1 Quadratic approximation for unidimensional search

Step 1. From the base vector $X^{(1)}$ compute

$$
\begin{equation*}
x^{(2)}=X^{(1)}+\Delta x \tag{3}
\end{equation*}
$$

Step 2. Compute $\mathrm{F}\left(\mathrm{X}^{(1)}\right)$ and $\mathrm{F}\left(\mathrm{X}^{(2)}\right)$
Step 3. Determine the third point required for quadratic approximation.
When $F\left(X^{(1)}\right)$ is greater than $F\left(X^{(2)}\right)$, let $\mathrm{x}^{(3)}=\mathrm{X}^{(1)}+2 \Delta \mathrm{X}$ if $\mathrm{X}^{(1)}+2 \Delta \mathrm{X} \leq \mathrm{X}_{\mathrm{u}}$
and

$$
\begin{equation*}
x^{(3)}=x_{u} \text { if } x^{(1)}+2 \Delta x>x_{u} \tag{5}
\end{equation*}
$$

When $F\left(X^{(1)}\right)$ is less than or equal to $F\left(X^{(2)}\right)$, let
$x^{(3)}=x^{(1)}-\Delta x$ if $x^{(1)}-\Delta x \geq x_{\ell}$
and

$$
\begin{equation*}
x^{(3)}=x_{\ell} \text { if } x^{(1)}-\Delta x<x_{\ell} \tag{7}
\end{equation*}
$$

Step 4. Compute $F\left(X^{(3)}\right)$.
Step 5. Check the convexity of the quadratic equation, the optimal coefficient a^{*} can be determined by
$a^{*}=\frac{\left(X^{(2)}-\mathrm{X}^{(3)}\right) F\left(\mathrm{X}^{(1)}\right)+\left(\mathrm{X}^{(3)}-\mathrm{X}^{(1)}\right) \mathrm{F}\left(\mathrm{X}^{(2)}\right)+\left(\mathrm{X}^{(1)}-\mathrm{X}^{(2)}\right) \mathrm{F}\left(\mathrm{X}^{(3)}\right)}{\left(\mathrm{X}^{(1)}-\mathrm{X}^{(2)}\right)\left(\mathrm{X}^{(2)}-\mathrm{X}^{(3)}\right)\left(\mathrm{X}^{(1)}-\mathrm{X}^{(3)}\right)}$

If $a^{*} \geq 0$ the function is convex and the search is continued at step 6.

If $a^{*}<0$ the function is concave, let

$$
\begin{align*}
& x_{a}=\operatorname{Min}\left\{x^{(1)}, x^{(2)}, x^{(3)}\right\} \tag{9}\\
& x_{b}=\operatorname{Max}\left\{x^{(1)}, x^{(2)}, x^{(3)}\right\} \tag{10}
\end{align*}
$$

and return to step 3 and resume the search with the following information

$$
\begin{equation*}
\Delta x=x_{b}-x_{a} \tag{11}
\end{equation*}
$$

$x^{(1)}=x_{a}$
$F\left(X^{(1)}\right)=F\left(X_{a}\right)$
$x^{(2)}=x_{b}$
$F\left(X^{(2)}\right)=F\left(X_{b}\right)$

Step 6. Estimate the value of X at the minimum of $F(X), X *$.
Compute the other optimal coefficient using

$$
\begin{equation*}
b^{*}=\frac{F\left(X^{(1)}\right)-F\left(X^{(2)}\right)}{x^{(1)}-x^{(2)}}-a^{*}\left(X^{(1)}+x^{(2)}\right) \tag{16}
\end{equation*}
$$

Then, estimate X^{*} by

$$
\begin{equation*}
x^{*}=-\frac{b^{*}}{2 a^{*}} \tag{17}
\end{equation*}
$$

If $X_{\ell} \leq X^{*} \leq X_{u}$, the constraints are satisfied and the search is continued at step 7.

If $X^{*}>X_{u}$ or $X^{*}<X_{\ell}$, the constraint is violated and the boundary point is used as optimum value of X, i.e., $X^{*}=X_{u}$ if $F\left(X_{a}\right)>F\left(X_{b}\right)$ and
$X^{*}=X_{\ell}$ if $F\left(X_{a}\right) \leq F\left(X_{b}\right)$

Step 7. Compute $\mathrm{F}\left(\mathrm{X}^{*}\right)$.
Step 8. Termination of the search
Let $X^{\circ}=$ whichever of $\left\{X^{(1)}, X^{(2)}, X^{(3)}\right\}$ corresponds to the smallest $F(X)$. The termination of search is made if
$\left|1-\frac{F\left(X^{*}\right)}{F\left(X^{\sigma}\right)}\right| \leq \varepsilon$
in which ε is the convergence tolerance. If the convergence criterion is not satisfied, the search is repeated returning to step 3 with the following information. Let
$x_{a}=\operatorname{Min} .\left\{X^{0}, X^{*}\right\}$
$X_{b}=\operatorname{Max} \quad\left\{X^{0}, X^{*}\right\}$
$\Delta x=X_{b}-X_{a}$
$x^{(1)}=x_{a}$
$F\left(X^{(1)}\right)=F\left(X_{a}\right)$
$x^{(2)}=x_{b}$
$F\left(X^{(2)}\right)=F\left(X_{b}\right)$

A computer program was developed to perform the above procedures. The listing of the computer program is given in Appendix A (PROGRAM UNIMO) and the flow chart is given in Fig. 2. The computer program is written in FORTRAN IV extended and has been tested on the CDC 6400 Computer at Colorado State University.

2.2 Instruction for Use

A detailed description of the input and output of the program is given herein. However, the input and output information required to evaluate the objective function are not given because they vary with models to be calibrated.

2.2.1 Input Data

The input to the program includes the title of the problem, the maximum limit of number of stage search, the numerical identification for controlling the output, the initial estimate of the vector, the initial step size of the search, the upper bound of the vector, the lower bound of the vector, and the convergence tolerance. There are only two input cards. They are described.
(a) Title Card, One card with Format (20A4)

Column
1-80

Mnemonic Name
TITLE

Description
Heading of the problem, which may consist of any alphabetical characters or numbers of 80 words.
(b) Information Card, One card with Format (2I10, 4F10,5 E103)

Column
1-10

11-20

Mnemonic Name
MST

IPT

Description
Maximum limit of number of stage search (number of quadratic approximation).

Numerical identification for controlling output information. $=0$, only the final answer is printed.

Fig. 2 FLOW CHART OF PROGRAM UNIMO

Column	Mnemonic Name	Description
		$=1$, intermediate values of each stage search are printed
21-30	XA	Initial estimate of the vector
$31-40$	DX	Intial step size of search
41-50	XUPL	Upper limit of the vector
51-60	XLOL	Lower limit of the vector
61-70	EPS	Convergence tolerance

2.2.2 Output Information

The output from this computer program includes (1) all input data, (2) number of stage search, (3) intermediate values at the end of each stage search, (4) number of function evaluation, (5) optimum value of the objective function, and (6) optimum estimate of the vector. The Fortran labels of key output are listed below.
Mnemonic Name
NS
NEF
FSTA
XSTA
Description

Number of stage search or number
of quadratic approximation

Number of function evaluation of the
objective function
Optimum value of the objective function
Optimum estimate of the vector

2.3 Example

For simplicity a simple function is used as an example to demonstrate the application of the method.

In Fig. 3 the path of the search for the minimization of the following function by PROGRAM UNIMO is given.

$$
\begin{equation*}
F(x)=\left(1-x^{2}\right)^{2}+(1-x)^{2} \tag{28}
\end{equation*}
$$

Equation 28 is often called the "Rosenbrock" function
The initial estimate of the vector $X^{(1)}$ is -2.0 , the upper limit is 10.0 , the lower limit is -10.0 , the convergence tolerance, ε, is 1.0×10^{-3} and the initial step size of search, ΔX, is 0.5 . The calibration results are: $X^{*}=1.0, F\left(X^{*}\right)=2.5 \times 10^{-28}$ and the number of function evaluation is 30 .

Fig. 3 Search path for the sample problem
III. MULTI-DIMENSIONAL CALIBRATION TECHNIQUE

3.1 Description of Method

Rosenbrock's method (1960) is an iterative procedure in which small steps are taken during the search in orthogonal coordinates. Instead of continually searching the coordinates corresponding to the directions of the independent variables, an improvement of search is made after one cycle of coordinate search by lining the search directions up into an orthogonal system, with the overall step of the previous stage as the first building block for the new search coordinates, Rosenbrock (1960) used an unconstrained dichotomous search to determine the search along a direction and generated the orthonormal set of directions by GramSchmidt procedure (Himmelblau, 1972).

In this study the Rosenbrock's optimization scheme (Rosenbrock, 1960) is modified by coupling the unidimensional search technique presented in Section II and by considering constrained minimization problems. In addition, Palmer's method (Palmer, 1969) for generating a new set of orthonormal search directions is used.

Let Y be a vector of $\left[X_{1}, X_{2}, \ldots, X_{N_{p}}\right]$. The method developed in this study locates the vector Y of the $(k+1)$-th stage by $Y^{(k+1)}$ by successive unidimensional searches from the vector Y of the k-th stage $Y^{(k)}$ along a set of orthonormal directions $\hat{S}_{1}^{(k)}, \hat{S}_{2}^{(k)}, \ldots$, $\hat{\mathrm{S}}_{\mathrm{N}_{\mathrm{p}}}^{(\mathrm{k})}$. For the initial stage, $\mathrm{k}=0$, the directions $\hat{\mathrm{S}}_{1}^{(0)}, \hat{\mathrm{S}}_{2}^{(0)}, \ldots$, $\hat{\mathrm{s}}_{\mathrm{N}_{\mathrm{p}}}^{(0)}$ are taken to be parallel to the axes of $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}_{\mathrm{p}}}$. More specifically let $Y_{i}^{(k)}$ indicate that the point at which $F\left(Y_{i}^{(k)}\right.$ is a minimum in the direction of $\hat{S}_{i}^{(k)}$, for each stage (k) there are N_{p} vectors $Y_{i}^{(k)}$ and N_{p} optimal values of the objective function $F\left(Y_{i}^{(k)}\right)$. From the initial vector $Y_{0}^{(k)}$, determine optimal step
length $\lambda_{1}^{*}(\mathrm{k})$ in the direction of $\hat{S}_{1}^{(\mathrm{k})}$ so that $\mathrm{F}\left(\mathrm{Y}_{0}^{(\mathrm{k})}+\lambda_{1}^{*}(\mathrm{k}) \hat{S}_{1}^{(\mathrm{k})}\right)$ is a minimum and let $Y_{1}^{(k)}=Y_{0}^{(k)}+\lambda_{1}^{*}(\mathrm{k}) \hat{\mathrm{S}}_{1}^{(\mathrm{k})}$. Then from $\mathrm{Y}_{1}^{(\mathrm{k})}$, determine $\lambda_{2}^{*}(\mathrm{k})$ so that $\mathrm{F}\left(\mathrm{Y}_{1}^{(\mathrm{k})}+\lambda_{2}^{*}(\mathrm{k}) \hat{\mathrm{S}}_{2}^{(\mathrm{k})}\right.$) is a minimum and let $Y_{2}^{(k)}=Y_{1}^{(k)}+\lambda_{2}^{\star}(k) \hat{S}_{2}^{(k)}$. The search pattern is generalized as follows; from $Y_{i-1}^{(k)}$, determine $\lambda_{i}^{*}(k)$ in the direction of $\hat{S}_{i}^{(k)}$ so that $F\left(Y_{i-1}^{(k)}+\lambda_{1}^{*}(k) \hat{S}_{i}^{(k)}\right)$ is a minimum and let $Y_{i}^{(k)}=Y_{i-1}^{(k)}+\lambda_{i}^{*}(k) \hat{S}_{i}^{(k)}$. The search is repeated sequentially, always starting from the last immediate point in the sequence until all $Y_{i}, i=1, \ldots N_{p}$ are determined. The unidimensional search technique developed in Section II is used to determine the optimal step length $\lambda_{i}^{*}(k)$. This constrained unidimensional search technique makes the multi-dimensional search method applicable in the constrained minimization problem described in Eq. 1.

After the kth stage has been completed, the vectors for the new search directions are computed at the point $Y_{0}^{(k+1)}=Y_{N}^{(k)}$. Palmer's method (Palmer, 1969), for generating a new set of search direction is used in this study. His method is as follows.

$$
\begin{equation*}
A_{i}^{(k)}=\sum_{j=i}^{N} p \lambda_{j}^{*}(k) \hat{S}_{j}^{(k)} \text { for } 1 \leq i \leq N_{p} \tag{29}
\end{equation*}
$$

in which $A_{1}^{(k)}$ is the vector from $Y_{0}^{(k)}$ to $Y_{0}^{(k+1)}, A_{2}^{(k)}$ is the vector from $Y_{1}^{(k)}$ to $Y_{0}^{(k+1)}$ and so on. $A_{1}^{(k)}$ represents the overall move from stage k to stage $(k+1), A_{2}^{(k)}$ represents the overall move less the progress made during the search in direction $S_{1}^{(k)}$, etc. Then

$$
\begin{align*}
& \hat{S}_{i}^{(k+1)}=\frac{A_{i}^{(k)}\left\|A_{i-1}^{(k)}\right\|^{2}-A_{i-1}^{(k)}\left\|A_{i}^{(k)}\right\|^{2}}{\left\|A_{i-1}^{(k)}\right\|\left\|A_{i}^{(k)}\right\| \sqrt{\left\|A_{i-1}^{(k)}\right\|^{2}-\left\|A_{i}^{(k)}\right\|^{2}}} \tag{30}\\
& \quad \text { for } \quad 2 \leq i \leq N_{p}
\end{align*}
$$

in which $\|\|$ is the norm of the vector and

$$
\begin{equation*}
S_{1}^{(k+1)}=\frac{A_{1}^{(k)}}{\left\|A_{1}^{(k)}\right\|} \tag{31}
\end{equation*}
$$

If $\lambda_{i-1}^{*}(k)=0, \hat{S}_{i}^{(k+1)}=\hat{S}_{i-1}^{(k)}$ unless $\Sigma \lambda_{i}^{*}(k)=0$. The search is terminated when

$$
\begin{equation*}
1-\frac{F\left(Y_{N_{p}}^{(k+1)}\right)}{F\left(Y_{N_{p}}\right)^{(k)}} \leq \varepsilon \tag{32}
\end{equation*}
$$

A computer program was developed to carry out the above procedure. In this program, the vector is normalized so that the ranges of the vector are within 0.0 and 1.0 . The listing of the computer program is given in Appendix B. (PROGRAM BROSEN). Figure 4 gives a flow chart of the program. The computer program is written in FORTRAN IV EXTENDED and has been tested on CDC 6400 Computer at Colorado State University.

3.2 Instruction for Use

Presented in the following is a detailed description of the input and output information of the program. The input and output requirement for the objective function are not given because they are varied with models to be calibrated.

3.2.1 Input Data

The input to the program includes title of the problem, number of variables (or parameters), maximum limit of number of stage search, maximum limit of number of cycle search (number of stage search for unidimensional search), numerical identification for controlling output, convergence tolerance, initial estimate of the vector, initial step sizes of search, upper and lower bounds of the vector. There are three types of input cards which are described as follows.

Fig. 4 FLOW CHART OF PROGRAM BROSEN
(a) Title Card, One card with Format (20A4)

| Column | Mnemonic Name |
| :---: | :---: |\quad| Description |
| :--- |
| Heading of the problem, |

(b) Information Card, One card with Format (4I10, E10.3)

Column	Mnemonic Name	Description
1-10	N	Number of variables (or parameters)
11-20	MST	Maximum limit of number of stage search (number of changing orthonormal directions)
21-30	MCL	Maximum limit of number of cycle search (number of quadratic approximation in the unidimensional search)

31-40	IPT	Numerical identification for controlling output information $=0$, only the final answer is printed $=1$, intermediate values of each stage search are printed $=2$, intermediate value of each stage and cycle search are printed
41-50	EPS	convergence tolerance

(c) Vector Card, One card with Format (4F10.5) for every variable

Column	Mnemonic Name	Description
$1-10$	$\mathrm{~V}(\mathrm{I})$	Initial estimate of the I-th variable of the vector
$11-20$	$\mathrm{D}(\mathrm{I})$	Initial step size of search along I-th search direction

Column	Mnemonic Name $21-30$	Description UPP(I) variable of the vector
$31-40$	VLO(I)	Lower limit of the I-th variable of the vector

3.2.2 Output Information

The output from this computer program includes (1) all input data, (2) number of stage search, (3) intermediate values at the end of each stage and cycle search, (4) number of function evaluation, (5) optimum value of the objective function, and (6) optimum estimate of the vector. The Fortran labels of key output are listed below.

Mnemonic Name
NS Number of stage search or number of changing search directions

NEF Number of function evaluation of the objective function

PO Optimum value of the objective function
$V(I)$

Description

Optimum estimate of the vector

3.3 Example

The number of function evaluations for the Rosenbrock's function (Rosenbrock, 1960) by the proposed algorithm is 30 , which is much less than 206 function evaluations by the original Rosenbrock's method (Himmelblau, 1972). A sample problem with three variables is given herein for illustration.

The function is defined as

$$
\begin{equation*}
F(x)=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{2}+\left(x_{3}-2\right)^{2} \tag{33}
\end{equation*}
$$

This function is highly interactive among variables which is common for model calibration problems.

The initial estimate of the vector is

$$
\begin{equation*}
Y_{0}^{(0)}=[5.0,2.0,7.0] \tag{34}
\end{equation*}
$$

The upper bound of the vector is

$$
\begin{equation*}
Y_{u}=[10.0,10.0,10.0] \tag{35}
\end{equation*}
$$

The lower bound of the vector is

$$
\begin{equation*}
Y_{\ell}=[-10.0,-10.0,-10.0] \tag{36}
\end{equation*}
$$

The convergence limit, $\varepsilon=10^{-3}$
The search paths for each stage are given in Table 1. This table shows the applicability of the proposed algorithm for the problem with highly interactive parameters.

Table 1. Summary of Search Path for Each Stage of a Multi-dimensional Search Problem

Stage	Current Vector			Current Objective Function	Cumulative No. Function Evaluation
	X_{1}	X_{2}	X_{3}		
0	5.000	2.000	7.000	0.178×10^{3}	0
1	2.000	8.000	3.600	0.392×10^{2}	16
2	7.005	8.220	3.386	0.549×10^{1}	29
3	8.142	7.709	3.435	0.295×10^{1}	42
4	7.871	7.366	3.336	0.252×10^{1}	53
5	5.950	5.847	2.751	0.694×10^{0}	68
6	4.213	4.278	2.112	0.198×10^{-1}	81
7	4.004	4.005	2.002	0.628×10^{-5}	96
8	4.000	4.000	2.000	0.101×10^{-7}	114
9	4.000	4.000	2.000	0.685×10^{-9}	130
10	4.000	4.000	2.000	0.378×10^{-9}	145
11	4.000	4.000	2.000	0.352×10^{-9}	158
12	4.000	4.000	2.000	0.309×10^{-9}	172
13	4.000	4.000	2.000	0.222×10^{-9}	185
14	4.000	4.000	2.000	0.385×10^{-10}	201
15	4.000	4.000	2.000	0.376×10^{-10}	215
16	4.000	4.000	2.000	0.376×10^{-10}	227

IV. APPLICATION STRATEGY

4.1 General

The purpose of calibrating a mathematical model is to find a set of model parameters which produce correct system response. In other words, before applying a mathematical mode1, unknown model parameters should be selected so that the model performs as well as possible within the constraints imposed by physical conditions or measured data. The selection of the "best" set of model parameters requires some kind of ranking basis. This basis is usually evaluated by a function called "objective function" (Eq. 1). The selection of an objective function and the recommended procedure for calibrating a complicated model are discussed as follows.

4.2 Objective Function

Two different objective functions which are commonly used are given below.

4.2.1 Sum of Squares of Deviations

This objective function is defined by the following equation

$$
\begin{equation*}
F=\sum_{i=1}^{N}\left[R_{i}^{e}\left(x_{1}, x_{2}, \ldots x_{N_{p}}\right)-R_{i}^{o}\right]^{2} \tag{37}
\end{equation*}
$$

in which N is the number of observations, $R_{i}^{e}\left(X_{1}, X_{2}, \ldots X_{N_{p}}\right)$ is the estimated system response utilizing the mathematical model and the values of model parameters of $\left[X_{1}, X_{2}, \ldots X_{N_{p}}\right]$ for the ith observation, and R_{i}^{0} is the measured system response of the ith observation. For example, R_{i}^{e} is the estimated water yield at the ith day from a water* balance simulation model and R_{i}^{o} is the observed water yield at the ith day.

This objective function is analogous to the residual variance of a regression analysis. Mathematically speaking, equal weights are placed on all of the observations. However, in reality, this tends to place greater weight on the observation with a larger value which can be viewed by the following.

From Eq. 37 :

$$
\begin{equation*}
\left|\frac{\partial F}{\partial R_{i}^{0}}\right|=2\left|R_{i}^{o}\left(X_{1}, X_{2}, \ldots X_{N_{p}}\right)-R_{i}^{0}\right| \tag{38}
\end{equation*}
$$

in which $\|$ is the absolute value.
Equation 38 shows that the effect of the ith observation R_{i}^{0} on the value of the objective function F is directly proportional to the absolute difference between the estimated value and the measured value. This value is usually larger for the observation with a larger quantity. Therefore, a greater weight is usually placed on the observation with a larger value. This is often a desirable condition for modeling a hydrologic or hydraulic system because an event with a larger quantity is usually more important in considering a design risk.

4.2.2 Sum of Squares of Logarithmic Deviations

The objective function is given below.

$$
\begin{equation*}
F=\sum_{i=1}^{N}\left[\ell n R_{i}^{e}\left(X_{1}, X_{2}, \ldots, X_{N_{p}}\right)-\ln R_{i}^{o}\right]^{2} \tag{39}
\end{equation*}
$$

According to Dawdy et al. (1972), the logarithms of observation values are used because the prediction errors are generally more nearly equal in percentage than they are in absolute terms. The logarithmic transformation is meant to make the error of estimation more commensurable for the large and the small observation quantities. This can be explained as follows.

From Eq. 39:

$$
\begin{equation*}
\left|\frac{\partial F}{\partial R_{i}^{0}}\right|=2\left|\frac{R_{i}^{e}\left(X_{1}, X_{2}, \ldots X_{N_{p}}\right)}{R_{i}^{0}}-1\right| \tag{40}
\end{equation*}
$$

The ratios of the estimated value to the measured value are generally nearly equal. From Eq. 40 it can be shown that the effects of different observations on the value of F are nearly the same. Thus, this objective function makes the error of estimation more commensurable for the large and the small observation quantities. This is desirable when the smaller observation values are as equally important as the larger observation quantities.

4.3 Recommended Procedure

In a complicated mathematical model, there are often too many unknown parameters which need to be calibrated. The larger the number of model parameters the more difficult the calibration problem will be. This is because of more interactions among parameters. It is viable to decompose the optimization problem into various sequential probelms with a smaller number of unknown parameters. This decomposition should be done according to the physical significance and the results of parameter sensitivity. For example, the water and sediment routing model developed by Simons et al. (1975) contains parameters governing various system responses such as water routing and yield, wash load yield, and bed material load routing and yield. The calibration should be made sequentially according to these various system responses. The recommended procedures are given herein.
a) Water Routing and Yield

Step 1. Identify parameters governing the water yield.

Step 2. Based on the results obtained in Step 1, estimate the optimum set of parameters governing the water routing.

Step 3. Let the results obtained in Step 2 be the initial estimate, recalibrate the model considering both the water yield and water routing. The objective function can be assumed as the following

$$
\begin{equation*}
F=\theta F_{1}+(1-\theta) F_{2} \tag{41}
\end{equation*}
$$

in which θ is the weighting factor, F_{1} is the objective function representing water yield, and F_{2} is the objective function representing water routing. An appropriate value of θ is 0.5 .
b) Sediment Routing and Yield

Step 4. Based on the optimum parameters governing water routing and yield, identify parameters governing wash load routing and yield.

Step 5. From the set of parameters obtained in Step 4, estimate the optimum set of parameters governing bedmaterial load.

Step 6. Let the set of parameters obtained in Step 5 be the initial estimate, find the optimum set of parameters considering both the wash load and the bed-material load routing and yield. A similar objective function to Eq. 41 can be used, i.e.,

$$
\begin{equation*}
F=\theta F_{3}+(1-\theta) F_{4} \tag{42}
\end{equation*}
$$

in which F_{3} and F_{4} are respectively objective functions representing wash load and bed-material load sediment yield.

An example of the calibration results of the above procedures was given by Simons et al. (1975).
V. SUMMARY

A one-dimensional calibration technique modified from Powell's (1964) unidimensional minimization method is proposed to calibrate onedimensional models. This unidimensional method is further applied to modify the Rosenbrock's (1960) method for the calibration of models with multiple parameters. This modification shortened computer time compared with the original Rosenbrack's method.

Both one-dimensional and multi-dimensional calibration techniques are formulated to deal with bound constraints (i.e., the upper and lower bounds). These bound constraints are usually imposed on the mathematical models by physical conditions or measured data.

It is found that the objective function based on the sum of squares of deviations generally places more weight on the observations with larger absolute quantities. This would provide a safer design considering a risk analysis. The objective function based on the sum of squares of logarithmic deviations would make the error of estimation more commensurate for the large and the small observation quantities. This would be desirable when the smaller observation values are as equally important as the larger observation quantities.

For calibrating a complicated system, it is recommended that the calibration problem be decomposed into various sequential calibration problems with a much smaller number of unknown parameters.

REFERENCES

1. Beard, L.R., 1967, "Optimization Techniques for Hydrologic Engineering," Water Resources Research, Vol. 3, No. 3, pp. 807-815.
2. Dawdy, D.R. and 0^{\prime} 'Donnell, T., 1965, "Mathematical Models of Catchment Behavior," Journal of the Hydraulics Division, ASCE, Vol. 91, No. HY4, Proceedings Paper 4410, July, pp. 123-137.
3. Dawdy, D.R., Litchy, R.W. and Bergmann, J. M., 1972, "A Rainfal1Runoff Simulation Model for Estimation of Flood Peaks for Small Drainage Basin," USGS Professional Paper 506-B.
4. Himmelblau, D.M., 1972, Applied Nonlinear Programming, McGraw-Hill, New York.
5. Ibbitt, R.P. and O'Donnell, T., 1971, "Fitting Methods for Conceptual Catchment Models," Journal of the Hydraulics Division, ASCE, Vol. 17, No. HY9, September, pp. 1331-1342.
6. Labadie, J.W. and Dracup, J.A., 1969, "Optimal Identification of Lumped Watershed Mode1," Water Resources Research, Vol. 5, No. 3, pp. 583-590.
7. Liou, E.Y., 1970, "OPSET: Program for Computerized Selection of Watershed Paprmeter Values for the Stanford Watershed Model," Water Resources Research Institute, Report 34, University of Kentucky, Lexington.
8. Overton, D.E., 1968, "A Least-Squares Hydrograph Analysis of Complex Storms on Small Agricultural Watersheds," Water Resources Research, Vol. 4, No. 5, pp. 955-963.
9. Palmer, J.R., 1969, "An Improved Procedure for Orthogonalizing the Search Vectors in Rosenbrock's and Swann's Direct Search Optimization Methods," The Computer Journal, Vol. 12, pp. 69-71.
10. Powell, M.J.D., 1964, "An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives," The Computer Journa1, Vol. 7, pp. 155-162.
11. Rosenbrock, H.H., 1960, "An Automatic Method for Finding the Greatest or Least Value of a Function," The Computer Journal, Vol. 3, pp. 175-184.
12. Simons, D.B., Li, R.M., and Stevens, M.A., 1975, "Development of Models for Predicting Water and Sediment Routing and Yield from Storms on Small Watersheds," Colorado State University Report CER74-75DBS-RML-MAS24. Prepared for USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, Flagstaff, Arizona, August.
13. Tuffuor, S. and Labadie, J.W., 1974, "A Nonlinear Time Variant Rainfall-Runoff Model for Augmenting Monthly Data," Water Resources Research, Vol. 10, No. 6, pp. 1161-1166.
14. Yeh, W.G. and Tauxe, G.W., 1971, "Optimal Identification of Aquifer Diffusivity using Quasi-1inearization," Water Resources Research, Vol. 7, No. 4, pp. 955-962.
15. Zangwill, W.I., 1967, "Minimizing a Function without Ca1culating Derivatives," The Computer Journa1, Vol. 10, pp. 293-296.

APPENDIX A

LISTING OF COMPUTER PROGRAM UNIMO

PROGRAM UNIMO (INPUT,OUTPUT)

	PROGRAM UNIMO (INPUT, OUTPUT)	UNI	10
C		UNI	20
C	THIS PROGRAM SOLVES ONE-DIMENSIONAL CONSTRAINED MINIMIZATION	UNI	30
C	PRORLEM BY SUCCESSIVE QUADRATIC APPROXIMATION	UNI	40
C	THE CONSTRAINTS ARE THE UPPER AND LOWER BOUNDS OF THE VECTOR	UNI	50
C	The USER MUST SUPPLY A SUBROUTINE OBJECT FOR EVALUATION OF The	UNI	60
C	ORJECTIVE FUNCTION	UNI	70
${ }^{\text {c }}$	NOTATIONS FOR INPUT ANO OUTPUT INFORMATION	UNI	80
C	TITLE $=$ ALPHABETICAL OR NUMERICAL IDENTIFICATION OF THE PROBLEM	UNI	90
C	MST \% MAXIMUM LIMIT OF NUMBER OF STAGE SEARCH	UNI	100
C	IPT = NUMERICAL IDENTIFICATION FOR OUTPUT CONTROL	UNI	110
C	IPT $=0$--- ONLY THE FINAL ANSWER IS PRINTED	UNI	120
C	IPT = I--- INTERMEDIATE VALUES OF EACH STAGE SEARCH ARE PRINTED	UNI	130
C	$X_{A}=$ INITIAL GUESS OF THE VECTOR	UNI	140
C	OX = INITIAL STEP-SIZE	UNI	150
C	XUPL = UPPER BOUND	UNI	160
c	XLOL = LOWER BOUND	UNI	170
c	EPS - CONVERGENCE TOLERANCE	UNI	180
C		UNI	190
	DIMENSION E(3), Y(3), TITLE(20)	UNI	200
c		UNI	210
C	INPUT AND OUTPUT NECESSARY INFORMATION	UNI	220
C		UNI	230
	READ 118, TITLE	UNI	240
	PRINT 119. TITLE	UNI	250
	READ 120, MST, IPT, XA,OX, XUPL, XLOL,EPS	UNI	260
	PRINT 121, XA, XUPL, XLOL,EPS	UNI	270
C		UNI	280
C	Starting of stage search	UNI	290
c		UNI	300
	NEF $=0$	UNI	310
	NS $=0$	UNI	320
	CALL OBJECT (VALUE,NEF,XA)	UNI	330
	$A=V A L U E$	UNI	340
	$X B=X A+D X$	UNI	350
	CALL OBJECT (VALUE,NEF, XB)	UNI	360
	B=VALUE	UNI	370
C		UNI	380
c	determine the third point required for approximation	UNI	390
C		UNI	400
	If (A.GT.B) G0 TO 104	UNI	410
101	$X C=X A-D X$	UNI	420
	IF (XC.GE. XLOL) GO TO 102	UNI	430
	$\mathrm{XC}=\mathrm{XLOL}$	UNI	440
102	CALL OBJECT (VALUE, MEF,XC)	UNI	450
	C=VALUE	UNI	460
	$Y(1)=X C$	UNI	470
	$Y(2)=X A$	UNI	480
	$Y(3)=X B$	UNI	490
	$E(1)=C$	UNI	500
	$E(2)=A$	UNI	510
	$E(3)=8$	UNI	520
	IF (C.LT.A) 60 T0 103	UNI	530
	XINF=XA	UNI	540
	FINF=A	UNI	550

PROGRAM UNIMO (INPUT,OUTPUT)

PROGRAM UNIMO (INPUT,OUTPUT)

PROGRAM UNIMO (INPUT OUTPUTI

```
    118 FORMAT (20A4) UNI 1660
    119 FCRMAT (1H1/////40X,20A4) UN1 1670
    120 FORMAT (2110.4F10.5.E10.3) UNI 1680
    121 FORMAT (//35X,39HTHE INITIAL VECTOR CHOSEN BY THE USER =,F10.5//41UNI 1690
    1X,27HUPPER LIMIT OF THE VECTOR }x,F10.5//41X,27HLOWER LIMIT OF THE UNI 1700
    2VECTOR =,F10.5//44X,23HCONVERGENCE TOLERANCE =.E10.3) UNI 1710
    122 FORMAT (/40X,40H****************************************) UNI 1720
    123 FORMAT (//48X,18HSTAGE SEARCH -----,I5) UNI 1730
    124 FORMAT ///45X,2OHTME CURRENT VECTOR =.F10.5//34X.32HTHE CURRENT OBUNI 1740
        IJECTIVE FUNCTION =,E20.8) UNI 1750
    125 FORMAT (//40X,18HOO NOT CONVERGE INDI5,5X,14HSTAGE SEARCHES) UNI 1760
126 FORMAT ///4EX,24HA MINIMUM HAS BEEN FOUND//4IX,3OHTOTAL NUMBER OF UNI 1770
    ISTAGE SEARCH m,15//39%,37HTOTAL NUMBER OF FUNCTION EVALUATION m,ISUNI 1780
        2) UNI }179
    127 FORMAT (//38X,23HOPTIMIZATION FUNGTION =,E20.E//48X,24HFINAL VECTOUNI 1800
        lR=,F10.5)
        UNI 1810
C
UNI 1820
END UNI 1830
```


SUBROUTINE OBJECT (VALUE,NEF,X)

APPENDIX B
LISTING OF COMPUTER PROGRAM BROSEN

PROGRAM BROSEN (INPUT,OUTPUT)

	PROGRAM BROSEN (INPUT, OUTPUT)	8RO	0
C		BRO	20
C	THIS PROGRAM SOLVES CONSTRAINED MINIMIZATION PROBLEM	BRO	30
C	The Constraints are limited to gound constraints, or upper and	Bro	40
C	LOWER BOUND	8RO	50
C	the solution technidue is a mix application of the original	BRO	60
C	ROSENBROCK METHOD, POWELL MINIMIZATION, AND PALMER VERSION OF	BRO	70
C	GENERATING NEW SEARCH DIRECTIONS	BRO	80
c	THE USER MUST SUPPLY A SUBROUTINE OBJECT FOR EVALUATION OF THE	BRO	90
C	ORJECTIVE FUNCTION	BRO	100
C	NOTATIONS FOR INPUT AND OUTPUT INFORMATION	BRO	110
C	TITLE = ALPHABETICAL OR NUMERICAL IDENTIFICATION OF THE PROBLEM	BRO	120
C	$N=$ number of variables	BRO	130
C	MST = MAXIMUM LIMIT OF NUMBER OF STAGE SEARCH	Bro	140
C	MCL = MAXIMUM LIMIT OF NUMBER OF CYCLE SEARCH	BRO	150
C	IPT = NUMERICAL IDENTIFICATION FOR OUTPUT CONTROL	BRO	160
C	IPT = 0 --- ONLY THE FINAL ANSWER IS PRINTED	BRO	170
C	IPT = 1--- INTERMEDIATE VALUES Of EACH Stage search are printed	BRO	180
C	IPT $=2$--- INTERMEDIATE VALUES OF EACH CYCLE SEARCH ARE PRINTED	BRO	190
C	EPS \% CONVERGENCE TOLERANCE BASED ON THE CHANGE OF OBJECTIVE	BRO	200
C	FUNCTION	BRO	210
C	EPX = CONVERGENCE TOLERANCE FOR CYCLE SEARCH	BRO	220
C	$V=$ INITIAL GUESS OF THE VECTOR	Bro	230
C	VUP = UPPER LIMIT OF THE VECTOR	BRO	240
c	VLO $=$ LOWER LIMIT OF THE VECTOR	BRO	250
c	$x=$ NORMALIZED INITIAL GUESS OF THE VECTOR	BRO	260
C	PO = OPTIMUM VALUE OF THE OBJECTIVE FUNCTION	BRO	270
C	NEF = NUMBER OF FUNCTION EVALUATION	BRO	280
c	NS = NUMBER OF STAGE SEARCH	BRO	290
C		BRO	300
	DIMENSION A(10), $\mathrm{B}(10), \mathrm{C}(10), \mathrm{D}(10), \mathrm{Z}(10)$, TITLE (20)	BRO	310
	COMMON OL, DX, PO, VALUE, $\mathrm{N}, \mathrm{NEF,S}(10,10), \mathrm{X}(10), V(10), V U P(10), V L O(10)$	BRO	320
	COMMON /UNI/ MCL, EPX	BRO	330
C		BRO	340
c	INPUT AND OUTPUT NECESSARY INFORMATION	BRO	350
C		8RO	360
	REAO 120, TITLE	BRO	370
	PRINT 121. TITLE	BRO	380
	READ 122, N,MST,MCL,IPT,EPS	BRO	390
	PRINT 123, NDEPS	BRO	400
	READ 124. (V(I), D. (I), VUP (I), VLO(I), I= $1, N$)	BRO	410
	PRINT 125	BRO	420
	PRINT 126, (I,VUP(I),VLO(I),ImI,N)	BRO	430
	PRINT 127	BRO	440
	PRINT 128, (I,V(I),I=I*N)	BRO	450
	PRINT 119	BRO	460
	PRINT 128, (I, 0 (I), I=10N)	BRO	470
c	EPX=10.*EPS	BRO	480
		BRO	490
		BRO	500
C	NORMALIZE THE VEECTOR	BRO	510
C		BRO	520
	$001021=10 N$	BRO	530
	$X(I)=(V(I)-V L O(I)) /(V U P(I)-V L O(I))$	BRO	540
101	CONTINUE	BRO	550

PROGRAM BROSEN (INPUT,OUTPUT)

PROGRAM BROSEN (INPUT,OUTPUT)

PROGRAM BROSEN (INPUT,OUTPUT)

SUBROUTINE UNIMO (IP)			
$\begin{aligned} & \mathbf{C} \\ & \mathbf{c} \\ & \mathbf{c} \end{aligned}$	SUBROUTINE UNIMO (IP)	UNI	10
		UNI	20
	THIS SUBROUTINE DETERMINES ThE OPTIMAL STEP SIZE ALONG A directio	NUNI	30
		UNI	40
	DIMENSION E(3). Y(3)	UNI	50
	COMMON UL, DX, PO, VALUE,N,NEF, S(10,10), $\mathrm{X}(10), \mathrm{V}(10), \mathrm{VUP}(10), \mathrm{VLO}(10)$	UNI	60
	COMMON /UNI/ MCL.EPX	UNI	70
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$		UNI	80
	SET UP UPPER AND LOWER LIMITS	UNI	90
		UNI	100
	$X U P L=1.0 E+10$	UNI	110
	XLOL $=1.0 E+10$	UNI	120
	DO $102 \mathrm{I}=1, \mathrm{~N}$	UNI	130
	IF (S(IP,I).EQ.0.) GO TO 102	UNI	140
	IF (S(IP,I).LT.O.) GO TO 101	UNI	150
	XTEM $=(\operatorname{VUP}(1)-V(I)) / S(I P, I)$	UNI	160
	IF (XTEM.LT.XUPL) XUPLEXTEM	UNI	170
	XTEME (VLO(I)-V(I))/SS(IP,I)	UNI	180
	IF (XTEM,OT, XLOL) XLOL=XTEM	UNI	190
	60 T0 102	UNI	200
102	$X T E M=(V \cup P(I)-V(I)) / S(I P, I)$	UNI	210
	IF (XTEM.GT.XLOL) XLOL=XTEM	UNI	220
	$X T E M=(V L O(I)-V(I)) / S(I P, I)$	UNI	230
	IF (XTEMOLT.XUPL) XUPLEXTEM	UNI	240
102	CONTIENUE	UNI	250
	NC $=0$	UNI	260
	XA=0.	UNI	270
	A $=$ PO	UNI	280
	$X B=X A+D X$	UNI	290
	IF (XB.LE.XUPL) ©O TO 103	UNI	300
	$X B=X U P L$	UNI	310
	$\mathrm{DX}=\times \mathrm{B}$	UNI	320
103	CALL OBJECT (IP, XB)	UNI	330
	BzVALUE	UNI	340
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$		UNI	350
	determine the thind point requirred for approximation	UNI	360
		UNI	370
	If (A.GT.E) GO TO 107	UNI	380
104	XC=XA-DX	UNI	390
	IF (XC.GE, XLOL) GO TO 105	UNI	400
	XC=XLOL	UNI	410
105	CALL OBJECT (IP,XC)	UNI	420
	$\mathrm{C=VALUE}$	UNI	430
	$Y(1)=x C$	UNI	440
	$Y(2)=X A$	UNI	450
	$Y(3)=X B$	UNI	460
	$E(1)=C$	UNI	470
	$E(2)=A$	UNI	480
	$E(3)=8$	UNI	490
	IF (C.LT.A) 60 TO 106	UNI	500
	XINF=XA	UNI	510
	FINF $=A$	UNI	520
	GO 70110	UNI	530
106	XINF $=$ XC	UNI	540
	FIMF=C	UNI	550

SUBROUTINE UNIMO (IP)

SUBROUTINE UNIMO (IP)

```
    113 SB=(E(1)-E(2))/(Y(1)-Y(2))-SA*(Y(1)+Y(2))
    XSTA=-SB/(2.*SA) UNI 1120
    IF (XSTA.GE.XLOL.AND.XSTA.LE.XUPL) GO TO 115
    IF (XSTA.GE.XLOL.AND.XSTA.LE.XUPL) GO TO 115
    IF (DEF.GT.O.) GO TO 114
    XSTA=XLOL
    60 TO 115
    114 XSTA=XUPL
    115 NC=NC+1
CALL OBJECT (IP,XSTA)
        FSTA=VALUE
    IF (FSTA.LE.FINF) GO TO 116
    XTEM=XSTA
        XSTA=XINF
    XINF=XTEM
    FTEMFFSTA
    FSTA=FINF
    FINF=FTEM
    116 IF ((1.-FSTA/FINF).LE.EPX) GO TO 119
    DX=ABS (XINF-XSTA)
    IF (NC.LT.MCL) GO Y0 117
    PRINT 121
    PRINT 122, MCL.IP
    STOP
    117 IF (XSTA.GT.XINF) 00 TO 118
        XA=XSTA
        A=FSTA
        XB=XINF
        B=FINF
        GO TO 104
    118 XA=XINF
        A=FINF
        XB=XSTA
        B=FSTA
        GO TO }10
C
    119 DLEXSTA
    PO=FSTA
            DO 120 I=1,N
                X(I)=X(I) +XSTA*S(IP,I)
                V(I)=VLO(I)*X(I)#(XUP(I)-VLO(I)) UNI 1520
    120 CONTINUE
RETURN
c
    121 FORMAT (/40X,40H****************************************)
    121 FORMAT (/40x,40H****************************************)
        IDIRECTION -----.I5)
c
    END
    UNI 1120
    UNI 1130
    UNI 1150
    UNI 1160
    UNI }117
UNI 1180
    UNI 1210
a MINImUM has beEN FOUND
UNI }123
UNI 1240
UNI 1240
UNI }125
UNI 1260
UNI 1270
UNI 1280
UNI }129
UNI 1300
UNI 1310
UNI 1320
UNI 1320
UNI }133
UNI 1340
UNI 1350
UNI }136
UNI 1370
UNI 1380
UNI 1380
UNI 1400
UNI 1400
UNI 1420
UNI 1430
UNI 1440
UNI 1450
C
UNI }146
UNI 1460
UNI 1480
UNI 1480
UNI }150
UNI 1510
UNI 1530
UNI }154
UNI }155
UNI }156
UNI 1570
UNI 1580
UNI }159
UNI 1600
```

SUBROUTINE OBJECT (IP,Z)			
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	SUBROUTINE OBJECT (IP:Z)	OBJ	10
		OBJ	20
	THIS SUBROUTINE DETERMINES THE VALUE Of OBJECTIVE FUNCTION	O8J	30
		OBJ	40
	DIMENSION T(10), Y(10)	OBJ	50
	COMMON DL, DX, PO,VALUE,	OBJ	60
	NEF $=$ NEF +1	08J	70
101	$001011=1, N$	OBJ	80
	$T(1)=x(1)+Z * S(1 P, I)$	OBJ	90
	$Y(1)=V L O(1)+T(1) *(V U P(1)-V L O(1))$	08J	100
	CONTINUE	OBJ	110
	VALUE= $(Y(1)-Y(2)) * * 2 *(Y(2)-2, * Y(3)) * * 2+(Y(3)-2.1 * * 2$	OBJ	120
	RETURN	OBJ	130
c		OBJ	140
	END	OBJ	150

