
DISSERTATION

KINEMATIC DESIGN OF REDUNDANT ROBOTIC MANIPULATORS THAT ARE

OPTIMALLY FAULT TOLERANT

Submitted by

Khaled M. Ben-Gharbia

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2014

Doctoral Committee:

Advisor: Anthony A. Maciejewski

Edwin K.P. Chong
Rodney G. Roberts
Iuliana Oprea

Copyright by Khaled M. Ben-Gharbia 2014

All Rights Reserved

ABSTRACT

KINEMATIC DESIGN OF REDUNDANT ROBOTIC MANIPULATORS THAT ARE

OPTIMALLY FAULT TOLERANT

It is common practice to design a robot’s kinematics from the desired properties that are locally

specified by a manipulator Jacobian. Conversely, one can determine a manipulator that possesses

certain desirable kinematic properties by specifying the required Jacobian. For the case of op-

timality with respect to fault tolerance, one common definition is that the post-failure Jacobian

possesses the largest possible minimum singular value over all possible locked-joint failures. This

work considers Jacobians that have been designed to be optimally fault tolerant for 3R and 4R

planar manipulators. It also considers 4R spatial positioning manipulators and 7R spatial manip-

ulators. It has been shown in each case that multiple different physical robot kinematic designs

can be obtained from (essentially) a single Jacobian that has desirable fault tolerant properties.

In the first part of this dissertation, two planar examples, one that is optimal to a single joint

failure and the second that is optimal to two joint failures, are analyzed. A mathematical analysis

that describes the number of possible planar robot designs for optimally fault-tolerant Jacobians

is presented. In the second part, the large family of physical spatial positioning manipulators that

can achieve an optimally failure tolerant configuration are parameterized and categorized. The

different categories of manipulator designs are then evaluated in terms of their global kinematic

properties, with an emphasis on failure tolerance. Several manipulators with a range of desirable

kinematic properties are presented and analyzed. In the third part, 7R manipulators that are

optimized for fault tolerance for fully general spatial motion are discussed. Two approaches are

presented for identifying a physically feasible 7R optimally fault tolerant Jacobian. A technique for

ii

calculating both reachable and fault tolerant six-dimensional workspace volumes is presented. Dif-

ferent manipulators are analyzed and compared. In both the planar and spatial cases, the analyses

show that there are large variabilities in the global kinematic properties of these designs, despite

being generated from the same Jacobian. One can select from these designs to optimize additional

application-specific performance criteria.

iii

ACKNOWLEDGEMENTS

First and foremost, I wish to acknowledge my adviser, Dr. Anthony A. Maciejewski, for his

constant encouragement and guidance. Dr. Maciejewski was always there whenever I needed help

to find the right direction through my research journey. During my Ph.D. studies I have gained a

significant amount of knowledge from Dr. Maciejewski, which is invaluable, and I am truly grateful

for that. It is an horner to be one of Dr. Maciejewski’s students.

I would also like to acknowledge Dr. Rodney G. Roberts from FAMU-FSU. Dr. Roberts has

been an integral part in my Ph.D. studies. His advice has been always very important to me and

has inspired me. I appreciate his constant support.

I would like to thank my Ph.D. committee members Dr. Edwin Chong and Dr. Iuliana Oprea

for their time and help to improve my research work.

I wish to acknowledge parents. Their continues support has been limitless and invaluable.

Because of their constant encouragement I was able to overcome all of the difficulties that I faced

in this long journey.

Finally, I wish to acknowledge my wonderful wife Haifa Alkahili. Her constant support through

the tough times during my Ph.D. studies was very significant. She has influenced and inspired me

to reach my goals. I can’t imagine how I could finish my earn my Ph.D. degree without having her

beside me.

iv

AUTOBIOGRAPHY

I was born in Tripoli-Libya on October 31, 1981. I received my Bachelor of Science degree in

Electrical Engineering and my Master of Science degree in Automation and Control Engineering

from Tripoli University(formerly known Al-fateh University) in March. 2003 and March. 2008

respectively. I completed my Ph.D. in Electrical Engineering from Colorado State University in

September 2014. I have been employed by Wolf Robotics in Fort Collins, Colorado, as a software

engineer. My research interests include robotics.

v

DEDICATION

To my family.

vi

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

AUTOBIOGRAPHY . v

DEDICATION . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

I INTRODUCTION . 1

1.1 BACKGROUND . 1

1.2 ORGANIZATION OF THIS STUDY . 2

II OPTIMALLY FAULT-TOLERANT JACOBIANS . 4

2.1 CHAPTER OVERVIEW . 4

2.2 DEFINITION OF AN OPTIMALLY FAULT TOLERANT JACOBIAN 4

2.3 FAULT TOLERANCE AND THE GRAM MATRIX 6

III COMPUTING DH PARAMETERS FROM A GIVEN JACOBIAN 11

3.1 CHAPTER OVERVIEW . 11

3.2 DH PARAMETERS FOR A SPATIAL MANIPULATOR 11

3.2.1 DH Coordinate Frames . 11

3.2.2 Computing the DH Parameters 13

3.2.3 A Different Solution . 15

IV THREE DOF PLANAR MANIPULATORS 16

4.1 CHAPTER OVERVIEW . 16

4.2 OPTIMALLY FAULT TOLERANT JACOBIAN 16

4.3 DETERMINING OPTIMALLY FAULT TOLERANT MANIPU-
LATORS . 17

4.4 GLOBAL PROPERTIES ANALYSES 19

4.5 EXPLANATION OF WHY K IS CONSTANT FOR (Ls, Ll, Ls)
ROBOT IN FIGURE 9 . 22

vii

V FOUR DOF PLANAR MANIPULATORS 26

5.1 CHAPTER OVERVIEW . 26

5.2 OPTIMALLY FAULT TOLERANT JACOBIAN 26

5.3 EXAMPLES OF MANIPULATORS WITH OPTIMAL FAULT-
TOLERANT JACOBIANS . 27

5.4 ANALYSIS AND COMPARISON OF MANIPULATOR DESIGNS 28

VI SPATIAL POSITIONING MANIPULATORS 35

6.1 CHAPTER OVERVIEW . 35

6.2 OPTIMALLY FAULT TOLERANT JACOBIAN 35

6.3 CHARACTERIZING FAULT TOLERANT FOUR DOF SPATIAL
POSITIONING MANIPULATORS 37

6.3.1 Characterizing Orientational Velocity 37

6.3.2 Characterizing DH Parameters 41

6.4 COMPUTING GLOBAL FAULT TOLERANCE PROPERTIES . 43

6.4.1 Volume Estimation Using Mont Carlo Integration Al-
gorithm . 44

6.4.2 Computing the Maximum Value of K 44

6.5 EXAMPLES OF MANIPULATORS WITH COMMON LINK TWIST
PARAMETERS . 47

6.5.1 Introduction . 47

6.5.2 Link twist αi = ±90◦ . 47

6.5.3 Link twist αi = 0◦ or 180◦ 48

6.5.4 Manipulator Categories 49

6.5.5 Global Fault Tolerance Analysis 50

6.6 JACOBIAN COLUMN PERMUTATION AND/OR SIGN CHANGE
EFFECTS . 53

6.6.1 Introduction . 54

6.6.2 Sign Change Effect . 55

6.6.3 Column Permutations and Tetrahedral Symmetry . . . 55

VII SEVEN DOF SPATIAL MANIPULATORS 60

7.1 CHAPTER OVERVIEW . 60

7.2 OPTIMALLY FAULT TOLERANT JACOBIAN 60

viii

7.3 COMPUTING GLOBAL FAULT TOLERANCE PROPERTIES . 63

7.3.1 Preliminaries . 63

7.3.2 Calculating a Six-Dimensional Volume 64

7.3.3 Calculating Orientation Volume 65

7.3.4 Workspace Volume Estimation Algorithms 66

7.4 EXPLORATION OF DIFFERENT ROBOT DESIGNS 73

7.4.1 Comparing Robot Designs 73

7.4.2 Modifying the Anthropomorphic Arm Design 78

VIII CONCLUSIONS . 86

8.1 SUMMARY . 86

8.2 FUTURE DIRECTIONS . 87

APPENDIX A — MATLAB CODE OF COMPUTING DH PARAME-
TERS FROM A JACOBIAN . 95

APPENDIX B — SEARCHING FOR THE MAXIMUM K VALUE ONTO
THE NULL SPACE . 99

APPENDIX C — FOUR DOF PLANAR MANIPULATORS IN TABLE 3:
MAXIMUM K PLOTS VERSUS DISTANCE FROM BASE 103

APPENDIX D — TABLE OF RESULTS FOR ROBOT GROUPS 4-7 IN
TABLE 6 . 106

APPENDIX E — SEVEN DOF SPATIAL MANIPULATORS IN CHAP-
TER 7: MAXIMUM K TRJECTORIES 107

APPENDIX F — SEVEN DOF SPATIAL MANIPULATORS IN CHAP-
TER 7: VOLUME PLOTS . 111

ix

LIST OF TABLES

1 Definition of the Denavit and Hartenberg parameters 12

2 DH parameters of the four generated robots . 18

3 The 14 different link length combinations of (41). 30

4 Fault tolerant workspace analysis of the fourteen robots in Table 3. 32

5 Values of βi and βi+1 to make αi = 0◦ or 180◦ . 49

6 The size of robot groups with all possible combinations of αi being ±90◦, 0◦,
or 180◦ . 51

7 The best robot configurations among the individual robot groups 4-7 that have
one additional αi = 0 in Table 6 . 51

8 The DH parameters of the globally optimal robot that corresponds to (β1, β2, β3, β4) =
(30◦, 330◦, 0◦, 300◦) . 53

9 Permuted Jacobians that are related to J1234 by a rotation Rk(θ) = kkT +
cos(θ)[I − kkT] + sin(θ)S(k) . 57

10 Permuted Jacobians that are reflections of Table 9 byQk(θ) = −kkT+cos(θ)[I−
kkT] + sin(θ)S(k) . 58

11 The DH parameters of robot from (98) . 63

12 Comparison of K maximization techniques using the robot from (98) 73

13 The DH parameters of the min robot from (98) 77

14 The DH parameters of the max robot from (98) 78

15 Comparison of robot workspace volumes . 79

16 The DH parameters of PA–10 robot . 79

17 Kinematics of a modified anthropomorphic arm 81

18 Modified anthropomorphic arm with optimized DH parameters 84

19 Comparison between the min robot from (98) and the modified anthropomor-
phic arm robot . 85

x

LIST OF FIGURES

1 n-R planar kinematic parameters. 8

2 DH parameters for a joint i of an arbitrary manipulator [60]. 12

3 All the robots that are obtained by performing all possible sign combinations
and permutations of the 2nd and 3rd columns of the J when j1 is the first
column. 18

4 All the robots that are obtained by performing all possible sign combinations
and permutations of the 2nd and 3rd columns of the J when j2 is the first
column. 19

5 All the robots that are obtained by performing all possible sign combinations
and permutations of the 2nd and 3rd columns of J when j3 is the first column. 20

6 A simple three degree-of-freedom planar robot that corresponds to the optimal
fault-tolerant Jacobian given by (32) is shown in (d). The three other manip-
ulators that have the same properties of the Jacobian in (32) are shown in (a),
(b), and (c). 21

7 The relationship between K and the distance from the base for the (Ll, Ll, Ls)
robot. 22

8 The relationship between K and the distance from the base for the (Ls, Ls, Ls)
robot. 22

9 The relationship between K and the distance from the base for the (Ls, Ll, Ls)
robot. 23

10 The relationship between K and the distance from the base for the (Ll, Ls, Ls)
robot. 23

11 The relationship between K and the distance from the base for (Ls, Ll, Ls)
robot in Table 2. The minimum singular values for all possible failures are
shown for the configuration that maximizes K. Note that if only K3 where
being optimized, then it would be constant for a larger range. 25

12 A simple four degree-of-freedom planar robot that corresponds to the optimal
fault-tolerant Jacobian given by (41) is shown in (a). The thirteen other ma-
nipulators that have the same properties of the Jacobian in (41) are shown in
(b) to (n). 29

13 The relationship between K and the distance from the base for Robots 1 and
14 in Table 3. 31

14 Three different configurations with maximum K at three different points along
the x-axis trajectory for Robots 9, 10, and 11. In all cases the first configuration
is from the design point at a distance of 1/

√
2 and the last configuration is at

the boundary of the fault tolerant workspace at a distance of approximately
three. 33

xi

15 The relationship between K and the distance from the base for Robots 3, 4,
and 5. The plot focuses on the behavior near the design point to highlight the
difference in this region. Note that the value of K for Robot 5 is shown for joint
motion that does not include a discontinuity due to an algorithmic singularity.
If the discontinuous joint motion is performed, then the K value for Robot 5
is comparable to that of Robot 4. 34

16 The relationship between the first link twist angle α1 and the parameters β1

and β2. 42

17 The relationship between first link length a1 and the parameters β1 and β2. . . 42

18 An illustration of how the Monte Carlo integration algorithm is used to com-
pute the volume of both the fault tolerant workspace and the entire reachable
workspace. 45

19 Self-motion manifolds for the robot generated from (β1, β2, β3, β4) =
(200◦, 220◦, 130◦, 90◦) where the value of θ1 is indicated using color. The
points A, B, C, and D lie on a line segment in the workspace where A is one
endpoint located at [x, y, z] = [−0.04, −0.82, 0.22], D is the other endpoint at
[x, y, z] = [−0.16,−1.79, 0.47], and points B and C are located 57% and 80%
of the way from A to D, respectively. 46

20 To evaluate the maximum value of K at a workspace location (shown in black
in (b)) multiple randomly generated configurations (two of which are shown in
blue) are used in order to evaluate the multiple self-motion manifolds associated
with a workspace location. The configuration that corresponds to the largest
value of K for each of these workspace locations is shown in (a). Note that the
closest random point may not be associated with the manifold that has the
largest value of K. 47

21 The optimal fault tolerant configurations at the design point of Table 7 robots.
(The figure was generated using the Robotics Toolbox described in [61].) 52

22 The locally optimal fault tolerant configuration at the design point of the glob-
ally optimal robot defined in Table 8. (The figure was generated using the
Robotics Toolbox described in [61].)) . 53

23 The workspace volumes of the globally optimal robot defined in Table 8. The
blue color indicates the total reachable workspace volume, while the yellow
color presents the fault tolerant workspace volume. 54

24 An illustration of kinematically equivalent robots generated from different Ja-
cobians. The robot labeled “original” is generated from J1234 and represents
all the robots specified in Table 9. The robot labeled “reflection” represents
all the robots specified in Table 10. The robot labeled “mirror” represents
robots generated from using the alternate solutions for β1 when its range is not
restricted. 59

25 The configuration of a robot that was generated to have the locally optimal
fault tolerant Jacobian in (98), referred to as the robot from (98). 63

xii

26 Six-dimensional fault tolerant volume for K > 0.2 for the robot from (98) as a
function of sampling rate . 67

27 An illustration of how Monte Carlo integration is used to compute the volume
of the reachable workspace. This is done by first determining the maximum
reach of the robot by performing forward kinematics on one million random
joint configurations and then driving each of these to a workspace boundary.
The Monte Carlo integration is then performed within a sphere of R that is
110% of the maximum reach. 68

28 An illustration of how Monte Carlo integration is used to compute the six-
dimensional volumes of both the fault-tolerant workspace and the reachable
workspace. For each reachable workspace position Pi in (a) we use Monte
Carlo integration to evaluate the achievable orientation volume at that Pi as
shown in (b). To evaluate the fault tolerance of a Pi and Qi in (b) one needs to
identify the maximum value of K for all self-motion manifolds associated with
that Pi and Qi, as shown in (c). The three-dimensional fault-tolerant volume
contains all of the positions that have at least one fault-tolerant orientation. . . 71

29 An example of five self-motion manifolds for the robot from (98) where its end
effector is located four meters from the design point in the positive y direction.
The independent axis is a measure of the size of the manifold (in degrees) with
the dependent axis being the distance from an arbitrary origin on the manifold
(giving some sense of its shape). 74

30 A plot of the maximum value of K and the rate of joint displacement for robot
from (98), for a trajectory along the y-axis away from the design point while
keeping the orientation constant. The ability to maintain a large value of K
far from the design point comes at the expense of very large joint motion. In
fact, the magnitude of joint change ∥∆θ∥ curve for the technique that tracks
the maximum over all self-motion manifolds is scaled down by a factor of ten. . 75

31 An illustration of the large value of joint motion that can occur when tracking
the globally optimal fault-tolerant configuration. This motion is due to a switch
between self-motion manifolds. This reconfiguration will also require motion
of the end effector. 75

32 A plot of the maximum reach for all possible robots generated from the 7!
column permutations of (98) and (99). 76

33 The locally optimal fault tolerant configuration at the design point of the min
robot from (98). Note the more evenly distributed links of this robot configu-
ration as compared to that of Figure 25 . 77

34 Six-dimensional fault tolerant volume of K > 0.2 for the min robot from (98).
The orientation volume is represented by its color within the three-dimensional
volume as a percentage of Vomax = π2. 79

35 Six-dimensional reachable volume for the min robot from (98). This is very
similar to the fault tolerant volume for K ̸= 0. The orientation volume is
represented by its color within the three-dimensional volume as a percentage
of Vomax = π2. 80

xiii

36 Modifying the PA-10 to be fault tolerant. Note that the third joint is moved
from the base frame to the same location as the coordinate frame of the fourth
joint. This is a result of considering the joint offsets d3 and d5 to be link lengths
a2 and a4. To help with visualizing this difference, the joint values for the PA-10
are set to [0◦ , 0◦ , 0◦ , − 90◦ , 0◦ , 0◦ , 0◦], whereas for the modified arm
the joint values are [0◦ , − 90◦ , 0◦ , − 90◦ , 0◦ , 0◦ , 0◦]. (This graphic was
generated using the Robotics Toolbox described in [61].) 81

37 The locally optimal fault tolerant configuration at the design point of the mod-
ified anthropomorphic arm. (This graphic was generated using the Robotics
Toolbox described in [61].) . 84

38 The locally optimal fault tolerant configuration at the design point of the mod-
ified anthropomorphic arm robot. (See Appendix E for different trajectories.) . 85

39 Six-dimensional fault tolerant volume for K > 0.2 for the min robot from (98)
with using ∇K, where VFT = 3.3% and VFT 3d

= 68%. Note that the color scale
is not up to 100%. 112

40 Six-dimensional fault tolerant volume for K > 0 for the min robot from (98)
with using ∇K, where VFT = 40% and VFT 3d

= 97%. 112

41 Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (98)
with using ∇K, where VFT = 1.5% and VFT 3d

= 62%. Note that the color scale
is not up to 100%. 113

42 Six-dimensional fault tolerant volume for K > 0 for the mid robot from (98)
with using ∇K, where VFT = 32% and VFT 3d

= 93%. 113

43 Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (98)
with using ∇K, where VFT = 0.4% and VFT 3d

= 39%. Note that the color scale
is not up to 100%. 114

44 Six-dimensional fault tolerant volume for K > 0 for the max robot from (98)
with using ∇K, where VFT = 18% and VFT 3d

= 60%. 114

45 Six-dimensional fault tolerant volume for K > 0.2 for the min robot from (99)
with using ∇K, where VFT = 3.1% and VFT 3d

= 70%. Note that the color scale
is not up to 100%. 115

46 Six-dimensional fault tolerant volume for K > 0 for the min robot from (99)
with using ∇K, where VFT = 40% and VFT 3d

= 95%. 115

47 Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (99)
with using ∇K, where VFT = 0.7% and VFT 3d

= 33%. Note that the color scale
is not up to 100%. 116

48 Six-dimensional fault tolerant volume for K > 0 for the mid robot from (99)
with using ∇K, where VFT = 30% and VFT 3d

= 91%. 116

49 Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (99)
with using ∇K, where VFT = 0.6% and VFT 3d

= 41%. Note that the color scale
is not up to 100%. 117

xiv

50 Six-dimensional fault tolerant volume for K > 0 for the max robot from (99)
with using ∇K, where VFT = 19% and VFT 3d

= 66%. 117

51 Six-dimensional fault tolerant volume for K > 0.2 for the modified human arm
robot with using ∇K, where VFT = 1.3% and VFT 3d

= 63%. Note that the
color scale is not up to 100%. 118

52 Six-dimensional fault tolerant volume for K > 0 for the modified human arm
robot with using ∇K, where VFT = 43% and VFT 3d

= 100%. 118

53 Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (98)
with tracking the maximum K over all self-motion manifolds, where VFT = 24%
and VFT 3d

= 81%. 119

54 Six-dimensional reachable volume for the mid robot from (98), where Vr = 49%
and V6d = 99%. 119

55 Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (98)
with tracking the maximum K over all self-motion manifolds, where VFT = 12%
and VFT 3d

= 51%. 120

56 Six-dimensional reachable volume for the max robot from (98), where Vr = 62%
and V6d = 26%. 120

57 Six-dimensional fault tolerant volume for K > 0.2 for the min robot from (99)
with tracking the maximum K over all self-motion manifolds, where VFT = 26%
and VFT 3d

= 81%. 121

58 Six-dimensional reachable volume for the min robot from (99), where Vr = 49%
and V6d = 97%. 121

59 Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (99)
with tracking the maximum K over all self-motion manifolds, where VFT = 73%
and VFT 3d

= 19%. 122

60 Six-dimensional reachable volume for the mid robot from (99), where Vr = 41%
and V6d = 95%. 122

61 Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (99)
with tracking the maximum K over all self-motion manifolds, where VFT = 13%
and VFT 3d

= 59%. 123

62 Six-dimensional reachable volume for the max robot from (99), where Vr = 68%
and V6d = 28%. 123

63 Six-dimensional fault tolerant volume for K > 0.2 for the modified human
arm robot with tracking the maximum K over all self-motion manifolds, where
VFT = 10% and VFT 3d

= 78%. 124

64 Six-dimensional reachable volume for the modified human arm robot, where
Vr = 100% and V6d = 49%. 124

xv

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

The design and operation of fault-tolerant manipulators is critical for applications in remote

and/or hazardous environments where routine maintenance and repair are not possible. Component

failures for robots employed in structured and benign environments where regular maintenance can

be performed are relatively rare. However, there are many important applications, although less

common, where this is not true, e.g., in space exploration [7, 8], underwater exploration [9], and

nuclear waste remediation [10]. One recent example is the Fukushima nuclear reactor accident,

where robot component failures were not only likely, but inevitable [11, 12]. The failure rates for

components in such harsh environments are relatively high [13–15], and maintenance is not possible.

Many of these component failures will result in a robot’s joint becoming immobilized, i.e., a locked

joint failure mode [26]. In addition, component failures that result in other common failure modes,

e.g., free-swinging joint failures [17–19], are frequently transformed into the locked joint failure mode

by failure recovery mechanisms that employ fail safe brakes [20]. Because of the severe consequences

of such failures there has been a great deal of research to improve manipulator reliability [15,21,22],

design fault-tolerant robots [23,24], and determine mechanisms for analyzing [25], detecting [26,27],

identifying [28–31], and recovering [32–35] from failures.

A large body of work on fault-tolerant manipulators has focused on the properties of kinemati-

cally redundant robots, either in serial or parallel form [36–42]. These analyses have been performed

both on the local properties associated with the manipulator Jacobian [43–47] as well as the global

1

characteristics such as the resulting workspace following a particular failure [48–52]. (Clearly both

local and global kinematic properties are related, e.g., workspace boundaries correspond to singu-

larities in the Jacobian.)

In this work it is assumed that one is given a set of local performance constraints that require

a manipulator to function in a configuration that is optimal under normal operation and after an

assumed maximum number of joints fail and are locked in position. For example, at a single joint

failure, the desired Jacobian matrix must be isotropic, i.e., possess all equal singular values prior to

a failure, and have equal minimum singular values for every possible single column being removed.

One can then use global characteristics to distinguish between multiple manipulators that meet the

local design constraints.

In the first part of this dissertation, it will be shown that there exist multiple different physical

planar manipulators that correspond to the same optimally fault tolerant Jacobian. This is due to

the fact that permutation of the columns of the Jacobian (or multiplying by ±1) does not affect its

fault tolerant properties, however, it does significantly impact the resulting physical manipulator.

The second part of this dissertation deals with the problem of the Jacobian for an optimally

fault tolerant, spatial positioning manipulator that possesses four degrees of freedom. It will be

shown that for this case, permutation of the columns of the Jacobian (or multiplying by ±1) does

not result in a different physical manipulator realization. However, there is a much greater degree

of design flexibility.

The third part presents seven degree-of-freedom manipulators for for fully general spatial mo-

tion. It will discuss the fact that there isn’t an exact optimally fault tolerant Jacobian that could

be found, but all solutions converge to the same local minima. All calculated Jacobians are very

close to being optimally fault tolerant. Two approaches are presented to identify such a Jacobian.

A technique for measuring both reachable and fault tolerant six-dimensional volumes is presented.

2

Different examples of manipulators are evaluated and compared.

1.2 ORGANIZATION OF THIS STUDY

The remainder of this dissertation is organized as follows:

Chapter 2 defines mathematically a local measure of failure tolerance centered on desirable

properties of the manipulator Jacobian. It also shows by using the Gram matrix how one can

compute different robot deigns from the same optimally fault tolerant Jacobian.

Chapter 3 presents a procedure for computing the kinematic parameters of a manipulator,

described by Denavit and Hartenberg (DH) parameters, from a given Jacobian. This procedure

was useful for this work because a Jacobian matrix was defined first and then the manipulator’s

structure that corresponds to this Jacobian was determined, where one usually computes a Jacobian

from the given DH parameters.

Chapter 4 discusses 3R planar manipulators that are designed from the same Jacobian that is

optimally fault tolerant to a single locked joint failure. Their global properties was studied. The

results showed how these manipulators are different, even though they have the same properties at

the local design configuration.

Chapter 5 illustrates how the Gram matrix is used to describe all Jacobians with the same

optimal fault tolerance properties. Then, 4R planar manipulators are designed from a Jacobian that

is optimally fault tolerant to two locked joint failures. The global properties of these manipulators

are analyzed and compared.

Chapter 6 characterizes the set of all 6 × 4 Jacobian matrices that include an optimally fault

tolerant 3× 4 spatial positioning sub-Jacobian. This characterization was then used to determine

the family of DH parameters that represent physical manipulators with the optimally fault tolerant

property. It will be described how one can evaluate a particular robot design (that is generated

from the optimal Jacobian) in terms of its global kinematic properties, especially with regard to

3

failure tolerance. The global kinematic properties analyses will be applied on several categories of

manipulators. It will be illustrated why permutation of the columns of the Jacobian (or multiplying

by ±1) does not result in different physical robots.

Chapter 7 discusses an optimally fault tolerant 6×7 matrix, and how one can identify a feasible

Jacobian. It describes how one can evaluate both reachable and fault tolerant six-dimensional

volumes. Different examples are presented.

Chapter 8 presents the conclusions of this work.

4

CHAPTER II

OPTIMALLY FAULT-TOLERANT JACOBIANS1

2.1 CHAPTER OVERVIEW

Measuring kinematic behaviors of a manipulator can be made through its Jacobian matrix. In

this work, the main interest of a manipulator design is its fault tolerant properties. The chapter will

discuss the properties of an optimally fault tolerant Jacobian in Section 2.2. Section 2.3 describes

how one can determine different number of robots that can be obtained from a given optimally

fault tolerant Jacobian. This section describes also how one can compute the kinematic parameters

of a planar manipulator from a given Jacobian.

2.2 DEFINITION OF AN OPTIMALLY FAULT TOLERANT JACOBIAN

The dexterity of manipulators is frequently quantified in terms of the properties of the manip-

ulator Jacobian matrix that relates end-effector velocities to joint angle velocities. The Jacobian

will be denoted by the m × n matrix J where m is the dimension of the task space and n is the

number of degrees-of-freedom (DOFs) of the manipulator. For redundant manipulators, n > m

and the quantity n−m is the degree of redundancy. The manipulator Jacobian can be written as

a collection of columns

Jm×n =

[
j1 j2 · · · jn

]
(1)

where ji represents the end-effector velocity due to the velocity of joint i. For an arbitrary single

joint failure at joint f , assuming that the failed joint can be locked, the resulting m by n − 1

1MOST OF THIS CHAPTER IS PUBLISHED IN [1–6]

5

Jacobian will be missing the fth column, where f can range from 1 to n. This Jacobian will be

denoted by a preceding superscript so that in general

fJm×(n−1) =

[
j1 j2 · · · jf−1 jf+1 · · · jn

]
. (2)

The properties of a manipulator Jacobian are perhaps best illustrated through the use of the

singular value decomposition (SVD), which can be defined as

J = UDV T (3)

where U is an m by m orthogonal matrix of the output singular vectors, V is an n by n orthogonal

matrix of the input singular vectors, and D is a diagonal matrix of the form

Dm×n =



σ1 0 · · · 0 0 · · · 0

0 σ2
. . .

... 0 · · · 0

...
. . .

. . . 0
...

...

0 · · · 0 σm 0 · · · 0


(4)

where the σi are the singular values, and are typically ordered from largest to smallest. Most local

dexterity measures can be defined in terms of simple combinations of these singular values such

as their product (determinant) [53], sum (trace), or ratio (condition number) [54–56]. The most

significant of the singular values is σm, the minimum singular value, because it is by definition the

measure of proximity to a singularity and tends to dominate the behavior of both the manipulability

(determinant) and the condition number. The minimum singular value is also a measure of the

worst-case dexterity over all possible end-effector motions.

The definition of failure tolerance used in this work is based on the worst-case dexterity following

an arbitrary locked joint failure. Because fσm denotes the minimum singular value of fJ , fσm is

a measure of the worst-case dexterity if joint f fails. If all joints are equally likely to fail, then a

6

measure of the worst-case failure tolerance is given by

K =
n

min
f=1

(fσm). (5)

Physically, this corresponds to minimizing the worst-case increase in joint velocity when a joint

is locked and the others must accelerate to maintain the desired end effector trajectory. In addi-

tion, maximizing K is equivalent to locally maximizing the distance to the post-failure workspace

boundaries [13]. To insure that manipulator performance is optimal prior to a failure, an optimally

failure tolerant Jacobian is further defined as having all equal singular values due to the desirable

properties of isotropic manipulator configurations [54–56]. Under these conditions, to guarantee

that the minimum fσm is as large as possible they should all be equal. It is easy to show [44]

that the worst-case dexterity of an isotropic manipulator that experiences a single joint failure is

governed by the inequality

n
min
f=1

(fσm) ≤ σ

√
n−m

n
(6)

where σ denotes the norm of the original Jacobian. The best case of equality occurs if the manip-

ulator is in an optimally failure tolerant configuration. The above inequality makes sense from a

physical point of view because it represents the ratio of the degree of redundancy to the original

number of degrees of freedom.

Using the above definition of an optimally failure tolerant configuration one can identify the

structure of the Jacobian required to obtain this property [57].2 In particular, one can show that

the optimally failure tolerant criteria requires that each joint contributes equally to the null space

of the Jacobian transformation [45,47]. Physically, this means that the redundancy of the robot is

uniformly distributed among all the joints so that a failure at any one joint can be compensated for

2Note that this approach does not depend on our choice of fault tolerance measure. Any fault tolerant measure,

e.g. relative manipulability, can be used to define a locally optimally failure tolerant Jacobian. In fact, any local

desired property defined by a Jacobian can be used in our approach.

7

by the remaining joints. Therefore, in this work an optimally failure tolerant Jacobian is defined as

being isotropic, i.e., σi = σ for all i, and having a maximum worst-case dexterity following a failure,

i.e., one for which fσm = σ
√

n−m
n for all f . The second condition is equivalent to the columns of

the Jacobian having equal norms.

After identifying an optimally failure tolerant J , one might be interested in designing the

kinematics for a manipulator that would possess these qualities. In the next section, the Gram

matrix is used to analyze the different number of manipulator kinematics that can result from a

given fault tolerant Jacobian.

2.3 FAULT TOLERANCE AND THE GRAM MATRIX

The Gram matrix,

G = JTJ, (7)

provides insight into the geometry and fault tolerance of a manipulator design. Here, the Jacobian

J can be the positional, orientational, or the manipulator Jacobian. Some care concerning units

should be exercised in the case of the manipulator Jacobian or when there is a mixture of revolute

and prismatic joints. When a Jacobian is isotropic, the Gram matrix takes on a particularly simple

form: if the singular values of J are equal to 1, then G = JTJ = I −NNT where the n× (n−m)

matrix N consists of (n −m) orthonormal null vectors of J . In the case of a manipulator with a

single degree of redundancy, G = I − n̂J n̂
T
J , where n̂J is the unit length null vector when J is in a

non-singular configuration. The requirement for optimal fault tolerance specifies further conditions

on the null space matrix N . Specifically, the rows of N must all have the same norm
√

n−m
n and

be spread out in a sense that will be made precise later.

Once an optimal Gram matrix is determined, an obvious and important question is to charac-

terize all the corresponding Jacobians and the kinematic parameters for the corresponding manip-

ulators. Clearly, a simple change in the base frame orientation through rotation and/or reflection

8

will not change the basic robot structure. The difference in this case is simply a pre-multiplication

of the Jacobian by an orthogonal matrix. For the sake of discussion, two configurations will be

called equivalent if their corresponding Jacobians differ only by a pre-multiplication by an orthog-

onal matrix Q. It can be shown that two full rank n-R Jacobians J and J ′ are equivalent if and

only if (J ′)TJ ′ = JTJ , i.e., if their Gram matrices are equal.

Two planar n-R manipulators with equivalent Jacobians have essentially the same kinematic

parameters, so the corresponding robot configurations can be considered to be the same in that

sense. This is because when there is a change in the orientation of the base frame, either through

a rotation or a combination of a rotation and reflection, the new Jacobian merely differs from the

original by a multiplication by an orthogonal matrix. This is nicely illustrated for a planar 3R

manipulator, which has a Jacobian of the form

J(θ1, θ2, θ3) =−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

 , (8)

where the fixed ai’s are the link lengths and the variable θi’s are the joint angles. They both

describe kinematic parameters of a planar manipulator as shown in Figure 1. (The notation sijk

and cijk indicates sin(θi + θj + θk) and cos(θi + θj + θk), respectively.)

If the base frame is changed by a rotation, represented here by a 2 × 2 rotation matrix R(ϕ),

the manipulator’s Jacobian becomes

J ′(θ1, θ2, θ3) = R(ϕ)J(θ1, θ2, θ3) = J(θ1 + ϕ, θ2, θ3), (9)

where R(ϕ) is the standard rotation matrix corresponding to a counter-clockwise rotation of ϕ

radians about the z-axis. The kinematic parameters of the robot corresponding to the new Jacobian

J ′(θ1, θ2, θ3) are the same as they were for J with the exception that θ1 is now replaced with θ1+ϕ.

9

θ1

θ2

θn

n

Figure 1: n-R planar kinematic parameters.

Consider now the reflection matrix F = diag(−1, 1), which corresponds to a reflection about the

y-z plane. Then the modified Jacobian resulting from pre-multiplying by F is

J ′(θ1, θ2, θ3) = FJ(θ1, θ2, θ3) = J(−θ1,−θ2,−θ3). (10)

The new kinematic parameters are the same except that the joint angles are the negatives of the

original joint angles, giving a left-handed version of the same robot. More generally, any orthogonal

matrix can be written in the form R(ϕ) or Q = R(ϕ)F for a suitable angle ϕ so that pre-multiplying

(1) by Q results in the Jacobian

QJ(θ1, θ2, θ3) = J(−θ1 + ϕ,−θ2,−θ3). (11)

Because optimal fault tolerance can be formulated in terms of the Gram matrix, it is desirable

to identify the family of kinematic parameters sets that result in optimally fault tolerant configu-

rations. The unique kinematic parameters for a planar 3R robot are easily obtained from (8) by

examining the matrix

J∗ =

[
j∗1 j∗2 j∗3

]
=

[
j1 − j2 j2 − j3 j3

]
, (12)

10

e.g.,the column norms of this new matrix (J∗) are equal to the corresponding ai values, such that

a2i = ∥j∗i∥2. (13)

This observation generalizes for any planar n-R robot. To find out the values of θi, let

j∗i =

[
j∗1i j∗2i

]T
, (14)

then,

θi = arctan2(j∗1i, j
∗
2i) (15)

where arctan2 is the four-quadrant inverse tangent, which returns θi ∈ [−π, π].

One could also obtain the values for ai from the Gram matrix by noting that for i = 1, 2, . . . , n−

1,

a2i = ∥ji − ji+1∥2

= ∥ji∥2 + ∥ji+1∥2 − 2ji · ji+1

= gii + gi+1,i+1 − 2gi,i+1 (16)

and

a2n = ∥jn∥2 = gnn (17)

where gi,i+1 is the (i, i+1) element of G. Thus, for planar n-R manipulators, a given Gram matrix G

determines a family of equivalent manipulators each with the same set of ai parameters determined

by the square root of a simple linear combination of elements in G.

Another important question is whether one can identify other optimally fault tolerant designs

from a given Jacobian that are not equivalent by pre-multiplication by an orthogonal matrix.

It is clear from the definition of optimal fault tolerance that rearranging the columns of J or

multiplying one or more of the columns of J by −1 will not affect local fault tolerance; however,

11

this will typically result in a very different manipulator. We will say that J and J ′ are similar

if one is obtained from the other by permuting and/or multiplying the columns of a Jacobian by

−1. In other words, J and J ′ are similar if J ′ = JS where S is an n× n matrix corresponding to

the desired signed permutation of the columns of J . For convenience, we will say that J and J ′

are nontrivially similar if S ̸= ±I. We are interested in similar Jacobians because they share the

same fault tolerance properties but generally correspond to fundamentally different manipulators.

The Gram matrix G′ corresponding to J ′ is obtained from the original Gram matrix G simply by

applying the same row and column operations that were used to obtain J ′ from J . Consequently,

one can easily obtain the ai parameters for any similar Jacobian directly from the original G for

the case of planar revolute manipulators.

12

CHAPTER III

COMPUTING DH PARAMETERS FROM A GIVEN JACOBIAN1

3.1 CHAPTER OVERVIEW

In the previous chapter, it is shown how one can calculate the kinematic parameters for a planar

manipulator from its given Jacobian. In the case of a spatial manipulator, it is more complicated.

This chapter will discuss how one can compute the DH parameters of a revolute manipulator

from a desired Jacobian. This is the opposite of what is typically done, i.e., DH parameters of a

manipulator are typically given, and a Jacobian is then computed from these DH parameters. The

analyses of this computation are discussed in Section 3.2.

3.2 DH PARAMETERS FOR A SPATIAL MANIPULATOR

3.2.1 DH Coordinate Frames

The DH notation for specifying a spatial manipulator kinematics is illustrated in Figure 2 with

the parameters defined in Table 1 [58]. It is assumed that J is computed for the hand, and is given

with respect to the hand coordinate frame.

The ith column of J , that is composed of both the linear partial velocity vi and rotational

partial velocity ωi, is closely related to the coordinate axes of the i− 1 coordinate frame of the DH

notation [59], i.e.,

ji =

vi
ωi

 =

ẑi−1 × pi−1

ẑi−1

∀i = 1, ..., n (18)

where pi−1 is the position vector from the coordinate frame i − 1 to the hand coordinate frame.2

1MOST OF THIS CHAPTER IS PUBLISHED IN [1]
2One can apply this section’s computations for a planar manipulator, where vi = [v1i, v2i, 0] and ωi = [0, 0, 1]T

conventionally.

13

1ˆ −iziẑ

ix̂

1ˆ−ix

iŷ

1ˆ−iy

ia
id

iθ

iα ilink
1−ilink

Figure 2: DH parameters for a joint i of an arbitrary manipulator [60].

Table 1: Definition of the Denavit and Hartenberg parameters

αi Link twist: the angle between
zi−1 and zi around xi using
the right-hand rule.

ai Link length: the shortest dis-
tance between the joint axes
zi−1 and zi.

θi Joint angle: the angle be-
tween xi−1 and xi around zi−1

using the right-hand rule.

di Joint offset: the distance from
the origin of coordinate frame
i − 1 to coordinate frame i
along zi−1.

Thus one can easily identify the ẑi−1 axis by inspection, i.e., it is equal to ωi, and compute x̂i from

adjacent columns3 of J using

x̂i = ± ωi × ωi+1

∥ωi × ωi+1∥
. (19)

The appropriate sign for x̂i in (19) is determined based on the convention that x̂i is pointing away

from ẑi−1 [59], so that

⟨x̂i, p′i − p′i−1⟩ > 0 (20)

3To compute the nth coordinate frame assume that vn+1 = [0 0 0]T and ωn+1 = [0 0 1]T .

14

where ⟨ · , · ⟩ denotes the dot product, and p′i−1 is defined as

p′i−1 = ωi × vi. (21)

If ẑi−1 and ẑi are parallel, then x̂i is given by:

x̂i =
p′i − p′i−1

∥p′i − p′i−1∥
. (22)

Finally, the ŷi axis can be obtained by taking the cross product of ẑi and x̂i.

The procedure presented here assumes that J is specified with respect to the hand coordinate

frame. If the desired J is given with respect to the base coordinate frame, it is easy to transform it

to the hand frame by performing the appropriate rotation. To transform J to the hand coordinate

frame, the following rotation matrix is used:

nR0 =

[
x̂n ŷn ẑn

]
(23)

where

ẑn = ωn, (24)

x̂n =
vn × ωn

∥vn × ωn∥
, (25)

and

ŷn =
ẑn × x̂n

∥ẑn × x̂n∥
(26)

Hence, the Jacobian with respect to the hand coordinate frame can be obtained by multiplying

each of the vi’s and ωi’s by
nR0.

3.2.2 Computing the DH Parameters

After defining the coordinate frames for each joint, the four DH parameters can be derived using

their definitions in Table 1.

15

3.2.2.1 Link Twist α

The value of αi can be computed using:

αi = ±acos(⟨ẑi−1, ẑi⟩) (27)

where acos is the inverse of cosine that returns a value between 0 and π. The sign of α should be

the same as the sign of ⟨x̂i, ẑi−1 × ẑi⟩.

3.2.2.2 Link Length a

The value of ai can be computed using:

ai = ⟨x̂i, p′i − p′i−1⟩. (28)

Because x̂i is defined to point away from ẑi−1, the value of ai is always positive.

3.2.2.3 Joint Angle θ

The value of θi can be computed using

θi = ±acos(⟨x̂i−1, x̂i⟩). (29)

The sign of θ should be the same as the sign of ⟨ẑi−1, x̂i−1 × x̂i⟩. The value of θ1 is arbitrary

because x̂0 is not defined; thus, it can be assumed to be zero.

3.2.2.4 Link Offset d

The last parameter, di, requires that one determine the origins of the coordinate frames i − 1

and i with respect to the hand coordinate frame, denoted 0Oi−1 and 0Oi respectively. One can

then apply the definition in Table 1 to compute the distance between these origins along the ẑi−1

using:

di = ⟨0Oi −0 Oi−1, ẑi−1⟩. (30)

16

To determine the origin of any coordinate frame i, one can use the fact that the line Li param-

eterized by ti given by

Li(ti) = p′i + tiẑi (31)

is known because ẑi and p′i are known. One can then use the known value of ai to determine a

linear set of equations relating Li and Li−1 that can be easily solved. That is, the relationship

Li(ti) = aix̂i + Li−1(ti−1) has a unique solution for ti and ti−1 unless the lines Li and Li−1 are

parallel, where di can be set arbitrarily equal to zero. The value of d1 is arbitrary because 0O−1 is

not defined; thus, it can be assumed to be zero.

Appendix A presents the MATLAB code that implemented all of the above computations and

computes the DH parameters from any given Jacobian.

3.2.3 A Different Solution

Another solution of computing the DH parameters can be considered if one uses always the

positive sign of (19), and the condition of (20) is ignored, i.e. the direction of xi is not forced

to be always pointing away from zi−1 to zi. This makes the solution of ai from (28) (which is

equal to the left hand side of (20)) can be either positive or negative comparing to the case in the

previous section where it was always positive. However, the resulted value of αi will be always

positive because the condition ⟨x̂i, ẑi−1 × ẑi⟩ now becomes always positive. Note that whenever

the direction of x̂i is changed, both θi and θi+1 values are shifted by ±π. Recalling that di is the

shortest distance between the origins of the coordinate frames i − 1 and i along zi−1, one can see

that changing xi direction will have no effect on di.

17

CHAPTER IV

THREE DOF PLANAR MANIPULATORS 1

4.1 CHAPTER OVERVIEW

The simplest example of an optimally failure tolerant configuration is a three DOF planar

manipulator. This chapter explains how one can design an optimally failure tolerant manipulator

for the simple case of a three DOF planar manipulator. Section 4.2 shows an optimally fault

tolerant 2× 3 Jacobian. Section 4.3 discusses how one can determine how many possible different

manipulators possess the same locally optimal fault tolerant properties by rearranging the columns

of The Jacobian or multiplying one or more of the columns of the Jacobian by -1 (which is discussed

in Chapter 2). The enumerated resulting manipulators are then analyzed in terms of their global

properties in Section 4.4. Section 4.5 shows a proof of why a particular manipulator has a constant

value of the fault tolerant measure K within a portion of its workspace.

4.2 OPTIMALLY FAULT TOLERANT JACOBIAN

An optimally failure tolerant configuration for a three DOF planar manipulator from [57] is

given by the following Jacobian:

J =

[
j1 j2 j3

]
=

−
√

2
3

√
1
6

√
1
6

0 −
√

1
2

√
1
2

 . (32)

The null space at this configuration is given by

v3 =



√
1
3√
1
3√
1
3

 (33)

1MOST OF THIS CHAPTER IS PUBLISHED IN [1,5]

18

which illustrates that each joint contributes equally to the null space motion, thus distributing

the redundancy proportionally to all degrees of freedom. Geometrically, it is easy to see that the

three vectors j1, j2, and j3 are all 120◦ apart which results in a balanced coverage of the planar

workspace. If the three possible joint failures are considered, one can show that

fσ2 =

√
1

3
(34)

for f = 1 to 3, which satisfies the optimally failure tolerant criterion. Given this example of an opti-

mally failure tolerant J , one might be interested in designing the kinematics for a manipulator that

would possess these qualities. The next section discusses how one can compute all possible different

robots that have the same optimally fault tolerant properties at the local design configuration that

meets (32).

4.3 DETERMINING OPTIMALLY FAULT TOLERANT MANIPULATORS

For a three column J there are six possible permutations (3!) and eight combinations of different

signs (23), for a total of 48 possible Jacobian matrices with the desired isotropy and optimal fault-

tolerance property. The notation J123 will be used to indicate the Jacobian in (32) that is in

standard form and indicate column permutations or changes in sign on the subscripts, e.g., a

permutation of the second and third columns as J132 and a change in the sign of column three as

J12(−3).

This section uses equations (12)–(15) that are given in Chapter 2 to compute the kinematic

parameters of robots that are optimal that correspond to the all the possible operations of rear-

ranging the columns of (32) or multiplying one or more of its columns by −1. Figs. 3, 4, and 5

illustrate all of the possible robots for all 48 permutations and combinations.

While there are 48 possible permutations and combinations, it is obvious that they do not all

19

2
3

-2
-3

-2 -3

23

1

-1

3
2

2

)3
2,0(

)3
2,0(−

(a) (b)

3
2

x

y

[j1 j3 j2]
[j1 j2 j3]

-[j1 j3 j2]
-[j1 j2 j3]

2
3

-2
-3

-2 -3

23

1

-1

3
2

2

)3
2,0(

)3
2,0(−

3
2

x

y

[j1 - j3 j2]
[j1 - j2 j3]

-[j1 -j3 j2]
-[j1 -j2 j3]

(c)

2
3

-2
-3

-2 -3

23

1

-1

3
2

2

)3
2,0(

)3
2,0(−

3
2

x

y

[j1 j3 - j2]
[j1 j2 -j3]

-[j1 j3 - j2]
-[j1 j2 -j3](d)

2
3

-2
-3

-2 -3

23

1

-1

3
2

2

)3
2,0(

)3
2,0(−

3
2

x

y

[j1 -j3 - j2]
[j1 -j2 -j3]

-[j1 -j3 - j2]
-[j1 -j2 -j3]

Figure 3: All the robots that are obtained by performing all possible sign combinations and per-
mutations of the 2nd and 3rd columns of the J when j1 is the first column.

result in different physical robots. In particular, consider the robots indicated with bold lines in

Figure 3. These correspond to all eight combinations of sign changes for the Jacobian with the

permutation J123. It is easy to see that the four different cases indicated by (a), (b), (c) and (d),

represent a single robot each, because the robot below the x-axis is the same as the one above with

its first joint angle rotated by 180◦. In fact, this is true for all six permutations of the columns so

that there are really only four unique robots with a Jacobian that has the desired properties. Note

that in each of the Figures 3 to 5, there are two different permutations of the columns that result

in mirror versions of the same robot. The DH parameters for the four different robots are given in

Table 2 and plotted together in Figure 6, where Ls =
√

2
3 and Ll =

√
2. Note that the value of θ1

20

13

-3

-3

3

-2

-1

-2

2

-1

1

2

)
4

3
2

,
2

2
(

−−

)
4

3
2

,
2

2
(

(a)

x

y

3
2

[j2 j3 j1]
[j2 j1 j3]

-[j2 j3 j1]
-[j2 j1 j3]

13

-3

-3

3

-2

-1

-2

2

-1

1

3
2

2

)
4

3
2

,
2

2
(

−−

)
4

3
2

,
2

2
(

(b)

x

y

3
2

[j2 j3 -j1]

[j2 -j1 j3]

-[j2 j3 - j1]

-[j2 - j1 j3]2

13
-3

-3

3

-2

-1

-2

2

1

3
2

2

)
4

3
2

,
2

2
(

−−

)
4

3
2

,
2

2
(

(c)

x

y

3
2

[j2 -j3 j1]

[j2 j1 -j3]
-[j2 -j3 j1]

-[j2 j1 -j3]2

-1

13

-3

-3

3

-2

-1

-2

2
1

3
2

2

)
4

3
2

,
2

2
(

−−

)
4

3
2

,
2

2
(

(d)

x

y

3
2

[j2 -j3 -j1]
[j2 -j1 -j3]

-[j2 -j3 -j1]
-[j2 -j1 -j3]2

-1

2

3
2

Figure 4: All the robots that are obtained by performing all possible sign combinations and per-
mutations of the 2nd and 3rd columns of the J when j2 is the first column.

in all cases is arbitrary because the properties of the Jacobian are independent of θ1.

Table 2: DH parameters of the four generated robots

J123 J1(−2)3 J1(−2)(−3) J12(−3)

i θi ai θi ai θi ai θi ai

1 60 Ll 150 Ls 150 Ls 60 Ll

2 120 Ll −60 Ls −150 Ll −150 Ls

3 150 Ls −120 Ls 150 Ls −120 Ls

The next section will discuss how one can distinguish between these robots.

4.4 GLOBAL PROPERTIES ANALYSES

While all four robots in Table 2 have the same desired local behavior at the given configuration,

they are quite different in terms of their global properties. For example, even when joint limits

are not considered, the workspaces are quite different, e.g., the maximum reach will be either 3Ls,

2Ls +Ll, or Ls +2Ll. More importantly, if one is concerned with fault-tolerance, the values of the

21

(a)

x

y [j3 j2 j1]
[j3 j1 j2]

-[j3 j2 j1]
-[j3 j1 j2]

(b)

(c)

-2 -1

2

3

-3

-2

2
1

1
-1

-3

3
2

2

)
4

3
2

,
2

2
(−

)
4

3
2

,
2

2
(−

3

3
2 x

y

[j3 -j2 j1]

-[j3 -j2 j1] -2 -1

2

3

-3

-2

2
1

1
-1

-3

3
2

2

)
4

3
2

,
2

2
(−

)
4

3
2

,
2

2
(−

3

3
2

x

y

[j3 j2 -j1]

-[j3 j2 -j1] -2 -1

2

3

-3

-2

2
1

1
-1

-3

3
2

2

)
4

3
2

,
2

2
(−

)
4

3
2

,
2

2
(−

3

3
2

(d)

x

y [j3 -j1 -j2]
[j3 -j2 -j1]

-[j3 -j1 -j2]
-[j3 -j2 -j1] -2 -1

2

3

-3

-2

2
1

1
-1

-3

3
2

2

)
4

3
2

,
2

2
(−

)
4

3
2

,
2

2
(−

3

3
2

[j3 j1 -j2]

-[j3 j1 -j2]

[j3 -j1 j2]

-[j3 -j1 j2]

Figure 5: All the robots that are obtained by performing all possible sign combinations and per-
mutations of the 2nd and 3rd columns of J when j3 is the first column.

proposed fault-tolerance measure vary significantly for these four robot designs.

To determine how the fault tolerance measure K varies as a robot moves away from the config-

uration that has the optimal Jacobian, the optimal value of K were computed for every location

within each of the four robot’s workspaces.

To see how K varies with moving away from the local optimal point in each particular robot,

an inverse kinematic procedure is used to compute the largest possible K as one goes away from

the base on the x axis until reaching to the singularity point, θ1 = θ2 = θ3 = 0. (See Appendix B.)

Because K is not a function of θ1, it is sufficient to compute its maximum value as a function of

distance from the base of the manipulator. The maximum value of K is determined by computing

all possible robot configurations for each distance, and calculating K for the Jacobian at that

configuration.

22

23

-2 -3

1

(b) Robot 2

(c) Robot 3

150°

-60°

-120°

23

-2 -3

23

-2 -3

1 1

(d) Robot 4

150°

150°
-150°

60°

-120°

-150°

3
2

2

)3
2,0(

150°

3
2

120°

2
3

-2 -3

1

60°

150°

(a) Robot 1

Figure 6: A simple three degree-of-freedom planar robot that corresponds to the optimal fault-
tolerant Jacobian given by (32) is shown in (d). The three other manipulators that have the same
properties of the Jacobian in (32) are shown in (a), (b), and (c).

The results for each of the four robots is shown in Figures 7 to 10 where all three values of fσ2

for the configuration with maximum K are also plotted.

The first interesting point to note is that the manipulator with link lengths (Ll, Ll, Ls) in

Figure 7 actually has a configuration with a larger value of K at the design point that is a distance

of
√

2/3 from the base than that of the optimal value of K =
√
1/3. This is possible because at

this configuration the Jacobian is no longer isotropic, however, its non-isotropy is due to a larger

maximum singular value, and so may not be considered undesirable. In addition, the value of K is

significantly higher than the optimal value for a significant portion of this manipulator’s workspace,

making it particularly well suited for applications that require failure tolerance.

In contrast, consider the manipulator with link lengths (Ls, Ls, Ls) in Figure 8. It has a value

of K =
√

1/3 at the the optimal distance as designed, however, this is its peak value of K, and K is

monotonically decreasing away from this point. Thus, in addition to having the smallest workspace,

23

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance from Base

K

K∗

1
σ2

2
σ2

3
σ2

Figure 7: The relationship between K and the distance from the base for the (Ll, Ll, Ls) robot.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distance from Base

K

K∗

1
σ2

2
σ2

3
σ2

Figure 8: The relationship between K and the distance from the base for the (Ls, Ls, Ls) robot.

this manipulator has a significantly smaller tolerance to joint failures throughout its workspace.

The characteristics of the two medium length robots, i.e., whose link lengths are (Ls, Ll, Ls)

and (Ll, Ls, Ls), fall somewhat inbetween the two extremes just described, but exhibit important

24

Distance from Base

K

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
K
∗

1
σ2

2
σ2

3
σ2

Figure 9: The relationship between K and the distance from the base for the (Ls, Ll, Ls) robot.

differences. The (Ls, Ll, Ls) robot shown in Figure 9 has a flat region for the maximum value of

K in the middle of its workspace. (See the next section for a proof of why K is constant in this

region.) In contrast, the (Ll, Ls, Ls) robot shown in Figure 10 has a significant dip in the maximum

value of K at a distance near one unit from the base before it returns to a comparable value to that

of The (Ls, Ll, Ls) robot.

In summary, even though all four robots are derived from the same optimally fault-tolerant

Jacobian, their global properties are quite different, both prior to a failure and afterward. The

(Ll, Ll, Ls) robot is arguably the most preferable due to its larger pre-failure workspace and the

large value of fault tolerance over a substantial portion of its workspace.

4.5 EXPLANATION OF WHY K IS CONSTANT FOR (LS , LL, LS) ROBOT IN FIGURE 9

A striking feature of Figure 9 is the flat region of the plot of K for the (Ls, Ll, Ls) robot. In this

chapter, it will be shown that the maximum value of 3σ2 for (Ls, Ll, Ls) robot is actually constant

25

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance from Base

K

K∗

1
σ2

2
σ2

3
σ2

Figure 10: The relationship between K and the distance from the base for the (Ll, Ls, Ls) robot.

for a range of distances from the base that includes the flat region in Figure 9. In the case of the

analysis for (Ls, Ll, Ls) robot in Figure 9, the critical failure happens to be joint 3 over the region

where K is flat. (See Figure 11.)

It can be noted that the singular values of the reduced Jacobian

3J =

−a1s1 − a2s12 − a3s123 −a2s12 − a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123

 (35)

are equal to the square roots of the eigenvalues of

(3J)T (3J) =

∥j1∥2 j1 · j2

j1 · j2 ∥j2∥2

 , (36)

which are readily given by the characteristic equation of (36). In particular, the minimum singular

value 3σ2 of (35) is given by the relationship

2(3σ2)
2 = ∥j1∥2 + ∥j2∥2 −

√
(∥j1∥2 − ∥j2∥2)2 + 4(j1 · j2)2. (37)

26

Distance from Base

K

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
K

1
σ2

2
σ2

3
σ2

Figure 11: The relationship between K and the distance from the base for (Ls, Ll, Ls) robot in
Table 2. The minimum singular values for all possible failures are shown for the configuration that
maximizes K. Note that if only K3 where being optimized, then it would be constant for a larger
range.

From (35), one has that ∥j1∥ is equal to the distance d from the base to the end effector and that

∥j1 − j2∥ is equal to the first link length, a1, which together imply that

j1 · j2 =
1

2
[∥j1∥2 + ∥j2∥2 − ∥j1 − j2∥2] =

1

2
[d2 + ∥j2∥2 − a21]. (38)

The expression for (37) can then be written as

2(3σ2)
2 = z + d2 −

√
(z − d2)2 + (z + d2 − a21)

2, (39)

where for convenience the notation z = ∥j2∥2 has introduced. Because the link length a1 is fixed,

for a specified end-effector distance d, (39) is a function of the single variable z, which will be

denoted by g(z).

Setting the derivative of

g(z) = z + d2 −
√

(z − d2)2 + (z + d2 − a21)
2 (40)

27

to zero, one obtains a single extremal point whose value depends on whether d is greater than, less

than, or equal to a1/
√
2. This extremal point can be conveniently written as z∗ = max(d2, a21−d2).

The case of interest here is when d > a1/
√
2. In this case, z∗ = d2, g′(z∗) = 0, and g′′(z) < 0

for all z. It then follows that z∗ = d2 results in a maximum value of g(z∗) = a21 regardless of the

specific value of d. For the robot to achieve z = ∥j2∥2 = d2, it is necessary and sufficient that

|a2 − a3| ≤ d ≤ a2 + a3 due to the geometric constraints on ∥j2∥ associated with the lengths of the

second and third links. In summary, if d > a1/
√
2 and |a2 − a3| ≤ d ≤ a2 + a3, then the value of

K3(d) is equal to a1/
√
2, where K3(d) denotes the maximum value of 3σ2 over all configurations

where the end effector is at a distance d from the base. It is interesting to note that this solution

corresponds to the end effector being equally distant from the base and the second joint. Depending

on the values of d and the link lengths ai, these conditions may or may not be possible due to the

geometry of the robot. In the case of (Ls, Ll, Ls) robot, a1/
√
2 = 1/

√
3 = 0.5774, |a2−a3| = 0.5977,

and a2+a3 = 2.2307, and it can be concluded that K3 = 0.5774 over the range 0.5977 ≤ d ≤ 2.2307.

28

CHAPTER V

FOUR DOF PLANAR MANIPULATORS 1

5.1 CHAPTER OVERVIEW

This chapter discusses 4R planar manipulators that are optimally fault tolerant to any possibility

of two locked joints failures at once. 5.2 presents 2 × 4 optimally fault tolerant Jacobian of a 4R

planar manipulator. In the previous chapter we illustrated how one can simply determine how

many different manipulators that can be obtained from a given optimally fault tolerant Jacobian,

by computing the DH parameters for all possible resulted Jacobians from permuting and multiplying

the columns by -1. Here, Section 5.3 will illustrate how one can use the Gram matrix to count the

total number of the manipulators. The following section analyzes all these 4R planar manipulators

and discusses how they are different in terms of their global properties.

5.2 OPTIMALLY FAULT TOLERANT JACOBIAN

As a further example of an optimally fault tolerant manipulator, consider a planar 4R robot.

The requirements for optimal fault tolerance are that the Jacobian is isotropic and that the null

space matrix N , which consists of two orthonormal null vectors of J , has the properties that its

rows each have a norm of 1/
√
2 and that the angles between successive rows are 45◦. Any other

null space matrix related to N by a row permutation and/or the multiplication of one or more rows

by −1 will also result in an optimally fault tolerant Jacobian. The corresponding Jacobian would

be given by applying the same operations to the columns of the original Jacobian. An example of

1MOST OF THIS CHAPTER IS PUBLISHED IN [2,5]

29

a suitable Jacobian [45] is

J =


1√
2

1
2 0 −1

2

0 1
2

1√
2

1
2

 . (41)

The next section will show how one can compute all different physical robots that can possess the

same properties of (41) with discussing firstly the previous example of 3R planar optimally fault

tolerant Jacobian.

5.3 EXAMPLES OF MANIPULATORS WITH OPTIMAL FAULT-TOLERANT JACOBIANS

As mentioned earlier in Chapter 2, the restrictions imposed by this definition of fault tolerance

limits the number of possible robot geometries. To see this, consider the problem of identifying all

planar 3R manipulators with an optimally fault tolerant Jacobian J . When the 2 × 3 Jacobian J

is isotropic with unit singular values, it yields that

G = JTJ = I − n̂J n̂
T
J . (42)

Fault tolerance requires that the components of n̂J have the same magnitude. However, replacing n̂J

with −n̂J does not affect (42) so one only needs to check the four cases n̂J = 1/
√
3

[
1 ±1 ±1

]T
.

These four unit null vectors determine four families of non-equivalent Jacobians, each corresponding

to one of the four possibilities for I− n̂J n̂
T
J , which together identify all Jacobians that are optimally

fault tolerant.

The optimally fault tolerant Jacobian given in (32) corresponds to the case when the elements

of n̂J are all positive and equal. In this case the Gram matrix corresponding to the positional

Jacobian is

G =



2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3


. (43)

30

The link length parameters for this particular G are then a1 = a2 =
√

2
3 + 2

3 − 2(−1
3) =

√
2

and a3 =
√

2/3. From the family of similar Gram matrices obtained through permutations and

multiplications by −1 as described earlier, one can easily deduce that the only possible link length

values for an optimally fault tolerant planar 3R manipulator are Ll =
√
2 and Ls =

√
2/3, which

are obtained by using off-diagonal elements that equal ±1
3 and diagonal elements equal to 2

3 .

Furthermore, the square root of a diagonal value of G is equal to the distance of the end effector

from the corresponding joint. In this case, each joint lies on a circle of radius
√

2/3 centered at the

end effector with the two possible link lengths
√
2 and

√
2/3, which necessarily place the joints on

the vertices of an inscribed hexagon. The four optimally fault tolerant manipulators are already

described in the previous chapter by Table 2 and illustrated in Figure 6.

In the case of 4R planar manipulators, the Gram matrix of (41) is

G =



1
2

1
2
√
2

0 −1
2
√
2

1
2
√
2

1
2

1
2
√
2

0

0 1
2
√
2

1
2

1
2
√
2

−1
2
√
2

0 1
2
√
2

1
2


. (44)

From the diagonal elements of (44) it follows that the joints of the manipulator are located on a circle

of radius 1/
√
2 centered at the end effector. The link lengths for this particular G are ai =

√
1− 1√

2

for i = 1, 2, 3 and a4 = 1√
2
. It will be shown below that the four potential link lengths for similar

Gram matrices are La =
√

1− 1√
2
, Lb =

1√
2
, Lc = 1, and Ld =

√
1 + 1√

2
. Consequently, it follows

that the joints of an optimally fault tolerant planar 4R manipulator appear on the vertices of an

octagon inscribed on a circle of radius 1√
2
centered at the end effector. The list of all possible

manipulators is presented in Table 3 and depicted in Figure 12.

These possible robots resulted from the fact that all possible permutations and multiplications

by -1 of the columns of (41) result in the superdiagonal of (44) (i.e., the diagonal above the main

31

diagonal) being in exactly one of three forms: (x,y,z), (x,0,z), or (0,y,0), where each x, y, and z

can be either ± 1
2
√
2
. Thus, the total number of distinct link lengths is: 23 = 8 for the (x,y,z) case

plus 22 = 4 for the (x,0,z) case plus 21 = 2 for the (0,y,0) case resulting in 14 different manipulator

designs. Note that not every manipulator with the property that its joints are located in the vertices

of this octagon are optimally fault tolerant, but the Gram matrix clearly identifies this requirement

for the family of optimally fault tolerant manipulators.

The next section discusses the global fault tolerant behavior of the 4R family of manipulators,

and shows how the robots within the same family are still quite different as they act differently

beyond the design point.

5.4 ANALYSIS AND COMPARISON OF MANIPULATOR DESIGNS

The fact that there are multiple manipulator designs with the same desired local fault tolerance

properties, allows one to use other criteria for selecting a preferred design. In particular, while

the robots all share the same local properties at the given configuration, they are quite different

in terms of their global properties. To determine how the fault tolerance measure K varies as a

robot moves away from the configuration that has the optimal Jacobian, the optimal value of K

was computed for every location within each of the fourteen robots’ workspaces. (See Appendix

B.) Because K is not a function of θ1, it is sufficient to compute its maximum value as a function

of distance from the base of the manipulator.

The fourteen robots in Table 3 have different workspace properties, e.g. Robot 1 has the smallest

maximum reach of 3La + Lb and Robot 14 has the largest at 3Ld + Lb. Figure 13 illustrates how

Robots 1 and 14 are also different in terms of the fault tolerance measure with respect to the

distance from the base for the case of two joint failures. (Appendix C includes the plots of the

other robots.) Robot 1 has a peak in K at its optimal value of 1
2

√
1− 1√

2
at the design point,

with K decreasing relatively rapidly away from this point. In contrast, Robot 14 has a larger value

32

3

2

1

4

-1

-4

-2

-3

2
1

2
1

1+

1

2
11−

3

2

4

-4

-2

-3

1

-1

3

2

4

-4

-2

-3

1

-1

(a) Robot 1

(e) Robot 5

(n) Robot 14

2

4

-4

-2

-3

1

-1

3

(b) Robot 2

3

2

4

-4

-2

-3

1

-1

(d) Robot 4

3

2

-1

4

1

-4

-2

-3

(c) Robot 3

3

2

4

-4

-2

-3

-1

1

(g) Robot 7

3

2

1

4

-1

-4

-2

-3

(i) Robot 9

3

2

4

-4

-2

-3

1

-1

(f) Robot 6

3

2

4

-4

-2

-3

1

-1

(l) Robot 12

3

2

1

4

-1

-4

-2

-3

(j) Robot 10

3

2

4

-4

-2

-3

-1

1

(m) Robot 13

3

2

4

-4

-2

-3

1

-1

(h) Robot 8

3

2

4

-4

-2

-1

1

(k) Robot 11

-3

Figure 12: A simple four degree-of-freedom planar robot that corresponds to the optimal fault-
tolerant Jacobian given by (41) is shown in (a). The thirteen other manipulators that have the
same properties of the Jacobian in (41) are shown in (b) to (n).

33

Table 3: The 14 different link length combinations of (41).

Robot a1 a2 a3 a4

1 La La La Lb

2 La Lc La Lb

3 Ld La La Lb

4 La La Ld Lb

5 La Ld La Lb

6 Lc La Lc Lb

7 La Lc Ld Lb

8 Ld Lc La Lb

9 La Ld Ld Lb

10 Ld Ld La Lb

11 Ld La Ld Lb

12 Lc Ld Lc Lb

13 Ld Lc Ld Lb

14 Ld Ld Ld Lb

of K at the design point than the optimal value of K which is because of the fact that at this

configuration the Jacobian is no longer isotropic. Moreover, the value of K is significantly higher

than the optimal value for a large portion of this manipulator’s workspace.

Table 4 presents a comparison of the different global properties for the fourteen robots shown

in Figure 12. The fault tolerant workspace percentage column is a measure of the ratio of fault

tolerant workspace, in which K is greater than or equal to the value at the design point, to the

total workspace. The average amount of joint motion per meter needed to stay at the configuration

with the maximum value of K throughout the fault tolerant workspace is shown in the last column.

Note that Robots 5 and 7 have much larger values for this measure because these robots encounter

algorithmic singularities within the workspace that require a significant amount of reconfiguration

for the robot to stay at the maximum value of K. Robots 2, 3, 4, 5, 7 and 8 have the fault tolerant

workspace separated into two pieces, i.e., there is a region in between where the maximum of K

drops below the optimal value. (Similar to that of the (Ll, Ls, Ls) robot in the 3R case shown in

Figure 6.) The amount of this drop varies depending upon the robot, ranging from as small as

0.2% for Robots 4 and 8, to as large as 9% for Robot 3. The number between parentheses is the

smaller of the two fault tolerant workspaces, which in all cases includes the design point.

Clearly the maximum reach (or sum of the link lengths) has a dominant effect on the global

34

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from Base

K

Robot 1 : [L

a
, L

a
, L

a
, L

b
]

Robot 14: [L
d
, L

d
, L

d
, L

b
]

Figure 13: The relationship between K and the distance from the base for Robots 1 and 14 in
Table 3.

fault tolerant properties.2 However, there are three cases where the same maximum reach can

be obtained by multiple different robot designs with significant differences in their global fault

tolerant properties. Consider first the case of Robots 9, 10, and 11. Even though their fault

tolerant workspace percentages are almost the same, there is a significant difference in the amount

of joint motion needed to maintain a fault tolerant configuration. In particular, Robot 11 only

moves a total of 177 degrees to traverse the entire fault tolerant region whereas Robots 9 and 10

take 191 and 263 degrees, respectively to do so. This is visually illustrated in Figure 14 where for

each robot three different optimal configurations are shown. (The blue one is at the design point,

the green one is at a boundary of the fault tolerant workspace, and the red configuration is at the

middle.) Furthermore, the joint motion is distributed differently for the three robots, with Robot 9

2It is important to note that one can always scale these robot designs to obtain any desired maximum reach.

This is why we normalize the fault tolerant workspace results in Table 4 to be a percentage.

35

Table 4: Fault tolerant workspace analysis of the fourteen robots in Table 3.

Robot Reach
[m]

Fault tolerant
workspace [%]

Joint
motion
[◦/m]

1 2.33 0.00 −
2 2.79 15.14/(0.25) 107.3

3 3.10 9.99/(0.07) 117.0

4 3.10 22.16/(1.31) 98.6

5 3.10 26.96/(0.73) 372.81

6 3.25 47.76 94.1

7 3.56 46.21/(0.04) 190.22

8 3.56 49.06/(0.10) 72.2

9 3.86 57.68 79.7

10 3.86 58.02 109.8

11 3.86 58.78 71.0

12 4.01 73.03 76.5

13 4.32 77.42 74.1

14 4.63 80.23 70.7
1 Robot 5 has two algorithmic singulari-
ties. Choosing the fault tolerant workspace
bound before the first algorithmic singu-
larity point gives us the fault tolerant
workspace percentage of 6.3%, and joint
motion of 84.1◦/m.

2 Robot 7 has one algorithmic singularity.
Similar to Robot 5, if one chooses the fault
tolerant workspace bound of Robot 7 before
the algorithmic singularity point, the fault
tolerant workspace percentage is 30.8%, and
joints motion is 70.8◦/m.

requiring much less motion in joint one, which may be desirable due to the large moment of inertia

associated with this joint.

Robots 3, 4, and 5 also represent a group with equal reach but different global properties. If

one only considers percentage of fault tolerant workspace, then Robot 3 is the worst (at 10%) and

Robot 5 is the best (at 27%). However, Robot 5 encounters two algorithmic singularities within

this region, which require the robot to reconfigure itself to a new posture in order to maintain

K at its maximum value. This results in excessive joint motion over a very short period of time.

If one opts to avoid this reconfiguration and follows the locally optimal value of K, then K will

monotonically decrease and results in a fault tolerant workspace percentage of only 6.3%. This is

illustrated in Figure 15. Thus one could argue that Robot 4 is the best design out of the three.

36

−2 −1 0 1 2 3 4
−2

−1

0

1

X

Y

Robot 10

−2 −1 0 1 2 3 4
−2

−1

0

1

X

Y

Robot 11

−2 −1 0 1 2 3 4
−2

−1

0

1

X

Y
Robot 9

Figure 14: Three different configurations with maximum K at three different points along the x-axis
trajectory for Robots 9, 10, and 11. In all cases the first configuration is from the design point at
a distance of 1/

√
2 and the last configuration is at the boundary of the fault tolerant workspace at

a distance of approximately three.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.34

0.35

0.36

0.37

0.38

0.39

Distance from Base

K

Robot 3 = [L

d
,L

a
,L

a
,L

b
]

Robot 4 = [L
a
,L

a
,L

d
,L

b
]

Robot 5 = [L
a
,L

d
,L

a
,L

b
]

Figure 15: The relationship between K and the distance from the base for Robots 3, 4, and 5. The
plot focuses on the behavior near the design point to highlight the difference in this region. Note
that the value of K for Robot 5 is shown for joint motion that does not include a discontinuity due
to an algorithmic singularity. If the discontinuous joint motion is performed, then the K value for
Robot 5 is comparable to that of Robot 4.

37

CHAPTER VI

SPATIAL POSITIONING MANIPULATORS1

6.1 CHAPTER OVERVIEW

This chapter discusses the design of optimally fault-tolerant spatial positioning manipulators.

Section 6.3 characterizes the set of all 6×4 Jacobian matrices that include an optimally fault tolerant

3× 4 spatial positioning sub-Jacobian. This characterization is then used to determine the family

of DH parameters that represent physical manipulators with the optimally fault tolerant property.

Section 6.4 describes how one can evaluate a particular robot design (that is generated from the

optimal Jacobian) in terms of its global kinematic properties, especially with regard to failure

tolerance. The following section illustrates such an analysis on several categories of manipulators.

Section 6.6 illustrates why permutation of the columns of the Jacobian (or multiplying by ±1) does

not result in different physical robots.

6.2 OPTIMALLY FAULT TOLERANT JACOBIAN

The general form of a manipulator’s Jacobian is given by:

J6×4 =

Jv
Jω

 (45)

where Jv represents the linear velocity portion of a manipulator Jacobian, and Jω represents the

orientational velocity portion. For the case of a spatial positioning manipulator with four joints,

1MOST OF THIS CHAPTER IS PUBLISHED IN [3,4]

38

an optimally failure tolerant configuration is given by [57]:

Jv =


−
√

3
4

√
1
12

√
1
12

√
1
12

0 −
√

2
3

√
1
6

√
1
6

0 0 −
√

1
2

√
1
2

 (46)

The null space at this configuration is given by

1

2
[1 1 1 1]T , (47)

which illustrates that each joint contributes equally to the null space motion, thus distributing

the redundancy proportionally to all DOFs. If the four possible single locked joint failures are

considered, one can show that

fσ3 = Kmax =
1

2
(48)

for f = 1 to 4, which satisfies the optimally failure tolerant criterion.

Equation (46) is in fact a canonical form that essentially characterizes all optimally fault tolerant

3 × 4 Jacobians Jv. Optimal fault tolerance requires that the components of the unit length null

vector have the same magnitude. Without loss of generality, these components can be taken to

be equal to each other by multiplying columns of Jv by −1 if necessary. Multiplying a column

of the Jacobian by −1 corresponds to redefining that axis of rotation or translation to be in the

opposite direction, which does not essentially change the manipulator design. Hence, we can always

assume that the null space of an optimally fault tolerant Jv is given by the unit length null vector

n̂Jv = 1
2 [1 1 1 1]T . With this choice of n̂Jv along with the isotropy condition σi = σ = 1, we have

39

that

JT
v Jv = I − n̂Jv n̂

T
Jv =



3
4 −1

4 −1
4 −1

4

−1
4

3
4 −1

4 −1
4

−1
4 −1

4
3
4 −1

4

−1
4 −1

4 −1
4

3
4


, (49)

implying that the columns of Jv each have length
√

3
4 and the dot product of any two distinct

columns is equal to −1
4 . Furthermore, since fault tolerance dictates that any three columns of Jv

are linearly independent, one can apply the QR factorization to determine a unique orthogonal ma-

trix Q so that QJv is upper triangular with negative values along its main diagonal. Applying this

orthogonal matrix merely rotates and/or reflects the base coordinate frame so that a rotated/re-

flected manipulator is obtained. The only 3 × 4 matrix satisfying these conditions, i.e., isotropy

with σ = 1, a null vector with equal components, and an upper triangular form with negative

components along the main diagonal, is (46). Hence, any optimally fault tolerant Jacobian Jv can

be written as (46) by performing a series of suitable coordinate transformations.

The next section will illustrate how to characterize the set of all 6 × 4 Jacobian matrices that

have the linear velocity portion given by Jv in (46). Once all these possible 6 × 4 Jacobians are

determined, one will be able to determine the DH parameters for the physical robots.

6.3 CHARACTERIZING FAULT TOLERANT FOUR DOF SPATIAL POSITIONING MANIP-
ULATORS

Our goal in this section is to determine all possible Jacobians of the form of (45) as a primary

step to find out the DH parameters for the all corresponding physical robots.

6.3.1 Characterizing Orientational Velocity

The orientational velocity portion, Jω, is somewhat arbitrary because it does not affect the

positional fault tolerance properties.However, one must consider the constraint that each column

40

of Jω is orthogonal to the corresponding column of Jv. The ith column of J in (45) can be written

as

ji =

vi
ωi

 , (50)

where vi and ωi are three-dimensional vectors that describe the linear and angular velocities re-

spectively. By applying the constraints that ωi is of unit norm and orthogonal to vi, one can

characterize all valid ωi’s by a circle centered at the origin, and parameterized by a function of an

angle that is denoted βi.

6.3.1.1 Characterizing ω1

Let ω1 =

[
ω11 ω21 ω31

]T
. Because ω1 and v1 are orthogonal,

ωT
1 v1 =

[
ω11 ω21 ω31

]

−
√

3
4

0

0

 = 0, (51)

so that ω11 = 0. Because ω1 is a normalized vector, ω2
21+ω

2
31 = 1, it follows that ω1 can be written

as

ω1 =


0

cos(β1)

sin(β1)

 , (52)

where β1 can be any value between 0◦ and 360◦.

41

6.3.1.2 Characterizing ω2

Let ω2 =

[
ω12 ω22 ω32

]T
. By using the orthogonality condition, the dot product of ω2 and

v2

ωT
2 v2 =

[
ω12 ω22 ω32

]


√
1
12

−
√

2
3

0

 = 0, (53)

so that √
1

12
ω12 −

√
2

3
ω22 = 0, (54)

which leads to

ω22 =

√
1
12√
2
3

ω12 =

√
1

8
ω12. (55)

From the condition that ω2 is a normalized vector, ω2
12 + ω2

22 + ω2
32 = 1, it follows

ω2
32 = 1− (ω2

12 + ω2
22) (56)

Substituting (55) in (56) yields

ω32 = ±
√

1− 9

8
ω2
12. (57)

Therefore,

ω2 =


ω12

ω22

ω32


=


ω12√
1
8ω12

±
√

1− 9
8ω

2
12


, (58)

where |ω12| ≤ 2
√
2

3 as a result of constraining (57) to be a real number. The vector ω2 rotates in a

circle path that lays on a plane that is tangent to the z axis. One can find the plane by rotating

the y-z plane about the z axis with an angle θ to make it lay on the plane of ω2. A vector that

42

rotates on the y-z plane can presented as: 
0

cos(β2)

sin(β2)

 , (59)

where β2 ∈ [0◦, 360◦]. When a rotation about the z axis by the amount of θ is applied to (59), ω2

can be written as

ω2 =


ω12√
1
8ω12

±
√

1− 9
8ω

2
12


=


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




0

cos(β2)

sin(β2)

 =


− sin(θ) cos(β2)

cos(θ) cos(β2)

sin(β2)

 . (60)

To find the value of θ, one can solve for rows one and two in (60). From row one

ω12 = − sin(θ) cos(β2), (61)

and from the second row

ω12 =
√
8 cos(θ) cos(β2), (62)

yields

θ = arctan(−
√
8). (63)

The value of ω12 can be solved as a function of β2 through the last row, so that

1− 9

8
ω2
12 = sin2(β2), (64)

which can be simplified to

ω12 =

√
8

3
cos(β2) =

2
√
2

3
cos(β2). (65)

Consequently, one can write (58) as a function of β2 so that

ω2 =



2
√
2

3 cos(β2)

1
3 cos(β2)

sin(β2)


. (66)

43

6.3.1.3 Characterizing ω3

If ω3 =

[
ω13 ω23 ω33

]T
, by using the orthogonality condition with v3,

ω33 =

√
1

6
ω13 +

√
1

3
ω23. (67)

From the unity norm condition of ω3 one can find that

ω23 =
−
√
2

8
ω13 ±

3

8

√
16

3
− 6ω2

13. (68)

From the square root part of (68),

|ω13| ≤
2
√
2

3
. (69)

Similarly to ω2, ω3 can be parameterized with a rotation angle, β3. One can rotate ω3 by a

rotation matrix R to make it lay on the x-y plane, such that

Rω3 =


cos(β3)

sin(β3)

0

 , (70)

which can be rewritten as

ω3 = RT


cos(β3)

sin(β3)

0

 , (71)

where β3 ∈ [0◦, 360◦], and R is

R = Rx(70.53
◦)Rz(120

◦)Ry(90
◦), 2 (72)

and Rx, Ry, and Rz are rotations around the x, y, and z axes respectively with the specified amount

between the parenthesis. Therefore, (71) can be simplified such that

22 acos(
√

2
3
) = 70.53◦

44

ω3 =


0 2

√
2

3
1
3

−
√
3
2 −1

6

√
2
3

−1
2

√
3
6

√
2
3




cos(β3)

sin(β3)

0

 =



2
√
2

3 sin(β3)

−
(√

3
2 cos(β3) +

1
6 sin(β3)

)
−1

2 cos(β3) +
√
3
6 sin(β3)


. (73)

6.3.1.4 Characterizing ω4

When the 3rd and the 4th columns in (46) are compared, one can note that only the last

element’s sign of the 3rd column changes. Consequently, applying the same steps of computing ω3,

one can find that the solution of (73) can be used with only alternating the last element sign and

replacing β3 with another variable, β4, which is also ∈ [0◦, 360◦]. Hence,

ω4 =



2
√
2

3 sin(β4)

−
(√

3
2 cos(β4) +

1
6 sin(β4)

)
−
(
−1

2 cos(β4) +
√
3
6 sin(β4)

)


. (74)

6.3.2 Characterizing DH Parameters

Now that the set of possible ωi’s has been characterized, the next step is to determine the DH

parameters for the corresponding robots as functions of the βi’s. The link parameters of twist (αi)

and length (ai) for link i are determined from the i and i + 1 coordinate frames. Therefore, they

are affected by the βi and βi+1 parameters, i.e.,

αi = fαi
(βi, βi+1) and (75)

ai = fai (βi, βi+1). (76)

For example, Figs. 16 and 17 show how the joint twist and length parameters of joint 1, α1 and

a1, vary as a function of β1 and β2. Note that there is considerable flexibility in selecting these two

joint parameters, i.e., the twist angle can be set anywhere from 0◦ to 180◦ and the magnitude of the

45

0
60

120
180

240
300

360

0

60

120

180

240

300

360
0

30

60

90

120

150

180

β1β2

α 1

Figure 16: The relationship between the first link twist angle α1 and the parameters β1 and β2.

length can be anywhere from 0 to
√
3. Because the tool, i.e., fifth, coordinate frame is arbitrary, it

is assumed to be in the same orientation as the fourth so that

α4 = 0 and (77)

a4 =
√
3/2. (78)

The joint parameters of rotation angle (θi) and offset (di) for joint i are determined from the

i− 1, i, and i+ 1 coordinate frames; so they are influenced by the βi−1, βi, and βi+1 parameters,

i.e.,

θi = f
θi
(βi−1, βi, βi+1) and (79)

di = f
di
(βi−1, βi, βi+1). (80)

For the first coordinate frame, θ1 and d1 are arbitrary so they can be assumed to be zero because

one can select the orientation of the zeroth coordinate frame. At the fourth coordinate frame, the

46

0
60

120
180

240
300

360

0

60

120

180

240

300

360
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

β1β2

a 1

Figure 17: The relationship between first link length a1 and the parameters β1 and β2.

joint parameters are not functions of the fifth coordinate frame, i.e.,

θ4 = f
θ4
(β3, β4) and (81)

d4 = f
d4
(β3, β4), (82)

because it is selected to be aligned with the fourth.

The exact values of the DH parameters for a given set of βi’s can be computed using the

algorithm that is presented in [1]. Clearly, there is an infinite family of robots that correspond to

(46). The next section will discuss how to compute the global failure tolerance properties of the

various possible physical robots that can be generated from this single optimal Jacobian.

6.4 COMPUTING GLOBAL FAULT TOLERANCE PROPERTIES

Different combinations of (β1, β2, β3, β4) correspond to different potential robots (in terms

of their DH parameters). While these robots have the same desired optimal local fault tolerant

design point, they are quite different in terms of their global properties. Not only is the size of the

47

workspace quite different, but more importantly if one is concerned with fault tolerance, there is

considerable difference in how the value of the fault tolerance measure varies away from the design

point.

To compare different physical robot designs, a measure of how the fault tolerance varies across

the entire workspace is used. Specifically, the volume of the workspace that has a K greater than

or equal to a given fraction of the maximum, i.e., K ≥ γ Kmax, where 0 ≤ γ ≤ 1 is a user defined

parameter, is computed. (For all of the results shown in the following examples γ = 0.9 is used.)

This fault tolerant volume is denoted by Vf and then divide it by the total reachable volume,

denoted Vr, to obtain a normalized global measure of fault tolerance that can be used to compare

different robots.

6.4.1 Volume Estimation Using Mont Carlo Integration Algorithm

One of the best techniques for computing an estimate for the volume of an unknown three-

dimensional shape is to use the Mont Carlo integration algorithm (see Figure 18). First, one million

uniformly distributed random configurations are generated in the joint space, where 0 ≤ θi < 2π

for all i, that are transformed to the workspace using forward kinematics. Then the maximum

reach of the manipulator is estimated by picking the point with the largest norm and using inverse

kinematics to drive the robot until its Jacobian is singular and a workspace boundary is reached. A

sphere whose radius R is 110% of this maximum reach is used as the boundary for our Monte Carlo

integration. Then 10,000 uniformly distributed random points are generated within this sphere

and they are determined if they are reachable. Reachability is determined by performing iterative

inverse kinematics starting with the joint configuration (from the one million configurations initially

generated)3 whose workspace location is the closest to the Monte Carlo point being evaluated. An

3In this work, they are sorted in their positional space, only on x-y plane, to make 10×10 rectangular prisms to

speed up the searching through them. One can use a different sorting scheme. However, It was found that the sorting

48

estimate for the total reachable workspace volume is then given by

Vr =

(
nr

10, 000

)
4

3
πR3, (83)

where nr is the number of reachable points. For each of these reachable points one then needs to

determine that location’s maximum value of K.

6.4.2 Computing the Maximum Value of K

Determining the maximum value of K for a workspace location is complicated by the fact that

one must consider all of the possible pre-images for this location. (See Appendix B for determining

the maximum K on a manifold.) Even determining the number of manifolds associated with a

location, and whether these manifolds are open or closed, is not trivial. For example, consider

the case illustrated in Figure 19 that shows all the configurations for one optimal robot design at

four distinct locations (identified by A, B, C, and D) that lie on a straight line segment within

the workspace. (Points A and D represent the two endpoints of the line segment with B and C

being 57% and 80% of the distance from A to D, respectively.) The possible configurations for

being at point A are represented by two open manifolds, which then combine into a single closed

manifold at point B, which then becomes two disjoint manifolds (as illustrated by point C), with

one of them ultimately disappearing at point D. This illustrates that one cannot simply track a

locally optimal value of K because these local optima may disappear, as they do in this example.

In order to accurately compute the maximum value of K for a workspace location, one must make

sure to consider all of the possible configurations associated with all of the possible manifolds for

that location.

To deal with this situation, several joint configurations are selected (from the one million ran-

dom configurations initially generated)4 so that their workspace locations are near the reachable

in 10×10×10 cubes increased the computation time.
4In this work, five configurations are used.

49

x2

x1

x3

one million

random points

boundary sphere

for Monte Carlo

approximation

range of

forward

kinematics

inverse kinematics

to find maximum

reach in this

direction

fault tolerant

workspace

boundary

unknown

true boundary

R is 110%

maximum

reach

max ||x||

θ1

θ4

θ2

θ3

forward

kinematics

Figure 18: An illustration of how the Monte Carlo integration algorithm is used to compute the
volume of both the fault tolerant workspace and the entire reachable workspace.

workspace point whose maximum value of K is being evaluated. This increases the probability

that all self-motion manifolds associated with this workspace location will be represented. (See

Figure 20.) Then iterative inverse kinematics is performed to drive each of these configurations

exactly to the point being evaluated. Once the exact end effector position is achieved, the entire

self-motion manifold is mapped out by stepping along the null vector of the Jacobian. As we com-

pute the configurations along the manifold, each configuration’s value of K is calculated and the

maximum is saved. If maximum value of K over all manifolds associated with this point is greater

than γ Kmax, then this reachable workspace point is included in the count for the fault tolerant

workspace volume, denoted nf .
5 The fraction of the total workspace that is fault tolerant, denoted

WK, can then be easily estimated by the ratio nf/nr.

The implementation of this section’s computations was done in C++ with using Armadillo

open source C++ linear algebra library [62]. Depending on the robot structure, the running time

of computing the above global properties takes 10-30 minutes. The next section will use this

5Clearly, if one finds a configuration where K ≥ γ Kmax there is no need to continue evaluating the manifold.

Likewise there is no need to evaluate a manifold multiple times.

50

−400

−200

0

200

−1000100200300400

−100

−50

0

50

100

150

200

250

300

350

θ
3

θ

2

θ 4

−100

−50

0

50

100

150

C

D

A

B

θ
1

Figure 19: Self-motion manifolds for the robot generated from (β1, β2, β3, β4) =
(200◦, 220◦, 130◦, 90◦) where the value of θ1 is indicated using color. The points A, B, C,
and D lie on a line segment in the workspace where A is one endpoint located at [x, y, z] =
[−0.04, − 0.82, 0.22], D is the other endpoint at [x, y, z] = [−0.16,−1.79, 0.47], and points B and
C are located 57% and 80% of the way from A to D, respectively.

measure to evaluate families of robots that have commonly used values for link twists.

6.5 EXAMPLES OF MANIPULATORS WITH COMMON LINK TWIST PARAMETERS

6.5.1 Introduction

When designing a robot’s kinematics there are many factors that must be considered. These

factors may limit the range of desirable values for the joint parameters. This section uses the

example of where one may be interested in limiting the joint twist values, i.e., setting αi’s to ±90◦,

0◦, or 180◦ as is common in many commercial manipulators. (Because α4 is already set to zero (see

(77)), one only needs to consider i = 1, 2, 3.)

Recall that the parameter αi is defined as the angle between the rotation axes of joints i and

i + 1, which is the same as ωi and ωi+1, respectively. Therefore, one can use the dot product

51

Close up of

boundary calculation

Unknown true

fault tolerant

boundary

θ1

θ4

θ3

θ2

The largest K on this

manifold is < γ Kmax

The largest K on this

manifold is > γ Kmax

(a) (b)

Figure 20: To evaluate the maximum value of K at a workspace location (shown in black in (b))
multiple randomly generated configurations (two of which are shown in blue) are used in order to
evaluate the multiple self-motion manifolds associated with a workspace location. The configuration
that corresponds to the largest value of K for each of these workspace locations is shown in (a).
Note that the closest random point may not be associated with the manifold that has the largest
value of K.

between the appropriate pair of equations (52), (66), (73), and (74) to determine the values of the

βi’s that result in the desired αi’s.

6.5.2 Link twist αi = ±90◦

To determine the relationship between βi and βi+1 for αi = ±90◦ one can solve for the case

where the dot product between ωi and ωi+1 is equal to zero. In the case of α1 = ±90◦, using (52)

and (66) results in

β2 = − arctan

(
1

3 tan(β1)

)
+ kπ, (84)

where k = 0, 1, i.e., one value of k results in α1 = 90◦ and the other results in α1 = −90◦. Because

β1 is an arbitrary parameter, there are an infinite number of solutions to this equation. However,

the space of all possible robots is spanned by 0 ≤ β1 < 180. (This is because when 180 ≤ β1 < 360

the resulting robots are mirror versions of those obtained when 0 ≤ β1 < 180.)

Similarly, one can find the solutions of when α2 and α3 are equal to ±90◦ using (66), (73), and

52

(74) so that

β3 = arctan

(√
3 + 3 tan(β2)

5 +
√
3 tan(β2)

)
+ kπ (85)

and

β4 = − arctan

(
3 +

√
3 tan(β3)

5 tan(β3) +
√
3

)
+ kπ, (86)

where k = 0, 1.

Note that when k = 1 the direction of ωi+1 flips from what it was when k = 0 and thus the

sign of αi will change. However, one can add 180◦ to βi with k = 1, so that both ωi and ωi+1 are

flipped, and the sign of αi will stay the same. Thus there will be two sets of values for β2 and β3

that will satisfy (85) and result in α2 = 90◦ and two sets of values for β2 and β3 that will satisfy

(85) and result in α2 = −90◦. The same is true for (86).

6.5.3 Link twist αi = 0◦ or 180◦

To solve for αi being equal to 0◦ or 180◦, one can set the dot product of ωi and ωi+1 to 1 or

-1, respectively. In contrast to the section above, the solutions of these equations result in discrete

values of βi and βi+1. Table 5 shows the values of βi and βi+1 for all cases of αi = 0◦ or αi = 180◦.

Note that there are two sets of βi and βi+1 for a given desired αi, except for α1 where there is only

one set of β1 and β2. (This is because the other two sets of β1 and β2 result in mirror versions of

the corresponding robots.)

It should be noted that it is not possible to arbitrarily set αi’s to be 0◦ and/or 180◦ at the same

time. For example, setting α2 = 0◦ requires β2 = 30◦ or 210◦, which is not consistent with the

values required to make α1 = 0◦. It also requires β3 = 120◦ or 300◦, so that it is not possible to

make α3 = 0◦. By comparing all of the constraints on the values of βi and βi+1 for i = 1, 2, it can

be concluded that it is not possible to have αi = 0◦ and also have αi+1 be either 0◦ or 180◦. The

same is true for αi = 180◦.

53

Table 5: Values of βi and βi+1 to make αi = 0◦ or 180◦

i αi [degrees] (βi, βi+1) [degrees]

1
0 (90, 90)

180 (90, 270)

2
0 (30, 120), (210, 300)

180 (30, 300), (210, 120)

3
0 (60, 60), (240, 240)

180 (60, 240), (240, 60)

6.5.4 Manipulator Categories

The above subsections provide the equations for determining the required βi and βi+1 values

to achieve a desired αi, i.e., solving equation (75) for αi = ±90◦, 0◦, and 180◦. However, because

selecting a desired αi restricts the range of possible values for βi and βi+1 it is not possible to

arbitrarily select all three of the αi values. For example, if one selects the value of α1 and α3, the

values of β1, β2, β3, and β4 are all specified so that the choices for α2 are limited. This subsection

determines if a particular combination of αi’s results in a feasible kinematic design with the desired

fault tolerant Jacobian and, if so, how many such designs exist.

Even with restricting αi to ±90◦, 0◦, or 180◦ there still exists a large number of possible robots.

In order to analyze them further, they are organized into groups. Because α4 = 0 the total number

of different combinations of setting αi to one of these four values is 43 = 64. These 64 combinations

are organized into eight robot groups, based on whether an αi results in adjacent joint axes being

parallel (∥) or perpendicular (⊥), i.e., whether αi = 0◦, 180◦ or αi = ±90◦, respectively. Table 6

enumerates these eight groups along with the total number of robots that they include.

Note that some robot structures are not feasible because they are not physically able to result

in the optimally fault tolerant Jacobian given by (46). For example, robots in group 1 have all of

their joints parallel so that they result in planar manipulators, which clearly are not capable of the

desired Jacobian. Likewise, robots in groups 2 and 3 result in planar substructures that make it

physically impossible to achieve the desired Jacobian.

54

For cases where there are not three joint axes in parallel, one is able to identify multiple feasible

robot designs. For groups 4-7, there exist eight unique robots in each group. To determine all

of the βi parameters that result in the specified joint twist values (αi’s) one can use Table 5 and

equations (84)-(86). In some cases the inverses of (84) and (85), i.e.,

β1 = − arctan

(
1

3 tan(β2)

)
and (87)

β2 = − arctan

(√
3− 5 tan(β3)

3−
√
3 tan(β3)

)
+ kπ, (88)

where k = 0, 1, are useful. Once all the βi parameters are determined, then Jw is defined and one

can calculate the remaining DH parameters that describe the robot.

This procedure is illustrated with a specific example. Consider robot group 6. Because joint

axes 2 and 3 are parallel, i.e., α2 = 0◦, 180◦, β2 and β3 are constrained to the discrete values given

in Table 5. Therefore, our strategy is to start with each of these possible values and then evaluate

the equations (87) and (86) to determine the required values of β1 and β4. Specifically, for α2 = 0◦,

(β2, β3) = (30◦, 120◦) or (210◦, 300◦). Then to set α1 and α3 to ±90◦, equations (87) and (86) are

used respectively. This results in

(β1, β2, β3, β4) = (150◦, 30◦, 120◦, 0◦) or (89)

= (150◦, 30◦, 120◦, 180◦) or

= (150◦, 210◦, 300◦, 0◦) or

= (150◦, 210◦, 300◦, 180◦)

so that there are four possible robot combinations. One can apply the analogous procedure for

α2 = 180◦, which also results in four robots so that the size of this group is eight.

Finally, robot group 8 is unique in that it is parameterized by β1 using equations (84)-(86) and

so there are an unlimited number of robots in this group. In the next subsection all of the robots

55

Table 6: The size of robot groups with all possible combinations of αi being ±90◦, 0◦, or 180◦

Robot
Group

Relationship between
joint axes i− 1 and i

i = (1, 2, 3, 4)

Size of
Group

1 (∥, ∥, ∥, ∥) 0

2 (∥, ∥, ⊥, ∥) 0

3 (⊥, ∥, ∥, ∥) 0

4 (∥, ⊥, ∥, ∥) 8

5 (∥, ⊥, ⊥, ∥) 8

6 (⊥, ∥, ⊥, ∥) 8

7 (⊥, ⊥, ∥, ∥) 8

8 (⊥, ⊥, ⊥, ∥) ∞

Table 7: The best robot configurations among the individual robot groups 4-7 that have one
additional αi = 0 in Table 6

Robot
Group

(α1, α2, α3, α4)
[degrees]

(β1, β2, β3, β4)
[degrees]

WK
[%]

max
reach
[m]

6 (−90, 0, −90, 0) (150, 30, 120, 180) 67 3.92

4 (0, 90, 0, 0) (90, 90, 240, 240) 59 5.19

7 (90, 90, 0, 0) (0, 270, 240, 240) 48 3.93

5 (0, 90, 90, 0) (90, 90, 240, 330) 30 4.96

from these groups are evaluated to identify an optimal design in terms of its global fault tolerance

capabilities.

6.5.5 Global Fault Tolerance Analysis

The global fault tolerant properties were computed for all of the robots represented in Table 6

. For robot groups 4-7, this simply involved evaluating each of the possible robot designs for WK.

(Recall that WK is the percentage of the workspace that has a fault tolerance value that is greater

than or equal to γ = 0.9 of the maximum.) For each group the robot (in terms of its βi’s parameters)

that had the largest value of WK was determined. These results are shown in Table 7 along with

a depiction of the resulting robots in the optimal fault tolerant design configuration in Figure 21.

Note that best robot from each group vary from a maximum of WK = 67% to a minimum of 30%.

(Appendix D presents the results of the 32 robots for groups 4-7.)

In contrast, determining the best robot from group 8 required an optimization over the inde-

pendent variable β1. However, this resulted in by far the best global fault tolerant robot with a

56

Figure 21: The optimal fault tolerant configurations at the design point of Table 7 robots. (The
figure was generated using the Robotics Toolbox described in [61].)

WK = 75% for the robot given by (β1, β2, β3, β4) = (30◦, 330◦, 0◦, 300◦), which corresponds to

Jω =


0

√
2
3 0 −

√
2
3√

3
4

√
1
12 −

√
3
4 −

√
1
12

1
2 −1

2 −1
2

1
2


. (90)

The DH parameters for this robot are given in Table 8 and an image of the robot in its optimal

design configuration is shown in Figure 22, where the base coordinate frame has been rotated to

57

Table 8: The DH parameters of the globally optimal robot that corresponds to (β1, β2, β3, β4) =
(30◦, 330◦, 0◦, 300◦)

i αi [degrees] ai [m] di [m] θi [degrees]

1 90
√
2 0 0

2 −90
√
2 1 180

3 90
√
2 -1 180

4 0
√
3/2 1/2 145

align the first joint axis with the z-axis, resulting in the following Jacobian

J6×4 =

Jv
Jω

 =



−1
2

1
2 −1

2
1
2

− 1√
2

0 1√
2

0

0 − 1√
2

0 1√
2

0 0 0 0

0 1 0 −1

1 0 −1 0



. (91)

This globally optimal fault tolerant robot design has a total maximum reach and reachable volume,

Vr, of 5.5 m and 560 m3, respectively. An illustration of both the reachable and the fault tolerant

workspace are given in Figure 23 where the three-dimensional volume is shown with multiple cross-

sections to better visualize the two different volumes. Clearly one can see that a WK = 75% results

in a significant amount of the reachable volume being fault tolerant as well.

6.6 JACOBIAN COLUMN PERMUTATION AND/OR SIGN CHANGE EFFECTS

6.6.1 Introduction

The analysis so far has been based on the positional Jacobian Jv given in (46). The family

of manipulator Jacobians with a compatible orientational Jacobian Jω was characterized based on

parameterizing the rotation axes with βi, i = 1, 2, 3, 4 given in equations (52), (66), (73), and (74).

There are 4! × 24 = 384 different versions of (46), where 4! = 24 represents the total number of

58

permutation operations and 24 is the number of all possible cases of alternating the column signs.

Performing these operations, particularly permuting the columns, on an arbitrary Jacobian will

typically result in a Jacobian that corresponds to a completely different manipulator. However,

this section will illustrate that these operations do not collectively change the family of fault-tolerant

robots identified using (46). To investigate the effects that these two types of operations have on

the resulting manipulator geometry, each will be studied individually.

The notation Jv1234 will be used to indicate the positional Jacobian in (46), which is in standard

form. The Jacobian resulting from permutations and multiplication of columns by −1 will then

Figure 22: The locally optimal fault tolerant configuration at the design point of the globally
optimal robot defined in Table 8. (The figure was generated using the Robotics Toolbox described
in [61].))

59

Figure 23: The workspace volumes of the globally optimal robot defined in Table 8. The blue color
indicates the total reachable workspace volume, while the yellow color presents the fault tolerant
workspace volume.

be denoted by permuting the corresponding indices and inserting appropriate minus signs. For

example, the permutation corresponding to swapping the second and third columns will be written

as Jv1324 and a change in the sign of column three will be written as Jv12(−3)4
. A fully spatial Jacobian

will be denoted J1234 and column permutations and multiplications by −1 will be denoted in the

same way for J1234, for example, J13(−2)4 will correspond to multiplying the second column of J1234

by −1 and swapping it with the third column.

It should be noted that unlike Jv, the orientational Jacobian Jω depends on (β1, β2, β3, β4).

60

When it is important to point out this distinction, J1234 will be explicitly written as

J1234(β1, β2, β3, β4) =


Jv1234

Jω1234(β1, β2, β3, β4)

 . (92)

6.6.2 Sign Change Effect

It turns out that multiplying one or more columns of a Jacobian by −1 has no real effect on

the geometry of the corresponding robot. Essentially, what happens is that the direction of the

corresponding joint axis is reversed. If one multiplies one or more columns of Jv by−1, the operation

is equivalent to modifying the corresponding columns of Jω by adding 180◦ to the corresponding

βi.

6.6.3 Column Permutations and Tetrahedral Symmetry

Next, the effects of the 24 possible column permutations of (46) are considered. Because of the

nice column structure of (46), there is a particularly elegant geometric interpretation for permuting

the columns of Jv1234 . This follows by noting that the columns of Jv1234 correspond to a regular

tetrahedron. To make this clearer, let Pi denote the vertex corresponding to vi, the i-th column of

Jv. For example, the first vertex P1 is given by the first column of Jv and hence lies on the negative

x-axis at the coordinate

[
−
√
3/2 0 0

]T
. The six edges will be denoted as PiPj , i < j, so that

P1P2 denotes the edge connecting the first and second vertices.

This simple geometric interpretation allows us to use a well-known relationship between rela-

beling the vertices of a regular tetrahedron and rotating and/or reflecting the tetrahedron, called

tetrahedral symmetry. Among the 24 permutations or relabelings of the vertices, 12 correspond to

rotations of the tetrahedron and the other 12 correspond to reflections or combinations of reflec-

tions and rotations, called rotoreflections. Physically, the fact that any relabeling can be achieved

through rotations and reflections would require that the distances between any two vertices, i.e.,

61

the lengths of the edges, are all equal, which is clearly true for a regular tetrahedron.

Rotations in R3 can be characterized by using the axis-angle notation where

Rk̂(θ) = k̂k̂T + cos θ(I − k̂k̂T) + sin θS(k̂) (93)

represents a counterclockwise rotation of θ radians about the k̂ axis, where k̂ =

[
k1 k2 k3

]T
is a

unit vector and

S(k̂) =


0 −k3 k2

k3 0 −k1

−k2 k1 0

 (94)

represents the cross product operation S(k̂)u = k̂ × u for any vector u in R3. A rotoreflection

Qk̂(θ) corresponds to a counterclockwise rotation of θ radians about the unit vector k̂ followed by

a reflection about the plane through the origin perpendicular to k̂ and is given by

Qk̂(θ) = −k̂k̂T + cos θ(I − k̂k̂T) + sin θS(k̂). (95)

An important special case is a pure reflection Fk = Qk̂(0) = I − 2k̂k̂T about the plane through the

origin and perpendicular to k̂ (and the case Qk̂(π) = −I).

The relationship between rotations and column permutations of Jv1234 is given in Table 9 and

can be best visualized using the regular tetrahedron described above. One can see that the axis

of rotation taking Jv1234 to Jv1342 and Jv1423 is given by k̂ = v̂1 with rotation angles of 120◦ and

240◦, respectively, where v̂1 = v1/∥v1∥ denotes the normalized version of the first column v1 of

Jv1423 . These two rotations about the axis connecting the origin to the vertex P1 correspond to the

cyclic permutations of vertices P2, P3, and P4, with the first vertex P1, of course, remaining fixed.

The next six rows correspond to rotations about the other axes connecting the origin to the other

three vertices. The last three rows of Table 9 are more complicated and correspond to rotations

about the line connecting the midpoints of two non-adjacent edges. For example, it can be shown

62

Table 9: Permuted Jacobians that are related to J1234 by a rotation Rk(θ) = kkT + cos(θ)[I −
kkT] + sin(θ)S(k)

Permuted
Jacobian

Rotation Axis (k)
θ

[degrees]

Identity

1 J1234 [−1, 0, 0]T 0

rotation of ±120◦ about v̂i axis

2 J1423 v̂1 = [−1, 0, 0]T 120

3 J1342 v̂1 = [−1, 0, 0]T 240

4 J3241 v̂2 = [1
3
, − 2

√
2

3
, 0]T 120

5 J4213 v̂2 = [1
3
, − 2

√
2

3
, 0]T 240

6 J4132 v̂3 = [1
3
,

√
2

3
, −

√
2
3
]T 120

7 J2431 v̂3 = [1
3
,

√
2

3
, −

√
2
3
]T 240

8 J2314 v̂4 = [1
3
,

√
2

3
,
√

2
3
]T 120

9 J3124 v̂4 = [1
3
,

√
2

3
,
√

2
3
]T 240

rotation of 180◦ about v̂1+v̂i
∥v̂1+v̂i∥

axis, i = 2, 3, 4

10 J2143
v̂1+v̂2

∥v̂1+v̂2∥
= [−

√
1
3
, −

√
2
3
, 0]T 180

11 J3412
v̂1+v̂3

∥v̂1+v̂3∥
= [−

√
1
3
,
√

1
6
, −

√
1
2
]T 180

12 J4321
v̂1+v̂4

∥v̂1+v̂4∥
= [−

√
1
3
,
√

1
6
,
√

1
2
]T 180

that Jv2143 is given by rotating 180◦ about the line connecting the midpoints of the P1P2 and P3P4

edges, which happens to be given by the vector v1 + v2.

The permuted Jacobians given in Table 10 are obtained from Jv1234 in a similar but slightly more

complicated manner. The first six rows are obtained by a pure reflection about a corresponding

plane. For example, Jv2134 is obtained by reflecting about the plane containing the midpoint of

the P1P2 edge and the third and fourth vertices. The corresponding perpendicular to this plane

is the unit vector pointing from the second vertex to the first, i.e., k̂ = (v1 − v2)/∥v1 − v2∥. The

remaining six rows are even more complicated and are given by a rotoreflection of ±90◦ about the

axes connecting the midpoints of two non-touching edges. Once again, these three axes are given

in the last three lines of Table 9.

The exact nature of the rotations and reflections are not so important as the fact that (1) they

are rotations/reflections and (2) that such operations do not change a manipulator’s geometry. To

63

see this, one can observe that

J1423(β1, β4, β2, β3) =


R1423Jv1234

R1423Jω1234
(β′1, β

′
2, β

′
3, β

′
4)

 , (96)

where the βi’s are given by the corresponding equation in (52), (66), (73), or (74), R1423 is the

rotation matrix taking Jv1234 to Jv1423 , and β′1, β
′
2, β

′
3, and β′4 are suitable βi parameters for

J1234. In other words, given any J1423 generated from Jv1423 , there is a suitable rotated version

of a corresponding J1234. The βi parameters will typically be different than the β′i parameters.

Manipulator Jacobians corresponding to other permutations of Jv1234 are obtained in a similar

manner. The key point is that generating the family of manipulator Jacobians from a permuted

version of (46) results in a rotated/reflected version of the family that was generated from (46).

Hence, the robot geometries do not essentially change. Consequently, one need only consider the

unmodified Jacobian described by (46) with Jω as a function of the βi’s to optimize the whole

family of robots. Figure 24 illustrates the kinematic equivalency of these various robots.

64

Table 10: Permuted Jacobians that are reflections of Table 9 by Qk(θ) = −kkT +cos(θ)[I − kkT] +
sin(θ)S(k)

Permuted
Jacobian

Rotation & Reflection Axis (k)
θ

[degrees]

pure reflections Fk = I − 2kkT = Qk(0)

1 J2134
v̂1−v̂2

∥v̂1−v̂2∥
= [−

√
2
3
,
√

1
3
, 0]T 0

2 J3214
v̂1−v̂3

∥v̂1−v̂3∥
= [−

√
2
3
, −

√
1
12
, 1

2
]T 0

3 J4231
v̂1−v̂4

∥v̂1−v̂4∥
= [−

√
2
3
, −

√
1
12
, − 1

2
]T 0

4 J1324
v̂2−v̂3

∥v̂2−v̂3∥
= [0, −

√
2
3
,
√

1
3
]T 0

5 J1432
v̂2−v̂4

∥v̂2−v̂4∥
= [0, −

√
2
3
, −

√
1
3
]T 0

6 J1243
v̂3−v̂4

∥v̂3−v̂4∥
= [0, 0, − 1]T 0

rotoreflections Qk(θ)

7 J3421
v̂1+v̂2

∥v̂1+v̂2∥
= [−

√
1
3
, −

√
2
3
, 0]T 90

8 J4312
v̂1+v̂2

∥v̂1+v̂2∥
= [−

√
1
3
, −

√
2
3
, 0]T -90

9 J4123
v̂1+v̂3

∥v̂1+v̂3∥
= [−

√
1
3
,
√

1
6
, −

√
1
2
]T 90

10 J2341
v̂1+v̂3

∥v̂1+v̂3∥
= [−

√
1
3
,
√

1
6
, −

√
1
2
]T -90

11 J2413
v̂1+v̂4

∥v̂1+v̂4∥
= [−

√
1
3
,
√

1
6
,
√

1
2
]T 90

12 J3142
v̂1+v̂4

∥v̂1+v̂4∥
= [−

√
1
3
,
√

1
6
,
√

1
2
]T -90

65

Figure 24: An illustration of kinematically equivalent robots generated from different Jacobians.
The robot labeled “original” is generated from J1234 and represents all the robots specified in Table
9. The robot labeled “reflection” represents all the robots specified in Table 10. The robot labeled
“mirror” represents robots generated from using the alternate solutions for β1 when its range is not
restricted.

66

CHAPTER VII

SEVEN DOF SPATIAL MANIPULATORS1

7.1 CHAPTER OVERVIEW

This chapter discusses the design of optimally fault-tolerant seven-joint fully spatial manipula-

tors. The following section discusses the design of their optimally fault tolerant Jacobians which

will be used to determine the the DH parameters. Section 7.3 will discuss how one can evaluate one

robot design in terms of its global kinematic. In particular, how one can evaluate a six-dimensional

volume that is a compound of orientation volume and the three-dimensional volume. The next

section will analyze different examples, and discuss the effect of permuting the columns of designed

Jacobians.

7.2 OPTIMALLY FAULT TOLERANT JACOBIAN

It was presented in [57] that for the case of a seven DOF fully spatial manipulator, the canonical

structure of an optimally failure tolerant configuration is given by:

J =



−
√

6
7

√
1
42

√
1
42

√
1
42

√
1
42

√
1
42

√
1
42

0 −
√

5
6

√
1
30

√
1
30

√
1
30

√
1
30

√
1
30

0 0 −
√

4
5

√
1
20

√
1
20

√
1
20

√
1
20

0 0 0 −
√

3
4

√
1
12

√
1
12

√
1
12

0 0 0 0 −
√

2
3

√
1
6

√
1
6

0 0 0 0 0 −
√

1
2

√
1
2



. (97)

Although the canonical form in (97) has the desirable property of fault tolerance, it corresponds

to a manipulator possessing three prismatic joints and four joints that are capable of an arbitrary

1SOME OF THIS CHAPTER IS PUBLISHED IN [6]

67

screw motion [57]. The columns of a manipulator Jacobian for a robot consisting of only revolute

joints have a more restrictive algebraic structure. In particular, the vector ωi corresponding to the

last three components of a column ji must have unit length and must be perpendicular to the vector

vi consisting of the first three components of that column. Furthermore, the isotropy condition

and the condition that the columns of J have equal norms require that the vis also have unit

norm. Including this additional constraint on the vis gives a total of 21 constraints corresponding

to ∥vi∥ = 1, ∥ωi∥ = 1, and vi · ωi = 0 for i = 1, 2, . . . , 7. If an isotropic configuration exists, then it

follows that σ =
√
7/3 = 1.5275. As noted in [57], we were not able to find an isotropic revolute

manipulator Jacobian for which (6) achieves its upper bound. Instead, we identify manipulator

Jacobians that were close to being ideally fault tolerant.

First, we determined a manipulator Jacobian satisfying the 21 constraints on the columns

that was closest to satisfying the isotropy condition in the sense described in [57]. In this case, the

objective function was the sum of the squares of the 21 unique constraints given by JJT −n/3I = 0.

This resulted in an optimal manipulator Jacobian

J =



1 0.4296 0.7495 −0.5431 0.1401 0.3298 −0.3783

0 −0.6041 0.6479 0.4640 −0.7889 −0.1853 −0.8047

0 −0.6712 −0.1357 −0.6998 0.5983 −0.9257 −0.4575

0 0.7678 0.1449 0.8391 0.5831 −0.6882 −0.4296

1 −0.1469 −0.3607 0.3308 −0.4226 −0.7184 0.5904

0 0.6236 −0.9214 −0.4319 −0.6938 −0.1014 −0.6832



. (98)

This Jacobian has a K = 0.5196, whereas the optimal value of K from (6) is 0.5774. Furthermore,

while it does minimize the objective function, the value of the objective function was not zero

and hence (98) is not isotropic. However, its singular values only range between σ1 = 1.5829 and

σm = σ6 = 1.4726. This compares reasonably well to the Jacobian in (97) which is isotropic with

68

σ = 1.5275.

We next determined a manipulator Jacobian by maximizing K subject to all of the fσ6 for

f = 1, 2, ..., 7 being equal and all of the components of the null vector having the same magnitude,

using a solution to the 21 equations as an initial condition. One resulting solution is

J =



−0.2937 0.7136 0.6495 −0.9856 −0.0356 0.2941 −0.3424

−0.4233 0.5893 0.2041 0.1238 −0.5771 −0.8564 0.9396

0.8571 0.3788 −0.7325 −0.1150 −0.8159 0.4243 0.0033

0.4676 0.6923 −0.3226 0.1359 0.5575 −0.8910 −0.6397

0.7184 −0.5105 0.9463 0.1769 −0.6891 −0.4063 −0.2356

0.5151 −0.5101 −0.0224 −0.9748 0.4630 −0.2025 0.7316



, (99)

where fσ6 = 0.5714 for all f = 1, 2, . . . , 7 and nJ = 1√
7
[1 1 1 1 1 1 1]T . As a trade off σ1 = 1.6455

and σm = σ6 = 1.4169 deviate more than (98) from the isotopic value σ = 1.5275. Thus, numerical

experiments suggest that applying these types operations to a representative solution may identify

a finite set of Jacobians that is sufficiently close to a large set of solutions. It should be noted that

multiplying columns by −1 only changes the direction of the joint axis; however, permuting the

columns results in a significant change in the robots structure. Thus applying n! permutations may

result in a family of Jacobians that sufficiently represent a large set of solutions.

In both approaches all calculated solutions converged to their respective optimal values. As

pointed out earlier in Chapters 2 and 6, the operation of premultiplying a Jacobian by an orthogonal

matrix corresponding to a coordinate frame rotation/reflection and postmultiplying by a signed

permutation matrix changes the physical properties of the corresponding robot but does not affect

its fault tolerance properties. When comparing two solutions for a given approach, it was found

that applying a suitable operation of this type would result in a Jacobian that was close to the

other Jacobian.

69

Figure 25: The configuration of a robot that was generated to have the locally optimal fault tolerant
Jacobian in (98), referred to as the robot from (98).

Using the technique described in Chapter 3, one can generate the Denavit and Hartenberg

parameters for a robot with a prescribed Jacobian. For example, Table 11 illustrates this for the

Jacobian in (98) with the robot described by these parameters depicted in Figure 25, which we will

refer to as robot from (98).

Table 11: The DH parameters of robot from (98)

i αi [degrees] ai [m] di [m] θi [degrees]

1 -98 0.17 0 0

2 -114 1.42 1.67 62

3 -66 1.42 -0.69 126

4 50 0.56 -1.77 -28

5 -92 1.32 2.42 -172

6 -93 1.27 -0.38 88

7 0 1 0.95 152

70

7.3 COMPUTING GLOBAL FAULT TOLERANCE PROPERTIES

7.3.1 Preliminaries

The above section shows that there are multiple Jacobians, and therefore multiple manipula-

tor designs, that share the same local fault tolerance properties. To distinguish between them, one

would select a specific Jacobian and then calculate the corresponding physical robot in order to eval-

uate its global properties, especially how the fault tolerance measure varies across the workspace.

Even though we are designing a fully general spatial manipulator with a six-dimensional workspace

consisting of both position and orientation, it is also useful to consider the three-dimensional maxi-

mum reachable workspace volume. Specifically, in this work, both the three-dimensional reachable

volume and six-dimensional volume of the workspace that has a K greater than or equal to a given

fraction of the maximum, i.e., K ≥ γ Kmax, where Kmax is equal to K of (98) or (99), and 0 ≤ γ ≤ 1

is a user defined parameter, are computed. (For all of the results shown in the following examples

γ ≈ 0.4 is used.) The most difficult portion of this calculation is computing the six-dimensional

volume, which is discussed in the following subsection.

7.3.2 Calculating a Six-Dimensional Volume

The six-dimensional workspace volume, denoted V6d, of a fully spatial robotic manipulator can

be decomposed into the product of the reachable workspace volume, denoted Vr and measured in

m3, and orientation volume, denoted Vo and measured in rad3, within the reachable workspace, in

the following way. The six-dimensional workspace volume corresponding to a small volume element

of the reachable workspace centered at the three-dimensional cartesian position x is approximately

equal to

∆V6d ≈ Vo(x)∆Vr(x) (100)

where Vo(x) is the orientational volume corresponding to the point x and where ∆Vr is the volume

of the small volume element containing the workspace point x. To obtain the six-dimensional

71

workspace volume over the complete reachable workspace, we use a Riemann sum

V6d ≈
Nr∑
i=1

Vo(Pi)∆Vr(Pi) =
Vr
Nr

Nr∑
i=1

Voi (101)

where the Pi are points contained in the individual volume elements determined by the integration

grid, Voi = Vo(Pi), and we assume in our case that ∆Vr(Pi) = Vr/Nr. Note that V6d is measured

in units of m3 rad3.

The following subsection discusses two ways of computing the individual orientation volume

segments Voi . In both cases, we use Monte Carlo integration with orientations represented by unit

quaternions, denoted q = [s, vx, vy, vz]. They differ in how the sampling is performed.

7.3.3 Calculating Orientation Volume

7.3.3.1 Parameterized sampling of quaternions

One simple way to sample orientations is to use spherical polar coordinates to parameterize unit

quaternions [63], i.e.,

s = cos(ψ)

vx = sin(ψ) cos(ϕ)

vy = sin(ψ) sin(ϕ) cos(θ)

vz = sin(ψ) sin(ϕ) sin(θ)

(102)

with 0 < ψ < π/2, 0 < ϕ < π, and 0 < θ < 2π, and represent all possible orientations. When

using this parameterization of quaternions to represent orientations, the volume integral element

to calculate a reachable orientation volume is

sin2(ψ) sin(ϕ)dψdϕdθ. (103)

To calculate the orientation volume Voi at a position Pi within a reachable workspace, we use

Monte Carlo integration. To do so, we generate No quaternions whose spherical polar coordinates

are uniformly distributed within the full ranges of ψ, ϕ, and θ. Each orientation is then evaluated

72

to see if it is achievable, with the total denoted Noi . The orientation volume is then calculated

using

Voi ≈ π3
1

No

Noi∑
j=1

sin2(ψj)sin(ϕj) (104)

where ψj and ϕj are the spherical polar coordinates of achievable orientation j. Note that the

maximum orientation volume, denoted vomax , is π
2, which can be obtained from integrating (103)

over the total range of ψ, ϕ, and θ.

To improve the accuracy we estimate the achievable range of ψ, ϕ, and θ using a low-resolution

sampling. We then re-sample at a high resolution within with restricted range.2

7.3.3.2 Uniformly sampling unit quaternions

Rather than using a parameterized sampling of quaternions, one can directly sample a sphere

in four-dimensional space, i.e., a 3-sphere, to generate No uniformly distributed quaternions on its

surface. Even though the surface area of a 3-sphere is given by 2π2, we only need half of the surface

to represent uniquely all possible orientations. This is because for a unit quaternion we only need

the scalar component to be in the range 0 ≤ s ≤ 1, while the elements of the axis of rotation, vx,

vy, and vz range between −1 and 1. Consequently, the maximum orientation volume is given by

Vomax = π2. If at a position Pi there are Noi quaternions that are achievable, then the orientation

volume is approximately given by

Voi ≈ Vomax

Noi

No
= π2

Noi

No
. (105)

In order to generate No uniformly distributed quaternions on the surface of a 3-sphere [64], for

each generated q = [s, vx, vy, vz], we select s and vx as independent random variables uniformly

distributed between [0, 1] and [−1, 1] respectively, under the constraint that S1 = s2+v2x < 1. We

2The achievable range is extended by 5◦ on each end to increase the probability of enclosing the entire reachable

orientation volume.

73

then compute two different independent uniform variables, v′y and v′z, between [−1, 1], under the

constraint that S2 = v′y
2 + v′z

2 < 1. Then,

q = [s, vx, vy, vz]

=

[
s, vx,

(√
1− S1
S2

)
v′y,

(√
1− S1
S2

)
v′z

]
. (106)

We compared the uniform sampling approach to the parameterized sampling approach using

a hundred randomly generated positions in robot from (98)’s workspace and determined that the

uniform sampling approached had both slightly higher accuracy and slightly lower computation

time, so this approach is used in all orientation volume calculations in this work. Clearly, the

accuracy of any Monte Carlo technique is a function of the number of samples, No. Based on

experimentation, we use No = 1000 as a compromise between accuracy and computation time.

7.3.4 Workspace Volume Estimation Algorithms

7.3.4.1 Overview

To determine an estimate for the workspace volumes, we develop two algorithms based on Monte

Carlo integration. The first, denoted Algorithm A, which is more straightforward, uses direct

sampling within the six-dimensional workspace. It is appropriate is one only needs information

about six-dimensional volumes. The second, denoted Algorithm B, uses a decomposed sampling

technique where a number of samples are associated with each position in order to obtain orientation

volume information as a function of position. In both cases, we use a total of 107 samples, which

we have experimentally determined to be sufficient for the Monte Carlo integration to converge as

shown in Figure 26. In Algorithm B, 104 samples are used within the three-dimensional position

workspace with 103 samples used in the orientation space associated with each position sample

74

10
3

10
4

10
5

10
6

10
7

90

100

110

120

130

140

150

160

170

180

Number of samples

V
F

T
6d

Figure 26: Six-dimensional fault tolerant volume for K > 0.2 for the robot from (98) as a function
of sampling rate

point.3

7.3.4.2 Algorithm A - Direct sampling in six-dimensional space

The first algorithm that we developed uses direct sampling in the six-dimensional workspace to

implement Monte Carlo integration. To make our sampling efficient, we first compute a maximum

radius for the reachable workspace. To do this, we generate one million uniformly distributed

random configurations in the joint space, where 0 ≤ θi < 2π for all i, that are transformed to

the workspace using forward kinematics. Then the maximum reach Rmax of the manipulator is

estimated by picking the point with the largest norm and using inverse kinematics on only the linear

velocity portion of the Jacobian to drive the robot to its workspace boundary where its Jacobian

is singular. The process for doing this calculation is illustrated in Figure 27. Once Rmax has been

3Both algorithms has been implemented in C++ using Armadillo linear algebra library [62], utilizing the CSU

ISTeC Cray HPC System.

75

x2

x1

x3

boundary sphere
for Monte Carlo
approximation

range of
forward

kinematics

inverse kinematics to find
maximum reach in this

direction

unknown
true boundary

(found by performing
positiong inverse

kinematics)

max ||x||

forward
kinematics

one million
random points

θ1

θ7

θ3 θ2
θ4

θ5 θ6

R is 110%
maximum
reach

Figure 27: An illustration of how Monte Carlo integration is used to compute the volume of
the reachable workspace. This is done by first determining the maximum reach of the robot by
performing forward kinematics on one million random joint configurations and then driving each
of these to a workspace boundary. The Monte Carlo integration is then performed within a sphere
of R that is 110% of the maximum reach.

determined, we randomly selectN samples directly in the six-dimensional workspace, which consists

of positions and quaternions that represent orientations. The position part is uniformly sampled

within a sphere whose radius R is 110% of Rmax so that the maximum volume, Vrmax = 4
3πR

3. The

quaternion part is sampled using the uniform sampling approach described in subsection 7.3.3.2.

Denote N3d as the number of samples that are reachable for the given position irrespective of

orientation. Then the reachable workspace volume Vr can be approximated by

Vr ≈
(
N3d

N

)
Vrmax

≈
(
N3d

N

)
4

3
πR3. (107)

Denote N6d as the number of samples that are reachable for both the given position and orien-

tation. Then the six-dimensional workspace volume V6d can be approximated by

V6d ≈
(
N6d

N

)
VrmaxVomax

76

≈
(
N6d

N

)
4

3
πR3 · π2. (108)

In practice, we first try to determine if a randomly generated position and orientation is achiev-

able by starting at random configurations and iteratively performing inverse kinematics using the

Jacobian. If it is, then it is included in both the count for N3d and N6d. If it is not, then we

perform iterative inverse kinematics using only the position portion of the Jacobian to determine

if the position is reachable irrespective of orientation. If it is, then it is included in the count for

N3d.

To calculate the fault tolerant six-dimensional volume, we need to determine the number of

points where K ≥ γ Kmax, which is denoted NFT . Determining whether a point satisfies this con-

dition requires that one check all of the robot configurations in all self-motion manifolds associated

with this point. Techniques for doing this are described in Section 7.3.4.4. Once NFT is computed,

the six-dimensional volume is approximated by

VFT ≈
(
NFT

N

)
4

3
πR3 · π2. (109)

Determine the fault-tolerant three-dimensional volume is complicated, because one must deter-

mine if there is even one configuration on any possible four-dimensional manifold associated with

this position whose Jacobian satisfies K ≥ γ Kmax. The sum of all positions for which such a

configuration exists is denoted NFT 3d
, so that

VFT 3d
≈
(
NFT 3d

N

)
4

3
πR3 (110)

where VFT 3d
denotes an estimate for the three-dimensional workspace volume that is fault tolerant.

One way to explore the four-dimensional manifold is to sample the orientation space associated

with a position, and evaluate K while traversing a one-dimensional manifold. However, this is very

computationally expensive. The following section describes an approach that is more efficient if

one wants to compute all four volumes.

77

7.3.4.3 Algorithm B - Decomposed sampling of six-dimensional space

An alternate approach to directly sampling the six-dimensional workspace volume is to decom-

pose the workspace into two three-dimensional spaces and perform Monte Carlo integration on

both. We sample Np points in the three-dimensional position workspace and for each reachable po-

sition we sample No points in the orientation space to determine the associated orientation volume,

using one of the approaches discussed in Subsection 7.3.3.

Similarly to Algorithm A, we determine Rmax first in order to define the sampling sphere whose

radius R is 110% of Rmax. One can then apply (107) to calculate the three-dimensional position

volume by replacing N with Np. For each of these reachable points one then still needs to determine

the orientation volume using one of the approaches that were discussed in Subsection 7.3.3. Then,

one can directly use (101) to calculate the total reachable six-dimensional volume.4

Because Algorithm B uses decomposed sampling, VFT3d
is easily determined during the process

for computing VFT . Figure 28 illustrates the process for computing these two volumes. We first

describe how to compute the fault tolerant orientation volume associated with a reachable position

Pi, denoted VFToi . For each Pi shown in (a), there is an associated Noi reachable orientations as

illustrated in (b). For each reachable position and orientation there are multiple robot configura-

tions which typically occur in multiple self-motion manifolds as illustrated in (c). If any of these

configurations have a K ≥ γ Kmax then this orientation should be included in the sum of all such

orientations, denoted NFToi . One can now compute VFToi using

VFToi ≈ π2
NFToi

No
, (111)

which is analogous to (105). Therefore, one can use (110) to determine VFT3d
by replacing N with

4If one is not interested in the orientation volume associated with each position, then one can directly compute

(108) using N = NpNo and N6d =
∑N3d

i=1 Noi.

78

x2

x1

x3

total workspace
boundary

φ
ψ

θorientation
volume of Pi

calculate
orientation

volume

position
(Pi)

boundary
for Monte Carlo
approximation

θ1

θ7

θ3 θ2
θ4

θ5

θ6

largest K on this
manifold is greater

than γ Kmax

largest K on these
manifolds is less

than γ Kmax

determining if
this position and

orientation is
fault tolerantfault tolerant

 workspace
boundary

(at least one orientation is
fault tolerant)

(c)

(b)(a)

orientation
(Qi)

Figure 28: An illustration of how Monte Carlo integration is used to compute the six-dimensional
volumes of both the fault-tolerant workspace and the reachable workspace. For each reachable
workspace position Pi in (a) we use Monte Carlo integration to evaluate the achievable orientation
volume at that Pi as shown in (b). To evaluate the fault tolerance of a Pi and Qi in (b) one needs
to identify the maximum value of K for all self-motion manifolds associated with that Pi and Qi, as
shown in (c). The three-dimensional fault-tolerant volume contains all of the positions that have
at least one fault-tolerant orientation.

Np, where NFT 3d
is now the sum of all of reachable positions whose VFToi > 0. Similar to (101)

VFT can be approximated by

VFT ≈ VFT3d

NFT3d

NFT3d∑
i=1

VFToi
. (112)

The most difficult part of determining if a six-dimensional position and orientation satisfies the

fault tolerance criterion K ≥ γ Kmax is to identify and evaluate all self-motion manifolds associated

with that location. This is the topic of the next subsection.

79

7.3.4.4 Maximizing K

In this section we discuss how one can identify a robot configuration that maximizes K for a

given point, i.e., position and an orientation, and thus determine if K ≥ γ Kmax.

The first approach is to evaluate every configuration for every self-motion manifold to determine

the maximum value of K at a workspace point (see Figure 28 (c)). This is not easy, because even

determining how many self-motion manifolds exist is not trivial. Our approach to identifying all

manifolds is to use multiple random configurations whose locations are close to the point that we

are evaluating. Recall that we have already computed the forward kinematics mapping of one

million samples in the joint space that were used to estimate the maximum reach Rmax. It is likely

that these samples will include all self-motion manifolds when the sampling rate is high enough.

However, it is still possible to miss a manifold, especially if it is small, and increasing the number

of samples is computationally expensive. Figure 29 shows an example for a typical point where five

different self-motion manifolds were identified. They are graphed by stepping along the manifold

and plotting the absolute value of the difference from an arbitrarily assigned start configuration.

The fact that each plot returns to zero indicates that all five of the self-motion manifolds are closed

curves, which is not necessarily true.

This approach is relatively straightforward for an isolated point in the workspace, however, if

one is concerned with continuous trajectories of the end-effector in the workspace, the situation

becomes more complicated. This is because adjacent points in the workspace may have maximum

K values that are associated with configurations that are not adjacent in the joint space. This

means that it is not possible to track the maximum K trajectory without large discontinuities in

joint configuration. These jumps in configuration can be either between self-motion manifolds or

within a single manifold.

One way of dealing with this issue is to use the gradient projection technique with ∇K as

80

described in [13]. It maximizes K locally, depending on the starting configuration, as opposed to

optimizing K globally. In this work we always chose the starting configuration to be the optimally

fault tolerant design configuration. This approach is much faster than searching for the global

optimal across all self-motion manifolds and it bounds the joint velocity, which makes it applicable

for real-time implementation. If one is concerned with locally minimal joint velocity then one can

use the pseudoinverse solution, once again, starting from the design configuration.

To illustrate the differences between the above techniques for maximizing K we selected an

example trajectory that moves the end effector along a straight line in the y direction through the

design point while maintaining constant orientation. Figure 30 presents the maximum value of K

and norm of the joint displacement, ∥∆θ∥, along this trajectory for the three techniques. Within

±1 m of the design point the ∇K tracking approach is essentially the same as searching all self-

motion manifolds because the locally optimal point is globally optimal. Beyond ±2 m the globally

optimal value of K can be maintained at a relatively large value, i.e., K ≈ 0.2 between −4 m to

7 m, however, it requires many transitions between disjoint self-motion manifolds that result in

large joint displacements. These large displacements can be alleviated by using the ∇K approach

(especially if one does not want to exactly track the local optimal), however, the locally optimal

value of K is relatively small outside of ±2 m. In other words, to obtain larger values of K, one

must switch self-motion manifolds. This will require deviation from a purely y velocity trajectory.

This is illustrated in Figure 31 that shows the joint displacement required to move between two

adjacent locations, e.g., from y = 1.50 m and y = 1.55 m, with K at a global maximum. The total

joint displacement for this motion is 3.7 rad and results in an end effector motion of 2.7 m from

the desired linear trajectory.

Figure 30 illustrated the variation in K over a specific trajectory. To evaluate how the three

81

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

400

distance along the self−motion manifold [degrees]

di
st

an
ce

 fr
om

 th
e

se
lf−

m
ot

io
n

m
an

ifo
ld

 o
rig

in
 [d

eg
re

es
]

Figure 29: An example of five self-motion manifolds for the robot from (98) where its end effector
is located four meters from the design point in the positive y direction. The independent axis is a
measure of the size of the manifold (in degrees) with the dependent axis being the distance from
an arbitrary origin on the manifold (giving some sense of its shape).

Table 12: Comparison of K maximization techniques using the robot from (98)

Optimization VFT3d [m3] VFT6d m3·rad3]

Null Motion 2809 8041

∇K 2146 487

pseudo inverse 1653 156

techniques behave over the entire workspace we computed both the three-dimensional and six-

dimensional fault tolerant volumes where K ≥ γ Kmax = 0.2. The results are shown in Table 12.

In the remainder of this work we maximize K by searching all of the self-motion manifolds.

7.4 EXPLORATION OF DIFFERENT ROBOT DESIGNS

7.4.1 Comparing Robot Designs

Now that we have a way to measure the global workspace volumes of interest, we have a way of

comparing various different robot designs that are all locally optimal. In Section 7.2, we discussed

two different definitions of “optimal” Jacobians, i.e., those given in (98) and (99), from which the

82

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Distance from design point [m]

K

−6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

Distance from design point [m]

 ||
∆

θ|
| [

ra
d]

Self Motion
∇K
Least Norm

Self Motion
∇K
Least Norm

Figure 30: A plot of the maximum value of K and the rate of joint displacement for robot from
(98), for a trajectory along the y-axis away from the design point while keeping the orientation
constant. The ability to maintain a large value of K far from the design point comes at the expense
of very large joint motion. In fact, the magnitude of joint change ∥∆θ∥ curve for the technique
that tracks the maximum over all self-motion manifolds is scaled down by a factor of ten.

θ1

θ7

θ3

θ2
θ4

θ5

θ6

self-motion manifold at
a distance from design

point = y

self-motion manifold at
a distance from design

point = y+∆y

largest K values
configurations

Figure 31: An illustration of the large value of joint motion that can occur when tracking the
globally optimal fault-tolerant configuration. This motion is due to a switch between self-motion
manifolds. This reconfiguration will also require motion of the end effector.

kinematic parameters of a manipulator can be determined. Regardless of which definition, i.e.,

Jacobian, we use, there are 7! = 5040 different permutations that result in an equal number of

unique robot designs, which obviously still possess the same locally optimal fault tolerant property.

83

To illustrate one aspect of the wide variation among all of the robot designs, Figure 32 is a plot

of the maximum reach as a function of the permutation index, which is ordered from minimum

to maximum value of Rmax, for both Jacobians given in (98) and (99). It is not surprising that

the variation of Rmax is similar for both Jacobians, because both optimizations require that every

column is of equal norm.

There appears to be a rough relationship between the maximum robot reach, Rmax, and the

normalized workspace volumes. We will illustrate this with robot designs that have minimum,

maximum, and mid-range values of Rmax. It turns out that the robots designed directly from

(98) and (99) are in the mid-range, with Rmax = 9.4 and Rmax = 8.7, respectively. The mini-

mum and maximum Rmax robots for (98) result from permutations [j1 j2 j5 j7 j4 j3 j6] and

[j2 j7 j3 j5 j4 j1 j6], respectively. The DH parameters for robots generated from these Jaco-

bians are given in Table 13 and Table 14, respectively. The minimum and maximum Rmax robots for

(99) result from permutations [j5 j1 j4 j6 j2 j3 j7] and [j3 j5 j2 j4 j7 j1 j6], respectively.

Table 15 presents the three- and six-dimensional volumes using percentages out of the maximum

to give some intuition about the relative size of these workspaces for these six different robots.

Arguably, the best robot design is given by the minimum Rmax of (98), where the maximum

reachable three-dimensional volume is 99% of a sphere of radius Rmax, indicating that this robot’s

reachable workspace is almost spherical. The six-dimensional workspace volume is 49% of the

maximum six-dimensional volume, i.e., 4
3πR

3
max ·π2. In other words, within the spherical workspace,

this robot is capable of achieving approximately half of all possible orientations. For relatively high

degrees of fault tolerance, i.e., K > 0.2, the robot would be limited to only 27% of the maximum

workspace. However, if one is only concerned with a spatial positioning task, the three-dimensional

volume with K > 0.2 is quite large, i.e., 81%.

This “best” robot design is shown in its optimal configuration in Figure 33. From Figure 33, one

84

0 1000 2000 3000 4000 5000 6000
5

6

7

8

9

10

11

12

13

permutation index

m
ax

 r
ea

ch

Robot 1’s Jacobian
Robot 2’s Jacobian

Figure 32: A plot of the maximum reach for all possible robots generated from the 7! column
permutations of (98) and (99).

can see that the robot is not folded up on itself like robot from (98) in Figure 25. This is typical of

min robot designs because the joints of a robot generated from an optimally fault tolerant Jacobian

are constrained to lie on a sphere that is centered at the end effector. Consequently, the robot

designs will become increasingly folded up on themselves as their Rmax increases. Note that the

min robot for the Jacobian from (99) is also the best, in the sense of having the largest volumes.

To visualize the six-dimensional volume, we use a three-dimensional volume plot, where for each

Table 13: The DH parameters of the min robot from (98)

i αi [degrees] ai [m] di [m] θi [degrees]

1 -98 0.17 0 0

2 -86 1.57 -0.03 65

3 92 0.50 -1.07 -148

4 -83 0.61 -0.39 -49

5 -66 1.42 0.72 109

6 -75 0 0.91 -10

7 0 1 -0.001 180

85

Figure 33: The locally optimal fault tolerant configuration at the design point of the min robot
from (98). Note the more evenly distributed links of this robot configuration as compared to that
of Figure 25

point we use color to represent the orientation volume at that point. One can visualize the three-

dimensional workspace by simply ignoring the color map. Figure 34 illustrates the fault tolerant

Table 14: The DH parameters of the max robot from (98)

i αi [degrees] ai [m] di [m] θi [degrees]

1 147 1.00 0 0

2 -69 0.87 -3.98 103

3 -29 0.02 4.46 -42

4 50 0.56 -5.36 117

5 -71 1.38 2.76 153

6 136 1.26 -2.62 136

7 0 1 -1.21 0

86

Table 15: Comparison of robot workspace volumes5

Robots from J of (98) Robots from J of (99)
Max reach Rmax [m] Max reach Rmax [m]
min mid max min mid max
6.0 9.4 12.1 5.9 8.7 11.7

Volumes[%]

Vr 99 96 62 97 95 68
VFT3d 81 81 51 81 73 59
V6d 49 46 26 49 41 28
VFT 27 24 12 26 19 13

six-dimensional volume for the min robot from (98), where the three-dimensional volume part is

shown with multiple cross-sections at the design point to better visualize the interior. The color

map represents the orientation volume distribution within the three-dimensional volume, where the

orientation volume is represented by its percentage of the maximum value Vomax = π2. One can

see how the largest values of fault tolerant orientation volume are concentrated around the design

point. Figure 35 illustrates the total reachable volume, which is similar to the volume where K > 0,

because there are large self motion manifolds that make it easy to find a configuration where K ̸= 0.

7.4.2 Modifying the Anthropomorphic Arm Design

It is interesting to note that robots with a kinematic design that is similar to a seven degree-

of-freedom human arm, e.g., the Mitsubishi PA–10 (the DH parameters are presented in Table 16)

are very fault intolerant. This is because the fourth joint, i.e., the elbow, is the only joint that can

change the distance from the spherical shoulder to the spherical wrist, so that is critical. Thus if

the robot’s tool is close to the wrist, the wrist joints cannot significantly compensate for a loss in

linear velocity due to motion of the elbow. One way to mitigate this issue, and improve the fault

tolerance to a failure in the elbow joint, is to use a bigger tool offset. However, this will still not

achieve the optimal fault tolerance of the designs discussed here.

Another alternative is to physically modify the design of an anthropomorphic arm structure by

moving the third joint to be together with the fourth joint at the same coordinate frame. Table 17

presents the resulting DH parameters, where the parameters a2, a4, and d7 can be designed to

87

Figure 34: Six-dimensional fault tolerant volume of K > 0.2 for the min robot from (98). The
orientation volume is represented by its color within the three-dimensional volume as a percentage
of Vomax = π2.

Table 16: The DH parameters of PA–10 robot

i αi [degrees] ai [m] di [m] θi [degrees]

1 -90 0 0 θ1
2 90 0 0 θ2
3 -90 0 0.450 θ3
4 90 0 0 θ4
5 -90 0 0.5 θ5
6 90 0 0 θ6
7 0 0 0.08 θ7

further optimize fault tolerance. Note that moving the third joint in this way interchanged the

roles of the d offsets and the a link lengths for some of the joints. However, the robots still share

similar physical structure as indicated in Fig. 36.

In this work we chose the Jacobian in (98) for comparison with the modified anthropomorphic

arm. In order to obtain a fair comparison with (98), we chose the values of a2, a4, and d7 so that

88

Figure 35: Six-dimensional reachable volume for the min robot from (98). This is very similar to
the fault tolerant volume for K ̸= 0. The orientation volume is represented by its color within the
three-dimensional volume as a percentage of Vomax = π2.

the average of the singular values

σave =
1

6

6∑
i=1

σi (113)

is close to the average of the singular values of (98). To do this, we first randomly generated one

million uniformly distributed points in the joint space. We chose a2 = a4 = a as an approximation

to the lengths of a human arm, and varied a to be 1, 2, and 3. We then varied d7 to be in the

range of 0 to 100% of a, in 10% increments. Note that when identifying the fault tolerance of a

manipulator Jacobian, one should remember that scaling the length parameters essentially changes

the weighting between the position and orientation. Otherwise, it might be tempting to think

that two (a2, a4, d7) combinations that are proportional to each other would result in the same

fault tolerance properties. Thus each of the above 33 selections will generally result in different

89

Figure 36: Modifying the PA-10 to be fault tolerant. Note that the third joint is moved from the
base frame to the same location as the coordinate frame of the fourth joint. This is a result of
considering the joint offsets d3 and d5 to be link lengths a2 and a4. To help with visualizing this
difference, the joint values for the PA-10 are set to [0◦ , 0◦ , 0◦ , − 90◦ , 0◦ , 0◦ , 0◦], whereas
for the modified arm the joint values are [0◦ , − 90◦ , 0◦ , − 90◦ , 0◦ , 0◦ , 0◦]. (This graphic
was generated using the Robotics Toolbox described in [61].)

Table 17: Kinematics of a modified anthropomorphic arm

i αi [degrees] ai [m] di [m] θi [degrees]

1 -90 0 0 θ1
2 90 a2 0 θ2
3 -90 0 0 θ3
4 90 a4 0 θ4
5 -90 0 0 θ5
6 90 0 0 θ6
7 0 0 d7 θ7

fault tolerance properties. For each of the 33 resulting robots, we calculated one million Jacobians

corresponding to the one million configurations generated earlier, and evaluated (113). The robot

parameters that resulted in a configuration that most closely matched the average singular value

of the nominal Jacobian in (98) were a = 2 and d7 = 1.

A desirable configuration should have a large K value and should be close to being isotropic. In

the next step we optimized the joint configuration and d7 value in terms of both K and the isotropy

90

measure

I =
σ6
σ1
. (114)

Note that I is the reciprocal of the condition number and is well defined for any nonzero matrix.

Unlike the condition number, I is bounded and takes on the optimal value 1 when the configuration

is isotropic and the value 0 at a singularity. In general, larger values of I correspond to better

configurations in the sense of isotropy. In order to take into account both measures, we chose to

maximize K+ I. This was accomplished using a nullspace projection method. For each of the one

million starting configurations, we used the projection of the gradient of K + I onto the nullspace

to determine the joint motion that would improve fault tolerance and isotropy:

θ̇ = (I − J+J) (∇K +∇I) . (115)

Applying (115) reconfigures the robot along its self-motion manifold to a maximum value for K+I

subject to the constraint of not moving the end effector.6 The gradients for K and I are found

using the method described in [13]. In [13] it was noted that K can be written as

K = FuT6
FJ F v6 (116)

where F = argminf=1,...,7
fσ6 is the index of the most debilitating joint failure and Fu6 and F v6

are respectively the input and output singular vectors corresponding to the minimum singular value

of FJ . The gradient of K is found by taking its partial derivatives, which results in three terms. It

is not difficult to show that the first and third terms are zero, i.e.,

(
∂ FuT6
∂θi

)
FJ F v6 =

FuT6
FJ

(
∂ F v6
∂θi

)
= 0 (117)

because the partial derivatives of FuT6
Fu6 =

F vT6
F v6 = 1 are zero. Thus, we have that the partial

6In practice, a position error term is required to make sure that the end effector is not moved.

91

derivative of K is given by

∂K
∂θi

= FuT6

(
∂ FJ

∂θi

)
F v6. (118)

To obtain the partial derivative of FJ with respect to θi, we use the fact that for rotary-jointed

robots

∂jk
∂θi

=



(zi × zk)× pk + zk × (zi × pk)

zi × zk

 i < k

zk × (zi × pk)

0

 i ≥ k

(119)

where zl is the axis of rotation of the l-th joint and pl is the vector from the l-th joint axis to the

end effector. The expression for ∂jk/∂θi can be simplified to

∂jk
∂θi

=



(zTi pk)zk − (zTi zk)pk

zi × zk

 i < k

(zTk pi)zi − (zTi zk)pi

0

 i ≥ k.

(120)

The gradient of K,

∇K =

[
∂K
∂θ1

∂K
∂θ2

. . .
∂K
∂θ7

]T
, (121)

is then given by using (118) and (120).

The gradient of I,

∇I =

[
∂I
∂θ1

∂I
∂θ2

. . .
∂I
∂θ7

]T
, (122)

is found in an analogous manner by taking the partial derivatives of

I =
σ6
σ1

=
uT6 Jv6

uT1 Jv1
, (123)

to obtain

∂I
∂θi

=
σ1

(
uT6

∂J
∂θi
v6

)
− σ6

(
uT1

∂J
∂θi
v1

)
σ21

(124)

92

Table 18: Modified anthropomorphic arm with optimized DH parameters

i αi [degrees] ai [m] di [m] θi [degrees]

1 -90 0 0 0◦

2 90 2 0 23◦

3 -90 0 0 132◦

4 90 2 0 316◦

5 -90 0 0 307◦

6 90 0 0 273◦

7 0 0 1.1 114◦

where ∂J/∂θi is given column wise by (120) and ui and vi are the ith columns of the SVD matrices

U and V for J , respectively.

We then evaluated 21 robots with a2 = a4 = a = 2 and varying d7 from 0 to a = 2 in increments

of 0.1 by starting with the original one million randomly generated configurations and using the

above approach to drive the robot to a configuration that maximized K+ I. We then selected the

optimal joint configuration to be the one that corresponds to the maximum value of K = 0.3672,

which resulted in

θ = [0◦ 23◦ 132◦ 316◦ 307◦ 273◦ 114◦]T , (125)

and d7 = 1.1. Fig. 37 illustrates an image of the robot at the optimized configuration and its DH

parameters are given in Table 18.

Figure 38 illustrates that the design that we have found in (125), recalling its K = 0.3672, is

the maximum that the robot can achieve along the three orthogonal trajectories from the design

point. (See Appendix E for different trajectories that illustrate the same fact.) Table 19 presents

a comparison with the min robot from (98). They both have close results except for the six-

dimensional fault tolerant volume, where the min robot from (98) is still ranked as the best among

all the other robots by its highest percentage value.(See Appendix F to visualize the volumes.)

93

Figure 37: The locally optimal fault tolerant configuration at the design point of the modified
anthropomorphic arm. (This graphic was generated using the Robotics Toolbox described in [61].)

Table 19: Comparison between the min robot from (98) and the modified anthropomorphic arm
robot

Global measure the min robot from (98) the modified anthropomorphic arm robot

Rmax [m] 6.0 5.1

Vr [%] 99 100

VFT3d [%] 81 78

V6d [%] 49 49

VFT [%] 27 10

94

−6 −5 −4 −3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Distance from the design point [m]

K

−6 −5 −4 −3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

Distance from the design point [m]

||∆
 θ

||
[r

ad
]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

Figure 38: The locally optimal fault tolerant configuration at the design point of the modified
anthropomorphic arm robot. (See Appendix E for different trajectories.)

95

CHAPTER VIII

CONCLUSIONS

8.1 SUMMARY

This work has shown that there are multiple different robot designs that possess the same desired

Jacobian that has been selected to have desirable failure tolerance properties at a specific operating

point. It has been shown that even though these manipulators all have the same local properties,

their global properties can differ significantly, both in terms of pre-failure kinematics as well as

post-failure performance. This can provide robot system designers with a great deal of flexibility

when considering the different constraints that arise from different applications.

In the first part of this work, a mathematical analysis for planar manipulators has presented,

based on the Gram matrix, that allows one to enumerate all of the possible planar manipulators

that possess certain desired fault tolerance properties based on the form of a desired Jacobian. This

analysis was illustrated on both a 3R manipulator experiencing a single locked joint failure and

a 4R manipulator experiencing two joint failures. It was further shown that there are significant

differences in the capabilities of the resulting manipulators, both in terms of pre- and post-failure

performance. It was shown that some of these differences are related to the fact that the same

Jacobian can result in manipulators that vary significantly in workspace area. However, it is quite

surprising that major differences in behavior were also found in manipulator designs that were

identical in terms of area.

The second part of this work has shown that one can parameterize the infinite family of four-

DOF spatial positioning manipulators that correspond to an optimally failure tolerant Jacobian.

96

It was further shown that with an appropriate parametrization, one does not need to consider

all possible permutations (and multiplications of ±1) of the columns of the Jacobian. Then a

method for evaluating the global fault tolerant properties of the resulting manipulator designs was

presented and used to illustrate how one would optimize the kinematic design for a given family of

manipulators to obtain a robot that has a high degree of failure tolerance over its entire workspace,

in addition to being locally optimal.

The third part of this work has explored the kinematic design of optimally fault tolerant on

seven degree-of-freedom redundant manipulators for fully general spatial motion. Two different

approaches for identifying physically feasible designs were explored. Both of these approaches

identify locally optimal robot configurations based on properties of the Jacobian. A technique for

efficiently computing six-dimensional workspace volumes was then developed to be able to determine

how these fault tolerant properties vary throughout the workspace. This provides a quantitative

measure for comparing different locally optimal designs. This is important because each locally

optimal Jacobian will result in 7! unique manipulators designs. It was shown that robot designs

with small normalized maximum reach tend to have larger fault tolerant workspace volumes. Such

kinematic designs also tend to be more well configured at the optimal design point.

8.2 FUTURE DIRECTIONS

In terms of future work, it would be interesting to know how one can characterize self-motion

manifolds for spatial manipulators and to know how many there are. Other future work would be

to prove if its true that all feasible optimally fault tolerant Jacobians that are for 7R manipulators

are really equivalent.

One could also extend this work to 8 × 6 optimally fault tolerant Jacobians. There are entire

families of different Jacobians [57], in addition to their 8! of column permutations. This would give

more flexibility to chose for a required design. The performance of manipulator designs may then

97

be compared to 7R manipulators.

Finally, an interesting future development would be to extend the algorithm that was illustrated

in Chapter 3 to be applicable for a Jacobian whose manipulator has any number of prismatic joints,

since the current algorithm works only for the case of revolute manipulators.

98

REFERENCES

[1] K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “An illustration of generating

robots from optimal fault-tolerant Jacobians,” 15th IASTED Int. Conf. Robot. Applic., Cam-

bridge, MA, Nov. 1-3, 2010, pp. 461–468.

[2] K. M. Ben-Gharbia, R. G. Roberts, and A. A. Maciejewski, “Examples of planar robot kine-

matic designs from optimally fault-tolerant Jacobians,” in IEEE Int. Conf. on Robot. and

Automat., Shanghai, China, May 9-13, 2011.

[3] K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “Examples of spatial positioning

redundant robotic manipulators that are optimally fault tolerant,” in IEEE Int. Conf. on

Syst., Man, Cybern., Anchorage, Alaska, Oct. 9-12, 2011, pp. 1526–1531.

[4] K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “Kinematic design of redundant

robotic manipulators for spatial positioning that are optimally fault tolerant,” IEEE Trans.

Robotics, vol. 29, no. 5, pp. 1300–1307, 2013.

[5] K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “A kinematic analysis and evalua-

tion of planar robots designed from optimally fault-tolerant Jacobians,” IEEE Trans. Robotics,

vol. 30, no. 2, pp. 516–524, 2014.

[6] K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “An Example of a Seven Joint Ma-

nipulator Optimized for Kinematic Fault Tolerance,” IEEE Int. Conf. on Syst., Man, Cybern.,

Diego, CA, Oct. 5-8, 2014, pp. xxx–xxx.

99

[7] E. C. Wu, J. C. Hwang, and J. T. Chladek, “Fault-tolerant joint development for the space

shuttle remote manipulator system: Analysis and experiment,” IEEE Trans. Robot. Automat.,

vol. 9, no. 5, pp. 675–684, Oct. 1993.

[8] G. Visentin and F. Didot, “Testing space robotics on the Japanese ETS-VII satellite,” ESA

Bulletin-European Space Agency, pp. 61–65, Sep. 1999.

[9] S. Soylu, B. J. Buckham, and R. P. Podhorodeski, “Redundancy resolution for underwater

mobile manipulators,” Ocean Eng., vol. 37, no. 2-3, pp. 325–343, 2010.

[10] W. H. McCulloch, “Safety analysis requirements for robotic systems in DOE nuclear facilities,”

in Proc. 2nd Specialty Conf. Robot. Challenging Environ., Albuquerque, NM, Jun. 1-6, 1996,

pp. 235–240.

[11] S. Kawatsuma, M. Fukushima, and T. Okada, “Emergency response by robots to Fukushima-

daiichi accident: Summary and lessons learned,” Industrial Robot: An International Journal,

vol. 39, no. 5, pp. 428–435, 2012.

[12] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura,

T. Yoshida, E. Koyanagi, M. Fukushima, and S. Kawatsuma, “Emergency response to the

nuclear accident at the Fukushima daiichi nuclear power plants using mobile rescue robots,”

Journal of Field Robotics, vol. 30, no. 1, pp. 44–63, 2013.

[13] K. N. Groom, A. A. Maciejewski, and V. Balakrishnan, “Real-time failure-tolerant control of

kinematically redundant manipulators,” IEEE Trans. Robot. Automat., vol. 15, no. 6, pp. 1109–

1116, Dec. 1999.

[14] Reliability Information Analysis Center, “Nonelectronic parts reliability data,” Defense Tech-

nical Information Center / Air Force Research Lab, Rome, NY, USA, no. NPRD-2011, 2011.

100

[15] S. Cheng and B. S. Dhillon, “Reliability and availability analysis of a robot-safety system,”

Journal of Quality in Maintenance Engineering, vol. 17, no. 2, pp. 203–232, 2011.

[16] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “A dynamic fault tolerance framework for

remote robots,” IEEE Trans. Robot. Automat., vol. 11, no. 4, pp. 477–490, Aug. 1995.

[17] Y. Ting, S. Tosunoglu, and B. Fernandez. “Control algorithms for fault-tolerant robots,” IEEE

Int. Conf. Robot. Automat., vol. 2, pp. 910–915, May 8–13, 1994.

[18] J. D. English and A. A. Maciejewski, “Fault tolerance for kinematically redundant manipula-

tors: Anticipating free-swinging joint failures,” IEEE Trans. Robot. Automat., vol. 14, no. 4,

pp. 566–575, Aug. 1998.

[19] J. D. English and A. A. Maciejewski, “Failure Tolerance through active braking: A kinematic

approach,” Int. J. Robot. Res., vol. 20, no. 4, pp. 287–299, Apr. 2001.

[20] P. Nieminen, S. Esque, A. Muhammad, J. Mattila, J. Väyrynen, M. Siuko, and M. Vilenius,

“Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at

ITER,” Fusion Engineering and Design, vol. 84, no. 7, pp. 1420–1424, 2009.

[21] D. L. Schneider, D. Tesar, and J. W. Barnes, “Development & testing of a reliability perfor-

mance index for modular robotic systems,” in Proc. Annual Rel. Maintain. Symp., Anaheim,

CA, Jan. 24-27, 1994, pp. 263–271.

[22] B. S. Dhillon A. R. M. Fashandi and K. L. Liu, “Robot systems reliability and safety: A

review,” J. Quality Maintenance Engineering, vol. 8, no. 3, pp. 170–212, 2002.

[23] C. J. J. Paredis and P. K. Khosla, “Designing fault-tolerant manipulators: How many degrees

of freedom?,” Int. J. Robot. Res., vol. 15, no. 6, pp. 611-628, Dec. 1996.

101

[24] S. Tosunoglu and V. Monteverde, “Kinematic and structural design assessment of faul-tolerant

manipulators,” Intell. Automat. Soft Comput., vol. 4, no. 3, pp. 261–268, 1998.

[25] C. Carreras and I. D. Walker, “Interval methods for fault-tree analysis in robotics,” IEEE

Trans. Robot. Automat., vol. 50, no. 1, pp. 3–11, Mar. 2001.

[26] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “A dynamic fault tolerance framework for

remote robots,” IEEE Trans. Robot. Automat., vol. 11, no. 4, pp. 477–490, Aug. 1995.

[27] L. Notash, “Joint sensor fault detection for fault tolerant parallel manipulators,” J. Robot.

Syst., vol. 17, no. 3, pp. 149-157, 2000.

[28] M. Leuschen, I. Walker, and J. Cavallaro, “Fault residual generation via nonlinear analytical

redundancy,” IEEE Trans. Control Syst. Tech., vol. 13, no. 3, pp. 452–458, May 2005.

[29] M. Anand, T. Selvaraj, S. Kumanan, and J. Janarthanan, “A hybrid fuzzy logic artificial neural

network algorithm-based fault detection and isolation for industrial robot manipulators,” Int.

J. Manufact. Res., vol. 2, no. 3, pp. 279–302, 2007.

[30] D. Brambilla, L. Capisani, A. Ferrara, and P. Pisu, “Fault detection for robot manipulators

via second-order sliding modes,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3954–

3963, Nov. 2008.

[31] L. Capisani, A. Ferrara, A. F. de Loza, and L. Fridman, “Manipulator fault diagnosis via

higher order sliding-mode observers,” IEEE Transactions on Industrial Electronics, vol. 59,

no. 10, pp. 3979–3986, 2012.

[32] J. Park, W.-K. Chung, and Y. Youm, “Failure recovery by exploiting kinematic redundancy,”

in 5th Int. Workshop Robot Human Commun., Tsukuba, Japan, Nov. 11-14, 1996, pp. 298–305.

102

[33] X. Chen and S. Nof, “Error detection and prediction algorithms: Application in robotics,” J.

Intell. Robot. Syst.; Robotic Systems, vol. 48, no. 2, pp. 225–252, 2007.

[34] M. Ji and N. Sarkar, “Supervisory fault adaptive control of a mobile robot and its application

in sensor-fault accommodation,” IEEE Trans. Robotics, vol. 23, no. 1, pp. 174–178, Feb. 2007.

[35] A. De Luca and L. Ferrajoli, “A modified Newton-Euler method for dynamic computations in

robot fault detection and control,” in IEEE Int. Conf. Robot. Automat., May 2009, pp. 3359–

3364.

[36] J. E. McInroy, J. F. O’Brien, and G. W. Neat, “Precise, fault-tolerant pointing using a Stewart

platform,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 91–95, Mar. 1999.

[37] M. Hassan and L. Notash, “Optimizing fault tolerance to joint jam in the design of parallel

robot manipulators,” Mech. Mach. Theory, vol. 42, no. 10, pp. 1401–1417, 2007.

[38] Y. Chen, J. E. McInroy, and Y. Yi, “Optimal, fault-tolerant mappings to achieve secondary

goals without compromising primary performance,” IEEE Trans. Robotics, vol. 19, no. 4,

pp. 680–691, Aug. 2003.

[39] Y. Yi, J. E. McInroy, and Y. Chen, “Fault tolerance of parallel manipulators using task space

and kinematic redundancy,” IEEE Trans. Robotics, vol. 22, no. 5, pp. 1017–1021, Oct. 2006.

[40] J. E. McInroy and F. Jafari, “Finding symmetric orthogonal Gough-Stewart platforms,”

IEEE Trans. Robotics, vol. 22, no. 5, pp. 880–889, Oct. 2006.

[41] L. Notash, “A methodology for actuator failure recovery in parallel manipulators,” Mech.

Mach. Theory, vol. 46, no. 4, pp. 454–465, 2011.

103

[42] A. Allais, J. McInroy, and J. O’Brien, “Locally decoupled micromanipulation using an even

number of parallel force actuators,” IEEE Trans. Robotics, vol. 28, no. 6, pp. 1323–1334,

2012.

[43] C. L. Lewis and A. A. Maciejewski. “Dexterity optimization of kinematically redundant

manipulators in the presence of failures,” Computers and Electrical Engineering: An

International Journal, vol. 20, No. 3, pp. 273–288, May 1994.

[44] A. A. Maciejewski, “Fault tolerant properties of kinematically redundant manipulators,” in

Proc. IEEE Int. Conf. Robot. Automat., Cincinnati, OH, May 13-18 1990, pp. 638–642.

[45] R. G. Roberts and A. A. Maciejewski, “A local measure of fault tolerance for kinematically

redundant manipulators,” IEEE Trans. Robotics Automat., vol. 12, no. 4, pp. 543–552, Aug.

1996.

[46] R. G. Roberts, “On the local fault tolerance of a kinematically redundant manipulator,” J.

Robotic Syst., vol. 13, no. 10, pp. 649–661, Oct. 1996.

[47] R. G. Roberts, H. G. Yu, and A. A. Maciejewski, “Fundamental limitations on designing

optimally failure-tolerant kinematically redundant manipulators,” IEEE Trans. Robotics,

vol. 24, no. 5, pp. 1124–1237, Oct. 2008.

[48] C. J. J. Paredis and P. K. Khosla, “Fault tolerant task execution through global trajectory

planning,” Rel. Eng. Syst. Safety, vol. 53, pp. 225–235, 1996.

[49] C. L. Lewis and A. A. Maciejewski, “Fault tolerant operation of kinematically redundant

manipulators for locked joint failures,” IEEE Trans. Robot. Automat., vol. 13, no. 4,

pp. 622–629, Aug. 1997.

104

[50] R. S. Jamisola, Jr., A. A. Maciejewski, and R. G. Roberts,“Failure-tolerant path planning

for kinematically redundant manipulators anticipating locked-joint failures” IEEE Trans.

Robotics, vol. 22, no. 4, pp. 603–612, Aug. 2006.

[51] R. G. Roberts, R. J. Jamisola Jr., and A. A. Maciejewski, “Identifying the failure-tolerant

workspace boundaries of a kinematically redundant manipulator,” in IEEE Int. Conf. Robot.

Automat., Rome, Italy, April 10-14, 2007, pp. 4517–4523.

[52] R. C. Hoover, R. G. Roberts, A. A. Maciejewski, P. S. Naik, and K. M. Ben-Gharbia,

“Designing a Failure-Tolerant Workspace for Kinematically Redundant Robots,” accepted to

appear in IEEE Trans. Autom. Sci. Eng., 2014.

[53] T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robotics Res., vol. 4, no. 2,

pp. 3–9, 1985.

[54] C. A. Klein and B. E. Blaho, “Dexterity measures for the design and control of kinematically

redundant manipulators,” Int. J. Robot. Res., vol. 6, no. 2, pp. 72–83, 1987.

[55] C. Klein and T. A. Miklos, “Spatial robotic isotropy,” Int. J. Robot. Res., vol. 10, no. 4,

pp. 426-437, 1991.

[56] K. E. Zanganeh and J. Angeles, “Kinematic isotropy and the optimum design of parallel

manipulators,” Int. J. Robot. Res., vol. 16, no. 2, pp. 185-197, Apr. 1997.

[57] A. A. Maciejewski and R. G. Roberts, “On the existence of an optimally failure tolerant

7R manipulator Jacobian,” Applied Mathematics and Computer Science, vol. 5, no. 2, pp.

343–357, 1995.

[58] J. Denavit and R. S. Hartenberg, A kinematic notation for lower-pair mechanisms based on

matrices, Trans ASME J. Appl. Mech, 23, 1955, 215–221.

105

[59] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision, and

Intelligence (New York: McGraw-Hill, 1987).

[60] A. A. Maciejewski and C. A. Klein, “SAM: Animation software for simulating articulated

motion,” Computers and Graphics: An International Journal, vol. 9, no. 4, pp. 383–391, 1985.

[61] P. I. Corke, “A robotics toolbox for MATLAB,” IEEE Robot. Autom. Mag., vol. 3, no. 1,

pp. 2–32, Mar. 1996.

[62] C. Sanderson, “Armadillo: An Open Source C++ Linear Algebra Library for Fast

Prototyping and Computationally Intensive Experiments”. NICTA, St Lucia, QLD, Austalia,

Tech. Rep., 2010.

[63] C. Chen and D. Jackson, “Parameterization and evaluation of robotic orientation workspace:

a geometric treatment,” IEEE Trans. Robotics, vol. 27, no. 4, pp. 656–663, 2011.

[64] G. Marsaglia, “Choosing a point from the surface of a sphere,” The Annals of Mathematical

Statistics, vol. 43, no. 2, pp. 645–646, 1972.

[65] C. A. Klein and L.-C. Chu, “Comparison of extended Jacobian and Lagrange multiplier based

methods for resolving kinematic redundancy,” Journal of Intelligent and Robotic Systems,

vol. 19, pp. 39–54, 1997.

106

APPENDIX A

MATLAB CODE OF COMPUTING DH PARAMETERS FROM A JACOBIAN

function [alpha a theta d Jc comp robot R 02n]=J2DHv5(J)% J is n by 6 matrix

pi prime=[];

n=size(J);

n=n(2);

pii prime=[];diff=[];

R 02n=zeros(3,3);

if norm(J(4:6,1)−[0 0 1]')<1e−5 | norm(J(4:6,n)−[0 0 1]')>1e−5

xn=cross(J(1:3,n),J(4:6,n))/norm(cross(J(4:6,n),J(1:3,n)));

R 02n=[xn,cross(J(4:6,n),xn)/norm(cross(J(4:6,n),xn)),J(4:6,n)];

J(4:6,:)=R 02n'*J(4:6,:);

J(1:3,:)=R 02n'*J(1:3,:);

J(4:6,n)=[0 0 1]';

J;

end

%initial value because we can't use index 0

J=[J [0 0 0 0 0 1]'];

x=[0 0 0]';

O=[0 0 0]';

107

alpha=0;

a=0;

theta=0;

d=0;

%note: the indexing i and i+1 is used instead of i−1 and i

for i=1:n

%%

v(:,i)=J(1:3,i);

v(:,i+1)=J(1:3,i+1);

z(:,i)=J(4:6,i);%==w

z(:,i+1)=J(4:6,i+1);

pi prime=[pi prime cross(z(:,i),v(:,i))]; %pi'=zi cross (zi cross pi)

pii prime=[pii prime cross(z(:,i+1),v(:,i+1))];%pi+1'

diff=[diff pii prime(:,i)−pi prime(:,i)];

if norm(cross(z(:,i),z(:,i+1)))>1e−4

x(:,i+1)=cross(z(:,i),z(:,i+1))/norm(cross(z(:,i),z(:,i+1)));

if i==1

x(:,i)=x(:,i+1);%x0 is arbitrary

end

if dot(x(:,i+1),diff(:,i))<0;

x(:,i+1)=−x(:,i+1);

end

else

x(:,i+1)=diff(:,i)/norm(diff(:,i));

end

%%

%1: computing Alpha

% cos alpha= zi dot zi+1

108

s=dot(z(:,i), z(:,i+1));% to solve the problem when the answer is very close ...

to 1 and getting complex answer of acos

if abs(abs(s)−1)≤1e−4

if s>0

s=1;

elseif s<0

s=−1;

end

end

alpha(i+1)=acos(s);

%define the sign of alpha

if dot(x(:,i+1),cross(z(:,i),z(:,i+1)))<0

alpha(i+1)=−alpha(i+1);

end

%%

%2: computing the Link−Length

% x dot diffrence

a(i+1)=(dot(x(:,i+1),diff(:,i)));

%%

%3: computing Theta

% cos theta= x i+1 dot x i

if i==1

theta(i+1)=0;%arbitrary value for theta1

else

theta(i+1)=abs(acos((dot(x(:,i+1),x(:,i)))));

if theta(i+1)̸=0

if dot(z(:,i),cross(x(:,i),x(:,i+1)))<0

theta(i+1)=−theta(i+1);

end

109

end

end

%%

%4: computing d

%finding the cross points x org

%then d =(O i+1 − O i) dot zi

if i==n

O(:,i+1)=[0 0 0]';

elseif alpha(i+1)==0 |(abs(alpha(i+1))≤3.1416+1e−4 && abs(alpha(i+1))≥3.1416−1e−4)

O(:,i+1)=O(:,i);

else

pi 2prime=pi prime(:,i)+(a(i+1))*x(:,i+1); %shifting the zi axis to zi+1 ...

to find the corss point

%we have 3 equations in 2 unkonws; we will choose any 2 so that det(A)̸=0

A{1,i}=[z(1:2,i) −z(1:2,i+1)];

A{2,i}=[z(1,i) −z(1,i+1);z(3,i) −z(3,i+1)];

A{3,i}=[z(2:3,i) −z(2:3,i+1)];

diff prime{1,i}=pii prime(1:2,i)−pi 2prime(1:2);

diff prime{2,i}=[pii prime(1,i);pii prime(3,i)]−[pi 2prime(1);pi 2prime(3)];

diff prime{3,i}=pii prime(2:3,i)−pi 2prime(2:3);

det A=abs([det(A{1,i}),det(A{2,i}),det(A{3,i})]);

[num ind]=max(det A);%picking the matrix that has the lagrer det

t=A{ind,i}\diff prime{ind,i};%same as inv(A)*b

O(:,i+1)=pii prime(:,i)+t(2)*z(:,i+1);

end

110

if i==1

d(i+1)=0;

else

d(i+1)=dot((O(:,i+1)−O(:,i)),z(:,i));

end

end

alpha=alpha(2:n+1);

a=a(2:n+1);

theta=theta(2:n+1);

d=d(2:n+1);

disp('−−−')

disp(' ')

disp(' alpha a theta d')

disp(' −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')

disp([alpha'*180/pi a' theta'*180/pi d'])

111

APPENDIX B

SEARCHING FOR THE MAXIMUM K VALUE ONTO THE NULL SPACE

The maximum value ofK is simply determined after calculatingK for every possible configuration

at a position in the workspace, i.e. the self-motion manifold. The exhaustive calculation was in

computing the self-motion manifold. In this work, there were one-dimensional null space, as the

case in the 3R planar and spatial positioning manipulators, and two-dimensional null space, as in

4R planar manipulators. Section B.1 will illustrate the computations of maximum K with single

locked joint failure for one-dimensional null space case, while the two-dimensional null space case

where two locked joint failures are assumed is presented in Section B.2.

B.1 ONE-DIMENSIONAL NULL SPACE

Let Pi be the position the workspace that one want to maximize K at, and let θ0 be the

initial configuration at Pi. The following steps will explain the algorithm used for optimizing K by

computing the self-motion manifold:

1. Name θ = θ0.

2. Compute J(θ).

3. Calculate ∥nJ∥ (the null vector of J(θ).)

4. scale nJ such that ∥nJ∥ = α∥nJ∥, where α is the step size within the null space in radius.

5. Recalculate θ such that θ = θ + nJ .

6. Recompute J(θ).

7. Calculate θ̇ using Damped Least Squares (DLS) inverse kinematics (see (130) below).

8. Save the result in θ such that θ = θ + θ̇.

112

9. Compute J(θ).

10. Compute K at this configuration, and save it with θ value if it is the maximum.

11. Redo steps 3–10 until θ ≈ θ0.

The DLS inverse kinematics equation (the is used in step 7) is

θ̇ = JT (JJT + λI)−1ẋc, (126)

where θ̇ is the joint velocity, λ is a scalar value that can be optimized to minimize

∥ẋc − Jθ̇∥2 + λ2∥θ̇∥2, (127)

I is identity matrix, and ẋc is the position error feedback signal that is used to match both the

velocity and the position, such that

ẋc = ẋD +Kp(xD − xA)/∆t, (128)

where ẋD is the desired position velocity, xD and xA are the desired and the actual positions

respectively, ∆t is time step, and 0 ≤ Kp ≤ 1 (Kp = 0.5 was used.)

In step 3, one way to compute the null vector is to compute the SVD of J (Recalling J = UDV T

from Chapter 2), which is already required for step 10, then nJ will be equal to the last column of

V . Note that there should not be a big change in the direction of nJ from the previous iteration. If

that happens, an oscillation in the motion will occur between two or more adjacent configurations.

To fix that, one can add a comparison condition with the pervious nJ vector and flip the current

nJ direction if the angle between them is too large, e.g. > 90◦. For a 3R planar manipulator, one

can also use the canonical null vector form such that

nJ =


a2a3 sin(θ3)

−a2a3 sin(θ3)− a1a3 sin(θ2 + θ3)

a1a2 sin(θ2) + a1a3 sin(θ2 + θ3)

 . (129)

113

(Recalling that ai and θi are the kinematic parameters of a planar manipulator from 2.) The

following section will present the computation of maximum K in the two-dimensional null space

case.

B.2 TWO-DIMENSIONAL NULL SPACE

Two locked joint failures were assumed in the 4R planar manipulators. Accordingly, one can

compute σmin for all possible post-failure Jacobians with two columns being removed; consequently,

K will be the smallest value among all σmin
1. With two-dimensional space, it is complicated to

compute the self-motion manifold for every Pi position in the workspace and compute the maximum

value of K. Instead, in this work K was maximized using its gradient projection (∇K) [13] in the

null space, such that

θ̇ = J+ẋ+

(
n∑

i=r+1

viv
T
i

)
∇K, (130)

where J+ is the pseudoinverse of J , ẋ is the positional velocity, r is the rank of J, n the number J

columns, and vi is the column i of the SVD matrix V . The term
(∑n

i=r+1 viv
T
i

)
is the projection

operation in the null space.

The following steps illustrate the algorithm used to maximize the K value, assuming that one

has the initial joint values θ0 at Pi :

1. Name θ = θ0.

2. Compute J(θ).

3. Calculate the null projection
(∑n

i=r+1 viv
T
i

)
4. Compute ∇K.

5. Make ∥∇K∥ ≤ a (a = 0.5 was used here.)

1Equation (5) in Chapter 2 describes the case with single locked joint failure.

114

6. Compute a scalar α = K′ − K (K′ is the next smallest calculated value of σmin > K from all post-failure

Jacobians.)

7. θ = θ + α
(∑n

i=r+1 viv
T
i

)
∇K.

8. Recompute J(θ).

9. Calculate θ̇ using DLS inverse kinematics.

10. Save the result in θ such that θ = θ + θ̇.

11. Compute J(θ).

12. Compute K at this configuration, and save it if with θ value if it is the maximum.

13. Redo steps 3–12 until either one of the following events happen:

(a) ∇K ≈ 0.

(b) maximum iteration would be reached.

In step 6, α was used to solve the issue when the failure index of K is not unique. At this point,

K is not differentiable [13].

The only issue with this algorithm is that one can not be sure if the maximum value of K is

the global maximum. In this work, most of the time the maximum evaluated K by performing the

above steps was a local maxima. To do more searching for the global value, one can redo the above

steps using the best configurations from the previous calculations of the adjacent locations Pi−1

and Pi+1. The DLS inverse kinematics formula can be used first to drive the robot to the current

Pi location, and that value will be the new value of θ0.

Finally, more random θ0 values were selected and the above steps were repeated in order to

increase the probability of being on the global maxima.

115

APPENDIX C

FOUR DOF PLANAR MANIPULATORS IN TABLE 3: MAXIMUM K PLOTS VERSUS

DISTANCE FROM BASE

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 2

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 3

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 4

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 5

116

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 6

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 7

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 8

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 9

117

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 10

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance from Base

K

Robot 11

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from Base

K

Robot 12

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from Base

K

Robot 13

118

APPENDIX D

TABLE OF RESULTS FOR ROBOT GROUPS 4-7 IN TABLE 6

Robot
Group

(α1, α2, α3, α4)
[degrees]

(β1, β2, β3, β4)
[degrees]

WK
[%]

max
reach
[m]

4

(0, 90, 0, 0) (90, 90, 240, 240) 59 5.19
(0, 90, 0, 0) (90, 90, 60, 60) 53 3.83

(0, 90, 180, 0) (90, 90, 240, 60) 51 4.78
(180, 90, 0, 0) (90, 270, 240, 240) 42 3.45

(180, − 90, 0, 0) (90, 270, 60, 60) 41 4.78
(0, 90, 180, 0) (90, 90, 60, 240) 37 3.43

(180, − 90, 180, 0) (90, 270, 60, 240) 33 4.37
(180, − 90, 180, 0) (90, 270, 240, 60) 31 3.05

5

(0, 90, 90, 0) (90, 90, 240, 330) 30 4.96
(0, 90, − 90, 0) (90, 90, 240, 150) 26 4.61

(180, −90, −90, 0) (90, 270, 60, 150) 13 4.55
(0, − 90, − 90, 0) (90, 90, 60, 150) 12 3.28
(180, − 90, 90, 0) (90, 270, 60, 330) 11 4.20
(0, − 90, 90, 0) (90, 90, 60, 330) 8 3.97
(180, 90, 90, 0) (90, 270, 240, 330) 6 2.90

(180, 90, − 90, 0) (90, 270, 240, 150) 3 3.59

6

(−90, 0, − 90, 0) (150, 30, 120, 180) 67 3.92
(−90, 180, −90, 0) (150, 210, 120, 180) 52 4.88
(−90, 0, 90, 0) (150, 210, 300, 0) 48 5.16

(−90, 0, − 90, 0) (150, 210, 300, 180) 31 4.00
(−90, 180, −90, 0) (150, 30, 300, 180) 26 2.41
(−90, 0, 90, 0) (150, 30, 120, 0) 4 2.41

(−90, 180, 90, 0) (150, 30, 300, 0) 3 3.33
(−90, 180, 90, 0) (150, 210, 120, 0) 3 3.41

7

(90, 90, 0, 0) (0, 270, 240, 240) 48 3.93
(90, 90, 0, 0) (0, 90, 240, 240) 40 4.93

(90, − 90, 180, 0) (0, 270, 240, 60) 32 3.52
(90, 90, 0, 0) (0, 90, 60, 60) 21 3.23

(90, − 90, 0, 0) (0, 270, 60, 60) 21 4.57
(90, 90, 180, 0) (0, 90, 240, 60) 19 4.52
(90, 90, 180, 0) (0, 90, 60, 240) 12 2.83

(90, − 90, 180, 0) (0, 270, 60, 240) 6 4.16

119

APPENDIX E

SEVEN DOF SPATIAL MANIPULATORS IN CHAPTER 7: MAXIMUM K

TRJECTORIES

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Line trajectories of the min robot from (98)

−4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]
K

Rotation trajectories of the min robot from (98)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

−6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Line trajectories of the mid robot from (98)

−6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Rotation trajectories of the mid robot from (98)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

120

−10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Line trajectories of the max robot from (98)

−10 −5 0 5 10 15
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Rotation trajectories of the max robot from (98)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Line trajectories of the min robot from (99)

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Rotation trajectories of the min robot from (99)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

121

−10 −8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Line trajectories of the mid robot from (99)

−10 −8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Rotation trajectories of the mid robot from (99)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Line trajectories of the max robot from (99)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Rotation trajectories of the max robot from (99)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

122

−6 −5 −4 −3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Distance from the design point [m]

K

−6 −5 −4 −3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

Distance from the design point [m]

||∆
 θ

||
[r

ad
]

Kmax along x axis
Kmax along y axis
Kmax along z axis

‖∆θ‖ along x axis
‖∆θ‖ along y axis
‖∆θ‖ along z axis

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from the design point [m]

K

Rotation trajectories of the modified human arm

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Distance from the design point [m]

||
∆

θ
||

[r
ad

]

Kmax around x axis
Kmax around y axis
Kmax around z axis

‖∆θ‖ around x axis
‖∆θ‖ around y axis
‖∆θ‖ around z axis

123

APPENDIX F

SEVEN DOF SPATIAL MANIPULATORS IN CHAPTER 7: VOLUME PLOTS

This appendix presents the six-dimensional fault tolerant volume for both cases of K > 0.2 and

K > 0 for every robot in Chapter 7. The orientation volume is represented by its distribution (in

color map) within the three-dimensional volume. (Its percentage value out of Vomax = π2 is plotted.)

One can recall the discussion of Figures 34 and 35 in Subsection 7.4.1 to help understanding the

following Figures. Evaluating K > 0.2 and K > 0 has been done by ∇K in Section F.1, while

searching over all self-motion manifolds is in Section F.2.

The remainder of the page is intensionally left empty.

124

F.1 EVALUATING K USING ∇K

Figure 39: Six-dimensional fault tolerant volume for K > 0.2 for the min robot from (98) with
using ∇K, where VFT = 3.3% and VFT 3d

= 68%. Note that the color scale is not up to 100%.

Figure 40: Six-dimensional fault tolerant volume for K > 0 for the min robot from (98) with using
∇K, where VFT = 40% and VFT 3d

= 97%.

125

Figure 41: Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (98) with
using ∇K, where VFT = 1.5% and VFT 3d

= 62%. Note that the color scale is not up to 100%.

Figure 42: Six-dimensional fault tolerant volume for K > 0 for the mid robot from (98) with using
∇K, where VFT = 32% and VFT 3d

= 93%.

126

Figure 43: Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (98) with
using ∇K, where VFT = 0.4% and VFT 3d

= 39%. Note that the color scale is not up to 100%.

Figure 44: Six-dimensional fault tolerant volume for K > 0 for the max robot from (98) with using
∇K, where VFT = 18% and VFT 3d

= 60%.

127

Figure 45: Six-dimensional fault tolerant volume for K > 0.2 for the min robot from (99) with
using ∇K, where VFT = 3.1% and VFT 3d

= 70%. Note that the color scale is not up to 100%.

Figure 46: Six-dimensional fault tolerant volume for K > 0 for the min robot from (99) with using
∇K, where VFT = 40% and VFT 3d

= 95%.

128

Figure 47: Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (99) with
using ∇K, where VFT = 0.7% and VFT 3d

= 33%. Note that the color scale is not up to 100%.

Figure 48: Six-dimensional fault tolerant volume for K > 0 for the mid robot from (99) with using
∇K, where VFT = 30% and VFT 3d

= 91%.

129

Figure 49: Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (99) with
using ∇K, where VFT = 0.6% and VFT 3d

= 41%. Note that the color scale is not up to 100%.

Figure 50: Six-dimensional fault tolerant volume for K > 0 for the max robot from (99) with using
∇K, where VFT = 19% and VFT 3d

= 66%.

130

Figure 51: Six-dimensional fault tolerant volume for K > 0.2 for the modified human arm robot
with using ∇K, where VFT = 1.3% and VFT 3d

= 63%. Note that the color scale is not up to 100%.

Figure 52: Six-dimensional fault tolerant volume for K > 0 for the modified human arm robot with
using ∇K, where VFT = 43% and VFT 3d

= 100%.

131

F.2 EVALUATING K OVER ALL SELF-MOTION MANIFOLDS

Figure 53: Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (98) with
tracking the maximum K over all self-motion manifolds, where VFT = 24% and VFT 3d

= 81%.

Figure 54: Six-dimensional reachable volume for the mid robot from (98), where Vr = 49% and
V6d = 99%.

132

Figure 55: Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (98) with
tracking the maximum K over all self-motion manifolds, where VFT = 12% and VFT 3d

= 51%.

Figure 56: Six-dimensional reachable volume for the max robot from (98), where Vr = 62% and
V6d = 26%.

133

Figure 57: Six-dimensional fault tolerant volume for K > 0.2 for the min robot from (99) with
tracking the maximum K over all self-motion manifolds, where VFT = 26% and VFT 3d

= 81%.

Figure 58: Six-dimensional reachable volume for the min robot from (99), where Vr = 49% and
V6d = 97%.

134

Figure 59: Six-dimensional fault tolerant volume for K > 0.2 for the mid robot from (99) with
tracking the maximum K over all self-motion manifolds, where VFT = 73% and VFT 3d

= 19%.

Figure 60: Six-dimensional reachable volume for the mid robot from (99), where Vr = 41% and
V6d = 95%.

135

Figure 61: Six-dimensional fault tolerant volume for K > 0.2 for the max robot from (99) with
tracking the maximum K over all self-motion manifolds, where VFT = 13% and VFT 3d

= 59%.

Figure 62: Six-dimensional reachable volume for the max robot from (99), where Vr = 68% and
V6d = 28%.

136

Figure 63: Six-dimensional fault tolerant volume for K > 0.2 for the modified human arm robot
with tracking the maximum K over all self-motion manifolds, where VFT = 10% and VFT 3d

= 78%.

Figure 64: Six-dimensional reachable volume for the modified human arm robot, where Vr = 100%
and V6d = 49%.

137

