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ABSTRACT

A fundamental flow equation for a mixture of miscible fluids was derived by combining
the law of conservation of mass, Darcy's law, and an equation of state describing the
pressure-volume-temperature-concentration relationship. The result is an equation involving
two dependent variables, pressure and concentration.

A relationship for determining concentration was derived by expressing a continuity
equation for the dispersed tracer. The problem was formulated on a microscopic basis and
averaged over a cross-sectional area of the porous medium to give a macroscopic convective-
dispersion equation. The resulting coefficient of dispersion was a second rank tensor.

The two resulting differential equations are solved numerically on the digital computer.
An implicit numerical technique was used to solve the flow equation for pressure and the
method of characteristics with a tensor transformation was used to solve the convective-
dispersion equation. The results from the flow equation were used in solving the convective-
dispersion equation and the results from the convective-dispersion equation were then used
to resolve the flow equation.

The proposed computer simulator successfully solved the longitudinal dispersion problem
and the longitudinal and lateral dispersion problem. Using the tensor transformation, prob-
lems of longitudinal and lateral dispersion were successfully solved in a rotated coordinate
system.

The computer simulator was used to solve the salt-water intrusion problem. The numerical
results for the fresh water head in the aquifer closely matched those obtained analytically.
Also, the numerical results for the location of the fresh-salt interface were good except in

the region of the wedge toe.

viii



NUMERICAL SIMULATION OF DISPERSION

IN GROUNDWATER AQUIFERS

by

Donald Lee Reddell* and Daniel K. Sunada**

Chapter 1

INTRODUCTION

1.1 Description of Problem. The rapid growth
of the world's population is placing an increasing
demand upon fresh water supplies. This has resulted
in groundwater becoming an important source of water
supply in many regions, and the use of aquifers as
operating reservoirs is becoming more common. Effi-
cient use of aquifers as reservoirs will require an
understanding of the water quality problems created
by sea-water intrusion into coastal aquifers, recharge
of surface water into aquifers, underground waste
disposal, and infiltration of pollutants from surface
sources into aquifers.

Since pollutants, wastes, and recharge waters
are normally miscible with the native groundwater, an
understanding of the mechanics of miscible fluid dis-
placement is necessary for the analysis of groundwater
quality problems. Studies indicate that the mixing
of miscible fluids in a porous medium is dependent
upon the magnitude and distribution of flow velocities
within the porous medium and upon the geometry of the
porous structure. This mixing is greater than can be
accounted for by molecular diffusion and has been
named dispersion by Scheidegger (1954).

The dispersion process can be described by a
form of the convective-diffusion equation in which a
coefficient of dispersion replaces the standard coef-
ficient of diffusion. Initial efforts at analyzing
dispersion used a scalar dispersion coefficient.
However, the work of de Josselin de Jong (1958) indi-
cated the dispersion coefficient is not a scalar,
and he introduced the use of longitudinal (parallel
to flow direction) and lateral (perpendicular to flow
direction) dispersion coefficients. Bear (196la) and
Scheidegger (1961) proposed that the dispersion coef-
ficient is a symmetric second order tensor formed
from the contraction of a fourth order tensor which
depends on the porous medium and a second order ten-
sor which is a function of the flow.

Many basic studies have been conducted to explain
the physical laws of the dispersion process. These
studies have resulted in analytical solutions to
simple flow problems with simple boundary conditions.
Also, some approximate solutions have been developed

for radial and source-sink flow fields. However,
no analytical solutions have been obtained which
will be adequate for describing groundwater quality
problems on an aquifer wide basis. Moreover, the
complexity of the -general differential equations
describing dispersion is such that it is unlikely
that analytical solutions will be developed in the
near future.

Because of the inadequate techniques in
analytical solutions and the recent advances in
numerical and computer technology, an interest in
using a computer simulation to describe the disper-
sion process has developed. Garder et al. (1964)
used the method of characteristics (also referred to
as "particle in cell" technique) to numerically
solve the dispersion equation. However, they did
not consider the tensorial nature of the dispersion
coefficient for multidimensional flows.

Shamir and Harleman (1966) transformed the
cartesian form of the convective-dispersion equation
into equipotential and stream function coordinate
systems. This technique properly considers the ten-
sorial nature of the dispersion coefficient, but
presents problems with unsteady nonuniform flow.

1.2 Purposes and Objectives. The literature
indicates very little work toward application of
basic dispersion results to field problems. Practi-
cal problems invelve complex flow geometries in
anisotropic and nonhomogeneous media with complicated
boundary conditions. A computer simulation of the
dispersion process should handle unsteady nonuniform
flow problems and, in addition, consider the tensorial
nature of the dispersion coefficient.

The objectives of this paper are:

(a) Develop a computer simulation for the
mass transport of a fluid miscible with the native
groundwater. The theory will be developed for three-
dimensional, nonhomogeneous, unsteady flow fields,
with density and viscosity variations between the
two fluids. However, only two-dimensional flow
problems in an isotropic medium using a conservative
fluid will be run in the computer simulator.

*Ph.D. graduate of Colorado State University, Department of Agricultural Engineering Department, Fort Collins,
Colorado, presently Assistant Professor of Agricultural Engineering, Texas A & M, College Station, Texas.

#*Associate Professor of Civil Engineering, Colorado State University, Fort Collins, Colorado.
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(b) Develop a numerical tensor transforma-
tion which considers the tensorial nature of the
dispersion coefficient in a cartesian coordinate
system.

1.3 Methods of Investigation. The techniques
of investigation are directed toward use of the com-
puter as a model simulator, No laboratory experi-
mental techniques are used. The differential equa-
tions describing the miscible displacement process
are developed and written in finite difference form.
An implicit numerical technique is used to solve the
flow equation and the method of characteristics with
a tensor transformation is used to solve the

convective-dispersion equation. The results from
the flow equation are used in solving the dispersion
equation and the results of the dispersion equation
are then used to solve the flow equation again.

This procedure has been referred to as a "leap-frog"
technique, and will be explained in detail in
Chapter IV,

The validity of the computer simulation is
tested on some simple problems for which exact or
approximate analytical solutions are available.
Also, the more complex case of dispersion along an
intruded salt-water wedge is considered.



Chapter 11

PREVIOUS WORK RELATED TO THIS RESEARCH

Slichter (1905) injected a salt solution into
a well and observed the time of arrival at a nearby
observation well. He observed that the salt did not
arrive at the observation well as a slug, but instead
the salt concentration gradually increased with time
to some maximum value. Since Slichter's work, many
investigations have been made on the flow of miscible
fluids in porous media. These investigations are
divided into the following four categories for dis-
cussion purposes: (2.1) theoretical investigationms,
(2.2) analytical investigations, (2.3) experimental
studies, and (2.4) numerical simulation,

2,1 Theoretical Investigations. The theoretical
investigations have been oriented towards developing
a basic understanding of the dispersion phenomena.
These studies attempt to define the dispersion coef-
ficient in terms of medium properties, fluid proper-
ties, and the fluid velocity.

Dispersion and diffusion may be visualized by
the injection of a slug of dye into a fluid flowing
through a porous medium as shown in Fig. 2-1. The
center of the slug will travel along the column axis
(r=0) with the average fluid velocity, Vi . As

time, t , increases, the slug will increase in size
and mix with the surrounding native fluid to form
concentration profiles in both the Xz and r-

directions. This variation in concentration, C ,
is created by both dispersion and diffusion. Diffu-
sion is a direct result of thermal motion of the
individual fluid molecules and takes place under the

1 vsfdirectinn of flow)

I Slug
Injection to
| C

r=0
=

Porous
Medium ] X,
X =V t 2

Limits of
Lateral
Spread 18

I
-i.. X 3=V-" St
cm t=t
ax 1
Column o =0 2
|

Axis
t=t1

Fig. 2-1 Schematic column and typical concentration
profiles for a slug injection. [after
Hoopes and Harleman (1965)]

influence of a concentration gradient. Dispersion
in porous media is a mechanical or convective mixing
process which is the result of individual fluid
particles traveling at variable velocities through
irregular shaped pores and along tortuous micro-
scopic pathlines.

Dispersion results in a variation of concentra-
tion similar to that created by diffusion. However,
dispersion is the result of convective mixing on a
microscopic scale; not of a concentration gradient.
Because of the difficulty in describing the boundary
conditions for flow through porous media on a micro-
scopic scale, a macroscopic model is used. When using
the macroscopic model, dispersion is assumed to be
proportional to the concentration gradient. A detail-
ed description of the transition from a microscopic to
a macroscopic model is given in Section B-2 of
Appendix B.

To investigate the dispersion process, many
porous media models have been used. Perhaps one of
the simplest models is a bundle of capillaries.

Taylor (1953, 1954) investigated the displacement of
a fluid from a straight capillary tube of radius, r ,

by another fluid miscible with the first. Iis results
indicated that the tracer was dispersed relative to
a plane moving with velocity, V , exactly as in a

Fickian diffusion process, but with a diffusion
coefficient,
r2y?2

480d

D =

(2-1)

where Dd is the molecular diffusion coefficient.

Aris (1956) generalized Taylor's results by consider-
ing a bundle of capillary tubes and obtained an
effective diffusion coefficient,
r2y2
d

(2-2)

where t is a coefficient depending on the shape of
the capillary tube's cross-section. Ananthakrishnan
et al, (1965) investigated the range of applicability
of Eq. 2-2.

Another theoretical approach is to develop a
statistical model of the microscopic motion of marked
fluid particles and to average these motions to obtain
a macroscopic description of dispersion. Scheidegger
(1954) neglected molecular diffusion and used the
theory of a random walk extended to three dimensions.
However, he assumed that the probability for a par-
ticle to move a given distance was the same for all
directions. This leads to a dispersion coefficient
that has the same value in all directions, and has
subsequently been proven wrong for the general case.



De Josselin de Jong (1958) also used a statis-
tical approach and was probably the first to develop
a model which defined the dispersion coefficient as
an anisotropic quantity. His model was constructed
of interconnected straight channels oriented at ran-
dom but uniformly distributed in all directionms.

The final result was a concentration profile des-
cribed by a three-dimensional nprmal distribution
in which longitudinal dispersion was greater than
transverse dispersion. The concept of longitudinal
and transverse dispersion has been verified experi-
mentally [de Josselin de Jong (1958); Bear (1961b)].

Saffman (1959, 1960) used a statistical approach
similar to de Josselin de Jong (1958). However,
Saffman introduced molecular diffusion into his model
and studied the relationship between mechanical dis-
persion and molecular diffusion. Saffman's first
model (1959) assumed dispersion was large compared
to molecular diffusion. Saffman's second model
(1960) was for the case where molecular diffusion
and dispersion are of the same order of magnitude.

Other statistical models have been investigated
by Danckwerts (1953), Beran (1955), Rifai et al.
(1956) , and Day (1956). Scheidegger (1957) developed
two theoretical models which yielded,

D~V (2-3)
for one model, and
D~ V2 (2-4)

for the other model. Equation 2-4 represents a model
where enough residence time exists in each flow
channel for molecular sideways diffusion to cause
complete mixing between invading and original fluids.
Equation 2-3 represents a model in which no mass is
allowed to be transferred from one streamline to
another by molecular diffusion. As shall be seen,
experimental evidence indicates that Eq. 2-3 comes
closer to physical reality. Scheidegger (1960) sum-
marized much of the statistical work done prior to
1960.

Using the results of de Josselin de Jong's work
(1958) , Bear (196la) developed an expression for the
dispersivity tensor in terms of the average distance
traveled by the tracer in the medium. Bear implied
that the dispersion coefficient, Dij , was a second

rank tensor linear in the components of the velocity.
Scheidegger (1961) suggested by induction that:

Va'n

D - (2-5)

ij = %ijmn

where ¢,.
ijmn
which is a porous medium property, and vanfv is a

is the coefficient of dispersivity,

tensor which represents the linear influence of
velocity. Scheidegger concluded that the coefficient
of dispersivity was a fourth rank tensor with 81 com-
ponents; but due to certain symmetry properties,
contains only 36 independent components in the general
case of an anisotropic medium. In isotropic media,
there are only two dispersivity constants.

Recent work by Poreh (1965), showed from physical
and dimensional reasoning that the tensor form of the
coefficient of dispersion is

2

V.V

vy (2-6)

D,
'_EJ“ Fidy+ By (ni
d ] d

where d = pore size parameter, aij = kronecker

delta, Vivj is a tensor representing the linear
influence of velocity, and Fl and I-‘2 are even
functions of Vd/Dd and Vd/v , the Peclet and

Reynolds numbers, respectively. Bear and Bachmat

(1967) also showed the dispersion coefficient, Dij %
to be a function of the Peclet number.

Several investigators, including Scheidegger
(1961) and de Josselin de Jong and Bossen (1961),
have suggested that the dispersion of a tracer in
fluid flow through saturated homogeneous porous media
can be described by the differential equation,

aC 3 3C
3t ° 3% [Dij X, Vic] , (2-7)
i j
where ( 1is the tracer concentration, t is time,

Vi is the component of the velocity vector in a

cartesian coordinate system, and xi(i=1,2,3} is the

cartesian space coordinates. The double summation
convention of tensor notation is implied in the use
of Eq. 2-7. Bachmat and Bear (1964) gave the dis-
persion equation in curvilinear coordinates consist-
ing of streamlines and equipotentials (¢-¥ coordi-
nates). Bear and Bachmat (1967) used basic fluid
flow equations which are averaged over a representa-
tive volume element of porous media to yield the
equation of motion and the equation of dispersion.

Perkins and Johnston (1963) gave a good summary
of diffusion and dispersion in porous media. A more
recent and more detailed summary of the theory of
dispersion in porous media was given by Bear et al.
(1968, Chapter 11).

2.2 Analytical Solutions. Most dispersion
problems have a direct analogy with heat flow. For
this reason, a good reference for analytical solu-
tions is Carslaw and Jaeger (1959) or Crank (1956).
Some of the more important analytical solutions are
discussed below.

Longitudinal Dispersion. A semi-infinite column

(X3>UJ of homogeneous and isotropic porous media
with a plane source maintained at X3-0 is shown
in Fig. 2-2. The flow is maintained at a constant

specific discharge, q , in the Ks-directiun. For

an isotropic media, the axes of the dispersivity
tensor is assumed to coincide with the velocity vec-

tor. Thus, Eq. 2-7 reduces to
3C 32¢C 5C
it e - Ve o (2-8)
ax 3
3
where D, is the longitudinal dispersion coefficient.

L
Initial and boundary conditions are given by,



co,t) =C, ; t2>0
C(Xg50) =0 5 Xg >0
C(=,t) =0 ; t>0 (2-9)
C=C
v o
Y .
// h
/L X570 )
~ S }
0
C=0 h
h
J L 2 c/c, X;=0
™ b
E A 0 >
N 0 t
o
A3
N . _Porous
N Medium
R M
~ ™
~
\ 10
\ C/C, X3=°
i
N = oo - ->
V.=q/¢
N
:¢=Porosity\

t=0

Fig. 2-2 Schematic sketch of longitudinal disper-
sion column setup

Ogata and Banks (1961) used Laplace transforms to
obtain the solution,

X, -V, t V. x X +V_ t
éL = %— erfc + exP( g 3] Erfc(—é——é—)
o ZHDLt L 2#DLt
(2-10)
where erfc(u)=l-erf(u) . Ogata and Banks showed

that the second term in Eq. 2-10 may be neglected in

most cases. For instance, if DL < 0,002 v3x3 a

maximum error of less than three percent is intro-
duced by neglecting the second term. Therefore,
unless the region close to the source is considered,
an approximate solution to Eqs. 2-8 and 2-9 is

X .-V, t
£ . %ferfc g} (2-11)
o L 2/D, ¢

Ogata (1961, 1964a) gave a solution in integral
form to the problem where a slug of radius "a" is

injected at X;=0 . This problem must consider both

longitudinal dispersion and transverse dispersion.
Using his solutions, Ogata (1964a) developed experi-

mental procedures for determining both DL and DT ;

In many physical problems, the tracer being
used may react with the solid matrix of the porous
medium. Depending on the reaction, the tracer may
be adsorbed to the matrix or additional tracer may
be produced. To handle such cases, a production
term dependent on the concentration is added to
Eq. 2-8. Using varying functional relationships for
the production term, solutions to this problem have
been obtained by Ogata (1964b), Banks and Jerasate
(1962), Banks and Ali (1964), and Lapidus and
Amundson (1952). A closely related problem is that
of radioactive decay of a tracer. Bear et al. (1968,
p. 347) gave the solution to Eqs. 2-8 and 2-9 where
the tracer continuously undergoes radioactive decay.
Coats and Smith (1964) investigated the effects of
dead-end pore volume on dispersion and gave several

solutions to the simple diffusion model characterized
by Eq. 2-8.

Longitudinal and Lateral Dispersion.
rectangular column (05333;3 r

If a
Gifziﬁz) is used and

a tracer source is maintained over a portion of the
input area (piﬁégp) as shown in Fig. 2-3, then

both longitudinal and lateral dispersion will occur.
Assuming a homogeneous and isotropic medium with uni-
directional flow in the xs-direction and BC/BX1=0 5
Eq. 2-7 becomes,

2 2
X
Bxs 3 2 3
c=C c=
[+] Q
[T/ <o . JTIA co,,
Ne—1b —=f b “ N b_.+‘l s
N L ~ ! M
R L N % N
N y N \ N
~ '\ \
~ 9'2 i ~ 12 '. -
N N R ' N
B [ ™ . N
N [~ N '
N c=0 N N ! N
2. N e e N
* : W T |
J N 3 3 CLimit of N
N " W Tracer Spread\
~ N y at t=t;. N
N N N N
™~ N ~ Y
™~ R
3 ! N 3 \
J Ve N \ : \
~ 5 ~ q B
~ N " N
N : \ Vs-q/¢ %
R i N =t
= B omi \ o, 1
¥
¥
X
Xs 3
Fig. 2-3 Schematic sketch of longitudinal and

lateral dispersion column setup

The initial and boundary conditions are given by:

[



c(leo)t) A CO H Oixzf_b ; t20

C(X,,0,t) = 0 ; beX,<k, ; t20

8C(0,%;,t)

=0 ; t=0

c (Xz,“,t} = Bounded

C{xz,xs,OJ =0 ; 0sx,<i x>0 (2-13)

Pt R

A series solution to Eqs. 2-12 and 2-13 was given by
Bruch and Street (1967). Harleman and Rumer (1963)
gave the following approximate steady state solution
to Eqs. 2-12 and 2-13,

X,.-b
é;-- % erfc 2 (2-14)
o ZfDTxSN3

In their work on waste-water recharge and dis-
persion, Hoopes and Harleman (1965, 1967a, 1967b)
have developed several approximate solutions to the
radial dispersion problem. Raimondi et al. (1959)
also gave an approximate solution to the radial dis-
persion problem. Esmail and Kimbler (1967) gave a
solution which allows for alternate injection and
production.

Dagan (1967) gave an analytical solution for
dispersion in a nonhomogeneous porous column. Using
the Laplace transform, Shamir and Harleman (1966,
1967) developed analytical solutions for longitudinal
and lateral dispersion in layered porous media.

Bear and Todd (1960, pp. 27-33) gave some analysis
of the unsteady flow problem. Banks and Jerasate
(1962) allowed the coefficient of dispersion to vary
with time, and solved the problem by introducing a
different time scale.

2.3 Experimental Results. Much of the experi-
mental work has attempted to establish relationships
so that the dispersion coefficients may be calculated
from media and fluid properties. As was pointed out
in Section 2.1, theoretical models indicate that the
dispersion coefficient is a second rank tensor.
Experiments of de Josselin de Jong (1958), Bear (1961b)
and Bear and Todd (1960) tend to confirm this concept.
Scheidegger's work (1961) indicated that for homo-
geneous and isotropic media, the dispersion tensor
reduces to two independent terms: (1) the longitudi-
nal dispersion coefficient, DL , and (2) the lateral
dispersion coefficient, D, .

Most of the experimental determinations of the
longitudinal dispersion coefficient used Eqs. 2-10
or 2-11 as a basis for analysis. Ebach and White
(1958) performed experiments on a wide range of par-
ticle sizes, shapes, and Reynolds numbers. They
empirically postulated that for Reynolds numbers,

R < 100 ,

By

S
e | !

" (2-15)

where V = fluid velocity, d = particle size of the
porous media, and v = kinematic viscosity. The
experimentally determined coefficient a, is

strongly dependent on the porous medium while 8y

is dependent on flow regime. However, evidence
exists (Adam, 1966) that Bl is also dependent on

medium properties. Experimenters have found a large
variation in the values of oy and By - A large

percentage of this variation may be attributed to
experimental techniques; especially the different
methods for measuring concentration.

Harleman and Rumer (1963) found @y = 0.66 and
B, = 1.2 while Hoopes and Harleman (1965) found
@ = 1.70 and Bl = 1.2, Ebach and White (1958)
found oy = 1.92 and By = 1.06. Experimental

results for longitudinal dispersion were given by
Banks and Ali (1964), Blackwell (1962), Cairns and
Prausnitz (1960), Carberry and Bretton (1958),
Simpson (1969), and many others.

Equation 2-15 prompted investigators of lateral
dispersion to fit their experimental data to the form,

B
D. 2
T Vd
v = 02 ( v ) b (2-16)

Harleman and Rumer (1963) found ay = 0.036 and
g8, = 0.7. Hoopes and Harleman (1965) found
0.11 and Bz = 0.7,

investigated by Simpson (1962), Blackwell (1962),
Grane and Gardner (1961), van der Poel (1962), and
Li and Lai (1966).

CIZ=

Lateral dispersion has been

Harleman et al. (1963) were able to correlate
the longitudinal dispersion coefficient with permea-
bility,

8

L 3
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v v

)
5 (ﬂ , (2-17)

where k is the permeability with units of L2 .
Harleman et al. found ag = 54 for spheres and 88

for sand with g, = 1.2 for both media. Hoopes and

Harleman (1965) found results similar to Eq. 2-17,
with ag dependent upon the media. Rumer (1962)

investigated longitudinal dispersion and the effects
of unsteady flow on the dispersion coefficient.
Simpson (1969) investigated the effects of turbulent
flow on the lomgitudinal dispersion coefficient, and
Hoopes and Harleman (1967a) showed the dispersion
coefficient along streamlines to be the same for both
uniform and nonuniform flow at the same velocity.

The effects of molecular diffusion on the above
Reynolds number type relationships has been debated
in the literature. Relationships such as Eqs. 2-15,
2-16, and 2-17 would appear to be invalid for all
ranges of Reynolds numbers. Biggar and Nielsen (1960}
gave a very lucid account of the effects of molecular
diffusion on dispersion. They proved that molecular



diffusion is very important at small flow velocities,
when the medium consists of a natural soil skeleton
instead of washed sands or glass beads, and for
unsaturated flow. They hypothesized that the pres-
ence of dead-end pores (a characteristic of the

soil) is highly important in determining the effects
of molecular diffusion on the total dispersion pro-
cess. Coats and Smith (1964) also treated the dead-
end pore problem. Bear et al. (1968, pp. 332-335)
stated that the dispersion coefficient 'depends on the
flow pattern (e.g., velocity), Peclet number (Vd/Dd],

and on some fundamental medium characteristics. A
plot of DLKDd vs. Vd/Dd is broken up into five

regions and characteristics of each region are dis-
cussed by Bear.

Adam (1966) used dimensional analysis and experi-
mental results to determine the effects of anisotropic
porous media on the dispersion tensor. Adam argued
that experimental evidence indicating the dispersion
coefficient is nonlinear in velocity (i.e., exponent
of velocity is different than one) is incompatible
with Eq. 2-3 proposed by Scheidegger (1961) and
Bear (196la). However, List and Brooks (1967) ana-
lyzed numerous experimental results and were criti-
cal of the velocity power law relationships.

From these various investigations the conclusion
is reached that the dispersion coefficient is indeed
a tensor of rank two; but an adequate relationship
has not been developed for describing the phenomenon
over a large range of flow parameters. Much more
theoretical work is needed in this area.

A study of dispersion using the concept of
similitude has been done by very few people. Raats
and Scotter (1968) considered geometrically similar
media and sought the conditions for dynamic similar-
ity. Bachmat (1967) investigated the criteria for
similitude of the dispersion phenomena in homogeneous
and isotropic porous media. Heller (1963) also pre-
sented a good discussion on scaling of flows in
porous mediums.

Few results from field experiments are available.
Harpaz and Bear (1964) presented results of labora-
tory and field tests on underground storage operations
with a single recharging well and with two wells,
one recharging and one pumping. Lau et al. (1957)
performed some field tests to evaluate various tracers,
and found the chloride ion to be the best. Field
oriented laboratory experiments have been conducted
by Hoopes and Harleman (1965, 1967b) on wastewater
recharge and by Rumer and Harleman (1963) on salt-
water intrusion along coastal aquifers. Esmail and
Kimbler (1967) investigated the effects of gravity
segregation and dispersion on the problem of storing
fresh water in saline aquifers,

2.4 Numerical Solutions. Because of the diffi-
culty in obtaining analytical solutions to ground-
water flow problems, many investigators are now using
numerical solutions. Numerical solutions of immis-
cible f£low problems have met with more success than
miscible flow problems, Much work remains to be
done on developing satisfactory numerical techniques
for the dispersion problem.

Many of the reservoir simulation techniques
involving immiscible fluids have been developed in

the petroleum industry. Douglas, Peaceman, and
Rachford (1959) employed an alternating-direction-
implicit procedure (ADIP) to solve a two-dimensional,
two-phase, incompressible flow model. Blair and
Peaceman (1963) extended this to include the effects
of compressibility. Larkin (1964) used the
alternating-direction-explicit-procedure (ADEP).
Quon et al. (1965, 1966) also used ADEP in a reser-
voir simulator. Coats and Terhune (1966) and

Carter (1967) compared the ADIP and ADEP techniques.
Bjordammen and Coats (1967) compared alternating
direction and successive overrelaxation techniques
for the simulation of two- and three-dimensional,
two-phase flow reservoirs. Other reservoir simula-
tors have been described by Dougherty and Mitchell
(1964), Fagin and Stewart (1966), and Breitenbach,
Thurnau, and van Poollen (1968 a, b, and c).

Digital computer simulators in the groundwater
field have not been as widely developed as in the
petroleum industry. Bittinger et al. (1967), Tyson
and Weber (1964), and Chun, Weber, and Mido (1964)
have presented some information on reservoir simula-
tion in the groundwater industry. The above men-
tioned works are just a few of the ones which have
been developed in the last few years on reservoir
simulation using numerical analysis and digital
computers.

The problem of miscible flow has not been
treated as extensively numerically as the immiscible
flow problem. Peaceman and Rachford (1962) pre-
sented a centered-in-time and centered-in-distance
equation combined with a "transfer of overshoot"
procedure which was demonstrated to work well in one
dimension. However, subsequent testing has shown
that for multidimensional displacement their method
involved a numerical dispersion of the same order of
magnitude as the physical dispersion,.

Garder, Peaceman and Pozzi (1964) used the
method of characteristics to improve the numerical
solution to the miscible flow problem, but did not
consider the dispersion coefficient as a tensor.
Their numerical technique is discussed in detail in
Chapter IV.

Stone and Brian (1963) made a thorough analysis
of a numerical scheme to solve the one-dimensional
dispersion equation. They used three adjacent grids
at two time levels, and assigned arbitrary weighting
coefficients to the convective and time terms. They
then proposed an iterative scheme with three cycles
per time step to improve the solution. No considera-
tion was given to the effects of changes in viscosity
or density.

Hoopes and Harleman (1965) used an explicit
finite difference scheme to obtain a solution for
the problem of radial flow from a well. By neglecting
lateral dispersion, they also obtained a solution to
a two-well problem. The size of the grid spacing
and time increment were restricted for the explicit
scheme because of a stability criterion. This pre-
sented some problems because of large amounts of
required computer time.

Shamir and Harleman (1966) used a very ingenious
concept in their numerical technique. First they
wrote the dispersion equation in terms of the stream
function and potential function (i.e., in terms of @



and ¥ coordinates). They noted that the velocity
is everywhere tangential to the streamlines, and
thus their equation was one-dimensional in the con-
vective term, They then used the Stone and Brian
(1963) numerical technique for one-dimensional flow
and handled the lateral dispersion with an ADIP
technique. If the major axis of the dispersion ten-
sor coincides with the velocity vector, then Shamir
and Harleman's technique will consider the dispersion
coefficient as a tensor. However, their scheme does
not consider the effects of density or viscosity
changes; nor does it consider unsteady flow except
in the few cases where the streamlines do not change
position with time.

Nelson (1965) described a computer program for
predicting waste transport in groundwater. The pro-
gram generated permeability information and stream
functions using a potential map with a small amount
of permeability information. However, he considered
a "piston type' flow and neglected dispersion entirely.

Summary. In summary, the following results are
important to the present study:

(1) The dispersion coefficient is an anisotropic
quantity and must be treated as a second
rank tensor.

(2)

(3)

(4)

(5)

(6)

The dispersion coefficient is linearly
related to the components of velocity as
given by Eq. 2-5.

The analytical solution to the longitudinal
dispersion problem is given by Eq. 2-10.

An approximate steady state solution to
the longitudinal and lateral dispersion
problem is given by Eq. 2-14.

The longitudinal and lateral dispersion
coefficients can be obtained from the
empirical relationships given by Eqs. 2-15,
2-16, and 2-17.

Numerical solutions to the problem of
miscible displacement in porous media have
proven to be difficult. The numerical
techniques of Stone and Brian (1963),
Garder et al. (1964), and Shamir and
Harleman (1966) appear to be the most
successful.



Chapter III

PRESENTATION OF MATHEMATICAL MODEL FOR DISPERSION

IN GROUNDWATER AQUIFERS

When working with miscible fluid displacement,
the conservation of mass for each component present
in the system is required. In this study, only two
components are considered, a conservative tracer and
the native groundwater. Therefore, two equations of
mass conservation are required to describe the system
considered here. One of these equations will be for
the combined masses of both components (i.e., total
mass = tracer mass + native groundwater mass). The
other equation is for the mass of the tracer.

3.1 General Flow Equation. A fundamental flow
equation for the mixture of two miscible fluids is
derived by combining the conservation of mass equa-
tion for the mixture, Darcy's law, and an equation
of state describing the pressure-volume-temperature-
concentration relationship. A linear equation re-
lating change in porosity and change in pressure is
also used, The result is an equation involving two
dependent variables, pressure and tracer concentra-
tion. A detailed development of this equation is
given in Appendix A. Using shorthand tensor nota-
tion, the final equation may be written as:

3 [nhkikxi P, - gﬁ_]} S
uxi B Bxi axi i
— ap = aC
8 5V(B+CF) T30 m@uav T pr y (3-1)
where axi(i=1,2,3) = dimensions of volume element

===y
aAi(i=1,2,3} = cross sectional area of element
perpendicular to x;(i.e.,

- S o |
BA =0X,0%) ---L2,

t = time---T,

aVEaxlaxZAxs = volume of element---LZ,

xi(i=1,2.3] = Cartesian coordinate system
(xlaxzsxs)"'lu

p = total fluid density---ML'3 or
pro4,
kx = absolute permeability in Xy -

i direction---L2,
p = viscosity of fluid mixture---

FTL"?

»

P = pressure of fluid mixture---

FL‘Z, -2
g = acceleration of gravity---LT °,
h = elevation of volume element
above datum---L,
porosity---dimensionIess,2 1
fluid compressibility---L°F 7,
formation compressibility factor

.

T S
(U ]

a = proportionality factor relating
concentration and density---
dimensionless,

C = mass concentration of tracer---

ML or FTALY,
p. = mass density of produced fluid

=M™ or FTZL'4, and

Q = rate of fluid production---
il

p_ = reference value of density---
ML or FTAL Y,

% = reference value of porosity---

dimensionless.

To obtain Eq. 3-1 in its present form the

following assumptions have been made: (1) Darcy's

law is applicable, (2) single phase flow, (3) iso-
thermal flow, (4) a linear relationship between change
in porosity and change in pressure, (5) size of volume
element does not vary with time, and (6) a linear
relationship between density, pressure, and concentra-
tion.

The flow of groundwater through an aquifer is
used in this study, and the validity of Darcy's law
presents no serious obstacles. For problems in the
nonlinear flow regime, additional terms involving the
gradient of pressure raised to some power would be
needed in Eq. 3-1. Should a multiphase problem be
considered, then equations of the form of Eq. 3-1
would need to be developed for each phase and the
saturation, S , would be different than one. The
assumption of isothermal flow eliminates having to
consider the density in Eq. 3-1 as a function of
temperature, and considering the size of the volume
element invariant with time permits the elimination

of 3 (a0 from Eq. 3-1. The use of a linear relation-
ship between "change in porosity'-'change in pressure'
and density-pressure-concentration is discussed in
Section 3.3.

3,2 Dispersion Equation. A convective-
dispersion equation may be obtained by combining the
conservation of mass equation for the tracer, Fick's
law, and an equation of state. A detailed derivation
of this equation is given in Appendix B. The general
dispersion equation is given by:

T ac
3% ($aVC) = E {[Dij*DdTij}Qhﬁi EXJ.J M(i

3
- EI; (CVi¢ﬁAi}bxi - CPQ s (3-2)



where D,. = dispersion coefficient which is a second

rank tensor--—LzT'l,

g™ molecular diffusion coefficient---Lz

T-l,

= porous medium "tortuosity" factor which

*J is also a second rank tensor---
dimensionless,

V, = seepage velocity (flow rate per unit
pore area) of fluid mixture in it
direction---LT™!,

Cp = concentration of tracer in produced

fluid---ML™> or Ft’L™, and
all other terms are as described previously.

Assumptions necessary to obtain Eq. 3-2 are:
(1) diffusion is described by Fick's law, (2) the
convective mixing called dispersion is proportional
to the concentration gradient, and (3) single-phase
flow exists. The double summation convention of
tensors is implied in the use of Eq. 3-2.

The use of Fick's law to describe diffusion
means that a dilute solution is being used. In
addition, any diffusion due to temperature gradients
or velocity gradients is disregarded. Assuming that
dispersion is proportional to a concentration gra-
dient is discussed in Appendix B. For multi-phase
flow, equations similar to Eq. 3-2 must be written
for each phase.

Because of the numerical technique to be used
in solving the dispersion equation, an alternate form
of Eq. 3-2 is desirable. This is achieved by chain-
ing out the derivatives of concentration as is shown

in detail by Eqs. B-31 thru B-40 of Appendix B. The
final result is,
€ _ p B |p* $8A 3C
3t ¢aﬂiip—uc} axi 5, i ¢ axj
ac Q_
- Vi axi - [CP-C) ry XA (3-3)
where
*
ij = nij + DdTij (3-4)

The fluid compressibility effects on concentration
are neglected in developing Eq. 3-3.

3.3 Auxiliary Equations. Because of the inter-
relationship among several of the parameters in Eqgs.
3-1 and 3-3, the following auxiliary equations are
needed in the mathematical model. The components of
the seepage velocity for the fluid mixture may be
obtained from Darcy's law, and are given by

k

X,
i|aPp 8h o
v, = - _33-[§;I + pg E;:] § 183.2.% ., (3-5)

The relationship between the porosity of the
porous medium and the fluid pressure is assumed to be,

10

b= 0, [1+C(P-P)] (3-6)

where ¥y original porosity---dimensionless, and

Po = original fluid pressure-*-FL‘z.

The density of the fluid mixture is assumed to be a
linear function of the fluid pressure and tracer
concentration,

p %oy * Bo (PP + alC-C) (3-7)

original fluid density---ML™> or FT°L™?,
and 3
original tracer concentration---ML~
or FT2L™4.

Also, the viscosity is assumed to be a linear func-
tion of the concentration,

Wi
here By ®

C =
(4]

W=+ AC-C) (3-8)

where u_ = original viscosity---FTva, and

Q
A = proportionality factor relating concen-
tration and viscosity---dimensionless.

The use of Eqs. 3-6, 3-7, and 3-8 are assumptions.
Equation 3-6 has been used in the petroleum industry
with success [Breitenbach et. al. (1968b)] . Depend-
ing upon the fluids used, relatiopships other than
those given by Eqs. 3-7 and 3-8 may be desirable.

For the example problems in this study, salt water
and fresh water are used as the two fluids, and the
linear relationships of Eqs. 3-7 and 3-8 are believed
to be adequate,

3.4 Dispersion Coefficients. Equation 3-3 and
the corresponding finite-difference equations of
Chapter IV are developed in a general way so that
any value may be used for the nine components of the
dispersion tensor. However, the use of a functional
relationship is desirable which will give the values
of all nine components in a systematic manner.

Assuming an isotropic porous medium, the
"tortuosity' tensor, Tij , is given by

T = Toyy » (3-9)

where T = tortuosity factor---dimensionless, and
aij = kronecker delta.

Thus, the nine components of the diffusion tensor are,

B Tyy ® D3T,0 & DiTey'® DT (3-10a)

= D.T,, =D.T

aT12 = DgTyz = DgTyy = DyTpz = DyTy, = 0 . (3-10b)

Scheidegger (1961) gave the relationship,
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mn
Dij = fijmn TV’ (3-11)
where €iimn = the dispersivity of the medium, a
+ fourth rank tensor---L,
Vm’vn = the components of velocity in the m
and n directions, respectively---
LT-l, and
V = magnitude of the velocity---LT'l.

For an isotropic media, Scheidegger shows that
the dispersivities reduce to only two terms, £ and
€y with

3 = ¢
oo 1

=g,
S [7.872 [El-ﬁz}

£ aaps

EuB&B

€.88a 1/2 (51-52}

all other e's = 0 (3-12)
The longitudinal and transverse dispersion coeffi-

cients are related to the dispersivities by

D, =

L 1 (3-13a

and

)

(3-13b)
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Expanding Eq. 3-11, introducing Eqs. 3-12 and 3-13,
and adding the diffusion tensor given by Eq. 3-10,
the following functional relationship for the nine
components of the hydrodynamic dispersion coefficient
are obtained:

V.V V.V V.V,
ks 3'a 3'3
DY. =D +D ) +D.T ,
R g g d
V.V V.V V.V
5 1'1 2'2 3'3
Rgy = D =54 By ===+ Op ==+ DT
v v
V.V V.V V.V
x 11 2% 5%
Dr. = D, + D +D e
i T2 b R 4
V.V
" " 12
Dyy = Dyp = (0 -Dp) ge
V.V
* L 1%
Dgy = Dy = (B -Dp) o
R P ol
sz s W) 8 (3714

Other functional relationships for obtaining the
components of the hydrodynamic dispersion tensor are
given by Bear et al. (1968}, Poreh (1965), and List
and Brooks (1967).



Chapter IV

DEVELOPMENT OF NUMERICAL MODEL FOR DISPERSION

The computer simulation of the miscible displace-
ment problem will be developed by writing the finite
difference form for each of the equations given in
Chapter III." Because of limited funds available for
analysis, the computer simulator is developed for a
two-dimensional vertical flow problem. Finite differ-
ence equations and stability criteria for the three-
dimensional problem are given in Appendices C, D,
and E.

4.1 Finite Difference Form of Two-Dimensional
Flow Equation. An implicit, centered-in-space finite
difference scheme is used to approximate the time and
space derivatives of Eq. 3-1. This scheme is developed
in detail in Appendix C for the three-dimensional prob-
lem. The two-dimensional finite difference equation
has the form

+ o+
p. N, P
5%

t+1 + L+
+p. N_ P
i-1,k X5 X3

91 =
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i,k+1 Xg Xg i,k-1

+ o+ - - + 4+ - - t+1
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[ X)X XXy Xy Xg Xy Xg ik Fi,k i,k i,k
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[ A | o N U TR 1. S
(4-1)

Here i and k indicate the grid row and grid
column respectively, and t indicates time level.
The coefficients oi s Ni

i i
as Eq. C-7 of Appendix C.

* :
, and ghy are given
i

A rectangular grid system is superimposed onto
the region of interest, and Eq. 4-1 written for each
grid. The dimensions of the grids, Axl , and bxs i
are assumed to be constant over the entire region.
Variable dimensional grids may be used, but a change

in the coefficients, Ni , is necessary. The coef-

i

ficients, pi and Ni , are held constant during
i i
each time step. Approximation of the original

12

non-linear equation is obtained by adjusting the

values of pi and N: after each computation. If
. i .
the change in Dxi and in
4t , this procedure will produce acceptable results.

is small during each

The change in concentration with respect to
time on the right hand side of Eq. 4-1 is calculated
using the change in concentration from the previous
time step, oty . If the change in concentration

during each At is small, this will also produce
acceptable results. If necessary, an iteration
between the solution of the flow equation and the
dispersion equation can improve this approximation.

If the rectangular grid system has m-rows and
n-columns, then there will be mn grids. Since
Eq. 4-1 contains unknown pressures from each of the
four adjacent grids plus an unknown pressure for the
grid in question, the result of writing Eq. 4-1 for
all grids is a set of mn simultaneous algebraic
equations. This set may be written in matrix form
as

[A] [P] = [rhs] , (4-2)

where [A] dis a mn by mn matrix containing the
coefficients of pressure, [P] is a mn column
vector containing the unknown pressures, and [rhs]
is @ mn column vector containing all the factors
on the right hand side of Eq. 4-1.

4.2 Finite Difference Form of Two-Dimensional
Dispersion Equation. The numerical solution of the
multi-dimensional dispersion equation (Eq. 3-3) has
been a difficult problem. Therefore, some background
material may be helpful in understanding the tech-
nique used in this study. If the convective terms
and production term of Eq. 3-3 are neglected, the
resulting equation is

O

3 * ac
{Dij ¢£\Ai -a"i;l

o 3
i

AR—— . (4-3)
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[

This equation is a second order partial differential
equation of parabolic type (heat flow equation) and
is of the same form as Eq. 3-1. A dispersion equa-
tion of this type could be solved in the same way as
the flow equation given in Eqs. 4-1 and 4-2. This
particular type of equation has been successfully
solved numerically many times.

Now suppose that the dispersion and production
terms of Eq. 3-3 are neglected. Then the resulting
equation is



3C aC .
'é"i- + \«’i 5‘-;: = 0 , (4-4)

which is a first order partial differential equation
of hyperbolic type and has been treated numerically
with some success in one dimension. However, exten-
sion to two or more dimensions has proven difficult.
Usually one of two things happens: (1) the numerical
solution develops oscillations or (2) it becomes
smeared by "artificial dispersion' resulting from

the numerical process. Thus, when convection and
dispersion are considered simultaneously, this "arti-
ficial dispersion" may dominate the low physical
dispersion which characterizes miscible displacement.

If convection and dispersion are neglected,
then a change in concentration can be caused by the
production term,

oC q_

T (CP—C) iy >0 (4-5)

Although not immediately obvious, the production term
may be written as [[CF-C}/ﬂxi][thwﬁAi}] or

[[CP-C]/&Xi]VP , where Vp

production fluid. This term is analogous to the
convective terms of Eq. 4-4, and therefore shall be
analyzed in a manner similar to the convective terms.
In general, the production term will be a discrete
function, and will be introduced through boundary
conditions of the problem.

is the velocity of the

In problems of miscible displacement, the amount
of dispersion is usually very small, and this makes
the convective-dispersion equation almost of the
hyperbolic type shown in Eq. 4-4. Garder et al. (1964)
recognized this and developed a numerical technique
for solving the convective-dispersion equation based
on the method of characteristics. They assume that
the dispersion terms are given functions of X A

2 EME
Xg; and t , i.e., 1 ’
3

B 3 rp* esa, 25 -
#R; (p-aC) B, [Dy 504, axj] = MRttt v A4)
Neglecting the production term momentarily, and
substituting Eq. 4-6 into Eq. 3-3 gives

aC aC_ _

E{ + Vi EII- = f(xl,xz,xs,t) (4-7}

Garder et al. (1964) show that a nonhomogeneous
equation with the form of Eq. 4-7 has characteristic
curves

xj_:xl(t) > x2=x2f.t) E] 3=x3(t)’ and C:C[t} ] (4'BJ

where t is an arbitrary curve parameter which in
this case is time. These characteristic curves are
the solutions to the ordinary differential equations,

T BT T
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and

Lo xyxgt) (4-9)

dat i

The concentration, C
characteristic curves.

, is not a constant on these

The basis of the method of characteristics is
that given solutions to Eq. 4-9, a solution to the
original partial differential equation (Eq. 4-7) may
be produced by following the characteristic curves.
The requirement of following the characteristic
curves is achieved numerically by introducing a set
of moving points in addition to the normal grid
system. Each of the moving points is assigned a con-
centration, which varies with time. At each time
interval, the moving points in a two-dimensional
system are relocated using a finite difference form
given by,

xi+l E x} + At VE*I (4-10)
L L L
and
Plaxt o V§+1 , (4-11)
i L i
where t+1 is the new time level, t 1is the old

time level, At is the time increment, X and

L

X;  are the coordinates of the &th moving point,

)
while V and V
12 31

moving peint in the

are the velocities of the &th

X, - and xswdirections.

Each cell in the grid system is assigned a
concentration equal to the average of the concentra-
tions of the moving points located inside the cell
at time t+l The concentration of the cell and
each moving point inside the cell is then modified
for dispersion by solving dC/dt = f(xl’XE’XS’t)

using an explicit, centered-in-space finite difference
equation. This equation is developed in detail in
Appendix D for the three-dimensional problem. The
two-dimensional form is
t+h t+4

Erl | LTHA 4 t+h . t+A

€k ™ €kt Bx x. ©Chen 1701 1) Be x (C4 xCio1,%)
11 11
¢ teh B - . teh t+b
* Exsxsﬂ‘i,ku'ci,kJ o Ex3x3{Ci,k'Ci,k-1
b ted_teb teh teh
* Gy x (04 ker*Cion ko104 k-1"Ciu1 ko1
1*3
.- t+h t+h LA t+4
3 bxle(ci-l,k+1+ci,k+1' 1,k-1"%1-1,k-1
A ted  ted ted
x Gx3x1(Li+1,k+1*Ci+1,k' PP W
- trd t+ 4 t+h t+d
- stxl{Li+1,k+ 151 %=1 Bt 0% key? ¢ (Bda)



Here 1 and k 1indicate grid rows and grid columns
respectively, t+l 1is the new time level and t+4 is
a time level somewhere between t and t+1 . The
* + :
coefficients E; " and thx are given as Egs.
i"i A

D-19 of Appendix D.

4.3 Finite Difference Form of Velocity Equation.
In the method of characteristics described above, a
determination of the seepage velocity is necessary
for relocating the moving points during each time
step. To accomplish this, a grid and its four adja-
cent grids are used as shown in Fig. 4-1.

i,k-1

ik | i+l,k

i,k+1

Fig. 4-1 Grid system used to develop a finite
difference equation for the seepage

velocity.

The flow equation (Eq. 4-2) is solved for the
pressures at time level t+l1 . These pressures are
assigned to the centers of each of the grids. Using
these pressures and Darcy's law, a value for the
seepage velocity at the contact between two grids
may be calculated. Thus, a finite difference form
of the horizontal seepage velocity at i+)4,k could
be written as

kx pttl _pt+l
v }t+l P 1 i+%,k i,k
17i+ds k HO sy ﬂX1/2
h. ~h,
i+hs,k i,k
+ (pg) i"‘;ﬁ,k ( ax1/2 ] ) (4-13)
where all symbols are as previously defined, The

horizontal seepage velocity at
written as

i+%,k could also be

kx el ot
ity e~ ] i
17i+},k ud a1,k &x1/2

Bk Mok
axl 2

+ (pg): (4-14)

i+l k

By continuity, Eqs. 4-13 and 4-14 should give the

t+1
V)i k

two equations, cancelling like terms, and rearranging,

same value for Thus, upon adding the
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t+l

; weighted value of {Vl)i+%,k is obtained in the
orm,
- _z(kxl)i,k(kxl)i+l,k
Vi) g o=
1 l+"i-‘k ﬁxl [ Ekx:[) i+l ,k(¢U} 3 'k+(k}(1) l’k(¢u} i*l,k]

t+l t+l
[Pi*l;k-Pi.k}+[°B]i+%,k(hi+1,k'hi,kﬁ . (4-15)

In a similar manner, the vertical seepage velocity,
t+l

(VS)i,k+% , may be written as

£+)

V3d i ko™

-z(kx.s]i,k(kxz,)i_.ki-l [
ax-sl.(kxs)i‘k*l[m-‘]i’k"(kxs)i’k(q)u)i,k_'_l]

t+1 t+1

(Pi’}”l-Pisk)+£Dg)i,k+%[hi,k+1'hi,k]J' (4-16)

Using Eqs. 4-15 and 4-16, the seepage velocities
at each interface of a grid is calculated as shown in

Fig. 4-2. A seepage velocity must be assigned to
t+l
l Vadi ko
Vt+1
t+1 12’ t+l
+
wl)i-ls,k _— -—-(vlji+5§,k
vt
L
. t+l
1‘“331,k+a
Fig. 4-2 Schematic sketch showing relation of seepage

velocity at moving point to the seepage
velocity calculated at the interface
between grids.

each moving point within the grid based on the value
of the seepage velocities at the interfaces, A
linear interpolation is used in making this assign-

ment. For instance, the velocity components of the
moving point in the grid of Fig. 4-2 are given by,
X, -[xlj 5
t+l _ t+1 g i-%k t+1 t+1
T, " Vi) gty - axl"*'*"[(Vlji-a,k'[vlji+g,kJ
(4-17)
and
3 '(xs) ;E
o o t+l L i,k- t+l t+l
5, " Wiy — = [(VSJi.k-%'(VSJi,k+B] :
(4-18)



4.4 Boundary Conditions. Appropriate boundary
conditions due to geologic and hydrologic influences
must be used in conjunction with Eqs. 4-2, 4-10, 4-11,
4-12, 4-17, and 4-18 to obtain a solutiom. These
conditions take the form of (a) no-flow boundaries,
(b) hydraulic boundaries at ground surfaces,

(c¢) groundwater underflow boundaries, and (d) known
tracer concentrations maintained at certain
boundaries.

No-flow boundaries are simulated by assigning a
permeability of zero, a longitudinal dispersion coef-
ficient of zero, and a transverse dispersion coeffi-
cient of zero to the grids located along the boundary.

+

With such a simulation, the coefficients N; s
i

, as given in Appendix C and

* +
E— k]
XX, X.X,
i1 3
Appendix D, are automatically set equal to zero. The
one exception that has to be treated separately is
the case where grid (i,k) and one of the adjacent

grids are both no-flow boundaries (see Fig. 4-1). In

e +
this case the coefficients N; Z E; " , and
i 1%y
G: . Wwill become 0/0 which is indefinite. An
i

"IF" statement in the computer program can effec-
tively take care of this one situation and set the
appropriate coefficients equal to zero if this
situation should ever occur.

Hydraulic boundaries at the ground surface are
most commonly encountered in the form of a direct
connection between a groundwater aquifer and a river
or lake, and are simulated by programming a time-
varying or constant water pressure in the appropriate
grids. If the known pressure boundary is encountered
in grid (i,k) , then the coefficients of the pres-
sures in the adjacent grids are set equal to zero,
the coefficient of the pressure in grid (i,k)} is
set equal to one, and the right hand side of Eq. 4-1
is set equal to the known pressure value. The
resulting equation is

Pt+1 .

ik known value. (4-19)

In case the known pressure boundary is encountered in
one of the grids adjacent to grid (i,k) , then the

+ +
appropriate coefficient p_ N is multiplied by

1, =%
the known pressure and transferred to the right hand
side column vector of Eq. 4-2. The corresponding
element of the coefficient matrix, [A] is then set

equal to zero.

Groundwater underflow boundaries occur when only
a portion of an aquifer is being studied. This bound-
ary condition may be simulated in many ways, but per-
haps the simplest is to project the pressure gradient
and concentration gradient across the boundary and
calculate the rate of underflow using these projected
gradients.

Boundary conditions for known tracer concentra-
tions must be specified also. These conditions are
handled in this simulation by the moving points. As
fluid leaves the model, moving points with their
corresponding ‘concentration values are removed from
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the system, As fluid enters the model, moving points
with the appropriate boundary concentrations are
added to the system.

The boundary conditions described above are the
only ones considered in this simulation. Other
boundary conditions such as those associated with a
leaky aquifer or radioactive decay of a tracer may
be encountered. Appropriate additions to the com-
puter program would be required.

4.5 Description of the Computer Program. The
computer simulation was programmed in Fortran IV for
the CDC6400 Computer at the Colorado State University
Computer Center. A flow chart of the program is
shown in Appendix F, and a reprint of the program
used in solving the salt-water intrusion problem is
given in Appendix G.

The MAIN program accepts the input data and
governs the sequence of operations to be performed.
Subroutine INICON assigns a uniform distribution of
"moving'" points to each grid along with the initial
value of concentration assigned to each point. Sub-
routine READIN reads in or assigns appropriate values
to all physical quantities such as permeability,
porosity, viscosity, etc. All of the initial values
are then printed out using subroutine INIPRT and
subroutine MATROP.

Because of the large amount of computer storage
required, auxiliary storage in the form of a scratch
tape is used. The locations and concentrations of
the moving points are stored in common with the
coefficient matrix used in solving the pressure equa-
tion. Since the location and concentration of the
moving points must not be destroyed, they are written
onto the scratch tape each time before the pressure
equation is solved and then read back afterwards.
This was done by subroutines, WRTAPE and RDTAPE which
are systems routines developed at the CSU Computer
Center, They allow for reading or writing on the
tape while the program continues to execute.

Subroutine MATSOL sets up the coefficient matrix,
[A] , and the right hand side column vector, [rhs] ,
for solving the pressure equation. This subroutine,
as is presently written, may take care of two types
of boundary conditions: (1) a constant pressure
boundary and (2) a no-flow boundary. Other boundary
conditions besides these may easily be added to the
program. MATSOL checks the boundary conditions and
makes the appropriate changes in [A] and [rhs]

To solve the set of equations set up by MATSOL,
the solution of a set of simultaneous equations is
required. A general numerical solution should offer
several solution techniques such as Gauss elimination,
successive overrelaxation (SOR), or iterative alter-
nating direction implicit procedure (ADIPIT). For a
review of these techniques, the reader is referred to
Breitenbach et al. (1968b).

Gauss elimination is by far the most reliable
numerical method one can choose for solving the
matrix given by Eq. 4-2. However, the volume of com-
putation required by Gauss elimination for a large
matrix can result in large amounts of computer time.
In such cases, ADIPIT or SOR may prove to be more
efficient with time. For the computer simulator
developed herein, Gauss elimination was chosen.

o



If the matrix, [A] , were written out, the
resulting matrix is found to be a band matrix with
five diagonals of the form,

Computer storage is not necessary for the matrix
elements above and below the band. Thus, having a
minimum band width is desirable. An appropriate
choice of the grid numbering pattern can reduce the
total width of the band. Another important feature

is that the number of rows participating in the upper
triangularization for each column is quite limited.
Thurnau (1963) developed an algorithm called BANDSOLVE
which makes use of these characteristics in solving

a five diagonal band matrix.

In this computer simulator, subroutine BSOLVE
makes use of the BANDSOLVE algorithm to solve the
matrix equation, Eq. 4-2, by Gauss elimination. This
subroutine allows for row interchange to combat round-
off error. The only problem encountered in using
this technique to solve the matrix equation was that
of large amounts of computer storage. As an example,
a grid network with the dimensions of 10 grids by 25
grids has 250 equations and requires 5250 words of
computer storage for BSOLVE. In contrast, a 20 grid
by 25 grid network has 500 equations and requires
20,500 words of computer storage for BSOLVE. For
large problems, external storage would be necessary
on many computers.

After solving for the new pressures, the storage
taken up by subroutine BSOLVE is available for other
uses. Therefore, the coordinates and concentrations
of the moving points are read from the scratch tape
and placed in the storage locations previously
occupied by BSOLVE.

Subroutine VELOCY calculates the velocities at
each grid interface by use of Eqs. 4-15 and 4-16.
This routine also calculates the longitudinal and
lateral dispersion coefficients using a velocity power
relationship of the form of Eqs. 2-15 and 2-16. With
values for the dispersion coefficients and velocity
components, Eq. 3-14 is used to calculate the compo-
nents of the dispersion tensor.

Subroutine MOVPT uses the velocities calculated
in VELOCY and Eqs. 4-17 and 4-18 to obtain the veloc-
ity components of each moving point, Each point is
then moved to a new location by use of Egs. 4-10
and 4-11. A section of this subroutine determines
which of the points has moved out of the model.
These points are tagged and introduced at an inflow
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boundary with the appropriate boundary concentration.
0f all the subroutines developed for this simulator,
MOVPT is probably the least general. At the present
time, minor changes in the program must be made when
boundary conditions are changed to allow for the
proper removal and reintroduction of the moving
points. After each point has been moved to a new -
location, the average concentration of each grid is
calculated by arithmetically averaging the concentra-
tions of the "moving points" located in the grid.

With the average concentrations of each grid
determined, subroutine DISP uses Eq. 4-12 to deter-
mine the change in concentration due to dispersion.
The end result is the concentration of each grid at
time t+At. To conclude a time step, a mass balance
of the system is calculated and appropriate changes
in density, viscosity, and porosity are made using
Eqs. 3-6, 3-7, and 3-8. A test for print out is
made and the program returns to subroutine MATSOL
where the pressure equation is resolved and the
entire process repeated for the next time step.

4.6 Validity of Computer Simulator. A dis-
cussion of the validity of the proposed computer
simulator is needed at this point., No rigorous proof
of the stability and convergence of the overall simu-
lator is available. Thus, the performance of the
program in solving problems will be used as a major
test of validity. A discussion of this performance
is presented in Chapter V. However, some confidence
can be gained by analyzing the individual parts of the
simulator for stability and convergence.

The pressure equation is solved using Eq. 4-1
as the finite difference form. This is an implicit,
centered-in-space difference scheme with variable
coefficients. No general stability criteria for the
variable coefficient difference equation has yet been
developed. Although not giving a rigorous proof,
Richtmyer (1957, p. 72) gave the argument that the
stability conditions for the constant coefficient
problem must be satisfied at every point in the domain
of the difference equation for the variable coeffi-
cient difference equation to be stable. Smith (1965)
and Richtmyer (1957) both showed that the implicit
difference scheme with constant coefficients is
unconditionally stable and convergent. Thus, using
the heuristic argument of Richtmyer, it may be con-
cluded that Eq. 4-1 is stable for any value of AX,,
Ax3, and At .

The change in concentration due to dispersion is
given by Eq. 4-12, and is an explicit centered-in-
space finite difference equation. In general,
explicit difference schemes have stability criterion,
and Eq. 4-12 is no exception. The stability criter-
ion for a constant coefficient explicit difference

form involving BZC/ax% 3 BZC/axg , and 325/3x§
may be found in Smith (1965) or Richtmyer (1957).
However, Eq. 4-12 also contains the cross-derivative
32C/3x13x3 and a stability analysis of the equation

was necessary. The stability analysis was done by a
Fourier series approach for both the three-dimensional
and two-dimensional problems. This analysis is given
in detail in Appendix E. In summary, the stability
of Eq. 4-12 is assured if



Dj; 20, (4-20)
*
Deg >0, (4-21)
* * * *
2
4011[)33 > [D13 + DSI) " (4-22)
and
* *
wh At wh., AL
11 33 1
P + : ZF (4-23)
(ax,) (8%5)
where D;l, D;S’ D;S and D§1 are the components

of the dispersion tensor,

4t is the temporal
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increment, are the spatial incre-

ments and w = p/(p-aC) . The stability of the
three-dimensional equation is given as Eg. E-40 of
Appendix E.

axl and axs

* %* *
11 + V55 » Bz

31 then Eqs. 4-20, 4-21, and 4-22 are satis-
fied automatically. Thus, Eq. 4-23 is the only
stability criterion of any importance to the problem
being considered here.

If Eq. 3-14 is used to obtain D

and DY

A theoretical development of the convergence of
the overall "method of characteristics' scheme used
to solve the dispersion equation has not been success-
ful. If the stability criterion of Eq. 4-23 is not
satisfied, then the numerical solution '"blows up " .
Some convergence tests made by running problems with
known solutions are given in the next chapter.



Chapter V

RESULTS AND INTERPRETATIONS

Because of the difficulty in obtaining theoreti-
‘cal criteria for the validity of the numerical simu-
lator, experience with actual problems is a necessity.
The numerical solution of the pressure equation has
been done successfully many times, and will not be
the subject of detailed review in this study. How-
ever, the solution of the dispersion equation by the
"method of characteristics" (MOC) has not been so
widely studied; especially using the tensor relation-
ships developed in Chapter IV, Therefore, the numeri-
cal solution of -the dispersion equation is the object
of most of the following results and discussion.

5.1 Longitudinal Dispersion in Steady, Uniform,
One-Dimensional Flow. If the results of known analy-
tical solutions can be reproduced, a great deal of
confidence in the numerical solution can be gained.
An analytical solution to the one-dimensional problem
with a step input of the tracer as a boundary condi-
tion is available. This solution was given as Eq.
2-10. The first test of the MOC will be to see how
well it solves the one-dimensional problem.

Garder et al. (1964) showed that accurate
solutions of one-dimensional problems can be obtained
by the MOC over a wide range of values of the dis-
persion coefficient, including zero. They also
showed that the moving points do not need to be uni-
formly spaced, and that increasing the number of
moving points beyond two points per grid did not sig-
nificantly improve the accuracy of the solution. A
run was made using the data of Garder et al. (1964),
and the results are shown in Fig. 5-1.

No theoretical determination of the error has
been made for the method of characteristics. For
purposes of this study, an estimate of the error
between the numerical and analytical solution is
given by

E(t) = Max [C (t) - CI(B)] , (5-1)

1<is<n

where E(t) 1s the error at a particular time level,
i is the grid number, n is the number of grids
being used, Ci(tJ is the numerical value of con-

centration in the ith grid, and C;{t} is the

analytical value of concentration for the ith grid.
Other measures of error, such as a least squares
approach, could be used. However, from a computing
standpoint, Eq. 5-1 is the easiest to determine and
will give the relative merits of the numerical
technique.

To show the effect of grid size on the error,
several runs using different values for the spatial
increment were made. The results of these runs are
summarized in Fig. 5-2. The error for the MOC behaves
very strangely, and does not seem to necessarily get
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smaller with smaller grid size. This erratic
behavior of the error is believed to be caused by
the method of calculating the average grid concen-
tration and the relative positions of the moving
points inside the grid. This problem will be dis-
cussed in detail in Section 5.3 of this chapter.
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Fig. 5-1 Comparison of analytical and numerical
solution to the longitudinal dispersion
problem used by Garder et al. (1964).
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Fig. 5-2 Effect of grid size on the error of

solution by the method of characteristics.

Some indication of the nature of the erratic
behavior of the error shown in Fig. 5-2 can be
obtained by devising a particular grid dimension,
velocity, time increment, and moving point location
so that even though the moving points have moved
they have the same relative positions in the grid at



each time step. Using V., = 0.10 cm/sec and At =

2 secs, each point will mgve 0.2 cm each time step.

If a grid dimension of 0.4 cm is chosen and two points
per grid are used, then the distance between each mov-
ing point is 0.2 cm. Thus, at each time step, a
moving point just takes the position of the point in
front of it at the old time level, and all points

are located in the same relative position in every
grid. This concept is carried over when 4, 6, 8, or
16 points per grid are used.

The results of runs using the above concept are
shown in Fig. 5-3. The fact that the results for 2,
4, 6, 8, and 16 points are the same in Fig. 5-3 is not
just graphical. The computer results were the same
to all significant figures printed out. These results
offer two possible conclusions. The first possible
conclusion is that a relationship between the three
parameters, velocity, time increment, and distance
between moving points, has an effect on the error
of solution. The second possible conclusion is that
using an arithmetic mean to determine the average
concentration of each grid is improper. Some type
of weighted average may be more appropriate. These
possible conclusions will be explored in detail in
the following pages.

1.0 T T
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V3 = 0.10 cn/sec
0.EF Lt o= 2.0 aee g
Lia ®m 0.4 om
Lo
Fo.at
2
E
g
FLR
¥ Legend
8 o Numerical SoTution Using 2,
4, B, and 18 points per grid!
0.2k
=#ralytical Solution (E9. 2-10}.
L L I L .
o .1 0.2 0.3 0.4 6.5 0.6 0.7 0.8 0.9 ]

Tractionsl Distance,x ./t,

Fig. 5-3 Comparison of numerical and analytical
solutions using different numbers of mov-
ing points per grid.

The results from using one point per grid (Fig.
5-4) also indicated an interesting phenomenon that
was noticeable on other runs. When using one point
per grid, there is 0.4 cm between each moving point.
Since the points only move 0.2 cm per time step, two
time steps are needed for a point to move across a
grid. Thus, the concentration of the one point de-
termines the concentration of the grid for two time
steps. In effect, the grid concentration is not
changed due to convection. Every even time step
gives accurate results using one point per grid, while
each odd time step will give poor results, with the
front lagging behind the actual front as shown in
Fig. 5-4. This produces a "jerky" effect in the
accuracy of the solution which is undoubtedly some
of the reason for the erratic behavior of the error
shown in Fig. 5-5. A different method for calculating
the average grid concentration appears to be needed.
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tration distribution along x,=0 for the

2
two-dimensional dispersion problem with
the analytical solution to the one-
dimensional dispersion problem.

When sufficient points per grid are used to provide
a proper average grid concentration, then the MOC
yields good results for the cne-dimensional problem.

5.2 Longitudinal and Lateral Dispersion in
Steady, Uniform, One-Dimensional Flow. In the pre-
vious section, the MOC was shown to be capable of
giving good results for the one-dimensional disper-
sion problem. The extension of this analysis to the
slightly more difficult problem of two-dimensional
dispersion is the next logical step. A rectangular

region, Dixsgﬁs and 0<x,<%, is considered in

which the flow is along the X

S-axis with a steady,

V3 ‘

, is injected over a portion of the

uniform seepage velocity, A fluid of concen-
Co

input boundary (Of}zfp)

tration,
, while the remaining

portion of the boundary (bsx,<i is injected with

2)



a fluid of zero concentration, A schematic of this
particular problem is shown in the upper right hand
corner of Fig. 5-6.
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Fig. 5-6 Comparison of numerical and approximate

analytical solution for the one-dimensional
flow, two-dimensional dispersion problem
at steady state concentration.

The differential equation and boundary conditions
for this problem were given as Eqs. 2-12 and 2-13.
When the input concentration at x3=0 is maintained

for a long time, the concentration distribution will
approach a steady state. Harleman and Rumer (1963)
neglected the longitudinal dispersion term in the
differential equation and solved the steady state
problem. Neglecting the longitudinal dispersion is
valid because 32C/3X§ is very small at steady state,

Their approximate solution for the steady state case

was
x2~b ]

ZiDTxE/VS

C 1
E—Q— =3 erfc[ (5-2)

The numerical solution of this problem using the
MOC was compared with the solution given by Eq. 5-2.
Data for this run are: 25 x 20 grids on 02X;<10 cm

and 0<x,<4 cm, V; = 0.10 cm/sec, D, =0.01 cm?/sec,
DT ﬁxs 0.4 cm,
0x, = 0.2 em, b=2.,2cm and At = 2.0 sec. As was

0.001 cm?/sec, points per grid = 4,

done for the one-dimensional problem, the computer
program bypassed the solutions of the pressure equa-
tion and velocity equation. Steady state conditions
were achieved at about 200 seconds, or after about
100 time steps. The computer time required to solve
the dispersion equation for this problem was about
0.55 secs/time step. The step input of concentration
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was handled numerically by letting C/CO = 1.0 for
X2<b . C/CO = 0.5 for X, =b, and C/C0 = 0.0

for x2>b

2

The numerical solution provided the transient
concentration distribution, but no check of its
accuracy was made ‘since Eq. 5-2 is for steady state.
However, if DT is small and b is large, the con-

centration distribution at Xz =0 is not affected

by lateral dispersion, and the transient concentra-
tion profile along X, = 0 should be the same as

for the one-dimensional dispersion case. This was
found to be true for this run as shown in Fig. 5-5.

The numerical results at steady state (t = 200
secs) are compared with the approximate analytical
solution (Eq. 5-2) in Figs. 5-6 and 5-7. The accu-
racy of the results appear to be quite good except

for the area close to Xy = 0 . This should be
expected since the assumption of aac/ax§ =0 in the
analytical solution is not valid in this area. Some

of this discrepancy may also be the result of the
very steep concentration profile in the xz-direction

for the area close to Xy = 0 . Although not tried,
smaller grid dimensions in the xz—direction might

improve the results. Figure 5-7 gives the longitudi-
nal concentration distribution at steady state for
various values of X, . The small curvature of the

lines in Fig. 5-7 compared with the curvature shown
in Fig. 5-6 lends support to the assumption that
32C/5x% = 0 at steady state.
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Fig. 5-7 Comparison of longitudinal concentration
distribution at steady state as calculated
numerically and by an approximate analyti-
cal solution for the one-dimensional flow,
two-dimensional dispersion problem,

The MOC appears to be capable of solving preoblems
of longitudinal and lateral dispersion with as much
ease as it did longitudinal dispersion alone. No
problems with '"overshoot" occurred and no numerical
smearing was noticed.



5.3 Numerical Solutions Using the Tensor Concept
of Dispersion. One of the primary objectives of this
work is to consider the dispersion coefficient as a
tensor and evaluate the importance of using the tensor
concept. To be perfectly rigorous, the dispersion
coefficient was treated as a tensor in the previous
two sections. However, in those instances the axes
of the dispersion tensor was oriented parallel to the
coordinate axes X XZ, and KS . This resulted in

1 »
. . t * * * * *
the coefficients 21, DlZ‘ 031, Dls’ DSZ' and D23
all being zero, and D11 DL i D33 = DT Thus,

the previous analysis was reduced to working with
longitudinal and lateral dispersion.

In an isotropic medium, experimental results
indicate that the dispersion tensor is oriented so
that longitudinal dispersion is parallel to the
velocity vector and lateral dispersion is perpendicu-
lar to the velocity vector. Thus, if the velocity
vector is oriented at some angle to the coordinate
axes, then the dispersion tensor is also at some
angle to the coordinate axes. In the original paper
by Garder et al, (1964), it was assumed that the

velocity vector was essentially parallel to the Xy =

axis. However, in most complex groundwater flow
situations the velocity vector will not be parallel
to the coordinate axes, but will be constantly chang-
ing direction at different locations in the system.

The general dispersion equation (Eq. 3-3) and the
tensor transformation equations (Eq. 3-14) were derived
and written in finite difference form so that assuming
the velocity vector parallel to one of the coordinate
axis is not necessary. Thus, any type of complex
flow system may be analyzed using the proposed numeri-
cal simulator.

No analytical solutions are available for a
multidimensional flow problem involving the proposed
tensor transformations. To check the numerical
simulation, the problems described in Sections 5.1
and 5.2 were made two-dimensional by orienting the
coordinate axes at some angle to the flow vector.
Solving these problems in the rotated coordinate
system forces the use of the tensor transformation
and numerical scheme. However, the physics of the
problem have not been changed, and the resulting
answers should be the same as those obtained in
Sections 5.1 and 5.2,

After some preliminary calculations, the coordi-
nate axes were rotated so that an angle of 45° existed
between the velocity vector and the coordinate axes.
The derivation of the stability criteria in Appendix E
influenced the decision for using 45°. This is be-
cause at increments of =/4, 3%/4, 5n/4, and 7Tn/4
the off diagonal tensor components D} D>., Di

. A 1222 TN
D13‘ 023 and D32 Thus, the

maximum influence of the tensor transformation would
occur when the angle between the velocity vector and
the coordinate axes was given by nw/4(n=1,3,5,7...).
Figure 5-8 is a schematic sketch of the proposed
numerical scheme.

-

are at a maximum.

The one detail about the proposed scheme for
testing the numerical tensor transformation that may
provide trouble is the boundary conditions. As seen
in Fig. 5-8, the straight boundaries of the original

21

b}

Fig. 5-8 Schematic sketch of coordinate axes rota-
tion used for comparing numerical tensor
transformation with known analytical

solutions.

column will be approximated by a series of rectangles
or squares in the rotated column. As axé and

axé become very small,
boundary conditions can be obtained. In the computer
runs, the results along the boundary grids were not
as accurate as they should be. However, moving away
from the boundary only a small distance, the results
were found to be consistent with the analytical
solutions.

a better approximation of the

Longitudinal Dispersion. The first computer
runs using the tensor transformation were made for
the longitudinal dispersion problem discussed in
Section 5.1. Three different runs were made, and
the data for these runs are shown in Table V-1 as
runs number T-1, T-2, and T-3, As can be seen from
the data, lateral as well as longitudinal dispersion
was allowed to take place. However, a fluid of con-
centration C/C = 1.0 was injected across the

entire interface 0<x2<22

BC/axz = 0 , and elimination of lateral dispersion,

This should result in

Thus, an effective test of the numerical approxima-
tion for 3C/BXé and ac/axéaxi is provided.

The computer time required to solve this problem
was approximately 0.50 sec/time step for the 20 x 20
grid network and approximately 1.25 sec/time step
for the 38 x 38 grid network. This is the time
required to solve only the dispersion equation since
the solutions of the pressure equation and velocity
equation were bypassed for these runs, Thus, increas-

ing the number of pgrids by a factor of 3.6 resulted
in increasing the computer time by a factor of 2.5

The results for Run T-1, in which Eq. 3-14 was
used for the tensor transformation, are shown in
Fig. 5-9. For comparison, the analytical solution
determined from Eq. 2-10 is given. As can be seen,
the results are quite good. No problems with "over-
shoot' occurred for this case. For > 0.9 ,
some error is noticeable on the 0.92 pére volume
injected curve. This is because the boundary condi-
tion of the analytical solution has been violated,
The analytical solution is for a semi-infinite column;
not a finite column. Thus, the end effects of the
column became noticeable.



TABLE V-1 Data for computer runs made to verify
numerical simulation and tensor trans-

formation of dispersion problem

ar A%y axg vg > v No. of Tensor

Run (sec) (cm! (cm) (em/sec) (om/sec) (cm/sec)Points Transfor-
per Gridmation
used

-1 1.5 0.2 0.2 an .07 0.10 2 yes
T-2 1.5 0.2 0.2 0N .on 0.10 2 no
T-3 2.0 0.4 0.4 0N .on 0.10 2 yes
T-4 2.0 ©C.4 0.4 0N on 0.10 4 yes
-5 1.5 0.2 0.2 .07 .on 0.10 2 yes
T-6 1.5 03.2 0.2 0N on 0.10 2 yes
T-7 1.5 0.2 0.2 .on 0N 0.10 2 noe
T-8 1.5 0.2 0.2 0N 0N 0.10 2 yes
TABLE V-1. Continued.
Rn Goide in Gridsin DL Dy W TR

xi- Xh- (cmé/sec) (cmP/sec) (em) (cm)  (cm)

Direction Di on

T B k-] 0.01 0.003 6.509 4,245 4.245
T-2 38 38 a.m 0.003 6.509 4.245 4.245
T-3 20 20 0.01 0.001 65.66 5.66 5.66
T-4 20 20 0.0 0.001 7.358 3.962 1.981
T-5 38 38 0.01 0.001 6.509 4.245 2.122
T-6 8 38 2.01 0.003 6.509 4,245 2.122
T-1 38 k| 2.01 0.003 6.509 4.245 2.122
7-8 £ 38 c.0 0.003 6.509 4.245 2.122
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Fig. 5-9 Comparison of longitudinal concentration

distribution calculated with and without
tensor transformation for Runs T-1 and T-2.

Also shown on Fig. 5-9 are the results of Run
T-2 in which the tensor transformation was not used,.

3 * iy * _ » * -
For this case, D11 = DL i D22 = DT , and D12
D;l =0 This means that the dispersion tensor was

assumed to be oriented parallel to the rotated coor-
dinate axes rather than the velocity vector. The
results of Run T-2 indicate that by not using the

tensor transformation, an error results in the numeri-

cal solution, The run without the tensor transforma-
tion gives a steeper concentration distribution curve
than the analytical solution. Although not tried,
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the use of a larger value for DL should move the

curve for Run T-2 nearer the analytical solution,

Although the error created by disregarding the
tensor transformation is discernible, this is the
maximum error that will occur. As the coordinate
axes are rotated from the present 45° to either 0°
or 90°, the two solutions given by Run T-1 and Run
T-2 will gradually approach each other. Thus, in
many practical problems, the error in determining
the dispersion coefficient will probably result in
greater errors than that created by neglecting the
tensor transformation. However, the tensor trans-
formation required very little more computer time,
and did result in a more accurate solution.

Figure 5-10 shows the lateral concentration
distribution for Runs T-1 and T-2 after injecting
0.46 pore volumes of fluid. The data along x2/£2 =

0.5 correspond to those shown in Fig. 5-9 for
V3t113 = 0.46. Again, the numerical result using the

tensor transformation are more accurate than those
without the transformation. As was surmised earlier,
approximating the straight boundary of the column
with a square grid (see Fig. 5-8) has resulted in a
larger error along the boundary, The numerical re-
sults for any value of stls were generally the

same to three decimal places for 0.31*2/£2 < 0.7,

1.0 T
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Fig. 5-10 Comparison of lateral concentration dis-
tribution calculated with and without
tensor transformation for Runs T-1 and
T-2 after 0.46 pore volumes have been
injected.



The no-flow boundary condition in Run T-1 was
approximated numerically by setting the dispersion
coefficients equal to zero for all grids along the
boundary. Another way to treat the no-flow boundary
is to use a reflective boundary condition. Run T-3
was made with a reflective boundary condition along
xzfzz = 0 and a boundary condition with the disper-

sion coefficients equal to zero along x2/£2 = 1.0.

As can be seen in Fig. 5-11, the use of the reflec-
tive boundary condition apparently reduces the amount
of error. The reflective boundary condition improves
the results because the finite difference equation
for the cross derivative aZC/axsax2 involves using

a "nine-star" grid pattern (see Fig. D-1, Appendix D)
instead of the usual "five-star' grid pattern. This
means that the derivative of concentration in the
boundary grid has an influence further into the media.
This influence is more adequately accounted for by
the reflective boundary condition.
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Fig. 5-11 Comparison of lateral concentration dis-
tribution for Run T-3 after 0.46 pore

volumes have been injected.

Longitudinal and Lateral Dispersion. With the
set ‘up shown in Fig. 5-8, the longitudinal and lateral
dispersion problem discussed in Section 5.2 was solved
in the rotated coordinate system using the tensor
transformation relationships. In these runs, fluid
with a concentration of C/Cy = 1.0 was injected

over the interval 05}25p , and fluid with a concen-

tration of C/C0 = 0.0 was injected over the interval
bi"zilz . Runs T-4, T-5, T-6, T-7, and T-8 were made

to study the effects of the tensor transformation
when both longitudinal and lateral dispersion take
place. The data for these runs are givenm in Table V-1

The first run in this series (Run T-4) was made

with axy and x5y equal to 0.4 cm. The results from
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this run yielded more error than was tolerable. An
example of this error is shown in Fig, 5-12 after

2.3 pore volumes had been injected. This was assumed
to be approximately at steady state. Since the re-
sults of Run T-4 are smooth and display no anomalies,
the error was presumed to be the result of using

large spatial dimensions in the region of the steep

concentration profile along xz = b,
1.0 g - T T
Symeol
o Wumrical Solution with
0.9 - axand sy <04 cn 1
{Run T-4},
& Mumerical Solution with
0.8 F Al and 45 =0.2 o
4 (Ran T-5).
= Approximate Analytical
Solution (Eq. 5-2).
nI b
w06
1 g 40,6090
Foos
%
s o4
0.3
0.2
0.1 1
0.0 0.7 0.8 0.0 (TR S Y

Fig. 5-12 Comparison of lateral concentration dis-
tribution for Runs T-4 and T-5 at steady

state.

To check this hypothesis, Run T-5 was made using
xi and x5 equal to 0.2 cm. The results were

much better as shown in Fig. 5-12, but are still not
accurate enough. The spatial dimensions could have
been decreased more, and a more accurate solution
would probably have been obtained. However, Run T-5
required the use of a 38 x 38 grid system or a 40 x
40 grid system when the boundary grids are included.
This is 1600 grids and 3200 moving points. The com-
puter program for this problem required about 25,200
words of computer storage. This was near the avail-
able computer storage, and decreasing the spatial
dimensions further was not attempted.

Since the very sharp concentration front along
X, = b appears to be causing the problem, then
increasing the width of the dispersed zone might help.
With this in mind, Run T-6 was made with DT = 0.003
em?/sec instead of Dy = 0.001 cm?/sec.

of this run are shown in Fig. 5-13, and they are much
improved. Except for the area near the inflow bound-
ary {xslis <0.3) where the analytical solution is

The results

not good, the results compare favorably with the
approximate analytical solution given by Eq. 5-2.

Run T-7 was then made using the same data as
Run T-6, except the tensor transformation equations
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and do not match the analytical solution.
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Comparison of longitudinal concentration
distribution at steady state as calculated
numerically using the proposed tensor
transformation and by an approximate
analytical solution.

These results are shown in Fig. 5-14,
Figs. 5-15,

5-16, and 5-17 give a comparison of the lateral con-
centration distributions for Runs T-6 and T-7 at
various values of x3/13 . Run T-7, using no tensor

transformation, shows a flatter concentration distri-
bution than the analytical solution.

"overshoot'" or "undershoot'.

Figures 5-15, 5-16, and 5-17 do not show any
However, 'overshoot"

and "undershoot" did occur; but was generally
restricted to the third or fourth decimal place.
This small significance resulted in no noticeable

“gvershoot" in the graphical presentation.

The use

of the "nine-star" grid pattern to estimate the cross-

derivative
of this small amount of "overshoot".

aZC/axzaxs is believed to be the source

However, the

=3 7
magnitude of the "overshoot" (10 to 10 °) is

-2 .
much smaller than the overall error (10 7), and is
not considered to be a major detriment to the numeri-
cal scheme.
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Comparison of longitudinal concentration

distribution at steady state as calculated
numerically using no tensor transformation
and by an approximate analytical solution.

24

Ll ] T T T
Symboll,
o Mumerical Result using
0.9 - Tensor Form of Disper- 7
ston (Run T-6).
a Mmerical Result using
0.8 no Tensor Transforma=
s tion (Run T-7).
— AP imate Ml;tlul
Solution (Eg. 5-2).
0.7 |~
ud
H 6
= 0.6 4
£
i
E 0.5 b %y/ 1500, 2045 J
]
0.4 = T
0.3 = 1
0.2 - 1
0.1 - 1
| | il PN
-0.30 =0.20 =0.10 D.E 0.10 0.20 0.3
e

Fig. 5-15 Comparison of numerical solutions with
and without the tensor form of disper-
sion for steady state concentration at
xsfls = 0.3045.
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sion for steady state concentration at
x:s/i3 = 0.9570.

A more serious obstacle to the success of the
numerical scheme appears to be the moving points. In
Section 5.1, a lag in the concentration profile for i
longitudinal dispersion was noticed when the same
points remained inside a grid throughout a time step.
This resulted in a "jerky' movement of the concentra- 0.801
tion front as was shown in Fig. 5-4 for the case of
one point per grid. In other words, the accuracy of
the numerical scheme appears to be dependent upon the 0
time increment selected for a given grid size.

Symbol
O Numerical solution for <
Run T-4 after 120 sec.

& Numerical solution for
Run T-4 after 150 and
and 180 sec. b

— Approximate analytical

solution (Eg. 5-2).

The problem with the "jerky" frontal movement
was also noticeable in the two-dimensional dispersion
problem where two points per grid were used. The
results for Run T-6 shown in Figs. 5-13, 5-15, 5-16,
and 5-17 are after injecting for 150 seconds and are
quite good. However, Fig. 5-18 shows the results for
Run T-6 at 120 seconds and at 180 seconds. These
results are obviously not as good as those for 150
seconds. Thus, the accuracy of the numerical solution
apparently depends on which time level is chosen to
print out the results. The results for Run T-4, in
which four points per grid were used, did not show o.30F
this apparent accuracy dependence on time. As is
seen in Fig. 5-19, the results of Run T-4 are approxi-
mately the same for t = 120 seconds, t = 150 seconds, 0.20F
and t = 180 seconds.

0.60F

o
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0.50F

0.40F

Concentration, C/C

A conclusion which might be deduced from the - 0.10f
above observations is that the number of points per
grid does have an effect on the accuracy of the
results. However, the use of hand calculations to e L B TR
move the points from location to location indicated 2,70
that the relative position of the moving points in a
particular grid at a given time level influences the
results more than the number of points. Figures 5-20a, | Fig. 5-19 Numerical results for Run T-4 at
b, and ¢ illustrate an example of this hypothesis. different time levels.

0.30
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Fig. 5-20 Schematic sketch showing the effect of
the moving point location on calculating
average concentration.

In Fig. 5-20a, two points are centrally located in
the grid, and points in the adjacent grids are lo-
cated as shown. All points above the diagonal are
assigned a concentration of zero, and all points
below the diagonal are assigned a concentration of
one. No dispersion is allowed to take place. Under
this setup, the average concentration assigned to
the grid would be (1.0 + 0.0)/2 = 0.5.

Now suppose that the velocity vector is oriented
parallel to the diagonal, and that the magnitude of
the velocity and time increment are such that at the
next time step the points are located in the grid
as shown in Fig. 5-20b. Even though two points are
still in the grid they are positioned along the right
side of the grid and both are above the diagonal.

For this case, the average concentration assigned to
the grid is (0.0 + 0.0)/2 = 0.0. Thus, by going
from one time step to the next, the concentration
has changed from 0.5 to 0.0.

To carry the case to an even further extreme,
suppose the magnitude of the velocity and time incre-
ment are such that at the next time step the points
are located as shown in Fig. 5-20c. The two points
in this instance are located very close to the left
side of the grid and are below the diagonal. Thus,
the average grid concentration is (1.0 + 1.0)/2 =
1.0.

Three completely different answers were obtained
at three different time levels depending on how the
points were positioned in the grid. Obviously all
three answers cannot be right. The correct answer
is, of course, 0.5 which was given by the point loca-
tions in Fig. 5-20a. The phenomenon depicted in
Figs. 5-20a, b, and ¢ is exactly the phenomenon en-
countered iu Run T-6 in which distorted values were
obtained at certain time levels and accurate results
were given at other time levels.

The phenomenon discussed above could be reduced
to a tolerable level by increasing the number of mov-
ing points per grid. This is indicated by the fact
that Run T-4 with four points per grid did not show
an accuracy dependence on time. However, perhaps the
key to the problem is not increasing the number of
points, but determining the .verage concentration by
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another method. A proper weighted averaging scheme
will help things considerably.

Run T-8 was made with all data exactly like

Run T-6 except that area was used as a weighting
factor. The average concentration was calculated by

1 n
Co o 1 GdA o

e (5-3)
My g 1

where C is the average concentration, ﬂx& and
ﬂxg are the spatial dimensions of the grid, Ci is
the concentration of the ith moving point, AA,  is
the "area of influence" of the ith moving point, and
n
) BA; = bxjsxi . .The concept of an "area of
i=1

influence" is schematically shown in Fig. 5-20d.
Using such a concept, points 1, 7, 8, and 9 will have
some influence on the average grid concentration
while the influence of points 1 and 2 has been di-
minished. The results for Run T-8 using the weighted
average are shown in Fig. 5-21 after 120 seconds,

150 seconds, and 180 seconds. These results are much
improved over those of Run T-6 shown in Fig. 5-18.
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Fig. 5-21 Numerical results for Run T-8 at different

time levels.

The conclusion that must be reached here is
that the method of calculating the average grid con-
centration is an important factor in the numerical
scheme. If some type of weighted average is not used,
then a sufficient number of moving points must be
used to guarantee a reasonable estimate of the average.
Although Garder et al. (1964) concluded that two
points per grid gave sufficient accuracy, the results
obtained in this study indicate the number of points
per grid may need to be greater than two. The exact
number needed is unknown, and would appear to be



dependent on the nature of the problem being The condition of equal pressures in the salt-
considered. water and the fresh water at each point along the
interface yields

If an adequate scheme for weighting the concen-
tration can be developed, then a smaller number of Pe h* Ps
points per grid may be used. Using an "area of Y W -5k » (5-5)
influence" as a weighting function gave good results
for the problem considered here where a uniform,

steady velocity field was used. The numerical prob- where Pg and Dy BEE the densities of fresh and
lems encountered in determining an "area of influence" salt-water, respectively, and &p = p_ - pg - Sub-
for each point in a nonuniform, ur+teady flow field . . - . 8

appear to be numerous. Other weighting schemes, stituting Eq. 5-5 into Eq. 5-4 gives

besides area, which could easily be calculated for ~ fAp

the nonuniform, unsteady case might prove to be ade- o L

quate. This problem is left to future thought and (h* - 3 £)dh* = dx. . (5-6)
research. P 1

5.4 Dispersion Along Equilibrium Salt-Water 1 z d ; £ he
Wedge. In Sections 5.1, 5.2, and 5.3, the numerical ntegrating and solving for ,
simulation of the dispersion equation and the tensor
transformation of the dispersion coefficient was
compared with known analytical solutions. However, " (5-7
the total simulator using both the dispersion equa- E; i -7)
tion and the flow equation have not been used. A
problem which seems favorable to this type of analysis
is the salt-water intrusion problem. Rumer and

The constant of integration, B can be obtained
Harleman (1963) used a laboratory model of a two- : ’ .
dimensional confined aquifer to investigate convec- by using the value of h* at x,=0 . Henry (1959)
tion and dispersion along a salt-water wedge. showed that the outcrop opening (y at x1=u} was
Columbus (1965) used a Hele-Shaw model to investigate given by,

sea-water intrusion in an unconfined model neglecting
dispersion. Because Rumer and Harleman's (1963) data 0.741 &
contained information on the value of the dispersion Yix. =0y * E—L———Ji - (5-8)
coefficients, a computer run was made using the data (*4=0) Be/pg

from one of their laboratory runs.

The equilibrium salt-water wedge, when subjected Substituting Eq. 5-3-into Eq. 5-5. gives
to the steady flow of fresh water to the ocean, will
develop a transition zone. Using Darcy's law and the

-~ P

Dupuit-Forchheimer approximation, the specific dis- hEx -0) * Q;E%l_i woBop (5-9)
charge of fresh water per unit width of ocean front, I Pg
q , can be written as

3= Ky dh* (5-4) Using Eq. 5-9 in Eq. 5-7, gives B = (0.741g/K)? .

1 dx, ! Thus, the piezometric head is given by,

2a 13

in which K = hydraulic conductivity, y is the dis- q og 6. %45 : p
tance between the top of the aquifer and the wedge h*® = ¥ x] + (—;—E-Ji) + —ﬁ-g . (5-10)
interface, and h* is the piezometric head (Fig. 5-22). P

The medium is assumed to be homogeneous, isotropic,
and no mixing ocecurs at the interface.

Substituting Eq. 5-10 in Eq. 5-5, gives the equation
for the interface,

T

. '_I_:EEE N -2
2 741
By 1 Ll y = —"‘—ﬁ Xy * T P 3 . (5-11)
- r \/ x 2L K 2L
A Df Df
—q ¥ Ocean
dt
Although the static interface between fresh and salt
water will be subjected to dispersion, Rumer and
B L Harleman (1963) showed that the position of the mean
i X, isoclor (C = 0.5) is adequately predicted by Eq. 5-11.
) _ _ Rumer and Harleman (1963) gave the following
Fig. 5-22 Equilibrium wedge in a confined aquifer. information for their Run No. N-2: g@=0.0733 cm?/sec,

Fi



dp/pg = 0.006, K = 0.855 cm/sec, porous medium =

plastic spheres, and median grain diameter = 0.965 mm.
A computer run was made using Rumer and Harleman's
information, plus some additional data required by
the numerical simulator. The data used in the com-
puter run are: axl = 6.0 cm, ﬁxz = 6.0 cm, At =

500 sec, k = 9.885 x 107° ¢ =0.39, pg=1.000,
Py = 1.006, 4p = 0.006, u = .0116 poise, fluid com-

pressibility = 0,0, rock compressibility = 0.0,

A =00, o=0,006, grid dimensions = 12 x 27,

depth of aquifer = 60 cm, length of aquifer = 156 cm,
E=33cm, q=0.0736 cm?/sec, moving points per

grid = 2, and the acceleration of gravity = 980 cm/sec?.
In addition to these data, the dispersion coefficients
were assumed to be given by

em?,

DLp v dsop 1.2

= il 0.66 . (5-12)
and

nTp v dsop 9.1

m— 0.036 ( = ) (5-13)

The reason for using Eqs. 5-12 and 5-13 is that
Harleman and Rumer (1963) determined these relation-
ships for the same medium (plastic spheres) used by
Rumer and Harleman (1963) in their study of sea-water
intrusion.

The computer run was made for 60 time steps or
about 8.33 hours. Whether this was long enough for
the wedge to reach equilibrium is unknown. The concen-
trations were not changing very rapidly, and the toe
of the wedge was moving very slowly. Therefore, the
wedge was assumed to be in equilibrium. The computer
time required for solving both the flow equation and
dispersion equation for this 12 x 27 grid network was
about 3.4 sec per time step.

Fluid enters the model at xl = 156 cm and leaves
the model at X, = 0. x, = 0

and Xy = 60 cm. Thus, the boundary conditions are

No fluid flows across

given by

gP + pg Eﬁ--- = 0 at x,=0 (5-14)

X, 3 2 2
and Xy = 60 cm,
P[O,XZJ = P(0,0) - pss[h{o,xz)-h(o,ﬂ)] [5'15)
at xl=0 ,

and
P{IS&,XZ) = P(156,0) - ng[h{ﬂ,xz)-h(o,ﬂ)] (5-16)

at X1=156 cm

P(0,0) is assumed to arbitrary and was taken to be
29,576.40 cynes/cm? for this run. P(156,0) was main-
tained at the necessary level to cause a fresh-water-

flow of q = 0.0733 cm?/sec.
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The boundary conditions given by Egs. 5-14 and
5-16 are believed to be adequate, However, the
boundary condition given by Eq. 5-15 is subject to
some suspicion. The actual physical boundary condi-
tion where the fresh water discharges into the ocean
is very difficult to describe numerically. The com-
puter run indicated that some recirculation of fluid
took place along this boundary. If the simulator
should be used to study the salt-water intrusion
problem in detail, additional work on describing
this boundary condition will be necessary.

A comparison of the fresh-water head calculated
numerically and by Eq. 5-10 is shown in Fig. 5-23.
The comparison shows that the numerical results and
those by Eq. 5-10 are very close except for the
region close to the ocean front, This would be the
region affected most by the use of the Dupuit-
Forchheimer assumptions. Also this region is prob-
ably affected by the boundary condition given in
Eq. 5-15.
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Fig. 5-23 Comparison of fresh-water head calculated
numerically and by Eq. 5-9 for the salt-
water intrusion problem.

Figure 5-24 shows a comparison of the mean
concentration line (C/C°=0.SU) calculated numeri-

cally and the interface location obtained from Eq.
5-11. These results are good except in the vicinity
of the wedge toe. Several factors may be contributing
to this error., First, the numerical results may not
be completely at a steady state. However, the 60
time steps computed required 205 seconds of computer
time. The concentration changes taking place were
slow enough so that large amounts of computer time
would be required to carry the solution to a real
steady state. The present grant for computer usage
would not allew such large amounts of computer time,
Thus, runs of longer duration were not made.

Another factor which proved a limitation on this
problem can be seen in Fig. 5-25. The concentration
profiles are extremely steep. In fact, the profile
is so steep that the grid concentrations obtained
from the computer were generally either C/C0=1.0

or C/C,=0.0. Very few grids had a value for c/c,

between these two extremes. Thus, a large amount of
interpolation was required to determine the line
C/CD=0.5. To alleviate this problem, smaller spatial

dimensions are needed which 'will require more computer
storage. This will necessitate making changes in the
program for more extensive use of auxiliary storage
(i.e., tape).
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Another problem is that of having the moving
points heavily weighted to one side of the grid.
This problem was discussed in Section 5.3, and the
use of a weighted average using the "area of in-
fluence" as a weighting factor proved successful.
However, the unsteady, nonuniform flow field en-
countered in the salt-water wedge makes the deter-
mination of an "area of influence" difficult. Using
more moving points per grid than the two used in
this run would probably help this problem.

The computer program indicates that a small
amount of salt-water flow (approximately 0.008
cm /sec) occurred in the salt-water wedge. This
would have the effect of moving the wedge toe toward
the ocean; although not by enough to account for all
the discrepancy shown in Fig. 5-24.

Another factor which might have effected the
location of the interface is the boundary condition
given by Eq. 5-15 to approximate the ocean front.
The computer results indicated that some recircula-
tion of fluid was occurring along the two grids
adjacent to the ocean.

To investigate all of the above effects on the
numerical solution would require additional computer
funding. Such funds are not presently available.
This should be made the object of some future
research proposal.



Chapter VI

SUMMARY AND CONCLUSIONS

A three-dimensional fundamental flow equation
for a mixture of miscible fluids flowing through a
groundwater aquifer was derived. Also, a three-
dimensional convective-dispersion equation describing
the movement of a tracer miscible with the groundwater
was derived. Finite difference forms of these two
equations were developed, but because of insufficient
computer funds the three-dimensional equations were
never used.

A computer program using the two-dimensional
finite difference equations was developed and tested
with success on problems with known analytical solu-
tions. Assuming an isotropic medium, a tensor trans-
formation for the dispersion process was tested
extensively. Because the numerical simulation of the
tensor transformation involves the cross-derivatives
of concentration, new stability criterion were
developed for the explicit finite difference scheme
used to solve for dispersion.

6.1 Evaluation of Numerical Simulator. The
results of this work will allow the study of numerous
miscible displacement problems in complex groundwater
flow fields. The numerical simulator can be used for
steady or unsteady flow, homogeneous or nonhomogeneous
aquifers, isotropic or anisotropic media, constant
densities or varying densities, and constant viscosi-
ties or varying viscosities. The use of the proposed
simulator has resulted in the following:

a. The one-dimensional flow problem with longi-
tudinal dispersion can be handled without any difficul-
ty, and excellent results were obtained. No "over-
shoot" or numerical smearing was noticeable.

b. The one-dimensional flow problem with both
longitudinal and lateral dispersion can be handled
satisfactorily. No "overshoot' or numerical smearing
were observed. Small spatial dimensions are required
along a sharp concentration front to adequately des-
cribe the front.

c¢. Working with a rotated coordinate system,
the proposed numerical simulation for the temsor
transformation of the dispersion process was success-
ful. The use of the "nine-star" finite-difference
pattern to describe 3%C/dX,3X, was sufficient except

along no-fluw boundaries. The use of a reflective
boundary condition instead of setting the dispersion
coefficient equal to zero helped alleviate this
problem.

d. Garder et al. (1964) concluded that the
method of characteristics numerical scheme for dis-
persion would give good answers for as few as two
points per grid. The results of this work indicate
that the points per grid may need to be greater than
two. The exact number needed is unknown, and would
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appear to be dependent on the nature of the problem
being considered.

e. The method of calculating the average grid
concentration proved to be an important factor in
the numerical scheme. If an arithmetic average of
the points located in a grid at a particular time
level is used, then more points than two per grid
may be necessary to obtain an adequate average. A
weighted average using the "area of influence" for
each point was proposed and proven effective for a
steady, uniform flow field. Calculation of an "area
of influence' is difficult for an unsteady, non-
uniform flow field.

f. The numerical simulator was used to solve
the salt-water intrusion problem. The numerical
results for the fresh water head in the aquifer
matched closely those obtained analytically. The
numerical results for the location of the fresh-salt
interface were good except in the region of the
wedge toe. Insufficient funds prevented exploring
the effects of smaller spatial dimensions and a lar-
ger number of grids.

The efficiency of the numerical scheme would
seem to make it useful as a practical tool. However,
large amounts of computer time will be required be-
cause the numerical solution must be carried out
from the initial condition to the required time by
increments of At . Most practical problems will
also require the use of large amounts of computer
storage, Thus, the present program will need to be
modified so that more extensive use of external
computer storage can be made.

6.2 Suggestions for Future Work. Subjects not
covered, or not covered adequately, in this study
are:

a. The investigation of a weighting technique,
other than the "area of influence," which could be
used to determine the average grid concentration for
an unsteady, nonuniform flow field.

b. A method whereby the pressure equation is
solved for larger spatial and temporal increments
than the dispersion equation.

¢c. The effect of smaller spatial increments,
more points per grid, and different boundary condi-
tions on the salt-water intrusion problem.

d. A study of dispersion in layered and non-
homogeneous porous media.

e. A study of dispersion in anisotropic media,
Some method of determining the principle axes of the
dispersion tensor would be required. After this is
determined, the solution would be much the same as
that already presented.



£. The simulator should be used to solve an
actual field problem.

6.3 Observations. The results of this work
would indicate that hydrodynamic dispersion in a homo-
geneous and isotropic media is a valid and reproducible
phenomenon. However, the actual significance of the
dispersion process may be questioned because of the
smallness of the dispersed zone when compared to the
overall model dimensions. The conclusion that disper-
sion is not worth worrying about except for the most
noxicus pollutants and radioisotopes would seem to be
warranted.

However, field tests at Berkeley by Lau, et al.
(1957, 1958) showed that the dispersion constants re-
sulting from a pumping test were from 20 to 30 meters
compared to less than 1 mm in the laboratery. This
is a change of 3 orders of magnitude. Other field
work in transport phenomena indicates that the dis-
persed zone is significant in real aquifers. An ob-
vious conclusion is that mixing processes not involved
in laboratory models and homogeneous and isotropic
media are present in aquifers. This extra mixing
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process would appear to be the result of nonhomoge-
neous and anisotropic media which characterize real
aquifers.

The reason for the above observations are that
the results of this study show a significant, but not
overwhelming, difference between solutions with and
without the tensor transformation. Many people may
easily conclude that using the tensor transformation
is not worth the effort. If the real aquifer magni-
fies the error between solutions with and without
the tensor transformation as much as it does the
dispersed zone, then a significant error may occur
in the solution of field problems.

This work is a first step in developing a
numerical solution for miscible displacement which
makes use of the ftensorial nature of the dispersion
process. Until work in real aquifers indicates
otherwise, the numerical simulator should maintain
the capability of treating the dispersion process as
a tensor. The work on this project needs to continue
with a study of the dispersion process in a non-
homogeneous aquifer.
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APPENDIX A

DERIVATION OF THE
FUNDAMENTAL FLOW EQUATION

A fundamental flow equation for a displacement
process involving miscible fluids can be derived by
combining the law of conservation of mass, Darcy's
law, and an equation of state describing the pressure-
volume-temperature-concentration relationship. The
result is an equation involving two dependent variables,
pressure and concentration.

A.1 Continuity Equation. An important relation-
ship in fluid flow is the principle of conservation of
mass. This principle is a statement of material bal-
ance with respect to a volume element fixed in space,
and may be simply stated as:

(Rate of Mass Inflow) - (Rate of Mass Outflow) =

(Rate of Change of Mass Inside Volume Element) .

Applying this principle to the volume element shown
in Fig. A-1 results in

M -M +M -M
xl-ﬁxllz xl+ﬁxl/2 xz-ﬂxzfz xz+ax2/2
My
E
+ M -M = —M |, (A-1)
xs—axsfz x3+ax3/2 at P
where M » M » M .
xl-axlfz xz-axz/z xs-ﬂxS/Z
rate of mass inflow across faces xl-axl/z,

xz-axzfz, and xs-a13/2 respectively,

M

» M -
X 2+ﬁx2/2 x3+a13/2

rate of mass outflow across faces x1+ax1/2.

»nx£/2’ "x

x2+an/2, and x3+ax3Z2 respectively,
MVE = mass contained inside the volume element,
and

= a mass source or sink term which is
positive when a sink and negative
when a source.

M

Applying a Taylor series expansion about the point
[xl. X5 xs} of Fig. A-1 gives:
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M
P

Mx +Axl/2

Fig. A-1 Volume element of a porous medium used
for developing continuity equation.
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Neglecting second order terms and higher, the follow-
ing relationships are obtained from Eq. A-2:

M -M = - AXy
xl-axlfz x1+ax1/2 axl 1
’ auxl
M -M 8 - —— AX F
12-Ax2/2 x2+ﬁx2/2 sz 2
oM
*3
M M = - ax (A-3)
13 nxslz x3+ax3/2 axs 3
Substituting Eq. A-3 into Eq. A-) gives:
aM M M M
X X X
1 2 3 12
ks TS e T e A St R

Each one of the mass flow rate components may be
expressed in terms of the fluid density, the dimen-
sions of the volume element, and the volume flux.
Thus,

Mxl = pQ BX,0%5 (A-5a)
sz = oqzdxlﬁx3 3 (A-5b)
st = 0qzAX, 8%, (A-5c)
MVE = pQSAxlaxzaxs . (A-5d)

and
M =p = (A-5e

b pQ )
where p = mass density of the solution,

4y,9,,95 = components of the volume flux in the X1
Xy, and xz-directions,

¢ = porosity of the medium,

S =

Q = production term with units of Lr*

saturation of fluid,
1. and

pp = mass density of production fluid.

Substituting Eq. A-5 into Eq. A-4 gives:

C .
E (pq) 8% 8% )0, + i (pQ,yax, 8xy)ax, +

9 ]
5;; (pqsaxlaxz}nxs .- (p¢SAx1dx2ax3J-opQ
(A-6)

A.2 Fundamental Flow Equation. To develop the
flow equation, an expression for the volume flux terms
is required. Darcy's law is assumed to be applicable
for this flow situation and the axes of the cartesian
coordinate system {xl,xz,xs) are assumed to coin-

Thus,

cide with the axes of the permeability tensor.
the volume flux terms are given by:
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k
. ’(& og 3
3
1 U axl axl
kx kr
2 3P 3h
b w, " PR ]
k., k
% T
3 ap 3h
ag = - o ol B (a-7)
3 U 3x3 ax3
where kx ’kx ‘kx = absolute permeability in the
1 2 3 xl-, Xy=s and xs-directions,
respectively,
kr = relative permeability to fluid,
¥ = viscosity of fluid at reservoir

conditions,
P = fluid pressure,
acceleration of gravity, and

the elevation of the volume
element above an arbitrary datum
which is perpendicular to the
direction of gravity.

After substituting Eq. A-7 into Eq. A-6, the results

are
pkx kr
F] 1 aP ah
—_— ] — | — % pg_...._)ax AX ax
axl { u axl ax1 2 ;J 1
ok k
X, T
3 2 ap ah)
+ — ——+pg-—axﬁxJﬁx
axz [ ] axz axz 173 2
pkx kr
3 3 (BP ah) J
+ =% 0 *—]AX. AX.|AX
ax3 [ W axs ax3 172158

3
- {p¢snx1ax2axsj + pr (A-8)

Multi-phase flow requires the development of an
equation similar to Eq. A-B for each phase being con-
sidered. Such equations have been developed for
three-phase flow by Breitenbach et al. (1968b). The
derivation being developed here is to be used in a
single-phase flow simulator in which S:z1 and krsl .
Thus, Eq. A-8 reduces to

X
|t [ os 3| oxyong ax,
3 pk"z AP 3h
", [u_ (51_2 il = “"1"‘"3}“2
k
* .a [‘:—ts-[&* (14 ﬂ'—- ax ax]ax
9xg | U axs ax3 | S | ey -

]
Y (pwﬁxlaxzaxs) + opQ 3 (A-9)



The right hand side of Eq. A-9 contains the
porosity, ¢ , which is assumed to be a linear func-
tion of pressure given by

b= p,[1 # Cp(P<P]] , (A-10)

where CF is the formation compressibility factor,
¢y is the original value of porosity, and P0 is

the original value of pressure.
varies with Xys Xy, Xz, and t

The density, p ,
, and is dependent

upon pressure, P , concentration, C , and tempera-
ture, T . Assuming isothermal conditions, the
effects of temperature may be neglected and an equa-
tion of state of the following form is assumed:

o =0, + Bo (PP ) +a(C-C) (A-11)

where £ is the fluid compressibility, o is a pro-
portionality factor relating concentration and density,
and the subscript (o) refers to the original value of
the variable.

Differentiating Eq. A-10 with respect to t
gives

3¢ _ aP

at F¢0 at (A-12)

Likewise, differentiating Eq. A-11 with respect to
t gives

hed

p ap aC

3t -~ B 3t at (A-13)

ar

Expanding the right hand side of Eq. A-9, introducing
Eqs. A-12 and A-13, and assuming that the size of the
volume element (AV = ﬁxlnx ax3] does not change

with time gives

aP
rhs = axlﬁxzﬂx3(9¢ocp * 0 98) 3%

+ a¢axlﬂx AX 3t (A-14)

2°%3 9t
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Substituting Eq. A-10 and A-11 into Eq. A-14 gives

ths = p oPolx axzaxs[CF + ZCFs(P-PO) + B
a(C-C )
0 3P
1-(:F —-;-—}ﬁdA ad Ml [1
o
a3C
+ CF(P-PO) EFJ . (A-15)
Since CF and # are of the same order of magnitude
(10'6 in most cases), then ZCFB[P-PO) << 10°% for
small pressure changes and can be neglected. For

small concentration changes, CF“(C'CQ) << 1076

Also, the term CF(P~PQ) << 1 for small pressure
changes. Thus, for small pressure and concentration
chariges, Eq. A-15 may be approximated by

aC

rhs = P 0% A% axS{cF s)at +ag AX AX BXg T (A-16)

Substituting Eq. A-16 into Eq. A-9 and using short-
hand tensor notation gives

paAlkx
3 [ i (3P, _ 2h ”
= | ———=[—+ pg — | | Ax;
axi u axi Bxi i
o 3P - aC
= e 2 A-17
P B AV(B+CL) 75 + a9 AV o7 + pr (A-17)
where i = 1,2,3 is a cartesian coordinate
system {xl,xz,x3) 5
AA; = CTOSS sectional area perpendicular to
flux a; and
4V = volume of volume element, Ax; AXx, AXg .

Equation A-17 is the fundamental flow equation for
the saturated flow of a solution containing a mis-
cible tracer, and will be referred to as the flow
equation.

1 l'g



APPENDIX B

DERIVATION OF THE DISPERSION EQUATION

To solve the flow equation (Eq. A-17), a relation-

ship for determining the concentration C is needed.
This relationship may be obtained by expressing a
continuity equation for the dispersing tracer. The
problem is formulated on a microscopic basis and then
averaged over a cross-sectional area of the porous
medium to give the desired macroscopic equation of
dispersion.

Two different size elements, a fluid element
and a representative volume element, are used in this
analysis. A fluid element with very small dimensions
is used inside the pores of the porous medium for the
microscopic analysis. A representative volume ele-
ment of the porous medium is defined as the smallest
volume around a point such that adding an infinitesi-
mal volume has a negligible effect on the values of
medium properties such as porosity. The representa-
tive volume element is used in the macroscopic analy-
sis and contains both medium and fluid.

B.1 Continuity Equation for the Tracer. The
continuity equation for the tracer is given as:

(Rate of Mass Inflow of Tracer) -

(Rate of Mass Outflow of Tracer) =

(Rate of Change of Tracer Mass Inside Volume Element).

When applied to a representative volume element of
porous media with the dimensions of 4x., Ax,, and
6x3, as shown in Fig. B-1, the results are:

(Mt}xl-axlfz' (Mt)x1+ax1/2* (Mt)xz-axz/z

= (Mt)x2+ax2/2+ (Mz)xs-axsfz" My +AX /2

3

O Mo
at tp,

(B-1)

where (M, ) s (M s M) =
t xl-£x1/2 tix, axZ/Z £ xz-axslz

Rate of mass inflow of tracer across
faces xl-ﬁxl/2, xz-ﬂxz/Z, and

x -ax3/2 respectively,

3

M) » (M) » (M) =
t xl+ax1/2 t x2+ax2/2 t x3+&x3/2
Rate of mass outflow of tracer across

faces x1+axl/2, x2+ﬁx2/2, and

x3+ax3/2 respectively,

MtVE = Mass of tracer contained inside the
volume element, and
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Mtp = Mass source or sink term for the tracer
which is positive when a sink and nega-
tive when a source.

M) +Ax/2 (M.)

3 t xz-axz,/z

5 ’
f /,

; L/ 7 th
I

/7

P
x1+axlf2

M)
t 5 ﬁxl/Z I
(xlsxzﬁxsl,

L

X *+AX, /2 l
2.7 M)

txs

- (Mt]

™,)
-85 /2
Fig. B-1 Volume element of a porous medium used to

develop continuity equation for tracer in
miscible fluid flow.

Expanding each one of the mass flow rate terms
in a Taylor series about the point (xl, 12, x3)

gives
3 8%y
M)y -Ax. /2 M)y = 3xC M)y 3
1 1 1
32(M.) 2
R A
2} 2 2 h :
axl
ax
3 2
M) = (M) =), =
txz—ﬂxZ/Z t'x X t'x, 2
32(M.) 2
.Y
2! ax2 2
bx
3 3
M), _ = M), - =— M)
tixg Ax3/2 tixg o AXg CtiXg 2
32(M,) 2
kd o PRI
2! ax2 2 !
3



("thl+5x1/z =My e M)y
2
M)y ax_ 12
gl LiE=k) o
2! 3x 2 ' »
3 o
M)y vax,y2 = My * 55> M)y
il 2
2
My rax
o 2__1J & von
21 ax; 2
and
3 Axy
M.) = (M), *+r— M), ——
t x3+ax3/2 t Xg ax3 B Xq 2

32(M) 2
t x3 axs

1
¥ oen e, | ——] %
21 2 [ 2 ) o
ax;

(B-2)

The tracer mass flow rates may be expressed in
terms of the tracer mass flux, the dimensions of the
volume element, and the porous medium properties, i.e.,

ﬂwt)xl = J;¢Saxznxs u (B-3a)

[Mt}x2 = J;¢5axlax3 " (B-3b)

(Mt}xs = J;¢saxlax2 ) (B-3c)

MtVE = ¢Sa{1nx2axsc 2 (B-3d)
and

Mop = ch i (B-3e)

where C = average tracer concentration in the volume
element, mass of tracer per volume of

solution,

J'I,J;,J; B ?acroscopic tracer mass'flux components
in x;-, X,-, and xs-dlrections respec-
tively,

$ = porosity,
§ = saturation of phase containing tracer,
Q = production term with units of LST_I, and
Cp = tracer concentration of production fluid.
In Eq. B-3, the mass flux components, J;, J;, and

J;, are defined as the mass flow rate per unit pore

area. The reason for choosing a flux per unit pore

area is because the microscopic fluid elements will _

be averaged over a cross-section of the volume element
w

to yield J3}, J5, and J} . Since fluid elements
v 3
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only exist in the pores, the result is a flux in
terms of the pore area rather than gross area,

Substituting Eqs. B-3 and B-2 into Eq, B-1,
neglecting the second order terms in Eq. B-2, and
using tensor notation gives

3 * = 3
E (Ji¢SMi}ﬁxi = (¢belax25x30} - CPQ , (B-4)

where i =1, 2, 3 corresponds to Xpo X, and x

3
coordinates, and

AA, =

i cross-sectional area perpendicular to

mass flux component, J; .

B.2 Determining the Tracer Mass Flux Components,
To accomplish this portion of the derivation,

ay .
—
the microscopic mass flux equations are developed and
then averaged over a cross-sectional area of the

representative volume element to give a statistically
meaningful macroscopic mass flux equation.

Microscopic Analysis. For a fluid element inside
a pore of the porous medium, the diffusive mass flux
of the tracer with respect to the volumetric velocity,

V , is given by Fick's first law (Bird, Stewart and
Lightfoot, 1960):

—_—

I E(Gt- V) = - Dy grad C , (B-5)

where = diffusive mass flux of the tracer,
= concentration of tracer in fluid element,

= velocity of the tracer in fluid element
with respect to a fixed coordinate system,

T

= volumetric velocity of fluid element, and
Dd = coefficient of molecular diffusion.
A fluid element in a porous media must follow a

tortuous path as it moves through the pores. Let a tor-
tuous path of length do be depicted as shown in

Fig. B-2. The diffusive mass flux term may be written
as
* dé
J = - Dd S (B-6)
*3
el
o~
x

Fig. B-2 Tortuous path of fluid element.



The determination of J as a function of the
difference in concentration between the ends of the
tortuous path and the direct distance between the
ends is desirable. Thus, Eq. B-6 may be expressed as

(B-7)

The diffusive mass flux, J , does not have to be in
the direction of dC/dé because the tortuous path
varies in direction from point to point. Projecting

J as given in Eq. B-7 onto the £-direction (the axis
of the tortuous path) results in

3, |3| « |1€| coss (B-8)

+ -
where |J| = magnitude of J

5
|1£] = magnitude of unit vector in £-direction,
-> ->
¢ = angle between J and 1§ , and
cost = dg/do
Substituting Eq. B-7 into Eq. B-8 gives
2 ~
> dg |” dC
JE = - Dy (dc} ae (B-9)
The components of JE in the xi{i=l,2,3) coordinate
system are given by
J; = !J€| . |1xi| cos® (B-10)
where [J€| = magnitude of Jg 3
|lxi| = magnitude of unit vector in xi-direc-
tion, 7
B = angle between J£ and 1x, , and
cosf = dxi/dg
Substituting Eq. B-9 into Eq. B-10 yields
2 dx, Fy
5 354 i e
g wlly (do] T Py
By the definition of a total derivative,
“l{;- = -—-_-_ae dxl + Eé_.— i’iz_ + aé __—dx3 {B_]_Z}
dg axl dg axz dg axs £
Equations B-11 and B-12 combine to give
2 dx, dx. 2
i g ok b B
g Himilly (do T (B3]

where the double summation convention of tensor nota-
tion has been invoked. The term (d£/dg)? (dx, /de)

[dxj/dEJ is analogous to the reciprocal of a term

commonly referred to as tortuosity, and is a tensor
of rank two which "deflects" or "twists' the gradient
of concentration to form a new vector oriented in a
different direction. By definition, let
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(B-14)

Substituting Eqs. B-13 and B-14 into Eq. B-5, the
following form of Fick's law for describing diffusion
on a microscopic scale in a porous medium is obtained:

xln H
[

C Vt. =CV, -D

\ 1 - Da Ty (B-15)

Macroscopic Analysis. The objective here is to

obtain a relationship for the compoments, J; , of

the tracer mass flux vector corresponding to the
representative volume element shown in Fig. B-1.
Equation B-15 gives the tracer mass flux for a fluid
element in a pore of the representative volume ele-
ment. Since the cross-sectional area, aAi » of

the representative volume element is perpendicular
to the tracer mass flux component, I¥ the total

mass flowing thru this cross section is just the sum

from all the fluid elements located in SA, i.e.,
(Total tracer mass)i = fi Gi dAi
. 3ok, . (B-16)

(¢SaAi) d i3 axj i
where dAi = the area of the fluid element parallel
to aAi i for the

representative volume element may be expressed as

The tracer mass flux, J: g

(Total tracer mass)i

*
45 ¥ 35BA, ’

(B-17)
where ¢SAA; is the total pore area through which

the fluid moves.
gives

Substituting Eq. B-16 into Eq. B-17

at

dAiJ .
J

J Ev.dn, - | Dyi5 o
(B-18)

5 ian [
i ¢S&Ai (¢5ﬂAi) » Gl |

(554,

To evaluate the terms of Eq. B-18, the following
definitions are made:

C=c¢C+ E
-~ o
V. = ¥. ¢+ ¥
i i i
i = i + Tij " (B-19)

in which C % Gi , and %ij are the actual values
of the variable at a point; C , Vi , and Tij



are the averaged values of the varjables_over the
cross-sectional area, aAi ; and C , Vi , and
o

j
1]

point from the cross-sectional averages.
tion, the spatial average of the variables

represent the deviations of the variables at a

By definj-
. c ., Vv
and Tijl over the cross-sectional area, AA, is

1 1
= 0) . Using Eq. B-19 in

L] o o

C=V, =T,,
i ij
Eq. B-18 gives

zero (i.e.,

l a o
J¥ = [ | (C+C) (V,+V,)dA, -
i ¢SaAi (¢SﬂAi} e 5 i
-]
Dy(T, +F, ) a{g;c dAi] (B-20)
(sea) © M
Expanding terms in Eq. B-20 gives
J*=;{ CV.dA.+ [ CV.dA.+ | V.CdA
i ¢SﬂAi [¢S&Ai3 it (¢35Ai} L S (¢5ﬂAi)1 i
c ¢
a0 a a
+ [ CV.dA,- D.T.. ==—dA.,- [ D,T..==—dA,
(wSﬁAi) iti (¢SaAi)d ij axj i (¢SaAi)d 133xj i
s aC s 3C
- DT., ==—dA,- [ D,T,, ==—dA,| . (B-21)
d X, d X,
(os2a) 1) %Xy T (gsaa ) H Xy ‘}
But by definition of the mean, Eq. B-21 is
J* _ i o oo T 3C
i = cvi + LVi + CVi + cvi - Dd ij 5?;
€ 7 g
3C o~ aC (]
= DaTyj ax; - PaTay 3x; ~ DaTyy Ax; ¢ (B-22)
] J ]
The following observations are made:
1. As previously noted, E » ﬁi , and %i‘
are zero. ]

2. The average of a derivative is equal to the
derivative of the average [Kells (1950),
page 78]. Thus,

{3E/axj) - (aE/axj) =0

3. Medium properties and fluid properties are
assumed to be uncorrelated. Thus,
T 5 —_— - -
T.. 28 o %, (3&x.) = 1. (a8/8x.) = 0
i3 aij ® 5 el :

With the above observations, Eq. B-22 reduces to

cv. + &%, - o,T., 25
1) axj

i i i d (B-23)
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Thus, the averaged mass flux of the tracer over
a cross-sectional area of the representative volume
element is composed of three different flux terms.
The first is a flux, Cvi , due to convection with
the average velocity of the fluid. The second is a
fe s
flux, C ﬁi , which will be called the dispersive

flux and is the result of microscopic spatial varia-
tions in velocity and concentration. The third is

a flux, DdT" 2K , due to molecular diffusion.
ij axj

Dispersive Mass Flux. In order to use Eq. B-23,

-]
some relation between C Vi and C has to be postu-

lated. By analogy with Fick's first law of mass
transport, the following relationship is assumed:

ﬁ. _ 3C

o
CV; = -0, g (B-24)

where Bp is called the dispersion coefficient of
mass transport in porous media.
ficient, Dp

The dispersion coef-
, is not a physical property character-

istic of a given fluid; but depends on position,
direction, velocity of flow, and the type of porous
material.

Making such a postulation as Eq. B-24 is not
without some foundation. For years, the theory of
turbulent flow has used an analogy with Newton's law
of viscosity to approximate the Reynold's stresses.
Also, experimental evidence tends to match the
approximation used in Eq. B-24,

Experimental evidence also indicates that DP
is not isotropic, but that transverse dispersion may
occur and is less than dispersion in the longitudinal
direction. Using a statistical approach, de Josselin
de Jong (1958) determined analytically that longitudi-
nal dispersion is larger than the transverse disper-
sion. His result is approximately a normal distri-
bution of concentration in three dimensions.

Because longitudinal and transverse dispersion
are different and must be invariant under a coordi-
nate transformation, Dp must be treated as a tensor.

By definition ¢ Gi is a vector or tensor of rank- 1.
Also by definition aC./Ehvc.1 is a vector or tensor of

rank 1. Thus, Eq. B-24 is of the form

(Tensor of Rank 1)=-(Tensor of Rank ?)(Temsor of Rank 1).
(B-25)

Since Dp is an anisotropic quantity, then the form
of Eq. B-25 indicates that the multiplication must be
that of finding the inner product of two tensors and

that D_ must be a tensor of rank 2. Thus, Eq. B-24

may be written as

ﬁi = =il %%'
]

Clo

(B-26)



Introducing Eq. B-26 into Eq. B-23 gives

* aC BC
i i ij ax. d'ij ax,
i ] j i j

B.3 Dispersion Equation. The results of the
flux determination given in Eq. B-27 are now intro-

duced into Eq. B-4 to yield

3 3
3t [@S&xl zmc ) = Tl [(Dlj dTIJ) J ¢5ﬂﬁ1

3
- E [CVid:SMi)&xi - CPQ

Equation B-28 is the general form of the dispersion
equation. However, since Eq. B-28 is to be solved

numerically by the method of characteristics,

different form is required. Let the dispersive and
molecular flux terms be denoted by DD , and rewrite

Eq. B-28 as

{@Sﬂx axz

i

The wolume flux of a fluid flowing through a porous

medium may be expressed as

q; = Vye8

where q. is the volume flux in the ith direction.
Using Eq B-30 in Eq. B-29 and chaining out the de-

rivatives of concentration results in

1 3 3
I X Bx, [ax.(qi&“ija*i T [¢Sﬂ*13“2”‘3)J
1 gnlE Ly
q. C
) ssac Y S g

Cax. AX ﬂxs C 3t C axi Cc ﬂxlﬂxzaxs

1=

From Appendix A, Eq. A-6 for the flow equation is

d
ites, [pqiﬂhi}ﬂxi = - 5E—(p¢5ﬁx1&x25x3)-ppq

Chaining out the derivatives of denmsity in Eq.

gives

1 3 3
BX BX, A% [E (q;84.)8x; + =% (‘*’5“1“2“3}}

=,L_ﬂ__q_1_o b Q.
p ot poaxX p axlﬂxzaxs

The left hand sides of Eqs. B-31 and B-33 are

Thus, the right hand sides must be equal also,

= - -
50 = DD - — (CV;688A)8%; - C.Q

(B-27)

(B-28)

a

(B-29)

(B-30)

(B-31)

(B-32)

B-32

(B-33)

equal.

FosBsy
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es e Y s Pp_ @ mp

p at p axi p axlaxzaxs C&xlaxzaxs

cesac_Yac Gpq —_
C &t C ax. C Ax,AX AX :
i 1 P gt
Collecting like terms gives
sy W [__Eﬁ
ot p at axlaxzaxs i Bxi p Bxi
g C
s b, will e R (B-35)
P p ﬂxlaxzaxs

Differentiating Eq. A-11 of Appendix A, the following
relationships are obtained:

dp 3P aC
ST s gl Lh-d08)
1 1 1
and
3 _ ap ac
'a—t = Spo E + o a— - (B-36b)

Substituting Eq. B-36 into Eq. B-35 and collecting
like terms gives
ac DD I

C
¢5(l-“—) B e (] -] —
p’ at axlaxzax3 i p axi

p C o
il il _3_+c5£¢sa£+q 2P
p axlﬂxzﬂx3 ol at i ax ’
(B-37)

where a; is given by Eq. B-30. Upon division by

¢S(EéE£] , Eq. B-37 becomes

5, [ S 2
at p-oC ¢S&xlax2ax3 i axi
p CB &
- (o< Q Ly 3P . B
( hs! ) ¢Saxlax2dx3 i p-aC T Vl ax:.L

(B-38)

If the volume element is completely saturated, i.e.,
S21 , then

ac _ p 1 3 3C
s [p-aC][¢ﬂA.] 3X. [{D ;*D T )¢ Al IX. J
1 i j
CB
—V.aL—(C—C) Q .|.p _E
i axi P ¢Axlaxzﬂx3 p-aC 1311

(B-39)



Equation B-39 is a form of the dispersion equa-
tion containing two dependent variables, pressure
and concentration, just as in the fundamental flow
equation. Assuming that the terms of Eq. B-39 con-
taining pressure and compressibility may be neglected,
results in
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I S

ac
3t " P (p-aC) Ixg [(Dij ¥ DyTgyleahy 'ax—J]

3C
Vo - 0 Sl

S e
¢axlaxsz3

Equation B-40 shall be called the dispersion equation.



APPENDIX C

DEVELOPMENT OF FINITE DIFFERENCE

EQUATIONS FOR THE FLOW EQUATION

Since the same flow equation will be solved for
all grids, a finite difference equation can be devel-
oped by considering a central grid (i,j,k) and the
six immediately adjacent grids as shown in Fig. C-1.
The general form of the flow equation given by
Eq. A-17 may be rearranged into the following form
for developing the finite difference equation:

pk_ AA,

b SR
%X gy [ = e = .}““i
Cis - i e ¢ LA ! i
v Q
3 3C
=p (C.+8) <L vaiz« s (C-1)
o-F 3t st ¢°&xlﬂx2ax3
where x.(i=1,2,3) indicates a cartesian coordinate
system.
i,j.k-1
K 1
i,j-1,k [ ¥
' ’
] '4
i,j.k i
» . P — +x1
'ii-l,j,k‘ o i+vl,j,k
. X
i,5+1.K 5 Mg
i,j,k+1

Fig. C-1 Central grid and six adjacent grids with the
subscripting used in the finite difference
equations.

Because of the symmetry of the spatial deriva-
tives in Eq. C-1, only a detailed description of the
finite difference equation in the xludirection will

be given. Analogous equations for the Xy- and Xx,-

3

directions may be easily developed. Looking at a

point on the boundary between grids 1i,j,k and
i*l,j,k , the terms [aP/dXIJi+%,j’k and
(ah/3x1J1+%,j,k are approximated by:
P i o P
1ii+ds,j,k 1
and
h, i - h, .
h 1,j,k 23,k
lii+ls,j,k 1

45

Likewise, for a point on the boundary between grids

i,j,k and i-1,j,k ;
ap B o < P a-g
ax. |. . = hx 4 (C-3a)
1/i-%,7,k 1
and
h, - h
ah i3k i-1,3,k
X, . w2 Ax 2ol (C-3b)
1hi-%,5,k 1

The x,-component of the left hand side of Eq. C-1
may be approximated by:

AX
(1hs), = 1

pk_ Ax_ Ax
( J 1 ]j[ xl 2705 (EE_
1 | PoBX X, 0 aleL m 3x

+ipg B B2 B e
g Bxl "] Bxl
i+k,j,k

} . (c-4)
Thly o o

Introducing Eqs. C-2 and C-3 into Eq. C-4 gives

i+15,9,k [
Pie1,j,k
1

ha
1vJak]
ﬂxl
pkx AX.,AX

e 3} [Pi,J,k * Pran
. 1-%,3,k |

1,3,k

Dkxlﬁxzﬁxs

(1hs) = {
i,j,k B

1
1 [¢oﬂx1ﬁx2“x3J

Pva g Bhog i
%3

v B 5k

My ik T M1k
X

+ (P8 i 4,k 7 (c-5)

In developing Eqs. C-2 thru C-5, the grid dimensions,
X1 xz, and x3 , are assumed to be constant.
This is just a matter of convenience. Allowing the
grid dimensions to vary spatially can be accomplished
without great difficulty.



The coefficients of the form

[{kx ﬁxzﬁxs)fuli+%,j,k are calculated using the

h

armonic mean concept:

kx AX
1
u

2%

ith, i,k

28X, A%

8% 51K

) K.
14,4,k 1 i+1,3,%

Wy oo g (k) i s o ekl )
i,j,k X S0, 5K itl, i,k x

1i,j ,k

(C-6)

Using Eq. C-6, the following definitions are made:

k. Ax, Ax.
N+ i (ﬂ____mlﬁ___ Xy 23 [,l_)
X1 ¢oax1ﬂx2ﬂx3 - [ 14,3,k axl
E(kxlji,j,k(kxl}i+l,j.k
(¢°Ji,j,k(ﬂxljz[ui-j’k[kxl]i+1,j,k+ui*l'5-k(k*1ji,j,k
(C-T7a)
le=
2{kx1)i,j,k(kxl)i-l,j,k
(¢°i,j.k(HXIJZ[Ui'j‘k(kxl)i-l,j.k+ui'1’j’k(kxljij,k]
(C-7b)
N; =
2
2[kx2)i,j.k(kxz)i,j+1,k
{¢01,j,kEﬂxz]Z[pi’j’k{kaJi,j+1,k+ui‘j+1‘k{kx2)i,j,k]
(C-7¢)
N} =
2
zthZJi,j,k(kxz}i,j-l,k
L¢°§,j,k[ax2}2[”i»i’k[kxz)i,j-1,k+”i-i-1»k(k*z)i,j,k]
(C-7d)

]
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N; =
3
2(k, ) (k, )
X3 1,9,k %3 1.4 kel
(0)  @x)%[H; o (k) TP ¢ 1
Oi,j’ 3 l:Jak xs i,j.k"‘l 1!J!k+l x3 i’j’k
(C-7e)
N =
3 2
k. ) (k, )
X374,5,k *34,4,k-1
(€50 N € 5 (T { W . k, ) ]
T T THERETREE e W g
(C-7£)
*o=0.5¢( + ) C-7g)
Py ™ O BlBhen 1 P AR (=78
g, T 0 e 0 e
+ s
Py 03P su1 0 * P4 5.0 (€-74)
R TP T Sl
*
M R e
st i O.S[Qi,j,k-l X Oi,j,k) (C-71)
ahxl & Wyorae = %o (=74
B = Bk = Bl W
th! = (n h ) i
%y = By gtk " Mg (€-7p)
i = g 5ot Ry 0 (C-7q)
e ™ B 5t ™ Blagir? KT
ﬂhxs s (hi:j)k'l - hirjka L

Using the notation of Eqs. C-7 and substituting
difference approximations for all pressure and ele-
vation derivatives, the left hand side of Eq. C-1
may be written as:



I € D;l ;1 11,5 P M Pieng
. °;2 ;zpi,j+l,k & °;2N;2Pi,j-1,k
* D;3 ;3 i,4.ke1 " D;SN;SPi,j,k-l
LM 1 0 22 5 R

3 Xy Ry Ky Ry K TRy 8 Ty iy B Xg Sa)

o =
) Nx gﬂ.hx

+ (- + -
+ (p, )°N_ gdh_ +(p
2 L | 1%

5}
+ oA+ + - - -
+ (p, J2N_ gdh  +(p. )?N” gah
xz Xz xz Xz x2 X

+ (o3 )3N} gbhy +(oy )N gah’ (c-8)

3 3 & 3 3

The right hand side of Egq. C-1 contains deriva-
tives with respect to time. The derivatives of pres-
sure with respect to time will be represented by an
implicit finite difference form:

pt+1 _ pt
i,j,k 1,3k
At

~3—p=

at (C-9)

The derivatives of concentration with respect to time
will be approximated from the previous, not the pres-
ent, time interval:

oF .t-1
Co o il
3C _ 7i,i,k i3k
at at 2 (510
0
where At is the time increment used in the pre-

ceding time step. Combining Eqs. C-9 and C-10, the
right hand side of Eq. C-1 becomes:

i 75 10 i W T 25
At

e 2 1,5,k

_(ogdy 5 i3k ot

i,7,k

K Cpt8)
&

t-1

Ci,j’kJ (anJ<

l’j:k
(08X 8%x8%3)5 5,k

t
5 W)
ﬁto

+

(C-11)
An implicit finite difference representation of
Eq. C-1 may be obtained by combining Eqs. C-8 and
C-11 to give:
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D* + . t+] b N pt+1 + N+ t+1
X)Xy itl,3k °x1 x; 1-1,§,k"Px, X, i,+1,k
- = _te+] + 4+ _t+] - = _t+]

+ 0 S p sy +0 P %
X, x2 i,j-1,k x3 x3 i,j,k+1 x3 x3 i,3,k-1
+ 4+ S + o+ o v + .+ 4 i
= | N #p N_+p N +p N_ #p° N +p N
[ Xl xl xl Xl Xz Xz XZ Xz Xs xs xs 13
. {po)i,j,k[CF+B)i,j,k Pt+l
At isdsk
e A T %
At i,j.k
t t-1
o Syl g ~ % *( ok
A
At CREN N 1.8,k

+ + + = = = W v +
- [(p, )N gah. +(p_ )2N_ gah” +(p. )N gah
xl Xl Xl Xl Xl xl Xz Xz X2

+

(p, )2NZ gsh” +(pr )2N. gahl + (p7 )2NT gah” ]
Bp Xy Xy g CELTURe XD X Xg

(C-12)

The analogous implicit finite difference scheme
for the two-dimensional vertical flow problem may be
formulated by allowing no flow to take place across
grids in the xz—direction, i.e., aP/ax2 =0 and
ah/ax2 =0 . The flow in the X;- and xs-directions
will be in terms of flow per urit width, i.e.,

&4x, = 1 . Under these conditions, Eq. C-12 reduces
to:

T R | - = ot+l T R oL |
p. N i +2 N P, +0 N P, +

X xl i+1,k xl X i-1,k x3 xs i,k+1

- = _t+] + o+ - - + o+ - =
p. N P, 17|e N_+p,  N_ +p_ N +5_ N
Xg Xg ik-1 [ Xy Xy Txpxg 3 X

(o) K (Cp*B)y &
it 3k

(po)i,k{CF*B)i,kJ t+1
+ P =
AT i,k
t K.
%y kiCy €
%
Qto

t-1
s ) P Q
i,k i ( bl ) [( + o ot *
- [(p, )*N_ gah
¢oax1ax3 i,k Xy Xy Xy

- B - i + - - -
+ p_ )°N_ ghhl o+ (o, )N gah, + (p_ )2N] gahT ]
R TR T Mg Wy TRg TR Ky

(C-13)
All coefficients in Eq. C-13 are calculated from

Eq. C-7 with bxy = 1 for all grids.



APPENDIX D

DEVELOPMENT OF FINITE DIFFERENCE

EQUATION FOR THE DISPERSION EQUATION

A numerical solution to the dispersion equation
will be obtained by using the method of characteris-
tics. The dispersion equation was given by Eq. B-40,
and is reproduced here in the form:

. w @ [ " aC J aC
— —— D. <¢ﬁA — -, =
at maAi ax. ij i axj i axi
- (C_-C) , (D-1)
P ¢axlax2ﬁx3
where w = ofLC , and
"
Dij = Dij + DdTij

Following the development of Garder et al. (1964),
the second order terms of Eq. D-1 are regarded as
given functions of Xp o Xy 4 Xy, and t , and

Eq. D-1 treated as a first-order equation. Such an
equation will then have four characteristic curves
which are the solutions to the following ordinary
differential equation:

dx

1
ol (B3]
dxz
— Vz 7 (D-3)
dxs
% " Vs o)
and
€ _ w3 | c
3t T A, X [Dij‘“mi axj] £0-5)

A fifth characteristic curve could be written for the
production term, (Cp-C)(Q/@&xlﬂxzaxsj . However,

the production term will be treated as a boundary
condition of the moving points described below.

In addition to the usual division of the flow
region into a grid system, a set of moving points is
introduced into this numerical solution. Each one of
the moving points has associated with it a concentra-
tion, which varies with time. Within each time inter-
val, the moving points are relocated using the finite
difference equations,

';*1 - x; + ot v;*l 3
L ] )

X (D-6)
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t+l t t+l
X2 xt osae v , (D-7)
22 21 21
and
Xgrtaxp e s vitt (D-8)
L L L
where t+]1 is the new time level and t is the old

time level. Each cell in the grid system is assigned
a concentration equal to the average of the concen-
trations of the moving points located inside the

cell at time t+1 . The concentration of the cell

is then modified for dispersion by solving the
explicit form of Eq. D-5.

Because of symmetry only a detailed description
of the finite difference form of Eq. D-5 in the

xl—direction will be given. Expanding the x-

derivative on the right hand side of Eq. D-5 gives

=B
$LX,0X

(rhs) = :
X 3 oxi

aC
DY, oAx, AX, ——
1 [ 11 273 9x2

*
. IZt].2 (D-9)

3C " 3C
¢Ax25x3 3;; + Dls¢axzﬂx3 E;;J

As can be seen, Eq. D-9 involves the cross derivatives
of the concentration. Also, there are six more second
order terms in Eq. D-5 in addition to the three given

in Eq. D-9,

To develop a finite difference form of Eq. D-9,
consider the cell (i,j,k) as shown in Fig. D-1, and
the 18 indicated adjacent cells. The spatial deriva-
tives at a point on the boundary between cells (i,j,k)
and (i+1,j,k) may be approximated by

B o TG

%%_ 2 :.+1.J,1;x L.k (D-10a)
11i+k,3,k 1

ac _ ci%,j«l,k‘chh,j-u

x, = 20x (D=100)
21i+%,j,k 2

aC Civtg 5, ke1 Cislg § k-1

3?. = TAx . (D-lOc)
3/i+4,5,k 3



1,51, k-1
i1, k-1 103 5%-1 50y 5, 1
I"
L
i, j*1,k1
i-l.j-l,kl.j-i.k/
pSERE
i3,
1'11jak i“llek
,
-LitLk 4
/’ i,+1,k fiel, i+ 1K
’
1,3=1)k+ 1
h-1,5,k+1 /1»1,3,;*1,
4,3 ksl
i, 3+ L k+1
Fig. D-1 Three-dimensional grid system with sub-

scripting used to develop the finite dif-
ference form of the dispersion equation.

Using a linear interpolation scheme,

S gek T S gea 0k

Coorg,ge1,k = 3 ; (D-11a)

Cost s ™ Siagelk CieljoLk ; (D-11b)

c. . " Ci ikl * Cind i,k i
i+h,j,k+1 2 ,

Civg,j k-1 Stk z Sl (b-11d)

In writing Eqs. D-10 and D-11, all spatial increments,
AX. , and 4xg , are assumed to be equal. This

ax

E+
is in keeping with the finite difference grid system
proposed in Chapter IV, and the problems that are
solved in Chapter V.
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Substituting Eqs. D-11 into Eqs. D-10 gives

(D-12a)

Ci,j+1,k+ci+1,j+1,k‘ci.j-l,k'ci+1,j-1.k

(es__
%) |14k, 5,k

4ax2
(D-12b)
&} Ci,5,01 00, 5 0105 k17005 ke
axs i+, ,k 4ax3

(D-12c)

Similarly, for a point on the boundary between cells

(i,j,k) and (i-1,j,k) , the spatial derivatives
are
c - g
3C jwj»k i"l.!_i'k
T P ix g et
1/i-%,j,k 1
[E_) €101,k C0e1, 501,k 91,1041, 541,k
% Ji-3,5 ks
(D-13b)
[‘lc— €45 ko1 Cao1,5 k0185 k1G5 k0
X3 Jik,5,k faxy

(D-13c)

Now using a central finite difference scheme, Eq. D-9
may be written as

* aC
D, ¢AX, 8% —]
[ L LETTE X, fei, 9,k

W

¢ax2ax3]i,j,k

{rhs}x =
1

mcl

30 * aC
DY ¢AX. AKX —-—-) (n BAX,AX. -—J
[ 17778708 Xy i,k j Rt CE ia, i,k
AX

% 1

3C ac
DY, $ix. 56X, “‘—-—] (n* SAX,AX.. —)
[ & Sl Xy §de gk . 152773 9Xg

axl Ax

is, 9,k

1

|
* 3C
DY bAX A —}
{13 2775 0%y Bl
axl

(D-14)



Introducing Eqs. D-12 and D-13 into Eq. D-14 gives

(sha), =

(0 #8%58%0) sy 5 ka1 5 kCh 5 00
(ax,))?

[‘“‘2”*3) Lik

0000589 5 kG5 G5 0
(ex,)?

e e T R R L WS WA G TN i W W e CS IS 24

. o ol i
SV e e U B A % -1,

(O7508%98%5) p 4 3 €4 5 ar*Cien g ko1 4, q, k-1"C01,4 k-1
R
44X, AX

1773

(D g#0%885) 4 4 4 45 g ke1*Cioa g ko1 g ke2"Caon,g et
= 44X, Ax
)
(D-15)
Coefficients of the form (D], ¢ax,ax will

34,5,k

be calculated using the harmonic mean, i.e.:

(0} oox, 5 20807 )5 5 (901504 4 ANga%y
11

3 i+, 5, K"
03204, 5,k 90110501, 5 &

(D-16)

Thus, the coefficients of concentration in Eq. D-15
are of the form

-
wy j k(Dllwaxzﬁx

%, ] kaxznxa

Siag g 2D

Wi, k040] )4 A
[ax)!

(ax)? I(oblil*. K e0])

141,5,k)
(b-17)

In a completely analogous development to that
used in Eqs. D-10 thru D-16, the xz-derivative and

xs-derivative on the right hand side of Eq. D-5 may

In obtaining the

be obtained. xz-derivative, a

central diffcrence scheme using the points (i,j+4,k)

and (i,j~%4,k) 1is used, while the xs-derivative
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uses the points (i,j,k+%) and (i,j,k-%)

An

explicit form of the left hand side of Eq. D-5 is

t+l %
a _ S -
dt at &

(D-18)

To simplify notation the following definitions are

made:

. 2‘”“11]1 4. (90115 .1.k8

E
X, X h
1 (ax P20y BRI TURIRY

a zf“Dzl)i L kPT) p  lt

E =
+(¢D7

X X
1 (ax)2((0])),

i,j.k 11 i-1,3, k]

. 20035) 4 5 x(035) 5 4oy (bt
22 (ax,)2[(9D3,); ; 4+ (D}

E

i,i,k 22 i,j+1, k]

) 2603)5 5 (03505 5.y ytt

%2 {nsz I[@Dzz) ,5,k" (803504 ,j-1,53

w
e 200550 5 k(035)4 4 kenlt
XX

373 (axg) [(¢933}i,j,k*(¢D;3)i.j.k+1}

E

-

- 2(u03°J1 3.k

x3"3

(0035) 5 4 410t

(ex3)*[(4D3) 3,k +(8D35) ¢ kil

E

-

L]
F+ (wDy5) 4 k(4D 1231+1,; k2t

51 2 2% axZ[(an I‘j'k+{¢ 12]i+1,j,k]

F' - {NDIZJl 53 k[¢n )1 1,9, kAt
*1*2 2ax 18500907505 5 +(D]5); .5
o (w03)); S k(¢°21)1,j+1 KAt
XX ’
271 28x 0%, [(9D3) 31k (¢D21)l 41,K3
F_ i (MDZI}l J k(¢UZIJJ J 1 k
= »
XX

1 28x 5x2{(¢021 1,5,k (¢DZIJ $,§-1, K

(D-19a)

(D-19b)

(D-19¢)

(D-19d)

(D-19e)

(D=-19f)

(D-19g)

(D-19h)

(D-19i)

(p-195)



(@01g)5 5 x(9P18)5ay 5, kAt

- ,  (D-19%)
173 2ax ax3[(¢013)1 3,k (¢913}1+1 B K
(Wb z), (6]5) as
_ 3,30k 187 1-1,4 K
G*lxs 28x,8% [ (4D + (oD} ; 1 o
s[060],), J kT g g x
(wh.) . (¢D%,) Rt
i 314,35,k 31 i,j,k+l
G”sxl 28x 2x 5[ (40 D3y); ) o
035,35,k @P51)5 5 ka1
) (w2 ) (¢D%,)
e 36 P00 T L0 9010 1 , (D-19n)
371 2ax 8x [(9031) ,k*(°831]i,3.k-1]
b (Wb35) 4 N x(4023)5 2+1, k" (D-19p)
X X |
75 2mxxg (003905 5 k(903305 ja1 1
D’
. (wD34) 4 54 k{°023}1 4-1,k%¢ (D-19q)
X X ’
23 20xp0x3 (805904 5 (# (803905 5 g 4]
. (wﬂszll o k(°032]1 ,j ka1t (D-197)
X-X ,
372 28x,6x4 [cwnsz}l i,k (’032)1 ) ke1]
(S03.Ys & 05, o o 08
o 3294,3, kN 32743 %=1 (D-19s)

s%2 2axax, [(¢D 1,360 005205 5 1)

Using Eq. D-18, the notation of Eqs. D-19, and sub-
stituting difference approximations for all concen-
tration derivatives, the explicit form of Eq. D-5
becomes :

T+l

T + T t
i,j,k"C

i,j,k’ExlxI[c;+1 ¥k -C;

c
n]:k)

- t E * £ t

[Ci,j,k“ci-l.j.k)’Exzxz(ci,j+1,x‘ci,j,k)

-t

t t
i,j-1, (

k} E i,j,k+1 ey

ik 1,5,k

51

- t t
inj:k ) ci:jak'lJ

+ t t t

t
1,341,k 401,501,k7%5 51,5501, 501,10

! 4 t t t
Gy 391 %0, 31 S8 By )

1

g t t t t
(

x,x, Cie1,5,k%C001, 501, k7%01,5,k7C51, 301,10

¥ F

gr )

= Fox (R $-1,5,k"C1-1,§-1,

t t
x %, Cie1,5,k°Cin1, 51, k°
+ s

t y t
x. €4, 5 xk+1°C

i+1,5,k+17%4,5,k-17C41, 5, k-1

+
(2]

- t T T

Tt
™ O xg i, 1,101, 5, k0170, 5 k170 5 k)

+ t t t t

xgx; Cin1,3,k01%C501,5,k7C400,5 ko151, 5,10

t % t t
" Sxgx i, 5,10 C00, 5, k0170501, 3,k 7051, k1)

t t T

* t
* £,301,ke1 7, 5, ke1 70, 5o k)

X Xz i,j,k+1+c

- t t t t
x213(ci.j-1,k+1+ci,j,k+1'ci,j—1,k-1-ci,j,k-l}

+ t t t t

* By x5 501, k01704, 501,k 7%, -1, k01 %1, §-1,K)

372

t t

- : 7 t
" B, CC4L 501, K00, 301, k1701, 301,76, 51 k1)

(D-20)

The analogous explicit finite difference equation
for the two-dimensional dispersion equation may be
obtained by allowing no flow to take place across
grids in the xz-direction, 1.y {ac/3x2)=0 . The

flow in the Xy- and xs-directions will be for a unit
width of the model {ax2=1)
the two-dimensional form of Eq. D-20 is:

Under these conditions,



C

t+l_.t
ik

+E

+

+ E»

XXy

+

+ G

-G

X1*3

%i%s

+

1,k %

(c

(

t
x (Ci+1,k-

t -
™1 Ci,k)'Ex

t t
(C; ,-C, )
151 ik "i-1,k

t t - } 4 t
i,k+1'ci,k)‘ex3x3(ci,k“ci,k-1}

t 4 t t

ci.k+1*ci+1,k+1‘ci,k-1'ci+1,k-1)

t £ t :
Cia1,ke1*C5 ko170 k170501 k1)
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+ T

3 o8 )
x3x1(5i+1.k+1*c

t
Pk 141,k C4-1,k617C41 1

- E t t
- stxl{cin,k*ciq,k-fci-l,k'ci-l,k-lJ :
(D-21)

The coefficients in Eq. D-21 are calculated using the

definitions given in Eq. D-19 with axz-l .



APPENDIX E

STABILITY ANALYSIS FOR DISPERSION EQUATION

E.1 Method of Determining Stability. The expli-
cit finite difference form of the dispersion equation
(Eq. D-20) has a stability criterion attached to its
use., To examine the stability of this equation, the
linear form of Eq. D-20 with constant coefficients
will be used, i.e.:

Ct+1 4 +
i:j:k- i)jsk
*
s (il « g = %5, 3
dn? Tl ek i,j,k
1
D22t s S g ™ Bay
[6x2)2 1, » 214, 1,3,
"
wD, At
33 t t t
gl SRl S AT gL R
3
* *
S01gt 0200 e i i
atx ox, iel,j*1,k""1-1,5-1,k"C141,5-1,k
w(D* ,+D*.) At
t 13*031 t t
R L 48x A% 5 CHEEENS LS
t t "’(053*0;2)M t
TG,k 5,000t TG (G50 ke

T T

% t
¢ € 5o1,k-17C4, go1, k1754, g1, k01

(E-1)

The method used for the stability analysis is
that of a Fourier series developed by von Neumann and
discussed by O'Brien et al. (1951) and Smith (1960,
p. 102). This technique expresses an initial line of
errors in terms of a finite Fourier series, and con-
siders the growth of a function that reduces to this
series for t=0 by a 'variables separable' method.

The errors at the nodes of the grid system for t=0,
Oiylgﬂaxl 3 05;25N5x2 , and ijsi;ﬂxs are
fﬁnoted by Eﬁ}ﬁ.ﬁ where P=1,2,...N ; Q=1,2,...M ;
R=1,2,...L ; N = the number of grids in the X)-
direction; M = the number of grids in the X"

direction; and L = the number of grids im the
xs-direction.
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The MNL equations,

MNL
Eﬁ;a;ﬁ-= ngl A, exp[l(wnPéx1+chﬂx2+ynRﬂx3]] (E-2)

are sufficient to determine the MNL unknowns Al’

Az""‘AMNL uniquely, thus demonstrating that an

arbitrary distribution of initial errors can be

" expressed in the complex exponential form. In
TLT nm nm
B ol y® Nax, * "n " Mix, Tn T Lax,

and i = v°1 . Equation E-1 is a linear finite dif-
ference equation and separate solutions are additive.
Thus, only an analysis of the error propagation in

a single term of the series is necessary. This makes
An a constant and can be neglected. As t increases,

a solution of the finite difference equation is
wanted such that it reduces to exp[i(¢§hx1+cQﬂx2*

Tﬁhxsj] when t=5At=0 . Thus, it is assumed that

5 .
E?}ﬁ,ﬁ % exp{l(wxl *TX, + yxs) + At]

= exp[i(Pax, + clax, + vRax))e® ,  (E-3)

where £ = exp(Ait) , and XA is a complex_constant.
Note that Eq. E-3 reduces to exp[i(wPax1+can2+yRax3]]

when S=0_, which is the desired result. Also, the
error, E% K will not increase as t increases
provided

lg] <1 (E-4)

E.2 Stability Function for Three-Dimensional

g
Ep,q,R

fies the same finite difference equation as C; 5.k
» :

then Eq. E-1 may be written in terms of EF q,f "
L] »

Dispersion Equation. Since the error satis-

For example, the first few terms of Eq. E-1 would
look like

S+l S
.0k PR’
Wb at = = -
= B 5 5
— —+ Ex . == - 2E===)+... . (E-5
(ex)? F1,q,8 * B1,q,R ~ g Rt (E-5)



Substituting Eq. E-3 for the values of
Eq. E-5 may be written as

expli(vPax) + tQax, + yRax))e> !

exp{itwﬁhxl + cﬁhxz + vﬁhxs)]as

-
wD11ﬁt

(8x,)

exp(i (4 (F+1) ax  +cox y+1RAx) 1€

+ exp[i(w(ﬁll)axl+;§hx2+yﬁhxsj}gs

S

- 2 exp[i(vPax +Qax,+yRox ) J€ +... . (E-6)

Equation E-6 contains only the first three terms and
similar terms are implied for the other five terms
of the equation. Note that Eq. E-6 shows a pattern

of each term containing the factor exp[i(wFMl +
tQax, + yﬁhxs)]E Thus, if Eq. E-6 were expanded
in its complete form and divided thru by exp[i (¥Pax,
+2Qax, +yRax )16
obtained:

, the following result would be

wd?. At

E=14+ = {exp(iwax1}+exp(—iwaxl}-2}

Axy

wh?_at

{exp{i;ﬁxz}+exp{-i;AxZ)-2}
(8x,)?

*
stsat

(6x5)

> {exp{iwaxsj+exp[-ivax3)-2}

u(DIz+D;1]at
* "‘ZE;IE;;‘" {exp[i (vax +zax,) J+exp[i (~yax, -gax,)]

- exp[i{waxl-cnxz)]-exp[i{-¢nx1+;ﬁx2)]}

m(DIS*Dgljnt .
+ ___EEEIEEE__ {exp[l(wﬂxlovﬁst]+exp[1(-waxl-yﬁx3]]

= exp[i(hex -yax )] - exp[i(-vax,+yax;)])

wwens s .
+ '__TEI;EEE__ {exp[1{cdx2+?ﬂx3)]+exp[1[-cax2-yAx3J]

- exP[i[Cuz"rﬁXSJ] e exp[i('cuz'"f“s}]} . (E'?}
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Noting that exp(if)=cosé+i siné, exp(-i8)=cosd -

i sing, and i? = - 1 , Eq. E-7 becomes
ZmDIIat ZMDEZat
gl mae—Sens [cns[¢ax1]-1]+ T T [cus(;axz}-l]
(ax,) (ax,)
2uD? At w(D?,+D% YAt
* — 7 [cos(yaxs)—l] - _“_"—ml‘zale
(Ax3) 172

w{DI3+D;1)ﬁt

sin[wal)sin{cﬂxzj]- B %, [sin(¢Axl)sin(yax3]]
w(D% +D%.) At
23 " ;
-—Eizﬁffghh_ {s1n(cﬁx2351n(yﬂx3)] (E-8)

From trigonometric identities, cos 26-1 = - 2 sin?8

and sin 26 = 2 sinf cos@ Thus, by letting
wﬁxl zhx yAX
a=— , b= 3 yand d = —5 , Eq. E-8
may be written as
4uD? At 4ub At
E=1 - I gindy < 222 sin?b
(ﬁxl] (dxzj
4uD? . At 4u(DY +D% )at
- —-iz sinzd - Mlix 21 (sin acosa sinbcos b
(8%5) 1%
- -
4@(0134031]ﬂt . )
- B % (sin a cos a sin d cos d)
4w(D% . +D%.) At
- —-E;ggg—éz—-h-(sin b cos b sin d cos d) . (E-9)
25 5

Thus, upon substituting Eq. E-9 into Eq. E-4, the
stability of Eq. E-1 is assured if

0 i F(arb:d} i l'! » (E_Io)

where



* -
mﬁllﬁt o uDzzﬂt o
F[u b d)= — sin"a ¢+ ——— sin“b
s (ax,) (ﬁsz“
4
- » "
wh Sﬂt o3 w{D12+D2])$t ) )
2sm d + e e (sin acos asinbcosh) +
(ax3] i
u(D;3+D' )at
. S i 4
ﬂxlax- sin a cos a sin d cos d) +
3
w *
o a8 RallE . b 4 d d E-11
e (sin b cos b sin d cos d) (E-11)
o]
F[a b,d) shall be referred to as the stability
» L]

function, and must satisfy Eq. E-10 for all values
of a, b, and d . To investigate the range of
F(a b,d) ° an absolute maximum and minimum value of

F(a,b,d) must be obtained. A necessary condition

for a relative maximum or minimum to exist at a point
is for the first partial derivatives of F to be
zero when evaluated at the point (Taylor, 1955,

p. 154), Taking the derivatives of Eq. E-11 and
setting them equal to zero gives

L]

* -
5E anllﬂt ) u[012+021)ﬁt
=— = ———— sin acos a+
a (ﬁxl} ﬁxlﬁxz
w(D?_+D3%. )at
sin b cos b(cos?a-sin?a)] + —t Sk
AX,AX
) b
sin d cos d(cos?a-sin®a)] = 0 (E-12)
- w -
3 2m0225t _ w{Dlz+UZI}At
e — 1 sin b cosbi-—————éx v
[ﬁxz) 172
w(D3_+D%,)at
sin a cos a(cos?b-sin?b)] + —eo 32
ax2ﬁ13
sin d cos d(cos?b-sin?b)] = 0 , (E-13)
and
Ll * *
g DGl 605 :
Ery (ﬂxs)z Bx B
w(Dh+DT )At
sin a cos a(cos?d-sin®d)] + — S
BX 08Xy
sin b cos b(cos?d-sind)] = 0 (E-14)

By inspection, Eqs. E-12, E-13, and E-14 are satis-
fied when

sin a=sinbe=sind=0 ,
sina=cosb=3sind=0 ,
sin a = sin b = cos d = 0
sina=cosb=cosd=10 |,
cos a=sinb=sind =0 ,
cos a=sinb=cosd=0 |,
cos a=cos b =3sind =0 |,

cos 4 = cos b =cos d = 0 (E-15)

There are other solutions to Eqs. E-12, E-13,
and E-14 which shall be discussed later. At the
present time, an investigation of the points given
by Eq. E-15 for an absolute maximum and minimum
shall be undertaken. Substituting Eqs. E-15 into
Eq. E-11 gives

F(sina=sinb =sind=0) =0 ,

uﬂzzﬂt
F(sin a = cos b = sin d =0) = 5 3
(6x,)
uﬂgsdt
F(sin a = sin b = cos d =0) = 3
(ex3)
wDi At DI At
F(sin a = cos b = cos d =0) = 22_,-* "32.
[ﬁXZJ“ fﬁxs}
wuilat
F(cos a = sinb = sin d =0) = =
(8x,)
mD;Ibt wD3, 4t
F(cos a = cos b = sin d =0) = = "2 .
(ax)?  (ox,)
wd? At wD? At  uwDT_ ot
F(cos a = cos b = cos d =0) = 11?4- 222+ "3"
(2x) (ﬁxzi (ﬂx3)‘
wDIlat thsét
F(cos a = cos b = cos d = 0) —=— 4 —22_ 5 (E-16)
(x))2  (8x5)
If the coefficients w, D' D;Z, D;s and At

11°
are positive, then from Eq. E-16 F(a,b,d) has a
minimum value of zero at sin a = sin b = sind = 0

unilnt @Dﬁzat uD§3at
and a maximum value of ["-\KIJ? + [axz]Z - [M:D—z at

the points where cos a = cos b = cos d = 0



To investigate the sufficiency conditions for a
local maximum and minimum, Eq. E-11 is expanded in a
Taylor's series about the point of interest, i.e.,

F(a,b,d)=F(a,b,d) + [{a—;]% + (h-i)gg

3 1
. {d-d]a—d']l:(a,b,d)l:'g'a— * 37 [

-3 o 3 o B YR
(&'aJE'E' - {b'b)ﬁ - {d'd}'a?] F(aab;d) ‘E E E

+ higher order terms, (E-17)

where a, b and d are the values of the variables

a, b and d at the point of interest. By hypothesis,
the points at a maximum or minimum value of F(a,b,d)
have

(E-18)
Hence, Eq. E-17 may be written as

F(a.b,d) - FEB) = 7 (a-?}2%|_5_
pa”'a,b,d

1 =5 32F 1 L.
v OBPG _ eg@dr &
ab™'a,b, ad"'a,b,d

(a-a) (b-b) —=

+*

+*

(a-a) (d-d)

+

(®-b) (d-d) g

+ higher order terms.

(E-19)

In the neighborhood of the point (a,b,d) , the
principal part of the right hand side of Eq. E-19 is
composed of second order terms, which may be written
in a quadratic matrix form (Wylie, 1966, Chapter 11)
as
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F(a,b,d) - F(a,b,d) =% + || (a-3) (b-b) (d-d) || -

32F 32F ‘ 32F ‘ s
T s i— e a-a
20215,5,7 *8bigp g daddirp g
32F 32E 3°F

v~ VR -~~~ I * || (b=b)
aaebla,b,d 3b [a,b,d ahadia,b,d
3%F | 3%F | 3%F -
v = (d-d)
sdizeg Wdlopy a2liEd

(E-20)

Eq. E-20 is of the general matrix form [Y]a[xT][A][X],
where [A] is a symmetric matrix and [X] is a
column vector. In this notation, [A] is the matrix
of the quadratic form and is positive-or negative-
definite, semidefinite, or indefinite according to

the nature of [Y] .

By the definition of positive-or negative-
definite and maximum or minimum values, the following
results may he deduced [Wylie (1966, Chapter 11)].

If F(a,b,d)-F(a,b,d) is negative for all sufficiently
small values of (a-a) , (b-b) , and” (d-d) which

are not all zero, then F(a,b,d)-F(a,b,d) is negative-
definite and the point (a,b,d) is a local maximum.

If F(a,b,d)-F(a,b,d) is positive for all sufficiently
(a-a) , (b-b) , and (d-d) which
are not all zero, then F(a,b,d)-F(a,b,d) is positive
(a,b,d)

small values of

definite and the point is a local minimum,

The point (a,b,d) is neither a maximum nor a minimum

if F(a,b,d)-F(a,b,d) is sometimes positive and some-
times negative in the neighborhood of the point
(a,b,d) , and this is the case if the quadratic form
is indefinite. If the quadratic form is semidefinite,
then no decision about the nature of the point (a,b,d)
may be deduced and a consideration of the higher

order terms of the Taylor's series would be necessary.

From Wylie (1966, p. 468), a necessary and
sufficient condition that the real quadratic form,

[XT] [A] [X] , be positive-definite (or negative-
definite) is that the quantities

%11 iz

det|a,,| , det gowe: Q]| wwsmams
21 %2 a

(E-21)



all be positive (or for negative-definite to alternate
in sign, with det Fl negative), where S L

vy @, are the elements of matrix [A] . Applying
the above discussion and Eq. E-21 to Eq. E-20, the
following conclusions may be obtained:

If
2
?..'zil___> 0, (E-22)
da”'a,b,d
32F 3%F a2F |2
—2 - |3aab s X o (R+23)
3a” ab a,b,d
and
BIF 3R B%F |, 2% 3% ol
ia3 S5t o 3asb sbad dasd
[aZF ]az_F (azF tax
sadd abZ sbad aa2
2p |2 52
3d”(|a,b,d

then Eq. E-20 is positive-definite and the point

(a,b,d) is a relative minimum. If Eq. E-22 is nega-
tive, Eq. E-23 is positive, and Eq. E-24 is negative,
then Eq. E-20 is negative-definite and the point
(2,b,d) is a relative maximum.

Taking the second partial derivatives of Eq. E-11
gives

.2 2uby At
iw% = .__EJ.E (cos?a - sin?a )
a (ﬂle

3

4m{DiZ+D;1}nt

- ——————— sin b cos b sin a cos a

ﬁxlaxz

4w(DY . +D% )at
- 13 31 sin d cos d sin a cos a

ix, 0% y (E=Ae)
1%%3

2 2wD). At
3E ———23—3 (cos?b - sin?b)
ab [ﬁxz}

4&(0;2+Dgl}a:

e T L i s asinb c
nxlﬂx1 sin a co os b

4m{D;3+D;2]ht

ﬁxzﬁxs

sin d cos d sin b cos b , (E-25b)

(cos?d - sin2d)

4uw(D3,+D% . )at
- —SL sin a cos a sin d cos d

ﬂxlaxs

- *
23*D32) 0t

axZAxs

dw(D

sin b cos b sind cos d , (E-25¢)

a2p  W(D1,+D3)at

dadb Axlaxz

(cos?b - sin?b) (cos?a - sin?a)

(E-25d)

L] L
a2p _ “(Dy5*D5y) At

(cos?d - sin?d)(cos?a - sinZa)

daad dxlaxs
(E-25€)
2 w(D}.+D%,) At
BT T oo (cos?d - sin?d) (cos?b - sin%) .
28

(E-25f)

From Eq. E-16, a candidate for a minimum value of F
is the point where sina = sinb =sind =0 .
Using this point to evaluate Eqs. E-25 gives:

-
2 2uwh; . At
?....Fz_ = _.l.l._z, . (E-263)
3a” [sin a=sin b=sin d=0 (axl)
2uD} At
2
E—; . -—333— , (E-26b)
ob” |sin a=sin b=sin d=0 (axz)
*
2 2uD. At
2 e (E-260)
9d“|sin a=sin b=sin d=0 (ﬁxs}
- *
a2F w(hy,#D,) )88
3aab = TTax, ix (E-26d)
sin a=sin b=sin d=0 g
- *
32F Mg t0e IR
daad " A%, X * (E-26e)
sin a=sin be=sin d=0 A b
» *
32F | _ BDaytDey)it e
shed sin a=sin b=sin d=0 lE‘xZMS




Using Eqs. E-22, E-23, E-24, and E-26, the points
where sin a = sinb = sind = 0 will be a minimum
if the following conditions hold:

2uD At
_1.!...2_ >0 , (E-27a)
(531)
402D, DRat?  w(D )2pt2
1; 22 gk 12*051 < (E-27b)
(ax )% (ax,) (8x,) (axz)
and
3 3
8uD},D3 D3 8t 203 (D] ,+D3,) (D] 5+D3 ) (D5+D3,) At
(ax)2(8x,) % (ax,)? (ax,) (8x,) * (8x)
2543 In*
26 “22[913 D3t 2] (023’032) ae?
(ax )% (8x,) (ax3)2 (8x,) % (8x,)? (ax5) 2
2uwiD% (D} +D* Jatd
T = (E-27¢)

(axy) 2 (ax,) 2 (axg)*

Noting that At , Axl s B, ﬁxs , and w are all
positive, then Eq. E-27 reduces to

DIl - 30 (E-28a)
ap7,D ;2 > (b, 030% (E-28b)
4D] 05,055 *+ (0],*05,) (] 5+03,) (D} +D3))
- D5p(P5*05)) D] (D3+D3p) 2035 (D],+03 )2
(E-28¢)

The third inequality of Eq. E-28 may be written as

L]
D11 (055055 (055#D3,)2] + D3,[D] 03, (D] 5+D5))2]
* * 2
+ D33(0];05, - (07,+D3))%)
+ [D}3055035 + (D]5#D3)) (0]5+D3,) (D35+D3)) > 0 .

(E-29)

The first two inequalities of Eq. E-28 are a subset
of those required by the third inequality, i.e.,
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Dyy # Dyy s D35> 0, (E-30a)
D3, D3z > (O35 + D32 (E-30b)
Dj; D35 > (O]5 + Dy? (E-30c)
D}y D3 > (P, *+ D32 (E-30d)
D];D32035 > (D],#D3,) (D} 5#D%) (05+D3,) (E-30e)

From Eq. E-16, the candidate for the maximum
value of F was the points where cos a = cos b =

cos d = 0 . Evaluating Eqs. E-25 at these points
gives:
2 -2uD* At
i -1, (E-31a)
3a” |cos a=cos b=cos d=0 (nxl]
il -2uDy, At
= =, (E-31b)
3b" cos a=cos b=cos d=0 (axz)
-2uD}, At
2
o Sp—__ (E-31c)
3d” |cos a=cos b=cos d=0 [Axs}
2 W(D )At
Ty S PP
cos a=cos b=cos d=0 1"
32F ~u(D]5#D3;) At
3a3d =T x,  + (B3¢
cos a=cos b=cos d=0 1=8
32F _ -u(D3eD},)at
abad X, BX (B-31£)
cos a=cos b=cos d=0 2

Comparing Eqs. E-26 and E-31, it is seen that all
elements of Eq. E-31 are just the negative value of
the elements in Eq. E-26. Since the inequalities of
Eq. E-30 will assure that the elements of Eq. E-26
form a positive-definite matrix, then Eq. E-30 will
also assure that the elements of Eq. E-31 form a
negative-definite matrix. Thus, when the inequalities
of Eq. E-30 are satisfied, the points sin a = sin b =
sind =0 and cos a=cosb =cosd=0 are assured
to be minimum and maximum values respectively of
F(a,b,d) .

Although not shown here, each of the remaining
six points of Eq. E-15 results in an indefinite



quadratic matrix when the inequalities of Eq. E-30
are used, Thus, each of these points are saddle
points of F(a,b,d) , and are not relative extremes
of the function.

There still remains the possibility of solutions
to Eqs. E-12, E-13, and E-14 besides those given by
Eq. E-~15. Using the trigonometric identity sin 20 =
2 sin 6 cos @ , and solving Eq. E-12 for sin 2a
gives

(0},+05.) &x
sin 2a = - __E%E:El_ Til sin 2b cos 2a
1n "2
(0*_+D% )  ax
B Losindcos 2 L (B3
11 3

In a similar manner, Eq. E-14 is solved for sin 2d ,
el

(D*_+D* )  Ax
sin 2d = - ———1-367‘3-1—— —-xé sin 2a cos 2d
33 =1
(Dx_+D%)  Ax,
-3 3 sin b cos 2d (E-33)
33 2
Substituting Eq. E-33 into Eq. E-32 gives
axl sin 2b cos 2a
sin 22 = X, [4D% | D% .- (0% ;#D ) <05 2a cos 24 [(075*D3,)
- * -3
[053+032) cos 2d 2033(012+021J] (E-34)

Substituting Eq. E-32 into Eq. E-33 gives

Ax. sin 2b cos 2d

3 * il {(Dis
* % * L
11033 {Dl3¢031] cos 2a cos 2d

s =i *
in 24 = ENE *03y)

(D},#D3,) cos 2a - 20}, (D3+D3,)] . (E-35)

b5 it

Now then, a substitution of Eqs. E-34 and E-35 into
Eq. E-13 gives

* D* D* - N* (h* +«n* 14

4D11022033 022(D13+931] cos Za cos 2d

= 2

Dgs{D;2+D§1) cos 2a cos 2b

L 2 * Y (D* +0*
DII(DES+D§2) cos 2d cos 2b + {DIZ+D21)(013+031)

(D§3+D§2] cos 2d cos 2acos 2b =0 , (E-36)
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Although Eq. E-36 is not in an explicit form yet, it
is easily observed that Eq. E-36 is almost of the
same form as the third inequality of Eq. E-28, In
fact since |cose| < 1 , there is no way in which
Eq. E-36 may be satisfied if Eqs. E-28 (or Eqs. E-30)
hold.

From this analysis it may be concluded that if
Eqs E-30 are valid, then F(a,b,d) has only one
minimum value located at the points sin a = sin b =
sind =0 , and from Eq. E-16,

Absolute Min. F(a,b,d) =0 (E-37)

Also, F(a,b,d) has only one maximum value located

at the points cos a = cos b = cos d = 0 , and from
Eq. E-16:
wD% . At wD® At wD% 4t
Absolute Max. F(a,b,d) = 11 el 22 — 4 53 = W
[5x1) (£x,) (5x3)
(E-38)

Combining Eqs. E-37, E-38, and E-10 results in:

mDEzﬁt

2
(2x,)

mDYlﬂt

(ax))”

w
mﬁssﬂt

0 < F(a,b,d) < -
()

q-ll
-

(E-39)

In summary, stability of Eq. E-1 is assured for any

a, b, and d if:
DY, WYy 4 Dy 0 (E-40a)
* Y2 -
D31 D3y > (OY*05)° o )
Df; D3, > (D3,+D5)2 (E-40c)
D5P55 > (35 + D5? (E-404d)
* * * * *
DI1P32055 > (D15*D3;) (D,+D3,) (D34+D3,) ,  (E-40e)
WD At wDE At DX At
11 - 22 - 33 : i‘% Bk
(8x,) (2x,) (axsj

E.3 Stability Function for Two-Dimensional
Dispersion Equation, The linear, constant coeffi-
cient, explicit difference form of the two-dimensional
dispersion equation has the following form:




*
mDuM:

t+l t t t t
C 0™ Gkt T Cran 1100 )
(ax,)
wD*_At
33 g o t t
¢ =3B _ et act. .t )
(Ms)z i,k+1 7i,k-1 “7ik
(DY +D%,) t
L t t t o
Y (Cier, k#1°Ci-1,%-1"C441,k-1"%-1, k01

(E-41)

Designating the error in the two-dimensional space
region as, E% T and approximating it in a manner
similar to that of Eq. E-3 gives

s

. o 5
Es g = exp[i(yPax, + yRaxg)]6” . (E-42)

In a manner analogous to that used in developing
Eqs. E-5, E-6, E-7, E-8, and E-9, the amplification
factor is given by

4ubD* At 4uD%_ At
E=1 - - - sin%a - —>5_ sin2d
(Axl) (ax3)2

L -
] 4w(Dy;+D3 )AL

nxlaxs

(sin a cos a sin d cos d)
(E-43)

Substituting Eq. E-43 into Eq. E-4, the stability
of Eq. E-41 is assured if

0 <Fa,d) <5 , (E-44)
where
wD¥* At wD* At
F(a,d) = 3 s1i%s v —58 > sin?d
(8x)) (ax3)
w(D* _+D%_)at
13 31

—E—X-Iﬁ-s— (sin a cos a sin d cos d) .

(E-45)

The necessary condition for a maximum or minimum value
of F(a,d) is for the first partial derivatives of
F to vanish at the point of local extreme, i.e.,

aF ZuD’ilﬂ.t
N a——— sin a cos a
(8x,)
1
w(D* +D*_JAt .
+ —i%]-:l— sin d cos d(cos?a-sin2a) = 0 ,
! g

(E-46)
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2uD*. At
-g{-- -—-ﬂ—sin d cos d
(&x4)

m{1}13+D§1]At

Axlaxs

sin a cos a(cos?d-sin?d) = 0
(E-47)

By inspection, Eqs. E-46 and E-47 are satisfied when

sina=sind=20 |, (E-48a)
sina=cosd=0 |, (E-48b)
cos a=5ind=0 |, (E-48c)
cosa=cosd=0 ., (E-48d)

Disregarding other possible solutions of Eqs.
E-46 and E-47 at the present time, the values of

F(a,d) at the points suggested by Eq. E-48 become
F(sina=sind=10) =0 , (E-49a)
wD;sét
F(sin a = cos d = 0) = T i (E-49b)
(M3)
wDilﬁt
F(cos a = sind = 0) = , (E-49¢)
(ax,)?
1
wD*_ At wD* At
F(cos a = cos d = 0) = —a =+ 35 > . (E-49d)
(8x,) (8x5)

If the coefficients w , Dh . D;s , and At

are positive, then F(a,d) has a minimum value of

zero at (sin a = sin d = 0) and a maximum value
mD‘iIbt wgsat

of e 3 at the points where cos a =
(ﬂxl} (&xsj

cos d =0 .,

A two variable analysis of the sufficiency
conditions, analogous to Eqs. E-17, E-18, E-19, and
E-20, leads to the following quadratic form:

Fa,9) - F@D = 7+ || @B @D | -

32F 32F -
vy — (a-a)
3a W) 3aad o4
. . (E-50)
a2 32F o
U (b-B)
3as ) ad ia,d




From Eq. E-21, it is concluded that if

2
3—5 >0 , (E-51)
da ; E
and
3’F a%F 3°F
~a- M N .
,d

then Eq. E-50 is positive-definite and the point

(a,d) is a relative minimum, If Eq. E-51 is nega-
tive and Eq. E-52 is positive, then Eq. E-50 is
negative-definite and the point (a,d) is a relative
maximum.

Taking the second partial derivative of F(a,d)
gives

~2 2wD* At
§Z§ - i - (cos?a - sina)
(ax )"
4u(Dis¢D:l)dt
- T axé sin d cos d sin a cos a , (E-53a)
13
: 2uD* At
42
2 - —;’;3-—2 (cos2d - sin?d)
el (Axs)
4u(DY 4%, ) ot
5 To sin a cos a sind cos d , (E-53b)
h et
and
o w(D* _+D* Jat
ga?d = ;; ail (cos?d - sin?d) (cos2a - sinZa) .
e (E-53¢)
When (sin a = sind = 0) , then
2
32F i v
3a“|sin a=sin d=0 (&xllz
32 ) ‘-.uDi';!‘.T.
2d*[sin assin d=0 (ax5)?
y w(D* _+D%
32F e i
38| 50 assin dm0 A ARy
From Eqs. E-51 and E-52, the points (sin a = sin d =

0) are a relative minimum if
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Dy, i D3y > O (E-54a)

and
* 2

4031033 > {Distﬂglj : (E-54b)
when (cos a = cos d = 0), then
‘a_g.i —ZwD'l'rE.t

L) »

da”|sin a = sind = 0 (ax1]2
WD ~2uD% At
i—; = 332 » and
9d” sin a = sind = 0 (axs)
32F _ SRl
03| naw=sind=0 L%, 8%y
From Eqs. E-51 and E-52, the points (cos a = cos d =

0) are a relative maximum if the inequalities of

Eq. E-54 hold. Thus, when the inequalities of Eq.
E-54 are satisfied, the points (sin a = sin d = 0)
and (cos a = cos d = 0) are assured to be a minimum
values respectively of F(a,d) .

The remaining two points of Eq. E-48, (sin a =
cos d =0) and (cos a = sind = 0) , result in an
indefinite quadratic matrix when the inequalities of
Eq. E-54 are used. Therefore, each of these two
peints are saddle points of F(a,d)

The possibility of other solutions to Eqs. E-46
and E-47 still exists. Solving the two equations
simultaneously gives

2D* (DP +D* )
1 gin acos a= —EAEL—EA— sin d cos d(cos?a-sin?a),

X AX

{nle gl
(E-55a)
and
20% (D% ,+D% ) )
332 sin d cos d = —E%éziél—sin a cos a (cos?d-sin?d).
(8x3) s (E-55b)
Multiplying Eq. E-55a by E-55b gives
2 - 3

4DT1D§3 = (Di5+DglJ cos 2a cos 2b , (E-56)

where the trigonometric identity cosZ8-sin?é=cos2d
has been used. If Eq. E-54 holds, then there is no
way for Eq. E-56 to be valid because |cos 2a cos 2b]
=1 . Therefore, all the points of relative extreme
are included in Eq. E-48.

From this analysis, F(a,d) has only one minimum
value located at the point (sin a = sin d = 0), and the



Absolute Min. F(a,d) = 0 (E-57)

Also, F(a,d) has only one maximum value located at
the point (cos a = cos d = 0), and the

mDilnt w033at
Absolute Max. F(a,d) = RN g 3 (E-58)
(ax)®  (8xg)

Combining Eqs. E-57, E-58, and E-44 results in:

wDIlét X mﬂgsbt

axp?  (axp)?

0 < F(a,d) < 5_% ¢ (E-59)
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In summary, the stability of Eq. E-41 is assured for

any (a,d) if
Dy, 5 D35 >0 , (E-60a)
2
4py,D3, > (D}5 + D§,) (E-60b)
wD* At wD® At
11 ; 33 : %_ . (E-60¢)
(ax)) (2x5)



APPENDIX F

FLOW CHART OF PROGRAM

Start

Call INICON to initialize the
coordinates and concentration of
each moving point

Call READIN to read in physical
data for problem such as permeability,
porosity, viscosity, initial pressures,

and boundary pressures.

I

Call INIPRT to print out all
of the initial information

Call STORAG to compute initial
mass storage of each
miscible fluid in system

Calculate the number of
time steps to be used

Call IOWAIT to test if operation
on scratch tape is completed

Call BACKF to backspace scratch tape

Call MATSOL to set up matrix for the flow equation
and then solve the matrix by Gauss elimination for
pressure at the new time level
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yes

A

Print out

Pressures
]

Call RDTAPE to read coordinates and
concentration of moving points from scratch tape

I

Call VELOCY to calculate velocities at each grid
interface, the longitudinal and lateral dispersion
coefficients, and the components

of the dispersion tensor

Test for completion of tape reading
operation and backspace tape

Call MOVPT to determine the velocity of each point and move the
point to a new location. Points moving out of system are
located and re-entered at an appropriate inflow boundary.

The average concentration of each grid
is determined from the points located in each grid.

Call DISP to calculate the change
in concentration due to dispersion.
The average grid concentration and each
moving point are corrected for this dispersion

Call WRTAPE to write coordinates and concentration
of moving points on scratch tape.

R

Correct porosity, viscosity, and density
for changes in pressure and concentration

|
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Print out
Velocities, Components
No of Dispersion Tensor,
and average grid

concentration

J

4

Calculate a mass balance
of each miscible fluid

Has Total
Number of
time steps
been exceeded?

(:E); No

End
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MAIN PROGRAM
PROGRAM MAIN

DIMENSION FRE1242T),PORI1242T)4HIL2:2T)2P(1242704PTI12,27),
IPPLL2,27)4POTI12,2T714RHO(L12427),VIS(12,27),Q012,27),4CAVGI12,4271,
2CAVGPIL2:27)4DELCIL2,27),5UMCIL2,27),COUNTI12,27),0110812,2T),
ID22012,271,01201242T)4VX11242R),VII13,27),CCHATISS500)XI14696]),
42(1496),C(1496) CHMATRX(250+21)+CRI2501),X81(24),281(24),C81124),
5XB2124),282124),CB2124)

COMMON DELT, ST FHTOPDELXDELZFKyPOR,H4P4PT,PP,RHO,VIS5,0,RHOP,
LCAVG,CAVGP yDELC 4 G4BETA,ALPHA ,GAMMA ,RCOMP, SUMC ,COUNT,D11,D22,D12,
2VXyVZ o NWDCNT 4 XB1,2B14CBLyXB2,2B2,CB2,CCMAT

EQUIVALENCE (CCMATIL)POTEL) oX{L),CHATRXIL1))» (CCMATI149T),Z11)1),
T(CCMAT(2993),C01)0, (CCMATIS251),CRILD)

Cc

[ L et
Ce*+++THE MAIN PRNGRAM [S THE CONTROL PROGRAM AND DIRECTS THE SEQUENCE®®
CHessn OF OPERATIDNS FOR SOLVING THE FLOW EQUATION AND DISPERSION®*#
Crbnss EQUATION. APPROPRIATE SUBRDUTINES ARE CALLED AS NEEDED TN ##
Crssns MAKE THE NECESSARY CALCULATIONS. THEPROGRAM DESCRIBED HERE®*
Cesdes IS FOR A TWO DIMENSIONAL VERTICAL FLOW PROBLEM. rerne
CasessNA = NUMRER OF ROWS heee
CxneseNC = YUMBER 0OF COLUMNS b
CHsbes NOTE THAT THE NUMBER OF ROWS,NR, SHOULD ALWAYS BE EQUAL #%%%s
[ LT LT TO OR LESS THAN THE MUMBER OF COLUMNS,NC. e
CesxssNA = ROW DIMENSION OF THE REDUCED COEFFICIENT MATRIX USED IN #%%&s
Cobbns GAUSS ELIMINATION, s ot
C*##s#eNB = COLUMN DIMENSION NF THE REDUCED COEFFICIENT MATRIX USED IN #&
Cesees GAUSS ELIMINATION. bbb
C**a#eDELT = TIME INCREMENT (SEC.) b
C*#s%+ST = TOTAL TIME OF ANALYSIS (S5EC.) babdad
C***+#FHTOP = PRINT OUT CONTROL. FWTOP SHOULD ALWAYS BE A MULTIPLE w#sss
Cossses OF DELT. ane
CeeneeDELX = SPATIAL INCREMENT IN THE X'DIRECTION (FT.) b bddd
CessseDELZ = SPATIAL INCREMENT IN THE Z*DIRECTION (FT.) tenee
Cesss*sFK = PERMEABILITY (SQ.FT.) *hies
Cesws#PR = POROSITY #teen
CessesH = ELEVATION AT CENTER OF GRID LFT.) b bddad
C##s+%P = PRESSURE AT CENTER OF GRID FOR INITIAL TIME LEVEL (LBS. PER =

Cesass SQ. FT.) bbb
Ces####PT = PRESSURE AT CENTER OF GRID AT PRESENT TIME LEVEL {(LBS. PER *#
Cosans SQ. FT.) bbb
CosssepP=PRESSURE AT CENTER OF GRID AT PREVIOUS TIME LEVEL (LBS. PER ##%
Crtass SQ. FT1.) d b i dddd
Ce#*+oPOT = POTENTIAL AT CENTER OF GRID (FT.) b ddd
C*sss3RHOD = DENSITY OF FLUID (5LUGS PER CUBIC FODOT) b d
Ce+*s#RHOP = DENSITY OF PRODUCED FLUID (SLUGS PER CUBIC FODOT) b
CessesV][S= VISCOSITY OF FLUID (LBF.-SEC. PER 5Q. FT.] bt
C#+#++Q = PRODUCTION TERM (CUBIC FEET PER SEC.]) Edbdhhad
Cess**CAVG = AVERAGE CONCENTRATION OF TRACER ISLUGS PER CUB. FT.) #¥+es
C**s*sCAVGP=AVERAGE CONCENTRATION FROM PREVIOUS TIME STEP. Ltk d
C*#++#+4DELC= CHANGE [N CONCENTRATION DUE TD DISPERSION. b
Ce*sse = ACCELERATION OF GRAVITY (FT. PER 5Q. SEC.) treee
C**#»ssBETA = FLUID COMPRESSIBILITY {5C. FT. PER LB.) EEEE
CeesssRCOMP = ROCK COMPRESSIRILITY (SQ. FT. PER LB.) hbdAdd
CeeeespAl PHA = CONSTANT RELATING DENSITY TO CONCENTRATION L
Cesss*GAMMA = CONSTANT RELATING VISCOSITY TO CONCENTRATION. bt
Ces#42STOR = TOTAL MASS STORAGE OF AREA (SLUGSI bt d
C*+*+4{RTAPE = SURROUTINE TD WRITE INFORMATION NN A& TAPE. THIS IS A #**»
Cavnns SYSTEMS PROGRAM OF THE CSU COMPUTER CENTER. e

Ce+«***ADTAPE = SUBRODUTINE TO READ INFDRMATION FROM A TAPE. THIS 15 A ###&

(s SYSTEMS PROGRAM OF THE CSU COMPUTER CENTER. "ere
CeseesCCMAT = NUMMY ARRAY TO BE USED BY DIFFERENT VARIABLES AT DIFFER-e#
ENT LOCATIONS THROUGHOUT PROGRAM AND SUBPROGRAMS. e
P e R R L R L R L e e it

c

READ (54512) NR,NCNPX,NPZ
READ (542) DELX,DELZ,ALPHA
NA=INR-2)*[NC-2)
NB=12¢NR}=-3
MAA=NR -1
M=MAA-1
NAA=NC -1
N=NAA-1
AM=M
AN=N
NP 1=NP Z#NR
NP 2 =NP X #NC
NWOCNT={ 3#NR*NC*NPX*NPZ)+600
TIME=0.0
CALL INICON (NR NC NPLsNP2,NPX,NPZ)
CALL READIM (NR.NC,NA,NB)
DO 20 I=14NR
0N 20 J=1,NC
POTEIyd)=1 PTUL )/ (RHOMT 4 J)#GII+HIT )
20 CONTINUE
CALL INIPRT (NR4NC,NA,NB)
CALL STORAG (NR,NC,NA.NB,STOR,ADD)
HRITE 16,91 STOR,ADD
STORI=S5TOR
STORP=5TOR
ADDI=aDD
ADDP=ADD
$Q50=0.0
$QT0=0.0
LOOPUL=ST/DELT
PCNT=1.0
DO B ILAST=1,LD0OPUL
TIME=TIME+DELT
DO 50 I1=1+NR
D0 S50 J=1«NC
PRI+ JI=PTI1+d)
50 CONTINUE
CALL IOWALIT (L,NSTAT,NWDS)
CALL BACKFI(L1)
CALL MATSDL (NR,NC,NA,NB)
IFIPCNT.EQ.FNTOP) GO TO 3
GO To 22
3 WRITE (64101 TIME
CALL MATROP (NR,NC.PT)
D0 21 I=l.NR
DO 21 J=14NC
POTELyJ)=tPTII,J}/(RHOCL,J)%*G)I4H{1,d)
CONT INUE
WRITE 16,110 TIME
CALL MATROP (NR,NC.POT)
22 CALL RDTAPE (1s1+1,CCMATIL),NWDCNT)
[C=NC+1
IR=NR+ ]
CALL VELDCY (NR NC,IR,IC)
CALL TOWAIT (LsNSTAT,NWDS)

2

e
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CALL RACKF (1)

CALL MOVPTUNR JNC NPLy NP2 P NPT)

CALL WRTAPE (Llsls1+COMATEL) (HRDONT]

CALL DISP (NRyNCoyNPLINPZ MPX,NPZ)

PO AG [=1,NR

D0 &0 J=1,NC
PORCI»J)=PORI o J)* (L O+ (BRCOMPEIPTLE J)=-PPIIJ})])
RHOCT o JI=RHDIT o JI#(RETA®RHO( ] s JISIPTIL o J)-PPLL,J) ) ) +LALPHAS(CAVGL
LI, J1-CAVGPLL,J01)
VISUTod)oVISUI o J) ¢ (SAMMAS{CAVSIT ¢ J)-CAVEP[[,J)))
CONTINUE

IFIPCHTLEQ.FWTOR) G TD 65

c0 TO 23

WRITE (&,14) TIME

CALL MATROP (12,28,VX)

WRITE (A,153) TIME

CALL MATROP (134274V1)

WRITE (6416) TIMF

CALL MATROP [NR,NC,011)

WRITE (&6417) TIME

CALL MATROP (NR,NC,D22)

WA ITE [6,418) TIMF

CALL MATHOP (MR MNC,DL2)

WRITE (6,19) TIME

CALL MATROP (NR,NC,CAVGP)

WRITE (6425) TIME

CALL MATRNP (NR,NZ,CAVG)

WRITE (641000 (XBIAT) 01=1,8P1)

WRITE (46,1000 (281013 ,1=1,%P1)

WRITE (64,1000 (CALLITY41=1,%01)

RRITF (6,100) (XD211),1=1,4%P1)

WRITE (641000 (ZR211)41=14HP1)

WRITE (6,100) (CA2(1) 1=1,%71)

FORMAT (1, 12F10.3)

PCNT=0.0

CALL MBAL INRNC,NANB,STNRL,ANDI 4 STORP, ADDP ,SCSN,SOTO,TIMEY
PCHT=PCNT+1.0

CONT IhUE

FORMAT (3F10.3)

FOR™AT (1HO,10%,GHSTORAGE =,FI10.3, 10X, 1EMTTACER STORAGE =.F1D.3 )
FORMAT (1HOD 47X, 46HNEW PRESSURE MAP (L8S. PER S0. FT.) AT TIME = ,
IFLO. 2400 /)

FORMAT [1HO,S52X,34HIUEN PDTENTIAL MAP (FT.) AT TIMF = (FLO.741H /)
FORMAT {4110)

FOLMAT (1M ,15F8.3)

FORMATELIHD 52X 20HX=VELNCLTY AT TIME =,F10.2,1H /)
FORMAT(LHO, 52Xy 20HZ-VELDCITY AT TIME =,F10.241H /)
FORMAT(1HO, 52X, 13HDL]1 AT TIME =,F10.2,1H /)
FORMAT(1IHO, 52K, L3HD22 AT TIME =,FLl0.2,14 /)
FORMATLIHO, 52X, 13H012 AT TIME =,F1G.2,180 /)

FORMAT LIHO,52%, LSHCAVGP AT TIME =,F10.2,1H /)
FORMATI LHO, 52Xy L4HCAVG AT TIMF =,F10.2,14 /)

END

SUBROUTINE READIN

SUTRDUTINE READIYN INR, NI, &, NA)

MIMENSTON FRIL242T),PORILI2,2714HIL2,2T)4P112,2T)4PTL12,27),
IPPLL2y 27010 POTLR242T)RHNIL2:2T o VISIL292714GL1242T7),CAVGEL242T),
ZCAVOPIL2+2T)4DELT L2427 o 3UMCIL242T),COUNTIL2,27),010012,27),
IN2200292T1eD12002427) 4 ¥X[12,268)4,VIL13,27),COMATISSO0O) X146,
ALUL456),CI1636) 4TMATIXNI2504210,07(250)4%P1124),2B1124),C81124),
SAB2(26),782(246),082(24)

COMMOY DELT ST FWTAPyDELX G LELZSFK POR P o PT o PPy H VIS, Qe RHOP,
ICAVS o LAVGP s UELC ¢ %o BETA 2 ALPHA W GAMMA  ATOMP , SUMC, COUNT N1, D22,012,
2V W VI NADCST o XB Lo 281 4CRL,X02,782,0R2,COMAT

EOUTYALENCE (COMATIL)POTIL X001 )2CHMATRNIL) )y (CCMAT(149T)4,2010),
LICCMAT 129930400100 CCMAT(S5251)4+CRLLD)

(L R T Ty R e A P e R R R R R AL A
CreassTHIS SUARIUTIME READS IM THE PHYSICAL DATA NEENED TO SOLVE THE sse

Conen

. PRORLEM, ey

Cowneop(,J) GREATER THAN 100,000 INDICATES CONSTANT PRESSURE BRNUNDARY.#
Crl ettt e s et Pasd et ettt b b ads e 3o ds sttt b it ait v adsnsosasvsarnseny

C

i

12

13

14

»

W -

READ (5,1) OELT, ST, FWTOP
READ (543) GyRETA,RCOMP yALPHA,RHOP ,GAMMA
IR=ht=1

ILehi=1

D0 10 J=1NC

FKiled)=0.0

FELRyJI=N.0

0O L1 [=2,1IR

PO 11 Jd=1,0C

FE{1+4)=0.000009RA5

07 12 I=1+0R

Do 12 J=1,NC

PORLE,J)=N.39

VIStI,J)=0.0116

Qled)=0.0

Wlls1)=69.0

Plls1)=127993.8A

HIL,%C)=69.0

PLL,NC)=127576.40

DD 13 1=2,/R

Wil Rd=HE =1, )-RELZ
NCI=ll-1.NC)-DELZ
PUEMOI=PII=1,NCY+IRHOL I, N0 ) #02DELT)
PUEsid=PLI=1,1)+12HDI1,2)200DEL2)

PO 14 J=2,IC

Pllsd)=295T6.4

HilyJ)=69.0

00 14 1=2,%R

Hiled)=HII-1,J)-DEL2
Pilad)=Pil=14J)+(REDIT+J)*G*DELZ)

D & I=1,8R

N0 & J=]l.NC

TEEPEL, ) LT.100000.0) PTLI, B)=P{1, )
IFIPIL,J).GT.L0O0000.0) PT(],J)=P(]l,J)=-100000.0
COMT INUE

RETLaN

FORMAT (3F10.3)

FNAMAT (6F10.3)

FOAMAT (E11e6,ELl1.4,FB.3,4F10.3)

END
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SUBROUTINE INICON

SUBROUTINE INICON (NRoNC.NPL,NP2,NPX,NPZ)

GIMENSINN FRE1242T1,PORIL2427)oHIL2427)4P112,27)4PTL12,27),
IPPIL242T)4POTIL12:2T)sRHOILZ42T),VISILI2:27),Q012,2T),CAVGIRZ,27),
2CAVGPEL242T)4DELCEL242T) o SUMCIL2427),COUNTIL2:27),D1L1012,2710,
ID22112,271,D12012427)4VXL12,28),VEZ117,27),CCMATISS00) ,X11496),
421149601 ,C11496) CMATRXI250421)4CRI250),%231(24),281124),(81124),
5XB2(26),282124),0B2(24)

COMMON DELT, ST, FWTOP,DELX,DELZ FE,PORHyPyPT,PP,RHO,VIS,Q.RHOP,
LCAVG,CAVGP ,DELC yG+BETA ALPHA ;GAMMA , RCOMP , SUMC, COUNT D1 1,022,012,
PVEVZ NWOCNT o XA1,281,CB1,XE2,282,082,CCHAT

EQUIVALENCE (CCMATIL)»POT(L) XUL)CHATRX(L1),y (CCMATLLA9TIZZIL)),
LICCMATI2993),C(1))s (CCMATIS251),CRI1D)

C

o L T T Y P T DY
CeseesTHIS SUBRODUTINE DETERMINES THE INITIAL X-ZI COORUDINATES OF THE #+ss
Ceesss MUVING POINTS AND ASSIGNS AN INITIAL CONCENTRATION TO EACH #¢
Ceeens F THE POINTS. THE MOVING POINTS ARE UNIFDRMLY DISTRIBUTED®®
Crense THROUGHOUT THE GRID SYSTEM, INCLUDING THE DOUNDARY GRIDS,.*®»s
Ceeren)y sX-COORDINATE OF MOVING PODINT. dhine
Cesess) = J-COORDINATE OF MOVING POINT. seine
Cevessl = CONCENTRATION OF MOVING POINT. L b i d
CessssNPX = NUMAER OF MOVING POINTS PER GRID IN X-DIRECTLON. wHEE
CessseNP. = NUMBER OF MIVING POINTS PER GRID IN Z-DIRECTION. LA AL L d
Chodns NOTE THAT NPX#NPZ [S THE TOTAL NUMRER OF MOVING POINTS PERwes
Cessss GRID INITIALLY. L aho
Cessmapx = FLOATING POINT DESIGNATION OF NPX. LA LA L]
Ceessep] = FLOATING POINT NESIGNATION OF NPZ. LA ALl

CksssslP| = NUMBER OF MIVING PODINTS [N VERTICAL DIMENSION OF MODEL.%%¢%s
Cessv®NP2 = NUMBER OF MOVING POINTS IN HADR1ZONTAL DIMENSION OF MODEL .#w%#

Cessss NNTE THAT NPL#NP2 S THE TOTAL NUMBER OF MOVING POINTS IN #+e
Cessan THE MODEL INITIALLY. hidddd
CeenssSUMC = SUMMATION OF CONCENTRATION OF MOVING PDINTS IN A GRID. wees
CessssCNUNT = A COUNT DF THE NUMDER OF MOVING PDINTS IN A GRID. hhih
Cesss3LAVL = AVERAGE CONCEMNTRATION OF TRACER (SLUGS PER CuR. FT.)) essss
Ceeese AND |5 DETERMINED BY SUMC/CNUNT. b
Ce»»o*DELC =CHANGE IN CONCENTRATION ODUE TO DISPERSION. *EEeS
CHe3#5L0GNOG,DOG,XD = INCREMEMTING FACTORS USED IN DO LOOP. bbhddd
CosswsN]],NI2 = ROW NUMBER AND COLUMN NUMBRER OF GRID IN WHICH POINT [Ses
Cosnne LOCATED. rese

[ L e
Ce+e#+XD1,221,C81 = CODRDINATES AND CONCENTRATINNS OF BOUNDARY MOVING *e

CHesns POINTS ALONG X=0. e
CoeeseXR2,182,C82 = COOADINATES AND CONCENTRATIONS OF BODUNDARY MOVING ee
C*sess POINTS ALONG X=MDDEL LENGTH. haddd dd
Cc

REWIND 1

LOG=1-NPI1

NOG=0

PX=NPX

PIsNPZ

PN 6T 1=1,NR

DO 6T J=Ll4NC
SUMCIL4+J)=0.0
COUNTLT,J1=0.0
DELC(I+J)=0.0

B0 10 J=1,NP2

006=4~-1
AD={DELX/PX)®(0.5+D0G)

&

-

IFIXN.LT.156.0) YD=SQAT(39.99+*(156.0-2%D1+220,0)
TFIXD  .GT.156.0) YD=0.0
14 LDG=LOGeNPL
NOG=NOG*NP L
00 10 I=L0G.NDG
NoG=1-L0G
I(1)=IDELL/PZ)*(0.5+00G)
Xt11=xD
IFIZE1).LT.¥YD) CiI)=0.0
IFI2011.GE.¥YD) CU11=0.10
NI1=Z(1)/DELZ+1.0
Ni2=xI1)/DELX+].0
SUMCINTL NTI2¥=SUMCINTIL,NIZ}+C(1}
COUMTINIL,NI2)=COUNTINIL,NI21#1.0
10 CONTINUE
CeessaFAOM HERE THRU STATEMENT 2, A BUFFER ZIDNE NF 200 MOVING POINTS wes
Coesnes 1S CREATED FOR USE IN INJECTING AT [NFLOW BOUNDARY COND- #%&#
Cesans ITIONS. LT
ALENX=(NC*DELX)+150.0
ALENI=(NR*DELZ)/2.0
LOG=INPLENP2) 4]
NOG=INPL&NP2)+200
no 2 1=L06,NOG
X1 1) =ALENX
Z11)=ALENZ
C(l)=0.10
2 CONTINUE
CALL WRTAPF (1401¢1,COMATEL)NWDONT)
XD=(VELX/PX)1%0.5
DO 12 I=1,NPL
DOG=1~-1
IDI(T)=(NELZ/PL)*10.5+D0G)
XALIT)=%XD
cBitl)=0.0
12 CONTINUE
LOG=INPL®INP2-1)) 1
NOG=NP | eNP2
DOG=NP2-1
XD={DELX/PX)*[0.5+DNG)-
o0 13 [=L0G,NOG
DNG=1-L0G
J=1-LOG+]
IRZ2(J)=(DELZ/PZ)*{0.5+D0OG)
xp2l1i=xD
Co2(4)=0.10
13 CONTINUE
DO 1 I=1,NR
D0 1 J=1.NC
IFICOUNTIT,J).EQ.0.0) COUNT(1,J1=1.0
CAVGI T Jd)=SUMCIL+J}/COUNTII+J)
CAVGP LT ,J)1=CAVG(1,d)
RHOL 1, )=l .0+ALPHASCAVG(T )
CALL TOWAIT (1,NSTAT,NWDS)
CALL BACKF 1)
RETURN
END

-
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SUBROUTINE BSOLVE

SUBRGUTEINE BSDLVE (CaNeMp ¥
DIMENSIOY Cl%aM), VN
o
C—-.tt@ii—znttl-t'tltttt‘tl.?.!l..t!'0t*.0""t-t‘tttttt.t‘....‘t".“*‘——
Cess22THES SUNRNUTINE SOLVES THE MATRIA SET UP [N MATSOL AY GAUSS #3ees
Coevrss ELIMINATION. wyees
F L L A e L e o
C
LE={M=1)/7
B0 & LalylR
TM=LR-L+]
o2 I=le M
on 1 J=2WM
ClLyd=10=CMLe 1)
EN=N-L
M=M=
CiL,")i=0.0
2 CLEN#L MMt l)=0.0
LR=L3+1]
IM=N=]
on 10 1=1, I
HPIV=]
LS=1+1
0l 3 L=LS,LR
IF (ABSICILe1Y Y .GTLARSICINPIV,10)) HPLVSL
CONT INUE
IF (MPIVelEal) G644
4 1N 5 J2].M
TEMP=((1,.J)
CATod) 2L (NP IV,J)
5 CINPIVRJ)=TEMP
TEMP=VIT)
VIIl=vINPIV)
VINPIVI=TEMP
6 vIT)I=VI1}/CLEL1)
a0 7 J=2,M
T CLIe =TT V/CHT L)
pO 9 L=LSyLR
TEMP=C{L+1)
VIL)=VIL)=-TEMPOVLL)
0o 8 J=24¢
B CILyJ=10=ClL JE-TEMPOLLL, D)
9 ClLyM)=D.0
IF (LR.LT.N) L2=LR+1
10 CONTINUF
VIl =VIN)/CING L)
JM=2
BN 12 I=1lyIM
L=i-1
DO 1L J=244M
KM= +J
BL VILI=VIL}-CiLd)*ViRM=1)
1IF (M LT.M) JM=JM+]
12 CONTINUE
RETURN
ENU

-

SUBROUTINE MATROP

SUBRMUT INE MATROP (NR, NC, R)

DIMENSION BANRGNC)y ALL2)
C
VI B d I P et #2230 RNRR IR SE Attt IR it IR ORI OreRIRRRstsstynanll
CosssslHIS SURRGUTIME NAGAMIZES THE INITIAL DATA OR THE RESULTS INIDeees
Cosben A SUTTABLE FJAM FO2 PRINTOUT.
C'l0'#0‘.Q.tat*ttttbtb‘t.t.t.ott.t!'...0.I-t.‘tl‘l!l!#it‘.ttttttt'..tl"
c

0N 11 I=1.NL,12
IN=1/12
DO 9 J=],NR
IFEEINLIB12.LELNC) 147
1 00 2 Ji=1,12
JIJ=IN®12400
2 Aldsi=Bld.dad)
GO T &
3 LL=NC-12#%11
DO & Ja=]4LL
Jdd=IN¥126Jd
G AlJJ)=Bledd0)
LL=tL+1
D0 S Ja=LL,12
5 AlJIN=0.0D
& IF (ALL)}.LT.0.001) GD T2 14
IF 1IN} 7,7,8
T WRITE (be121 (AT, 10=1,.02)0,4
Gn ™D 9
8 WRITE 16,127 (ACILDs01=10120, IN
60 TN 9
14 IFUIMN) 15,154,116
15 WRITE (6,170 (ALLDD0D=1,02), J
6N TH 9
WRITE (6,17) (ALIDD,10=1,020, @M
CONTINUE
IFINC.LE.(IN+1)*12) 11,10
10 WRITE (6413)
11 CONTINUF
RETURY
12 FORMAT (LH 412E10.3,14)
13 FORMAT (1HD.7/)
17 FORMAY (LIH ;12F10.3,14)
END

-
Qe



0L

SUBROUTINE INIPRT

SUBRNUTINE INIPRT [NR,y NCy NA, NB)

DIMENSION FK{12427)+POR(IL242TI HIL2,2T)PIL12:2T714PT1L242T7),
IPPLL2+ 2714 PDTIL2:2T1eRHOI12,2T)1VIS(12427)4Q112,27)4CAVGI1242T),
2CAVGP 12,271 ,DELCL12,2T),SUMC(12,427)COUNTI12,4270,011012,27),
30220124271, 012012427)4VXI112428)4VZ113,27),CCHMATISS00) 4X114961),
4211496),C11496) ;TMATRX(250,21),CRI250),XB1124),181124),CB1(24),
SXA21241.2R2124),0B2(24)

COMMON DELT,ST,FHTOP DELXsDELZyFKPOR H4P4PTPP,RHO,VIS,Q,RHOP,
LCAVGyCAVGP ,DELC 4G, BETA,ALPHA ,GAMMA s RCOMP , SUMC . COUNT »D11,4022,D12,
2VXy V2, NWDCNT ,XB1,ZB1,CBL,XB2,2B2,C82,CCMAT

EQUIVALENCE ICCMATUL).POTUL)X(1)oCMATRXI1))» (CCMATILA9TIAZI1) ),
LICCMATI29931,C01) ), ICCMAT(5251)4CRIELD)

c
P L L e e A L L A
CeewssTHIS SUBROUTINE WRITES OUT ALL OF THE IMITIAL DATA BY USE NF #*weee
Cosdnn SUBRDOUTIME MATROP. LL L]
[ L T P T T A ]
Cc

WRITE (&41)

WRITE (6,2) MR, NC, NA, NA

WRITE (6,3) DELT, 5T, FWTOP

WRITE (6,4) DELX, DELZ

WRITE (645) Gy ALPHA,RHOP

WRITE (6.,6) BETA, RCNMP,GAMMA

WRITE 16,T7)

CALL MATROP (NR, NC. FK)

WRITE L6.8)-

CALL MATROP [NR, NC, POR)

WRITE (6,9)

CALL MATRDP (NR, NC, H)

WRITE (6,101

CALL MATROP (NR, NC, PT)

WRITE (6,11

CALL MATROP (NR, NT. POTI)

WRITE (6,12}

CALL MATROP {NRy NC, RHD)

WRITE 16413}

CALL MATROP (N%y NC,y VIS)

WRITE (6,14)

CALL MATANP (NR, NC, Q)

WRITE (6,15)

CALL MATROP (MR, NC, CAVG)

WRITE (6416)

CALL MATRODP (NR, NC, DELC)

RETURN

1 FORMAT (1H1:36X,5THesssess+44TRO-DIMENSIONAL VERTICAL FLOW PROBLEM
l seaneadnne fJ)

2 FORMAT [ 1HO, ISHROW DIMENSION =,[4,10X,184COLUMN DIMENSION =,14,
LI0X, I9HCMATRX DIMENSIONS =,16, L X, 2HRY 1 Xs14)

3 FORMAT (1HO,12HDELTA-TIME =,F10.341%y5HSECS. 10X, L6HTOTAL RUN TIME
1 =, Fl0.3,1XsSHSECS.+ 10X, L FHPRINT OUT CONTROL =,F10.3)

4 FORMAT (L1HOyIHDELTA-X =4FL10.3y1Xy3HFT ., 10X, FHDELTA-T =,FL0.3,1X,
13HFT. }

5 FORMAT (1HO,17HACC. OF GRAVITY =,F10.3,1X,16HFT. PER 5Q. SEC., 10X,
LTHALPHA =,F10.3,10X,21HPROD. FLUID DENSITY =,F10.3,1X.17H5LUG PER
2CUB. FT. )

6 FORMAT (1HO, L3HFLUID COMP. =,F10.3,1%,1545Q. FT. PER LB., 10X, 12HRD
ICK COMP. =,F10.3,1%X,15H50., FT. PER LB.,10X,THGAMMA =,F10,3 )

FORMAT (1HO,52%y2THPERMEABILITY MAP (S5Q. FT.). /)

FORMAT (LHO,5AX, 13IHPOROSITY MAP. /)

9 FORMAT (1HO,52K,25HGRID ELEVATION MAP (FT.). /)

10 FORMAT (1HO,45X,40MINITIAL PRESSURE MAP |LBS. PER SQ. FT.}. /)

11 FORMAT (1HO,S51%,2BHINITIAL POTENTIAL MAP (FT.)de /)

12 FORMAT [1HO.&5X,41HINITIAL DENSITY MAP (SLUG PER CUBIC FT.). /)

13 FORMAT (1HO.» 43X, 45HINITIAL VISCOSITY MAP (LB.-SEC. PER 5Q. FT.)./)

14 FORMAT [1HO,46X,3THPRODUCTION MAP (CUBIC FEET PER SEC.). /)

15 FORMAT ([1HO.%1X,48HINITIAL CONCENTRATION MAP (SLUG PER CUBIC FDOT)
1. /1

16 FORMAT (1HO,&1Xs49HCHANGE [N CONCENTRATION MAP [SLUG PER CUBIC FT.

1. /1

END

SUBROUTINE STORAG

SUBROUTINE STORAG (NR,NC,MA,NB,STOR,ADD)

DIMENSIUN FE{1242T)4PORI12,2T1,HI1242T)4PLL242T)4PTI1242710,
1PPLL2,2T)4POTIL12,27T),RHOLL2,27)VISI12,273,0012,27),CAVGLL242T),
2CAVGPI12,27)4DELCI12,2714SUMCIL2,427)1+COUNT{12,27)1,011112+27)»
ID22002,27)4D02012,27) 4¥X{1E2,28),VZ113,27),CCMATIS500)4X(1496),
LZ11496),CL1496) ,CMATRX[250,21),CRI250),XB1124),IB1124),CBLI24),
5XB2124),IB2124),CB2124])

COMMON DELT ST FHTOP,DELX,DELZ + FK;PORH, P, PT PP, AHO,V1S.Q,RHOP,
1CAVG,CAVGP yDELC o GoBETALALPHA ,GAMMA ,RCOMP , SUMC ,COUNT,D11,022,0D12,
2VXyVZ 4 NWDCNT 4 XR1,I81,CBL,AB242B2,CB2,COMAT

EQUIVALENCE (CCMATIL)POTI1},X0I1)CMATRX(L)) s (CCMATI149TI,Z(L)),
LICCHMATI2993),C(10), (CCMAT(S52511,CRI1D)

C
Crisosssss 390ttt has et ad s s s bt sttt sttt i it st it adnnisssvnsetal
Cosss*THIS SUBROUTINE COMPUTES THE MASS STORAGE FOR THE TOTAL AREA. #+es
C*##*$STOR=TNTAL MASS STORAGE DF AREA (SLUGS) reses
CesexsAND = TRACER MASS STNRAGE OF AREA [SLUGS). LAl
COVEENEtsassdpRbotntddedbedhbdbd st b es s beanundt s snnstosdagiieawRnsstl
C

NC1=NC-1

NRLI=NR=-]

ADD=0.0

STOR=0.0

DO 1 L=2sNC1

DO 1 K=2,NA1l

STOR=(1.,0%DELX#DELZ*PDR (K, L) *RHO(K,L)1+5TOR

ADD=11.0°DELX®NELZ*PORIK,LI*CAVGIK,L) )+ADD

1 CONT INUE
RETUAN
END
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SUBROUTINE MATSOL

SURBRDUTINE MATSOL (NR,HC«NANB)

DIMENSIOY FRO12,2T)WPORILIZ:2T)aHI1242T0P0124271,PTI12,27),
IPPIL24 2T POTILI2,2T)oRHDIL2,2T)oVISH12027)40012,27),CAVGIL2427),
ZOAVOPIL242T)DELCEL242T) o SUME(12+27 ) COUNTIL2,2704D10112:42T7),y
INZ21N24271,002012,27) 4 uX002428)0,V2{13,271,CCMATIS508) X(14961,
A2LL16960,C1 14960 CHATIXI250,21),CRI253)1,X1(261,IB1(24),C0B11024),
SXA2(241+7R21261,CR2(24)

COMMOM UELToSTyFaTOPyDELX yDFLEIsFEFNIR HyP 4 PT PP, AHIL VIS Qs RHAP,
ICAVG 2 CAVGP yDELC » 5 BETA L ALPHA ,SAMMA , ICOMP ,, SUMC, COUNT D1 L,D22,D12,
2V Vo MADCUT s XRL 4 2814 CRL, X62,7R2,062,(CNAT

EQUIVALENGE (CCMATIL) «POTELYX(11,CMATAN(L) )y (COMAT(LAGTIZULY],
LICCPATI29930,C110 0, (COMATIES2510.CR1LID

L L
*«THIS SURANUTINE SETS UP THE COEFFICIENT MATRIX AND THE RIGHT #u%es

* HA4D SINE COLUMN VECTOR. eden
oTHE COEFFICIENTS ARE COMPUTED AY THE FUMLTICNS PARAM, RHOAM, *¢t%¢
* AND ELVAM. A
*THE MATRIX OATAIMED HAS ALL OF THE LOWER LEFT HAND AND UPPER ®&eés
* RIGHT HanD ZERD ELEMENTS ELIMIMATED. sreee
SCMATRX = ELFMENTS OF CODEFFICIENT MATRIX Feuen
SCR = ELEMFNTS OF RIGHT HAND SIDE COLuMN VECTOR whsew
..‘At..l&‘.l.*"lt."t"‘it.t'ttt.."..‘tt.‘.“‘.i.“"!..‘..l“l-—

PARAMIAFKL AFK2, APOR, ADEL Sy AMUL,AMUZ ) s 2. 0*AFX1#AFK2) / |APDROADELS®
FADELSSIAMUI=AFK2#AMU2Z¥AFK]))

QAHCAMIARKOL L ARHN? ) =0. 5% LARMN L +ARND2)

ELVAMIAHLy AHZ2 ) =AHI-AH2

D0 1 J=14NR

oN 1 1=1,NA

CMATRX{1,J)=0.0

KT=0

NCQ=NC-1

HNR1=NR-1

1R=NR~-2

=18+l

IC=1Mel

Ih=20]18+1

DO 12 J4=2,NC1

no 12 1=2,"R1

NT=iT+1

CRINT)=0.0

TFIFRI1+0).EQ.0.0) 11422

1FIPIlyJ).GEL10D000.0) 11,2

Ja=1]

40=1

CHATAXINT, 1I=RHNAMIRHNE JA,J=-11,RA001,J)) *PARAMIFR] JA,J-10,

LFKL LpJ0oPORIT ) DELXYZVIST JAwd=1),VISIL,d0)
CHMATHXANT p [B)=AHDAMIRHN(TI -1y  J)oRHOLT 2 J) I #PARAMIFRLOI=1, J),
LRKELpd)POR Do) DELZ,VISTE-1s J).VISUI.JY)

CHMATAXINT, IC)I=RHIAMIRHN(I+1, J),RHOI14J))*PARAMIFKITI*], J),
TFEALpd) o PORTEd) o DELZ o VISEI#1s )4 VISIT,00)

CHMATRXUINT, [D)=RHOAMIAHOL JO,J+1) RHDLT oSV IS PARAMIFKL JO4J+1),
LFRELy ) oPORITSJ) 4 OELXVESE JO2J#10,VISITLD))
#THE FOLLOWING STATEMENTS (THRU 10) TRANSFER COEFFICIENTS, e kRS
- MULTIPLIED AY RESPECTIVE PRESSURE TERM, TD RIGHT HAND “EEE.
. SIDE COLUMM VECTOR FOR KNOWM  BNUNMDARY CONDITIDNS. sekts

3

4
5

(]
7

o
9

10

IFIEP (4, 0=1) .BE.100000.0) 344
CR{NTI=CRINT)-(CMATRX(MT, LISPT( JA,J=1))-(GeCHMATRXINT, 11#RHDAM
JIRHOL JAL =11 RHI T, J)V*ELVAMIHL JALJ=1) HITJd2 0D

CMATAXLNT (IM)=CMATRXINT o IM)~CHMATRXINT, L)

CMATRX{1T, 10=0.0

IFEPLI-1,0)0E. 100000401 546

CHIMT)=CRINTI= (CMATRAINT, e )#PT (=14 JI)=(GRCMATRX{NT, IB)}+RHOAM
LIRE0ll=1s JhAWNL1, JHI*ELVAMIHII-1, J)HIT4J) D)

CMATRXINT o IM)=CMATRXINT s IM) =C*ATAXINT, 10)

CMATRX (1T, IR)=0,0

[FI211#1,J)GEL.L1DO000.0) 7,8

CRENTI=CAINTI-(CMATEXINT L IC)I*PTLII+L, J)V1—IG*CHATRX(NT, IC)*RUNAM
TIEHIT#ly  JY RHOLL, D) IRELVAMIHIL ¢, J)oHIT4J)0)

CHMATHN (NT IM)=CMATRXINT + IM}-CMATRXINT . 1C)

CMATRX(NT, ICI=0.0

IFIPLID,I+1)GELIDD000.0) 9,410

CRINTI=CRINT ) =(CMATRXINT ID)#PTL JDJ+ 1} )= LGECMATRY(NT, D) *RHDANM
VIRHAL JD,Je 1) REIL, SV ISELVARIHE JDyde 1) yHIT4d1 D)

CHMATANENT T4 =CMATRXINT , TM) -CHATRX(NT, ID)

CHATRY(NT,10)=0.0

CHATAX [TTo IMI=CMATRX(NT yIM) = (CMATRXINT 1) #CMATRXUNT o IB) ¢CMATRAXINT,
LICH+CMATREINT S ID)+ L (RHNLE, J)*#{RCOMP+BETA) ) JDELT))

NELCCP=CAVGLTJ)-CAVGPIL . )

CRANTI=CRENT )= (tRADEL ¢ JI S IRCOMPBETAISPT (T4 J) )/DELT) +{ IALPHA®DELC
1CP ) JUELTI+(IRHOPSD (1,0 /IPPRIT 4 JISUFLX*DELZY 1= (GH*CMATRX(NT.1)®
PRODAMIAHDE A, J= 1) yRHOLT 3 30 ) CELVAMINEIA, 1=1) s HIT 0D ) )1 (GOCMATAN(NT,
FIEVSAHNAMIRHOC I =14 y RHOL A} PSELVAMIHO =14 00 gHIT 4 3D ) )= (GEIMATRI
AT IC)SRHIAMERHOL 1+ L4 J ) oRHOT L o JPVSELVAMIHIT# 14 d) oHIT o J) ) )= I GHCHATR
SYIHT, 1N *RHNAMIRHOTID p J* 1) JRHOET 4 J) IFELVARIHIIDJe 1) HITLJ21)

no 1O 12

CHATAX(NT, IM)=1.0

CRIMTI=PTEL,J)

CONTINUL

CALL BSOLVE (CMATAXMNA,NA,CR)

NT=0

B 13 J=2,n4C0

NN 13 [=2,NR1

NT=HT+1

PTLI4J)=CRINT)

RETU=RN

EMD
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SUBROUTINE VELOCY

SUBRNUTINE VELOCY (NRGZNC,IR,IC)

DIMENSION FRIL2,2T)POR(L2,27)4HIL2,27),P(12,2T),PT112,27),
IPPLL12,27),POTIL2,27),RHOL12,27),VIS(12,27),0012+2T)1+CAVGIL2,27),
2CAVGPL129271aDELCLL2,27)4SUMCIL2,4270,COUNTIL12,27),D10012,27),
IN2201242T14D1201242T7)4VX(12,28) V213,271 ,CCMATISS500)X(1496),
47114960,C01496) ,CMATRXI1250,21),CRI250),XRL124),2B11241,C011024),
SXB2(24),782(24),CRB2124)

COMMON DELT SToFWTOP,DELX,DELZ yFK,POR HsP,PTPPyRHO,VIS,QsRHOP,
1CAVG ,CAVGP ,DELC +GoBETA,ALPHA s GAMMA ,RCOMP, SUMC,COUNT,D11,D22,012,
2VE VI NHDCNT»X31,281,C81,%B2,2R2,082,CCMAT

FQUIVALENCE (CCMATIL),POTI1) X(1),CHMATRXIL) ), [CCHMATILI49T),211)),
LICCMATIEZ2993),CU2) ),y [CCMATIS251),CRLLD)

C
C== BEAB RN RN T P E R I T FFE ST R R RA B A NN R NN RN N AR FE T E N ST AT E TSI R NG IR
ce THIS SUARMNUTINE CALCULATES THF SEEPAGE VELOCITIES AT EACH GRID®sss
Connnn INTERFACE,THE LONGITUDINAL AND LATERAL DISPERSINN COEFF- sxse
Coewns ICIENTS ARE DETERMINED FOR EACM GRID USING A VELOCITY POWER®#
[T RELATINNSHIP, AND THF COMPOMENTS UF THE DISPERSIONTENSOR lREO
Cosnnn DETERMINED BY USING THE APPROPRIATE TRANSFORMATIONS.

Cesesayx a VELOCITY IN X-DIRECTION. --cs-
CHewsey] = VELOCITY IN I-DIRECTION. RAL Ll
Cesss*DIFF = DIFFUSTON COEFFICIENT sheEe
CessesTORAT = TORTUDSITY. hene
Cee*se0lA = MEDIAN GRAIN SIZE DIAMETER. seane
CesaeayXt =X-VELOCITY AT CENTER OF GRID. *anee
Ceeveey]l] = J-VELOCITY AT CENTER DF GRID. heee
Cosewenl = LONGITUDINAL DISPERSICN COEFFICIENT. senen
Ceesee0T = LATERAL DISPERSION COEFFICIENT, srene
CesessRE = REYNOLDS NUMBER. o

CeesweD)|,022,D12 = COMPONENTS OF THE DISPERSION COEFFICIENT TENSOR. .
[ L el L e L R L L L s

c

DO 10 I=1+NR

0o 9 J=2.NC

IFCFKIT 3 J) oFQ.0.0.0R.FK(L+J-1).EQ.0.0) GN TO B

DOGE((=2.0)*FRIT 3 JISFKIL 4 J=1)) /IDELX®(FRITJ-1)*PORELJI®VISIT, )+

IFE[ 1o JI*PORI L, d-1)*VIS(T4Jd=1)))

VELLyJ ) =D0GREIPTET o d)=PT({Lyd=1) )40, 5%G*{RHOI T, J)+RHOLEwd-1) )0

TIHIT g d d=HLLyd=1111)

GO T 9
8 VEll,J3¥=0.0
9 CONTINUE

Vil li=vxi{l.2)

VELT1C)=VX{TeNC)
10 CONTINUE

N0 20 J=14NC

DO 19 I=2,NR

IFIFK(]4J).EQ.0.0.0R.FKII~14J).EQ.0.0) GO TO 18

DOG={(=-2.0)*FK{ T JI®FKIT=1sd) ) /IDELZ*{FE(TI=1,J)*PORITJISVISIIsJ)+

IFK( 1, J1*POR(I-1,J)*VISII=-14Jd]))

VZITL 4 J1=D0GSLIPTII ) =PTL{I-14J) ) +0.5¢G*(RHO(T+JI+RHOIT=1,J) )0

TEHE T, J=HILI=1,J001)

oGh TO 19
L6 ¥ZIi1,4)=0.0
19 CONTINUE

VIt di=vEi2,d)

VIR J)=VZINRyJ)

20 CONTINUE

2

phet

25

30

DIFF=0.0

TORT=0.5

DIA=0.0965

DO 30 1=1,NR

DO 30 J=1,NC

VEX=VE( [ )=0.5®IVXI] o J1-VX{Lsd*1))
V2Z=VI{IoJ)=0.5¢(VEL]+J)-VI(I+1,4J])
VELX=VXX*VXX

VELZI=VIZ®*vVIl
IFIVELX.EQ.0.0.AND.VELZ.EQ.0.0) GO TO 21
VEL=SQRTIVELX+VELZ)
RE=IVEL*DIA®RHOIT » 1) /VISTIJ)

OL=0.0

0T=0.0

DLLEL o)) = (DL*YXXSYXX)/ IVEL*VEL)+{DT#VZZI®VII) /IVEL*VEL)+DIFF*TORT
D220 1y )= (DTEVAXOVRX) /EVEL®VEL) + (DL*VEIZOVZIZ) /IVEL*VEL)+DIFF*TORT
DL2ZE14J)=(IDL-DT)eVXX*VIZ)/(VEL*VEL)

60 10 25

DLLETsd)=0,0

D221144)=0.0

D12(14J1=0.,0

SUMCLL,J)=0.0

COUNTIT,4J)=0.0

CAVGPLL JI=CAVGIT,J)

CONT INUE

RETURN

END



SUBROUTINE DISP

SUPEDMITINE DISP [NANL NPT JNPZ 1P Y 5P T)

DAMENSION FRIL12,27),PRRILZe27)yHEL242T014201242T)4PTL12427),
IPFUL2, 2T POTLL2, 2T, AHOIE2:27) ,VISI12,2T7),0012,27),CAVGI12:2T7),
FEAVGPEN 2,270 DELE(12427)SuUMCI12,2T),C0UNTI12,27),0010102,27),
A2 124271012012, 2Ty VXIL252R) ., VZ113,2T7),CCMATISS500).X11696),
GELL4 T b DU IA9A) JLMATRL( 250,211 4CRIZ5014XA1124).ZR1E26),CALTI24),
SAR2126) 4221260 ,CP2126)

TOMMON UELT o ST FWTINPOELY 4 DELY yFEPOR H, 23 PT PP, Ril0 VIS4 Qe RHIP,
1CAYG, CAVGP yDFLC o G o BFTA AL PHAGAMMA ROGMS , SUMC,CTUNT D1 14,022,012,
PVN Vo NuDONT XA Il o CR] , XB2,IR2 T2 2,COMN

FOQUIVALENCE (COMATEND oPOYEL) o XL0),CMATRAEY) ), (CCMATELGOTI2L1)),
LICCHATLZ993) , 00000, (CCMATES251),CRI1Y)

15

e8¢t et ¢t e tatt el et et ed st e scitttrisdisoRseReissssissstuensn
CreedeThls SUBROUTINE CALCULATES THE CHANGE 1% CONCENTRATINS DUE TN eess
Cottes DISPEXSION,. CAVWG 1S THEN CGRAECTED FOR THIS DISPEASINN EFECTe
I R L e R e

c

MR=HT-]
MC=t=1
BN AT 1=249%
pnoa7 J=2.MC
WERHI L JIAURHOL Ly JI-(ALPHASCANVG )
TEEOLIIL el ek QuCaDaNRaDLIT Iy d)Fu.N.0) GO TD 31
PEANA= ({2 O*WePINI T Je ) J¢DELTANELET )81l el } ) FIDELX®DFLXS
TEPOR L I DERLT I #PORCL yJe 11D LIL v )Y el CAVGLT  J+ 1} -CAVGIT s
21}
N TO 32
31 DLXXA=0.0
32 IFEOANET =10 .F0.0.0.NR.DILLETY DLET.0.G) G0 TO 33
CONAR={ (2 utWePOR (14 d=11%DFLI*0 I L4022 Lt T -1 ) /IDELX*DEL X"
LEPUEL Ly I e LU D) #PORLT - 1D LT J-L 3D DI *ETAYGLL,JI-CAVGIT . J-1
20
o 10 34
33 ACYED=0.0
34 IFINZ20T41 000k Q000022114 J)ET.0.C) GO T 35
DEYYT =t 2. 00WerNRITol o JISUELTON221T, 3802201 #1400/ DELZ*DELZ®
PRI Lo JVeN220 0, J)ePORACT#1 JI3N220 1 ¢ o J) DY #ICANGLI#L2J)-CAVGIL
2
cn T s
15 DEYYC=0,.0
36 1FL02201-14d).F0,0.0.07,022114d),Fu.0.0) 50 Ta 37
CEArYD=tl 2. 00WePORILI=1,y ) *DELTIDZ2(L,0)e02201-143) )/ IDELZ*NELZ
TUPORET o J1 0022001, ) 0 PRRLT=1 013022011, 0D I {CANGLT . JI-CAVGIT=1,J
el
o0 TR 38
37 UCYYi=G.0
38 IFIMI201: 0910 a0Q.0.0.02. 0021014 .E7.0.83) 60 TL 39
COEAYA=((WoPORL Ly JeL)*0EL T 2014 J)*D12( 1,341 ) /2. usDFLXS*DELI*
LPORP LT 06 DL20 L ) 4PORTL A e LISDI200 4 del ) BN S (CAVSIL#1,, JI+CAVRLT+L,
2440)=ZAVGHTI=13J)=CAVGLTI=14d4+1))
GO T &0
39 DCXYA=D.0O
40 TF(DL12004 =11 FQa0.0.0R,012010d01.EQ.0.5) 5O T 41
OCXYR=(IWEPDAAT J=1 PeDELT20120T y J3*012114J-11) /12 UPDELX*DELL®
LIPORCL D020 L JY4PDRIL,J=-1)e01 201 0= 1)) 12 (CAVGLI#1 4 J)4CAVGIT ],
2J-1)-CAVGII=1ad }=CAVGIT=143=11)

6N TN 42
&1 DCXYP=0.0
42 IFIDLI201+1 40}, EQ.0.0,00.D12{1+J)1.EC.C.0) S0 TO &3
NEYAC=((WePNR L [#1 3 JISDELTHN1211, 01 *D120 141 IV I/ 12, 0°DELX®DELT
PO T, JIenE20 1, J)ePIRITI+1, D120 40,00) 1) #ICAVGL] s 0+ 1) 4CAVGI T+,
20+ L1-CAVGILI#1 2 d-1)-CAVGIE, J=L))
Go TN 44
43 POYRC=0.0
&4 IFIDI241-1,30).E3.0.0.00.71211+3).Fu.0.01 GO T &5
NEYXD= L IWePORL -1, JI#0FLT*P12{ 1, J)0*D1201-1+ 311/ (2.00DELXSDELZ*
PIPORC T o JI*DL2( T IV ePTIHII=1 ) ®NI211=-1eJd) )P *{CAVGIT o J+1)4CAVGIT-1y
200 10=CAVGI L -1 ) -CAVGITI-1, 2-10)
GN T 46
&5 DCYRD=D.0
46 UFLCI 1, J)=DOXXA=DCXXD+DIYYC-UIYYD+DCAYA-DCXYRADLYXC-NCYXD
&7 COMNTINUE
DO 4B 1=1.N0
00 &8 J=1,MNC
CAVOLL 2 )1 =CAVGLEL J0+DELETT )
4“8 COMTINUE
RETURN
FrL
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SUBROUTINE MOVPT

SUBROUTINE MOVPT (NRNC,NPL, NP2, NPXNPZ)

DIMENSINN FKI12,27),PORI12,27),HI12,27),P112,271,PT(12,27),
IPPIL242T14POTIL2,27)4RHO{12:27)VISTL12,2T1,Q002,27)4CAVGIL2:2T)
ZCAVGP (124271 ,DELCI12,27),SUMC(12,271,COUNT(12,271,D11012,27},
IN22(12,27) 40121024271 ,VX112,28),VZ113,27),CCMATISS00),X11496),
4Z11496)4C11496) 4CMATIXI250,21)1,CRI250)XB1124),281124),CB1(24),
SXB2(24),7B2(24),CB2124)

COMMON DELTST,FWTOP,DELX,DELZ,FK,POR,H,P,PT,PP,RHD,V1S,Q,RHOP,
LCAVG,CAVGP yUELC 4G yBETA, ALPHA ,GAMMA , RCOMP , SUMC ,COUNT 401 1,022,D12,
2V, V2 NWDCNT 4 XB1,2B1,CB1,XB2,182,C82,CCMAT

EQUIVALENCE (CCMATULI POTEL)XI1),CMATRX(L1)), (CCMAT(L49T},201)),
LUCCHMATI2993),C00)), ICCMATIS251),CRIL))

c
i e A RS AL e L L T L it R L L e i et e L
CeesssTH]S SUBROUTINE CORRECTS THE CONCENTRATION OF EACH MOVING POINT*#s#

Coesns FOR THE EFFECTS OF DISPERSION IN THE PREVIDUS TIME STEP #&sss
Consns (THIS LOGICALLY SHNULD HAVE REEN DOME AT THE END OF THE #s%%s
Corenns PREVINUS TIME STEP RUT FOR PROGRAMMING EFFICIENCY WAS sEkEd
Conenn DELAYED). ALSD, THE VELOCITY OF EACH POINT IS DETERMINED ##2#
Cosnsn AND THE POINT MOVED ACCORDINGLY. POINTS MOVING OUT OF THE *##
Cobass MODEL ARE LOCATED AND RE-ENTERED AT AN APPROPRIATE INFLOW #*%*%
Coeses AROUNDARY. A RECORD OF SUMC AND COUNT 1S MAINTAINED AND CAVG*®*
Coesans 1S RECALCULATED FOR EACH GRID.

Cessseyxx,vIl = VELOCITY COMPONENTS OF MOVING POINT. -

e L R R e R R A R e L L L L S R et S e LR A R R L R L
c

PX=NPX

PZ=NPI

ALENX=DELX*NLC

ALENZ=DELZ*NR

ADISX=DELX/PX

ADIS?=DELZ/PI

DO S I=1,NP1

MIl=ZB1(1)/DELZ+1.0
KIZ=XB111)/DELX+1.0

ALL=NI2-1

VXX=VXINIL NI2)={0(XBLIT)-(ALL#DELX) ) /DELX)*(VXINIL NI2)=VXINIL,
LNT2+L30)

IFIVAX.GT.0.0) XBLIT)I=XBLI1)+{DELT*VXX)
NI1=IB2(1)/DELL+1.0
N1Z2=XB2(1)/DELX+*1.0

ALL=NI2-1

VXX=VXINTL NE2)=0CIXB201)~(ALL*DELX)) /DELX)®IVXINILyNIZ)-VXINIL,
INIZ2#10 1))

IF(VXX.LT.0.0) XB2{L)=XB2( 1)+ (DELT#VXX)
CONT INUE

NECK=1

JECK=1

MECK=0

LOG=(NP1*NP2)+200

DO 20 1=1,L0NG

NI1=2(1)/DELZ+1.0

NI2=X{1)/DELX+1.0

IFINI2.GT.NC) GO TO 100

AL=NI11-1

ALL=N[2-1

w

CIIY=CITI+DELCINLL,NI2)
VEXX=VXINIL,NT2)=F 00X 1) - (ALL*DELX) ) /DELX) *IVXINTLyNIZ2)-VXINIL N2+
111
V2Z=VZINLIL,NE2)=1UR 2T -CAL*DELZ) ) /DELZ)*IVIINIL,NIZ2)-VZINIL®L,NI2
1))
TIFIVXINTL NI2Z2).EQ.0.0.AND.VXX,.LT,.0,.0) GO TO &0
G0 Ta &1
40 ALL=N12-1
DISTA=X([)-{ALL*DELX]
DISTH=ABSIDELT*VXX])
IF{DISTA.GT.DISTR) VXX={-D15TA+0.01}/0ELT
4] IF(VXINTL,NT2+1).EQ.0.,0.AND. VXX, GT.0.0) GD TO 42
GO TOD 43
&2 ALL=NI1Z
DISTA={ALL*DELX)}-XI]}
DISTB=ABS(DELT*VXX)
IFINISTA.GT.DISTEY VXX=(DISTA-0.0L)/DELT
43 IF(VZINTL,NI2).EQ.0.0.AND.VII.LT.0.0) GD TO 44
GN TN 45
44 ALL=NI1-1
DISTA=Z(1)-{ALL*DELZ)
DISTA=ABSIDELT*VIZ)
IF(DISTA.GT.DISTR) VZZ=(-DISTA+0.01)/0ELT
45 IFIVZINIL#14NI2).EQ.0.0.AND.V2Z2.GT.0.0) GO TO 46
GO Ty 52
46 ALL=N11
DISTA={ALL*DELZY-2(1)
DISTB=ARSIDELT*VIZ)
IFEDISTA.GT.DISTD) VZZI=1DISTA-0.01)/DELT
52 Z(I)=201)+DELT*VZL
X(I)=X{1)+DELT*VXX
100 IFIX(I).LT.ALENX.AND.ZIT).LT.ALENZ) GO TO 12
IF{Xi1).GE.ALENX) GO TO 80
G0 T2 12
BO IFIMECK.EQ.2) G0 TD 12
IFIMECK.EQ.1) GO TOD 75
TO IF(XBLINECK).GE.ADISX) GO TO 72
JECK=JECK+]
NECK=NECK+1
IFINECK.LE.NP1) GD TD TO
IFIJECK.GT.NPL) GO TN 74
JECK=1
NECK=1
&N TO TO
T2 XBI(NECK)=XB1 (NECK)-ADISX
X(1)=XBLINECK)
ZL1)=2B1INECK)
CliI1=CB1INECK)
IFINECK.LT.NPL) GO TD 11
NECK =1
G0 To 12
T4 NECE=]
JECK=]
MECK=1
75 DIST=ALENX-XAZ (NECK)
IFIDIST.GE.ADISX) GO TO T8



16

17

-

20

3G

JECK=JECK#+]

MECs="ECK+1

TF(NECKLELNPLY GO T 75
IFLJECK.GT.NPL) GO TR 27
JECk=1

MNECK=]

o0 Tn 75

XBZUECE )=XB2INECKI#ADLSX

X1 =82 IHECK)

Z11¥=2221NECK)

CHI)=CAZINERK)

TF{NECKLLTNPLY GO TO 11
HRECK=]

6N 10 12

KECKE=]

JECK=]

MECK=2

6o THh 12

HECK =LECK* ]

NI1=Z2U1)/DELZ*L.N
N12=Al 1) /DELK+L LD
TF(NI2.GTLNC) 60O TN 26
TF(NI2.EQeNEY CHI)=0,10
SUMEENTLWHNI2)=SUMCENTL NI2)+C LT
COUTINT L a1 2)=0NUNTINIL NI 204100
CONTIHUE

BG 30 [=14NR

A0 J=1.N0
IFICOUMTI ¢ J)EQaD.0) CRMMNTLE, W1=1.0
CAYSI T =SURC LT, J)/CMUTIL )
RETURY

ENG

SUBROUTINE MBAL

SLESGHTINE MAAL (12,4058 LR STOR[ 4 2701 STGEP, ARTP, 5050, 5QTN, TIKE)
DEMESSION TAlL2427),P03012,2704HI1242704P10i242T)4PTLL2,2T),
IFPEL2e2T)aPOTLL2,2Thy 301222710 VES012227) 40012927 )4CAVGIL2,2T),
ZOAVIPUL2,2T) 4 PFLE 12,271, SUM (129270 T00mTI12,270 400101242704
0220129 2T e 12012,27),%5012,25),42113,27),0C0MATI5500) X 11496),
Q2014901 T I1496) CMATREL257,210,0R12571, X0 11240 76240 ,CBL1240,
SYR2124) 4221241 ,C82124)

CrrMwiy TeST e FRTGP yDEL S CEl T o FRyF S a Mg P TT o PPy RN VIS Qs RHOP,
1CAYG, POFLE 3 BETAS2LTA8 s SAMMA B NND SO O NT D1 1.D22,01 2,
IVE VT i IT g XL, 201,07 1

29I52.C02,CO0AT
FOUTVALFSDF (CCHATIL)POTHL

ToX01),CMATRALL) . (COMATELASTI LN ),
LICCMATI2373) 400100y (COMATEISES1.CR(LD)
o

(=B P TRa s a s P e PSS bd E R E P AT N PR F SIS E TP SRR L EA PP RRR U PP R ER IR LN G GO
CoeesaTHIS SULBDITINE COMPUTES THE MASS BALANTE FOR THE SOLUTE AND  sesx

Coomen THE TRACER. LA AT
N T TR ittt s L N R TR S AR LA LA L Ed

¥
FALL STNRALR (HE o HE 1A G HB, STRR,ARD)
OTN=da.0
GEfNsn, 0
Yik=0.0
Ih="iP=-1
ILanbE=-1
i &7 1=2,1%
QlaBEL2aN T 20 LAFK{ T LD *PNRLE 21 5VISCI o 2)4F<11,2)*PNREToLISVISH
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Symbol

[A]

max

(@]

cH

D*.
1]

APPENDIX H

LIST OF SYMBOLS USED IN THIS STUDY

Fourier coefficients

Square coefficient matrix
phx

2

1

Coefficient in stability analysis equal to

Width of injected tracer along input boundary
Thx

2

F

Coefficient in stability analysis equal to
Mass concentration of tracer

Reference concentration

Maximum concentration

Formation compressibility factor

Mass concentration of tracer in produced fluid
Concentration of tracer in fluid element

Deviation of concentration at a point from cross-
sectional average

Dispersion coefficient

Total dispersion coefficient

Effective diffusion coefficient

Molecular diffusion coefficient

Dispersion coefficient, a second rank tensor
Longitudinal dispersion coefficient
Transverse (or lateral) dispersion coefficient

Pore size parameter
yAX

2

3

Coefficient in stability analysis equal to

Aquifer thickness

Error at node of grid (P,Q,R) at time level Sat

Coefficients for finite difference scheme and defined

by Eqs. D-19

Error between numerical and analytical solutions

Coefficients for finite difference scheme and defined

by Eqs. D-19

Even function of Peclet number

76



i,j,k
ij
J31,9%,33

14223

Definition
Even function of Reynolds number

Coefficients for finite difference scheme and defined
by Eqs. D-19

Gravitational acceleration

Coefficients for finite difference scheme and defined
by Egqs. D-19

Piezometric head
Elevation above datum

Subscript used to denote row and columns of finite
difference grid

Subscript used to denote tensor where i and j = 1,2,3

Tracer mass flux components averaged over cross section
of volume element (relative to pore area)

Diffusive mass flux components in fluid element
Hydraulic conductivity

Relative permeability to fluid
Permeability in xi-direction

Number of grids in xz-direction

Length of sea-water wedge

Length in x,-, X5, and xs-directions
Total mass flow rate

Number of grids in X,-direction

Mass of volume element

Mass flow rate of source or sink

Mass flow rate of tracer

Tracer mass in volume element

Tracer mass flow rate of source or sink
Number of rows in matrix

Coefficients calculated for the finite difference
scheme and defined in Eqs. C-7

Number of grids in xl—direction
Number of columns in matrix
Fluid pressure

Reference pressure

Column vector

Rate of fluid production

Fresh-water flow rate per unit width of ocean front
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Symbol Definition Units

q Volume flux g
R Reynolds number s
T Radius L
[rhs] Column vector ---
S Saturation of fluid ---
T Temperature S
T Tortuosity ---
Tij Tortuosity factor, a second rank tensor ——
i‘ij _ Tortuosity on microscopic scale, a second rank tensor ===
o
Ti' Deviation of tortuosity at a point from cross-sectional
J average s
t Time T
t+1 New time level T
t-1 Previous time level T
t+h Time level between t and t+l T
Vl,vz,vs Seepage velocity components (flow per unit pore area) g
‘u’P Seepage velocity of production fluid -t
v Magnitude of velocity vector 0
L ’ . -1
R Velocity of fluid element LT
Gt Velocity of tracer in fluid element prl
f’l’ﬁz'ﬁs ¢ Deviation of velocity at a point from cross-sectional -1
average LT
1 =1
Vi M oV Velocity components of 4th moving point LT
1, ZR SR
:(1,:3(2,:&3 Cartesian coordinates L
xi,xé,xi Rotated cartesian coordinates L
X, ,X, ,X Coordinates of &th moving point L
¢ B Wl
3 13 L
y Thickness of fresh-water flow L
o , Factor relating concentration and density s
B Fluid compressibility T i
ﬂxi.ﬂi,ﬂxi Grid dimensions in rotated coordinates L
mcl,sz,axs Dimensions of volume element L
Ml’MZ’MS Cross-sectional area of volume element perpendicular to 2
Xps Xy and Xg directions (i.e., AAI = axzaxs) L
AV Volume of volume element (AV = Ax Ax,bx,) 3
+
Ah; Coefficient in finite difference equation defined
i in Eq. C-7 i
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Symbol
At

At

bp

erf

erfc

Definition
Time increment
Time increment in previous time step
Difference in density, P Pg
Longitudinal dispersivity
Lateral dispersivity
Coefficient of dispersivity, a fourth rank tensor
Length of tortuous tube
Shortest distance between ends of tortuous tube
Amplification factor in stability analysis

Height of ocean above top of aquifer

Coefficient for finite difference equation defined
in Eq. C-7

Fluid density

Reference density

Fresh water density

Salt water density

Density of produced fluid
Porosity

Reference porosity

Viscosity

Reference viscosity

Kinematic viscosity

Kronecker delta

Factor relating viscosity and concentration
Capillary tube coefficient
Factor defined by p/(p-aC)
Coefficient equal to nﬂ/Nﬁxl
Coefficient equal to nn/Maxz
Coefficient equal to nw/l..ﬁx3
Potential function

Stream function

Error function

Complimentary error function
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The result is an equation involving two dependent variables, pressure and
concentration. A relationship for determining concentration was derived by
expressing a continuity equation for the dispersed tracer. An implicit
numerical technique was used to solve the flow equation for pressure and the
method of characteristics with a tensor transformation was used to solve the
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transformation, problems of longitudinal and lateral dispersion were success-
fully solved in a rotated co-ordinate system. The computer simulator was used
to solve the salt-water intrusion problem. The numerical results for the fresh
water head in the aquifer closely matched those obtained analytically.
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