DISSERTATION

A SIMPLICIAL HOMOTOPY GROUP MODEL FOR K_{2} OF A RING

Submitted by
JaDon Saeed Whitfield
Department of Mathematics

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado
Fall 2010

Doctoral Committee:
Department Chair: Gerhard Dangelmayr
Advisor: Jeanne Duflot
Rick Miranda
Jeff Achter
Martin Gelfand

Copyright by JaDon Saeed Whitfield 2010
All Rights Reserved

ABSTRACT

A SIMPLICIAL HOMOTOPY GROUP MODEL FOR K_{2} OF A RING

We construct an isomorphism between the group $K_{2}(R)$ from classical, algebraic K-Theory for a ring R and a simplicial homotopy group constructed using simplicial homotopy theory based on that same ring R. First I describe the basic aspects of simplicial homotopy theory. Special attention is paid to the use of category theory, which will be applied to the construction of a simplicial set. K-Theory for $K_{0}(R), K_{1}(R)$ and $K_{2}(R)$ is then described before we set to work describing explicitly the nature of isomorphisms for $K_{0}(R)$ and $K_{1}(R)$ based on previous work[11]. After introducing some theory related to K-Theory, some considerations and corrections on previous work motivate more new theory that helps the isomorphism with $K_{2}(R)$. Such theory is developed, mainly with regards to finitely generated projective modules over R and then elementary matrices with entries from R, culminating in the description of the Steinberg Relations that are central to the understanding of $K_{2}(R)$ in terms of homotopy classes. We then use new considerations on the previous work to show that a map whose image is constructed through this article is an isomorphism since it is the composition of isomorphisms.

In Chapter 1 we explore Simplicial Homotopy Theory from the "canonical" point of view of [2]. The emphasis of the entire paper will be on the calculations involving this structure and how they give explicit instructions for the isomorphism that is our final result. Accordingly, less attention is given to the fine details and examples from either classical or modern K-Theory, which we give a brief description of in Chapter 2. Our goal is not to describe or work with K-Theory as much as it is to accurately reflect the properties involved through the algebraic structures provided by Simplicial Homotopy Theory, so Chapter 2 only describes what is necessary to see how the later constructions will provide isomorphisms.

Chapter 3 establishes the simplicial sets that we will work with in detail, and provides constructions that lead to the maps we will connect together to form our final result. Those connections are then introduced in Chapter 4 , where we describe some work that has already been done [11] with $K_{1}(R)$ which will be helpful. Chapter 5 establishes the main theory that will allow us to reflect the structure of $K_{2}(R)$ through the simplicial sets introduced in Chapter 3, and Chapter 6 connects these properties into an explicit isomorphism.

ACKNOWLEDGMENTS

There are too many people whose thoughts, prayers, support and camaraderie have helped make this amazing milestone possible, but I must honor those who believed in me, literally, for the rest of their lives after meeting me: in fond and grateful remembrance of the late Billy Joe "Mr. B." Burleson, Dr. Robert Liebler and Dr. Daniel Rudolph.

Also, I cannot ever write a note of gratitude without thanking God, from Whom all good things come; my parents Donnie and Billetta Whitfield; my wife Eliina and children Jalynn and Jadiina.

Thanks, as always, to the Mathematics Department of Colorado State University, for giving me a shot at this in the first place.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
1 Simplicial Homotopy Theory 1
1 Simplicial Sets 1
1.1 Combinatorics and Extension Condition[2] 1
1.2 Categorical Description of Simplicial Sets[2, 17, 18] 3
1.3 Homotopy in Kan Complexes 5
1.4 Dimension-wise Map Homotopy 9
2 Simplicial Groups 10
2.1 Definition ([2], Chapter 17) 10
2.2 Chain Complex Construction 11
3 Kan Fibrations([2], Ch. 7 and Ch.18) 12
3.1 Definition 12
3.2 Long Exact Sequence of Kan Fibrations 13
3.3 Simplicial Group Action and Twisted Cartesian Products 14
4 Loop $\operatorname{Groups}([17,18]$ and [2] Ch.18) 15
4.1 Kan's Loop Construction 16
4.2 Functoriality of Kan's Loop Group Construction 18
4.3 Loop Groups on Nonreduced Simplicial Sets 19
5 More Examples of Simplicial Sets and Groups 21
5.1 Nerve Constructions 21
5.2 Functorial Constructions 23
2 Algebraic K-Theory 26
1 Projective Modules 26
1.1 Definitions[8][1] 26
1.2 The Category $\mathcal{P} R$ 27
2 Classical $K_{0}(R)$ ([8], Chapter 1) 28
2.1 Generators and Relations 28
3 Classical $K_{1}(R)$ 29
3.1 $G L(R)$ and Elementary Matrices $[1, ~ 8, ~ 9]$ 29
4 Classical $K_{2}(R)$ 30
4.1 Steinberg Group 30
5 Higher K-Theory from Quillen [16, 11] 32
$5.1 \quad N(Q \mathcal{P} R)$ 32
$5.2 \quad G(N(Q \mathcal{P} R))$ 34
5.3 Quillen's K_{0}, K_{1}, K_{2} versus Classical K-Theory 34
3 More Constructions for $\mathcal{P} R$ 35
1 Waldhausen's $\mathfrak{s} . \mathcal{P} R$ 35
1.1 The Simplicial Set $\mathfrak{s} . \mathcal{C}$ 35
$1.2 \quad$ Duality for $\mathfrak{s} . \mathcal{P} R$ 39
2 The Gillet-Grayson Simplicial Set[11, 12] 41
2.1 41
3 Duality on $N(Q \mathcal{P} R)$ and $S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}$ 45
3.1 45
4 Star-Connectedness and $S d(\mathfrak{s} . \mathcal{P} R)$ 52
5 Connections between $N(Q \mathcal{P} R), S d(\mathfrak{s} \cdot \mathcal{P} R)$ and $\mathfrak{s} . \mathcal{P} R$ 55
4 Connections with Classical K-Groups 65
$1 \quad L: K_{1}(R) \rightarrow \pi_{1}(\mathcal{G} . \mathcal{P} R)$ 66
$2 \quad T: \mathcal{G} \cdot \mathcal{P} R \rightarrow G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}$ 67
$3 \quad \theta_{1}: \overline{G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)} \rightarrow \overline{G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}}$ 70
$4 \quad \theta_{1 *}^{-1} \circ T_{*} \circ L$ 71
$5 \quad \zeta_{1 *}: \pi_{1}\left(G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)\right) \rightarrow \pi_{1}(G(\mathfrak{s} . \mathcal{P} R))$ 72
$6 \quad \zeta_{1 *} \circ \theta_{1 *}^{-1} \circ T_{*} \circ L$ 72
7 Computing $G I_{*}^{-1}$ 73
8 Computing $G H_{*}$ 75
9 Computing $\xi:(P, \alpha) \mapsto[x(\alpha)]$ Correctly 76
10 Computing $\hat{\xi}$ 77
5 Working in $G(\mathfrak{s} . \mathcal{P} R)$ 81
1 Introduction 81
2 Homotopy in $G(\mathfrak{s} . \mathcal{P} R)$ 81
$2.1 \mathfrak{i}_{P}$ 81
2.2 Filtrations: The elements $X_{m}(F(P, \alpha))$ 88
2.3 Refinements of Admissible Filtrations 91
2.4 Standard Filtrations 97
3 Homotopy Fibers 101
3.1 Definitions 101
4 Steinberg Relations in $\pi_{1}\left(Y_{N}(R)\right)$ 105
4.1 Stability of $Y_{N} \xlongequal{\subsetneq} \mathfrak{I}_{N} \xrightarrow{p_{N}} G(\mathfrak{s} . \mathcal{P} R)$ 105
4.2 Filtration-Independent Elements of $\pi_{1}\left(Y_{N}\right)$ 114
4.3 The Steinberg Relations 120
6 Connecting $K_{2}(R)$ to $\pi_{2}(G(N(Q \mathcal{P} R)))$ 127
1 Connecting the Exact Sequences 127

Chapter 1

Simplicial Homotopy Theory

This chapter is an exposition of simplicial homotopy theory, relying mostly (and heavily) on [2] with some ideas and proofs from [9],[17] and [18], which are also used and expounded upon in [11]. Examples come from [2], [9], [3] and [11].

1 Simplicial Sets

1.1 Combinatorics and Extension Condition[2]

Definition 1.1.1 A Simplicial Set is a sequence of sets $\left\{X_{n}\right\}_{n \in \mathbb{Z}, n \geq 0}$ together with two types of maps face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ and degeneracy maps $s_{i}: X_{n} \rightarrow X_{n+1}$ for each $i \in\{0,1, \ldots, n\}-$ which satisfy the following relations with respect to composition:
i) If $i<j$ then $d_{i} d_{j}=d_{j-1} d_{i}$.
ii) If $i<j$ then $s_{j} s_{i}=s_{i} s_{j-1}$.
iii) $d_{i} s_{j}=\left\{\begin{array}{lc}s_{j-1} d_{i}, & i<j \\ i d_{X_{n}}, & i=j \text { or } i=j+1 \\ s_{j} d_{i-1}, & i>j+1 .\end{array}\right.$

A simplicial set is often referred to as a Complex. The elements of X_{n} are called n-simplices, or the elements in X of dimension n. The index of a face map or of a degeneracy map is the degree of that map. We omit parentheses and write the images of these maps as simply $d_{i} x$ and $s_{j} x$ for $x \in X_{n}, 0 \leq i, j \leq n$.

Definition 1.1.2 Given simplicial sets X, L, a simplicial map, or map of simplicial sets, $f: X \rightarrow L$, is a collection of functions $f_{n}: X_{n} \rightarrow L_{n}, n \in \mathbb{N}$ such that $d_{i} \circ f_{n}=f_{n-1} \circ d_{i}$ and $s_{i} \circ f_{n}=f_{n+1} \circ s_{i}$, $\forall 0 \leq i \leq n$.

Definition 1.1.3 Given a complex X, a subcomplex L of X is a sequence of subsets $\left\{L_{n} \subseteq X_{n}\right\}_{n \in \mathbb{Z}, n \geq 0}$ for which the face maps and degeneracy maps of X have $\left.d_{i}\right|_{L_{n}}: L_{n} \rightarrow L_{n-1}$ and $\left.s_{j}\right|_{L_{n}}: L_{n} \rightarrow L_{n+1}$ $\forall 0 \leq i, j \leq n$ for each $n \in \mathbb{N}$.

The sets L_{n} establish $L=\left\{L_{n}\right\}$ as a simplicial set in its own right, with (restrictions of) the same face maps and degeneracy maps as defined for X.

Definition 1.1.4 If $X^{\prime} \subseteq X$ and $L^{\prime} \subseteq L$ are subcomplexes of Complexes X and L respectively, a simplicial map of pairs $f:\left(X, X^{\prime}\right) \rightarrow\left(L, L^{\prime}\right)$ is a simplicial map $f: X \rightarrow L$ for which $\left.f\right|_{X^{\prime}}: X^{\prime} \rightarrow L^{\prime}$.

It is easy to see that simplicial sets together with simplicial maps form a category:

Definition 1.1.5 $\mathcal{S S}$ is the category whose objects are simplicial sets and whose morphisms are simplicial maps.

Definition 1.1.6 Given a simplicial set X, a compatible list in X is a list of $n+1 n$-simplices,

$$
C_{(n, k)}=\left(x_{0}, x_{1}, \ldots, \hat{x}_{k}, \ldots, x_{n+1}\right)
$$

(with $n>0)$ such that $d_{i} x_{j}=d_{j-1} x_{i}$ whenever $i<j, i \neq k, j \neq k$.

Here \hat{x}_{k} indicates that x_{k} is omitted from the ordered list.

Definition 1.1.7 Given a compatible list $C_{(n, k)}$ in a Complex X as above, an extender for $C_{(n, k)}$ is an $(n+1)$-simplex y for which $d_{i} y=x_{i}$ whenever $i \neq k$.

Notice that the image of a compatible list under a simplicial map will also be a compatible list. A simplicial set in which every compatible list has an extender satisfies the Extension Condition; such a simplicial set is known as a Kan Complex.

Example 1.1.8 $X=\Delta^{m}[2]$: Given $n \in \mathbb{Z}_{\geq 0}$, define $\boldsymbol{n}=(0 \leq 1 \leq \cdots \leq n)$ as an ordered set. Let

$$
\Delta_{n}^{m}=\{c:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\} \mid c(i) \leq c(j) \forall i \leq j\}
$$

(Another notation for this is $\Delta_{n}^{m} \doteq \operatorname{Hom}_{\Delta}(\boldsymbol{n}, \boldsymbol{m})$.) Define $s^{j} \in \Delta_{n+1}^{n}$ by

$$
s^{j}(k)=\left\{\begin{array}{cc}
k, & k \leq j \\
k-1, & k>j
\end{array}\right.
$$

and $d^{i} \in \Delta_{n-1}^{n}$ by

$$
d^{i}(k)=\left\{\begin{array}{cc}
k, & k<i \\
k+1, & k \geq i
\end{array}\right.
$$

for $0 \leq i, j \leq n$. If we fix $m \in \mathbb{Z}_{\geq 0}$ and define face maps and degeneracy maps respectively by $d_{i} c=c \circ d^{i}$ and $s_{j} c=c \circ s^{j}$ for any $c \in \Delta_{n}^{m}$, then $\Delta^{m}=\left\{\left(\Delta_{n}^{m} ;\left\{d_{i}\right\} ;\left\{s_{j}\right\}\right)\right\}$ is a simplicial set, called the Standard Simplicial m-simplex. We call the d^{i} and s^{j} coface maps and codegeneracy maps, respectively.

The following Lemma provides a way to uniquely "factor" elements of Δ^{m} :

Lemma 1.1.9 If $c \in \Delta_{n}^{m}, c \neq i d_{n}$ has image

$$
\boldsymbol{m}-\left\{i_{u}<i_{u-1}<\cdots<i_{1}\right\}
$$

and

$$
\{j \mid c(j)=c(j+1)\}=\left\{j_{1}<j_{2}<\cdots<j_{v}\right\},
$$

then $n-v+u=m$ and $c=d^{i_{1}} \circ d^{i_{2}} \circ \cdots d^{i_{u}} \circ s^{j_{1}} \circ s^{j_{2}} \circ \cdots \circ s^{j_{v}}$. Moreover, this factorization is unique when "reduced" using rules (i)-(iii) of Definition 1.1.1.

1.2 Categorical Description of Simplicial Sets[2, 17, 18]

An alternative construction of simplicial sets begins with the category $\Delta^{o p}$, which is the opposite category of the category Δ. The objects of Δ are the ordered sets \mathbf{n} as seen in Example 1.1.8, and the morphisms are the maps $c: \mathbf{n} \rightarrow \mathbf{m}$ as discussed in that same example. The definition of $\Delta^{o p}$ then requires that the objects be the same as those of Δ, and that the morphisms be $\operatorname{Hom}_{o p}(\mathbf{m}, \mathbf{n})=\Delta_{n}^{m}$ (i.e. maps over \mathbf{n} as opposed to maps into \mathbf{n}).

Definition 1.2.1 A (category-theoretic) simplicial set is a (covariant) functor $X: \Delta^{o p} \rightarrow \mathcal{S}$, where \mathcal{S} is the category of sets.

Now, given a simplicial set X (by the original definition), identify $X_{n}:=X(\mathbf{n})$ for every $n \in \mathbb{Z}_{\geq 0}$ and $d_{i}:=X\left(d^{i}\right), s_{j}:=X\left(s^{j}\right), 0 \leq i, j \leq n$ for coface maps d^{i} and codegeneracy maps s^{j}. More generally, to every
$\mu \in \operatorname{Hom}_{\Delta}(\mathbf{n}, \mathbf{m})=\Delta_{n}^{m}$ represented according to Lemma 1.1.9 by

$$
\mu=d^{i_{1}} \circ d^{i_{2}} \circ \cdots d^{i_{u}} \circ s^{j_{1}} \circ s^{j_{2}} \circ \cdots \circ s^{j_{v}},
$$

there corresponds a map $\mu^{*}=X(\mu): X_{m} \rightarrow X_{n}$ uniquely defined by

$$
\mu^{*}(x)=s_{j_{v}} s_{j_{v-1}} \cdots s_{j_{1}} d_{i_{u}} d_{i_{u-1}} \cdots d_{i_{1}} x .
$$

From here on, we will use both definitions of a simplicial set interchangeably to perform various calculations, depending on which provides the most advantage. This chapter shall rely mostly on the combinatorial description.

The combinatorial data for a simplicial map $f: X \rightarrow L$ is a collection of maps, one defined for each dimension n, but by Definition 1.2.1 the simplicial set is itself a set map sending objects $\mathbf{n} \in \Delta^{o p}$ to sets $X_{n} \in \mathcal{S}$. So the simplicial map assigns to each \mathbf{n} a map (i.e. morphism of sets) $f(\mathbf{n})=f_{n}: X(\mathbf{n}) \rightarrow L(\mathbf{n})$. Furthermore, with this assignment we see that the required degree-preserving behavior toward face maps and degeneracy maps(Definition 1.1.2) implies

$$
f(\mathbf{n}-\mathbf{1}) \circ X\left(d^{i}\right)=L\left(d^{i}\right) \circ f(\mathbf{n})
$$

and

$$
f(\mathbf{n}+\mathbf{1}) \circ X\left(s^{j}\right)=L\left(s^{j}\right) \circ f(\mathbf{n})
$$

for each $0 \leq i, j \leq n$. Since any morphism α in $\Delta^{o p}$ can be written as a unique combination of coface maps and codegeneracy maps (Lemma 1.1.9) and X and L must be covariant functors, it follows that

$$
f(\mathbf{m}) \circ X(\alpha)=L(\alpha) \circ f(\mathbf{n}) \forall \alpha \in \operatorname{Hom}_{o p}(\mathbf{n}, \mathbf{m}),
$$

in which case a simplicial map $f: X \rightarrow L$ is a natural transformation $[2,9]$ from the functor X to the functor L.

Given a simplicial set X and a fixed $\phi_{0} \in X_{0}$, define the one-point simplicial set

$$
\Phi=\left\{\phi_{n}=s_{n-1} \circ s_{n-2} \circ \cdots \circ s_{0} \phi_{0}, n \in \mathbb{N}\right\}
$$

(i.e. Φ contains only one simplex in each dimension). Then Φ is a subcomplex of X. The pair (X, Φ) is called a Pointed Complex with basepoint Φ, and use of this definition motivates us to define the elements of
X_{0} as the vertices of the simplicial set X. When X is a Kan Complex, (X, Φ) is called a Kan Pair. When $X^{\prime} \subseteq X$ is a Kan subcomplex (and X is a Kan Complex) for which $\Phi \subseteq X^{\prime}$ as a subcomplex, we call the data $\left(X, X^{\prime}, \Phi\right)$ a Kan Triple.

Definition 1.2.2 Given any subset $S \subseteq X_{m}, m \in \mathbb{N}$, the subcomplex generated by S is the simplicial set $X(S)$ with n-simplices

$$
X(S)_{n}=\left\{\mu^{*}(s) \mid s \in S, \mu *: X_{m} \rightarrow X_{n}\right\}
$$

Definition 1.2 .2 can be easily extended to general subsets of the simplicial set X (i.e. $S=S_{0} \cup S_{1} \cup \cdots \cup S_{m}$, $\left.S_{i} \subset X_{i}\right)$. Also, note that $\Phi=X\left(\phi_{0}\right)$.

Definition 1.2.3 $\mathcal{S S}_{*}$ is the category whose objects are Pointed Complexes $\left(X, \Phi_{X}\right)$ and whose morphisms are simplicial maps of pairs $f:\left(X, \Phi_{X}\right) \rightarrow\left(Y, \Phi_{Y}\right)$ for appropriate basepoints Φ_{X}, Φ_{Y}.

Definition 1.2.4 A simplicial set X is reduced if it has only one vertex: $X_{0}=\left\{\phi_{0}\right\}$.

1.3 Homotopy in Kan Complexes

Definition 1.3.1 Let X be a simplicial set. For $n \geq 1, n$-simplices x and y are homotopic (in the simplicial set), denoted $x \sim y$, if $\forall 0 \leq i \leq n, d_{i} x=d_{i} y \in X_{n-1}$ and for some $(n+1)$-simplex z,

$$
d_{i} z=\left\{\begin{array}{cc}
y, & i=n+1, \\
x, & i=n \\
& \\
s_{n-1} d_{i} x=s_{n-1} d_{i} y, & 0 \leq i \leq n-1
\end{array}\right.
$$

Such z is a homotopy (in the simplicial set) from x to y.

Theorem 1.3.2 ([2], Proposition 3.2) If X is a Kan Complex then the relation $x \sim y$ for $x, y \in X_{n}$ is an equivalence relation on X_{n} for any given $n \in \mathbb{N}$.

The purpose of many of the constructions we perform is to ensure that the simplicial set we are working with is a Kan Complex, and so has the equivalence relation (and hence equivalence classes) given by homotopy.

The relation above only applies when $n \geq 1$. We have the following relation on the 0 -simplices X_{0} of a simplicial set X :

Definition 1.3.3 In a simplicial set X, two 0 -simplices $x, y \in X_{0}$ are in the same path component of X if there is a list of 1-simplices $D_{k}=\left(z_{1}, \ldots z_{k}\right) \subset X_{1}$ so that $x=d_{0} z_{1}$ or $x=d_{1} z_{1}, y=d_{0} z_{k}$ or $y=d_{1} z_{k}$, and for each $1 \leq i<k$, one of the following is true: $d_{0} z_{i}=d_{0} z_{i+1}, d_{1} z_{i}=d_{0} z_{i+1}, d_{0} z_{i}=d_{1} z_{i+1}$ or $d_{1} z_{i}=d_{1} z_{i+1}$.

We consider the above definition to be synonymous with homotopy for 0 -simplices: given $x, y \in X_{0}$, $x \sim y$ if and only if x and y are in the same path component of X. This is clearly an equivalence relation on X_{0}.

Definition 1.3.4 Given a Pointed Complex (X, Φ), define

$$
\widetilde{X}_{n}:=\left\{x \in X_{n} \mid d_{i} x=\phi_{n-1} \forall 0 \leq i \leq n\right\}
$$

for $n>0$. In case $n=0$ define $\widetilde{X}_{0}=X_{0}$.

Note that the equivalence relation on X_{n} restricts to an equivalence relation on \widetilde{X}_{n} for each n when X is a Kan Complex.

Definition 1.3.5 When (X, Φ) is a Kan Pair with homotopy $x \sim y$ between n-simplices as an equivalence relation, define $\pi_{n}(X, \Phi)=\widetilde{X}_{n} / \sim$, for $n>0$, with elements $[x]$. When $n=0$ use Definition 1.3.3 and set $\pi_{0}(X, \Phi)=\widetilde{X}_{0} / \sim$.

Note that by definition, $\pi_{0}(X):=\pi_{0}(X, \Phi)$ is independent of the choice of 0 -simplex ϕ_{0}. Some constructions later will be made for the purpose of producing a reduced Kan Complex, so that these homotopy sets for $n>0$ are unambiguous in terms of the choice of Φ, and can be denoted as simply $\pi_{n}(X)$.

Definition 1.3.6 Let $(X, \Phi) \in \mathcal{S S}_{*}$ be a Kan Pair. Given $n>0,[x],[y] \in \pi_{n}(X, \Phi)$, define the specific, compatible list $C_{x y}=C_{(n, n)}=\left(x_{i}\right)_{i \neq n}$ where

$$
x_{i}=\left\{\begin{array}{cc}
\phi_{n}, & 0 \leq i \leq n-2, \\
x, & i=n-1, \\
y, & i=n+1
\end{array}\right.
$$

(i.e. $k=n$ in the usual compatible list notation). Then

$$
[x] \bullet[y]=\left[d_{n} z\right]
$$

where $z \in X_{n+1}$ is an Extender of $C_{x y}$.

One can show that the above multiplication • above is well-defined, and we have
Theorem 1.3.7 [2]Let $(X, \Phi) \in \mathcal{S S}_{*}$ be a Kan Pair. With respect to the multiplication • defined above, $\pi_{n}(X, \Phi)$ is a group if $n \geq 1$. Moreover, if $n \geq 2, \pi_{n}(X, \Phi)$ is an abelian group.

When Theorem 1.3.7 holds, we call $\pi_{n}(X, \Phi)$ the $n^{\text {th }}$ simplicial homotopy group of X (with respect to $\Phi)$. We have $\pi_{0}(X, \Phi)$ as a pointed set, with basepoint the class of ϕ_{0}, but this is not necessarily a group.

Definition 1.3.8 If $f:\left(X, \Phi_{X}\right) \rightarrow\left(L, \Phi_{L}\right)$ is a simplicial map of Kan Pairs, then an induced map $f_{*}: \pi_{n}\left(X, \Phi_{X}\right) \rightarrow \pi_{n}\left(Y, \Phi_{Y}\right)$ is defined by $f_{*}([x])=\left[f_{n}(x)\right]$.

It is straightforward to see that
Lemma 1.3.9 If $f:\left(X, \Phi_{X}\right) \rightarrow\left(L, \Phi_{L}\right)$ is a simplicial map of Kan Pairs, then the induced map f_{*} : $\pi_{n}\left(X, \Phi_{X}\right) \rightarrow \pi_{n}\left(Y, \Phi_{Y}\right)$ is a homomorphism of groups, if $n \geq 1$, and is a map of pointed sets if $n=0$.

We will construct a long exact sequence of homotopy groups; in order to do this, we will need a more general theory on homotopy.

Definition 1.3.10 Given $X \in \mathcal{S S}$ with a subcomplex $X^{\prime} \subseteq X$ and $n \geq 1$, two n-simplices $x, y \in X_{n}$ have $x \sim y\left(\right.$ rel $\left.X^{\prime}\right)$ (i.e. x and y are homotopic relative to X^{\prime}) if

1) $d_{0} x \sim d_{0} y$ as elements in X_{n-1}^{\prime}.
2) $\forall 1 \leq i \leq n, d_{i} x=d_{i} y$.
3) There is some homotopy in the simplicial set, $w \in X_{n}^{\prime}$, between $d_{0} x$ and $d_{0} y$ and there is an $(n+1)$ simplex $z \in X_{n+1}$ such that

$$
d_{i} z=\left\{\begin{array}{cc}
y, & i=n+1, \\
x, & i=n, \\
s_{n-1} d_{i} x=s_{n-1} d_{i} y, & 1 \leq i \leq n-1, \\
w, & i=0
\end{array}\right.
$$

(such $a z$ is a relative homotopy (in the simplicial set) from x to y).

Definition 1.3.11 Given a Kan Triple $\left(X, X^{\prime}, \Phi\right)$, and $n \geq 1$,

$$
\widetilde{X}\left(X^{\prime}\right)_{n}=\left\{x \in X_{n}: d_{0} x \in X_{n-1}^{\prime}, d_{i} x=\phi_{n-1} \forall 1 \leq i \leq n\right\}
$$

Definition 1.3.12 Relative Homotopy Groups as Sets: Given Kan Triple $\left(X, X^{\prime}, \Phi\right)$ and $n \geq 1$,

$$
\pi_{n}\left(X, X^{\prime}, \Phi\right)=\widetilde{X}\left(X^{\prime}\right)_{n} / \sim_{X^{\prime}},
$$

with elements $[x]_{X^{\prime}}$.
Similar to Definition 1.3.8, given a simplicial map $f:\left(X, X^{\prime}, \Phi_{X}\right) \rightarrow\left(L, L^{\prime}, \Phi_{L}\right)$ between Kan Triples, define the induced $\operatorname{map} f_{*}: \pi_{n}\left(X, X^{\prime}, \Phi_{X}\right) \rightarrow \pi_{n}\left(L, L^{\prime}, \Phi_{L}\right)$ by $f_{*}\left([x]_{X^{\prime}}\right)=[f(x)]_{L^{\prime}}$

In light of Definitions 1.3 .11 and the rules of Definition 1.1.1, notice that $x \in \widetilde{X}\left(X^{\prime}\right)_{n}$ implies

$$
d_{i} d_{0} x=d_{0} d_{i+1} x=\phi_{n-2}
$$

$\forall 0 \leq i \leq n-1$, so that (since $\left.d_{0} x \in X_{n-1}^{\prime}\right) d_{0} x \in \widetilde{X}^{\prime}{ }_{n-1}$. Thus for $x, y \in \widetilde{X}\left(X^{\prime}\right)_{n}$ we have

$$
\left[d_{0} x\right] \bullet\left[d_{0} y\right]=\left[d_{n-1} u\right] \in \pi_{n-1}\left(X^{\prime}, \Phi\right)
$$

for some $u \in X_{n}^{\prime}$ that extends the compatible list $C_{d_{0}(x) d_{0} y} \subseteq X_{n-1}^{\prime}$. This in turn gives a compatible list

$$
C_{x y}^{\prime}=C_{(n, n)}=\left(x_{i}\right)_{i \neq n},
$$

where

$$
x_{i}=\left\{\begin{array}{cc}
u, & i=0, \\
\phi_{n}, & 1 \leq i \leq n-2, \\
x, & i=n-1, \\
y, & i=n+1 .
\end{array}\right.
$$

Since X^{\prime} is a Kan subcomplex by definition, there is an extender $v \in X_{n+1}^{\prime}$ for $C_{x y}^{\prime}$. The result is a group product on $\pi_{n}\left(X, X^{\prime}, \Phi\right)$ similar to Definition 1.3.6:

Definition 1.3.13 Given Kan Triple $\left(X, X^{\prime}, \Phi\right), n \geq 2$ and corresponding set $\widetilde{X}\left(X^{\prime}\right)_{n}$, define $[x]_{X^{\prime}} \bullet X^{\prime}$ $[y]_{X^{\prime}}=\left[d_{n} v\right]_{X^{\prime}}$ where $v \in X_{n+1}^{\prime}$ extends the compatible set $C_{x y}^{\prime}$ described above.

Remark 1.3.14 It is easy to see that $\pi_{n}(X, \Phi, \Phi)=\pi_{n}(X, \Phi)$ when $n \geq 1$.

Similar to Theorem 1.3.7 and Lemma 1.3.9, we have

Theorem 1.3.15 Given a Kan Triple $\left(X, X^{\prime}, \Phi\right)$ and $n \geq 2, \pi_{n}\left(X, X^{\prime}, \Phi\right)$ is a group with respect to the multiplication \bullet, and is an abelian group if $n \geq 3$. If $f:\left(X, X^{\prime}, \Phi_{X}\right) \rightarrow\left(Y, Y^{\prime}, \Phi_{Y}\right)$ is a map of Kan Triples, then the induced map $f_{*}: \pi_{n}\left(X, X^{\prime}, \Phi\right) \rightarrow \pi_{n}\left(Y, Y^{\prime}, \Phi\right)$ is a homomorphism of groups.

Note that while $\pi_{1}\left(X, X^{\prime}, \Phi\right)$ is not necessarily a group, it is a pointed set.
We may now write down the "long exact sequence for a Kan Triple"; first of course we define the connecting homomorphism.

Definition 1.3.16 Define

$$
d: \pi_{n}\left(X, X^{\prime}, \Phi\right) \rightarrow \pi_{n-1}\left(X^{\prime}, \Phi\right)
$$

$b y[x]_{X^{\prime}} \mapsto\left[d_{0} x\right]$, which is a connecting homomorphism for $n \geq 2$ and a (connecting) set map when $n=1$.

Theorem 1.3.17 ([2], Theorem 3.7) Let $\left(X, X^{\prime}, \Phi\right)$ be a Kan Triple, with inclusion (simplicial) maps

$$
i:\left(X^{\prime}, \Phi\right) \rightarrow(X, \Phi) \text { and } j:(X, \Phi, \Phi) \rightarrow\left(X, X^{\prime}, \Phi\right)
$$

(see Remark 1.3.14). Then there exists a long exact sequence of Homotopy Groups,

$$
\cdots \longrightarrow \pi_{n+1}\left(X, X^{\prime}, \Phi\right) \xrightarrow{d} \pi_{n}\left(X^{\prime}, \Phi\right) \xrightarrow{i_{*}} \pi_{n}(X, \Phi) \xrightarrow{j_{*}} \pi_{n}\left(X, X^{\prime}, \Phi\right) \longrightarrow \cdots
$$

Remark 1.3.18 The maps at the end of this long exact sequence are not necessarily group homomorphism, but are maps of pointed sets, and "exact" here means exact as a sequence of pointed sets.

1.4 Dimension-wise Map Homotopy

Definition 1.4.1 Let X and L be simplicial sets. Simplicial maps $f, g: X \rightarrow L$ are homotopic via a dimension-wise homotopy $h: f \simeq g$ if given $n \in \mathbb{Z}_{\geq 0}$ there is a sequence of maps

$$
\left\{h_{i}^{(n)}: X_{n} \rightarrow L_{n+1} \mid 0 \leq i \leq n\right\}
$$

for which the following relations hold with respect to composition for any $x \in X_{n}$:
i) $d_{0} h_{0}^{(n)}(x)=f_{n}(x)$ and $d_{n+1} h_{n}^{(n)}(x)=g_{n}(x)$.
ii) $d_{i} h_{j}^{(n)}(x)=\left\{\begin{array}{cc}h_{j-1}^{(n-1)} d_{i}(x), & i<j \\ d_{j+1} h_{j+1}^{(n)}(x)=d_{j+1} h_{j}^{(n)}(x), & i=j \text { or } i=j+1 \\ h_{j}^{(n-1)} d_{i-1}(x), & i>j+1 .\end{array}\right.$
iii) $s_{i} h_{j}^{(n)}(x)=\left\{\begin{array}{cc}h_{j+1}^{(n+1)} s_{i}(x), & i \leq j \\ h_{j}^{(n+1)} s_{i-1}(x), & i>j .\end{array}\right.$

If $f, g:\left(X, X^{\prime}\right) \rightarrow\left(L, L^{\prime}\right)$ are simplicial maps of Pairs and as a homotopy of simplicial maps the homotopy $h: f \simeq g$ has $\left.h\right|_{X^{\prime}}: X^{\prime} \rightarrow L^{\prime}$ and $\left.h\right|_{X^{\prime}}:\left.\left.f\right|_{X^{\prime}} \simeq g\right|_{X^{\prime}}$, we say that f and g are homotopic relative to X^{\prime} via relative homotopy $h: f \simeq g \operatorname{rel}\left(X^{\prime}\right)$. In case $X^{\prime}=\Phi_{X} \subseteq X$ and $L^{\prime}=\Phi_{L} \subset L$ for appropriate one-point simplicial sets, we say f and g are homotopic relative to the basepoint Φ.

Theorem 1.4.2 Let $\left(X, \Phi_{X}\right),\left(L, \Phi_{L}\right) \in \mathcal{S} \mathcal{S}_{*}$ be Kan Pairs. If $f, g:\left(X, \Phi_{X}\right) \rightarrow\left(L, \Phi_{L}\right)$ are simplicial maps of Pairs with $f \simeq g \operatorname{rel}\left(\Phi_{X}\right)$, then for each $n \in \mathbb{N}, f_{*}([x])=g_{*}([x]) \forall[x] \in \pi_{n}\left(X, \Phi_{X}\right)$.

Definition 1.4.3 Simplicial Sets X and L are of the same homotopy type or are homotopy equivalent if there are simplicial maps $f: X \rightarrow L$ and $f^{\prime}: L \rightarrow X$ for which $f \circ f^{\prime} \simeq i d_{L}$ and $f^{\prime} \circ f \simeq i d_{X}$. Such f and f^{\prime} are then called homotopy equivalences[17]. X is of the homotopy type of a point if and only if it is contractible.

As a consequence of Theorem 1.4.2, we note that if K and L are of the same homotopy type, then $\pi_{n}(K, \Phi)$ is isomorphic to $\pi_{n}(L, f(\Phi)) \forall n \geq 0$ given homotopy equivalence f between them.

2 Simplicial Groups

2.1 Definition ([2], Chapter 17)

Definition 2.1.1 A simplicial group is a simplicial set $G=\left\{\left(G_{n} ;\left\{d_{i}\right\} ;\left\{s_{i}\right\}\right)\right\}$ for which each G_{n} is a group and each of the corresponding collections $\left\{d_{i}\right\}$ and $\left\{s_{i}\right\}$ consists of group homomorphisms. Denote the identity element of each such group by e_{n}. A map of simplicial groups is a simplicial map between simplicial groups whose dimension-wise maps are group homomorphisms.

The category-theoretic version of this definition is that a simplicial group is a (covariant) functor G : $\Delta^{o p} \rightarrow \mathscr{G}$ where $\mathscr{G} \subset \mathcal{S}$ is the (sub)category of groups.

Theorem 2.1.2 ([2], Theorem 17.1) Every Simplicial Group is a Kan Complex.

Corollary 2.1.3 Suppose G is a simplicial group. Let e be the one-point simplicial set consisting of identity elements $e_{n} \in G_{n}$. Then the homotopy groups $\pi_{n}(G, e)$ exist for each $n>0$.

Recall that when G is a simplicial group, $[x] \bullet[y]$ denotes the group operation in $\pi_{n}(G, e)$ (well-defined since G is a Kan Complex from Theorem 2.1.2), and let concatenation $x y$ denote the group operation in each group G_{n} from here on.

Proposition 2.1.4 ([2], Proposition 17.2) If G is a Simplicial Group then

$$
[x] \bullet[y]=[x y] \in \pi_{n}(G, e) \forall x, y \in \widetilde{G}_{n} .
$$

Consequently, $[x]^{-1}=\left[x^{-1}\right] \in \pi_{n}(G, e)$ and $[e]$ is the identity of the group $\pi_{n}(G, e)$.

As a corollary we have a stronger property than what we already have in Theorem 1.3.7

Proposition 2.1.5 ([2],Proposition 17.3) If G is a simplicial group then $\pi_{n}(G, e)$ is abelian $\forall n>0$.

2.2 Chain Complex Construction

Definition 2.2.1 Given simplicial group G, define $\bar{G}_{n}=G_{n} \cap \operatorname{ker}\left(d_{0}\right) \cap \operatorname{ker}\left(d_{1}\right) \cap \cdots \cap \operatorname{ker}\left(d_{n-1}\right)$ and $\widetilde{G}_{n}=G_{n} \cap \operatorname{ker}\left(d_{1}\right) \cap \operatorname{ker}\left(d_{2}\right) \cap \cdots \cap \operatorname{ker}\left(d_{n}\right)$ for each $n \in \mathbb{N}$.

Lemma 2.2.2 ([2], Proposition 17.3.iii) If G is a simplicial group with \bar{G}_{n} as defined above, then

$$
d_{n+1}\left(\bar{G}_{n+1}\right) \triangleleft \bar{G}_{n} \text { and } d_{n+1}\left(\bar{G}_{n+1}\right) \triangleleft G_{n}
$$

The above lemma allows definition of a Chain Complex [19], \bar{G}, by

$$
\ldots \xrightarrow{d_{n+2}} \bar{G}_{n+1} \xrightarrow{d_{n+1}} \bar{G}_{n} \xrightarrow{d_{n}} \bar{G}_{n-1} \xrightarrow{d_{n-1}} \cdots .
$$

We denote the restriction $\left.d_{i}\right|_{\bar{G}}=\bar{d}_{i}$. Now we can define n-cycles $Z_{n}(\bar{G})=\operatorname{ker}\left(\bar{d}_{n}\right) \leq \bar{G}_{n}, n$-boundaries $B_{n}:=B_{n}(\bar{G})=i m\left(\bar{d}_{n+1}\right)$, and we define

$$
\pi_{n}^{\prime}(G):=Z_{n}(\bar{G}) / B_{n}(\bar{G}) .
$$

This allows an alternative to the canonical construction for the homotopy group given in Definition 1.3.6 using these Chain Complexes rather than the sometimes-cumbersome homotopy of Definition 1.3.1:

Proposition 2.2.3 ([2], Proposition 17.4) $\pi_{n}(G) \approx \pi_{n}^{\prime}(G) \forall n \geq 0$ by the natural identification $[x] \mapsto[x]$.

Now we see that when X happens to be a simplicial group we are able to use the group operation inherited from the bijection between $\pi_{0}(X, \Phi)$ and $\pi_{0}^{\prime}(X)$ to define $\pi_{0}(X, \Phi)$ as a group in a natural way.

3 Kan Fibrations([2], Ch. 7 and Ch.18)

3.1 Definition

Definition 3.1.1 Let X, L be simplicial sets, $f: X \rightarrow L$ a simplicial map, and

$$
C_{(n, k)}=\left(x_{0}, \ldots, \hat{x}_{k}, \ldots, x_{n+1}\right)
$$

be a compatible list in X. Suppose that f has the property that some preimage x of y (i.e. some x with $f(x)=$ $y)$ is an extender for $C_{(n, k)}$ whenever y extends the corresponding compatible set $f\left(C_{(n, k)}\right)=\left(f\left(x_{q}\right)\right)_{q \neq k} \subseteq L$. Then f satisfies the Image-Extension Condition on $C_{(n, k)}$.

A simplicial map f satisfying the Image-Extension Condition on every "extensible," compatible list in its domain is known as a Kan Fibration, or a fibration of simplicial sets; in this case, X is the total complex, L is the base complex and the collection of data (X, f, L) is the fiber space defined by the Kan fibration f. Notice that this structure requires neither X nor L to be Kan Complexes, but only for any "extensible" sets that exist within these simplicial sets to satisfy the Image-Extension Condition.

Lemma 3.1.2 Given a simplicial set X and any one-point simplicial set $\Phi \subseteq X, X$ is a Kan Complex if and only if the unique simplicial map $p: X \rightarrow \Phi$ is a Kan fibration.

Proof: Since $\Phi_{n}=\left\{\phi_{n}=s_{n-1} s_{n-2} \cdots s_{1} s_{0} \phi_{0}\right\}$ for given $\phi_{0} \in X_{0}$, any simplicial map $p: X \rightarrow \Phi$ must have $x \mapsto \phi_{n}$ for every $x \in X_{n}$. So p is uniquely defined by $p_{n}(x)=\phi_{n} \forall x \in X_{n}$.

Suppose X is a Kan Complex and let $C_{(n, k)}=\left(x_{0}, \ldots, \hat{x}_{k}, \ldots, x_{n+1}\right)$, be a compatible list in X_{n}. Since X is a Kan Complex, there is an extender $x \in X_{n+1}$ for $C_{(n, k)}$. But $p(x)=\phi_{n+1}$ and $p\left(C_{(n, k)}\right)=\left(\phi_{n}, \ldots, \phi_{n}\right)$, by definition, so that $p(x)$ extends $p\left(C_{(n, k)}\right)$. Therefore the preimage, x, of the extender ϕ_{n+1} of $p\left(C_{(n, k)}\right)$ extends $C_{(n, k)}$. Such ϕ_{n+1} is the only possible extender of $p\left(C_{(n, k)}\right)$ by definition of the one-point simplicial set Φ, so every extender of $p\left(C_{(n, k)}\right)$ has a preimage that extends $C_{(n, k)}$. Therefore p is a Kan fibration.

Conversely, if the simplicial map $p: X \rightarrow \Phi$ by $p(x)=\phi_{n}$ for every $x \in X_{n}$ is a Kan fibration, then consider the compatible list $C_{(n, k)}$ once more. By definition we have $p\left(C_{(n, k)}\right)=\left(\phi_{n}, \ldots, \phi_{n}\right) \subseteq \Phi_{n}$. Since p is a Kan fibration, any extender of $p\left(C_{(n, k)}\right)$ has a preimage that extends $C_{(n, k)}$. But $\phi_{n+1} \in \Phi_{n+1}$ exists and extends $p\left(C_{(n, k)}\right)$. Therefore there must be an extender $x \in X_{n+1}$ for $C_{(n, k)}$ which has $p(x)=\phi_{n+1}$. Thus every compatible list in X has an extender, in which case X is a Kan Complex.

3.2 Long Exact Sequence of Kan Fibrations

Given simplicial map $f:\left(X, \Phi_{X}\right) \rightarrow\left(L, \Phi_{L}\right)$, set $F=f^{-1}\left(\Phi_{L}\right)$.

Proposition 3.2.1 ([2], Proposition 7.3) Let $\left(X, \Phi_{X}\right) \in \mathcal{S} \mathcal{S}_{*}$ be a Pointed Complex and (X, f, L) be a fiber space, with $\Phi_{L}=f\left(\Phi_{X}\right)$. Then $\left(F, \Phi_{X}\right)$ is a Kan Pair.

From now on, whenever we write a homotopy group $\pi_{n}\left(X, \Phi_{X}\right)$, we assume that $\left(X, \Phi_{X}\right)$ is a Kan Pair, and similarly for relative homotopy groups.

Consider the compatible list $C_{(n-1,0)}=\left(\phi_{n-1}^{(X)}, \phi_{n-1}^{(X)}, \ldots, \phi_{n-1}^{(X)}\right)$. Any given $y \in \widetilde{L}_{n}$ extends the list $f\left(C_{n-1,0}\right)=\left(\phi_{n-1}^{(L)}, \ldots, \phi_{n-1}^{(L)}\right)$, and if f is a Kan Fibration this implies $\exists x \in X_{n}$ with $d_{i} x=\phi_{n-1}^{(X)} \forall 1 \leq i \leq n$ (so that x extends $C_{(n-1,0)}$) and $f(x)=y$. But $d_{0} y=\phi_{n-1}^{(L)}$ since $y \in \widetilde{L}_{n}$ and since f is a simplicial map we have $d_{0} y=d_{0} f(x)=f\left(d_{0} x\right)=\phi_{n-1}$, so $d_{0} x \in F_{n-1}$. Now we have class $\left[d_{0} x\right] \in \pi_{n-1}\left(F, \Phi_{X}\right)$ and we can define a connecting homomorphism $d_{\sharp}: \pi_{n}\left(L, \Phi_{L}\right) \rightarrow \pi_{n-1}\left(F, \Phi_{X}\right)$ by $[y] \mapsto\left[d_{0} x\right]$.

Lemma 3.2.2 The induced map $f_{*}: \pi_{n}\left(X, F, \Phi_{X}\right) \rightarrow \pi_{n}\left(L, \Phi_{L}\right)$ is an isomorphism $\forall n \geq 2$.

Recall that $\pi_{n}\left(L, \Phi_{L}, \Phi_{L}\right)=\pi_{n}\left(L, \Phi_{L}\right)$ when $n \geq 2$. The inverse isomorphism to f_{*} is the map q defined by $q[y]=[x]$ for such x as used to define the connecting homomorphism d_{\sharp} above. We also notice that $d_{\sharp} f_{*}[x]=d_{\sharp}[y]=\left[d_{0} x\right]=d[x]$ for each $[x] \in \pi_{n}\left(X, F, \Phi_{X}\right), n \geq 2$ (using extender $y=f(x)$ for $f\left(C_{(n-1,0)}\right)$ in the construction above and Definition 1.3.16). It follows that the following diagram commutes:

In this diagram, exactness at $\pi_{n}\left(F, \Phi_{X}\right)$ via $i \circ d_{\sharp}$, exactness at $\pi_{n}\left(X, \Phi_{X}\right)$ via $f_{*} \circ i$, and exactness at $\pi_{n}\left(L, \Phi_{L}\right)$ via $d_{\sharp} \circ f_{*}$ all follow from the long exact sequence of Homotopy Groups on X (Theorem 1.3.17). The result is another exact sequence:

Definition 3.2.3 The sequence

$$
\cdots \longrightarrow \pi_{n+1}\left(L, \Phi_{L}\right) \xrightarrow{d_{\sharp}} \pi_{n}\left(F, \Phi_{X}\right) \xrightarrow{i} \pi_{n}\left(X, \Phi_{X}\right) \xrightarrow{f_{*}} \pi_{n}\left(L, \Phi_{L}\right) \longrightarrow \cdots
$$

is the long exact sequence of Kan Fibrations. For Kan fibration f the sequence $\left(F, \Phi_{X}\right) \subseteq\left(X, \Phi_{X}\right) \xrightarrow{f}$ $\left(L, \Phi_{L}\right)$ is called a fiber sequence.

3.3 Simplicial Group Action and Twisted Cartesian Products

Definition 3.3.1 Given simplicial sets X (with maps d_{i}^{X} and s_{j}^{X}) and L (with maps d_{i}^{L} and s_{j}^{L}), the Cartesian Product of X and L is the simplicial set $P=X \times L$ with n-simplices

$$
P_{n}:=X_{n} \times L_{n},
$$

face maps and degeneracy maps

$$
d_{i}:=d_{i}^{X} \times d_{i}^{L}
$$

and

$$
s_{j}:=s_{j}^{X} \times s_{j}^{L}
$$

respectively.

Definition 3.3.2 A simplicial group G acts (from the left) on a simplicial set X if each group G_{n} acts (from the left) on the corresponding set X_{n}, and these actions commute through face maps and degeneracy maps: $d_{i}(g x)=\left(d_{i} g\right)\left(d_{i} x\right)$ and $s_{j}(g x)=\left(s_{j} g\right)\left(s_{j} x\right)$.

Put another way, G acts on X if the map $\psi: G \times X \rightarrow X$ defined for each dimension n by $\psi_{n}\left(e_{n}, x\right)=$ $x \forall x \in X_{n}$ and $\psi_{n}\left(g_{1} g_{2}, x\right)=\psi_{n}\left(g_{1}, \psi_{n}\left(g_{2}, x\right)\right)$ (giving the group action) is actually a simplicial map on the Cartesian Product $G \times X$.

Let simplicial group G act on simplicial set F. Consider another simplicial set B and a map t, defined for each dimension $n>0$ by $t_{n}: B_{n+1} \rightarrow G_{n}$ having the following relationships with face maps and degeneracy maps $\left(b \in B_{n+1}\right)$:
a) $d_{n} t_{n}(b)=\left(t_{n-1}\left(d_{n+1} b\right)\right)^{-1} t_{n-1}\left(d_{n} b\right)$.
b) $d_{i} t_{n}(b)=t_{n-1}\left(d_{i} b\right) \forall 0 \leq i \leq n-1$.
c) $s_{j} t_{n}(b)=t_{n+1}\left(s_{j} b\right) \forall 0 \leq j \leq n$.
d) $t_{n+1}\left(s_{n+1} b\right)=e_{n+1}$.

We can define a simplicial set structure with n-simplices $F_{n} \times B_{n}$ by letting face maps be

$$
d_{i}(f, b)=\left\{\begin{array}{cc}
\left(d_{i} f, d_{i} b\right) & 0 \leq i<n, \\
\left(t_{n-1}(b) d_{n} f, d_{n} b\right) & i=n
\end{array}\right.
$$

and

$$
s_{j}(f, b)=\left(s_{j} f, s_{j} b\right) \forall 0 \leq j \leq n
$$

for degeneracy maps. This simplicial set is the Twisted Cartesian Product with fiber F, base B, twisting function t and group G, denoted $F \times_{t} B$.

Theorem 3.3.3 ([2], Proposition 18.4.i) The natural projection map $p: F \times_{t} B \rightarrow B$ is a Kan fibration with total space $F \times_{t} B$, fiber F and base B.

Definition 3.3.4 If G acts on X such that for every $n \in \mathbb{N}$ the only $g \in G_{n}$ for which any one $x \in X_{n}$ has $g x=x$ is $g=e_{n}$, then G acts principally on X. Thus if F in a Twisted Cartesian Product $F \times_{t} B$ is a simplicial group then we call $F \times_{t} B$ a Principal Twisted Cartesian Product.

When G acts principally on X we have equivalence classes $[x]=\left\{g x \mid g \in G_{n} \subseteq X_{n}\right\}$, which form a "quotient subcomplex," B, of X. The projection $p: X \rightarrow B$ by $x \mapsto[x]$ is the principal fibration of X with group G and base B.

Lemma 3.3.5 ([2], Lemma 18.2) Every principal fibration is a Kan fibration.

Theorem 3.3.6 ([2], Proposition 18.4.iii) If $F=G$ then the projection $p: F \times_{t} B \rightarrow B$ on the principal Twisted Cartesian Product is a principal fibration.

4 Loop $\operatorname{Groups}([17,18]$ and [2] Ch.18)

The canonical definition (Definitions 1.3.5 and 1.3.6) of the homotopy groups requires the simplicial set under consideration to be a Kan Complex. By virtue of Theorem 2.1.2, Proposition 2.1.4 and Proposition 2.2 .3 , simplicial groups are among the most convenient and transparent Kan Complexes to work with. Thus methods have been developed to construct a simplicial group from a simplicial set. An important result of Kan's $([17,18])$ is that the construction we describe in this section canonically describes the homotopy of a simplicial set whether that simplicial set is a Kan Complex or not, by construction of a particular simplicial group.

4.1 Kan's Loop Construction

Definition 4.1.1 A simplicial group G is a free simplicial group if each group $G_{n}, n \in \mathbb{Z}_{\geq 0}$ is a free group, and each group G_{n} has a basis B_{n} so that the collection $\left\{B_{n}\right\}$ of bases is preserved by degeneracy maps: for every $b \in B_{n}, s_{j} b \in B_{n+1} \forall 0 \leq j \leq n$.

We use a construction by $\operatorname{Kan}[17,18]$ that results in a free simplicial group starting with a simplicial set X. We start with the requirement not that X be a Kan Complex, but just that X be a reduced simplicial set (i.e. $X_{0}=\left\{\phi_{0}\right\}$). Later on even this requirement will be relaxed. Take the set X_{n+1} of $(n+1)$-simplices, and define a basis element σ_{x} for each $x \in X_{n+1}$:

Definition 4.1.2 Given $n \in \mathbb{Z}_{\geq 0}$ and a reduced simplicial set X (with maps d_{i}^{X} and s_{j}^{X}), the Loop Group $G X$ of X is a simplicial group wherein the set $G X_{n}$ of n-simplices is a group with one generator σ_{x} for each $x \in X_{n+1}$ and a relation

$$
\sigma_{s_{n}^{X} y}=e_{n}
$$

defining the identity of $G X_{n}$, for each $y \in X_{n}$. Let face maps $d_{i}: G X_{n} \rightarrow G X_{n-1}$ be defined by setting

$$
d_{i} \sigma_{x}=\left\{\begin{array}{cc}
\sigma_{d_{i}^{X} x}, & 0 \leq i \leq n-1 \\
\left(\sigma_{d_{n+1}^{X} x}\right)^{-1} \sigma_{d_{n}^{X} x}, & i=n
\end{array}\right.
$$

and extending linearly. Similarly, extend

$$
s_{j} \sigma_{x}=\sigma_{s_{j}^{X} x} \forall 0 \leq j \leq n
$$

linearly to define degeneracy maps $s_{j}: G X_{n} \rightarrow G X_{n+1}$.

Theorem 4.1.3 Given a reduced simplicial set $X, G X$ is a free simplicial group.

Proof: Recall that the identity element is a required generator for a group unless other relations are specified. The relation $\sigma_{s_{n}^{X}(y)}=e_{n}, y \in X_{n}$ merely assigns the generator e_{n} to each " n-degenerate" element of X_{n+1}. Otherwise, there are no nontrivial relations among the generators $\sigma_{x}, x \in X_{n}$ since each distinct generator corresponds to a distinct $(n+1)$-simplex in X. Therefore each $G X_{n}$ is a free group.

Since $(n+1)$-simplices of X correspond directly to generators of $G X_{n}$, the face and degeneracy relationships of Definition 1.1.1 for simplicial set X imply the same relationships on the face maps and degeneracy maps acting on generators. For instance, note that for any $i<n$ and any $x \in X_{n+1}$ with corresponding
generator $\sigma_{x} \in G X_{n}$,

$$
d_{i} d_{n} \sigma_{x}=d_{i}\left(\left(\sigma_{d_{n+1}^{X} x}\right)^{-1} \sigma_{d_{n}^{X} x}\right)=\left(d_{i} \sigma_{d_{n+1}^{X} x}\right)^{-1} d_{i} \sigma_{d_{n}^{X} x}=\left(\sigma_{d_{i}^{X} d_{n+1}^{X} x}\right)^{-1} \sigma_{d_{i}^{X} d_{n}^{X} x}=\left(\sigma_{d_{n}^{X} d_{i}^{X} x}\right)^{-1} \sigma_{d_{n-1}^{X} d_{i}^{X} x} .
$$

But $\sigma_{d_{i}^{X} x} \in G X_{n-1}$, so

$$
\left(\sigma_{d_{n}^{X} d_{i}^{X} x}\right)^{-1} \sigma_{d_{n-1}^{X} d_{i}^{X} x}=d_{n-1} \sigma_{d_{i}^{X} x}=d_{n-1} d_{i} \sigma_{x}
$$

It follows that $G X$ is a simplicial group with free groups $G X_{n}$ as sets of n-simplices. Furthermore, we see that $s_{j}^{X} x \in X_{n+2} \forall 0 \leq j \leq n+1$ implies $\sigma_{s_{j}^{X} x}=s_{j} \sigma_{x}$ is a generator for $G X_{n+1}$ for each $0 \leq j \leq n$. So if we identify $\left\{\sigma_{x} \mid x \in X_{n+1}\right\}=B_{n}$ as the basis for $G X_{n}$, we see that

$$
s_{j} b \in B_{n+1} \forall b \in B_{n} \forall 0 \leq j \leq n .
$$

Therefore $G X$ is a free simplicial group.

The identification $x \mapsto \sigma_{x}$ gives functions $t_{n}: X_{n+1} \rightarrow G X_{n}$ for which

$$
d_{i} t_{n}(x)=d_{i} \sigma_{x}=\sigma_{d_{i}^{X} x}=t_{n-1}\left(d_{i}^{X} x\right)
$$

$\forall 0 \leq i \leq n-1$,

$$
d_{n} t_{n}(x)=d_{n} \sigma_{x}=\left(\sigma_{d_{n+1}^{X} x}\right)^{-1} \sigma_{d_{n}^{X} x}=\left(t_{n-1}\left(d_{n+1}^{X} x\right)\right)^{-1} t_{n-1}\left(d_{n}^{X} x\right)
$$

and

$$
s_{j} t_{n}(x)=s_{j}\left(\sigma_{x}\right)=\sigma_{s_{j}^{X} x}=t_{n+1}\left(s_{j}^{X} x\right) \forall 0 \leq j \leq n .
$$

So the map $t: X \rightarrow G X$ defined for each dimension by these t_{n} is a twisting function from which we can form a Twisted Cartesian Product:

Definition 4.1.4 Given a reduced simplicial set X with corresponding, constructed free simplicial group $G X, E X=G X \times_{t} X$ is the loop complex of X, where $t_{n}: X_{n+1} \rightarrow G X_{n}$, is defined by $t_{n}(x)=\sigma_{x}$.

We denote the generators of $G X$ by $t(x):=t_{n}(x) \in G X_{n}$ for $x \in X_{n+1}$ from here on. Since any group acts naturally on itself (hence any simplicial group acts naturally on itself), $E X$ is a Principal Twisted Cartesian Product with base X, group $G X$ and fiber $G X$. Kan shows [18] that $E X$ is a contractible simplicial set when X is a reduced simplicial set.

4.2 Functoriality of Kan's Loop Group Construction

At this point, we are mostly concerned with applying the loop group construction to reduced simplicial sets.

Definition 4.2.1 A map of reduced simplicial sets $f: X \rightarrow Y$ is a weak homotopy equivalence if and only if f_{*} induces isomorphisms of all homotopy groups. A homomorphism of simplicial groups $f: A \rightarrow B$ is a weak homotopy equivalence if and only if $f_{*}: \pi_{i}(A, e) \rightarrow \pi_{i}(B, e)$ is an isomorphism, for e the identity element of the groups A or B as appropriate, and for every $i \geq 0$.

Denote the category of reduced simplicial sets by $\mathcal{S S}_{\text {red }}$ and the category of simplicial groups by $\mathcal{S G}$. Some features of the loop group construction from the previous section are:

Lemma 4.2.2 If $f: X \rightarrow Y$ is a simplicial map on reduced simplicial sets, then there is an induced homomorphism of simplicial groups $G f: G X \rightarrow G Y$, defined on generators by $t(x) \mapsto \tilde{t}(f(x))$ for $x \in X$ and generators $t(x)$ of $G X$ and $\tilde{t}(y)$ for $G Y$. This admits a functor G from $\mathcal{S S}_{\text {red }}$ to $\mathcal{S G}$.

Lemma 4.2.3 The loop group construction fits $G X$ into a fibration

$$
G X \rightarrow E X \rightarrow X
$$

of simplicial sets, with $E X$ of the homotopy type of a point. This fibration is also functorial: a map $f: X \rightarrow Y$ in $\mathcal{S S}$ gives a map of fibrations

$$
\begin{array}{ccccc}
G X & \rightarrow & E X & \rightarrow & X \\
\downarrow G f & & \downarrow E f & & \downarrow f \\
G Y & \rightarrow & E Y & \rightarrow & Y .
\end{array}
$$

Using the homotopy long exact sequence for a fibration, we have

Lemma 4.2.4 If $f: X \rightarrow Y$ is a simplicial map that is a weak homotopy equivalence, then the homomorphism of free simplicial groups $G f: G X \rightarrow G Y$ is also a weak homotopy equivalence.

Kan [18] defines a relation of "loop homotopy" between two homomorphisms of simplicial groups f, g : $A \rightarrow B$ and then proves that if A is free, then this relation is an equivalence relation. The definition of loop homotopy implies that the homotopy leaves the basepoint (the identity element) of the simplicial group "fixed"; i.e., it is a homotopy relative to the basepoint so that loop homotopic maps are always simplicially homotopic as in Definition 1.4.1. A "loop homotopy equivalence" of free simplicial groups A and B is defined to be a homomorphism $f: A \rightarrow B$ of simplicial groups such that there exists a homomorphism
$g: B \rightarrow A$ of simplicial groups such that both $g \circ f$ and $f \circ g$ are loop homotopic to the appropriate identity homomorphisms.

It is clear then, that any loop homotopic equivalence is a weak homotopy equivalence, and Kan proves the converse in special case:

Theorem 4.2.5 (Proposition 6.5 of [17]) Let $f: A \rightarrow B$ be a homomorphism of free simplicial groups that is also a weak homotopy equivalence. Then f is a loop homotopy equivalence.

So, we have

Corollary 4.2.6 If $f: X \rightarrow Y$ is a simplicial map (with X and Y reduced simplicial sets) that is a weak homotopy equivalence, then $G f: G X \rightarrow G Y$ is a loop homotopy equivalence.

In addition, using Kan's work in [18] one can prove

Theorem 4.2.7 If X and Y are reduced simplicial sets (neither necessarily Kan complexes) and $f, g: X \rightarrow$ Y are maps of simplicial sets that are simplicially homotopic, relative to the basepoint, then the induced homomorphisms $G f, G g: G X \rightarrow G Y$, are loop homotopic.

4.3 Loop Groups on Nonreduced Simplicial Sets

We will also need to construct Loop Groups on nonreduced simplicial sets in a functorial way. Kan [18] constructs such loop groups using maximal trees; another construction is obtained by Berger as described by Duflot, and functoriality may be obtained by incorporating the choice of maximal tree into the category of definition.

One way of doing this is exposited in Duflot[11]and briefly summarized below.

Definition 4.3.1 A simplicial set X is star-connected at basepoint $\phi_{0} \in X_{0}$ if and only if for any $z \in X_{0} \exists y(z) \in X_{1}$ for which $d_{1}(y(z))=\phi_{0}$ and $d_{0}(y(z))=z$. Call such $y(z)$ a ray at z.

We see easily that any star-connected simplicial set is connected, since by definition $z \sim \phi_{0}$ for every $z \in X_{0}$ (i.e. the required list of 1-simplices from Definition 1.3.3 is $D_{1}=(y(z))$).

Definition 4.3.2 Given $(X, \Phi) \in \mathcal{S S}_{*}$ with X star-connected at ϕ_{0}, a ray function $\omega: X_{0} \rightarrow X_{1}$ is any function such that $\omega(x)=y$ where y is a ray at x.

Definition 4.3.3 [18]Let $(X, \Phi) \in \mathcal{S S}_{*}$ with X (star-)connected at ϕ_{0}. An n-loop of X is a sequence

$$
\left(x_{1}, x_{2}, \ldots, x_{2 k}\right) \subset X_{n+1}
$$

$k>0$, wherein

$$
\begin{gathered}
d_{n+1} x_{2 j-1}=d_{n+1} x_{2 j} \forall 1 \leq j \leq k, \\
d_{0} d_{1} \cdots d_{n} x_{2 j}=d_{0} d_{1} \cdots d_{2 j+1} \forall 1 \leq j \leq k-1,
\end{gathered}
$$

and

$$
d_{0} d_{1} \cdots d_{n} x_{1}=d_{0} d_{1} \cdots d_{n} x_{2 k} .
$$

Such loop is reduced if $x_{j} \neq x_{j+1} \forall 1 \leq j \leq 2 k$.

Definition 4.3.4 Let $(X, \Phi) \in \mathcal{S S}_{*}$ with X (star-)connected at ϕ_{0}. A tree in X is a connected subcomplex $T \subset X$ such that $\phi_{0} \in T_{0}$ and T contains no reduced loops. T is a maximal tree if $T_{0}=X_{0}$.

Proposition 4.3.5 Given $(X, \Phi) \in \mathcal{S S}_{*}$ with X star-connected at ϕ_{0} and corresponding ray function ω : $X_{0} \rightarrow X_{1}$, let $T_{\omega}=X\left(X_{0}, \omega\left(X_{0}\right)\right)$. Then T_{ω} is a maximal tree in X.

Recall Definition 1.2.2 for T_{ω} and note that Φ is always a subcomplex of T_{ω}. Using either Kan [18] or Berger (see the variation of Berger's construction discussed in [11]), given a star-connected simplicial set X with ray function ω, and maximal tree $T_{\omega}(X)$, one may construct a loop group $G(X, \omega)$:

Definition 4.3.6 For every $n \geq 0, G(X, \omega)_{n}$ is constructed by taking the free group on the set X_{n+1} and imposing the following relations:

1) $s_{n} x \mapsto 1$, for every $x \in X_{n}$.
2) $y \mapsto 1$, for every $y \in\left(T_{\omega}(X)\right)_{n+1}$.

One sees that $G(X, \omega)_{n}$ is a free group on the set $X_{n+1}-s_{n}\left(X_{n}\right)-\left(T_{\omega}(X)\right)_{n+1}$.
As in the reduced case, we denote the generator of $G(X, \omega)$ corresponding to $x \in X_{n+1}$ by $t(x)$.

4.3.1 Functoriality for the Nonreduced Case

The domain category of the functors we consider is the category whose objects are the triples (X, Φ, ω) where (X, Φ) is a pointed star-connected simplicial set, and ω is a ray function. A morphism $f:\left(X, \Phi_{X}, \omega_{X}\right) \rightarrow$ $\left(Y, \Phi_{Y}, \omega_{Y}\right)$ in this category is a map of pointed simplicial sets $f: X \rightarrow Y$ such that $\omega_{Y} \circ f=f \circ \omega_{X}$.

Using the construction details (for either Kan's or Berger's construction), we have the analogs of the theorems in the previous section:

Lemma 4.3.7 ([11], Lemma 4.0.22) If $f:\left(X, \Phi_{X}, \omega_{X}\right) \rightarrow\left(Y, \Phi_{Y}, \omega_{Y}\right)$ is a morphism as defined above, then there is a functorial induced homomorphism of simplicial groups $G f: G\left(X, \omega_{X}\right) \rightarrow G\left(Y, \omega_{Y}\right)$ defined by

$$
G f(t(x))=t(f(x)) .
$$

Corollary 4.3.8 Given a triple $\left(X, \Phi_{X}, \omega\right)$ in our domain category, there is a fibration

$$
G(X, \omega) \rightarrow E(X, \omega) \rightarrow X
$$

of simplicial sets, with $E(X, \omega)$ of the homotopy type of a point. This fibration is also functorial: a map of triples $f:\left(X, \phi_{X}, \omega_{X}\right) \rightarrow\left(Y, \phi_{Y}, \omega_{Y}\right)$ in our domain category gives a map of fibrations

$$
\begin{array}{ccccc}
G\left(X, \omega_{X}\right) & \rightarrow & E\left(X, \omega_{X}\right) & \rightarrow & X \\
\downarrow G f & & \downarrow E f & & \downarrow f \\
G\left(Y, \omega_{Y}\right) & \rightarrow & E\left(Y, \omega_{Y}\right) & \rightarrow & Y .
\end{array}
$$

Since our simplicial groups $G(X, \omega)$ are always free simplicial groups, we also have

Corollary 4.3.9 If $f:\left(X, \Phi_{X}, \omega_{X}\right) \rightarrow\left(Y, \Phi_{Y}, \omega_{Y}\right)$ is a morphism that is a weak homotopy equivalence, then $G f: G\left(X, \omega_{X}\right) \rightarrow G\left(Y, \omega_{Y}\right)$ is a loop homotopy equivalence.
and

Corollary 4.3.10 If $\left(X, \Phi_{X}, \omega_{X}\right)$ and $\left(Y, \Phi_{Y}, \omega_{Y}\right)$ are objects in our category and

$$
f, g:\left(X, \Phi_{X}, \omega_{X}\right) \rightarrow\left(Y, \Phi_{Y}, \omega_{Y}\right)
$$

are morphisms that are simplicially homotopic, relative to the basepoint, then the induced homomorphisms $G f, G g: G\left(X, \omega_{X}\right) \rightarrow G\left(Y, \omega_{Y}\right)$, are loop homotopic.

5 More Examples of Simplicial Sets and Groups

5.1 Nerve Constructions

Example 5.1.1 Nerve of a Small Category[3, 9]: Given a category A which we can think of as "small" (i.e. the objects form a set) and any $n \in \mathbb{Z}_{\geq 0}$, define

$$
N A_{n}=\left\{x=a_{0} \xrightarrow{\alpha_{1}} a_{1} \xrightarrow{\alpha_{2}} a_{2} \xrightarrow{\alpha_{3}} \cdots \xrightarrow{\alpha_{n}} a_{n}:=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}\right)\right\},
$$

the set of n-tuples of composeable morphisms, as the set of n-simplices; let

$$
d_{i} x=a_{0} \xrightarrow{\alpha_{7}} \cdots \xrightarrow{\alpha_{i-1}} a_{i-1} \xrightarrow{\alpha_{i+1} \alpha_{i}} a_{i+1} \xrightarrow{\alpha_{i+2}} \cdots \xrightarrow{\alpha_{n}} a_{n}
$$

for each $0<i<n$ (with d_{0} and d_{n} by deleting a_{0} and a_{n}, respectively, from the n-tuple), and

$$
s_{j} x=a_{0} \xrightarrow{\alpha_{7}} \cdots \xrightarrow{\alpha_{j}} a_{j} \xrightarrow{i d_{a_{j}}} a_{j} \xrightarrow{\alpha_{j+1}} a_{j+1} \xrightarrow{\alpha_{i+2}} \cdots \xrightarrow{\alpha_{n}} a_{n}
$$

for each $0 \leq j \leq n$. Then $N A=\left\{N A_{n}\right\}$ with face maps and degeneracy maps as defined above constitutes a simplicial set, called the nerve of the category A. When the morphisms involved are of more concern to us, we will denote the nerve elements by $\boldsymbol{\alpha}:=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}\right)$. Note that with this notation we write $s_{0} \boldsymbol{\alpha}=\left(i d_{a_{0}}\left|\alpha_{1}\right| \alpha_{2}|\cdots| \alpha_{n}\right)$ and $s_{n} \boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots\left|\alpha_{n}\right| i d_{a_{n}}\right)$.

Notice that $N A_{0}$ is just the set of objects of A, while $N A_{1}$ is the set of morphisms of A. We will not need to discuss the geometric realization of a simplicial set for our purposes (see [2],[9], etc. for descriptions), but it suffices to say that the geometric realization of the nerve of a category, denoted the Classifying Space of that category, has widespread applications. The nerve itself will be the centerpiece of an important construction later on, and with this application we will note that geometric realization is a functorial operation.

Example 5.1.2 As a category, a group G has one object, $*$, and a morphism $g: * \rightarrow *$ corresponding to each group element g such that each morphism has an inverse. With this viewpoint, the 1-simplices of the nerve $N(G)$ from Example 5.1.1 would correspond to the elements of G, but $N G_{0}$, defined to consist of the objects the category G, would just be the object *. Therefore $N G$ is a reduced simplicial set whenever G is a group.

Example 5.1.3 Recall from Example 5.1.2 that when G is a group (viewed as a category) with identity element e, the nerve $N G$ is a reduced simplicial set. So there is a single 0-simplex which we denote $*:=\phi_{0}$. The one-point simplicial set is constructed as

$$
\begin{gathered}
\phi_{1}=\phi_{0} \xrightarrow{i d} \phi_{0}:=e ; \\
\phi_{2}=\phi_{0} \xrightarrow{i d} \phi_{0} \xrightarrow{i d} \phi_{0}:=(e \mid e) \in G \times G \\
\vdots \\
\phi_{n}=\overbrace{\phi_{0} \xrightarrow{i d} \phi_{0} \xrightarrow{n \text { id }} \cdots \xrightarrow{\text { times }} \phi_{0}}:=(e|e| \cdots \mid e)=1 \in G^{n} .
\end{gathered}
$$

So if we identify $N G_{n}:=G^{n}$ we see that an element $\boldsymbol{g}=\left(g_{1}\left|g_{2}\right| \cdots \mid g_{n}\right) \in N G_{n}$ has

$$
d_{i} \boldsymbol{g}=\left\{\begin{array}{ccl}
\left(g_{2}\left|g_{3}\right| \cdots \mid g_{n}\right), & i & =0 \\
\left(g_{1}\left|g_{2}\right| \cdots\left|g_{i-1}\right| g_{i+1} g_{i}\left|g_{i+2}\right| \cdots \mid g_{n}\right), & 1 \leq i \leq n-1 \\
\left(g_{1}\left|g_{2}\right| \cdots \mid g_{n-1}\right), & i & =n .
\end{array}\right.
$$

Now $\boldsymbol{x} \in \widetilde{N G_{n}}$ with $n>1$ implies $d_{i} \boldsymbol{x}=1 \in G^{n-1}$, so that $\boldsymbol{x}=1 \in G^{n}$. Therefore $\pi_{0}(N G)=\left[\phi_{0}\right]:=1$ and $\pi_{n}(N G)=[1]=1 \forall n>1$. Again, $\boldsymbol{x} \in N G_{1}$ is identified with $x \in G$ via morphism $\phi_{0} \xrightarrow{x} \phi_{0}$, so clearly $d_{0} x=d_{1}(x)=\phi_{0}$. Therefore $\widetilde{N G_{1}}=N G_{1}=G$. But homotopy in $N G_{1}$ dictates that if $g_{1} \sim g_{2} \in N G_{1}$ then there is a homotopy $\boldsymbol{y}=(a \mid b) \in N G_{2}$ such that

1) $d_{0} \boldsymbol{y}=s_{0} d_{0}\left(g_{1}\right)=s_{0}\left(\phi_{0}\right)=\phi_{1}=e$, which implies $b=e$.
2) $d_{1} \boldsymbol{y}=g_{1}=b a=e a$, so $\boldsymbol{y}=\left(g_{1} \mid e\right)$.
3) $d_{2} \boldsymbol{y}=g_{2}=a=g_{1}$, so $g_{1}=g_{2}$.

We conclude that each $x \in \widetilde{N G_{1}}:=G$ represents a distinct homotopy class in $\pi_{1}(N G)$, in which case $\pi_{1}(N G):=G$. Therefore

$$
\pi_{n}(N G)= \begin{cases}G, & n=1 \\ 1, & \text { else }\end{cases}
$$

5.2 Functorial Constructions

Example 5.2.1 Reverse of a Simplicial Set: Given a simplicial set X, we can define another simplicial set by keeping simplices as they are but "reversing" the degrees of face maps and degeneracy maps:

$$
X_{n}^{\text {rev }}=X_{n} ; d_{i}^{r e v}=d_{n-i} ; s_{j}^{r e v}=s_{n-j} .
$$

The degree of the face maps and degeneracy maps in $X^{\text {rev }}$ depends on the dimension on which they act, and calculations must reflect this: for example, when $0 \leq i<j \leq n$ and $x \in X_{n}=X_{n}^{r e v}$ we have

$$
d_{i}^{r e v} d_{j}^{r e v} x=d_{n-1-i} d_{n-j} x=d_{n-j} d_{n-1-i+1} x=d_{n-1-(j-1)} d_{n-i} x=d_{j-1}^{r e v} d_{i}^{r e v} x
$$

and

$$
s_{j}^{r e v} s_{i}^{r e v} x=s_{n+1-j} s_{n-i} x=s_{n+1-i} s_{n+1-j} x=s_{n+1-i} s_{n-(j-1)} x=s_{i}^{r e v} s_{j-1}^{r e v} x
$$

Note that the second face map operates on the $n-1$-simplex $d_{j}^{r e v} x$ and the second degeneracy map operates on the $n+1$-simplex $s_{i}^{r e v} x$. The simplicial set whose n-simplices are X_{n} and whose face maps and degeneracy maps are the $d_{i}^{r e v}$ and $s_{j}^{r e v}$ as above is called the reverse of the simplicial set X, denoted $X^{r e v}$.

Now we formulate the definition for $X^{\text {rev }}$ as a functor from $\Delta^{o p}$ to \mathcal{S}. Given a functor $X: \Delta^{o p} \rightarrow \mathcal{S}$, $X^{\text {rev }}$ is the functor $X^{r e v}: \Delta^{o p} \rightarrow \mathcal{S}$ defined by

$$
X^{r e v}(\mathbf{n})=X(\mathbf{n})
$$

on objects of $\Delta^{o p}$, and on morphisms as follows.
If $\alpha: \mathbf{n} \rightarrow \mathbf{m}$ is a morphism in Δ, define $\alpha^{\text {rev }}: \mathbf{n} \rightarrow \mathbf{m}$ by

$$
\alpha^{r e v}(u)=m-\alpha(n-u) .
$$

Proposition 5.2.2 If α is a morphism in Δ (hence in $\Delta^{o p}$) then $\alpha^{\text {rev }}$ is a morphism in Δ (hence in $\Delta^{o p}$).

Now, given a morphism $\alpha \in \operatorname{Hom}_{o p}(\mathbf{m}, \mathbf{n})$, let

$$
X^{r e v}(\alpha):=X\left(\alpha^{r e v}\right): X(\mathbf{m}) \rightarrow X(\mathbf{n})
$$

Theorem 5.2.3 Given a functor $X: \Delta^{o p} \rightarrow \mathcal{S}, X^{r e v}$ as defined above is a functor from $\Delta^{o p}$ to \mathcal{S}.

Proposition 5.2.4 $\left(X^{\text {rev }}\right)^{\text {rev }}=X$, for every $X \in \mathcal{S S}$.

Proposition 5.2.5 There is a functor ${ }^{\text {rev }}: \mathcal{S S} \rightarrow \mathcal{S S}$ defined on objects by ${ }^{\text {rev }}(X)=X^{\text {rev }}$ for functor $X: \Delta^{o p} \rightarrow \mathcal{S}$, and on morphisms by ${ }^{r e v}(f)=f$ for appropriate morphism f. Furthermore, rev is an isomorphism of categories.

Example 5.2.6 Segal Subdivision[10]: Given simplicial set $X=\left\{\left(X_{n} ;\left\{d_{i}\right\} ;\left\{s_{j}\right\}\right)\right\}$, set

$$
S d(X)_{n}=X_{2 n+1} ; d_{i}^{S d} x=d_{i} d_{2 n+1-i} x ; s_{j}^{S d} x=s_{j} s_{2 n+1-j} x
$$

for any $x \in X_{2 n+1}$.

A change of dimension by 1 in $S d(X)$ amounts to a change of dimension in X by 2 , and the dependence of the degrees of face maps and degeneracy maps on dimension warrants care in the arithmetic: $0 \leq i<j \leq$
$n, x \in X_{2 n+1}=S d(X)_{n}$ implies

$$
\begin{aligned}
d_{i}^{S d} d_{j}^{S d}(x) & =d_{i} d_{2(n-1)+1-i} d_{j} d_{2 n+1-j} x \\
& =d_{i} d_{2 n-1-i} d_{j} d_{2 n+1-j} x \\
& =d_{j-1} d_{i} d_{2 n-i} d_{2 n+1-j} x \\
& =d_{j-1} d_{2 n-j} d_{i} d_{2 n+1-i} x \\
& =d_{j-1} d_{2 n-1-(j-1)} d_{i} d_{2 n+1-i} x \\
& =d_{j-1} d_{2(n-1)+1-(j-1)} d_{i} d_{2 n+1-i} x \\
& =d_{j-1}^{S d} d_{i}^{S d} x,
\end{aligned}
$$

and

$$
\begin{gathered}
s_{j}^{S d} s_{i}^{S d} x=s_{j} s_{2(n+1)+1-j} s_{i} s_{2 n+1-i} x \\
=s_{j} s_{2 n+2+1-j} s_{i} s_{2 n+1-i} x=s_{i} s_{j-1} s_{2 n+2-j} s_{2 n+1-i} x \\
=s_{i} s_{2 n+2+1-i} s_{j-1} s_{2 n+1-(j-1)} x=s_{i}^{S d} s_{j-1}^{S d} x .
\end{gathered}
$$

It can be shown, similar to the case for functors G and ${ }^{\text {rev }}$, that this construction admits a covariant functor, $S d: \mathcal{S S} \rightarrow \mathcal{S S}$. See[10] for a good description of this and other properties of the Subdivision.

Chapter 2

Algebraic K-Theory

From here on, let R be a ring with identity 1 , commutative where necessary, and consider (subcategories of) the category of R-modules with R-module homomorphisms $\operatorname{Hom}_{R}(P, Q)$ for modules P and Q.

1 Projective Modules

1.1 Definitions[8][1]

Definition 1.1.1 We adopt the following, equivalent definitions for our objects of interest - finitely generated projective R-modules:
a) "Diagram Completion Property": P is a projective R-module if and only if given any R-modules N, M, surjective homomorphism $\psi: M \rightarrow N$ and any homomorphism $\phi: P \rightarrow N, \exists \theta \in \operatorname{Hom}_{R}(P, M) \ni$ $\phi=\psi \circ \theta$.
b) "Section Property": P is projective if and only if given any R-module M, any surjective homomorphism $\psi \in \operatorname{Hom}_{R}(M, P)$ has a right inverse (i.e. there is a section s: $P \rightarrow M \ni \psi \circ s=i d_{P}$ and $\left.s \in \operatorname{Hom}_{R}(P, M)\right)$.
c) "Splitting Property": P is projective if and only if any short exact sequence

$$
0 \rightarrow N \xrightarrow{\phi} M \xrightarrow{\psi} P \rightarrow 0
$$

of R-modules ending at P splits: $M \approx N \oplus P \approx i m(\phi) \oplus i m(s)$ where $s \in H_{R}(P, M)$ is a section for ψ as described above.
d) "Summand Property": P is a finitely generated projective R-module if and only if $\exists R$-module Q and $n \in \mathbb{N}$ for which $P \oplus Q \approx R^{n}$.

Example 1.1.2 Projective But Not free: Suppose $R=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Then the R-module $P_{1}=\langle(1,0)\rangle$ is projective, but not free. Indeed, if $P_{2}=\langle(0,1)\rangle$ then $P_{1} \oplus P_{2}=R=R^{1}$ so we have P_{1} as a direct summand of a free module. But R has order 4 as an additive group, so that any free R-module of finite rank must have an order that is a multiple of 4. Since both P_{1} and P_{2} have order 2, neither module can be free.

1.2 The Category $\mathcal{P} R$

Definition 1.2.1 For finitely generated projective modules P and Q, define morphisms to be R-module homomorphisms $\operatorname{Hom}_{R}(P, Q)$, and let $\mathcal{P} R$ be the resulting category of finitely generated projective R-modules. Among morphisms are admissible injections, which are injective homomorphisms $P \stackrel{\phi}{\mapsto} Q$ for which $0 \rightarrow P \stackrel{\phi}{\mapsto} Q \rightarrow Q / P \rightarrow 0$ is a short exact sequence in $\mathcal{P} R$, and admissible surjections, which are surjective homomorphisms $P \stackrel{\psi}{\rightarrow} Q$ for which there is a short exact sequence $0 \rightarrow N \mapsto P \xrightarrow{\psi} Q \rightarrow 0$ in $\mathcal{P} R$.

Note that by Definition 1.1.1.b,c that all surjective homomorphisms in $\mathcal{P} R$ are admissible surjections.

Definition 1.2.2 For a finitely generated projective R-module P define the dual of P as

$$
P^{*}:=\operatorname{Hom}_{R}(P, R)
$$

Lemma 1.2.3 Suppose $P, Q \in \mathcal{P} R$.
a) P^{*} is a finitely generated projective R-module, and given an R-module homomorphism $f: P \rightarrow Q$, there is an R-module homomorphism $f^{*}: Q^{*} \rightarrow P^{*}$ defined by $f^{*}(\alpha)=\alpha \circ f$ for any $\alpha \in Q^{*}$. When f is injective f^{*} is surjective and when f is surjective f^{*} is injective.
b) $\forall P, Q \in \mathcal{P} R,(P \oplus Q)^{*} \approx P^{*} \oplus Q^{*}$.
c) There is an exact contravariant functor, ${ }^{*}: \mathcal{P} R \rightarrow \mathcal{P} R$, defined on objects by $P \mapsto P^{*}$ and on morphisms by $f \mapsto f^{*}$. In particular, $f^{*}: Q^{*} \rightarrow P^{*}$ is admissible whenever $f: P \rightarrow Q$ is.
d) The composite functor ${ }^{*} \mathrm{o}^{*}:={ }^{* *}$ is a covariant functor, equivalent to the identity functor; in fact, there is a natural transformation $\eta: i d \rightarrow{ }^{* *}$ of functors on $\mathcal{P} R$ such that for every object $P, \eta(P): P \rightarrow P^{* *}$ is an isomorphism.

As a brief note, we define the isomorphism $\eta: i d_{\mathcal{P} R} \rightarrow^{* *}$ by assigning $[\eta(P)(p)](\psi)=\psi(p) \in R$ for $p \in P, \psi \in P^{*}$, so that $\eta(P) \in \operatorname{Hom}_{R}\left(P, P^{* *}\right)$.

2 Classical $K_{0}(R)$ ([8], Chapter 1)

2.1 Generators and Relations

Definition 2.1.1 Given the isomorphism classes $[P]$ of finitely generated projective modules over ring R, let F be the free abelian group on these classes and $S=\langle[P]+[Q]-[P \oplus Q]\rangle$ as a subgroup. Then $K_{0}(R)=F / S$ (i.e. $K_{0}(R)$ is the Grothendieck Group, or Group Completion of the Semigroup of isomorphism classes of finitely generated projective R-modules).

Theorem 2.1.2 ([8], Lemma 1.1) Every element $A \in K_{0}(R)$ can be represented by a difference $A=[P]-[Q]$ of two isomorphism classes, and $\left[P_{1}\right]-\left[Q_{1}\right]=\left[P_{2}\right]-\left[Q_{2}\right] \in K_{0}(R)$ if and only if $\exists r \in \mathbb{N} \ni P_{1} \oplus Q_{2} \oplus R^{r} \approx$ $P_{2} \oplus Q_{1} \oplus R^{r}$.

Corollary 2.1.3 Two generators $[P]$ and $[Q]$ of $K_{0}(R)$ are equal if and only if $\exists r \in \mathbb{N} \ni P \oplus R^{r} \approx Q \oplus R^{r}$.

We refer these generators $[P]$ of $K_{0}(R)$ as stable isomorphism classes of finitely generated projective modules over R.

Example 2.1.4 Grothendieck Group of a field: Let $R=F$ be a field. It can be shown through basic linear algebra principles that if R is a field then any (finitely generated) R-module P is a free R-module: from any generating set for P a basis B can be selected for which given any $p \in P$ there is a unique sum $p=\sum_{i \in I} r_{i} b_{i}$, over R for p[20]. Since any free module is a projective module by default, we know that the objects of $\mathcal{P} R$ are free R-modules of finite rank, i.e. finite-dimensional vector spaces over R. Since two vector spaces of the same (finite) dimension are isomorphic, the canonical isomorphism classes can be represented by their dimension. We can show that this same representation works for stable isomorphism classes as well.

Indeed, let $P_{1} \approx R^{n_{1}}, Q_{1} \approx R^{m_{1}}, P_{2} \approx R^{n_{2}}, Q_{2} \approx R^{m_{2}}$. Suppose that the corresponding representatives have $n_{1}-m_{1}=n_{2}-m_{2}$. Then $n_{1}+m_{2}=n_{2}+m_{1} \in \mathbb{N}$ and $R^{n_{1}} \oplus R^{m_{2}} \approx R^{n_{2}} \oplus R^{m_{1}}$, so $P_{1} \oplus Q_{2} \approx P_{2} \oplus Q_{1}$. Since all of these modules are free modules, it follows that for any $r \in \mathbb{N}$,

$$
R^{n_{1}} \oplus R^{m_{2}} \oplus R^{r} \approx P_{1} \oplus Q_{2} \oplus R^{r} \approx R^{n_{2}} \oplus R^{m_{1}} \oplus R^{r} \approx P_{2} \oplus Q_{1} \oplus R^{r} \forall r \in \mathbb{N} .
$$

Therefore differences $n_{1}-m_{1}=n_{2}-m_{2}$ represent differences of stable isomorphism classes in $K_{0}(R)$. We conclude that $K_{0}(R) \approx \mathbb{Z}$ whenever $R=F$ is a field.

Example 2.1.5 $K_{0}(\mathbb{Z})[8]$: Example 2.1.4 has a more general case, in that $K_{0}(R)=\mathbb{Z}$ whenever R is a principal ideal domain. This follows from the fact that any finitely generated projective module over R is a
free module, in which case we apply a similar method to the above example, mapping a difference of ranks for these modules to a difference of isomorphism classes. But the property that every finitely generated projective module over a principal ideal domain is free follows from the Direct Summand Property and the Fundamental Theorem for Finitely Generated Modules over a Principal Ideal Domain (also known as the Structure Theorem[20]). From that theorem we have that if an R-module P is a direct summand of a free module $R^{n}, n \in \mathbb{N}$, then it must be torsion-free (i.e. the kernel of the map $a \mapsto$ ap from $R \rightarrow P$ is trivial), so that P itself is free

3 Classical $K_{1}(R)$

3.1 $G L(R)$ and Elementary Matrices[1, 8, 9]

Definition 3.1.1 The infinite general linear group $G L(R)$ is the direct limit of the general linear groups $G L(n, R), n \in \mathbb{N}$, or the union of the sequence

$$
R^{*}=G L(1, R) \subseteq G L(2, R) \subseteq \cdots
$$

under the inclusion $G L(n, R) \hookrightarrow G L(n+1, R)$ via $A \mapsto\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$.
Definition 3.1.2 Given $a \in R, i, j \in \mathbb{N}, i \neq j$ the elementary matrix $e_{i j}(a)$ is the matrix $e_{i j}(a) \in G L(R)$ having a as the (i, j)-entry, 1 on the diagonal and 0 everywhere else.

Definition 3.1.3 $E(n, R) \leq G L(n, R)$ is the subgroup generated by the elementary $n \times n$ matrices. $E(R)$ is the direct limit of such groups as in the definition of $G L(R)$.

Theorem 3.1.4 ([1], Proposition 2.1.4) $E(R)$ is the commutator subgroup of $G L(R)$.

3.1.1 $K_{1}(R)$ as a quotient group

Definition 3.1.5 $K_{1}(R)=G L(R) / E(R)$, the abelianization of the infinite general linear group. From this definition, we think of elements of $K_{1}(R)$ as (classes of) matrices $A \in G L(R)$.

Example 3.1.6 $K_{1}(F)$ where F is a field, local ring, or Euclidean Domain [1]: In the case of rings R where multiplicative inverses (i.e. fields and local rings), or at least where a quotient-remainder analog exists (i.e. Euclidean Domains), we may think of elementary matrices as representing the elementary row
or column operations that work on invertible matrices as elements of $G L(R)$. Of course invertible matrices must have unit "determinant" (i.e. a corresponding element of R^{\times}, the units in R), and a sequence of elementary operations serves to change that determinant. Therefore equivalence classes of matrices in $K_{1}(R)$ are matrices with the same determinant, and we have that $K_{1}(R)=R^{\times}$in the special case of R being a field, local ring or Euclidean Domain.

Example 3.1.7 As a corollary to the previous example, we have the well-known result $K_{1}(\mathbb{Z})=\{1,-1\}$ (i.e. the cyclic group of order 2) since \mathbb{Z} is a Euclidean Domain whose only units are 1 and -1.

4 Classical $K_{2}(R)$

4.1 Steinberg Group

Note the following relations[1] between generators $e_{i j}^{n}(a) \in E(n, R)$ when $n \geq 3$, whether considered as elements in a particular $E(n, R)$ or in $E(R)$; also note the commutators

$$
\left[e_{i j}^{n}(a), e_{k l}^{n}(b)\right]=e_{i j}^{n}(a) e_{k l}^{n}(b)\left(e_{i j}^{n}(a)\right)^{-1}\left(e_{k l}^{n}(b)\right)^{-1}:
$$

1) $e_{i j}^{n}(a) e_{k l}^{n}(b)=\left\{\begin{array}{cl}e_{i j}^{n}(a+b), & i=k, j=l \\ e_{k l}^{n}(b) e_{i j}^{n}(a), & j \neq k, i \neq l .\end{array}\right.$
2) $\left[e_{i j}^{n}(a), e_{k l}^{n}(b)\right]=\left\{\begin{array}{cc}e_{i l}^{n}(a b), & i \neq l, j=k \\ e_{k j}^{n}(-b a), & j \neq k, i=l \\ 1 & j \neq k, i \neq l .\end{array}\right.$

Definition 4.1.1 Fix $n \in \mathbb{N}, n \geq 3$. Assign to each $e_{i j}^{n}(a), 1 \leq i, j \leq n, i \neq j$ and $a \in R$ a generator $x_{i j}^{n}(a)$, let F be the free group on these generators and S the subgroup generated by the relations (for every i, j as above, similar k, l, and every $a, b \in R$)

1) $x_{i j}^{n}(a) x_{k l}^{n}(b)=\left\{\begin{array}{cl}x_{i j}^{n}(a+b), & i=k, j=l \\ x_{k l}^{n}(b) x_{i j}^{n}(a), & j \neq k, i \neq l .\end{array}\right.$
2) $\left[x_{i j}^{n}(a), x_{k l}^{n}(b)\right]=\left\{\begin{array}{cc}x_{i l}^{n}(a b), & i \neq l, j=k \\ x_{k j}^{n}(-b a), & j \neq k, i=l \\ 1 & j \neq k, i \neq l .\end{array}\right.$

Then the nth Steinberg Group over R is a quotient $S t(n, R)=F / S$.

From now on when we speak of the Steinberg group $S t(n, R)$, or its elements, we assume that $n \geq 3$.

By definition there is a unique surjective homomorphism $\phi_{n}: S t(n, R) \rightarrow E(n, R) \subseteq G L(n, R)$ by $x_{i j}^{n}(a) \mapsto e_{i j}^{n}(a)$. However, there may be other relations between the $e_{i j}^{n}(a)$ depending on the specific structure of R that are ignored by the subgroup S; that is, $S \subset \operatorname{ker}\left(\phi_{n}\right)$ but we may not have $S=\operatorname{ker}\left(\phi_{n}\right)$. We can define homomorphisms of groups $\iota_{n, n+1}: S t(n, R) \rightarrow S t(n+1, R)$ (not inclusions) that match generators $x_{i j}^{n}(a)$ of $S t(n, R)$ to generators $x_{i j}^{n+1}(a)$ of $S t(n+1, R)$. So we define the infinite Steinberg Group $S t(R)$ as the direct limit of this sequence of groups and homomorphisms.

Note that the direct limit construction[20] gives a canonical homomorphism

$$
\iota_{n}: S t(n, R) \rightarrow S t(R)
$$

such that $\iota_{n+1} \circ \iota_{n, n+1}=\iota_{n}$, and a homomorphism

$$
\phi: S t(R) \rightarrow E(R)
$$

such that

$$
\iota_{n} \circ \phi=\phi_{n} \circ i_{n},
$$

where $i_{n}: E(n, R) \rightarrow E(R)$ is the canonical inclusion defining $E(R)$ as a direct limit of the $E(n, R)$ (in this case i_{n} is an inclusion).

Definition 4.1.2 Given $\phi: S t(R) \rightarrow E(R)$ as above, $K_{2}(R)=\operatorname{ker}(\phi)$.

From this definition, we will assume an element of $K_{2}(R)$ to be (represented by) simply a word over generators of $S t(n, R)$ for some $n \in \mathbb{N}$:

$$
w=\left[x_{i_{1} j_{1}}\left(a_{1}\right)\right]\left[x_{i_{2} j_{2}}\left(a_{2}\right)\right] \cdots\left[x_{i_{k} j_{k}}\left(a_{k}\right)\right] .
$$

Also, we have an exact sequence:

$$
1 \rightarrow K_{2} \hookrightarrow S t(R) \xrightarrow{\phi} G L(R) \xrightarrow{\pi} K_{1}(R) \rightarrow 1
$$

from Definition 3.1.5.
An important fact about the Steinberg group is

Theorem 4.1.3 ([8], Theorem 5.1) $K_{2}(R)$ is precisely the center of $S t(R)$.

Example 4.1.4 It is an interesting result that

$$
K_{2}(\mathbb{Z})=\{-1,1\} ;
$$

it is generated by the element $\left(x_{12}(1) x_{21}(-1) x_{12}(1)\right)^{4}$. This amazing result is worthy of a chapter in and of itself, as in [8] Chapter 10, and is therefore not fully described here.

5 Higher K-Theory from Quillen [16, 11]

5.1 $N(Q \mathcal{P} R)$

Let R be a commutative ring with identity 1 , and recall that $\mathcal{P} R$ is the category of finitely generated projective R-modules. In fact $\mathcal{P} R$ is an exact category, with admissible injections (indicated by arrows \rightarrow) and admissible surjections (indicated by \rightarrow).

Note that by Definition 1.2 .1 an admissible injection of finitely generated projective R-modules, $P \mapsto Q$, is an injection such that the quotient of Q modulo the image of P is also projective, and all surjections in the category $\mathcal{P} R$ are admissible as note earlier. From this category we make another:

Definition 5.1.1 Quillen's Category: In the category $Q \mathcal{P} R$, the objects are the objects of $\mathcal{P} R$. Given $P, Q \in$ $\mathcal{P} R$, a morphism $f: P \cdots \rightarrow Q$ in $Q \mathcal{P} R$ is a diagram

where U, f_{1} and f_{2} allow P and Q to be part of short exact sequences (i.e. f_{1} and f_{2} are admissible maps). Composition of these morphisms, when appropriate, is given by forming another diagram: given $f: P \cdots \rightarrow Q$ with admissibles U, f_{1} and f_{2}, and $g: Q \cdots \rightarrow S$ with admissibles V, g_{1} and g_{2}, the composition $g \circ f: P \cdots \rightarrow$ S is the diagram

where $U \times_{Q} V=\left\{(u, v) \in U \times V \mid g_{1}(v)=f_{2}(u) \in Q\right\}, \bar{f}_{1}(u, v)=f_{1}(u)$ and $\overline{g_{2}}(u, v)=g_{2}(v)$.

Definition 5.1.2 Given the category $Q \mathcal{P} R$, two morphisms

and

are equivalent if there is an R-module isomorphism $F: U \rightarrow U^{\prime}$ for which $f_{1}^{\prime} \circ F=f_{1}$ and $f_{2}^{\prime} \circ F=f_{2}$ in $\mathcal{P} R$.

As seen in Example 5.1.1, we can construct the nerve of this category if we think of an appropriate "small" category corresponding to $Q \mathcal{P} R$. This nerve $N(Q \mathcal{P} R)$ is a simplicial set, with 0 -simplices corresponding the the objects of $Q \mathcal{P} R$ (which consequently are the objects of $\mathcal{P} R$ by definition). The 1 -simplices are (isomorphism classes of) the morphisms of $Q \mathcal{P} R$ as described above, and n-simplices are n-tuples of composeable morphisms. For instance, a 2-simplex would be

and a 3 -simplex would look like

Since $N(Q \mathcal{P} R)_{0}=O b(\mathcal{P} R)$, this nerve cannot be a reduced simplicial set. However we can use it due to Kan's work on star-connectedness as described in Chapter 1:

Theorem 5.1.3 $N(Q \mathcal{P} R)$ is star-connected at the basepoint $0 \in \mathcal{P} R$, with ray function defined on finitely generated projective R-modules P by

$$
\omega(P)=\quad q_{P}: 0 \cdots \longrightarrow P
$$

$5.2 G(N(Q \mathcal{P} R))$

As we have seen, $N(Q \mathcal{P} R)$ is not a reduced simplicial set, although it is star-connected. We will see later (i.e. Lemma 4.0.14 in Chapter 3) that more than one ray function can accomplish this, but for now we use the function $\omega(P)=q_{P}$ from Theorem 5.1.3 and apply Definition 4.3.6 from Chapter 1:

Definition 5.2.1 For any $n \geq 0$, the set $G(N(Q \mathcal{P} R))_{n}$ of n-simplices of the loop group $G(N(Q \mathcal{P} R))$ is the free group on the set

$$
\mathcal{B}_{n}=\left\{t(x) \mid x \in N\left(Q \mathcal{P} R_{n+1}-s_{n}(N(Q \mathcal{P} R))_{n}\right)-\left(T_{\omega}(N(Q \mathcal{P} R))\right)_{n+1}\right\} .
$$

5.3 Quillen's K_{0}, K_{1}, K_{2} versus Classical K-Theory

Chapter 4(IV) of [10] gives a good account of Quillen's results for higher Algebraic K-Theory:
Quillen constructs higher K-Theory as

$$
K_{i}(R):=\pi_{i}(\Omega|N(Q \mathcal{P} R)|),
$$

where $\Omega \mid N(Q \mathcal{P} R \mid$ denotes the combinatorial loop space of the geometric realization of $N(Q \mathcal{P} R)$ (see [10, 11]). It is then possible to show that for $i \in\{0,1,2\}$ the groups K_{i} constructed this way are isomorphic in a natural sense to the classical K-Theory groups $K_{0}(R), K_{1}(R)$ and $K_{2}(R)$ as described earlier in this chapter (in fact, these groups are constructed specifically so that this is true). One of Quillen's constructions which affords this definition is known as Quillen's +-construction, and results in a space $|N(Q \mathcal{P} R)|^{+}$, which we will refer to in Chapter 6. Although the theory tells us that, for example,

$$
K_{2}(R) \approx \pi_{2}(\Omega|N(Q \mathcal{P} R)|)
$$

explicit isomorphisms are not constructed. Such is the inspiration for this dissertation.
Homotopy theory on topological spaces then tells us that

$$
\pi_{i}(G(N(\mathcal{P} R))) \approx \pi_{i}(\Omega|N(Q \mathcal{P} R)|)
$$

as described in [2]. Thus we call $G(N(Q \mathcal{P} R))$ a simplicial model for K-Theory. Later exposition in this dissertation will show other simplicial models for K-Theory under the same definition: the Gillet-Grayson simplicial set $\mathcal{G} \cdot \mathcal{P} R$, the loop group on Waldhausen's simplicial set $\mathfrak{s} \cdot \mathcal{P} R$, and some other simplicial sets derived from these via techniques described in Chapter 1.

Chapter 3

More Constructions for $\mathcal{P} R$

1 Waldhausen's s. $\mathcal{P} R$

1.1 The Simplicial Set s.C

This section explains some definitions from Waldhausen's paper [7] and exposits a notion of duality.
Define a poset $\operatorname{Ar}[\mathbf{n}]$ as the set

$$
\operatorname{Ar}[\mathbf{n}]=\{(i, j) \in \mathbf{n} \times \mathbf{n} \mid 0 \leq i \leq j \leq n\},
$$

with order defined by

$$
(i, j) \leq(k, l) \Leftrightarrow i \leq k \text { and } j \leq l
$$

Let \mathcal{C} be a "category with cofibrations" as defined by Waldhausen [7], with initial (and final) object $0:=0_{\mathcal{C}}$. Then the idea of a short exact sequence (a "cofibration" sequence) is defined in \mathcal{C}. In particular, while we do not give the formal definition of a category with cofibrations (as in [7], for example) here, we do notice that the category $\mathcal{P} R$ introduced in Chapter 2 is a category with cofibrations. The cofibrations in $\mathcal{P} R$ are admissible injections as in Definition 1.2.1 of Chapter 2, while admissible surjections are the quotient maps.

Considering $\operatorname{Ar}[\mathbf{n}]$ as a category in the usual way (see [9]), define
Definition 1.1.1 A functor $A: \operatorname{Ar}[\mathbf{n}] \rightarrow \mathcal{C}$ is a normalized exact functor if
a) for every $(i, i) \in \operatorname{Ar}[\mathbf{n}], A(i, i)=0$.
b) for every (i, j) and (i, k) in $\operatorname{Ar}[\mathbf{n}]$, such that $i \leq j \leq k$,

$$
0 \rightarrow A(i, j) \rightarrow A(i, k) \rightarrow A(j, k) \rightarrow 0
$$

is a short exact sequence in \mathcal{C}.

For any n, define

$$
\mathfrak{s}_{n} \mathcal{C}=\{A: \operatorname{Ar}[\mathbf{n}] \rightarrow \mathcal{C} \mid A \text { is a normalized exact functor }\} .
$$

Proposition 1.1.2 An element A of $\mathfrak{s}_{n} \mathcal{C}$ is a triangular, commutative diagram in \mathcal{C}, where each

$$
A(0, i) \xrightarrow{A(\hookrightarrow)} A(0, j) \xrightarrow{A(\hookrightarrow)} A(i, j)
$$

is a short exact sequence and each vertical row is a quotient map.

When we refer to the objects in these triangles without reference to the underlying functor, we will use the notation $A_{i j}$ instead of $A(i, j)$ for the objects, so that such elements have the form

Waldhausen also defines a category

$$
\mathcal{S}_{n} \mathcal{C},
$$

which has objects $\mathfrak{s}_{n} \mathcal{C}$, and in which a morphism $F: A \rightarrow B$ is a natural transformation from A to B, but we do not use this in the present paper. Instead, we assemble the sets $\mathfrak{s}_{n} \mathcal{C}$, as n varies, into a simplicial set $\mathfrak{s} . \mathcal{C}$ with n-simplices $\mathfrak{s} . \mathcal{C}(\boldsymbol{n})=\mathfrak{s} \cdot \mathcal{C}_{n}:=\mathfrak{s}_{n} \mathcal{C}$ by defining, for each morphism $\alpha: \mathbf{n} \rightarrow \mathbf{m}$ in Δ, a function

$$
\mathfrak{s c} \mathcal{C}(\alpha): \mathfrak{s}_{m} \mathcal{C} \rightarrow \mathfrak{s}_{n} \mathcal{C}
$$

given by

$$
[\mathfrak{s} \cdot \mathcal{C}(\alpha)(A)](k, l)=A(\alpha(k), \alpha(l)),
$$

and

$$
[\mathfrak{s} \cdot \mathcal{C}(\alpha)(A)]\left((k, l) \leq\left(k_{1}, l_{1}\right)\right)=A\left((\alpha(k), \alpha(l)) \leq\left(\alpha\left(k_{1}\right), \alpha\left(l_{1}\right)\right)\right) .
$$

This allows us to define face and degeneracy maps and compositions thereof in $\mathfrak{s . C}$ according to Definition 1.2.1 and Lemma 1.1.9 of Chapter 1.

Recall that an exact covariant functor is a functor that converts short exact sequences (or cofibration sequences) into short exact sequences (or cofibration sequences). An exact contravariant functor also converts short exact sequences into short exact sequences, and thus turns cofibrations into quotient maps and quotient maps into cofibrations, using Waldhausen's language [7].

Theorem 1.1.3 Suppose $\mathcal{C}, \mathcal{D}, \mathcal{E}$ are categories with cofibrations.
a) $\mathfrak{s} . \mathcal{C}$ is a simplicial set; moreover, $\mathfrak{s}_{0} \mathcal{C}$ consists of a single element so that $\mathfrak{s} \cdot \mathcal{C}$ is a reduced simplicial set.
b) A (covariant) exact functor $F: \mathcal{C} \rightarrow \mathcal{D}$ induces a map of simplicial sets $\mathfrak{s} . F: \mathfrak{s} . \mathcal{C} \rightarrow \mathfrak{s} . \mathcal{D}$; an exact contravariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$ induces maps of simplicial sets $\mathfrak{s} . F: \mathfrak{s} \cdot \mathcal{C} \rightarrow \mathfrak{s} . \mathcal{D}^{\text {rev }}$ and $\mathfrak{s} . F: \mathfrak{s} . \mathcal{C}^{\text {rev }} \rightarrow$ \mathfrak{s}.D.

In the case of contravariant functor F we use the following definition for $\mathfrak{s} . F: \mathfrak{s} \cdot \mathcal{C} \rightarrow \mathfrak{s} . \mathcal{D}^{\text {rev }}:$ for $A \in \mathfrak{s}_{n} \mathcal{C}$,

$$
\mathfrak{s} \cdot F(A)(i, j):=F(A(n-j, n-i)),
$$

and

$$
\mathfrak{s} \cdot F(A)((i, j) \leq(k, l)):=F(A((n-l, n-k) \leq(n-j, n-i))) .
$$

c) If $F: \mathcal{C} \rightarrow \mathcal{D}$, and $G: \mathcal{D} \rightarrow \mathcal{E}$ are covariant exact functors, then the composite functor $G F$ is a covariant exact functor, and as maps of simplicial sets $\mathfrak{s c C} \rightarrow \mathfrak{s} . \mathcal{E}$,

$$
\mathfrak{s} .(G F)=\mathfrak{s} .(G) \mathfrak{s} .(F) .
$$

Also, if F_{1} and G_{1} are contravariant exact functors between the same categories as F and G above, then $G_{1} F_{1}$ is an exact covariant functor, and as maps of simplicial sets, either $\mathfrak{s . C} \rightarrow \mathfrak{s} \cdot \mathcal{E}$ or $\mathfrak{s} . \mathcal{C}^{\text {rev }} \rightarrow \mathfrak{s} \cdot \mathcal{E}^{\text {rev }}$, then

$$
\mathfrak{s} \cdot\left(G_{1} F_{1}\right)=\mathfrak{s .}\left(G_{1}\right) \mathfrak{s} \cdot\left(F_{1}\right) .
$$

d) For the identity functor $i d: \mathcal{C} \rightarrow \mathcal{C}$, s.id is the identity map on the simplicial sets $\mathfrak{s} \cdot \mathcal{C}$ and $\mathfrak{s . C}{ }^{\text {rev }}$.

Proof: We prove (b) and leave the rest as an exercise.
For the case of covariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$, we must show that the natural transformation relation holds on $\mathfrak{s} . F(\boldsymbol{n})(A)=F \circ A$ for any $A \in \mathfrak{s . C}(\boldsymbol{n})$ and any $\alpha: \mathbf{m} \rightarrow \mathbf{n}$ (i.e. any $\alpha \in \operatorname{Hom}_{o p}(\mathbf{n}, \mathbf{m})$). Given
$(a, b) \in \operatorname{Ar}[\mathbf{m}]$ we have

$$
\begin{aligned}
([\mathfrak{s} . \mathcal{D}(\alpha) \circ \mathfrak{s} . F(\mathbf{n})](A))(a, b) & =\mathfrak{s} \cdot \mathcal{D}(\alpha)([\mathfrak{s} . F(\mathbf{n})(A)])(a, b) \\
& =[\mathfrak{s} \cdot F(\mathbf{n})(A)](\alpha(a), \alpha(b)) \\
& =F(A(\alpha(a), \alpha(b))),
\end{aligned}
$$

and

$$
\begin{aligned}
([\mathfrak{s} \cdot F(\mathbf{m}) \circ \mathfrak{s} \cdot \mathcal{C}(\alpha)](A))(a, b) & =[\mathfrak{s} \cdot F(\mathbf{m}) \circ[\mathfrak{s} \cdot \mathcal{C}(\alpha)(A)]](a, b) \\
& =F([\mathfrak{s} \cdot \mathcal{C}(\alpha)(A)](a, b)) \\
& =F(A(\alpha(a), \alpha(b))) \\
& =([\mathfrak{s} \cdot \mathcal{D}(\alpha) \circ \mathfrak{s} \cdot F(\mathbf{n})](A))(a, b) .
\end{aligned}
$$

Therefore $\mathfrak{s s} \mathcal{D}(\alpha) \circ \mathfrak{s} . F(\mathbf{n})=\mathfrak{s} . F(\mathbf{m}) \circ \mathfrak{s} . \mathcal{C}(\alpha)$, so that $\mathfrak{s} . F$ is a natural transformation of functors in $\mathcal{S S}$, hence a simplicial map.

Using the recommended definition for $\mathfrak{s . F}$ on contravariant functors, either to or from the reverses of these simplicial sets, we see

$$
\begin{aligned}
\left(\left[\mathfrak{s} \cdot \mathcal{D}^{\text {rev }}(\alpha) \circ \mathfrak{s} . F(\mathbf{n})\right](A)\right)(a, b) & =\left(\left[\mathfrak{s} \cdot \mathcal{D}\left(\alpha^{\text {rev }}\right) \circ \mathfrak{s} \cdot F(\mathbf{n})\right](A)\right)(a, b) \\
& =[\mathfrak{s} \cdot F(\mathbf{n})(A)]\left(\alpha^{\text {rev }}(a), \alpha^{\text {rev }}(b)\right) \\
& =[\mathfrak{s} \cdot F(\mathbf{n})(A)](n-\alpha(m-a), n-\alpha(m-b)) \\
& =F(A(n-(n-\alpha(m-b)), n-(n-\alpha(m-a)))) \\
& =F(A(\alpha(m-b), \alpha(m-a))) \\
& =F([\mathfrak{s} \cdot \mathcal{C}(\alpha)(A)](a, b)) \\
& =([\mathfrak{s} \cdot F(\mathbf{m}) \circ \mathfrak{s} \cdot \mathcal{C}(\alpha)](A))(a, b)
\end{aligned}
$$

when $\mathfrak{s} . F: \mathfrak{s} . \mathcal{C} \rightarrow \mathfrak{s} . \mathcal{D}^{\text {rev }}$, and

$$
\begin{aligned}
([\mathfrak{s} . \mathcal{D}(\alpha) \circ \mathfrak{s} . F(\mathbf{n})](A))(a, b) & =\mathfrak{s} . \mathcal{D}(\alpha)([\mathfrak{s} . F(\mathbf{n})(A)])(a, b) \\
& =[\mathfrak{s} . F(\mathbf{n})(A)](\alpha(a), \alpha(b)) \\
& =F(A(n-\alpha(b), n-\alpha(a))) \\
& =F\left(A\left(n-\left(\alpha^{\text {rev }}\right)^{\text {rev }}(b), n-\left(\alpha^{\text {rev }}\right)^{\text {rev }}(a)\right)\right) \\
& =F\left(A\left(n-\left(n-\alpha^{\text {rev }}(m-b)\right), n-\left(n-\alpha^{\text {rev }}(m-a)\right)\right)\right) \\
& =F\left(A\left(\alpha^{\text {rev }}(m-b), \alpha^{\text {rev }}(m-a)\right)\right) \\
& =F\left(\left[\mathfrak{s} \cdot \mathcal{C}\left(\alpha^{\text {rev }}\right)(A)\right](a, b)\right) \\
& =F\left(\left[\mathfrak{s} \cdot \mathcal{C}^{r e v}(\alpha)(A)\right](a, b)\right) \\
& =\mathfrak{s} . F(\mathbf{m})\left(\left[\mathfrak{s s} \cdot \mathcal{C}^{\text {rev }}(\alpha)\right](A)\right)(a, b) \\
& =\left(\left[\mathfrak{s} . F(\mathbf{m}) \circ \mathfrak{s} . \mathcal{C}^{\text {rev }}(\alpha)\right](A)\right)(a, b)
\end{aligned}
$$

when $\mathfrak{s} . F: \mathfrak{s} . \mathcal{C}^{\text {rev }} \rightarrow \mathfrak{s} . \mathcal{D}$. Therefore the natural transformation relation holds and these two forms of $\mathfrak{s} . F$ are simplicial maps. This gives conclusion (b).

1.2 Duality for $\mathfrak{s . P} R$

Using Theorem 1.1.3 and Example 5.2.1 from Chapter 1, we have

Theorem 1.2.1 Given the exact category $\mathcal{P} R$ of finitely generated, projective R-modules,
a) There is a map of simplicial sets $\mathfrak{s} .{ }^{*}: \mathfrak{s} \cdot \mathcal{P} R \rightarrow(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}$ defined, for $A \in \mathfrak{s} \cdot \mathcal{P} R_{n}$, by

$$
\left(\mathfrak{s .} .^{*} A\right)(i, j):=A(n-j, n-i)^{*},
$$

and

$$
\left(\mathfrak{s} .{ }^{*} A\right)((i, j) \leq(k, l)):=A((n-l, n-k) \leq(n-j, n-i))^{*} .
$$

b) There is a map of simplicial sets $\mathfrak{s .}$. $:(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }} \rightarrow \mathfrak{s} \cdot \mathcal{P} R$ defined, for $A \in \mathfrak{s . P} R_{n}^{\text {rev }}$, by

$$
\left(\mathfrak{s} .{ }^{*} A\right)(i, j):=A(n-j, n-i)^{*},
$$

and

$$
\left(\mathfrak{s} .{ }^{*} A\right)((i, j) \leq(k, l)):=A((n-l, n-k) \leq(n-j, n-i))^{*} .
$$

c) As maps of simplicial sets (from $\mathfrak{s} \cdot \mathcal{P} R$ to itself, and from $\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}$ to itself)

$$
\left(\mathfrak{s} . .^{*}\right)\left(\mathfrak{s} . .^{*}\right)=\mathfrak{s} . .^{* *} .
$$

Proof: First, note that so far there is no structure on

$$
\mathfrak{s . P} R_{n}=\{A: \operatorname{Ar}[\mathbf{n}] \rightarrow \mathcal{P} R \mid \mathrm{A} \text { is a normalized exact functor }\}
$$

beyond it being just a set of functors. But $\mathfrak{s .} .^{*}(\mathbf{n})(A)$ is a functor in $\mathfrak{s} . \mathcal{P} R_{n}^{\text {rev }}$ when $A \in \mathfrak{s .} \mathcal{P} R_{n}$. Thus $\mathfrak{s} .{ }^{*}(\mathbf{n})(A):=A^{*}$ must be defined on objects and morphisms of $\operatorname{Ar}[\mathbf{n}]$, so that $\mathfrak{s .}{ }^{*}(\mathbf{n})$ sends $\mathbf{n} \in \Delta^{o p}$ to a set $m a p$ (i.e. a morphism in \mathcal{S}) in order to have a natural transformation (i.e. simplicial map). By definition,

$$
\begin{aligned}
A^{*}(i, j) & =(A(n-j, n-i))^{*} \\
& ={ }^{*}(A(n-j, n-i)) \\
& \left.=\mathfrak{s} \cdot\left({ }^{*}\right)(\mathbf{n})(A)(i, j)\right)
\end{aligned}
$$

(parentheses used for emphasis in the notation of Lemma 1.2.3 of Chapter 2), and

$$
\begin{aligned}
A^{*}((i, j) \leq(k, l)) & =(A((n-l, n-k) \leq(n-j, n-i)))^{*} \\
& ={ }^{*}(A((n-l, n-k) \leq(n-j, n-i))) \\
& =\mathfrak{s} \cdot\left({ }^{*}\right)(\mathbf{n})(A)((i, j) \leq(k, l)) .
\end{aligned}
$$

Thus Theorem 1.1.3.b applies to the contravariant functor * $\mathcal{P} R \rightarrow \mathcal{P} R$, so that * induces the simplicial map $\mathfrak{s .}\left({ }^{*}\right): \mathfrak{s} . \mathcal{P} R \rightarrow(\mathfrak{s} . \mathcal{P} R)^{\text {rev }}$, which proves (a). Also, ${ }^{*}$ must induce the simplicial map $\mathfrak{s .}\left({ }^{*}\right):(\mathfrak{s} . \mathcal{P} R)^{\text {rev }} \rightarrow \mathfrak{s} . \mathcal{P} R$, which is (b). Finally, ${ }^{* *}={ }^{*} 0^{*}$ is a covariant functor, in which case Theorem 1.1.3.c and Lemma 1.2.3.b imply that, as simplicial maps either from $\mathfrak{s . P} R$ to itself or from $(\mathfrak{s . P} R)^{\text {rev }}$ to itself, $\mathfrak{s .}\left({ }^{* *}\right)=\mathfrak{s} .\left({ }^{(}\right) \circ \mathfrak{s} .\left({ }^{*}\right)$, which proves (c).

Remark 1.2.2 Note that * preserves "weak equivalences" in $\mathcal{P} R$, if these are defined to be the isomorphisms in $\mathcal{P} R$ (although the direction of the isomorphism is reversed of course).

Now, we note a theorem of Waldhausen:

Theorem 1.2.3 ([7], Lemma 1.4.1 b)) If \mathcal{C} and \mathcal{D} are two categories (with cofibrations), and F_{1}, F_{2} are two exact covariant functors from \mathcal{C} and \mathcal{D} with an isomorphism $\eta: F_{1} \rightarrow F_{2}$, then there is a simplicial homotopy equivalence, relative to the basepoint, which we will call $\mathfrak{s} \cdot \eta$, between $\mathfrak{s} . F_{1}$ and $\mathfrak{s} . F_{2}$.

Corollary 1.2.4 s. $^{* *}$ and id are homotopic simplicial maps (relative to the basepoint), whether considered as maps from $\mathfrak{s . P} R$ to itself, or as maps from $\mathfrak{s} . \mathcal{P} R^{\text {rev }}$ to itself.

The general theory of simplicial sets (i.e. Theorem 1.4.2 of Chapter 1) then tells us that

Corollary 1.2.5 The map on homotopy groups induced by $\mathfrak{s .}{ }^{* *}$ is equal to the identity homomorphism, and the simplicial maps

$$
\mathfrak{s .}{ }^{*}: \mathfrak{s} . \mathcal{P} R \rightarrow \mathfrak{s .} \cdot \mathcal{P} R^{\text {rev }}
$$

and

$$
\mathfrak{s .}{ }^{*}: \mathfrak{s} . \mathcal{P} R^{r e v} \rightarrow \mathfrak{s .} \mathcal{P} R
$$

induce isomorphisms on homotopy groups that are inverse to each other.

Thus we have the following from Theorem 4.2.5 of Chapter 1 and its Corollary.

Theorem 1.2.6 $G \mathfrak{s} . .^{*}: G(\mathfrak{s} . \mathcal{P} R) \rightarrow G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)$ and $G \mathfrak{s s} .^{*}: G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right) \rightarrow G(\mathfrak{s} . \mathcal{P} R)$ are loop homotopy equivalences. $G \mathfrak{s} .{ }^{* *}: G(\mathfrak{s} . \mathcal{P} R) \rightarrow G(\mathfrak{s} . \mathcal{P} R)$ is loop homotopic to the identity homomorphism, and thus simplicially homotopic to the identity homomorphism.

2 The Gillet-Grayson Simplicial Set[11, 12]

2.1

Definition 2.1.1 The Gillet-Grayson simplicial set, $\mathcal{G} . \mathcal{C}$ on a category \mathcal{C} with cofibrations has n simplices that are pairs of lower-triangular commutative diagrams built from exact sequences, where the
elements in the pair have all co-kernels in common:

$\mid A_{i} \mapsto A_{j} \rightarrow A_{i j}, B_{i} \mapsto B_{j} \rightarrow A_{i j}$ are short exact sequences $\left.\forall i<j\right\}$.

The face map $d_{i}, 0 \leq i \leq n$ is defined by deleting all objects with i in their subscript and composing morphisms accordingly, while degeneracy maps s_{i} is defined by repeating all such objects and inserting the appropriate identity morphisms.

Looking at Definition 2.1.1, we have 0 -simplices of the Gillet-Grayson simplicial set, $\mathcal{G} . \mathcal{P} R$, on the category $\mathcal{P} R$ of finitely generated projective modules as pairs of such modules:

$$
\mathcal{G} . \mathcal{P} R_{0}=\{(A, B) \mid A, B \in P R\} .
$$

1 -simplices are pairs of short exact sequences

$$
\left.x=\left(\begin{array}{ccc}
& A_{01} & \\
& \uparrow & \\
\\
A_{0}> & A_{01} & \\
& A_{1} & B_{0}>
\end{array}\right), B_{1}\right),
$$

2-simplices are pairs

where the squares are commutative and the sequences

$$
0 \rightarrow A_{i} \mapsto A_{j} \rightarrow A_{i j} \rightarrow 0
$$

and

$$
0 \rightarrow B_{i} \rightarrow B_{j} \rightarrow A_{i j} \rightarrow 0
$$

are short exact sequences. 3 -simplices are pairs

where squares are commutative and exact sequences are as described for $\mathcal{G} . \mathcal{P} R_{2}$ above.
Of course $\mathcal{G} \cdot \mathcal{P} R_{0}$ has no face maps operating on it, but the degeneracy s_{0} is defined by "duplicating" the modules in the pair $x=(A, B) \in \mathcal{G} \cdot \mathcal{P} R_{0}$ via identity maps:

In higher dimensions, the degeneracy s_{j} is computed by "duplicating" any module with j in its index (i.e. A_{j} in the bottom row and the $j^{\text {th }}$ column), inserting the identity map and the zero module where appropriate. For instance with $t \in \mathcal{G} \cdot \mathcal{P} R_{2}$ as above and $j=1$ we have

A face d_{i} is computed by deleting all modules with i in the index and composing homomorphisms and including the zero module where appropriate. For example:

the \circ indicating where a composition occurred.
Notice that for

we have

and

by Proposition 1.1.2, so that elements of $\mathcal{G} \cdot \mathcal{P} R_{n}$ can be identified with pairs of elements in $\mathfrak{s} \cdot \mathcal{P} R_{n+1}$. In fact, it is easily seen that if $x=\left(D_{1}, D_{2}\right) \in \mathcal{G} \cdot \mathcal{P} R_{n}, D_{1,2} \in \mathfrak{s} \cdot \mathcal{P} R_{n+1}$ then

$$
d_{i} x=\left(d_{i+1} D_{1}, d_{i+1} D_{2}\right)
$$

and

$$
s_{j} x=\left(s_{j+1} D_{1}, s_{j+1} D_{2}\right) .
$$

3 Duality on $N(Q \mathcal{P} R)$ and $S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}$

3.1

Just as we defined the simplicial maps $\mathfrak{s . *}: \mathfrak{s} \cdot \mathcal{P} R \leftrightarrow \mathfrak{s} . \mathcal{P} R^{\text {rev }}$, we want to see the effect of duality on the nerve of Quillen's category. We will use the descriptions of exact categories by Quillen and Waldhausen ([16],[7]), noting that $\mathcal{P} R$ is an exact category.

Since the objects of $Q \mathcal{P} R$ are those of $\mathcal{P} R$ itself, there is no problem with starting the definition of $*$ as a covariant functor on $Q \mathcal{P} R$ by $*(P)=P^{*}$, but we must define the morphisms carefully. Given a morphism α in $Q \mathcal{P} R$ represented by the diagram

we have by Definition 5.1.1 of Chapter 2 that p_{α} is an admissible surjection and i_{α} is an admissible
injection[16]. Taking duals as before for the (exact) category $\mathcal{P} R$ gives a diagram

for which there exists a pullback:

$$
U_{\alpha^{*}}:=\left\{\left(\tau_{1}, \tau_{2}\right) \in P^{*} \times Q^{*} \mid p_{\alpha}^{*}\left(\tau_{1}\right)=i_{\alpha}^{*}\left(\tau_{2}\right)\right\} \in \mathcal{P} R .
$$

Define morphisms $p_{\alpha^{*}}: U_{\alpha^{*}} \rightarrow P^{*}$ and $i_{\alpha^{*}}: U_{\alpha^{*}} \rightarrow Q^{*}$ by the appropriate coordinate projections.
Theorem 3.1.1 The diagram

defines a morphism α^{*} in $Q \mathcal{P} R$.
This fact comes from the following Lemmas:
Lemma 3.1.2 $p_{\alpha^{*}}$ is an admissible surjection.

Proof: Given $\tau_{1} \in P^{*}, p_{\alpha}^{*}\left(\tau_{1}\right) \in\left(U_{\alpha}\right)^{*}$ by definition. But i_{α}^{*} is surjective, so there is some $\tau_{2} \in Q^{*}$ such that $p_{\alpha}^{*}\left(\tau_{1}\right)=i_{\alpha}^{*}\left(\tau_{2}\right)$. So we have $\left(\tau_{1}, \tau_{2}\right) \in U_{\alpha^{*}}$ with $p_{\alpha^{*}}\left(\tau_{1}, \tau_{2}\right)=\tau_{1}$, so that $p_{\alpha^{*}}$ is surjective.

We also see that

$$
\begin{gathered}
\operatorname{ker}\left(p_{\alpha^{*}}\right)=\left\{\left(\tau_{1}, \tau_{2}\right) \in U_{\alpha^{*}} \mid\left(\tau_{1}, \tau_{2}\right)=\left(0, \tau_{2}\right)\right\} \\
=\left\{\left(0, \tau_{2}\right) \in P^{*} \times Q^{*} \mid i_{\alpha}^{*}\left(\tau_{2}\right)=p_{\alpha}^{*}(0)=0\right\}=\{0\} \times \operatorname{ker}\left(i_{\alpha}^{*}\right) .
\end{gathered}
$$

Lemma 1.2.3 tells us that $Q^{*} \in \mathcal{P} R$ and since i_{α} is admissible, i_{α}^{*} is admissible (and surjective) so that $Q^{*} \approx \operatorname{ker}\left(i_{\alpha}^{*}\right) \oplus U_{\alpha}^{*}$. Since $U_{\alpha}^{*} \in \mathcal{P} R$ as well, it follows that $\operatorname{ker}\left(i_{\alpha}^{*}\right) \in \mathcal{P} R$ and $\tilde{Q}:=\{0\} \times \operatorname{ker}\left(i_{\alpha}^{*}\right) \in \mathcal{P} R$. Now we have an exact sequence (with the appropriate inclusion on the left)

$$
\tilde{Q} \mapsto U_{\alpha^{*}} \xrightarrow{p_{\alpha^{*}}} P^{*}
$$

in $\mathcal{P} R$, so $p_{\alpha^{*}}$ is an admissible surjection.

Lemma 3.1.3 $i_{\alpha^{*}}$ is an admissible injection.

Proof: Suppose $i_{\alpha^{*}}\left(\tau_{1}, \tau_{2}\right)=0 \in Q^{*}$. Then by definition $\tau_{2}=0$ so $\left(\tau_{1}, \tau_{2}\right)=\left(\tau_{1}, 0\right) \in U_{\alpha^{*}}$. Thus $p_{\alpha}^{*}\left(\tau_{1}\right)=$ $i_{\alpha}^{*}(0)=0$, in which case $\tau_{1}=0$ since p_{α}^{*} is injective. It follows that $i_{\alpha^{*}}$ is injective. Now with $\tilde{Q}:=Q^{*} / i m\left(i_{\alpha^{*}}\right)$ and the natural, surjective homomorphism $\pi: Q^{*} \rightarrow \tilde{Q}$, we see that

$$
U_{\alpha^{*}} \stackrel{i_{\alpha^{*}}}{\longrightarrow} Q^{*} \xrightarrow{\pi} \tilde{Q}
$$

is a short exact sequence. Therefore $i_{\alpha^{*}}$ is an admissible injection.

Lemma 3.1.4 The assignments $P \mapsto P^{*}, \alpha \mapsto \alpha^{*}$ for objects P and morphisms α in $Q \mathcal{P} R$ define a covariant functor from $Q \mathcal{P} R$ to itself.

To prove this, we must show that the diagrams corresponding to $\beta^{*} \circ \alpha^{*}$ and $(\beta \circ \alpha)^{*}$ are in the same isomorphism class defining a morphism in $Q \mathcal{P} R$ (denoted $(\beta \circ \alpha)^{*}=\beta^{*} \circ \alpha^{*}$ in $Q \mathcal{P} R$) for any composeable (classes of) diagrams $\alpha: P \cdots \rightarrow Q, \beta: Q \cdots \rightarrow S$ in $Q \mathcal{P} R$ as in Definition 5.1.1 of Chapter 2[11]. By this definition([11],[16]), compositions $\beta \circ \alpha$ in $Q \mathcal{P} R$ are given via pullbacks

$$
U_{\beta \circ \alpha}:=U_{\alpha} \times{ }_{Q} U_{\beta}=\left\{(z, w) \in U_{\alpha} \times U_{\beta} \mid i_{\alpha}(z)=p_{\beta}(w) \in Q\right\}
$$

and admissible morphisms $p_{\beta \circ \alpha}(z, w)=p_{\alpha}(z), i_{\beta \circ \alpha}(z, w)=i_{\beta}(w)$ for diagram

Taking the dual directly for such diagram yields

wherein

$$
U_{(\beta \circ \alpha)^{*}}=\left\{(\chi, \nu) \in P^{*} \times S^{*} \mid\left(p_{\beta \circ \alpha}\right)^{*}(\chi)=\left(i_{\beta \circ \alpha}\right)^{*}(\nu)\right\},
$$

$p_{(\beta \circ \alpha)^{*}}(\chi, \nu)=\chi$, and $i_{(\beta \circ \alpha)^{*}}(\chi, \nu)=\nu$. On the other hand, taking duals first and composing β^{*} with α^{*} gives the diagram

where by definition of α^{*} and β^{*}

$$
\begin{gathered}
U_{\beta^{*} \circ \alpha^{*}}=U_{\alpha^{*}} \times{ }_{Q^{*}} U_{\beta^{*}} \\
=\left\{((\chi, \hat{\chi}),(\hat{\nu}, \nu)) \in U_{\alpha^{*}} \times U_{\beta^{*}} \mid i_{\alpha^{*}}(\chi, \hat{\chi})=p_{\beta^{*}}(\hat{\nu}, \nu)\right\} \\
=\left\{((\chi, \hat{\chi}),(\hat{\nu}, \nu)) \in U_{\alpha^{*}} \times U_{\beta^{*}} \mid \hat{\chi}=\hat{\nu}\right\}
\end{gathered}
$$

Therefore the proof of Lemma 3.1.4 reduces to proving the following theorem.
Theorem 3.1.5 There is an isomorphism $T: U_{(\beta \circ \alpha)^{*}} \rightarrow U_{\beta^{*} \circ \alpha^{*}}$ for which $i_{\beta^{*} \circ \alpha^{*}} \circ T=i_{(\beta \circ \alpha)^{*}}$ and $p_{\beta^{*} \circ \alpha^{*}} \circ$ $T=p_{(\beta \circ \alpha)^{*}}$.

The following two lemmas give the proof.

Lemma 3.1.6 Given $(\chi, \nu) \in U_{(\beta \circ \alpha)^{*}} \subseteq P^{*} \times S^{*}$, there is a unique $\hat{\nu} \in Q^{*}$ for which $\nu \circ i_{\beta}=\hat{\nu} \circ p_{\beta}: U_{\beta} \rightarrow R$.

Proof: Given $y \in Q$, identify a $w \in U_{\beta}$ for which $y=p_{\beta}(w)$ and set $\hat{\nu}(y)=\nu\left(i_{\beta}(w)\right)$. Since p_{β} is surjective, given any $y \in Q$ there is such a $w \in U_{\beta}$, in which case $\nu\left(i_{\beta}(w)\right) \in R$ is defined whenever $\nu \in S^{*}$ for every $y \in Q$. Set $\hat{\nu}(y):=\nu\left(i_{\beta}(w)\right)$ for such w.

Suppose $y=y^{\prime} \in Q$ with $p_{\beta}(w)=y$ for some $w \in U_{\beta}$; then $p_{\beta}(w)=y^{\prime}$ as well so $\hat{\nu}(y)=\nu\left(i_{\beta}(w)\right)=\hat{\nu}\left(y^{\prime}\right)$, hence $\hat{\nu}$ is well-defined on Q. On the other hand, if $w, w^{\prime} \in U_{\beta}$ have $p_{\beta}(w)=p_{\beta}\left(w^{\prime}\right)=y$ then

$$
p_{\beta}(w)-p_{\beta}\left(w^{\prime}\right)=p_{\beta}\left(w-w^{\prime}\right)=0=i_{\alpha}(0)
$$

since i_{α} is injective. By definition it follows that $\left(0, w-w^{\prime}\right) \in U_{\beta \circ \alpha}$. Since $(\chi, \nu) \in U_{(\beta \circ \alpha)^{*}}$ we now have

$$
\left[\left(p_{\beta \circ \alpha}\right)^{*}(\chi)\right]\left(0, w-w^{\prime}\right)=\left[\left(i_{\beta \circ \alpha}\right)^{*}(\nu)\right]\left(0, w-w^{\prime}\right)
$$

Now

$$
\left[\left(p_{\beta \circ \alpha}\right)^{*}(\chi)\right]\left(0, w-w^{\prime}\right)=\chi\left(p_{\beta \circ \alpha}\left(0, w-w^{\prime}\right)\right)=\chi\left(p_{\alpha}(0)\right)=\chi(0)=0
$$

and

$$
\left[\left(i_{\beta \circ \alpha}\right)^{*}(\nu)\right]\left(0, w-w^{\prime}\right)=\nu\left(i_{\beta \circ \alpha}\left(0, w-w^{\prime}\right)\right)=\nu\left(i_{\beta}\left(w-w^{\prime}\right)\right)=\nu\left(i_{\beta}(w)-i_{\beta}\left(w^{\prime}\right)\right)=\nu\left(i_{\beta}(w)\right)-\nu\left(i_{\beta}\left(w^{\prime}\right)\right)
$$

Therefore $\nu\left(i_{\beta}(w)\right)-\nu\left(i_{\beta}\left(w^{\prime}\right)\right)=0$ so that $\nu\left(i_{\beta}(w)\right)=\nu\left(i_{\beta}\left(w^{\prime}\right)\right)=\hat{\nu}(y)$. Thus $\hat{\nu}$ does not depend on the preimage w chosen for y.

Given $r \in R, y_{1}, y_{2} \in Q$, there are w_{1}, w_{2} with $p_{\beta}\left(w_{1}\right)=y_{1}$ and $p_{\beta}\left(w_{2}\right)=y_{2}$. Since p_{β} is a homomorphism we have $p_{\beta}\left(r w_{1}+w_{2}\right)=r y_{1}+y_{2}$, so

$$
\hat{\nu}\left(r y_{1}+y_{2}\right)=\nu\left(i_{\beta}\left(r w_{1}+w_{2}\right)\right)=\nu\left(r i_{\beta}\left(w_{1}\right)+i_{\beta}\left(w_{2}\right)\right)=r \nu\left(i_{\beta}\left(w_{1}\right)\right)+\nu\left(i_{\beta}\left(w_{2}\right)\right)=r \hat{\nu}\left(y_{1}\right)+\hat{\nu}\left(y_{2}\right) .
$$

Therefore $\hat{\nu} \in Q^{*}$. Toward uniqueness, suppose that $\nu^{\prime} \in Q^{*}$ has $\nu^{\prime} \circ p_{\beta}=\nu \circ i_{\beta}$. Then for any $y \in Q$ with $p_{\beta}(w)=y$ for $w \in U_{\beta}$,

$$
\nu^{\prime}(y)=\nu^{\prime}\left(p_{\beta}(w)\right)=\nu\left(i_{\beta}(w)\right)=\hat{\nu}(y)
$$

by definition. Therefore $\nu^{\prime}(y)=\hat{\nu}(y) \forall y \in Q$ and $\hat{\nu}$ is unique.

Lemma 3.1.7 Let $(\chi, \nu) \in U_{(\beta \circ \alpha)^{*}}$ with corresponding $\hat{\nu}$ from Lemma 3.1.6.
a) $(\chi, \hat{\nu}) \in U_{\alpha^{*}}$.
b) $(\hat{\nu}, \nu) \in U_{\beta^{*}}$.

Proof: Let $(\chi, \nu) \in U_{(\beta \circ \alpha)^{*}}$. Then given any $(z, w) \in U_{\beta \circ \alpha}$,

$$
\left[\left(p_{\beta \circ \alpha}\right)^{*}(\chi)\right](z, w)=\left[\left(i_{\beta \circ \alpha}\right)^{*}(\nu)\right](z, w)
$$

so that $\chi\left(p_{\alpha}(z)\right)=\nu\left(i_{\beta}(w)\right)$. Take $u \in U_{\alpha}$. Since $i_{\alpha}(u) \in Q$ and p_{β} is surjective, $\exists v \in U_{\beta}$ with $p_{\beta}(v)=i_{\alpha}(u)$. For such v we now have $(u, v) \in U_{\beta \circ \alpha}$, in which case

$$
\hat{\nu}\left(i_{\alpha}(u)\right)=\nu\left(i_{\beta}(v)\right)=\chi\left(p_{\alpha}(u)\right)=\left[\left(p_{\alpha}\right)^{*}(\chi)\right](u) .
$$

It follows that $\left(p_{\alpha}\right)^{*}(\chi)=\left(i_{\alpha}\right)^{*}(\hat{\nu})$, hence $(\chi, \hat{\nu}) \in U_{\alpha^{*}}$ for (a).
Again by definition of $\hat{\nu}, y=p_{\beta}(w)$ for some $w \in U_{\beta}$ for each $y \in Q$, implies

$$
\hat{\nu}\left(p_{\beta}(w)\right)=\nu\left(i_{\beta}(w)\right) \forall w \in U_{\beta} .
$$

Therefore $\left(p_{\beta}\right)^{*}(\hat{\nu})=\left(i_{\beta}\right)^{*}(\nu)$, hence $(\hat{\nu}, \nu) \in U_{\beta^{*}}$. This proves (b).

Now given such $\hat{\nu}$ corresponding to $(\chi, \nu) \in U_{(\beta \circ \alpha)^{*}}$, define $T: U_{(\beta \circ \alpha)^{*}} \rightarrow P^{*} \times Q^{*} \times Q^{*} \times S^{*}$ by $(\chi, \nu) \mapsto(\chi, \hat{\nu}, \hat{\nu}, \nu)$. Since $\hat{\nu}=\hat{\nu}$ we see that $T(\chi, \nu) \in U_{\beta^{*} \circ \alpha^{*}}$. But $\nu \equiv 0$ if and only if $\hat{\nu} \equiv 0$, and if $T(\chi, \nu)=(0,0,0,0)=(\chi, \hat{\nu}, \hat{\nu}, \nu)$ then clearly $\chi \equiv 0$ and $\nu \equiv 0$. Therefore T is injective.

By definition of $U_{\beta^{*}}$, if $(\chi, \gamma, \gamma, \nu) \in U_{\beta^{*} \circ \alpha^{*}}$ then $(\gamma, \nu) \in U_{\beta^{*}}$, so that $\gamma\left(p_{\beta}(u)\right)=\nu\left(i_{\beta}(u)\right) \forall u \in U_{\beta}$. Therefore $\gamma \circ p_{\beta}=\nu \circ i_{\beta}$, so by uniqueness of $\hat{\nu}$ we have $\gamma=\hat{\nu}$ hence

$$
(\chi, \gamma, \gamma, \nu)=(\chi, \hat{\nu}, \hat{\nu}, \nu)=T(\chi, \nu)
$$

in which case T is surjective. By construction of this isomorphism T we now have

$$
p_{\beta^{*} \circ \alpha^{*}}(T(\chi, \nu))=p_{\beta^{*} \circ \alpha^{*}}(\chi, \hat{\nu}, \hat{\nu}, \nu)=p_{\alpha^{*}}(\chi, \hat{\nu})=\chi=p_{(\beta \circ \alpha)^{*}}(\chi, \nu)
$$

and

$$
i_{\beta^{*} \circ \alpha^{*}}(T(\chi, \nu))=i_{\beta^{*} \circ \alpha^{*}}(\chi, \hat{\nu}, \hat{\nu}, \nu)=i_{\beta^{*}}(\hat{\nu}, \nu)=\nu=i_{(\beta \circ \alpha)^{*}}(\chi, \nu)
$$

Thus Theorem 3.1.5 is proven and such T is sufficient to have $(\beta \circ \alpha)^{*} \equiv \beta^{*} \circ \alpha^{*}$ as morphisms in $Q \mathcal{P} R$.
Consider the identity morphism in $Q \mathcal{P} R$,

on an object P of $Q \mathcal{P} R$. Taking the dual results in

where

$$
U_{I^{*}}=\left\{(\chi, \hat{\chi}) \in P^{*} \times P^{*} \mid\left(p_{I}\right)^{*}(\chi)=\left(i_{I}\right)^{*}(\hat{\chi})\right\}
$$

$p_{I^{*}}(\chi, \hat{\chi})=\chi$ and $i_{I^{*}}(\chi, \hat{\chi})=\hat{\chi}$. But since $p_{I}=i d_{P}=i_{I}$, we have $U_{I^{*}}=\{(\chi, \hat{\chi}) \mid \chi=\hat{\chi}\}$ and $p_{I^{*}}(\chi, \hat{\chi})=$ $\chi=i d_{P^{*}}(\chi)=i_{I^{*}}(\chi, \hat{\chi})$. It follows that $\left(I_{P}\right)^{*} \equiv I_{P^{*}}$ as morphisms in $Q \mathcal{P} R$. The result is now the main result of this section:

Theorem 3.1.8 $*: Q \mathcal{P} R \rightarrow Q \mathcal{P} R$ by $P \mapsto P^{*}$ and $(\alpha: P \cdots \rightarrow Q) \mapsto\left(\alpha^{*}: P^{*} \cdots \rightarrow Q^{*}\right)$, with α^{*} as described herein, is a covariant functor from $Q \mathcal{P} R$ to itself.

Since the 1 -simplices of the nerve $N(Q \mathcal{P} R)$ are precisely the morphisms of $Q \mathcal{P} R$, notice the effect of duality on two of the important simplices described in [11]: the morphisms

and

Corollary 3.1.9 There exists a simplicial map N.*: $N(Q \mathcal{P} R) \rightarrow N(Q \mathcal{P} R)$ with $q_{P} \mapsto \iota_{P^{*}}$ and $\iota_{P} \mapsto q_{P^{*}}$ $\forall P \in N(Q \mathcal{P} R)_{0}$.

Proof: We calculate $U_{q^{*}}=\left\{(\chi, \nu) \in 0 \times P^{*} \mid\left(p_{q}\right)^{*}(\chi)=\left(i_{q}\right)^{*}(\nu)\right\}$; clearly $\chi \equiv 0$ and $\forall u \in P$,

$$
\left[\left(p_{q}\right)^{*}(\chi)\right](u)=\left[\left(p_{q}\right)^{*}(0)\right](u)=0=\left[\left(i_{q}\right)^{*}(\nu)\right](u)=\nu\left(i_{q}(u)\right)=\nu(u)
$$

so $\nu(u)=0 \forall u \in P$. It follows that $U_{q^{*}}=\{0\}$. Therefore $\left(q_{P}\right)^{*} \equiv \iota_{P^{*}} \in N(Q \mathcal{P} R)_{1}$. Similarly $U_{\iota^{*}}=$ $\left\{(\chi, \nu) \in 0 \times P^{*} \mid\left(p_{\iota}\right)^{*}(\chi)=\left(i_{\iota}\right)^{*}(\nu)\right\}$. For any $\nu \in P^{*}$ and any $u \in P$,

$$
\left[\left(i_{\iota}\right)^{*}(\nu)\right](u)=\nu\left(i_{\iota}(u)\right)=\nu(0)=0=\left[\left(p_{\iota}\right)^{*}(0)\right](u)=\left[\left(p_{\iota}\right)^{*}(\chi)\right](u)
$$

in which case $\left(p_{\iota}\right)^{*}(\chi)=\left(i_{\iota}\right)^{*}(\nu) \forall \nu \in P^{*}$. Therefore $U_{\iota^{*}}=0 \times P^{*} \approx P^{*}$. Also, by definition $p_{\iota^{*}}(0, \nu)=0$ so that $p_{\iota^{*}} \equiv 0$, and $i_{\iota^{*}}(0, \nu)=\nu$ so $i_{\iota^{*}}=i d_{P^{*}}$. It follows that $\left(\iota_{P}\right)^{*}=q_{P^{*}} \in N(Q \mathcal{P} R)_{1}$.

We apply this construction to the simplicial set $N(Q \mathcal{P} R)$. Given $x=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}\right) \in N(Q \mathcal{P} R)_{n}$, define $N . *(x)=x^{*}=\left(\alpha_{1}^{*}\left|\alpha_{2}^{*}\right| \cdots \mid \alpha_{n}^{*}\right) \in N(Q \mathcal{P} R)_{n}$. This operation clearly commutes with face maps and degeneracy maps in $N(Q \mathcal{P} R)$ and our conclusion follows.

The application of duality to the Segal subdivision $S d(\mathfrak{s} \cdot \mathcal{P} R)$ of the Waldhausen simplicial set is an easy extension from what we have already calculated for the Waldhausen case. For the subdivision, we have functoriality as mentioned in Example 5.2.6 of Chapter 1(see [10]), so that if $f: X \rightarrow Y$ is a simplicial map, then so is $S d(f): S d(X) \rightarrow S d(Y)$ defined by $S d(f)_{n}(x)=f_{2 n+1}(x) \in Y_{2 n+1}=S d(Y)_{n}$. From our earlier construction of the simplicial maps s.* : s. $\mathcal{P} R \longleftrightarrow \mathfrak{s .} \mathcal{P} R^{\text {rev }}$, we now have simplicial maps $S d(s . *): S d(\mathfrak{s} . \mathcal{P} R) \longleftrightarrow S d\left(\mathfrak{s} . \mathcal{P} R^{r e v}\right)$. Consequently:

Corollary 3.1.10 There exist simplicial maps

$$
S d(s . *): S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }} \longleftrightarrow S d\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}
$$

4 Star-Connectedness and $S d(\mathfrak{s} \cdot \mathcal{P} R)$

First, recall the definition of a map of star-connected simplicial sets from [11] and Example 4.3.1 of Chapter 1, also referred to as a map of triples $f:(X, 0, \omega) \rightarrow(\tilde{X}, \tilde{0}, \tilde{\omega})$. These are simplicial maps of pairs (not necessarily Kan) $f:(X, 0) \rightarrow(\tilde{X}, \tilde{0})$ where $(X, 0)$ and $(\tilde{X}, \tilde{0})$ are both pointed, star-connected simplicial sets and $\tilde{\omega} \circ f=f \circ \omega$ for ray functions $\omega, \widetilde{\omega}$ on X_{0}, \tilde{X}_{0} respectively.

Lemma 4.0.11 $S d(\mathfrak{s} . \mathcal{P} R)^{\text {rev }}$ is star-connected at 0 .

Proof: Let d_{i} be face maps on $\mathfrak{s} \cdot \mathcal{P} R, d_{i}^{S d}$ denote face maps on the Segal subdivision, and $\hat{d}_{i}^{S d}$ on its reverse. By definition $S d(\mathfrak{s} \cdot \mathcal{P} R)_{0}^{\text {rev }}=\mathfrak{s} \cdot \mathcal{P} R_{1}=\operatorname{Ob}(\mathcal{P} R)$, so consider $P \in \mathcal{P} R$ and define $\omega_{1}: S d(\mathfrak{s} \cdot \mathcal{P} R)_{0}^{\text {rev }} \rightarrow$ $S d(\mathfrak{s} . \mathcal{P} R)_{1}^{r e v}$ by

Then

$$
\begin{array}{r}
\hat{d}_{1}^{S d}\left(\omega_{1}(P)\right)=d_{0}^{S d}\left(\omega_{1}(P)\right)=d_{0} d_{3}\left(\omega_{1}(P)\right) \\
=d_{0}\left(\begin{array}{r}
0 \\
\\
\\
\\
\\
\\
\\
P
\end{array}\right)=0
\end{array}
$$

and

$$
\begin{aligned}
& \hat{d}_{0}^{S S}\left(\omega_{1}(P)\right)=d_{1}^{S d}\left(\omega_{1}(P)\right)=d_{1} d_{2}\left(\omega_{1}(P)\right) \\
& \quad=d_{1}\left(\begin{array}{r}
0 \\
\\
\\
P>
\end{array}\right)=P
\end{aligned}
$$

These calculations hold for any $P \in S d(\mathfrak{s} . \mathcal{P} R)_{0}^{r e v}$, so $S d(\mathfrak{s} \cdot \mathcal{P} R)^{r e v}$ is star-connected at 0 with ray function ω_{1}

Lemma 4.0.12 $S d\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}$ is star-connected at 0 with ray function given by

$$
\omega_{2}(P)=\left(\omega_{1}\left(P^{*}\right)\right)^{*},
$$

where ω_{1} is the ray function for star-connected $S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}$.

Proof: By definition and what we have seen before for duality,
(up to isomorphism $\left(P^{*}\right)^{*} \approx P$ via Lemma 1.2.3.d of Chapter 2). Using the face maps $d_{i}, d_{i}^{S d}$, from Lemma 4.0.11 along with the face maps $\tilde{d}_{i}^{S d}$ on $S d\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}$ and d_{i}^{r} on $\mathfrak{s} . \mathcal{P} R^{\text {rev }}$, we calculate

$$
\begin{aligned}
& \tilde{d}_{1}^{S d}\left(\omega_{2}(P)\right)=d_{0}^{S d}\left(\omega_{2}(P)\right)=d_{0}^{r} d_{3}^{r}\left(\omega_{2}(P)\right) \\
& \quad=d_{2} d_{0}\left(\omega_{2}(P)=d_{2}\left(\begin{array}{r}
P \\
\\
\\
\\
\\
\\
\\
\hline
\end{array}\right)=0\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{d}_{0}^{S d}\left(\omega_{2}(P)\right)=d_{1}^{S d}\left(\omega_{2}(P)\right)=d_{1}^{r} d_{2}^{r}\left(\omega_{2}(P)\right) \\
& =d_{1} d_{1}\left(\omega_{2}(P)\right)=d_{1}\left(\begin{array}{r}
P \\
\\
\\
0>
\end{array}\right)=P
\end{aligned}
$$

These calculations hold for any $P \in O b(\mathcal{P} R)=\mathfrak{s} \cdot \mathcal{P} R_{1}=\mathfrak{s} \cdot \mathcal{P} R_{1}^{\text {rev }}=S d\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)_{0}^{\text {rev }}$, so $S d(\mathfrak{s} . \mathcal{P} R)^{\text {rev }}$ is star-connected at 0 with ray function ω_{2}

Lemma 4.0.13 $S d(s . *):\left(S d(\mathfrak{s} . \mathcal{P} R)^{\text {rev }}, 0, \omega_{1}\right) \longleftrightarrow\left(S d\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}, 0, \omega_{2}\right)$ are maps of star-connected simplicial sets.

Proof: Noticing that $\omega_{2}=(s . *)_{3} \circ \omega_{1} \circ(s . *)_{1}$ for the simplicial maps $s . *: \mathfrak{s .} \mathcal{P} R \longleftrightarrow \mathfrak{s .} \mathcal{P} R^{r e v}$, we find first of all that up to isomorphism

$$
\begin{gathered}
S d(s . *)_{1}\left(\omega_{1}(P)\right)=(s . *)_{3}\left(\omega_{1}(P)\right)=(s . *)_{3}\left(\omega_{1}\left(\left(P^{*}\right)^{*}\right)\right)=(s . *)_{3}\left(\omega_{1}\left((s . *)_{1}\left(P^{*}\right)\right)\right)=\omega_{2}\left(P^{*}\right) \\
=\omega_{2}\left((s . *)_{1}(P)\right)=\omega_{2}\left(S d(s . *)_{0}(P)\right)
\end{gathered}
$$

for every $P \in S d(\mathfrak{s} . \mathcal{P} R)_{0}^{\text {rev }}$. Also, we have from Lemma 1.2.3.d of Chapter 2 that the functor $* 0 *$ is equivalent to the identity functor on $\mathcal{P} R$, so that $s . * \circ s . *$ is the identity and therefore

$$
S d(s . *)_{1}\left(\omega_{2}(P)\right)=(s . *)_{3}\left((s . *)_{3} \circ \omega_{1} \circ(s . *)_{1}(P)\right)=\omega_{1}\left((s . *)_{1}(P)\right)=\omega_{1}\left(S d(s . *)_{0}(P)\right)
$$

for every $P \in S d\left(\mathfrak{s} . \mathcal{P} R^{r e v}\right)_{0}^{r e v}$. Thus $S d(s . *) \circ \omega_{1}=\omega_{2} \circ S d(s . *)$ and $S d(s . *) \circ \omega_{2}=\omega_{1} \circ S d(s . *)$, so $S d(s . *)$ is a map of star-connected simplicial sets in each case.

Lemma 4.0.14 $N(Q \mathcal{P} R)$ is star-connected at basepoint $0 \in \mathcal{P} R$; two different ray functions are given by $\widetilde{\omega}_{1}(P)=q_{P} \in N(Q \mathcal{P} R)_{1}$ and $\widetilde{\omega}_{2}(P)=\iota_{P} \in N(Q \mathcal{P} R)_{1}$.

Proof: We can see just by using the notation for the nerve of a simplicial set that for face maps d_{i} on $N(Q \mathcal{P} R)_{1}, d_{0}\left(0 \cdots \xrightarrow{q_{P}} P\right)=P$ and $d_{1}\left(0 \cdots \xrightarrow{q_{P}} P\right)=0$ for every $P \in O b(\mathcal{P} R)=N(Q \mathcal{P} R)_{0}$. Similarly, $d_{0}\left(0 \cdots \xrightarrow{\iota_{P}} P\right)=P$ and $d_{1}\left(0 \cdots \xrightarrow{\iota_{P}} P\right)=0$ for each such P. Therefore setting $\widetilde{\omega}_{1}(P)=q_{P}$ and $\widetilde{\omega}_{2}(P)=\iota_{P}$ defines two different ray functions so that $N(Q \mathcal{P} R)$ is star-connected.

Lemma 4.0.15 N.*: $\left(N(Q \mathcal{P} R), 0, \widetilde{\omega}_{1}\right) \longleftrightarrow\left(N(Q \mathcal{P} R), 0, \widetilde{\omega}_{2}\right)$ are maps of star-connected simplicial sets.

Proof: We calculate

$$
(N . *)_{1} \circ \widetilde{\omega}_{1}(P)=(N . *)_{1}\left(q_{P}\right)=q_{P}^{*}=\iota_{P^{*}}=\widetilde{\omega}_{2}\left(P^{*}\right)=\widetilde{\omega}_{2}\left((N . *)_{0}(P)\right),
$$

and

$$
(N . *)_{1} \circ \widetilde{\omega}_{2}(P)=(N . *)_{1}\left(\iota_{P}\right)=\left(\iota_{P}\right)^{*}=q_{P^{*}}=\widetilde{\omega}_{1}\left(P^{*}\right)=\widetilde{\omega}_{1}\left((N . *)_{0}(P)\right) .
$$

Therefore, in either direction, $N . *$ is a map of star-connected simplicial sets by definition.

Now Lemma 4.0.22 of [11] implies that $N . *: T_{\widetilde{\omega}_{1}}(N(Q \mathcal{P} R)) \longleftrightarrow T_{\widetilde{\omega}_{2}}(N(Q \mathcal{P} R))$ for maximal trees $T_{\widetilde{\omega}_{1}}, T_{\widetilde{\omega}_{2}}$; consequently there exist homomorphisms of simplicial groups

$$
G\left(N(Q \mathcal{P} R), T_{\widetilde{\omega}_{1}}\right) \xrightarrow{G(N . *)} G\left(N(Q \mathcal{P} R), T_{\widetilde{\omega}_{2}}\right) \xrightarrow{G(N . *)} G\left(N(Q \mathcal{P} R), T_{\widetilde{\omega}_{1}}\right) .
$$

Similarly there are homomorphisms of simplicial groups

$$
G\left(S d(\mathfrak{s} \cdot \mathcal{P} R)^{r e v}, T_{\omega_{1}}\right) \xrightarrow{G(S d(s . *))} G\left(S d\left(\mathfrak{s} . \mathcal{P} R^{r e v}\right)^{r e v}, T_{\omega_{2}}\right) \xrightarrow{G(S d(s . *))} G\left(S d(\mathfrak{s} \cdot \mathcal{P} R)^{r e v}, T_{\omega_{1}}\right) .
$$

5 Connections between $N(Q \mathcal{P} R), S d(\mathfrak{s} . \mathcal{P} R)$ and $\mathfrak{s} . \mathcal{P} R$

Our goal is now to review the role of the maps H and I whose induced maps are part of the mapping

as in [11] and to reestablish H, I and induced maps thereof as maps that can be used with the duality described in Chapter 2. Recall that $\mathfrak{s} . \mathcal{P} R$ is a reduced simplicial set with unique 0 -simplex denoted 0 , hence is clearly star-connected with ray function $\omega_{0} \equiv 0_{1}=s_{0}(0)=0 \in \mathcal{P} R$.

We restate definitions from $[10,11]$ for H and I : Given A in any of the (equivalent) sets

$$
\mathfrak{s .} \mathcal{P} R_{2 n+1}=S d(\mathfrak{s} \cdot \mathcal{P} R)_{n}=S d(\mathfrak{s} \cdot \mathcal{P} R)_{n}^{\text {rev }}=S d\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)^{\text {rev }},
$$

we have

$$
H(A)=\left(a_{1}\left|a_{2}\right| \cdots\left|a_{n-k}\right| \cdots \mid a_{n}\right) \in N(Q \mathcal{P} R)_{n}
$$

is a composition of morphisms

for the appropriate i and p from the rows and columns defining A, for each $0 \leq k \leq n-1$. For this same A,

$$
I(A)=\overbrace{d_{0} d_{0} \cdots d_{0}}^{n+1}(A) \in \mathfrak{s} . \mathcal{P} R_{n}=\mathfrak{s} \cdot \mathcal{P} R_{n}^{\text {rev }}
$$

where we are careful to apply the correct face maps depending on whether we are in the simplicial set or its reverse.

Theorem 5.0.16 In the diagram

all arrows are maps of triples and all squares commute.

Proof: Let d_{i} denote face maps on $\mathfrak{s} \cdot \mathcal{P} R, d_{i}^{\text {rev }}$ face maps on $\mathfrak{s} . \mathcal{P} R^{\text {rev }}$. Since
and $\left(\right.$ with $\left.I\left(\omega_{2}(P)\right)=d_{0}^{\text {rev }} d_{0}^{r e v}\left(\omega_{2}(P)\right)\right)$

for any $P \in S d(\mathfrak{s} \cdot \mathcal{P} R)_{0}^{r e v}$, we see that both versions of the map I are maps of triples. Given $A \in$ $S d(\mathfrak{s} \cdot \mathcal{P} R)_{n}^{\text {rev }}=\mathfrak{s} \cdot \mathcal{P} R_{2 n+1}$ as a triangular commutative diagram with entries $A_{i, j} \in \mathcal{P} R, 0 \leq i<j \leq 2 n+1$ we calculate

in $\mathfrak{s} \cdot \mathcal{P} R_{n}$, so that

also $S d(s . *)(A)=A^{*} \in \mathfrak{s} \cdot \mathcal{P} R_{2 n+1}^{r e v}=S d\left(\mathfrak{s} \cdot \mathcal{P} R^{r e v}\right)_{n}^{r e v}$, hence

$$
I(S d(s . *)(A))=\overbrace{d_{0}^{r e v} d_{0}^{r e v} \cdots d_{0}^{r e v}}^{n+1}(S d(s . *)(A))=d_{n+1} d_{n+2} \cdots d_{2 n} d_{2 n+1}\left(A^{*}\right)
$$

When $A \in S d\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)_{n}^{\text {rev }}=\mathfrak{s} \cdot \mathcal{P} R_{2 n+1}^{\text {rev }}$ we have

$$
(s . *)_{n}(I(A))=(s . *)_{n}(\overbrace{d_{0}^{r e v} d_{0}^{r e v} \cdots d_{0}^{r e v}}^{n+1}(A))=(s . *)_{n}\left(d_{n+1} d_{n+2} \cdots d_{2 n+1}(A)\right)^{*}
$$

and

$$
I(S d(s . *)(A))=\overbrace{d_{0} d_{0} \cdots d_{0}}^{n+1}\left(A^{*}\right)
$$

Thus the top two squares of the diagram are commutative squares of maps of triples.
Considering H, we find that

and (since $\left.H_{0}=i d_{O b(\mathcal{P} R)}\right)$

$$
\widetilde{\omega}_{1}(H(P))=\widetilde{\omega}_{1}(P)=H\left(\omega_{1}(P)\right) .
$$

Similarly, $\widetilde{\omega}_{2}(H(P))=\widetilde{\omega}_{2}(P)=\iota_{P}$ and

Therefore both versions of H are maps of triples. Looking closer at H for a given $A \in \mathfrak{s} \cdot \mathcal{P} R_{2 n+1}$ will require us to consider for any $0 \leq k \leq n-1$ the commutative squares

in the triangular, commutative diagrams representing A, A^{*}, respectively, in $S d\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)^{r e v}$, as well as the (short) exact sequences

where q is the appropriate composition by definition of A, and (dually) the short exact sequences

$$
A_{2 n-k, 2 n-k+\upharpoonright}^{*} \stackrel{(\tilde{p} \circ q)^{*}}{\longrightarrow} A_{k, 2 n-k+1}^{*} \xrightarrow{i^{*}} A_{k, 2 n-k}^{*}
$$

and

$$
A_{2 n-k, 2 n-k+>}^{*}{ }^{q^{*}} A_{k+1,2 n-k+1}^{*} \xrightarrow{(\tilde{i})^{*}} A_{k+1,2 n-k}^{*}
$$

Since

$$
H(A)=\left(a_{1}\left|a_{2}\right| \cdots\left|a_{n-k}\right| \cdots \mid a_{n}\right) \in N(Q \mathcal{P} R)_{n}
$$

is a composition of morphisms

with

$$
N . *\left(a_{n-k}\right)=\left(a_{n-k}\right)^{*}=A_{k+1,2 n-k}^{*} \cdots \longrightarrow A_{k, 2 n-k+1}^{*} \text {, }
$$

but

$$
H(S d(s . *)(A))=H\left(A^{*}\right)=\left(\tilde{a}_{1}\left|\tilde{a}_{2}\right| \cdots\left|\tilde{a}_{n-k}\right| \cdots \mid \tilde{a}_{n}\right)
$$

has morphisms

we must construct an isomorphism $\Gamma: A_{k+1,2 n-k+1}^{*} \rightarrow U_{\left(a_{n-k}\right)^{*}}$ for which $p_{\left(a_{n-k}\right)^{*}} \circ \Gamma=(\tilde{i})^{*}$ and $i_{\left(a_{n-k}\right) *} \circ \Gamma=$ $(\tilde{p})^{*}$.

First, recall that

$$
U_{\left(a_{n-k}\right)^{*}}=\left\{\left(\tau_{1}, \tau_{2}\right) \in A_{k+1,2 n-k}^{*} \times A_{k, 2 n-k+1}^{*} \mid p^{*}\left(\tau_{1}\right)=i^{*}\left(\tau_{2}\right) \in A_{k, 2 n-k}^{*}\right\}
$$

and define $\Gamma: A_{k+1,2 n-k+1}^{*} \rightarrow A_{k+1,2 n-k}^{*} \times A_{k, 2 n-k+1}^{*}$ by $\Gamma(w)=\left((\tilde{i})^{*}(w),(\tilde{p})^{*}(w)\right)$. From the commutative squares we see that $p^{*}\left((\tilde{i})^{*}(w)\right)=i^{*}\left((\tilde{p})^{*}(w)\right)$ so that $\Gamma(w) \in U_{\left(a_{n-k}\right)^{*}} \forall w \in A_{k+1,2 n-k+1}^{*}$. If $\left(\tau_{1}, \tau_{2}\right)=$ $(0,0)=\Gamma(w)$ then $(\tilde{p})^{*}(w)=0$, so $w=0$ since $(\tilde{p})^{*}$ is injective. Thus Γ is injective.

Suppose $\left(\tau_{1}, \tau_{2}\right) \in U_{\left(a_{n-k}\right)^{*}}$. Since $(\tilde{i})^{*}$ is surjective, $\exists w \in A_{k+1,2 n-k+1}^{*}$ for which $(\tilde{i})^{*}(w)=\tau_{1}$. By definition of $U_{\left(a_{n-k}\right)^{*}}$ and the commutative squares, we see

$$
p^{*}\left(\tau_{1}\right)=p^{*}\left((\tilde{i})^{*}(w)\right)=i^{*}\left((\tilde{p})^{*}(w)\right)=i^{*}\left(\tau_{2}\right)
$$

It follows that $(\tilde{p})^{*}(w)-\tau_{2} \in \operatorname{ker}\left(i^{*}\right)$. But with the exact sequences above we see that $\operatorname{ker}\left(i^{*}\right)=\operatorname{im}\left((q \circ \tilde{p})^{*}\right)$. Thus there is some $u \in A_{2 n-k, 2 n-k+1}^{*}$ for which $(\tilde{p})^{*}\left(q^{*}(u)\right)=(\tilde{p})^{*}\left(\tau_{1}\right)-\tau_{2}$.

Set $v=w-q^{*}(u)$ for such u. Now $v \in A_{k+1,2 n-k+1}^{*}$ with

$$
(\tilde{i})^{*}(v)=(\tilde{i})^{*}(w)-(\tilde{i})^{*}\left(q^{*}(u)\right)=(\tilde{i})^{*}(w)-0=\tau_{1}
$$

since the exact sequences show $\operatorname{im}\left(q^{*}\right)=\operatorname{ker}\left((\tilde{i})^{*}\right)$. By definition of u we have $(\tilde{p})^{*}(v)=(\tilde{p})^{*}(w)-$ $(\tilde{p})^{*}\left(q^{*}(u)\right)=\tau_{2}$, so $\Gamma(v)=\left(\tau_{1}, \tau_{2}\right)$ in which case Γ is surjective.

By construction of Γ,

$$
p_{\left(a_{n-k}\right)^{*}} \circ \Gamma(w)=(\tilde{i})^{*}(w)
$$

and

$$
i_{\left(a_{n-k}\right)^{*}} \circ \Gamma(w)=(\tilde{p})^{*}(w)
$$

for every $w \in A_{k+1,2 n-k+1}^{*}$. Therefore we have found an appropriate isomorphism from which to have $\left(a_{n-k}\right)^{*}=\tilde{a}_{n-k}$ as morphisms in $Q \mathcal{P} R$ by Definition 5.1.2 of Chapter 2. By definition of N.* we now see

$$
N . *(H(A))=N . *\left(a_{1}|\cdots| a_{n}\right)=\left(a_{1}^{*}|\cdots| a_{n}^{*}=\tilde{a}_{1}|\cdots| \tilde{a}_{n}\right)=H(S d(s . *)(A))
$$

for all $A \in \mathfrak{s .} \mathcal{P} R_{2 n+1}=S d(\mathfrak{s} . \mathcal{P} R)_{n}^{r e v}$ (and equivalently all $\left.A \in S d\left(\mathfrak{s} . \mathcal{P} R^{r e v}\right)_{n}^{r e v}\right)$. We conclude that the bottom two squares of the diagram commute.

Corollary 5.0.17 There is a diagram

in which all arrows are homomorphisms of simplicial groups and all squares commute.

Theorem 5.0.18 ([11] Theorems 6.0.5 and 6.0.8)All vertical arrows in the diagram in Theorem 5.0.16 are weak homotopy equivalences.

Theorem 5.0.19 In the diagram of induced homomorphisms

the top row contains isomorphisms that are inverse to each other.

Proof: By Theorem 1.2.6, $G\left(\mathfrak{s .} .^{*}\right)$ is a weak homotopy equivalence in both directions, so that $G\left(\mathfrak{s} .{ }^{*}\right)_{*}$ is an isomorphism in each case. By Lemma 4.2.2 and Theorem 1.4.2 of Chapter 1 and Corollary 1.2.5 of this chapter, it follows that $G\left(\mathfrak{s} .{ }^{*}\right)_{*}$ is its own inverse.

Corollary 5.0.20 All horizontal rows in the diagram from Theorem 5.0.19 contain isomorphisms which are pairwise inverses of each other.

Proof: From Corollary 5.0.17, Theorem 5.0.18 and Theorem 5.0.19, we calculate

$$
G I_{*} \circ G\left(S d\left(\mathfrak{s .} .^{*}\right)\right)_{*} \circ G\left(S d\left(\mathfrak{s .} . .^{*}\right)\right)_{*}=G\left(\mathfrak{s} . .^{*}\right)_{*} \circ G I_{*} \circ G\left(S d\left(\mathfrak{s} . .^{*}\right)\right)_{*}=G(\mathfrak{s .} .)_{*} \circ G\left(\mathfrak{s} . .^{*}\right)_{*} \circ G I_{*}=G I_{*},
$$

so that $\left.G\left(S d(\mathfrak{s .} .)^{*}\right)\right)_{*} \circ G\left(S d\left(\mathfrak{s} .{ }^{*}\right)\right)_{*}$ must be the identity (since $G I_{*}$ is an isomorphism), hence $G\left(S d(\mathfrak{s .} .)_{*}\right)$ is an isomorphism and is its own inverse. Similarly,

$$
G\left(N . .^{*} \circ G\left(N .^{*}\right)_{*} \circ G H_{*}=G\left(N .^{*}\right)_{*} \circ G H_{*} \circ G\left(S d\left(\mathfrak{s} .^{*}\right)\right)_{*}=G H_{*} \circ G\left(S d\left(\mathfrak{s .} .^{*}\right)\right)_{*} G\left(S d\left(\mathfrak{s} . .^{*}\right)\right)_{*}=G H_{*},\right.
$$

so that $G\left(N .^{*}\right)_{*}$ is an isomorphism and is its own inverse.

Chapter 4

Connections with Classical K-Groups

In this chapter, we first describe the maps in the composition

by which Duflot shows that the map defined by $\xi(X, A)=[x(A)]$, with $x(A)$ as described in this chapter, is an isomorphism for the K_{1} case. As we do this, we will correct a miscalculation in Duflot's work([11], pages 466 and 469). Then we will compare the above diagram with one that differs only by applying duality, replacing $\zeta_{1 *}$ with the induced map $G(\mathfrak{s} . *)_{1 *}$ of the weak homotopy equivalence $G(\mathfrak{s} . *)$ as in Theorem 1.2.6
of Chapter 3:

The advantage of using $G(\mathfrak{s} . *)_{*}$ to compute in the upper right corner of this diagram is twofold:

1) $G(\mathfrak{s} . *)$ is functorially defined at the simplicial level, showing connections between simplices in simplicial sets, unlike the ad hoc definition of $\zeta_{1 *}$ in [11].
2) As the induced map of a weak homotopy equivalence, $G(\mathfrak{s} \cdot *)_{*}$ is defined as an isomorphism in every simplicial dimension, not just in dimension 1.
$1 \quad L: K_{1}(R) \rightarrow \pi_{1}(\mathcal{G} \cdot \mathcal{P} R)$

We describe the map $L: K_{1}(R) \rightarrow \pi_{1}(\mathcal{G} \cdot \mathcal{P} R)$ by summarizing the results given by Nenashev in [12, 14]. View $K_{1}(R)$ as $K_{1}(R) \approx K_{1}^{\text {det }}(R) . K_{1}^{\text {det }}(R)$ is the "universal determinant functor" on the semisimple category $\mathcal{P} R$, which is a construction that allows us to view elements of $K_{1}(R)$ as pairs (P, α) where $P \in \mathcal{P} R$ and $\alpha \in \operatorname{Aut}(P)$. Nenashev then defines a double-short-exact sequence in $\mathcal{P} R$, and these sequences become the generators of an abelian group, denoted $\mathcal{D}(R)$.

These double-short-exact sequences each contain two short exact sequences, which together constitute a 1 -simplices of $\mathcal{G} . \mathcal{P} R$ as in Definition 2.1.1 of Chapter 3. These are put together with other 1 -simplices to form "combinatorial loop objects" in $\mathcal{G} . \mathcal{P} R_{1}$. These loop objects bound 2-simplices in $\mathcal{G} \cdot \mathcal{P} R$, and these 2-simplices form the backbone of a notion of homotopy inside $\mathcal{G} \cdot \mathcal{P} R$. The homotopy class of this loop is denoted $m(l(\alpha))$, and a representative for such a class is $\mu(l(\alpha))$, so that we are concerned with elements
$m(l(\alpha))=[\mu(l(\alpha))] \in \pi_{1}(\mathcal{G} \cdot \mathcal{P} R)$. We represent this combinatorial loop object as the sequence
of 1 -simplices in $\mathcal{G} \cdot \mathcal{P} R$.
Nenashev then shows ([12], Theorem 3.1) that there is an element $m(l) \in \pi_{1}(\mathcal{G} . \mathcal{P} R)$ corresponding to each element of $K_{1}(R)$, based on a result of Sherman's. Sherman had a result that involved loop objects of a certain form, and Nenashev showed that such loop objects are "freely homotopic" to certain of his $\mu(l)$, and thus are members of the classes $m(l)$. Furthermore, it is shown ([12], Theorem 6.2.(1)) that $l \mapsto m(l)$ is a surjective group homomorphism from $\mathcal{D}(R)$ to $\pi_{1}(\mathcal{G} \cdot \mathcal{P} R)$, which pairs generators of $\mathcal{D}(R)$ in particular with homotopy classes in $\mathcal{G} . \mathcal{P} R_{1}$.

Nenashev completes the construction by showing ([12], Theorem 6.2.(2)) that there is a group isomor$\operatorname{phism}(A, \alpha) \mapsto l(\alpha)$ from $K_{1}(R):=K_{1}^{\operatorname{det}}(R)$ to $\mathcal{D}(R)$, so that composition yields (after he shows that m is an isomorphism in [14])

Theorem 1.0.1 The map $L: K_{1}(R) \rightarrow \pi_{1}(\mathcal{G} \cdot \mathcal{P} R)$ defined by $L(P, \alpha)=[\mu(l(\alpha))]$ is an isomorphism.
$2 \quad T: \mathcal{G} \cdot \mathcal{P} R \rightarrow G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}$

Consider the reverse $\mathfrak{s} . \mathcal{P} R^{\text {rev }}$ again (i.e. Theorem 1.1.3 from Chapter 3 and Example 5.2.1 from Chapter 1). Let $G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)$ be constructed via the twisting function t as in Definitions 4.1.2 and 4.1.4 in Chapter 1. From $[17,2]$ we know

$$
d_{i}(t(D))=\left\{\begin{array}{cc}
t\left(d_{i}^{(r e v)} D\right) & 0 \leq i \leq n \\
{\left[t\left(d_{n+1}^{(r e v)} D\right)\right]^{-1} t\left(d_{n}^{(r e v)} D\right)} & i=n
\end{array}\right.
$$

$\left(\right.$ and $s_{j}(t(D))=t\left(s_{j}^{\text {rev }}(D)\right)$, for every $\left.j\right)$ for each $D \in \mathfrak{s .} \mathcal{P} R_{n+1}=\mathfrak{s} . \mathcal{P} R_{n+1}^{\text {rev }}$.

Lemma 2.0.2 The map $T: \mathcal{G} . \mathcal{P} R \rightarrow G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}$ defined by

$$
T(x)=T\left(D_{1}, D_{2}\right)=\left[t\left(D_{1}\right)\right]^{-1} t\left(D_{2}\right),
$$

for the pair of diagrams $x=\left(D_{1}, D_{2}\right)$ is simplicial map.

Proof: For $1 \leq i \leq n$,

$$
\begin{aligned}
d_{i}^{(r e v)} T(x) & =d_{i}^{(r e v)}\left(\left[t\left(D_{1}\right)\right]^{-1} t\left(D_{2}\right)\right) \\
& =d_{n-i}\left(\left[t\left(D_{1}\right)\right]^{-1} t\left(D_{2}\right)\right) \\
& =\left[d_{n-i}\left(t\left(D_{1}\right)\right)\right]^{-1} d_{n-i}\left(t\left(D_{2}\right)\right) \\
& =\left[t\left(d_{n-i}^{(r e v)} D_{1}\right)\right]^{-1} t\left(d_{n-i}^{(r e v)} D_{2}\right) \\
& =\left[t\left(d_{n+1-(n-i)} D_{1}\right)\right]^{-1} t\left(d_{n+1-(n-i)} D_{2}\right) \\
& =\left[t\left(d_{i+1} D_{1}\right)\right]^{-1} t\left(d_{i+1} D_{2}\right) \\
& =T\left(d_{i+1} D_{1}, d_{i+1} D_{2}\right) \\
& =T\left(d_{i} x\right)
\end{aligned}
$$

Note that since they come from an element of $\mathcal{G} . \mathcal{P} R, D_{1}$ and D_{2} have identical rows above the first row, so that $d_{0} D_{1}=d_{0} D_{2}$, hence $t\left(d_{0} D_{1}\right)=t\left(d_{0} D_{2}\right) \in G(\mathfrak{s} \cdot \mathcal{P} R)_{n-1}$. Thus

$$
\begin{aligned}
d_{0}^{(\text {rev })} T(x) & =d_{0}^{(\text {rev })}\left(\left[t\left(D_{1}\right)\right]^{-1} t\left(D_{2}\right)\right) \\
& =\left[d_{n}\left(t\left(D_{1}\right)\right)\right]^{-1} d_{n}\left(t\left(D_{2}\right)\right) \\
& =\left[\left[t\left(d_{n+1}^{(r e v)} D_{1}\right)\right]^{-1} t\left(d_{n}^{(r e v)} D_{1}\right)\right]^{-1}\left[t\left(d_{n+1}^{(\text {rev })} D_{2}\right)\right]^{-1} t\left(d_{n}^{(r e v)} D_{2}\right) \\
& =\left[\left[t\left(d_{0} D_{1}\right)\right]^{-1} t\left(d_{1} D_{1}\right)\right]^{-1}\left[t\left(d_{0} D_{2}\right)\right]^{-1} t\left(d_{1} D_{2}\right) \\
& =\left[t\left(d_{1} D_{1}\right)\right]^{-1} t\left(d_{1} D_{2}\right) \\
& =T\left(d_{1} D_{1}, d_{1} D_{2}\right) \\
& =T\left(d_{0} x\right)
\end{aligned}
$$

so T commutes with the face maps. Similarly, we calculate for degeneracy maps

$$
\begin{aligned}
s_{j}^{(r e v)} T(x) & =s_{j}^{(\text {rev })}\left(\left[t\left(D_{1}\right)\right]^{-1} t\left(D_{2}\right)\right) \\
& =s_{n-j}\left(\left[t\left(D_{1}\right)\right]^{-1} t\left(D_{2}\right)\right) \\
& =\left[s_{n-j}\left(t\left(D_{1}\right)\right)\right]^{-1} s_{n-j}\left(t\left(D_{2}\right)\right) \\
& =\left[t\left(s_{n-j}^{(\text {rev })} D_{1}\right)\right]^{-1} t\left(s_{n-j}^{(r e v)} D_{2}\right) \\
& =\left[t\left(s_{n+1-(n-j)} D_{1}\right)\right]^{-1} t\left(s_{n+1-(n-j)} D_{2}\right) \\
& =\left[t\left(s_{j+1} D_{1}\right)\right]^{-1} t\left(s_{j+1} D_{2}\right) \\
& =T\left(s_{j+1} D_{1}, s_{j+1} D_{2}\right) \\
& =T\left(s_{j} x\right)
\end{aligned}
$$

for each $0 \leq j \leq n$. Therefore this T is a simplicial map.

Furthermore, Duflot[11] shows that the induced map

$$
T_{*}: \pi_{n}(\mathcal{G} . \mathcal{P} R) \rightarrow \pi_{n}\left(G\left(\mathfrak{s . P} R^{\text {rev }}\right)^{\text {rev }}\right)
$$

by $T_{*}\left([x]_{\mathcal{G} . \mathcal{P}_{R}}\right)=[T(x)]_{G^{r e v}}$ is an isomorphism, based on the results of Berger and Gillet-Grayson. That is,

Theorem 2.0.3 T is a weak homotopy equivalence.

Now we calculate the composition $T_{*} \circ L$ given the sequence
as described for Nenashev's map L. Notice that in $\mathcal{G} . \mathcal{P} R$ we have $d_{0} z_{1}=d_{0} z_{2}=(P, P)$ and $d_{1} z_{1}=d_{1} z_{2}=$ $(0,0)$. Furthermore, the 2 -simplex

has
$d_{1} y=z_{2}$ and $d_{2} y=z_{1}$. Therefore $z_{1} \sim z_{2}$ in $\mathcal{G} . \mathcal{P} R$ by Definition 1.3.1 of Chapter 1 (with the element y above as the homotopy element), so that we can choose the class $L(P, \alpha):=\left[z_{1}\right] \in \pi_{1}(\mathcal{G} \cdot \mathcal{P} R)$ represented by

$$
z_{1}:=\left(D_{1}, D_{2}\right) \in \mathfrak{s .} \mathcal{P} R_{2}^{\text {rev }} \times \mathfrak{s} \cdot \mathcal{P} R_{2}^{\text {rev }}
$$

as the representative element to send to T. In this case, note that

$$
D_{1}=\left(\begin{array}{cc}
& \left.\begin{array}{r}
P \\
\\
\\
\\
\\
0>
\end{array}\right)=s_{0}(P)=s_{1}^{r e v}(P), ~
\end{array}\right.
$$

so that $t\left(D_{1}\right)=1 \in G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)_{1}^{r e v}$. It follows that
$3 \quad \theta_{1}: \overline{G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)} \rightarrow \overline{G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}}$

Here we adopt the notation $\tilde{t}(u)$ for generators of $G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)$ in order to distinguish them from the generators $t(u)$ of $G(\mathfrak{s} . \mathcal{P} R)$ and consider the map θ_{q} defined in Theorem 7.1.1 of [11]:

$$
\theta_{q}: G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)_{q} \rightarrow G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)_{q}
$$

by

$$
\theta_{q}(\tilde{t}(u))=(\tilde{t}(u))^{(-1)^{q}} s_{0} d_{q}(\tilde{t}(u))\left(s_{1} d_{q}(\tilde{t}(u))\right)^{-1} \cdots\left(s_{i} d_{q}(\tilde{t}(u))\right)^{(-1)^{i}} \cdots\left(s_{q-1} d_{q}(\tilde{t}(u))\right)^{(-1)^{q-1}},
$$

which is bijective for each q, maps $\overline{G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)}$ to $G\left(\widetilde{\mathfrak{s} \cdot \mathcal{P} R^{r e v}}\right)$ (recall Definition 2.2.1 of Chapter 1) and maps Z_{q} to Z_{q}.

For any simplicial group G with face maps d_{i} and given integer $q>0$ we know

$$
\begin{gathered}
{\overline{G^{r e v}}}_{q}=G_{q}^{r e v} \cap \operatorname{ker}\left(d_{0}^{r e v}\right) \cap \operatorname{Ker}\left(d_{1}^{r e v}\right) \cap \cdots \cap \operatorname{ker}\left(d_{q-1}^{r e v}\right) \\
\quad=G_{q} \cap \operatorname{ker}\left(d_{q}\right) \cap \operatorname{ker}\left(d_{q-1}\right) \cap \cdots \cap \operatorname{ker}\left(d_{1}\right)=\widetilde{G}_{q} .
\end{gathered}
$$

$$
\begin{gathered}
Z_{q}\left(G^{r e v}\right)={\overline{G^{r e v}}}_{q} \cap \operatorname{ker}\left(d_{q}^{r e v}\right)=G_{q}^{r e v} \cap \operatorname{ker}\left(d_{0}^{r e v}\right) \cap \cdots \cap \operatorname{ker}\left(d_{q}^{r e v}\right) \\
=G_{q} \cap \operatorname{ker}\left(d_{q}\right) \cap \cdots \cap \operatorname{ker}\left(d_{0}\right)=\bar{G}_{q} \cap \operatorname{ker}\left(d_{q}\right)=Z_{q}(G) .
\end{gathered}
$$

Thus θ_{q} maps $Z_{q}\left(G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)\right)$ to $Z_{q}\left(G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}\right)$. It follows that induced homomorphisms

$$
\theta_{q *}: \pi_{q}\left(G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)\right) \rightarrow \pi_{q}\left(G\left(\mathfrak{s} . \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}\right)
$$

are isomorphisms. We could use Proposition 5.2.4 of Chapter 1 to reformulate this, but instead of writing $G:=\left(G^{r e v}\right)^{r e v}$ too many times we will use the inverse isomorphism

$$
\theta_{1 *}^{-1}:=\left(\theta_{1 *}\right)^{-1}: \pi_{1}\left(G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)^{\text {rev }}\right) \rightarrow \pi_{1}\left(G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)\right) .
$$

$4 \quad \theta_{1 *}^{-1} \circ T_{*} \circ L$

Now by definition

$$
\theta_{1}(\tilde{t}(u))=(\tilde{t}(u))^{-1} s_{0} d_{1}(\tilde{t}(u)),
$$

and we use

$$
T_{*}(L(P, \alpha))=T_{*}([\mu(l(\alpha))])=\left[\tilde{t}\left(D_{2}\right)\right]
$$

where

$$
D_{2}=\left(\begin{array}{c}
\\
\\
\\
\\
\\
\\
\\
\\
P
\end{array}\right) \in \mathfrak{s} \cdot \mathcal{P} R_{2}^{r e v} .
$$

We see

$$
d_{1} \tilde{t}\left(D_{2}\right)=\left(\tilde{t}\left(d_{2}^{r e v} D_{2}\right)\right)^{-1} \tilde{t}\left(d_{1}^{r e v} D_{2}\right)=\left(\tilde{t}\left(d_{0} D_{2}\right)\right)^{-1} \tilde{t}\left(d_{1} D_{2}\right)=\tilde{t}(P)^{-1} \tilde{t}(P)=1 \in G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)_{1}
$$

so that

$$
\theta_{1}\left(\tilde{t}\left(D_{2}\right)\right)=\left(\tilde{t}\left(D_{2}\right)\right)^{-1} s_{0}(1)=\left(\tilde{t}\left(D_{2}\right)\right)^{-1}(1)=\left(\tilde{t}\left(D_{2}\right)\right)^{-1} \text {. }
$$

It follows that

$$
\begin{gathered}
\theta_{1 *}^{-1}(T(L(P, \alpha)))=\theta_{1 *}^{-1}\left(\left[\tilde{t}\left(D_{2}\right)\right]\right)=\theta_{1 *}^{-1}\left(\left[\left(\left(\tilde{t}\left(D_{2}\right)\right)^{-1}\right)^{-1}\right]\right)=\theta_{1 *}^{-1}\left(\left[\theta_{1}\left(\left(\tilde{t}\left(D_{2}\right)\right)^{-1}\right)\right]\right) \\
=\theta_{1 *}^{-1}\left(\theta_{1 *}\left(\left[\left(\tilde{t}\left(D_{2}\right)\right)^{-1}\right]\right)=\theta_{1 *}^{-1}\left(\theta_{1 *}\left(\left[\tilde{t}\left(D_{2}\right)\right]^{-1}\right)=\left[\tilde{t}\left(D_{2}\right)\right]^{-1} .\right.\right.
\end{gathered}
$$

$5 \quad \zeta_{1 *}: \pi_{1}\left(G\left(\mathfrak{s} . \mathcal{P} R^{r e v}\right)\right) \rightarrow \pi_{1}(G(\mathfrak{s} . \mathcal{P} R))$

The map

$$
\zeta_{1 *}: \pi_{1}\left(G\left(\mathfrak{s . P} R^{r e v}\right)\right) \rightarrow \pi_{1}(G(\mathfrak{s . P} R)),
$$

is defined by

$$
\left[\tilde{t}\left(\begin{array}{c}
A_{12} \\
l_{2} \uparrow \\
A_{01} \xrightarrow{k_{1}} A_{02}
\end{array}\right)\right] \mapsto\left[t\left(\begin{array}{c}
A_{01} \\
p_{1} \uparrow \\
A_{12} \xrightarrow{s_{2}} A_{02}
\end{array}\right)\right]
$$

where s_{2} is a section for l_{2} (i.e. $\left.l_{2} \circ s_{2}=i d_{A_{12}}\right)$ and p_{1} is defined by $p_{1}=k_{1}^{-1} \circ\left(i d_{A_{02}}-s_{2} \circ l_{2}\right)$. Duflot shows that this ζ_{1} is an isomorphism ([11], Theorem 10.0.21) and is independent of the choice of section s_{2}.
$6 \quad \zeta_{1 *} \circ \theta_{1 *}^{-1} \circ T_{*} \circ L$

With

$$
T_{*}(L(P, \alpha))=\left[\tilde{t}\left(D_{2}\right)\right]=\left[\tilde{t}\left(\begin{array}{r}
P \\
\\
\\
\alpha \uparrow \\
0>P
\end{array}\right)\right]
$$

we see that $A_{01}=0, k_{1}: 0 \hookrightarrow P, A_{02}=A_{12}=P$, and $l_{2}=\alpha$. Since α^{-1} is a section of $\alpha \in A u t(P)$ by definition, we see that

$$
p_{2}:=k_{1}^{-1} \circ\left(i d_{P}-\alpha^{-1} \circ \alpha\right)=k_{1}^{-1} \circ\left(i d_{P}-i d_{P}\right) \equiv 0 .
$$

Using Duflot's notation from [11], page 469, this is

$$
\zeta_{1 *} \theta_{1 *}^{-1} T_{*}([\mu(l(\alpha))])=\zeta_{1 *} \theta_{1 *}^{-1}([\tilde{t}(0 \rightarrow P \xrightarrow{\alpha} P)])=\left[t\left(P^{\alpha^{-1}} P \rightarrow 0\right)\right]^{-1} .
$$

Notice we have α^{-1} in place of α in the last expression, which represents a miscalculation on page 469 of [11] that is now corrected.

7 Computing $G I_{*}^{-1}$

Now our aim is to take the element

$$
T_{*}(L(P, \alpha))=\left[\tilde{t}\left(D_{2}\right)\right]=\left[\tilde{t}\left(\begin{array}{ll}
& \left.\left.\begin{array}{r}
0 \\
\\
P>{ }^{\alpha^{-1}} \\
P
\end{array}\right)\right]=\left[\tilde{t}\left(D_{2}^{\prime}\right)\right]
\end{array}\right)\right.
$$

of $\pi_{1}(G(\mathfrak{s} . \mathcal{P} R))$ and follow it back to $\pi_{1}\left(G\left(S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}\right)\right.$ via the isomorphism $G I_{1 *}$ induced by the weak homotopy equivalence $G I$. Duflot defines two elements $w_{1}(P, \alpha), w_{2}(P, \alpha) \in S d(\mathfrak{s} \cdot \mathcal{P} R)_{2}^{\text {rev }}=\operatorname{Sd}(\mathfrak{s} \cdot \mathcal{P} R)_{2}=$ $\mathfrak{s .} \mathcal{P} R_{5}$ which, due to the correction for page 469 of [11]. We adjust them by replacing α with α^{-1} (and using the notation in this paper, so from [11], page 466 we change: $T:=\alpha \in \operatorname{Aut}(P)$ and $X:=P)$:

and

Now we calculate
$I_{2}\left(w_{1}\right)=d_{0} d_{0} d_{0}\left(w_{1}\right)=d_{0} d_{0}$

$=\left(\begin{array}{ll} & \left.\begin{array}{l}0 \\ \\ \\ \\ \\ \\ \alpha^{-1} \\ P\end{array}\right)=D_{2}^{\prime} \in \mathfrak{s s} \cdot \mathcal{P} R_{2}, ~\end{array}\right.$
so that $G I\left(\tilde{t}\left(w_{1}\right)\right)=t\left(D_{2}^{\prime}\right)$, in which case $G I_{*}\left(\left[\tilde{t}\left(w_{1}\right)\right]^{-1}\right)=\left[t\left(D_{2}^{\prime}\right]^{-1}\right.$. Similarly

so that $t\left(I_{2}\left(w_{2}\right)\right)=e_{1}$ and therefore $G I_{*}\left(\left[\tilde{t}\left(w_{2}\right)\right]\right)=\left[e_{1}\right]=1$. Now we have the result:

$$
G I_{*}\left(\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right]\right)=G I_{*}\left(\left[\tilde{t}\left(w_{2}\right)\right]\right)\left(G I_{*}\left(\left[\tilde{t}\left(w_{1}\right)\right]\right)\right)^{-1}=\left[e_{1}\right]\left(\left[t\left(D_{2}^{\prime}\right)\right]\right)^{-1}=\left[t\left(D_{2}^{\prime}\right)\right]^{-1} .
$$

Therefore we follow $\left[t\left(D_{2}^{\prime}\right)\right]^{-1} \in \pi_{1}(G(\mathfrak{s} \cdot \mathcal{P} R))$ back to the element $\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right] \in \pi_{1}\left(G\left(S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}\right)\right)$ via $G I_{*}$.

We pause here and note that

$$
Q:=\zeta_{1 *} \circ \theta_{1 *}^{-1} \circ T_{*} \circ L: K_{1}(R) \rightarrow \pi_{1}(G(\mathfrak{s} . \mathcal{P} R))
$$

is an isomorphism, and this brings us to the maps $G H, G I$ discussed in Chapter 3.

8 Computing $G H_{*}$

Consider the weak homotopy equivalence $H: S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }} \rightarrow N(Q \mathcal{P} R)$ from [11], which induces weak homotopy equivalence $G H$ and therefore results in isomorphism $G H_{*}: \pi_{1}\left(G\left(S d(\mathfrak{s} \cdot \mathcal{P} R)^{\text {rev }}\right)\right) \rightarrow \pi_{1}(G(N(Q \mathcal{P} R)))$.

Given an element

in $S d(\mathfrak{s} . \mathcal{P} R)_{n}^{\text {rev }}=\mathfrak{s} \cdot \mathcal{P} R_{2 n+1}$ (and $\left.0 \leq k \leq n-1\right)$ this is defined by

$$
H(w)=\left(a_{1=n-(n-1)}\left|a_{2}\right| \cdots\left|a_{n-k}\right| \cdots \mid a_{n-0}\right)
$$

where

For the elements $w_{1}, w_{2} \in \operatorname{Sd}(\mathfrak{s . P} R)_{2}^{\text {rev }}$, we calculate $H_{2}\left(w_{1}\right)=\left(a_{1} \mid a_{2}\right)$ where

and

$$
a_{2}=a_{2-0}=P \cdots P
$$

Using notation from [11], page 453, it follows that $H_{2}\left(w_{1}\right)=\iota_{P} \mid\left(\alpha^{-1}\right)!$. Similarly,

Now we calculate the image of the induced map as

$$
\begin{aligned}
& G H_{*}\left(\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right]\right)=\left[G H_{1}\left(\tilde{t}\left(w_{2}\right)\right)\left(G H_{1}\left(\tilde{t}\left(w_{1}\right)\right)\right)^{-1}\right] \\
& =\left[t\left(H_{2}\left(w_{2}\right)\right)\left(t\left(H_{2}\left(w_{1}\right)\right)\right)^{-1}\right]=\left[t\left(q_{P} \mid \alpha^{-1}\right)\left(t\left(\iota_{P} \mid \alpha^{-1}\right)\right)^{-1}\right] .
\end{aligned}
$$

Using the notation of [11] again, we conclude

$$
G H_{*}\left(\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right]\right)=\left[x\left(\alpha^{-1}\right)\right] .
$$

9 Computing $\xi:(P, \alpha) \mapsto[x(\alpha)]$ Correctly

Duflot shows ([11], Lemma 9.0.8) that $[x(\alpha)][x(\beta)]=[x(\alpha \circ \beta)]$ in general for appropriate automorphisms α and β, so in particular $\left[x\left(\alpha^{-1}\right)\right]=[x(\alpha)]^{-1}$. In [11], the isomorphism ξ is computed incorrectly but stated correctly, as we now confirm.

We have shown a composition of isomorphisms

$$
\xi^{\prime}:=G H_{*} \circ\left(G I_{*}\right)^{-1} \circ \zeta_{1 *} \circ \theta_{1 *}^{-1} \circ T_{*} \circ L,
$$

which is an isomorphism given by $(P, \alpha) \mapsto[x(\alpha)]^{-1}$ where $[x(\alpha)]$ is exactly the element described by Duflot in [11]. This does not change the conclusion that the map ξ is an isomorphism: composing with the "inversion" isomorphism N on the abelian group $\pi_{1}\left(G(N(Q \mathcal{P} R))\right.$) (recall Proposition 2.1.5 in Chapter 1) gives $\xi:=N \circ \xi^{\prime}$, defined by $(P, \alpha) \mapsto[x(\alpha)]$, which confirms the result that the explicit map $\xi: K_{1}(R) \rightarrow \pi_{1}(G(N(Q \mathcal{P} R)))$ defined in [11] is an isomorphism.

10 Computing $\hat{\xi}$

We now look to the alternative diagram

We see that the computation of $\hat{\xi}$ differs from that for ξ^{\prime} only just after the calculation of the image of $\theta_{1 *}^{-1} \circ T_{*} \circ L$ and before seeking a preimage of $G I_{1 *}$, so we pick up the calculation at that point. The dual of the element

$$
\begin{gathered}
\theta_{1 *}^{-1}(T(L(P, \alpha)))=\theta_{1 *}^{-1}\left(\left[\tilde{t}\left(D_{2}\right)\right]\right)=\theta_{1 *}^{-1}\left(\left[\left(\left(\tilde{t}\left(D_{2}\right)\right)^{-1}\right)^{-1}\right]\right)=\theta_{1 *}^{-1}\left(\left[\theta_{1}\left(\left(\tilde{t}\left(D_{2}\right)\right)^{-1}\right)\right]\right) \\
\quad=\theta_{1 *}^{-1}\left(\theta_{1 *}\left(\left[\left(\tilde{t}\left(D_{2}\right)\right)^{-1}\right]\right)=\theta_{1 *}^{-1}\left(\theta_{1 *}\left(\left[\tilde{t}\left(D_{2}\right)\right]^{-1}\right)=\left[\tilde{t}\left(D_{2}\right)\right]^{-1} \in G\left(\mathfrak{s . P} R^{r e v}\right)_{1}\right.\right.
\end{gathered}
$$

is given by

$$
\begin{gathered}
G(\mathfrak{s} . *)_{1 *}\left(\left[\tilde{t}\left(D_{2}\right)\right]^{-1}\right)=\left[G(\mathfrak{s} . *)\left(\tilde{t}\left(D_{2}\right)\right)\right]^{-1}=\left[t\left(\mathfrak{s} . *\left(D_{2}\right)\right)\right]^{-1} \\
=\left[t\left(\begin{array}{r}
0 \\
\\
\\
\left.P^{*} \xrightarrow{\alpha^{*}}\right|^{*} P^{*}
\end{array}\right)\right]^{-1} \in G(\mathfrak{s} . \mathcal{P} R)_{1}
\end{gathered}
$$

Following this element back through $G I_{1 *}$, we again adjust the elements $w_{1}(P, \alpha), w_{2}(P, \alpha)$ proposed by Duflot, but this time we define

and

Now similar to before we calculate

$$
I_{2}\left(w_{1}\right)=d_{0} d_{0} d_{0}\left(w_{1}\right)=\left(\begin{array}{r}
0 \\
\\
\\
P^{*} \xrightarrow{\alpha^{*}} P^{*}
\end{array}\right)=\mathfrak{s} . *\left(D_{2}\right) \in \mathfrak{s} \cdot \mathcal{P} R_{2}
$$

so that $G I\left(\tilde{t}\left(w_{1}\right)\right)=t\left(\mathfrak{s} . *\left(D_{2}\right)\right)$, in which case $G I_{*}\left(\left[\tilde{t}\left(w_{1}\right)\right]^{-1}\right)=\left[t\left(\mathfrak{s} . *\left(D_{2}\right)\right]^{-1}\right.$. Similarly

$$
I_{2}\left(w_{2}\right)=d_{0} d_{0} d_{0}\left(w_{2}\right)=\left(\begin{array}{l}
0 \\
\\
\\
0 \longrightarrow
\end{array}\right)=0_{2} \in \mathfrak{s} \cdot \mathcal{P} R_{2}
$$

so that $t\left(I_{2}\left(w_{2}\right)\right)=e_{1}$ and therefore $G I_{*}\left(\left[\tilde{t}\left(w_{2}\right)\right]\right)=\left[e_{1}\right]=1$. Now we have the result:

$$
G I_{*}\left(\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right]\right)=G I_{*}\left(\left[\tilde{t}\left(w_{2}\right)\right]\right)\left(G I_{*}\left(\left[\tilde{t}\left(w_{1}\right)\right]\right)\right)^{-1}=\left[e_{1}\right]\left(\left[t\left(\mathfrak{s} \cdot *\left(D_{2}\right)\right)\right]\right)^{-1}=\left[t\left(\mathfrak{s} \cdot *\left(D_{2}\right)\right)\right]^{-1}
$$

Notice that the map $\zeta_{1 *}: \pi_{1}\left(G\left(\mathfrak{s} . \mathcal{P} R^{r e v}\right)\right) \rightarrow \pi_{1}(G(\mathfrak{s} . \mathcal{P} R))$ relies on a choice of section for the surjective map that is part of the 1-simplex used in the construction. Although Duflot showed that the construction of $\zeta_{1 *}$ is independent of the choice of section, this is not sufficient to extend the idea to higher dimensions, and will not work for mapping $\pi_{2}\left(G\left(\mathfrak{s} \cdot \mathcal{P} R^{\text {rev }}\right)\right)$ to $\pi_{2}(G(\mathfrak{s} \cdot \mathcal{P} R))$, should that be necessary. On the other hand, Theorem 1.2.6 of Chapter 3 gives us a weak homotopy equivalence with the same domain and range and which is by definition applicable in all dimensions. Therefore we map

$$
\begin{aligned}
& G(\mathfrak{s} . *)_{1 *}\left(\theta_{1 *}^{-1}\left(T_{*}(L(P, \alpha))\right)\right)=G(\mathfrak{s} . *)_{1 *}\left(\theta_{1 *}^{-1}\left(T_{*}\left(D_{1}, D_{2}\right)\right)\right)=G(\mathfrak{s} . *)_{1 *}\left(\theta_{1 *}^{-1}\left(\left[\tilde{t}\left(D_{2}\right)\right]\right)\right. \\
& =G(\mathfrak{s} \cdot *)_{1 *}\left(\left[\tilde{t}\left(D_{2}\right)\right]^{-1}\right)=\left[t\left(\mathfrak{s} \cdot *\left(D_{2}\right)\right)\right]^{-1}=\left[t\left(\begin{array}{ll}
\\
& \\
& \\
\\
P^{*}>\xrightarrow{\alpha^{*}} & P^{*}
\end{array}\right)\right]^{-1},
\end{aligned}
$$

so that we have the alternative isomorphism

$$
Q^{\prime}:=G(\mathfrak{s} \cdot *)_{1 *} \circ \theta_{1 *}^{-1} \circ T_{*} \circ L: K_{1}(R) \rightarrow \pi_{1}(G(\mathfrak{s} \cdot \mathcal{P} R)) .
$$

We will, in fact, use Q^{\prime} along with the long exact sequence of a Kan fibration and the exact sequence of Milnor from Chapter 2 to construct an isomorphism for $K_{2}(R)$.

Now for these elements $w_{1}, w_{2} \in S d(\mathfrak{s} . \mathcal{P} R)_{2}^{\text {rev }}$, we calculate $H_{2}\left(w_{1}\right)=\left(a_{1} \mid a_{2}\right)$ where

and

We see quickly that $H_{2}\left(w_{1}\right)=\iota_{P^{*}} \mid\left(\alpha^{*}\right)$!. Similarly,

Now we calculate the image of the induced map as

$$
\begin{aligned}
& G H_{*}\left(\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right]\right)=\left[G H_{1}\left(\tilde{t}\left(w_{2}\right)\right)\left(G H_{1}\left(\tilde{t}\left(w_{1}\right)\right)\right)^{-1}\right] \\
& =\left[t\left(H_{2}\left(w_{2}\right)\right)\left(t\left(H_{2}\left(w_{1}\right)\right)\right)^{-1}\right]=\left[t\left(q_{P^{*}} \mid \alpha^{*}\right)\left(t\left(\iota_{P^{*}} \mid \alpha^{*}\right)\right)^{-1}\right] .
\end{aligned}
$$

Using the notation of [11] again, we conclude

$$
G H_{*}\left(\left[\tilde{t}\left(w_{2}\right)\left(\tilde{t}\left(w_{1}\right)\right)^{-1}\right]\right)=\left[x\left(\alpha^{*}\right)\right] .
$$

It remains to compare $\left[x\left(\alpha^{-1}\right)\right]$ with $\left[x\left(\alpha^{*}\right)\right]$ in $\pi_{1}(G(N(Q \mathcal{P} R)))$ to see if duality changes the image of the isomorphism in a straightforward way. It makes sense from Theorem 1.2.6 of Chapter 2 that these elements should in fact be equal up to a sign at worst, but showing this explicitly remains a topic of continuing research, and the issue does emerge again in the context of the commutative diagram introduced in Chapter 6.

Chapter 5

Working in $G(\mathfrak{s} \cdot \mathcal{P} R)$

1 Introduction

This Chapter constitutes the main work of this dissertation. The main result is the construction of an explicit isomorphism $f: S t(R) \rightarrow \pi_{1}(Y(R))$, where $Y(R)$ is a Kan Complex associated with the simplicial group $G(\mathfrak{s} \cdot \mathcal{P} R)$. We begin by exploring analogs to Nenashev's work in [13], which gave a similar calculation for $\mathcal{G} \cdot \mathcal{P} R$.

2 Homotopy in $G(\mathfrak{s} \cdot \mathcal{P} R)$

$2.1 \mathfrak{i}_{P}$

We first turn our attention to the nerve construction on the group $\operatorname{Aut}(P)$ for $P \in \mathcal{P} R$. Thus we use the common notation

$$
\boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}\right) \in N(\operatorname{Aut}(P))_{n}
$$

or simply $\alpha=(\alpha)$ for 1 -simplices (and from now on we identify the single 0 -simplex of $N(A u t(P))$ by $P-$ recall Examples 5.1.1 and 5.1.2 of Chapter 1). Additionally we define

$$
\mathbf{1}_{P}=\left(1_{P}\left|1_{P}\right| \cdots \mid 1_{P}\right) \in N(\operatorname{Aut}(P))_{n}
$$

if $n>0$, and $\mathbf{1}_{P}=P$ in dimension 0 .

Using this, we identify $\boldsymbol{\alpha}$ with the element

and we will consider the particular generators $t(\boldsymbol{\alpha})$ and $t\left(\mathbf{1}_{\boldsymbol{P}}\right)$ of $G(\mathfrak{s} \cdot \mathcal{P} R)_{n}$. The following can be verified by direct computation in $G(\mathfrak{s} . \mathcal{P} R)$.

Lemma 2.1.1 Given any $P \in \mathcal{P} R$ there is a simplicial map $\mathfrak{i}_{P}: N(\operatorname{Aut}(P)) \rightarrow G(\mathfrak{s} \cdot \mathcal{P} R)$, given on n simplices $\boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}\right)$ by

$$
\mathfrak{i}_{P}(\boldsymbol{\alpha})=t(\boldsymbol{\alpha}) t\left(\mathbf{1}_{P}\right)^{-1}
$$

Definition 2.1.2 (See [11]) A short exact sequence of pairs

$$
\left(P^{\prime}, \alpha^{\prime}\right) \xrightarrow{f}(P, \alpha) \xrightarrow{g}\left(P^{\prime \prime}, \alpha^{\prime \prime}\right)
$$

is a diagram

in which all squares commute, α, α^{\prime} and $\alpha^{\prime \prime}$ are automorphisms and for which $P^{\prime} \stackrel{f}{\hookrightarrow} P \xrightarrow{g} P^{\prime \prime}$ is a short exact sequence in $\mathcal{P} R$.

Given a short exact sequence

$$
l: P^{\prime} \stackrel{f}{\hookrightarrow} P \stackrel{g}{\rightarrow} P^{\prime \prime}
$$

in $\mathcal{P} R, m>0, \boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{m}\right) \in N(\operatorname{Aut}(P))_{m}$ and $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}^{\prime}\left|\alpha_{2}^{\prime}\right| \cdots \mid \alpha_{m}^{\prime}\right) \in N\left(\operatorname{Aut}\left(P^{\prime}\right)\right)_{m}$ for which

$$
\left(P^{\prime}, \alpha_{i}^{\prime}\right) \xrightarrow{f}\left(P, \alpha_{i}\right) \xrightarrow{g}\left(P^{\prime \prime}, 1_{P^{\prime \prime}}\right)
$$

is a short exact sequence of pairs for each $1 \leq i \leq m$, consider the element

$$
\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right) \in \mathfrak{s} \cdot \mathcal{P} R_{m+2}
$$

defined by

In case $m=0$, this is the element $\left(P^{\prime}, P ; l\right) \in \mathfrak{s} \cdot \mathcal{P} R_{2}$ representing the short exact sequence itself:

$$
\left(P^{\prime}, P ; l\right)=\left(\begin{array}{ccc}
& & P^{\prime \prime} \\
& & g^{\uparrow} \\
& & f \\
P^{\prime}> & P
\end{array}\right)
$$

and we also define

$$
(-,-; l):=P^{\prime \prime} \in \mathfrak{s} \cdot \mathcal{P} R_{1} .
$$

Lemma 2.1.3 Given a short exact sequence

$$
l: P^{\prime} \stackrel{f}{\hookrightarrow} P \xrightarrow{g} P^{\prime \prime}
$$

in $\mathcal{P} R, m>0, \boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{m}\right) \in N(A u t(P))_{m}$ and $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}^{\prime}\left|\alpha_{2}^{\prime}\right| \cdots \mid \alpha_{m}^{\prime}\right) \in N\left(\text { Aut }\left(P^{\prime}\right)\right)_{m}$, if

$$
\left(P^{\prime}, \alpha_{i}^{\prime}\right) \xrightarrow{f}\left(P, \alpha_{i}\right) \xrightarrow{g}\left(P^{\prime \prime}, 1_{P^{\prime \prime}}\right)
$$

is a short exact sequence of pairs for each $1 \leq i \leq m$, then $t\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right) \in G(\mathfrak{s} . \mathcal{P} R)_{m+1}$ has

$$
d_{m+1} t\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=t\left(\boldsymbol{\alpha}^{\prime}\right)^{-1} t(\boldsymbol{\alpha}) \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m}
$$

and

$$
d_{i} t\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=t\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right) \in G(\mathfrak{s} . \mathcal{P} R)_{m}
$$

$\forall 0 \leq i \leq m$.

Proof: We see by definition that $d_{0} t\left(P^{\prime}, P ; l\right)=t\left(P^{\prime \prime}\right)$ and $d_{1} t\left(P^{\prime}, P ; l\right)=t\left(P^{\prime}\right)^{-1} t(P)$ for case $m=1$, and by calculation in $\mathfrak{s} . \mathcal{P} R$ that $d_{i}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right) \forall 0 \leq i \leq m$, in which case

$$
d_{i} t\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=t\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right)
$$

for each $0 \leq i \leq m$ by definition. For $i=m+1$ we see
$d_{m+1}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=\boldsymbol{\alpha}$ and $d_{m+2}\left(\boldsymbol{\alpha}^{\prime} ; \boldsymbol{\alpha} ; l\right)=\boldsymbol{\alpha}^{\prime}$, so that by definition in $G(\mathfrak{s} . \mathcal{P} R)$ (i.e. Definition 4.1.2 of Chapter 1),

$$
d_{m+1} t\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=t\left(d_{m+2}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)\right)^{-1} t\left(d_{m+1}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)\right)=t\left(\boldsymbol{\alpha}^{\prime}\right)^{-1} t(\boldsymbol{\alpha})
$$

Note also that $d_{m+1} t\left(\mathbf{1}_{P^{\prime}}, \mathbf{1}_{P} ; l\right)=t\left(\mathbf{1}_{P^{\prime}}\right)^{-1} t\left(\mathbf{1}_{P}\right) \neq 1 \in G(\mathfrak{s} . \mathcal{P} R)_{m}$.

Theorem 2.1.4 Given $m>0, P, P^{\prime} \in \mathcal{P} R, \boldsymbol{\alpha} \in N(\operatorname{Aut}(P))_{m}, \boldsymbol{\alpha}^{\prime} \in N\left(\operatorname{Aut}\left(P^{\prime}\right)\right)_{m}$, if

$$
l=P^{\prime} \xrightarrow{f} P \xrightarrow{g} P^{\prime \prime}
$$

is a short exact sequence for which $\left(P^{\prime}, \alpha_{i}^{\prime}\right) \xrightarrow{f}\left(P, \alpha_{i}\right) \xrightarrow{g}\left(P^{\prime \prime}, 1_{P^{\prime \prime}}\right)$ is an exact sequence of pairs for each $1 \leq i \leq m$, then $\exists w_{m}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right) \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m+1}$ for which
a) $d_{i} w_{m}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=w_{m-1}\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right) \forall 0 \leq i \leq m$.
b) $d_{m+1} w_{m}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=\mathfrak{i}_{P^{\prime}}\left(\boldsymbol{\alpha}^{\prime}\right)^{-1} \mathfrak{i}_{P}(\boldsymbol{\alpha})$.

Proof: First we define $w_{0}\left(P^{\prime}, P ; l\right):=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1}$. In case $m=1$ we have $\alpha \in \operatorname{Aut}(P), \alpha^{\prime} \in \operatorname{Aut}\left(P^{\prime}\right)$ and short exact sequence of pairs $\left(P^{\prime}, \alpha^{\prime}\right) \xrightarrow{f}(P, \alpha) \xrightarrow{g}\left(P^{\prime \prime}, 1_{P^{\prime \prime}}\right)$ with corresponding short exact sequence l.

From Lemma 2.1.3 we have

with

$$
d_{2} u_{1}=t\left(\alpha^{\prime}\right)^{-1} t(\alpha)
$$

and

$$
d_{2} v_{1}=t\left(1_{P^{\prime}}\right)^{-1} t\left(1_{P}\right)
$$

On the other hand

$$
d_{0} u_{1}=d_{0} v_{1}=t\left(\begin{array}{ll}
& P^{\prime \prime} \\
& \\
{ }^{\uparrow}
\end{array}\right)
$$

and

$$
d_{1} u_{1}=d_{1} v_{1}=t\left(\begin{array}{lll}
& P^{\prime \prime} \\
& & g^{\wedge} \\
P^{\prime}> & & \\
& P
\end{array}\right) .
$$

With $\phi=t\left(P^{\prime}\right) \in G(\mathfrak{s .} \mathcal{P} R)_{0}$ set $z_{1}=s_{1} s_{0} \phi$. Now let $w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=z_{1} u_{1} v_{1}^{-1} z_{1}^{-1} \in G(\mathfrak{s} . \mathcal{P} R)_{2}$. Then we calculate

$$
d_{0} w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=\left(d_{0} z_{1}\right)\left(d_{0} u_{1}\right)\left(d_{0} v_{1}\right)^{-1}\left(d_{0} z_{1}\right)^{-1}=1=w_{0}\left(P^{\prime}, P ; l\right)=w_{0}\left(d_{0} \alpha^{\prime}, d_{0} \alpha ; l\right)
$$

and similarly

$$
d_{1} w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=1=w_{0}\left(P^{\prime}, P ; l\right)=w_{0}\left(d_{1} \alpha^{\prime}, d_{1} \alpha ; l\right)
$$

Finally

$$
d_{2} w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=\left(d_{2} z_{1}\right)\left(d_{2} u_{1}\right)\left(d_{2} v_{1}\right)^{-1}\left(d_{2} z_{1}\right)^{-1}=\left(s_{0} \phi\right)\left(t\left(\alpha^{\prime}\right)^{-1} t(\alpha)\right)\left(t\left(1_{P^{\prime}}\right)^{-1} t\left(1_{P}\right)\right)^{-1}\left(s_{0} \phi\right)^{-1} .
$$

But $s_{0} \phi=t\left(1_{P^{\prime}}\right)$ by definition, so

$$
d_{2} w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=t\left(1_{P^{\prime}}\right) t\left(\alpha^{\prime}\right)^{-1} t(\alpha) t\left(1_{P}\right)^{-1} t\left(1_{P^{\prime}}\right) t\left(1_{P^{\prime}}\right)^{-1}
$$

$$
=\left(t\left(\alpha^{\prime}\right) t\left(1_{P^{\prime}}\right)^{-1}\right)^{-1}\left(t(\alpha) t\left(1_{P}\right)^{-1}\right)=\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)^{-1} \mathfrak{i}_{P}(\alpha)
$$

Note that in the special case $m=1$ we have $w_{1}\left(\alpha^{\prime}, \alpha ; l\right) \in \overline{G(\mathfrak{s . P} R)_{2}}$, which gives us more information than we have for case $m \geq 2$.

For $m \geq 2,\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right) \in \mathfrak{s} . \mathcal{P} R_{m+2}$ define $m+1$-simplices

$$
u_{m}=t\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right), v_{m}=t\left(\mathbf{1}_{P^{\prime}}, \mathbf{1}_{P} ; l\right), z_{m}=s_{m} s_{m-1} \cdots s_{1} s_{0} t\left(P^{\prime}\right)
$$

in $G(\mathfrak{s .} \cdot \mathcal{P} R)$ and set $w_{m}=z_{m} u_{m} v_{m}^{-1} z_{m}^{-1}$. Then we find $d_{i} z_{m}=z_{m-1} \forall 0 \leq i \leq m+1$, and by Lemma 2.1.3 we know $d_{i} u_{m}=t\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right)$ and $d_{i} v_{m}=t\left(\mathbf{1}_{P^{\prime}}, \mathbf{1}_{P}\right) \forall 0 \leq i \leq m$. Thus

$$
\begin{gathered}
d_{i} w_{m}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=\left(d_{i} z_{m}\right)\left(d_{i} u_{m}\right)\left(d_{i} v_{m}\right)^{-1}\left(d_{i} z_{m}\right)^{-1} \\
=z_{m-1} t\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right) t\left(\mathbf{1}_{P^{\prime}}, \mathbf{1}_{P}\right)^{-1} z_{m-1}^{-1}=w_{m-1}\left(d_{i} \boldsymbol{\alpha}^{\prime}, d_{i} \boldsymbol{\alpha} ; l\right)
\end{gathered}
$$

whenever $0 \leq i \leq m$. For $i=m+1$ we notice again that $z_{m-1}=t\left(\mathbf{1}_{P^{\prime}}\right)$ so that with $d_{m+1} v_{m}=t\left(\mathbf{1}_{P^{\prime}}\right)^{-1} t\left(\mathbf{1}_{P}\right)$ and $d_{m+1} u_{m}=t\left(\boldsymbol{\alpha}^{\prime}\right)^{-1} t(\boldsymbol{\alpha})$ from Lemma 2.1.3, we have

$$
\begin{gathered}
d_{m+1} w_{m}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha} ; l\right)=t\left(\mathbf{1}_{P^{\prime}}\right) t\left(\boldsymbol{\alpha}^{\prime}\right)^{-1} t(\boldsymbol{\alpha})\left(t\left(\mathbf{1}_{P^{\prime}}\right)^{-1} t\left(\mathbf{1}_{P}\right)\right)^{-1} t\left(\mathbf{1}_{P^{\prime}}\right)^{-1} \\
=\left(t\left(\boldsymbol{\alpha}^{\prime}\right) t\left(\mathbf{1}_{P^{\prime}}\right)^{-1}\right)^{-1}\left(t(\boldsymbol{\alpha}) t\left(\mathbf{1}_{P}\right)^{-1}\right)=\mathfrak{i}_{P^{\prime}}\left(\boldsymbol{\alpha}^{\prime}\right)^{-1} \mathfrak{i}_{P}(\boldsymbol{\alpha})
\end{gathered}
$$

Remark 2.1.5 In case $P^{\prime}=0$ we notice in the proof above that $\phi=t(0)=t\left(s_{0}(0)\right)=1$, so that $z_{1}=1$. Also $u_{1}=v_{1}$. Therefore $P^{\prime}=0$ implies that $w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=1 \in G(\mathfrak{s} . \mathcal{P} R)_{2}$.

We have a few corollaries. The first is a partial analog (i.e. in case $m=1$) to Lemma 2.3 of [13]. Recall Definition 2.2.1 and Lemma 2.2.2 from Chapter 1: $B_{1}:=\operatorname{im}\left(\bar{d}_{2}\right) \triangleleft G_{1}$ for any simplicial group G, with $\bar{d}_{2}=\left.d_{2}\right|_{\bar{G}}$.

Corollary 2.1.6 Given $P, P^{\prime} \in \mathcal{P} R, \alpha \in \operatorname{Aut}(P), \alpha^{\prime} \in \operatorname{Aut}\left(P^{\prime}\right)$, if $l=P^{\prime} \stackrel{f}{\hookrightarrow} P \xrightarrow{g} P^{\prime \prime}$ is a short exact sequence for which $\left(P^{\prime}, \alpha^{\prime}\right) \xrightarrow{f}(P, \alpha) \xrightarrow{g}\left(P^{\prime \prime}, 1_{P^{\prime \prime}}\right)$ is an exact sequence of pairs, then $\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)$ and $\mathfrak{i}_{P}(\alpha)$ represent the same element of the group $G(\mathfrak{s} \cdot \mathcal{P} R)_{1} / B_{1}$.

Proof: As in the proof of Theorem 2.1.4, case $m=1$ we construct

$$
w_{1}\left(\alpha^{\prime}, \alpha ; l\right) \in{\overline{G(\mathfrak{s . P} R})_{2}}^{2}
$$

with $d_{2} w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=\left(\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)\right)^{-1} \mathfrak{i}_{P}(\alpha)$.
Therefore $\left(\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)\right)^{-1} \mathfrak{i}_{P}(\alpha) \in B_{1}$ so that by Lemma 2.2.2 in Chapter 1 it follows that $\left[\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)\right]=\left[\mathfrak{i}_{P}(\alpha)\right]$ inside $G(\mathfrak{s} \cdot \mathcal{P} R)_{1} / B_{1}$.

Corollary 2.1.7 Let $P^{\prime} \in \mathcal{P} R, \alpha^{\prime} \in \operatorname{Aut}\left(P^{\prime}\right)$ and $P=P^{\prime} \oplus Q$ with $Q \in \mathcal{P} R$ and consider the short exact sequence of pairs

Then there is a $w\left(\alpha^{\prime}, \alpha^{\prime} \oplus 1\right) \in \overline{G(\mathfrak{s} \cdot \mathcal{P} R)_{2}}$ with $d_{2} w\left(\alpha^{\prime}, \alpha^{\prime} \oplus 1_{Q}\right)=\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)^{-1} \mathfrak{i}_{P}\left(\alpha^{\prime} \oplus 1_{Q}\right)$.

Proof: This follows immediately from Corollary 2.1.6 by applying it to the case $\alpha=\alpha^{\prime} \oplus 1_{Q}$.

Consequently, $\left[\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)\right]=\left[\mathfrak{i}_{P^{\prime} \oplus Q}\left(\alpha^{\prime} \oplus 1_{Q}\right)\right]$ inside $G(\mathfrak{s} . \mathcal{P} R)_{1} / B_{1}$. Therefore homotopy classes of images of the $\mathfrak{i}^{\prime} s$ in the sense of Theorem 2.2.3 of Chapter 1 are stable under direct sums:

Corollary 2.1.8 Given any $P^{\prime} \in \mathcal{P} R, \alpha^{\prime} \in \operatorname{Aut}\left(P^{\prime}\right), P=P^{\prime} \oplus R^{n}, n \in \mathbb{N}$, there is a $\xi_{n} \in \overline{G(\mathfrak{s . P} R)_{2}}$ with $d_{2} \xi_{n}=\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)^{-1} \mathfrak{i}_{P}\left(\alpha^{\prime} \oplus 1_{n}\right)\left(\right.$ using $\left.1_{n}=i d_{R^{n}}\right)$.

Proof: This follows from Theorem 2.1.4 and Corollary 2.1.7 by setting

$$
\xi_{n}=w\left(\alpha^{\prime}, \alpha^{\prime} \oplus 1_{R}\right) w\left(\alpha^{\prime} \oplus 1_{R}, \alpha^{\prime} \oplus 1_{R} \oplus 1_{R}\right) \cdots w\left(\alpha^{\prime} \oplus 1_{n-1}, \alpha^{\prime} \oplus 1_{n-1} \oplus 1_{R}\right) \in{\overline{G(\mathfrak{s} \cdot \mathcal{P} R)_{2}}}_{2}
$$

since $R \in \mathcal{P} R$ and

$$
1_{n}=1_{R} \oplus 1_{R} \oplus \cdots \oplus 1_{R}=1_{n-1} \oplus 1_{R}
$$

That is, we calculate

$$
\begin{gathered}
d_{2} \xi_{n}=\left(\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)\right)^{-1} \mathfrak{i}_{P^{\prime} \oplus R}\left(\alpha^{\prime} \oplus 1_{R}\right)\left(\mathfrak{i}_{P^{\prime} \oplus R}\left(\alpha^{\prime} \oplus 1_{R}\right)\right)^{-1} \mathfrak{i}_{P^{\prime} \oplus R^{2}}\left(\alpha^{\prime} \oplus 1_{2}\right) \\
\cdots \mathfrak{i}_{P^{\prime} \oplus R^{n-1}}\left(\alpha^{\prime} \oplus 1_{n-1}\right)\left(\mathfrak{i}_{P^{\prime} \oplus R^{n-1}}\left(\alpha^{\prime} \oplus 1_{n-1}\right)\right)^{-1} \mathfrak{i}_{P^{\prime} \oplus R^{n}}\left(\alpha^{\prime} \oplus 1_{n}\right) \\
=\left(\mathfrak{i}_{P^{\prime}}\left(\alpha^{\prime}\right)\right)^{-1} \mathfrak{i}_{P^{\prime} \oplus R^{n}}\left(\alpha^{\prime} \oplus 1_{n}\right)
\end{gathered}
$$

2.2 Filtrations: The elements $X_{m}(F(P, \alpha))$

Definition 2.2.1 Let $P \in \mathcal{P} R, \alpha \in \operatorname{Aut}(P)$. An admissible filtration $F=F(P, \alpha)$ of the pair (P, α) with length n is a sequence

$$
F: P_{0}=0 \subseteq P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{n}=P
$$

of projective submodules P_{i}, with admissible inclusions (i.e. $P_{i} / P_{i-1} \in \mathcal{P} R \forall 2 \leq i \leq n$), such that:

1) $\alpha^{(i)}:=\left.\alpha\right|_{P_{i}} \in \operatorname{Aut}\left(P_{i}\right) \forall 1 \leq i \leq n, \alpha^{(1)}=1_{P_{1}}$ and $\alpha^{(n)}=\alpha$.
2) For each $2 \leq i \leq n$, the homomorphism induced by $\alpha^{(i)}$ on P_{i} / P_{i-1} is the identity.

We can show an analog to Lemma 2.2 of [13]:

Theorem 2.2.2 Given $P \in \mathcal{P} R, \alpha \in A u t(P)$ and admissible filtration $F(P, \alpha), \exists X_{1}(F(P, \alpha)) \in \overline{G(\mathfrak{s} . \mathcal{P} R)}_{2}$ with

$$
d_{2} X_{1}(F(P, \alpha))=\mathfrak{i}_{P}(\alpha)
$$

Proof: By Definition 2.2.1, for each $2 \leq i \leq n$ we have a short exact sequence of pairs $\left(P_{i-1}, \alpha^{(i-1)}\right) \rightarrow$ $\left(P_{i}, \alpha^{(i)}\right) \rightarrow\left(P_{i} / P_{i-1}, 1_{P_{i} / P_{i-1}}\right)$ corresponding to the short exact sequence $l_{i}: P_{i-1} \hookrightarrow P_{i} \rightarrow P_{i} / P_{i-1}$ with the canonical inclusion and projection. Therefore by Theorem 2.1.4 for each $2 \leq i \leq n$ there is a $w_{i}=w_{1}\left(\alpha^{(i-1)}, \alpha^{(i)} ; l_{i}\right) \in \overline{G(\mathfrak{s} \cdot \mathcal{P} R)_{2}}$ with $d_{2} w_{i}=\left(\mathfrak{i}_{P_{i-1}}\left(\alpha^{(i-1)}\right)\right)^{-1} \mathfrak{i}_{P_{i}}\left(\alpha^{(i)}\right)$.

Define $X_{1}(F(P, \alpha))=w_{2} w_{3} \cdots w_{n} \in \overline{G(\mathfrak{s} \cdot \mathcal{P R})_{2}}$. Then

$$
\begin{gathered}
d_{2} X_{1}(F(P, \alpha))=\left(\mathfrak{i}_{P_{1}}\left(\alpha^{(1)}\right)\right)^{-1} \mathfrak{i}_{P_{2}}\left(\alpha^{(2)}\right)\left(\mathfrak{i}_{P_{2}}\left(\alpha^{(2)}\right)\right)^{-1} \cdots \\
\cdots\left(\mathfrak{i}_{P_{n-2}}\left(\alpha^{(n-2)}\right)\right)^{-1} \mathfrak{i}_{P_{n-1}}\left(\alpha^{(n-1)}\right)\left(\mathfrak{i}_{P_{n-1}}\left(\alpha^{(n-1)}\right)\right)^{-1} \mathfrak{i}_{P_{n}}\left(\alpha^{(n)}\right) \\
=\left(\mathfrak{i}_{P_{1}}\left(\alpha^{(1)}\right)\right)^{-1} \mathfrak{i}_{P_{n}}\left(\alpha^{(n)}\right) .
\end{gathered}
$$

Notice in particular that since $\alpha^{(1)}=1_{P_{1}}$ by definition we must have

$$
\mathfrak{i}_{P_{1}}\left(\alpha_{1}\right)=t\left(1_{P_{1}}\right) t\left(1_{P_{1}}\right)^{-1}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1},
$$

as well as $P_{n}=P$ and $\alpha^{(n)}=\alpha$. Therefore

$$
d_{2} X_{1}(F(P, \alpha))=\mathfrak{i}_{P}(\alpha)
$$

Definition 2.2.3 Given $P \in \mathcal{P} R, \boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{m}\right) \in N(\operatorname{Aut}(P))_{m}$, let F be a sequence

$$
F: P_{0}=0 \subseteq P_{1} \subseteq P_{2} \cdots \subseteq P_{n-1} \subseteq P_{n}=P
$$

of projective submodules and admissible inclusions such that F is an admissible filtration of the pair (P, α_{i}) for each $1 \leq i \leq m$. Then we say $F=F(P, \boldsymbol{\alpha})$ is an admissible filtration of the pair $(P, \boldsymbol{\alpha})=$ $\left(P ; \alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{m}\right)$.

And now we have an analog for Lemma 2.4 of [13] as well:

Lemma 2.2.4 Suppose $\boldsymbol{\alpha} \in N(A u t(P))_{m}$ and $F=F(P, \boldsymbol{\alpha})$ is an admissible filtration of $(P, \boldsymbol{\alpha})$. Then there is an $X_{m}(F(P, \boldsymbol{\alpha})) \in G(\mathfrak{s} . \mathcal{P} R)_{m+1}$ for which:
a) $d_{k} X_{m}(F(P, \boldsymbol{\alpha}))=X_{m-1}\left(F\left(P, d_{k} \boldsymbol{\alpha}\right)\right)$ for each $0 \leq k \leq m$.
b) $d_{m+1} X_{m}(F(P, \boldsymbol{\alpha}))=\mathfrak{i}_{P}(\boldsymbol{\alpha})$

Proof: For $m=0$, define $X_{0}(F(P, P))=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1}$. In case $m=1$ the result follows from Theorem 2.2.2; indeed, we have the stronger statement that $X_{1}(F(P, \alpha)) \in \overline{G(\mathfrak{s . P} R)_{2}}$. The general assumption is that for each $\boldsymbol{\alpha}=\left(\alpha_{1}|\cdots| \alpha_{m}\right) \in N(\operatorname{Aut}(P))_{m}$ the sequence F admits a diagram

in which all squares commute and the $j^{\text {th }}$ horizontal sequence for $1 \leq j \leq m$ represents an admissible filtration $F\left(P, \alpha_{j}\right)$. Notice that such F will also be an admissible filtration of the pair ($P, \alpha_{j+1} \circ \alpha_{j}$). So for each $2 \leq i \leq n$ and each $1 \leq j \leq m$ we have a short exact sequence of pairs

$$
\left(P_{i-1}, \alpha_{j}^{(i-1)}\right) \rightarrow\left(P_{i}, \alpha_{j}^{(i)}\right) \rightarrow\left(P_{i} / P_{i-1}, 1_{P_{i} / P_{i-1}}\right)
$$

with corresponding short exact sequence l_{i} (note the same l_{i} corresponds to each j). Now for each $1 \leq i \leq n$ we have $\boldsymbol{\alpha}^{(i)}:=\left(\alpha_{1}^{(i)}\left|\alpha_{2}^{(i)}\right| \cdots \mid \alpha_{m}^{(i)}\right) \in N\left(A u t\left(P_{i}\right)\right)_{m}$ (i.e. consecutive vertical columns give pairs $\boldsymbol{\alpha}^{(i-1)}, \boldsymbol{\alpha}^{(i)}$ of m-simplices that satisfy the hypothesis for Theorem 2.1.4), with $\boldsymbol{\alpha}^{(n)}=\boldsymbol{\alpha}$. It follows that for each $2 \leq i \leq n \exists w_{i}=w_{m}\left(\boldsymbol{\alpha}^{(i-1)}, \boldsymbol{\alpha}^{(i)} ; l_{i}\right) \in G(\mathfrak{s} . \mathcal{P} R)_{m+1}$ for which

$$
d_{k} w_{i}=w_{m-1}\left(d_{k} \boldsymbol{\alpha}^{(i-1)}, d_{k} \boldsymbol{\alpha}^{(i)} ; l_{i}\right)
$$

for every $0 \leq k \leq m$ and

$$
d_{m+1} w_{i}=\mathfrak{i}_{P_{i-1}}\left(\boldsymbol{\alpha}^{(i-1)}\right)^{-1} \mathfrak{i}_{P_{i}}\left(\boldsymbol{\alpha}^{(i)}\right)
$$

Now define $X_{m}(F(P, \boldsymbol{\alpha}))=w_{2} w_{3} \cdots w_{n} \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m+1}$ and calculate:

$$
\begin{gathered}
d_{k} X_{m}(F(P, \boldsymbol{\alpha}))=w_{m-1}\left(d_{k} \boldsymbol{\alpha}^{(\mathbf{1})}, d_{k} \boldsymbol{\alpha}^{(\mathbf{2})} ; l_{2}\right) w_{m-1}\left(d_{k} \boldsymbol{\alpha}^{(\mathbf{2})}, d_{k} \boldsymbol{\alpha}^{(\mathbf{3})} ; l_{3}\right) \cdots w_{m-1}\left(d_{k} \boldsymbol{\alpha}^{(\boldsymbol{n}-\mathbf{1})}, d_{k} \boldsymbol{\alpha}^{(\boldsymbol{n})} ; l_{n}\right) \\
=X_{m-1}\left(F\left(P, d_{k} \boldsymbol{\alpha}\right)\right)
\end{gathered}
$$

for $0 \leq k \leq m$, and

$$
\begin{gathered}
d_{m+1} X_{m}(F(P, \boldsymbol{\alpha}))=\left(\mathfrak{i}_{P_{1}}\left(\boldsymbol{\alpha}^{(\mathbf{1})}\right)\right)^{-1} \mathfrak{i}_{P_{2}}\left(\boldsymbol{\alpha}^{(\mathbf{2})}\right)\left(\mathfrak{i}_{P_{2}}\left(\boldsymbol{\alpha}^{(\mathbf{2})}\right)\right)^{-1} \cdots \mathfrak{i}_{P_{n-1}}\left(\boldsymbol{\alpha}^{(n-1)}\right)\left(\mathfrak{i}_{P_{n-1}}\left(\boldsymbol{\alpha}^{(n-\mathbf{1})}\right)\right)^{-1} \mathfrak{i}_{P_{n}}\left(\boldsymbol{\alpha}^{(n)}\right) \\
=\left(\mathfrak{i}_{P_{1}}\left(\boldsymbol{\alpha}^{(1)}\right)\right)^{-1} \mathfrak{i}_{P_{n}}\left(\boldsymbol{\alpha}^{(n)}\right) .
\end{gathered}
$$

But by assumption F is an admissible filtration of $\left(P, \alpha_{j}\right)$ for each $1 \leq j \leq m$, so $\alpha_{j}^{(1)}=1_{P_{1}}$ for each $1 \leq j \leq m$ by Definition 2.2.1, in which case $\boldsymbol{\alpha}^{(1)}=\mathbf{1}_{P_{1}}$. Also by definition $\boldsymbol{\alpha}^{(n)}=\boldsymbol{\alpha}$ with $P_{n}=P$. Therefore $d_{m+1} X_{m}(F(P, \boldsymbol{\alpha}))=\left(\mathfrak{i}_{P_{1}}\left(\mathbf{1}_{P_{1}}\right)\right)^{-1} \mathfrak{i}_{P}(\boldsymbol{\alpha})$. But by definition (i.e. Lemma 2.1.1) we know

$$
\mathfrak{i}_{P_{1}}\left(\mathbf{1}_{P_{1}}\right)=t\left(\mathbf{1}_{P_{1}}\right)\left(t\left(\mathbf{1}_{P_{1}}\right)\right)^{-1}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m}
$$

It follows that

$$
d_{m+1} X_{m}(F(P, \boldsymbol{\alpha}))=(1) \mathfrak{i}_{P}(\boldsymbol{\alpha})=\mathfrak{i}_{P}(\boldsymbol{\alpha})
$$

2.3 Refinements of Admissible Filtrations

Definition 2.3.1 (See [20]) Given a sequence

$$
F: P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n}=P
$$

of projective submodules for $P \in \mathcal{P} R$, a refinement of F is a sequence \widetilde{F} which can be obtained from F by inserting a finite number of projective submodules into F. If F is an admissible filtration of (P, α), the restriction of $\alpha \in \operatorname{Aut}(P)$ to each inserted submodule is an automorphism of that submodule and the inclusions around and including each inserted submodule are admissible, then we say $\widetilde{F}(P, \alpha)$ is an admissible refinement of the admissible filtration $F(P, \alpha)$.

Lemma 2.3.2 Any admissible refinement of an admissible filtration is an admissible filtration.

Proof: Let

$$
F: P_{0}=0 \subseteq P_{1} \subseteq \cdots \subseteq P_{n-1} \subseteq P_{n}=P
$$

be a sequence that is an admissible filtration of (P, α). Given $1 \leq i \leq n$, we show that the sequence

$$
\widetilde{F}: P_{0}=0 \subseteq P_{1} \subseteq \cdots P_{i-1} \subseteq \widetilde{P} \subseteq P_{i} \subseteq \cdots \subseteq P_{n-1} \subseteq P_{n}=P
$$

obtained by inserting a single, α-invariant submodule $\widetilde{P} \in \mathcal{P} R$ as shown will be an admissible filtration of (P, α), provided the inclusions $P_{i-1} \subseteq \widetilde{P}, \widetilde{P} \subseteq P_{i}$ are admissible. The result will then follow by induction. Denote $\widetilde{\alpha}=\left.\alpha\right|_{\widetilde{P}}$. We know by definition of admissible filtration F that $\alpha^{(i)}$ induces the identity map on P_{i} / P_{i-1}, so that with respect to cosets we have

$$
\alpha^{(i)}(p)+P_{i-1}=p+P_{i-1} \in P_{i} / P_{i-1}
$$

for every $p \in P_{i}$. Since $\widetilde{P} \subseteq P_{i}$ and $\left.\alpha\right|_{\widetilde{P}}=\left.\alpha^{(i)}\right|_{\widetilde{P}}$ it follows that $\widetilde{\alpha}$ induces the identity map on \widetilde{P} / P_{i-1}, so that

$$
\left(P_{i-1}, \alpha^{(i-1)}\right) \rightarrow(\widetilde{P}, \widetilde{\alpha}) \rightarrow\left(\widetilde{P} / P_{i-1}, 1_{\widetilde{P} / P_{i-1}}\right)
$$

is a short exact sequence of pairs. But also we have that

$$
\alpha^{(i)}(p)-p \in P_{i-1}
$$

for each $p \in P_{i}$, and $P_{i-1} \subseteq \widetilde{P}$. Therefore

$$
\alpha^{(i)}(p)-p \in \widetilde{P} \forall p \in P_{i}
$$

hence $\alpha^{(i)}$ induces the identity map on P_{i} / \widetilde{P} and

$$
(\widetilde{P}, \widetilde{\alpha}) \rightarrow\left(P_{i}, \alpha^{(i)}\right) \rightarrow\left(P_{i} / \widetilde{P}, 1_{P_{i} / \widetilde{P}}\right)
$$

is a short exact sequence of pairs. Since these are precisely the short exact sequences that are inserted along with \widetilde{P} and its inclusions and everything else about the filtration remains unchanged from $F(P, \alpha)$, it follows that the new sequence \widetilde{F} is an admissible filtration of (P, α).

We first consider $\alpha \in A u t(P)$ with admissible filtration $F(P, \alpha): P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{n}=P$, and a refinement of F by one additional, α-invariant submodule $\widetilde{P} \in \mathcal{P} R\left(\right.$ and $\left.\tilde{\alpha}:=\left.\alpha\right|_{\widetilde{P}}\right)$:

$$
\widetilde{F}: P_{1} \subseteq P_{2} \subseteq \cdots P_{i-1} \subseteq \widetilde{P} \subseteq P_{i} \subseteq \cdots \subseteq P_{n}=P
$$

such that $\tilde{P} / P_{i-1}, P_{i} / \tilde{P} \in \mathcal{P} R$.
We know $F(P, \alpha)$ gives exact sequences of pairs $l_{j}:\left(P_{j}, \alpha^{(j-1)}\right) \rightarrow\left(P_{j}, \alpha^{(j)}\right) \rightarrow\left(P_{j} / P_{j-1}, 1_{P_{j} / P_{j-1}}\right), 2 \leq$ $j \leq n$ as in the proof of Theorem 2.2.2. From the proof of Lemma 2.3.2 we have exact sequences of pairs $\left\{\tilde{l}_{j}\right\}$ for \widetilde{F} as well, and we see that

$$
\begin{gathered}
\tilde{l}_{j}=l_{j} \forall 2 \leq j \leq i-1 \\
\tilde{l}_{i}:\left(P_{i-1}, \alpha^{(i-1)}\right) \rightarrow(\widetilde{P}, \tilde{\alpha}) \rightarrow\left(\widetilde{P} / P_{i-1}, 1_{\widetilde{P} / P_{i-1}}\right), \\
\tilde{l}_{i+1}:(\widetilde{P}, \tilde{\alpha}) \rightarrow\left(P_{i}, \alpha^{(i)}\right) \rightarrow\left(P_{i} / \widetilde{P}, 1_{P_{i} / \widetilde{P}}\right)
\end{gathered}
$$

and

$$
\tilde{l}_{j}=l_{j-1} \forall i+2 \leq j \leq n+1
$$

From Lemma 2.2.4 we now have elements

$$
\begin{gathered}
X_{1}(F(P, \alpha))=w_{1}\left(\alpha^{(1)}, \alpha^{(2)} ; l_{2}\right) w_{1}\left(\alpha^{(2)}, \alpha^{(3)} ; l_{3}\right) \cdots w_{1}\left(\alpha^{(i-2)}, \alpha^{(i-1)} ; l_{i-1}\right) w_{1}\left(\alpha^{(i-1)}, \alpha^{(i)}, l_{i}\right) \\
\cdots w_{1}\left(\alpha^{(n-1)}, \alpha ; l_{n}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
X_{1}(\widetilde{F}(P, \alpha))=w_{1}\left(\alpha^{(1)}, \alpha^{(2)} ; l_{2}\right) w_{1}\left(\alpha^{(2)}, \alpha^{(3)} ; l_{3}\right) \cdots w_{1}\left(\alpha^{(i-2)}, \tilde{\alpha} ; \tilde{l}_{i-1}\right) w_{1}\left(\tilde{\alpha}, \alpha^{(i)} ; \tilde{l}_{i}\right) w_{1}\left(\alpha^{(i)}, \alpha^{(i+1)}, l_{i+1}\right) \\
\cdots w_{1}\left(\alpha^{(n-1)}, \alpha ; l_{n}\right)
\end{gathered}
$$

in $\overline{G(\mathfrak{s} \cdot \mathcal{P} R)}_{2}$.
The main results of this section require us to compare $X_{1}(F(P, \alpha))$ with $X_{1}(\widetilde{F}(P, \alpha))$. Let

$$
\begin{gathered}
A=w_{1}\left(\alpha^{(1)}, \alpha^{(2)} ; l_{2}\right) w_{1}\left(\alpha^{(2)}, \alpha^{(3)} ; l_{3}\right) \cdots w_{1}\left(\alpha^{(i-2)}, \alpha^{(i-1)} ; l_{i-1}\right), \\
B=w_{1}\left(\alpha^{(i)}, \alpha^{(i+1)}, l_{i+1}\right) \cdots w_{1}\left(\alpha^{(n-1)}, \alpha ; l_{n}\right) \\
C=w_{1}\left(\alpha^{(i-1)}, \alpha^{(i)}: l_{i}\right) \\
C_{1}=w_{1}\left(\alpha^{(i-1)}, \tilde{\alpha} ; \tilde{l}_{i}\right)
\end{gathered}
$$

and

$$
C_{2}=w_{1}\left(\tilde{\alpha}, \alpha^{(i)} ; \tilde{l}_{i+1}\right)
$$

Then $X_{1}(F(P, \alpha))=A C B$ and $X_{1}(\widetilde{F}(P, \alpha))=A C_{1} C_{2} B$. Thus we see that in order to compare $X_{1}(F(P, \alpha))$ to $X_{1}(\widetilde{F}(P, \alpha))$, we must first compare C to $C_{1} C_{2}$. Theorem 2.1 .4 shows how to do this:

Lemma 2.3.3 If

is a commutative diagram of projective modules and automorphisms such that the horizontal rows are admissible inclusions, with exact sequences of pairs

$$
\begin{aligned}
& l:\left(P^{\prime}, \alpha^{\prime}\right) \rightarrow(P, \alpha) \rightarrow\left(P / P^{\prime}, 1_{P / P^{\prime}}\right), \\
& \tilde{l}_{1}:\left(P^{\prime}, \alpha^{\prime}\right) \rightarrow(\widetilde{P}, \tilde{\alpha}) \rightarrow\left(\widetilde{P} / P^{\prime}, 1_{\widetilde{P} / P^{\prime}}\right)
\end{aligned}
$$

and

$$
\tilde{l}_{2}:(\widetilde{P}, \tilde{\alpha}) \rightarrow(P, \alpha) \rightarrow\left(P / \widetilde{P}, 1_{P / \widetilde{P}}\right)
$$

and corresponding elements $C=w_{1}\left(\alpha^{\prime}, \alpha ; l\right), C_{1}=w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)$, and $C_{2}=w_{1}\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)$ in $\overline{G(\mathfrak{s} \cdot \mathcal{P} R)}{ }_{2}$, then
$[C]=\left[C_{1} C_{2}\right]$ in $G(\mathfrak{s . P} R)_{2} / B_{2}$.

Proof: Define

Then

$$
t\left(\alpha^{\prime}, \tilde{\alpha}, \alpha\right) \in G(\mathfrak{s} . \mathcal{P} R)_{3}
$$

and similarly $\left.t\left(1_{P^{\prime}}, 1_{\widetilde{P}}, 1_{P}\right) \in G(\mathfrak{s} . \mathcal{P} R)_{3}\right)$. Calculations show that

$$
\begin{aligned}
& d_{2} t\left(\alpha^{\prime}, \tilde{\alpha}, \alpha\right)=t\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right),
\end{aligned}
$$

and

$$
d_{3} t\left(\alpha^{\prime}, \tilde{\alpha}, \alpha\right)=\left(t\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)\right)^{-1} t\left(\alpha^{\prime}, \alpha ; l\right)
$$

Likewise

$$
\begin{aligned}
& d_{2} t\left(1_{P^{\prime}}, 1_{\widetilde{P}}, 1_{P}\right)=t\left(1_{\widetilde{P}}, 1_{P} ; \tilde{l}_{2}\right),
\end{aligned}
$$

and

$$
d_{3} t\left(1_{P^{\prime}}, 1_{\widetilde{P}}, 1_{P}\right)=\left(t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)\right)^{-1} t\left(1_{P^{\prime}}, 1_{P} ; l\right)
$$

Let

$$
x=\left(s_{0} t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)\right)^{-1} s_{2} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right) t\left(\alpha^{\prime}, \tilde{\alpha}, \alpha\right)\left(t\left(1_{P^{\prime}}, 1_{\widetilde{P}}, 1_{P}\right)\right)^{-1}\left(s_{2} t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)\right)^{-1} s_{1} t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right) .
$$

Then we calculate

$$
\begin{gathered}
d_{0} x=\left(t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)\right)^{-1}\left(d_{0} s_{2} t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)\right) d_{0} t\left(\alpha^{\prime}, \tilde{\alpha}, \alpha\right)\left(d_{0} t\left(1_{P^{\prime}}, 1_{\widetilde{P}}, 1_{P}\right)\right)^{-1}\left(d_{0} s_{2} t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)\right)^{-1} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right) \\
=1 \in G(\mathfrak{s} . \mathcal{P} R)_{2}
\end{gathered}
$$

and
$d_{1} x=\left(t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)\right)^{-1}\left(d_{1} s_{2} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)\right) d_{1} t\left(\alpha^{\prime}, \tilde{\alpha}, \alpha\right)\left(d_{1} t\left(1_{P^{\prime}}, 1_{\widetilde{P}}, 1_{P}\right)\right)^{-1}\left(d_{1} s_{2} t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)\right)^{-1} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)=1$.

Consider $t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right) \in G(\mathfrak{s} . \mathcal{P} R)_{2}$: from earlier calculations we have

$$
d_{0} s_{0} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)=d_{1} s_{0} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)=d_{2} s_{0} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)=t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right),
$$

and

$$
d_{3} s_{0} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)=\left(z_{1}^{\prime}\right)^{-1} \tilde{z}_{1}
$$

where

$$
z_{1}^{\prime}, \tilde{z}_{1} \in G(\mathfrak{s . P} R)_{2}
$$

are those elements used to express $w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)=z_{1}^{\prime} u_{1} v_{1}\left(z_{1}^{\prime}\right)^{-1}$ and $w_{1}\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)=\tilde{z}_{1} \tilde{u}_{1} \tilde{v}_{1}\left(\tilde{z}_{1}\right)^{-1}$ as developed in the proof of Theorem 2.1.4. Notice that

$$
w_{1}\left(\alpha^{\prime}, \alpha ; l\right)=z_{1}^{\prime} t\left(\alpha^{\prime}, \alpha ; l\right)\left(t\left(1_{P^{\prime}}, 1_{P} ; l\right)\right)^{-1}\left(z_{1}^{\prime}\right)^{-1}
$$

for this same z_{1}^{\prime}. We use these to calculate

$$
d_{2} x=t\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)\left(t\left(1_{\widetilde{P}}, 1_{P} ; \tilde{l}_{2}\right)\right)^{-1}
$$

and

$$
\begin{gathered}
d_{3} x=\left(\left(z_{1}^{\prime}\right)^{-1} \tilde{z}_{1}\right)^{-1} t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right) t\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)^{-1} t\left(\alpha^{\prime}, \alpha ; l\right)\left(t\left(1_{P^{\prime}}, 1_{\tilde{P}} ; \tilde{l}_{1}\right)^{-1} t\left(1_{P^{\prime}}, 1_{P} ; l\right)\right)^{-1}\left(z_{1}^{\prime}\right)^{-1} \tilde{z}_{1} \\
=\tilde{z}_{1}^{-1}\left(z_{1}^{\prime} t\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right) t\left(1_{P^{\prime}}, 1_{\widetilde{P}} ; \tilde{l}_{1}\right)^{-1}\left(z_{1}^{\prime}\right)^{-1}\right)^{-1}\left(z_{1}^{\prime} t\left(\alpha^{\prime}, \alpha ; l\right) t\left(1_{P^{\prime}}, 1_{P} ; l\right)^{-1}\left(z_{1}^{\prime}\right)^{-1}\right) \tilde{z}_{1} \\
=\tilde{z}_{1}^{-1} w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)^{-1} w_{1}\left(\alpha^{\prime}, \alpha ; l\right) \tilde{z}_{1}
\end{gathered}
$$

Now set $\tilde{u}=x\left(s_{2} d_{2} x\right)^{-1}$:

$$
\begin{gathered}
d_{0} \tilde{u}=d_{0} x\left(s_{1} d_{1} d_{0} x\right)^{-1}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{2} ; \\
d_{1} \tilde{u}=d_{1} x\left(s_{1} d_{1} d_{1} x\right)^{-1}=1 ; \\
d_{2} \tilde{u}=d_{2} x\left(d_{2} x\right)^{-1}=1 \\
d_{3} \tilde{u}=d_{3} x\left(d_{2} x\right)^{-1}=\tilde{z}_{1}^{-1} w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)^{-1} w_{1}\left(\alpha^{\prime}, \alpha ; l\right) \tilde{z}_{1}\left(t\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)\left(t\left(1_{\widetilde{P}}, 1_{P} ; \tilde{l}_{2}\right)\right)^{-1}\right)^{-1} .
\end{gathered}
$$

Therefore $\tilde{u} \in \overline{G(\mathfrak{s} \cdot \mathcal{P} R)}_{3}$ and we have

$$
\tilde{z}_{1}^{-1} w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)^{-1} w_{1}\left(\alpha^{\prime}, \alpha ; l\right) \tilde{z}_{1}\left(t\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)\left(t\left(1_{\tilde{P}}, 1_{P} ; \tilde{l}_{2}\right)\right)^{-1}\right)^{-1} \in B_{2} \triangleleft G(\mathfrak{s} \cdot \mathcal{P} R)_{2} .
$$

Moving to equivalence classes in $G(\mathfrak{s} . \mathcal{P} R)_{2} / B_{2}$ we see

$$
\left[\tilde{z}_{1}^{-1} w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)^{-1} w_{1}\left(\alpha^{\prime}, \alpha ; l\right) \tilde{z}_{1}\left(t\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)\left(t\left(1_{\widetilde{P}}, 1_{P} ; \tilde{l}_{2}\right)\right)^{-1}\right)^{-1}\right]=1
$$

so that

$$
\left[w_{1}\left(\alpha^{\prime}, \tilde{\alpha} ; \tilde{l}_{1}\right)^{-1} w_{1}\left(\alpha^{\prime}, \alpha ; l\right)\right]=\left[\tilde{z}_{1} t\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)\left(t\left(1_{\widetilde{P}}, 1_{P} ; \tilde{l}_{2}\right)\right)^{-1} \tilde{z}_{1}^{-1}\right]=\left[w_{1}\left(\tilde{\alpha}, \alpha ; \tilde{l}_{2}\right)\right] .
$$

Thus $\left[C_{1}^{-1} C\right]=\left[C_{2}\right]$ in $G(\mathfrak{s} . \mathcal{P} R)_{2} / B_{2}$. Calculating in the quotient group $G(\mathfrak{s} . \mathcal{P} R)_{2} / B_{2}$, it follows that $\left[C_{1}\right]^{-1}[C]=\left[C_{2}\right]$, so that $[C]=\left[C_{1}\right]\left[C_{2}\right]=\left[C_{1} C_{2}\right]$.

As a corollary to the above lemma, we have one our main theorems of this section. We use already established notation and definitions.

Theorem 2.3.4 Suppose that $\tilde{F}(P, \alpha)$ is an admissible refinement of the admissible filtration $F(P, \alpha)$. Then, given the elements $X_{1}(F(P, \alpha))$ and $X_{1}(\tilde{F}(P, \alpha)) \in \overline{G(\mathfrak{s . P} R)}_{2}$,

$$
\left[X_{1}(F(P, \alpha))\right]=\left[X_{1}(\tilde{F}(P, \alpha))\right] \in{\overline{G(\mathfrak{s} \cdot \mathcal{P} R})_{2}}^{2} / B_{2}
$$

Proof: By Lemma 2.3.3, if the admissible filtration $\tilde{F}(P, \alpha)$ is obtained by inserting one projective module into the admissible filtration $F(P, \alpha)$, then in $\overline{G(s \cdot \mathcal{P} F)_{2}} / B_{2}$,

$$
\left[X_{1}(F(P, \alpha)]=[A C B],\right.
$$

with $A, C, B \in \overline{G(\mathfrak{s . P} R)_{2}}$ as defined immediately before the Lemma 2.3.3.
But, computing in the quotient group $\overline{G(s . \mathcal{P} F)_{2}} / B_{2}$, and using the lemma,

$$
[A C B]=[A][C][B]=[A]\left[C_{1} C_{2}\right][B]=\left[A C_{1} C_{2} B\right]=\left[X_{1}(\tilde{F}(P, \alpha))\right]
$$

where C_{1}, C_{2} are as defined immediately before the lemma.
By induction on the number of insertions to the original filtration F, we obtain the theorem.

2.4 Standard Filtrations

We now specialize to the case $P=R^{N}$ and $\alpha \in G L(N, R), N \in \mathbb{N}$. We fix the standard basis $\beta_{N}=$ $\left\{e_{1}, \ldots, e_{N}\right\}$ for R^{N}. If $I \subseteq \beta_{N}$, then $F(I)$ denotes the R-submodule of R^{N} spanned by the elements of I. We define $F(\emptyset)=\{0\}$. Note that $F(I)$ is always a free R-module on the set I. Moreover, if $I \subseteq J$, then the quotient module $F(J) / F(I)$ is a free R-module on the set $J-I$.

Definition 2.4.1 Suppose

$$
I: \emptyset \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{S}=\beta_{N}
$$

is a chain of subsets of β_{N}. The standard filtration of R^{N} defined by I is the filtration below, denoted by $F(I)$:

$$
0 \subseteq F\left(I_{1}\right) \subseteq F\left(I_{2}\right) \subseteq \cdots \subseteq F\left(I_{S}\right)=R^{N}
$$

By definition of these free R-modules, the inclusions in standard filtrations are always admissible. We do not require the inclusions to be strict.

Theorem 2.4.2 Suppose $F_{1}=F(I)$ and $F_{2}=F(J)$ are admissible, standard filtrations of $\left(R^{N}, \alpha\right)$, corresponding to chains I and J of subsets of β_{N}. Then $\left[X_{1}\left(F_{1}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{2}\left(R^{N}, \alpha\right)\right)\right]$ in $\overline{G(\mathfrak{s . P} R)_{2}} / B_{2}$.

Proof: Assume without loss of generality that I and J as in the hypothesis have the same number, S, of terms in their chains, where we append the empty set to the beginning of the shorter chain as necessary. Indeed, as in Remark 2.1.5, the element that results from Lemma 2.2.2 for this appended chain would be
$1 \in G(\mathfrak{s} \cdot \mathcal{P} R)$ multiplied (finitely many times) by the element corresponding to the shorter chain, hence it would be exactly the same element. Let \widetilde{F} be the filtration $\widetilde{F}=F(H)$ corresponding to the chain

$$
H: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S} \cup J_{S}
$$

of subsets of β_{N} (i.e. $H_{0}=\emptyset$ and $H_{i}=I_{i} \cup J_{i} \forall 1 \leq i \leq S$).
$H_{1}=I_{1} \cup J_{1}$, and by assumption (Definition 2.2.1) we have $\left.\alpha\right|_{F\left(I_{1}\right)}=1_{F\left(I_{1}\right)}$ and $\left.\alpha\right|_{F\left(J_{1}\right)}=1_{F\left(J_{1}\right)}$. Thus

$$
\left.\alpha\right|_{F\left(I_{1}\right)+F\left(J_{1}\right)}=1_{F\left(I_{1}\right)+F\left(J_{1}\right)},
$$

and since $F\left(I_{1}\right)+F\left(J_{1}\right)=F\left(I_{1} \cup J_{1}\right)$ for these free modules, it follows that $\left.\alpha\right|_{F\left(H_{1}\right)}=1_{F\left(H_{1}\right)}$. Again, $F\left(I_{i}\right)+F\left(J_{i}\right)=F\left(I_{i} \cup J_{i}\right)=F\left(H_{i}\right) \forall 1 \leq i \leq S$, and by definition we know $\left.\alpha\right|_{F\left(I_{i}\right)} \in \operatorname{Aut}\left(F\left(I_{i}\right)\right)$ and $\left.\alpha\right|_{F\left(J_{i}\right)} \in \operatorname{Aut}\left(F\left(J_{i}\right)\right)$, so $\left.\alpha\right|_{F\left(H_{i}\right)} \in \operatorname{Aut}\left(F\left(H_{i}\right)\right)$.

By construction

$$
H_{i}-H_{i-1}=\left(I_{i} \cup J_{i}\right)-\left(I_{i-1} \cup J_{i-1}\right) .
$$

We consider cosets $e+F\left(H_{i-1}\right)$ in $F\left(H_{i}\right) / F\left(H_{i-1}\right)$ for $e \in H_{i}-H_{i-1}$. If $e \in I_{i}$ then $e \notin I_{i-1}$, (since $\left.e \notin I_{i-1} \cup J_{i-1}\right)$ so that by definition of $F(I)$ as an admissible filtration of $\left(R^{N}, \alpha\right)$ we have $\alpha(e)=e+f$ where $f \in F\left(I_{i-1}\right)$. But then $f \in F\left(I_{i-1}\right)+F\left(J_{i-1}\right)=F\left(H_{i-1}\right)$, hence $\alpha(e)+F\left(H_{i-1}\right)=e+F\left(H_{i-1}\right)$. Similarly, if $e \in J_{i}$ then $e \notin J_{i-1}$, so by definition of $F(J)$ we know $\alpha(e)+F\left(J_{i-1}\right)=e+F\left(J_{i-1}\right)$, hence $\alpha(e)+F\left(H_{i-1}\right)=e+F\left(H_{i-1}\right)$. We conclude that $\left.\alpha\right|_{F\left(H_{i}\right)}$ induces the identity on the quotient module $F\left(H_{i}\right) / F\left(H_{i-1}\right)$. Therefore $\widetilde{F}=F(H)$ is a standard, admissible filtration of $\left(R^{N}, \alpha\right)$, constructed from $F_{1}\left(R^{N}, \alpha\right)$ and $F_{2}\left(R^{N}, \alpha\right)$.

Now define a sequence of standard, admissible filtrations $F_{a, b}=F\left(H_{a, b}\right)$ of $\left(R^{N}, \alpha\right)$, and similarly $F_{a, b}^{\prime}=$ $F\left(H_{a, b}^{\prime}\right)$, for each $1 \leq a \leq S-1$ and each $1 \leq b \leq a$, corresponding to chains

$$
\begin{aligned}
& H_{a, b}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a} \cup J_{S-a-1} \subseteq \cdots \subseteq I_{S-a+b-1} \cup J_{S-a-1} \\
& \subseteq I_{S-a+b-1} \cup J_{S-a} \subseteq I_{S-a+b} \cup J_{S-a} \subseteq I_{S-a+b+1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-1} \cup J_{S-a} \subseteq I_{S} \cup J_{S}\left(=\beta_{N}=I_{S}\right)
\end{aligned}
$$

for $F_{a, b}$, and

$$
\begin{gathered}
H_{a, b}^{\prime}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a} \cup J_{S-a-1} \subseteq \cdots \subseteq I_{S-a+b-1} \cup J_{S-a-1} \\
\subseteq I_{S-a+b} \cup J_{S-a} \subseteq I_{S-a+b+1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-1} \cup J_{S-a} \subseteq I_{S}
\end{gathered}
$$

for $F_{a, b}^{\prime}$.
It is a straightforward exercise to verify that the resulting filtrations are admissible, and since the chain $H_{a, b}^{\prime}$ can be obtained from $H_{a, b}$ by deleting the term $I_{S-a+b-1} \cup J_{S-a}$, each filtration $F_{a, b}$ is a refinement of the corresponding $F_{a, b}^{\prime}$. But we also have

$$
\begin{aligned}
H_{a, b+1} & : \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a} \cup J_{S-a-1} \subseteq \cdots \subseteq I_{S-a+b-1} \cup J_{S-a-1} \\
& \subseteq I_{S-a+b} \cup J_{S-a-1} \subseteq I_{S-a+b} \cup J_{S-a} \subseteq I_{S-a+b+1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-1} \cup J_{S-a} \subseteq I_{S}
\end{aligned}
$$

so that $H_{a, b}^{\prime}$ can be obtained from $H_{a, b+1}$ by deleting the term $I_{S-a+b} \cup J_{S-a-1}$. Therefore $F_{a, b+1}$ is a refinement for $F_{a, b}^{\prime}$.

Notice in particular that for each $1 \leq a \leq S-1$ we have

$$
H_{a, a}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a} \cup J_{S-a-1} \subseteq \cdots \subseteq I_{S-1} \cup J_{S-a-1} \subseteq I_{S-1} \cup J_{S-a} \subseteq I_{S}
$$ with

$$
H_{a, a}^{\prime}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a} \cup J_{S-a-1} \subseteq \cdots \subseteq I_{S-1} \cup J_{S-a-1} \subseteq I_{S}
$$

and

$$
\begin{gathered}
H_{a+1,1}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq \cdots \subseteq I_{S-(a+1)-1} \cup J_{S-(a+1)-1} \subseteq I_{S-a-1} \cup J_{S-a-2} \subseteq I_{S-a-1} \cup J_{S-a-1} \\
\subseteq I_{S-a} \cup J_{S-a-1} \subseteq I_{S-a+1} \cup J_{S-a-1} \subseteq \cdots \subseteq I_{S-1} \cup J_{S-a-1} \subseteq I_{S} .
\end{gathered}
$$

Thus $H_{a, a}^{\prime}$ can be obtained from $H_{a+1,1}$ by deleting the term $I_{S-a-1} \cup J_{S-a-2}$, in which case $F_{a+1,1}$ is a refinement of $F_{a, a}^{\prime}$. Furthermore,

$$
H_{1,1}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots I_{S-2} \cup J_{S-2} \subseteq I_{S-1} \cup J_{S-2} \subseteq I_{S-1} \cup J_{S-1} \subseteq I_{S}
$$

so that deleting the term $I_{S-1} \cup J_{S-2}$ from $H_{1,1}$ gives H. Therefore $F_{1,1}$ is a refinement of \widetilde{F}.
Now using $J_{0}:=\emptyset$ we calculate

$$
H_{S-1, b}: \emptyset \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{b} \subseteq I_{b} \cup J_{1} \subseteq I_{b+1} \cup J_{1} \subseteq \cdots \subseteq I_{S-1} \cup J_{1} \subseteq I_{S} \forall 1 \leq b \leq S-1
$$

so that

$$
H_{S-1, S-1}: \emptyset \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{S-1} \subseteq I_{S-1} \cup J_{1} \subseteq I_{S}
$$

Therefore

$$
H_{S-1, S-1}^{\prime}: \emptyset \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{S-1} \subseteq I_{S}
$$

in which case $F_{1}=F_{S-1, S-1}^{\prime}$ as admissible filtrations of $\left(R^{N}, \alpha\right)$. Now by Theorem 2.3.4 we have

$$
\begin{gathered}
{\left[X_{1}\left(\widetilde{F}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{1,1}\left(R^{N}, \alpha\right)\right)\right],} \\
{\left[X_{1}\left(F_{a, b}^{\prime}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{a, b}\left(R^{N}, \alpha\right)\right)\right] \forall 1 \leq a \leq S-1,1 \leq b \leq a,} \\
{\left[X_{1}\left(F_{a, b}^{\prime}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{a, b+1}\left(R^{N}, \alpha\right)\right)\right] \forall 1 \leq a \leq S-1,1 \leq b \leq a,} \\
{\left[X_{1}\left(F_{a, a}^{\prime}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{a+1,1}\left(R^{N}, \alpha\right)\right)\right] \forall 1 \leq a \leq S-1,}
\end{gathered}
$$

and

$$
\left[X_{1}\left(F_{1}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{S-1, S-1}^{\prime}\left(R^{N}, \alpha\right)\right)\right] .
$$

These equalities imply (by transitivity of the equivalence relation) that $\left[X_{1}\left(\widetilde{F}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{1}\left(R^{N}, \alpha\right)\right)\right]$ in $\overline{G(\mathfrak{s} . \mathcal{P} R)_{2}} / B_{2}$.

Going back to the chain H, we make a symmetric argument by defining chains $K_{a, b}$ with corresponding filtrations $\bar{F}_{a, b}$ in a different way, switching the roles of I and J :

$$
\begin{gathered}
K_{a, b}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a-1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a+b-1} \\
\subseteq \\
I_{S-a} \cup J_{S-a+b-1} \subseteq I_{S-a} \cup J_{S-a+b} \subseteq I_{S-a} \cup J_{S-a+b+1} \subseteq \cdots \subseteq I_{S-a} \cup J_{S-1} \subseteq I_{S} \cup J_{S}\left(=\beta_{N}=J_{S}\right),
\end{gathered}
$$

with corresponding

$$
\begin{gathered}
K_{a, b}^{\prime}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a-1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a+b-1} \\
\subseteq I_{S-a} \cup J_{S-a+b} \subseteq I_{S-a} \cup J_{S-a+b+1} \subseteq \cdots \subseteq I_{S-a} \cup J_{S-1} \subseteq J_{S}
\end{gathered}
$$

(with corresponding filtrations $\bar{F}^{\prime}{ }_{a, b}$), which can be obtained from $K_{a, b}$ by deleting the term $I_{S-a} \cup$ $J_{S-a+b-1}$. Also,

$$
K_{a, b+1}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a-1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a+b-1}
$$

$$
\subseteq I_{S-a-1} \cup J_{S-a+b} \subseteq I_{S-a} \cup J_{S-a+b} \subseteq I_{S-a} \cup J_{S-a+b+1} \subseteq \cdots \subseteq I_{S-a} \cup J_{S-1} \subseteq J_{S}
$$

so that $K_{a, b}^{\prime}$ can be obtained from $K_{a, b+1}$ by deleting the term $I_{S-a-1} \cup J_{S-a+b}$. Then

$$
K_{a, a}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a-1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-1} \subseteq I_{S-a} \cup J_{S-1} \subseteq J_{S}
$$

gives

$$
K_{a, a}^{\prime}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-a-1} \subseteq I_{S-a-1} \cup J_{S-a} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-1} \subseteq J_{S}
$$

and

$$
\begin{gathered}
K_{a+1,1}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq \cdots \subseteq I_{S-(a+1)-1} \cup J_{S-(a+1)-1} \subseteq I_{S-a-2} \cup J_{S-a-1} \subseteq I_{S-a-1} \cup J_{S-a-1} \\
\subseteq I_{S-a-1} \cup J_{S-a} \subseteq I_{S-a-1} \cup J_{S-a+1} \subseteq \cdots \subseteq I_{S-a-1} \cup J_{S-1} \subseteq J_{S} .
\end{gathered}
$$

Thus $K_{a, a}^{\prime}$ can be obtained from $K_{a+1,1}$ by deleting the term $I_{S-a-2} \cup J_{S-a-1}$, in which case $\bar{F}_{a+1,1}$ is a refinement of $\bar{F}^{\prime}{ }_{a, a}$. Furthermore,

$$
K_{1,1}: \emptyset \subseteq I_{1} \cup J_{1} \subseteq I_{2} \cup J_{2} \subseteq \cdots I_{S-2} \cup J_{S-2} \subseteq I_{S-2} \cup J_{S-1} \subseteq I_{S-1} \cup J_{S-1} \subseteq J_{S}
$$

so that deleting the term $I_{S-2} \cup J_{S-1}$ from $K_{1,1}$ gives H. Therefore $\bar{F}_{1,1}$ is a refinement of \widetilde{F}.
Finally, we calculate

$$
K_{S-1, S-1}^{\prime}: \emptyset \subseteq J_{1} \subseteq J_{2} \subseteq \cdots \subseteq J_{S-1} \subseteq J_{S}
$$

so that $\bar{F}^{\prime}{ }_{S-1, S-1}=F_{2}$. Therefore we conclude that $\left[X_{1}\left(\widetilde{F}\left(R^{N}, \alpha\right)\right)\right]=\left[X_{1}\left(F_{2}\left(R^{N}, \alpha\right)\right)\right]$ in $\overline{G(\mathfrak{s} . \mathcal{P} R)_{2}} / B_{2}$ just as we did with the $H_{a, b}$ for F_{1}. It follows by transitivity of the equivalence relation that $\left[X_{1}\left(F_{1}\left(R^{N}, \alpha\right)\right)\right]=$ $\left[X_{1}\left(F_{2}\left(R^{N}, \alpha\right)\right)\right]$ in $\overline{G(\mathfrak{s} . \mathcal{P} R)_{2}} / B_{2}$.

3 Homotopy Fibers

3.1 Definitions

We now cite a standard construction used in simplicial homotopy theory that will act as a central figure in our isomorphism, as it will allow us to represent the Steinberg Relations of K-Theory completely in terms of simplicial homotopy theory. Work such as that of [15] provides a good review.

Definition 3.1.1 Given a simplicial group G, define a simplicial group G^{I} by m-simplices

$$
G_{m}^{I}=\left\{\left(g_{0}, g_{1}, \ldots, g_{m}\right) \in G_{m+1} \times G_{m+1} \times \cdots \times G_{m+1} \mid d_{i} g_{i}=d_{i} g_{i-1} \forall 1 \leq i \leq m\right\}
$$

(and componentwise multiplication as the operation) with face maps defined on

$$
\boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{m}\right)
$$

by

$$
d_{j} \boldsymbol{g}=\left(d_{j+1} g_{0}, d_{j+1} g_{1}, \ldots, d_{j+1} g_{j-1}, d_{j} g_{j+1}, \ldots, d_{j} g_{m}\right)
$$

and degeneracy maps defined by

$$
s_{j} \boldsymbol{g}=\left(s_{j+1} g_{0}, s_{j+1} g_{1}, \ldots, s_{j+1} g_{j}, s_{j} g_{j}, s_{j} g_{j+1}, \ldots, s_{j} g_{m}\right)
$$

$\forall 0 \leq j \leq m$.

Note in particular

$$
d_{0} \boldsymbol{g}=\left(d_{0} g_{1}, d_{0} g_{2}, \ldots, d_{0} g_{m}\right)
$$

and

$$
d_{m} \boldsymbol{g}=\left(d_{m+1} g_{0}, d_{m+1} g_{1}, \ldots, d_{m+1} g_{m-1}\right)
$$

The following construction is well known; we cite [15] as a reference.

Lemma 3.1.2 Let G be a simplicial group.
a) \exists homomorphisms of simplicial groups, that are also Kan Fibrations, $\partial_{0}, \partial_{1}: G^{I} \rightarrow G$, given on m-simplices $\boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{m}\right) \in G_{m}^{I}$ by

$$
\partial_{0}(\boldsymbol{g})=d_{0} g_{0}
$$

and

$$
\partial_{1}(\boldsymbol{g})=d_{m+1} g_{m}
$$

b) The diagonal simplicial map $D: G \rightarrow G \times G$ factors as

where ρ is a homotopy inverse for both ∂_{0} and ∂_{1}, defined on m-simplices $g \in G$, by

$$
\rho(g)=\left(s_{0} g, s_{1} g, \ldots, s_{m} g\right)
$$

To be more precise,

$$
\partial_{i} \circ \rho=i d_{G} ; i=0,1
$$

and

$$
\rho \circ \partial_{i} \text { is homotopic as a simplicial map to } i d_{G^{I}} ; i=0,1 \text {. }
$$

We in fact have the stronger result that the map

$$
\left(\partial_{0}, \partial_{1}\right): G^{I} \rightarrow G \times G
$$

through which the diagonal map factors, is a Kan Fibration.

Definition 3.1.3 Given $P \in \mathcal{P} R$ and simplicial group $G=G(\mathfrak{s . P} R)$, denote the pullback of the diagram

by \mathfrak{I}_{P}. That is, \mathfrak{I}_{P} has m-simplices

$$
\mathfrak{I}_{P, m}=\left\{(\boldsymbol{\alpha}, \boldsymbol{g}) \in N(\operatorname{Aut}(P))_{m} \times G_{m}^{I} \mid \boldsymbol{g}=\left(g_{0}, \ldots, g_{m}\right) \text { has } d_{m+1} g_{m}=\mathfrak{i}_{P}(\boldsymbol{\alpha})\right\}
$$

with face maps defined by $d_{j}(\boldsymbol{\alpha}, \boldsymbol{g})=\left(d_{j} \boldsymbol{\alpha}, d_{j} \boldsymbol{g}\right)$ and degeneracy maps s_{j} defined similarly.

We have the following well-known lemma as well, again citing [15]:

Lemma 3.1.4 The simplicial sets \mathfrak{I}_{P} and $N(\operatorname{Aut}(P))$ are homotopy equivalent.

Proof: Define

$$
\lambda_{P}: N(\operatorname{Aut}(P)) \rightarrow \mathfrak{I}_{P}
$$

by

$$
\lambda_{P}(\boldsymbol{\alpha})=\left(\boldsymbol{\alpha}, \rho\left(\mathfrak{i}_{P}(\boldsymbol{\alpha})\right)\right) .
$$

By Lemma 2.1.1 we know that \mathfrak{i}_{P} is a simplicial map, and by Theorem 3.1.2 we know ρ is a simplicial map, so the composite $\rho \circ \mathfrak{i}_{P}$ is a simplicial map. Since the identity is always a simplicial map, the definitions of the face and degeneracy maps on \mathfrak{I}_{P} imply that λ_{P} must be a simplicial map.

Define

$$
\partial_{P}^{*}: \mathfrak{I}_{P} \rightarrow N(A u t(P))
$$

by

$$
\partial_{P}^{*}(\boldsymbol{\alpha}, \boldsymbol{g})=\boldsymbol{\alpha}
$$

This is the projection from $N(A u t(P)) \times G^{I}$ to $N(A u t(P))$, so that it preserves images of face and degeneracy maps. Therefore ∂_{P}^{*} is a simplicial map.

We see that ∂_{P}^{*} is a fibration, since it is the pullback of the fibration ∂_{1},

$$
\partial_{P}^{*} \circ \lambda_{P}=i d_{N(\operatorname{Aut}(P))},
$$

and we cite [15] (but omit proof) that

$$
\lambda \circ \partial_{P}^{*} \text { is homotopic as a simplicial map to } i d_{\mathfrak{I}_{P}} .
$$

By Definition 1.4.3 of Chapter 1, it follows that $N(\operatorname{Aut}(P))$ and \mathfrak{I}_{P} are homotopy equivalent.

Now define a simplicial map $p_{P}: \mathfrak{I}_{P} \rightarrow G(\mathfrak{s} . \mathcal{P} R)$ on m-simplices

$$
(\boldsymbol{\alpha}, \boldsymbol{g})=\left(\alpha_{1}|\cdots| \alpha_{m} ; g_{0}, \ldots, g_{m}\right)
$$

by $p_{P}(\boldsymbol{\alpha}, \boldsymbol{g})=d_{0} g_{0}=\partial_{0} \circ \pi_{2}(\boldsymbol{\alpha}, \boldsymbol{g})\left(\pi_{2}\right.$ the usual projection from $N(A u t(P)) \times G(\mathfrak{s} \cdot \mathcal{P} R)^{I}$ to $\left.G(\mathfrak{s} \cdot \mathcal{P} R)^{I}\right)$.
We have

Lemma 3.1.5 The map p_{P} is a fibration of simplicial sets.

Definition 3.1.6 The homotopy fiber of \mathfrak{i}_{P} is the simplicial subcomplex

$$
Y_{P} \subseteq \mathfrak{I}_{P} \subseteq N(A u t(P)) \times G(\mathfrak{s} . \mathcal{P} R)^{I}
$$

whose m-simplices are

$$
\begin{aligned}
Y_{P, m} & =p_{P}^{-1}(1)_{m}=\left\{(\boldsymbol{\alpha}, \boldsymbol{g}) \in \mathfrak{I}_{P, m} \mid p_{P}(\boldsymbol{\alpha}, \boldsymbol{g})=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m}\right\} \\
& =\left\{\left(\alpha_{1}|\cdots| \alpha_{m} ; g_{0}, \ldots, g_{m}\right) \mid d_{0} g_{0}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m}\right\}
\end{aligned}
$$

Note that face and degeneracy maps are given by those corresponding to the Cartesian Product (recall Definition 3.3.1 from Chapter 1).

Lemma 3.1.7 Y_{P} is a Kan Complex.

Proof: The map p_{P} is a fibration, thus using Proposition 7.3 of May (i.e. Proposition 3.2.1 of Chapter 1), Y_{P} is a Kan complex.

This fact allows us to use the canonical construction of $\pi_{1}\left(Y_{P}, \Phi\right)$ (with $\phi_{0}=(*, 1) \in Y_{P, 0}$) in conjunction with the chain complex construction of $\pi_{2}(G(\mathfrak{s} . \mathcal{P} R))$. The result will allow us to see the Steinberg relations from the point of view of homotopy classes in this homotopy fiber.

4 Steinberg Relations in $\pi_{1}\left(Y_{N}(R)\right)$

Here we focus on $P=R^{N} \in \mathcal{P} R$ and denote $\mathfrak{I}_{N}:=\mathfrak{I}_{R^{N}}, \mathfrak{i}_{N}:=\mathfrak{i}_{R^{N}}$ and $Y_{N}:=Y_{R^{N}} ;$ with analogous definitions for the fibration $p_{N}: \mathfrak{I}_{N} \rightarrow N(G L(N, R))$ and the homotopy equivalence $\lambda_{N}: N(G L(N, R)) \rightarrow$ \mathfrak{I}_{N}. We want to use Y_{N} as an analog for $\operatorname{St}(N, R)$, even so far as to have a direct limit $Y(R)$ analogous to $S t(R)$ and $G L(R)$. To that end, we first consider the concept of stabilization of the simplicial sets $Y_{N}, N \in \mathbb{N}$.

4.1 Stability of $Y_{N} \xlongequal{\subsetneq} \mathfrak{I}_{N} \xrightarrow{p_{N}} G(\mathfrak{s} . \mathcal{P} R)$

We want to see what happens as a result of the embedding $R^{N} \hookrightarrow R^{N+1}$ with $R^{N+1}=R^{N} \oplus R$. Given $m>0, \boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{m}\right) \in N(G L(N, R))_{m}$, we somewhat ambiguously denote $\mathbf{1}=\left(1_{R}\left|1_{R}\right| \cdots \mid 1_{R}\right)$ (and realize $\left.1_{N+1}:=1_{N} \oplus 1_{R}\right)$ and define $\boldsymbol{\alpha} \oplus \mathbf{1} \in N(G L(N+1, R))_{m}$ by

$$
\boldsymbol{\alpha} \oplus \mathbf{1}=\left(\alpha_{1} \oplus 1_{R}\left|\alpha_{2} \oplus 1_{R}\right| \cdots \mid \alpha_{m} \oplus 1_{R}\right)
$$

We will consider "stability maps," all denoted σ, between the various simplicial sets associated to R^{N} and R^{N+1}. For instance,

Lemma 4.1.1 $\sigma: N(G L(N, R)) \rightarrow N(G L(N+1, R))$ defined by $\sigma(\boldsymbol{\alpha})=\boldsymbol{\alpha} \oplus \mathbf{1}$ is a simplicial map.

Proof: We calculate

$$
\begin{gathered}
d_{0} \sigma_{m}(\boldsymbol{\alpha})=\left(\alpha_{2} \oplus 1_{R}\left|\alpha_{3} \oplus 1_{R}\right| \cdots \mid \alpha_{m} \oplus 1_{R}\right)=\left(\alpha_{2}\left|\alpha_{3}\right| \cdots \mid \alpha_{m}\right) \oplus \mathbf{1}=\left(d_{0} \boldsymbol{\alpha}\right) \oplus \mathbf{1}=\sigma_{m-1}\left(d_{0} \boldsymbol{\alpha}\right), \\
d_{m} \sigma_{m}(\boldsymbol{\alpha})=\left(\alpha_{1} \oplus 1_{R}\left|\alpha_{2} \oplus 1_{R}\right| \cdots \mid \alpha_{m-1} \oplus 1_{R}\right)=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{m-1}\right) \oplus \mathbf{1}=\left(d_{m} \boldsymbol{\alpha}\right) \oplus \mathbf{1}=\sigma_{m-1}\left(d_{m} \boldsymbol{\alpha}\right),
\end{gathered}
$$

and for each $1 \leq i \leq m-1$,

$$
\begin{aligned}
d_{i} \sigma_{m}(\boldsymbol{\alpha}) & =\left(\alpha_{1} \oplus 1_{R}\left|\alpha_{2} \oplus 1_{R}\right| \cdots\left|\left(\alpha_{i+1} \oplus 1_{R}\right) \circ\left(\alpha_{i} \oplus 1_{R}\right)\right| \alpha_{i+2} \oplus 1_{R}|\cdots| \alpha_{m} \oplus 1_{R}\right) \\
& =\left(\alpha_{1} \oplus 1_{R}\left|\alpha_{2} \oplus 1_{R}\right| \cdots\left|\left(\alpha_{i+1} \circ \alpha_{i}\right) \oplus 1_{R}\right| \alpha_{i+2} \oplus 1_{R}|\cdots| \alpha_{m} \oplus 1_{R}\right) \\
& =\left(\alpha_{1}\left|\alpha_{2}\right| \cdots\left|\alpha_{i+1} \circ \alpha_{i}\right| \alpha_{i+2}|\cdots| \alpha_{m}\right) \oplus \mathbf{1}=\left(d_{i} \boldsymbol{\alpha}\right) \oplus \mathbf{1}=\sigma_{m-1}\left(d_{i} \boldsymbol{\alpha}\right)
\end{aligned}
$$

Also, for $0 \leq j \leq m$,

$$
\begin{gathered}
s_{j} \sigma_{m}(\boldsymbol{\alpha})=\left(\alpha_{1} \oplus 1_{R}\left|\alpha_{2} \oplus 1_{R}\right| \cdots\left|\alpha_{j} \oplus 1_{R}\right| 1_{N+1}\left|\alpha_{j+1} \oplus 1_{R}\right| \cdots \mid \alpha_{m} \oplus 1_{R}\right) \\
=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots\left|\alpha_{j} \oplus 1_{R}\right| 1_{N} \oplus 1_{R}\left|\alpha_{j+1} \oplus 1_{R}\right| \cdots \mid \alpha_{m} \oplus 1_{R}\right) \\
=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots\left|\alpha_{j}\right| 1_{N}\left|\alpha_{j+1}\right| \cdots \mid \alpha_{m}\right) \oplus \mathbf{1}=\left(s_{j} \boldsymbol{\alpha}\right) \oplus \mathbf{1}=\sigma_{m+1}\left(s_{j} \boldsymbol{\alpha}\right) .
\end{gathered}
$$

Therefore σ is a simplicial map by definition.

For the short exact sequence $l: R^{N} \hookrightarrow R^{N+1} \rightarrow R$, where $R^{N} \subseteq R^{N+1}$ is the embedding $x \mapsto(x, 0)$, we see that there are short exact sequences of pairs $\left(R^{N}, \alpha_{i}\right) \rightarrow\left(R^{N+1}, \alpha_{i} \oplus 1_{R}\right) \rightarrow\left(R, 1_{R}\right)$ for each $1 \leq i \leq m$, in which case we have $w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \in G(\mathfrak{s} . \mathcal{P} R)_{m+1}$ by Theorem 2.1.4.

Let $\boldsymbol{\xi}=(\boldsymbol{\alpha} ; \boldsymbol{g})=\left(\alpha_{1}|\cdots| \alpha_{m} ; g_{0}, \ldots, g_{m}\right) \in \mathfrak{I}_{N, m}$ and define $\boldsymbol{\xi} \oplus \mathbf{1}=(\boldsymbol{\alpha} \oplus \mathbf{1} ; \tilde{\boldsymbol{g}})$ where $\tilde{\boldsymbol{g}}=\left(\tilde{g}_{0}, \ldots, \tilde{g}_{m}\right)$ is defined by

$$
\tilde{g}_{i}=g_{i}\left(s_{m} s_{m-1} \cdots s_{i+1} d_{i+1} d_{i+2} \cdots d_{m-1} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)
$$

for $0 \leq i \leq m-1$, and

$$
\tilde{g}_{m}=g_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) .
$$

Proposition 4.1.2 Given $\boldsymbol{\xi}=(\boldsymbol{\alpha} ; \boldsymbol{g}) \in \mathfrak{I}_{N}$ as above,

1) $\boldsymbol{\xi} \oplus \mathbf{1} \in \mathfrak{I}_{N+1, m}$.
2) The map $\sigma: \mathfrak{I}_{N} \rightarrow \mathfrak{I}_{N+1}$ defined by $\sigma(\boldsymbol{\xi})=\boldsymbol{\xi} \oplus \mathbf{1}$ is a simplicial map.
3) $\left.\sigma\right|_{Y_{N}}: Y_{N} \rightarrow Y_{N+1}$.
4) The following diagrams commute:

5) The diagram below commutes "up to homotopy"; i.e., $\lambda_{N+1} \circ \sigma$ is homotopic as a simplicial map to $\sigma \circ \lambda_{N}$:

Proof: We first calculate

$$
\begin{gathered}
d_{i} \tilde{g}_{i}=\left(d_{i} g_{i}\right)\left(d_{i} s_{m} s_{m-1} \cdots s_{i+1} d_{i+1} d_{i+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=\left(d_{i} g_{i}\right)\left(s_{m-1} s_{m-2} \cdots s_{i} d_{i} d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=\left(d_{i} g_{i}\right)\left(s_{m-1} s_{m-2} \cdots s_{i} d_{i} s_{i} d_{i} d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=\left(d_{i} g_{i}\right)\left(d_{i} s_{m} s_{m-1} \cdots s_{i+1} s_{i} d_{i} d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=\left(d_{i} g_{i-1}\right)\left(d_{i} s_{m} s_{m-1} \cdots s_{i} d_{i} d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=d_{i}\left(g_{i-1} s_{m} s_{m-1} \cdots s_{i} d_{i} d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1}: l)\right) \\
=d_{i} \tilde{g}_{i-1}
\end{gathered}
$$

for each $1 \leq i \leq q-1$, and since $\tilde{g}_{m-1}=g_{m-1} s_{m} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)$ we have

$$
\begin{gathered}
d_{m} \tilde{g}_{m}=\left(d_{m} g_{m}\right)\left(d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=\left(d_{m} g_{m}\right)\left(d_{m} s_{m} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=\left(d_{m} g_{m-1}\right)\left(d_{m} s_{m} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right) \\
=d_{m}\left(g_{m-1} s_{m} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=d_{m} \tilde{g}_{m-1}
\end{gathered}
$$

Therefore $\tilde{\boldsymbol{g}} \in G(\mathfrak{s} . \mathcal{P} R)_{m}^{I}$. Also, $\boldsymbol{g} \in G(\mathfrak{s} . \mathcal{P} R)_{m}^{I}$ so that by Theorem 2.1.4 we see

$$
d_{m+1} \tilde{g}_{m}=\left(d_{m+1} g_{m}\right)\left(d_{m+1} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=\mathfrak{i}_{N}(\boldsymbol{\alpha})\left(\mathfrak{i}_{N}(\boldsymbol{\alpha})\right)^{-1} \mathfrak{i}_{N+1}(\boldsymbol{\alpha} \oplus \mathbf{1})=\mathfrak{i}_{N+1}(\boldsymbol{\alpha} \oplus \mathbf{1})
$$

(1) now follows by definition of \mathfrak{I}_{N+1}.

Now given $1 \leq i \leq m-1$, we use superscripts again for $\boldsymbol{g}=\left(g^{(0)}, \ldots, g^{(m)}\right) \in G(\mathfrak{s} \cdot \mathcal{P} R)_{m}^{I}$ and denote the images of face maps by

$$
d_{i} \boldsymbol{g}=\left(d_{i+1} g^{(0)}, \ldots, d_{i+1} g^{(i-1)}, d_{i} g^{(i+1)}, \ldots, d_{i} g^{(m)}\right)=\left(g_{i}^{(0)}, \ldots, g_{i}^{(i-1)}, g_{i}^{(i)}, \ldots, g_{i}^{(m-1)}\right):=\boldsymbol{g}_{i}
$$

Now we have $\tilde{\boldsymbol{g}}_{i}$ defined by

$$
\tilde{g}_{i}^{(j)}=g_{i}^{(j)} s_{m-1} \cdots s_{j+1} d_{j+1} \cdots d_{m-1} w_{m-1}\left(d_{i} \boldsymbol{\alpha}, d_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right)
$$

for $0 \leq i \leq m$ and $0 \leq j \leq m-2$, and

$$
\tilde{g}_{i}^{(m-1)}=g_{i}^{(m-1)} w_{m-1}\left(d_{i} \boldsymbol{\alpha}, d_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right)
$$

for each $0 \leq i \leq m$. We must show

$$
\sigma_{m-1}\left(d_{i} \boldsymbol{\xi}\right)=\left(d_{i} \boldsymbol{\alpha} \oplus \mathbf{1} ; \tilde{\boldsymbol{g}}_{i}\right)=\left(d_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; d_{i} \tilde{\boldsymbol{g}}\right)=d_{i} \sigma_{m}(\boldsymbol{\xi}) .
$$

We can see that $d_{i}(\boldsymbol{\alpha} \oplus \mathbf{1})=\left(d_{i} \boldsymbol{\alpha}\right) \oplus \mathbf{1} \in N(G L(N+1, R))_{m-1}$ for each $0 \leq i \leq m$ by direct calculation.
Note that

$$
g_{i}^{(j)}= \begin{cases}d_{i+1} g^{(j)}, & 0 \leq j \leq i-1 \\ d_{i} g^{(j+1)}, & i \leq j \leq m-1\end{cases}
$$

when $1 \leq i \leq m-1$,

$$
g_{0}^{(j)}=d_{0} g^{(j+1)}, 0 \leq j \leq m-1
$$

and

$$
g_{m}^{(j)}=d_{m+1} g^{(j)}, 0 \leq j \leq m-1
$$

Now if $1 \leq i \leq m-1$ and $0 \leq j \leq i-1$ we see

$$
\begin{gathered}
\tilde{g}_{i}^{(j)}=d_{i+1} g^{(j)} s_{m-1} \cdots s_{j+1} d_{j+1} \cdots d_{m-1} w_{m-1}\left(d_{i} \boldsymbol{\alpha}, d_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right) \\
=d_{i+1} g^{(j)} s_{m-1} \cdots s_{i+1} s_{i} \cdots s_{j+1} d_{j+1} \cdots d_{i-1} d_{i} \cdots d_{m-1} d_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i+1} g^{(j)} s_{m-1} \cdots s_{i+1} s_{i} \cdots s_{j+1} d_{j+1} \cdots d_{i-1} d_{i} d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i+1} g^{(j)} s_{m-1} \cdots s_{i+1} d_{i+1} s_{i+1} s_{i} \cdots s_{j+1} d_{j+1} \cdots d_{m-1} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i+1} g^{(j)} d_{i+1} s_{m} \cdots s_{i+2} s_{i+1} s_{i} \cdots s_{j+1} d_{j+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i+1}\left(g^{(j)} s_{m} \cdots s_{j+1} d_{j+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=d_{i+1} \tilde{g}^{(j)}
\end{gathered}
$$

If $1 \leq i \leq j \leq m-2$ then

$$
\begin{gathered}
\tilde{g}_{i}^{(j)}=d_{i} g^{(j+1)} s_{m-1} \cdots s_{j+1} d_{j+1} \cdots d_{m-1} d_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i} g^{(j+1)} s_{m-1} \cdots s_{j+1} d_{i} d_{j+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i} g^{(j+1)} d_{i} s_{m} \cdots s_{j+2} d_{j+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{i}\left(g^{(j+1)} s_{m} \cdots s_{j+2} d_{j+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=d_{i} \tilde{g}^{(j+1)}
\end{gathered}
$$

Furthermore,

$$
\begin{gathered}
\tilde{g}_{0}^{(j)}=d_{0} g^{(j+1)} s_{m-1} \cdots s_{j+1} d_{j+1} \cdots d_{m-1} d_{0} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{0} g^{(j+1)} s_{m-1} \cdots s_{j+1} d_{0} d_{j+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{0} g^{(j+1)} d_{0} s_{m} \cdots s_{j+2} d_{j+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=d_{0}\left(g^{(j+1)} s_{m} \cdots s_{j+2} d_{j+2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=d_{0} \tilde{g}^{(j+1)}
\end{gathered}
$$

for each $0 \leq j \leq m-2$ and

$$
\begin{aligned}
& \tilde{g}_{m}^{(j)}=d_{m+1} g^{(j)} s_{m-1} \cdots s_{j+1} d_{j+1} \cdots d_{m-1} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
& =d_{m+1} g^{(j)} d_{m+1} s_{m} s_{m-1} \cdots s_{j+1} d_{j+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
& =d_{m+1}\left(g^{(j)} s_{m} \cdots s_{j+1} d_{j+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=d_{m+1} \tilde{g}^{(j)}
\end{aligned}
$$

for each $0 \leq j \leq m-2$. Also,

$$
\begin{gathered}
\tilde{g}_{0}^{(m-1)}=d_{0} g^{(m)} d_{0} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=d_{0} \tilde{g}^{(m-1)}, \\
\tilde{g}_{m}^{(m-1)}=d_{m+1} g^{(m-1)} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=d_{m+1} g^{(m-1)} d_{m+1} s_{m} d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=d_{m+1} \tilde{g}^{(m-1)}
\end{gathered}
$$

and lastly, for $1 \leq i \leq m-1$ we have

$$
\tilde{g}_{i}^{(m-1)}=d_{i} g^{(m)} d_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=d_{i} \tilde{g}^{(m)}
$$

It follows that

$$
d_{i} \tilde{\boldsymbol{g}}=\left(d_{i+1} \tilde{g}^{(0)}, \ldots, d_{i+1} \tilde{g}^{(i-1)}, d_{i} \tilde{g}^{(i+1)}, \ldots, d_{i} \tilde{g}^{(m)}\right)=\left(\tilde{g}_{i}^{(0)}, \ldots, \tilde{g}_{i}^{(i-1)}, \tilde{g}_{i}^{(i)}, \ldots, \tilde{g}_{i}^{(m-1)}\right)=\tilde{\boldsymbol{g}}_{i}
$$

so that $d_{i} \sigma_{m}(\boldsymbol{\xi})=\sigma_{m-1}\left(d_{i} \boldsymbol{\xi}\right)$.
We proceed in a similar manner for the degeneracy maps. Notice that for any $0 \leq i \leq m$,

$$
s_{i} \boldsymbol{\alpha}=\left(\alpha_{1}\left|\alpha_{2}\right| \cdots\left|\alpha_{i}\right| 1_{N}\left|\alpha_{i+1}\right| \cdots \mid \alpha_{m}\right)
$$

and clearly $s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1})=s_{i} \boldsymbol{\alpha} \oplus \mathbf{1}$. We can also calculate

$$
s_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right)
$$

from Lemma 2.1.1 and Theorem 2.1.4.
Denote the images of \boldsymbol{g} under the degeneracy maps by

$$
s_{i} \boldsymbol{g}=\left(s_{i+1} g^{(0)}, \ldots, s_{i+1} g^{(i)}, s_{i} g^{(i)}, s_{i} g^{(i+1)}, \ldots, s_{i} g^{(m)}\right)=\left(g_{i}^{(0)}, \ldots, g_{i}^{(m+1)}\right)=\boldsymbol{g}_{i}
$$

so that $s_{i} \boldsymbol{\xi}=\left(s_{i} \boldsymbol{\alpha} ; \boldsymbol{g}_{i}\right)$ and

$$
\sigma_{m+1}\left(s_{i} \boldsymbol{\xi}\right)=\left(s_{i} \boldsymbol{\xi}\right) \oplus \mathbf{1}=\left(s_{i} \boldsymbol{\alpha} \oplus \mathbf{1} ; \tilde{\boldsymbol{g}}_{i}\right)
$$

where $\tilde{\boldsymbol{g}}_{i}$ is defined by

$$
\tilde{g}_{i}^{(j)}=g_{i}^{(j)} s_{m+1} \cdots s_{j+1} d_{j+1} \cdots d_{m+1} w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right)
$$

for $0 \leq i \leq m$ and $0 \leq j \leq m$, and

$$
\tilde{g}_{i}^{(m+1)}=g_{i}^{(m+1)} w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right)
$$

for each $0 \leq i \leq m$. Similar to the case for the face maps, we must show $s_{i} \tilde{\boldsymbol{g}}=\tilde{\boldsymbol{g}}_{i}$ for each $0 \leq i \leq m$.
If $j \leq i$ then

$$
\begin{gathered}
s_{i+1} \tilde{g}^{(j)}=s_{i+1} g^{(j)} s_{i+1} s_{m} \cdots s_{i+1} \cdots s_{j+1} d_{j+1} \cdots d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=s_{i+1} g^{(j)} s_{m+1} \cdots s_{i+2} s_{i+1} \cdots s_{j+1} d_{j+1} \cdots d_{i+1} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=s_{i+1} g^{(j)} s_{m+1} \cdots s_{i+2} s_{i+1} \cdots s_{j+1} d_{j+1} \cdots d_{i+1} \cdots d_{m} d_{i+1} s_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=s_{i+1} g^{(j)} s_{m+1} \cdots s_{i+2} s_{i+1} \cdots s_{j+1} d_{j+1} \cdots d_{i+1} d_{i+2} \cdots d_{m+1} w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right) \\
=g_{i}^{(j)} s_{m+1} \cdots s_{j+1} d_{j+1} \cdots d_{m+1} w_{m+1}\left(s_{i} \boldsymbol{\alpha},\left(s_{i} \boldsymbol{\alpha}\right) \oplus \mathbf{1} ; l\right)=\tilde{g}_{i}^{(j)} .
\end{gathered}
$$

If $i+1 \leq j \leq m$ then

$$
\begin{gathered}
s_{i} \tilde{g}^{(j-1)}=s_{i} g^{(j-1)} s_{i} s_{m} \cdots s_{j} d_{j} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=s_{i} g^{(j-1)} s_{m+1} \cdots s_{j+1} s_{i} d_{j} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=s_{i} g^{(j-1)} s_{m+1} \cdots s_{j+1} d_{j+1} \cdots d_{m+1} s_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l) \\
=s_{i} g^{(j-1)} s_{m+1} \cdots s_{j+1} d_{j+1} \cdots d_{m+1} w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right) \\
=g_{i}^{(j)} s_{m+1} \cdots s_{j+1} d_{j+1} \cdots d_{m+1} w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha}) \oplus \mathbf{1} ; l\right)=\tilde{g}_{i}^{(j)},
\end{gathered}
$$

and for $0 \leq i \leq m$ we have
$s_{i} \tilde{g}^{(m)}=s_{i} g^{(m)} s_{i} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=s_{i} g^{(j-1)} w_{m+1}\left(s_{i} \boldsymbol{\alpha}, s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right)=g_{i}^{(m+1)} w_{m+1}\left(s_{i} \boldsymbol{\alpha},\left(s_{i} \boldsymbol{\alpha}\right) \oplus \mathbf{1} ; l\right)=\tilde{g}_{i}^{(m+1)}$.

Since

$$
s_{i} \tilde{\boldsymbol{g}}=\left(s_{i+1} \tilde{g}^{(0)}, \ldots, s_{i+1} \tilde{g}^{(i)}, s_{i} \tilde{g}^{(i)}, \ldots, s_{i} \tilde{g}^{(m)}\right)
$$

it follows that

$$
s_{i} \sigma_{m}(\boldsymbol{\xi})=s_{i}(\boldsymbol{\xi} \oplus \mathbf{1})=\left(s_{i}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; s_{i} \tilde{\boldsymbol{g}}\right)=\left(\left(s_{i} \boldsymbol{\alpha}\right) \oplus \mathbf{1} ; \tilde{\boldsymbol{g}}_{i}\right)=\sigma_{m+1}\left(s_{i} \boldsymbol{\alpha} ; s_{i} \boldsymbol{g}\right)=\sigma_{m+1}\left(s_{i} \boldsymbol{\xi}\right) .
$$

Therefore $\sigma: Y_{N} \rightarrow Y_{N+1}$ is a simplicial map by Definition 1.1.2 of Chapter 1, and we have (2). In addition to the properties already verified for $\boldsymbol{\xi} \oplus \mathbf{1} \in G(\mathfrak{s} . \mathcal{P} R)_{m}^{I}$ above, we also see that

$$
d_{0} \tilde{g}_{0}=\left(d_{0} g_{0}\right)\left(d_{0} s_{m} s_{m-1} \cdots s_{1} d_{1} d_{2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)
$$

However, by Theorem 2.1.4 we see

$$
d_{1} d_{2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=w_{1}\left(d_{1} d_{2} \cdots d_{m} \boldsymbol{\alpha}, d_{1} d_{2} \cdots d_{m}(\boldsymbol{\alpha} \oplus \mathbf{1}) ; l\right) \in \overline{G(\mathfrak{s . P} \cdot \mathcal{P})_{2}} .
$$

Therefore

$$
d_{0} d_{1} d_{2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1}
$$

and

$$
d_{0} \tilde{g}_{0}=\left(d_{0} g_{0}\right)\left(s_{m-1} s_{m-2} \cdots s_{0} d_{0} d_{1} d_{2} \cdots d_{m} w_{m}(\boldsymbol{\alpha}, \boldsymbol{\alpha} \oplus \mathbf{1} ; l)\right)=d_{0} g_{0}
$$

If $\boldsymbol{\xi} \in Y_{N, m}$ then $d_{0} g_{0}=1$ by definition, hence

$$
d_{0} \tilde{g}_{0}=d_{0} g_{0}=1
$$

so that $\boldsymbol{\xi} \oplus \mathbf{1} \in Y_{N+1, m}$ and we have (3).
For (4), we interpret the conclusion of (3): the left side of the diagram

is exactly the fact that the restriction of σ to the homotopy fiber is the map σ between homotopy fibers. In
order to verify this, we showed that $d_{0} \tilde{g}_{0}=d_{0} g_{0}$, so that

$$
p_{N}(\boldsymbol{\xi})=p_{N}(\boldsymbol{\alpha} ; \boldsymbol{g})=d_{0} g_{0}=d_{0} \tilde{g}_{0}=p_{N+1}(\boldsymbol{\alpha} \oplus \mathbf{1} ; \boldsymbol{\xi} \oplus \mathbf{1})=p_{N+1}(\boldsymbol{\xi} \oplus \mathbf{1})
$$

Therefore the right square in the diagram commutes. Also by definition (i.e. the proof of Lemma 3.1.4 and Lemma 4.1.1) we see

$$
\sigma\left(\partial^{*}(\boldsymbol{\xi})\right)=\sigma\left(\partial^{*}(\boldsymbol{\alpha} ; \boldsymbol{g})\right)=\sigma(\boldsymbol{\alpha})=\boldsymbol{\alpha} \oplus \mathbf{1}=\partial^{*}(\boldsymbol{\alpha} \oplus \mathbf{1} ; \tilde{\boldsymbol{g}})=\partial^{*}(\boldsymbol{\xi} \oplus \mathbf{1})=\partial^{*}(\sigma(\boldsymbol{\xi})),
$$

so that the diagram

commutes.
Finally, compose the relation implied by (4) with λ_{N} :

$$
\sigma \circ \partial_{N}^{*} \circ \lambda_{N}=\partial_{N+1}^{*} \circ \sigma \circ \lambda_{N}
$$

and apply Lemma 3.1.4 so that $\partial_{N}^{*} \circ \lambda_{N}=i d_{N(G L(N, R))}$, hence

$$
\sigma=\partial_{N+1}^{*} \circ \sigma \circ \lambda_{N}
$$

Now put both sides of the above equation into λ_{N+1} :

$$
\lambda_{N+1} \circ \sigma=\lambda_{N+1} \circ \partial_{N+1}^{*} \circ \sigma \circ \lambda_{N}
$$

since $\lambda_{N+1} \circ \partial_{N+1}^{*}$ is homotopic to $i d_{\mathfrak{I}_{N+1}}$ by Lemma 3.1.4 and homotopy is preserved by composition, it follows that $\lambda_{N+1} \circ \sigma$ is homotopic to $\sigma \circ \lambda_{N}$. Thus we have the diagram of (5) commuting "up to homotopy".

We can now extend to simplicial maps $\sigma_{j}^{i}=\overbrace{\sigma \circ \sigma \circ \cdots \circ \sigma}^{j-i}: Y_{i} \rightarrow Y_{j}, i \leq j$, and define a direct limit as in [20]:

$$
Y(R)=\underset{\overrightarrow{N, \sigma}}{\lim } Y_{N} .
$$

4.2 Filtration-Independent Elements of $\pi_{1}\left(Y_{N}\right)$

Lemma 4.2.1 Let $N \in \mathbb{N}, E_{1}, E_{2} \in \operatorname{Aut}\left(R^{N}\right)$ and suppose there is a filtration F of R^{N} that is an admissible filtration of both $\left(R^{N}, E_{1}\right)$ and $\left(R^{N}, E_{2}\right)$. Then:
a) F is an admissible filtration of $\left(R^{N}, E_{1} \circ E_{2}\right)$ as well as $\left(R^{N}, E_{1}^{-1}\right),\left(R^{N}, E_{2}^{-1}\right)$ and $\left(R^{N}, 1_{N}\right)$.
b) $\left(E_{1} ; 1, X_{1}\left(F\left(R^{N}, E_{1}\right)\right)\right),\left(E_{2} ; 1, X_{1}\left(F\left(R^{N}, E_{2}\right)\right)\right) \in \widetilde{Y}_{N, 1}$ with respect to $\phi_{0}=(* ; 1)$.
c) $\left[E_{1} ; 1, X_{1}\left(F\left(R^{N}, E_{1}\right)\right)\right] \bullet\left[E_{2} ; 1, X_{1}\left(F\left(R^{N}, E_{2}\right)\right)\right]=\left[E_{1} \circ E_{2} ; 1, X_{1}\left(F\left(R^{N}, E_{1} \circ E_{2}\right)\right)\right] \in \pi_{1}\left(Y_{N}, \Phi\right)$ via extender

$$
z_{E_{1} E_{2}}:=\left(E_{2} \mid E_{1} ; 1, s_{2} d_{2} X_{2}\left(F\left(R^{N} ; E_{2} \mid E_{1}\right)\right), X_{2}\left(F\left(R^{N} ; E_{2} \mid E_{1}\right)\right)\right) \in Y_{N, 2} .
$$

d) $\left[E_{1} ; 1, X_{1}\left(F\left(R^{N}, E_{1}\right)\right)\right]^{-1}=\left[E_{1}^{-1} ; 1, X_{1}\left(F\left(R^{N}, E_{1}^{-1}\right)\right)\right]$.

Proof: By Definition 2.2.1 there are diagrams

We also have $\left(E_{1}\right)^{(i)},\left(E_{2}\right)^{(i)} \in \operatorname{Aut}\left(P_{i}\right)$, hence

$$
\left(E_{1} \circ E_{2}\right)^{(i)}=\left.\left(E_{1} \circ E_{2}\right)\right|_{P_{i}}=\left.\left.E_{1}\right|_{P_{i}} \circ E_{2}\right|_{P_{i}}=\left(E_{1}\right)^{(i)} \circ\left(E_{2}\right)^{(i)} \in \operatorname{Aut}\left(P_{i}\right)
$$

for each $1 \leq i \leq n$. In particular we know by definition that $\left(E_{1}\right)^{(1)}=\left(E_{2}\right)^{(1)}=1_{P_{1}}$, so that $\left(E_{1} \circ E_{2}\right)^{(1)}=$ $1_{P_{1}}$. Also $\left(E_{1}\right)^{(n)}=E_{1}$ and $\left(E_{2}\right)^{(n)}=E_{2}$, so that $\left(E_{1} \circ E_{2}\right)^{(n)}=E_{1} \circ E_{2}$. Therefore the diagram

satisfies part (1) of Definition 2.2.1. Furthermore, from the short exact sequences of pairs

$$
\left(P_{i},\left(E_{1}\right)^{(i)}\right) \rightarrow\left(P_{i+1},\left(E_{1}\right)^{(i+1)}\right) \rightarrow\left(P_{i+1} / P_{i}, 1_{P_{i+1} / P_{i}}\right)
$$

and

$$
\left(P_{i},\left(E_{2}\right)^{(i)}\right) \rightarrow\left(P_{i+1},\left(E_{2}\right)^{(i+1)}\right) \rightarrow\left(P_{i+1} / P_{i}, 1_{P_{i+1} / P_{i}}\right)
$$

we see that the same inclusions and projections allow a short exact sequence of pairs

$$
\left(P_{i},\left(E_{1} \circ E_{2}\right)^{(i)}\right) \rightarrow\left(P_{i+1},\left(E_{1} \circ E_{2}\right)^{(i+1)}\right) \rightarrow\left(P_{i+1} / P_{i}, 1_{P_{i+1} / P_{i}}\right)
$$

which gives part (2) of Definition 2.2.1. Reversing directions on the automorphisms in the above diagrams shows that any subsequence that is an admissible filtration for $\left(R^{N}, E_{1}\right)$ will also be an admissible filtration of $\left(R^{N}, E_{1}^{-1}\right)$. This proves (a).

Now for the admissible filtration $F\left(R^{N}, E_{1}\right)$ (and similarly for $F\left(R^{N}, E_{2}\right)$) we have

$$
X_{1}\left(F\left(R^{N}, E_{1}\right)\right) \in \overline{G(\mathfrak{s} \cdot \mathcal{P} R)_{2}}
$$

from Theorem 2.2.2. Consider the element

$$
\boldsymbol{g}=\left(g_{0}, g_{1}\right)=\left(1, X_{1}\left(F\left(R^{N}, E_{1}\right)\right)\right) \in G(\mathfrak{s} . \mathcal{P} R)_{2} \times G(\mathfrak{s} . \mathcal{P} R)_{2} .
$$

From Theorem 2.2.2 we see

$$
d_{1} g_{1}=1=d_{1}(1)=d_{1} g_{0}
$$

in which case $\boldsymbol{g} \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1}^{I}$. Notice also that $d_{2} g^{1}=\mathfrak{i}_{R^{N}}\left(E_{1}\right)$ and $d_{0} g^{0}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1}$. Therefore we have

$$
X\left(E_{1}\right):=\left(E_{1} ; \boldsymbol{g}\right) \in Y_{N, 1} \subseteq \mathfrak{I}_{N, 1}
$$

by Definitions 3.1.3 and 3.1.6. Furthermore, we calculate

$$
d_{0} \boldsymbol{g}=d_{1} \boldsymbol{g}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{1}=G(\mathfrak{s} \cdot \mathcal{P} R)_{0}^{I}
$$

so that

$$
d_{0} X\left(E_{1}\right)=\left(d_{0} E_{1} ; d_{0} \boldsymbol{g}\right)=\left(R^{N} ; 1\right)=\phi_{0}
$$

and

$$
d_{1} X\left(E_{1}\right)=\left(d_{1} E_{1}: d_{1} \boldsymbol{g}\right)=\left(R^{N} ; 1\right)=\phi_{0},
$$

so $X\left(E_{1}\right) \in \widetilde{Y}_{N, 1}$ by Definition 1.3.4 of Chapter 1 . The same process with respect to $F\left(R^{N}, E_{2}\right)$ shows

$$
X\left(E_{2}\right):=\left(E_{2} ; \boldsymbol{g}^{\prime}\right) \in \widetilde{Y}_{N, 1}
$$

when $\boldsymbol{g}^{\prime}=\left(g_{0}^{\prime}, g_{1}^{\prime}\right)=\left(1, X_{1}\left(F\left(R^{N}, E_{2}\right)\right)\right)$. This proves (b).
We construct the product

$$
\left[X\left(E_{1}\right)\right] \bullet\left[X\left(E_{2}\right)\right] \in \pi_{1}\left(Y_{N}, \Phi\right)
$$

by the canonical definition in [2] (i.e. Definition 1.3.6 of Chapter 1). Consider the list

$$
C_{E_{1} E_{2}}=\left(X\left(E_{1}\right),-, X\left(E_{2}\right)\right)
$$

in $Y_{N, 1}$. Since $X\left(E_{1}\right), X\left(E_{2}\right) \in \widetilde{Y}_{N, 1}$, this list is a compatible list of 2-simplices in $Y_{N, 1}$. We construct an extender for this list.

Since F is a filtration of both $\left(R^{N}, E_{1}\right)$ and $\left(R^{N}, E_{2}\right)$, it is by Definition 2.2.3 a filtration of $\left(R^{N}, \boldsymbol{E}^{\prime}\right)$ where $\boldsymbol{E}^{\prime}=\left(E_{2} \mid E_{1}\right) \in N\left(\operatorname{Aut}\left(R^{N}\right)\right)_{2}$. Thus by Lemma 2.2.4 we have

$$
X_{2}\left(F\left(R^{N} ; \boldsymbol{E}^{\prime}\right)\right) \in G(\mathfrak{s} . \mathcal{P} R)_{3} .
$$

Consider the element

$$
\boldsymbol{g}^{\prime \prime}=\left(g_{0}^{\prime \prime}, g_{1}^{\prime \prime}, g_{2}^{\prime \prime}\right)=\left(1, s_{2} d_{2} X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right), X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right)\right) \in G_{3} \times G_{3} \times G_{3}
$$

Then $d_{1} g_{0}^{\prime \prime}=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{2}$, and since

$$
d_{2} X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right)=X_{1}\left(F\left(R^{N}, E_{2}\right)\right) \in{\overline{G(\mathfrak{s} \cdot \mathcal{P} R)_{2}}}_{2}
$$

we see that

$$
d_{1} s_{2} d_{2} X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right)=s_{1} d_{1} d_{2} X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right)=s_{1}(1)=1 \in G(\mathfrak{s} . \mathcal{P} R)_{2},
$$

in which case we have $d_{1} g_{0}^{\prime \prime}=d_{1} g_{1}^{\prime \prime}$. Also

$$
d_{2} g_{1}^{\prime \prime}=d_{2} X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right)=d_{2} s_{2} d_{2} X_{2}\left(F\left(R^{N}, \boldsymbol{E}^{\prime}\right)\right) .
$$

Thus $d_{2} g_{1}^{\prime \prime}=d_{2} g_{2}^{\prime \prime}$, hence $\boldsymbol{g}^{\prime \prime} \in G(\mathfrak{s} \cdot \mathcal{P} R)_{2}^{I}$. Note also that $d_{0} g_{0}=1 \in G(\mathfrak{s} . \mathcal{P} R)_{2}$ and that Lemma 2.2.4 gives $d_{3} g_{2}=\mathfrak{i}_{R^{N}}\left(\boldsymbol{E}^{\prime}\right)$, so that we can have the element

$$
z_{E_{1} E_{2}}:=\left(\boldsymbol{E}^{\prime}, \boldsymbol{g}^{\prime \prime}\right)=\left(E_{2} \mid E_{1} ; 1, s_{2} d_{2} X_{2}\left(F\left(R^{N} ; E_{2} \mid E_{1}\right)\right), X_{2}\left(F\left(R^{N} ; E_{2} \mid E_{1}\right)\right)\right) \in Y_{N, 2} \subseteq \mathfrak{I}_{N, 2} .
$$

Now we check

$$
\begin{gathered}
d_{0} z_{E_{1} E_{2}}=\left(d_{0} \boldsymbol{E}^{\prime} ; d_{0} \boldsymbol{g}^{\prime \prime}\right)=\left(E_{1} ; d_{0} g_{1}^{\prime \prime}, d_{0} g_{2}^{\prime \prime}\right) \\
=\left(E_{1} ; 1, X_{1}\left(F\left(R^{N}, E_{1}\right)\right)\right)=X\left(E_{1}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
d_{2} z_{E_{1} E_{2}}=\left(d_{2} \boldsymbol{E}^{\prime} ; d_{2} \boldsymbol{g}^{\prime \prime}\right)=\left(E_{2} ; d_{3} g_{0}^{\prime \prime}, d_{3} g_{1}^{\prime \prime}\right) \\
=\left(E_{2} ; 1, X_{1}\left(F\left(R^{N}, E_{2}\right)\right)\right)=X\left(E_{2}\right),
\end{gathered}
$$

so that $z_{E_{1} E_{2}}$ extends the list $C_{E_{1}, E_{2}}$. But now by Definition 1.3.6 of Chapter 1 we have

$$
\begin{gathered}
{\left[X\left(E_{1}\right)\right]\left[X\left(E_{2}\right)\right]=\left[d_{1} z_{E_{1} E_{2}}\right]=\left[d_{1} \boldsymbol{E}^{\prime} ; d_{1} \boldsymbol{g}^{\prime \prime}\right]} \\
=\left[E_{1} \circ E_{2} ; d_{2} g_{0}^{\prime \prime}, d_{1} g_{2}^{\prime \prime}\right]=\left[E_{1} \circ E_{2} ; 1, X_{1}\left(F\left(R^{N}, E_{1} \circ E_{2}\right)\right)\right]
\end{gathered}
$$

for (c).
Now (d) follows by checking

$$
\left.\left.\left.X_{1}\left(F\left(R^{N}, E_{1} \circ E_{1}^{-1}\right)\right)\right)=X_{1}\left(F\left(R^{N}, 1_{N}\right)\right)\right)=1 \in G(\mathfrak{s} . \mathcal{P} R)\right)_{2}
$$

by definition, hence (c) implies

$$
\left[E_{1} \circ E_{1}^{-1} ; 1, X_{1}\left(F\left(R^{N}, E_{1} \circ E_{1}^{-1}\right)\right)\right]=\left[1_{N} ; 1,1\right]=1 \in \pi\left(Y_{N}, \Phi\right)
$$

Theorem 4.2.2 If F is an admissible filtration of $\left(R^{N}, E\right), E \in G L(N, R)$, and \tilde{F} is an admissible refinement of F, then for $\xi=\left(E ; 1, X_{1}\left(F\left(R^{N}, E\right)\right)\right), \tilde{\xi}=\left(E ; 1, X_{1}\left(\widetilde{F}\left(R^{N}, E\right)\right)\right) \in \widetilde{Y}_{N, 1}$ we have $\xi \sim \tilde{\xi}$ in the sense of [2], Chapter 3.

Proof: We proceed as before for refinements, assuming a refinement by one, E-invariant submodule so that the result follows by induction. From Lemma 4.2 .1 we know that $\xi, \tilde{\xi} \in \widetilde{Y}_{N, 1}$. We will construct an element $y \in Y_{N, 2}$ that meets the definition (i.e. Definition 1.3.1 of Chapter 1).

Recalling the constructions for Theorem 2.3.4, set

$$
X_{1}=X_{1}\left(F\left(R^{N}, E\right)\right)=A C B, \tilde{X}_{1}=X_{1}\left(\tilde{F}\left(R^{N}, E\right)\right)=A C_{1} C_{2} B
$$

With $A, B, C, C_{1}, C_{2} \in \overline{G(\mathfrak{s . P} R)}_{2}$ as for Theorem 2.3.4 (i.e. with $P=R^{N}$ and $\alpha=E$). We know from
 filtration F for the admissible $F\left(R^{N} ; E \mid 1_{N}\right)$; recall $\left.d_{1} v \in \overline{G(\mathfrak{s} \cdot \mathcal{P} R)}_{2}\right)$ and set

$$
\boldsymbol{g}=\left(g_{0}, g_{1}, g_{2}\right)=\left(1,\left(s_{2} A\right) u\left(s_{2} A\right)^{-1} s_{2} d_{2} v, v\right) \in G_{3} \times G_{3} \times G_{3} .
$$

Then

$$
d_{1} g_{1}=\left(s_{1} d_{1} A\right)\left(d_{0} u\right)\left(s_{1} d_{1} A\right)^{-1}\left(s_{1} d_{1} d_{1} v\right)=\left(s_{1} d_{1} A\right)(1)\left(s_{1} d_{1} A\right)^{-1}(1)\left(s_{1}(1)\right)=1=d_{1} g_{0}
$$

and

$$
d_{2} g_{1}=A\left(d_{2} u\right) A^{-1}\left(d_{2} v\right)=A(1) A^{-1}\left(d_{2} v\right)=d_{2} v=d_{2} g_{2}
$$

so that $\boldsymbol{g} \in G_{2}^{I}$. Also $d_{0} g_{0}=1$ and

$$
d_{3} g_{2}=d_{3} v=\mathfrak{i}_{N}(E \mid 1)
$$

so that the element

$$
y=\left(E \mid 1_{N} ; \boldsymbol{g}\right)
$$

is a 2 -simplex in the homotopy fiber Y_{N} by Definition 3.1.6. Furthermore, we see that $d_{2} g_{0}=1$ and

$$
d_{1} g_{2}=d_{1} v=X_{1}\left(F\left(R^{N} ; E\right)\right)
$$

so that

$$
d_{1} y=\left(E ; d_{2} g_{0}, d_{1} g_{2}\right)=\left(E ; 1, X_{1}\right)=\xi
$$

Similarly, $d_{3} g_{0}=1$ and

$$
d_{3} g_{1}=A\left(d_{3} u\right) A^{-1}\left(d_{2} v\right)=A C_{1} C_{2} C^{-1} A^{-1} A C B=A C_{1} C_{2} B=X_{1}\left(\tilde{F}\left(R^{N}, E\right)\right),
$$

in which case

$$
d_{2} y=\left(E ; d_{3} g_{0}, d_{3} g_{1}\right)=\left(E ; 1, \tilde{X}_{1}\right)=\tilde{\xi}
$$

Finally, $d_{0} g_{0}=1$ and

$$
d_{0} g_{2}=d_{0} v=X_{1}\left(F\left(R^{N} ; 1_{N}\right)\right)=1 \in G(\mathfrak{s} \cdot \mathcal{P} R)_{2},
$$

hence

$$
d_{0} y=\left(1_{N} ; 1,1\right)=1=s_{0} d_{0} \xi=s_{0} d_{0} \tilde{\xi} .
$$

Thus y is the required "homotopy" from ξ to $\tilde{\xi}$ according to Definition 1.3.1 of Chapter 1 .

An identical process to the proof of Theorem 2.4.2 gives

Theorem 4.2.3 Suppose that F_{1} and F_{2} are standard, admissible filtrations of $E \in G L(N, R)$. Then for $\xi_{1}=\left(E ; 1, X_{1}\left(F_{1}\left(R^{N} ; E\right)\right)\right)$ and $\xi_{2}=\left(E ; 1, X_{1}\left(F_{2}\left(R^{N} ; E\right)\right)\right)$ we have $\left[\xi_{1}\right]=\left[\xi_{2}\right] \in \pi_{1}\left(Y_{N}\right)$. That is, the class $[\xi]$ for $\xi=\left(E ; 1, X_{1}\left(F\left(R^{N} ; E\right)\right)\right)$ is independent of the choice of filtration F for the corresponding matrix E so long as that filtration is standard.

Proof: In order to prove Theorem 2.4.2, a chain \widetilde{F} and a sequence of chains $H_{a, b}$ were constructed through which we found

$$
\begin{gathered}
{\left[X_{1}\left(\widetilde{F}\left(R^{N}, E\right)\right)\right]=\left[X_{1}\left(F_{1,1}\left(R^{N}, E\right)\right)\right],} \\
{\left[X_{1}\left(F_{a, b}^{\prime}\left(R^{N}, E\right)\right)\right]=\left[X_{1}\left(F_{a, b}\left(R^{N}, E\right)\right)\right] \forall 1 \leq a \leq S-1,1 \leq b \leq a,} \\
{\left[X_{1}\left(F_{a, a}^{\prime}\left(R^{N}, E\right)\right)\right]=\left[X_{1}\left(F_{a+1,1}\left(R^{N}, E\right)\right)\right] \forall 1 \leq a \leq S-1,}
\end{gathered}
$$

and

$$
\left[X_{1}\left(F_{1}\left(R^{N}, E\right)\right)\right]=\left[X_{1}\left(F_{S-1, S-1}^{\prime}\left(R^{N}, E\right)\right)\right]
$$

via Theorem 2.3.4 because of the resulting refinements. Since these refinements are still intact, Theorem 4.2.2 implies

$$
\begin{gathered}
{\left[\left(E ; 1, X_{1}\left(\widetilde{F}\left(R^{N}, E\right)\right)\right)\right]=\left[\left(E ; 1, X_{1}\left(F_{1,1}\left(R^{N}, E\right)\right)\right)\right],} \\
{\left[\left(E ; 1, X_{1}\left(F_{a, b}^{\prime}\left(R^{N}, E\right)\right)\right)\right]=\left[\left(E ; 1, X_{1}\left(F_{a, b}\left(R^{N}, E\right)\right)\right)\right] \forall 1 \leq a \leq S-1,1 \leq b \leq a,} \\
{\left[\left(E ; 1, X_{1}\left(F_{a, a}^{\prime}\left(R^{N}, E\right)\right)\right)\right]=\left[\left(E ; 1, X_{1}\left(F_{a+1,1}\left(R^{N}, E\right)\right)\right)\right] \forall 1 \leq a \leq S-1,}
\end{gathered}
$$

and

$$
\left[\xi_{1}\right]=\left[\left(E ; 1, X_{1}\left(F_{S-1, S-1}^{\prime}\left(R^{N}, E\right)\right)\right)\right] .
$$

These equalities imply (by transitivity of the equivalence relation) that $\left[\left(E ; 1, X_{1}\left(\widetilde{F}\left(R^{N}, E\right)\right)\right]=\left[\xi_{1}\right]\right.$ in $\pi_{1}\left(Y_{N}\right)$. Another, similar sequence of chains allows $\left[\left(E ; 1, X_{1}\left(\widetilde{F}\left(R^{N}, E\right)\right)\right)\right]=\left[\xi_{2}\right]$ so that by transitivity we have $\left[\xi_{1}\right]=\left[\xi_{2}\right] \in \pi_{1}\left(Y_{N}\right)$.

4.3 The Steinberg Relations

4.3.1 Standard filtrations for elementary matrices

Recall Definition 3.1.2 from Chapter 2 for the elementary matrices $e_{i j}^{N}(a) \in G L(N, R)$ given $i \neq j$ and $N \geq 3$.
Lemma 4.3.1 Given elementary matrices $e_{i j}^{N}(a), e_{k l}^{N}(b)$, there is a standard filtration

$$
F: 0=P_{0} \subseteq P_{1} \subseteq \cdots \subseteq P_{n-1} \subseteq P_{n}=R^{N}
$$

of free submodules of R^{N} that is a standard, admissible filtration of both $\left(R^{N}, e_{i j}^{N}(a)\right)$ and $\left(R^{N}, e_{k l}^{N}(b)\right)$.

Proof: We choose the standard basis for R^{N} :

$$
R^{N}=\left\langle e_{1}, e_{2}, \ldots, e_{N}\right\rangle
$$

Thus we write

$$
e_{i j}^{N}(a)\left[e_{h}\right]=\left\{\begin{array}{cc}
e_{h}, & h \neq j \\
a e_{i}+e_{j}, & h=j
\end{array}\right.
$$

for the images of basis elements.
We begin by ordering the indices $\{i, j, k, l\}$ as $\left\{M_{1}>M_{2}>M_{3}>M_{4}\right\}$ and thinking of them in pairs: for each $1 \leq h \leq 4$, we use M_{h} and consider \widetilde{M}_{h} so that one of the matrices is $e_{M_{h} \widetilde{M}_{h}}$ (or $e_{\widetilde{M}_{h} M_{h}}$).

When $M_{1}, M_{4} \in\{i, k\}$ we have either $\widetilde{M}_{1}=M_{3} \in\{j, l\}$ or $\widetilde{M}_{1}=M_{2} \in\{j, l\}$; we show the case for $\widetilde{M}_{1}=M_{3}$, since the other case is similar by replacing M_{3} with M_{2} and vice versa. Thus we denote the images by

$$
e_{M_{1} \widetilde{M}_{1}}\left(e_{h}\right)=\left\{\begin{array}{cc}
e_{h}, & h \neq M_{3} \\
r_{1} e_{M_{1}}+e_{M_{3}}, & h=M_{3}
\end{array}\right.
$$

and

$$
e_{M_{4} \widetilde{M}_{4}}\left(e_{h}\right)=\left\{\begin{array}{cc}
e_{h}, & h \neq M_{2} \\
r_{4} e_{M_{4}}+e_{M_{2}}, & h=M_{2}
\end{array}\right.
$$

Let

$$
P_{1}=\left\langle e_{1}, \ldots, e_{M_{4}}, \ldots, e_{M_{3}-1}, e_{M_{2}+1}, \ldots, e_{M_{1}}, \ldots, e_{N}\right\rangle
$$

$$
P_{2}=\left\langle e_{1}, \ldots, e_{M_{4}}, \ldots, e_{M_{3}}, e_{M_{2}}, \ldots, e_{N}\right\rangle
$$

and $P_{3}=R^{N}$, with inclusions preserving the specified order of basis elements. On the generators e_{h} of P_{1} we see that $e_{M_{1} \widetilde{M}_{1}}\left(e_{h}\right)=e_{h}$ since $h \neq \widetilde{M}_{1}$ and $e_{M_{4} \widetilde{M}_{4}}\left(e_{h}\right)=e_{h}$ since $h \neq \widetilde{M}_{4}$. On P_{2}, we have $e_{M_{1} M_{3}}\left(e_{h}\right)=e_{h} \forall h \neq M_{3}$ and $e_{M_{1} M_{3}}\left(e_{M_{3}}\right)=r_{1} e_{M_{1}}+e_{M_{3}} \in P_{2}$; similarly $e_{M_{4} M_{2}}\left(e_{h}\right)=e_{h} \forall h \neq M_{2}$ and $e_{M_{4} M_{2}}\left(e_{M_{2}}\right)=r_{4} e_{M_{4}}+e_{M_{2}} \in P_{2}$. Thus $e_{M_{1} \widetilde{M}_{1}}^{(1)}=e_{M_{4} \widetilde{M}_{4}}^{(1)}=1_{P_{1}}$ and $e_{M_{1} \widetilde{M}_{1}}^{(2)}, e_{M_{4} \widetilde{M}_{4}}^{(2)} \in \operatorname{Aut}\left(P_{2}\right)$. On the quotient module $P_{2} / P_{1}=\left\langle\bar{e}_{M_{3}}, \bar{e}_{M_{2}}\right\rangle \in \mathcal{P} R$ we calculate on equivalence classes and see

$$
e_{M_{1} M_{3}}\left(\bar{e}_{M_{3}}\right)=\overline{r_{1} e_{M_{1}}+e_{M_{3}}}=\overline{0+e_{M_{3}}}=\bar{e}_{M_{3}}
$$

and $e_{M_{1} M_{3}}\left(\bar{e}_{M_{2}}\right)=\bar{e}_{M_{2}}$. Similarly $e_{M_{4} M_{2}}\left(\bar{e}_{M_{3}}\right)=\bar{e}_{M_{3}}$ and

$$
e_{M_{4} M_{2}}\left(\bar{e}_{M_{2}}\right)=\overline{r_{4} e_{M_{4}}+e_{M_{2}}}=\overline{0+e_{M_{2}}}=\bar{e}_{M_{2}}
$$

On $P_{3} / P_{2}=\left\langle\bar{e}_{M_{3}+1}, \ldots, \bar{e}_{M_{2}-1}\right\rangle \in \mathcal{P} R$ we have $e_{M_{1} M_{3}}\left(\bar{e}_{h}\right)=\bar{e}_{h} \forall h \neq M_{3}$ and $e_{M_{4} M_{2}}\left(\bar{e}_{h}\right)=\bar{e}_{h} \forall h \neq M_{2}$. We conclude that induced maps on these quotients are the identity, so that

$$
\begin{aligned}
& \left(P_{1}, e_{M_{1} \widetilde{M}_{1}}^{(1)}\right) \rightarrow\left(P_{2}, e_{M_{1} \widetilde{M}_{1}}^{(2)}\right) \rightarrow\left(P_{2} / P_{1}, 1\right), \\
& \left(P_{1}, e_{M_{4} \widetilde{M}_{4}}^{(1)}\right) \rightarrow\left(P_{2}, e_{M_{4} \widetilde{M}_{4}}^{(2)}\right) \rightarrow\left(P_{2} / P_{1}, 1\right), \\
& \left(P_{2}, e_{M_{1} \widetilde{M}_{1}}^{(2)}\right) \rightarrow\left(P_{3}=R^{N}, e_{M_{1} \widetilde{M}_{1}}\right) \rightarrow\left(P_{3} / P_{2}, 1\right),
\end{aligned}
$$

and

$$
\left(P_{2}, e_{M_{4} \widetilde{M}_{4}}^{(2)}\right) \rightarrow\left(P_{3}=R^{N}, e_{M_{4} \widetilde{M}_{4}}\right) \rightarrow\left(P_{3} / P_{2}, 1\right)
$$

are short exact sequences of pairs, in which case this choice of $P_{1} \subseteq P_{2} \subseteq P_{3}$ is an admissible filtration of $\operatorname{both}\left(R^{N}, e_{M_{1} \widetilde{M}_{1}}\right)$ and $\left(R^{N}, e_{M_{4} \widetilde{M}_{4}}\right)$.

When $M_{1} \in\{i, k\}$ and $M_{4} \in\{j, l\}$ we have $\widetilde{M}_{1} \in\left\{M_{2}, M_{3}, M_{4}\right\}$. In case $\widetilde{M}_{1}=M_{2}$ we note that $\widetilde{M}_{3}=M_{4}$ and set $P_{1}=\left\langle e_{M_{2}+1}, \ldots, e_{M_{1}}, \ldots, e_{N}\right\rangle, P_{2}=\left\langle e_{M_{2}}, \ldots, \ldots, e_{N}\right\rangle, P_{3}=\left\langle e_{M_{4}+1}, \ldots, e_{M_{3}}, \ldots, e_{N}\right\rangle$ and $P_{4}=\left\langle e_{1}, \ldots, e_{N}\right\rangle=R^{N}$ with inclusions that preserve the order of the basis elements. Since $e_{M_{1} \widetilde{M}_{1}}\left(e_{h}\right)=$ $e_{h} \forall h>M_{2}$ and $e_{M_{3} \widetilde{M}_{3}}\left(e_{h}\right)=e_{h} \forall h>M_{2}>M_{4}$, we know that the restrictions of both matrices to P_{1} are the identity. On the other hand, $e_{M_{1} M_{2}}\left(e_{M_{2}}\right)=r_{1} e_{M_{1}}+e_{M_{2}} \in P_{2}$ and $e_{M_{3} M_{4}}\left(e_{M_{2}}\right)=e_{M_{2}}$, so that $e_{M_{1} M_{2}}, e_{M_{3} M_{4}} \in \operatorname{Aut}\left(P_{2}\right)$. Also, $e_{M_{1} M_{2}}, e_{M_{3} M_{4}} \in \operatorname{Aut}\left(P_{3}\right)$ since both matrices map $e_{h} \mapsto e_{h}$ for any $M_{4}<h<M_{2}$.

We have quotient modules $P_{2} / P_{1}=\left\langle\bar{e}_{M_{2}}\right\rangle, P_{3} / P_{2}=\left\langle\bar{e}_{M_{4}+1}, \ldots, \bar{e}_{M_{2}-1}\right\rangle$, and $P_{4} / P_{3}=\left\langle\bar{e}_{1}, \ldots, \bar{e}_{4}\right\rangle$,
which are all clearly finitely generated and projective (since they are free modules). Both matrices induce the identity on P_{3} / P_{2} by definition. On P_{2} / P_{1} we see that

$$
e_{M_{1} M_{2}}\left(\bar{e}_{M_{2}}\right)=\overline{r_{1} e_{M_{1}}+e_{M_{2}}}=\overline{0+e_{M_{2}}}=\bar{e}_{M_{2}}
$$

while $e_{M_{3} M_{4}}$ induces the identity by definition. Similarly, on P_{2} / P_{1} we see that

$$
e_{M_{3} M_{4}}\left(\bar{e}_{M_{4}}\right)=\overline{r_{3} e_{M_{3}}+e_{M_{4}}}=\overline{0+e_{M_{4}}}=\bar{e}_{M_{4}},
$$

while $e_{M_{1} M_{2}}$ induces the identity by definition. Therefore with short exact sequences of pairs

$$
\begin{gathered}
\left(P_{1}, e_{M_{1} \widetilde{M}_{1}}^{(1)}\right) \rightarrow\left(P_{2}, e_{M_{1} \widetilde{M}_{1}}^{(2)}\right) \rightarrow\left(P_{2} / P_{1}, 1\right), \\
\left(P_{1}, e_{M_{2} \widetilde{M}_{2}}^{(1)}\right) \rightarrow\left(P_{2}, e_{M_{2} \widetilde{M_{2}}}^{(2)}\right) \rightarrow\left(P_{2} / P_{1}, 1\right), \\
\left(P_{2}, e_{M_{1} \widetilde{M}_{1}}^{(2)}\right) \rightarrow\left(P_{3}, e_{M_{1} \widetilde{M}_{1}}^{(3)}\right) \rightarrow\left(P_{3} / P_{2}, 1\right), \\
\left(P_{2}, e_{M_{2} \widetilde{M_{2}}}^{(2)}\right) \rightarrow\left(P_{3}, e_{M_{2} \widetilde{M_{2}}}^{(3)}\right) \rightarrow\left(P_{3} / P_{2}, 1\right), \\
\left(P_{2}, e_{M_{1} \widetilde{M}_{1}}^{(3)}\right) \rightarrow\left(P_{4}=R^{N}, e_{M_{1} \widetilde{M}_{1}}\right) \rightarrow\left(P_{4} / P_{3}, 1\right),
\end{gathered}
$$

and

$$
\left(P_{2}, e_{M_{2} \widetilde{M}_{2}}^{(3)}\right) \rightarrow\left(P_{3}=R^{N}, e_{M_{2} \widetilde{M}_{2}}\right) \rightarrow\left(P_{4} / P_{3}, 1\right)
$$

we have that $P_{1} \subseteq P_{2} \subseteq P_{3} \subseteq P_{4}$ is an admissible filtration of both ($R^{N}, e_{M_{1} \widetilde{M}_{1}}$) and ($R^{N}, e_{M_{2}}{\widetilde{M_{2}}}$).
Similar to the case for $\widetilde{M}_{1}=M_{2}$, in case $\widetilde{M}_{1}=M_{3}$ the sequence $P_{1} \subseteq P_{2} \subseteq P_{3}$ with $P_{1}=\left\langle e_{M_{3}+1}, \ldots, e_{N}\right\rangle$, $P_{2}=\left\langle e_{M_{4}+1}, \ldots, e_{N}\right\rangle$ and $P_{3}=R^{N}$ is an admissible filtration for both ($R^{N}, e_{M_{1} \widetilde{M}_{1}}$) and ($R^{N}, e_{M_{2} \widetilde{M}_{2}}$). In fact, this same filtration $P_{1} \subseteq P_{2} \subseteq P_{3}$ is also an admissible filtration of both ($R^{N}, e_{M_{1} \widetilde{M}_{1}}$) and $\left(R^{N}, e_{M_{2} \widetilde{M}_{2}}\right)$ in case $\widetilde{M}_{1}=M_{4}, \widetilde{M}_{2}=M_{3}$ since $M_{3}>M_{4}$. When $\widetilde{M}_{1}=M_{4}$ but $\widetilde{M}_{3}=M_{2}$, we use $P_{1}=\left\langle e_{M_{4}+1}, \ldots, e_{M_{3}}, \ldots, e_{M_{2}-1}\right\rangle, P_{2}=\left\langle e_{M_{4}+1}, \ldots, e_{N}\right\rangle$ and $P_{3}=R^{N}$.

The remaining cases can be verified as an exercise as follows.
When $M_{1} \in\{j, l\}$ and $M_{1}=\widetilde{M}_{4}$, the sequence with $P_{1}=\left\langle e_{1}, \ldots, e_{M_{2}-1}\right\rangle, P_{2}=\left\langle e_{1}, \ldots, e_{M_{1}}\right\rangle, P_{3}=R^{N}$ is an admissible filtration of $\left(R^{N}, e_{M_{4} M_{1}}\right)$ and $\left(R^{N}, e_{M_{3} M_{2}}\right)$, while the sequence given by $P_{1}=\left\langle e_{M_{3}+1}, \ldots, e_{M_{2}}\right\rangle$, $P_{2}=\left\langle e_{1}, \ldots, e_{M_{1}-1}\right\rangle, P_{3}=R^{N}$ is an admissible filtration of ($R^{N}, e_{M_{4} M_{1}}$) and ($R^{N}, e_{M_{2} M_{3}}$). If $M_{1}=\widetilde{M_{2}}$ then the sequence given by $P_{1}=\left\langle e_{1}, \ldots, e_{M_{3}-1}\right\rangle, P_{2}=\left\langle e_{1}, \ldots, e_{M_{1}-1}\right\rangle, P_{3}=R^{N}$ is an admissible filtration of $\left(R^{N}, e_{M_{2} M_{1}}\right)$ and $\left(R^{N}, e_{M_{4} M_{3}}\right)$.

The final two cases are $M_{1}=\widetilde{M}_{2}$ and $M_{1}=\widetilde{M}_{3}$. In these cases, the sequence with $P_{1}=\left\langle e_{M_{4}+1}, \ldots, e_{M_{3}}\right\rangle$, $P_{2}=\left\langle e_{1}, \ldots, e_{M_{1}-1}\right\rangle, P_{3}=R^{N}$ is an admissible filtration of ($R^{N}, e_{M_{2} M_{1}}$) and ($R^{N}, e_{M_{3} M_{4}}$), while the sequence given by $P_{1}=\left\langle e_{M_{4}+1}, \ldots, e_{M_{2}}\right\rangle, P_{2}=\left\langle e_{1}, \ldots, e_{M_{1}-1}\right\rangle, P_{3}=R^{N}$ is an admissible filtration of ($R^{N}, e_{M_{3} M_{1}}$) and ($R^{N}, e_{M_{2} M_{4}}$). Notice that these calculations account for the cases where at least one of the matrices is upper-triangular as well as the case both being lower-triangular and all other cases.

4.3.2 Steinberg generators and relations in $\pi_{1}\left(Y_{N}\right)$

As usual, let $e_{i j}^{N}(a) \in G L(N, R) ; i \neq j ; i, j \leq N$ be an $N \times N$ elementary matrix associated to the element $a \in R$. Of course, $e_{i j}^{N}(a) \oplus 1=e_{i j}^{N+1}(a)$.

Definition 4.3.2 Suppose that $i, j \leq N, i \neq j$ and $a \in R$. Define elements $X_{i j}^{N}(a) \in \pi_{1}\left(Y_{N}(R)\right)$ by

$$
X_{i j}^{N}(a)=\left[\left(e_{i j}^{N} ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right)\right],
$$

where $F\left(R^{N}, e_{i j}^{N}(a)\right)$ is any standard admissible filtration of $\left(R^{N}, e_{i j}^{N}(a)\right)$.

Combining Lemma 4.3 .1 with Theorem 4.2.3 allows us to see that $X_{i j}^{N}(a)$ has a defining admissible filtration and that this element of $\pi_{1}\left(Y_{N}\right)$ is independent of the choice of the standard admissible filtration chosen to define it.

Theorem 4.3.3 Given any $i, j, k, l \leq N$ such that $i \neq j, k \neq l$, and $a, b \in R$, we have the following computations in $\pi_{1}\left(Y_{N}\right)$:

1. $X_{i j}^{N}(a) X_{i j}^{N}(b)=X_{i j}^{N}(a+b)$
2. $X_{i j}^{N}(a) X_{j l}^{N}(b) X_{i j}^{N}(a)^{-1} X_{j l}^{N}(b)^{-1}=X_{i l}^{N}(a b)$, if $i \neq l$
3. $X_{i j}^{N}(a) X_{k l}^{N}(b)=X_{k l}^{N}(b) X_{i j}^{N}(a)$, if $i \neq l, j \neq k$
4. If $\sigma: Y_{N} \rightarrow Y_{N+1}$ is as in Proposition 4.1.2, then $\sigma_{*}\left(X_{i j}^{N}(a)\right)=X_{i j}^{N+1}(a)$.

Proof: Given elementary matrices $e_{s t}^{N}(a), e_{u v}^{N}(b) \in \operatorname{Aut}\left(R^{N}\right),\{s \neq t\} \subset\{i, j, k, l\},\{u \neq v\} \subseteq\{i, j, k, l\}$, $a, b \in R$, Lemma 4.3 .1 guarantees a subsequence F that is a filtration for both and by Lemma 4.2.1.(a) and
(b) we know that there are corresponding equivalence classes

$$
X_{s t}^{N}(a):=X\left(e_{s t}^{N}(a)\right)=\left[e_{s t}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{s t}^{N}(a)\right)\right)\right] \in \pi_{1}\left(Y_{N}\right)
$$

Then Lemma 4.2.1.(c) allows us to calculate directly in each case (we omit some of the "bullets" that indicate group operation in homotopy groups as in Chapter 1, and understand concatenation to stand for this):

1. Since $e_{i j}^{N}(a) \circ e_{i j}^{N}(b):=e_{i j}^{N}(a) e_{i j}^{N}(b)=e_{i j}^{N}(a+b)$ for elementary matrices $e_{i j}^{N}(a)$ and $e_{i j}^{N}(b)$ we let $E_{1}=e_{i j}^{N}(a)$ and $E_{2}=e_{i j}^{N}(b)$ so that

$$
\begin{gathered}
X_{i j}^{N}(a) X_{i j}^{N}(b)=\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right]\left[e_{i j}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(b)\right)\right)\right] \\
=\left[e_{i j}^{N}(a) \circ e_{i j}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a) \circ e_{i j}^{N}(b)\right)\right)\right]=\left[e_{i j}^{N}(a+b) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a+b)\right)\right)\right] \\
=X_{i j}^{N}(a+b)
\end{gathered}
$$

2. We use associativity,

$$
e_{i j}^{N}(a) e_{j l}^{N}(b)\left(e_{i j}^{N}(a)\right)^{-1}\left(e_{j l}^{N}(b)\right)^{-1}=\left(e_{i j}^{N}(a) e_{j l}^{N}(b)\right)\left(\left(e_{i j}^{N}(a)\right)^{-1}\left(e_{j l}^{N}(b)\right)^{-1}\right)=e_{i l}^{N}(a b),
$$

and Lemma 4.2.1.(d).

$$
X_{i j}^{N}(a) X_{j l}^{N}(b)\left(X_{i j}^{N}(a)\right)^{-1}\left(X_{j l}^{N}(b)\right)^{-1}=\left(\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right]\right.
$$

$$
\begin{gathered}
\left.\bullet\left[e_{j l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{j l}^{N}(b)\right)\right)\right]\right)\left(\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right]^{-1}\left[e_{j l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{j l}^{N}(b)\right)\right)\right]^{-1}\right) \\
=\left(\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right]\left[e_{j l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{j l}^{N}(b)\right)\right)\right]\right) \\
\bullet\left(\left[e_{i j}^{N}(a)^{-1} ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)^{-1}\right)\right)\right]\left[e_{j l}^{N}(b)^{-1} ; 1, X_{1}\left(F\left(R^{N}, e_{j l}^{N}(b)^{-1}\right)\right)\right]\right) \\
=\left[e_{i j}^{N}(a) e_{j l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a) e_{j l}^{N}(b)\right)\right)\right] \\
\bullet\left[\left(e_{i j}^{N}(a)\right)^{-1}\left(e_{j l}^{N}(b)\right)^{-1} ; 1, X_{1}\left(F\left(R^{N},\left(e_{i j}^{N}(a)\right)^{-1}\left(e_{j l}^{N}(b)\right)^{-1}\right)\right)\right] \\
=\left[e_{i j}^{N}(a) e_{j l}^{N}(b)\left(e_{i j}^{N}(a)\right)^{-1}\left(e_{j l}^{N}(b)\right)^{-1} ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a) e_{j l}^{N}(b)\left(e_{i j}^{N}(a)\right)^{-1}\left(e_{j l}^{N}(b)\right)^{-1}\right)\right)\right] \\
=\left[e_{i l}^{N}(a b) ; 1, X_{1}\left(F\left(R^{N}, e_{i l}^{N}(a b)\right)\right)\right] \\
=X_{i l}^{N}(a b) .
\end{gathered}
$$

3. Once again we calculate directly using $e_{i j}(a) e_{k l}(b)=e_{k l}(b) e_{i j}(a)$:

$$
X_{i j}^{N}(a) X_{k l}^{N}(b)=\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right]\left[e_{k l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{k l}^{N}(b)\right)\right)\right]
$$

$$
\begin{gathered}
=\left[e_{i j}^{N}(a) e_{k l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a) e_{k l}^{N}(b)\right)\right)\right] \\
=\left[e_{k l}^{N}(b) e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{k l}^{N}(b) e_{i j}^{N}(a)\right)\right)\right] \\
=\left[e_{k l}^{N}(b) ; 1, X_{1}\left(F\left(R^{N}, e_{k l}^{N}(b)\right)\right)\right]\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right] \\
=X_{k l}^{N}(b) X_{i j}^{N}(a)
\end{gathered}
$$

4. Suppose that F is any standard admissible filtration of $\left(R^{N}, e_{i j}^{N}(a)\right)$. Then

$$
\sigma\left(e_{i j}^{N} ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right)=\left(e_{i j}^{N+1}(a) ; \tilde{g}_{0}, \tilde{g}_{1}\right),
$$

where

$$
\tilde{g}_{0}=s_{1} d_{1} w_{1}\left(e_{i j}^{N}(a), e_{i j}^{N+1}(a) ; l\right),
$$

l being the short exact sequence $\left(R^{N}, e_{i j}^{N}(a)\right) \rightarrow\left(R^{N+1}, e_{i j}^{N+1}(a)\right) \rightarrow(R, 1)$, and

$$
\tilde{g}_{1}=X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right) w_{1}\left(e_{i j}^{N}(a), e_{i j}^{N+1}(a) ; l\right):=X_{1}\left((F \oplus 1)\left(R^{N+1}, e_{i j}^{N+1}(a)\right)\right)
$$

where $F \oplus 1$ is the standard admissible filtration of $\left(R^{N+1}, e_{i j}^{N+1}(a)\right)$ obtained by inserting the usual inclusion $R^{N} \subset R^{N+1}$ at the end of F. Therefore, we may conclude that $\sigma_{*}\left(X_{i j}^{N}(a)\right)=X_{i j}^{N+1}(a)$.

As an immediate corollary to the last theorem above we have

Theorem 4.3.4 For every N there is a homomorphism of groups

$$
f_{N}: S t(N, R) \rightarrow \pi_{1}\left(Y_{N}\right)
$$

defined on the usual Steinberg generators $x_{i j}^{N}(a) b y$

$$
f_{N}\left(x_{i j}^{N}(a)\right)=X_{i j}^{N}(a),
$$

such that the following diagram commutes:

The top arrow is the usual "stabilization" homomorphism for the Steinberg groups as seen in Chapter 2. Thus, passing to the direct limit there exists a homomorphism of groups

$$
f: S t(R) \rightarrow \underset{\overrightarrow{N, \sigma_{*}}}{\lim } \pi_{1}\left(Y_{N}\right)=\pi_{1}\left(\underset{\overrightarrow{N, \sigma}}{\left(\lim _{N}\right.} Y_{N}\right)=\pi_{1}(Y(R)),
$$

such that

$$
f\left(x_{i j}(a)\right)=\left(j_{N}\right)_{*}\left(X_{i j}^{N}(a)\right),
$$

and N is such that $i, j \leq N, j_{N}: Y_{N} \rightarrow Y(R)$ is one of the maps defining the direct limit.

Chapter 6

Connecting $K_{2}(R)$ to $\pi_{2}(G(N(Q \mathcal{P} R)))$

1 Connecting the Exact Sequences

In this chapter, we drop the subscript N when referring to the direct limit, understanding that statements made with respect to this limit are with regard to the proper maps "for sufficient N ". Therefore we have maps such as $\lambda_{1 *}: \pi_{1}(N(G L(R))) \rightarrow \pi_{1}(\Im(R))$ in the direct limit, for example.

We use the isomorphisms developed in Chapters 4 and 5 to define an isomorphism $\tilde{f}: K_{2} \rightarrow \pi_{2}(G(\mathfrak{s} \cdot \mathcal{P} R))$, which will then combine with the theory of Chapter 3 to allow an isomorphism from K_{2} to $\pi_{2}(G(N(Q \mathcal{P} R)))$. Consider what we can describe explicitly so far, using the defined maps and the long exact sequences:

The top sequence is the exact sequence for K-groups involving $K_{2}(R)$ as in Chapter 5 of [8], and the bottom sequence is the long exact sequence of the Kan Fibration $p: \mathfrak{I} \rightarrow G(\mathfrak{s} \cdot \mathcal{P} R)$ as in Lemma 3.1.5 of Chapter 5 and Definition 3.2.3 of Chapter 1.

By Lemma 3.1.4 of Chapter 5 we know $\pi_{n}(\Im(R)) \approx \pi_{n}(N(G L(R))) \forall n$. But since $G L(R)$ is a group we know from Example 5.1.2 of Chapter 1 that $N(G L(R))$ is reduced, hence $\pi_{0}(N(G L(R))):=1$. Also $N(G L(R))$ has the property that $\pi_{n}(N(G L(R))):=1 \forall n>1$ as in Example 5.1.3 of Chapter 1. Therefore

$$
\pi_{0}(\Im(R)) \approx \pi_{0}(N(G L(R)))=1
$$

and

$$
\pi_{2}(\Im(R)) \approx \pi_{2}(N(G L(R)))=1
$$

Now we can work with the exact sequences

and the following results.

Theorem 1.0.1 The following diagram commutes:

Proof: With sufficient $N \in \mathbb{N}$ for the direct limits involved, we show

$$
i_{Y 1 *}\left(f_{N}\left(x_{i j}^{N}(a)\right)\right)=\left[e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right]=\left[\lambda\left(e_{i j}^{N}(a)\right)\right]=\left[\lambda\left(\phi\left(x_{i j}^{N}(a)\right)\right)\right],
$$

where F is a standard, admissible filtration of $\left(R^{N}, e_{i j}^{N}(a)\right)$ (hence a standard, admissible filtration of $\left(R^{N}, 1_{N}\right)$ and $\left(R^{N}, e_{i j}^{N}(a) \mid 1_{N}\right)$ as well). We do this directly in \Im_{N} : that is, for

$$
x_{1}=\left(e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right)
$$

and

$$
x_{2}=\left(e_{i j}^{N}(a) ; s_{0} \mathfrak{i}_{N}\left(e_{i j}^{N}(a)\right), s_{1} \mathfrak{i}_{N}\left(e_{i j}^{N}(a)\right)\right)
$$

we have $x_{1} \sim x_{2} \in \mathfrak{I}_{N 1}$ via

$$
\begin{gathered}
y=\left(e_{i j}^{N}(a) \mid 1_{N}: s_{0} X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right), s_{1} X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right), X_{2}\left(F\left(R^{N}, e_{i j}^{N}(a) \mid 1_{N}\right)\right)\right) \\
=\left(e_{i j}^{N}(a) \mid 1_{N} ; h_{0}, h_{1}, h_{2}\right)
\end{gathered}
$$

Indeed, we have $d_{0} x_{1}=d_{0} x_{2}=\left(R^{N} ; 1\right)$ and $d_{1} x_{1}=d_{1} x_{2}=\left(R^{N} ; 1\right) ;$ also,

$$
d_{1} h_{1}=X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)=d_{1} h_{0}=d_{2} h_{2}=d_{2} h_{1}
$$

and $d_{3} h_{2}=\mathfrak{i}_{N 2}\left(e_{i j}^{N}(a)\right)$. Therefore $y \in \mathfrak{I}_{N 2}$ and we calculate

$$
\begin{gathered}
d_{0} y=\left(1_{N} ; d_{0} h_{1}, d_{0} h_{2}\right)=\left(1_{N} ; 1, X_{1}\left(F\left(R^{N}, 1_{N}\right)\right)\right)=\left(1_{N} ; 1,1\right)=s_{0} d_{0} x_{1}=s_{0} d_{0} x_{2}, \\
d_{1} y=\left(1_{N} \circ e_{i j}^{N}(a) ; d_{2} h_{0}, d_{1} h_{2}\right)=\left(e_{i j}^{N}(a) ; 1, X_{1}\left(F\left(R^{N}, e_{i j}^{N}(a)\right)\right)\right)=x_{1},
\end{gathered}
$$

and

$$
d_{2} y=\left(e_{i j}^{N}(a) ; d_{3} h_{0}, d_{3} h_{1}\right)=\left(e_{i j}^{N}(a) ; s_{0} \mathfrak{i}_{N 1}\left(e_{i j}^{N}(a)\right), s_{1} \mathfrak{i}_{N 1}\left(e_{i j}^{N}(a)\right)\right)=x_{2} .
$$

Therefore y is a homotopy from x_{1} to x_{2} by Definition 1.3.1 of Chapter 1. Extending this from generators to groups, it follows that $i_{Y 1 *} \circ f=\lambda_{*} \circ \phi$ and the diagram commutes.

We note from this that by definition of the homotopy equivalences we have $\lambda_{1 *}:=\left(\partial^{*}\right)_{*}^{-1}$. Also, by Theorem 1.2.6 from Chapter 3, it makes sense that the rightmost square of the diagram with the long exact sequences should commute up to a sign at worst. However, we have not confirmed this explicitly yet and this data is not needed for our final result.

Theorem 1.0.2 The map $f: S t(R) \rightarrow \pi_{1}(Y(R))$ from Lemma 4.3.4 of Chapter 5 is an isomorphism.

Proof: We argue in a parallel fashion to Nenashev ([13], page 230), although we are careful to notice that our homotopy fiber $Y(R)$, derived from $G(\mathfrak{s} \cdot \mathcal{P} R)$, is not the same as the one Nenashev derived from $\mathcal{G} \cdot \mathcal{P} R$.

Nevertheless, similar properties hold: we note that as induced maps from weak homotopy equivalences we have $\lambda_{1 *}^{-1}=\left(\partial_{1}^{*}\right)_{*}$, so that from Theorem 1.0.1 the diagram

makes sense and commutes.
From [10] and [1] we recognize that Quillen's +-construction has a Universal Property: if $\widetilde{Y}(R)$ is the topological homotopy fiber identified with our simplicial homotopy fiber $Y(R)$, then there is a topological homotopy fibration (see [6])

$$
\tilde{Y}(R) \xrightarrow{\mathfrak{j}}|N(G L(R))| \xrightarrow{+}|N(G L(R))|^{+},
$$

and there is a continuous function \hat{f} for which, up to homotopy, the diagram

commutes. [10] also gives functoriality of geometric realization, as well as the + -construction, so that $\left|p_{1} \circ \lambda_{1}\right|$ is a weak homotopy equivalence. It follows that \hat{f} must also be a weak homotopy equivalence. Thus

$$
\hat{f}_{*}: \pi_{1}(\widetilde{Y}(R)) \rightarrow \pi_{1}(|Y(R)|):=\pi_{1}(Y(R))
$$

is an isomorphism.
The work of Loday and Suslin (as reflected in [10]) tells us that there is an isomorphism $\theta: \pi_{1}(\widetilde{Y}(R)) \rightarrow$ $S t(R)$ for which the diagram

commutes. We claim that because of this, the diagram

also commutes. Indeed, by the diagrams we have so far,

$$
\phi \circ \theta=\mathfrak{j}_{*}=\left(\partial_{1}^{*}\right)_{*} \circ i_{Y 1 *} \circ \hat{f}_{*},
$$

so now

$$
\phi \circ \theta \circ \hat{f}_{*}^{-1}=\left(\partial_{1}^{*}\right)_{*} \circ i_{Y 1 *},
$$

hence by Theorem 1.0.1

$$
\phi \circ \theta \circ \hat{f}_{*}^{-1} \circ f=\left(\partial_{1}^{*}\right)_{*} \circ i_{Y 1 *} \circ f=\left(\partial_{1}^{*}\right)_{*} \circ \lambda_{1 *} \circ \phi=\phi .
$$

Now [8] tells us that the only endomorphism of $S t(R)$ for which the last diagram above commutes is the
identity endomorphism on $S t(R)$. Thus

$$
\theta \circ \hat{f}_{*}^{-1} \circ f=i d_{S t(R)},
$$

in which case the map f must be an isomorphism. In fact, from a topological standpoint we can now write $f:=\hat{f}_{*} \circ \theta^{-1}$.

From Lemma 3.1.4 of Chapter 5 we know that $\lambda_{*}: \pi_{1}(N(G L(R))) \rightarrow \pi_{1}(\Im(R))$ is an isomorphism, and from Example 5.1.3 of Chapter 1 we know that $\pi_{1}(N(G L(R))):=G L(R)$, so that $\lambda_{1 *}: G L(R) \approx \pi_{1}(\mathfrak{I}(R))$. Consider the diagram

Using the isomorphisms f and λ_{*}, we construct the map \tilde{f} via diagram-chasing, then show that it is an isomorphism. Note that since $\pi_{2}(\mathfrak{I}(R))=1$, from Definition 3.2.3 of Chapter 1 we know $d_{\sharp}: \pi_{2}(G(\mathfrak{s} . \mathcal{P} R)) \rightarrow$ $\pi_{1}(Y(R))$ must be injective.

Given $z \in K_{2}(R)$, the inclusion map i_{K} makes $z \in S t(R)$. By Theorem 1.0.1,

$$
i_{Y *}(f(z))=\lambda_{1 *}(\phi(z))
$$

But by exactness,

$$
\lambda_{1 *}(\phi(z))=\lambda_{1 *}\left(\phi\left(i_{K}(z)\right)\right)=\lambda_{1 *}(1)=1
$$

since $i_{K}(z) \in \operatorname{ker}(\phi)$. Therefore $f(z) \in \operatorname{ker}\left(i_{Y *}\right)$. But $\operatorname{ker}\left(i_{Y *}\right)=\operatorname{im}\left(d_{\sharp}\right)$ by exactness, so there must be an element $v \in \pi_{2}(G(\mathfrak{s} . \mathcal{P} R))$ for which $f(z)=d_{\sharp}(v)$. Therefore we set

$$
\tilde{f}(z):=v
$$

Since d_{\sharp} is injective as noted, this element v must be uniquely assigned for z, in which case \tilde{f} is well-defined. Suppose that $\tilde{f}\left(z_{1} z_{2}\right)=y \in \pi_{2}(G(\mathfrak{s} . \mathcal{P} R))$. Then

$$
d_{\sharp}(y)=f\left(z_{1} z_{2}\right)=f\left(z_{1}\right) f\left(z_{2}\right)=d_{\sharp}\left(y_{1}\right) d_{\sharp}\left(y_{2}\right)
$$

for some $y_{1}, y_{2} \in \pi_{2}(G(\mathfrak{s} \cdot \mathcal{P} R))$, and we have $\tilde{f}\left(z_{1}\right)=y_{1}$ and $\tilde{f}\left(z_{2}\right)=y_{2}$. But also

$$
f\left(z_{1}\right) f\left(z_{2}\right)=d_{\sharp}\left(y_{1}\right) d_{\sharp}\left(y_{2}\right)=d_{\sharp}\left(y_{1} y_{2}\right),
$$

so now $d_{\sharp}(y)=d_{\sharp}\left(y_{1} y_{2}\right)$, in which case $y=y_{1} y_{2}$ since d_{\sharp} is injective. Therefore

$$
\tilde{f}\left(z_{1} z_{2}\right)=\tilde{f}\left(z_{1}\right) \tilde{f}\left(z_{2}\right)
$$

and \tilde{f} is a homomorphism. Now suppose $\tilde{f}\left(z_{1}\right)=y_{1}, \tilde{f}\left(z_{2}\right)=y_{2}$ and $y_{1}=y_{2}$. Then $d_{\sharp}\left(y_{1}\right)=f\left(z_{1}\right)$, $d_{\sharp}\left(y_{2}\right)=f\left(z_{2}\right)$ and $d_{\sharp}\left(y_{1}\right)=d_{\sharp}\left(y_{2}\right)$, hence $f\left(z_{1}\right)=f\left(z_{2}\right)$. But f is an isomorphism, so it follows that $z_{1}=z_{2}$ and thus \tilde{f} is injective.

Since f is an isomorphism, if $v \in \pi_{2}(G(\mathfrak{s} \cdot \mathcal{P} R))$ then there is an element $q \in \operatorname{St}(R)$ for which $f(q)=$ $d_{\sharp}(v) \in \pi_{1}(Y(R))$ (we must show that $q \in \operatorname{ker}(\phi):=K_{2}(R)$). By Theorem 1.0.1 and exactness we have

$$
\lambda_{1 *}(\phi(q))=i_{Y *}(f(q))=i_{Y *}\left(d_{\sharp}(v)\right)=1 .
$$

Thus $\lambda_{1 *}(\phi(q))=1$, hence $\phi(q)=1$ since $\lambda_{1 *}$ is an isomorphism and it follows that $q \in \operatorname{ker}(\phi):=K_{2}(R)$, so that \tilde{f} is surjective. We have now proven our concluding result:

Theorem 1.0.3 The map $\tilde{f}: K_{2}(R) \rightarrow \pi_{2}(G(\mathfrak{s} . \mathcal{P} R))$ defined by

$$
\tilde{f}(z)=v \text { such that } d_{\sharp}(v)=f(z) \text { in the diagram }
$$

is an isomorphism.

Bibliography

[1] J. Rosenberg, Algebraic K-Theory and its Applications, Graduate Texts in Mathematics, Springer-Verlag, New York, 1994.
[2] J. P. May, Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1967.
[3] P.G. Goerss, J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, Volume 174, Birkhauser-Verlag, Boston, 1990.
[4] G. Segal, Configuration Spaces and Iterated-loop Spaces, Inventiones Math., Volume 21(1973), pg 213-221, Springer-Verlag.
[5] G. Segal, Classifying Spaces and Spectral Sequences, I.H.E.S, Volume 34(1968), pg 105-112.
[6] J.J. Rotman, An Introduction to Algebraic Topology, Springer-Verlag, New York, 1988.
[7] F. Waldhausen, Algebraic K-Theory of Spaces, Lecture Notes on Math., Volume 1126(1985), Springer-Verlag, Berlin.
[8] J. Milnor, Introduction To Algebraic K-Theory, Annals of Math., Volume 72, Princeton University Press, 1971.
[9] C. Weibel, An Introduction to Homological Algebra, Cambridge Studies on Advanced Math., Volume 38, Cambridge University Press, 1994.
[10] C. Weibel, An Introduction to Algebraic K-Theory, Forthcoming; available at http://www.math.rutgers.edu/~weibel/Kbook.html.
[11] J. Duflot, Simplicial Groups That Are Models for Algebraic K-Theory, Manuscripta Math., volume 113(2004), Springer-Verlag.
[12] A. Nenashev, Double Short Exact Sequences and K_{1} of an Exact Category, K-Theory, volume 14(1998), Kluwer Academic Publishers, Netherlands.
[13] A. Nenashev, K_{2} of a Ring via the G-Construction, K-Theory, volume 34(2005), Springer.
[14] A. Nenashev, K_{1} by Generators and Relations, Journal of Pure and Applied Algebra, volume 131(1998), Elsevier.
[15] A.R. Garzon and J.G. Miranda, Homotopy Theory for Truncated Weak Equivalences of Simplicial Groups, Math. Proc. Camb. Phil. Soc., volume 121(1997), pg 51-74.
[16] D. Quillen, Higher Algebraic K-Theory, I. Lecture Notes in Mathematics, volume 341(1973), Springer-Verlag, Berlin.
[17] D. Kan, On Homotopy and c.s.s. Groups, Annals of Mathematics, volume 68(1958).
[18] D. Kan, A Combinatorial Definition of Homotopy Groups, Annals of Mathematics, volume 67(1958)
[19] J.R. Munkres, Elements of Algebraic Topology, Addison Wesley, Menlo Park, California, 1984.
[20] S. Lang, Algebra, Springer, New York, 2002.
[21] D.S. Dummit and R.M. Foote, Abstract Algebra (2nd Ed.), John Wiley and Sons, 1999.

