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ABSTRACT

A SIMPLICIAL HOMOTOPY GROUP MODEL FOR K5 OF A RING

We construct an isomorphism between the group Ks(R) from classical, algebraic K-Theory for a ring
R and a simplicial homotopy group constructed using simplicial homotopy theory based on that same ring
R. First I describe the basic aspects of simplicial homotopy theory. Special attention is paid to the use of
category theory, which will be applied to the construction of a simplicial set. K-Theory for Ky(R), K1(R)
and Ko(R) is then described before we set to work describing explicitly the nature of isomorphisms for
Ky(R) and K;(R) based on previous work[11]. After introducing some theory related to K-Theory, some
considerations and corrections on previous work motivate more new theory that helps the isomorphism with
K5(R). Such theory is developed, mainly with regards to finitely generated projective modules over R and
then elementary matrices with entries from R, culminating in the description of the Steinberg Relations that
are central to the understanding of K5(R) in terms of homotopy classes. We then use new considerations
on the previous work to show that a map whose image is constructed through this article is an isomorphism
since it is the composition of isomorphisms.

In Chapter 1 we explore Simplicial Homotopy Theory from the “canonical” point of view of [2]. The
emphasis of the entire paper will be on the calculations involving this structure and how they give explicit
instructions for the isomorphism that is our final result. Accordingly, less attention is given to the fine
details and examples from either classical or modern K-Theory, which we give a brief description of in
Chapter 2. Our goal is not to describe or work with K-Theory as much as it is to accurately reflect the
properties involved through the algebraic structures provided by Simplicial Homotopy Theory, so Chapter 2
only describes what is necessary to see how the later constructions will provide isomorphisms.

Chapter 3 establishes the simplicial sets that we will work with in detail, and provides constructions that
lead to the maps we will connect together to form our final result. Those connections are then introduced in
Chapter 4, where we describe some work that has already been done [11] with K7 (R) which will be helpful.
Chapter 5 establishes the main theory that will allow us to reflect the structure of Ko(R) through the

simplicial sets introduced in Chapter 3, and Chapter 6 connects these properties into an explicit isomorphism.
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Chapter 1

Simplicial Homotopy Theory

This chapter is an exposition of simplicial homotopy theory, relying mostly (and heavily) on [2] with some
ideas and proofs from [9],[17] and [18], which are also used and expounded upon in [11]. Examples come

from [2],]9], [3] and [11].

1 Simplicial Sets

1.1 Combinatorics and Extension Condition[2]

Definition 1.1.1 A Simplicial Set is a sequence of sets {Xn}nEZ,nZO together with two types of maps —
face maps d; : X,, » X,,_1 and degeneracy maps s; : X,, = X1 for each i € {0,1,...,n} — which

satisfy the following relations with respect to composition:
Z) IfZ <j then dzdj = dj—ldi-

i) Ifi < j then sjs; = $;Sj_1.

sj_1d;, 1<y
iii) d;s; = idx,, i=jori=j+1
deifl, 1> 75+ 1.

A simplicial set is often referred to as a Complex. The elements of X,, are called n-simplices, or the
elements in X of dimension n. The index of a face map or of a degeneracy map is the degree of that map.

We omit parentheses and write the images of these maps as simply d;xz and s;z for z € X,,, 0 < 4,5 < n.

Definition 1.1.2 Given simplicial sets X, L, a simplicial map, or map of simplicial sets, f: X — L,
is a collection of functions fp, : X, — Ly,n € N such that d; o f, = fn_10d; and s; o fr, = fni1 0S4,

V0<i<n.



Definition 1.1.3 Given a complex X, a subcomplex L of X is a sequence of subsets {L, C X”}nEZ,nZO
for which the face maps and degeneracy maps of X have d;|, : L, — Ln—1 and s;|p, @ L, — Lpt1

V0<i,5<mn for eachn € N.

The sets L, establish L = {L,} as a simplicial set in its own right, with (restrictions of) the same face

maps and degeneracy maps as defined for X.

Definition 1.1.4 If X' C X and L' C L are subcomplezes of Complexes X and L respectively, a simplicial
map of pairs [ : (X,X') — (L,L) is a simplicial map f: X — L for which f|x, : X' — L.

It is easy to see that simplicial sets together with simplicial maps form a category:

Definition 1.1.5 SS is the category whose objects are simplicial sets and whose morphisms are simplicial

maps.

Definition 1.1.6 Given a simplicial set X, a compatible list in X is a list of n + 1 n-simplices,

C(n,k) = (‘%075017 sy Lhgy e 7xn+l)

(with n > 0) such that d;x; = dj_1x; whenever i < j, i #k, j # k.
Here 2, indicates that zj is omitted from the ordered list.

Definition 1.1.7 Given a compatible list C(,, 1,y in a Complex X as above, an extender for C(, i) is an

(n+ 1)-simplex y for which d;y = x; whenever i # k.

Notice that the image of a compatible list under a simplicial map will also be a compatible list. A
simplicial set in which every compatible list has an extender satisfies the Extension Condition; such a

simplicial set is known as a Kan Complex.

Example 1.1.8 X = A™/[2]: Given n € Z>q, definen=(0<1<---<n) as an ordered set. Let

AP ={e:{0,1,...,n} = {0,1,...,m} | (i) < c(j)¥i < j}.

(Another notation for this is A'=Homa(n, m).) Define s € Al by



and d* € A_; by

k+1, k>

for 0 <i,j < n. If we fit m € Z>o and define face maps and degeneracy maps respectively by d;c = c o d’
and sjc = co sl for any c € A, then A™ = {(A™;{d;};{s;})} is a simplicial set, called the Standard

Simplicial m-simplex. We call the d* and s7 coface maps and codegeneracy maps, respectively.
The following Lemma provides a way to uniquely “factor” elements of A™:

Lemma 1.1.9 If c € AT, ¢ # id, has image

m— {iy, <iyq1 <---<i}

and

{dle@)=cl+D}={h<j2<-<i},

thenm—v+u=m andc=d"* od?o---d"™os’ 08’2 0---087v. Moreover, this factorization is unique when

“reduced” using rules (i)-(iii) of Definition 1.1.1.

0o

1.2 Categorical Description of Simplicial Sets[2, 17, 18]

An alternative construction of simplicial sets begins with the category A°P, which is the opposite category
of the category A. The objects of A are the ordered sets n as seen in Example 1.1.8, and the morphisms are
the maps ¢ : n — m as discussed in that same example. The definition of A°P then requires that the objects
be the same as those of A, and that the morphisms be Hom,,(m,n) = A7 (i.e. maps over n as opposed to

maps into n).

Definition 1.2.1 A (category-theoretic) simplicial set is a (covariant) functor X : A°? — S, where S is

the category of sets.

Now, given a simplicial set X (by the original definition), identify X,, := X (n) for every n € Z>o and

di == X (d"),s; == X(s7), 0 <4,j < n for coface maps d' and codegeneracy maps s/. More generally, to every



€ Homa(n,m) = A" represented according to Lemma 1.1.9 by

M:d“odwo-de“OSJlon20~-~OSJ”,

there corresponds a map p* = X (u) : X,,, — X, uniquely defined by

* P— . . ... . - . DY :
2 (33) - 8.71)8J1)—1 Shdludlu—l dllx'

From here on, we will use both definitions of a simplicial set interchangeably to perform various calculations,
depending on which provides the most advantage. This chapter shall rely mostly on the combinatorial
description.

The combinatorial data for a simplicial map f : X — L is a collection of maps, one defined for each
dimension n, but by Definition 1.2.1 the simplicial set is itself a set map sending objects n € A°P to sets
X, € 8. So the simplicial map assigns to each n a map (i.e. morphism of sets) f(n) = f, : X(n) — L(n).
Furthermore, with this assignment we see that the required degree-preserving behavior toward face maps

and degeneracy maps(Definition 1.1.2) implies

f(n-1) 0 X(d'") = L(d') o f(n)

and

f(n+1) 0 X(s7) = L(s) o f(n)

for each 0 <14,j < n. Since any morphism « in A° can be written as a unique combination of coface maps

and codegeneracy maps (Lemma 1.1.9) and X and L must be covariant functors, it follows that

f(m)o X (a) =L(a)o f(n) Vo€ Homyp(n, m),

in which case a simplicial map f : X — L is a natural transformation|[2, 9] from the functor X to the functor
L.

Given a simplicial set X and a fixed ¢g € Xy, define the one-point simplicial set

(b:{¢n:Sn—losn—20"'080¢0,n€N}

(i.e. ® contains only one simplex in each dimension). Then ® is a subcomplex of X. The pair (X, ®) is called

a Pointed Complex with basepoint ®, and use of this definition motivates us to define the elements of



Xy as the vertices of the simplicial set X. When X is a Kan Complex, (X, ®) is called a Kan Pair. When
X' C X is a Kan subcomplex (and X is a Kan Complex) for which ® C X’ as a subcomplex, we call the

data (X, X', ®) a Kan Triple.

Definition 1.2.2 Given any subset S C X,,,, m € N, the subcomplex generated by S is the simplicial
set X (S) with n-simplices
X(S)n ={n*(s) | s€ S pux: Xp — Xn}.

Definition 1.2.2 can be easily extended to general subsets of the simplicial set X (i.e. S = SqUS1U---US,,
S; C X;). Also, note that ® = X (¢o).

Definition 1.2.3 SS. is the category whose objects are Pointed Complezes (X, ®x) and whose morphisms

are simplicial maps of pairs f : (X, ®x) — (Y, ®y) for appropriate basepoints ® x, Py .

Definition 1.2.4 A simplicial set X is reduced if it has only one vertex: Xo = {¢o}.

1.3 Homotopy in Kan Complexes

Definition 1.3.1 Let X be a simplicial set. Forn > 1, n-simplices © and y are homotopic (in the simplicial

set), denoted x ~ gy, if V0 < i <n,dix = d;y € X,,_1 and for some (n+ 1)-simplex z,

Y, i=n+1,

Sp—1dix = sp_1d;y, 0<i<n-—1.

Such z is a homotopy (in the simplicial set) from x to y.

Theorem 1.3.2 (/2], Proposition 3.2) If X is a Kan Complex then the relation x ~ y for xz,y € X, is an

equivalence relation on X, for any given n € N.

The purpose of many of the constructions we perform is to ensure that the simplicial set we are work-
ing with is a Kan Complex, and so has the equivalence relation (and hence equivalence classes) given by
homotopy.

The relation above only applies when n > 1. We have the following relation on the O-simplices X of a

simplicial set X:



Definition 1.3.3 In a simplicial set X, two 0-simplices x,y € Xy are in the same path component of X if
there is a list of 1-simplices Dy, = (21,...2r) C X1 so that x = dpzy or x = dy21, y = dozx, ory = dy 2k, and

for each 1 < i < k, one of the following is true: doz; = dozit1,d12; = doziy1,doz; = d12i41 ordiz; = d12i41-

We consider the above definition to be synonymous with homotopy for O-simplices: given z,y € X,
x ~ y if and only if z and y are in the same path component of X. This is clearly an equivalence relation on

Xo.

Definition 1.3.4 Given a Pointed Complex (X, ®), define
X, ={re X, |dr=0¢d,1V0<i<n}

forn > 0. In case n =0 define Xo = Xo.

Note that the equivalence relation on X, restricts to an equivalence relation on )~(n for each n when X

is a Kan Complex.

Definition 1.3.5 When (X, ®) is a Kan Pair with homotopy x ~ y between n-simplices as an equivalence
relation, define m,(X,®) = )N(H/N, for n > 0, with elements [x]. When n = 0 use Definition 1.3.3 and set
To(X,®) = Xo/ ~ .

Note that by definition, mo(X) := mo(X, ®) is independent of the choice of 0-simplex ¢g. Some construc-
tions later will be made for the purpose of producing a reduced Kan Complex, so that these homotopy sets

for n > 0 are unambiguous in terms of the choice of ®, and can be denoted as simply , (X).

Definition 1.3.6 Let (X, ®) € SS. be a Kan Pair. Given n > 0, [z],[y] € m.(X, ®), define the specific,

compatible list Cpy = C(y, ny = (3)izn where

T = T, 1=n—1,

Y, t=n-+1

(i.e. k =n in the usual compatible list notation). Then



where z € X411 1s an Extender of Cyy.

One can show that the above multiplication e above is well-defined, and we have

Theorem 1.3.7 [2/Let (X,®) € SS. be a Kan Pair. With respect to the multiplication e defined above,

(X, @) is a group if n > 1. Moreover,if n > 2, 7w, (X, ®) is an abelian group.

When Theorem 1.3.7 holds, we call 7, (X, ®) the n'" simplicial homotopy group of X (with respect

to @). We have (X, ®) as a pointed set, with basepoint the class of ¢, but this is not necessarily a group.

Definition 1.3.8 If f : (X,®x) — (L,®1) is a simplicial map of Kan Pairs, then an induced map
fo (X, @x) = mp (Y, @y ) is defined by fi([z]) = [fn(z)].

It is straightforward to see that

Lemma 1.3.9 If f : (X, ®x) — (L, PL) is a simplicial map of Kan Pairs, then the induced map f, :

(X, ®x) = (Y, @y) is a homomorphism of groups, if n > 1, and is a map of pointed sets if n = 0.

We will construct a long exact sequence of homotopy groups; in order to do this, we will need a more

general theory on homotopy.

Definition 1.3.10 Given X € 8§ with a subcompler X' C X and n > 1, two n-simplices =,y € X,, have

x ~y(rel X') (i.e. x andy are homotopic relative to X') if
1) dox ~ doy as elements in X _.
2)V1<i<mn,dzx=dy.

3) There is some homotopy in the simplicial set, w € X, between dox and doy and there is an (n +1)-

simplex z € X411 such that

Y, t=n+1,

S’n—ldiaj = Sn—ldiy7 1<i<n-— 1,

(such a z is a relative homotopy (in the simplicial set) from x to y).



Definition 1.3.11 Given a Kan Triple (X, X', ®), and n > 1,

X(X)p={zeX,:dxeX, 1, dxz=¢,1 V1<i<n}

Definition 1.3.12 Relative Homotopy Groups as Sets: Given Kan Triple (X, X', ®) and n > 1,
Tn(X, X', ®) = X(X )0/

with elements [x] ., .

Similar to Definition 1.3.8, given a simplicial map f : (X, X', ®x) — (L, L', @) between Kan Triples,
define the induced map f, : m,(X, X', ®x) — 7, (L, L, ®1) by fu([z]x) = [f(2)]|r

In light of Definitions 1.3.11 and the rules of Definition 1.1.1, notice that x € )Z’(X’)n implies
didox = dodit17 = ¢p_2
V0 <i<n-—1,so that (since dox € X,,_) doz € X',,_1. Thus for 2,y € X(X"),, we have
[doz] e [doy] = [dyn—1u] € 1 (X', D)
for some u € X, that extends the compatible list Cyg(2)d0y € X,,_ 1. This in turn gives a compatible list
Cry = Clnm) = (Ti)izn,

where

Ty =

Y, i=n+1.

Since X’ is a Kan subcomplex by definition, there is an extender v € X, for C‘;y. The result is a group

product on m, (X, X', ®) similar to Definition 1.3.6:



Definition 1.3.13 Given Kan Triple (X, X', ®), n > 2 and corresponding set X(X')n, define [z]x’ ox~

[ylx: = [dnv]x’ where v € X, extends the compatible set Cy, described above.
Remark 1.3.14 It is easy to see that m,(X,®,®) = m, (X, P) when n > 1.
Similar to Theorem 1.3.7 and Lemma 1.3.9, we have

Theorem 1.3.15 Given a Kan Triple (X, X', ®)and n > 2, m,(X, X', ®) is a group with respect to the
multiplication e, and is an abelian group if n > 3. If f : (X, X', ®x) — (Y,Y', ®y) is a map of Kan Triples,

then the induced map fi : mo (X, X', ®) = m, (Y, Y, ®) is a homomorphism of groups.

Note that while 71 (X, X/, ®) is not necessarily a group, it is a pointed set.
We may now write down the “long exact sequence for a Kan Triple”; first of course we define the

connecting homomorphism.

Definition 1.3.16 Define

d:m (X, X', ®) = 7,1 (X', D)

by [x]x — [doz], which is a connecting homomorphism for n > 2 and a (connecting) set map when

n=1.
Theorem 1.3.17 ([2], Theorem 3.7) Let (X, X', ®) be a Kan Triple, with inclusion (simplicial) maps
i (X, ®) = (X,®) and j: (X,®,P) = (X, X', )
(see Remark 1.3.14). Then there exists a long exact sequence of Homotopy Groups,
Jx

e T (XL X, B) L 7 (X, D) — o 1 (X, D) — 1 (X, X, D) —— -

Remark 1.3.18 The maps at the end of this long exact sequence are not necessarily group homomorphism,

but are maps of pointed sets, and “exact” here means exact as a sequence of pointed sets.

1.4 Dimension-wise Map Homotopy

Definition 1.4.1 Let X and L be simplicial sets. Simplicial maps f,g : X — L are homotopic via a

dimension-wise homotopy h : f ~ g if given n € Z>( there is a sequence of maps

{hE”):Xn—>Ln+1|ogign}



for which the following relations hold with respect to composition for any x € X,,:

i) doh{"” (x) = fu(w) and dni1hS (z) = ga(x).

R Vi), i<
i) dih" (2) = § djah (@) = djah( (@), i=jori=j+1
W Vd;_y (@), i>j+1

W si(2), i<

iii) s;h\" (z) =

J

W Vs i (x), 0>

If f,g: (X, X') — (L, L") are simplicial maps of Pairs and as a homotopy of simplicial maps the homotopy
h:fo~ghash|x : X' — L and h|x: : flx' =~ g|x/, we say that f and g are homotopic relative to X' via
relative homotopy h : f ~ g rel(X'). In case X' = ®x C X and L' = &, C L for appropriate one-point

simplicial sets, we say f and g are homotopic relative to the basepoint ®.

Theorem 1.4.2 Let (X, ®x),(L,®1) € SS. be Kan Pairs. If f,g: (X, ®x) — (L, ®r) are simplicial maps
of Pairs with f ~ g rel(®x), then for each n € N, f.([z]) = g«([z]) V [z] € (X, Px).

Definition 1.4.3 Simplicial Sets X and L are of the same homotopy type or are homotopy equivalent
if there are simplicial maps f: X — L and ' : L — X for which fo f' ~idy and f' o f ~idx. Such f and
I’ are then called homotopy equivalences[17]. X is of the homotopy type of a point if and only if it

is contractible.

As a consequence of Theorem 1.4.2, we note that if K and L are of the same homotopy type, then
7 (K, ®) is isomorphic to m, (L, f(P)) ¥V n > 0 given homotopy equivalence f between them.
2 Simplicial Groups

2.1 Definition ([2], Chapter 17)

Definition 2.1.1 A simplicial group is a simplicial set G = {(Gn;{d;};{s:})} for which each G, is a
group and each of the corresponding collections {d;} and {s;} consists of group homomorphisms. Denote
the identity element of each such group by e,. A map of simplicial groups is a simplicial map between

simplicial groups whose dimension-wise maps are group homomorphisms.

10



The category-theoretic version of this definition is that a simplicial group is a (covariant) functor G :

A% — & where 4 C S is the (sub)category of groups.
Theorem 2.1.2 ([2/, Theorem 17.1) Every Simplicial Group is a Kan Complezx.

Corollary 2.1.3 Suppose G is a simplicial group. Let e be the one-point simplicial set consisting of identity

elements e, € G,,. Then the homotopy groups m,(G,e) ezist for each n > 0.

Recall that when G is a simplicial group, [z] e [y] denotes the group operation in 7, (G, e) (well-defined
since G is a Kan Complex from Theorem 2.1.2), and let concatenation zy denote the group operation in

each group G,, from here on.

Proposition 2.1.4 ([2], Proposition 17.2) If G is a Simplicial Group then
[z] o [y] = [zy] € Ta(G,e) ¥ 2,y € G,

Consequently, [x] ! = [z7'] € 7,(G, e) and [e] is the identity of the group m,(G,e).
As a corollary we have a stronger property than what we already have in Theorem 1.3.7

Proposition 2.1.5 ([2],Proposition 17.3) If G is a simplicial group then m,(G,e) is abelian ¥ n > 0.

2.2 Chain Complex Construction

Definition 2.2.1 Given simplicial group G, define G,, = G, N ker(dy) N ker(dy) N --- N ker(d,_1) and

G, = G, Nker(dy) Nker(de) N---Nker(d,) for each n € N.

Lemma 2.2.2 ([2], Proposition 17.3.iii) If G is a simplicial group with G,, as defined above, then
dn+1(én+1) < Gn and dn+1(én+1) < Gn

The above lemma allows definition of a Chain Complex [19], G, by

dnt2 = dnt1

~ dn A dn_1
G7L+1 Gn -3 Gn—l — e

We denote the restriction d;|s = d;. Now we can define n-cycles Z,,(G) = ker(d,,) < G,,, n-boundaries

B, := B,(G) = im(d,+1), and we define



This allows an alternative to the canonical construction for the homotopy group given in Definition 1.3.6

using these Chain Complexes rather than the sometimes-cumbersome homotopy of Definition 1.3.1:
Proposition 2.2.3 ([2], Proposition 17.4) m,(G) = 7, (G) ¥V n > 0 by the natural identification [x] — [x].

Now we see that when X happens to be a simplicial group we are able to use the group operation inherited

from the bijection between 7o(X, ®) and 7((X) to define mo(X, ®) as a group in a natural way.

3 Kan Fibrations([2], Ch.7 and Ch.18)

3.1 Definition

Definition 3.1.1 Let X, L be simplicial sets, f : X — L a simplicial map, and

C('mk) = (1'0, sy '%k7 ce. 7l'n+1)

be a compatible list in X. Suppose that f has the property that some preimage x of y (i.e. some x with f(x) =
y) is an extender for C(, i) whenevery extends the corresponding compatible set f(C(y 1)) = (f(24))qzr € L.

Then f satisfies the Image-Extension Condition on C(, ).

A simplicial map f satisfying the Image-Extension Condition on every “extensible,” compatible list in
its domain is known as a Kan Fibration, or a fibration of simplicial sets; in this case, X is the total
complex, L is the base complex and the collection of data (X, f, L) is the fiber space defined by the
Kan fibration f. Notice that this structure requires neither X nor L to be Kan Complexes, but only for any

“extensible” sets that exist within these simplicial sets to satisfy the Image-Extension Condition.

Lemma 3.1.2 Given a simplicial set X and any one-point simplicial set & C X, X is a Kan Complez if

and only if the unique simplicial map p: X — ® is a Kan fibration.

Proof: Since @, = {¢n, = Sp—_18n—2---S18000} for given ¢g € Xy, any simplicial map p : X — & must
have z — ¢, for every x € X,,. So p is uniquely defined by p,(z) = ¢, V x € X,,.

Suppose X is a Kan Complex and let C(,, ») = (2o, ..., &k, .., Tnt1), be a compatible list in X,,. Since X
is a Kan Complex, there is an extender x € X,, 41 for Cy, ). But p(x) = ¢py1 and p(Cn k) = (ny -+ - Pn)s
by definition, so that p(z) extends p(C(y k)). Therefore the preimage, x, of the extender ¢, 1 of p(Cp i)
extends C(,, ). Such ¢, 11 is the only possible extender of p(Ci, i)) by definition of the one-point simplicial

set @, so every extender of p(C(;, 1)) has a preimage that extends C, 1). Therefore p is a Kan fibration.
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Conversely, if the simplicial map p : X — ® by p(z) = ¢, for every x € X,, is a Kan fibration, then
consider the compatible list C(,, ;) once more. By definition we have p(C(,, 1)) = (én;...,¢n) € ;. Since
p is a Kan fibration, any extender of p(C, 1)) has a preimage that extends C, x). But ¢ 1 € @41 exists
and extends p(C, xy). Therefore there must be an extender x € X, 11 for C, ;) which has p(z) = ¢pn1.
Thus every compatible list in X has an extender, in which case X is a Kan Complex.

O

3.2 Long Exact Sequence of Kan Fibrations

Given simplicial map f : (X, ®x) — (L, ®1), set F = f~1(®}).

Proposition 3.2.1 (/2], Proposition 7.3) Let (X, ®x) € §S. be a Pointed Complex and (X, f, L) be a fiber

space, with ®;, = f(®x). Then (F,®x) is a Kan Pair.

From now on, whenever we write a homotopy group m, (X, ®x), we assume that (X, ®x) is a Kan Pair,
and similarly for relative homotopy groups.

Consider the compatible list C(,,—1,0) = (q[)ﬁl)i)l,(bgi)l, . .7¢5£)1). Any given y € L, extends the list
f(Ch10) = (qﬁﬁfjl, cey quZLJl), and if f is a Kan Fibration this implies 3 x € X,, with d;z = qbff)l V1i<i<n
(so that = extends C(,,_1,0)) and f(x) = y. But doy = (;5521 since y € L, and since f is a simplicial map we
have doy = dof(z) = f(dox) = ¢dn_1, s0 doz € F,_1. Now we have class [doz] € mp,_1(F,Px) and we can

define a connecting homomorphism d; : 7, (L, ®1) — m,—1(F, ®x) by [y] — [dox].
Lemma 3.2.2 The induced map f. : 7 (X, F,®x) — m,(L, @) is an isomorphism ¥ n > 2.

Recall that 7, (L, @y, @) = 7, (L, 1) when n > 2. The inverse isomorphism to f, is the map ¢ defined
by ¢ly] = [z] for such x as used to define the connecting homomorphism dy above. We also notice that
dy f«[x] = dy[y] = [dox] = d[z] for each [z] € 7, (X, F,®x),n > 2 (using extender y = f(x) for f(C(,—1,0)) in

the construction above and Definition 1.3.16). It follows that the following diagram commutes:

e T 1 (XL F, D) e 0 (F, D) — o (X, D) L 1 (X, F, D) ——> -

L

e 1 (L, ®p) s (B, @) — (X, @) — > 1 (L, @p) —— -

In this diagram, exactness at m,(F,®x) via ¢ o dy, exactness at m,(X,®x) via f. o4, and exactness at
(L, @) via dy o f, all follow from the long exact sequence of Homotopy Groups on X (Theorem 1.3.17).

The result is another exact sequence:

13



Definition 3.2.3 The sequence

d i e
e T (L, @)~ 1 (F, D) — o 7 (X, @) — (L, ) — -

is the long exact sequence of Kan Fibrations. For Kan fibration f the sequence (F,®x) C (X, ®x) EN

(L, 1) is called a fiber sequence.

3.3 Simplicial Group Action and Twisted Cartesian Products

Definition 3.3.1 Given simplicial sets X (with maps d;¥ and s¥) and L (with maps df and s}), the

Cartesian Product of X and L is the simplicial set P = X x L with n-simplices

P, := X, X Ly,
face maps and degeneracy maps
di = d¥ x d*
and
s = s]X X st
respectively.

Definition 3.3.2 A simplicial group G acts (from the left) on a simplicial set X if each group G,, acts

(from the left) on the corresponding set X,,, and these actions commute through face maps and degeneracy

maps: d;(gz) = (dig)(dix) and s;(gx) = (s;9)(s;z).

Put another way, G acts on X if the map ¢ : G x X — X defined for each dimension n by 1, (e,,z) =
xVa € X, and ¥ (9192, ) = ¥Yn(g1, ¥n(g2,x)) (giving the group action) is actually a simplicial map on the
Cartesian Product G x X.

Let simplicial group G act on simplicial set F. Consider another simplicial set B and a map t, defined for
each dimension n > 0 by ¢, : B,+1 — G, having the following relationships with face maps and degeneracy

maps (b € By11):
a) dptn(b) = (tn—1(dnt1b))  Hn_1(dnb).
b) dltn(b) = tn_1(dib) V0 S ) S n — 1.

) sitn(b) =tny1(s;0) VO < j<n.
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d) t7l+1(8n+1b) = €p+1-

We can define a simplicial set structure with n-simplices F;, x B,, by letting face maps be

di(f’ b) =
(tnr (D)o frdnb)  i=n

and

Sj(fvb):(sjfasjb)VOSJgn

for degeneracy maps. This simplicial set is the Twisted Cartesian Product with fiber F', base B,

twisting function ¢ and group G, denoted F' x; B.

Theorem 3.3.3 (/2], Proposition 18.4.1) The natural projection map p : F x; B — B is a Kan fibration
with total space F x; B, fiber F' and base B.

Definition 3.3.4 If G acts on X such that for every n € N the only g € G,, for which any one v € X,, has
gr =z is g = ey, then G acts principally on X. Thus if F in a Twisted Cartesian Product F' Xy B is a

simplicial group then we call F' Xy B a Principal Twisted Cartesian Product.

When G acts principally on X we have equivalence classes [z] = {gz|g € G,, C X,,}, which form a “quotient
subcomplex,” B, of X. The projection p : X — B by = + [z] is the principal fibration of X with group
G and base B.

Lemma 3.3.5 (/2], Lemma 18.2) Every principal fibration is a Kan fibration.

Theorem 3.3.6 (/2/, Proposition 18.4.4ii) If F = G then the projection p : F X; B — B on the principal

Twisted Cartesian Product is a principal fibration.

4 Loop Groups([17, 18] and [2] Ch.18)

The canonical definition (Definitions 1.3.5 and 1.3.6) of the homotopy groups requires the simplicial set
under consideration to be a Kan Complex. By virtue of Theorem 2.1.2, Proposition 2.1.4 and Proposition
2.2.3, simplicial groups are among the most convenient and transparent Kan Complexes to work with. Thus
methods have been developed to construct a simplicial group from a simplicial set. An important result of
Kan’s ([17, 18]) is that the construction we describe in this section canonically describes the homotopy of a

simplicial set whether that simplicial set is a Kan Complex or not, by construction of a particular simplicial

group.
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4.1 Kan’s Loop Construction

Definition 4.1.1 A simplicial group G is a free simplicial group if each group Gn,n € Zx>q is a free
group, and each group G, has a basis B,, so that the collection {B,} of bases is preserved by degeneracy

maps: for every b € By, sjb€ By V0 <5< n.

We use a construction by Kan[17, 18] that results in a free simplicial group starting with a simplicial set
X. We start with the requirement not that X be a Kan Complex, but just that X be a reduced simplicial
set (i.e. Xo = {¢o}). Later on even this requirement will be relaxed. Take the set X, 1 of (n+ 1)-simplices,

and define a basis element o, for each x € X, 41 :

Definition 4.1.2 Given n € Z>q and a reduced simplicial set X (with maps d¥ and s]X), the Loop Group
GX of X is a simplicial group wherein the set GX,, of n-simplices is a group with one generator o, for each
x € X,4+1 and a relation

Ogx

Xy = €n

defining the identity of GX,,, for each y € X,,. Let face maps d; : GX,, = GX,,_1 be defined by setting
TaX s 0<i<n-—1
diam =

(aderlm)_lUdff;w 1=n

and extending linearly. Similarly, extend
8j0, =0,x, V0<j<n
J

linearly to define degeneracy maps s; : GXy, = GXpy1.

Theorem 4.1.3 Given a reduced simplicial set X, GX is a free simplicial group.

Proof: Recall that the identity element is a required generator for a group unless other relations are
specified. The relation o.x () = €5,y € X, merely assigns the generator e,, to each “n-degenerate” element
of X, 41. Otherwise, there are no nontrivial relations among the generators o,,z € X,, since each distinct
generator corresponds to a distinct (n + 1)-simplex in X. Therefore each GX,, is a free group.

Since (n 4+ 1)-simplices of X correspond directly to generators of GX,,, the face and degeneracy relation-
ships of Definition 1.1.1 for simplicial set X imply the same relationships on the face maps and degeneracy

maps acting on generators. For instance, note that for any i < n and any z € X,,41 with corresponding
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generator o, € GX,,

didnoy = di(<adff+1x)_10d§w) = (diadferlx)_ldiUd,’fw = (Udf‘dferlx)_ladf‘dffx = (04xaxs) ' Oax_ axae

n—1

But 04x, € GX,,_1, so

-1
(Udffdf(m) OdX_d¥Xz = dnfladfac =dn-1di0s.

It follows that GX is a simplicial group with free groups GX,, as sets of n-simplices. Furthermore, we see
that s;(x € Xpt2 V0 <75 <n+1 implies 05Xy = 5j0z is a generator for GX,, 41 for each 0 < j < n. So if

we identify {0, | x € X, 11} = B, as the basis for GX,,, we see that
;b€ B VDEB, VO <.

Therefore GX is a free simplicial group.
O

The identification = — o, gives functions ¢, : X,,11 — GX,, for which
ditp(x) = djo, = Ogxy = tn_1(dz)
Vo<i<n-—1,
dntn(2) = dnog = (Udff+1x)_10d$fa: = (tn_l(d§+11‘))_1tn_1(d§x),

and

sjtn(z) = sj(0g) = TsXy = tn_,_l(s])-(x) V0<j<n.

So the map ¢t : X — GX defined for each dimension by these ¢, is a twisting function from which we can

form a Twisted Cartesian Product:

Definition 4.1.4 Given a reduced simplicial set X with corresponding, constructed free simplicial group

GX, EX = GX x¢ X is the loop complex of X, where t,, : X1 — GX,,, is defined by t,(x) = 0,.

We denote the generators of GX by t(x) := t,(z) € GX,, for x € X,, 41 from here on. Since any group acts
naturally on itself (hence any simplicial group acts naturally on itself), EX is a Principal Twisted Cartesian
Product with base X, group GX and fiber GX. Kan shows[18] that EX is a contractible simplicial set when

X is a reduced simplicial set.
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4.2 Functoriality of Kan’s Loop Group Construction

At this point, we are mostly concerned with applying the loop group construction to reduced simplicial sets.

Definition 4.2.1 A map of reduced simplicial sets f : X — Y is a weak homotopy equivalence if and
only if f. induces isomorphisms of all homotopy groups. A homomorphism of simplicial groups f : A — B
is a weak homotopy equivalence if and only if f. : mi(A,e) — m;(B,e) is an isomorphism, for e the identity

element of the groups A or B as appropriate, and for every i > 0.

Denote the category of reduced simplicial sets by SS,.q4 and the category of simplicial groups by SG.

Some features of the loop group construction from the previous section are:

Lemma 4.2.2 If f : X — Y is a simplicial map on reduced simplicial sets, then there is an induced
homomorphism of simplicial groups G f : GX — GY, defined on generators by t(x) — t(f(x)) for x € X and
generators t(z) of GX and t(y) for GY. This admits a functor G from SSyeq to SG.

Lemma 4.2.3 The loop group construction fits GX into a fibration

GX - FEX — X

of simplicial sets, with EX of the homotopy type of a point. This fibration is also functorial: a map f : X — Y

in 8S gives a map of fibrations
GX —» EX - X

LGf LEf L
Gy —» EY — Y.

Using the homotopy long exact sequence for a fibration, we have

Lemma 4.2.4 If f : X = Y is a simplicial map that is a weak homotopy equivalence, then the homomor-

phism of free simplicial groups Gf : GX — GY s also a weak homotopy equivalence.

Kan [18] defines a relation of “loop homotopy” between two homomorphisms of simplicial groups f,g :
A — B and then proves that if A is free, then this relation is an equivalence relation. The definition
of loop homotopy implies that the homotopy leaves the basepoint (the identity element) of the simplicial
group “fixed”; i.e., it is a homotopy relative to the basepoint so that loop homotopic maps are always
simplicially homotopic as in Definition 1.4.1. A “loop homotopy equivalence” of free simplicial groups A and

B is defined to be a homomorphism f: A — B of simplicial groups such that there exists a homomorphism
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g : B — A of simplicial groups such that both go f and f o g are loop homotopic to the appropriate identity
homomorphisms.
It is clear then, that any loop homotopic equivalence is a weak homotopy equivalence, and Kan proves

the converse in special case:

Theorem 4.2.5 (Proposition 6.5 of [17]) Let f : A — B be a homomorphism of free simplicial groups that

18 also a weak homotopy equivalence. Then f is a loop homotopy equivalence.
So, we have

Corollary 4.2.6 If f : X — Y is a simplicial map (with X and Y reduced simplicial sets) that is a weak

homotopy equivalence, then Gf : GX — GY is a loop homotopy equivalence.
In addition, using Kan’s work in [18] one can prove

Theorem 4.2.7 If X and Y are reduced simplicial sets (neither necessarily Kan complezes) and f,g: X —
Y are maps of simplicial sets that are simplicially homotopic, relative to the basepoint, then the induced

homomorphisms Gf,Gg : GX — GY, are loop homotopic.

4.3 Loop Groups on Nonreduced Simplicial Sets

We will also need to construct Loop Groups on nonreduced simplicial sets in a functorial way. Kan [18]
constructs such loop groups using maximal trees; another construction is obtained by Berger as described
by Duflot, and functoriality may be obtained by incorporating the choice of maximal tree into the category
of definition.

One way of doing this is exposited in Duflot[11]and briefly summarized below.

Definition 4.3.1 A simplicial set X is star-connected at basepoint ¢g € Xy if and only if for any
z € Xo A y(z) € X1 for which di(y(2)) = ¢o and do(y(2)) = z. Call such y(z) a ray at z.

We see easily that any star-connected simplicial set is connected, since by definition z ~ ¢ for every

z € X (i.e. the required list of 1-simplices from Definition 1.3.3 is Dy = (y(2))).

Definition 4.3.2 Given (X, ®) € SS. with X star-connected at ¢g, a ray function w : Xog — X is any

function such that w(x) =y where y is a ray at x.

Definition 4.3.3 [18/Let (X,®) € §S. with X (star-)connected at ¢o. An n-loop of X is a sequence

(x17$27 cee 71.216) C X’n+17
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k > 0, wherein

dpt1T2j—1 = dpp1w0; V1< j <K,
dodl"‘dnij :d0d1°"d2j+1 V1 <5< k— 1,

and

dody -+ dpz1 = dody - - - dp 2.
Such loop is reduced if x; # xj41 V1 <5 < 2k.

Definition 4.3.4 Let (X, ®) € SS. with X (star-)connected at ¢g. A tree in X is a connected subcomplex

T C X such that ¢g € Ty and T contains no reduced loops. T is a maximal tree if Ty = Xo.

Proposition 4.3.5 Given (X,®) € SS, with X star-connected at ¢o and corresponding ray function w :

Xo — X1, let T, = X(Xo,w(Xo)). Then T,, is a mazimal tree in X.

Recall Definition 1.2.2 for T,, and note that ® is always a subcomplex of T,,. Using either Kan [18] or
Berger (see the variation of Berger’s construction discussed in [11]), given a star-connected simplicial set X

with ray function w, and maximal tree T,,(X), one may construct a loop group G(X,w):

Definition 4.3.6 For every n > 0, G(X,w), is constructed by taking the free group on the set X, 11 and

imposing the following relations:
1) spx— 1, for every x € X,,.
2) y—1, for every y € (T,,(X))nt1-
One sees that G(X,w),, is a free group on the set X, 11 — $,(Xn) — (T (X)) nt1-
As in the reduced case, we denote the generator of G(X,w) corresponding to = € X,, 11 by t(x).
4.3.1 Functoriality for the Nonreduced Case

The domain category of the functors we consider is the category whose objects are the triples (X, ®, w) where

(X, ®) is a pointed star-connected simplicial set, and w is a ray function. A morphism f : (X, ®x,wx) —

(Y, @y, wy )in this category is a map of pointed simplicial sets f : X — Y such that wy o f = fowx.
Using the construction details (for either Kan’s or Berger’s construction), we have the analogs of the

theorems in the previous section:
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Lemma 4.3.7 ([11], Lemma 4.0.22) If f : (X, ®x,wx) — (Y, Py,wy) is a morphism as defined above, then

there is a functorial induced homomorphism of simplicial groups Gf : G(X,wx) = G(Y,wy) defined by

Corollary 4.3.8 Given a triple (X, ®x,w) in our domain category, there is a fibration
GX,w) = E(X,w) > X

of simplicial sets, with E(X,w) of the homotopy type of a point. This fibration is also functorial: a map of

triples f: (X, ¢x,wx) — (Y, ¢y, wy) in our domain category gives a map of fibrations

G(X,WX) — E(X,WX) - X

1 Gf LEf Lf
G(Y,wy) — EY,wy) — Y.

Since our simplicial groups G(X,w) are always free simplicial groups, we also have

Corollary 4.3.9 If f : (X,Px,wx) — (Y, Py,wy) is a morphism that is a weak homotopy equivalence,

then Gf : G(X,wx) = G(Y,wy) is a loop homotopy equivalence.
and

Corollary 4.3.10 If (X, ®x,wx) and (Y, ®y,wy) are objects in our category and
fi9: (X, @x,wx) = (Y, Py, wy)

are morphisms that are simplicially homotopic, relative to the basepoint, then the induced homomorphisms

Gf,Gg: G(X,wx) — G(Y,wy), are loop homotopic.

5 More Examples of Simplicial Sets and Groups

5.1 Nerve Constructions

Example 5.1.1 Nerve of a Small Category[3, 9]: Given a category A which we can think of as “small” (i.e.

the objects form a set) and any n € Z>q, define

NAn:{x:aO%al2@2ag-~-(ﬁ$anlz(a1|a2|"'|an)}7



the set of n-tuples of composeable morphisms, as the set of n-simplices; let

a]/ Q1 Q;410Q

i Qiq2 @
diéL‘ = ao — Q;—1 — Qi1 $ . an

for each 0 < i < n(with dy and d,, by deleting ag and a,,, respectively, from the n-tuple), and

C ida, . ;
sjp=a9 3 Ha; ¥ a; B ay, BB,

for each 0 < j < n. Then NA = {NA,} with face maps and degeneracy maps as defined above constitutes

a simplicial set, called the merve of the category A. When the morphisms involved are of more concern

to us, we will denote the nerve elements by a = (aq|az|- - |ay). Note that with this notation we write

soax = (idg, ||z |an) and spo = (aq|as] - - |aylid,,).

Notice that N Ag is just the set of objects of A, while N A; is the set of morphisms of A. We will not need
to discuss the geometric realization of a simplicial set for our purposes (see [2],[9], etc. for descriptions), but it
suffices to say that the geometric realization of the nerve of a category, denoted the Classifying Space of that
category, has widespread applications. The nerve itself will be the centerpiece of an important construction

later on, and with this application we will note that geometric realization is a functorial operation.

Example 5.1.2 As a category, a group G has one object, *, and a morphism g : x — % corresponding to
each group element g such that each morphism has an inverse. With this viewpoint, the 1-simplices of the
nerve N(G) from Ezample 5.1.1 would correspond to the elements of G, but NGq, defined to consist of the

objects the category G, would just be the object x. Therefore NG is a reduced simplicial set whenever G is a

group.

Example 5.1.3 Recall from Ezxample 5.1.2 that when G is a group (viewed as a category) with identity
element e, the nerve NG is a reduced simplicial set. So there is a single 0-simplex which we denote x := ¢y.

The one-point simplicial set is constructed as




So if we identify NG,, := G™ we see that an element g = (g1|g2|- - |gn) € NG,, has

(92193l -+~ [gn), i=0
dig = (g1lg2] - - - |gi=11gi+19ilGi+2] - |gn), 1<i<n-—1
(91‘92‘ "'|gn—1); 1 =n.

Now & € NG, with n > 1 implies dix = 1 € G"1, so that x = 1 € G™. Therefore mo(NG) = [¢o] =1
and 7,(NG) = [1] = 1 ¥ n > 1. Again, € € NG is identified with x € G via morphism ¢o — ¢, so clearly
dox = di(x) = ¢o. Therefore ]V\C_T’/l = NGy = G. But homotopy in NG dictates that if g3 ~ go € NGy then

there is a homotopy y = (alb) € NGo such that
1) doy = sodo(g1) = so(¢o) = ¢1 = e, which implies b = e.
2) diy = g1 = ba = ea, so y = (g1le).
3) day = g2 = a=gi, 50 g1 = g2.

We conclude that each x € JT/'\C_T'/l := G represents a distinct homotopy class in w1 (NG), in which case

m1(NG) := G. Therefore

5.2 Functorial Constructions

Example 5.2.1 Reverse of a Simplicial Set: Given a simplicial set X, we can define another simplicial set

by keeping simplices as they are but “reversing” the degrees of face maps and degeneracy maps:
X5 = Xny i = dp—i; 8577 = sp—j.

The degree of the face maps and degeneracy maps in X"°¥ depends on the dimension on which they act,

and calculations must reflect this: for example, when 0 <7 < j <n and z € X,, = X °" we have
didi e = dy1—idn—jr = dp—jdp1-i17 = dy_1_(j_1ydn—iz = A} d7 ",

and

Tev rev . _ _ __ Jrev rev
Sj S; T = Sn41—3jSn—iT = Spn41—iSn4+1—35T = 8n+17i5n7(j71)x =S; ijl:L‘.
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Note that the second face map operates on the n — 1-simplex d7“’z and the second degeneracy map operates

rev
?

on the n+ 1-simplex s} “’z. The simplicial set whose n-simplices are X,, and whose face maps and degeneracy

v

maps are the dj*” and s7“” as above is called the reverse of the simplicial set X, denoted X"".

Now we formulate the definition for X"¥ as a functor from A°P to S. Given a functor X : A? — S,

X"¢ ig the functor X" : A°? — § defined by
X"(n) = X(n),

on objects of A°P, and on morphisms as follows.

Tev

If @ :n — m is a morphism in A, define @"¢” : n — m by

a'r‘ev (

u) =m —a(n —u).

Proposition 5.2.2 If « is a morphism in A (hence in A°P) then "¢ is a morphism in A (hence in A°P).

Now, given a morphism o € Hom,p(m, n), let
X" (a) = X (") : X(m) — X(n).

Theorem 5.2.3 Given a functor X : A°? — S, X" as defined above is a functor from A°P to S.
Proposition 5.2.4 (X)) = X for every X € SS.

Proposition 5.2.5 There is a functor ™" : §§ — S8 defined on objects by " (X) = X"V for functor

X : A°? — S, and on morphisms by "¢V(f) = f for appropriate morphism f. Furthermore, "V is an

isomorphism of categories.
o

Example 5.2.6 Segal Subdivision[10]: Given simplicial set X = {(X,;{d;};{s;})}, set
Sd(X)n = X2n+1; d;gdl’ = didgn_,_l_il’; Sfdl’ = 5jSon4+1—35T

for any x € Xop11.

A change of dimension by 1 in Sd(X) amounts to a change of dimension in X by 2, and the dependence

of the degrees of face maps and degeneracy maps on dimension warrants care in the arithmetic: 0 <i < j <
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n,x € Xopy1 = Sd(X), implies

Sd ;5d
d;“d;" (z)

didan—1)41-idjdan1-5T

= didzn—l—idjd2n+1—j$

= dj_1didon—idopt1—jT

= dj—1d2n—jdid2n+1—ﬂ

= dj_1dop_1—-(j—1)did2nt1-iT

= dj_1do(n—1)41-(j—1)did2ny1-iT

— Sd_3Sd
- djfldi X,

and

Sd Sd
S5 87 T = 8j82(n4+1)+1—55iS2n+1—iT

= 85j82n424+1-55i52n+1—iT = §i5;-152n42—3jS2n+1—iL
d_Sd

= SiS2n+241-iSj—152n+1—(j—1)T = S5 S;_1T-

It can be shown, similar to the case for functors GG and "¢V, that this construction admits a covariant functor,

Sd: 88 — SS. See[10] for a good description of this and other properties of the Subdivision.

([
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Chapter 2

Algebraic K-Theory

From here on, let R be a ring with identity 1, commutative where necessary, and consider (subcategories of)

the category of R-modules with R-module homomorphisms Homg(P, @) for modules P and Q.

1 Projective Modules

1.1 Definitions[8][1]

Definition 1.1.1 We adopt the following, equivalent definitions for our objects of interest — finitely gen-

erated projective R-modules:

a) “Diagram Completion Property”: P is a projective R-module if and only if given any R-modules N, M,
surjective homomorphism v : M — N and any homomorphism ¢ : P — N, 3 6 € Homg(P,M) >
¢ =1pob.

b) “Section Property”: P is projective if and only if given any R-module M, any surjective homomorphism
¥ € Homgr(M, P) has a right inverse (i.e. there is a section s : P — M > 1 os = idp and

s € Homg(P,M)).

c) “Splitting Property”: P is projective if and only if any short exact sequence

0sNAMAPo

of R-modules ending at P splits: M ~ N ® P = im(¢) ® im(s) where s € Homg(P, M) is a section

for 1 as described above.

d) “Summand Property”: P is a finitely generated projective R-module if and only if 3 R-module Q and
n € N for which P ® Q =~ R"™.
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Example 1.1.2 Projective But Not free: Suppose R = Z/27 x Z/27Z. Then the R-module P, = {(1,0)) is
projective, but not free. Indeed, if Py = ((0,1)) then Py ® P, = R = R' so we have Py as a direct summand
of a free module. But R has order 4 as an additive group, so that any free R-module of finite rank must have

an order that is a multiple of 4. Since both Py, and Py have order 2, neither module can be free.

1.2 The Category PR

Definition 1.2.1 For finitely generated projective modules P and Q, define morphisms to be R-module
homomorphisms Hompg(P,Q), and let PR be the resulting category of finitely generated projective R-modules.
Among morphisms are admissible injections, which are injective homomorphisms P ﬁ> Q for which
0— P i> Q — Q/P — 0 is a short exact sequence in PR, and admissible surjections, which are

L. . » . . P .
surjective homomorphisms P — @Q for which there is a short exact sequence 0 - N — P — @ — 0 in PR.

Note that by Definition 1.1.1.b,c that all surjective homomorphisms in PR are admissible surjections.

Definition 1.2.2 For a finitely generated projective R-module P define the dual of P as
P* := Homg(P, R).

Lemma 1.2.3 Suppose P,Q € PR.

a) P* is a finitely generated projective R-module, and given an R-module homomorphism f : P — @,
there is an R-module homomorphism f* : Q* — P* defined by f*(a) = ao f for any o € Q*. When f
1s injective f* is surjective and when f is surjective f* is injective.

b)) VPQePR,(P®Q) =P dQ*

¢) There is an exact contravariant functor, * : PR — PR, defined on objects by P — P* and on morphisms
by [ — f*. In particular, f*: Q" — P* is admissible whenever f : P — @ is.

d) The composite functor *o* :=** is a covariant functor, equivalent to the identity functor; in fact, there
is a natural transformation n : id — ** of functors on PR such that for every object P, n(P) : P — P**

s an isomorphism.

As a brief note, we define the isomorphism 7 : idpr —** by assigning [n(P)(p)](¥) = ¥(p) € R for
p € P,y € P*, so that n(P) € Hompg(P, P**).

27



2 Classical Ky(R) ([8], Chapter 1)

2.1 Generators and Relations

Definition 2.1.1 Given the isomorphism classes [P] of finitely generated projective modules over ring R, let
F be the free abelian group on these classes and S = ([P] + [Q] — [P @ Q]) as a subgroup. Then Ko(R) = F/S
(i.e. Ko(R) is the Grothendieck Group, or Group Completion of the Semigroup of isomorphism

classes of finitely generated projective R-modules).

Theorem 2.1.2 ([8], Lemma 1.1) Every element A € Ko(R) can be represented by a difference A = [P]—[Q)]
of two isomorphism classes, and [P1] — [Q1] = [P2] — [Q2] € Ko(R) if and only if 3r e N 5 Pid Q2P R" ~
P,eQ1® R

Corollary 2.1.3 Two generators [P] and [Q] of Ko(R) are equal if and only if 3r e N 5 POR " ~ QO R".

We refer these generators [P] of Ky(R) as stable isomorphism classes of finitely generated projective

modules over R.

Example 2.1.4 Grothendieck Group of a field: Let R = F be a field. It can be shown through basic linear
algebra principles that if R is a field then any (finitely generated) R-module P is a free R-module: from any
generating set for P a basis B can be selected for which given any p € P there is a unique sump = Y, 7ib;,
over R for p[20]. Since any free module is a projective module by default, we know that the objects of PR
are free R-modules of finite rank, i.e. finite-dimensional vector spaces over R. Since two vector spaces of
the same (finite) dimension are isomorphic, the canonical isomorphism classes can be represented by their
dimension. We can show that this same representation works for stable isomorphism classes as well.
Indeed, let Py = R™,Q1 =~ R™, P, =~ R", Qs ~ R™2. Suppose that the corresponding representatives
have ny —mi =no —mo. Thenni+ms=ns+mi; ENand R*SR™ = R BR™, s0 PLE Qs ~ Pod Q1.

Since all of these modules are free modules, it follows that for any r € N,

R"GR™GR ~PL®QdR ~R2OR™M OR ~Po®Q &R VreN.

Therefore differences ny —my = no — mo represent differences of stable isomorphism classes in Ko(R). We

conclude that Ko(R) ~ Z whenever R = F is a field.

0o

Example 2.1.5 K((Z)[8]: Ezample 2.1.4 has a more general case, in that Ko(R) = Z whenever R is a

principal ideal domain. This follows from the fact that any finitely generated projective module over R is a
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free module, in which case we apply a similar method to the above example, mapping a difference of ranks
for these modules to a difference of isomorphism classes. But the property that every finitely generated
projective module over a principal ideal domain is free follows from the Direct Summand Property and the
Fundamental Theorem for Finitely Generated Modules over a Principal Ideal Domain (also known as the
Structure Theorem/[20]). From that theorem we have that if an R-module P is a direct summand of a free
module R™,n € N, then it must be torsion-free (i.e. the kernel of the map a — ap from R — P is trivial),

so that P itself is free.

0o

3 Classical K;(R)

3.1 GL(R) and Elementary Matrices[1, 8, 9]

Definition 3.1.1 The infinite general linear group GL(R) is the direct limit of the general linear groups

GL(n,R),n € N, or the union of the sequence

R*=GL(1,R) CGL(2,R) C ---

under the inclusion GL(n, R) — GL(n + 1, R) via A —

Definition 3.1.2 Given a € R,i,j € N,i # j the elementary matrix e;;(a) is the matric e;j(a) € GL(R)

having a as the (i,j)-entry, 1 on the diagonal and 0 everywhere else.

Definition 3.1.3 E(n, R) < GL(n, R) is the subgroup generated by the elementary n x n matrices. E(R) is

the direct limit of such groups as in the definition of GL(R).

Theorem 3.1.4 ([1], Proposition 2.1.4)E(R) is the commutator subgroup of GL(R).

3.1.1 K;(R) as a quotient group

Definition 3.1.5 K;(R) = GL(R)/E(R), the abelianization of the infinite general linear group.
From this definition, we think of elements of K;(R) as (classes of) matrices A € GL(R).

Example 3.1.6 K, (F) where F is a field, local ring, or Euclidean Domain [1]: In the case of rings R
where multiplicative inverses (i.e. fields and local rings), or at least where a quotient-remainder analog

exists (i.e. Euclidean Domains), we may think of elementary matrices as representing the elementary row

29



or column operations that work on invertible matrices as elements of GL(R). Of course invertible matrices
must have unit “determinant” (i.e. a corresponding element of R*, the units in R), and a sequence of
elementary operations serves to change that determinant. Therefore equivalence classes of matrices in K1(R)
are matrices with the same determinant, and we have that K1(R) = R* in the special case of R being a field,

local ring or Euclidean Domain.

Example 3.1.7 As a corollary to the previous example, we have the well-known result K;(Z) = {1,—1}

(i.e. the cyclic group of order 2) since Z is a Euclidean Domain whose only units are 1 and -1.

4 Classical K>(R)

4.1 Steinberg Group

Note the following relations[1] between generators e};(a) € E(n, R) when n > 3, whether considered as

elements in a particular F(n, R) or in E(R); also note the commutators
[e3; (@), ez (b)] = €l (a)efy (0) (e (@) ™ (e (b)) ™ -

er;(a+0), 1=k j=1

1) e (@ep(b) =
ep)e(a),  j#kiFAL

e?l(ab)a Z#la]:k
2) [efj(a), ey (D)l = 4 epi(—ba),  j#kyi=I
1 j£ ki #L

Definition 4.1.1 Fizn € N, n > 3. Assign to each ef;(a),1 <i,j <n,i# j and a € R a generator z};(a),
let F' be the free group on these generators and S the subgroup generated by the relations (for everyi,j as

above, similar k,l, and every a,b € R)

x?j(a—i—b), i=k,j=1

1) z (a)z}, (b) =
zpy(O)afi(a),  j#FkIFL

ahab),  i#Lj=k
2) [2f5(a), z,(0)] = § ap;(=ba),  jAki=1
1 JE ki #L

Then the nth Steinberg Group over R is a quotient St(n, R) = F/S.

From now on when we speak of the Steinberg group St(n, R), or its elements, we assume that n > 3.
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By definition there is a unique surjective homomorphism ¢, : St(n,R) — E(n,R) C GL(n,R) by

z(a) = e};(a). However, there may be other relations between the e}’;(a) depending on the specific structure

of R that are ignored by the subgroup S; that is, S C ker(¢,) but we may not have S = ker(¢,). We can
define homomorphisms of groups ¢y, n+1 : St(n, R) — St(n + 1, R) (not inclusions) that match generators

z}(a) of St(n, R) to generators J;fjﬂ(a) of St(n+1, R). So we define the infinite Steinberg Group St(R)

as the direct limit of this sequence of groups and homomorphisms.

Note that the direct limit construction[20] gives a canonical homomorphism
tn : St(n, R) — St(R)
such that t;,41 0ty nt+1 = tn, and a homomorphism
¢ : St(R) — E(R)

such that

Ln0¢:¢n0in’

where iy, : E(n, R) — E(R) is the canonical inclusion defining E(R) as a direct limit of the F(n, R) (in this

case i, is an inclusion).
Definition 4.1.2 Given ¢ : St(R) — E(R) as above, K5(R) = ker(¢).

From this definition, we will assume an element of Ko(R) to be (represented by) simply a word over

generators of St(n, R) for some n € N :
w = [ziy5, (@) [ (a2)] - - [ i (ar)]-
Also, we have an exact sequence:
1 Ky < StR) 5 GL(R) & K (R) — 1

from Definition 3.1.5.

An important fact about the Steinberg group is

Theorem 4.1.3 ([8], Theorem 5.1)Ko(R) is precisely the center of St(R).
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Example 4.1.4 It is an interesting result that
Ky(Z) = {-1,1};

it is generated by the element (z12(1)w21(—1)212(1))*. This amazing result is worthy of a chapter in and of

itself, as in [8] Chapter 10, and is therefore not fully described here.

5 Higher K-Theory from Quillen [16, 11]

5.1 N(QPR)

Let R be a commutative ring with identity 1, and recall that PR is the category of finitely generated
projective R-modules. In fact PR is an ezact category, with admissible injections (indicated by arrows »—)
and admissible surjections (indicated by —»).

Note that by Definition 1.2.1 an admissible injection of finitely generated projective R-modules, P — @,
is an injection such that the quotient of @ modulo the image of P is also projective, and all surjections in

the category PR are admissible as note earlier. From this category we make another:

Definition 5.1.1 Quillen’s Category: In the category QP R, the objects are the objects of PR. Given P,Q €

PR, a morphism f: P--- — Q in QPR is a diagram

f:Pii— = Q

N

U

where U, f1 and fa allow P and Q to be part of short exact sequences (i.e. fi and fo are admissible maps).
Composition of these morphisms, when appropriate, is given by forming another diagram: given f : P--- — Q
with admissibles U, f1 and fa, and g : Q - -- — S with admissibles V, g1 and g2, the composition gof : P--- —

S is the diagram
gof:P--- S

UXQ

where U xq V ={(u,v) e U XV | g1(v) = fo(u) € Q}, fi(u,v) = f1(u) and g2(u,v) = g2(v).
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Definition 5.1.2 Given the category QP R, two morphisms

[P —Q
U
and
P Q
fi /
U/

are equivalent if there is an R-module isomorphism F : U — U’ for which f{io F = f1 and f50 F = f5 in

PR.

As seen in Example 5.1.1, we can construct the nerve of this category if we think of an appropriate “small”
category corresponding to QP R. This nerve N(QPR) is a simplicial set, with O-simplices corresponding the
the objects of QPR (which consequently are the objects of PR by definition). The 1-simplices are (isomor-
phism classes of) the morphisms of QPR as described above, and n-simplices are n-tuples of composeable

morphisms. For instance, a 2-simplex would be

P17P1
2 2

and a 3-simplex would look like

(P P, P - Pyii———— > Py

Since N(QPR)o = Ob(PR), this nerve cannot be a reduced simplicial set. However we can use it due to

Kan’s work on star-connectedness as described in Chapter 1:

Theorem 5.1.3 N(QPR) is star-connected at the basepoint 0 € PR, with ray function defined on finitely

generated projective R-modules P by

w(P) = 00— p
\ %:l.
0
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5.2 G(N(QPR))

As we have seen, N(QPR) is not a reduced simplicial set, although it is star-connected. We will see later
(i.e. Lemma 4.0.14 in Chapter 3) that more than one ray function can accomplish this, but for now we use

the function w(P) = ¢p from Theorem 5.1.3 and apply Definition 4.3.6 from Chapter 1:

Definition 5.2.1 For anyn > 0, the set G(N(QPR)),, of n-simplices of the loop group G(N(QPR)) is the

free group on the set

B, = {t(z) | € N(QPRny1 — sn(N(QPR))n) — (Tu(N(QPR)))nt1} -

5.3 Quillen’s Ky, K;, K5 versus Classical K-Theory

Chapter 4(IV) of [10] gives a good account of Quillen’s results for higher Algebraic K-Theory:

Quillen constructs higher K-Theory as

Ki(R) := m(QIN(QPR))),

where Q| N (QPR| denotes the combinatorial loop space of the geometric realization of N(QPR) (see [10, 11]).
It is then possible to show that for i € {0, 1,2} the groups K; constructed this way are isomorphic in a natural
sense to the classical K-Theory groups K(R), K1(R) and K3(R) as described earlier in this chapter (in fact,
these groups are constructed specifically so that this is true). One of Quillen’s constructions which affords
this definition is known as Quillen’s +-construction, and results in a space |N(QPR)|*, which we will

refer to in Chapter 6. Although the theory tells us that, for example,

K3 (R) = m(QIN(QPR)]),

explicit isomorphisms are not constructed. Such is the inspiration for this dissertation.

Homotopy theory on topological spaces then tells us that

mi(G(N(PR))) = m(QN(QPR)|)

as described in [2]. Thus we call G(N(QPR)) a simplicial model for K-Theory. Later exposition in this
dissertation will show other simplicial models for K-Theory under the same definition: the Gillet-Grayson
simplicial set G.PR, the loop group on Waldhausen’s simplicial set s.PR, and some other simplicial sets

derived from these via techniques described in Chapter 1.
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Chapter 3

More Constructions for PR

1 Waldhausen’s s. PR

1.1 The Simplicial Set s.C

This section explains some definitions from Waldhausen’s paper [7] and exposits a notion of duality.

Define a poset Ar[n] as the set

Arn] = {(i,j) €nxn|0<i<j<n},

with order defined by

(i,7) < (k,]) ©i<kandj <l

Let C be a “category with cofibrations” as defined by Waldhausen [7], with initial (and final) object
0 := O¢. Then the idea of a short exact sequence (a “cofibration” sequence) is defined in C. In particular,
while we do not give the formal definition of a category with cofibrations (as in [7], for example) here, we do
notice that the category PR introduced in Chapter 2 is a category with cofibrations. The cofibrations in PR
are admissible injections as in Definition 1.2.1 of Chapter 2, while admissible surjections are the quotient
maps.

Considering Ar[n] as a category in the usual way (see [9]), define
Definition 1.1.1 A functor A : Ar[n] — C is a normalized exact functor if
a) for every (i,i) € Ar[n], A(i,i) = 0.

b) for every (i,j) and (i, k) in Ar[n], such thati < j <k,

0— A(i,j) = A(i, k) = A(4,k) = 0

is a short exact sequence in C.
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For any n, define

5,C ={A: Arln] — C | Ais a normalized exact functor}.

Proposition 1.1.2 An element A of s,,C is a triangular, commutative diagram in C, where each
A(0,) 25 A0,5) 2 40, j)

is a short exact sequence and each vertical row is a quotient map.

When we refer to the objects in these triangles without reference to the underlying functor, we will use

the notation A;; instead of A(3, j) for the objects, so that such elements have the form

An—1,n
S
Aiz Al.,n
|
Ay As e A,

Waldhausen also defines a category

SnC,

which has objects s,C, and in which a morphism F : A — B is a natural transformation from A to B, but
we do not use this in the present paper. Instead, we assemble the sets s,,C, as n varies, into a simplicial set

5.C with n-simplices s.C(n) = 5.C,, := 5,C by defining, for each morphism « : n — m in A, a function

s.C(a) : 8,C — 5,C

given by
[5.C()(A)](k,1) = A(a(k),a(l)),

and

[5.C(a)(A)]((k, 1) < (k1, 1)) = A((eu(k), () < (a(kn), (ln)))-
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This allows us to define face and degeneracy maps and compositions thereof in s.C according to Defini-
tion 1.2.1 and Lemma 1.1.9 of Chapter 1.

Recall that an exact covariant functor is a functor that converts short exact sequences (or cofibration
sequences) into short exact sequences (or cofibration sequences). An exact contravariant functor also
converts short exact sequences into short exact sequences, and thus turns cofibrations into quotient maps

and quotient maps into cofibrations, using Waldhausen’s language [7].
Theorem 1.1.3 Suppose C,D,E are categories with cofibrations.
a) 5.C is a simplicial set; moreover, soC consists of a single element so that s.C is a reduced simplicial set.

b) A (covariant) exact functor F : C — D induces a map of simplicial sets s.F : s.C — s.D; an exact
contravariant functor F : C — D induces maps of simplicial sets s.F : 5.C — s. D™ and s.F : s.C"" —

s5.D.
In the case of contravariant functor F we use the following definition for s.F : s.C — s.D"¢V: for
A€ s,C,

5.F(A)(4,j) == F(A(n — j,n —1)),

and

5. F(A)((,5) < (k, 1) == F(A((n = l,n — k) < (n = j,n —i))).

¢) If F:C— D, and G : D — Eare covariant exact functors, then the composite functor GF is a covariant

exact functor, and as maps of simplicial sets §.C — s.£,

5.(GF) =5.(Q)s.(F).

Also, if F1 and G1 are contravariant exact functors between the same categories as F and G above, then
G1Fy is an exact covariant functor, and as maps of simplicial sets, either s.C — 5.€ ors.C"®" — .7,
then

5.(G1F1) = 5.(G1)5.(F1).

d) For the identity functor id : C — C, s.id is the identity map on the simplicial sets .C and 5.C"".

Proof: We prove (b) and leave the rest as an exercise.
For the case of covariant functor F' : C — D, we must show that the natural transformation relation

holds on 5.F(n)(A) = Fo A for any A € s.C(n) and any o : m — n (i.e. any a € Homep(n,m)). Given
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(a,b) € Arm] we have

([s.D(e) 0 5.F(n)|(A))(a;b) = s.D()([s.F(n)(A)])(a,b)

and

([s.F(m) o s.C(@)](A))(a,;b) = [s.F(m)o[s.C(a)(A)]](a,b)

Therefore 5. D(«) 0s.F(n) = 5.F(m)0s.C(a), so that 5. F is a natural transformation of functors in SS, hence
a simplicial map.
Using the recommended definition for s.F' on contravariant functors, either to or from the reverses of

these simplicial sets, we see

([5.D"(a) 0 5.F(n)](A)(a,b) = ([s.D(a”") 0 5.F(n)](A))(a,b)
= [s.F(n)(A)](a""(a),a"" (b))
= [F@)(A)(n - a(m—a),n - a(m b))
= F(A(n—(n—a(m—b)),n—(n—a(m-a))))
= F(A(a(m - b),a(m — a)))
= F([s.C(a)(A)](a,D))

= ([s.F(m)ocs.C(a)](A))(a,b)
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when s5.F : 5.C — 5. D" and

([s.D(a) 0 5.F (n)](A))(a, ) 5.D(a)([s-F(n)(A)])(a,b)

= [s.F(n)(A)](ala), (b))

= F(A(n—a(b),n —ala)))

= F(A(n— (") (b),n — (a")"*"(a)))

— F(An—(n—a"(m—"b)),n— (n—a""(m—a))))
= F(A(@(m—b),a""(m — a)))

= F([s.C(a"")(A)](a,b))

= F([s.C""()(A)](a,b))

= s.F(m)([s.""(a)](4))(a,b)

= ([s.F(m)0s.C™"()](4))(a,b)

when 6. : 56.C"" — 5.D. Therefore the natural transformation relation holds and these two forms of s.F are
simplicial maps. This gives conclusion (b).

O

1.2 Duality for s.PR

Using Theorem 1.1.3 and Example 5.2.1 from Chapter 1, we have

Theorem 1.2.1 Given the exact category PR of finitely generated, projective R-modules,

a) There is a map of simplicial sets 5.* : 6. PR — (s.PR)"" defined, for A € s.PR,, by

(5.7A)(i,5) == A(n — j,n —0)",

and

(5.7 A)((5,5) < (k1)) := A((n —l,n — k) < (n—j,n— )"

b) There is a map of simplicial sets s.* : (s.PR)™" — s.PR defined, for A € s. PRI, by

n

(5*‘4)(23]) = A(TL 717‘3” - Z)*7
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and

(5.7 A)((i,5) < (k1)) := A((n = l,n — k) < (n —j,n —i))"

c) As maps of simplicial sets (from s.PR to itself, and from s. PR™" to itself)

(8.7)(s.7) = 5.7

Proof: First, note that so far there is no structure on

s.PR, = {A: Ar[n] > PR | A is a normalized exact functor}

beyond it being just a set of functors. But s.*(n)(A) is a functor in 6. PR}’ when A € s.PR,,. Thus
$5.*(n)(A) := A* must be defined on objects and morphisms of Ar[n], so that s.*(n) sends n € A° to a set

map (i.e. a morphism in §) in order to have a natural transformation (i.e. simplicial map). By definition,

A*(i,j) = (Aln—j,n—1))”
= "(Aln—j,n—1i))

= 5.(")(n)(A)(i )

(parentheses used for emphasis in the notation of Lemma 1.2.3 of Chapter 2), and

A7((4,9) < (K, 1))

(A((n—1,n—k) < (n—j,n—1)))*
= *(A((n—lLn—k) < (n—jn—1i))

= () @)(A)((J) < (k,1)).

Thus Theorem 1.1.3.b applies to the contravariant functor * : PR — PR, so that * induces the simplicial map
$.(*) : 8. PR — (s.PR)"*", which proves (a). Also, * must induce the simplicial map s.(*) : (s.PR)"*" — s.PR,
which is (b). Finally, ** =* o* is a covariant functor, in which case Theorem 1.1.3.c and Lemma 1.2.3.b
imply that, as simplicial maps either from s.PR to itself or from (s.PR)"" to itself, 5.(**) = 5.(*) 0 5.(*),
which proves (c).

O

Remark 1.2.2 Note that * preserves “weak equivalences” in PR, if these are defined to be the isomorphisms

in PR (although the direction of the isomorphism is reversed of course).
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Now, we note a theorem of Waldhausen:

Theorem 1.2.3 ([7], Lemma 1.4.1b)) If C and D are two categories (with cofibrations), and Fy, Fy are two
exact covariant functors from C and D with an isomorphism 1 : F1 — Fy, then there is a simplicial homotopy

equivalence, relative to the basepoint, which we will call s.n, between s.F) and 5.F5.

Corollary 1.2.4 s.** and id are homotopic simplicial maps (relative to the basepoint), whether considered

as maps from 5. PR to itself, or as maps from s. PR to itself.

The general theory of simplicial sets (i.e. Theorem 1.4.2 of Chapter 1) then tells us that

*

Corollary 1.2.5 The map on homotopy groups induced by s.** is equal to the identity homomorphism, and

the simplicial maps

s : 5 PR — s PR™

and

5.5 PR — s. PR
induce isomorphisms on homotopy groups that are inverse to each other.
Thus we have the following from Theorem 4.2.5 of Chapter 1 and its Corollary.

Theorem 1.2.6 Gs.* : G(s.PR) — G(s.PR™") and Gs.* : G(s.PR™") — G(s.PR) are loop homotopy
equivalences. Gs.** : G(s.PR) — G(s.PR) is loop homotopic to the identity homomorphism, and thus

simplicially homotopic to the identity homomorphism.

2 The Gillet-Grayson Simplicial Set[11, 12]

2.1

Definition 2.1.1 The Gillet-Grayson simplicial set, G.C on a category C with cofibrations has n-

simplices that are pairs of lower-triangular commutative diagrams built from exact sequences, where the
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elements in the pair have all co-kernels in common:

Anflﬁn Anfl,n
- > -— >
g-cn == { 3
Apy Aon Apy Aop,
Ao Ay .. A, By By ... B,

| A; — A; - A;;, B — Bj — A;j are short exact sequences V i < j}.

The face map d;,0 < i < n is defined by deleting all objects with i in their subscript and composing morphisms
accordingly, while degeneracy maps s; is defined by repeating all such objects and inserting the appropriate

identity morphisms.

Looking at Definition 2.1.1, we have O-simplices of the Gillet-Grayson simplicial set, G.P R, on the category

PR of finitely generated projective modules as pairs of such modules:

G.PRy={(A,B) | A,B € PR}.

1-simplices are pairs of short exact sequences

Ao1 Ao1

A0>—> Al B()>; > Bl

2-simplices are pairs

A12 A12
t= Apgr>— Ap2 , Agr>—— Ap2
AO A1 A2 B() Bl B2
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where the squares are commutative and the sequences

and

0—>BZ>—>BJ—»A”—>0

are short exact sequences. 3-simplices are pairs

Ao Ass
Ajp>> A3 App>— Ay
T ’ |
Ao1 Ap2 Ags Agy Aga Aps
Ap Aq As As By B, By B

where squares are commutative and exact sequences are as described for G. PRy above.

Of course G. PRy has no face maps operating on it, but the degeneracy sq is defined by “duplicating” the
modules in the pair x = (A4, B) € G. PRy via identity maps:

0 0
A——> A B>——>1RB
In higher dimensions, the degeneracy s; is computed by “duplicating” any module with j in its index (i.e. A;

in the bottom row and the j** column), inserting the identity map and the zero module where appropriate.
For instance with t € G. PRy as above and j = 1 we have

Ay

Aro Aqo
0 Aro 0 Ajo
alt) = T , T
Aor>— Ao Ap2 Aor>— An Ap2
Ay = Ay Ao By B = B B
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A face d; is computed by deleting all modules with ¢ in the index and composing homomorphisms and

including the zero module where appropriate. For example:

A13 A13
d2(q) = Agr == Ags , A== Aoz |,
Ay Aq > A3 By B, “—> B
the o indicating where a composition occurred.
Notice that for
Anfl,n Anfl,n
- > - >
T = , € G.PR,
Apy ; Aon Aot ; Aon
Ay Ay ... A, Bo By ... B,
we have
An—l,n A;Z,TL+1
i S
D1 — = S E.PRH_A,_l
AOl AOn A/12 A,1,7z+1
Ao Ay o An A Afg T Abnta
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and

D,

Ao

By B

An—l,n

B,

!
BOl

/
An,n+1
S>>
! !
A12 Al,n+1
! /
By, Byt

€ E.PRn+1,

by Proposition 1.1.2, so that elements of G.PR,, can be identified with pairs of elements in s. PR, 1. In fact,

it is easily seen that if z = (D1, D3) € G.PR,,, D12 € 6. PR, 41 then

and

d;x = (dix1D1,di41D2)

S;T = (Sj+1D1, Sj+1D2).

3 Duality on N(QPR) and Sd(s.PR)""

3.1

Just as we defined the simplicial maps s.x : 5. PR < s PR", we want to see the effect of duality on the

nerve of Quillen’s category. We will use the descriptions of exact categories by Quillen and Waldhausen

([16],[7]), noting that PR is an exact category.

Since the objects of QPR are those of PR itself, there is no problem with starting the definition of * as

a covariant functor on QPR by *(P) = P*, but we must define the morphisms carefully. Given a morphism

« in QPR represented by the diagram

we have by Definition 5.1.1 of Chapter 2 that p, is an admissible surjection and i, is an admissible
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injection[16]. Taking duals as before for the (exact) category PR gives a diagram

for which there exists a pullback:

Ug :={(m1,m2) € P*x Q" | pi(n)=1(m2)} € PR.

Define morphisms pos : Uy« = P* and i+ : Uy — Q™ by the appropriate coordinate projections.

Theorem 3.1.1 The diagram

pP... o Q*

defines a morphism o* in QPR.
This fact comes from the following Lemmas:
Lemma 3.1.2 p,- is an admissible surjection.
Proof: Given 71 € P*, pi(m1) € (U,)* by definition. But ¥ is surjective, so there is some 7 € Q* such
that pk (1) = i} (72). So we have (11, 72) € Uy» with po= (71, 72) = 71, so that p,~ is surjective.

We also see that

ker(pa+) = {(11,72) € Uy | (11,72) = (0,72)}
={(0,m2) € P* x Q" | iy(72) = p;(0) = 0} = {0} x ker(iy,).

Lemma 1.2.3 tells us that Q* € PR and since i, is admissible, % is admissible (and surjective) so that
Q* ~ ker(it) ® UZ. Since U* € PR as well, it follows that ker(i*) € PR and Q := {0} x ker(i*) € PR.

Now we have an exact sequence (with the appropriate inclusion on the left)
O U "% P

in PR, S0 p+ is an admissible surjection.

|

Lemma 3.1.3 ¢+ is an admissible injection.
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Proof: Suppose iq«(71,72) = 0 € Q*. Then by definition 72 = 0 so (71, 72) = (71,0) € Uyx. Thus p% (1) =

-5k

i%(0) = 0, in which case 71 = 0 since p? is injective. It follows that i, is injective. Now with Q := Q* /im/(iq»)

and the natural, surjective homomorphism 7 : Q* — Q, we see that
T * « T X
Ua* — Q - Q

is a short exact sequence. Therefore iy~ is an admissible injection.

O

Lemma 3.1.4 The assignments P — P* o — o for objects P and morphisms o in QPR define a covariant

functor from QPR to itself.

To prove this, we must show that the diagrams corresponding to 5* o a* and (8 o @)* are in the same
isomorphism class defining a morphism in QPR (denoted (8o «)* = * o a* in QPR) for any composeable
(classes of) diagrams a: P--- — @, : @Q--- — S in QPR as in Definition 5.1.1 of Chapter 2[11]. By this

definition([11],[16]), compositions 8 o o in QPR are given via pullbacks
Uoa :=Uqx xq Us ={(z,w) € Uy x Ug | ia(2) = pp(w) € Q}

and admissible morphisms pgoq (2, W) = pPa(2),ig0a (2, w) = ig(w) for diagram

pP... foa S

k/gl

UBoa

Taking the dual directly for such diagram yields

(Boa)™
P*... g

Ugoa)+

wherein

Utgoayr = {(x; ) € P* x 5% | (Pgoa)”(X) = (igoa)”(¥)},

P(Boa) (Xo V) = X, and i(goq)+ (X, ) = v. On the other hand, taking duals first and composing 3* with o*

gives the diagram
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B*oa*

P*... S+

P‘:*o\ A *

Us-oa~

where by definition of a* and g*

Uproa- = Ug» X - Us-
= {060, (#,v)) € Uss x Upe | ia- (X, X) = pp- (7, 7)}
— {6 X), (7,0)) € Uae x Upe | % =9}
Therefore the proof of Lemma 3.1.4 reduces to proving the following theorem.

Theorem 3.1.5 There is an isomorphism T : Ugoa)« — Ugroa for which igoa+ 0T = i(goa)y and pgroa+ ©

T = p(goa)--
The following two lemmas give the proof.

Lemma 3.1.6 Given (x,v) € Ugon)- € P*xS*, there is a unique v € Q* for which voig = opg : Ug — R.

Proof: Giveny € @, identify a w € Ug for which y = pg(w) and set #(y) = v(ig(w)). Since pg is surjective,
given any y € @ there is such a w € Ug, in which case v(ig(w)) € R is defined whenever v € S* for every
y € Q. Set v(y) := v(ig(w)) for such w.

Suppose y =y’ € Q with pg(w) = y for some w € Ug; then pg(w) =y’ as well so 0(y) = v(ig(w)) = 0(y'),

hence ¥ is well-defined on Q. On the other hand, if w,w" € Ug have pg(w) = pg(w’) = y then

ps(w) — pp(w’) = ps(w —w') = 0 = ia(0)

since i, is injective. By definition it follows that (0,w —w’) € Upgoq. Since (X, V) € Ugoa)- We now have

[(Poa)” ()]0, w — ') = [(igoa)" (1)](0, w — ).

Now
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Therefore v(ig(w)) — v(ig(w')) = 0 so that v(ig(w)) = v(ig(w’)) = P(y). Thus U does not depend on the
preimage w chosen for y.
Given r € R,y1,y2 € Q, there are w1, wy with pg(w1) = y1 and pg(ws) = Y. Since pg is a homomorphism

we have pg(rw; + w2) = ry; + Y2, so

U(ryr + y2) = v(ig(rwi +wz)) = v(rig(wi) +ig(we)) = rv(ig(wr)) + v(ig(wsz)) = ro(y1) + 2(y2).

Therefore © € @Q*. Toward uniqueness, suppose that v’ € Q* has v/ o pg = v oig. Then for any y € Q with
pg(w) =y for w € Ug,

Vi(y) = V' (ps(w)) = v(ig(w)) = 2(y)

by definition. Therefore v/(y) = P(y) ¥V y € Q and ¥ is unique.
O

Lemma 3.1.7 Let (x,v) € Uigon)- with corresponding v from Lemma 3.1.6.
a) (x, V) € Uyr.

b) (9,v) € Up..

Proof: Let (x,7) € Ugoa)+- Then given any (z,w) € Ugoa,

[(PBoa)” C)I(2, w) = [(igoa)” (¥)](2, w),

so that x(pa(2)) = v(ig(w)). Take u € U,. Since i, (u) € Q and pg is surjective, 3 v € Ug with pg(v) = ia(u).

For such v we now have (u,v) € Ugoq, in which case

D(ia(u)) = v(ig(v)) = x(Pa(w)) = [(Pa)” ()] (w)-

It follows that (pa)*(Xx) = (ia)*(¥), hence (x,?) € Uy~ for (a).

Again by definition of 7, y = pg(w) for some w € Up for each y € Q, implies

(pp(w)) = v(ig(w)) ¥V w € Up.

Therefore (pg)*(?) = (ig)*(v), hence (#,v) € Ug-. This proves (b).

O
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Now given such # corresponding to (x,v) € Ugoa)+, define T' : Ugon)- — P* x Q* x Q* x S* by
(x,v) = (x,7,0,v). Since o = ¥ we see that T'(x,v) € Ugroq+. But v = 0 if and only if = 0, and if
T(x,v) =(0,0,0,0) = (x, 7,7, v) then clearly x = 0 and v = 0. Therefore T is injective.

By definition of Ug-, if (x,7,7,V) € Ugroq+ then (y,v) € U+, so that v(ps(u)) = v(ig(u)) ¥V u € Upg.

Therefore v o pg = v o ig, so by uniqueness of  we have v = ¥ hence

(X,7,7.v) = (x, 0, 0,v) =T(x,v)

in which case T is surjective. By construction of this isomorphism 7" we now have

Pp*oa* (T(X7 V)) = Pproa* (Xa lA/v ﬁ? V) = Pax (X7 I}) =X= p(BOa)*(Xa V)

and

iB*Oa*(T(le/)) = i,@*oa* (Xaﬁvﬁay) = iﬁ*(l/,V) =V= i(ﬁoa)* (Xay)'

Thus Theorem 3.1.5 is proven and such T is sufficient to have (8 o a)* = * o a* as morphisms in QPR.

Consider the identity morphism in QPR,

Ur-

where

Ur- ={(x,;X) € P* x P* | (pr)"(x) = (ir)" (0},

pr- (X, X) = x and iz (x, X) = X. But since p; = idp =iy, we have Ur» = {(x, %) | x =X} and pr-(x,X) =
X = idp-(x) = ir-(x, X). It follows that (Ip)* = Ip« as morphisms in QPR. The result is now the main

result of this section:

Theorem 3.1.8 x : QPR — QPR by P — P* and (o : P--- = Q) — (a* : P*--- — Q%), with o as

described herein, is a covariant functor from QPR to itself.
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Since the 1-simplices of the nerve N(QPR) are precisely the morphisms of QPR, notice the effect of

duality on two of the important simplices described in [11]: the morphisms

0..- an P
k A
U, =P
0. Lr P
U =0

Corollary 3.1.9 There exists a simplicial map N.x : N(QPR) — N(QPR) with gp — tp+ and tp — qp-

and

Y P e N(QPR),.

Proof: We caleulate Uy = {(x.v) € 0 x P* | (pg)*(x) = (ig)* (1)} clearly x =0 and ¥ u € P,

()" 0] (u) = [(pg)* (0)}(w) = 0 = [(ig)" ()]() = v(ig(u)) = v(w),

so v(u) = 0V u € P. It follows that Uy = {0}. Therefore (gp)* = tp+ € N(QPR);. Similarly U, =
{(x,v) €0x P* | (p,)*(x) = (i,)*(v)}. For any v € P* and any u € P,

[(2)" (W)](u) = v(i(w)) = v(0) = 0 = [(p.)"(0)](w) = [(p.)" ()} (w),

in which case (p,)*(x) = (i,)*(v) V v € P*. Therefore U« = 0 x P* &~ P*. Also, by definition p,~(0,v) =0
so that p,» =0, and i,-(0,v) = v so0 i,» = idp«. It follows that (vp)* = gp € N(QPR);.

We apply this construction to the simplicial set N(QPR). Given z = (a1 | as | -+ | @) € N(QPR),,
define N.x (z) =z* = (af | o5 | - -+ | &) € N(QPR),,. This operation clearly commutes with face maps and
degeneracy maps in N(QPR) and our conclusion follows.

O

The application of duality to the Segal subdivision Sd(s.PR) of the Waldhausen simplicial set is an easy
extension from what we have already calculated for the Waldhausen case. For the subdivision, we have
functoriality as mentioned in Example 5.2.6 of Chapter 1(see [10]), so that if f : X — Y is a simplicial
map, then so is Sd(f) : Sd(X) — Sd(Y) defined by Sd(f).(x) = fant1(z) € Yopy1 = Sd(Y),. From
our earlier construction of the simplicial maps s.x : . PR +— s PR"™", we now have simplicial maps

Sd(s.x) : Sd(s.PR) <— Sd(s.PR™"). Consequently:
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Corollary 3.1.10 There exist simplicial maps
Sd(S*) : Sd(S.PR)TeU — Sd(E./PRTeU)Tev,

4 Star-Connectedness and Sd(s.PR)

First, recall the definition of a map of star-connected simplicial sets from [11] and Example 4.3.1 of Chapter
1, also referred to as a map of triples f : (X,0,w) — (X,0,&). These are simplicial maps of pairs (not
necessarily Kan) f : (X,0) — (X,0) where (X,0) and (X,0) are both pointed, star-connected simplicial sets

and @ o f = f ow for ray functions w,® on X, X, respectively.

Lemma 4.0.11 Sd(s.PR)"" is star-connected at 0.

Proof: Let d; be face maps on s.PR, d7? denote face maps on the Segal subdivision, and CZfd on its
reverse. By definition Sd(s.PR);” = s. PRy = Ob(PR), so consider P € PR and define wy : Sd(s.PR){*" —
Sd(s.PR)7" by

0
wi(P) = OT>—>(T) € 5. PR3 = Sd(s.PR)}".
P idp P idp P
Then
A7 (w1 (P)) = d§*(w1(P)) = dods (w1 (P))
0
P>——P
and

d§ (w1 (P)) = df*(w1(P)) = dydz (w1 (P))

:dl T :P

pP>——P

These calculations hold for any P € Sd(s.PR){’, so Sd(s.PR)"" is star-connected at 0 with ray function

w1
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O

Lemma 4.0.12 Sd(s.PR™)"" is star-connected at 0 with ray function given by

wy(P) = (wi(P"))",

where wy is the ray function for star-connected Sd(s.PR)".

Proof: By definition and what we have seen before for duality,

0 P

| T

wa(P) = (w1 (P*)" = (s:4)3 0——>0 | = 0~ p
] P

P idpw P idp P 0>——>0>——>P

(up to isomorphism (P*)* ~ P via Lemma 1.2.3.d of Chapter 2). Using the face maps d;,d??, from

7

Lemma 4.0.11 along with the face maps d?¢ on Sd(s.PR™")™*" and d} on 5. PR"", we calculate

d7*(w2(P)) = di(w2(P)) = dydi(ws(P))

P
= dgdo(wg(P) = d2 T =0
P

and

dp*(w2(P)) = d¥(w2(P)) = djdj(ws(P))

:dldl(UJQ(P)) :dl T =P

0>——P

These calculations hold for any P € Ob(PR) = s.PR; = s.PR{®¥ = Sd(s.PR™");®", so Sd(s.PR)"" is
star-connected at 0 with ray function ws

O

Lemma 4.0.13 Sd(s.x) : (Sd(s.PR)"",0,w;) <— (Sd(s.PR™®")"®",0,wsz) are maps of star-connected sim-

plicial sets.
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Proof: Noticing that we = (s.%)3 0wy o (s.%); for the simplicial maps s.x : 6. PR «+— 5. PR"®", we find first

of all that up to isomorphism

Sd(sx)1(wi(P)) = (s:4)3(wi(P)) = (s:4)3(wi((P7)")) = (s:%)3(wr((s.4)1(P7))) = wa(P)

= wa((s.%)1(P)) = wa2(Sd(s.%)o(P))

for every P € Sd(s.PR)®”. Also,we have from Lemma 1.2.3.d of Chapter 2 that the functor %o is equivalent

to the identity functor on PR, so that s. * os.x is the identity and therefore

Sd(s.%)1(w2(P)) = (5.%)3((s5.%)3 0wy o (5.%)1(P)) = w1 ((5.%)1(P)) = wi(Sd(s.%)o(P))

for every P € Sd(s.PR"™){". Thus Sd(s.x) owy = wq 0 Sd(s.x) and Sd(s.x) o ws = wy 0 Sd(s.x), so Sd(s.x)
is a map of star-connected simplicial sets in each case.

O

Lemma 4.0.14 N(QPR) is star-connected at basepoint 0 € PR; two different ray functions are given by
C:Jl(P) =qp € N(QPR)l and (,ng(P) =Llp € N(QPR)l

Proof: We can see just by using the notation for the nerve of a simplicial set that for face maps d; on
N(QPR)1, do(0--- B P) = P and dy(0--- 25 P) = 0 for every P € Ob(PR) = N(QPR),. Similarly,
do(0--- 5 P) = P and d;(0--- & P) = 0 for each such P. Therefore setting &; (P) = qp and @y(P) = tp
defines two different ray functions so that N(QPR) is star-connected.

O

Lemma 4.0.15 N.x: (N(QPR),0,01) «— (N(QPR),0,w3) are maps of star-connected simplicial sets.

Proof: We calculate

(N#)10owi(P) = (N.#)1(qp) = gp = tp+ = Wa(P*) = Wa((N.*)o(P)),

and

(N-#)10wa(P) = (Nx)1(ep) = (tp)" = gp+ = 01 (P7) = Wi ((N-x)o(P)).

Therefore, in either direction, N.x is a map of star-connected simplicial sets by definition.

O
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Now Lemma 4.0.22 of [11] implies that N.x : Tz (N(QPR)) <— T5,(N(QPR)) for maximal trees

1%, , Ty, ; consequently there exist homomorphisms of simplicial groups

GV @QPR), Tz,) “ GINQPR), T, ).

G(N(QPR>7 T51 )
Similarly there are homomorphisms of simplicial groups

G(Sd(s.PR)™, To,,) T G(sas. PRy T,,) “CUS) G(8d(s PR, T, ).

5 Connections between N(QPR), Sd(s.PR) and s.PR

Our goal is now to review the role of the maps H and I whose induced maps are part of the mapping

m1(G(s.PR™eV)"ev) i m1(G(s.PR™")) r m1(G(s.PR))

|

Ty | GI.
: “preimage”
|

m1(G.PR) ! m1(G(Sd(s.PR)"™"))
L GH.
Ki(R)——————————— - B -1 (G(N(QPR)))

as in [11] and to reestablish H, I and induced maps thereof as maps that can be used with the duality
described in Chapter 2. Recall that 5s.PR is a reduced simplicial set with unique 0-simplex denoted 0, hence
is clearly star-connected with ray function wy = 0; = s0(0) =0 € PR.

We restate definitions from [10, 11] for H and I : Given A in any of the (equivalent) sets

E.PR27L+1 = Sd(SPR)n = Sd(g’PR):lGU — Sd(slrpRrev)rev’

we have

H(A) = (a1 [az |- [anp |- |an) € N(QPR),
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is a composition of morphisms

p— = Akg12n—k " Ak on—k+1 ,

S o

Ak on_k

for the appropriate ¢ and p from the rows and columns defining A, for each 0 < k < n — 1. For this same A,

n+1
P
I(A) =dodo -+ do(A) € 5. PR, =s. PRI,

where we are careful to apply the correct face maps depending on whether we are in the simplicial set or its

reverse.

Theorem 5.0.16 In the diagram

(5. PR,0,wp) ((s.PR)"",0,wp) (5.PR,0,wp)

Sd(s.x) Sd(s.x)

(Sd(s.PR)™",0,w,)

(Sd(s. PRV 0, ws)

(Sd(s. PR)™",0, )

(N(QPR),0,w1) (N(QPR),0,w2) (N(QPR),0,w1)

all arrows are maps of triples and all squares commute.

Proof: Let d; denote face maps on 5. PR, d;°¥ face maps on s.PR"". Since

0
T 0

I(w1(P)) = dody 0—=0 | =do T =0=wo(I(P))
T 0
P
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and (with I(wa(P)) = dje?dye? (we(P)))

P
T 0
I(w(P)) = dods P | =do T =0=wo(I(P))
T 0
P

|

for any P € Sd(s.PR);’, we see that both versions of the map I are maps of triples. Given A €

O>—— (0>——

Sd(s.PR);* = 5. PRap41 as a triangular commutative diagram with entries 4; ; € PR, 0<i<j<2n+1

we calculate
A2n,2n+1

A2n71,2n>—> A2n71,2n+1

n+1
I(A) = dody - - do(A) =

An+2,n+3 e An+2,2n>—> An+2,2n+1
Aniipy2=—> Aniings e Ani1on>—> Anti2n+41
in s.PR,,, so that
ES
An+1,n+2

* *
An+2,n+3 e—— An+1,n+3

* - * *
A2n—1,2n e ‘471—‘,-2,271> > An+1,2n

|

* * * *
A2n,2n+1 > > A2n—1,2n+1 e A71,+2,2n+1 > > An+1,2n+1
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also Sd(s.x)(A) =

A* € s PRy, = Sd(s.PR™)7*, hence

n+1

——
I(Sd(s.4)(A)) = dbedpe® - - die™(Sd(s.%)(A)) = dny1dns - dandoni1(AY)

=dpy1- - dopt1

*
2n,2n+1

*

0,1
* *
n+1,n+2 A07n+2
* * *
An+27n+3: > An+17n+3 A07n+3
* * *
An+272n>—> An+1,2n AO,Qn
* i * * *
A2n,2n+1 An+272n+1 e An+1,2n+1 A0,2n+1
*
A7L+1,n+2
* *
n+2,n+3 n+1,n+3
=s.x (I(A))
* * *
2n—1,2n An+2,2n An+1,2n
* * *
A2n71,2n+1 n+2,2n+1 An+1,2n+1
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When A € Sd(s. PR™")®" = 5 PR, | we have

n+1
(s:5)n(I(A)) = (s4)n(dp™ dp™ - - - dg™ (A)) = (s-%)n(dntrdnya - - dant1(A))"

An—l,n

An72,n71 e An72,n

Ay g5 Al n—1

: : A

Ao Ap,2 e Aon-1 Ao.n
%k

Aja

* *
A1,2>—> Ao,z

* * *
An—Q,n—l Al,n—1>—> Ao,n—l
* * * *
‘An—l,n> > An—2,n e Al n AO n

) )

and
n+1

—
1(Sd(5.)(A)) = Todo -~ do(A%)
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do - - - do

. .
A2n,2n+1

A*

n—1n

> > An—2,n

*

)

*

*
AOTL

)

AZ—2,H;1 Axl(,n—lH AO,n—l
A:’l—l,n A:z—?,n AI,n
T
|
A:zfl,2n+1 A272,2n+1 AT,2n+1 A8,2n+1
Ao 1
,AT’2>—> A 2
— 5% (I(A))
A:L—2,n—1 AT,n—1>—> Aa,n—l

|

*

* *
Al,n AO,n

Thus the top two squares of the diagram are commutative squares of maps of triples.

Considering H, we find that
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and (since Hy = idoppr))

Similarly, Wy (H (P)) = we(P) = tp and

I
>_>1£ _ \O/ = 1p = Ws(P) = G (H(P)).
P

>

|

Therefore both versions of H are maps of triples. Looking closer at H for a given A € §.P Ra,+1 will require

(| E——

us to consider for any 0 < k < n — 1 the commutative squares

i * p* *
Apt1,2n—— Ak11,2n—k+1 Afiton-—— Al onk
pT T;ﬁ and (;)*T Tz*
A LA A? @7 g
k2n—k—> Ak2n—k+1 k4+1,2n—k+P > Sk 2n—k+1

in the triangular, commutative diagrams representing A, A*, respectively, in Sd(s.PR"®")"*?, as well as the

(short) exact sequences

Aon—k2n—k+1

Tq Aon—k2n—k+1
Akt12n—k+1 Tq

~ i

Tp Apt1,2n—k+ > Akt12n—k+1

i
Ap on—i——— Ak on—k+1

where ¢ is the appropriate composition by definition of A, and (dually) the short exact sequences

* (Pogq)” * i *
A2n—k,2n—k+? > Ak,Zn—k—i—l >> Ak,2n—k

and
A2n7k,2nfk+l: > Ak+1,2n7k:+1 >> Ak:+1,2nfk .

Since

H(A) = (a1 [az |- [any |- |an) € N(QPR)n
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is a composition of morphisms

p—t = Akt1,2n—k " Ag on—k+1
A on_k
with
N.x (an—k) = (an-k)" = Abt12n—1 """ Al on—kt1 5
U, i)

but

H(Sd(s#)(A)) = H(A") = (ay [ Gz | -+~ [ Gn-r | -~ | Gn)

has morphisms
an—t = Afs1on—k""" Ak:2Zn—k+1

@* "
Alt+1,2n7k+1

we must construct an isomorphism I' : Ay 5, 411 = Ua,_,)* for which p(,,, _,)-ol' = (i) and i(,, ,)-ol' =
®)"

First, recall that

Ulan_)* = {(7'177'2) € Ajt12n—k X Apon_i1 | P°(11) =7"(m2) € Az,zn—k}

and define I' : A}y o, g0y = Afi g 00k X Afon g1 by T(w) = ((0)* (w), ()*(w)). From the commutative
squares we see that p*((1)*(w)) = ¢*(()*(w)) so that ['(w) € U, )+ ¥V w € Afiton ki I (11,m2) =
(0,0) = T'(w) then (p)*(w) = 0, so w = 0 since (p)* is injective. Thus T is injective.

Suppose (71,72) € U, ,)+- Since (i)* is surjective, 3 w € Af 120141 for which (i)*(w) = 7. By

definition of U(,, _,)- and the commutative squares, we see

p(m) = p"((1)"(w)) = i*((p)" (w)) = " (72).

It follows that (p)*(w) — 7o € ker(i*). But with the exact sequences above we see that ker(i*) = im((qgop)*).

Thus there is some u € A3, 5, .y for which (p)*(¢*(u)) = (p)*(71) — 2.
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Set v =w — ¢*(u) for such u. Now v € A}, 5, ;. With

Gy () = ()" (w) — ()" (¢ () = () (w) — 0 = 7
since the exact sequences show im(q¢*) = ker((%)*). By definition of u we have (p)*(v) = (p)*(w) —
(P)*(g*(u)) = 712, so I'(v) = (71, 72) in which case I is surjective.

By construction of T,

Plan—i)- o T(w) = (1) (w)

and

i(a,—)- o T'(w) = (p)* (w)

for every w € A}, ,, p1- Therefore we have found an appropriate isomorphism from which to have

(an—k)* = Gn— as morphisms in QPR by Definition 5.1.2 of Chapter 2. By definition of N.x we now see

N.ox(H(A)) = N.x(ar |-~ [an) = (a7 | -+ | az = a1 | -+ | Gn) = H(Sd(s.%)(A))

for all A € s.PRoyy1 = Sd(s.PR)I®" (and equivalently all A € Sd(s.PR"V)"*). We conclude that the
bottom two squares of the diagram commute.

O
Corollary 5.0.17 There is a diagram

G(s.%) G(s.%)

G(s.PR) G((s.PR)™) G(s.PR)

GI GI GI
G(Sd(s.%)) G(Sd(s.*))

G(Sd(s. PR)™", T,,,) — " G(Sd(s.PR™*)"*", T,,,) — "+ G(Sd(s.PR)™", T,,, )

GH GH GH

G(N.%) G(N.%)

in which all arrows are homomorphisms of simplicial groups and all squares commute.

Theorem 5.0.18 (/11] Theorems 6.0.5 and 6.0.8)All vertical arrows in the diagram in Theorem 5.0.16 are

weak homotopy equivalences.
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Theorem 5.0.19 In the diagram of induced homomorphisms

G(s.%)x G(s.%)x

7 (G(s.PR))

(G (s.PR™))

7 (G(s.PR))

G, GI, GI,

Tn(G(Sd(sPR)™, T, ) — 0D (Sd(s. PRev)rer, T, )) SEXD o (G(Sd(s PR)™, T, ))

GH, GH, GH,

G(N.x)y G(N.x)y

T (G(N(QPR), Tz,))

™ (G(N(QPR), Tz,))

T (G(N(QPR), Tz,)),

the top row contains isomorphisms that are inverse to each other.

Proof: By Theorem 1.2.6, G(s.*) is a weak homotopy equivalence in both directions, so that G(s.*), is
an isomorphism in each case. By Lemma 4.2.2 and Theorem 1.4.2 of Chapter 1 and Corollary 1.2.5 of this
chapter, it follows that G(s.*), is its own inverse.

O

Corollary 5.0.20 All horizontal rows in the diagram from Theorem 5.0.19 contain isomorphisms which are

pairwise inverses of each other.

Proof: From Corollary 5.0.17, Theorem 5.0.18 and Theorem 5.0.19, we calculate

GI, 0 G(Sd(s.%))s 0 G(Sd(s.%))s = G(s.*), 0 GL, 0 G(Sd(s.*)), = G(5.")+ 0 G(s."), 0 GI = GI.,

so that G(Sd(s.*))« o G(Sd(s.*))« must be the identity (since GI, is an isomorphism), hence G(Sd(s.*)). is

an isomorphism and is its own inverse. Similarly,

G(N*). 0 G(N.5), 0 GH, = G(N.*), 0 GH, 0 G(Sd(s.")), = GH, o G(Sd(s.*)).G(Sd(s.")), = GH,,

so that G(N.*), is an isomorphism and is its own inverse.

O
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Chapter 4

Connections with Classical K-Groups

In this chapter, we first describe the maps in the composition

71 (G (5. PRTe?)rev) i m1(G(s.PR™))
T.
m1(G.PR)
L
Ki(R) ‘

|
|
I«
|
|
\

m1(G(s.PR))

GI.

preimage”

m1(G(Sd(s. PR)™))

GH,

by which Duflot shows that the map defined by £(X, A) = [2(A)], with z(A) as described in this chapter,

is an isomorphism for the K; case. As we do this, we will correct a miscalculation in Duflot’s work([11],

pages 466 and 469). Then we will compare the above diagram with one that differs only by applying duality,

replacing (1, with the induced map G(s.x)1. of the weak homotopy equivalence G(s.*) as in Theorem 1.2.6
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of Chapter 3:

(G (5. PRV )rev) O (G PR™)) Glen (G(s.PR))

|

T, | GI.
: “preimage”
|

(G.PR) ' m(G(Sd(sPR)™))
L GH,
Ky(R)—————------—-—————- B -1 (G(N(QPR))

The advantage of using G(s.*). to compute in the upper right corner of this diagram is twofold:

1) G(s.x) is functorially defined at the simplicial level, showing connections between simplices in simplicial

sets, unlike the ad hoc definition of ¢y, in [11].

2) As the induced map of a weak homotopy equivalence, G(s.x), is defined as an isomorphism in every

simplicial dimension, not just in dimension 1.

1 LKl(R)%m(gPR)

We describe the map L : K1 (R) — m1(G.PR) by summarizing the results given by Nenashev in [12, 14]. View
Ki(R) as Ki(R) =~ K%'(R). K{¢*(R) is the “universal determinant functor” on the semisimple category
PR, which is a construction that allows us to view elements of K;(R) as pairs (P,«) where P € PR and
a € Aut(P). Nenashev then defines a double-short-exact sequence in PR, and these sequences become
the generators of an abelian group, denoted D(R).

These double-short-exact sequences each contain two short exact sequences, which together constitute
a l-simplices of G.PR as in Definition 2.1.1 of Chapter 3. These are put together with other 1-simplices
to form “combinatorial loop objects” in G.PR;. These loop objects bound 2-simplices in G.PR, and these
2-simplices form the backbone of a notion of homotopy inside G.PR. The homotopy class of this loop is

denoted m(l(«)), and a representative for such a class is p(l(«)), so that we are concerned with elements
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m(l(a)) = [p(l(a))] € m1(G.PR). We represent this combinatorial loop object as the sequence

P P P
(i) = -, | -, | b=t
P P p

00—
of 1-simplices in G.PR.
Nenashev then shows ([12], Theorem 3.1) that there is an element m(l) € 71(G.PR) corresponding to
each element of K;(R), based on a result of Sherman’s. Sherman had a result that involved loop objects of
a certain form, and Nenashev showed that such loop objects are “freely homotopic” to certain of his u(l),
and thus are members of the classes m(l). Furthermore, it is shown ([12], Theorem 6.2.(1)) that [ — m(l)
is a surjective group homomorphism from D(R) to 71 (G.PR), which pairs generators of D(R) in particular
with homotopy classes in G.PR;.
Nenashev completes the construction by showing ([12], Theorem 6.2.(2)) that there is a group isomor-
phism (4, a) ~ I(a) from K;(R) := K{®(R) to D(R), so that composition yields (after he shows that m is

an isomorphism in [14])

Theorem 1.0.1 The map L : K1(R) — m1(G.PR) defined by L(P, ) = [u(l(c))] is an isomorphism.

2 T:GPR— G(sPRev)re

Consider the reverse s. PR again (i.e. Theorem 1.1.3 from Chapter 3 and Example 5.2.1 from Chapter
1). Let G(s.PR"") be constructed via the twisting function ¢ as in Definitions 4.1.2 and 4.1.4 in Chapter

1. From [17, 2] we know
t(d\"*" D) 0<i<n,
(rev) ] 1 p(rev)
[t(dn’f{ D)] HdSOD)  i=n

(and s;(t(D)) = t(s5°* (D)), for every j) for each D € 5. PR, 11 = s. PR

Lemma 2.0.2 The map T : G.PR — G(s.PR™")"®" defined by
T(x) = T(D1, Ds) = [t(D1)] " 't(D2),

for the pair of diagrams x = (D1, D) is simplicial map.
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Proof: For1<i<mn,

AT () = d (D)) D))
= dui([H(D1)] ' H(D2))
= [dn—i(t(D1))] " dns(t(D2))
= [td[) Dy)] " (d % Do)
= [t(dns1-(n-iyD1)] " t(dns1—(n—iyD2)
= [t(dis1D1)] " (di1 D2)
= T(di41D1,di+1D2)

Note that since they come from an element of G.PR, D, and D5 have identical rows above the first row, so

that dgD, = doDQ, hence t(doDl) = t(dng) S G(E.PR)n_l. Thus

dUT (@) = d (D) H(Ds))
= [dn(t(D1))] ™ dn(t(D2))
= [[t(dY D) (A D) (A Do) T (dC ) Dy)
= [[t(doD1)] " t(d1 D1)] [t(do D2)] " (c D2)
= [t(d1D1)] " t(d1 D2)
= T(dyDy,dDy)

= T(dom)7

so T' commutes with the face maps. Similarly, we calculate for degeneracy maps
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STy = s ([HD)]THD,))
= snj([H(D1)] 7 H(D2))
= [sn—j(t(D1))] " 5n—; (t(D2))
= [ty D) (s Do)
= [t8nt1-(n—i) D)) t(sn41-(n—jyD2)
= [t(sj4+1D1)] "t(sj11D2)
= T(sj+1D1,854+1D2)

= T(s;z)

for each 0 < 57 < n. Therefore this T is a simplicial map.
O

Furthermore, Duflot[11] shows that the induced map
T, : Wn(gPR) — Wn(G(&’pRTev)rev)

by Ti([z]g.pr) = [T(z)]grev is an isomorphism, based on the results of Berger and Gillet-Grayson. That is,
Theorem 2.0.3 T is a weak homotopy equivalence.

Now we calculate the composition T, o L given the sequence

P P P P
(i) = T T | T T S
0>——P 0>——P 0>——P 0>——P

as described for Nenashev’s map L. Notice that in G.PR we have dgz1 = dpze = (P, P) and d121 = dy29 =

(0,0). Furthermore, the 2-simplex

*H»-"U*»-O
ﬁ—u»"u
Q

T



has
0 0

doy = T s T = So(P, P) = Sodozl = Sodozg,

P>;>P P>;>P

d1y = z2 and day = z1. Therefore z; ~ 29 in G.PR by Definition 1.3.1 of Chapter 1 (with the element y

above as the homotopy element), so that we can choose the class L(P, ) := [21] € m1(G.PR) represented by
z1:= (D1, Ds2) € s. PRy x 5. PRy”

as the representative element to send to 7. In this case, note that

so that t(D1) =1 € G(s.PR"™")7°". It follows that

g

T.(L(P,a)) = [T(D1, Ds)] = [(t(D1)) ' t(D2)] = [t(D2)] = [¢ a || €m(G(s.PR™)"™).

—_—

3 91 : G(g.’PRTev) — G(ﬁ"PRrev)rev

Here we adopt the notation £(u) for generators of G(s.PR"") in order to distinguish them from the generators

t(u) of G(s.PR) and consider the map 6, defined in Theorem 7.1.1 of [11]:
0, : G(s.PR™"), — G(s.PR""),

by

0 (F(u)) = ()" sod (F(w)) (s1dg (E(1))) "+ (sidg (F))) D"+ (541 (Fu)) D"

P

which is bijective for each ¢, maps G(s.PR"?) to G(s.PR"") (recall Definition 2.2.1 of Chapter 1) and maps
Zq to Z,.

For any simplicial group G with face maps d; and given integer ¢ > 0 we know

Grev, = G M ker(dy”) N Ker(dj®) N--- N ker(dI®Y)

= Gy Nker(dy) Nker(dg—1) N---Nker(di) = éq.
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e~

so that G(s.PR™") = G(s.PR™*")" , hence #; maps G(s.PR"™"), to G(s.PR"v)"" . Similarly,

Zy(G™) = GTev g Nker(dy®) = G Mker(dg®) N -+ - N ker(dy®”)

= G, Nker(dy) N---Nker(dy) = Gy Nker(dy) = Zy(G).

Thus 6, maps Z,(G(s.PR"™")) to Z,(G(s. PR™")""). It follows that induced homomorphisms
9(1* : Wq(G(5.PRTev)) - Wq(G(E.'PRTev)TeU)

are isomorphisms. We could use Proposition 5.2.4 of Chapter 1 to reformulate this, but instead of writing

G := (G™®")"*Y too many times we will use the inverse isomorphism

07 = (01.) " : T (G(s. PR™)™) — 1, (G(s. PR"™)).

4 Gf*loT*oL

Now by definition

01(t(u)) = (£(u) ™ soda (t(u)),

and we use
T.(L(P,a)) = Tu([p(l(@))]) = [E(D2)]
where
P
Dy = Ta € s.PRL®.
0>—P
We see

dit(Dy) = (£(d5° Do) " YE(d5® Dy) = (£(doD2)) " #(d1Ds) = t(P)"'H(P) =1 € G(s.PR")y,

so that



It follows that

5 (i m(G(s.PR™)) — 1 (G(s.PR))

The map
(e s (G5 PR™)) — 1 (G(s.PR)),

is defined by

A12 AOl
i zzT | [t pIT }
k1 S2
Agi>—— Ag2 Ajg>——> Aga

where s9 is a section for I (i.e. lo 0 5o = ida,,) and p; is defined by p; = k:l_l o (ida,, — S2 0 l2). Duflot

shows that this ¢ is an isomorphism ([11], Theorem 10.0.21) and is independent of the choice of section sa.

6 Cl*OHﬂl oT,oL
With

P
T.(L(P,)) = [i(D2) = [i T ]

0>——P

we see that Ag; = 0,k; : 0 — P, Agy = Aj2 = P, and I, = a. Since a~! is a section of a € Aut(P) by

definition, we see that

pe =kt o(idp —a toa)=k "o (idp —idp) = 0.

Using Duflot’s notation from [11], page 469, this is
GO TL([p(@)]) = GLOL ([EHO0 — P 5 P)) = (P> P —0)] "

Notice we have a1 in place of « in the last expression, which represents a miscalculation on page 469 of[11]

that is now corrected.
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7 Computing GI !

Now our aim is to take the element

0
TL(L(P,)) = [{(D2)) = [ T | = [{(D5)
P2 p

of m(G(s.PR)) and follow it back to m1(G(Sd(s.PR)"*") via the isomorphism GIi, induced by the weak
homotopy equivalence GI. Duflot defines two elements wi (P, ), wa(P, ) € Sd(s.PR)5¥ = Sd(s.PR)y =
5. P R5 which, due to the correction for page 469 of[11]. We adjust them by replacing o with a~! (and using

the notation in this paper, so from [11], page 466 we change: T := « € Aut(P) and X := P):

wy = w(P,a™t) = 0>——P>——>P

O O
Il
O 0
Il
Il
|
Il

0 P P
and
0
0>———>0
wy = wo(P,a™t) = 0>—0>——>0
P P P P
0 p——>p——>p>2>p

Now we calculate
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= 0
P2 p T
I>(wy) = dododo(wr) = dodp _T = =dp p=""sp
0> P=">p —T —T
T =T = 0——> P=">p

0 0 P> p

-1
(o7
P>

0
= T = DI2 € 5. PR,
P

so that GI(t(w)) = t(D5), in which case G I, ([t(w1)]~") = [t(D4]~!. Similarly

0
0
0>———>0 T
Ir(ws) = dododo(ws) = dody T =dp 0>——>0
0>>——0>—"—=>0 T T
T _T 0>——0>——>0
_ o1

0
T =0y € 5. PRy
0

(e

so that t(Iz(ws)) = e; and therefore GI,([t(w2)]) = [e1] = 1. Now we have the result:

GIL([t(w2) (Hw1))']) = GL([H(w2) ) (GL([E(w1)) ™" = [ea] (D)) ™ = [H(D5)] ™

Therefore we follow [t(D5)]~! € m1(G(s.PR)) back to the element [t(w2)(t(w1))™!] € m(G(Sd(s.PR)"™?))
via GI,.

We pause here and note that
Q:= (.00} oT.oL: Ki(R) — m(G(s.PR))

is an isomorphism, and this brings us to the maps GH, GI discussed in Chapter 3.
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8 Computing GH,

Consider the weak homotopy equivalence H : Sd(s.PR)"*’ — N(QPR) from [11], which induces weak homo-
topy equivalence GH and therefore results in isomorphism GH, : m1(G(Sd(s.PR)"")) — m1 (G(N(QPR))).

Given an element

A2n,2n+1
Akt1,2n—k Apt1,2n—k+1 . Ak+12n+1
p
i
w= Ak on—k Ag 2n—k+1 - Ag 2n+1
A1 e At on—k>—> A1 2n—k+1 e Al ont1
Ao Ap,2 e Ao on—k>>—> Ao 2n—k+1 e Ao, 2n+1

in Sd(s.PR)!¢" = 6. PRay+1 (and 0 < k <n — 1) this is defined by

H(w) = (alzn—(n—l) | a2 | e | an7k| ce lanfO)
where
-t = Akg1,2n—k " A on—k41 -
x /
Ag on_k

For the elements wy,wy € Sd(s.PR)5Y, we calculate Ha(w1) = (a1]ag) where
ay = ag—_1 = 0.%P

N

0

(0]



and

az =

NS

Using notation from [11], page 453, it follows that Ha(w;) = tp|(a™1),. Similarly,

Hy(w2) = (b1]b2) = \—/:P | P- vp = (gpl(a™ ).

Now we calculate the image of the induced map as
GH,([H(w2)(E(w1)) ™)) = [GH1 (#(w2))(GH: (H(w1))) ']

= [t(Ha(w2)) (t(Ha(w1))) '] = [t(gpla™ ") (t(epla™) 1.

Using the notation of [11] again, we conclude
GH.([H(w2) (#(w1))']) = [z(a™)].

9 Computing ¢ : (P, o) — [z(«)] Correctly

Duflot shows ([11], Lemma 9.0.8) that [z(«a)][z(8)] = [z(« o 8)] in general for appropriate automorphisms «
and f3, so in particular [z(a™!)] = [z(a)]~!. In [11], the isomorphism ¢ is computed incorrectly but stated
correctly, as we now confirm.

We have shown a composition of isomorphisms
¢ :=GH,o(GL,) ' o(.00 0T, oL,

which is an isomorphism given by (P, a) + [z(a)]~* where [x(a)] is exactly the element described by Duflot in
[11]. This does not change the conclusion that the map & is an isomorphism: composing with the “inversion”
isomorphism N on the abelian group 7 (G(N(QPR))) (recall Proposition 2.1.5 in Chapter 1) gives £ := No¢’,
defined by (P, a) — [z(«)], which confirms the result that the explicit map £ : K;(R) — m (G(N(QPR)))

defined in [11] is an isomorphism.
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10 Computing é

We now look to the alternative diagram

T (G(s PRTEV)Ter) . (G (s PR™Y)) Glen (G (s.PR))

|

T, | G,
: “preimage”
|

71(G.PR) " m(G(Sd(s.PR)™Y))
L GH,
Ki(R)————————-——————— -~ e -1 (G(N(QPR)))

We see that the computation of f differs from that for £ only just after the calculation of the image of
Hf*l o T, o L and before seeking a preimage of GI1,, so we pick up the calculation at that point. The dual of

the element

is given by

0
=[t T |7t € G(s.PR);
pr—" p*

(s



Following this element back through GI;., we again adjust the elements wi (P, a), wa(P, ) proposed by

Duflot, but this time we define

0
wi = wi (P*, a*) = 0 P> p
0 0 pr—2 p*
0 0 0 pr—2 p*
and
0
0>>——>0
wo 1= we(P*, ™) = 0 0 0
Pt Pt pr> 2 ps
0 Pt Pt pr> 2 ps
Now similar to before we calculate
0
IQ(’LUl) = dododo(wl) = T = 5. % (Dg) S E.PRQ
pr—2"5 px

so that GI(t(wy)) = t(s. * (D3)), in which case GL,([t(w1)]™1) = [t(s. * (D2)]~!. Similarly

I (ws) = dodody(w2) = =05 € 5. PR,

O—=O

(| E——

so that ¢(Iz(ws)) = e; and therefore G, ([f(w2)]) = [e1] = 1. Now we have the result:
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GL([(w2) (H(w1) ™']) = GL([{(w2))(GL([E(w1)])) ™ = [ea)([t(s. » (D2))) ™" = [t(s. = (D2))] "

Notice that the map (1. : 1 (G(s. PR™)) — m1(G(s.PR)) relies on a choice of section for the surjective
map that is part of the 1-simplex used in the construction. Although Duflot showed that the construction of
(1« is independent of the choice of section, this is not sufficient to extend the idea to higher dimensions, and
will not work for mapping mo(G(s.PR™")) to m2(G(s.PR)), should that be necessary. On the other hand,
Theorem 1.2.6 of Chapter 3 gives us a weak homotopy equivalence with the same domain and range and

which is by definition applicable in all dimensions. Therefore we map

G(5.4)1(01, (Tu(L(P, )))) = G(5:5)1.(07, (Tx(D1, D2))) = G(s.5) 1. (07, ([E(D2))])

Il
—~
—~

=

*
—

S

N

=
|
-

I

~
*
—_—
|
—

= G(s.%)1.([{(D2)] ™)

so that we have the alternative isomorphism

Q = G(s5.%)1. 00} oT.oL: K{(R) — m1(G(s.PR)).

We will, in fact, use Q' along with the long exact sequence of a Kan fibration and the exact sequence of
Milnor from Chapter 2 to construct an isomorphism for Ky(R).

Now for these elements w,wy € Sd(s.PR)5%, we calculate Ha(wr) = (a1]az) where

a; =ag—1 = O...%P*
0/
and
ay =ag_o9g= P*...—— P* .

i
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We see quickly that Ha(wq) = tp=|(a*)r. Similarly,

Hy(wz) = (b1]b2) = (0. —————=P* | P*-.. ———————>P* ) = (¢p-

Now we calculate the image of the induced map as

GH.([H(w2)(t(w1))™"]) = [GH:((w2))(GH: (H(w1)) 7]

= [t(Hy(w2))(t(Hz(w1))) '] = [t(gp-]e”) (t(ep-|a*)) 1]

Using the notation of [11] again, we conclude

It remains to compare [z(a~!)] with [z(a*)] in m1 (G(N(QPR))) to see if duality changes the image of the
isomorphism in a straightforward way. It makes sense from Theorem 1.2.6 of Chapter 2 that these elements
should in fact be equal up to a sign at worst, but showing this explicitly remains a topic of continuing
research, and the issue does emerge again in the context of the commutative diagram introduced in Chapter

6.
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Chapter 5

Working in G(s.PR)

1 Introduction

This Chapter constitutes the main work of this dissertation. The main result is the construction of an
explicit isomorphism f : St(R) — 71 (Y (R)), where Y (R) is a Kan Complex associated with the simplicial
group G(s.PR). We begin by exploring analogs to Nenashev’s work in [13], which gave a similar calculation

for G.PR.

2 Homotopy in G(s.PR)

2.1 ip

We first turn our attention to the nerve construction on the group Aut(P) for P € PR. Thus we use the
common notation

a = (ai]ag| - |on) € N(Aut(P)),

or simply a = («) for 1-simplices (and from now on we identify the single 0-simplex of N(Aut(P)) by P —

recall Examples 5.1.1 and 5.1.2 of Chapter 1). Additionally we define

1p = (1p|lp|---|1p) € N(Aut(P)),

if n >0, and 1p = P in dimension 0.
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Using this, we identify o with the element

S S.PRTL+1

0:
EE
0

and we will consider the particular generators t(a) and ¢(1p) of G(s.PR),. The following can be verified by

direct computation in G(s.PR).

Lemma 2.1.1 Given any P € PR there is a simplicial map ip : N(Aut(P)) — G(s.PR), given on n-
simplices o = (a|ag| - -+ |ay) by

ip(a) = t(a)t(1p) L.

Definition 2.1.2 (See [11]) A short exact sequence of pairs
(P'.a') L (P.a) % (P a")

s a diagram

0 p—Ttsp s pr 0
0 Pt sp s pu 0

. . . . f g .
in which all squares commute, o, o’ and o are automorphisms and for which P < P — P" is a short exact

sequence in PR.

Given a short exact sequence

1L pd o pr

in PR, m >0, a = (aq]az| - |am) € N(Aut(P))m and o’ = (o |ab]| - -|al,) € N(Aut(P’)), for which
(P af) 5 (PLag) & (P, 1p)
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is a short exact sequence of pairs for each 1 <1i < m, consider the element

(&, a;l) € 5. PRpy12

defined by
p
g
p—Tsp
al, Qm,
0 P’ ! P
(@ a;l) = A1 m -1
oy %
0 = 0 p—1-p
|
0 0 s 0 P ! P

In case m = 0, this is the element (P’, P;l) € s. PRy representing the short exact sequence itself:

P//

and we also define
(—,—;1):=P" € 5.PR;.

Lemma 2.1.3 Given a short exact sequence
;S 9 s
l:P"~P->»P
in PR, m >0, a = (a1]ag| - |am) € N(Aut(P))y and o’ = (af|ab]---|al,) € N(Aut(P'))m, if

(P, o) 5 (Pa;) % (P, 1p0)
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is a short exact sequence of pairs for each 1 <i <m, then t(a’, ;1) € G(s.PR)ms1 has
dmi1t(e,a;l) = t(a’) t(a) € G(5.PR)

and
dit(a, ;1) = t(d;a’, d;a; 1) € G(5.PR).,
Vo<i<m.

Proof: We see by definition that dot(P’, P;1) = t(P") and dit(P’, P;l) = t(P")~'t(P) for case m = 1, and

by calculation in s.PR that d;(a’, ;1) = (d;a’,d;ex;1) ¥V 0 < i < m, in which case
dit(a!, ;1) = t(d;a’, d;a; 1)

for each 0 < i < m by definition. For i = m 4+ 1 we see
dmi1(a/, o) = a and dp,o(a’; ;1) = @', so that by definition in G(s.PR) (i.e. Definition 4.1.2 of
Chapter 1),

dns1t(@, ;1) = t{dmia(@’, ;) " t(dmra (@, 1)) = t(a!) " ()

Note also that dm+1t(1P’7 1p; l) = t(lp/)_lt(lp) 75 1e G(EPR)m
O

Theorem 2.1.4 Given m > 0,P,P' € PR, o« € N(Aut(P))m, ' € N(Aut(P'))m, if
r S 9. pn
l=P PP
is a short exact sequence for which (P',al) EN (P,a;) 2 (P",1pn) is an exact sequence of pairs for each
1<i<m, then 3 wp(a’,a;l) € G(6.PR)ms1 for which
a) diwp (o, a;1) = wp_1(d;a’, djo;1) V0 < i < m.

1:

b) dm-l-lwm(alaa;l) = iP'(OLI)_ 1P(o‘)'

Proof: First we define wo(P’, P;l) := 1 € G(s.PR);. In case m = 1 we have a € Aut(P), o/ € Aut(P’)

and short exact sequence of pairs (P, a’) EN (P,a) 2 (P"”,1p~) with corresponding short exact sequence .
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From Lemma 2.1.3 we have

P// P//
d d
uy =t(a,a;l) =t P’>L> P |,v1=t(lp,1pjl)=t P’>L> P | € G(s.PR),
0 P’ ! P 0 P’ ! P
with
douy = t(a/) " 't(a)
and

dov] = t(lp/)ilt(lp).

On the other hand

p
dou = dov1 =t QT
p—>p
and
pY
diuy = dyvy =t QT
P’ d P

With ¢ = t(P') € G(s.PR)g set 21 = s150¢. Now let wy(a/, ;1) = zjugvy 27t € G(s.PR)2. Then we

calculate

do’wl(O/, Qg l) = (d021>(d0u1)(d0’01)_1(dozl)_l =1= ’wo(Pl,P; l) = wo(doa/,doa; l)

and similarly

d1w1 (a', Q l) =1= U}O(Pl, P; l) = wo(dlo/, dla; l)

Finally

dywy (o, ;1) = (daz1)(dour) (davr) ™ (daz1) ™" = (s08) (t(a’) (@) (t(1p) " t(1p)) " (s00) "

But sp¢ = t(1p/) by definition, so

dywr (o, ;1) = t(1p)t(0) (@)t (1p) " t(1p )i(Lpr)
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= (ta)t(1p) )T He)t(1p) ) = ip(a) Hip(a).

Note that in the special case m = 1 we have wi(a/, a;1) € G(s.PR),, which gives us more information
than we have for case m > 2.

For m > 2, (a/, a;1) € 8. PR, 12 define m + 1-simplices
Um = t(Oé,, (e l)a Um = t(]-P’7 ]-P; l), Zm = SmSm—1-""" Slsot(Pl)

in G(s.PR) and set w,, = 2ymUmv, 2. Then we find d;z,, = 2,1 V0 <i <m+ 1, and by Lemma 2.1.3

we know d;u,, = t(d;a’,d;a;1) and d;v,, = t(1pr,1p) V 0 < i < m. Thus
diwn (e, a5 1) = (dizm ) (ditin ) (div) " (dizm) ™"
= zm_lt(dia’, dia; l)t(lp/, 1P)712;1171 = wm_l(dio/, dia; l)
whenever 0 < i < m. For i = m+1 we notice again that z,,_1 = t(1p/) so that with d,,11v,, = t(1p/)"1t(1p)
and d, 11Uy, = t(a’) () from Lemma 2.1.3, we have

dm+1wm(a'7 Q; l) = t(lp/)t(a,)ilt(a)(t(lp/)71t(1p))71t(1p/)71

= (ta)t(1p) )" (He)t(1p)7h) = ip () lip(a).
O

Remark 2.1.5 In case P’ = 0 we notice in the proof above that ¢ = t(0) = t(so(0)) = 1, so that z; = 1.

Also uy = v1. Therefore P’ = 0 implies that wi(c/, ;1) =1 € G(s.PR)>.

We have a few corollaries. The first is a partial analog (i.e. in case m = 1) to Lemma 2.3 of [13]. Recall
Definition 2.2.1 and Lemma 2.2.2 from Chapter 1: By := im(dg) < Gy for any simplicial group G, with
Cig = d2|@.

Corollary 2.1.6 Given P,P' € PR,a € Aut(P),a’ € Aut(P'), if | = P’ L P L P s a short exact
sequence for which (P’ o) EN (P,a) 2 (P",1pn) is an exact sequence of pairs, then ip/(a/) and ip(c)

represent the same element of the group G(s.PR)1/B;.

Proof: As in the proof of Theorem 2.1.4, case m = 1 we construct

wy (o, ;1) € G(s.PR),
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with dow (o, ;1) = (ip (/) Lip(a).

Therefore (ip(a’)) " tip(a) € By so that by Lemma 2.2.2 in Chapter 1 it follows that [ip/(a/)] = [ip(a)]
inside G(s.PR)1/B;.
0

Corollary 2.1.7 Let P’ € PR,a’ € Aut(P') and P = P' ® Q with Q € PR and consider the short ezact

sequence of pairs

0 p'—"sp Q 0
T
0 p—tsp-—T5Q 0

Then there is a w(a/, o/ & 1) € G(s.PR), with dyw(a/, o/ & 1g) =ip/(a’) Hp(a/ & 1g).

Proof: This follows immediately from Corollary 2.1.6 by applying it to the case @ = o/ & 1¢.
O
Consequently, [ip/(a')] = [iprag(a’ @ 1¢)] inside G(s.PR)1/B;. Therefore homotopy classes of images of

the i’s in the sense of Theorem 2.2.3 of Chapter 1 are stable under direct sums:

Corollary 2.1.8 Given any P’ € PR,/ € Aut(P'),P = P' ® R",n € N, there is a &, € G(s.PR), with

do&, =ip/(a) tip(od ® 1,,) (using 1, = idgn ).

Proof: This follows from Theorem 2.1.4 and Corollary 2.1.7 by setting

& =w(d,d ®1p)w(d ®1r,d Gl @ lg) -w(d ®1l,_1,¢/ ®1,_1 & 1g) € G(s.PR),

since R € PR and

l,=1p®1p®---Blrp=1,_1® 1g.

That is, we calculate

do&n = (ip (o) tipor(d) ® 1g)(iper(a @ 1g)) lipar:(d/ @ 12)

o 'ip/@Rn—l(O/ (&) 1n71>(iP’€BR"*1(O/ (5) 1n,1))_1ipl@Rn (O/ (&5) ln)

= (ip (o) Niprgre (@ @ 1y).
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2.2 Filtrations: The elements X,,(F(P,«))

Definition 2.2.1 Let P € PR, € Aut(P). An admissible filtration F = F (P, ) of the pair (P, o) with
length n is a sequence

F:rp=0CcPCcChc.--CP,=P
of projective submodules P;, with admissible inclusions (i.e. P;/P;_1 € PRY 2 <i<mn), such that:
1) o :=a|p, € Aut(P) ¥V 1<i<n,a =1p and o™ = q.
2) For each 2 < i < n, the homomorphism induced by a® on P;/P;_; is the identity.
We can show an analog to Lemma 2.2 of [13]:

Theorem 2.2.2 Given P € PR,a € Aut(P) and admissible filtration F(P, o), 3 X1 (F(P,a)) € G(s.PR),
with

d2X1(F(P, Oé)) = iP(OZ)

Proof: By Definition 2.2.1, for each 2 < i < n we have a short exact sequence of pairs (P;_1, a(i’l)) —
(P,;,oz(i)) — (Pi/P;—1,1p,/p,_,) corresponding to the short exact sequence l; : P,y — P; — P;j/P;
with the canonical inclusion and projection. Therefore by Theorem 2.1.4 for each 2 < ¢ < n there is a

w; = wy (@Y ;1) € G(s.PR), with dow; = (ip, , (@) Lip, (o).

Define X (F(P, o)) = wows - - - wy, € G(s.PR),. Then

d2X1(F(P, @) = (ip, (o)) tip, (@) (ip, (@®)) -

s (ip, o (@) hip, (@) (ip, (")) lip, (alM)
= (ip, (@MW) ip, (™).

Notice in particular that since o)) =1 p, by definition we must have
ip, (Ozl) = t(lpl )t(lp1)71 =1€ G(ﬁ.PR)l,
as well as P, = P and o™ = «. Therefore

d2X1 (F(P,Oé)) = ip(Oé).
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Definition 2.2.3 Given P € PR, a = (a1|as|- - |ay,) € N(Aut(P))m, let F be a sequence

of projective submodules and admissible inclusions such that F' is an admissible filtration of the pair (P, a;)
for each 1 < i < m. Then we say F = F(P,a) is an admissible filtration of the pair (P,a) =

(P;Oél\a2|"'|am)-

And now we have an analog for Lemma 2.4 of [13] as well:

Lemma 2.2.4 Suppose o € N(Aut(P)),, and F = F(P, ) is an admissible filtration of (P, ). Then there
is an Xpm(F (P, at)) € G(8.PR) 41 for which:

a) dpXm(F(P,a)) = X1 (F(P,drav)) for each 0 < k < m.

b) dm1 X (F(P,a)) =ip(a)

Proof: For m = 0, define Xo(F(P,P)) = 1 € G(s.PR);. In case m = 1 the result follows from Theo-

rem 2.2.2; indeed, we have the stronger statement that X, (F(P,«)) € G(s.PR),. The general assumption is

that for each @ = (|- -+ |am) € N(Aut(P)),, the sequence F' admits a diagram

Py=0 P, P, P, >——>P=P,

agl) a§2) ainil) ai

0 P Py P, y>—P
aél) af) ag"_l) s
0‘5711)71 0‘53)71 aﬁ::ll) Qm—1

0 P, P P_y>——>P
o) a® Oég::,_m am

0 Py P P, P

in which all squares commute and the jth horizontal sequence for 1 < j < m represents an admissible
filtration F(P,a;). Notice that such F' will also be an admissible filtration of the pair (P, a;41 o ). So for
each 2 < i <n and each 1 < j < m we have a short exact sequence of pairs

(Pio1, ol ™) — (Pmay)) — (P;/Pi—1,1p,/p,_,)

J
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with corresponding short exact sequence [; (note the same [; corresponds to each j). Now for each 1 <i <n
we have a(®) := (agi) \ag)\ e |oz$,i)) € N(Aut(P;)), (i.e. consecutive vertical columns give pairs ¢~ a(
of m-simplices that satisfy the hypothesis for Theorem 2.1.4), with a(™ = a. It follows that for each

2<i<nIw=wn(a®Y a®;l) c G(s.PR)ymy1 for which
dpw; = w1 (dpa* 1 dpa®; 1;)

for every 0 < k < m and

dm+1wi = iPi—l (a(i_l))ilipi (a(z))

Now define X,,,(F(P, ) = waws - - - wy, € G(8.PR)41 and calculate:
A X (F(P, @) = w1 (dea™, dpa®; 1) w1 (da® , diea®;13) - w1 (dpa™ ™1 dypa™; 1,,)

= Xpm—1(F(P,dycx))

for 0 < k < m, and

1 X (F(P, ) = (ip, (@) lip, (@@ (ip, (@) -ip,_, (@) (ip, _, (@ 7D)) ip, (™)

= (in,(@®))tip, (™).

But by assumption F' is an admissible filtration of (P, «;) for each 1 < j < m, so ag-l) = 1p, for each
1 < j < m by Definition 2.2.1, in which case a(*) = 1p,. Also by definition a(™ = « with P, = P.

Therefore dp, 11X, (F(P,a)) = (ip,(1p,)) " tip(a). But by definition (i.e. Lemma 2.1.1) we know
ipl(]_pl) = t(lpl)(t(].pl))71 =1le€ G(EPR)m

It follows that

dms1 X (F(P, @) = (Dip(e) = ip(ar).
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2.3 Refinements of Admissible Filtrations

Definition 2.3.1 (See [20]) Given a sequence
F:-rRCcPC---CP,=P

of projective submodules for P € PR, a refinement of F is a sequence F which can be obtained from F
by inserting a finite number of projective submodules into F. If F is an admissible filtration of (P,«), the
restriction of o € Aut(P) to each inserted submodule is an automorphism of that submodule and the inclu-
sions around and including each inserted submodule are admissible, then we say ﬁ(P, a) is an admissible

refinement of the admissible filtration F(P, ).

Lemma 2.3.2 Any admissible refinement of an admissible filtration is an admissible filtration.

Proof: Let
F:Bh=0CPC---CP, 1CP, =

be a sequence that is an admissible filtration of (P, «). Given 1 < ¢ < n, we show that the sequence
F:Pp=0CPC--P,yCPCPC---CP, CP,=P

obtained by inserting a single, a-invariant submodule P € PR as shown will be an admissible filtration of
(P, ), provided the inclusions P;_q C ]3, P C P; are admissible. The result will then follow by induction.
Denote a@ = a|3. We know by definition of admissible filtration F' that a® induces the identity map on

P;/P;_4, so that with respect to cosets we have
a® (p)+Pi1=p+P_1€P/P_,

for every p € P;. Since P C P and alp = a(i)|15 it follows that & induces the identity map on ]S/P,;_l, SO
that

(P, aV) = (P,@) = (P/Picy 15, )

is a short exact sequence of pairs. But also we have that

a® (p) —pe€ Py
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for each p € P;, and P;_; C P. Therefore
a(p)—pePVpe P
hence a(? induces the identity map on P, / P and
(P,a@) = (Pi,a) = (P/P,1p ,5)

is a short exact sequence of pairs. Since these are precisely the short exact sequences that are inserted along
with P and its inclusions and everything else about the filtration remains unchanged from F (P, ), it follows
that the new sequence F' is an admissible filtration of (P, ).
0

We first consider o« € Aut(P) with admissible filtration F(P,a) : P C P, C --- C P, = P, and a

refinement of F' by one additional, a-invariant submodule P € PR (and @ := q B)
F:PCPC---PL CPCPC---CP,=P,

such that ]5/PZ-,1,PZ-/]5 € PR.
We know F(P,«) gives exact sequences of pairs [, : (Pj,aU=V) — (P;,a\9)) — (P;/P;_1, lp,/p,_ 1) 2 <
7 < n as in the proof of Theorem 2.2.2. From the proof of Lemma 2.3.2 we have exact sequences of pairs
{1;} for F as well, and we see that
L=1Vv2<j<i-1,
i : (P, V) = (P,a) = (P/Piy,15,p ),

l~i+1 : (ﬁ7d) - (Raa(Z)) — (PZ/§71P7/13)’

and

L=l Vi+t2<j<n+1l

From Lemma 2.2.4 we now have elements
X1 (F(P,a)) = wi(aW,a?; )w (e, a®;15) - w (@2, oY 1, Dwy (@D, oD 1)

e wl(a(”_l), o ly)
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and
X4 (ﬁ(P, ) = wl(a(l), a®: lg)wl(oz(Q), a®): l3) -+ wy (a(i_Z), Q; ii,l)wl (&, a(i); Zi)wl (a(i’), a(”l), lit1)

e wl(a(”_l), o ly)
in G(s.PR),.

The main results of this section require us to compare X (F(P,«)) with X (F(P,«a)). Let
A= wl(oz(l)7 a®: lg)wl(a(Q), a®: l3) -+ wy (a(i_Q), ali=h). lic1),

B =w (o oY 1) w (@Y s l,),
C = wl(a(i_l), al® . 1),
C, = wl(a(ifl),&;l;)
and

Co = wi (&, aD;li41).

Then X, (F(P,«)) = ACB and X1 (F(P,«)) = AC1C2B. Thus we see that in order to compare X (F (P, a))

to X1 (F(P,«)), we must first compare C' to C1C5. Theorem 2.1.4 shows how to do this:

Lemma 2.3.3 If

P j5>—> P
la' l& la
P j5>—> P
18 a commutative diagram of projective modules and automorphisms such that the horizontal rows are ad-

missible inclusions, with exact sequences of pairs

1+ (P',a') = (P,a) = (P/P', 1ppr),

i (Pa) = (P,a)— (P/P'15,p,)

and

lr: (P,a) = (P,a) = (P/P,1,,p)
and corresponding elements C' = wi (o', a;1), Cp = wl(o/,d;il), and Cy = w1 (&, Zg) in G(s.PR),, then
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[C} = [0102} m G(EPR)Q/BQ

Proof: Define

Then

and similarly ¢(1p/,15,1p) € G(s.PR)3). Calculations show that

dot(/, &, ) = dit(a/,a,a) =t

and

Likewise

dot(lp/,lﬁ,lp) = dlt(lp/,lﬁ,lp) =t
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P/P
P/p'>——> P/P'
T € 5. PRy.
P’ P P
a’T &T a
P’ P P
t(a,a,a) € G(s.PR)3
P/P
T
P/p'>——> P/P'
.
P’ P P
dot(d ) &, ) = t(a, o la),
dst(a/, &, ) = (t(e/, a&; 1)) "M (!, a;1)
P/P
T
P/P'>—> P/P'
]
P’ P P

dot(1pr,15,1p) = t(15, 1p; o),




and

dst(1pr,15,1p) = (t(1pr, 15;01)) " t(1pr, 1p3 ).

Let
x = (sot(lpr, 15301)) " Lsat(Lpr, 1550t &, ) (t(1pr, 15, 1p)) " (s2t(1pr, 155 00)) " Fsat(1pr, 155 00).
Then we calculate
doz = (t(1p, 15501)) " (dosat(1pr, 15 11))dot (e, &, @) (dot(1pr, 15, 1p)) " (dosat(Lpr, 15500)) " t(1pr, 155 01)
=1€ G(s.PR)2
and
diz = (t(1p, 15:00)) " Hdusat(Lpr, 15:01))dat (e, &, @) (dit(1pr, 15, 1p)) " H(disat(Lpr, 1550)) " t(1pr, 15500) = 1.

Consider t(1p/,15; l,) € G(s.PR), : from earlier calculations we have

doSot(lp/, 115; l~1) = dlsot(lp/, 115; l~1) = ngot(lp/, 1}5; ll) = t(lp/, 113; Zl),

and

d3$0t(1pl, 1ﬁ; il) = (Zi)_lgl

where

Zi, Z1 E G(EPR)Q

are those elements used to express wi (o, &; l}) = Ziugvy(2]) 7! and wy (&, a;lz) = Z1u707(21) "t as developed

in the proof of Theorem 2.1.4. Notice that
wi(e’, o50) = z1t(a’, s ) (t(1pr, 1p3 1) 7 (21) 7
for this same z]. We use these to calculate

dox = t(&, s 12) (t(1 5, 1p; 1)) 7

95



and
dsx = ((24)7'21) " (1p, 15; Wt(a',a; L) (o, a5 D) (t(1pr, 15; L) H(1p,1p:0) 7L () 5

= 2 (o) & )1, 1 1) 7 ()T T E A as DE(Lp, 13 1) (1) A
=z wi (o, @ 1) Trw (o eg )3
Now set @ = x(sadox) ™! :

dott = doz(s1didoz) ' =1 € G(5.PR)y;
diii = dyz(sydydyz) ™t = 1;
doit = doz(dyz) ™t = 1;
dsti = dyw(dow) ™" = 27 wi (o, 65 1) " (o, a5 )31 (G, 03 1) (H(1 s, 1p5 ) ™) 7

Therefore @ € G(s.PR), and we have
7wy (of @) T rwg (o, o D) E (Hé, a; l~2)(t(115, 1p;12)) )™t € B, aG(s.PR)s.
Moving to equivalence classes in G(s.PR)2/ By we see
[ twi (o as ) T (of e 1D E (H(G s ) (E(1 s, 1ps ) ™)) T =1

so that

[wi (e, & 1) wi(of, e 1)] = [Z1t(@, a3 1) (t(1 5, 1p; 12)) " 20 = [wi (&, ;1))

Thus [C7'C] = [C] in G(s.PR)s/B,. Calculating in the quotient group G(s.PR)s/Bs, it follows that
[C1]7H[C] = [Cs), so that [C] = [C4][C2] = [C1Cy).
O

As a corollary to the above lemma, we have one our main theorems of this section. We use already

established notation and definitions.

Theorem 2.3.4 Suppose that F(P, «) is an admissible refinement of the admissible filtration F(P,«). Then,

given the elements X1(F(P,«a)) and X, (F(P,«)) € G(s.PR),,

[(X1(F(P,a))] = [X1(F(P,a))] € G(s.PR)y/Bs.
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Proof: By Lemma 2.3.3, if the admissible filtration F(P,«) is obtained by inserting one projective module

into the admissible filtration F'(P,«a), then in G(s.PF),/Bs,

[(X1(F(P, )] = [ACB],

with A,C, B € G(s.PR), as defined immediately before the Lemma 2.3.3.

But, computing in the quotient group G(s.PF'),/Ba, and using the lemma,

[ACB] = [A][C][B] = [A][C1C:][B] = [AC1C2 B] = [X1(F(P,a))],

where C1, Cy are as defined immediately before the lemma.

By induction on the number of insertions to the original filtration F', we obtain the theorem.

2.4 Standard Filtrations

We now specialize to the case P = RY and a € GL(N,R), N € N. We fix the standard basis Sy =
{e1,...,en} for RN, If I C By, then F(I) denotes the R-submodule of R spanned by the elements of I.
We define F'(#) = {0}. Note that F(I) is always a free R-module on the set I. Moreover, if I C J, then the

quotient module F(J)/F(I) is a free R-module on the set J — I.

Definition 2.4.1 Suppose

is a chain of subsets of Bn. The standard filtration of RN defined by I is the filtration below, denoted by
F(I):
0C F(I1) C F(I) €+ C F(Is) = RV,

By definition of these free R-modules, the inclusions in standard filtrations are always admissible. We

do not require the inclusions to be strict.

Theorem 2.4.2 Suppose Fy = F(I) and Fy = F(J) are admissible, standard filtrations of (RN, «), corre-

sponding to chains I and J of subsets of By. Then [X1(F1(RY,a))] = [X1(F2(RY,a))] in G(s.PR),/B>.

Proof: Assume without loss of generality that I and J as in the hypothesis have the same number, .S, of
terms in their chains, where we append the empty set to the beginning of the shorter chain as necessary.

Indeed, as in Remark 2.1.5, the element that results from Lemma 2.2.2 for this appended chain would be
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1 € G(s.PR) multiplied (finitely many times) by the element corresponding to the shorter chain, hence it

would be exactly the same element. Let F be the filtration F = F(H) corresponding to the chain
H:0CLUJ1 CIhbuJ, C---CIgUJg

of subsets of By (ie. Hp=0and H; =L UJ;V1<i<S9).

Hy = I, U Jy, and by assumption (Definition 2.2.1) we have a|p(r,) = 1p(s,) and a|ps,) = 1p(,). Thus

alpy+rn) = 1P+

and since F(Iy) + F(J1) = F(I; U Jy) for these free modules, it follows that a|pm,) = lpa,). Again,
F(L)+ F(J;) = F(I; U J;) = F(H;)) V1 <4 <8, and by definition we know a|p(;,) € Aut(F(I;)) and
alpy,) € Aut(F(J;)), so a|pm,) € Aut(F(H;)).

By construction

H,—H;, 1= (Il @] Jl) — (Ii—l @] Ji—l)-

We consider cosets e + F(H;_1) in F(H;)/F(H;—1) for e € H; — H;_1. If e € I; then e ¢ I,_1, (since
e ¢ I,_1 U J;_1) so that by definition of F(I) as an admissible filtration of (R, ) we have a(e) = e + f
where f € F(I;_1). But then f € F(I;_1) + F(J;—1) = F(H;_1), hence a(e) + F(H;—1) = e + F(H;_1).
Similarly, if e € J; then e ¢ J;_1, so by definition of F(J) we know «a(e) + F(J;—1) = e + F(J;_1), hence
ale) + F(H;—1) = e+ F(H;—1). We conclude that a|r(g,) induces the identity on the quotient module
F(H;)/F(H;_,). Therefore F = F(H) is a standard, admissible filtration of (RN, a), constructed from
Fi(RY,a) and Fo(R"Y,a).

Now define a sequence of standard, admissible filtrations F, ;, = F(Hq) of (R, a), and similarly F, , =

F(H[l,b)7 for each 1 <a < S —1 and each 1 < b < a, corresponding to chains
Hypy:WCLUJ CLUJJLC--Clg_q1UJs—q-1 CIs—qUJs—q-1C - CIs_qip—1UJs—a1

Clsqip-1UJg—a CIgqipUJg—qa CIgqipt1UJg—a C - Clg 1 UJs_q CIgUJg(= BN = Ig)

for Fyp, and
b WCHhUJLCHLULC--Clsq1UJs—a-1 Cls-qUJs a1 S+ CIs ayp-1UJg a1
Cls—arbUJs—a CIlg_aqrp41UJg—q C - Clg1UJs_q CIg
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for F! .
It is a straightforward exercise to verify that the resulting filtrations are admissible, and since the chain
H(;,b can be obtained from H, ; by deleting the term Ig_444-1 U Js_q, each filtration Fy p is a refinement of

the corresponding F(;_’b. But we also have
Hopp1:0CHUJL CLUJC---Clg g1 UJgq1CIs—qUJgq-1C - CIs qip-1UJs_q-1

- Isfa+b U Jsfafl - Isfa+b U Jsfa Cc I.S'fa+b+1 u JS—a c.--C Isfl ) JS—a - IS;

so that H;,b can be obtained from H, 41 by deleting the term Is_qyp U Jg_q—1. Therefore F, 11 is a
refinement for F/ ,.

Notice in particular that for each 1 < a < S — 1 we have
Hyo:WCHUJC--ClIs_go1UJs—q-1CIgqUdgqo1C--Clg1UJg g1 CIg1UJs_o C s
with
H,,:0ChUJ1 € Clsa1UJsa-1CTsqUJs g 1S CIs_1UJs o1 C g,
and
Hop11:0CHUJ € Clg (a41)-1 YU Js—(a+1)-1 € Is—a-1UJs- a2 CIs_ g1 UJs a1

Clg qUJsa-1CIs qr1UJs q1C--Cls 1UJs q1CIs.

Thus H| , can be obtained from H,y1 1 by deleting the term Is_,—1 U Js_4—2, in which case Fy41,1 is a

a,a

refinement of F, é’ o~ Furthermore,
Hi1:0CLUJLCLUJy C--Ig_oUJs_2 CIs_1UJs_ 2 CIg_1UJg_1ClIg

so that deleting the term Is_; U Jg_o from H; ; gives H. Therefore F} ; is a refinement of F.

Now using Jy := 0 we calculate

Hs 1p: 0 CHCLC---CLCLUL ChhynU/LC---Clg U/ CIgV1<b<S—1,

)
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so that

Hs 151:0CL CLC---Clgy CIg1UJ; Cls.

)

Therefore

H./S'fl,Sfl:QgIl QIQQ"'QI.S'fl QIS,

in which case Iy = Fg_, ¢, as admissible filtrations of (RN, a). Now by Theorem 2.3.4 we have
(X1 (F(RY,a))] = [X1(F11(RY, ),

(X1 (F, (RN, )] = [X1(Fap(RN, )] V1<a< S—1,1<b<a,
(X1 (F) (RN, )] = [X1(Fapt1(RY,0))]V1<a<S-1,1<b<aq,
[X1(F, (RN, )] = [X1(Far11(RY, )] V1<a<S§—1,

and

(X1 (FU(RY, )] = [X1(F§_y g 1 (RY, @)].

These equalities imply (by transitivity of the equivalence relation) that [X;(F(RY,a))] = [X1(F1(RY,a))]

in G(EPR)Q/BQ
Going back to the chain H, we make a symmetric argument by defining chains K, ; with corresponding

filtrations Fmb in a different way, switching the roles of I and J :
Kop:0CHUJ, CIhUJ, C--Clgq1UJs—q-1 CIg—q-1UJg_q C - CIls_q—1UJs5_qqp—1

ClsqUJs—aqp—1 CIs—qUJs—arp CIs—qUJs—qqpt1 C - CIs_qUJs—1 C IgUJs(= By = Js),

with corresponding
K,y:0CHhUJChhUJy,C--Cls q1UJs a1 CIlsa-1UJs—aC - CIs a-1UJs atp1

Cls gUJs a1 ClsqUJs 41 S+ Clsg qUJs 1 CJg

(with corresponding filtrations F’a,b), which can be obtained from K, by deleting the term Ig_, U

Js—atb—1. Also,

Ka,bJrl : (Z) ChUJLChLUJHC---Cls g 1UJs q1CIs g 1UJs o C--Clsg g 1U J37a+b71
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Cls qg1UJdsarp SIsaUJs a1 Sls o UJs qypt1 ©-- S ls qUJs 1 C Js,

so that K¢/1,b can be obtained from K, ;1 by deleting the term Is_,—1 U Js_q4. Then
Koo 0CLUJ €+ ClIgq1UJs—qo1 CIgq1UJs—q C - Clg q1UJs_1 CIg_qUJs_1 CJg
gives
K,y 0WCHhUJ1C--ClIs q1UJsa-1CIsa1UJs S~ CIg q1UJs 1 CJs,
and
Koy10:0CLUJ € Clg_ (ar1)—1 U Js—(ar1)-1 S Is—a2UJs a1 CIsq1UJs a1

Cls q1UJds aCIs q1U JS—a—i—l C--Cls q1UJs1CJs.

Thus K| , can be obtained from K,111 by deleting the term Is_,—o U Js_,_1, in which case Fa+1,1 is a

a,a

refinement of F’ a,a- Furthermore,
Ki1:0CLUJLCLUJyC---Ig9UJg_oCIg oUJg1 CIg_1UJg_1 CJg

so that deleting the term Is_o U Jg_1 from K ; gives H. Therefore Fl,l is a refinement of F.
Finally, we calculate

Kg 151:0C 1 CJhC---CJs 1 CJs,

so that Fg_y g_1 = Fy. Therefore we conclude that [X; (F(RY,a))] = [X1(Fy(RY,a))] in G(s.PR),/ B> just
as we did with the H, for F. It follows by transitivity of the equivalence relation that [X;(F; (RN, «a))] =

[Xl (FQ(RN, OL))] in G(ﬁPR)Z/BQ
g

3 Homotopy Fibers

3.1 Definitions

We now cite a standard construction used in simplicial homotopy theory that will act as a central figure in
our isomorphism, as it will allow us to represent the Steinberg Relations of K-Theory completely in terms

of simplicial homotopy theory. Work such as that of [15] provides a good review.
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Definition 3.1.1 Given a simplicial group G, define a simplicial group GT by m-simplices

GL, =1{(90,91, -+ 9m) € Grs1 X Gry1 X -+ X Gy1 | digi = digia ¥V 1 <i<m}

(and componentwise multiplication as the operation) with face maps defined on

g = (90,917"'39711)

djg = (dj+1907 djt191,- - dit195-1,d59541,- - >djgm)

and degeneracy maps defined by

;9 = (5j+1go, Sj41915 -+ 555419555595, S595+15 -« -5 Sjgm)a

VO0<j<m.

Note in particular

dog = (dog1,dog2, - - -, dogm)

and

dmg = (dm+190, dm+191; - - - A 19m—1)-
The following construction is well known; we cite [15] as a reference.

Lemma 3.1.2 Let G be a simplicial group.

a) 3 homomorphisms of simplicial groups, that are also Kan Fibrations, 09,01 : G — G, given on

m-simplices g = (9o, 91, - - - gm) € GL, by

do(g) = dogo

and

01(9) = dm+19m-
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b) The diagonal simplicial map D : G — G x G factors as

p

G

GI

\[i l(ao,al)
N
Gx G

N
N

where p is a homotopy inverse for both Oy and 01, defined on m-simplices g € G, by

p(9) = (509,519, - -, 5m9)-

To be more precise,

O;0op=ridg;i=0,1

and

p o 0; is homotopic as a simplicial map to idgr;i =0,1.
We in fact have the stronger result that the map
(80,81) : GI — G X G,

through which the diagonal map factors, is a Kan Fibration.
Definition 3.1.3 Given P € PR and simplicial group G = G(s.PR), denote the pullback of the diagram

N(Aut(P))

01

Gl ———

by Jp. That is, Ip has m-simplices

Tpm = {(c,g) € N(Aut(P))m x GL, | 9= (g0, -+ 9m) has dmi1gm = ip(c)}

with face maps defined by d;(a, g) = (d;jo, d;g) and degeneracy maps s; defined similarly.
We have the following well-known lemma as well, again citing [15]:

Lemma 3.1.4 The simplicial sets Tp and N(Aut(P)) are homotopy equivalent.
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Proof: Define
Ap : N(Aut(P)) — Jp

Ap(a) = (a, p(ip(a))).

By Lemma 2.1.1 we know that ip is a simplicial map, and by Theorem 3.1.2 we know p is a simplicial map,
so the composite p oip is a simplicial map. Since the identity is always a simplicial map, the definitions of
the face and degeneracy maps on Jp imply that Ap must be a simplicial map.
Define
05 : Ip = N(Aut(P))

by

Ip(a, g) = .

This is the projection from N(Aut(P)) x GI to N(Aut(P)), so that it preserves images of face and
degeneracy maps. Therefore 93 is a simplicial map.

We see that 0% is a fibration, since it is the pullback of the fibration 0,

Op o Ap = idN(Aut(P));

and we cite [15] (but omit proof) that

A o 0p is homotopic as a simplicial map to idy, .

By Definition 1.4.3 of Chapter 1, it follows that N(Aut(P)) and Jp are homotopy equivalent.
O

Now define a simplicial map pp : Jp — G(s.PR) on m-simplices

(aag) = (O[1|“' |O‘m;907--~7gm)

by pp(a, g) = dogo = Og o ma(x, g) (2 the usual projection from N(Aut(P)) x G(s.PR)! to G(s.PR)?).
We have

Lemma 3.1.5 The map pp is a fibration of simplicial sets.
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Definition 3.1.6 The homotopy fiber of ip is the simplicial subcomplex
Yp C Jp C N(Aut(P)) x G(s.PR)!
whose m-simplices are
Ypm =0p' (Um = {(ct,9) € Ipm | pp(c,g) =1 € G(s.PR)m}

= {(a1| T |O‘m3907 e 7gm) | dogo =1¢€ G(E-PR)m} .

Note that face and degeneracy maps are given by those corresponding to the Cartesian Product (recall Defi-

nition 3.3.1 from Chapter 1).

Lemma 3.1.7 Yp is a Kan Complezx.

Proof: The map pp is a fibration, thus using Proposition 7.3 of May (i.e. Proposition 3.2.1 of Chapter 1),
Yp is a Kan complex.
O

This fact allows us to use the canonical construction of 71 (Yp, @) (with ¢ = (%,1) € Yp) in conjunction
with the chain complex construction of mo(G(s.PR)). The result will allow us to see the Steinberg relations

from the point of view of homotopy classes in this homotopy fiber.

4 Steinberg Relations in 7 (Yy(R))

Here we focus on P = RN € PR and denote Jy := Jpn, iy = igy and Yy := Yp~; with analogous
definitions for the fibration py : Iy — N(GL(N, R)) and the homotopy equivalence Ay : N(GL(N, R)) —
Jn. We want to use Yy as an analog for St(N, R), even so far as to have a direct limit Y (R) analogous to

St(R) and GL(R). To that end, we first consider the concept of stabilization of the simplicial sets Yy, N € N.

4.1 Stability of Yy S Iy 2 G(s.PR)

We want to see what happens as a result of the embedding RN «— RN*! with RN*! = RN @ R. Given
m >0, = (aq]az| - |am) € N(GL(N, R)),, we somewhat ambiguously denote 1 = (1g|1g|---|1g) (and

realize 1x41 := 1y ® 1) and define « ®1 € N(GL(N + 1, R)),, by

a®l= (a1 ®1glas®1g| - |am @ 1g).
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We will consider “stability maps,” all denoted o, between the various simplicial sets associated to RN and

RN+1. For instance,

Lemma 4.1.1 0 : N(GL(N,R)) - N(GL(N + 1, R)) defined by o(ax) = o« ® 1 is a simplicial map.

Proof: We calculate

doom(a) = (a2 ® 1r|as @ 1g|-- - o © 1r) = (az2fas| - o) B 1 = (doar) & 1 = om—1(docx),

dmom(a) = (a1 B 1r|lag B 1g| - |am—1 ® 1r) = (a1|as| - |m—1) B 1 = (dpa) D1 = 01 (dp ),

and for each 1 <i<m —1,

diom(a) = (o1 ® 1gr|az ® 1g[- - [(ait1 @ 1) o (o ® 1g)|otip2 @ 1|+ |oum @ 1R)

= (a1 ® 1rlae ® 1g| - [(aip1 0 ;) B 1g|airo B 1R| -« | © 1R)

= (a1]as] - |aipr o qiaipal - |lam) @1 = (dia) & 1 = 041 (di@).
Also, for 0 < 57 < m,
siom(a) = (o ® 1rlag ® 1g|---|a; ® 1g|INt1logp1 D 1R| - |om ® 1R)
= (a1|a2| R ‘aj &) ]-Rl]-N (&) 1R|aj+1 fa) ]-R‘ e |am ey ]-R)
= (aifas| - |oy[In|ajia] - - o) &1 = (sja) B 1 = opmii(sja).

Therefore o is a simplicial map by definition.
O

For the short exact sequence [ : RY — RVN*1 — R, where RN C RN*! is the embedding x + (x,0), we
see that there are short exact sequences of pairs (RY, ;) — (RN T a; ®15) — (R, 1) for each 1 <i < m,
in which case we have wy, (o, @ ® 1;1) € G(§.PR)m+1 by Theorem 2.1.4.

Let € = (a;9) = (1] |@m; G0, - -, gm) € In.m and define £ 1 = (a @ 1;g) where g = (o, - - -, Gm) is
defined by

Gi = Gi(SmSm—1- - Sit1dit1dit2 - - dm_1dmwm (o, & 1;1))

for 0 <i<m—1, and

Im = gmwm(aa adl; l)
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Proposition 4.1.2 Given &€ = (a;g) € Ty as above,

1) €61 € Tnt1m.

2) The map o : Iy — In41 defined by o(€) = €D 1 is a simplicial map.
3) olyy : YN — Yngg.

4) The following diagrams commute:

Yy>——> 3y —% G(s.PR)
Vi1 Int1 —2 G(s.PR)
In Y -~ N(GL(N,R))

N1

Int1 ——= N(GL(N + 1,R))
5) The diagram below commutes “up to homotopy”; i.e., Any100 is homotopic as a simplicial map to cody :

AN

N(GL(N,R)) =~ 3y
N(GL(N + 1, R)) 225 gy,

Proof: We first calculate

diGi = (d;9:)(diSmSm—1 - - Sit1dit1diy2 - - - dmwm (o, e & 151))

= (digi)(Sm—lsm—2 s 8ididigq dmwm(a, adl; l))

= (digi)(Sm—15m—2 - - - $id;S;didiq1 - - - dpwp (0, a B 151))

= (digi)(diSmsm—1 - - Sit15ididiy1 - - dpwm (o, a @ 151))
= (digifl)(dismsmfl e sididiyr - dmwm(aa adl; l))

= di(gi-18mSm—1"" " 8ididiy1 - dpwp(a,a ® 1 :1))

= digifl

107



for each 1 < i < ¢ —1, and since §m—1 = Gm-15mdmWm (a, @ ® 1;1) we have

= (dmgm) ([dmSmdmwm(a,a ® 1;1)) = (dimgm-1) (dmSmdmwm (a, a & 1;1))
- d'm(g7n—15md'rnw7n(a7 o ®d 1a l)) = dnLgm—l-
Therefore § € G(s.PR)L,. Also, g € G(s.PR)!, so that by Theorem 2.1.4 we see

dins19m = (dms19m) (dmp1wm(a, a & 1;1)) = iy(a)(iv(@) livp(a@ 1) =iy (as1).

(1) now follows by definition of Jy41.
Now given 1 < i < m — 1, we use superscripts again for g = (¢(©,...,¢™) € G(s.PR)., and denote the

images of face maps by
dig = (dis19'9, ... dig1g" Y, dig"™, L dig™) = (91(0)7 e agfifl)agz(i% e 79§m71)) =g,
Now we have g, defined by
§§j) _ ggj)sm_1 cesjpdiyr AW 1 (dio, di(ae @ 1)31)
for0<i<mand 0<j<m-—2, and
3" = " Vs (dier, i @ 1):1)
for each 0 < ¢ < m. We must show

om-1(di§) = (dia ©1;g;) = (di(a ® 1);d;g) = diom(§).

We can see that d;(a® 1) = (d;ja) ®1 € N(GL(N + 1, R));,—1 for each 0 < ¢ < m by direct calculation.

Note that
diy199, Osj=<i-1

o -

d; g+, i<j<m-—1
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when 1 <i<m—1,
g(()]) = dog(j+1)a0 S .] S m — 17

and

95) = dns1g?,0 < j <m— 1.

Nowifl1<i<m-—1land 0<j<i—1 we see

§i(j) =di19 sm1 - Sjp1djqr - dp_ 1wy (dio, di(a ® 1);1)

=dit19P sm—1 sip18i - sja1dji1 - dic1di - dp—rdiwn (o, 00 @ 150)

=dis19D 81 sip18; - sjp1di1 - dimididig - dpwm (o, o @ 1510)

= di+1g(j)5m—1 ce 5i+1di+151'+15i T 5j+1dj+1 ce dm—lwm(aa adl; l)
=dis19Ddi18m - Sit28it18i - Sjp1dip o dpwp (o, 0 ® 151)

= dip1(9V s - sjr1djgr - dpwm (@, 0 @ ;1)) = dig§9).

If1<i<j<m-—2then

gz(j) =digU sy $j+1dj41 - dp—1diwy (o, e ® 151)

= dz'g(jH)Sm—l cSirdidigo - dywp (o o @ 151)

=di(gV Vs, sj40dj10 - dpwm (o, ® 1;1)) = diguth.

Furthermore,
f]éj) = dogUt Vs 1 sj11djsy - dom_1dow, (o, o @ 151)

=dog"t Vs sj41dodjpa - - dipwm (o, 0 ® 1;1)

= dog" ™ dosy - sjyadjpa - dpwp (o, e ® 1;1)

=do(gV M s sj42djia - dmwm (@, a @ 151)) = dogU ™
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foreach 0 < j <m —2 and

(J)_d (4)

419 Smo1 - Sjp1djpn - A 1dpmwm (o, 0 @ 151)

= dm+1g(j)dm+18m8m71 t Sj+1dj+1 co dmwm(a7 adl; l)
= dm-‘rl(g( )Sm T 5j+1dj+1 te dmwm(a7 adl; Z)) = dm+1§(j)

for each 0 < j < m — 2. Also,
G = dog™ dowp (o, o ® 151) = dog™ Y,
5(m—1)

Gym = dm+1g(m_1)dmwm(a, adl;l) = dm+1g 1)dm+1smdmwm(a adll)=d +1g(m D

and lastly, for 1 <¢ < m — 1 we have

3" = dig "™ diw (o, @ 151) = digt™.
It follows that
d’bg = (dZJrlg dJrlg(z D d ~(1+1) adzg(m)) = (gz(O)a'--vgfl 1)7~£ )a'~-7§£m71)) :gi

so that dzdm(g) = O'mfl(dié).

We proceed in a similar manner for the degeneracy maps. Notice that for any 0 < i < m,
sia = (onfas| - |ai|ln|aip] - - [oon)
and clearly s;(a @ 1) = s;a @ 1. We can also calculate
Siwm (e, @ B 1;1) = Wip1 (850, 8;(a @ 1);1)

from Lemma 2.1.1 and Theorem 2.1.4.

Denote the images of g under the degeneracy maps by

7 7 7 m 0 m+1
Sig:(51‘+1g(0)7~-~751+1g(),Sig()a5i9(+1)v---75i9( )):(QE )7~-~»91( * )) g;
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so that s;€ = (s;a; ¢;) and

anL-i—l (SiE) = (Slg) @ 1= (sza EB 15 gz)

where g, is defined by
fh(j) &)

= ;" $m+1Sj41dj41 A1 Wmy1(sic, 5i(a @ 1)51)

for 0 <i<mand0<j<m,and

gt = g, (sia si(@ @ 1);0)

for each 0 < i < m. Similar to the case for the face maps, we must show s;g = g, for each 0 <4 < m.

If j < then
54197 = 81419 si18m st Spe1djn o dig1 o dpwp (o, a @ 151)
= 54199 Smg1 - SisaSigr Sjp1djpr o dig o AW (0 a @ 150)
= sip19Psmir - sivasivn e sipadign - digy - dpdi s (o, a @ 1;10)
= 50419 smr1 - sigasicr o Sjpdjar o dipidige - AW (s, si(@ @ 1);1)

= ggj)sm_‘_l e 5j+1dj+l cee dm+1wm+1(sia, (51‘1) D 1, l) = gf])

Ifi+1<j<mthen

Sig(j—l) = Sig(j_l)sism cesidy e dpw (o, @ 151)

= Sig(j71)5m+1 cesip18idy e dpwm (o, 0 © 151)

=599 Vspi1 - sjp1dj41 - dmgrsiwm (o, @ 151)

(G-1)

= 5i9 Smg1 - Sjp1dipt A1 Wimpr (S0 5i(ae @ 1)51)

= 9§j>8m+1 c8jp1dign A 1Wmy1 (s, si(a) ® 151) = §§j)7

and for 0 < 7 < m we have

(m+1)

sig™ = sig(m)siwm(a,a@l;l) = sig(j‘l)wmﬂ(sia,si(a@l);l) =g W1 (850, (s;0) D13 1) = §£m+1)_
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Since

(0)

Sig = (8i+1§ PR '7Si+1§(i)75i§(i)a' aslg(m))

it follows that

siom (&) = si(§ D 1) = (si(a®1);5,9) = ((sir) ® 1;G;) = omy1(si0; 8ig9) = omt1(si§).

Therefore o : Yy — Yn41 is a simplicial map by Definition 1.1.2 of Chapter 1, and we have (2).

In addition to the properties already verified for £ © 1 € G(s.PR)L, above, we also see that

dogo = (dogo)(doSmSm—1 - - s1dids - - - dwp, (a, 0 ® 151)).

However, by Theorem 2.1.4 we see

dldg s dmwm(a, oD ].7 l) = wl(dldg s dmOé, d1d2 s dm(Oé D 1), l) S G(EPR)Q

Therefore

dodids - - dmwm(a, adl; l) =1¢€ G(SPR)l

and

dogo = (dogo)(Sm—15m—2 - - - Sododids - - - dpp Wi, (a, ¢ & 1;1)) = dogo.

If £ € Yy then dogo = 1 by definition, hence

dogo = dogo =1

so that £ ®1 € Yn41,m and we have (3).

For (4), we interpret the conclusion of (3): the left side of the diagram

Y Iy — % G(s.PR)
ool
YN+1 jN+1 G(SPR)

is exactly the fact that the restriction of o to the homotopy fiber is the map o between homotopy fibers. In
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order to verify this, we showed that dygy = dpgo, so that

pn(&) =pn(a;g) = dogo = dogo = pn+1 (@@ 1L;ES 1) =pyni(ED ).

Therefore the right square in the diagram commutes. Also by definition (i.e. the proof of Lemma 3.1.4 and

Lemma 4.1.1) we see
0(9°(§)) = 0(9"(a;9)) =0(a@) =a®1=0"(a®1;g) =07 ({0 1) = 9" (0(£)),

so that the diagram

Ini1 —% N(GL(N +1,R))

commutes.

Finally, compose the relation implied by (4) with Ay :
godyoAN =0N,1000AN
and apply Lemma 3.1.4 so that 9% o Ax = idn(ar(n,R)), hence
0=0N410°00AN.
Now put both sides of the above equation into Ay :
AN4100 = AN41 00N 1 ©0 0 AN;

since An41 © dy, is homotopic to idy,,, by Lemma 3.1.4 and homotopy is preserved by composition, it

follows that Ay 4100 is homotopic to oo Ay. Thus we have the diagram of (5) commuting “up to homotopy”.

O -
Jj—i
. .. . /_/\— . . . . . .
We can now extend to simplicial maps 0} =cooco---00:Y; = Y;,i < j, and define a direct limit as in
[20]:

Y (R) = lig Yy.
N,o
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4.2 Filtration-Independent Elements of 71 (Yy)

Lemma 4.2.1 Let N € N, Ey, E; € Aut(R") and suppose there is a filtration F of RN that is an admissible

filtration of both (RN, Ey) and (RN, Ey). Then:
a) F is an admissible filtration of (RN, Fy o Ey) as well as (RN, EyY), (RN, Ey') and (RN, 1y).
b) (BE1;1, X1 (F(RYN,E))), (E2; 1, X1 (F(RN, Ey))) € ?NJ with respect to ¢g = (x;1).

C) [El, ].,Xl(F(RN,El))} (] [EQ, ].,Xl(F(RN,EQ))] = [El o EQ; ].7X1(F(RN,E1 o Eg))] S Wl(YN,(I)) via
extender

ZE\Ey ‘= (E2|E1; 1, SQdQXQ(F(RN; E2|E1)),X2(F(RN; E2|E1))) € YN,Q.
d) [Ev; 1, X1 (F(RN, E1)]™! = [E 51, X0 (F(RY, BT ).

Proof: By Definition 2.2.1 there are diagrams

0 P P P,=RN 0 P Py P, = RN
\L(El)“) J((EI)Q) lEl and J/(Ez)(l) \L(E2)(2) lEQ
0 Py Py P,=RN 0 P P, P, = RN

We also have (E;)®, (E2)®) € Aut(P;), hence

(Ey 0 By)Y) = (By 0 Ey) p, = (B9 o (Ey)® e Aut(P)

p, =k

p o Es

for each 1 < i < n. In particular we know by definition that (E;)") = (Ey)®) = 1p,, so that (E; o Fo)) =

1p,. Also (El)(") = F; and (Ez)(”) = Fj», so that (E; o Eg)(”) = FE; o Es. Therefore the diagram

0 Pl P2 tee Pn - RN
l(EloEQ)(l)l(EloEg)(z) l(EloEz)(")
0 P Py P, =RN

satisfies part (1) of Definition 2.2.1. Furthermore, from the short exact sequences of pairs
(P, (B1)D) = (Piga, (B1) ) = (Pipa /Py 1, p,)

and

(Pi, (B2)") = (Pig1, (BE2)"Y) = (Pipa /Py 1p,,, yp,)
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we see that the same inclusions and projections allow a short exact sequence of pairs
(P;, (E10 E2)W) = (P, (By 0 B2)"™D) = (Pt /Py, 1p,, ypy)s

which gives part (2) of Definition 2.2.1. Reversing directions on the automorphisms in the above diagrams
shows that any subsequence that is an admissible filtration for (RY, E) will also be an admissible filtration
of (RN, E'). This proves (a).

Now for the admissible filtration F(RY, Ey) (and similarly for F(RY, E5)) we have

X,(F(RN,Ey)) € G(s.PR),
from Theorem 2.2.2. Consider the element
g=(g90,01) = (1, X, (F(RY,E}))) € G(s.PR)> x G(s.PR)s.

From Theorem 2.2.2 we see

digr =1 =di(1) = digo,

in which case g € G(s.PR){. Notice also that dag’ = i~ (E1) and dog® = 1 € G(s.PR);. Therefore we have
X(E1) = (E1;9) € YN C TN
by Definitions 3.1.3 and 3.1.6. Furthermore, we calculate
dog = dig =1 € G(s.PR); = G(s.PR)},

so that

doX (E1) = (doEr;dog) = (RN;1) = ¢g

and

A1 X (Fy) = (d1Ey : dig) = (RY;1) = ¢,

so X(Ey) € leN’l by Definition 1.3.4 of Chapter 1. The same process with respect to F(RY, E;) shows

X(E;) := (Ey;g') € 371\7,1
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when g’ = (gh, 1) = (1, X1(F(RY, Ey))). This proves (b).
We construct the product
[X(E1)] o [X(E2)] € m(Yn, @)

by the canonical definition in [2] (i.e. Definition 1.3.6 of Chapter 1). Consider the list
Cpim, = (X(En), —, X (E))

in Yy,1. Since X (E1),X(Es) € ?NJ, this list is a compatible list of 2-simplices in Yy, 1. We construct an
extender for this list.

Since F is a filtration of both (RY, E;) and (RN, Ey), it is by Definition 2.2.3 a filtration of (RY, E’) where
E' = (E2|E1) € N(Aut(RY))s. Thus by Lemma 2.2.4 we have

Xo(F(RN; E")) € G(s.PR)3.
Consider the element
9" = (95,91,95) = (1, 52d2 X2 (F(RY, E")), Xo(F(RY, E'))) € G5 x G5 x Gj.
Then digj =1 € G(5.PR)2, and since
dy X5(F(RY,E")) = X,(F(R", E3)) € G(s. PR),

we see that

dy52do Xo(F(RN,E")) = s1d1d2 Xo(F(RN,E")) = 5,(1) = 1 € G(s.PR)>,

in which case we have dy g = dyg{. Also
dag! = da X2 (F(RN, E’)) = dys2da Xo(F(RN, E')).

Thus dog] = dagl, hence g” € G(s.PR)%. Note also that dygy = 1 € G(s.PR)2 and that Lemma 2.2.4 gives

d3ga = ign (E’), so that we can have the element

2p B, = (B, g") = (Ba|Ey; 1, s2da Xo(F (RN E5|Er)), Xo(F (RN E3|EL))) € Yive € Tna.
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Now we check

dozp, g, = (doE';dog") = (E1;dogy, dogs)
= (B1; 1, X1 (F(RY, Ey))) = X (E1)

and

dozp, , = (d2E'5d2g”) = (Ea; dsgy, dsgy)
= (BE2;1, X1 (F(RY, Ey))) = X (E»),

so that zg, g, extends the list Cg, g,. But now by Definition 1.3.6 of Chapter 1 we have

(X(EV][X(E2)] = [d12p, ,] = [d1E'; d1g”]

= [Ey 0 Ba;dagy,digh] = [E1 0 E2; 1, X1(F(RN, By o E»))]

for (c).
Now (d) follows by checking

Xi(F(RY,Eyo B 1)) = X1 (F(RY,1n))) = 1 € G(s.PR))>

by definition, hence (c¢) implies

[Evo Br S 1L X(F(RY, By o BY)] = [1v; 1,1 = 1 € n(Y, ).

O

Theorem 4.2.2 If F is an admissible filtration of (RN, E), E € GL(N,R), and F is an admissible refine-

ment of F, then for ¢ = (E;1, X1(F(RN,E))),€ = (E;1, X, (F(RN,E))) € Yy we have & ~ £ in the sense

of [2], Chapter 3.

Proof: We proceed as before for refinements, assuming a refinement by one, E-invariant submodule so

that the result follows by induction. From Lemma 4.2.1 we know that £, € ?NJ. We will construct an

element y € Yy o that meets the definition (i.e. Definition 1.3.1 of Chapter 1).

Recalling the constructions for Theorem 2.3.4, set

X, = X;(F(RN,E)) = ACB, X, = X,(F(R",E)) = AC,CyB
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With A, B,C,Cy,Cs € G(s.PR), as for Theorem 2.3.4 (ie. with P = RY and a = E). We know from

Lemma 2.3.3 that 3 u € G(s.PR), with dzu = C1C,C 1. Let v = Xo(F(RY; E|1xn)) € G(s.PR)3 (using the

filtration F for the admissible F(RY; E|1y); recall djv € G(s.PR),) and set

g = (go,gl,gz) = (1, (SQA)U(SQA)_lsng’U,U) € G3 X G3 X G3.

Then

d191 = (51d1A)(d0U)(51d1A)71(Sldldlv) = (SldlA)(l)(SldlA)il(1)(81(1)) =1= dlgO

and

dagr = Aldyu) A~ (dyv) = A(1)A™ (dav) = dav = dags

so that g € G1. Also dpgo = 1 and
d3gz = dzv =iy (E[1),

so that the element

y = (E|ly;g)

is a 2-simplex in the homotopy fiber Yy by Definition 3.1.6. Furthermore, we see that dago = 1 and

d1g2 = d11) = Xl(F(RN; E)),

so that

diy = (B;d2g0,d1g2) = (B3 1,X1) = &.

Similarly, dsgo = 1 and

dggl = A(dgu)A_l(dg’U) = ACngC_lA_lACB = AC’ngB = Xl(F(RN, E‘))7

in which case

doy = (E;dzgo,dsg1) = (E;1,X,) = €.

Finally, dogo = 1 and
dogg =dov = Xl(F(RN; 1N)) =1¢€ G(E.PR)Q,
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hence

doy = (1n31,1) = 1 = s0do& = sodo€.

Thus y is the required “homotopy” from ¢ to € according to Definition 1.3.1 of Chapter 1.
O

An identical process to the proof of Theorem 2.4.2 gives

Theorem 4.2.3 Suppose that Fy and Fs are standard, admissible filtrations of E € GL(N, R). Then for
& = (B;1, X1 (Fi (RN E))) and & = (E; 1, X1 (Fo(RYN; E))) we have [&1] = [€2] € m1(Yn). That is, the class
[€] for € = (E;1, X1 (F(RYN; E))) is independent of the choice of filtration F for the corresponding matriz E

so long as that filtration is standard.

Proof: In order to prove Theorem 2.4.2, a chain F and a sequence of chains H, ; were constructed through

which we found

(X1 (F(RY,E))] = [X1(F11(RY, E))],
[(X1(F, (RN, E))] = [X1(Fau(RN,E))]V1<a<S—-1,1<b<aq,
[(X1(F, (RY,E))] = [X1(Far11(RY,E))]V1<a<S—1,

and

[X1(F(RY, E))] = [X1(F§_y s 1 (RY, E))]

via Theorem 2.3.4 because of the resulting refinements. Since these refinements are still intact, Theorem 4.2.2

implies
[(B5 1, X1 (F(RN, )] = [(B; 1, X2 (F1,1 (RN, )],
[(B; 1, X1 (Fp o (RN, E)))] = [(B; 1, Xa(Fap (RN, ) V1<a<S-1,1<b<a,
[(B5 1, X1(F, (RN, E)))] = [(B; 1, X1 (Fay1,1 (RN, E))] V1 <a < S — 1,
and

(1] = [(B; 1, X1(F§_y s 1 (RY, E)))).

These equalities imply (by transitivity of the equivalence relation) that [(E;1,X;(F(RN,E))] = [¢&] in
71(Yn). Another, similar sequence of chains allows [(E; 1, X1 (F(RY, E)))] = [&] so that by transitivity we

have [§1] = [£2] € m1(YnN).
O
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4.3 The Steinberg Relations
4.3.1 Standard filtrations for elementary matrices
Recall Definition 3.1.2 from Chapter 2 for the elementary matrices ei}( (a) € GL(N, R) given i # j and N > 3.

Lemma 4.3.1 Given elementary matrices e}y (a), ey (b), there is a standard filtration

F:0=P,CPC---CP,1CP,=R"

of free submodules of RN that is a standard, admissible filtration of both (RN,eg(a)) and (RN, el (b)).

Proof: We choose the standard basis for RY :

RN = <€1,62,...,6N>.
Thus we write
€Eh, h?é]
epy (a)len] =
ae; + e, h=j

for the images of basis elements.

We begin by ordering the indices {4, j, k, 1} as {M; > My > M3 > My} and thinking of them in pairs: for
each 1 < h < 4, we use Mj, and consider Mh so that one of the matrices is e M, (or €, Mh)‘
When M, My € {i,k} we have either M, = M; € {4,1} or M, = M, € {4,1}; we show the case for

]T]l = Ms3, since the other case is similar by replacing M3 with M, and vice versa. Thus we denote the

images by
€h, h?éMg
eMlﬁl(eh) =
rienm, + ens, h = Mj
and
€h, h?éMQ
6M4M4(6h) =
ra€p, + ey, h =M,
Let
Pr=(e1, .. My €My—1, EMagls- v EMys--->EN) s
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Py =(€1,. .y €My -y EMssEMys---sEN) s

and P; = RY, with inclusions preserving the specified order of basis elements. On the generators ey

of P, we see that €, 7, (en) = ey, since h # Ml and €M4M4(eh) = ey, since h # M4. On P, we have

em Ms(en) = ep ¥V h # My and enr, v, (enss) = rienr, + en, € Po; similarly eas,a (en) = en V h # Mo
_ (1) _ M _ (2) (2)

and enr, a, (€nr,) = Taens, + en, € Pa. Thus oL iT = O, = 1p, and €t T Car i, © Aut(P3). On the

quotient module Ps/P; = (€, €r,) € PR we calculate on equivalence classes and see

6M1M3(€M3) =Tiem, +em; = O+8M3 = €M,

and e, ar, (€nr, ) = €, Similarly e, ar, (Ear,) = €nr, and

eny M, (Enr,) = Ta€nr, T €ar, = 0+ €nr, = €y

On P3/P2 = <€M3+1,. .. ,EM271> € PR we have 6M1M3(Eh) =e,Vh 75 M3 and eM4M2(éh) =e,Vh 74— M.
We conclude that induced maps on these quotients are the identity, so that

(P17e(1) ) — (P2a€(2)

MM, Mlz\71) = (P2/P1,1),

1 2
(Pryel) o) = (Pell) o) = (Po/ P11,

(Poe) ) = (P =RN ) = (P3P, 1),

VA

and

(Pz’eg\ilMAL) — (P3 = RN;6M4M4) — (P3/P2’ 1)

are short exact sequences of pairs, in which case this choice of P, C P, C Pj3 is an admissible filtration of

both (RN ) and (RN

€ L ) €M4z\74)'

When M; € {i,k} and My € {j,1} we have ]\71 € {May, M3, M,}. In case Ml = M5 we note that
Mg = My and set Py = (ery41s---r€Myy---2ENYy Po = (€Mysevyeey€N)y P3 = (EMy41s- -y EMss-- -1 EN)
and Py = (e1,...,en) = RY with inclusions that preserve the order of the basis elements. Since €0, 3T (en) =
ep V h > M, and €\ s (en) = ep Y h > My > My, we know that the restrictions of both matrices to
Py are the identity. On the other hand, ens,ar,(enr,) = rien, + enm, € P2 and enn, (enr,) = e, SO
that enr, my, emsn, € Aut(Pa). Also, enr,a,, emsm, € Aut(Ps) since both matrices map e, — ey, for any
My < h < Ms.

We have quotient modules Po/P; = (€prr,), P3/Po = (Epry41,---5€0,-1), and Py/Ps = (€1,...,€4),
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which are all clearly finitely generated and projective (since they are free modules). Both matrices induce

the identity on Ps/P, by definition. On P»/P; we see that

en, M, (€n,) =T1en, +en, =0+ e, = ey,

while eps, pr, induces the identity by definition. Similarly, on P,/P; we see that

emsm,(€n,) = r3en, +en, =0+ en, = ey,
while eps, pr, induces the identity by definition. Therefore with short exact sequences of pairs

1 2
(Prell) ) = (Pell) o) = (P/ Py 1),

1 2
(Prell) ) = (Paell) =)= (P/ Py 1),

(Po,e!? ) — (Py, e

M, M, Ml]/\\/le)—>(P3/P271)’

2 3
(P2765W)2M2) — (P3a6§\/1)2]’\‘j2) - (PB/P27 ]-)a

3
(Poe?) ) = (Po=R". e\ 1) = (P1/P3, 1),

and

(Poel) ) = (Po=RN e\ 1) = (P1/ Py, 1)

we have that P, C P, C Py C Py is an admissible filtration of both (R, eMlel) and (RY, eMQMZ).

Similar to the case for Ml = Mo, in case Ml = M3 the sequence Py C P, C Py with Py = (ear41,---,€6N),
Py = {er,+1,---,en) and P3 = RN is an admissible filtration for both (RN,eMlel) and (RN7eM2A~/12).
In fact, this same filtration P, C P, C Pj is also an admissible filtration of both (R e M, Ml) and
(RN, eMszz) in case Ml = M47]T/[; = Mj since M3 > M,y. When Ml = M, but Mg = M,, we use
Py ={emy41:---1€Mgs---r€My—1), Po = (erry41,...,en) and Py = RV,

The remaining cases can be verified as an exercise as follows.

When M; € {j,1} and M; = M4, the sequence with Py = (eq,...,en,-1), Po = (e1,...,en, ), Ps = RV is
an admissible filtration of (RN epr,ar,) and (RY, epr,ar, ), while the sequence given by Py = {eps; 41, - - -, €n,) 5
Py = (e1,...,en,—1), Py = RN is an admissible filtration of (RN, enr,nr,) and (RN, en,nr,). If My = M,
then the sequence given by Py = (e, ...,en,—1), P2 = {e1,...,en, 1), P3 = RY is an admissible filtration

of (RN, enr,nr,) and (RN,€M4M3).
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The final two cases are My = MQ and My = Mg,. In these cases, the sequence with P; = {(ens,+1,-- -, €M)
Py = (eq,...,en, 1), P3 = RN is an admissible filtration of (RN, ea,nr,) and (RY, err,az,), while the
sequence given by Py = {(ep,41,---,€n,)s P2 = {e1,...,en,—1), P = RN is an admissible filtration of
(RN, enyar,) and (RN enr,ar,)- Notice that these calculations account for the cases where at least one of the
matrices is upper-triangular as well as the case both being lower-triangular and all other cases.

O

4.3.2 Steinberg generators and relations in 7 (Yy)
As usual, let ef\;(a) € GL(N,R);i # j;i,7 < N be an N x N elementary matrix associated to the element
a € R. Of course, ef(a) &1 = Nt (a).

)

Definition 4.3.2 Suppose that i,j < N,i # j and a € R. Define elements Xg(a) € m(Yn(R)) by

X5 (@) = [(e]: 1, X1 (F(RY, eff (a)))].

35 ij
where F(RN ,eN(a)) is any standard admissible filtration of (R, eN(a)).

)~y Y]

Combining Lemma 4.3.1 with Theorem 4.2.3 allows us to see that Xi]}’ (a) has a defining admissible
filtration and that this element of 71 (Yy) is independent of the choice of the standard admissible filtration

chosen to define it.

Theorem 4.3.3 Given any i,j,k,l < N such that i # j,k # [, and a,b € R, we have the following

computations in w1 (Yn):
1. XN (a) X (b) = X[ (a+b)
2. XN (a) XN (D)X (a) ' X7 (b)~" = X[ (ab), ifi #1
3. X (@)X (b) = X ()X (a), ifi#Lj#k

4. If 0 : Y = Yy is as in Proposition 4.1.2, then o.(X] (a)) = Xg“(a).

Proof: Given elementary matrices eX (a), el (b) € Aut(RN), {s #t} C {i,5,k,1}, {u#v} C {i,j, k,1},
a,b € R, Lemma 4.3.1 guarantees a subsequence F' that is a filtration for both and by Lemma 4.2.1.(a) and

(b) we know that there are corresponding equivalence classes

X3 (a) = X(efi(a) = [efi(a); 1, X1 (F(RY, efi(a)))] € m1(Yn).
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Then Lemma 4.2.1.(c) allows us to calculate directly in each case (we omit some of the “bullets” that indicate

group operation in homotopy groups as in Chapter 1, and understand concatenation to stand for this):

1. Since e}y (a) o e (b) := el(a)ef(b) = el (a + b) for elementary matrices efy(a) and e}y (b) we let

Ey = elY(a) and E5 = €)Y (b) so that

X5 () X5 (b) = [eff (a); L, Xa(F(RY, eff (a)][ef] (b): 1, X1 (F(RY, 5 (1)))]

= [y (a) o €y (b); 1, X1 (F(RN, e}) (a) o ey (b)))] = [efy (a +b); 1, X1 (F(RY e}y (a +b)))]
= X[V (a+0b)

2. We use associativity,

ey (@)efy (0)(efy ()~ (e (0) 7" = (efj (a)ei (b)) (e (@)~ (i () 71) = eff (ab),

and Lemma 4.2.1.(d).

XF(@XF(0)(X (@) HXF(0) 7" = ([efy (a); 1, X1 (F(RY, e}y ()]

o[ei (b); 1, X1 (F(RY, ej (0)))])([eff (a); 1, X1 (F(RY, e} (a)))] " efy (0); 1, X1 (F(RY, ey (0)] ™)

= ([efy (a); 1, X1 (F(RY, ey (a)))][ef; (0); 1, X1 (F(RY, 5y (b)))])

o([efy ()™ 1, Xa(F(RY, ef5 () N]lei (0) ™5 L, Xa (F(RY, e (b))
= [ef} ()efy (0); 1, Xy (F(RY, e}y (a)efy (1)))]

ij gl

of(efy (a)) ™M (ef1(0))7H L, Xa (F(RY, (efj ()~ (e (0))™1)]

3. Once again we calculate directly using e;;(a)er (b) = exi(b)e;j(a) :

X5 ()X (b) = [eff (a); L, Xa(F(RY, eff (a))][eri (b): 1, X1 (F(RY, ey (1)))]

s ©ig kl
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= el (a)epi (b); 1, X1 (F(RY, ef (a)ery (1)))]

= [en1(b)ery (a); 1, X1 (F(RY, egy(b)ef} (a)))]
= [ei(0); 1, X1 (F(RY, eg (b))][efy (a); 1, X1 (F(RY, 5 (a)))]

j

= X3 (0) X[ (a).

4. Suppose that F is any standard admissible filtration of (RY, eg (a)). Then

o(efy; L X1 (F(RY efy(a))) = (5 (@) Jo. Gu),

ij

where

Go = sldlwl(ef\;(a), egﬂ(a); 0),

I being the short exact sequence (R, el (a)) — (RN*1, e (a)) — (R, 1), and
g1 = X1 (F(RY, ¢f (a))wi(ef) (a), ey T (a); 1) == X1 ((F @ )RV, ey (a)))

ij €ij\@)> Cij g

where F' @ 1 is the standard admissible filtration of (RV*1, egﬂ(a)) obtained by inserting the usual

inclusion RY ¢ RN*1 at the end of F. Therefore, we may conclude that o, (Xl];’ (a)) = Xg“(a).

As an immediate corollary to the last theorem above we have

Theorem 4.3.4 For every N there is a homomorphism of groups
fN : St(N, R) — 71'1(}/]\1)7
defined on the usual Steinberg generators x (a)by

iJ

such that the following diagram commutes:

St(N,R) ——"*' 5 St(N +1,R)
\LfN if}\u@
T (Yn) = m(Yng1)
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The top arrow is the usual “stabilization” homomorphism for the Steinberg groups as seen in Chapter 2.

Thus, passing to the direct limit there exists a homomorphism of groups

f : St(R) — hg’l 7T1(YN) = 7T1<H$YN) = 7T1(Y(R>),
N,o. N,o

such that

Flaij(a) = (n) (X5 (a)),

and N is such that i,5 < N, jy : YN — Y(R) is one of the maps defining the direct limit.
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Chapter 6

Connecting K3(R) to m2(G(N(QPR)))

1 Connecting the Exact Sequences

In this chapter, we drop the subscript N when referring to the direct limit, understanding that statements
made with respect to this limit are with regard to the proper maps “for sufficient N”. Therefore we have
maps such as A1, : m (N(GL(R))) — 71 (J(R)) in the direct limit, for example.

We use the isomorphisms developed in Chapters 4 and 5 to define an isomorphism f : Ky — m5(G(s.PR)),
which will then combine with the theory of Chapter 3 to allow an isomorphism from K5 to ma(G(N(QPR))).

Consider what we can describe explicitly so far, using the defined maps and the long exact sequences:

1 Ks(R) — %~ St(R) — % = GL(R) — ™~ K,(R)

f l/\n lQ/

dy 1y

i
PR)) ——=m(Y(R)) —>m(J(R)) —> m,(G(s.PR))

LY« P+

> m2(J(R)) —— ma(G(

The top sequence is the exact sequence for K-groups involving K3(R) as in Chapter 5 of [8], and the bottom
sequence is the long exact sequence of the Kan Fibration p : 3 — G(s.PR) as in Lemma 3.1.5 of Chapter 5
and Definition 3.2.3 of Chapter 1.

By Lemma 3.1.4 of Chapter 5 we know m,(J(R)) =~ 7,(N(GL(R))) ¥n. But since GL(R) is a group
we know from Example 5.1.2 of Chapter 1 that N(GL(R)) is reduced, hence mo(N(GL(R))) := 1. Also
N(GL(R)) has the property that m,(N(GL(R))) :=1V n > 1 as in Example 5.1.3 of Chapter 1. Therefore

m0(I(R)) = mo(N(GL(R))) =1

and

m2(J(R))

Q

m2(N(GL(R))) = 1.
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Now we can work with the exact sequences

1 Ky(R) — ™~ SH(R) — % =~ GL(R) — "> K,(R)

and the following results.
Theorem 1.0.1 The following diagram commutes:

St(R) —2

GL(R)
f Als -
m(Y(R) 22> (3(R))

Proof: With sufficient N € N for the direct limits involved, we show

iy (fv (@l (@) = [ (a); 1, X2 (F(RY, e} (a)))] = [A(efj ()] = M (a7} (@),

where F is a standard, admissible filtration of (RY ,eg (a)) (hence a standard, admissible filtration of

(RN,1x) and (RN, el (a)|1n) as well). We do this directly in Jy : that is, for

21 = (efy (a); 1, X1 (F(RY, e})(a))))

ij

and

z2 = (e} (a); soin (el (a)), siin (e} (a)))

we have r1 ~ x5 € Jn1 via
ij ij ij

y = (efy(a)|1y = so X1 (F(RY, e} (), s1 X1 (F(RY, e} (a))), Xa(F(RY, eff (a)[1n)))

= (el (a)|1n3 ho, ha, ho).

Indeed, we have doz; = dora = (RN;1) and dixy = dizo = (RV;1); also,

dihy = X1(F(RY, el (a))) = diho = dyhy = dahy

ij
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and dghg = iNg(eN

ij(a)). Therefore y € Jy2 and we calculate

doy = (1n3doh1, dohe) = (13 1, X1 (F(RY, 1n))) = (1n; 1, 1) = sodoz1 = Sodo2,

diy=(1nyo eg(a); dahg, dihe) = (eg(a); 1, X1 (F(RY,eN(a)))) = o1,

)1y

and

doy = (eg(a);dgho,d?,hl) = (ef}((a); soiNl(ef\]((a)),sliNl(eg(a))) = 5.

Therefore y is a homotopy from z; to zs by Definition 1.3.1 of Chapter 1. Extending this from generators
to groups, it follows that iy14 o f = Ay 0 ¢ and the diagram commutes.
|

We note from this that by definition of the homotopy equivalences we have Ai, := (8*);!. Also, by
Theorem 1.2.6 from Chapter 3, it makes sense that the rightmost square of the diagram with the long exact

sequences should commute up to a sign at worst. However, we have not confirmed this explicitly yet and

this data is not needed for our final result.

Theorem 1.0.2 The map [ : St(R) — m1 (Y (R)) from Lemma 4.3.4 of Chapter 5 is an isomorphism.

Proof: We argue in a parallel fashion to Nenashev ([13], page 230), although we are careful to notice that
our homotopy fiber Y (R), derived from G(s.PR), is not the same as the one Nenashev derived from G.PR.
Nevertheless, similar properties hold: we note that as induced maps from weak homotopy equivalences

we have \[;' = (9})., so that from Theorem 1.0.1 the diagram

St(R) E(R)

\ %*Oiyl*

™ (Y(R))

makes sense and commutes.

From [10] and [1] we recognize that Quillen’s 4+-construction has a Universal Property: if Y (R) is the
topological homotopy fiber identified with our simplicial homotopy fiber Y (R), then there is a topological
homotopy fibration (see [6])

Y(R) % IN(GL(R))| > [N(GL(R))[*,
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and there is a continuous function f for which, up to homotopy, the diagram

V(R) —> IN(GL(R))] — [N(GL(R))[*

lz \L|P10/\1|+

Y(R)| S INGLR)| Y (a(e PRI

commutes. [10] also gives functoriality of geometric realization, as well as the +-construction, so that |p; o A|

is a weak homotopy equivalence. It follows that f must also be a weak homotopy equivalence. Thus

fo:m(Y(R)) = m(Y(R)]) = m(Y (R))

is an isomorphism.
The work of Loday and Suslin (as reflected in [10]) tells us that there is an isomorphism 6 : 71 (Y (R)) —
St(R) for which the diagram

St(R) GL(R)

™ (Y(R))

commutes. We claim that because of this, the diagram

also commutes. Indeed, by the diagrams we have so far,

$pof =i, =(9})0iyiofu,

SO NOW

$pofo fot = (07)s0ivie,

hence by Theorem 1.0.1

¢poboftof=(0)0iyiof=(d)oNoo=0.

Now [8] tells us that the only endomorphism of St(R) for which the last diagram above commutes is the
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identity endomorphism on St(R). Thus
o ftof =idsynry,

in which case the map f must be an isomorphism. In fact, from a topological standpoint we can now write
fi=Ffoob7h
O

From Lemma 3.1.4 of Chapter 5 we know that A\, : m;(N(GL(R))) — 71 (J(R)) is an isomorphism, and
from Example 5.1.3 of Chapter 1 we know that m (N(GL(R))) := GL(R), so that A1, : GL(R) = w1 (J(R)).

Consider the diagram

¢

1 Ky(R) —%~ St(R)

dy iy

GL(R
7
PR)) =1 (Y(R)) 2 7y (3(

)
Alx
R))
Using the isomorphisms f and A, we construct the map f via diagram-chasing, then show that it is an
isomorphism. Note that since m2(J(R)) = 1, from Definition 3.2.3 of Chapter 1 we know dy : m2(G(s.PR)) —

71 (Y (R)) must be injective.

Given z € K5(R), the inclusion map ix makes z € St(R). By Theorem 1.0.1,

iy+(f(2)) = A(8(2)).

But by exactness,

AL (6(2) = M (@i (2))) = Ma(1) = 1

since ix (z) € ker(¢). Therefore f(z) € ker(iy.). But ker(iy.) = im(dy) by exactness, so there must be an

element v € mo(G(s.PR)) for which f(z) = dy(v). Therefore we set

Since dy is injective as noted, this element v must be uniquely assigned for z, in which case f is well-defined.

Suppose that f(z122) =y € (G (s.PR)). Then

dy(y) = f(z122) = f(21) f(22) = dy(y1)ds(y2)
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for some y1,y2 € m2(G(s.PR)), and we have f(z1) = y1 and f(2z2) = y2. But also

F(21)f(z2) = dy(y1)dy(y2) = dy(v12),

so now dy(y) = dy(y1y2), in which case y = y1y» since dy is injective. Therefore

F(z122) = f(21) f (22)

and f is a homomorphism. Now suppose f(z1) = y1, f(22) = y2 and y1 = y2. Then dy(y1) = f(z1),
dy(y2) = f(z2) and dy(y1) = dy(y2), hence f(z1) = f(z2). But f is an isomorphism, so it follows that z; = 2z,
and thus f is injective.

Since f is an isomorphism, if v € 7 (G(s.PR)) then there is an element ¢ € St(R) for which f(q) =

dy(v) € m1 (Y (R)) (we must show that ¢ € ker(¢) := K2(R)). By Theorem 1.0.1 and exactness we have

Al*(qf)(q)) = ZY*(f(Q)) = iY*(dﬁ(U)) =1

Thus A1.(¢(q)) = 1, hence ¢(q) = 1 since A1, is an isomorphism and it follows that ¢ € ker(¢) := K2(R), so

that f is surjective. We have now proven our concluding result:

Theorem 1.0.3 The map f : Ko(R) — mo(G(s.PR)) defined by

f(z) = v such that dy(v) = f(z) in the diagram

1 — = Ko(R) — =~ Si(R) —2 = GL(R)

lf Al
dﬁ )

7
PR)) ——=m(Y(R)) > 1,(3(R))

is an isomorphism.
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