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ABSTRACT

A SIMPLICIAL HOMOTOPY GROUP MODEL FOR K2 OF A RING

We construct an isomorphism between the group K2(R) from classical, algebraic K-Theory for a ring

R and a simplicial homotopy group constructed using simplicial homotopy theory based on that same ring

R. First I describe the basic aspects of simplicial homotopy theory. Special attention is paid to the use of

category theory, which will be applied to the construction of a simplicial set. K-Theory for K0(R),K1(R)

and K2(R) is then described before we set to work describing explicitly the nature of isomorphisms for

K0(R) and K1(R) based on previous work[11]. After introducing some theory related to K-Theory, some

considerations and corrections on previous work motivate more new theory that helps the isomorphism with

K2(R). Such theory is developed, mainly with regards to finitely generated projective modules over R and

then elementary matrices with entries from R, culminating in the description of the Steinberg Relations that

are central to the understanding of K2(R) in terms of homotopy classes. We then use new considerations

on the previous work to show that a map whose image is constructed through this article is an isomorphism

since it is the composition of isomorphisms.

In Chapter 1 we explore Simplicial Homotopy Theory from the “canonical” point of view of [2]. The

emphasis of the entire paper will be on the calculations involving this structure and how they give explicit

instructions for the isomorphism that is our final result. Accordingly, less attention is given to the fine

details and examples from either classical or modern K-Theory, which we give a brief description of in

Chapter 2. Our goal is not to describe or work with K-Theory as much as it is to accurately reflect the

properties involved through the algebraic structures provided by Simplicial Homotopy Theory, so Chapter 2

only describes what is necessary to see how the later constructions will provide isomorphisms.

Chapter 3 establishes the simplicial sets that we will work with in detail, and provides constructions that

lead to the maps we will connect together to form our final result. Those connections are then introduced in

Chapter 4, where we describe some work that has already been done [11] with K1(R) which will be helpful.

Chapter 5 establishes the main theory that will allow us to reflect the structure of K2(R) through the

simplicial sets introduced in Chapter 3, and Chapter 6 connects these properties into an explicit isomorphism.
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Chapter 1

Simplicial Homotopy Theory

This chapter is an exposition of simplicial homotopy theory, relying mostly (and heavily) on [2] with some

ideas and proofs from [9],[17] and [18], which are also used and expounded upon in [11]. Examples come

from [2],[9], [3] and [11].

1 Simplicial Sets

1.1 Combinatorics and Extension Condition[2]

Definition 1.1.1 A Simplicial Set is a sequence of sets {Xn}n∈Z,n≥0 together with two types of maps –

face maps di : Xn → Xn−1 and degeneracy maps si : Xn → Xn+1 for each i ∈ {0, 1, . . . , n} – which

satisfy the following relations with respect to composition:

i) If i < j then didj = dj−1di.

ii) If i < j then sjsi = sisj−1.

iii) disj =



sj−1di, i < j

idXn , i = j or i = j + 1

sjdi−1, i > j + 1.

A simplicial set is often referred to as a Complex. The elements of Xn are called n-simplices, or the

elements in X of dimension n. The index of a face map or of a degeneracy map is the degree of that map.

We omit parentheses and write the images of these maps as simply dix and sjx for x ∈ Xn, 0 ≤ i, j ≤ n.

Definition 1.1.2 Given simplicial sets X,L, a simplicial map, or map of simplicial sets, f : X → L,

is a collection of functions fn : Xn → Ln, n ∈ N such that di ◦ fn = fn−1 ◦ di and si ◦ fn = fn+1 ◦ si,

∀ 0 ≤ i ≤ n.
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Definition 1.1.3 Given a complex X, a subcomplex L of X is a sequence of subsets {Ln ⊆ Xn}n∈Z,n≥0

for which the face maps and degeneracy maps of X have di|Ln : Ln → Ln−1 and sj |Ln : Ln → Ln+1

∀ 0 ≤ i, j ≤ n for each n ∈ N.

The sets Ln establish L = {Ln} as a simplicial set in its own right, with (restrictions of) the same face

maps and degeneracy maps as defined for X.

Definition 1.1.4 If X ′ ⊆ X and L′ ⊆ L are subcomplexes of Complexes X and L respectively, a simplicial

map of pairs f : (X,X ′)→ (L,L′) is a simplicial map f : X → L for which f |X′ : X ′ → L′.

It is easy to see that simplicial sets together with simplicial maps form a category:

Definition 1.1.5 SS is the category whose objects are simplicial sets and whose morphisms are simplicial

maps.

Definition 1.1.6 Given a simplicial set X, a compatible list in X is a list of n+ 1 n-simplices,

C(n,k) = (x0, x1, . . . , x̂k, . . . , xn+1)

(with n > 0) such that dixj = dj−1xi whenever i < j, i 6= k, j 6= k.

Here x̂k indicates that xk is omitted from the ordered list.

Definition 1.1.7 Given a compatible list C(n,k) in a Complex X as above, an extender for C(n,k) is an

(n+ 1)-simplex y for which diy = xi whenever i 6= k.

Notice that the image of a compatible list under a simplicial map will also be a compatible list. A

simplicial set in which every compatible list has an extender satisfies the Extension Condition; such a

simplicial set is known as a Kan Complex.

Example 1.1.8 X = ∆m[2]: Given n ∈ Z≥0, define n = (0 ≤ 1 ≤ · · · ≤ n) as an ordered set. Let

∆m
n = {c : {0, 1, . . . , n} → {0, 1, . . . ,m} | c(i) ≤ c(j)∀i ≤ j} .

(Another notation for this is ∆m
n =̇Hom∆(n,m).) Define sj ∈ ∆n

n+1 by

sj(k) =


k, k ≤ j

k − 1, k > j

,

2



and di ∈ ∆n
n−1 by

di(k) =


k, k < i

k + 1, k ≥ i

,

for 0 ≤ i, j ≤ n. If we fix m ∈ Z≥0 and define face maps and degeneracy maps respectively by dic = c ◦ di

and sjc = c ◦ sj for any c ∈ ∆m
n , then ∆m = {(∆m

n ; {di} ; {sj})} is a simplicial set, called the Standard

Simplicial m-simplex. We call the di and sj coface maps and codegeneracy maps, respectively.

The following Lemma provides a way to uniquely “factor” elements of ∆m:

Lemma 1.1.9 If c ∈ ∆m
n , c 6= idn has image

m− {iu < iu−1 < · · · < i1}

and

{j | c(j) = c(j + 1)} = {j1 < j2 < · · · < jv} ,

then n− v+ u = m and c = di1 ◦ di2 ◦ · · · diu ◦ sj1 ◦ sj2 ◦ · · · ◦ sjv . Moreover, this factorization is unique when

“reduced” using rules (i)-(iii) of Definition 1.1.1.

��

1.2 Categorical Description of Simplicial Sets[2, 17, 18]

An alternative construction of simplicial sets begins with the category ∆op, which is the opposite category

of the category ∆. The objects of ∆ are the ordered sets n as seen in Example 1.1.8, and the morphisms are

the maps c : n→m as discussed in that same example. The definition of ∆op then requires that the objects

be the same as those of ∆, and that the morphisms be Homop(m,n) = ∆m
n (i.e. maps over n as opposed to

maps into n).

Definition 1.2.1 A (category-theoretic) simplicial set is a (covariant) functor X : ∆op → S, where S is

the category of sets.

Now, given a simplicial set X (by the original definition), identify Xn := X(n) for every n ∈ Z≥0 and

di := X(di), sj := X(sj), 0 ≤ i, j ≤ n for coface maps di and codegeneracy maps sj . More generally, to every

3



µ ∈ Hom∆(n,m) = ∆m
n represented according to Lemma 1.1.9 by

µ = di1 ◦ di2 ◦ · · · diu ◦ sj1 ◦ sj2 ◦ · · · ◦ sjv ,

there corresponds a map µ∗ = X(µ) : Xm → Xn uniquely defined by

µ∗(x) = sjvsjv−1
· · · sj1diudiu−1

· · · di1x.

From here on, we will use both definitions of a simplicial set interchangeably to perform various calculations,

depending on which provides the most advantage. This chapter shall rely mostly on the combinatorial

description.

The combinatorial data for a simplicial map f : X → L is a collection of maps, one defined for each

dimension n, but by Definition 1.2.1 the simplicial set is itself a set map sending objects n ∈ ∆op to sets

Xn ∈ S. So the simplicial map assigns to each n a map (i.e. morphism of sets) f(n) = fn : X(n) → L(n).

Furthermore, with this assignment we see that the required degree-preserving behavior toward face maps

and degeneracy maps(Definition 1.1.2) implies

f(n-1) ◦X(di) = L(di) ◦ f(n)

and

f(n+1) ◦X(sj) = L(sj) ◦ f(n)

for each 0 ≤ i, j ≤ n. Since any morphism α in ∆op can be written as a unique combination of coface maps

and codegeneracy maps (Lemma 1.1.9) and X and L must be covariant functors, it follows that

f(m) ◦X(α) = L(α) ◦ f(n) ∀ α ∈ Homop(n,m),

in which case a simplicial map f : X → L is a natural transformation[2, 9] from the functor X to the functor

L.

Given a simplicial set X and a fixed φ0 ∈ X0, define the one-point simplicial set

Φ = {φn = sn−1 ◦ sn−2 ◦ · · · ◦ s0φ0, n ∈ N}

(i.e. Φ contains only one simplex in each dimension). Then Φ is a subcomplex of X. The pair (X,Φ) is called

a Pointed Complex with basepoint Φ, and use of this definition motivates us to define the elements of

4



X0 as the vertices of the simplicial set X. When X is a Kan Complex, (X,Φ) is called a Kan Pair. When

X ′ ⊆ X is a Kan subcomplex (and X is a Kan Complex) for which Φ ⊆ X ′ as a subcomplex, we call the

data (X,X ′,Φ) a Kan Triple.

Definition 1.2.2 Given any subset S ⊆ Xm, m ∈ N, the subcomplex generated by S is the simplicial

set X(S) with n-simplices

X(S)n = {µ∗(s) | s ∈ S, µ∗ : Xm → Xn} .

Definition 1.2.2 can be easily extended to general subsets of the simplicial set X (i.e. S = S0∪S1∪· · ·∪Sm,

Si ⊂ Xi). Also, note that Φ = X(φ0).

Definition 1.2.3 SS∗ is the category whose objects are Pointed Complexes (X,ΦX) and whose morphisms

are simplicial maps of pairs f : (X,ΦX)→ (Y,ΦY ) for appropriate basepoints ΦX ,ΦY .

Definition 1.2.4 A simplicial set X is reduced if it has only one vertex: X0 = {φ0} .

1.3 Homotopy in Kan Complexes

Definition 1.3.1 Let X be a simplicial set. For n ≥ 1, n-simplices x and y are homotopic (in the simplicial

set), denoted x ∼ y, if ∀ 0 ≤ i ≤ n, dix = diy ∈ Xn−1 and for some (n+ 1)-simplex z,

diz =



y, i = n+ 1,

x, i = n

sn−1dix = sn−1diy, 0 ≤ i ≤ n− 1.

Such z is a homotopy (in the simplicial set) from x to y.

Theorem 1.3.2 ([2], Proposition 3.2) If X is a Kan Complex then the relation x ∼ y for x, y ∈ Xn is an

equivalence relation on Xn for any given n ∈ N.

The purpose of many of the constructions we perform is to ensure that the simplicial set we are work-

ing with is a Kan Complex, and so has the equivalence relation (and hence equivalence classes) given by

homotopy.

The relation above only applies when n ≥ 1. We have the following relation on the 0-simplices X0 of a

simplicial set X:

5



Definition 1.3.3 In a simplicial set X, two 0-simplices x, y ∈ X0 are in the same path component of X if

there is a list of 1-simplices Dk = (z1, . . . zk) ⊂ X1 so that x = d0z1 or x = d1z1, y = d0zk or y = d1zk, and

for each 1 ≤ i < k, one of the following is true: d0zi = d0zi+1, d1zi = d0zi+1, d0zi = d1zi+1 or d1zi = d1zi+1.

We consider the above definition to be synonymous with homotopy for 0-simplices: given x, y ∈ X0,

x ∼ y if and only if x and y are in the same path component of X. This is clearly an equivalence relation on

X0.

Definition 1.3.4 Given a Pointed Complex (X,Φ), define

X̃n := {x ∈ Xn | dix = φn−1 ∀ 0 ≤ i ≤ n}

for n > 0. In case n = 0 define X̃0 = X0.

Note that the equivalence relation on Xn restricts to an equivalence relation on X̃n for each n when X

is a Kan Complex.

Definition 1.3.5 When (X,Φ) is a Kan Pair with homotopy x ∼ y between n-simplices as an equivalence

relation, define πn(X,Φ) = X̃n/∼, for n > 0, with elements [x] . When n = 0 use Definition 1.3.3 and set

π0(X,Φ) = X̃0/ ∼ .

Note that by definition, π0(X) := π0(X,Φ) is independent of the choice of 0-simplex φ0. Some construc-

tions later will be made for the purpose of producing a reduced Kan Complex, so that these homotopy sets

for n > 0 are unambiguous in terms of the choice of Φ, and can be denoted as simply πn(X).

Definition 1.3.6 Let (X,Φ) ∈ SS∗ be a Kan Pair. Given n > 0, [x], [y] ∈ πn(X,Φ), define the specific,

compatible list Cxy = C(n,n) = (xi)i 6=n where

xi =



φn, 0 ≤ i ≤ n− 2,

x, i = n− 1,

y, i = n+ 1

(i.e. k = n in the usual compatible list notation). Then

[x] • [y] = [dnz]

6



where z ∈ Xn+1 is an Extender of Cxy.

One can show that the above multiplication • above is well-defined, and we have

Theorem 1.3.7 [2]Let (X,Φ) ∈ SS∗ be a Kan Pair. With respect to the multiplication • defined above,

πn(X,Φ) is a group if n ≥ 1. Moreover,if n ≥ 2, πn(X,Φ) is an abelian group.

When Theorem 1.3.7 holds, we call πn(X,Φ) the nth simplicial homotopy group of X (with respect

to Φ). We have π0(X,Φ) as a pointed set, with basepoint the class of φ0, but this is not necessarily a group.

Definition 1.3.8 If f : (X,ΦX) → (L,ΦL) is a simplicial map of Kan Pairs, then an induced map

f∗ : πn(X,ΦX)→ πn(Y,ΦY ) is defined by f∗([x]) = [fn(x)].

It is straightforward to see that

Lemma 1.3.9 If f : (X,ΦX) → (L,ΦL) is a simplicial map of Kan Pairs, then the induced map f∗ :

πn(X,ΦX)→ πn(Y,ΦY ) is a homomorphism of groups, if n ≥ 1, and is a map of pointed sets if n = 0.

We will construct a long exact sequence of homotopy groups; in order to do this, we will need a more

general theory on homotopy.

Definition 1.3.10 Given X ∈ SS with a subcomplex X ′ ⊆ X and n ≥ 1, two n-simplices x, y ∈ Xn have

x ∼ y(rel X ′) (i.e. x and y are homotopic relative to X ′) if

1) d0x ∼ d0y as elements in X ′n−1.

2) ∀ 1 ≤ i ≤ n, dix = diy.

3) There is some homotopy in the simplicial set, w ∈ X ′n, between d0x and d0y and there is an (n + 1)-

simplex z ∈ Xn+1 such that

diz =



y, i = n+ 1,

x, i = n,

sn−1dix = sn−1diy, 1 ≤ i ≤ n− 1,

w, i = 0

(such a z is a relative homotopy (in the simplicial set) from x to y).
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Definition 1.3.11 Given a Kan Triple (X,X ′,Φ), and n ≥ 1,

X̃(X ′)n =
{
x ∈ Xn : d0x ∈ X ′n−1, dix = φn−1 ∀ 1 ≤ i ≤ n

}
.

Definition 1.3.12 Relative Homotopy Groups as Sets: Given Kan Triple (X,X ′,Φ) and n ≥ 1,

πn(X,X ′,Φ) = X̃(X ′)n/∼X′ ,

with elements [x]X′ .

Similar to Definition 1.3.8, given a simplicial map f : (X,X ′,ΦX) → (L,L′,ΦL) between Kan Triples,

define the induced map f∗ : πn(X,X ′,ΦX)→ πn(L,L′,ΦL) by f∗([x]X′) = [f(x)]L′

In light of Definitions 1.3.11 and the rules of Definition 1.1.1, notice that x ∈ X̃(X ′)n implies

did0x = d0di+1x = φn−2

∀ 0 ≤ i ≤ n− 1, so that (since d0x ∈ X ′n−1) d0x ∈ X̃ ′n−1. Thus for x, y ∈ X̃(X ′)n we have

[d0x] • [d0y] = [dn−1u] ∈ πn−1(X ′,Φ)

for some u ∈ X ′n that extends the compatible list Cd0(x)d0y ⊆ X ′n−1. This in turn gives a compatible list

C ′xy = C(n,n) = (xi)i6=n,

where

xi =



u, i = 0,

φn, 1 ≤ i ≤ n− 2,

x, i = n− 1,

y, i = n+ 1.

Since X ′ is a Kan subcomplex by definition, there is an extender v ∈ X ′n+1 for C ′xy. The result is a group

product on πn(X,X ′,Φ) similar to Definition 1.3.6:
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Definition 1.3.13 Given Kan Triple (X,X ′,Φ), n ≥ 2 and corresponding set X̃(X ′)n, define [x]X′ •X′

[y]X′ = [dnv]X′ where v ∈ X ′n+1 extends the compatible set C ′xy described above.

Remark 1.3.14 It is easy to see that πn(X,Φ,Φ) = πn(X,Φ) when n ≥ 1.

Similar to Theorem 1.3.7 and Lemma 1.3.9, we have

Theorem 1.3.15 Given a Kan Triple (X,X ′,Φ)and n ≥ 2, πn(X,X ′,Φ) is a group with respect to the

multiplication •, and is an abelian group if n ≥ 3. If f : (X,X ′,ΦX)→ (Y, Y ′,ΦY ) is a map of Kan Triples,

then the induced map f∗ : πn(X,X ′,Φ)→ πn(Y, Y ′,Φ) is a homomorphism of groups.

Note that while π1(X,X ′,Φ) is not necessarily a group, it is a pointed set.

We may now write down the “long exact sequence for a Kan Triple”; first of course we define the

connecting homomorphism.

Definition 1.3.16 Define

d : πn(X,X ′,Φ)→ πn−1(X ′,Φ)

by [x]X′ 7→ [d0x], which is a connecting homomorphism for n ≥ 2 and a (connecting) set map when

n = 1.

Theorem 1.3.17 ([2], Theorem 3.7) Let (X,X ′,Φ) be a Kan Triple, with inclusion (simplicial) maps

i : (X ′,Φ)→ (X,Φ) and j : (X,Φ,Φ)→ (X,X ′,Φ)

(see Remark 1.3.14). Then there exists a long exact sequence of Homotopy Groups,

· · · // πn+1(X,X ′,Φ)
d // πn(X ′,Φ)

i∗ // πn(X,Φ)
j∗ // πn(X,X ′,Φ) // · · · .

Remark 1.3.18 The maps at the end of this long exact sequence are not necessarily group homomorphism,

but are maps of pointed sets, and “exact” here means exact as a sequence of pointed sets.

1.4 Dimension-wise Map Homotopy

Definition 1.4.1 Let X and L be simplicial sets. Simplicial maps f, g : X → L are homotopic via a

dimension-wise homotopy h : f ' g if given n ∈ Z≥0 there is a sequence of maps

{
h

(n)
i : Xn → Ln+1 | 0 ≤ i ≤ n

}
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for which the following relations hold with respect to composition for any x ∈ Xn:

i) d0h
(n)
0 (x) = fn(x) and dn+1h

(n)
n (x) = gn(x).

ii) dih
(n)
j (x) =



h
(n−1)
j−1 di(x), i < j

dj+1h
(n)
j+1(x) = dj+1h

(n)
j (x), i = j or i = j + 1

h
(n−1)
j di−1(x), i > j + 1.

iii) sih
(n)
j (x) =


h

(n+1)
j+1 si(x), i ≤ j

h
(n+1)
j si−1(x), i > j.

If f, g : (X,X ′)→ (L,L′) are simplicial maps of Pairs and as a homotopy of simplicial maps the homotopy

h : f ' g has h|X′ : X ′ → L′ and h|X′ : f |X′ ' g|X′ , we say that f and g are homotopic relative to X ′ via

relative homotopy h : f ' g rel(X ′). In case X ′ = ΦX ⊆ X and L′ = ΦL ⊂ L for appropriate one-point

simplicial sets, we say f and g are homotopic relative to the basepoint Φ.

Theorem 1.4.2 Let (X,ΦX), (L,ΦL) ∈ SS∗ be Kan Pairs. If f, g : (X,ΦX)→ (L,ΦL) are simplicial maps

of Pairs with f ' g rel(ΦX), then for each n ∈ N, f∗([x]) = g∗([x]) ∀ [x] ∈ πn(X,ΦX).

Definition 1.4.3 Simplicial Sets X and L are of the same homotopy type or are homotopy equivalent

if there are simplicial maps f : X → L and f ′ : L→ X for which f ◦ f ′ ' idL and f ′ ◦ f ' idX . Such f and

f ′ are then called homotopy equivalences[17]. X is of the homotopy type of a point if and only if it

is contractible.

As a consequence of Theorem 1.4.2, we note that if K and L are of the same homotopy type, then

πn(K,Φ) is isomorphic to πn(L, f(Φ)) ∀ n ≥ 0 given homotopy equivalence f between them.

2 Simplicial Groups

2.1 Definition ([2], Chapter 17)

Definition 2.1.1 A simplicial group is a simplicial set G = {(Gn; {di} ; {si})} for which each Gn is a

group and each of the corresponding collections {di} and {si} consists of group homomorphisms. Denote

the identity element of each such group by en. A map of simplicial groups is a simplicial map between

simplicial groups whose dimension-wise maps are group homomorphisms.
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The category-theoretic version of this definition is that a simplicial group is a (covariant) functor G :

∆op → G where G ⊂ S is the (sub)category of groups.

Theorem 2.1.2 ([2], Theorem 17.1) Every Simplicial Group is a Kan Complex.

Corollary 2.1.3 Suppose G is a simplicial group. Let e be the one-point simplicial set consisting of identity

elements en ∈ Gn. Then the homotopy groups πn(G, e) exist for each n > 0.

Recall that when G is a simplicial group, [x] • [y] denotes the group operation in πn(G, e) (well-defined

since G is a Kan Complex from Theorem 2.1.2), and let concatenation xy denote the group operation in

each group Gn from here on.

Proposition 2.1.4 ([2], Proposition 17.2) If G is a Simplicial Group then

[x] • [y] = [xy] ∈ πn(G, e) ∀ x, y ∈ G̃n.

Consequently, [x]−1 = [x−1] ∈ πn(G, e) and [e] is the identity of the group πn(G, e).

As a corollary we have a stronger property than what we already have in Theorem 1.3.7

Proposition 2.1.5 ([2],Proposition 17.3) If G is a simplicial group then πn(G, e) is abelian ∀ n > 0.

2.2 Chain Complex Construction

Definition 2.2.1 Given simplicial group G, define Ḡn = Gn ∩ ker(d0) ∩ ker(d1) ∩ · · · ∩ ker(dn−1) and

G̃n = Gn ∩ ker(d1) ∩ ker(d2) ∩ · · · ∩ ker(dn) for each n ∈ N.

Lemma 2.2.2 ([2], Proposition 17.3.iii) If G is a simplicial group with Ḡn as defined above, then

dn+1(Ḡn+1) / Ḡn and dn+1(Ḡn+1) / Gn.

The above lemma allows definition of a Chain Complex [19], Ḡ, by

· · · dn+2→ Ḡn+1
dn+1→ Ḡn

dn→ Ḡn−1
dn−1→ · · · .

We denote the restriction di|Ḡ = d̄i. Now we can define n-cycles Zn(Ḡ) = ker(d̄n) ≤ Ḡn, n-boundaries

Bn := Bn(Ḡ) = im(d̄n+1), and we define

π′n(G) := Zn(Ḡ)/Bn(Ḡ).

11



This allows an alternative to the canonical construction for the homotopy group given in Definition 1.3.6

using these Chain Complexes rather than the sometimes-cumbersome homotopy of Definition 1.3.1:

Proposition 2.2.3 ([2], Proposition 17.4) πn(G) ≈ π′n(G) ∀ n ≥ 0 by the natural identification [x] 7→ [x].

Now we see that when X happens to be a simplicial group we are able to use the group operation inherited

from the bijection between π0(X,Φ) and π′0(X) to define π0(X,Φ) as a group in a natural way.

3 Kan Fibrations([2], Ch.7 and Ch.18)

3.1 Definition

Definition 3.1.1 Let X,L be simplicial sets, f : X → L a simplicial map, and

C(n,k) = (x0, . . . , x̂k, . . . , xn+1)

be a compatible list in X. Suppose that f has the property that some preimage x of y (i.e. some x with f(x) =

y) is an extender for C(n,k) whenever y extends the corresponding compatible set f(C(n,k)) = (f(xq))q 6=k ⊆ L.

Then f satisfies the Image-Extension Condition on C(n,k).

A simplicial map f satisfying the Image-Extension Condition on every “extensible,” compatible list in

its domain is known as a Kan Fibration, or a fibration of simplicial sets; in this case, X is the total

complex, L is the base complex and the collection of data (X, f, L) is the fiber space defined by the

Kan fibration f. Notice that this structure requires neither X nor L to be Kan Complexes, but only for any

“extensible” sets that exist within these simplicial sets to satisfy the Image-Extension Condition.

Lemma 3.1.2 Given a simplicial set X and any one-point simplicial set Φ ⊆ X, X is a Kan Complex if

and only if the unique simplicial map p : X → Φ is a Kan fibration.

Proof: Since Φn = {φn = sn−1sn−2 · · · s1s0φ0} for given φ0 ∈ X0, any simplicial map p : X → Φ must

have x 7→ φn for every x ∈ Xn. So p is uniquely defined by pn(x) = φn ∀ x ∈ Xn.

Suppose X is a Kan Complex and let C(n,k) = (x0, . . . , x̂k, . . . , xn+1), be a compatible list in Xn. Since X

is a Kan Complex, there is an extender x ∈ Xn+1 for C(n,k). But p(x) = φn+1 and p(C(n,k)) = (φn, . . . , φn),

by definition, so that p(x) extends p(C(n,k)). Therefore the preimage, x, of the extender φn+1 of p(C(n,k))

extends C(n,k). Such φn+1 is the only possible extender of p(C(n,k)) by definition of the one-point simplicial

set Φ, so every extender of p(C(n,k)) has a preimage that extends C(n,k). Therefore p is a Kan fibration.
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Conversely, if the simplicial map p : X → Φ by p(x) = φn for every x ∈ Xn is a Kan fibration, then

consider the compatible list C(n,k) once more. By definition we have p(C(n,k)) = (φn, . . . , φn) ⊆ Φn. Since

p is a Kan fibration, any extender of p(C(n,k)) has a preimage that extends C(n,k). But φn+1 ∈ Φn+1 exists

and extends p(C(n,k)). Therefore there must be an extender x ∈ Xn+1 for C(n,k) which has p(x) = φn+1.

Thus every compatible list in X has an extender, in which case X is a Kan Complex.

�

3.2 Long Exact Sequence of Kan Fibrations

Given simplicial map f : (X,ΦX)→ (L,ΦL), set F = f−1(ΦL).

Proposition 3.2.1 ([2], Proposition 7.3) Let (X,ΦX) ∈ SS∗ be a Pointed Complex and (X, f, L) be a fiber

space, with ΦL = f(ΦX). Then (F,ΦX) is a Kan Pair.

From now on, whenever we write a homotopy group πn(X,ΦX), we assume that (X,ΦX) is a Kan Pair,

and similarly for relative homotopy groups.

Consider the compatible list C(n−1,0) = (φ
(X)
n−1, φ

(X)
n−1, . . . , φ

(X)
n−1). Any given y ∈ L̃n extends the list

f(Cn−1,0) = (φ
(L)
n−1, . . . , φ

(L)
n−1), and if f is a Kan Fibration this implies ∃ x ∈ Xn with dix = φ

(X)
n−1 ∀ 1 ≤ i ≤ n

(so that x extends C(n−1,0)) and f(x) = y. But d0y = φ
(L)
n−1 since y ∈ L̃n and since f is a simplicial map we

have d0y = d0f(x) = f(d0x) = φn−1, so d0x ∈ Fn−1. Now we have class [d0x] ∈ πn−1(F,ΦX) and we can

define a connecting homomorphism d] : πn(L,ΦL)→ πn−1(F,ΦX) by [y] 7→ [d0x].

Lemma 3.2.2 The induced map f∗ : πn(X,F,ΦX)→ πn(L,ΦL) is an isomorphism ∀ n ≥ 2.

Recall that πn(L,ΦL,ΦL) = πn(L,ΦL) when n ≥ 2. The inverse isomorphism to f∗ is the map q defined

by q[y] = [x] for such x as used to define the connecting homomorphism d] above. We also notice that

d]f∗[x] = d][y] = [d0x] = d[x] for each [x] ∈ πn(X,F,ΦX), n ≥ 2 (using extender y = f(x) for f(C(n−1,0)) in

the construction above and Definition 1.3.16). It follows that the following diagram commutes:

· · · // πn+1(X,F,ΦX)
d //

f∗

��

πn(F,ΦX)
i //

=

��

πn(X,ΦX)

=

��

j // πn(X,F,ΦX) //

f∗

��

· · ·//

· · · // πn+1(L,ΦL)
d] // πn(F,ΦX)

i // πn(X,ΦX)
f∗ // πn(L,ΦL) // · · ·//

.

In this diagram, exactness at πn(F,ΦX) via i ◦ d], exactness at πn(X,ΦX) via f∗ ◦ i, and exactness at

πn(L,ΦL) via d] ◦ f∗ all follow from the long exact sequence of Homotopy Groups on X(Theorem 1.3.17).

The result is another exact sequence:
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Definition 3.2.3 The sequence

· · · // πn+1(L,ΦL)
d] // πn(F,ΦX)

i // πn(X,ΦX)
f∗ // πn(L,ΦL) // · · ·//

is the long exact sequence of Kan Fibrations. For Kan fibration f the sequence (F,ΦX) ⊆ (X,ΦX)
f→

(L,ΦL) is called a fiber sequence.

3.3 Simplicial Group Action and Twisted Cartesian Products

Definition 3.3.1 Given simplicial sets X (with maps dXi and sXj ) and L (with maps dLi and sLj ), the

Cartesian Product of X and L is the simplicial set P = X × L with n-simplices

Pn := Xn × Ln,

face maps and degeneracy maps

di := dXi × dLi

and

sj := sXj × sLj

respectively.

Definition 3.3.2 A simplicial group G acts (from the left) on a simplicial set X if each group Gn acts

(from the left) on the corresponding set Xn, and these actions commute through face maps and degeneracy

maps: di(gx) = (dig)(dix) and sj(gx) = (sjg)(sjx).

Put another way, G acts on X if the map ψ : G×X → X defined for each dimension n by ψn(en, x) =

x ∀ x ∈ Xn and ψn(g1g2, x) = ψn(g1, ψn(g2, x)) (giving the group action) is actually a simplicial map on the

Cartesian Product G×X.

Let simplicial group G act on simplicial set F. Consider another simplicial set B and a map t, defined for

each dimension n > 0 by tn : Bn+1 → Gn having the following relationships with face maps and degeneracy

maps (b ∈ Bn+1):

a) dntn(b) = (tn−1(dn+1b))
−1tn−1(dnb).

b) ditn(b) = tn−1(dib) ∀ 0 ≤ i ≤ n− 1.

c) sjtn(b) = tn+1(sjb) ∀ 0 ≤ j ≤ n.
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d) tn+1(sn+1b) = en+1.

We can define a simplicial set structure with n-simplices Fn ×Bn by letting face maps be

di(f, b) =


(dif, dib) 0 ≤ i < n,

(tn−1(b)dnf, dnb) i = n

and

sj(f, b) = (sjf, sjb) ∀ 0 ≤ j ≤ n

for degeneracy maps. This simplicial set is the Twisted Cartesian Product with fiber F , base B,

twisting function t and group G, denoted F ×t B.

Theorem 3.3.3 ([2], Proposition 18.4.i) The natural projection map p : F ×t B → B is a Kan fibration

with total space F ×t B, fiber F and base B.

Definition 3.3.4 If G acts on X such that for every n ∈ N the only g ∈ Gn for which any one x ∈ Xn has

gx = x is g = en, then G acts principally on X. Thus if F in a Twisted Cartesian Product F ×t B is a

simplicial group then we call F ×t B a Principal Twisted Cartesian Product.

When G acts principally on X we have equivalence classes [x] = {gx|g ∈ Gn ⊆ Xn} , which form a “quotient

subcomplex,” B, of X. The projection p : X → B by x 7→ [x] is the principal fibration of X with group

G and base B.

Lemma 3.3.5 ([2], Lemma 18.2) Every principal fibration is a Kan fibration.

Theorem 3.3.6 ([2], Proposition 18.4.iii) If F = G then the projection p : F ×t B → B on the principal

Twisted Cartesian Product is a principal fibration.

4 Loop Groups([17, 18] and [2] Ch.18)

The canonical definition (Definitions 1.3.5 and 1.3.6) of the homotopy groups requires the simplicial set

under consideration to be a Kan Complex. By virtue of Theorem 2.1.2, Proposition 2.1.4 and Proposition

2.2.3, simplicial groups are among the most convenient and transparent Kan Complexes to work with. Thus

methods have been developed to construct a simplicial group from a simplicial set. An important result of

Kan’s ([17, 18]) is that the construction we describe in this section canonically describes the homotopy of a

simplicial set whether that simplicial set is a Kan Complex or not, by construction of a particular simplicial

group.
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4.1 Kan’s Loop Construction

Definition 4.1.1 A simplicial group G is a free simplicial group if each group Gn, n ∈ Z≥0 is a free

group, and each group Gn has a basis Bn so that the collection {Bn} of bases is preserved by degeneracy

maps: for every b ∈ Bn, sjb ∈ Bn+1 ∀ 0 ≤ j ≤ n.

We use a construction by Kan[17, 18] that results in a free simplicial group starting with a simplicial set

X. We start with the requirement not that X be a Kan Complex, but just that X be a reduced simplicial

set (i.e. X0 = {φ0}). Later on even this requirement will be relaxed. Take the set Xn+1 of (n+ 1)-simplices,

and define a basis element σx for each x ∈ Xn+1 :

Definition 4.1.2 Given n ∈ Z≥0 and a reduced simplicial set X (with maps dXi and sXj ), the Loop Group

GX of X is a simplicial group wherein the set GXn of n-simplices is a group with one generator σx for each

x ∈ Xn+1 and a relation

σsXn y = en

defining the identity of GXn, for each y ∈ Xn. Let face maps di : GXn → GXn−1 be defined by setting

diσx =


σdXi x, 0 ≤ i ≤ n− 1

(σdXn+1x
)−1σdXn x, i = n

and extending linearly. Similarly, extend

sjσx = σsXj x ∀ 0 ≤ j ≤ n

linearly to define degeneracy maps sj : GXn → GXn+1.

Theorem 4.1.3 Given a reduced simplicial set X, GX is a free simplicial group.

Proof: Recall that the identity element is a required generator for a group unless other relations are

specified. The relation σsXn (y) = en, y ∈ Xn merely assigns the generator en to each “n-degenerate” element

of Xn+1. Otherwise, there are no nontrivial relations among the generators σx, x ∈ Xn since each distinct

generator corresponds to a distinct (n+ 1)-simplex in X. Therefore each GXn is a free group.

Since (n+ 1)-simplices of X correspond directly to generators of GXn, the face and degeneracy relation-

ships of Definition 1.1.1 for simplicial set X imply the same relationships on the face maps and degeneracy

maps acting on generators. For instance, note that for any i < n and any x ∈ Xn+1 with corresponding

16



generator σx ∈ GXn,

didnσx = di((σdXn+1x
)−1σdXn x) = (diσdXn+1x

)−1diσdXn x = (σdXi dXn+1x
)−1σdXi dXn x = (σdXn dXi x)−1σdXn−1d

X
i x
.

But σdXi x ∈ GXn−1, so

(σdXn dXi x)−1σdXn−1d
X
i x

= dn−1σdXi x = dn−1diσx.

It follows that GX is a simplicial group with free groups GXn as sets of n-simplices. Furthermore, we see

that sXj x ∈ Xn+2 ∀ 0 ≤ j ≤ n + 1 implies σsXj x = sjσx is a generator for GXn+1 for each 0 ≤ j ≤ n. So if

we identify {σx | x ∈ Xn+1} = Bn as the basis for GXn, we see that

sjb ∈ Bn+1 ∀ b ∈ Bn ∀ 0 ≤ j ≤ n.

Therefore GX is a free simplicial group.

�

The identification x 7→ σx gives functions tn : Xn+1 → GXn for which

ditn(x) = diσx = σdXi x = tn−1(dXi x)

∀ 0 ≤ i ≤ n− 1,

dntn(x) = dnσx = (σdXn+1x
)−1σdXn x = (tn−1(dXn+1x))−1tn−1(dXn x),

and

sjtn(x) = sj(σx) = σsXj x = tn+1(sXj x) ∀ 0 ≤ j ≤ n.

So the map t : X → GX defined for each dimension by these tn is a twisting function from which we can

form a Twisted Cartesian Product:

Definition 4.1.4 Given a reduced simplicial set X with corresponding, constructed free simplicial group

GX, EX = GX ×t X is the loop complex of X, where tn : Xn+1 → GXn, is defined by tn(x) = σx.

We denote the generators of GX by t(x) := tn(x) ∈ GXn for x ∈ Xn+1 from here on. Since any group acts

naturally on itself (hence any simplicial group acts naturally on itself), EX is a Principal Twisted Cartesian

Product with base X, group GX and fiber GX. Kan shows[18] that EX is a contractible simplicial set when

X is a reduced simplicial set.
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4.2 Functoriality of Kan’s Loop Group Construction

At this point, we are mostly concerned with applying the loop group construction to reduced simplicial sets.

Definition 4.2.1 A map of reduced simplicial sets f : X → Y is a weak homotopy equivalence if and

only if f∗ induces isomorphisms of all homotopy groups. A homomorphism of simplicial groups f : A → B

is a weak homotopy equivalence if and only if f∗ : πi(A, e) → πi(B, e) is an isomorphism, for e the identity

element of the groups A or B as appropriate, and for every i ≥ 0.

Denote the category of reduced simplicial sets by SSred and the category of simplicial groups by SG.

Some features of the loop group construction from the previous section are:

Lemma 4.2.2 If f : X → Y is a simplicial map on reduced simplicial sets, then there is an induced

homomorphism of simplicial groups Gf : GX → GY, defined on generators by t(x) 7→ t̃(f(x)) for x ∈ X and

generators t(x) of GX and t̃(y) for GY. This admits a functor G from SSred to SG.

Lemma 4.2.3 The loop group construction fits GX into a fibration

GX → EX → X

of simplicial sets, with EX of the homotopy type of a point. This fibration is also functorial: a map f : X → Y

in SS gives a map of fibrations

GX → EX → X

↓ Gf ↓ Ef ↓ f

GY → EY → Y.

Using the homotopy long exact sequence for a fibration, we have

Lemma 4.2.4 If f : X → Y is a simplicial map that is a weak homotopy equivalence, then the homomor-

phism of free simplicial groups Gf : GX → GY is also a weak homotopy equivalence.

Kan [18] defines a relation of “loop homotopy” between two homomorphisms of simplicial groups f, g :

A → B and then proves that if A is free, then this relation is an equivalence relation. The definition

of loop homotopy implies that the homotopy leaves the basepoint (the identity element) of the simplicial

group “fixed”; i.e., it is a homotopy relative to the basepoint so that loop homotopic maps are always

simplicially homotopic as in Definition 1.4.1. A“loop homotopy equivalence” of free simplicial groups A and

B is defined to be a homomorphism f : A→ B of simplicial groups such that there exists a homomorphism
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g : B → A of simplicial groups such that both g ◦ f and f ◦ g are loop homotopic to the appropriate identity

homomorphisms.

It is clear then, that any loop homotopic equivalence is a weak homotopy equivalence, and Kan proves

the converse in special case:

Theorem 4.2.5 (Proposition 6.5 of [17]) Let f : A→ B be a homomorphism of free simplicial groups that

is also a weak homotopy equivalence. Then f is a loop homotopy equivalence.

So, we have

Corollary 4.2.6 If f : X → Y is a simplicial map (with X and Y reduced simplicial sets) that is a weak

homotopy equivalence, then Gf : GX → GY is a loop homotopy equivalence.

In addition, using Kan’s work in [18] one can prove

Theorem 4.2.7 If X and Y are reduced simplicial sets (neither necessarily Kan complexes) and f, g : X →

Y are maps of simplicial sets that are simplicially homotopic, relative to the basepoint, then the induced

homomorphisms Gf,Gg : GX → GY , are loop homotopic.

4.3 Loop Groups on Nonreduced Simplicial Sets

We will also need to construct Loop Groups on nonreduced simplicial sets in a functorial way. Kan [18]

constructs such loop groups using maximal trees; another construction is obtained by Berger as described

by Duflot, and functoriality may be obtained by incorporating the choice of maximal tree into the category

of definition.

One way of doing this is exposited in Duflot[11]and briefly summarized below.

Definition 4.3.1 A simplicial set X is star-connected at basepoint φ0 ∈ X0 if and only if for any

z ∈ X0 ∃ y(z) ∈ X1 for which d1(y(z)) = φ0 and d0(y(z)) = z. Call such y(z) a ray at z.

We see easily that any star-connected simplicial set is connected, since by definition z ∼ φ0 for every

z ∈ X0 (i.e. the required list of 1-simplices from Definition 1.3.3 is D1 = (y(z))).

Definition 4.3.2 Given (X,Φ) ∈ SS∗ with X star-connected at φ0, a ray function ω : X0 → X1 is any

function such that ω(x) = y where y is a ray at x.

Definition 4.3.3 [18]Let (X,Φ) ∈ SS∗ with X (star-)connected at φ0. An n-loop of X is a sequence

(x1, x2, . . . , x2k) ⊂ Xn+1,
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k > 0, wherein

dn+1x2j−1 = dn+1x2j ∀ 1 ≤ j ≤ k,

d0d1 · · · dnx2j = d0d1 · · · d2j+1 ∀ 1 ≤ j ≤ k − 1,

and

d0d1 · · · dnx1 = d0d1 · · · dnx2k.

Such loop is reduced if xj 6= xj+1 ∀ 1 ≤ j ≤ 2k.

Definition 4.3.4 Let (X,Φ) ∈ SS∗ with X (star-)connected at φ0. A tree in X is a connected subcomplex

T ⊂ X such that φ0 ∈ T0 and T contains no reduced loops. T is a maximal tree if T0 = X0.

Proposition 4.3.5 Given (X,Φ) ∈ SS∗ with X star-connected at φ0 and corresponding ray function ω :

X0 → X1, let Tω = X(X0, ω(X0)). Then Tω is a maximal tree in X.

Recall Definition 1.2.2 for Tω and note that Φ is always a subcomplex of Tω. Using either Kan [18] or

Berger (see the variation of Berger’s construction discussed in [11]), given a star-connected simplicial set X

with ray function ω, and maximal tree Tω(X), one may construct a loop group G(X,ω):

Definition 4.3.6 For every n ≥ 0, G(X,ω)n is constructed by taking the free group on the set Xn+1 and

imposing the following relations:

1) snx 7→ 1, for every x ∈ Xn.

2) y 7→ 1, for every y ∈ (Tω(X))n+1.

One sees that G(X,ω)n is a free group on the set Xn+1 − sn(Xn)− (Tω(X))n+1.

As in the reduced case, we denote the generator of G(X,ω) corresponding to x ∈ Xn+1 by t(x).

4.3.1 Functoriality for the Nonreduced Case

The domain category of the functors we consider is the category whose objects are the triples (X,Φ, ω) where

(X,Φ) is a pointed star-connected simplicial set, and ω is a ray function. A morphism f : (X,ΦX , ωX) →

(Y,ΦY , ωY )in this category is a map of pointed simplicial sets f : X → Y such that ωY ◦ f = f ◦ ωX .

Using the construction details (for either Kan’s or Berger’s construction), we have the analogs of the

theorems in the previous section:
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Lemma 4.3.7 ([11], Lemma 4.0.22) If f : (X,ΦX , ωX)→ (Y,ΦY , ωY ) is a morphism as defined above, then

there is a functorial induced homomorphism of simplicial groups Gf : G(X,ωX)→ G(Y, ωY ) defined by

Gf(t(x)) = t(f(x)).

Corollary 4.3.8 Given a triple (X,ΦX , ω) in our domain category, there is a fibration

G(X,ω)→ E(X,ω)→ X

of simplicial sets, with E(X,ω) of the homotopy type of a point. This fibration is also functorial: a map of

triples f : (X,φX , ωX)→ (Y, φY , ωY ) in our domain category gives a map of fibrations

G(X,ωX) → E(X,ωX) → X

↓ Gf ↓ Ef ↓ f

G(Y, ωY ) → E(Y, ωY ) → Y.

Since our simplicial groups G(X,ω) are always free simplicial groups, we also have

Corollary 4.3.9 If f : (X,ΦX , ωX) → (Y,ΦY , ωY ) is a morphism that is a weak homotopy equivalence,

then Gf : G(X,ωX)→ G(Y, ωY ) is a loop homotopy equivalence.

and

Corollary 4.3.10 If (X,ΦX , ωX) and (Y,ΦY , ωY ) are objects in our category and

f, g : (X,ΦX , ωX)→ (Y,ΦY , ωY )

are morphisms that are simplicially homotopic, relative to the basepoint, then the induced homomorphisms

Gf,Gg : G(X,ωX)→ G(Y, ωY ), are loop homotopic.

5 More Examples of Simplicial Sets and Groups

5.1 Nerve Constructions

Example 5.1.1 Nerve of a Small Category[3, 9]: Given a category A which we can think of as “small” (i.e.

the objects form a set) and any n ∈ Z≥0, define

NAn =
{
x = a0

α1→ a1
α2→ a2

α3→ · · · αn→ an := (α1|α2| · · · |αn)
}
,
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the set of n-tuples of composeable morphisms, as the set of n-simplices; let

dix = a0
α1→ · · · αi−1→ ai−1

αi+1◦αi→ ai+1
αi+2→ · · · αn→ an

for each 0 < i < n(with d0 and dn by deleting a0 and an, respectively, from the n-tuple), and

sjx = a0
α1→ · · · αj→ aj

idaj→ aj
αj+1→ aj+1

αi+2→ · · · αn→ an

for each 0 ≤ j ≤ n. Then NA = {NAn} with face maps and degeneracy maps as defined above constitutes

a simplicial set, called the nerve of the category A. When the morphisms involved are of more concern

to us, we will denote the nerve elements by α := (α1|α2| · · · |αn). Note that with this notation we write

s0α = (ida0 |α1|α2| · · · |αn) and snα = (α1|α2| · · · |αn|idan).

Notice that NA0 is just the set of objects of A, while NA1 is the set of morphisms of A. We will not need

to discuss the geometric realization of a simplicial set for our purposes (see [2],[9], etc. for descriptions), but it

suffices to say that the geometric realization of the nerve of a category, denoted the Classifying Space of that

category, has widespread applications. The nerve itself will be the centerpiece of an important construction

later on, and with this application we will note that geometric realization is a functorial operation.

Example 5.1.2 As a category, a group G has one object, ∗, and a morphism g : ∗ → ∗ corresponding to

each group element g such that each morphism has an inverse. With this viewpoint, the 1-simplices of the

nerve N(G) from Example 5.1.1 would correspond to the elements of G, but NG0, defined to consist of the

objects the category G, would just be the object ∗. Therefore NG is a reduced simplicial set whenever G is a

group.

Example 5.1.3 Recall from Example 5.1.2 that when G is a group (viewed as a category) with identity

element e, the nerve NG is a reduced simplicial set. So there is a single 0-simplex which we denote ∗ := φ0.

The one-point simplicial set is constructed as

φ1 = φ0
id→ φ0 := e;

φ2 = φ0
id→ φ0

id→ φ0 := (e|e) ∈ G×G

...

φn =

n times︷ ︸︸ ︷
φ0

id→ φ0
id→ · · · id→ φ0 := (e|e| · · · |e) = 1 ∈ Gn.
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So if we identify NGn := Gn we see that an element g = (g1|g2| · · · |gn) ∈ NGn has

dig =


(g2|g3| · · · |gn), i = 0

(g1|g2| · · · |gi−1|gi+1gi|gi+2| · · · |gn), 1 ≤ i ≤ n− 1

(g1|g2| · · · |gn−1), i = n.

Now x ∈ ÑGn with n > 1 implies dix = 1 ∈ Gn−1, so that x = 1 ∈ Gn. Therefore π0(NG) = [φ0] := 1

and πn(NG) = [1] = 1 ∀ n > 1. Again, x ∈ NG1 is identified with x ∈ G via morphism φ0
x→ φ0, so clearly

d0x = d1(x) = φ0. Therefore ÑG1 = NG1 = G. But homotopy in NG1 dictates that if g1 ∼ g2 ∈ NG1 then

there is a homotopy y = (a|b) ∈ NG2 such that

1) d0y = s0d0(g1) = s0(φ0) = φ1 = e, which implies b = e.

2) d1y = g1 = ba = ea, so y = (g1|e).

3) d2y = g2 = a = g1, so g1 = g2.

We conclude that each x ∈ ÑG1 := G represents a distinct homotopy class in π1(NG), in which case

π1(NG) := G. Therefore

πn(NG) =

 G, n = 1

1, else.

��

5.2 Functorial Constructions

Example 5.2.1 Reverse of a Simplicial Set: Given a simplicial set X, we can define another simplicial set

by keeping simplices as they are but “reversing” the degrees of face maps and degeneracy maps:

Xrev
n = Xn; drevi = dn−i; s

rev
j = sn−j .

The degree of the face maps and degeneracy maps in Xrev depends on the dimension on which they act,

and calculations must reflect this: for example, when 0 ≤ i < j ≤ n and x ∈ Xn = Xrev
n we have

drevi drevj x = dn−1−idn−jx = dn−jdn−1−i+1x = dn−1−(j−1)dn−ix = drevj−1d
rev
i x,

and

srevj srevi x = sn+1−jsn−ix = sn+1−isn+1−jx = sn+1−isn−(j−1)x = srevi srevj−1x.
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Note that the second face map operates on the n−1-simplex drevj x and the second degeneracy map operates

on the n+1-simplex srevi x. The simplicial set whose n-simplices are Xn and whose face maps and degeneracy

maps are the drevi and srevj as above is called the reverse of the simplicial set X, denoted Xrev.

Now we formulate the definition for Xrev as a functor from ∆op to S. Given a functor X : ∆op → S,

Xrev is the functor Xrev : ∆op → S defined by

Xrev(n) = X(n),

on objects of ∆op, and on morphisms as follows.

If α : n→m is a morphism in ∆, define αrev : n→m by

αrev(u) = m− α(n− u).

Proposition 5.2.2 If α is a morphism in ∆ (hence in ∆op) then αrev is a morphism in ∆ (hence in ∆op).

Now, given a morphism α ∈ Homop(m,n), let

Xrev(α) := X(αrev) : X(m)→ X(n).

Theorem 5.2.3 Given a functor X : ∆op → S, Xrev as defined above is a functor from ∆op to S.

Proposition 5.2.4 (Xrev)rev = X, for every X ∈ SS.

Proposition 5.2.5 There is a functor rev : SS → SS defined on objects by rev(X) = Xrev for functor

X : ∆op → S, and on morphisms by rev(f) = f for appropriate morphism f. Furthermore, rev is an

isomorphism of categories.

��

Example 5.2.6 Segal Subdivision[10]: Given simplicial set X = {(Xn; {di} ; {sj})} , set

Sd(X)n = X2n+1; dSdi x = did2n+1−ix; sSdj x = sjs2n+1−jx

for any x ∈ X2n+1.

A change of dimension by 1 in Sd(X) amounts to a change of dimension in X by 2, and the dependence

of the degrees of face maps and degeneracy maps on dimension warrants care in the arithmetic: 0 ≤ i < j ≤
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n, x ∈ X2n+1 = Sd(X)n implies

dSdi dSdj (x) = did2(n−1)+1−idjd2n+1−jx

= did2n−1−idjd2n+1−jx

= dj−1did2n−id2n+1−jx

= dj−1d2n−jdid2n+1−ix

= dj−1d2n−1−(j−1)did2n+1−ix

= dj−1d2(n−1)+1−(j−1)did2n+1−ix

= dSdj−1d
Sd
i x,

and

sSdj sSdi x = sjs2(n+1)+1−jsis2n+1−ix

= sjs2n+2+1−jsis2n+1−ix = sisj−1s2n+2−js2n+1−ix

= sis2n+2+1−isj−1s2n+1−(j−1)x = sSdi sSdj−1x.

It can be shown, similar to the case for functors G and rev, that this construction admits a covariant functor,

Sd : SS → SS. See[10] for a good description of this and other properties of the Subdivision.

��
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Chapter 2

Algebraic K-Theory

From here on, let R be a ring with identity 1, commutative where necessary, and consider (subcategories of)

the category of R-modules with R-module homomorphisms HomR(P,Q) for modules P and Q.

1 Projective Modules

1.1 Definitions[8][1]

Definition 1.1.1 We adopt the following, equivalent definitions for our objects of interest – finitely gen-

erated projective R-modules:

a) “Diagram Completion Property”: P is a projective R-module if and only if given any R-modules N,M,

surjective homomorphism ψ : M → N and any homomorphism φ : P → N, ∃ θ ∈ HomR(P,M) 3

φ = ψ ◦ θ.

b) “Section Property”: P is projective if and only if given any R-module M, any surjective homomorphism

ψ ∈ HomR(M,P ) has a right inverse (i.e. there is a section s : P → M 3 ψ ◦ s = idP and

s ∈ HomR(P,M)).

c) “Splitting Property”: P is projective if and only if any short exact sequence

0→ N
φ→M

ψ→ P → 0

of R-modules ending at P splits: M ≈ N ⊕ P ≈ im(φ) ⊕ im(s) where s ∈ HomR(P,M) is a section

for ψ as described above.

d) “Summand Property”: P is a finitely generated projective R-module if and only if ∃ R-module Q and

n ∈ N for which P ⊕Q ≈ Rn.

26



Example 1.1.2 Projective But Not free: Suppose R = Z/2Z × Z/2Z. Then the R-module P1 = 〈(1, 0)〉 is

projective, but not free. Indeed, if P2 = 〈(0, 1)〉 then P1 ⊕ P2 = R = R1 so we have P1 as a direct summand

of a free module. But R has order 4 as an additive group, so that any free R-module of finite rank must have

an order that is a multiple of 4. Since both P1 and P2 have order 2, neither module can be free.

1.2 The Category PR

Definition 1.2.1 For finitely generated projective modules P and Q, define morphisms to be R-module

homomorphisms HomR(P,Q), and let PR be the resulting category of finitely generated projective R-modules.

Among morphisms are admissible injections, which are injective homomorphisms P
φ
� Q for which

0 → P
φ
� Q � Q/P → 0 is a short exact sequence in PR, and admissible surjections, which are

surjective homomorphisms P
ψ
� Q for which there is a short exact sequence 0→ N � P

ψ
� Q→ 0 in PR.

Note that by Definition 1.1.1.b,c that all surjective homomorphisms in PR are admissible surjections.

Definition 1.2.2 For a finitely generated projective R-module P define the dual of P as

P ∗ := HomR(P,R).

Lemma 1.2.3 Suppose P,Q ∈ PR.

a) P ∗ is a finitely generated projective R-module, and given an R-module homomorphism f : P → Q,

there is an R-module homomorphism f∗ : Q∗ → P ∗ defined by f∗(α) = α ◦ f for any α ∈ Q∗. When f

is injective f∗ is surjective and when f is surjective f∗ is injective.

b) ∀ P,Q ∈ PR, (P ⊕Q)∗ ≈ P ∗ ⊕Q∗.

c) There is an exact contravariant functor, ∗ : PR→ PR, defined on objects by P 7→ P ∗ and on morphisms

by f 7→ f∗. In particular, f∗ : Q∗ → P ∗ is admissible whenever f : P → Q is.

d) The composite functor ∗◦∗ :=∗∗ is a covariant functor, equivalent to the identity functor; in fact, there

is a natural transformation η : id→ ∗∗ of functors on PR such that for every object P , η(P ) : P → P ∗∗

is an isomorphism.

As a brief note, we define the isomorphism η : idPR →∗∗ by assigning [η(P )(p)](ψ) = ψ(p) ∈ R for

p ∈ P,ψ ∈ P ∗, so that η(P ) ∈ HomR(P, P ∗∗).
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2 Classical K0(R) ([8], Chapter 1)

2.1 Generators and Relations

Definition 2.1.1 Given the isomorphism classes [P ] of finitely generated projective modules over ring R, let

F be the free abelian group on these classes and S = 〈[P ] + [Q]− [P ⊕Q]〉 as a subgroup. Then K0(R) = F/S

(i.e. K0(R) is the Grothendieck Group, or Group Completion of the Semigroup of isomorphism

classes of finitely generated projective R-modules).

Theorem 2.1.2 ([8], Lemma 1.1) Every element A ∈ K0(R) can be represented by a difference A = [P ]−[Q]

of two isomorphism classes, and [P1]− [Q1] = [P2]− [Q2] ∈ K0(R) if and only if ∃ r ∈ N 3 P1⊕Q2⊕Rr ≈

P2 ⊕Q1 ⊕Rr.

Corollary 2.1.3 Two generators [P ] and [Q] of K0(R) are equal if and only if ∃ r ∈ N 3 P ⊕Rr ≈ Q⊕Rr.

We refer these generators [P ] of K0(R) as stable isomorphism classes of finitely generated projective

modules over R.

Example 2.1.4 Grothendieck Group of a field: Let R = F be a field. It can be shown through basic linear

algebra principles that if R is a field then any (finitely generated) R-module P is a free R-module: from any

generating set for P a basis B can be selected for which given any p ∈ P there is a unique sum p =
∑
i∈I ribi,

over R for p[20]. Since any free module is a projective module by default, we know that the objects of PR

are free R-modules of finite rank, i.e. finite-dimensional vector spaces over R. Since two vector spaces of

the same (finite) dimension are isomorphic, the canonical isomorphism classes can be represented by their

dimension. We can show that this same representation works for stable isomorphism classes as well.

Indeed, let P1 ≈ Rn1 , Q1 ≈ Rm1 , P2 ≈ Rn2 , Q2 ≈ Rm2 . Suppose that the corresponding representatives

have n1−m1 = n2−m2. Then n1 +m2 = n2 +m1 ∈ N and Rn1 ⊕Rm2 ≈ Rn2 ⊕Rm1 , so P1⊕Q2 ≈ P2⊕Q1.

Since all of these modules are free modules, it follows that for any r ∈ N,

Rn1 ⊕Rm2 ⊕Rr ≈ P1 ⊕Q2 ⊕Rr ≈ Rn2 ⊕Rm1 ⊕Rr ≈ P2 ⊕Q1 ⊕Rr ∀ r ∈ N.

Therefore differences n1 −m1 = n2 −m2 represent differences of stable isomorphism classes in K0(R). We

conclude that K0(R) ≈ Z whenever R = F is a field.

��

Example 2.1.5 K0(Z)[8]: Example 2.1.4 has a more general case, in that K0(R) = Z whenever R is a

principal ideal domain. This follows from the fact that any finitely generated projective module over R is a
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free module, in which case we apply a similar method to the above example, mapping a difference of ranks

for these modules to a difference of isomorphism classes. But the property that every finitely generated

projective module over a principal ideal domain is free follows from the Direct Summand Property and the

Fundamental Theorem for Finitely Generated Modules over a Principal Ideal Domain (also known as the

Structure Theorem[20]). From that theorem we have that if an R-module P is a direct summand of a free

module Rn, n ∈ N, then it must be torsion-free (i.e. the kernel of the map a 7→ ap from R → P is trivial),

so that P itself is free.

��

3 Classical K1(R)

3.1 GL(R) and Elementary Matrices[1, 8, 9]

Definition 3.1.1 The infinite general linear group GL(R) is the direct limit of the general linear groups

GL(n,R), n ∈ N, or the union of the sequence

R∗ = GL(1, R) ⊆ GL(2, R) ⊆ · · ·

under the inclusion GL(n,R) ↪→ GL(n+ 1, R) via A 7→

 A 0

0 1

 .

Definition 3.1.2 Given a ∈ R, i, j ∈ N, i 6= j the elementary matrix eij(a) is the matrix eij(a) ∈ GL(R)

having a as the (i, j)-entry, 1 on the diagonal and 0 everywhere else.

Definition 3.1.3 E(n,R) ≤ GL(n,R) is the subgroup generated by the elementary n×n matrices. E(R) is

the direct limit of such groups as in the definition of GL(R).

Theorem 3.1.4 ([1], Proposition 2.1.4)E(R) is the commutator subgroup of GL(R).

3.1.1 K1(R) as a quotient group

Definition 3.1.5 K1(R) = GL(R)/E(R), the abelianization of the infinite general linear group.

From this definition, we think of elements of K1(R) as (classes of) matrices A ∈ GL(R).

Example 3.1.6 K1(F ) where F is a field, local ring, or Euclidean Domain [1]: In the case of rings R

where multiplicative inverses (i.e. fields and local rings), or at least where a quotient-remainder analog

exists (i.e. Euclidean Domains), we may think of elementary matrices as representing the elementary row
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or column operations that work on invertible matrices as elements of GL(R). Of course invertible matrices

must have unit “determinant” (i.e. a corresponding element of R×, the units in R), and a sequence of

elementary operations serves to change that determinant. Therefore equivalence classes of matrices in K1(R)

are matrices with the same determinant, and we have that K1(R) = R× in the special case of R being a field,

local ring or Euclidean Domain.

Example 3.1.7 As a corollary to the previous example, we have the well-known result K1(Z) = {1,−1}

(i.e. the cyclic group of order 2) since Z is a Euclidean Domain whose only units are 1 and -1.

4 Classical K2(R)

4.1 Steinberg Group

Note the following relations[1] between generators enij(a) ∈ E(n,R) when n ≥ 3, whether considered as

elements in a particular E(n,R) or in E(R); also note the commutators

[enij(a), enkl(b)] = enij(a)enkl(b)(e
n
ij(a))−1(enkl(b))

−1 :

1) enij(a)enkl(b) =

 enij(a+ b), i = k, j = l

enkl(b)e
n
ij(a), j 6= k, i 6= l.

2) [enij(a), enkl(b)] =


enil(ab), i 6= l, j = k

enkj(−ba), j 6= k, i = l

1 j 6= k, i 6= l.

Definition 4.1.1 Fix n ∈ N, n ≥ 3. Assign to each enij(a), 1 ≤ i, j ≤ n, i 6= j and a ∈ R a generator xnij(a),

let F be the free group on these generators and S the subgroup generated by the relations (for every i, j as

above, similar k, l, and every a, b ∈ R)

1) xnij(a)xnkl(b) =

 xnij(a+ b), i = k, j = l

xnkl(b)x
n
ij(a), j 6= k, i 6= l.

2) [xnij(a), xnkl(b)] =


xnil(ab), i 6= l, j = k

xnkj(−ba), j 6= k, i = l

1 j 6= k, i 6= l.

Then the nth Steinberg Group over R is a quotient St(n,R) = F/S.

From now on when we speak of the Steinberg group St(n,R), or its elements, we assume that n ≥ 3.
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By definition there is a unique surjective homomorphism φn : St(n,R) → E(n,R) ⊆ GL(n,R) by

xnij(a) 7→ enij(a). However, there may be other relations between the enij(a) depending on the specific structure

of R that are ignored by the subgroup S; that is, S ⊂ ker(φn) but we may not have S = ker(φn). We can

define homomorphisms of groups ιn,n+1 : St(n,R) → St(n + 1, R) (not inclusions) that match generators

xnij(a) of St(n,R) to generators xn+1
ij (a) of St(n+ 1, R). So we define the infinite Steinberg Group St(R)

as the direct limit of this sequence of groups and homomorphisms.

Note that the direct limit construction[20] gives a canonical homomorphism

ιn : St(n,R)→ St(R)

such that ιn+1 ◦ ιn,n+1 = ιn, and a homomorphism

φ : St(R)→ E(R)

such that

ιn ◦ φ = φn ◦ in,

where in : E(n,R)→ E(R) is the canonical inclusion defining E(R) as a direct limit of the E(n,R) (in this

case in is an inclusion).

Definition 4.1.2 Given φ : St(R)→ E(R) as above, K2(R) = ker(φ).

From this definition, we will assume an element of K2(R) to be (represented by) simply a word over

generators of St(n,R) for some n ∈ N :

w = [xi1j1(a1)][xi2j2(a2)] · · · [xikjk(ak)].

Also, we have an exact sequence:

1→ K2 ↪→ St(R)
φ→ GL(R)

π→ K1(R)→ 1

from Definition 3.1.5.

An important fact about the Steinberg group is

Theorem 4.1.3 ([8], Theorem 5.1)K2(R) is precisely the center of St(R).
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Example 4.1.4 It is an interesting result that

K2(Z) = {−1, 1} ;

it is generated by the element (x12(1)x21(−1)x12(1))4. This amazing result is worthy of a chapter in and of

itself, as in [8] Chapter 10, and is therefore not fully described here.

5 Higher K-Theory from Quillen [16, 11]

5.1 N(QPR)

Let R be a commutative ring with identity 1, and recall that PR is the category of finitely generated

projective R-modules. In fact PR is an exact category, with admissible injections (indicated by arrows �)

and admissible surjections (indicated by �).

Note that by Definition 1.2.1 an admissible injection of finitely generated projective R-modules, P � Q,

is an injection such that the quotient of Q modulo the image of P is also projective, and all surjections in

the category PR are admissible as note earlier. From this category we make another:

Definition 5.1.1 Quillen’s Category: In the category QPR, the objects are the objects of PR. Given P,Q ∈

PR, a morphism f : P · · · → Q in QPR is a diagram

f : P · · · // Q

U

f1

ddddIIIIIIIII >> f2

>>||||||||

where U, f1 and f2 allow P and Q to be part of short exact sequences (i.e. f1 and f2 are admissible maps).

Composition of these morphisms, when appropriate, is given by forming another diagram: given f : P · · · → Q

with admissibles U, f1 and f2, and g : Q · · · → S with admissibles V, g1 and g2, the composition g◦f : P · · · →

S is the diagram

g ◦ f : P · · · // S

U ×Q V
f̄1

ggggNNNNNNNNNNN ;; ḡ2

;;vvvvvvvvvv

where U ×Q V = {(u, v) ∈ U × V | g1(v) = f2(u) ∈ Q} , f̄1(u, v) = f1(u) and ḡ2(u, v) = g2(v).
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Definition 5.1.2 Given the category QPR, two morphisms

f : P · · · // Q

U

f1

ddddIIIIIIIII >> f2

>>||||||||

and
f ′ : P · · · // Q

U ′
f ′1

ddddJJJJJJJJJ == f ′2

==||||||||

are equivalent if there is an R-module isomorphism F : U → U ′ for which f ′1 ◦ F = f1 and f ′2 ◦ F = f2 in

PR.

As seen in Example 5.1.1, we can construct the nerve of this category if we think of an appropriate “small”

category corresponding to QPR. This nerve N(QPR) is a simplicial set, with 0-simplices corresponding the

the objects of QPR (which consequently are the objects of PR by definition). The 1-simplices are (isomor-

phism classes of) the morphisms of QPR as described above, and n-simplices are n-tuples of composeable

morphisms. For instance, a 2-simplex would be

( P0 · · · // P1, P1 · · · // P2

U1

f
(1)
1

bbbbEEEEEEEE :: f
(1)
2

::uuuuuuuuu
U2

f
(2)
1

eeeeJJJJJJJJJ == f
(2)
2

=={{{{{{{{

),

and a 3-simplex would look like

( P0 · · · // P1, P1 · · · // P2, P2 · · · // P3

U1

f
(1)
1

ccccGGGGGGGGG :: f
(1)
2

::ttttttttt
U2

f
(2)
1

ddddIIIIIIIII :: f
(2)
2

::uuuuuuuuu
U3

f
(3)
1

ddddIIIIIIIII == f
(3)
2

==||||||||

).

Since N(QPR)0 = Ob(PR), this nerve cannot be a reduced simplicial set. However we can use it due to

Kan’s work on star-connectedness as described in Chapter 1:

Theorem 5.1.3 N(QPR) is star-connected at the basepoint 0 ∈ PR, with ray function defined on finitely

generated projective R-modules P by

ω(P ) = qP : 0 · · · // P

0

=

ddddIIIIIIIII >> incl.

>>~~~~~~~~
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5.2 G(N(QPR))

As we have seen, N(QPR) is not a reduced simplicial set, although it is star-connected. We will see later

(i.e. Lemma 4.0.14 in Chapter 3) that more than one ray function can accomplish this, but for now we use

the function ω(P ) = qP from Theorem 5.1.3 and apply Definition 4.3.6 from Chapter 1:

Definition 5.2.1 For any n ≥ 0, the set G(N(QPR))n of n-simplices of the loop group G(N(QPR)) is the

free group on the set

Bn = {t(x) | x ∈ N(QPRn+1 − sn(N(QPR))n)− (Tω(N(QPR)))n+1} .

5.3 Quillen’s K0,K1,K2 versus Classical K-Theory

Chapter 4(IV) of [10] gives a good account of Quillen’s results for higher Algebraic K-Theory:

Quillen constructs higher K-Theory as

Ki(R) := πi(Ω|N(QPR)|),

where Ω|N(QPR| denotes the combinatorial loop space of the geometric realization of N(QPR) (see [10, 11]).

It is then possible to show that for i ∈ {0, 1, 2} the groups Ki constructed this way are isomorphic in a natural

sense to the classical K-Theory groups K0(R), K1(R) and K2(R) as described earlier in this chapter (in fact,

these groups are constructed specifically so that this is true). One of Quillen’s constructions which affords

this definition is known as Quillen’s +-construction, and results in a space |N(QPR)|+, which we will

refer to in Chapter 6. Although the theory tells us that, for example,

K2(R) ≈ π2(Ω|N(QPR)|),

explicit isomorphisms are not constructed. Such is the inspiration for this dissertation.

Homotopy theory on topological spaces then tells us that

πi(G(N(PR))) ≈ πi(Ω|N(QPR)|)

as described in [2]. Thus we call G(N(QPR)) a simplicial model for K-Theory. Later exposition in this

dissertation will show other simplicial models for K-Theory under the same definition: the Gillet-Grayson

simplicial set G.PR, the loop group on Waldhausen’s simplicial set s.PR, and some other simplicial sets

derived from these via techniques described in Chapter 1.
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Chapter 3

More Constructions for PR

1 Waldhausen’s s.PR

1.1 The Simplicial Set s.C

This section explains some definitions from Waldhausen’s paper [7] and exposits a notion of duality.

Define a poset Ar[n] as the set

Ar[n] = {(i, j) ∈ n× n | 0 ≤ i ≤ j ≤ n},

with order defined by

(i, j) ≤ (k, l)⇔ i ≤ k and j ≤ l.

Let C be a “category with cofibrations” as defined by Waldhausen [7], with initial (and final) object

0 := 0C . Then the idea of a short exact sequence (a “cofibration” sequence) is defined in C. In particular,

while we do not give the formal definition of a category with cofibrations (as in [7], for example) here, we do

notice that the category PR introduced in Chapter 2 is a category with cofibrations. The cofibrations in PR

are admissible injections as in Definition 1.2.1 of Chapter 2, while admissible surjections are the quotient

maps.

Considering Ar[n] as a category in the usual way (see [9]), define

Definition 1.1.1 A functor A : Ar[n]→ C is a normalized exact functor if

a) for every (i, i) ∈ Ar[n], A(i, i) = 0.

b) for every (i, j) and (i, k) in Ar[n], such that i ≤ j ≤ k,

0→ A(i, j)→ A(i, k)→ A(j, k)→ 0

is a short exact sequence in C.
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For any n, define

snC = {A : Ar[n]→ C | A is a normalized exact functor}.

Proposition 1.1.2 An element A of snC is a triangular, commutative diagram in C, where each

A(0, i)
A(≤)−→ A(0, j)

A(≤)−→ A(i, j)

is a short exact sequence and each vertical row is a quotient map.

When we refer to the objects in these triangles without reference to the underlying functor, we will use

the notation Aij instead of A(i, j) for the objects, so that such elements have the form



An−1,n

· · · // // ...

OOOO

A12
// // ...

// //

OOOO

A1,n

OOOO

A1
// // A2

// //

OOOO

· · · // //

OOOO

An

OOOO



.

Waldhausen also defines a category

SnC,

which has objects snC, and in which a morphism F : A → B is a natural transformation from A to B, but

we do not use this in the present paper. Instead, we assemble the sets snC, as n varies, into a simplicial set

s.C with n-simplices s.C(n) = s.Cn := snC by defining, for each morphism α : n→m in ∆, a function

s.C(α) : smC → snC

given by

[s.C(α)(A)](k, l) = A(α(k), α(l)),

and

[s.C(α)(A)]((k, l) ≤ (k1, l1)) = A((α(k), α(l)) ≤ (α(k1), α(l1))).
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This allows us to define face and degeneracy maps and compositions thereof in s.C according to Defini-

tion 1.2.1 and Lemma 1.1.9 of Chapter 1.

Recall that an exact covariant functor is a functor that converts short exact sequences (or cofibration

sequences) into short exact sequences (or cofibration sequences). An exact contravariant functor also

converts short exact sequences into short exact sequences, and thus turns cofibrations into quotient maps

and quotient maps into cofibrations, using Waldhausen’s language [7].

Theorem 1.1.3 Suppose C,D, E are categories with cofibrations.

a) s.C is a simplicial set; moreover, s0C consists of a single element so that s.C is a reduced simplicial set.

b) A (covariant) exact functor F : C → D induces a map of simplicial sets s.F : s.C → s.D; an exact

contravariant functor F : C → D induces maps of simplicial sets s.F : s.C → s.Drev and s.F : s.Crev →

s.D.

In the case of contravariant functor F we use the following definition for s.F : s.C → s.Drev: for

A ∈ snC,

s.F (A)(i, j) := F (A(n− j, n− i)),

and

s.F (A)((i, j) ≤ (k, l)) := F (A((n− l, n− k) ≤ (n− j, n− i))).

c) If F : C → D, and G : D → Eare covariant exact functors, then the composite functor GF is a covariant

exact functor, and as maps of simplicial sets s.C → s.E,

s.(GF ) = s.(G)s.(F ).

Also, if F1 and G1 are contravariant exact functors between the same categories as F and G above, then

G1F1 is an exact covariant functor, and as maps of simplicial sets, either s.C → s.E or s.Crev → s.Erev,

then

s.(G1F1) = s.(G1)s.(F1).

d) For the identity functor id : C → C, s.id is the identity map on the simplicial sets s.C and s.Crev.

Proof: We prove (b) and leave the rest as an exercise.

For the case of covariant functor F : C → D, we must show that the natural transformation relation

holds on s.F (n)(A) = F ◦ A for any A ∈ s.C(n) and any α : m → n (i.e. any α ∈ Homop(n,m)). Given
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(a, b) ∈ Ar[m] we have

([s.D(α) ◦ s.F (n)](A))(a, b) = s.D(α)([s.F (n)(A)])(a, b)

= [s.F (n)(A)](α(a), α(b))

= F (A(α(a), α(b))),

and

([s.F (m) ◦ s.C(α)](A))(a, b) = [s.F (m) ◦ [s.C(α)(A)]](a, b)

= F ([s.C(α)(A)](a, b))

= F (A(α(a), α(b)))

= ([s.D(α) ◦ s.F (n)](A))(a, b).

Therefore s.D(α)◦s.F (n) = s.F (m)◦s.C(α), so that s.F is a natural transformation of functors in SS, hence

a simplicial map.

Using the recommended definition for s.F on contravariant functors, either to or from the reverses of

these simplicial sets, we see

([s.Drev(α) ◦ s.F (n)](A))(a, b) = ([s.D(αrev) ◦ s.F (n)](A))(a, b)

= [s.F (n)(A)](αrev(a), αrev(b))

= [s.F (n)(A)](n− α(m− a), n− α(m− b))

= F (A(n− (n− α(m− b)), n− (n− α(m− a))))

= F (A(α(m− b), α(m− a)))

= F ([s.C(α)(A)](a, b))

= ([s.F (m) ◦ s.C(α)](A))(a, b)
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when s.F : s.C → s.Drev, and

([s.D(α) ◦ s.F (n)](A))(a, b) = s.D(α)([s.F (n)(A)])(a, b)

= [s.F (n)(A)](α(a), α(b))

= F (A(n− α(b), n− α(a)))

= F (A(n− (αrev)rev(b), n− (αrev)rev(a)))

= F (A(n− (n− αrev(m− b)), n− (n− αrev(m− a))))

= F (A(αrev(m− b), αrev(m− a)))

= F ([s.C(αrev)(A)](a, b))

= F ([s.Crev(α)(A)](a, b))

= s.F (m)([s.Crev(α)](A))(a, b)

= ([s.F (m) ◦ s.Crev(α)](A))(a, b)

when s.F : s.Crev → s.D. Therefore the natural transformation relation holds and these two forms of s.F are

simplicial maps. This gives conclusion (b).

�

1.2 Duality for s.PR

Using Theorem 1.1.3 and Example 5.2.1 from Chapter 1, we have

Theorem 1.2.1 Given the exact category PR of finitely generated, projective R-modules,

a) There is a map of simplicial sets s.∗ : s.PR→ (s.PR)rev defined, for A ∈ s.PRn, by

(s.∗A)(i, j) := A(n− j, n− i)∗,

and

(s.∗A)((i, j) ≤ (k, l)) := A((n− l, n− k) ≤ (n− j, n− i))∗.

b) There is a map of simplicial sets s.∗ : (s.PR)rev → s.PR defined, for A ∈ s.PRrevn , by

(s.∗A)(i, j) := A(n− j, n− i)∗,
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and

(s.∗A)((i, j) ≤ (k, l)) := A((n− l, n− k) ≤ (n− j, n− i))∗.

c) As maps of simplicial sets (from s.PR to itself, and from s.PRrev to itself)

(s.∗)(s.∗) = s.∗∗.

Proof: First, note that so far there is no structure on

s.PRn = {A : Ar[n]→ PR | A is a normalized exact functor}

beyond it being just a set of functors. But s.∗(n)(A) is a functor in s.PRrevn when A ∈ s.PRn. Thus

s.∗(n)(A) := A∗ must be defined on objects and morphisms of Ar[n], so that s.∗(n) sends n ∈ ∆op to a set

map (i.e. a morphism in S) in order to have a natural transformation (i.e. simplicial map). By definition,

A∗(i, j) = (A(n− j, n− i))∗

= ∗(A(n− j, n− i))

= s.(∗)(n)(A)(i, j))

(parentheses used for emphasis in the notation of Lemma 1.2.3 of Chapter 2), and

A∗((i, j) ≤ (k, l)) = (A((n− l, n− k) ≤ (n− j, n− i)))∗

= ∗(A((n− l, n− k) ≤ (n− j, n− i)))

= s.(∗)(n)(A)((i, j) ≤ (k, l)).

Thus Theorem 1.1.3.b applies to the contravariant functor ∗ : PR→ PR, so that ∗ induces the simplicial map

s.(∗) : s.PR→ (s.PR)rev, which proves (a). Also, ∗ must induce the simplicial map s.(∗) : (s.PR)rev → s.PR,

which is (b). Finally, ∗∗ =∗ ◦∗ is a covariant functor, in which case Theorem 1.1.3.c and Lemma 1.2.3.b

imply that, as simplicial maps either from s.PR to itself or from (s.PR)rev to itself, s.(∗∗) = s.(∗) ◦ s.(∗),

which proves (c).

�

Remark 1.2.2 Note that ∗ preserves “weak equivalences” in PR, if these are defined to be the isomorphisms

in PR (although the direction of the isomorphism is reversed of course).
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Now, we note a theorem of Waldhausen:

Theorem 1.2.3 ([7], Lemma 1.4.1 b)) If C and D are two categories (with cofibrations), and F1, F2 are two

exact covariant functors from C and D with an isomorphism η : F1 → F2, then there is a simplicial homotopy

equivalence, relative to the basepoint, which we will call s.η, between s.F1 and s.F2.

Corollary 1.2.4 s.∗∗ and id are homotopic simplicial maps (relative to the basepoint), whether considered

as maps from s.PR to itself, or as maps from s.PRrev to itself.

The general theory of simplicial sets (i.e. Theorem 1.4.2 of Chapter 1) then tells us that

Corollary 1.2.5 The map on homotopy groups induced by s.∗∗ is equal to the identity homomorphism, and

the simplicial maps

s.∗ : s.PR→ s.PRrev

and

s.∗ : s.PRrev → s.PR

induce isomorphisms on homotopy groups that are inverse to each other.

Thus we have the following from Theorem 4.2.5 of Chapter 1 and its Corollary.

Theorem 1.2.6 Gs.∗ : G(s.PR) → G(s.PRrev) and Gs.∗ : G(s.PRrev) → G(s.PR) are loop homotopy

equivalences. Gs.∗∗ : G(s.PR) → G(s.PR) is loop homotopic to the identity homomorphism, and thus

simplicially homotopic to the identity homomorphism.

2 The Gillet-Grayson Simplicial Set[11, 12]

2.1

Definition 2.1.1 The Gillet-Grayson simplicial set, G.C on a category C with cofibrations has n-

simplices that are pairs of lower-triangular commutative diagrams built from exact sequences, where the
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elements in the pair have all co-kernels in common:

G.Cn = {



An−1,n

· · · // // ...

OOOO

A01
// // ...

// //

OOOO

A0n

OOOO

A0
// // A1

// //

OOOO

· · · // //

OOOO

An

OOOO

,

An−1,n

· · · // // ...

OOOO

A01
// // ...

// //

OOOO

A0n

OOOO

B0
// // B1

// //

OOOO

· · · // //

OOOO

Bn

OOOO


| Ai � Aj � Aij , Bi � Bj � Aij are short exact sequences ∀ i < j}.

The face map di, 0 ≤ i ≤ n is defined by deleting all objects with i in their subscript and composing morphisms

accordingly, while degeneracy maps si is defined by repeating all such objects and inserting the appropriate

identity morphisms.

Looking at Definition 2.1.1, we have 0-simplices of the Gillet-Grayson simplicial set, G.PR, on the category

PR of finitely generated projective modules as pairs of such modules:

G.PR0 = {(A,B) | A,B ∈ PR} .

1-simplices are pairs of short exact sequences

x =


A01

A0
// // A1

OOOO

,

A01

B0
// // B1

OOOO
 ,

2-simplices are pairs

t =



A12

A01
// // A02

OOOO

A0
// // A1

// //

OOOO

A2

OOOO
,

A12

A01
// // A02

OOOO

B0
// // B1

// //

OOOO

B2

OOOO
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where the squares are commutative and the sequences

0→ Ai � Aj � Aij → 0

and

0→ Bi � Bj � Aij → 0

are short exact sequences. 3-simplices are pairs

q =



A23

A12
// // A13

OOOO

A01
// // A02

// //

OOOO

A03

OOOO

A0
// // A1

// //

OOOO

A2
// //

OOOO

A3

OOOO

,

A23

A12
// // A13

OOOO

A01
// // A02

// //

OOOO

A03

OOOO

B0
// // B1

// //

OOOO

B2
// //

OOOO

B3

OOOO


where squares are commutative and exact sequences are as described for G.PR2 above.

Of course G.PR0 has no face maps operating on it, but the degeneracy s0 is defined by “duplicating” the

modules in the pair x = (A,B) ∈ G.PR0 via identity maps:

s0(x) =


0

A // = // A

OOOO

,

0

B // = // B

OOOO
 .

In higher dimensions, the degeneracy sj is computed by “duplicating” any module with j in its index (i.e. Aj

in the bottom row and the jth column), inserting the identity map and the zero module where appropriate.

For instance with t ∈ G.PR2 as above and j = 1 we have

s1(t) =



A12

0 // // A12

=

OOOO

A01
// = // A01

// //

OOOO

A02

OOOO

A0
// // A1

// = //

OOOO

A1
// //

OOOO

A2

OOOO

,

A12

0 // // A12

=

OOOO

A01
// = // A01

// //

OOOO

A02

OOOO

B0
// // B1

// = //

OOOO

B1
// //

OOOO

B2

OOOO


.
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A face di is computed by deleting all modules with i in the index and composing homomorphisms and

including the zero module where appropriate. For example:

d2(q) =



A13

A01
// ◦ // A03

OOOO

A0
// // A1

// ◦ //

OOOO

A3

OOOO
,

A13

A01
// ◦ // A03

OOOO

B0
// // B1

// ◦ //

OOOO

B3

OOOO


,

the ◦ indicating where a composition occurred.

Notice that for

x =



An−1,n

· · · // // ...

OOOO

A01
// // ...

// //

OOOO

A0n

OOOO

A0
// // A1

// //

OOOO

· · · // //

OOOO

An

OOOO

,

An−1,n

· · · // // ...

OOOO

A01
// // ...

// //

OOOO

A0n

OOOO

B0
// // B1

// //

OOOO

· · · // //

OOOO

Bn

OOOO



∈ G.PRn

we have

D1 =



An−1,n

· · · // // ...

OOOO

A01
// // ...

// //

OOOO

A0n

OOOO

A0
// // A1

// //

OOOO

· · · // //

OOOO

An

OOOO



=



A′n,n+1

· · · // // ...

OOOO

A′12
// // ...

// //

OOOO

A′1,n+1

OOOO

A′01
// // A′02

// //

OOOO

· · · // //

OOOO

A′0n+1

OOOO



∈ s.PRn+1
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and

D2 =



An−1,n

· · · // // ...

OOOO

A01
// // ...

// //

OOOO

A0n

OOOO

B0
// // B1

// //

OOOO

· · · // //

OOOO

Bn

OOOO



=



A′n,n+1

· · · // // ...

OOOO

A′12
// // ...

// //

OOOO

A′1,n+1

OOOO

B′01
// // B′02

// //

OOOO

· · · // //

OOOO

B′0n+1

OOOO



∈ s.PRn+1,

by Proposition 1.1.2, so that elements of G.PRn can be identified with pairs of elements in s.PRn+1. In fact,

it is easily seen that if x = (D1, D2) ∈ G.PRn, D1,2 ∈ s.PRn+1 then

dix = (di+1D1, di+1D2)

and

sjx = (sj+1D1, sj+1D2).

3 Duality on N(QPR) and Sd(s.PR)rev

3.1

Just as we defined the simplicial maps s.∗ : s.PR ↔ s.PRrev, we want to see the effect of duality on the

nerve of Quillen’s category. We will use the descriptions of exact categories by Quillen and Waldhausen

([16],[7]), noting that PR is an exact category.

Since the objects of QPR are those of PR itself, there is no problem with starting the definition of ∗ as

a covariant functor on QPR by ∗(P ) = P ∗, but we must define the morphisms carefully. Given a morphism

α in QPR represented by the diagram

P · · · α // Q

Uα

pα

bbbbFFFFFFFF >> iα

>>||||||||

we have by Definition 5.1.1 of Chapter 2 that pα is an admissible surjection and iα is an admissible
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injection[16]. Taking duals as before for the (exact) category PR gives a diagram

U∗α

P ∗
==

p∗α

==zzzzzzzz
Q∗

i∗α
````BBBBBBBB

,

for which there exists a pullback:

Uα∗ := {(τ1, τ2) ∈ P ∗ ×Q∗ | p∗α(τ1) = i∗α(τ2)} ∈ PR.

Define morphisms pα∗ : Uα∗ → P ∗ and iα∗ : Uα∗ → Q∗ by the appropriate coordinate projections.

Theorem 3.1.1 The diagram

P ∗ · · · α∗ // Q∗

Uα∗

pα∗

ccccHHHHHHHHH << iα∗

<<zzzzzzzz

defines a morphism α∗ in QPR.

This fact comes from the following Lemmas:

Lemma 3.1.2 pα∗ is an admissible surjection.

Proof: Given τ1 ∈ P ∗, p∗α(τ1) ∈ (Uα)∗ by definition. But i∗α is surjective, so there is some τ2 ∈ Q∗ such

that p∗α(τ1) = i∗α(τ2). So we have (τ1, τ2) ∈ Uα∗ with pα∗(τ1, τ2) = τ1, so that pα∗ is surjective.

We also see that

ker(pα∗) = {(τ1, τ2) ∈ Uα∗ | (τ1, τ2) = (0, τ2)}

= {(0, τ2) ∈ P ∗ ×Q∗ | i∗α(τ2) = p∗α(0) = 0} = {0} × ker(i∗α).

Lemma 1.2.3 tells us that Q∗ ∈ PR and since iα is admissible, i∗α is admissible (and surjective) so that

Q∗ ≈ ker(i∗α) ⊕ U∗α. Since U∗α ∈ PR as well, it follows that ker(i∗α) ∈ PR and Q̃ := {0} × ker(i∗α) ∈ PR.

Now we have an exact sequence (with the appropriate inclusion on the left)

Q̃� Uα∗
pα∗
� P ∗

in PR, so pα∗ is an admissible surjection.

�

Lemma 3.1.3 iα∗ is an admissible injection.
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Proof: Suppose iα∗(τ1, τ2) = 0 ∈ Q∗. Then by definition τ2 = 0 so (τ1, τ2) = (τ1, 0) ∈ Uα∗ . Thus p∗α(τ1) =

i∗α(0) = 0, in which case τ1 = 0 since p∗α is injective. It follows that iα∗ is injective. Now with Q̃ := Q∗/im(iα∗)

and the natural, surjective homomorphism π : Q∗ � Q̃, we see that

Uα∗
iα∗
� Q∗

π
� Q̃

is a short exact sequence. Therefore iα∗ is an admissible injection.

�

Lemma 3.1.4 The assignments P 7→ P ∗, α 7→ α∗ for objects P and morphisms α in QPR define a covariant

functor from QPR to itself.

To prove this, we must show that the diagrams corresponding to β∗ ◦ α∗ and (β ◦ α)∗ are in the same

isomorphism class defining a morphism in QPR (denoted (β ◦ α)∗ = β∗ ◦ α∗ in QPR) for any composeable

(classes of) diagrams α : P · · · → Q, β : Q · · · → S in QPR as in Definition 5.1.1 of Chapter 2[11]. By this

definition([11],[16]), compositions β ◦ α in QPR are given via pullbacks

Uβ◦α := Uα ×Q Uβ = {(z, w) ∈ Uα × Uβ | iα(z) = pβ(w) ∈ Q}

and admissible morphisms pβ◦α(z, w) = pα(z), iβ◦α(z, w) = iβ(w) for diagram

P · · ·
β◦α // S

Uβ◦α

pβ◦α

ccccHHHHHHHHH << iβ◦α

<<zzzzzzzz
.

Taking the dual directly for such diagram yields

P ∗ · · ·
(β◦α)∗ // S∗

U(β◦α)∗

p(β◦α)∗

eeeeKKKKKKKKK ;; i(β◦α)∗

;;vvvvvvvvv

wherein

U(β◦α)∗ = {(χ, ν) ∈ P ∗ × S∗ | (pβ◦α)∗(χ) = (iβ◦α)∗(ν)} ,

p(β◦α)∗(χ, ν) = χ, and i(β◦α)∗(χ, ν) = ν. On the other hand, taking duals first and composing β∗ with α∗

gives the diagram
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P ∗ · · ·
β∗◦α∗ // S∗

Uβ∗◦α∗

pβ∗◦α∗

eeeeJJJJJJJJJ ;; iβ∗◦α∗

;;vvvvvvvvv

where by definition of α∗ and β∗

Uβ∗◦α∗ = Uα∗ ×Q∗ Uβ∗

= {((χ, χ̂), (ν̂, ν)) ∈ Uα∗ × Uβ∗ | iα∗(χ, χ̂) = pβ∗(ν̂, ν)}

= {((χ, χ̂), (ν̂, ν)) ∈ Uα∗ × Uβ∗ | χ̂ = ν̂} .

Therefore the proof of Lemma 3.1.4 reduces to proving the following theorem.

Theorem 3.1.5 There is an isomorphism T : U(β◦α)∗ → Uβ∗◦α∗ for which iβ∗◦α∗ ◦T = i(β◦α)∗ and pβ∗◦α∗ ◦

T = p(β◦α)∗ .

The following two lemmas give the proof.

Lemma 3.1.6 Given (χ, ν) ∈ U(β◦α)∗ ⊆ P ∗×S∗, there is a unique ν̂ ∈ Q∗ for which ν◦iβ = ν̂◦pβ : Uβ → R.

Proof: Given y ∈ Q, identify a w ∈ Uβ for which y = pβ(w) and set ν̂(y) = ν(iβ(w)). Since pβ is surjective,

given any y ∈ Q there is such a w ∈ Uβ , in which case ν(iβ(w)) ∈ R is defined whenever ν ∈ S∗ for every

y ∈ Q. Set ν̂(y) := ν(iβ(w)) for such w.

Suppose y = y′ ∈ Q with pβ(w) = y for some w ∈ Uβ ; then pβ(w) = y′ as well so ν̂(y) = ν(iβ(w)) = ν̂(y′),

hence ν̂ is well-defined on Q. On the other hand, if w,w′ ∈ Uβ have pβ(w) = pβ(w′) = y then

pβ(w)− pβ(w′) = pβ(w − w′) = 0 = iα(0)

since iα is injective. By definition it follows that (0, w − w′) ∈ Uβ◦α. Since (χ, ν) ∈ U(β◦α)∗ we now have

[(pβ◦α)∗(χ)](0, w − w′) = [(iβ◦α)∗(ν)](0, w − w′).

Now

[(pβ◦α)∗(χ)](0, w − w′) = χ(pβ◦α(0, w − w′)) = χ(pα(0)) = χ(0) = 0

and

[(iβ◦α)∗(ν)](0, w − w′) = ν(iβ◦α(0, w − w′)) = ν(iβ(w − w′)) = ν(iβ(w)− iβ(w′)) = ν(iβ(w))− ν(iβ(w′)).
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Therefore ν(iβ(w)) − ν(iβ(w′)) = 0 so that ν(iβ(w)) = ν(iβ(w′)) = ν̂(y). Thus ν̂ does not depend on the

preimage w chosen for y.

Given r ∈ R, y1, y2 ∈ Q, there are w1, w2 with pβ(w1) = y1 and pβ(w2) = y2. Since pβ is a homomorphism

we have pβ(rw1 + w2) = ry1 + y2, so

ν̂(ry1 + y2) = ν(iβ(rw1 + w2)) = ν(riβ(w1) + iβ(w2)) = rν(iβ(w1)) + ν(iβ(w2)) = rν̂(y1) + ν̂(y2).

Therefore ν̂ ∈ Q∗. Toward uniqueness, suppose that ν′ ∈ Q∗ has ν′ ◦ pβ = ν ◦ iβ . Then for any y ∈ Q with

pβ(w) = y for w ∈ Uβ ,

ν′(y) = ν′(pβ(w)) = ν(iβ(w)) = ν̂(y)

by definition. Therefore ν′(y) = ν̂(y) ∀ y ∈ Q and ν̂ is unique.

�

Lemma 3.1.7 Let (χ, ν) ∈ U(β◦α)∗ with corresponding ν̂ from Lemma 3.1.6.

a) (χ, ν̂) ∈ Uα∗ .

b) (ν̂, ν) ∈ Uβ∗ .

Proof: Let (χ, ν) ∈ U(β◦α)∗ . Then given any (z, w) ∈ Uβ◦α,

[(pβ◦α)∗(χ)](z, w) = [(iβ◦α)∗(ν)](z, w),

so that χ(pα(z)) = ν(iβ(w)). Take u ∈ Uα. Since iα(u) ∈ Q and pβ is surjective, ∃ v ∈ Uβ with pβ(v) = iα(u).

For such v we now have (u, v) ∈ Uβ◦α, in which case

ν̂(iα(u)) = ν(iβ(v)) = χ(pα(u)) = [(pα)∗(χ)](u).

It follows that (pα)∗(χ) = (iα)∗(ν̂), hence (χ, ν̂) ∈ Uα∗ for (a).

Again by definition of ν̂, y = pβ(w) for some w ∈ Uβ for each y ∈ Q, implies

ν̂(pβ(w)) = ν(iβ(w)) ∀ w ∈ Uβ .

Therefore (pβ)∗(ν̂) = (iβ)∗(ν), hence (ν̂, ν) ∈ Uβ∗ . This proves (b).

�
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Now given such ν̂ corresponding to (χ, ν) ∈ U(β◦α)∗ , define T : U(β◦α)∗ → P ∗ × Q∗ × Q∗ × S∗ by

(χ, ν) 7→ (χ, ν̂, ν̂, ν). Since ν̂ = ν̂ we see that T (χ, ν) ∈ Uβ∗◦α∗ . But ν ≡ 0 if and only if ν̂ ≡ 0, and if

T (χ, ν) = (0, 0, 0, 0) = (χ, ν̂, ν̂, ν) then clearly χ ≡ 0 and ν ≡ 0. Therefore T is injective.

By definition of Uβ∗ , if (χ, γ, γ, ν) ∈ Uβ∗◦α∗ then (γ, ν) ∈ Uβ∗ , so that γ(pβ(u)) = ν(iβ(u)) ∀ u ∈ Uβ .

Therefore γ ◦ pβ = ν ◦ iβ , so by uniqueness of ν̂ we have γ = ν̂ hence

(χ, γ, γ, ν) = (χ, ν̂, ν̂, ν) = T (χ, ν)

in which case T is surjective. By construction of this isomorphism T we now have

pβ∗◦α∗(T (χ, ν)) = pβ∗◦α∗(χ, ν̂, ν̂, ν) = pα∗(χ, ν̂) = χ = p(β◦α)∗(χ, ν)

and

iβ∗◦α∗(T (χ, ν)) = iβ∗◦α∗(χ, ν̂, ν̂, ν) = iβ∗(ν̂, ν) = ν = i(β◦α)∗(χ, ν).

Thus Theorem 3.1.5 is proven and such T is sufficient to have (β ◦ α)∗ ≡ β∗ ◦ α∗ as morphisms in QPR.

Consider the identity morphism in QPR,

P · · ·
IP // P

P

pI=idP

ccccFFFFFFFF == iI=idP

==||||||||
,

on an object P of QPR. Taking the dual results in

P ∗ · · ·
I∗P // P ∗

UI∗

pI∗

ddddIIIIIIIII << iI∗

<<xxxxxxxx

where

UI∗ = {(χ, χ̂) ∈ P ∗ × P ∗ | (pI)
∗(χ) = (iI)

∗(χ̂)} ,

pI∗(χ, χ̂) = χ and iI∗(χ, χ̂) = χ̂. But since pI = idP = iI , we have UI∗ = {(χ, χ̂) | χ = χ̂} and pI∗(χ, χ̂) =

χ = idP∗(χ) = iI∗(χ, χ̂). It follows that (IP )∗ ≡ IP∗ as morphisms in QPR. The result is now the main

result of this section:

Theorem 3.1.8 ∗ : QPR → QPR by P 7→ P ∗ and (α : P · · · → Q) 7→ (α∗ : P ∗ · · · → Q∗), with α∗ as

described herein, is a covariant functor from QPR to itself.
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Since the 1-simplices of the nerve N(QPR) are precisely the morphisms of QPR, notice the effect of

duality on two of the important simplices described in [11]: the morphisms

0 · · ·
qP // P

Uq = P

pq≡0

eeeeLLLLLLLLLL 99 iq=idP

99tttttttttt

and

0 · · ·
ιP // P

Uι = 0

pι≡0

eeeeLLLLLLLLLL :: iι≡0

::tttttttttt
.

Corollary 3.1.9 There exists a simplicial map N.∗ : N(QPR) → N(QPR) with qP 7→ ιP∗ and ιP 7→ qP∗

∀ P ∈ N(QPR)0.

Proof: We calculate Uq∗ = {(χ, ν) ∈ 0× P ∗ | (pq)
∗(χ) = (iq)

∗(ν)} ; clearly χ ≡ 0 and ∀ u ∈ P,

[(pq)
∗(χ)](u) = [(pq)

∗(0)](u) = 0 = [(iq)
∗(ν)](u) = ν(iq(u)) = ν(u),

so ν(u) = 0 ∀ u ∈ P. It follows that Uq∗ = {0} . Therefore (qP )∗ ≡ ιP∗ ∈ N(QPR)1. Similarly Uι∗ =

{(χ, ν) ∈ 0× P ∗ | (pι)
∗(χ) = (iι)

∗(ν)} . For any ν ∈ P ∗ and any u ∈ P,

[(iι)
∗(ν)](u) = ν(iι(u)) = ν(0) = 0 = [(pι)

∗(0)](u) = [(pι)
∗(χ)](u),

in which case (pι)
∗(χ) = (iι)

∗(ν) ∀ ν ∈ P ∗. Therefore Uι∗ = 0×P ∗ ≈ P ∗. Also, by definition pι∗(0, ν) = 0

so that pι∗ ≡ 0, and iι∗(0, ν) = ν so iι∗ = idP∗ . It follows that (ιP )∗ = qP∗ ∈ N(QPR)1.

We apply this construction to the simplicial set N(QPR). Given x = (α1 | α2 | · · · | αn) ∈ N(QPR)n,

define N. ∗ (x) = x∗ = (α∗1 | α∗2 | · · · | α∗n) ∈ N(QPR)n. This operation clearly commutes with face maps and

degeneracy maps in N(QPR) and our conclusion follows.

�

The application of duality to the Segal subdivision Sd(s.PR) of the Waldhausen simplicial set is an easy

extension from what we have already calculated for the Waldhausen case. For the subdivision, we have

functoriality as mentioned in Example 5.2.6 of Chapter 1(see [10]), so that if f : X → Y is a simplicial

map, then so is Sd(f) : Sd(X) → Sd(Y ) defined by Sd(f)n(x) = f2n+1(x) ∈ Y2n+1 = Sd(Y )n. From

our earlier construction of the simplicial maps s.∗ : s.PR ←→ s.PRrev, we now have simplicial maps

Sd(s.∗) : Sd(s.PR)←→ Sd(s.PRrev). Consequently:
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Corollary 3.1.10 There exist simplicial maps

Sd(s.∗) : Sd(s.PR)rev ←→ Sd(s.PRrev)rev.

4 Star-Connectedness and Sd(s.PR)

First, recall the definition of a map of star-connected simplicial sets from [11] and Example 4.3.1 of Chapter

1, also referred to as a map of triples f : (X, 0, ω) → (X̃, 0̃, ω̃). These are simplicial maps of pairs (not

necessarily Kan) f : (X, 0)→ (X̃, 0̃) where (X, 0) and (X̃, 0̃) are both pointed, star-connected simplicial sets

and ω̃ ◦ f = f ◦ ω for ray functions ω, ω̃ on X0, X̃0 respectively.

Lemma 4.0.11 Sd(s.PR)rev is star-connected at 0.

Proof: Let di be face maps on s.PR, dSdi denote face maps on the Segal subdivision, and d̂Sdi on its

reverse. By definition Sd(s.PR)rev0 = s.PR1 = Ob(PR), so consider P ∈ PR and define ω1 : Sd(s.PR)rev0 →

Sd(s.PR)rev1 by

ω1(P ) =



0

0 // // 0

OOOO

P //
idP

// P //
idP

//

OOOO

P

OOOO


∈ s.PR3 = Sd(s.PR)rev1 .

Then

d̂Sd1 (ω1(P )) = dSd0 (ω1(P )) = d0d3(ω1(P ))

= d0


0

P // // P

OOOO
 = 0

and

d̂Sd0 (ω1(P )) = dSd1 (ω1(P )) = d1d2(ω1(P ))

= d1


0

P // // P

OOOO
 = P

These calculations hold for any P ∈ Sd(s.PR)rev0 , so Sd(s.PR)rev is star-connected at 0 with ray function

ω1
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Lemma 4.0.12 Sd(s.PRrev)rev is star-connected at 0 with ray function given by

ω2(P ) = (ω1(P ∗))∗,

where ω1 is the ray function for star-connected Sd(s.PR)rev.

Proof: By definition and what we have seen before for duality,

ω2(P ) = (ω1(P ∗))∗ = (s.∗)3



0

0 // // 0

OOOO

P ∗ //
idP∗

// P ∗ //
idP∗

//

OOOO

P ∗

OOOO


=



P

0 // // P

OOOO

0 // // 0 // //

OOOO

P

OOOO



(up to isomorphism (P ∗)∗ ≈ P via Lemma 1.2.3.d of Chapter 2). Using the face maps di, d
Sd
i , from

Lemma 4.0.11 along with the face maps d̃Sdi on Sd(s.PRrev)rev and dri on s.PRrev, we calculate

d̃Sd1 (ω2(P )) = dSd0 (ω2(P )) = dr0d
r
3(ω2(P ))

= d2d0(ω2(P ) = d2


P

0 // // P

OOOO
 = 0

and

d̃Sd0 (ω2(P )) = dSd1 (ω2(P )) = dr1d
r
2(ω2(P ))

= d1d1(ω2(P )) = d1


P

0 // // P

OOOO
 = P

These calculations hold for any P ∈ Ob(PR) = s.PR1 = s.PRrev1 = Sd(s.PRrev)rev0 , so Sd(s.PR)rev is

star-connected at 0 with ray function ω2

�

Lemma 4.0.13 Sd(s.∗) : (Sd(s.PR)rev, 0, ω1)←→ (Sd(s.PRrev)rev, 0, ω2) are maps of star-connected sim-

plicial sets.
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Proof: Noticing that ω2 = (s.∗)3 ◦ω1 ◦ (s.∗)1 for the simplicial maps s.∗ : s.PR←→ s.PRrev, we find first

of all that up to isomorphism

Sd(s.∗)1(ω1(P )) = (s.∗)3(ω1(P )) = (s.∗)3(ω1((P ∗)∗)) = (s.∗)3(ω1((s.∗)1(P ∗))) = ω2(P ∗)

= ω2((s.∗)1(P )) = ω2(Sd(s.∗)0(P ))

for every P ∈ Sd(s.PR)rev0 . Also,we have from Lemma 1.2.3.d of Chapter 2 that the functor ∗◦∗ is equivalent

to the identity functor on PR, so that s. ∗ ◦s.∗ is the identity and therefore

Sd(s.∗)1(ω2(P )) = (s.∗)3((s.∗)3 ◦ ω1 ◦ (s.∗)1(P )) = ω1((s.∗)1(P )) = ω1(Sd(s.∗)0(P ))

for every P ∈ Sd(s.PRrev)rev0 . Thus Sd(s.∗) ◦ ω1 = ω2 ◦ Sd(s.∗) and Sd(s.∗) ◦ ω2 = ω1 ◦ Sd(s.∗), so Sd(s.∗)

is a map of star-connected simplicial sets in each case.

�

Lemma 4.0.14 N(QPR) is star-connected at basepoint 0 ∈ PR; two different ray functions are given by

ω̃1(P ) = qP ∈ N(QPR)1 and ω̃2(P ) = ιP ∈ N(QPR)1.

Proof: We can see just by using the notation for the nerve of a simplicial set that for face maps di on

N(QPR)1, d0(0 · · · qP→ P ) = P and d1(0 · · · qP→ P ) = 0 for every P ∈ Ob(PR) = N(QPR)0. Similarly,

d0(0 · · · ιP→ P ) = P and d1(0 · · · ιP→ P ) = 0 for each such P. Therefore setting ω̃1(P ) = qP and ω̃2(P ) = ιP

defines two different ray functions so that N(QPR) is star-connected.

�

Lemma 4.0.15 N.∗ : (N(QPR), 0, ω̃1)←→ (N(QPR), 0, ω̃2) are maps of star-connected simplicial sets.

Proof: We calculate

(N.∗)1 ◦ ω̃1(P ) = (N.∗)1(qP ) = q∗P = ιP∗ = ω̃2(P ∗) = ω̃2((N.∗)0(P )),

and

(N.∗)1 ◦ ω̃2(P ) = (N.∗)1(ιP ) = (ιP )∗ = qP∗ = ω̃1(P ∗) = ω̃1((N.∗)0(P )).

Therefore, in either direction, N.∗ is a map of star-connected simplicial sets by definition.

�
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Now Lemma 4.0.22 of [11] implies that N.∗ : Tω̃1
(N(QPR)) ←→ Tω̃2

(N(QPR)) for maximal trees

Tω̃1
, Tω̃2

; consequently there exist homomorphisms of simplicial groups

G(N(QPR), Tω̃1
)
G(N.∗)−→ G(N(QPR), Tω̃2

)
G(N.∗)−→ G(N(QPR), Tω̃1

).

Similarly there are homomorphisms of simplicial groups

G(Sd(s.PR)rev, Tω1
)
G(Sd(s.∗))−→ G(Sd(s.PRrev)rev, Tω2

)
G(Sd(s.∗))−→ G(Sd(s.PR)rev, Tω1

).

5 Connections between N(QPR), Sd(s.PR) and s.PR

Our goal is now to review the role of the maps H and I whose induced maps are part of the mapping

π1(G(s.PRrev)rev)
θ−1
1∗ // π1(G(s.PRrev))

ζ1∗ // π1(G(s.PR))

“preimage”

���
�
�
�
�
�

π1(G.PR)

T∗

OO

π1(G(Sd(s.PR)rev))

GH∗

��

GI∗

OO

K1(R)
ξ //__________________________________

L

OO

π1(G(N(QPR)))

as in [11] and to reestablish H, I and induced maps thereof as maps that can be used with the duality

described in Chapter 2. Recall that s.PR is a reduced simplicial set with unique 0-simplex denoted 0, hence

is clearly star-connected with ray function ω0 ≡ 01 = s0(0) = 0 ∈ PR.

We restate definitions from [10, 11] for H and I : Given A in any of the (equivalent) sets

s.PR2n+1 = Sd(s.PR)n = Sd(s.PR)revn = Sd(s.PRrev)rev,

we have

H(A) = (a1 | a2 | · · · | an−k | · · · | an) ∈ N(QPR)n
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is a composition of morphisms

an−k = Ak+1,2n−k · · · // Ak,2n−k+1

Ak,2n−k

p

ggggNNNNNNNNNNN 88 i

88qqqqqqqqqq

,

for the appropriate i and p from the rows and columns defining A, for each 0 ≤ k ≤ n− 1. For this same A,

I(A) =

n+1︷ ︸︸ ︷
d0d0 · · · d0(A) ∈ s.PRn = s.PRrevn ,

where we are careful to apply the correct face maps depending on whether we are in the simplicial set or its

reverse.

Theorem 5.0.16 In the diagram

(s.PR, 0, ω0)
s.∗ // ((s.PR)rev, 0, ω0)

s.∗ // (s.PR, 0, ω0)

(Sd(s.PR)rev, 0, ω1)

I

OO

H

��

Sd(s.∗) // (Sd(s.PRrev)rev, 0, ω2)

I

OO

H

��

Sd(s.∗) // (Sd(s.PR)rev, 0, ω1)

I

OO

H

��
(N(QPR), 0, ω̃1)

N∗ // (N(QPR), 0, ω̃2)
N∗ // (N(QPR), 0, ω̃1)

all arrows are maps of triples and all squares commute.

Proof: Let di denote face maps on s.PR, drevi face maps on s.PRrev. Since

I(ω1(P )) = d0d0



0

0 // // 0

OOOO

P // // P // //

OOOO

P

OOOO


= d0


0

0 // // 0

OOOO
 = 0 = ω0(I(P ))
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and (with I(ω2(P )) = drev0 drev0 (ω2(P )))

I(ω2(P )) = d2d3



P

0 // // P

OOOO

0 // // 0 // //

OOOO

P

OOOO


= d2


0

0 // // 0

OOOO
 = 0 = ω0(I(P ))

for any P ∈ Sd(s.PR)rev0 , we see that both versions of the map I are maps of triples. Given A ∈

Sd(s.PR)revn = s.PR2n+1 as a triangular commutative diagram with entries Ai,j ∈ PR, 0 ≤ i < j ≤ 2n+ 1

we calculate

I(A) =

n+1︷ ︸︸ ︷
d0d0 · · · d0(A) =



A2n,2n+1

A2n−1,2n // // A2n−1,2n+1

OOOO

...

OOOO

...

OOOO

An+2,n+3 // // · · · // // An+2,2n // //

OOOO

An+2,2n+1

OOOO

An+1,n+2 // // An+1,n+3 // //

OOOO

· · · // // An+1,2n // //

OOOO

An+1,2n+1

OOOO


in s.PRn, so that

s. ∗ (I(A)) =



A∗n+1,n+2

A∗n+2,n+3
// // A∗n+1,n+3

OOOO

...

OOOO

...

OOOO

A∗2n−1,2n
// // · · · // // A∗n+2,2n

// //

OOOO

A∗n+1,2n

OOOO

A∗2n,2n+1
// // A∗2n−1,2n+1

// //

OOOO

· · · // // A∗n+2,2n+1
// //

OOOO

A∗n+1,2n+1

OOOO



;
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also Sd(s.∗)(A) = A∗ ∈ s.PRrev2n+1 = Sd(s.PRrev)revn , hence

I(Sd(s.∗)(A)) =

n+1︷ ︸︸ ︷
drev0 drev0 · · · drev0 (Sd(s.∗)(A)) = dn+1dn+2 · · · d2nd2n+1(A∗)

= dn+1 · · · d2n+1



A∗0,1

...

OOOO

A∗n+1,n+2
// // · · · // // A∗0,n+2

OOOO

A∗n+2,n+3
// // A∗n+1,n+3

OOOO

// // · · · // // A∗0,n+3

OOOO

...

OOOO

...

OOOO

...

OOOO

· · · // // A∗n+2,2n
// //

OOOO

A∗n+1,2n

OOOO

// // · · · // // A∗0,2n

OOOO

A∗2n,2n+1
// // · · · // // A∗n+2,2n+1

// //

OOOO

A∗n+1,2n+1

OOOO

// // · · · // // A∗0,2n+1

OOOO



=



A∗n+1,n+2

A∗n+2,n+3
// // A∗n+1,n+3

OOOO

...

OOOO

...

OOOO

A∗2n−1,2n
// // · · · // // A∗n+2,2n

// //

OOOO

A∗n+1,2n

OOOO

A∗2n,2n+1
// // A∗2n−1,2n+1

// //

OOOO

· · · // // A∗n+2,2n+1
// //

OOOO

A∗n+1,2n+1

OOOO



= s. ∗ (I(A)).
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When A ∈ Sd(s.PRrev)revn = s.PRrev2n+1 we have

(s.∗)n(I(A)) = (s.∗)n(

n+1︷ ︸︸ ︷
drev0 drev0 · · · drev0 (A)) = (s.∗)n(dn+1dn+2 · · · d2n+1(A))∗

= (s.∗)n



An−1,n

An−2,n−1 // // An−2,n

OOOO

...

OOOO

...

OOOO

A1,2 // // · · · // // A1,n−1 // //

OOOO

A1,n

OOOO

A0,1 // // A0,2 // //

OOOO

· · · // // A0,n−1 // //

OOOO

A0,n

OOOO



=



A∗0,1

A∗1,2 // // A∗0,2

OOOO

...

OOOO

...

OOOO

A∗n−2,n−1
// // · · · // // A∗1,n−1

// //

OOOO

A∗0,n−1

OOOO

A∗n−1,n
// // A∗n−2,n

// //

OOOO

· · · // // A∗1,n // //

OOOO

A∗0,n

OOOO


and

I(Sd(s.∗)(A)) =

n+1︷ ︸︸ ︷
d0d0 · · · d0(A∗)
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= d0 · · · d0



A∗0,1

A∗1,2 // // A∗0,2

OOOO

...

OOOO

...

OOOO

A∗n−2,n−1
// // · · · // // A∗1,n−1

OOOO

// // A∗0,n−1

OOOO

A∗n−1,n
// // A∗n−2,n

// //

OOOO

· · · // // A∗1,n // //

OOOO

A∗0,n

OOOO

...

OOOO

...

OOOO

...

OOOO

...

OOOO

A∗2n,2n+1
// // · · · // // A∗n−1,2n+1

// //

OOOO

A∗n−2,2n+1
// //

OOOO

· · · // // A∗1,2n+1

OOOO

// // A∗0,2n+1

OOOO



=



A∗0,1

A∗1,2 // // A∗0,2

OOOO

...

OOOO

...

OOOO

A∗n−2,n−1
// // · · · // // A∗1,n−1

// //

OOOO

A∗0,n−1

OOOO

A∗n−1,n
// // A∗n−2,n

// //

OOOO

· · · // // A∗1,n // //

OOOO

A∗0,n

OOOO



= s. ∗ (I(A)).

Thus the top two squares of the diagram are commutative squares of maps of triples.

Considering H, we find that

H(ω1(P )) = H



0

0 // // 0

OOOO

P //
idP

// P //
idP

//

OOOO

P

OOOO


=

0 · · · // P

P

bbbbEEEEEEEE >> idP

>>}}}}}}}}
= qP = ω̃1(P )
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and (since H0 = idOb(PR))

ω̃1(H(P )) = ω̃1(P ) = H(ω1(P )).

Similarly, ω̃2(H(P )) = ω̃2(P ) = ιP and

H(ω2(P )) = H



P

0 // // P

OOOO

0 // // 0 // //

OOOO

P

OOOO


=

0 · · · // P

0

aaaaDDDDDDDD >>

>>~~~~~~~
= ιP = ω̃2(P ) = ω̃2(H(P )).

Therefore both versions of H are maps of triples. Looking closer at H for a given A ∈ s.PR2n+1 will require

us to consider for any 0 ≤ k ≤ n− 1 the commutative squares

Ak+1,2n−k // ĩ // Ak+1,2n−k+1

Ak,2n−k // i //

p

OOOO

Ak,2n−k+1

p̃

OOOO
and

A∗k+1,2n−k // p∗ // A∗k,2n−k

A∗k+1,2n−k+1
// (p̃)
∗

//

(̃i)∗
OOOO

A∗k,2n−k+1

i∗
OOOO

in the triangular, commutative diagrams representing A,A∗, respectively, in Sd(s.PRrev)rev, as well as the

(short) exact sequences

A2n−k,2n−k+1

Ak+1,2n−k+1

q

OOOO

Ak,2n−k // i // Ak,2n−k+1

p̃

OOOO
,

A2n−k,2n−k+1

Ak+1,2n−k+1 // ĩ // Ak+1,2n−k+1

q

OOOO

where q is the appropriate composition by definition of A, and (dually) the short exact sequences

A∗2n−k,2n−k+1
//(p̃◦q)

∗
// A∗k,2n−k+1

i∗ // // A∗k,2n−k

and

A∗2n−k,2n−k+1
// q
∗

// A∗k+1,2n−k+1

(̃i)∗ // // A∗k+1,2n−k .

Since

H(A) = (a1 | a2 | · · · | an−k | · · · | an) ∈ N(QPR)n
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is a composition of morphisms

an−k = Ak+1,2n−k · · · // Ak,2n−k+1

Ak,2n−k

p

ggggNNNNNNNNNNN 88 i

88qqqqqqqqqq

with

N. ∗ (an−k) = (an−k)∗ = A∗k+1,2n−k · · · // A∗k,2n−k+1

U(an−k)∗

p(an−k)∗

ggggNNNNNNNNNNN 88 i(an−k)∗

88rrrrrrrrrr

,

but

H(Sd(s.∗)(A)) = H(A∗) = (ã1 | ã2 | · · · | ãn−k | · · · | ãn)

has morphisms

ãn−k = A∗k+1,2n−k · · · // Ak,2n−k+1

A∗k+1,2n−k+1

(̃i)∗

ggggPPPPPPPPPPPP 77 (p̃)∗

77pppppppppppp

,

we must construct an isomorphism Γ : A∗k+1,2n−k+1 → U(an−k)∗ for which p(an−k)∗◦Γ = (̃i)∗ and i(an−k)∗◦Γ =

(p̃)∗.

First, recall that

U(an−k)∗ =
{

(τ1, τ2) ∈ A∗k+1,2n−k ×A∗k,2n−k+1 | p∗(τ1) = i∗(τ2) ∈ A∗k,2n−k
}

and define Γ : A∗k+1,2n−k+1 → A∗k+1,2n−k × A∗k,2n−k+1 by Γ(w) = ((̃i)∗(w), (p̃)∗(w)). From the commutative

squares we see that p∗((̃i)∗(w)) = i∗((p̃)∗(w)) so that Γ(w) ∈ U(an−k)∗ ∀ w ∈ A∗k+1,2n−k+1. If (τ1, τ2) =

(0, 0) = Γ(w) then (p̃)∗(w) = 0, so w = 0 since (p̃)∗ is injective. Thus Γ is injective.

Suppose (τ1, τ2) ∈ U(an−k)∗ . Since (̃i)∗ is surjective, ∃ w ∈ A∗k+1,2n−k+1 for which (̃i)∗(w) = τ1. By

definition of U(an−k)∗ and the commutative squares, we see

p∗(τ1) = p∗((̃i)∗(w)) = i∗((p̃)∗(w)) = i∗(τ2).

It follows that (p̃)∗(w)− τ2 ∈ ker(i∗). But with the exact sequences above we see that ker(i∗) = im((q ◦ p̃)∗).

Thus there is some u ∈ A∗2n−k,2n−k+1 for which (p̃)∗(q∗(u)) = (p̃)∗(τ1)− τ2.
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Set v = w − q∗(u) for such u. Now v ∈ A∗k+1,2n−k+1 with

(̃i)∗(v) = (̃i)∗(w)− (̃i)∗(q∗(u)) = (̃i)∗(w)− 0 = τ1

since the exact sequences show im(q∗) = ker((̃i)∗). By definition of u we have (p̃)∗(v) = (p̃)∗(w) −

(p̃)∗(q∗(u)) = τ2, so Γ(v) = (τ1, τ2) in which case Γ is surjective.

By construction of Γ,

p(an−k)∗ ◦ Γ(w) = (̃i)∗(w)

and

i(an−k)∗ ◦ Γ(w) = (p̃)∗(w)

for every w ∈ A∗k+1,2n−k+1. Therefore we have found an appropriate isomorphism from which to have

(an−k)∗ = ãn−k as morphisms in QPR by Definition 5.1.2 of Chapter 2. By definition of N.∗ we now see

N. ∗ (H(A)) = N. ∗ (a1 | · · · | an) = (a∗1 | · · · | a∗n = ã1 | · · · | ãn) = H(Sd(s.∗)(A))

for all A ∈ s.PR2n+1 = Sd(s.PR)revn (and equivalently all A ∈ Sd(s.PRrev)revn ). We conclude that the

bottom two squares of the diagram commute.

�

Corollary 5.0.17 There is a diagram

G(s.PR)
G(s.∗) // G((s.PR)rev)

G(s.∗) // G(s.PR)

G(Sd(s.PR)rev, Tω1
)

GI

OO

GH

��

G(Sd(s.∗)) // G(Sd(s.PRrev)rev, Tω2
)

GI

OO

GH

��

G(Sd(s.∗)) // G(Sd(s.PR)rev, Tω1
)

GI

OO

GH

��
G(N(QPR), Tω̃1

)
G(N.∗) // G(N(QPR), Tω̃2

)
G(N.∗) // G(N(QPR), Tω̃1

)

in which all arrows are homomorphisms of simplicial groups and all squares commute.

Theorem 5.0.18 ([11] Theorems 6.0.5 and 6.0.8)All vertical arrows in the diagram in Theorem 5.0.16 are

weak homotopy equivalences.

63



Theorem 5.0.19 In the diagram of induced homomorphisms

πn(G(s.PR))
G(s.∗)∗ // πn(G(s.PRrev))

G(s.∗)∗ // πn(G(s.PR))

πn(G(Sd(s.PR)rev, Tω1
))

GI∗

OO

GH∗

��

G(Sd(s.∗))∗ // πn(G(Sd(s.PRrev)rev, Tω2
))

GI∗

OO

GH∗

��

G(Sd(s.∗))∗ // πn(G(Sd(s.PR)rev, Tω1
))

GI∗

OO

GH∗

��
πn(G(N(QPR), Tω̃1

))
G(N.∗)∗ // πn(G(N(QPR), Tω̃2

))
G(N.∗)∗ // πn(G(N(QPR), Tω̃1

)),

the top row contains isomorphisms that are inverse to each other.

Proof: By Theorem 1.2.6, G(s.∗) is a weak homotopy equivalence in both directions, so that G(s.∗)∗ is

an isomorphism in each case. By Lemma 4.2.2 and Theorem 1.4.2 of Chapter 1 and Corollary 1.2.5 of this

chapter, it follows that G(s.∗)∗ is its own inverse.

�

Corollary 5.0.20 All horizontal rows in the diagram from Theorem 5.0.19 contain isomorphisms which are

pairwise inverses of each other.

Proof: From Corollary 5.0.17, Theorem 5.0.18 and Theorem 5.0.19, we calculate

GI∗ ◦G(Sd(s.∗))∗ ◦G(Sd(s.∗))∗ = G(s.∗)∗ ◦GI∗ ◦G(Sd(s.∗))∗ = G(s.∗)∗ ◦G(s.∗)∗ ◦GI∗ = GI∗,

so that G(Sd(s.∗))∗ ◦G(Sd(s.∗))∗ must be the identity (since GI∗ is an isomorphism), hence G(Sd(s.∗))∗ is

an isomorphism and is its own inverse. Similarly,

G(N.∗)∗ ◦G(N.∗)∗ ◦GH∗ = G(N.∗)∗ ◦GH∗ ◦G(Sd(s.∗))∗ = GH∗ ◦G(Sd(s.∗))∗G(Sd(s.∗))∗ = GH∗,

so that G(N.∗)∗ is an isomorphism and is its own inverse.

�
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Chapter 4

Connections with Classical K-Groups

In this chapter, we first describe the maps in the composition

π1(G(s.PRrev)rev)
θ−1
1∗ // π1(G(s.PRrev))

ζ1∗ // π1(G(s.PR))

“preimage”

���
�
�
�
�
�

π1(G.PR)

T∗

OO

π1(G(Sd(s.PR)rev))

GH∗

��

GI∗

OO

K1(R)
ξ //__________________________________

L

OO

π1(G(N(QPR)))

by which Duflot shows that the map defined by ξ(X,A) = [x(A)], with x(A) as described in this chapter,

is an isomorphism for the K1 case. As we do this, we will correct a miscalculation in Duflot’s work([11],

pages 466 and 469). Then we will compare the above diagram with one that differs only by applying duality,

replacing ζ1∗ with the induced map G(s.∗)1∗ of the weak homotopy equivalence G(s.∗) as in Theorem 1.2.6
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of Chapter 3:

π1(G(s.PRrev)rev)
θ−1
1∗ // π1(G(s.PRrev))

G(s.∗)1∗ // π1(G(s.PR))

“preimage”

���
�
�
�
�
�

π1(G.PR)

T∗

OO

π1(G(Sd(s.PR)rev))

GH∗

��

GI∗

OO

K1(R)
ξ̂ //__________________________________

L

OO

π1(G(N(QPR)))

.

The advantage of using G(s.∗)∗ to compute in the upper right corner of this diagram is twofold:

1) G(s.∗) is functorially defined at the simplicial level, showing connections between simplices in simplicial

sets, unlike the ad hoc definition of ζ1∗ in [11].

2) As the induced map of a weak homotopy equivalence, G(s.∗)∗ is defined as an isomorphism in every

simplicial dimension, not just in dimension 1.

1 L : K1(R)→ π1(G.PR)

We describe the map L : K1(R)→ π1(G.PR) by summarizing the results given by Nenashev in [12, 14]. View

K1(R) as K1(R) ≈ Kdet
1 (R). Kdet

1 (R) is the “universal determinant functor” on the semisimple category

PR, which is a construction that allows us to view elements of K1(R) as pairs (P, α) where P ∈ PR and

α ∈ Aut(P ). Nenashev then defines a double-short-exact sequence in PR, and these sequences become

the generators of an abelian group, denoted D(R).

These double-short-exact sequences each contain two short exact sequences, which together constitute

a 1-simplices of G.PR as in Definition 2.1.1 of Chapter 3. These are put together with other 1-simplices

to form “combinatorial loop objects” in G.PR1. These loop objects bound 2-simplices in G.PR, and these

2-simplices form the backbone of a notion of homotopy inside G.PR. The homotopy class of this loop is

denoted m(l(α)), and a representative for such a class is µ(l(α)), so that we are concerned with elements

66



m(l(α)) = [µ(l(α))] ∈ π1(G.PR). We represent this combinatorial loop object as the sequence

µ(l(α)) =




P

0 // // P

=

OOOO

,

P

0 // // P

α

OOOO
 ,


P

0 // // P

=

OOOO

,

P

0 // // P

=

OOOO

 = {z1, z2}

of 1-simplices in G.PR.

Nenashev then shows ([12], Theorem 3.1) that there is an element m(l) ∈ π1(G.PR) corresponding to

each element of K1(R), based on a result of Sherman’s. Sherman had a result that involved loop objects of

a certain form, and Nenashev showed that such loop objects are “freely homotopic” to certain of his µ(l),

and thus are members of the classes m(l). Furthermore, it is shown ([12], Theorem 6.2.(1)) that l 7→ m(l)

is a surjective group homomorphism from D(R) to π1(G.PR), which pairs generators of D(R) in particular

with homotopy classes in G.PR1.

Nenashev completes the construction by showing ([12], Theorem 6.2.(2)) that there is a group isomor-

phism (A,α) 7→ l(α) from K1(R) := Kdet
1 (R) to D(R), so that composition yields (after he shows that m is

an isomorphism in [14])

Theorem 1.0.1 The map L : K1(R)→ π1(G.PR) defined by L(P, α) = [µ(l(α))] is an isomorphism.

2 T : G.PR→ G(s.PRrev)rev

Consider the reverse s.PRrev again (i.e. Theorem 1.1.3 from Chapter 3 and Example 5.2.1 from Chapter

1). Let G(s.PRrev) be constructed via the twisting function t as in Definitions 4.1.2 and 4.1.4 in Chapter

1. From [17, 2] we know

di(t(D)) =


t(d

(rev)
i D) 0 ≤ i ≤ n,

[
t(d

(rev)
n+1 D)

]−1

t(d
(rev)
n D) i = n

(and sj(t(D)) = t(srevj (D)), for every j) for each D ∈ s.PRn+1 = s.PRrevn+1.

Lemma 2.0.2 The map T : G.PR→ G(s.PRrev)rev defined by

T (x) = T (D1, D2) = [t(D1)]−1t(D2),

for the pair of diagrams x = (D1, D2) is simplicial map.

67



Proof: For 1 ≤ i ≤ n,

d
(rev)
i T (x) = d

(rev)
i ([t(D1)]−1t(D2))

= dn−i([t(D1)]−1t(D2))

= [dn−i(t(D1))]−1dn−i(t(D2))

= [t(d
(rev)
n−i D1)]−1t(d

(rev)
n−i D2)

= [t(dn+1−(n−i)D1)]−1t(dn+1−(n−i)D2)

= [t(di+1D1)]−1t(di+1D2)

= T (di+1D1, di+1D2)

= T (dix).

Note that since they come from an element of G.PR, D1 and D2 have identical rows above the first row, so

that d0D1 = d0D2, hence t(d0D1) = t(d0D2) ∈ G(s.PR)n−1. Thus

d
(rev)
0 T (x) = d

(rev)
0 ([t(D1)]−1t(D2))

= [dn(t(D1))]−1dn(t(D2))

= [[t(d
(rev)
n+1 D1)]−1t(d(rev)

n D1)]−1[t(d
(rev)
n+1 D2)]−1t(d(rev)

n D2)

= [[t(d0D1)]−1t(d1D1)]−1[t(d0D2)]−1t(d1D2)

= [t(d1D1)]−1t(d1D2)

= T (d1D1, d1D2)

= T (d0x),

so T commutes with the face maps. Similarly, we calculate for degeneracy maps
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s
(rev)
j T (x) = s

(rev)
j ([t(D1)]−1t(D2))

= sn−j([t(D1)]−1t(D2))

= [sn−j(t(D1))]−1sn−j(t(D2))

= [t(s
(rev)
n−j D1)]−1t(s

(rev)
n−j D2)

= [t(sn+1−(n−j)D1)]−1t(sn+1−(n−j)D2)

= [t(sj+1D1)]−1t(sj+1D2)

= T (sj+1D1, sj+1D2)

= T (sjx)

for each 0 ≤ j ≤ n. Therefore this T is a simplicial map.

�

Furthermore, Duflot[11] shows that the induced map

T∗ : πn(G.PR)→ πn(G(s.PRrev)rev)

by T∗([x]G.PR) = [T (x)]Grev is an isomorphism, based on the results of Berger and Gillet-Grayson. That is,

Theorem 2.0.3 T is a weak homotopy equivalence.

Now we calculate the composition T∗ ◦ L given the sequence

µ(l(α)) =




P

0 // // P

=

OOOO

,

P

0 // // P

α

OOOO
 ,


P

0 // // P

=

OOOO

,

P

0 // // P

=

OOOO

 = {z1, z2}

as described for Nenashev’s map L. Notice that in G.PR we have d0z1 = d0z2 = (P, P ) and d1z1 = d1z2 =

(0, 0). Furthermore, the 2-simplex

y =



0

P // = // P

OOOO

0 // // P // = //

=

OOOO

P

=

OOOO
,

0

P // α // P

OOOO

0 // // P // = //

=

OOOO

P

α

OOOO
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has

d0y =


0

P // = // P

OOOO

,

0

P // = // P

OOOO
 = s0(P, P ) = s0d0z1 = s0d0z2,

d1y = z2 and d2y = z1. Therefore z1 ∼ z2 in G.PR by Definition 1.3.1 of Chapter 1 (with the element y

above as the homotopy element), so that we can choose the class L(P, α) := [z1] ∈ π1(G.PR) represented by

z1 := (D1, D2) ∈ s.PRrev2 × s.PRrev2

as the representative element to send to T. In this case, note that

D1 =


P

0 // // P

=

OOOO
 = s0(P ) = srev1 (P ),

so that t(D1) = 1 ∈ G(s.PRrev)rev1 . It follows that

T∗(L(P, α)) = [T (D1, D2)] = [(t(D1))−1t(D2)] = [t(D2)] = [t


P

0 // // P

α

OOOO
] ∈ π1(G(s.PRrev)rev).

3 θ1 : G(s.PRrev)→ G(s.PRrev)rev

Here we adopt the notation t̃(u) for generators of G(s.PRrev) in order to distinguish them from the generators

t(u) of G(s.PR) and consider the map θq defined in Theorem 7.1.1 of [11]:

θq : G(s.PRrev)q → G(s.PRrev)q

by

θq(t̃(u)) = (t̃(u))(−1)qs0dq(t̃(u))(s1dq(t̃(u)))−1 · · · (sidq(t̃(u)))(−1)i · · · (sq−1dq(t̃(u)))(−1)q−1

,

which is bijective for each q, maps G(s.PRrev) to ˜G(s.PRrev) (recall Definition 2.2.1 of Chapter 1) and maps

Zq to Zq.

For any simplicial group G with face maps di and given integer q > 0 we know

Grevq = Grevq ∩ ker(drev0 ) ∩Ker(drev1 ) ∩ · · · ∩ ker(drevq−1)

= Gq ∩ ker(dq) ∩ ker(dq−1) ∩ · · · ∩ ker(d1) = G̃q.
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so that ˜G(s.PRrev)q = G(s.PRrev)revq, hence θq maps G(s.PRrev)q to G(s.PRrev)revq. Similarly,

Zq(G
rev) = Grevq ∩ ker(drevq ) = Grevq ∩ ker(drev0 ) ∩ · · · ∩ ker(drevq )

= Gq ∩ ker(dq) ∩ · · · ∩ ker(d0) = Gq ∩ ker(dq) = Zq(G).

Thus θq maps Zq(G(s.PRrev)) to Zq(G(s.PRrev)rev). It follows that induced homomorphisms

θq∗ : πq(G(s.PRrev))→ πq(G(s.PRrev)rev)

are isomorphisms. We could use Proposition 5.2.4 of Chapter 1 to reformulate this, but instead of writing

G := (Grev)rev too many times we will use the inverse isomorphism

θ−1
1∗ := (θ1∗)

−1 : π1(G(s.PRrev)rev)→ π1(G(s.PRrev)).

4 θ−1
1∗ ◦ T∗ ◦ L

Now by definition

θ1(t̃(u)) = (t̃(u))−1s0d1(t̃(u)),

and we use

T∗(L(P, α)) = T∗([µ(l(α))]) = [t̃(D2)]

where

D2 =


P

0 // // P

α

OOOO
 ∈ s.PRrev2 .

We see

d1t̃(D2) = (t̃(drev2 D2))−1t̃(drev1 D2) = (t̃(d0D2))−1t̃(d1D2) = t̃(P )−1t̃(P ) = 1 ∈ G(s.PRrev)1,

so that

θ1(t̃(D2)) = (t̃(D2))−1s0(1) = (t̃(D2))−1(1) = (t̃(D2))−1.
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It follows that

θ−1
1∗ (T (L(P, α))) = θ−1

1∗ ([t̃(D2)]) = θ−1
1∗ ([((t̃(D2))−1)−1]) = θ−1

1∗ ([θ1((t̃(D2))−1)])

= θ−1
1∗ (θ1∗([(t̃(D2))−1]) = θ−1

1∗ (θ1∗([t̃(D2)]−1) = [t̃(D2)]−1.

5 ζ1∗ : π1(G(s.PRrev))→ π1(G(s.PR))

The map

ζ1∗ : π1(G(s.PRrev))→ π1(G(s.PR)),

is defined by

[t̃


A12

A01
// k1 // A02

l2

OOOO
] 7→ [t


A01

A12
// s2 // A02

p1

OOOO
]

where s2 is a section for l2 (i.e. l2 ◦ s2 = idA12
) and p1 is defined by p1 = k−1

1 ◦ (idA02
− s2 ◦ l2). Duflot

shows that this ζ1 is an isomorphism ([11], Theorem 10.0.21) and is independent of the choice of section s2.

6 ζ1∗ ◦ θ−1
1∗ ◦ T∗ ◦ L

With

T∗(L(P, α)) = [t̃(D2)] = [t̃


P

0 // // P

α

OOOO
]

we see that A01 = 0, k1 : 0 ↪→ P,A02 = A12 = P, and l2 = α. Since α−1 is a section of α ∈ Aut(P ) by

definition, we see that

p2 := k−1
1 ◦ (idP − α−1 ◦ α) = k−1

1 ◦ (idP − idP ) ≡ 0.

Using Duflot’s notation from [11], page 469, this is

ζ1∗θ
−1
1∗ T∗([µ(l(α))]) = ζ1∗θ

−1
1∗ ([t̃(0→ P

α→ P )]) = [t(P
α−1

→ P → 0)]−1.

Notice we have α−1 in place of α in the last expression, which represents a miscalculation on page 469 of[11]

that is now corrected.
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7 Computing GI−1
∗

Now our aim is to take the element

T∗(L(P, α)) = [t̃(D2)] = [t̃


0

P // α
−1

// P

OOOO
] = [t̃(D′2)]

of π1(G(s.PR)) and follow it back to π1(G(Sd(s.PR)rev) via the isomorphism GI1∗ induced by the weak

homotopy equivalence GI. Duflot defines two elements w1(P, α), w2(P, α) ∈ Sd(s.PR)rev2 = Sd(s.PR)2 =

s.PR5 which, due to the correction for page 469 of[11]. We adjust them by replacing α with α−1 (and using

the notation in this paper, so from [11], page 466 we change: T := α ∈ Aut(P ) and X := P ):

w1 := w1(P, α−1) =



0

P // α
−1

// P

OOOO

0 // // P

=

OOOO

// α
−1

// P

=

OOOO

0 // // 0

=

OOOO

// // P

=

OOOO

// α
−1

// P

=

OOOO

0 // // 0

=

OOOO

// // 0

=

OOOO

// // P

=

OOOO

// α
−1

// P

=

OOOO


and

w2 := w2(P, α−1) =



0

0 // // 0

OOOO

0 // // 0

=

OOOO

// // 0

=

OOOO

P // = // P

OOOO

// = // P

OOOO

// α
−1

// P

OOOO

0 // // P

=

OOOO

// = // P

=

OOOO

// = // P

=

OOOO

// α
−1

// P

=

OOOO



.

Now we calculate
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I2(w1) = d0d0d0(w1) = d0d0



0

P // α
−1

// P

=

OOOO

0 // // P // α
−1

//

=

OOOO

P

=

OOOO

0 // // 0 // //

OOOO

P // α
−1

//

=

OOOO

P

=

OOOO


= d0



0

P // α
−1

// P

OOOO

0 // // P // α
−1

//

=

OOOO

P

=

OOOO



=


0

P // α
−1

// P

OOOO
 = D′2 ∈ s.PR2

so that GI(t̃(w1)) = t(D′2), in which case GI∗([t̃(w1)]−1) = [t(D′2]−1. Similarly

I2(w2) = d0d0d0(w2) = d0d0



0

0 // // 0

OOOO

0 // // 0 // //

OOOO

0

OOOO

P // = // P // = //

OOOO

P // α
−1

//

=

OOOO

P

OOOO


= d0



0

0 // // 0

OOOO

0 // // 0 // //

OOOO

0

OOOO



=


0

0 // // 0

OOOO
 = 02 ∈ s.PR2

so that t(I2(w2)) = e1 and therefore GI∗([t̃(w2)]) = [e1] = 1. Now we have the result:

GI∗([t̃(w2)(t̃(w1))−1]) = GI∗([t̃(w2)])(GI∗([t̃(w1)]))−1 = [e1]([t(D′2)])−1 = [t(D′2)]−1.

Therefore we follow [t(D′2)]−1 ∈ π1(G(s.PR)) back to the element [t̃(w2)(t̃(w1))−1] ∈ π1(G(Sd(s.PR)rev))

via GI∗.

We pause here and note that

Q := ζ1∗ ◦ θ−1
1∗ ◦ T∗ ◦ L : K1(R)→ π1(G(s.PR))

is an isomorphism, and this brings us to the maps GH,GI discussed in Chapter 3.
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8 Computing GH∗

Consider the weak homotopy equivalence H : Sd(s.PR)rev → N(QPR) from [11], which induces weak homo-

topy equivalence GH and therefore results in isomorphism GH∗ : π1(G(Sd(s.PR)rev))→ π1(G(N(QPR))).

Given an element

w =



A2n,2n+1

...
...

...

OOOO

· · · // // Ak+1,2n−k // //

OOOO

Ak+1,2n−k+1 // //

OOOO

· · · // // Ak+1,2n+1

OOOO

· · · // // Ak,2n−k // i //

p

OOOO

Ak,2n−k+1 // //

OOOO

· · · // // Ak,2n+1

OOOO

...

OOOO

...

OOOO

...

OOOO

A1,2 // // · · · // // A1,2n−k // //

OOOO

A1,2n−k+1 // //

OOOO

· · · // // A1,2n+1

OOOO

A0,1 // // A0,2 // //

OOOO

· · · // // A0,2n−k // //

OOOO

A0,2n−k+1 // //

OOOO

· · · // // A0,2n+1

OOOO


in Sd(s.PR)revn = s.PR2n+1 (and 0 ≤ k ≤ n− 1) this is defined by

H(w) = (a1=n−(n−1) | a2 | · · · | an−k| · · · |an−0)

where

an−k = Ak+1,2n−k · · · // Ak,2n−k+1

Ak,2n−k

p

ggggNNNNNNNNNNN 88 i

88qqqqqqqqqq

.

For the elements w1, w2 ∈ Sd(s.PR)rev2 , we calculate H2(w1) = (a1|a2) where

a1 = a2−1 = 0 · · · // P

0

aaaaDDDDDDDD >>

>>~~~~~~~
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and

a2 = a2−0 = P · · · // P

P

=

bbbbEEEEEEEE >> α−1

>>}}}}}}}}

.

Using notation from [11], page 453, it follows that H2(w1) = ιP |(α−1)!. Similarly,

H2(w2) = (b1|b2) = ( 0 · · · // P

P

bbbbEEEEEEEE >>
=

>>}}}}}}}}

| P · · · // P

P

=

bbbbEEEEEEEE >> α−1

>>}}}}}}}}

) = (qP |(α−1)!).

Now we calculate the image of the induced map as

GH∗([t̃(w2)(t̃(w1))−1]) = [GH1(t̃(w2))(GH1(t̃(w1)))−1]

= [t(H2(w2))(t(H2(w1)))−1] = [t(qP |α−1)(t(ιP |α−1))−1].

Using the notation of [11] again, we conclude

GH∗([t̃(w2)(t̃(w1))−1]) = [x(α−1)].

9 Computing ξ : (P, α) 7→ [x(α)] Correctly

Duflot shows ([11], Lemma 9.0.8) that [x(α)][x(β)] = [x(α ◦ β)] in general for appropriate automorphisms α

and β, so in particular [x(α−1)] = [x(α)]−1. In [11], the isomorphism ξ is computed incorrectly but stated

correctly, as we now confirm.

We have shown a composition of isomorphisms

ξ′ := GH∗ ◦ (GI∗)
−1 ◦ ζ1∗ ◦ θ−1

1∗ ◦ T∗ ◦ L,

which is an isomorphism given by (P, α) 7→ [x(α)]−1 where [x(α)] is exactly the element described by Duflot in

[11]. This does not change the conclusion that the map ξ is an isomorphism: composing with the “inversion”

isomorphism N on the abelian group π1(G(N(QPR))) (recall Proposition 2.1.5 in Chapter 1) gives ξ := N◦ξ′,

defined by (P, α) 7→ [x(α)], which confirms the result that the explicit map ξ : K1(R) → π1(G(N(QPR)))

defined in [11] is an isomorphism.
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10 Computing ξ̂

We now look to the alternative diagram

π1(G(s.PRrev)rev)
θ−1
1∗ // π1(G(s.PRrev))

G(s.∗)1∗ // π1(G(s.PR))

“preimage”

���
�
�
�
�
�

π1(G.PR)

T∗

OO

π1(G(Sd(s.PR)rev))

GH∗

��

GI∗

OO

K1(R)
ξ̂ //__________________________________

L

OO

π1(G(N(QPR)))

.

We see that the computation of ξ̂ differs from that for ξ′ only just after the calculation of the image of

θ−1
1∗ ◦ T∗ ◦L and before seeking a preimage of GI1∗, so we pick up the calculation at that point. The dual of

the element

θ−1
1∗ (T (L(P, α))) = θ−1

1∗ ([t̃(D2)]) = θ−1
1∗ ([((t̃(D2))−1)−1]) = θ−1

1∗ ([θ1((t̃(D2))−1)])

= θ−1
1∗ (θ1∗([(t̃(D2))−1]) = θ−1

1∗ (θ1∗([t̃(D2)]−1) = [t̃(D2)]−1 ∈ G(s.PRrev)1

is given by

G(s.∗)1∗([t̃(D2)]−1) = [G(s.∗)(t̃(D2))]−1 = [t(s. ∗ (D2))]−1

= [t


0

P ∗ // α
∗

// P ∗

OOOO
]−1 ∈ G(s.PR)1
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Following this element back through GI1∗, we again adjust the elements w1(P, α), w2(P, α) proposed by

Duflot, but this time we define

w1 := w1(P ∗, α∗) =



0

P ∗ // α
∗

// P ∗

OOOO

0 // // P ∗

=

OOOO

// α
∗

// P ∗

=

OOOO

0 // // 0

=

OOOO

// // P ∗

=

OOOO

// α
∗

// P ∗

=

OOOO

0 // // 0

=

OOOO

// // 0

=

OOOO

// // P ∗

=

OOOO

// α
∗

// P ∗

=

OOOO


and

w2 := w2(P ∗, α∗) =



0

0 // // 0

OOOO

0 // // 0

=

OOOO

// // 0

=

OOOO

P ∗ // = // P ∗

OOOO

// = // P ∗

OOOO

// α
∗

// P ∗

OOOO

0 // // P ∗

=

OOOO

// = // P ∗

=

OOOO

// = // P ∗

=

OOOO

// α
∗

// P ∗

=

OOOO



.

Now similar to before we calculate

I2(w1) = d0d0d0(w1) =


0

P ∗ // α
∗

// P ∗

OOOO
 = s. ∗ (D2) ∈ s.PR2

so that GI(t̃(w1)) = t(s. ∗ (D2)), in which case GI∗([t̃(w1)]−1) = [t(s. ∗ (D2)]−1. Similarly

I2(w2) = d0d0d0(w2) =


0

0 // // 0

OOOO
 = 02 ∈ s.PR2

so that t(I2(w2)) = e1 and therefore GI∗([t̃(w2)]) = [e1] = 1. Now we have the result:
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GI∗([t̃(w2)(t̃(w1))−1]) = GI∗([t̃(w2)])(GI∗([t̃(w1)]))−1 = [e1]([t(s. ∗ (D2))])−1 = [t(s. ∗ (D2))]−1.

Notice that the map ζ1∗ : π1(G(s.PRrev))→ π1(G(s.PR)) relies on a choice of section for the surjective

map that is part of the 1-simplex used in the construction. Although Duflot showed that the construction of

ζ1∗ is independent of the choice of section, this is not sufficient to extend the idea to higher dimensions, and

will not work for mapping π2(G(s.PRrev)) to π2(G(s.PR)), should that be necessary. On the other hand,

Theorem 1.2.6 of Chapter 3 gives us a weak homotopy equivalence with the same domain and range and

which is by definition applicable in all dimensions. Therefore we map

G(s.∗)1∗(θ
−1
1∗ (T∗(L(P, α)))) = G(s.∗)1∗(θ

−1
1∗ (T∗(D1, D2))) = G(s.∗)1∗(θ

−1
1∗ ([t̃(D2)])

= G(s.∗)1∗([t̃(D2)]−1) = [t(s. ∗ (D2))]−1 = [t


0

P ∗ // α
∗

// P ∗

OOOO
]−1,

so that we have the alternative isomorphism

Q′ := G(s.∗)1∗ ◦ θ−1
1∗ ◦ T∗ ◦ L : K1(R)→ π1(G(s.PR)).

We will, in fact, use Q′ along with the long exact sequence of a Kan fibration and the exact sequence of

Milnor from Chapter 2 to construct an isomorphism for K2(R).

Now for these elements w1, w2 ∈ Sd(s.PR)rev2 , we calculate H2(w1) = (a1|a2) where

a1 = a2−1 = 0 · · · // P ∗

0

aaaaDDDDDDDD >>

>>||||||||

and

a2 = a2−0 = P ∗ · · · // P ∗

P ∗

=

ccccHHHHHHHHH << α∗

<<zzzzzzzz

.
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We see quickly that H2(w1) = ιP∗ |(α∗)!. Similarly,

H2(w2) = (b1|b2) = ( 0 · · · // P ∗

P ∗

bbbbFFFFFFFF <<
=

<<zzzzzzzz

| P ∗ · · · // P ∗

P ∗

=

ccccHHHHHHHHH << α∗

<<zzzzzzzz

) = (qP∗ |(α∗)!).

Now we calculate the image of the induced map as

GH∗([t̃(w2)(t̃(w1))−1]) = [GH1(t̃(w2))(GH1(t̃(w1)))−1]

= [t(H2(w2))(t(H2(w1)))−1] = [t(qP∗ |α∗)(t(ιP∗ |α∗))−1].

Using the notation of [11] again, we conclude

GH∗([t̃(w2)(t̃(w1))−1]) = [x(α∗)].

It remains to compare [x(α−1)] with [x(α∗)] in π1(G(N(QPR))) to see if duality changes the image of the

isomorphism in a straightforward way. It makes sense from Theorem 1.2.6 of Chapter 2 that these elements

should in fact be equal up to a sign at worst, but showing this explicitly remains a topic of continuing

research, and the issue does emerge again in the context of the commutative diagram introduced in Chapter

6.
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Chapter 5

Working in G(s.PR)

1 Introduction

This Chapter constitutes the main work of this dissertation. The main result is the construction of an

explicit isomorphism f : St(R) → π1(Y (R)), where Y (R) is a Kan Complex associated with the simplicial

group G(s.PR). We begin by exploring analogs to Nenashev’s work in [13], which gave a similar calculation

for G.PR.

2 Homotopy in G(s.PR)

2.1 iP

We first turn our attention to the nerve construction on the group Aut(P ) for P ∈ PR. Thus we use the

common notation

α = (α1|α2| · · · |αn) ∈ N(Aut(P ))n

or simply α = (α) for 1-simplices (and from now on we identify the single 0-simplex of N(Aut(P )) by P –

recall Examples 5.1.1 and 5.1.2 of Chapter 1). Additionally we define

1P = (1P |1P | · · · |1P ) ∈ N(Aut(P ))n

if n > 0, and 1P = P in dimension 0.
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Using this, we identify α with the element



P

0 // // P

αn

OOOO

...

OOOO

...

OOOO

0 // // · · · // // 0 // //

OOOO

P

α2

OOOO

0 // // 0 // //

OOOO

· · · // // 0 // //

OOOO

P

α1

OOOO



∈ s.PRn+1

and we will consider the particular generators t(α) and t(1P ) of G(s.PR)n. The following can be verified by

direct computation in G(s.PR).

Lemma 2.1.1 Given any P ∈ PR there is a simplicial map iP : N(Aut(P )) → G(s.PR), given on n-

simplices α = (α1|α2| · · · |αn) by

iP (α) = t(α)t(1P )−1.

Definition 2.1.2 (See [11]) A short exact sequence of pairs

(P ′, α′)
f→ (P, α)

g→ (P ′′, α′′)

is a diagram

0 // P ′ // f // P
g // // P ′′ // 0

0 // P ′ // f //
��

α′

P
g // //

��
α

P ′′ //
��

α′′

0

in which all squares commute, α, α′ and α′′ are automorphisms and for which P ′
f
↪→ P

g
� P ′′ is a short exact

sequence in PR.

Given a short exact sequence

l : P ′
f
� P

g
� P ′′

in PR, m > 0, α = (α1|α2| · · · |αm) ∈ N(Aut(P ))m and α′ = (α′1|α′2| · · · |α′m) ∈ N(Aut(P ′))m for which

(P ′, α′i)
f→ (P, αi)

g→ (P ′′, 1P ′′)
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is a short exact sequence of pairs for each 1 ≤ i ≤ m, consider the element

(α′,α; l) ∈ s.PRm+2

defined by

(α′,α; l) =



P ′′

P ′ // f // P

g

OOOO

0 // // P ′ // f //

α′m

OOOO

P

αm

OOOO

...

OOOO

...

α′m−1

OOOO

...

αm−1

OOOO

0 // // · · · // // 0 // //

OOOO

P ′ // f //

α′2

OOOO

P

α2

OOOO

0 // // 0 // //

OOOO

· · · // // 0 // //

OOOO

P ′ // f //

α′1

OOOO

P

α1

OOOO



.

In case m = 0, this is the element (P ′, P ; l) ∈ s.PR2 representing the short exact sequence itself:

(P ′, P ; l) =


P ′′

P ′ // f // P

g

OOOO
 ,

and we also define

(−,−; l) := P ′′ ∈ s.PR1.

Lemma 2.1.3 Given a short exact sequence

l : P ′
f
↪→ P

g
� P ′′

in PR, m > 0, α = (α1|α2| · · · |αm) ∈ N(Aut(P ))m and α′ = (α′1|α′2| · · · |α′m) ∈ N(Aut(P ′))m, if

(P ′, α′i)
f→ (P, αi)

g→ (P ′′, 1P ′′)
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is a short exact sequence of pairs for each 1 ≤ i ≤ m, then t(α′,α; l) ∈ G(s.PR)m+1 has

dm+1t(α
′,α; l) = t(α′)−1t(α) ∈ G(s.PR)m

and

dit(α
′,α; l) = t(diα

′, diα; l) ∈ G(s.PR)m

∀ 0 ≤ i ≤ m.

Proof: We see by definition that d0t(P
′, P ; l) = t(P ′′) and d1t(P

′, P ; l) = t(P ′)−1t(P ) for case m = 1, and

by calculation in s.PR that di(α
′,α; l) = (diα

′, diα; l) ∀ 0 ≤ i ≤ m, in which case

dit(α
′,α; l) = t(diα

′, diα; l)

for each 0 ≤ i ≤ m by definition. For i = m+ 1 we see

dm+1(α′,α; l) = α and dm+2(α′;α; l) = α′, so that by definition in G(s.PR) (i.e. Definition 4.1.2 of

Chapter 1),

dm+1t(α
′,α; l) = t(dm+2(α′,α; l))−1t(dm+1(α′,α; l)) = t(α′)−1t(α)

Note also that dm+1t(1P ′ ,1P ; l) = t(1P ′)
−1t(1P ) 6= 1 ∈ G(s.PR)m.

�

Theorem 2.1.4 Given m > 0, P, P ′ ∈ PR,α ∈ N(Aut(P ))m,α
′ ∈ N(Aut(P ′))m, if

l = P ′
f
↪→ P

g
� P ′′

is a short exact sequence for which (P ′, α′i)
f→ (P, αi)

g→ (P ′′, 1P ′′) is an exact sequence of pairs for each

1 ≤ i ≤ m, then ∃ wm(α′,α; l) ∈ G(s.PR)m+1 for which

a) diwm(α′,α; l) = wm−1(diα
′, diα; l) ∀ 0 ≤ i ≤ m.

b) dm+1wm(α′,α; l) = iP ′(α
′)−1iP (α).

Proof: First we define w0(P ′, P ; l) := 1 ∈ G(s.PR)1. In case m = 1 we have α ∈ Aut(P ), α′ ∈ Aut(P ′)

and short exact sequence of pairs (P ′, α′)
f→ (P, α)

g→ (P ′′, 1P ′′) with corresponding short exact sequence l.
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From Lemma 2.1.3 we have

u1 = t(α′, α; l) = t



P ′′

P ′ // f // P

g

OOOO

0 // // P ′ // f //

α′

OOOO

P

α

OOOO


, v1 = t(1P ′ , 1P ; l) = t



P ′′

P ′ // f // P

g

OOOO

0 // // P ′ // f //

=

OOOO

P

=

OOOO


∈ G(s.PR)2

with

d2u1 = t(α′)−1t(α)

and

d2v1 = t(1P ′)
−1t(1P ).

On the other hand

d0u1 = d0v1 = t


P ′′

P ′ // f // P

g

OOOO


and

d1u1 = d1v1 = t


P ′′

P ′ // f // P

g

OOOO
 .

With φ = t(P ′) ∈ G(s.PR)0 set z1 = s1s0φ. Now let w1(α′, α; l) = z1u1v
−1
1 z−1

1 ∈ G(s.PR)2. Then we

calculate

d0w1(α′, α; l) = (d0z1)(d0u1)(d0v1)−1(d0z1)−1 = 1 = w0(P ′, P ; l) = w0(d0α
′, d0α; l)

and similarly

d1w1(α′, α; l) = 1 = w0(P ′, P ; l) = w0(d1α
′, d1α; l).

Finally

d2w1(α′, α; l) = (d2z1)(d2u1)(d2v1)−1(d2z1)−1 = (s0φ)(t(α′)−1t(α))(t(1P ′)
−1t(1P ))−1(s0φ)−1.

But s0φ = t(1P ′) by definition, so

d2w1(α′, α; l) = t(1P ′)t(α
′)−1t(α)t(1P )−1t(1P ′)t(1P ′)

−1
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= (t(α′)t(1P ′)
−1)−1(t(α)t(1P )−1) = iP ′(α

′)−1iP (α).

Note that in the special case m = 1 we have w1(α′, α; l) ∈ G(s.PR)2, which gives us more information

than we have for case m ≥ 2.

For m ≥ 2, (α′, α; l) ∈ s.PRm+2 define m+ 1-simplices

um = t(α′,α; l), vm = t(1P ′ ,1P ; l), zm = smsm−1 · · · s1s0t(P
′)

in G(s.PR) and set wm = zmumv
−1
m z−1

m . Then we find dizm = zm−1 ∀ 0 ≤ i ≤ m+ 1, and by Lemma 2.1.3

we know dium = t(diα
′, diα; l) and divm = t(1P ′ ,1P ) ∀ 0 ≤ i ≤ m. Thus

diwm(α′,α; l) = (dizm)(dium)(divm)−1(dizm)−1

= zm−1t(diα
′, diα; l)t(1P ′ ,1P )−1z−1

m−1 = wm−1(diα
′, diα; l)

whenever 0 ≤ i ≤ m. For i = m+1 we notice again that zm−1 = t(1P ′) so that with dm+1vm = t(1P ′)
−1t(1P )

and dm+1um = t(α′)−1t(α) from Lemma 2.1.3, we have

dm+1wm(α′,α; l) = t(1P ′)t(α
′)−1t(α)(t(1P ′)

−1t(1P ))−1t(1P ′)
−1

= (t(α′)t(1P ′)
−1)−1(t(α)t(1P )−1) = iP ′(α

′)−1iP (α).

�

Remark 2.1.5 In case P ′ = 0 we notice in the proof above that φ = t(0) = t(s0(0)) = 1, so that z1 = 1.

Also u1 = v1. Therefore P ′ = 0 implies that w1(α′, α; l) = 1 ∈ G(s.PR)2.

We have a few corollaries. The first is a partial analog (i.e. in case m = 1) to Lemma 2.3 of [13]. Recall

Definition 2.2.1 and Lemma 2.2.2 from Chapter 1: B1 := im(d̄2) / G1 for any simplicial group G, with

d̄2 = d2|Ḡ.

Corollary 2.1.6 Given P, P ′ ∈ PR,α ∈ Aut(P ), α′ ∈ Aut(P ′), if l = P ′
f
↪→ P

g
� P ′′ is a short exact

sequence for which (P ′, α′)
f→ (P, α)

g→ (P ′′, 1P ′′) is an exact sequence of pairs, then iP ′(α
′) and iP (α)

represent the same element of the group G(s.PR)1/B1.

Proof: As in the proof of Theorem 2.1.4, case m = 1 we construct

w1(α′, α; l) ∈ G(s.PR)2
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with d2w1(α′, α; l) = (iP ′(α
′))−1iP (α).

Therefore (iP ′(α
′))−1iP (α) ∈ B1 so that by Lemma 2.2.2 in Chapter 1 it follows that [iP ′(α

′)] = [iP (α)]

inside G(s.PR)1/B1.

�

Corollary 2.1.7 Let P ′ ∈ PR,α′ ∈ Aut(P ′) and P = P ′ ⊕ Q with Q ∈ PR and consider the short exact

sequence of pairs

0 // P ′ // i // P
π // // Q // 0

0 // P ′ // i //
��

α′

P
π // //

��
α′⊕1

Q
��
=

// 0

.

Then there is a w(α′, α′ ⊕ 1) ∈ G(s.PR)2 with d2w(α′, α′ ⊕ 1Q) = iP ′(α
′)−1iP (α′ ⊕ 1Q).

Proof: This follows immediately from Corollary 2.1.6 by applying it to the case α = α′ ⊕ 1Q.

�

Consequently, [iP ′(α
′)] = [iP ′⊕Q(α′ ⊕ 1Q)] inside G(s.PR)1/B1. Therefore homotopy classes of images of

the i′s in the sense of Theorem 2.2.3 of Chapter 1 are stable under direct sums:

Corollary 2.1.8 Given any P ′ ∈ PR,α′ ∈ Aut(P ′), P = P ′ ⊕ Rn, n ∈ N, there is a ξn ∈ G(s.PR)2 with

d2ξn = iP ′(α
′)−1iP (α′ ⊕ 1n) (using 1n = idRn).

Proof: This follows from Theorem 2.1.4 and Corollary 2.1.7 by setting

ξn = w(α′, α′ ⊕ 1R)w(α′ ⊕ 1R, α
′ ⊕ 1R ⊕ 1R) · · ·w(α′ ⊕ 1n−1, α

′ ⊕ 1n−1 ⊕ 1R) ∈ G(s.PR)2

since R ∈ PR and

1n = 1R ⊕ 1R ⊕ · · · ⊕ 1R = 1n−1 ⊕ 1R.

That is, we calculate

d2ξn = (iP ′(α
′))−1iP ′⊕R(α′ ⊕ 1R)(iP ′⊕R(α′ ⊕ 1R))−1iP ′⊕R2(α′ ⊕ 12)

· · · iP ′⊕Rn−1(α′ ⊕ 1n−1)(iP ′⊕Rn−1(α′ ⊕ 1n−1))−1iP ′⊕Rn(α′ ⊕ 1n)

= (iP ′(α
′))−1iP ′⊕Rn(α′ ⊕ 1n).

�
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2.2 Filtrations: The elements Xm(F (P, α))

Definition 2.2.1 Let P ∈ PR,α ∈ Aut(P ). An admissible filtration F = F (P, α) of the pair (P, α) with

length n is a sequence

F : P0 = 0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pn = P

of projective submodules Pi, with admissible inclusions (i.e. Pi/Pi−1 ∈ PR ∀ 2 ≤ i ≤ n), such that:

1) α(i) := α|Pi ∈ Aut(Pi) ∀ 1 ≤ i ≤ n, α(1) = 1P1 and α(n) = α.

2) For each 2 ≤ i ≤ n, the homomorphism induced by α(i) on Pi/Pi−1 is the identity.

We can show an analog to Lemma 2.2 of [13]:

Theorem 2.2.2 Given P ∈ PR,α ∈ Aut(P ) and admissible filtration F (P, α), ∃ X1(F (P, α)) ∈ G(s.PR)2

with

d2X1(F (P, α)) = iP (α)

Proof: By Definition 2.2.1, for each 2 ≤ i ≤ n we have a short exact sequence of pairs (Pi−1, α
(i−1)) →

(Pi, α
(i)) → (Pi/Pi−1, 1Pi/Pi−1

) corresponding to the short exact sequence li : Pi−1 ↪→ Pi � Pi/Pi−1

with the canonical inclusion and projection. Therefore by Theorem 2.1.4 for each 2 ≤ i ≤ n there is a

wi = w1(α(i−1), α(i); li) ∈ G(s.PR)2 with d2wi = (iPi−1(α(i−1)))−1iPi(α
(i)).

Define X1(F (P, α)) = w2w3 · · ·wn ∈ G(s.PR)2. Then

d2X1(F (P, α)) = (iP1
(α(1)))−1iP2

(α(2))(iP2
(α(2)))−1 · · ·

· · · (iPn−2
(α(n−2)))−1iPn−1

(α(n−1))(iPn−1
(α(n−1)))−1iPn(α(n))

= (iP1
(α(1)))−1iPn(α(n)).

Notice in particular that since α(1) = 1P1
by definition we must have

iP1(α1) = t(1P1)t(1P1)−1 = 1 ∈ G(s.PR)1,

as well as Pn = P and α(n) = α. Therefore

d2X1(F (P, α)) = iP (α).

�
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Definition 2.2.3 Given P ∈ PR, α = (α1|α2| · · · |αm) ∈ N(Aut(P ))m, let F be a sequence

F : P0 = 0 ⊆ P1 ⊆ P2 · · · ⊆ Pn−1 ⊆ Pn = P

of projective submodules and admissible inclusions such that F is an admissible filtration of the pair (P, αi)

for each 1 ≤ i ≤ m. Then we say F = F (P,α) is an admissible filtration of the pair (P,α) =

(P ;α1|α2| · · · |αm).

And now we have an analog for Lemma 2.4 of [13] as well:

Lemma 2.2.4 Suppose α ∈ N(Aut(P ))m and F = F (P,α) is an admissible filtration of (P,α). Then there

is an Xm(F (P,α)) ∈ G(s.PR)m+1 for which:

a) dkXm(F (P,α)) = Xm−1(F (P, dkα)) for each 0 ≤ k ≤ m.

b) dm+1Xm(F (P,α)) = iP (α)

Proof: For m = 0, define X0(F (P, P )) = 1 ∈ G(s.PR)1. In case m = 1 the result follows from Theo-

rem 2.2.2; indeed, we have the stronger statement that X1(F (P, α)) ∈ G(s.PR)2. The general assumption is

that for each α = (α1| · · · |αm) ∈ N(Aut(P ))m the sequence F admits a diagram

P0 = 0 // P1
// //

α
(1)
1

��

P2
// //

α
(2)
1

��

· · · // // Pn−1
// //

α
(n−1)
1

��

P = Pn

α1

��
0 // P1

// //

α
(1)
2

��

P2
// //

α
(2)
2

��

· · · // // Pn−1
// //

α
(n−1)
2

��

P

α2

��
...

α
(1)
m−1

��

...

α
(2)
m−1

��

...

α
(n−1)
m−1

��

...

αm−1

��
0 // P1

// //

α(1)
m

��

P2
// //

α(2)
m

��

· · · // // Pn−1
// //

α(n−1)
m

��

P

αm

��
0 // P1

// // P2
// // · · · // // Pn−1

// // P

in which all squares commute and the jth horizontal sequence for 1 ≤ j ≤ m represents an admissible

filtration F (P, αj). Notice that such F will also be an admissible filtration of the pair (P, αj+1 ◦ αj). So for

each 2 ≤ i ≤ n and each 1 ≤ j ≤ m we have a short exact sequence of pairs

(Pi−1, α
(i−1)
j )→ (Pi, α

(i)
j )→ (Pi/Pi−1, 1Pi/Pi−1

)
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with corresponding short exact sequence li (note the same li corresponds to each j). Now for each 1 ≤ i ≤ n

we have α(i) := (α
(i)
1 |α

(i)
2 | · · · |α

(i)
m ) ∈ N(Aut(Pi))m (i.e. consecutive vertical columns give pairs α(i−1),α(i)

of m-simplices that satisfy the hypothesis for Theorem 2.1.4), with α(n) = α. It follows that for each

2 ≤ i ≤ n ∃ wi = wm(α(i−1),α(i); li) ∈ G(s.PR)m+1 for which

dkwi = wm−1(dkα
(i−1), dkα

(i); li)

for every 0 ≤ k ≤ m and

dm+1wi = iPi−1
(α(i−1))−1iPi(α

(i)).

Now define Xm(F (P,α)) = w2w3 · · ·wn ∈ G(s.PR)m+1 and calculate:

dkXm(F (P,α)) = wm−1(dkα
(1), dkα

(2); l2)wm−1(dkα
(2), dkα

(3); l3) · · ·wm−1(dkα
(n−1), dkα

(n); ln)

= Xm−1(F (P, dkα))

for 0 ≤ k ≤ m, and

dm+1Xm(F (P,α)) = (iP1
(α(1)))−1iP2

(α(2))(iP2
(α(2)))−1 · · · iPn−1

(α(n−1))(iPn−1
(α(n−1)))−1iPn(α(n))

= (iP1(α(1)))−1iPn(α(n)).

But by assumption F is an admissible filtration of (P, αj) for each 1 ≤ j ≤ m, so α
(1)
j = 1P1 for each

1 ≤ j ≤ m by Definition 2.2.1, in which case α(1) = 1P1
. Also by definition α(n) = α with Pn = P.

Therefore dm+1Xm(F (P,α)) = (iP1
(1P1

))−1iP (α). But by definition (i.e. Lemma 2.1.1) we know

iP1
(1P1

) = t(1P1
)(t(1P1

))−1 = 1 ∈ G(s.PR)m.

It follows that

dm+1Xm(F (P,α)) = (1)iP (α) = iP (α).

�
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2.3 Refinements of Admissible Filtrations

Definition 2.3.1 (See [20]) Given a sequence

F : P0 ⊆ P1 ⊆ · · · ⊆ Pn = P

of projective submodules for P ∈ PR, a refinement of F is a sequence F̃ which can be obtained from F

by inserting a finite number of projective submodules into F. If F is an admissible filtration of (P, α), the

restriction of α ∈ Aut(P ) to each inserted submodule is an automorphism of that submodule and the inclu-

sions around and including each inserted submodule are admissible, then we say F̃ (P, α) is an admissible

refinement of the admissible filtration F (P, α).

Lemma 2.3.2 Any admissible refinement of an admissible filtration is an admissible filtration.

Proof: Let

F : P0 = 0 ⊆ P1 ⊆ · · · ⊆ Pn−1 ⊆ Pn = P

be a sequence that is an admissible filtration of (P, α). Given 1 ≤ i ≤ n, we show that the sequence

F̃ : P0 = 0 ⊆ P1 ⊆ · · ·Pi−1 ⊆ P̃ ⊆ Pi ⊆ · · · ⊆ Pn−1 ⊆ Pn = P

obtained by inserting a single, α-invariant submodule P̃ ∈ PR as shown will be an admissible filtration of

(P, α), provided the inclusions Pi−1 ⊆ P̃ , P̃ ⊆ Pi are admissible. The result will then follow by induction.

Denote α̃ = α|P̃ . We know by definition of admissible filtration F that α(i) induces the identity map on

Pi/Pi−1, so that with respect to cosets we have

α(i)(p) + Pi−1 = p+ Pi−1 ∈ Pi/Pi−1

for every p ∈ Pi. Since P̃ ⊆ Pi and α|P̃ = α(i)|P̃ it follows that α̃ induces the identity map on P̃ /Pi−1, so

that

(Pi−1, α
(i−1))→ (P̃ , α̃)→ (P̃ /Pi−1, 1P̃ /Pi−1

)

is a short exact sequence of pairs. But also we have that

α(i)(p)− p ∈ Pi−1
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for each p ∈ Pi, and Pi−1 ⊆ P̃ . Therefore

α(i)(p)− p ∈ P̃ ∀ p ∈ Pi

hence α(i) induces the identity map on Pi/P̃ and

(P̃ , α̃)→ (Pi, α
(i))→ (Pi/P̃ , 1Pi/P̃ )

is a short exact sequence of pairs. Since these are precisely the short exact sequences that are inserted along

with P̃ and its inclusions and everything else about the filtration remains unchanged from F (P, α), it follows

that the new sequence F̃ is an admissible filtration of (P, α).

�

We first consider α ∈ Aut(P ) with admissible filtration F (P, α) : P1 ⊆ P2 ⊆ · · · ⊆ Pn = P, and a

refinement of F by one additional, α-invariant submodule P̃ ∈ PR (and α̃ := α|P̃ ):

F̃ : P1 ⊆ P2 ⊆ · · ·Pi−1 ⊆ P̃ ⊆ Pi ⊆ · · · ⊆ Pn = P,

such that P̃ /Pi−1, Pi/P̃ ∈ PR.

We know F (P, α) gives exact sequences of pairs lj : (Pj , α
(j−1))→ (Pj , α

(j))→ (Pj/Pj−1, 1Pj/Pj−1
), 2 ≤

j ≤ n as in the proof of Theorem 2.2.2. From the proof of Lemma 2.3.2 we have exact sequences of pairs

{l̃j} for F̃ as well, and we see that

l̃j = lj ∀ 2 ≤ j ≤ i− 1,

l̃i : (Pi−1, α
(i−1))→ (P̃ , α̃)→ (P̃ /Pi−1, 1P̃ /Pi−1

),

l̃i+1 : (P̃ , α̃)→ (Pi, α
(i))→ (Pi/P̃ , 1Pi/P̃ ),

and

l̃j = lj−1 ∀ i+ 2 ≤ j ≤ n+ 1.

From Lemma 2.2.4 we now have elements

X1(F (P, α)) = w1(α(1), α(2); l2)w1(α(2), α(3); l3) · · ·w1(α(i−2), α(i−1); li−1)w1(α(i−1), α(i), li)

· · ·w1(α(n−1), α; ln)
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and

X1(F̃ (P, α)) = w1(α(1), α(2); l2)w1(α(2), α(3); l3) · · ·w1(α(i−2), α̃; l̃i−1)w1(α̃, α(i); l̃i)w1(α(i), α(i+1), li+1)

· · ·w1(α(n−1), α; ln)

in G(s.PR)2.

The main results of this section require us to compare X1(F (P, α)) with X1(F̃ (P, α)). Let

A = w1(α(1), α(2); l2)w1(α(2), α(3); l3) · · ·w1(α(i−2), α(i−1); li−1),

B = w1(α(i), α(i+1), li+1) · · ·w1(α(n−1), α; ln),

C = w1(α(i−1), α(i) : li),

C1 = w1(α(i−1), α̃; l̃i)

and

C2 = w1(α̃, α(i); l̃i+1).

Then X1(F (P, α)) = ACB and X1(F̃ (P, α)) = AC1C2B. Thus we see that in order to compare X1(F (P, α))

to X1(F̃ (P, α)), we must first compare C to C1C2. Theorem 2.1.4 shows how to do this:

Lemma 2.3.3 If

P ′ // //

α′

��

P̃ // //

α̃

��

P

α

��
P ′ // // P̃ // // P

is a commutative diagram of projective modules and automorphisms such that the horizontal rows are ad-

missible inclusions, with exact sequences of pairs

l : (P ′, α′)→ (P, α)→ (P/P ′, 1P/P ′),

l̃1 : (P ′, α′)→ (P̃ , α̃)→ (P̃ /P ′, 1P̃ /P ′)

and

l̃2 : (P̃ , α̃)→ (P, α)→ (P/P̃ , 1P/P̃ )

and corresponding elements C = w1(α′, α; l), C1 = w1(α′, α̃; l̃1), and C2 = w1(α̃, α; l̃2) in G(s.PR)2, then
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[C] = [C1C2] in G(s.PR)2/B2.

Proof: Define

(α′, α̃, α) =



P/P̃

P̃ /P ′ // // P/P ′

OOOO

P ′ // // P̃ // //

OOOO

P

OOOO

0 // // P ′ // //

α′

OOOO

P̃ // //

α̃

OOOO

P

α

OOOO



∈ s.PR4.

Then

t(α′, α̃, α) ∈ G(s.PR)3

and similarly t(1P ′ , 1P̃ , 1P ) ∈ G(s.PR)3). Calculations show that

d0t(α
′, α̃, α) = d1t(α

′, α̃, α) = t



P/P̃

P̃ /P ′ // // P/P ′

OOOO

P ′ // // P̃ // //

OOOO

P

OOOO


,

d2t(α
′, α̃, α) = t(α̃, α; l̃2),

and

d3t(α
′, α̃, α) = (t(α′, α̃; l̃1))−1t(α′, α; l).

Likewise

d0t(1P ′ , 1P̃ , 1P ) = d1t(1P ′ , 1P̃ , 1P ) = t



P/P̃

P̃ /P ′ // // P/P ′

OOOO

P ′ // // P̃ // //

OOOO

P

OOOO


,

d2t(1P ′ , 1P̃ , 1P ) = t(1P̃ , 1P ; l̃2),

94



and

d3t(1P ′ , 1P̃ , 1P ) = (t(1P ′ , 1P̃ ; l̃1))−1t(1P ′ , 1P ; l).

Let

x = (s0t(1P ′ , 1P̃ ; l̃1))−1s2t(1P ′ , 1P̃ ; l̃1)t(α′, α̃, α)(t(1P ′ , 1P̃ , 1P ))−1(s2t(1P ′ , 1P̃ ; l̃1))−1s1t(1P ′ , 1P̃ ; l̃1).

Then we calculate

d0x = (t(1P ′ , 1P̃ ; l̃1))−1(d0s2t(1P ′ , 1P̃ ; l̃1))d0t(α
′, α̃, α)(d0t(1P ′ , 1P̃ , 1P ))−1(d0s2t(1P ′ , 1P̃ ; l̃1))−1t(1P ′ , 1P̃ ; l̃1)

= 1 ∈ G(s.PR)2

and

d1x = (t(1P ′ , 1P̃ ; l̃1))−1(d1s2t(1P ′ , 1P̃ ; l̃1))d1t(α
′, α̃, α)(d1t(1P ′ , 1P̃ , 1P ))−1(d1s2t(1P ′ , 1P̃ ; l̃1))−1t(1P ′ , 1P̃ ; l̃1) = 1.

Consider t(1P ′ , 1P̃ ; l̃1) ∈ G(s.PR)2 : from earlier calculations we have

d0s0t(1P ′ , 1P̃ ; l̃1) = d1s0t(1P ′ , 1P̃ ; l̃1) = d2s0t(1P ′ , 1P̃ ; l̃1) = t(1P ′ , 1P̃ ; l̃1),

and

d3s0t(1P ′ , 1P̃ ; l̃1) = (z′1)−1z̃1

where

z′1, z̃1 ∈ G(s.PR)2

are those elements used to express w1(α′, α̃; l̃1) = z′1u1v1(z′1)−1 and w1(α̃, α; l̃2) = z̃1ũ1ṽ1(z̃1)−1 as developed

in the proof of Theorem 2.1.4. Notice that

w1(α′, α; l) = z′1t(α
′, α; l)(t(1P ′ , 1P ; l))−1(z′1)−1

for this same z′1. We use these to calculate

d2x = t(α̃, α; l̃2)(t(1P̃ , 1P ; l̃2))−1
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and

d3x = ((z′1)−1z̃1)−1t(1P ′ , 1P̃ ; l̃1)t(α′, α̃; l̃1)−1t(α′, α; l)(t(1P ′ , 1P̃ ; l̃1)−1t(1P ′ , 1P ; l))−1(z′1)−1z̃1

= z̃−1
1 (z′1t(α

′, α̃; l̃1)t(1P ′ , 1P̃ ; l̃1)−1(z′1)−1)−1(z′1t(α
′, α; l)t(1P ′ , 1P ; l)−1(z′1)−1)z̃1

= z̃−1
1 w1(α′, α̃; l̃1)−1w1(α′, α; l)z̃1.

Now set ũ = x(s2d2x)−1 :

d0ũ = d0x(s1d1d0x)−1 = 1 ∈ G(s.PR)2;

d1ũ = d1x(s1d1d1x)−1 = 1;

d2ũ = d2x(d2x)−1 = 1;

d3ũ = d3x(d2x)−1 = z̃−1
1 w1(α′, α̃; l̃1)−1w1(α′, α; l)z̃1(t(α̃, α; l̃2)(t(1P̃ , 1P ; l̃2))−1)−1.

Therefore ũ ∈ G(s.PR)3 and we have

z̃−1
1 w1(α′, α̃; l̃1)−1w1(α′, α; l)z̃1(t(α̃, α; l̃2)(t(1P̃ , 1P ; l̃2))−1)−1 ∈ B2 / G(s.PR)2.

Moving to equivalence classes in G(s.PR)2/B2 we see

[z̃−1
1 w1(α′, α̃; l̃1)−1w1(α′, α; l)z̃1(t(α̃, α; l̃2)(t(1P̃ , 1P ; l̃2))−1)−1] = 1

so that

[w1(α′, α̃; l̃1)−1w1(α′, α; l)] = [z̃1t(α̃, α; l̃2)(t(1P̃ , 1P ; l̃2))−1z̃−1
1 ] = [w1(α̃, α; l̃2)].

Thus [C−1
1 C] = [C2] in G(s.PR)2/B2. Calculating in the quotient group G(s.PR)2/B2, it follows that

[C1]−1[C] = [C2], so that [C] = [C1][C2] = [C1C2].

�

As a corollary to the above lemma, we have one our main theorems of this section. We use already

established notation and definitions.

Theorem 2.3.4 Suppose that F̃ (P, α) is an admissible refinement of the admissible filtration F (P, α). Then,

given the elements X1(F (P, α)) and X1(F̃ (P, α)) ∈ G(s.PR)2,

[X1(F (P, α))] = [X1(F̃ (P, α))] ∈ G(s.PR)2/B2.
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Proof: By Lemma 2.3.3, if the admissible filtration F̃ (P, α) is obtained by inserting one projective module

into the admissible filtration F (P, α), then in G(s.PF )2/B2,

[X1(F (P, α)] = [ACB],

with A,C,B ∈ G(s.PR)2 as defined immediately before the Lemma 2.3.3.

But, computing in the quotient group G(s.PF )2/B2, and using the lemma,

[ACB] = [A][C][B] = [A][C1C2][B] = [AC1C2B] = [X1(F̃ (P, α))],

where C1, C2 are as defined immediately before the lemma.

By induction on the number of insertions to the original filtration F , we obtain the theorem.

�

2.4 Standard Filtrations

We now specialize to the case P = RN and α ∈ GL(N,R), N ∈ N. We fix the standard basis βN =

{e1, . . . , eN} for RN . If I ⊆ βN , then F (I) denotes the R-submodule of RN spanned by the elements of I.

We define F (∅) = {0}. Note that F (I) is always a free R-module on the set I. Moreover, if I ⊆ J , then the

quotient module F (J)/F (I) is a free R-module on the set J − I.

Definition 2.4.1 Suppose

I : ∅ ⊆ I1 ⊆ I2 ⊆ · · · ⊆ IS = βN

is a chain of subsets of βN . The standard filtration of RN defined by I is the filtration below, denoted by

F (I):

0 ⊆ F (I1) ⊆ F (I2) ⊆ · · · ⊆ F (IS) = RN .

By definition of these free R-modules, the inclusions in standard filtrations are always admissible. We

do not require the inclusions to be strict.

Theorem 2.4.2 Suppose F1 = F (I) and F2 = F (J) are admissible, standard filtrations of (RN , α), corre-

sponding to chains I and J of subsets of βN . Then [X1(F1(RN , α))] = [X1(F2(RN , α))] in G(s.PR)2/B2.

Proof: Assume without loss of generality that I and J as in the hypothesis have the same number, S, of

terms in their chains, where we append the empty set to the beginning of the shorter chain as necessary.

Indeed, as in Remark 2.1.5, the element that results from Lemma 2.2.2 for this appended chain would be
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1 ∈ G(s.PR) multiplied (finitely many times) by the element corresponding to the shorter chain, hence it

would be exactly the same element. Let F̃ be the filtration F̃ = F (H) corresponding to the chain

H : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS ∪ JS

of subsets of βN (i.e. H0 = ∅ and Hi = Ii ∪ Ji ∀ 1 ≤ i ≤ S).

H1 = I1 ∪ J1, and by assumption (Definition 2.2.1) we have α|F (I1) = 1F (I1) and α|F (J1) = 1F (J1). Thus

α|F (I1)+F (J1) = 1F (I1)+F (J1),

and since F (I1) + F (J1) = F (I1 ∪ J1) for these free modules, it follows that α|F (H1) = 1F (H1). Again,

F (Ii) + F (Ji) = F (Ii ∪ Ji) = F (Hi) ∀ 1 ≤ i ≤ S, and by definition we know α|F (Ii) ∈ Aut(F (Ii)) and

α|F (Ji) ∈ Aut(F (Ji)), so α|F (Hi) ∈ Aut(F (Hi)).

By construction

Hi −Hi−1 = (Ii ∪ Ji)− (Ii−1 ∪ Ji−1).

We consider cosets e + F (Hi−1) in F (Hi)/F (Hi−1) for e ∈ Hi − Hi−1. If e ∈ Ii then e /∈ Ii−1, (since

e /∈ Ii−1 ∪ Ji−1) so that by definition of F (I) as an admissible filtration of (RN , α) we have α(e) = e + f

where f ∈ F (Ii−1). But then f ∈ F (Ii−1) + F (Ji−1) = F (Hi−1), hence α(e) + F (Hi−1) = e + F (Hi−1).

Similarly, if e ∈ Ji then e /∈ Ji−1, so by definition of F (J) we know α(e) + F (Ji−1) = e + F (Ji−1), hence

α(e) + F (Hi−1) = e + F (Hi−1). We conclude that α|F (Hi) induces the identity on the quotient module

F (Hi)/F (Hi−1). Therefore F̃ = F (H) is a standard, admissible filtration of (RN , α), constructed from

F1(RN , α) and F2(RN , α).

Now define a sequence of standard, admissible filtrations Fa,b = F (Ha,b) of (RN , α), and similarly F ′a,b =

F (H ′a,b), for each 1 ≤ a ≤ S − 1 and each 1 ≤ b ≤ a, corresponding to chains

Ha,b : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a ∪ JS−a−1 ⊆ · · · ⊆ IS−a+b−1 ∪ JS−a−1

⊆ IS−a+b−1 ∪ JS−a ⊆ IS−a+b ∪ JS−a ⊆ IS−a+b+1 ∪ JS−a ⊆ · · · ⊆ IS−1 ∪ JS−a ⊆ IS ∪ JS(= βN = IS)

for Fa,b, and

H ′a,b : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a ∪ JS−a−1 ⊆ · · · ⊆ IS−a+b−1 ∪ JS−a−1

⊆ IS−a+b ∪ JS−a ⊆ IS−a+b+1 ∪ JS−a ⊆ · · · ⊆ IS−1 ∪ JS−a ⊆ IS
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for F ′a,b.

It is a straightforward exercise to verify that the resulting filtrations are admissible, and since the chain

H ′a,b can be obtained from Ha,b by deleting the term IS−a+b−1 ∪ JS−a, each filtration Fa,b is a refinement of

the corresponding F ′a,b. But we also have

Ha,b+1 : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a ∪ JS−a−1 ⊆ · · · ⊆ IS−a+b−1 ∪ JS−a−1

⊆ IS−a+b ∪ JS−a−1 ⊆ IS−a+b ∪ JS−a ⊆ IS−a+b+1 ∪ JS−a ⊆ · · · ⊆ IS−1 ∪ JS−a ⊆ IS ,

so that H ′a,b can be obtained from Ha,b+1 by deleting the term IS−a+b ∪ JS−a−1. Therefore Fa,b+1 is a

refinement for F ′a,b.

Notice in particular that for each 1 ≤ a ≤ S − 1 we have

Ha,a : ∅ ⊆ I1 ∪ J1 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a ∪ JS−a−1 ⊆ · · · ⊆ IS−1 ∪ JS−a−1 ⊆ IS−1 ∪ JS−a ⊆ IS

with

H ′a,a : ∅ ⊆ I1 ∪ J1 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a ∪ JS−a−1 ⊆ · · · ⊆ IS−1 ∪ JS−a−1 ⊆ IS ,

and

Ha+1,1 : ∅ ⊆ I1 ∪ J1 ⊆ · · · ⊆ IS−(a+1)−1 ∪ JS−(a+1)−1 ⊆ IS−a−1 ∪ JS−a−2 ⊆ IS−a−1 ∪ JS−a−1

⊆ IS−a ∪ JS−a−1 ⊆ IS−a+1 ∪ JS−a−1 ⊆ · · · ⊆ IS−1 ∪ JS−a−1 ⊆ IS .

Thus H ′a,a can be obtained from Ha+1,1 by deleting the term IS−a−1 ∪ JS−a−2, in which case Fa+1,1 is a

refinement of F ′a,a. Furthermore,

H1,1 : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · IS−2 ∪ JS−2 ⊆ IS−1 ∪ JS−2 ⊆ IS−1 ∪ JS−1 ⊆ IS

so that deleting the term IS−1 ∪ JS−2 from H1,1 gives H. Therefore F1,1 is a refinement of F̃ .

Now using J0 := ∅ we calculate

HS−1,b : ∅ ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ib ⊆ Ib ∪ J1 ⊆ Ib+1 ∪ J1 ⊆ · · · ⊆ IS−1 ∪ J1 ⊆ IS ∀ 1 ≤ b ≤ S − 1,
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so that

HS−1,S−1 : ∅ ⊆ I1 ⊆ I2 ⊆ · · · ⊆ IS−1 ⊆ IS−1 ∪ J1 ⊆ IS .

Therefore

H ′S−1,S−1 : ∅ ⊆ I1 ⊆ I2 ⊆ · · · ⊆ IS−1 ⊆ IS ,

in which case F1 = F ′S−1,S−1 as admissible filtrations of (RN , α). Now by Theorem 2.3.4 we have

[X1(F̃ (RN , α))] = [X1(F1,1(RN , α))],

[X1(F ′a,b(R
N , α))] = [X1(Fa,b(R

N , α))] ∀ 1 ≤ a ≤ S − 1, 1 ≤ b ≤ a,

[X1(F ′a,b(R
N , α))] = [X1(Fa,b+1(RN , α))] ∀ 1 ≤ a ≤ S − 1, 1 ≤ b ≤ a,

[X1(F ′a,a(RN , α))] = [X1(Fa+1,1(RN , α))] ∀ 1 ≤ a ≤ S − 1,

and

[X1(F1(RN , α))] = [X1(F ′S−1,S−1(RN , α))].

These equalities imply (by transitivity of the equivalence relation) that [X1(F̃ (RN , α))] = [X1(F1(RN , α))]

in G(s.PR)2/B2.

Going back to the chain H, we make a symmetric argument by defining chains Ka,b with corresponding

filtrations F̄a,b in a different way, switching the roles of I and J :

Ka,b : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a−1 ∪ JS−a ⊆ · · · ⊆ IS−a−1 ∪ JS−a+b−1

⊆ IS−a ∪ JS−a+b−1 ⊆ IS−a ∪ JS−a+b ⊆ IS−a ∪ JS−a+b+1 ⊆ · · · ⊆ IS−a ∪ JS−1 ⊆ IS ∪ JS(= βN = JS),

with corresponding

K ′a,b : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a−1 ∪ JS−a ⊆ · · · ⊆ IS−a−1 ∪ JS−a+b−1

⊆ IS−a ∪ JS−a+b ⊆ IS−a ∪ JS−a+b+1 ⊆ · · · ⊆ IS−a ∪ JS−1 ⊆ JS

(with corresponding filtrations F̄ ′a,b), which can be obtained from Ka,b by deleting the term IS−a ∪

JS−a+b−1. Also,

Ka,b+1 : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a−1 ∪ JS−a ⊆ · · · ⊆ IS−a−1 ∪ JS−a+b−1
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⊆ IS−a−1 ∪ JS−a+b ⊆ IS−a ∪ JS−a+b ⊆ IS−a ∪ JS−a+b+1 ⊆ · · · ⊆ IS−a ∪ JS−1 ⊆ JS ,

so that K ′a,b can be obtained from Ka,b+1 by deleting the term IS−a−1 ∪ JS−a+b. Then

Ka,a : ∅ ⊆ I1 ∪ J1 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a−1 ∪ JS−a ⊆ · · · ⊆ IS−a−1 ∪ JS−1 ⊆ IS−a ∪ JS−1 ⊆ JS

gives

K ′a,a : ∅ ⊆ I1 ∪ J1 ⊆ · · · ⊆ IS−a−1 ∪ JS−a−1 ⊆ IS−a−1 ∪ JS−a ⊆ · · · ⊆ IS−a−1 ∪ JS−1 ⊆ JS ,

and

Ka+1,1 : ∅ ⊆ I1 ∪ J1 ⊆ · · · ⊆ IS−(a+1)−1 ∪ JS−(a+1)−1 ⊆ IS−a−2 ∪ JS−a−1 ⊆ IS−a−1 ∪ JS−a−1

⊆ IS−a−1 ∪ JS−a ⊆ IS−a−1 ∪ JS−a+1 ⊆ · · · ⊆ IS−a−1 ∪ JS−1 ⊆ JS .

Thus K ′a,a can be obtained from Ka+1,1 by deleting the term IS−a−2 ∪ JS−a−1, in which case F̄a+1,1 is a

refinement of F̄ ′a,a. Furthermore,

K1,1 : ∅ ⊆ I1 ∪ J1 ⊆ I2 ∪ J2 ⊆ · · · IS−2 ∪ JS−2 ⊆ IS−2 ∪ JS−1 ⊆ IS−1 ∪ JS−1 ⊆ JS

so that deleting the term IS−2 ∪ JS−1 from K1,1 gives H. Therefore F̄1,1 is a refinement of F̃ .

Finally, we calculate

K ′S−1,S−1 : ∅ ⊆ J1 ⊆ J2 ⊆ · · · ⊆ JS−1 ⊆ JS ,

so that F̄ ′S−1,S−1 = F2. Therefore we conclude that [X1(F̃ (RN , α))] = [X1(F2(RN , α))] in G(s.PR)2/B2 just

as we did with the Ha,b for F1. It follows by transitivity of the equivalence relation that [X1(F1(RN , α))] =

[X1(F2(RN , α))] in G(s.PR)2/B2.

�

3 Homotopy Fibers

3.1 Definitions

We now cite a standard construction used in simplicial homotopy theory that will act as a central figure in

our isomorphism, as it will allow us to represent the Steinberg Relations of K-Theory completely in terms

of simplicial homotopy theory. Work such as that of [15] provides a good review.
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Definition 3.1.1 Given a simplicial group G, define a simplicial group GI by m-simplices

GIm = {(g0, g1, . . . , gm) ∈ Gm+1 ×Gm+1 × · · · ×Gm+1 | digi = digi−1 ∀ 1 ≤ i ≤ m}

(and componentwise multiplication as the operation) with face maps defined on

g = (g0, g1, . . . , gm)

by

djg = (dj+1g0, dj+1g1, . . . , dj+1gj−1, djgj+1, . . . , djgm)

and degeneracy maps defined by

sjg = (sj+1g0, sj+1g1, . . . , sj+1gj , sjgj , sjgj+1, . . . , sjgm),

∀ 0 ≤ j ≤ m.

Note in particular

d0g = (d0g1, d0g2, . . . , d0gm)

and

dmg = (dm+1g0, dm+1g1, . . . , dm+1gm−1).

The following construction is well known; we cite [15] as a reference.

Lemma 3.1.2 Let G be a simplicial group.

a) ∃ homomorphisms of simplicial groups, that are also Kan Fibrations, ∂0, ∂1 : GI → G, given on

m-simplices g = (g0, g1, . . . , gm) ∈ GIm by

∂0(g) = d0g0

and

∂1(g) = dm+1gm.
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b) The diagonal simplicial map D : G→ G×G factors as

G
ρ //

D

##G
G

G
G

G GI

(∂0,∂1)

��
G×G

where ρ is a homotopy inverse for both ∂0 and ∂1, defined on m-simplices g ∈ G, by

ρ(g) = (s0g, s1g, . . . , smg).

To be more precise,

∂i ◦ ρ = idG; i = 0, 1

and

ρ ◦ ∂i is homotopic as a simplicial map to idGI ; i = 0, 1.

We in fact have the stronger result that the map

(∂0, ∂1) : GI → G×G,

through which the diagonal map factors, is a Kan Fibration.

Definition 3.1.3 Given P ∈ PR and simplicial group G = G(s.PR), denote the pullback of the diagram

N(Aut(P ))

iP

��
GI

∂1 // G

.

by IP . That is, IP has m-simplices

IP,m =
{

(α, g) ∈ N(Aut(P ))m ×GIm | g = (g0, . . . , gm) has dm+1gm = iP (α)
}

with face maps defined by dj(α, g) = (djα, djg) and degeneracy maps sj defined similarly.

We have the following well-known lemma as well, again citing [15]:

Lemma 3.1.4 The simplicial sets IP and N(Aut(P )) are homotopy equivalent.
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Proof: Define

λP : N(Aut(P ))→ IP

by

λP (α) = (α, ρ(iP (α))).

By Lemma 2.1.1 we know that iP is a simplicial map, and by Theorem 3.1.2 we know ρ is a simplicial map,

so the composite ρ ◦ iP is a simplicial map. Since the identity is always a simplicial map, the definitions of

the face and degeneracy maps on IP imply that λP must be a simplicial map.

Define

∂∗P : IP → N(Aut(P ))

by

∂∗P (α, g) = α.

This is the projection from N(Aut(P )) × GI to N(Aut(P )), so that it preserves images of face and

degeneracy maps. Therefore ∂∗P is a simplicial map.

We see that ∂∗P is a fibration, since it is the pullback of the fibration ∂1,

∂∗P ◦ λP = idN(Aut(P )),

and we cite [15] (but omit proof) that

λ ◦ ∂∗P is homotopic as a simplicial map to idIP .

By Definition 1.4.3 of Chapter 1, it follows that N(Aut(P )) and IP are homotopy equivalent.

�

Now define a simplicial map pP : IP → G(s.PR) on m-simplices

(α, g) = (α1| · · · |αm; g0, . . . , gm)

by pP (α, g) = d0g0 = ∂0 ◦ π2(α, g) (π2 the usual projection from N(Aut(P ))×G(s.PR)I to G(s.PR)I).

We have

Lemma 3.1.5 The map pP is a fibration of simplicial sets.
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Definition 3.1.6 The homotopy fiber of iP is the simplicial subcomplex

YP ⊆ IP ⊆ N(Aut(P ))×G(s.PR)I

whose m-simplices are

YP,m = p−1
P (1)m = {(α, g) ∈ IP,m | pP (α, g) = 1 ∈ G(s.PR)m}

= {(α1| · · · |αm; g0, . . . , gm) | d0g0 = 1 ∈ G(s.PR)m} .

Note that face and degeneracy maps are given by those corresponding to the Cartesian Product (recall Defi-

nition 3.3.1 from Chapter 1).

Lemma 3.1.7 YP is a Kan Complex.

Proof: The map pP is a fibration, thus using Proposition 7.3 of May (i.e. Proposition 3.2.1 of Chapter 1),

YP is a Kan complex.

�

This fact allows us to use the canonical construction of π1(YP ,Φ) (with φ0 = (∗, 1) ∈ YP,0) in conjunction

with the chain complex construction of π2(G(s.PR)). The result will allow us to see the Steinberg relations

from the point of view of homotopy classes in this homotopy fiber.

4 Steinberg Relations in π1(YN (R))

Here we focus on P = RN ∈ PR and denote IN := IRN , iN := iRN and YN := YRN ; with analogous

definitions for the fibration pN : IN → N(GL(N,R)) and the homotopy equivalence λN : N(GL(N,R)) →

IN . We want to use YN as an analog for St(N,R), even so far as to have a direct limit Y (R) analogous to

St(R) and GL(R). To that end, we first consider the concept of stabilization of the simplicial sets YN , N ∈ N.

4.1 Stability of YN
⊆→ IN

pN→ G(s.PR)

We want to see what happens as a result of the embedding RN ↪→ RN+1 with RN+1 = RN ⊕ R. Given

m > 0,α = (α1|α2| · · · |αm) ∈ N(GL(N,R))m, we somewhat ambiguously denote 1 = (1R|1R| · · · |1R) (and

realize 1N+1 := 1N ⊕ 1R) and define α⊕ 1 ∈ N(GL(N + 1, R))m by

α⊕ 1 = (α1 ⊕ 1R|α2 ⊕ 1R| · · · |αm ⊕ 1R).
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We will consider “stability maps,” all denoted σ, between the various simplicial sets associated to RN and

RN+1. For instance,

Lemma 4.1.1 σ : N(GL(N,R))→ N(GL(N + 1, R)) defined by σ(α) = α⊕ 1 is a simplicial map.

Proof: We calculate

d0σm(α) = (α2 ⊕ 1R|α3 ⊕ 1R| · · · |αm ⊕ 1R) = (α2|α3| · · · |αm)⊕ 1 = (d0α)⊕ 1 = σm−1(d0α),

dmσm(α) = (α1 ⊕ 1R|α2 ⊕ 1R| · · · |αm−1 ⊕ 1R) = (α1|α2| · · · |αm−1)⊕ 1 = (dmα)⊕ 1 = σm−1(dmα),

and for each 1 ≤ i ≤ m− 1,

diσm(α) = (α1 ⊕ 1R|α2 ⊕ 1R| · · · |(αi+1 ⊕ 1R) ◦ (αi ⊕ 1R)|αi+2 ⊕ 1R| · · · |αm ⊕ 1R)

= (α1 ⊕ 1R|α2 ⊕ 1R| · · · |(αi+1 ◦ αi)⊕ 1R|αi+2 ⊕ 1R| · · · |αm ⊕ 1R)

= (α1|α2| · · · |αi+1 ◦ αi|αi+2| · · · |αm)⊕ 1 = (diα)⊕ 1 = σm−1(diα).

Also, for 0 ≤ j ≤ m,

sjσm(α) = (α1 ⊕ 1R|α2 ⊕ 1R| · · · |αj ⊕ 1R|1N+1|αj+1 ⊕ 1R| · · · |αm ⊕ 1R)

= (α1|α2| · · · |αj ⊕ 1R|1N ⊕ 1R|αj+1 ⊕ 1R| · · · |αm ⊕ 1R)

= (α1|α2| · · · |αj |1N |αj+1| · · · |αm)⊕ 1 = (sjα)⊕ 1 = σm+1(sjα).

Therefore σ is a simplicial map by definition.

�

For the short exact sequence l : RN ↪→ RN+1 � R, where RN ⊆ RN+1 is the embedding x 7→ (x, 0), we

see that there are short exact sequences of pairs (RN , αi)→ (RN+1, αi ⊕ 1R)→ (R, 1R) for each 1 ≤ i ≤ m,

in which case we have wm(α,α⊕ 1; l) ∈ G(s.PR)m+1 by Theorem 2.1.4.

Let ξ = (α; g) = (α1| · · · |αm; g0, . . . , gm) ∈ IN,m and define ξ⊕ 1 = (α⊕ 1; g̃) where g̃ = (g̃0, . . . , g̃m) is

defined by

g̃i = gi(smsm−1 · · · si+1di+1di+2 · · · dm−1dmwm(α,α⊕ 1; l))

for 0 ≤ i ≤ m− 1, and

g̃m = gmwm(α,α⊕ 1; l).
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Proposition 4.1.2 Given ξ = (α; g) ∈ IN as above,

1) ξ ⊕ 1 ∈ IN+1,m.

2) The map σ : IN → IN+1 defined by σ(ξ) = ξ ⊕ 1 is a simplicial map.

3) σ|YN : YN → YN+1.

4) The following diagrams commute:

YN // ⊆ //

σ

��

IN
pN //

σ

��

G(s.PR)

=

��
YN+1

// ⊆ // IN+1
pN+1// G(s.PR)

IN
∂∗N //

σ

��

N(GL(N,R))

σ

��
IN+1

∂∗N+1// N(GL(N + 1, R))

.

5) The diagram below commutes “up to homotopy”; i.e., λN+1◦σ is homotopic as a simplicial map to σ◦λN :

N(GL(N,R))
λN //

σ

��

IN

σ

��
N(GL(N + 1, R))

λN+1 // IN+1

.

Proof: We first calculate

dig̃i = (digi)(dismsm−1 · · · si+1di+1di+2 · · · dmwm(α,α⊕ 1; l))

= (digi)(sm−1sm−2 · · · sididi+1 · · · dmwm(α,α⊕ 1; l))

= (digi)(sm−1sm−2 · · · sidisididi+1 · · · dmwm(α,α⊕ 1; l))

= (digi)(dismsm−1 · · · si+1sididi+1 · · · dmwm(α,α⊕ 1; l))

= (digi−1)(dismsm−1 · · · sididi+1 · · · dmwm(α,α⊕ 1; l))

= di(gi−1smsm−1 · · · sididi+1 · · · dmwm(α,α⊕ 1 : l))

= dig̃i−1
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for each 1 ≤ i ≤ q − 1, and since g̃m−1 = gm−1smdmwm(α,α⊕ 1; l) we have

dmg̃m = (dmgm)(dmwm(α,α⊕ 1; l))

= (dmgm)(dmsmdmwm(α,α⊕ 1; l)) = (dmgm−1)(dmsmdmwm(α,α⊕ 1; l))

= dm(gm−1smdmwm(α,α⊕ 1; l)) = dmg̃m−1.

Therefore g̃ ∈ G(s.PR)Im. Also, g ∈ G(s.PR)Im so that by Theorem 2.1.4 we see

dm+1g̃m = (dm+1gm)(dm+1wm(α,α⊕ 1; l)) = iN (α)(iN (α))−1iN+1(α⊕ 1) = iN+1(α⊕ 1).

(1) now follows by definition of IN+1.

Now given 1 ≤ i ≤ m − 1, we use superscripts again for g = (g(0), . . . , g(m)) ∈ G(s.PR)Im and denote the

images of face maps by

dig = (di+1g
(0), . . . , di+1g

(i−1), dig
(i+1), . . . , dig

(m)) = (g
(0)
i , . . . , g

(i−1)
i , g

(i)
i , . . . , g

(m−1)
i ) := gi.

Now we have g̃i defined by

g̃
(j)
i = g

(j)
i sm−1 · · · sj+1dj+1 · · · dm−1wm−1(diα, di(α⊕ 1); l)

for 0 ≤ i ≤ m and 0 ≤ j ≤ m− 2, and

g̃
(m−1)
i = g

(m−1)
i wm−1(diα, di(α⊕ 1); l)

for each 0 ≤ i ≤ m. We must show

σm−1(diξ) = (diα⊕ 1; g̃i) = (di(α⊕ 1); dig̃) = diσm(ξ).

We can see that di(α ⊕ 1) = (diα) ⊕ 1 ∈ N(GL(N + 1, R))m−1 for each 0 ≤ i ≤ m by direct calculation.

Note that

g
(j)
i =


di+1g

(j), 0 ≤ j ≤ i− 1

dig
(j+1), i ≤ j ≤ m− 1
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when 1 ≤ i ≤ m− 1,

g
(j)
0 = d0g

(j+1), 0 ≤ j ≤ m− 1,

and

g(j)
m = dm+1g

(j), 0 ≤ j ≤ m− 1.

Now if 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ i− 1 we see

g̃
(j)
i = di+1g

(j)sm−1 · · · sj+1dj+1 · · · dm−1wm−1(diα, di(α⊕ 1); l)

= di+1g
(j)sm−1 · · · si+1si · · · sj+1dj+1 · · · di−1di · · · dm−1diwm(α,α⊕ 1; l)

= di+1g
(j)sm−1 · · · si+1si · · · sj+1dj+1 · · · di−1didi+1 · · · dmwm(α,α⊕ 1; l)

= di+1g
(j)sm−1 · · · si+1di+1si+1si · · · sj+1dj+1 · · · dm−1wm(α,α⊕ 1; l)

= di+1g
(j)di+1sm · · · si+2si+1si · · · sj+1dj+1 · · · dmwm(α,α⊕ 1; l)

= di+1(g(j)sm · · · sj+1dj+1 · · · dmwm(α,α⊕ 1; l)) = di+1g̃
(j).

If 1 ≤ i ≤ j ≤ m− 2 then

g̃
(j)
i = dig

(j+1)sm−1 · · · sj+1dj+1 · · · dm−1diwm(α,α⊕ 1; l)

= dig
(j+1)sm−1 · · · sj+1didj+2 · · · dmwm(α,α⊕ 1; l)

= dig
(j+1)dism · · · sj+2dj+2 · · · dmwm(α,α⊕ 1; l)

= di(g
(j+1)sm · · · sj+2dj+2 · · · dmwm(α,α⊕ 1; l)) = dig̃

(j+1).

Furthermore,

g̃
(j)
0 = d0g

(j+1)sm−1 · · · sj+1dj+1 · · · dm−1d0wm(α,α⊕ 1; l)

= d0g
(j+1)sm−1 · · · sj+1d0dj+2 · · · dmwm(α,α⊕ 1; l)

= d0g
(j+1)d0sm · · · sj+2dj+2 · · · dmwm(α,α⊕ 1; l)

= d0(g(j+1)sm · · · sj+2dj+2 · · · dmwm(α,α⊕ 1; l)) = d0g̃
(j+1)
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for each 0 ≤ j ≤ m− 2 and

g̃(j)
m = dm+1g

(j)sm−1 · · · sj+1dj+1 · · · dm−1dmwm(α,α⊕ 1; l)

= dm+1g
(j)dm+1smsm−1 · · · sj+1dj+1 · · · dmwm(α,α⊕ 1; l)

= dm+1(g(j)sm · · · sj+1dj+1 · · · dmwm(α,α⊕ 1; l)) = dm+1g̃
(j)

for each 0 ≤ j ≤ m− 2. Also,

g̃
(m−1)
0 = d0g

(m)d0wm(α,α⊕ 1; l) = d0g̃
(m−1),

g̃(m−1)
m = dm+1g

(m−1)dmwm(α,α⊕ 1; l) = dm+1g
(m−1)dm+1smdmwm(α,α⊕ 1; l) = dm+1g̃

(m−1)

and lastly, for 1 ≤ i ≤ m− 1 we have

g̃
(m−1)
i = dig

(m)diwm(α,α⊕ 1; l) = dig̃
(m).

It follows that

dig̃ = (di+1g̃
(0), . . . , di+1g̃

(i−1), dig̃
(i+1), . . . , dig̃

(m)) = (g̃
(0)
i , . . . , g̃

(i−1)
i , g̃

(i)
i , . . . , g̃

(m−1)
i ) = g̃i

so that diσm(ξ) = σm−1(diξ).

We proceed in a similar manner for the degeneracy maps. Notice that for any 0 ≤ i ≤ m,

siα = (α1|α2| · · · |αi|1N |αi+1| · · · |αm)

and clearly si(α⊕ 1) = siα⊕ 1. We can also calculate

siwm(α,α⊕ 1; l) = wm+1(siα, si(α⊕ 1); l)

from Lemma 2.1.1 and Theorem 2.1.4.

Denote the images of g under the degeneracy maps by

sig = (si+1g
(0), . . . , si+1g

(i), sig
(i), sig

(i+1), . . . , sig
(m)) = (g

(0)
i , . . . , g

(m+1)
i ) = gi
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so that siξ = (siα; gi) and

σm+1(siξ) = (siξ)⊕ 1 = (siα⊕ 1; g̃i)

where g̃i is defined by

g̃
(j)
i = g

(j)
i sm+1 · · · sj+1dj+1 · · · dm+1wm+1(siα, si(α⊕ 1); l)

for 0 ≤ i ≤ m and 0 ≤ j ≤ m, and

g̃
(m+1)
i = g

(m+1)
i wm+1(siα, si(α⊕ 1); l)

for each 0 ≤ i ≤ m. Similar to the case for the face maps, we must show sig̃ = g̃i for each 0 ≤ i ≤ m.

If j ≤ i then

si+1g̃
(j) = si+1g

(j)si+1sm · · · si+1 · · · sj+1dj+1 · · · di+1 · · · dmwm(α,α⊕ 1; l)

= si+1g
(j)sm+1 · · · si+2si+1 · · · sj+1dj+1 · · · di+1 · · · dmwm(α,α⊕ 1; l)

= si+1g
(j)sm+1 · · · si+2si+1 · · · sj+1dj+1 · · · di+1 · · · dmdi+1siwm(α,α⊕ 1; l)

= si+1g
(j)sm+1 · · · si+2si+1 · · · sj+1dj+1 · · · di+1di+2 · · · dm+1wm+1(siα, si(α⊕ 1); l)

= g
(j)
i sm+1 · · · sj+1dj+1 · · · dm+1wm+1(siα, (siα)⊕ 1; l) = g̃

(j)
i .

If i+ 1 ≤ j ≤ m then

sig̃
(j−1) = sig

(j−1)sism · · · sjdj · · · dmwm(α,α⊕ 1; l)

= sig
(j−1)sm+1 · · · sj+1sidj · · · dmwm(α,α⊕ 1; l)

= sig
(j−1)sm+1 · · · sj+1dj+1 · · · dm+1siwm(α,α⊕ 1; l)

= sig
(j−1)sm+1 · · · sj+1dj+1 · · · dm+1wm+1(siα, si(α⊕ 1); l)

= g
(j)
i sm+1 · · · sj+1dj+1 · · · dm+1wm+1(siα, si(α)⊕ 1; l) = g̃

(j)
i ,

and for 0 ≤ i ≤ m we have

sig̃
(m) = sig

(m)siwm(α,α⊕1; l) = sig
(j−1)wm+1(siα, si(α⊕1); l) = g

(m+1)
i wm+1(siα, (siα)⊕1; l) = g̃

(m+1)
i .
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Since

sig̃ = (si+1g̃
(0), . . . , si+1g̃

(i), sig̃
(i), . . . , sig̃

(m))

it follows that

siσm(ξ) = si(ξ ⊕ 1) = (si(α⊕ 1); sig̃) = ((siα)⊕ 1; g̃i) = σm+1(siα; sig) = σm+1(siξ).

Therefore σ : YN → YN+1 is a simplicial map by Definition 1.1.2 of Chapter 1, and we have (2).

In addition to the properties already verified for ξ ⊕ 1 ∈ G(s.PR)Im above, we also see that

d0g̃0 = (d0g0)(d0smsm−1 · · · s1d1d2 · · · dmwm(α,α⊕ 1; l)).

However, by Theorem 2.1.4 we see

d1d2 · · · dmwm(α,α⊕ 1; l) = w1(d1d2 · · · dmα, d1d2 · · · dm(α⊕ 1); l) ∈ G(s.PR)2.

Therefore

d0d1d2 · · · dmwm(α,α⊕ 1; l) = 1 ∈ G(s.PR)1

and

d0g̃0 = (d0g0)(sm−1sm−2 · · · s0d0d1d2 · · · dmwm(α,α⊕ 1; l)) = d0g0.

If ξ ∈ YN,m then d0g0 = 1 by definition, hence

d0g̃0 = d0g0 = 1

so that ξ ⊕ 1 ∈ YN+1,m and we have (3).

For (4), we interpret the conclusion of (3): the left side of the diagram

YN // ⊆ //

σ

��

IN
pN //

σ

��

G(s.PR)

=

��
YN+1

// ⊆ // IN+1
pN+1// G(s.PR)

is exactly the fact that the restriction of σ to the homotopy fiber is the map σ between homotopy fibers. In
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order to verify this, we showed that d0g̃0 = d0g0, so that

pN (ξ) = pN (α; g) = d0g0 = d0g̃0 = pN+1(α⊕ 1; ξ ⊕ 1) = pN+1(ξ ⊕ 1).

Therefore the right square in the diagram commutes. Also by definition (i.e. the proof of Lemma 3.1.4 and

Lemma 4.1.1) we see

σ(∂∗(ξ)) = σ(∂∗(α; g)) = σ(α) = α⊕ 1 = ∂∗(α⊕ 1; g̃) = ∂∗(ξ ⊕ 1) = ∂∗(σ(ξ)),

so that the diagram

IN
∂∗ //

σ

��

N(GL(N,R))

σ

��
IN+1

∂∗ // N(GL(N + 1, R))

commutes.

Finally, compose the relation implied by (4) with λN :

σ ◦ ∂∗N ◦ λN = ∂∗N+1 ◦ σ ◦ λN

and apply Lemma 3.1.4 so that ∂∗N ◦ λN = idN(GL(N,R)), hence

σ = ∂∗N+1 ◦ σ ◦ λN .

Now put both sides of the above equation into λN+1 :

λN+1 ◦ σ = λN+1 ◦ ∂∗N+1 ◦ σ ◦ λN ;

since λN+1 ◦ ∂∗N+1 is homotopic to idIN+1
by Lemma 3.1.4 and homotopy is preserved by composition, it

follows that λN+1 ◦σ is homotopic to σ◦λN . Thus we have the diagram of (5) commuting “up to homotopy”.

�

We can now extend to simplicial maps σij =

j−i︷ ︸︸ ︷
σ ◦ σ ◦ · · · ◦ σ : Yi → Yj , i ≤ j, and define a direct limit as in

[20]:

Y (R) = lim−→
N,σ

YN .
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4.2 Filtration-Independent Elements of π1(YN )

Lemma 4.2.1 Let N ∈ N, E1, E2 ∈ Aut(RN ) and suppose there is a filtration F of RN that is an admissible

filtration of both (RN , E1) and (RN , E2). Then:

a) F is an admissible filtration of (RN , E1 ◦ E2) as well as (RN , E−1
1 ), (RN , E−1

2 ) and (RN , 1N ).

b) (E1; 1, X1(F (RN , E1))), (E2; 1, X1(F (RN , E2))) ∈ ỸN,1 with respect to φ0 = (∗; 1).

c) [E1; 1, X1(F (RN , E1))] • [E2; 1, X1(F (RN , E2))] = [E1 ◦ E2; 1, X1(F (RN , E1 ◦ E2))] ∈ π1(YN ,Φ) via

extender

zE1E2 := (E2|E1; 1, s2d2X2(F (RN ;E2|E1)), X2(F (RN ;E2|E1))) ∈ YN,2.

d) [E1; 1, X1(F (RN , E1))]−1 = [E−1
1 ; 1, X1(F (RN , E−1

1 ))].

Proof: By Definition 2.2.1 there are diagrams

0 // P1
// //

(E1)(1)

��

P2
// //

(E1)(2)

��

· · · // // Pn = RN

E1

��
0 // P1

// // P2
// // · · · // // Pn = RN

and

0 // P1
// //

(E2)(1)

��

P2
// //

(E2)(2)

��

· · · // // Pn = RN

E2

��
0 // P1

// // P2
// // · · · // // Pn = RN

.

We also have (E1)(i), (E2)(i) ∈ Aut(Pi), hence

(E1 ◦ E2)(i) = (E1 ◦ E2)|Pi = E1|Pi ◦ E2|Pi = (E1)(i) ◦ (E2)(i) ∈ Aut(Pi)

for each 1 ≤ i ≤ n. In particular we know by definition that (E1)(1) = (E2)(1) = 1P1
, so that (E1 ◦ E2)(1) =

1P1
. Also (E1)(n) = E1 and (E2)(n) = E2, so that (E1 ◦ E2)(n) = E1 ◦ E2. Therefore the diagram

0 // P1
// //

(E1◦E2)(1)

��

P2
// //

(E1◦E2)(2)

��

· · · // // Pn = RN

(E1◦E2)(n)

��
0 // P1

// // P2
// // · · · // // Pn = RN

satisfies part (1) of Definition 2.2.1. Furthermore, from the short exact sequences of pairs

(Pi, (E1)(i))→ (Pi+1, (E1)(i+1))→ (Pi+1/Pi, 1Pi+1/Pi)

and

(Pi, (E2)(i))→ (Pi+1, (E2)(i+1))→ (Pi+1/Pi, 1Pi+1/Pi)
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we see that the same inclusions and projections allow a short exact sequence of pairs

(Pi, (E1 ◦ E2)(i))→ (Pi+1, (E1 ◦ E2)(i+1))→ (Pi+1/Pi, 1Pi+1/Pi),

which gives part (2) of Definition 2.2.1. Reversing directions on the automorphisms in the above diagrams

shows that any subsequence that is an admissible filtration for (RN , E1) will also be an admissible filtration

of (RN , E−1
1 ). This proves (a).

Now for the admissible filtration F (RN , E1) (and similarly for F (RN , E2)) we have

X1(F (RN , E1)) ∈ G(s.PR)2

from Theorem 2.2.2. Consider the element

g = (g0, g1) = (1, X1(F (RN , E1))) ∈ G(s.PR)2 ×G(s.PR)2.

From Theorem 2.2.2 we see

d1g1 = 1 = d1(1) = d1g0,

in which case g ∈ G(s.PR)I1. Notice also that d2g
1 = iRN (E1) and d0g

0 = 1 ∈ G(s.PR)1. Therefore we have

X(E1) := (E1; g) ∈ YN,1 ⊆ IN,1

by Definitions 3.1.3 and 3.1.6. Furthermore, we calculate

d0g = d1g = 1 ∈ G(s.PR)1 = G(s.PR)I0,

so that

d0X(E1) = (d0E1; d0g) = (RN ; 1) = φ0

and

d1X(E1) = (d1E1 : d1g) = (RN ; 1) = φ0,

so X(E1) ∈ ỸN,1 by Definition 1.3.4 of Chapter 1. The same process with respect to F (RN , E2) shows

X(E2) := (E2; g′) ∈ ỸN,1
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when g′ = (g′0, g
′
1) = (1, X1(F (RN , E2))). This proves (b).

We construct the product

[X(E1)] • [X(E2)] ∈ π1(YN ,Φ)

by the canonical definition in [2] (i.e. Definition 1.3.6 of Chapter 1). Consider the list

CE1E2 = (X(E1),−, X(E2))

in YN,1. Since X(E1), X(E2) ∈ ỸN,1, this list is a compatible list of 2-simplices in YN,1. We construct an

extender for this list.

Since F is a filtration of both (RN , E1) and (RN , E2), it is by Definition 2.2.3 a filtration of (RN ,E′) where

E′ = (E2|E1) ∈ N(Aut(RN ))2. Thus by Lemma 2.2.4 we have

X2(F (RN ;E′)) ∈ G(s.PR)3.

Consider the element

g′′ = (g′′0 , g
′′
1 , g
′′
2 ) = (1, s2d2X2(F (RN ,E′)), X2(F (RN ,E′))) ∈ G3 ×G3 ×G3.

Then d1g
′′
0 = 1 ∈ G(s.PR)2, and since

d2X2(F (RN ,E′)) = X1(F (RN , E2)) ∈ G(s.PR)2

we see that

d1s2d2X2(F (RN ,E′)) = s1d1d2X2(F (RN ,E′)) = s1(1) = 1 ∈ G(s.PR)2,

in which case we have d1g
′′
0 = d1g

′′
1 . Also

d2g
′′
1 = d2X2(F (RN ,E′)) = d2s2d2X2(F (RN ,E′)).

Thus d2g
′′
1 = d2g

′′
2 , hence g′′ ∈ G(s.PR)I2. Note also that d0g0 = 1 ∈ G(s.PR)2 and that Lemma 2.2.4 gives

d3g2 = iRN (E′), so that we can have the element

zE1E2 := (E′, g′′) = (E2|E1; 1, s2d2X2(F (RN ;E2|E1)), X2(F (RN ;E2|E1))) ∈ YN,2 ⊆ IN,2.
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Now we check

d0zE1E2
= (d0E

′; d0g
′′) = (E1; d0g

′′
1 , d0g

′′
2 )

= (E1; 1, X1(F (RN , E1))) = X(E1)

and

d2zE1E2
= (d2E

′; d2g
′′) = (E2; d3g

′′
0 , d3g

′′
1 )

= (E2; 1, X1(F (RN , E2))) = X(E2),

so that zE1E2
extends the list CE1,E2

. But now by Definition 1.3.6 of Chapter 1 we have

[X(E1)][X(E2)] = [d1zE1E2 ] = [d1E
′; d1g

′′]

= [E1 ◦ E2; d2g
′′
0 , d1g

′′
2 ] = [E1 ◦ E2; 1, X1(F (RN , E1 ◦ E2))]

for (c).

Now (d) follows by checking

X1(F (RN , E1 ◦ E−1
1 ))) = X1(F (RN , 1N ))) = 1 ∈ G(s.PR))2

by definition, hence (c) implies

[E1 ◦ E−1
1 ; 1, X1(F (RN , E1 ◦ E−1

1 ))] = [1N ; 1, 1] = 1 ∈ π(YN ,Φ).

�

Theorem 4.2.2 If F is an admissible filtration of (RN , E), E ∈ GL(N,R), and F̃ is an admissible refine-

ment of F, then for ξ = (E; 1, X1(F (RN , E))), ξ̃ = (E; 1, X1(F̃ (RN , E))) ∈ ỸN,1 we have ξ ∼ ξ̃ in the sense

of [2], Chapter 3.

Proof: We proceed as before for refinements, assuming a refinement by one, E-invariant submodule so

that the result follows by induction. From Lemma 4.2.1 we know that ξ, ξ̃ ∈ ỸN,1. We will construct an

element y ∈ YN,2 that meets the definition (i.e. Definition 1.3.1 of Chapter 1).

Recalling the constructions for Theorem 2.3.4, set

X1 = X1(F (RN , E)) = ACB, X̃1 = X1(F̃ (RN , E)) = AC1C2B
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With A,B,C,C1, C2 ∈ G(s.PR)2 as for Theorem 2.3.4 (i.e. with P = RN and α = E). We know from

Lemma 2.3.3 that ∃ u ∈ G(s.PR)3 with d3u = C1C2C
−1. Let v = X2(F (RN ;E|1N )) ∈ G(s.PR)3 (using the

filtration F for the admissible F (RN ;E|1N ); recall d1v ∈ G(s.PR)2) and set

g = (g0, g1, g2) = (1, (s2A)u(s2A)−1s2d2v, v) ∈ G3 ×G3 ×G3.

Then

d1g1 = (s1d1A)(d0u)(s1d1A)−1(s1d1d1v) = (s1d1A)(1)(s1d1A)−1(1)(s1(1)) = 1 = d1g0

and

d2g1 = A(d2u)A−1(d2v) = A(1)A−1(d2v) = d2v = d2g2

so that g ∈ GI2. Also d0g0 = 1 and

d3g2 = d3v = iN (E|1),

so that the element

y = (E|1N ; g)

is a 2-simplex in the homotopy fiber YN by Definition 3.1.6. Furthermore, we see that d2g0 = 1 and

d1g2 = d1v = X1(F (RN ;E)),

so that

d1y = (E; d2g0, d1g2) = (E; 1, X1) = ξ.

Similarly, d3g0 = 1 and

d3g1 = A(d3u)A−1(d2v) = AC1C2C
−1A−1ACB = AC1C2B = X1(F̃ (RN , E)),

in which case

d2y = (E; d3g0, d3g1) = (E; 1, X̃1) = ξ̃.

Finally, d0g0 = 1 and

d0g2 = d0v = X1(F (RN ; 1N )) = 1 ∈ G(s.PR)2,
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hence

d0y = (1N ; 1, 1) = 1 = s0d0ξ = s0d0ξ̃.

Thus y is the required “homotopy” from ξ to ξ̃ according to Definition 1.3.1 of Chapter 1.

�

An identical process to the proof of Theorem 2.4.2 gives

Theorem 4.2.3 Suppose that F1 and F2 are standard, admissible filtrations of E ∈ GL(N,R). Then for

ξ1 = (E; 1, X1(F1(RN ;E))) and ξ2 = (E; 1, X1(F2(RN ;E))) we have [ξ1] = [ξ2] ∈ π1(YN ). That is, the class

[ξ] for ξ = (E; 1, X1(F (RN ;E))) is independent of the choice of filtration F for the corresponding matrix E

so long as that filtration is standard.

Proof: In order to prove Theorem 2.4.2, a chain F̃ and a sequence of chains Ha,b were constructed through

which we found

[X1(F̃ (RN , E))] = [X1(F1,1(RN , E))],

[X1(F ′a,b(R
N , E))] = [X1(Fa,b(R

N , E))] ∀ 1 ≤ a ≤ S − 1, 1 ≤ b ≤ a,

[X1(F ′a,a(RN , E))] = [X1(Fa+1,1(RN , E))] ∀ 1 ≤ a ≤ S − 1,

and

[X1(F1(RN , E))] = [X1(F ′S−1,S−1(RN , E))]

via Theorem 2.3.4 because of the resulting refinements. Since these refinements are still intact, Theorem 4.2.2

implies

[(E; 1, X1(F̃ (RN , E)))] = [(E; 1, X1(F1,1(RN , E)))],

[(E; 1, X1(F ′a,b(R
N , E)))] = [(E; 1, X1(Fa,b(R

N , E)))] ∀ 1 ≤ a ≤ S − 1, 1 ≤ b ≤ a,

[(E; 1, X1(F ′a,a(RN , E)))] = [(E; 1, X1(Fa+1,1(RN , E)))] ∀ 1 ≤ a ≤ S − 1,

and

[ξ1] = [(E; 1, X1(F ′S−1,S−1(RN , E)))].

These equalities imply (by transitivity of the equivalence relation) that [(E; 1, X1(F̃ (RN , E))] = [ξ1] in

π1(YN ). Another, similar sequence of chains allows [(E; 1, X1(F̃ (RN , E)))] = [ξ2] so that by transitivity we

have [ξ1] = [ξ2] ∈ π1(YN ).

�
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4.3 The Steinberg Relations

4.3.1 Standard filtrations for elementary matrices

Recall Definition 3.1.2 from Chapter 2 for the elementary matrices eNij (a) ∈ GL(N,R) given i 6= j and N ≥ 3.

Lemma 4.3.1 Given elementary matrices eNij (a), eNkl(b), there is a standard filtration

F : 0 = P0 ⊆ P1 ⊆ · · · ⊆ Pn−1 ⊆ Pn = RN

of free submodules of RN that is a standard, admissible filtration of both (RN , eNij (a)) and (RN , eNkl(b)).

Proof: We choose the standard basis for RN :

RN = 〈e1, e2, . . . , eN 〉 .

Thus we write

eNij (a)[eh] =


eh, h 6= j

aei + ej , h = j

for the images of basis elements.

We begin by ordering the indices {i, j, k, l} as {M1 > M2 > M3 > M4} and thinking of them in pairs: for

each 1 ≤ h ≤ 4, we use Mh and consider M̃h so that one of the matrices is e
MhM̃h

(or e
M̃hMh

).

When M1,M4 ∈ {i, k} we have either M̃1 = M3 ∈ {j, l} or M̃1 = M2 ∈ {j, l} ; we show the case for

M̃1 = M3, since the other case is similar by replacing M3 with M2 and vice versa. Thus we denote the

images by

e
M1M̃1

(eh) =


eh, h 6= M3

r1eM1 + eM3 , h = M3

and

e
M4M̃4

(eh) =


eh, h 6= M2

r4eM4
+ eM2

, h = M2

.

Let

P1 = 〈e1, . . . , eM4 , . . . , eM3−1, eM2+1, . . . , eM1 , . . . , eN 〉 ,
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P2 = 〈e1, . . . , eM4 , . . . , eM3 , eM2 , . . . , eN 〉 ,

and P3 = RN , with inclusions preserving the specified order of basis elements. On the generators eh

of P1 we see that e
M1M̃1

(eh) = eh since h 6= M̃1 and e
M4M̃4

(eh) = eh since h 6= M̃4. On P2, we have

eM1M3
(eh) = eh ∀ h 6= M3 and eM1M3

(eM3
) = r1eM1

+ eM3
∈ P2; similarly eM4M2

(eh) = eh ∀ h 6= M2

and eM4M2(eM2) = r4eM4 + eM2 ∈ P2. Thus e
(1)

M1M̃1
= e

(1)

M4M̃4
= 1P1 and e

(2)

M1M̃1
, e

(2)

M4M̃4
∈ Aut(P2). On the

quotient module P2/P1 = 〈eM3
, eM2

〉 ∈ PR we calculate on equivalence classes and see

eM1M3
(eM3

) = r1eM1
+ eM3

= 0 + eM3
= eM3

and eM1M3
(eM2

) = eM2
. Similarly eM4M2

(eM3
) = eM3

and

eM4M2(eM2) = r4eM4 + eM2 = 0 + eM2 = eM2 .

On P3/P2 = 〈eM3+1, . . . , eM2−1〉 ∈ PR we have eM1M3(eh) = eh ∀ h 6= M3 and eM4M2(eh) = eh ∀ h 6= M2.

We conclude that induced maps on these quotients are the identity, so that

(P1, e
(1)

M1M̃1
)→ (P2, e

(2)

M1M̃1
)→ (P2/P1, 1),

(P1, e
(1)

M4M̃4
)→ (P2, e

(2)

M4M̃4
)→ (P2/P1, 1),

(P2, e
(2)

M1M̃1
)→ (P3 = RN , e

M1M̃1
)→ (P3/P2, 1),

and

(P2, e
(2)

M4M̃4
)→ (P3 = RN , e

M4M̃4
)→ (P3/P2, 1)

are short exact sequences of pairs, in which case this choice of P1 ⊆ P2 ⊆ P3 is an admissible filtration of

both (RN , e
M1M̃1

) and (RN , e
M4M̃4

).

When M1 ∈ {i, k} and M4 ∈ {j, l} we have M̃1 ∈ {M2,M3,M4} . In case M̃1 = M2 we note that

M̃3 = M4 and set P1 = 〈eM2+1, . . . , eM1 , . . . , eN 〉 , P2 = 〈eM2 , . . . , . . . , eN 〉 , P3 = 〈eM4+1, . . . , eM3 , . . . , eN 〉

and P4 = 〈e1, . . . , eN 〉 = RN with inclusions that preserve the order of the basis elements. Since e
M1M̃1

(eh) =

eh ∀ h > M2 and e
M3M̃3

(eh) = eh ∀ h > M2 > M4, we know that the restrictions of both matrices to

P1 are the identity. On the other hand, eM1M2(eM2) = r1eM1 + eM2 ∈ P2 and eM3M4(eM2) = eM2 , so

that eM1M2
, eM3M4

∈ Aut(P2). Also, eM1M2
, eM3M4

∈ Aut(P3) since both matrices map eh 7→ eh for any

M4 < h < M2.

We have quotient modules P2/P1 = 〈eM2
〉 , P3/P2 = 〈eM4+1, . . . , eM2−1〉 , and P4/P3 = 〈e1, . . . , e4〉 ,

121



which are all clearly finitely generated and projective (since they are free modules). Both matrices induce

the identity on P3/P2 by definition. On P2/P1 we see that

eM1M2
(eM2

) = r1eM1
+ eM2

= 0 + eM2
= eM2

,

while eM3M4
induces the identity by definition. Similarly, on P2/P1 we see that

eM3M4
(eM4

) = r3eM3
+ eM4

= 0 + eM4
= eM4

,

while eM1M2 induces the identity by definition. Therefore with short exact sequences of pairs

(P1, e
(1)

M1M̃1
)→ (P2, e

(2)

M1M̃1
)→ (P2/P1, 1),

(P1, e
(1)

M2M̃2
)→ (P2, e

(2)

M2M̃2
)→ (P2/P1, 1),

(P2, e
(2)

M1M̃1
)→ (P3, e

(3)

M1M̃1
)→ (P3/P2, 1),

(P2, e
(2)

M2M̃2
)→ (P3, e

(3)

M2M̃2
)→ (P3/P2, 1),

(P2, e
(3)

M1M̃1
)→ (P4 = RN , e

M1M̃1
)→ (P4/P3, 1),

and

(P2, e
(3)

M2M̃2
)→ (P3 = RN , e

M2M̃2
)→ (P4/P3, 1)

we have that P1 ⊆ P2 ⊆ P3 ⊆ P4 is an admissible filtration of both (RN , e
M1M̃1

) and (RN , e
M2M̃2

).

Similar to the case for M̃1 = M2, in case M̃1 = M3 the sequence P1 ⊆ P2 ⊆ P3 with P1 = 〈eM3+1, . . . , eN 〉 ,

P2 = 〈eM4+1, . . . , eN 〉 and P3 = RN is an admissible filtration for both (RN , e
M1M̃1

) and (RN , e
M2M̃2

).

In fact, this same filtration P1 ⊆ P2 ⊆ P3 is also an admissible filtration of both (RN , e
M1M̃1

) and

(RN , e
M2M̃2

) in case M̃1 = M4, M̃2 = M3 since M3 > M4. When M̃1 = M4 but M̃3 = M2, we use

P1 = 〈eM4+1, . . . , eM3
, . . . , eM2−1〉 , P2 = 〈eM4+1, . . . , eN 〉 and P3 = RN .

The remaining cases can be verified as an exercise as follows.

When M1 ∈ {j, l} andM1 = M̃4, the sequence with P1 = 〈e1, . . . , eM2−1〉 , P2 = 〈e1, . . . , eM1〉 , P3 = RN is

an admissible filtration of (RN , eM4M1
) and (RN , eM3M2

), while the sequence given by P1 = 〈eM3+1, . . . , eM2
〉 ,

P2 = 〈e1, . . . , eM1−1〉 , P3 = RN is an admissible filtration of (RN , eM4M1
) and (RN , eM2M3

). If M1 = M̃2

then the sequence given by P1 = 〈e1, . . . , eM3−1〉 , P2 = 〈e1, . . . , eM1−1〉 , P3 = RN is an admissible filtration

of (RN , eM2M1
) and (RN , eM4M3

).
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The final two cases are M1 = M̃2 and M1 = M̃3. In these cases, the sequence with P1 = 〈eM4+1, . . . , eM3
〉 ,

P2 = 〈e1, . . . , eM1−1〉 , P3 = RN is an admissible filtration of (RN , eM2M1) and (RN , eM3M4), while the

sequence given by P1 = 〈eM4+1, . . . , eM2
〉 , P2 = 〈e1, . . . , eM1−1〉 , P3 = RN is an admissible filtration of

(RN , eM3M1
) and (RN , eM2M4

). Notice that these calculations account for the cases where at least one of the

matrices is upper-triangular as well as the case both being lower-triangular and all other cases.

�

4.3.2 Steinberg generators and relations in π1(YN )

As usual, let eNij (a) ∈ GL(N,R); i 6= j; i, j ≤ N be an N ×N elementary matrix associated to the element

a ∈ R. Of course, eNij (a)⊕ 1 = eN+1
ij (a).

Definition 4.3.2 Suppose that i, j ≤ N, i 6= j and a ∈ R. Define elements XN
ij (a) ∈ π1(YN (R)) by

XN
ij (a) = [(eNij ; 1, X1(F (RN , eNij (a))))],

where F (RN , eNij (a)) is any standard admissible filtration of (RN , eNij (a)).

Combining Lemma 4.3.1 with Theorem 4.2.3 allows us to see that XN
ij (a) has a defining admissible

filtration and that this element of π1(YN ) is independent of the choice of the standard admissible filtration

chosen to define it.

Theorem 4.3.3 Given any i, j, k, l ≤ N such that i 6= j, k 6= l, and a, b ∈ R, we have the following

computations in π1(YN ):

1. XN
ij (a)XN

ij (b) = XN
ij (a+ b)

2. XN
ij (a)XN

jl (b)X
N
ij (a)−1XN

jl (b)
−1 = XN

il (ab), if i 6= l

3. XN
ij (a)XN

kl (b) = XN
kl (b)X

N
ij (a), if i 6= l, j 6= k

4. If σ : YN → YN+1 is as in Proposition 4.1.2, then σ∗(X
N
ij (a)) = XN+1

ij (a).

Proof: Given elementary matrices eNst(a), eNuv(b) ∈ Aut(RN ), {s 6= t} ⊂ {i, j, k, l} , {u 6= v} ⊆ {i, j, k, l} ,

a, b ∈ R, Lemma 4.3.1 guarantees a subsequence F that is a filtration for both and by Lemma 4.2.1.(a) and

(b) we know that there are corresponding equivalence classes

XN
st (a) := X(eNst(a)) = [eNst(a); 1, X1(F (RN , eNst(a)))] ∈ π1(YN ).
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Then Lemma 4.2.1.(c) allows us to calculate directly in each case (we omit some of the “bullets” that indicate

group operation in homotopy groups as in Chapter 1, and understand concatenation to stand for this):

1. Since eNij (a) ◦ eNij (b) := eNij (a)eNij (b) = eNij (a + b) for elementary matrices eNij (a) and eNij (b) we let

E1 = eNij (a) and E2 = eNij (b) so that

XN
ij (a)XN

ij (b) = [eNij (a); 1, X1(F (RN , eNij (a)))][eNij (b); 1, X1(F (RN , eNij (b)))]

= [eNij (a) ◦ eNij (b); 1, X1(F (RN , eNij (a) ◦ eNij (b)))] = [eNij (a+ b); 1, X1(F (RN , eNij (a+ b)))]

= XN
ij (a+ b)

2. We use associativity,

eNij (a)eNjl (b)(e
N
ij (a))−1(eNjl (b))

−1 = (eNij (a)eNjl (b))((e
N
ij (a))−1(eNjl (b))

−1) = eNil (ab),

and Lemma 4.2.1.(d).

XN
ij (a)XN

jl (b)(X
N
ij (a))−1(XN

jl (b))
−1 = ([eNij (a); 1, X1(F (RN , eNij (a)))]

•[eNjl (b); 1, X1(F (RN , eNjl (b)))])([e
N
ij (a); 1, X1(F (RN , eNij (a)))]−1[eNjl (b); 1, X1(F (RN , eNjl (b)))]

−1)

= ([eNij (a); 1, X1(F (RN , eNij (a)))][eNjl (b); 1, X1(F (RN , eNjl (b)))])

•([eNij (a)−1; 1, X1(F (RN , eNij (a)−1))][eNjl (b)
−1; 1, X1(F (RN , eNjl (b)

−1))])

= [eNij (a)eNjl (b); 1, X1(F (RN , eNij (a)eNjl (b)))]

•[(eNij (a))−1(eNjl (b))
−1; 1, X1(F (RN , (eNij (a))−1(eNjl (b))

−1))]

= [eNij (a)eNjl (b)(e
N
ij (a))−1(eNjl (b))

−1; 1, X1(F (RN , eNij (a)eNjl (b)(e
N
ij (a))−1(eNjl (b))

−1))]

= [eNil (ab); 1, X1(F (RN , eNil (ab)))]

= XN
il (ab).

3. Once again we calculate directly using eij(a)ekl(b) = ekl(b)eij(a) :

XN
ij (a)XN

kl (b) = [eNij (a); 1, X1(F (RN , eNij (a)))][eNkl(b); 1, X1(F (RN , eNkl(b)))]

124



= [eNij (a)eNkl(b); 1, X1(F (RN , eNij (a)eNkl(b)))]

= [eNkl(b)e
N
ij (a); 1, X1(F (RN , eNkl(b)e

N
ij (a)))]

= [eNkl(b); 1, X1(F (RN , eNkl(b)))][e
N
ij (a); 1, X1(F (RN , eNij (a)))]

= XN
kl (b)X

N
ij (a).

4. Suppose that F is any standard admissible filtration of (RN , eNij (a)). Then

σ(eNij ; 1, X1(F (RN , eNij (a)))) = (eN+1
ij (a); g̃0, g̃1),

where

g̃0 = s1d1w1(eNij (a), eN+1
ij (a); l),

l being the short exact sequence (RN , eNij (a))→ (RN+1, eN+1
ij (a))→ (R, 1), and

g̃1 = X1(F (RN , eNij (a)))w1(eNij (a), eN+1
ij (a); l) := X1((F ⊕ 1)(RN+1, eN+1

ij (a)))

where F ⊕ 1 is the standard admissible filtration of (RN+1, eN+1
ij (a)) obtained by inserting the usual

inclusion RN ⊂ RN+1 at the end of F . Therefore, we may conclude that σ∗(X
N
ij (a)) = XN+1

ij (a).

�

As an immediate corollary to the last theorem above we have

Theorem 4.3.4 For every N there is a homomorphism of groups

fN : St(N,R)→ π1(YN ),

defined on the usual Steinberg generators xNij (a)by

fN (xNij (a)) = XN
ij (a),

such that the following diagram commutes:

St(N,R)
ιN,N+1 //

fN

��

St(N + 1, R)

fN+1

��
π1(YN )

σ∗ // π1(YN+1)

.
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The top arrow is the usual “stabilization” homomorphism for the Steinberg groups as seen in Chapter 2.

Thus, passing to the direct limit there exists a homomorphism of groups

f : St(R)→ lim−→
N,σ∗

π1(YN ) = π1(lim−→
N,σ

YN ) = π1(Y (R)),

such that

f(xij(a)) = (jN )∗(X
N
ij (a)),

and N is such that i, j ≤ N , jN : YN → Y (R) is one of the maps defining the direct limit.
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Chapter 6

Connecting K2(R) to π2(G(N(QPR)))

1 Connecting the Exact Sequences

In this chapter, we drop the subscript N when referring to the direct limit, understanding that statements

made with respect to this limit are with regard to the proper maps “for sufficient N”. Therefore we have

maps such as λ1∗ : π1(N(GL(R)))→ π1(I(R)) in the direct limit, for example.

We use the isomorphisms developed in Chapters 4 and 5 to define an isomorphism f̃ : K2 → π2(G(s.PR)),

which will then combine with the theory of Chapter 3 to allow an isomorphism from K2 to π2(G(N(QPR))).

Consider what we can describe explicitly so far, using the defined maps and the long exact sequences:

· · · // 1 // K2(R)
iK // St(R)

φ // GL(R)
π // K1(R)

· · · iY ∗// π2(I(R))
p∗ // π2(G(s.PR))

d] //
��
f̃

�
�
�

π1(Y (R))
iY ∗ //

��
f

π1(I(R))
p∗ //

��
λ1∗

π1(G(s.PR))
��
Q′ .

The top sequence is the exact sequence for K-groups involving K2(R) as in Chapter 5 of [8], and the bottom

sequence is the long exact sequence of the Kan Fibration p : I→ G(s.PR) as in Lemma 3.1.5 of Chapter 5

and Definition 3.2.3 of Chapter 1.

By Lemma 3.1.4 of Chapter 5 we know πn(I(R)) ≈ πn(N(GL(R))) ∀n. But since GL(R) is a group

we know from Example 5.1.2 of Chapter 1 that N(GL(R)) is reduced, hence π0(N(GL(R))) := 1. Also

N(GL(R)) has the property that πn(N(GL(R))) := 1 ∀ n > 1 as in Example 5.1.3 of Chapter 1. Therefore

π0(I(R)) ≈ π0(N(GL(R))) = 1

and

π2(I(R)) ≈ π2(N(GL(R))) = 1.
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Now we can work with the exact sequences

1 // K2(R)
iK // St(R)

φ // GL(R)
π // K1(R)

1
p∗// π2(G(s.PR))

d] //
��
f̃

�
�
�

π1(Y (R))
iY ∗ //

��
f

π1(I(R))
p∗ //

��
λ1∗

π1(G(s.PR))
��
Q′

and the following results.

Theorem 1.0.1 The following diagram commutes:

St(R)
φ // GL(R)

π1(Y (R))
iY 1∗ //

��
f

π1(I(R))
��
λ1∗ .

Proof: With sufficient N ∈ N for the direct limits involved, we show

iY 1∗(fN (xNij (a))) = [eNij (a); 1, X1(F (RN , eNij (a)))] = [λ(eNij (a))] = [λ(φ(xNij (a)))],

where F is a standard, admissible filtration of (RN , eNij (a)) (hence a standard, admissible filtration of

(RN , 1N ) and (RN , eNij (a)|1N ) as well). We do this directly in IN : that is, for

x1 = (eNij (a); 1, X1(F (RN , eNij (a))))

and

x2 = (eNij (a); s0iN (eNij (a)), s1iN (eNij (a)))

we have x1 ∼ x2 ∈ IN1 via

y = (eNij (a)|1N : s0X1(F (RN , eNij (a))), s1X1(F (RN , eNij (a))), X2(F (RN , eNij (a)|1N )))

= (eNij (a)|1N ;h0, h1, h2).

Indeed, we have d0x1 = d0x2 = (RN ; 1) and d1x1 = d1x2 = (RN ; 1); also,

d1h1 = X1(F (RN , eNij (a))) = d1h0 = d2h2 = d2h1
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and d3h2 = iN2(eNij (a)). Therefore y ∈ IN2 and we calculate

d0y = (1N ; d0h1, d0h2) = (1N ; 1, X1(F (RN , 1N ))) = (1N ; 1, 1) = s0d0x1 = s0d0x2,

d1y = (1N ◦ eNij (a); d2h0, d1h2) = (eNij (a); 1, X1(F (RN , eNij (a)))) = x1,

and

d2y = (eNij (a); d3h0, d3h1) = (eNij (a); s0iN1(eNij (a)), s1iN1(eNij (a))) = x2.

Therefore y is a homotopy from x1 to x2 by Definition 1.3.1 of Chapter 1. Extending this from generators

to groups, it follows that iY 1∗ ◦ f = λ∗ ◦ φ and the diagram commutes.

�

We note from this that by definition of the homotopy equivalences we have λ1∗ := (∂∗)−1
∗ . Also, by

Theorem 1.2.6 from Chapter 3, it makes sense that the rightmost square of the diagram with the long exact

sequences should commute up to a sign at worst. However, we have not confirmed this explicitly yet and

this data is not needed for our final result.

Theorem 1.0.2 The map f : St(R)→ π1(Y (R)) from Lemma 4.3.4 of Chapter 5 is an isomorphism.

Proof: We argue in a parallel fashion to Nenashev ([13], page 230), although we are careful to notice that

our homotopy fiber Y (R), derived from G(s.PR), is not the same as the one Nenashev derived from G.PR.

Nevertheless, similar properties hold: we note that as induced maps from weak homotopy equivalences

we have λ−1
1∗ = (∂∗1 )∗, so that from Theorem 1.0.1 the diagram

St(R)
φ //

f %%LLLLLLLLLL
E(R)

π1(Y (R))

(∂∗1 )∗◦iY 1∗

99ssssssssss

makes sense and commutes.

From [10] and [1] we recognize that Quillen’s +-construction has a Universal Property : if Ỹ (R) is the

topological homotopy fiber identified with our simplicial homotopy fiber Y (R), then there is a topological

homotopy fibration (see [6])

Ỹ (R)
j→ |N(GL(R))|

+

→ |N(GL(R))|+,
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and there is a continuous function f̂ for which, up to homotopy, the diagram

Ỹ (R)
j //

f̂

��

|N(GL(R))|
+

//

=

��

|N(GL(R))|+

|p1◦λ1|+

��
|Y (R)|

|∂∗1◦iY 1|// |N(GL(R))|
|p1◦λ1|◦+// |G(s.PR)|+

commutes. [10] also gives functoriality of geometric realization, as well as the +-construction, so that |p1◦λ1|

is a weak homotopy equivalence. It follows that f̂ must also be a weak homotopy equivalence. Thus

f̂∗ : π1(Ỹ (R))→ π1(|Y (R)|) := π1(Y (R))

is an isomorphism.

The work of Loday and Suslin (as reflected in [10]) tells us that there is an isomorphism θ : π1(Ỹ (R))→

St(R) for which the diagram

St(R)
φ // GL(R)

π1(Ỹ (R))

j∗

99ssssssssssθ

eeKKKKKKKKK

commutes. We claim that because of this, the diagram

St(R)
θ◦f̂−1
∗ ◦f //

φ $$HHHHHHHHH
St(R)

φ{{vvvvvvvvv

E(R)

also commutes. Indeed, by the diagrams we have so far,

φ ◦ θ = j∗ = (∂∗1)∗ ◦ iY 1∗ ◦ f̂∗,

so now

φ ◦ θ ◦ f̂−1
∗ = (∂∗1)∗ ◦ iY 1∗,

hence by Theorem 1.0.1

φ ◦ θ ◦ f̂−1
∗ ◦ f = (∂∗1 )∗ ◦ iY 1∗ ◦ f = (∂∗1)∗ ◦ λ1∗ ◦ φ = φ.

Now [8] tells us that the only endomorphism of St(R) for which the last diagram above commutes is the
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identity endomorphism on St(R). Thus

θ ◦ f̂−1
∗ ◦ f = idSt(R),

in which case the map f must be an isomorphism. In fact, from a topological standpoint we can now write

f := f̂∗ ◦ θ−1.

�

From Lemma 3.1.4 of Chapter 5 we know that λ∗ : π1(N(GL(R))) → π1(I(R)) is an isomorphism, and

from Example 5.1.3 of Chapter 1 we know that π1(N(GL(R))) := GL(R), so that λ1∗ : GL(R) ≈ π1(I(R)).

Consider the diagram

1 // K2(R)
iK // St(R)

φ // GL(R)

1 // π2(G(s.PR))
d] //

��
f̃

�
�
�

π1(Y (R))
iY ∗ //

��
f

π1(I(R))
��
λ1∗

Using the isomorphisms f and λ∗, we construct the map f̃ via diagram-chasing, then show that it is an

isomorphism. Note that since π2(I(R)) = 1, from Definition 3.2.3 of Chapter 1 we know d] : π2(G(s.PR))→

π1(Y (R)) must be injective.

Given z ∈ K2(R), the inclusion map iK makes z ∈ St(R). By Theorem 1.0.1,

iY ∗(f(z)) = λ1∗(φ(z)).

But by exactness,

λ1∗(φ(z)) = λ1∗(φ(iK(z))) = λ1∗(1) = 1

since iK(z) ∈ ker(φ). Therefore f(z) ∈ ker(iY ∗). But ker(iY ∗) = im(d]) by exactness, so there must be an

element v ∈ π2(G(s.PR)) for which f(z) = d](v). Therefore we set

f̃(z) := v.

Since d] is injective as noted, this element v must be uniquely assigned for z, in which case f̃ is well-defined.

Suppose that f̃(z1z2) = y ∈ π2(G(s.PR)). Then

d](y) = f(z1z2) = f(z1)f(z2) = d](y1)d](y2)
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for some y1, y2 ∈ π2(G(s.PR)), and we have f̃(z1) = y1 and f̃(z2) = y2. But also

f(z1)f(z2) = d](y1)d](y2) = d](y1y2),

so now d](y) = d](y1y2), in which case y = y1y2 since d] is injective. Therefore

f̃(z1z2) = f̃(z1)f̃(z2)

and f̃ is a homomorphism. Now suppose f̃(z1) = y1, f̃(z2) = y2 and y1 = y2. Then d](y1) = f(z1),

d](y2) = f(z2) and d](y1) = d](y2), hence f(z1) = f(z2). But f is an isomorphism, so it follows that z1 = z2

and thus f̃ is injective.

Since f is an isomorphism, if v ∈ π2(G(s.PR)) then there is an element q ∈ St(R) for which f(q) =

d](v) ∈ π1(Y (R)) (we must show that q ∈ ker(φ) := K2(R)). By Theorem 1.0.1 and exactness we have

λ1∗(φ(q)) = iY ∗(f(q)) = iY ∗(d](v)) = 1.

Thus λ1∗(φ(q)) = 1, hence φ(q) = 1 since λ1∗ is an isomorphism and it follows that q ∈ ker(φ) := K2(R), so

that f̃ is surjective. We have now proven our concluding result:

Theorem 1.0.3 The map f̃ : K2(R)→ π2(G(s.PR)) defined by

f̃(z) = v such that d](v) = f(z) in the diagram

1 // K2(R)
iK // St(R)

φ // GL(R)

1 // π2(G(s.PR))
d] //

��
f̃

�
�
�

π1(Y (R))
iY ∗ //

��
f

π1(I(R))
��
λ1∗

is an isomorphism.
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