

THESIS

TOP-DOWN CLUSTERING BASED SELF-ORGANIZATION OF

COLLABORATIVE WIRELESS SENSOR NETWORKS

Submitted by

H. M. N. Dilum Bandara

Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall, 2008

ii

COLORADO STATE UNIVERSITY

July 21, 2008

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR
SUPERVISION BY H. M. N. DILUM BANDARA ENTITLED “TOP-DOWN
CLUSTERING BASED SELF-ORGANIZATION OF COLLABORATIVE WIRELESS
SENSOR NETWORKS” BE ACCEPTED AS FULLFILING IN PART
REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Committee Member – Dr. Daniel F. Massey

Committee Member – Dr. V. Chandrasekar

Adviser – Dr. Anura P. Jayasumana

Department Head – Dr. Anthony A. Maciejewski

iii

ABSTRACT OF THESIS

TOP-DOWN CLUSTERING BASED SELF-ORGANIZATION OF
COLLABORATIVE WIRELESS SENSOR NETWORKS

Recent advances in Wireless Sensor Network (WSN) technology are enabling the

deployment of large-scale and collaborative sensor networks. Energy efficient operation,

channel contention, latency, management, and security of such networks are complex and

critical issues that have to be addressed with large-scale WSN deployments.

Collaborative sensor networks further require dynamic grouping of nodes observing

similar events and communication within such groups or across different groups. Cluster

based organization of large sensor networks is the key for many techniques that addresses

these issues. A backbone network in the form of a cluster tree can further enhance upper

layer functions such as routing, broadcasting, and in-network query processing.

A configurable cluster and cluster tree formation algorithm is presented that is

independent of network topology and does not require a-priori neighborhood information,

location awareness, or time synchronization. Configurable parameters of the algorithm

can be used to form cluster trees with desirable properties such as controlled breadth and

depth, uniform cluster size, and more circular clusters. Message complexity of the

algorithm grows linearly with the number of nodes in the network, therefore algorithm

scales well into large networks. Two-step, post cluster optimization phase is proposed to

iv

increase the connectivity of the network and to further reduce the depth of the cluster

tree. Simulation based analysis shows that the algorithm forms more circular and uniform

clusters, cluster tree with lower depth, and more importantly forms a more ordered

structure in the network. Closeness of clusters to hexagonal packing is evaluated. The

structure imposed by the algorithm makes it applicable to broad classes of applications.

The proposed cluster tree based routing strategy facilitates both node-to-sink and

node-to-node communication. Hierarchical addresses that reflect the parent-child

relationship of cluster heads is used to route data along the cluster tree. Utilization of

cross-links among neighboring cluster heads and a circular path within the network

approximately doubles the capacity of the network. Under ideal conditions, this approach

guarantees delivery of events/queries and has a lower overhead compared to routing

strategies such as rumor routing and ant routing. The cluster tree formed by our algorithm

is used to identify and form Virtual Sensor networks (VSNs), an emerging concept that

supports resource efficient collaborative WSNs. Our implementation of VSN is able to

deliver unicast, multicast, and broadcast traffic among nodes observing similar events,

efficiently. Efficacy of the VSN based approach is evaluated by simulating a subsurface

chemical plume monitoring system. The algorithm is further extended to support the

formation of a secure backbone that can enable secure upper layer functions and dynamic

distribution of cryptographic keys, among nodes and users of collaborative sensor

networks.

H. M. N. Dilum Bandara
Electrical and Computer Engineering Department

Colorado State University
Fort Collins, CO 80523

Fall, 2008

v

ACKNOWLEDGMENTS

I would like to acknowledge and extend my heartfelt gratitude to many people for

their support and encouragement that has made the completion of this thesis possible.

It has been the most wonderful experience of my life as a scholar to work under

the guidance of my adviser, Prof. Anura Jayasumana. I am very much thankful to him for

believing in my abilities, inspiration, sound advice, patience, and invaluable support in

every aspect.

Special thanks must go to Dr. Indrajit Ray for his guidance and sound advice. I

also would like to thank Prof. Chandrasekhar, Dr. Massey, and other lectures from the

Electrical and Computer Engineering, and Computer Science departments. The extensive

support from Prof. Tissa Illangasekare and Kevin Barnhart from Colorado School of

Mines was immensely helpful.

I am grateful to Tarun, Lee, Ram, Supriya, Saket, Raghunandan, and Dulanjalie,

colleagues of the Computer Networking Research Laboratory (CNRL), for their

guidance, support, and invaluable thoughts. I am indebted to my parents and my loving

wife for their continuous support and encouragement. I also would like to thank peers and

every individual that I may have not mentioned above that helped me in various ways.

This work is supported in part by the grant from Environmental Sciences

Division, Army Research Office (AMSRD-ARL-RO-EV).

vi

To my parents and my loving wife Sudeshini

vii

TABLE OF CONTENTS

List Of Tables ... xi

list Of Figures .. xii

Chapter 1 – Introduction ... 1

1.1 Motivation .. 1

1.2 Contributions.. 4

1.3 Outline.. 7

Chapter 2 – Background And Related Work ... 8

2.1 Clustering In Wireless Sensor Networks ... 8

2.2 Hierarchical Wireless Sensor Networks .. 11

2.3 Wireless Sensor Network Routing Protocols ... 14

2.4 Key Distribution In Wireless Sensor Networks ... 18

2.5 Collaborative Wireless Sensor Networks .. 22

2.6 Summary .. 24

Chapter 3 – Problem Formulation .. 25

3.1 Desirable Characteristics Of The Solution .. 25

3.1.1 Desirable Characteristics Of Clusters And Cluster Trees .. 26

3.1.2 Desirable Characteristics Of Routing Protocols .. 30

3.1.3 Desirable Properties Of Secure Backbones.. 31

3.2 Network Model .. 32

3.3 Problem Statement ... 33

viii

Chapter 4 – Cluster And Cluster Tree Formation .. 34

4.1 Generic Top-Down Cluster And Cluster Tree Formation Algorithm 34

4.2 Achieving Desirable Characteristics .. 37

4.3 Message Complexity Of The Algorithm.. 45

4.4 Performance Analysis .. 47

4.4.1 Metrics ... 47

4.4.2 Cluster Characteristics ... 49

4.4.2.1 Single-hop Clusters .. 49

4.4.2.2 Multi-hop Clusters ... 56

4.4.3 Cluster Tree Characteristics ... 58

4.5 Summary .. 60

Chapter 5 – Extended Top-Down Cluster And Cluster Tree Formation Algorithm 63

5.1 Extended GTC Algorithm .. 64

5.2 RSSI Based Cluster Head Selection .. 66

5.3 Cluster And Cluster Tree Optimization Phase ... 69

5.4 Depth Of The Cluster Tree .. 72

5.5 Performance Analysis .. 75

5.5.1 Cluster Characteristics ... 76

5.5.2 Cluster Tree Characteristics ... 86

5.6 Summary .. 92

Chapter 6 – Routing.. 94

6.1 Cluster Tree Based Routing ... 95

6.1.1 Hierarchical Addressing ... 96

6.1.2 Addressless Routing ... 101

6.1.3 Relative Branch Number Based Addressing .. 103

6.2 Cross-links Based Routing ... 106

6.3 Circular Path Based Routing .. 109

6.4 Performance Analysis .. 119

6.5 Summary .. 124

ix

Chapter 7 – Towards Virtual Sensor Networks ... 125

7.1 Virtual Sensor Network Support Functions ... 126

7.2 Cluster Tree Based Virtual Sensor Network Formation 128

7.3 Inter-VSN and Intra-VSN Communication ... 134

7.4 VSN Based Close Loop System .. 135

7.5 Performance Analysis .. 143

7.5.1 VSN Formation .. 143

7.5.2 Inter VSN Communication .. 147

7.5.3 Close Loop System .. 151

7.6 Summary .. 156

Chapter 8 – Secure Backbone Design ... 158

8.1 Secure Backbone Formation .. 159

8.1.1 Secure GTC Algorithm .. 159

8.1.2 Achieving Desirable Characteristics .. 162

8.2 Performance Analysis .. 165

8.3 Summary .. 174

Chapter 9 – Summary .. 175

9.1 Conclusions .. 175

9.2 Contributions.. 179

9.3 Future Directions ... 180

Appendix A – Simulator ... 183

A.1 Node Placement ... 183

A.2 Cluster And Tree Formation .. 184

A.3 Signal Propagation Model.. 185

A.4 Energy Model... 187

A.5 Close Loop System .. 188

A.6 Key Pre-distribution ... 191

x

Appendix B – Source Code... 193

References .. 233

Abbreviations .. 241

xi

LIST OF TABLES

Table 5.1 – Number of control messages per node. .. 86

Table 5.2 – Comparison of theoretical and empirical depth of the cluster tree. 87

Table 7.1 – Symbols used in the energy model. 139

Table A.1 – Parameters related to signal propagation model. .. 186

Table A.2 – Corresponding transmission ranges for given transmission power levels. . 186

Table A.3 – Parameters related to energy model. ... 188

Table A.4 – Sizes of different packets. ... 188

Table A.5 – Close loop simulation parameters. .. 190

Table A.6 – Parameters of each key pre-distribution scheme. 191

xii

LIST OF FIGURES

Figure 2.1 – IEEE 802.15.4 cluster tree. ... 13

Figure 2.2 - Two geographically overlapped VSNs…. .. 23

Figure 3.1 – Different ways of selecting next child cluster head in top-down clustering. .
... 28

Figure 4.1 – Generic top-down cluster and cluster tree formation algorithm. 35

Figure 4.2 – Physical shape of ideal SHC clusters. . .. 38

Figure 4.3 – Physical shape of ideal HHC clusters. .. 39

Figure 4.4 – Breadth-first cluster tree formation – starting time of different clusters. 42

Figure 4.5 – A node that is disconnected in a 2-hop cluster. ... 45

Figure 4.6 – Physical shape of clusters. ... 50

Figure 4.7 – Coverage map of HHC clusters. ... 51

Figure 4.8 – Circularity of single-hop clusters. .. 52

Figure 4.9 – Circularity of single-hop HHC clusters for different network densities. 53

Figure 4.10 – Circularity of clusters formed by SHC, HHC, and FLOC. 54

Figure 4.11 – Number of clusters and CHs. ... 55

Figure 4.12 – Number of nodes in a cluster. ... 55

Figure 4.13 – Distribution of cluster size. .. 56

Figure 4.14 – Circularity of multi-hop clusters. ... 57

Figure 4.15 – Distribution of nodes along the cluster tree – Single-hop clusters. 59

Figure 4.16 – Distribution of nodes along the cluster tree – Multi-hop clusters. 59

Figure 4.17 – Physical shape of HHC cluster tree – High transmission range. 60

Figure 4.18 – Physical shape of HHC cluster tree – Low transmission range.................. 61

xiii

Figure 5.1 – Extended generic top-down cluster and cluster tree formation algorithm. .. 64

Figure 5.2 – Propagation of cluster formation broadcast. ... 67

Figure 5.3 – Algorithm that handles non-cluster members. ... 70

Figure 5.4 – Cluster tree optimization algorithm. ... 70

Figure 5.5 – Ideal hexagonal packing. .. 73

Figure 5.6 – Circularity of clusters. .. 77

Figure 5.7 – Circularity of HHC and RSSI based HHC clusters. 77

Figure 5.8 – Circularity of cluster for different network densities. 78

Figure 5.9 – Circularity of clusters under uncertainties in signal strength. 80

Figure 5.10 – Reduction in circularity due to the optimization phase. 80

Figure 5.11 – Number of clusters and cluster heads. .. 81

Figure 5.12 – Number of clusters produced by networks of different sizes. 82

Figure 5.13 – Number of clusters and cluster heads produced by optimization phase. 82

Figure 5.14 – Cluster size distribution. ... 83

Figure 5.15 – Cluster size under uncertainties in signal strength. 84

Figure 5.16 – Number of nodes not in a cluster. .. 85

Figure 5.17 – Number of control messages. .. 86

Figure 5.18 – Distribution of CHs at different levels of the cluster tree. 87

Figure 5.19 – Cluster tree improvement with optimization phase. 88

Figure 5.20 – Physical shape of the cluster tree before the optimization phase. 89

Figure 5.21 – Physical shape of the cluster tree after the optimization phase. 90

Figure 5.22 – HHC cluster formation in a network with an open region. 91

Figure 5.23 – Distribution of cluster in the sensor field. ... 92

Figure 5.24 – Distance vs. depth in the cluster tree. .. 93

Figure 6.1 – A hypothetical cluster tree formed with HHC clustering. 95

Figure 6.2 – A hypothetical cluster tree labeled with hierarchical addresses. 97

Figure 6.3 – Pseudo code to determine next hop. ... 98

Figure 6.4 – Variable length hierarchical addresses. .. 101

Figure 6.5 – A cluster tree that connects heterogeneous devices. 102

Figure 6.6 – Alternative cluster tree labeling scheme based on branch numbers. 104

xiv

Figure 6.7 – A cluster tree with cross-links among neighboring CHs. 107

Figure 6.8 – A cluster tree with a circular path. .. 109

Figure 6.9 – Positions of a source and a destination node trying to communicate through
the cluster tree. ... 111

Figure 6.10 – Area covered by a small ring of Δr... 112

Figure 6.11 – Different positions of a source and a destination node trying to
communicate using the cluster tree and the circular path. ... 113

Figure 6.12 – Probability of a message going through the root node or the circular path.
... 119

Figure 6.13 – Number of messages delivered. .. 120

Figure 6.14 – Energy required to send a message. ... 120

Figure 6.15 – Fraction of energy remaining in the entire network. 121

Figure 6.16 – Circular path based routing - energy required to send a message. 122

Figure 6.17 – Circular path based routing – number of messages delivered. 123

Figure 6.18 – Number of messages delivered by each routing scheme. 124

Figure 7.2 – VSN formation algorithm. .. 129

Figure 7.2 – VSN formation steps. 129

Figure 7.3 – A hypothetical sensor field that tracks chemical plumes. 131

Figure 7.4 – Different layers and their interactions in a VSN based close loop system..137

Figure 7.5 – Sampling schedule of different nodes. 138

Figure 7.6 – Event regions. 143

Figure 7.7 – Virtual tree formed by nodes detecting events in a single region. 144

Figure 7.8 – Virtual tree that connects three event regions. ... 145

Figure 7.9 – Total number of hops travelled by VSN formation message. 146

Figure 7.10 – Number of unicast messages. 148

Figure 7.11 – Number of multicast messages. .. 149

Figure 7.12 – Variation in number of messages with different number of VSN members.
... 150

Figure 7.13 – Messages delivered with different routing schemes. 150

Figure 7.14 – Unicast messages delivered with different routing schemes. 152

Figure 7.15 – Position of two migrating plumes at day 238. . .. 153

xv

Figure 7.16 – Energy consumed while tracking the plume. ... 154

Figure 7.17 – Incremental energy consumed while tracking the plume. 154

Figure 7.18 – Energy consumed while tracking the plume based on the energy model. 155

Figure 7.19 – Energy consumed while tracking hazardous gases. 156

Figure 7.20 – Amount of data transferred between node and plume monitoring and
prediction system. ... 157

Figure 8.1 – GTC algorithm that forms a secure backbone. ... 160

Figure 8.2 – Circularity of clusters. ... 166

Figure 8.3 – Number of clusters and cluster heads. .. 167

Figure 8.4 – Number of nodes in a cluster. ... 168

Figure 8.5 – Number of nodes not in a cluster. ... 169

Figure 8.6 – Number of control messages per node. ... 170

Figure 8.7 – Control message overhead. ... 171

Figure 8.8 – Distribution of CHs in the cluster tree. ... 172

Figure 8.9 – Direct and indirect impact of compromised nodes. 173

Figure A.1 – Variation in RSSI. ... 187

1

Chapter 1

INTRODUCTION

Recent advances in wireless communications and miniature, low power, and low

cost sensors are enabling the deployment of large-scale and/or collaborative Wireless

Sensor Networks (WSNs). These networks enhance the perception of our surrounding by

sensing the physical world around us at a far greater temporal and spatial granularity than

have been hitherto possible. Numerous WSN systems are being proposed and

implemented leading to novel applications in areas such as habitat monitoring [58],

eldercare, smart neighborhood [29, 62], disaster response, surveillance [69], and

battlefield intelligence [55].

 Section 1.1 presents the factors that motivated the project. Contributions of the

thesis are presented in Section 1.2. Section 1.3 provides a brief outline of the rest of the

thesis.

1.1 Motivation

Sensor networks are composed of large number of densely deployed sensor nodes

that are positioned either inside the phenomenon or very close to it. In most cases, these

nodes may be randomly deployed. Self-organization capabilities and corporation among

sensors are essential characteristics of these randomly deployed networks [3]. Energy

2

efficient operation, channel contention, latency, and management of such networks are

complex and critical issues that have to be addressed with large-scale WSN deployments.

In contrast to early sensor networks that were dedicated to a certain application,

collaborative networks that perform different tasks and deployed in the same

geographical region are emerging. e-SENSE [29] and U-City [62] are two such projects

that enable a smart neighborhood. Better resource efficiency can be achieved by allowing

these multiple networks to collaborate with each other [40] with many users accessing

different portions of the network. Privacy and dynamic key distribution are some of the

unique requirements of such collaborative networks.

Cluster based organization of large sensor networks is the key for many

techniques that address these issues [68]. In general, the network is decomposed into a set

of administrative entities called clusters, with each cluster formed by grouping a set of

nearby nodes. Each cluster is managed by a designated node called the Cluster Head

(CH). With many solutions based on clustering, the nodes within a cluster communicate

only with their CH. As a result, member nodes can use a lower transmission power to

reach the CH. This increases network lifetime, reduces collisions, and enables spatial

reuse of the communication channel [67]. The CHs are responsible for coordinating both

inter-cluster and intra-cluster communication. Communication among CHs can be via

either single or multi-hops. Clustering reduce the power consumption of the overall

network while increasing the network lifetime [68]. Number of messages that flow

through the network can be further reduced by aggregating data within a cluster [33, 67].

Applications that span large sensor fields and/or support data aggregation are prime

candidates for cluster-based configuration. Clustering is particularly useful for logically

3

separating multiple sensor applications that perform different tasks and deployed in the

same physical area [40].

Many clustering solutions have been proposed in literature some of which will be

discussed in Chapter 2. Solutions such as LEACH [33] and HEED [67] increase the

network lifetime by frequently alternating the role of a CH among different nodes and by

aggregating data. However, these solutions assume that each CH is capable of directly

communicating with the base station. This may not be possible in a geographically large

network where the base station is more than a hop away.

A backbone network that arranges CHs in the form of a cluster tree can be used to

forward data from individual clusters to the base station or to facilitate inter-cluster

communication. Cluster trees are useful in delivering unicast, multicast, broadcast traffic

[65], for data fusion, and for in-network query processing. Performance of such upper

layer functions depend on the number of hops between nodes and the base station. As the

hop count increases, both the latency and the energy to forward a message increase. For

many large-scale applications, it is desirable to have a cluster tree with a lower depth.

Though several hierarchical clustering solutions are being proposed [9, 47] they are either

not scalable or do not guarantee good connectivity as the networks become larger [20].

These solutions do not provide any mechanism to form and manage collaborative WSNs.

Virtual Sensor Networks (VSNs) is an immerging concept that supports

collaborative, resource efficient, and multipurpose sensor networks that may involve

dynamically varying subset of sensors and users [40]. Realization of VSNs requires

protocol support for formation, usage, adaptation, and maintenance of subset of sensors

collaborating on a specific task(s). Hence, there is still a need for a clustering solution

4

that facilitates most of the aforementioned characteristics of large and collaborative

WSNs. It is important to build a solution that imposes some predictable structure on the

network and is independent of network topology, neighborhood information, location

awareness, time synchronization, etc. The solution need to be scalable and should

facilitate the self-organization, management, and security requirements of VSNs and

other collaborative WSNs.

1.2 Contributions

Imposing some structure within the network to effectively achieve the application

objectives is an attractive option for the self-organization of large-scale WSNs. Cluster

based organization and arranging clusters in form of a tree simplifies many higher-level

functions and distributed application deployment. Security imposes additional restrictions

that need to be satisfied in collaborative WSNs. However, these properties are harder to

achieve in resource constrained WSNs.

The thesis presents Generic Top-down Cluster and cluster tree formation (GTC)

algorithm, a configurable algorithm that is capable of achieving most of the desirable

properties. A hybrid approach that combines local and neighbor information and

controllability of the top-down approach is exploited to achieve desired cluster and tree

characteristics. The algorithm is independent of network topology and does not require a-

priori neighborhood information, location awareness, or time synchronization. The

algorithm has a message complexity of O(n), where n is the number of nodes in the

network, hence scales well for large networks. Parameters in the algorithm allow cluster

and tree characteristics to be changed, e.g., to achieve uniform and circular clusters

5

and/or cluster trees with controlled breadth and depth. Simple Hierarchical Clustering

(SHC), a special case of GTC, is similar to the IEEE 802.15.4 cluster tree [38]. Another

special case, Hop-ahead Hierarchical Clustering (HHC) is presented that produces more

circular and uniform clusters, and cluster trees with lower depth. Two-step, post cluster

optimization phase is also proposed that improve the connectivity of the network and

reduce the depth of the cluster tree.

Simulation based analysis shows that the algorithm forms more circular and

uniform clusters and cluster trees with lower depth. Based on the cluster tree, the GTC

algorithm forms a more ordered structure in the network and has a bounded distance

between any parent and child CH. Our analysis shows that properties of HHC are

comparable with hexagonal packing, particularly for low-density networks. The HHC

forms more circular clusters than [9] and [25]. Receiver Signal Strength Indicator (RSSI)

based HHC forms even more uniform clusters and a cluster tree with lower depth. For

similar overhead, HHC forms both clusters and a cluster tree while [17] only forms set of

clusters. The proposed optimization phases further increase the connectivity of the

network and optimize the cluster tree.

The cluster tree formed by the HHC scheme of the GTC algorithm is used to

facilitates both node-to-sink and node-to-node communication. Hierarchical address

structure that reflects the parent-child relationship among CHs is designed. Such

hierarchical addresses greatly simplify routing. In addition, CHs need to store only the

routing entries related to their parent and child CHs. Cross-links among neighboring CHs

and a circular path within the network is formed to further enhance the capacity of the

network. These optimizations allow selection of multiple paths to a given destination

6

without being tied to the cluster tree. Hierarchical addresses are useful in this case to

determine the shortest paths to a given destination. These optimizations approximately

double the capacity of the network. Optimum position of the circular path is determined

analytically.

The cluster tree formed with HHC scheme is used to identify and form VSNs.

Nodes observing the same phenomenon send a message towards the root of the cluster

tree. These messages form a virtual tree rooted at the root node. This virtual tree can be

used to efficiently deliver unicast, multicast, and broadcast traffic among nodes observing

the same phenomenon. This approach is more suitable for large and collaborative sensor

networks because it grantees delivery of events and has a lower overhead compared to

approaches such as Rumor Routing [14], Zonal Rumor Routing [10] and Ant Routing

[35]. Localized and distributed phenomenon based simulations are utilized to determine

the feasibility of this approach. A subsurface chemical plume monitoring system is

simulated to further analyze the efficacy of the VSN based approach.

The algorithm is further extended to support the formation of a secure backbone

that can facilitate secure upper layer functions and dynamic distribution of network-wide

or group-wide cryptographic keys in collaborative sensor networks. The extended GTC

algorithm is independent of the key pre-distribution scheme. Simulation based analysis

shows that algorithm retains most of its desirable cluster and cluster tree characteristics,

while building the secure backbone. Our analysis also suggests that hierarchical WSNs

are more vulnerable to node capture than non-hierarchical networks.

7

1.3 Outline

Rest of the thesis is organized as follows. Following chapter describes current

work related to clustering, routing, and key distribution in WSNs. Chapter 3 describes the

desirable characteristics of a cluster and cluster tree formation algorithm, our network

model, and problem statement. The GTC algorithm and its performance analysis are

presented in Chapter 4. Further optimizations to the algorithm, post cluster optimization

phase, and extensive performance analysis are presented in Chapter 5. The hierarchical

addressing scheme and three routing strategies are presented in Chapter 6. Chapter 7

presents the mechanism used to identify and form VSNs and it is followed by the chapter

on secure backbone formation. Finally, concluding remarks and future work are

presented in Chapter 9. The appendices provide detailed explanation of the simulator and

its source code.

8

Chapter 2

BACKGROUND AND RELATED WORK

Clustering, routing, and security have been among the key research areas in

wireless sensor networks. In contrast to early sensor networks that were dedicated to a

certain application, collaborative networks that perform different tasks and deployed in

the same geographical region are emerging. These collaborative networks require either

adaptation of existing technologies or new inventions.

The chapter provides a brief description of existing work that motivated or

comparable with the ideas presented in the thesis. Section 2.1 describes the work related

to clustering in WSNs. Cluster tree formation approaches are described in Section 2.2.

WSN routing and security solutions are presented in Section 2.3 and 2.4, respectively.

Brief introduction to collaborative sensor networks is presented in Section 2.5.

2.1 Clustering In Wireless Sensor Networks

Energy efficient operation, channel contention, latency, and management are

complex and critical issues that have to be addressed with large-scale WSN deployments.

In large-scale sensor networks, faraway nodes have to depend on large number of

intermediate nodes to forward their data or have to use high transmission power. Former

approach increases the latency and power consumption of the entire network while later

9

approach increases the potential for collisions and significantly increases the power

consumption of nodes that are faraway. Many solutions and algorithms for overcoming

these problems depend on decomposing the network into number of administrative

entities called clusters [9, 17, 25, 28, 33, 44, 62, 67]. The structure imposed by clustering

makes it somewhat easier to manage the problems introduced by the complexity of large-

scale sensor networks. In general, the nearby nodes in a network are grouped into set of

clusters, with each cluster managed by a Cluster Head (CH). In many solutions, the

nodes within a cluster communicate only with their CH. Communication among CHs can

be via either single or multiple hops. The CHs are responsible for coordinating both inter-

cluster and intra-cluster communication. Applications that span a large sensor field such

as earthquake monitoring and applications that support data aggregation such as

microclimate and habitat monitoring are candidates for clustering. Clustering is

particularly useful for logically separating multiple applications that perform different

tasks and that are deployed in the same physical area [40].

Clustering based solutions have their own pros and cons [63, 67-68]. Clusters can

reduce the power consumption of a WSN, therefore increase the lifetime of the network

[68]. Nodes within a cluster need only to communicate with its CH where by allowing

each node to reduce its communication range [33, 67]. This allows the spatial reuse of

communication channel while reducing collisions. Number of messages that flow through

the network can be further reduced by aggregating data [33]. However, forming and

maintaining clusters is a complex task and the associated communication messages may

add considerable overhead. The rotation of the role of becoming a CH (e.g., to balance

10

the workload) and handling node dynamic such as new, moving, or deteriorating nodes

are among other issues that need to be addressed.

Cluster formation can be either distributed or centralized. A key challenge in both

of these approaches is the selection of the best set of CHs. The CHs can be selected based

on parameters such as node ID [44], node degree [21], residual energy [67], or

probabilistically [9, 33]. Lowest ID clustering [44], Distributed Clustering Algorithm

(DCA) [12], and Max-Min d-clustering [4] are solutions that are relatively simple to

implement, yet not directly applicable to WSNs because they are not energy aware.

LEACH [33] and HEED [67] are two distributed cluster formation solutions that achieve

longer network lifetime by probabilistically selecting CHs based on residual energy of

nodes and data aggregation. LEACH does not actually measure the residual energy of a

node instead assumes uniform energy consumption for all the CHs. Because of this

assumption, it does not guarantee good distribution of CHs. Some of these problems are

addressed in [66-67]. LEACH-C [33] proposes a centralized solution that further

enhances the network lifetime. Overhead of localized decision based distributed

clustering solutions such as [9, 17, 33, 67] are lower compared to centralized solutions

such as LEACH-C. However, lack of global knowledge limits the possibility of forming

optimum set of clusters (maximum spatial coverage with least number of clusters) in

distributed solutions.

A hybrid scheme that combines local and neighbor information can form better

clusters with lower overhead. FLOC [25] and ACE [17] are two such approaches that

form more uniform and circular clusters than the probabilistic approaches. The FLCO

(Fast, LOcal Clustering service) makes use of the dual-band wireless radio model. A CH

11

can reliably communicate with the nodes that are in its inner-band (i-band) and unreliably

with the nodes in its outer-band (o-band). A CH forms a solid-disk cluster by connecting

all the nodes that are within its i-band. Nodes that are outside the i-band of any CH later

join the closest CH, if it is within the o-band of that CH. FLOC forms none overlapping

and approximately equal size clusters. In ACE (Algorithm for Cluster Establishment),

CHs are selected using an iterative process based on neighborhood information. ACE

clusters are more circular and has properties closer to hexagonal packing. However,

iterative messages significantly increase the overhead of ACE. All the aforementioned

solutions assume that each CH is capable of directly communicating with the base

station. This may not be possible in a geographically large network where the base station

is beyond the maximum transmission range of a node.

2.2 Hierarchical Wireless Sensor Networks

A backbone network that arranges CHs in the form of a cluster tree can be used to

forward data from individual clusters to the base station or to facilitate inter-cluster

communication. Cluster trees are useful in delivering unicast, multicast, and broadcast

traffic [65], for data fusion, for in-network query processing, etc. Cluster trees can be

formed using either bottom-up or top-down approach.

In a bottom-up approach, the individual clusters are formed independently and

later combined together to form a higher-level structure such as a cluster tree. A bottom-

up, Probabilistic Hierarchical Clustering (PHC) solution is proposed in [9]. Each node

has different probabilities of becoming a CH at different levels of the hierarchy. At the

lowest level (level 1), nodes probabilistically form their own clusters within a multi-hop

12

neighborhood. These CHs are then combined together and form the next level (level 2) of

the hierarchy. Then another set of CHs from level 2 is probabilistically selected to

represent level 3. This process continues until the desired number of levels is formed. The

hierarchy is formed by connecting CHs in level i to a CH in level i + 1. Data is

aggregated at level 1 and passed to level 2, then from 2 to 3, and the highest level forward

the data to the base station. Threshold sensitive Energy Efficient sensor Network (TEEN)

protocol extends LEACH to form a similar hierarchy [47]. As we go up the hierarchy, the

distance between CHs of adjacent levels increases [20]. Therefore, ensuring connectivity

among these clusters in a geographically large network is not straightforward as well.

In top-down approach, a designated root node first forms its own cluster. It then

selects some of its neighbors to form their own clusters, which in turn cause some of their

neighbors to form the next level of clusters. This process continues until the entire sensor

field is covered. The cluster tree is formed by keeping track of parent and child CH

relationship.

The IEEE 802.15.4 standard [38] proposes a top-down cluster tree formation

approach. The Personal Area Network (PAN) coordinator, a fully functional device

capable of providing synchronization services, etc. and identified as the principal

coordinator of the network, forms the first cluster by choosing an unused PAN ID and

broadcasts beacon frames to neighboring nodes. A node receiving a beacon may request

to join the cluster at the PAN coordinator. If the PAN coordinator permits the node to

join, it adds the new node to its neighbor list as a child node and the newly joined node

adds the PAN coordinator as its parent node to its own neighbor list. It then keeps

forwarding beacon frames from the PAN coordinator and other nodes may then join the

13

cluster at this node. As seen in Figure 2.1 (extracted from [38]), nodes 1, 3, 4, 6, and 11

join the PAN coordinator with node ID 0. Then those nodes keep propagating beacon

frames allowing nodes 2, 7, 9, 10, 22, etc. to join the cluster. Once a predefined

application or network requirement such as number of nodes in a cluster or maximum

hop count is met, the PAN coordinator may instruct a node to become a coordinator of a

new cluster. This process continues until all the nodes are covered. The lines in Figure

2.1 represent only the parent child relationship of nodes and convey no information on

the physical shape of the cluster tree. It is unlikely that any of the clusters will be circular

in shape, except perhaps cluster one (PAN ID 1). The ZigBee standard proposes a

different implementation for clustering 802.15.4 networks based on the Motorola cluster

tree algorithm [46]. It first forms individual clusters and later combine them to form a

cluster tree based on the top-down approach. ACP [28] is another top-down cluster

Figure 2.1 – IEEE 802.15.4 cluster tree [38].

14

formation approach that depends on device location information. ACP produces a large

number of overlapping clusters. However, it does not form a cluster tree.

The bottom-up approach, although conceptually appears to be relatively simple,

involves considerable communication overhead while building the cluster tree and

provides very little or no control on depth and breadth of the tree formed. The top-down

approach provides better control while forming clusters and the cluster tree. For example,

hierarchical addresses can be assigned to clusters while the cluster tree is being formed,

which greatly simplify routing and only require CHs to keep track of its parent and child

CHs. Such an approach can also control the number of nodes in a cluster, breadth, and

depth of the cluster tree. However, uncontrolled top-down approaches such as the basic

scheme given in the IEEE 802.15.4 standard, result in undesirable cluster and tree

characteristics such as large variations in cluster size and distance to leaf nodes [5]. The

IEEE 802.15.4 standard however is quite flexible and does not prevent one from

deploying alternative clustering approaches.

2.3 Wireless Sensor Network Routing Protocols

Resource constrains, data-centric routing, many-to-one communication pattern,

redundant data, and inability to build a global addressing scheme make routing in sensor

networks challenging and different. Routing protocols are highly influenced by data-

centric nature of WSNs and data delivery models can be continuous, event-driven, query-

driven, or hybrid [1]. Data-centric routing requires naming schemes that reflect the

attributes of the phenomenon rather than addressing individual nodes. For example, in

most conventional WSN applications users are more interested in queries such as “which

15

areas are having temperature over 30 oC” [3]. However, things are somewhat different

with large and collaborative sensor networks. Such networks require some structure

within the network and tend to communicate across different nodes, networks (many-to-

many communication strategy), and users. WSN routing protocols can be broadly

classified as data-centric, hierarchical, and location based [1].

Flooding is the simplest routing approach that broadcasts events within the entire

network. Though this approach is simple to implement and requires no prior route setup,

it generates significantly large number of messages and energy is wasted due to

implosion, i.e., caused by duplicate message send to the same node. Gossiping is a

controlled form of flooding where an event is forwarded only to a randomly selected

node instead of a broadcast.

In Directed Diffusion, one of the key WSN routing protocols, the sink floods the

network with attribute-based queries [39]. As the query propagates through the network,

routing path to the sink is established. All receiving nodes cache the query and later

respond through pre-established paths if they observe matching event(s). On-demand data

delivery increases the energy efficiency of Directed Diffusion and does not require

keeping track of global network topology. However, this approach is less scalable and

overhead of flooding will dominate if new queries are frequent. Similar query flooding

mechanism that significantly increases the network lifetime is presented in [52]. It uses a

path selection mechanism that is energy aware. Event data is forwarded through different

paths so that it balances the energy consumption of intermediate nodes.

Sensor Protocols for Information via Negotiation (SPIN) is an event driven

protocol [41]. A node observing a certain event broadcasts an advertisement of the event

16

using meta-data. If any of its neighbors are interested in the event they will request the

actual data. Actual data is send only to those interested neighbors. Those neighbors then

send a new advertisement to their neighbors indicating the availability of data. Data will

be forwarded further, if those neighbors are interested. This approach is efficient if data

generation is infrequent. SPIN does not need to manage any network topology. However,

SPIN data advertisement mechanism does not guarantee delivery of an event to all the

interested nodes. If intermediate nodes are not interested in the event, data will not be

forwarded any further. Data advertisement and request messages add unnecessary

overhead, if many nodes are anyway interested in an event. Though these approaches

work for well-defined cases, they are not capable of supporting requirements of

collaborative sensor networks.

Rumor Routing [14] is another class of data-centric routing protocol that makes

use of agents to propagate both events and queries. It is a hybrid scheme that makes use

of constrained event and query flooding. An agent is generated when an event occurs.

These agents spread rumors about events across the network using long-lived packets. As

the agent is forwarded, path to the event is setup and intermediate nodes cache the event

details. A node querying an event generates another agent. These querying agents travel

through the network and try to discover a node that knows about the event. If such a node

is met, data stored in that node is used to figure out a path to the event. Rumor routing

achieves significant energy saving over data and event flooding. If events are frequent,

overhead of agents becomes dominant. Zonal Rumor Routing (ZRR) [10] is an extension

of Rumor Routing. In ZRR, the network is decomposed into a set of zones and agents are

randomly forwarded from one zone to another. This approach improves the number of

17

successfully delivered queries and reduces the energy consumption. Both Rumor Routing

and ZRR can be used to determine a set of nodes observing similar events in

collaborative sensor networks. However, neither of these solutions guarantees that two

nodes observing similar events will meet each other. Successful delivery depends on the

lifetime of agents and significantly high TTL (Time To Live) values are required to

achieve an acceptable success rate.

Ant routing proposes a mechanism to discover and maintain paths in ad-hoc

networks [35]. When a node wants to find and/or maintain a path to a destination, it sends

ants (similar to agents) searching for its destination. Ants collect path information as they

travel. When an ant reaches the destination, another ant is generated and it carries path

information back to the source. Over time, ants travel through different paths and try to

discover better paths. This approach is somewhat applicable for collaborative sensor

networks that require node-to-node or network-to-network communication. Like Rumor

Routing, this approach does not guarantees path discovery and requires long-lived ants.

Most of the hierarchical routing solutions are based on hierarchical clustering

solutions. LEACH [33] defines a simple hierarchical routing strategy where data is

aggregated at cluster heads and send directly to the base station using long-range

communication. TEEN (Threshold sensitive Energy Efficient sensor Network) [47]

extends the two level hierarchy of LEACH to multiple levels. The routing scheme

proposed in [9] is identical to TEEN. Both these solutions aggregate data at multiple

levels before forwarding to the base station. Hierarchy becomes a bottleneck as messages

are forced to follow the hierarchy. Nodes along the hierarchy die much faster and as a

result, these routing solutions have much lower capacity (i.e., network lifetime).

18

A multi-layer architecture that increases the network capacity is presented in [36].

Sensor nodes are arranged in a multi-layer architecture based on a binary tree. Nearby

nodes that belongs to the same level in the binary tree then form cross-links within

themselves (similar to a de Bruijn graph). These cross-links reduce the load on the

hierarchy and significantly increase the capacity of the network. A binary addressing

scheme is also proposed that simplifies routing across cross-links. However, authors do

not provide any explanation on how such a binary tree can be built and addresses can be

assigned. Use of a binary tree makes the solution less scalable for large-scale WSNs.

Geographic routing makes use of node location information (absolute or relative)

when forwarding data. A message is always forwarded to a node that is closer to the

destination. Though many geographic routing solutions exist, as they are beyond the

scope of the thesis those will not be discussed. Each routing solution has its own

advantages and disadvantages and only applicable for certain types of applications. None

of the previously mentioned solutions is directly applicable for large-scale and

collaborative WSNs. Hence, it is important to develop routing protocols that facilitates

the desired properties of large and collaborative WSNs.

2.4 Key Distribution In Wireless Sensor Networks

Security is a prime concern in large-scale WSNs used for collaborative and

mission critical applications. Due to resource constrains securing WSNs are not

straightforward and traditional security techniques used in wired and wireless networks

are not directly applicable [49]. In addition, unlike traditional networks, sensor nodes are

often deployed in inaccessible and inhospitable areas, presenting the added risk of

19

physical attacks such as node capture and physical tampering [15, 18, 49]. The wireless

nature of communication further aggravates the problem because attackers can easily

intercept, fabricate, or jam traffic. Lack of prior knowledge about the network topology

further complicates the design and verification of secure protocols [15, 18, 49]. Strong

and efficient distribution of cryptographic keys is the first step towards achieving these

objectives, on top of which may secure protocols can be implemented.

Though dynamic key assignment based on public key infrastructure is popular in

wired networks, it is not suitable for WSNs due to the complexity of implementation and

computational cost. A fully distributed key generation/distribution approach for

heterogeneous sensor networks based on Elliptic Curve Cryptography (ECC) is proposed

in [27]. Each sensor node is preloaded with a set of private keys, while nodes with

enhanced capabilities store public keys of all the other nodes. Nodes with enhanced

capabilities act as Cluster Heads (CHs) and form a backbone network. CHs assign

symmetric keys to child nodes. This approach requires nodes with enhanced capabilities

to be tamper proof, all nodes to be location aware, and make use of geographic routing.

Key assignment through a trusted base station is another approach. A hierarchical

key generation and diffusion algorithm based on parent-child relationship of nodes is

presented in [53]. A similar approach based on hierarchical CHs is presented in [15]. Use

of CHs reduces the depth of the hierarchy compared to [53]. Both of these solutions

require a large number of control messages to be transmitted among nodes requesting

keys, CHs, and the base station. The security of the system depends on the physical

security of the base station. In most cases, the base stations are also deployed in the same

20

inaccessible or inhospitable area as the sensor nodes which intern does not provide any

added security. The base station also becomes a single point of failure.

Key pre-distribution is currently the most attractive solution for key distribution

in WSNs due to its lower computational cost and communication overhead. A

randomized key pre-distribution scheme is proposed in [31]. Initially each node is loaded

with a fixed number of randomly selected keys from a large key pool. After deployment,

nodes try to discover common key(s) between their one-hop neighbors. If two neighbors

do not share a common key, they establish a secure path through a third neighbor.

Another scheme that achieves much higher resilience against small-scale node capture is

proposed in [19]. Though these approaches are relatively simple to implement, the

probability of sharing at least one common key between two neighbors is considerably

lower. Therefore, most of the nodes have to rely on a third node to establish a common

key. Ability to share at least one key with its neighbors is referred as the local

connectivity. These approaches are not directly applicable in hierarchical WSNs because

cluster membership is meaningless, if a node does not directly share a key with the CH.

A more deterministic scheme based on combinatorial design is presented in [42].

Local connectivity of this approach is also lower. Another solution based on Random

Block Merging in Combinatorial Design (RBMCD) is proposed in [16]. It combines the

desirable properties of [31] and [42] and ensures one or more common keys between any

two nodes. Combinatorial design has a compact and efficient algebraic description and

can use a group ID to identify a set of keys [42]. This yields a simple algorithm for

shared-key discovery, in which very little data needs to be transmitted between two nodes

trying to discover a key. Due to ease of key generation, pre-distribution, shared key

21

discovery, low computational cost, and low communication overhead combinatorial

approaches are much more attractive for hierarchical WSNs.

Another set of key pre-distribution schemes makes use of deployment knowledge

to effectively assign keys. An extended random key pre-distribution scheme based on

deployment knowledge is proposed in [26]. Nodes are deployed from different positions

in the network based on a 2-D Gaussian distribution. Each node selects a set of random

keys from a key pool. Each key pool shares a certain fraction of keys with its horizontal,

vertical, and diagonal neighbors. Key pools that are disjoint do not share any common

keys. Sharing across key pools significantly increase the local connectivity. This scheme

has a better resilience against localized node capture. A deployment knowledge based

combinatorial scheme is also proposed in [54]. Such schemes are desirable for

hierarchical WSNs due to higher local connectivity and resilience.

Most of the dynamic and key pre-distribution algorithms focus on resilience

against node compromise rather than on connectivity. Lower local connectivity is

acceptable in most small-scale sensor networks because such networks can still achieve

higher global connectivity through their neighbors. However, local connectivity is much

more important in hierarchical sensor networks as parent-child connectivity is

meaningless if nodes do not share a key. Therefore, key pre-distribution schemes such as

[16] and [26] are more desirable in hierarchical networks. In terms of network lifetime

and capacity what matters is the cluster and cluster tree performance. Hence, underlying

key distribution scheme should have a minimum impact on network performance and

should not considerably alter the cluster and cluster tree characteristics.

22

2.5 Collaborative Wireless Sensor Networks

In contrast to early sensor networks that were dedicated to a specific application,

collaborative networks that perform different tasks and deployed in the same

geographical region are emerging. e-SENSE [29] and U-City [62] are two such projects.

These networks combine several heterogeneous sensor networks that are deployed in the

same geographical region. Better resource efficiency can be achieved by allowing such

multiple networks to collaborate and share resources with each other [40]. Certain

sensing applications may also involve dynamically varying subset of sensor nodes [40]

and/or users [29, 62].

Virtual Sensor Networks (VSNs) is an emerging concept that supports such

collaborative, resource efficient, and multipurpose sensor networks that may involve

dynamically varying subset of sensors and users [40]. VSNs are useful in three major

classes of applications. Firstly, VSNs are useful in geographically distributed

applications, e.g., monitoring rockslides and animal crossing within a mountainous

terrain. Different types of devices that detect these phenomena can relay each other for

data transfer without having to deploy separate networks (Figure 2.2). Secondly, VSNs

are useful in logically separating multipurpose sensor networks, e.g., smart neighborhood

systems with multifunctional sensor nodes. Thirdly, VSNs can be used to enhance the

efficiency of systems that track dynamic phenomena such as subsurface chemical plumes

that migrate, split, or merge [6]. Such networks may involve dynamically varying subsets

of sensors, e.g., as a plume migrates nodes that monitors the plume changes.

A VSN can be formed by providing logical connectivity among these

collaborative sensors. Nodes can be grouped into different VSNs based on the

23

phenomenon they track (e.g., rockslides vs. animal crossing) or the task they perform.

VSNs are expected to provide the protocol support for formation, usage, adaptation, and

maintenance of subset of sensors collaborating on a specific task(s). It is also important to

handle the phenomenons that may migrate, merge, or split. VSNs should make efficient

use of intermediate nodes, networks, or other VSNs to deliver messages across members

of a VSN (Figure 2.2).

S

- VSN1 nodes - VSN2 nodes - Other nodes
Broadcast path from VSN1 member S to other VSN1 members

Figure 2.2 – Two geographically overlapped VSNs. Redrawn from [40].

This new concept opens up many new research directions. It is necessary to build

algorithms and protocols that support the formation and maintenance of VSNs on

resource constrained WSNs. Realization of VSNs require some structure within the

sensor filed, many-to-many routing, and implementation of many VSN management

functions. Formation of some structure within the sensor field can greatly simplify VSN

formation, management, and communication. In contrast to some conventional WSNs

that make use of many-to-one communication model (i.e., node-to-sink), VSNs require

communication within and across VSNs (i.e., many-to-many, Figure 2.2). VSN

management functions should be able to get new nodes into a VSN, remove nodes from a

VSN, detect multiple VSNs, allow them to communicate with each other, etc.

24

2.6 Summary

It is clear from the literature survey that there is a gap between existing solutions

and requirements of large and collaborative WSNs. Most of the cluster and cluster tree

formation solutions try to balance the energy consumption of the network. However,

majority of these solutions do not look into other important cluster and cluster tree

characteristics such as minimum overlap, uniform clusters, cluster tree with lower depth,

etc. Better connectivity, simplified routing, hierarchical addressing, detecting nodes

performing similar tasks, and security are among the prime requirements of VSNs. The

goal of the thesis is to come up with a set of solutions that makes VSN a reality.

25

Chapter 3

PROBLEM FORMULATION

Large and collaborative wireless sensor networks pose numerous challenges and

provide many opportunities to come up with novel solutions. However, achieving all the

desirable characteristics within a single algorithm/solution is not trivial in resource

constrained WSNs. Therefore, we propose a compound solution. Before presenting the

solution, it is necessary to define the scope of desirable characteristics of different

solutions, the environment under it will operate, and the boundary of the problem that is

being explored. Section 3.1 presents a detailed description of desirable characteristics of

clusters, cluster tree, routing, and secure backbone formation. The network model is

described in Section 3.2 and the problem statement is defined in Section 3.3.

3.1 Desirable Characteristics Of The Solution

Different solutions may desire different characteristics. A balanced approach that

combines all the characteristics is necessary to achieve the overall goal of collaborative

WSNs. Section 3.1.1 describes the characteristics of clusters and cluster trees.

Characteristics of WSN routing and secure backbone design are described in Sections

3.1.2 and 3.1.3 respectively.

26

3.1.1 Desirable Characteristics Of Clusters And Cluster Trees

Several attributes make a specific cluster and cluster tree formation solution more

appropriate for a given application. Such attributes include node connectivity, overlap

among clusters, cluster size, overhead of forming/managing clusters and cluster tree, and

latency.

 Clusters and the cluster tree must ensure connectivity of all the nodes in the

sensor field. Random deployment of nodes creates dense and sparse regions within the

sensor field. Random node placement does not ensure connectivity of all the nodes, even

if nodes are densely deployed. To ensure connectivity, a node must have sufficient

transmission power to reach at least one of its neighbors. By allowing a node to tune its

transmission power, connectivity of the network can be increased and overall energy

consumption can be reduced. Though most probabilistic and completely distributed

clustering solutions such as [9, 25, 33, 67] ensure that each node belongs to a cluster,

these clusters may be isolated in a geographically large network. Therefore, a cluster

formation solution should ensure some bounds on the distance between CHs.

It is important to cover a given sensor field with minimum number of clusters.

“Hexagonal clusters have the highest coverage area and can maintain coverage with the

least number of clusters” [64]. Overlapping clusters add redundancy [64] and increase the

intra-cluster signal contention [25]. A node may belong only to a single cluster yet this

decision is application dependent. It is also important to reduce the overlap among

clusters. Such none overlapping hexagonal or circular clusters allow better load balancing

within clusters, guaranteed upper bound on the number of clusters and depth of the

cluster tree, and generate a predictable network topology [25]. Having predictable

27

topology, even on a randomly deployed network, facilitates intelligent routing solutions

without being tied to the cluster tree. Most of the simple antennas in sensor motes are

omnidirectional, hence it makes sense to place the CH in the middle of the cluster that

allows maximum special coverage. “Aggregation is more useful when the CH is in the

middle of the cluster and capable of receiving readings from all the directions” [25].

Reduced number of clusters tends to reduce the breadth and/or depth of the cluster tree.

Therefore, it is important for a given clustering solution to form clusters with minimum

or no overlap.

Selection of best set of CHs is the key for achieving these desirable

characteristics. However, selecting such a set of CHs is not trivial if nodes do not convey

any location information. Figure 3.1 illustrates three ways that child CHs can be selected

in top-down clustering. Clusters overlap if next child CH is selected from nodes that are

within one-hop from the parent CH (Figure 3.1(a)). This scheme is similar to the IEEE

802.15.4 cluster tree [38]. A better choice would be to propagate the new CH selection

message beyond the parent cluster through an intermediate node (X) and then select the

child CH from a node that is 2-hops away (Figure 3.1(b)). The intermediate node X, will

be in the region of both parent and child clusters. Clusters still overlap because X can

only belong to either parent or child clusters. This overlap can be ignored, as it is small.

However, due to random node placement, it may not be possible to find a node X that is

at the edge of the parent cluster. Overlapped region will increase if X is closer to the

parent CH. Another alternative is to forward the cluster formation message by 3-hops

through two intermediate nodes X and Y (Figure 3.1(c)). Though parent and child clusters

do not overlap anymore, an open region is created. If there are any nodes within the open

28

region, those need to be covered by another cluster. The open region either expands or

shrinks depending on the actual positions of nodes X and Y. Hence to minimize overlaps

and open regions, the distance (d) between parent and child CHs should be selected such

that, 2-hops < d < 3-hops. Ideally, it needs to be just above 2-hops, as it uniformly covers

the sensor filed. This sort of a CH selection is possible only with top-down approach.

It is also important that workload of each cluster is balanced. Having similar

number of cluster members balance the workload within clusters. Circular or hexagonal

clusters ensure uniform cluster size. However, the optimum cluster size is application

dependent. Small clusters can be formed by having a lower communication range and

connecting only one-hop neighbors. Multi-hop clusters or use of high transmission power

CHParent CHChild

CHParent

R

CHChild

R

CHParent CHChild

(a)

(b)

(c)

X

YX

R

R
R

R

Figure 3.1 – Different ways of selecting next child cluster head in top-down
clustering. R – Transmission range of a node.

29

can form larger clusters. Though multi-hop clusters are less attractive, those may be

required in certain applications [9].

Cluster formation overhead of localized decision based distributed clustering

solutions such as [9, 12, 25, 33, 67] are lower compared to centralized solutions such as

LEACH-C [33]. However, lack of global knowledge about the network hinders the ability

of these distributed solutions to form optimum set of clusters (i.e., maximum spatial

coverage with least number of clusters). Though centralized solutions form better

clusters, their overhead is significant. A hybrid approach that combines a node’s and its

neighbors’ information is a better compromise. Such a scheme can produce better clusters

with a lower overhead [17, 25]. Therefore, a good solution should form spatially

distributed set of clusters with minimum overhead.

Cluster trees are useful in delivering unicast, multicast, broadcast traffic, for data

fusion, and for in-network query processing. Performance of such upper layer functions

depend on the number of hops between a node and the base station. As the number of

hops increases both the latency and energy to forward a message increases. For many

latency bound applications such as earthquake monitoring and surveillance [69], it is

desirable to have a cluster tree with lower depth. Alternatively, a habitat [58] or

microclimate monitoring application may favor a long tree as far as it can perform more

aggregation and compression within the network. The location of the root node is another

parameter that affects the breadth and depth of the tree. If the root node is placed in the

middle of the sensor filed cluster tree can span into all directions. This produces a cluster

tree with a lower depth and higher breadth. If it is placed at the edge of the sensor filed, it

will not be able to span into all directions therefore a cluster tree with lower breadth and

30

higher depth will be formed. Collaborative WSNs may require formation of multiple

cluster trees within the same sensor field. Another parameter that governs the shape of

the cluster tree is the number of child CHs generated by a parent CH. Number of child

CHs reflect the branching factor of the cluster tree. Number of clusters required to cover

a given sensor field is somewhat constant hence higher branching factor reduce the depth

of the cluster tree. However, the branching factor cannot be arbitrary increased.

Cluster heads consume more energy than their cluster members. Therefore, nodes

playing the role of a CH may be changed from time to time to distribute the workload.

Whenever a CH is changed, the cluster tree needs to be updated. Clusters and the cluster

tree should also be capable of handing node dynamics (new, moving, or deteriorating

nodes) particularly in sensor/actor [2] and collaborative WSNs. Frequent re-clustering

and tree formation is not desirable due to the high overhead therefore clusters and the

cluster tree should be capable of tolerating certain network changes.

Achieving all these properties within a single cluster and cluster tree formation

algorithm is not trivial. Hence, it is important to identify and achieve at least the key

characteristics for a given application scenario.

3.1.2 Desirable Characteristics Of Routing Protocols

Routing protocols for WSNs need to be energy efficient and should maximize the

lifetime of the network. Though node-to-sink (many-to-one) communication pattern

dominates in conventional WSNs, collaborative sensor networks may require node-to-

sink, node-to-node, or VSN-to-VSN communication. Some sort of a addressing scheme is

required to facilitate such a communication model. These addresses need to be shorter.

31

Shorter addresses reduce the size of a packet header hence reduce energy consumption.

Addresses need to be assigned on the fly as clusters/VSNs are formed and the process

should incur no/minimum overhead.

Successful delivery of messages is also an important property in most WSNs.

Though routing protocols such as Rumor Routing [14], Ant Routing [35], and Directed

Diffusion [39] enhance the network lifetime, probability of successful message delivery

is much lower. This is not desirable in mission critical or dynamic applications and

realization of VSNs requires reliable delivery of events and control messages.

Forwarding through multiple nodes reduces the energy consumption and increase

the network lifetime. However, multi-hop forwarding is not desirable in large networks

due to latency, packet loss, and energy consumption. Hierarchy based routing overcomes

some of these issues. Nodes closer to the base station have to deliver more traffic

therefore tend to run out of energy much faster. Hence hierarchy based approaches does

not balance the energy consumption of nodes. Nevertheless, this may be the only solution

for networks that depend on many-to-one communication model, where top of the

hierarchy is the base station. The networks that make use of many-to-many

communication model may be able to figure out better paths than being tied to the

hierarchy. Therefore, a good hierarchical routing solution should maximize the network

lifetime by exploring these alternative paths.

3.1.3 Desirable Properties Of Secure Backbones

A Secure backbone is required to facilitate secure upper layer functions, dynamic

key distribution, and re-keying in collaborative and mission critical WSNs. Such a

32

backbone can be built using the cluster tree. Each parent and child CH pair needs to share

a separate cryptographic key between them. Though dynamic key assignment between

parent and child CHs seems to be attractive, it is neither secure nor energy efficient. Key

pre-distribution is a better alternative that is secure and efficient. However, if two nodes

do not share a common key, their cluster membership is meaningless and this can

significantly affect cluster and cluster tree characteristics. Therefore, a key pre-

distribution scheme should ensure better connectivity. Formation of a secure backbone

needs to have minimum impact on the network and the cluster and cluster tree formation

algorithm should retain most of its desirable properties.

3.2 Network Model

Following properties are assumed about the network and sensor nodes, which are

common in most of the WSN research problems:

a) The sensor network is expected to be geographically large and consisting of
thousands of sensors.

b) Nodes are randomly placed on a L×W grid with a given probability p.

c) All nodes are static and location unaware.

d) Nodes are homogeneous, have a fixed transmission power and equally significant.

e) No time synchronization or prior-network topology awareness is assumed.

f) Root node is in the middle of the sensor field.

g) The circular communication model is used for signal propagation.

h) Unless otherwise stated, the free space propagation model is used and no noise is
assumed.

i) Single-hop communication model is assumed for both inter-cluster and intra-
cluster communication, unless otherwise stated.

33

3.3 Problem Statement

Future large-scale and collaborative WSNs will require some structure within the

network to achieve the application objectives effectively. Therefore, the first task is to

identify a cluster and cluster tree formation algorithm that is configurable and scales well

for large networks under aforementioned assumptions. The algorithm should be capable

of achieving most of the desirable cluster and cluster tree characteristics while being

customized to a specific application. To make the algorithm controllable, the

controllability of top-down approach should be exploited. Ability to form a secure

backbone under pre-distributed keys would be an added advantage. Collaborative WSNs

should have the ability to communicate with the base station as well as within the

network. Building a routing scheme on top of the cluster tree that can facilitate these

requirements is the second task. An addressing scheme has to be developed to facilitate

communication within the network. Routing scheme should explore alternative paths

between two nodes that wish to communicate without being tied to the cluster tree. All

these tasks should lead to the main goal of enabling VSNs. The overall solution should

provide protocol support for formation, usage, adaptation, and maintenance of VSNs.

34

Chapter 4

CLUSTER AND CLUSTER TREE FORMATION

The Generic Top-down Cluster and cluster tree (GTC) formation algorithm, a

configurable algorithm that is capable of achieving most of the desirable cluster and

cluster tree characteristics is presented. Configurable parameters in the algorithm allow

selection of different characteristics, e.g., more uniform and circular clusters, cluster trees

with control breadth and depth, etc. Simple Hierarchical Clustering (SHC), a special case

of GTC, is similar to the IEEE 802.15.4 cluster tree. Another special case, Hop-ahead

Hierarchical Clustering (HHC) produces significantly better clustering solutions.

Section 4.1 presents the GTC algorithm. Section 4.2 describes how desirable

cluster and cluster tree properties can be achieved by controlling parameters of the

algorithm. Message complexity analysis of the algorithm is presented in Section 4.3.

Finally, performance analysis is presented in Section 4.4.

4.1 Generic Top-Down Cluster And Cluster Tree Formation Algorithm

The GTC algorithm is shown in Figure 4.1. The root node initiates the cluster

formation by executing the Form_Cluster function. The root node can be one of the

sensor nodes or it can be a resourceful base station. All other nodes execute the

Join_Cluster function and listen for a cluster formation broadcast. Root node sends a

35

cluster formation broadcast (Broadcast_Cluster) indicating its node ID (NIDCH), Cluster

ID (CIDCH), maximum hops to a cluster member from the CH (hopsmax), number of hops

to forward the broadcast (TTLmax), and its depth in the cluster tree. A node hearing this

broadcast will join the cluster if it is not already a member of another cluster (my_CID =

0) and within hopsmax. Each node keeps track of the neighbor that sends or forwards the

 Form_Cluster(NIDCH, CIDCH, delay, nCCHs, hopsmax, TTLmax, depth)

1
2
3
4
5
6
7
8
9

10
11
12

Wait(delay)
TTL ← TTLmax
Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth)
ack_list ← Receive_ACK(NIDchild, hops, P1, P2, timeoutACK)
IF(ack_list = NULL)
 Join_Cluster()
FOR i = 1 TO nCCHs
 CCHi ← Select_Candidate_CHs(ack_list)
 CIDi ← Select_Next_CID(i)
 delayi ← Select_Delay(i)
 depthi ← depth + 1
 Request_Form_Cluster(CCHi, CIDi, delayi, nCCHs, hopsmax, TTLmax, depthi)

 Join_cluster()

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

 Listen_Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth)
TTL ← TTL – 1
hops ← TTLmax - TTL
IF(hops ≤ hopsmax AND my_CID = 0)
 my_CID ← CIDCH
 my_CH ← NIDCH
 my_depth ← depth + 1
 Send_ACK(my_NID, hops, P1, P2)
IF(TTL > 0)
 Forward_Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth)
 IF(hops ≤ hopsmax)
 Exit()
ELSE
 Send_ACK(my_NID, hops, P1, P2)
 IF(Listen_Form_Cluster(CCH, CID, delay, nCCHs, hopsmax, TTLmax, depth,
timeoutCCH) = TRUE)
 Form_Cluster(my_NID, CID, delay, nCCHs, hopsmax, TTLmax, depth)
 Exit()
Join_cluster()

Figure 4.1 – Generic top-down cluster and cluster tree formation algorithm.

36

broadcast. When a node joins the cluster, it sets its cluster parameters such as node ID,

cluster ID, and its depth in the cluster tree (lines 17-19 of Figure 4.1). An

acknowledgment (ACK) is then send to the corresponding CH (line 20) indicating its

own node ID (my_NID), its distance to the CH (hops), and set of properties of the node

(p1, p2) such as the residual energy and node degree. The CH receiving this ACK adds the

node to its acknowledged list (ack_list). After sending the ACK, the child node forwards

the cluster formation broadcast using Forward_Broadcast_Cluster function, given that

the TTL has not expired (TTL > 0).

Nodes that are not within hopsmax do not join the cluster, instead forward the

broadcast, if TTL is still valid. These intermediate nodes do not need to send any ACKs,

therefore reduce the overhead of the algorithm. A broadcast from a particular CH is

forwarded only once by a receiving node. This ensures that broadcasts are forwarded

outward from the CH. If TTL is expires after receiving a broadcast (TTL = 0), the node

that received the broadcast is capable of being selected as a new CH. Such a node is

called a Candidate Cluster Head (CCH). At this stage, the node is either at the edge of the

cluster (if TTL = hopsmax) or outside the cluster (if TTL > hopsmax). When a node

determines that it is going to be a CCH, it indicates that to the corresponding CH by

sending an ACK (line 26). The node then waits for a cluster formation request

(Listen_Cluster_Formation) from the corresponding CH. If such a request does not

arrive before the timeout (timeoutCCH) node reruns the Join_Cluster function.

In the mean time, the corresponding CH keeps receiving acknowledgments until

the Receive_ACK function timeouts (timeoutACK). After the timeout, the

Select_Candidate_CHs function then selects nCCHs nodes as CCHs from the ack_list.

37

Finally, a request (Request_Form_Cluster) is send to each CCH asking them to form

their own clusters. A new cluster ID (CIDi), a hold up time (delayi) before forming its

own clusters, and other relevant parameters are send to each selected CCH. Upon

receiving the request, those selected CCHs form their own clusters by executing the

Form_Cluster function. If a CCH is not able to attach any child nodes, the related branch

in the cluster tree is not expanded to the next level. The algorithm continues until all the

possible branches are expanded. The cluster tree is rooted at the root node and formed by

each CH keeping track of its own parent and child CHs.

4.2 Achieving Desirable Characteristics

The solution generated by the algorithm depends on the implementation of

functions such as Select_Next_CID, Select_Delay, and selection of parameters such as

hopsmax, TTLmax, delayi, and nCCHs. By controlling these parameters and implementation

of functions, a wide range of solutions can be obtained.

The coverage of a cluster is determined by hopsmax. Multi-hop clusters can be

formed if hopsmax > 1. The distance between parent and child CHs can be controlled by

changing TTLmax. If TTLmax = hopsmax, any cluster member can be selected as a CCH.

Single-hop cluster formation under this condition is similar to Figure 3.1(a). In an

optimum case, those CCHs need to be selected from nodes that are at the edge of the

parent cluster. We name this approach as Simple Hierarchical Clustering (SHC). Figure

4.2 illustrates a conceptual case where the sensor field is optimally covered by selecting

three CCHs at each level. To make the diagram simple, only CCHs are indicated and one

branch is expanded into several levels. It is sufficient to select three CCHs, if those are

38

separated physically as widely as possible. Let ni denote node i and ci denote cluster i.

The root node (n1) forms the cluster c1 by connecting all one-hop neighbors. Then it

request three of its neighbors (n2, n3, and n4), which are at the edge of the cluster to form

their own clusters. These clusters are called level 1 clusters as they belongs to the first

level of the cluster tree. The root node belongs to level 0. Then n2 request three of its

neighbors (n5, n6, and n7) to form clusters c5, c6, and c7. Even in this conceptual case, the

shapes of clusters are not circular except for the first cluster. Note that c6 and c7 are

smaller than c5. Clusters c9 and c10 are even smaller. Therefore, as the depth of the tree

increases many overlapping child clusters are formed which reduces the effective cluster

size. Lower circularity also increases the number of clusters that are required to cover the

entire sensor field. This approach is similar to the IEEE 802.15.4 cluster tree [38]. For

single-hop SHC, line 26 in Figure 4.1 is redundant, hence needs to be removed.

Another alternative would be to select TTLmax such that TTLmax > hopsmax. This

allows nodes that are several hops away from the edge of the parent cluster to be selected

as CCHs. Nodes within hopsmax join the cluster while other nodes keep forwarding the

1

CID 1

5

7

4

3

2

9

8

10

6

CID 2

CID 3

CID 4

CID 5

CID 7

CID 6CID 9

CID 8

CID 10

Figure 4.2 – Physical shape of ideal SHC clusters. Scattered lines indicate the parent-
child relationship among CHs. hopsmax = TTLmax = 1.

39

cluster formation broadcast until TTL expires. A clustering solution similar to Figure

3.1(b) can be achieved by selecting TTLmax such that:

TTLmax = 2×hopsmax (4.1)

As discussed in Section 3.1.1 these clusters somewhat overlap with the parent CH.

However, the overlapped region is much smaller compared to the SHC. The best option is

the 3-hop forwarding where TTLmax is selected such that:

TTLmax = 2×hopsmax + 1 (4.2)

We name this multi-hop forwarding approach as Hop-ahead Hierarchical Clustering

(HHC). Figure 4.3 illustrates how the sensor field can be optimally covered with single-

hop HHC. The root node (n1) sends a cluster formation broadcast and all the one-hop

neighbors join the cluster (c1). The broadcast is then forwarded to the next set of

neighbors and the process continues until TTL expires. For example, after hearing the

broadcast from n1, n2 joins the cluster. The broadcast is then forwarded to n3 and from n3

to n4. Finally, n4 is 3-hops away from the CH and is a candidate to be selected as a new

CH. The root node needs to select several such nodes as CHs of new clusters. In Figure

CID 1

CID 7

CID 2

CID 4CID 6

CID 5

CID 3

1

4

3

2

98

76

5

CID 9

CID 10

CID 8

12

11

10

Figure 4.3 – Physical shape of ideal HHC clusters. Scattered lines indicate the parent-

child relationship among CHs. hopsmax = 1, TTLmax= 3.

40

4.3, that root node has selected six nodes (n4 to n9) as child CHs that are in different

directions of the sensor field. For all the other levels it is sufficient that each parent CH

selects up to three nodes as child CHs, e.g., only c8, c9, and c10 are formed by c4. The

HHC forms larger clusters, more circular clusters, and has a better distribution of CHs.

At each CH, several nodes (nCCH) are chosen as CCHs of the next level using the

Select_Candidate_CHs function. Those CCHs are selected from nodes in the ack_list

that are furthest away from the CH (hops = TTLmax). The implementation of the

Select_Candidate_CHs function depends on the availability of certain data such as

residual energy of a node, node degree, location information, or cryptographic key

identifiers. When a node sends an ACK to the CH such data is send using parameters p1

and p2. Optimum set of CCHs can be selected if node location information is available

otherwise, nodes can be selected randomly. However, it is possible to select physically

nearby nodes when CCHs are randomly selected. Therefore, some of the selected CCHs

will not be able to form their own clusters. This affects the breadth and depth of the

cluster tree. To build a cluster tree with higher breadth and lower depth, nCCH needs to be

somewhat higher. Therefore, the selection of nCCH should be application dependent.

Better load balancing can be achieved by selecting CCHs based on higher residual energy

or lower node degree [67]. Dense clusters can be built by selecting nodes with higher

node degree. If the cluster setup phase is cycled like in [33, 67] these parameters pay a

key role in selecting different CHs at different rounds.

The Select_Next_CID function assigns cluster IDs to newly formed clusters. The

function can be implemented only at the root node or at each and every parent CH. In the

former case, each parent CHs has to request a set of CIDs for all the selected CCH. This

41

approach generates significant number of control messages and does not scale up. The

overhead can be reduced by delegating the task to respective parent CHs. A parent CH

can assign CIDs based on either NID of the CCH (if NIDs are unique) or hierarchically.

In hierarchical ID assignment, parent CH can derive the child’s CID based on its own

hierarchical CID and the child’s branch number in the cluster tree. Such hierarchical

addresses are useful in hierarchical routing. Design of the hierarchical addressing scheme

is described in Section 6.1.1.

Many collisions occur when multiple CCHs try to form clusters at the same time.

Due to these collisions, certain nodes may not hear a cluster formation broadcast from

any of the CCHs. This reduces the network lifetime and node connectivity. Cluster

formation broadcasts from different CCHs are time multiplexed to reduce collisions. The

Wait function delays the cluster formation broadcast generated by a CCH. The delayi for

each CCH is determined by the Select_Delay function. Furthermore, different delayi

values can be used to control the shape of the cluster tree. By assigning appropriate

delays, the algorithm can be used for breadth-first, depth-first, or hybrid cluster tree

formation.

For breadth-first tree formation, delay should ensure that cluster formation of

level i completes before the start of level i + 1. Figure 4.4 illustrates starting time of

different clusters at different levels of the cluster tree based on breadth first tree

formation. Let ci be the cluster number, tCH be the time that takes to form a cluster, tCCH

be the delay between two CCHs of the same cluster, and n be the number of CCHs.

Assume that cluster c0 starts forming its cluster at time t = 0. It will complete its cluster

formation by t = tCH. After c0 completes the cluster formation, its first child (c1) can start

42

the cluster formation. Hence the starting time of c1 is t = tCH. Then the second child can

initiate its cluster formation after tCCH, hence t = tCH + tCCH. Similarly n-th child cluster

(cn) starts at t = tCH + (n – 1)tCCH. Level 2 clusters can only initiate when all the level 1

clusters are completely formed. Therefore, starting time of the first level 2 cluster (cn+1) is

t = tCH + tCH + (n – 1)tCCH = 2tCH + (n – 1)tCCH. At the same time, all the other child

clusters of c0 can request their first child cluster to initiate the cluster formation. It is

unlikely that these clusters will bump into each other causing collisions as they are

geographically distributed. This approach reduces the time that it takes to form all the

C0
t = 0

C1
t = tCH

C2
t = tCH+tCCH

C3
t = tCH+2tCCH

Cn
t = tCH+(n – 1)tCCH

.

.

.

.

Level0

Cn+1
t = 2tCH+(n – 1)tCCH

C2n
t = 2tCH+2(n – 1)tCCH

.

.

.

C2n+1
t = 2tCH+(n – 1)tCCH

C3n
t = 2tCH+2(n – 1)tCCH

.

.

.

Cn
2
+1

t = 2tCH+(n – 1)tCCH

Cn
2
+n

t = 2tCH+2(n – 1)tCCH

.

.

.

Level1 Level2

Cn
2

+n+1
t = 3tCH+2(n – 1)tCCH

Cn
2
+2n

t = 2tCH+2(n – 1)tCCH

.

.

.

Level3

Figure 4.4 – Breadth-first cluster tree formation – starting time of different clusters. ci

– cluster number, tCH – time to form a cluster, tCCH – delay between two
CCHs of the same cluster, n – number of child CHs.

43

clusters. The n-th child clusters of c1, c2, c3, …, cn can start their cluster formation at t =

2tCH + (n – 1)tCCH + (n – 1)tCCH = 2tCH + 2(n – 1)tCCH. Similarly level 3 clusters can start

the cluster formation when all the n-th clusters of level 2 complete their cluster

formation. Hence their stating time is t = 3tCH + 2(n – 1)tCCH. Based on Figure 4.4 the

starting time of level i can be derived as:

ti = dtCH + (d – 1)(nCCHs – 1)tCCH (4.3)

where d is depth of level i (i.e., d = i), tCH is the time that takes to form a cluster, tCCH is

the delay between two CCHs of the same cluster, and nCCHs is the number of CCHs (i.e.,

branching factor of the tree). The delay between two CCHs of the same cluster should be

selected such that tCCH ≥ tCH.

For depth-first tree formation, delay should allow a branch to complete its

expansion before start of another branch. This approach takes more time and forms a

deeper cluster tree. The Select_Delay function decides on a suitable delayi based on the

desired shape of the cluster tree and informs the CCHs using the Request_Form_Cluster

function. In HHC, if a CCH hears a cluster formation broadcast from another neighboring

CH, while it is delaying its cluster formation, it joins the new cluster and does not form

its own cluster. This further reduces the overlapping clusters. Note that this is just a

delay, not an exact time; therefore the algorithm does not require synchronization of

clocks among sensor nodes.

Alternatively, the Wait function can be replaced with a Delay function. The Delay

function will be part of the Form_Cluster function and it waits some time (delayi) before

sending the Request_Form_Cluster message to a selected CCH. When such a message is

send, the CCH immediately forms its own cluster (no delayi will be send to the CCH in

44

this case). This approach provides more control over the previous one. Based on the

information provided by the child clusters that are already formed the parent CH can

dynamically decide on a suitable CCH. For this scheme to work, each new child CH has

to inform the parent CH about the newly acquired cluster members. This prevents the

issue of a CCH being overtaken by another cluster and provides better spatial coverage.

However, extra control messages add some overhead, hence this function is not

implemented.

The tree that defines the node-to-node, node-to-CH, and CH-to-CH connectivity

is called the physical tree. Cluster tree that combines only the CHs is called the logical

tree and it defines the CH-to-CH connectivity. WSNs that use the same power level for

both intra-cluster and inter-cluster communication need to rely on gateway nodes [46] to

forward messages from one CH to another. In such cases, the physical tree defines node-

to-CH, CH-to-gateway, and gateway-to-gateway connectivity while cluster tree defines

only the CH-to-CH connectivity. Networks that use the same power level for both inter-

cluster and intra-cluster communication have different physical and logical trees. In

certain cases [9, 33, 67] nodes may use high power for inter-cluster communication. In

such networks physical and the logical tree are identical because no gateway nodes are

involved. Though use of high power reduces latency, it increases the energy

consumption. Use of same or different power levels for inter-cluster communication is

independent of the GTC algorithm. In GTC, the maximum distance between any parent

CH and its child CHs is R×TTLmax, where R is the transmission range. Therefore, GTC

has a bounded CH-to-CH distance compared to [9, 33, 67]. Though the process is slower,

it is acceptable in long loved WSNs where network lifetime ranges from days to year.

45

4.3 Message Complexity Of The Algorithm

We analyze the message complexity of the single-hop cluster formation. Let us

assume that n sensor nodes are distributed in an area A with a uniform node density λ,

where A
n=λ .

In single-hop SHC, each CH broadcasts one cluster formation message and all the

nodes within the communication range (R) join the cluster. The broadcast will not be

forward any further. Then each child node sends an acknowledgement (ACK) back to the

CH. As there are altogether λπR2-1 nodes in the circular region, other than the CH, λπR2-1

ACKs will be generated. Then the CH sends three more messages asking three of those

nodes to form their own clusters. Total number of control messages per cluster can be

calculated as follows:

Number of broadcasts = 1
Number of ACKs = λπR2 - 1
Number of cluster formation requests = 3
∴ Total number of control messages per cluster = 1 + λπR2- 1 + 3
 = 3 + λπR2 (4.4)

To cover the sensor filed 2Rk
A

π
clusters are required; k is a factor that defines the level

of overlapp among clusters, 0 < k ≤ 1.

∴ Total number of control messages = 2
2)3(

Rk
AR
π

λπ ×+ (4.5)

Replacing λ with n/A in Equation 4.5:

Total number of control messages = 2

3
Rk
A

k
n

π
+ (4.6)

Therefore, the message complexity is O(n).

In HHC, each CH broadcasts one cluster formation message and all the 1-hop

neighbors join the cluster. The broadcast is then forward by two more hops, first to 2-hop

46

neighbors and then from 2-hop to 3-hop neighbors. Total number of broadcasts can be

calculated as follows:

Number of broadcasts by root node = 1
Number of broadcasts by 1-hop neighbors = λπR2 - 1
Number of broadcasts by 2-hop neighbors = λπ(2R)2 - λπR2
∴Total number of broadcasts per cluster =1 + λπR2 - 1 + λπ(2R)2 - λπR2

 = 4λπR2 (4.7)
Node within 1-hop and 3-hops will send ACKs back to the CH. Assume that 2-hop and 1-

hop neighbors do not aggregate these ACKs therefore ACKs are forwarded as individual

messages. 2-hop nodes do not need to send any ACKs. Therefore:

Number of ACKs by 1-hop neighbors = λπR2 - 1
Number of ACKs by 3-hop neighbors = λπ(3R)2 - λ(2R)2

 = 5λπ3R

Number of hops that 3-hop ACKs get forwarded = 2
∴Total number of ACKs by 3-hop neighbors = (1 + 2)5λπR
∴Total number of ACKs per cluster = 15λπR + λπR2 – 1
 = 16λπR – 1 (4.8)
Number of cluster formation requests = 6
Number of hops cluster formation requests travel= 3
Total number of cluster formation requests = 6 × 3
∴Total number of control messages per cluster = 4λπR2 + 16λπR – 1 + 18
 = 17 + 20λπR (4.9)

∴Total number of control messages = 2
2)2017(

Rk
AR
π

λπ ×+

Replacing λ with n/A in Equation 4.9:

Total number of control message =
k

n
Rk
A 2017

2 +π
 (4.10)

Still the message complexity is O(n). Therefore, the message complexity of both SHC

and HHC is proportional to the number of nodes in the network. It can also be seen that

number of control messages are proportional to the area of the sensor field. Some of the

47

ACKs in HHC can be reduced by piggybacking ACKs before being forwarded by the 2-

hop and 1-hop neighbors, however complexity is still O(n).

4.4 Performance Analysis

The characteristics of clusters and the cluster tree are evaluated using simulations.

n nodes are randomly placed on a 101×101 square grid with a given probability p (e.g.,

0.25, 0.5, 0.75, and 1.0). Grid spacing is 10 units. Simulation results are based on 150

sample runs and over 95% confidence level is observed for most of the parameter

combinations. CCHs are randomly selected. The number of CCHs are selected such that;

nCCHs = 3 for SHC and nCCHs = 6 for HHC. Except where noted, the simulation results

presented use 5000 nodes and the cluster tree is formed using the breadth-first tree

formation approach. The root node is placed in the middle of the sensor field. Cluster

characteristics are compared with FLOC [25] and PHC [9]. Specific implementation

details of the simulator are presented in Appendix A.

4.4.1 Metrics

Following metrics are used to analyze cluster and cluster tree characteristics.

Circularity

Measure how circular a given clusters is. It reflects the ratio between the actual

number of nodes that are in the cluster and total number of nodes that are within the

communication range of the CH.

48

∑
=

×=
m

i CHofrangetheinnodesofno
iclusterinnodesofno

m
yCircularit

i1
1001

 (4.11)

where m is the number of clusters in the network. If a cluster can attract all the neighbors

in a single-hop or multi-hop neighborhood, its circularity is 100%. In multi-hop clusters

there can be nodes that does not belong to the cluster though they are in the range of the

cluster. This occurs when there are no intermediate nodes to forward the cluster

formation broadcast. For example, node X in Figure 4.5 is not in the range of any node

that can forward the cluster formation message. Therefore, such nodes are not considered

to be in the range of the CH. The ratio (L/A) between circumference (L) and area (A) of a

cluster is an alternative circularity metric. A given cluster is circular if the ratio is closer

to 2/R. However, this measure has two issues. Firstly, circular clusters cannot be formed

at the border of the sensor field. In this case the measure of L/A will reflect these clusters

as non-circular. However, in reality these clusters have attracted the maximum number of

nodes that they can attract. Equation 4.11 takes this into account and assigns 100% to

such clusters, allowing us to discard boarder effect. Secondly, certain clustering schemes

allows CH of a different cluster to reside inside another cluster, in such cases L/A

R R
CH

R

X

Node
CH

Figure 4.5 – A node that is disconnected in a 2-hop cluster. R – Transmission range of a
node.

49

measure is inappropriate. Based on Equation 4.11 circularity of a hexagonal cluster can

be derived as flows:

Circularity of a hexagonal cluster = 100×
×
×
λ
λ

circleaofarea
hexagonaofarea

= 1004
36

2

2

×
×

R

R

λπ

λ

= 100
2

33
×

π

 = 82.69%
where λ is the node density and R is the transmission range.

Number of Clusters

Is the total number of clusters that are required to cover a given sensor field. This

is equivalent to number of CHs.

Clusters Size

Is the number of nodes in a cluster including the CH.

Node/CH depth

It is the depth of a node/CH in either the logical (i.e., cluster tree) or the physical

tree. Depth of the root node is zero. Depth of a child node that is i hops away from its CH

is depthCH + i.

4.4.2 Cluster Characteristics

4.4.2.1 Single-hop Clusters

Figure 4.6 shows the physical shape of clusters formed by SHC and HHC

schemes. In SHC (Figure 4.6(a)), it can be seen that only the first cluster has

approximately a circular shape while the shape of other clusters vary widely. It illustrates

50

the fact that the practical results differ widely from the conceptual scenario. Most of

those CHs are selected from nodes that are at the edge of the parent cluster, e.g., CH of c3

is curved into c1. It is possible that some of the child CHs reside inside the parent cluster.

For example, CHs of c2 and c4 are inside c1. This problem cannot be prevented as

candidate CHs are selected randomly and each node within the cluster has equal

probability of being selected as a CCH. Note that clusters cG and cF (indicated by the

arrow) do not have any child nodes. Those clusters initially had child nodes but those

child nodes were later converted to CHs of clusters cW and c<. Alternatively, HHC

clusters in Figure. 4.6(b) are much larger and somewhat circular. It is not possible to

ensure that a CH will always be in the middle of a cluster because CCH selection is based

on the hop count rather than the geometric distance. Clusters at the border of the sensor

field are not circular because there are no more child nodes to be attached. Figure 4.7

. l l . j . + . + + + + + ! . < . & - . . ? ? ? . . . ? ? .

. . . j j $ L + + . . + + + & < < < W . . . ? ? ? ? ? . . .
h h . l.L L L L . L + . + + - . W . . ?.. . . ? . . ? ? . .
. L + . + W . !.. ?.. . ?.? ? .
h . L . . K E . . +.. E E <.. . . . W ?.. . ? . ? .
h $ K K j.E . . 7 . 5 5 . . 5 5 . <.< . . . W
. h.. . K $.L.. 7 . . 5 5 5 W.. . . B . Y Y . . . ?.
. K K . K 5 5 . 5 5 5 . 5 B B B Y ?.Y Y Y
. K K K . E . . 7 E.. 5 G.. . B B . B . . C ?.?.. .
K H H . H K.. . 5 . 7.. 2 5.. . 5 F.. . B *.. . . .
H . H H 2 2 . 2 . 4 . B.4 . . . Y.C . X .
. H . . . E . 7 . 2 . . 1 1 . . 1 1 1 . . . 4 . B C . T . .
H H H . H 6 6 6 . . 2 . 1 1 1 1 . 1 . 1 . . C.A X.. C . U X
. H . H H.. 1 2.. . 1 1 1 . 1 . 4 4 T.. . C S . Y
. H . H 6 . . 6 . 2 2 . 1 1 . 1 1 1 4.. . 3 . . A C C S S .
. H H H 1 . . 1.. 1 . . 1 3 . . U.. C S S S
H H . . 6 . . 6 6.. . . 1 1 1 1 1 1 . 1 A.. . . . A S . . S
. . H H . . 6 6 6 . 2 1 . . 1 1 . . 1 1 . . 3 . . S.. S . S
. . . . 6 6 6 1 1 1 1 1 1 1 3.1 . 3 . 3 . 9 9 S . .
f.. 6 6 . 1 1 . 1 . 1 . 3 . . 3 9 9 9 9 . S S
I I I I I I.. 6 . 6 . 6 . . 3 . 3 . 3 . . . 3 9 . . 9 S . .
. c.. I 6 I . . 8 . 3 3 8.3 9.. . 9 9 9 Q .
. . I I I I P . . 8 8 . 3 . 3 9 . . Q Q .
. . I I I I . I I . P P 8 P.. 8 8 8 3 . . . 9 . 9 Q
f . I I . . d.. . P P . 8 8 8 . . 8 8 . O.. 9 . Q .
. . c ?.. . c c c . . P N . . 8 . N.. . . 9 9 . . Q.Q . . .
? ? d . d ?.. d d . . P P N N . 8 . N N . . R.. . . Q . . Q
? . . . d . d . . d P u.P . . . N N N . N N O . O
? ? . d . d d . d . . . q N q.N N N O O . . . Q . .
? ? . ? u . q p p N N N p.. . . R . Q Q Q Q Q . .

. f f . f . E . E E E E E F . F . F F . l l.I x x .

. . . f f.E E E E . . E E E F F F F F . l . I I I I x.. . .
f f . f Q E E E . E E . E E F.. F . . F . . . I . . I x . .
. E E . E F . 3 I . . I v v .
Q . Q . . E E . . E.. E E 3 . . . I I I . . I . v .
Q Q Q Q Q E . . E . E E . . 3 3 . 3 3 . . . I..
. Q . . Q E E . E . . E 3 3 3 . . . I . I I . . . v
. Q Q . Q.. 6 6 . 3 3 3 . 3 3 3 G I I v v v.
. Q Q Q . 6 . . 6 6 . 3 3.. . 3 3 . G . . G G G . .
Q Q Q . Q 6 . . 6 . 6 . 3 3 . . 3 3 . . 3 G
Q . Q Q 6 3 . 3 . 3 . 3 G . . . G G . G .
. Q . . . 6 . 6 . 6.. . 1 1 . . 1 1 1 . . . G . G G . G . .
? ? ?.. Q 6 6 6 . . 6 . 1 1 1 1 . 1 . 1 . . G G G.. G . G G
. T . T T 1 1 . . 1 1 1 . 1 . G G G . . G G . O
. T . T T . . 6 . 6 6 . 1 1 . 1 1 1 1 . . G . . G G G G G .
. T T T 1 . . 1.. 1 . . 1 4 . . 4 . G G G O
T T . . T . . A A . . . 1 1 1 1 1 1 . 1 4 4 4 . . O.
. . T T.. . A A A . A.1 . . 1 1 . . 1 1 . . 4 . . 4 . O . O
T . . . T A A 1 1 1 1 1 1 1 1 1 . 4 . 4 . 4 4 O . .
T A A . 1 1 . 1 . 1 . 4 . . 4.4 4 4 4 . O O
T T T T T T . A . A . 2 . . 2 . 2 . 2 . . . 4 4 . . 4 O . .
. T . A A A . . 2 . 2 2 2 2 4 . . 4 4 ! ! .
. . Z . Z A . . 2 2 . 2 . 2 4 . . ! !..
. . Z W Z.Z . Z Z . 2 2 2 2 . 2.2 2 2 . . . 4 . 4 !
W . W W . . W . . 8 8 . 2 2 2 . . 2 2 . D ! . ! .
. . W W . . W W 8 . . 2 2 . . 2 . 2 . . . D D . . D ! . . .
W W W . W W . W 8 . . 2 2 2 2 . 2 . 2 2 . . D . . . ! . . !
W . . . W . W . . 8 8 8 2 . . . 2 2 2 . D D D . D
W W . W.. W W . 8 . . . 8.8 8 2 8 D.D D . . . a . .
W W . W 8 . 8 8 8 8 8 8 D . . . D . D D D a a.. .

(a) (b)
- CH . - Grid points without a node 1-9, A-Z, Symbols - Cluster ID

Figure 4.6 – Physical shape of single-hop clusters: (a) SHC clusters, (b) HHC

clusters, Grid size = 30×30, n = 450, R = 30.

51

Figure 4.7 – Coverage map of HHC clusters. Grid – 100×100, n = 5000, R = 50. Shaded
circles - sensor nodes, Shaded squares - CHs, Circles - nodes without a
cluster.

shows the coverage map for a much larger network. Overlap among clusters is somewhat

higher as R = 50.

Figure 4.8 illustrates the circularity of single-hop clusters and their corresponding

standard deviations (STD). HHC clusters have a much higher circularity than SHC. Ideal

hexagonal clusters have the highest circularity. Ability to push CCHs further away from

52

the parent CH reduces the overlap among HHC clusters. However, there can be several

clusters that significantly overlap with each other, e.g., c8 and cZ in Figure 4.6(b). Such

clusters increase the STD of HHC. Almost all the SHC clusters overlap with each other

hence have a lower STD. It can also be seen that the circularity reduces as the

transmission range (R) increases. When R is higher, large number of nodes within 2-hops

and 3-hops are capable of being selected as CCHs. When CCHs are randomly selected

from such a large set of nodes, it is possible to select certain nodes that are closer to the

CH, further away from the CH, or overlap within each other’s transmission range.

Though formation of two clusters within R is prevented (by assigning appropriate delay

values) clusters can still overlap, if their CHs are within 2R. Holes are created in the

network when furthest away, i.e., closer to 3R, nodes are selected as CCHs (Figure 4.3).

These holes become much larger as R increases and new clusters are required to cover

them up. The newly formed clusters will overlap with the existing clusters therefore

reduces the overall circularity. All these factors reduce the circularity with increasing

transmission range.

Transmission range

20 25 30 35 40 45 50

C
irc

ul
ar

ity
 /

ST
D

0

20

40

60

80

SHC - Cir
HHC - Cir
Hexagonal
SHC - STD
HHC - STD

Figure 4.8 – Circularity of single-hop clusters.

53

Figure 4.9 shows the circularity of single-hop HHC clusters for different network

densities, i.e., number of nodes. The circularity of the clusters reduces as the density

increases. The number of nodes within 2-hops and 3-hops increases as the density

increases. This behavior is similar to the case of increasing transmission range. Selection

of CCHs among such a large set of nodes is not optimum. Due to the high density, even

the small open regions that are created need to be covered by a cluster. Alternatively, it is

not possible to effectively cover the sensor filed when the network is too sparse and

transmission range is too low (e.g., HHC cannot effectively cover the sensor field when R

= 20 and N = 2500, hence no data is presented in Figure 4.9). It can be concluded that

circularity of HHC clusters are closer to hexagonal clusters particularly for lower

transmission ranges and node densities.

Transmission range

20 25 30 35 40 45 50

C
irc

ul
ar

ity

50

55

60

65

70

75
N = 2500
N = 5000
N = 7500
N = 10000

Figure 4.9 – Circularity of single-hop HHC clusters for different network densities.

 Figure 4.10 compares the circularity of cluster formed by SHC, HHC, and FLOC

[25]. Refer Appendix A for specific implementation details of FLOC. The HHC clusters

have the highest circularity. FLOC clusters are 100% circular within the i-band; however,

they overlap within the o-band, which reduces the overall circularity of a cluster.

54

Neighboring clusters in FLOC coordinate among each other through child nodes, to

minimize overlap among clusters. This produces clusters with similar size and circularity

hence STD of FLOC is somewhat lower than HHC. For all three algorithms, circularity

decrease with increasing R. It was further observed that circularity of FLOC clusters also

reduce as the network density increase.

Transmission range

20 25 30 35 40 45 50

C
irc

ul
ar

ity

0

20

40

60

80

SHC
HHC
FLOC
Hexagonal

Figure 4.10 – Circularity of clusters formed by SHC, HHC, and FLOC.

Number of clusters and CHs produced by each algorithm is shown in Figure 4.11.

Number of clusters required to cover a given sensor field depends on both circularity and

area of a cluster. Due to higher circularity HHC produces the lowest number of clusters.

As R increases, circularity of a cluster reduces while area increases (proportional to R2).

However, increase in area is dominant therefore number of clusters required to cover a

given sensor field reduces as R increase. It is also observed that number of clusters

produced by each algorithm somewhat increases with the network density. As the

network becomes dense circularity somewhat reduces (Figure 4.9) therefore more

clusters are required to cover a given sensor field.

55

Transmission range

20 25 30 35 40 45 50

N
um

be
r o

f c
lu

st
er

s
/ C

H
s

0

500

1000

1500

2000

2500

3000
SHC
HHC
FLOC

Figure 4.11 – Number of clusters and CHs.

Transmission range

20 25 30 35 40 45 50

C
lu

st
er

 s
iz

e
/ S

TD

0

5

10

15

20

25

SHC
HHC
FLOC
SHC - STD
HHC - STD
FLOC - STD

Figure 4.12 – Number of nodes in a cluster.

Number of nodes per cluster is shown in Figure 4.12. HHC produces much larger

clusters while SHC clusters are much smaller. Lower overlap among clusters allows them

to attract most of the nodes in its neighborhood. Therefore, HHC forms bigger clusters

than SHC and FLOC. As the R increases cluster size rapidly increases except for SHC.

The increase in SHC is less significant because low circularity dominates the cluster size

over the increase in area. It is also observed that cluster size increases linearly with the

node density. Smaller clusters that are formed at the edge of the sensor field increase the

56

STD of both HHC and FLOC. STD of HHC cluster size is higher due to the slightly

varying circularity of HHC clusters. Figure 4.13 shows the distribution of cluster size.

From Figure 4.11, 4.12, and 4.13 it is clear that HHC produces a smaller number of large

clusters while SHC produces a larger number of small clusters.

Cluster size
0 5 10 15 20 25 30 35 40 45

N
um

be
r o

f c
lu

st
er

s
x

r

0

10

20

30

40

50

60

70

80

90

SHC, r = 10
HHC, r = 1

Figure 4.13 – Distribution of cluster size. R = 50, hopsmax = 1.

4.4.2.2 Multi-hop Clusters

When R = 20 and 5000 nodes are placed on our 101×101 square grid, a PHC [9]

cluster needs to be 9-hops. Such a large number of hops within a single cluster is not

desirable due to high overhead and latency. To obtain comparable results the network

size was reduced to 2500 nodes and hopsmax is selected such that hopsmax = 3 when R =

20 otherwise hopsmax = 2. Appropriate TTLmax values are selected for SHC and HHC.

Refer Appendix A for specific implementation details of PHC.

Figure 4.14 illustrates the circularity of multi-hop clusters. HHC has the highest

circularity and PHC has the lowest. Circularity of multi-hop HHC is lower compared to

the single-hop case. This behavior can be explained as follows. As hopsmax increases,

57

Transmission range

20 25 30 35 40 45 50

C
irc

ul
ar

ity

0

10

20

30

40

50

60
SHC
HHC
PHC

Figure 4.14 – Circularity of multi-hop clusters. n = 2500, hopsmax = 3 when R = 20,
hopsmax = 2 otherwise.

TTLmax needs to be increased. When TTLmax increases, number of CCHs significantly

increases. As explained earlier a large set of CCHs may result in non-optimum set of

clusters. Selection of CCHs also depends on how the cluster formation message is

propagated. In multi-hop networks, a message traveling through a longer path may reach

a node earlier than a message traveling through a shorter path. If a node relatively closer

to the CH first receives a message with an expired TTL, i.e., that travelled through a

longer path, it will assume that it is a CCH and sends an ACK back to the CH. If the CH

selects such a node as a child CH, the parent and child clusters may overlap. These two

issues reduce the circularity of multi-hop clusters. Later issue can be easily overcome by

allowing each node to wait sometime before sending the ACK. In multi-hop SHC, cluster

formation messages are forwarded several hops hence it is similar to the case in Figure

3.1(b). Circularity of SHC clusters significantly increased as CCHs are selected from

nodes that are further away from the CH. PHC does not prevent the formation of two or

more neighboring nodes within the same neighborhood. This is very likely to occur due

to the probabilistic selection of CHs. As a result, overlap among clusters significantly

58

increase. Sudden increase in circularity at R = 30 is due to the change from 3-hop to 2-

hop clusters. Generally, multi-hop clusters form lower number of bigger clusters however

their properties are not optimum.

4.4.3 Cluster Tree Characteristics

Figure 4.15 shows the distribution of nodes in the cluster tree. Breadth first

spanning tree approach is used to form the cluster tree. The cluster trees formed by the

HHC scheme are much shorter than the ones formed by SHC scheme. Because parent-

child CHs in HHC are geographically distributed cluster tree has a higher branching

factor as a result depth of the cluster tree reduces. As R increases, clusters become much

larger and fewer clusters are required to cover the sensor filed. Therefore, the depth of the

tree reduces with increasing R. Similar behavior is observed for multi-hop clusters

(Figure 4.16). Figure 4.17 shows the cluster tree that corresponds to the coverage map

shown in Figure 4.7. The root node is placed in the middle of the network and has four

child CHs. Those child CHs then further expand their tree until the entire network is fully

covered. Links among CHs may overlap with each other particularly for higher

transmission ranges. This behavior is not so apparent in networks with lower R (Figure

4.18). As R increases more and more open regions are formed which needs to be covered

by another cluster. These clusters reduce circularity and could increase collisions during

inter-cluster communication. If the root node happens to be at an edge of the sensor field

breadth of the cluster tree reduces while depth of the cluster tree increases.

Compared to [9, 33, 67], the distance between any parent-child CH pair in GTC

has a bounded distance of R×TTLmax. Although fully distributed clustering approaches

59

can form individual clusters, their connectivity is not guaranteed, particularly in sparse

networks. It was observed that 1-5% of the nodes in HHC are disconnected from rest of

the network, which is quite high. Though GTC algorithm does reduce collisions within

two clusters, it does not prevent/reduce collisions within a cluster as it being formed. To

effectively achieve desirable cluster and cluster tree properties these issues needs to be

addressed.

Node depth

0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r o

f n
od

es

0

200

400

600

800
R = 20
R = 25
R = 30
R = 35
R = 40
R = 45
R = 50

Node depth

0 5 10 15 20 25

N
um

be
r o

f n
od

es

0

200

400

600

800

1000

1200

1400
R = 20
R = 25
R = 30
R = 35
R = 40
R = 45
R = 50

(a) SHC - Single hop clusters (b) HHC - Single hop clusters

Figure 4.15 – Distribution of nodes along the cluster tree – single-hop clusters. Breadth-
first tree formation, nCCHs = 3 for SHC, nCCHs = 6 for HHC.

Node depth
0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r o

f n
od

es

0

100

200

300

400

500

hopsmax = 1
hopsmax = 2
hopsmax = 3

Node depth
0 5 10 15 20 25

N
um

be
r o

f n
od

es

0

200

400

600

800
hopsmax = 1
hopsmax = 2
hopsmax = 3

(a) - SHC - Multi-hop clusters (b) - HHC - Multi-hop clusters

Figure 4.16 – Distribution of nodes along the cluster tree – multi-hop clusters. Breadth-

first tree formation, R = 20, nCCHs = 3 for SHC, nCCHs = 6 for HHC.

60

Figure 4.17 – Physical shape of HHC cluster tree – High transmission range. Grid –
100×100, n = 5000, R = 50, root node in the middle, depth-first tree
formation. Shaded circles - sensor nodes, Shaded squares - CHs, Circles -
nodes without a cluster.

4.5 Summary

The chapter presented a detailed analysis of the generic top-down cluster and

cluster tree formation algorithm. Algorithm is independent of network topology and does

not require a-priori neighborhood information, location awareness, or time synchronization.

61

Figure 4.18 – Physical shape of HHC cluster tree – Low transmission range. Grid –
100×100, n = 5000, R = 20, root node in the middle, depth-first tree
formation. Shaded circles - sensor nodes, Shaded squares - CHs, Circles -
nodes without a cluster.

 SHC, variant of GTC, is similar to the IEEE 802.15.4 cluster tree. However, its

properties are not desirable for most of the WSN applications. HHC, another variant of

GTC, is proposed that forms more uniform and circular clusters and a cluster tree with

lower depth. The chapter also analyzed how selection of different parameters and

implementation of functions achieve desirable cluster and cluster tree characteristics. It is

62

important to further reduce collisions within clusters, number of control messages, and

disconnected nodes. Analysis of the algorithm under more realistic simulation

environment is also important. Next chapter address these issues.

63

Chapter 5

EXTENDED TOP-DOWN CLUSTER AND CLUSTER TREE

FORMATION ALGORITHM

The HHC scheme of the GTC algorithm forms more circular and uniform clusters

and produce cluster trees with lower depth. Although the GTC algorithm reduces

collisions among different clusters, it does not prevent collisions within a cluster while it

is being formed. It was realized that 1-5% of the nodes in HHC do not belong to a cluster.

Because sensor nodes are location unaware, CCHs had to be selected randomly.

However, most sensor nodes are capable of proving Receiver Signal Strength Indicator

(RSSI) measurements. RSSI values can be used to estimate distance between two nodes

hence can be utilized to select better set of CCHs. The chapter addresses the issues in

HHC and extends the algorithm to make use of RSSI.

Extensions to the GTC algorithm are presented in Section 5.1. Section 5.2

presents the RSSI based CH selection. The two-step cluster and cluster tree optimization

phase is presented in Section 5.3. Section 5.4 provides an analytical model that predicts

the depth of the cluster tree. Finally, an extensive performance analysis of the algorithm

is presented based on a more realistic simulation environment.

64

5.1 Extended GTC Algorithm

The extended GTC algorithm is shown in Figure 5.1. Lines 22 and 27 are the only

new additions to the algorithm from Figure 4.1. By appropriately selecting different

parameters and implementation of functions, the extended algorithm can implement SHC,

 Form_Cluster(NIDCH, CIDCH, delay, nCCHs, hopsmax, TTLmax, depth)

1
2
3
4
5
6
7
8
9

10
11
12

Wait(delay)
TTL ← TTLmax
Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth)
ack_list ← Receive_ACK(NIDchild, hops, P1, P2, timeoutACK)
IF(ack_list = NULL)
 Join_Cluster()
FOR i = 1 TO nCCHs
 CCHi ← Select_Candidate_CHs(ack_list)
 CIDi ← Select_Next_CID(i)
 delayi ← Select_Delay(i)
 depthi ← depth + 1
 Request_Form_Cluster(CCHi, CIDi, delayi, nCCHs, hopsmax, TTLmax, depthi)

 Join_cluster()

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

 Listen_Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth)
TTL ← TTL – 1
hops ← TTLmax - TTL
IF(hops ≤ hopsmax AND my_CID = 0)
 my_CID ← CIDCH
 my_CH ← NIDCH
 my_depth ← depth + 1
 Send_ACK(my_NID, hops, P1, P2)
IF(TTL > 0)
 Wait(Random(timebackoff))
 Forward_Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth)
 IF(hops ≤ hopsmax)
 Exit()
ELSE
 IF(Wait_Listen_Neighbors(Random(timebackoff)) = FALSE)
 Send_ACK(my_NID, hops, P1, P2)
 IF(Listen_Form_Cluster(CCH, CID, delay, nCCHs, hopsmax, TTLmax, depth,
timeoutCCH) = TRUE)
 Form_Cluster(my_NID, CID, delay, nCCHs, hopsmax, TTLmax, depth)
 Exit()
Join_cluster()

Figure 5.1 – Extended generic top-down cluster and cluster tree formation algorithm.

65

HHC, and RSSI based clustering. Only the new additions/changes to the previous

algorithm are described here.

The root node initiates cluster formation process by executing the Form_Cluster

function. It sends a cluster formation broadcast using the Broadcast_Cluster function and

announces its presence to its neighbors. All other nodes execute the Join_Cluster

function and wait for a cluster formation broadcast. A node joins the cluster if it is not

already a member of another cluster and within hopsmax. Then an acknowledgment

(ACK) is send to indicate the node’s interest to become a member of the cluster. After

sending the ACK, the node waits some random back-off time based on timebackoff (line

22) and then forwards the broadcast using the Forward_Broadcast_Cluster function, if

TTL is still valid. Random back-off time reduces the probability of two nodes

broadcasting at the same time therefore reduce the collisions.

Nodes that are not within hopsmax do not join the cluster instead forward the

broadcast until TTL expires. To reduce collisions even these broadcasts are randomly

delayed. Intermediate nodes do not need to send any ACKs. If TTL is expired, the

receiving node is capable of being selected as a new CH (i.e., CCH). By listening to the

transmissions from neighbors, the possibility of selecting two nearby nodes as CCHs can

be reduced. Therefore, each candidate node waits some time before sending an ACK

back to the corresponding CH (Wait_Listen_Neighbors function). Waiting time is

random and selected based on timebackoff. While waiting, nodes keeps listening to the

channel and try to detect any ACKs send by their neighbors, to the same CH. If such an

ACK is detected, (function returns TRUE) the node gives up its candidacy to be a CH and

waits for new cluster formation broadcast, i.e., reruns the Join_Cluster function. If no

66

ACKs are detected by the time the function timeouts, it becomes a CCH and sends an

ACK. Child CHs are chosen from these spatially distributed set of CCHs therefore

generate better set of clusters. Such a set of child CHs increase the breadth and reduces

the depth of the cluster tree. Reduced number of ACKs further reduces the overhead of

the GTC algorithm.

5.2 RSSI Based Cluster Head Selection

Node location information is essential to select a precise set of child CHs.

However, “due to constrain on cost, size, energy consumption, and implementation

environment (e.g., GPS is costly, and not accessible indoors) most sensors are location

unaware” [48]. Many localization techniques have been proposed to determine the

location of such sensors [48]. Received signal strength based techniques, based on the

Received Signal Strength Indicator (RSSI) available in most wireless devices, can be

used to estimate the distance between two nodes. RSSI is attractive because it has

minimum impact on hardware, power consumption, size, and cost of sensors. However,

reliability of RSSI as a distance measure is debatable [34, 45, 57]. RSSI measurements in

new radios such as CC2420 [59] seem to be stable over time particularly if nodes are

raised above ground [34, 45]. It has also been shown that RSSI decreases exponentially

with the distance [34]. Therefore, RSSI is a suitable metric to determine relative distances

among nodes. By utilizing RSSI, it is possible to push the cluster formation message

further away from the parent CH. If the cluster formation message is pushed by 2-hops

clusters will slightly overlap (Figure 3.1(b)) and if it is pushed up to 3-hops it will create

67

a hole (Figure 3.1(c)). A better alternative would be to push the message up to 2-hops and

then select the closest node, i.e., with the highest RSSI, as the child CH.

Forming non-overlapping set of clusters with minimum number of uncovered

nodes is difficult without RSSI. A heuristic for such a case when nodes are uniformly

distributed in the network is as follows. Let us select a random node to forward the

cluster formation broadcast. For a uniformly distributed network, this node is equally

likely to be within or outside a circle of radius r (Figure 5.2 (a)). Then:

Probability of being inside r = Probability of being inside (R – r)
πr2λ = (πR2- πr2)λ
r2 = R2- r2

2
Rr = (5.1)

where λ is the node density and R is the transmission range of a node.

Let us use this information to separate parent and child CHs by 3-hops. The cluster

formation message is forwarded over 3-hops before its final destination, which becomes

the next CH. In the ideal case, it will be at a distance of RRr 1.2,233 ≈= . Therefore,

CH R

r

RrCH

Rr
R

R

2r 2R
R

3r

3RCHParent CHChild

(a)

(b)

X Y

Figure 5.2 – Propagation of cluster formation broadcast: (a) – Location of the

randomly selected node. (b) – Distance between parent and child CHs
when cluster formation message is forwarded by 3-hops. R -
Transmission range of a node. r – Distance to a randomly selected
node from the CH.

68

the new child CH is just more than 2-hops away from the parent CH. This explains the

behavior of our HHC scheme. However, due to the fact that the three nodes do not lie on

a straight line, the results based on this heuristic will be far from optimal.

The RSSI, when available, can be used to estimate the distance to a node that

sends a message. Signal strength reduces with the distance, accordingly the RSSI value

reduces. Cluster formation process can make use of RSSI values (that corresponds to the

cluster formation broadcasts) to enhance the properties of clusters. To make use of RSSI,

lines 22 and 27 of the algorithm need to be modified as:

22 Wait(Random(RSSI + timebackoff))

27 IF(Wait_Listen_Neighbors(RSSI + Random(timebackoff)) = FALSE)

Now the waiting time depends on two factors, the RSSI value of the received broadcast

and the random back-off time. A node with a lower RSSI value gets a higher priority and

forwards the broadcast before a node with a higher RSSI value. This allows nodes that are

further away from the CH (lower RSSI) to forward cluster formation broadcast first.

Similarly, in line 27, nodes further away from the CH get higher priority in responding

back as candidate CHs because the waiting time is proportional to RSSI. Nearer nodes

will respond only if they do not hear an ACK from a further away neighbor. This

increases the probability of selecting further away nodes as CCHs. However, it is not

desirable to push the CCHs too far as it creates holes in the network.

Pushing the cluster formation message to the maximum distance during the first

2-hops and then selecting the next nearest node (within 2-hops and 3-hops) would be a

better alternative. In that case lines 22 and 27 need to be changed as:

22 Wait(Random(RSSI + timebackoff))

27 IF(Wait_Listen_Neighbors(1/RSSI + Random(timebackoff)) = FALSE)

69

Nearest nodes first send ACKs to the CH while other nodes respond only if they do not

hear one of its neighbors sending an ACK. This approach produces more uniform

clusters, reduces the number of disconnected nodes, and reduces the depth of the cluster

tree. We name RSSI based SHC and HHC as RSHC and RHHC respectively.

5.3 Cluster And Cluster Tree Optimization Phase

The HHC pushes CCHs further away from the parent CH producing more circular

clusters. However, circular clusters can generate open regions in the network (e.g. holes

generated by three adjacent circles, Figure 4.3). A node may not belong to a cluster

because; it is in such an open region, disconnected from rest of the nodes, or unable to

hear a cluster formation broadcast due to collisions. Because of these reasons, it was

realized that around 1–5% of the nodes in HHC were not into a cluster.

An optimization phase that executes after the cluster and tree formation phase can

allow most of these unconnected nodes to join an existing cluster. If not, such nodes can

form their own clusters and later join the cluster tree. The algorithm is shown in Figure

5.3 can be used to optimize these nodes. When a node realizes that it is not in a cluster

after some predefined time it executes the Join_Existing_Cluster function. It then listens

to the channel (Listen_For_Cluster function) and tries to detect a neighboring CH. The

node may respond to a periodic beacon from a CH or to a message send by the CH to one

of its child nodes. If such a message is detected (function returns TRUE), the node sends

an ACK to the corresponding CH and joins the cluster. If no such message is heard

before the timeout, the node forms its own cluster by executing the Form_Cluster

function of the GTC algorithm. Each such node waits some time, based on

70

Random(backoff_CH), before advertising itself as a CH (line 7). This random delay

reduces collisions and the possibility of forming multiple clusters in the same

neighborhood. Cluster formation broadcast is not propagated beyond the new cluster and

no CCHs will be selected (i.e., hopsmax = 1, TTLmax = 1, and nCCHs = 0). Depth is set to

infinity because these new clusters are not yet part of the cluster tree. The same algorithm

can also be used to add new nodes to an existing network.

 Join_Existing_Cluster()

1
2
3
4
5
6
7

IF(Listen_For_Cluster(NIDCH, CID, depth, timeoutlisten_CH) = TRUE)
 my_CID ← CID
 my_CH ← NIDCH
 my_depth ← depth + 1
 Send_ACK(NIDchild, hops, p1, p2)
ELSE
 Form_Cluster(NIDchild, NULL, Random(backoff_CH), 0, 1, 1, ∞)

Figure 5.3 – Algorithm that handles non-cluster members.

 Broadcast_CH_Presence(NIDCH, CID, depth, TTL)

 Listen_Optimize_Tree()
1
2
3
4
5
6
7
8
9

 Lsiten_Broadcast_CH_Presence(NIDCH, CID, depth)
IF(my_depth > depth + 1)
 my_CID ← CID
 my_CH ← NIDCH
 my_depth ← depth + 1
 opt_msg_send ←FALSE
IF(opt_msg_send = FALSE)
 Broadcast_CH_Presence(NIDchild, my_CID, my_ depth, TTL)
 opt_msg_send ←TRUE

Figure 5.4 – Cluster tree optimization algorithm.

Depth and breadth of the cluster tree depends on how the cluster formation

broadcast was forwarded and which nodes were randomly selected as CCHs. Collisions

also affect the shape of the cluster tree. Cluster tree can be further improved by

71

exchanging another set of messages between CHs. The algorithm shown in Figure 5.4

can be used to further improve the cluster tree. Newly formed clusters from the previous

optimization phase can also join the cluster tree during this phase. Therefore, in order

execution of the node optimization and the cluster tree optimization phases are important.

However, it is possible to execute only the cluster tree optimization phase.

After the cluster formation phase all the CHs (except the root node) executes the

Listen_Optimize_Tree function and try to upgrade their membership in the cluster tree.

The root node initiates the tree optimization phase by indicating its presence to

neighboring CHs (Broadcast_CH_Presence function). When the broadcast is received,

each neighboring CH compares its current depth with what was heard from the neighbor.

If the new depth is lower, it selects the broadcasting CH as its new parent and reorganizes

its cluster tree membership. When such a change occurs, it may also need to inform its

cluster members (not shown in Figure 5.4) however this depending on the application

scenario. This new information may not useful for certain CHs that are already having the

same depth. However, these CHs have to send their own optimization broadcasts at least

once. This ensures that each CH gets at least one optimization message hence gets an

opportunity to upgrade the cluster tree membership. In future if a CH hears another

message with even lower depth, it may again reorganize its cluster tree membership.

Subsequently, it has to reorganize all its child CHs (lines 6 and 7).

Cluster tree optimization phase does not need to be a completely separate task.

CHs may continue with their regular tasks (relaying, aggregating, etc.) and can deal with

such a broadcast as a special message. The tree optimization algorithm is independent of

the inter-cluster communication mechanism. The broadcasts may travel single or multiple

72

hops depending on the CH-to-CH communication model. For multi-hop transmissions,

i.e., low-power, TTL should be selected such that TTL = TTLmax. For single-hop

transmissions, i.e., high-power, TTL = 1. In multi-hop case, the optimization broadcasts

are propagated similar to the cluster formation messages. The number of CHs that can

upgrade their cluster tree membership with multi-hop forwarding is limited. Single-hop

broadcasts have to use high-power therefore can directly communicate with many

neighboring CHs. Nodes that were not reachable during the cluster formation phase (due

to lack of intermediate nodes, Figure 4.5) can now be reached within a single-hop. Such

CHs can significantly improve their cluster tree membership. As a result, breadth of the

cluster tree increases and consequently the depth reduces. Use of high transmission

power considerably reduces the total number of broadcasts but consume much more

energy. These optimization phases are not applicable for SHC because CCHs are selected

from nodes that are already within the parent cluster.

5.4 Depth Of The Cluster Tree

Breadth/depth of the cluster tree and number of clusters in the network depend on

the shape and size of the sensor filed. It also depends on the position of the root node and

transmission power utilized by a node. Therefore, it is important to predict the breadth

and depth of the cluster tree. Following analytical model can be used to predict the depth

of a cluster tree formed in a circular sensor field.

Let us make use of hexagonal packing that initiates from the root node (Figure

5.5). The root node is placed in the middle of the sensor field and its depth is assumed

zero. Let R be the radius of the sensor field and r be the transmission range of a node.

73

Let us first analyze the cluster formation along Y-axis.

Distance to edge of the sensor filed from root node = R
Distance to edge of the sensor filed from the edge of 1st cluster = R – h

where 2h is the height of a hexagon (Figure 5.5(c)) and 2
3rh =

∴Number of clusters between edge of 1st cluster & edge of sensor

 filed 



 −

=
h

hR
2

 (5.2)

If we assume each cluster is a child of another (e.g. c2 is a child of c1, c8 is a child of c2,

c20 is a child of c8, etc.), the number of clusters along Y-axis indicates the depth of the

cluster tree. In reality, clusters will never form along the same axis; therefore, analysis

along Y-axis provides only a lower bound. Analysis along X-axis provides the upper

X

y

R

r1
4

3

2

7

6

5

11

10

9
8

14
13

12

17

16

15

20

19

18

r
h

r
h

P

(a)
(c)

(b)

h

O

S

Q

l

Figure 5.5 – Ideal hexagonal packing. R – Radius of the sensor field, r – transmission

range of a sensor node.

74

bound. Radius of the sensor filed determines the number of clusters formed along X-axis.

Consider inset (b) of Figure 5.5, which shows a border case analysis. If the sensor filed is

beyond the line QS drawn through point P (R > distance to P from the root node)

additional level of clusters needs to be formed. Otherwise, no additional level of clusters

is required. The depth of the cluster tree along X-axis is analyzed under these two

conditions.

OP = r/2

l (distance between two CHs along X-axis) 22)2(hh −=

h3=
If edge of sensor field ≤ P OPhR ≤=)3%(

∴ 2)3%(rhR ≤=

∴ depth 







=

h
R
3

 (5.3)

If edge of sensor field > P 2)3%(rhR >=

∴ depth 1
3

+







=

h
R

 (5.4)

Therefore, from Equations 5.2, 5.3, and 5.4 and replacing h with r:









−=

2
1

3r
R

mindepth (5.5)










+





>













=
else

r
R

rrR%if
r
R

maxdepth
1

3
2

22
3

3
2

 (5.6)

Practical cluster formation is significantly different to the idea case. However, Equations

5.5 and 5.6 can be used to determine the bounds of the cluster tree. If the size of the

sensor field and desired depth of the cluster tree is known, above equations can be used to

back calculate the desired transmission power.

75

From Figure 5.5 it can be seen that number of clusters in each level increase

linearly (1, 6, 12, 18, 24, …). Only six clusters need to be formed at level 1. Therefore, it

is sufficient for the root node to select six child CHs. In level 2, 12 child CHs need to be

selected by six parent CHs. Hence only two child CHs need to be select by each level 2

CH. This ratio reduces as the number of levels (depths) increases. Therefore, it is

sufficient to select fewer number of child CHs as the depth increases. However, in

practice some of the parent CH may not be able to form all the necessary child clusters.

This reduces branching factor and increases depth of the cluster tree. Therefore, we

select three CCHs at each level except at the root node where we select six CCHs.

5.5 Performance Analysis

The characteristics of clusters and the cluster tree are evaluated using simulations

that are more extensive. Nodes are randomly placed on a circular region with a radius of

500m. The sensor filed is embedded within a 201×201 grid and the grid spacing is 5m.

The root node is placed in the middle of the sensor field and single-hop clusters are

formed using the breadth-first tree formation approach. Six CCHs are selected for the

first level and three for all the other levels. It is assumed that a node does not successfully

hear a broadcast if it is within the collision region of two concurrent broadcasts, therefore

cannot join either of the clusters. Free space propagation model is used for signal

propagation and path loss exponent is set to 2.2 [51]. The results are based on 100 sample

runs (20 random networks × 5 samples per network). Results are compared with

hexagonal packing. Circular region is considered to make the comparison with hexagonal

76

packing easier. Specific implementation details of the simulator are presented in

Appendix A. Following acronyms are used to identify different clustering mechanisms:

• Hexagonal – Clusters based on hexagonal packing

• HHC-Opt – HHC with two-step optimization phase

• RHHC – RSSI based HHC

• RHHC-2 – RSSI based HHC with TTLmax = 2

• RHHC-min– RSSI based HHC, where the cluster formation broadcast is

pushed to the maximum limit during the first 2-hops and then select the

nearest nodes during the third hop.

• RSHC – RSSI based SHC

5.5.1 Cluster Characteristics

Figure 5.6 illustrates the circularity of clusters. The HHC has the highest

circularity and it is followed by RHHC. Availability of RSSI values enhance the

properties of SHC clusters however, the improvements are not significant. Because SHC

has much lower performance, it will not be considered in future comparisons.

Figure 5.7 compare the circularity of HHC and RSSI based HHC. Circularity of

HHC, RHHC, and RHHC-min are similar. Slight differences in circularity can be

explained as follows. HHC has the highest circularity while 2-hop RHHC has the lowest

circularity. RHHC-min clusters are uniformly distributed because the CCHs are selected

from nodes that are just above 2-hops away from the parent CH. Uniform coverage

increase the overlap among clusters to a certain extent. Therefore, circularity of RHHC-

min is lower than HHC. RHHC generates holes in the network as cluster formation

77

messages are pushed to the limit based on RSSI. These holes need to be covered by new

set of clusters therefore overall circularity reduces. Instead of forwarding the cluster

formation message by 3-hops we also tried RSSI based HHC with 2-hop forwarding

(RHHC-2). Though it can push child CHs to the maximum limit within 2-hops,

circularity is lower as clusters can still overlap (Figure 3.1(b)).

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

C
irc

ul
ar

ity

0

10

20

30

40

50

60

70

80

90

RSHC
HHC
R-HHC
Hexagonal

Figure 5.6 – Circularity of clusters.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

C
irc

ul
ar

ity

50

55

60

65

70

75

80

85

HHC
RHHC-2
RHHC
RHHC-min
Hexagonal

Figure 5.7 – Circularity of HHC and RSSI based HHC clusters.

Due to several factors, circularity reduces as the transmission power (PT)

increases. When PT is higher, many nodes are capable of being selected as CCHs. The

78

Wait_Listen_Neighbors function reduces the number of ACKs and prevents two nodes

that are within each other’s communication range (R) from sending an ACK. However, if

those nodes are still within 2R their clusters will overlap. This is harder to prevent

because CCHs are randomly selected. High PT also increases collisions (even with

random waiting) which affect the forwarding of cluster formation broadcast. Due to

collisions, some of the nodes may not be able to hear a cluster formation broadcast. As a

result, those nodes cannot join a cluster even though they are in the range of a CH.

Figure 5.8 illustrates the variation of circularity with node density. When the

network is sparse, clusters are more circular. Circularity reduces with the increasing node

density. This behavior is similar to the case of increasing PT. As there are many nodes in

a region even the smaller open regions needs to be covered. When the network is sparse

circularity of clusters formed by HHC, RHHC, and RHHC-min is better than hexagonal

packing. Therefore, it can be concluded that circularity of HHC and RSSI based HHC is

comparable with hexagonal clusters particularly for lower PT and node densities.

Numebr of nodes
2500 5000 7500

C
irc

ul
ar

ity

55

60

65

70

75

80

85

90

HHC
RHHC-2
RHHC
RHHC-min
Hexagonal

Figure 5.8 – Circularity of cluster for different network densities. R = -20dBm.

Though use of RSSI improves the cluster and cluster tree characteristics, RSSI

values are not that reliable because of the noise. Figure 5.9 shows how circularity is

79

affected by noise. Circularities of all the clustering mechanisms drop approximately by

15%. Reliability of RSSI reduces with the distance due to the noise [32, 43, 55]. We

model the same behavior in our simulator (Section A.3). Therefore, nodes that are closer

to a transmitting node not only indicate higher RSSI values but also those values are less

affected by noise. In RHHC-min, CCHs are selected from nodes having higher RSSI

values in the last hop. Therefore, CCH selection in RHHC-min is less affected by noise.

This enables the selection of better set of CCHs; therefore, circularity of RHHC-min is

higher than the other two solutions. Standard deviation of RHHC-min was also lower

which further confirm this behavior. Other two solutions are much more affected by

unreliability of RSSI that increase with the distance. Variation seen in Figure 5.9 is due to

the fact that nodes are placed on a grid. This issue can be overcome by selecting a more

granulized grid. It was further observed that some of the cluster members were actually

outside the transmission range of the CH. This behavior did not significantly increase the

number of clusters or reduce the cluster size. However, it significantly affected the

measurement of circularity.

The two-step, optimization phase somewhat reduces the average circularity of the

clusters (Figure 5.10). During the first stage, nodes without a cluster either join an

existing cluster or form their own clusters. Addition of disconnected nodes to an existing

cluster somewhat increases the circularity. The new clusters formed by disconnected

nodes are smaller and very likely to overlap with most of the existing clusters. Therefore,

overall circularity of the network reduces. These new clusters also increase the standard

deviation, as their circularity is much lower than the rest of the network.

80

Transmission power (dBm)
-20 -18 -16 -14 -12 -10

C
irc

ul
ar

ity

35

40

45

50

55

60

HHC
RHHC
RHHC-min

Figure 5.9 – Circularity of clusters under uncertainties in signal strength. Random noise
with zero-mean and standard deviation of -6dBm.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

C
irc

ul
ar

ity

20

30

40

50

60

70

80

90

HHC
HHC-Opt
HHC-STD
HHC-Opt-STD
Hexagonal

Figure 5.10 – Reduction in circularity due to the optimization phase.

Number of clusters produced by each solution is shown in Figure 5.11. HHC and

RHHC produce similar number of clusters. RHHC-min produces higher number of

clusters because its circularity is lower and requires more clusters to uniformly cover the

sensor filed. Results are not significantly different from hexagonal packing. As PT

increases, area covered by a cluster increases therefore the number of clusters required to

cover a sensor field reduces. It was also observed that uncertainties in signal strength

somewhat increase the number of clusters produced by each solution.

81

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f c
lu

st
er

s
/ C

H
s

0

100

200

300

400

500

600

700

HHC
RHHC
RHHC-min
Hexagonal

Figure 5.11 – Number of clusters and cluster heads.

Number of clusters formed by networks of different densities is shown in Figure

5.12. When 2500 nodes are placed in the network, circularity of HHC and RHHC-min is

higher than hexagonal packing (Figure 5.8). As a result, HHC and RHHC-min form

lesser number of clusters. Sparse networks also include some open regions that do not

need to be covered by clusters. Therefore, the number of clusters required to cover a

sensor field further reduces. As the density increases, even the smaller open regions need

to be covered by a cluster. Therefore, the number of clusters increases with density. New

set of clusters are formed during the cluster and cluster tree optimization phase.

Therefore, HHC-Opt generates more clusters than HHC (Figure 5.13).

Cluster size distribution is shown in Figure 5.14. HHC has a slightly higher

cluster size than RHHC and RHHC-min. For the same PT , HHC produces lower number

of clusters therefore has the highest cluster size. It was also observed that RHHC-min has

a relatively lower standard deviation. This further suggests that RHHC-min forms more

uniform clusters. These cluster sizes are comparable with the hexagonal clustering

particularly for lower PT values. Higher PT values form much larger clusters due to the

82

increased coverage area. Reduction in circularity with increasing PT significantly reduces

the cluster size. Cluster size also increases with the node density. However, due to

extensive overhead on CHs such larger clusters may not be desirable. As discussed

earlier, cluster and tree optimization phase generate several new clusters. Most of these

new clusters include only one or two nodes. Hence, the optimization phase reduces the

average cluster size.

Number of nodes

2500 5000 7500

N
um

be
r o

f c
lu

st
er

s
/ C

H
s

400

450

500

550

600

650

700

750

HHC
RHHC-min
Hexagonal

Figure 5.12 – Number of clusters produced by networks of different sizes.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f c
lu

st
er

s
/ C

H
s

0

200

400

600

800

HHC
HHC-Opt
Hexagonal

Figure 5.13 – Number of clusters and cluster heads produced by the optimization phase.

83

Transmission power (dBm)
-20 -18 -16 -14 -12 -10

C
lu

st
er

 s
iz

e

0

5

10

15

20

25

30

35

40

45

50

55

60

HHC
RHHC
RHHC-min
HHC-Opt
Hexagonal

Figure 5.14 – Cluster size distribution.

Figure 5.15 show the variation in cluster size due to varying signal strength.

When the signal is noisy, cluster size somewhat reduces. This effect is prominent in

higher PT values. As PT increases clusters become larger as well as reliability of the

signal strength reduces. This affects the circularity of clusters (Figure 5.9) therefore

reduce the cluster size. Though reduction in cluster size due to noise is less significant,

circularity reduces by 15% (Figure 5.9), which seems to be contradicting. It was later

realized that this was due to a limitation in our circularity metric. Due to noise, even

nodes beyond the transmission range of a CH may join a cluster during cluster formation

phase. These nodes are also considered when determining the average cluster size.

However, they are eliminated when calculating circularity based on Equation 4.11, where

the transmission range is calculated assuming no noise. Being able to hear a cluster

formation broadcast due to varying signal levels does not guarantee such a node can

always communicate with the CH. Therefore, it is reasonable to discard such nodes when

calculating circularity.

84

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

C
lu

st
er

 s
iz

e

0

10

20

30

40

50

HHC
RHHC-min
HHC-noise
RHHC-min-noise

Figure 5.15 – Cluster size under uncertainties in signal strength. Random noise with zero-
mean and standard deviation of -6dBm.

 Number of nodes that are not in a cluster is shown in Figure 5.16. Node

connectivity increases with the increasing PT, therefore number of nodes without a cluster

reduces. Only a few nodes in RHHC-min is without a cluster. This further suggests that

RHHC-min uniformly cover the sensor field. RHHC has the highest number of

disconnected nodes due to the open regions that it creates. Even for higher PT values,

more than 1% of the nodes are disconnected, in all the schemes. However, it can be seen

that the cluster and cluster tree optimization phase is able to connect almost all the nodes

in the network. It was also observed that the number of disconnected nodes reduces with

increasing network density.

Figure 5.17 shows the total number of control messages (cluster formation

broadcast and ACKs) produced by each scheme. RHHC-min produces the least number

of control messages while the optimization phase produces the most. HHC and RHHC

have similar overhead. Relatively lower number of ACKs from CCHs was observed in

RHHC-min. A node with a higher RSSI immediately sends an ACK preventing most of

its neighbors from sending their ACKs. This allows selection of geographically

85

distributed set of CCHs. If requested by the parent CH these CCHs are guaranteed to

form a cluster. Therefore, the breadth of the cluster tree increases (Figure 5.18) and

ACKs generated by CCHs are not wasted. Number of control messages increases

somewhat linearly with the number of nodes in the network. This confirms that message

complexity of the algorithm is O(n), where n is the number of nodes in the network.

Table 5.1 shows the control message overhead per node. RHHC-min has the lowest

overhead while HHC-Opt have the highest. Overhead of HHC-Opt not only includes

cluster formation overhead but also includes cluster and tree optimization overheads.

However, the overhead of all these schemes are lower compared to the overhead of ACE

[17]. For lower overhead HHC and RSSI based HHC forms both clusters and cluster tree

while only clusters are formed in ACE.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f n
od

es
 w

ith
ou

t a
 c

lu
st

er
 (%

)

0

1

2

3

4

5
HHC
RHHC
RHHC-min
HHC-Opt

Figure 5.16 – Number of nodes not in a cluster.

It can be concluded that RHHC-min forms the best set of clusters. It ensures

optimum coverage, uniform clusters, and has a low overhead. Its performance is due to

its ability to push the child CHs just above 2-hops from the parent CH. Performance of

86

HHC is acceptable event without RSSI. The two-step, optimization phase increases the

connectivity however introduce additional overhead to the GTC algorithm.

Number of nodes

2500 5000 7500

N
um

be
r o

f c
on

tro
l m

es
sa

ge
s

0

10000

20000

30000

40000

50000

HHC
RHHC
RHHC-min
HHC-Opt

Figure 5.17 – Number of control messages. PT = -20dBm.

Table 5.1 – Number of control messages per node. R = -20dBm, HHC-Opt uses low
power to propagate cluster optimization messages.

Scheme 2500 5000 7500
HHC 4.12 4.86 4.87
RHHC 4.08 4.84 4.88
RHHC-min 3.98 4.47 4.31
HHC-opt 5.58 6.13 6.07

5.5.2 Cluster Tree Characteristics

Figure 5.18 shows the distribution of CHs in the cluster tree. RHHC-min forms a

shorter tree than the other solutions. Most of the selected CCHs in RHHC-min form a

cluster; therefore, it has a relatively higher branching factor. Higher branching factor

reduces the depth of the cluster tree. Branching factor and initial CH distribution of

RHHC-min is closer to hexagonal packing. Such a lower depth and high breadth cluster

tree is desirable for most WSN applications. Table 5.2 compares the simulation results

87

with the depth predicted by Equations 5.5 and 5.6. For lower PT empirical depth is within

the minimum and maximum depth predicted by our model. Cluster properties are

comparable with hexagonal packing for lower transmission power levels, hence indicates

that our model based on hexagonal packing is valid for circular clusters. The model needs

to be extended to predict the depth of the cluster tree when clusters are less circular.

Depth

0 2 4 6 8 10 12 14 16

N
um

be
r o

f C
H

s

0

20

40

60

80

100

HHC
RHHC
RHHC-min
Hexagonal

Depth

0 2 4 6 8 10

N
um

be
r o

f C
H

s

0

10

20

30

40

HHC
RHHC
RHHC-min
Hexagonal

(a) (b)

Figure 5.18 – Distribution of CHs at different levels of the cluster tree: (a) PT = -20dBm,
(b) PT = -10dBm

Table 5.2 – Comparison of theoretical and empirical depth of the cluster tree.

Transmission Power Scheme Depth – Theoretical Depth – Empirical

-20dBm

HHC

13-15

15
RHHC 14
RHHC-min 14
HHC-Opt 14

-10dBm

HHC

4-5

8
RHHC 8
RHHC-min 7
HHC-Opt 4

Figure 5.19 shows the improvement on cluster tree due to the two-step cluster and

cluster tree optimization phase. The same power level that was used to build clusters is

utilized during the tree optimization phase. Higher PT values improve the cluster tree

significantly (Figure 5.19(b)). As PT increases, more and more CHs can hear the cluster

88

optimization broadcast allowing them to join a parent CH with a lower depth. This

significantly increases the branching factor of a parent CH (rapid increase in number of

CHs in Figure 5.19(b)). Workload of a CH increases if it has many child clusters hence

too many child clusters are not desirable as well. Figure 5.20 shows the physical shape of

a cluster tree formed by one of the data samples. For simplicity only CHs and nodes

without a cluster is indicated. Figure 5.21 shows the same cluster tree after the

optimization phase. The new cluster tree is more structured than the original one. Note

that nodes that were not in a cluster are now connected to an existing cluster or have

formed their own clusters. Though optimization phase incur some overhead and diminish

cluster properties such as circularity and cluster size it significantly improves the

branching factor, reduce the depth of leaf nodes, and average depth of a node. Such

cluster trees are important in latency bound applications.

Depth

0 2 4 6 8 10 12 14 16

N
um

be
r o

f C
H

s

0

20

40

60

80

100

120
HHC
HHC-Opt

Depth

0 2 4 6 8 10

N
um

be
r o

f C
H

s

0

10

20

30

40

50

60

70

HHC
HHC-Opt

(a) (b)

Figure 5.19 – Cluster tree improvement with optimization phase: (a) PT = -20dBm, (b) PT
= -10dBm.

Figure 5.22 shows the ability of the HHC clustering scheme to form a clustered

network even in a sensor field with a large open region. Such open regions can occur if

nodes are not placed in a particular region, if all the nodes placed in the region fails

89

(unlikely), or due to barrier like a concrete wall. Because of the open region, two of the

child CHs of the root node in Figure 5.22 is unable to extend their branches.

Nevertheless, other branches of the tree were able to go around the open region and cover

the entire sensor field.

Figure 5.20 – Physical shape of the cluster tree before the optimization phase. HHC
cluster formation approach. PT = -12dBm. Shaded circles – sensor nodes,
Shaded squares – CHs, Circles – nodes without a cluster.

90

Figure 5.21 – Physical shape of the cluster tree after the optimization phase. HHC
cluster formation approach. PT = -12dBm. Same PT for cluster tree
optimization phase. Shaded circles – sensor nodes, Shaded squares –
CHs, Circles – nodes without a cluster.

Figure 5.23 shows the distribution of clusters in the sensor field. Different colors

indicate the depth of a cluster in the cluster tree. It can be seen that the clusters of the

same depth tend to arrange in a structure somewhat similar to a ring. However, the ring

may not be fully connected. This information may be useful in sensor localization or

when a circular path needs to be formed within the network. To determine any possibility

91

Figure 5.22 – HHC cluster formation in a network with an open region. PT = -20dBm. L
shaped open region (200m×50m + 50m×150m). Shaded circles – sensor
nodes, Shaded squares – CHs, Circles – nodes without a cluster.

of localizing clusters, distance to each CH from the root node is plotted in Figure 5.24.

Based on the figure localization accuracy is around ±50m. Availability of RSSI increases

the accuracy to ±35m and cluster optimization phase increases it up to ±25m. Even ±25m

accuracy is not adequate for a localization technique therefore the scheme is not suitable.

92

Figure 5.23 – Distribution of cluster in the sensor field. PT = -20dBm. Colors indicate

the depth of a cluster in the cluster tree. Shaded circles – sensor nodes,
Shaded squares – CHs, Smaller circles – nodes without a cluster, Larger
circles – Coverage area of a CH.

The ability to form a partial ring is exploited in one of our routing schemes, which will be

described in the next chapter.

5.6 Summary

The GTC algorithm is further extended to reduce collisions and enable the

selection of a better set of CCHs. RHHC-min scheme that pushes the cluster formation

93

message to the maximum distance during the first 2-hops and then selects a nearest node

out performs the other solutions. It uniformly covers the sensor field and produces a

lower depth tree. Our HHC scheme, without any RSSI values, also performs well. The

two-step, optimization phase reduces the number of disconnected nodes and improves the

cluster tree. Such an improved cluster tree would be beneficial in long-lived WSNs even

though the optimization overhead is somewhat high. In the next chapter, we make use of

the cluster tree produced by HHC scheme to deliver messages in large and collaborative

sensor networks.

Distance from root node (m)

0 100 200 300 400 500

D
ep

th

0

2

4

6

8

10

12

14

16

18

Figure 5.24 – Distance vs. depth in the cluster tree. PT = -20dBm, HHC cluster formation.
Data is based on a single sample.

94

Chapter 6

ROUTING

Routing protocols are highly influenced by data-centric nature of wireless sensor

networks. Attributes based naming and many-to-one, e.g., node-to-sink, communication

model are two of the key attributes of conventional WSNs that are dedicated to a specific

task. In addition to those attributes collaborative WSNs may require to facilitate many-to-

many (CH-to-CH or VSN-to-VSN) communication model and a logical addressing

scheme. A cluster tree can be used to facilitate unicast, multicast, and broadcast traffic in

such networks. A logical addressing scheme that reflects the hierarchical relationship of

parent and child CHs can be used to determine appropriate routing paths. The chapter

presents a hierarchical addressing scheme and three routing mechanisms that are

developed on top of the cluster tree formed with the HHC scheme of the GTC algorithm.

Section 6.1 introduces the concept of cluster tree based routing and hierarchical

addressing. A routing mechanism that makes use of cross-links within the cluster tree to

enhance the network capacity is presented in Section 6.2. Section 6.3 presents another

routing mechanism that makes use of a circular path within the network. The optimum

placement of the circular path is derived using an analytical model. Performance analysis

is presented in Section 6.4.

95

6.1 Cluster Tree Based Routing

Collaborative WSNs require communicating with the base station as well as

within the network. The cluster tree formed with the HHC scheme is used to facilitate

these communication models. It is assumed that two CHs that wish to communicate with

each other at least know the destination address, through some other mechanism. If the

communication mode is node-to-sink, nodes anyway know address of the sink hence this

constrain is not necessary. Next chapter presents a mechanism to identify addresses of

CHs that are in the same or different VSNs.

Figure 6.1 shows a hypothetical cluster tree formed with ideal HHC clustering.

Assume that the root node is either the sink or capable of forwarding messages to the

sink. Under this condition, events/messages generated by any of the nodes in the network

can be easily delivered to the sink through the cluster tree. For example, consider a

message that originates from one of the members of P’s cluster. The cluster member first

 Figure 6.1 – A hypothetical cluster tree formed with HHC clustering. A-Q – CHs, A –
root node, lines indicate the parent-child relationship among CHs.

96

forwards the message to P. Then the message will be forwarded L, which is the parent

CH of P. The message will be further forwarded to C and from C to A, which is the final

destination of the message.

However, this approach will not work if nodes or CHs in different branches of the

cluster tree want to communicate. For example, assume that J wants to communicate with

P. The message is first forwarded to C, as it is the parent CH of J. C only knows about its

parent CH A and its child CHs J, K, and L. Then C will forward the message to A because

it does not know anything about P. However, even CH A does not have any information

about P. Therefore, A has to either drop the packet or try to send it through a randomly

selected branch. This problem can be overcome by each CH keeping track of all its

descendants. If C was aware of P, it could have directly forward the message to L, which

will then forward the message to P. As we go up the hierarchy, more and more data about

descendant CHs needs to be stored. The root node has to store data about the entire

network; therefore, this approach is not scalable. A logical addressing scheme that

reflects the parent-child relationship among CHs can overcome this issue.

6.1.1 Hierarchical Addressing

A hierarchical address can be assigned to a child CH based on the address of the

parent CH and child’s branch number. Such an addressing scheme for the previously

discussed cluster tree is shown in Figure 6.2. Branch numbers of a child CH are

determined based on the order that CCHs are selected. The first CCH that is selected to

form a cluster is considered to be in branch 0, the second one is in branch 1, and n-th

CCHs is in branch n – 1. Branch numbers are always relative to the parent CH. If one of

97

 Figure 6.2 – A hypothetical cluster tree labeled with hierarchical addresses.

the select CCHs is unable to form its own cluster, particular branch is assumed to be

discontinued. The root node (A) initiates the cluster and tree formation process and does

not have any parent CHs, hence its Cluster ID (CID) is assumed to be 0. B is the first

child CH of A; therefore, its address is 00. Then the second child C is assigned address

10. Root node selects up to six CCHs. G is the last child CH of the root node therefore

gets the address 50. When B assigns addresses to its child CHs it merges its hierarchical

address 00 with the child’s branch number. H is the first child CH of B hence assigned

the address 000. Address 100 is assigned to I as it is the second child CH. H does not

have any child CHs therefore the branch related to H does not span any further. Q is the

one and only child of I hence assigned the address 0100. The third child CH of C was

unable to form a cluster; therefore, address 210 is not assigned to any child CH. L, which

is the fourth child CH, is assigned the address 310. These hierarchical addresses are

calculated by the parent CH and send to the selected CCHs using the

Request_Form_Cluster function. If a parent CH realizes that, some of the selected CCHs

98

were unable to form a cluster it may reuse the hierarchical addresses assigned to those

nodes. For simplicity, we assume that addresses are not reused.

For routing purposes, each CH needs to keep track of the hierarchical addresses of

its parent and child CHs. Root node only needs to keep track of its immediate child

nodes. Therefore, hierarchical addresses significantly reduce the number of routing

entries that needs to be stored in a node. Given a hierarchical address of a destination, the

entire path to the destination can be reconstructed. In practice, only the next hop needs to

be determined by a CH. The pseudo code given in Figure 6.3 can be used to determine

the next hop. For simplicity let us assume a hierarchical address to be an array of digits

with the Least Significant Digit (LSD) indicating the branch number of the root node,

which is always 0. The input variable current indicates the hierarchical address of the CH

that is trying to discover the next hop and destination is the hierarchical address of the

destination CH.

 Next_Hop(current, destination)

1
2
3
4
5
6
7
8
9

10

IF(current = destination)
 Return current
min_length ← Min(Size(current), Size(destination))
FOR i = 0 TO min_lenth -1
 IF(current[i] ≠ destination[i]
 Break
IF(i < Size(current))
 Return parent_CH
ELSE IF(i = Size(current))
 Return destination[i]

Figure 6.3 – Pseudo code to determine next hop.

For example, consider a case where CH L wants to communicate with CH M. L’s

address is 310 while M’s address is 020. As the source and destination addresses are

different, individual digits of the two addresses need to be compared to determine the

99

next hop. Both L and M has three digits hence min_length = 3. Each digit is compared

starting from the LSD (line 4). When compared, LSD of both address are zero. Then the

next least significant digit is compared. In this case it is not a match (1 ≠ 2) hence the for

loop terminates. Digits that match indicate the common meeting point of the two

branches, for L and M it is the root node. By the time the for loop terminates the variable

i indicates the number of digits that matched. For L and M, i = 1. If the number of digits

that match is less than the size of the current address (i < Size(current)) then the common

meeting point is above the current CH. Therefore, the message needs to be forwarded to

the parent CH (line 8). For L and M, (i = 1 < 3), therefore the message will be forwarded

to the parent CH C. Similarly, C will compare its address with the address of L. It will

determine that its parent CH is the best node to forward the message therefore sends it to

A. When the root node tries to determine the next hop, it will realize that it is the only

common point, i.e., i = 1. When number of matching digits are same as the size of the

current address, i.e., i = Size(current), the next hop should be one of the child CHs. This

assumption is valid given that current and destination addresses are different, i.e., lines 3

to 10 never executes if condition in line 1 is satisfied. The next digit after the common

portion of the destination address (digit i) indicates the branch number of the child CH.

When 0 and 020 is compared, common portion of the address is 0. Therefore, the child

CH’s branch number is 2, which corresponds to CH D. Consequently, the message will

be forwarded from A to D. At D, addresses 20 and 020 are compared. Addresses are

identical up to 20 hence next hop should be the 0-th branch. Therefore, the message is

forwarded from D to M, which is the destination.

100

As shown in Figure 6.2(b) hierarchical addresses do not need to be of the same

size. Therefore, the length of a hierarchical address can be fixed or variable. Fixed size

addresses are easy to deal with however waste memory if useful portion of the address is

small. Alternatively, variable length addresses reduce the size of an address however

increase the decoding complexity. For example, a cluster tree with a maximum depth of

five needs 6-digit hierarchical addresses, given that root node’s address is 0. However,

level 1 CHs need only 2-digits to represent their address. Therefore, 4-digits are wasted.

Such large addresses increase the size of a packet header therefore can significantly affect

the performance of WSNs. Wireless sensor nodes consume significant amount of energy

even to send a single bit. However, thousands of instructions can be executed for the

same energy. Therefore, it is worthwhile to use variable length addresses although it

somewhat increases the complexity of the addressing scheme.

Figure 6.4 illustrates the design of our variable length hierarchical addressing

scheme. The two-part address includes a variable length hierarchical address and a fixed

length depth. Given the depth, the size of the address portion can be determined. The

depth of the root node and its address is always zero. Therefore, the root node can be

indicated by an address with depth = 0 (Figure 6.4(a)) and no address portion required as

it is always zero. A d-bit depth, allows us to address a cluster tree with a maximum depth

of 2d – 1. Number of bits required to represent a branch of the cluster tree (i.e., digit)

depends on the branching factor b. Hence, log2b bits are required to represent a branch.

Figure 6.4(c) shows the format of a level 1 hierarchical address with a branching factor of

4. The format of a level 2 hierarchical address is shown in Figure 6.4(d). CHs that are

closer to the root node have shorter addresses while CHs that are further away have

101

longer addresses. As we discussed in Section 5.4 branching factor reduces as we go down

the cluster tree. This information can be utilized to further reduce the size of a

hierarchical address, i.e., as b reduces log2b reduce. A cluster tree with a maximum depth

of d and breadth of b therefore has a maximum address portion of log2b(2d-1) bits.

Therefore, the size of an address vary from d to log2b(2d-1) + d bits.

Address Depth

log2(b)(2d-1) d-bits

00-
11

0

1

00-
11 1100-

11

(a)

(d)

(c)

(b)

Figure 6.4 – Variable length hierarchical addresses: (a) – two-part address, (b) – address
of the root node, (c) – address of a level 1 CH, (d) – address of a level 2 CH.
d – depth and b – branching factor.

6.1.2 Addressless Routing

It is not essential to have a logical addressing scheme to communicate across

different nodes within a cluster. Depending on the application scenario, it may be

possible to select other alternative approaches. Figure 6.5 shows a hypothetical cluster

tree that connects heterogeneous devices.

In case of fire, smoke detectors or manual fire alarm controls need to

communicate with the fire alarms. However, they may not know the addresses of fire

alarms or anything about the branches that include those alarms. It is possible to facilitate

node-to-node communication within this network without any addressing scheme or

parent CHs keeping track of all the descendants. If each parent CH can keep track of the

102

A

DCB F GE

IH K LJ M
N O

Q P

C

C CSD

SD

SD C

Fire alarm
control

Surveillance
camera

SD

Fire alarm

Smoke
detector

1 2

1

1

1 2

5

3

3
3

2

6

4

2

Figure 6.5 – A cluster tree that connects heterogeneous devices.

device types (camera, alarm, smoke detector, etc.) of their descendants, such a

communication model can be facilitated. Whenever a device comes up, it informs its

parent CH about the device type. For example, CH P informs CH L that it has an alarm.

CH L caches this information and informs CH C about an alarm (just saying one of my

descendants has an alarm). C also caches this information and informs A that it knows

about an alarm and a smoke detector. When J informs C about its alarm, C caches that

information. However, it will not again inform A about an alarm because it has already

done so. Similarly, D will get to know about the alarm at M. D will further forward

message about an alarm and a smoke detector to A. This scheme is efficient because only

information about devices types and related branches are cached at each node.

Let us see how this cluster tree is useful in delivering events to actuators.

Whenever a device detects an event, it will send a message towards the root node. If the

smoke detector at cluster D detects a fire, it will send a message towards the root node. D

103

will also send a copy of the message to M as it knows about the alarm at M. When the

message reaches the root node, it needs to forward the messages to branches with alarms.

Hence, a copy of the message will be forwarded to child CHs B, C, and F. When the

message reaches B, it will realize that its child CH H has an alarm therefore forwards the

message to H. Similarly, the message is forwarded to CHs J and P.

6.1.3 Relative Branch Number Based Addressing

However, this scheme does not work if smoke detectors want to communicate

only with a subset of alarms. Assume that alarms at CHs H and J are interested in smoke

detector at CH C while CHs D, F, M, and P are interested in smoke detectors at CHs D

and N. The alarms can make use of an event/query propagation mechanism similar to

Rumor Routing [14] or path detection mechanism similar to Ant Routing [35], to inform

about their interest and subscribe to the respective fire detectors. They can perform a

random walk within the cluster tree until required device is reached. Like the previous

approach, if parent CHs are aware of the device types of its descendants the random walk

can be made more deterministic. In Rumor and Ant routing as the agents/ants travel

through the network they accumulate and carry information about all the visited nodes.

This list of nodes is called the visited list. Consider a network with 16-bit node IDs as

proposed in IEEE 802.15.4 standard [38]. An agent that travels in this network will

accumulate 100-bytes of extra data when it travels 50-hops (50-hops is typical for long-

lived agents in Rumor Routing). This extensive overhead hinders the performance of

Rumor Routing. Knowledge about parent-child relationships in cluster tree based

networks can significantly reduce this overhead.

104

An alternative cluster tree-labeling scheme based on branch numbers is shown in

Figure 6.6. Each CH assigns a relative branch ID to its parent and child CHs. Parent CH

is always given branch ID 0 while child CH branch IDs starts from 1. Consider a case

where alarm 3 at CH P is interested in a smoke detector labeled 3 (Figure 6.5). CH P

does not know that the smoke detector 3 is at CH N therefore sends a long-lived agent(s)

to figure out a possible path to the third smoke detector. For simplify of the discussion,

we will consider only a case where the agent is able to figure out a path to the destination.

The agent is sent to the parent CH L because it is only the branch related to P. When L

receives the agent, it realizes that it was sent by child CH P and adds P’s branch ID to the

visited_list. Then L forwards the agent to parent CH C. C appends the visited_list with

L’s branch ID which is 4. Then visited_list = 14. When the agent reaches the root node,

the updated visited_list is 142. The root node then forwards the agent to CH E, which is

its fourth child. E realizes that the agent came from the parent CH A, i.e., root node,

therefore append 0 to the visited_list, i.e., visited_list = 1420. Finally, the agent is

A

DCB F GE

IH K LJ M
N O

Q P

0 0000 0

1

11
11

1

11

0
0

0 000 0

2

22

0

5
43

6

4

0 0

Figure 6.6 – Alternative cluster tree labeling scheme based on branch numbers.

105

forwarded to N, which is the CH with the third smoke detector. The final visited_list =

14200. By the time the agent reaches N, it has travelled 5-hops.

If the third smoke detector detects a smoke, it will try to inform about the event to

the alarm at CH P using the visited_list. Given the visited_list and the hop count, the path

to the destination can be reconstructed. First the event message is forwarded to the parent

CH E because the last visited branch is 0 (i.e., visited_list = 14200). Event messages

carry the visited_list with them to determine the path to the destination. At CH E, the last

visited branch is removed from the visited_list therefore the new visited_list = 1420. E

realizes that the last branch in the visited_list belongs to its parent CH therefore forwards

the event to A, i.e., root node. After removing the entry related to A, the new visited_list

is 142. Then root node figures out that the next branch is its second child CH therefore

forwards the event to CH C. Similarly, CH C removes its entry from the visited_list and

sends it to its fourth child CH L. Finally, the event will be forwarded from L to P, which

is the destination. Though this scheme adds some complexity while constructing and

decoding the visited_list, it significantly reduces the size of the visited_list. For example,

our HHC scheme has a maximum branching factor of six therefore each CH has to keep

track of seven branches (6 + parent CH). Only 3-bits are required to uniquely address

these branches instead of the 16-bit node IDs hence this addressing scheme has

significantly lower overhead.

The same concept can be extended to non-hierarchical WSNs by assigned relative

node IDs to neighbors. Instead of 16-bit addresses, log2(no of neighbors)-bit addresses

can be used to identify neighbors of a particular node. Because most WSNs are sparse or

moderate log2(no of neighbors) will be much smaller than 16-bits.

106

This branch based labeling scheme cannot detect loops. By looking at the

visited_list it is not possible to identify whether the agent has gone through the same CH

creating a loop. Let us assume the agent that search for the third smoke detector was

forward to CH F by the root node. When the agent reaches F, it modifies the visited_list

to 1420. CH F cannot send the agent any further because it does not have any child nodes

hence sends it back to its parent CH. Then the new visited_list = 14205. If the root node

then forwards the agent to CH E, new visited_list is 142050. By looking at this

visited_list it is not possible to determine that the agent has gone through the root node

twice. Similar to Rumor Routing this problem can be prevented by each CH caching the

agent information. CHs need to cache agent ID and number of hops the agent took to

reach the particular CH for the first time. Given these information loops in the visited_list

can be removed. Due to time constrains no performance analysis is performed on this

addressing scheme.

6.2 Cross-links Based Routing

The root node becomes a single point of failure in hierarchical WSNs. Because it

has to deliver most of the traffic to the sink or across different branches, it will die much

faster than other CHs in the network. If the root node is not energy constrained its child

CHs will become a bottleneck. Child CHs will die faster as they have to share the traffic

going through the root node. It has also been proposed to put multiple high power nodes

closer to the root node so that they can handle more traffic [60]. Neither of these

approaches effectively makes use of the energy available in rest of the nodes/CHs in the

network. We propose two routing approaches that make use of the energy available in

107

other CHs, to a certain extent. The first approach makes use of cross-links within the

cluster tree to enhance the network capacity.

Figure 6.7 shows a cluster tree with cross-link among neighboring CHs. In a

clustered network neighboring clusters may belongs to different branches of the cluster

tree. For example, CHs H and J belong to completely different branches of the cluster

tree. As they are in the same neighborhood, they should be able exchange each other’s

data and figure out their hierarchical addresses. Such neighboring clusters can form

cross-links within the cluster tree. These cross-links can be used to deliver messages

across different branches of the cluster tree without going through the root node. For

example, consider a case where CH H wants to communicate with CH K. When the

message travels through the cluster tree it will use the path H → B → A → C → K, which

is 4-hops long. If H knows that its neighboring CH J, is in the same branch as K it can use

J to relay the message. Then the new path will be H → J → C → K and it has a distance

of 3-hops. The new path is short and does not go through the root node. Ability to form

many cross-links reduces the workload on the root node. Circularity of actual clusters is

Figure 6.7 – A cluster tree with cross-links among neighboring CHs.

108

lower; therefore, several clusters are formed in the same neighborhood. This allows many

cross-links to be formed within the cluster tree. This scheme utilizes the energy available

in CHs that are located at different levels of the cluster tree.

It is not a good option to blindly go through cross-links just because they are

available. We can use our hierarchical addressing scheme to determine whether going

through one of cross-links or going through the root node is shorter. Given address of

CHs H (000) and K (110) it can be determined that they meet only at the root node. CH H

has 2-hops to the root node while K also has 2-hops therefore the total distance is 4-hops.

If H compares J’s address (010) with K’s address (110) they meet at a CH with address

10, i.e., hierarchical address 10 is common in both J’s and K’s addresses. Therefore, both

J and K have 1-hop to the CH with address 10. CH H also needs to forward the message

to J, which requires another hop. Altogether, 3-hops are required. Therefore, path through

neighboring CH J is shorter than going through the root node.

CHs may discover their neighbors actively or passively. In active neighbor

identification, each CH sends a broadcast indicating hierarchical cluster address to its

neighbors. The CHs may use higher power (single-hop) or low power (multi-hop)

transmission to send the broadcast. Our cluster tree optimization phase can also be used

to discover neighboring addresses. Instead of specifically sending their hierarchical

addresses, CHs may passively listen to the messages send by their neighbors to determine

neighbor’s hierarchical addresses. Passive listening is slow and requires packet header to

include the source address.

109

6.3 Circular Path Based Routing

It was observed that clusters of the same depth tends to be somewhat localized

and lie on a ring like structure (Figure 5.23). This information can be used to build one or

more circular paths in the network. These circular paths can be used to forward messages

without being tied to the cluster tree. Figure 6.8 shows a cluster tree with a circular path.

The path is formed by connecting level 2 CHs that are in the same neighborhood. CHs

along the circular path share their hierarchical addresses. Instead of sharing cluster

information only with the neighbors, CHs share their addresses with neighbors of

neighbors that are at the same depth hence this is an extension of the cross-links based

routing. Neighbor address discovery is similar to the route sharing in Routing

Information Protocol (RIP).

A

K

L

M
D

C

B

N

FO

G

IE

J

H

P

QR

T

S

U

V

Figure 6.8 – A cluster tree with a circular path. Path is formed by connecting all the level
2 CHs that are in the same neighborhood.

For example, assume that two CHs U and K want to communicate with each

other. A message going from U to K has to travel 5-hops if it goes through the cluster

tree. By utilizing the cluster tree and the circular path, it is possible to send the message

110

through 4-hops. U is not part of the circular path therefore; it uses the cluster tree and

forwards the message to its parent CH M. Because M is part of the circular path, it has the

option of selecting either the circular path or the cluster tree. It will take 4-hops to sends

the message through the cluster tree. Sending the message through the circular path

requires only 3-hops. Therefore, M sends the message through the circular path using

CHs P and L. However, to do this M has to know about CH K’s address through

neighboring CHs P and L. We name this approach as circular path based routing.

It is not useful to share each CHs address with all the other CHs in the circular

path. For example, consider two CHs H and P that are at a depth of two. It requires 4-

hops for them to communicate using either the cluster tree or the circular path. Going

through the circular path is preferred as it reduces the burden on the root node. Therefore,

it is useful for H and P to know about each other. Consider P’s neighbor M. It takes 4-

hops for H and M to communicate through the cluster tree while 5-hops are needed to

communicate through the circular path. Therefore, this information is not useful and H’s

address should not be propagated any further. Hierarchical addresses are required to

determine the best path and to make sure only useful addresses are forwarded to

neighbors. Depending on the position of the circular path, i.e., at which depth this path is

formed, the fraction of messages that goes through the cluster tree and the circular path

varies. Optimum position of the circular path is determined using an analytical model.

The analytical model varies depending on whether we are interested in minimizing

energy or maximizing network lifetime. The case of minimizing energy is analyzed first.

If all the nodes use the same transmission power, energy to transmit a message is

proportional to the number of hops and number of hops is proportional to the distance.

111

Energy to transmit = E[Energy to transmit]
= E[Energy per hop × hops]









×=

rangeontransmissi
distancehopperenergyE

[]distanceE
rangeontransmissi
hopperenergy

×=

If the same transmission power level is utilized, both transmission range and energy to

send a message is constant across the entire network. Therefore, expected distance travel

by a message needs to be minimized to minimize energy.

Figure 6.9 shows two nodes that are trying to communicate in a circular sensor

field. The source node is placed at a distance r1 from the root of the cluster tree and the

destination node is placed at r2. All the messages have to go through the cluster tree. For

simplicity, communications that take place without going through the root node is not

considered. Therefore, a message travels a distance of r1 + r2. For the circular region:

θθθ ddrdrrrprrddE 212121),,(),,(][∫∫∫= (6.1)

where 2121),,(rrrrd +=θ (6.2)

To determine),,(21 θrrp , let us consider a small circle drawn at r with a thickness of Δr

R

0 ≤ r1 ≤ R
0 ≤ r2 ≤ R
0 ≤ θ≤ 2π
d = r1 + r2

θ

r1

r2

Figure 6.9 – Positions of a source and a destination node trying to communicate
through the cluster tree. R – radius of the sensor field, r1 – distance to
source node from the root node, r2 – distance to destination node from
the root node, θ – angle between two nodes.

112

(Figure 6.10). Assume that nodes are uniformly distributed with a node density of λ.

R

r

Δr

Figure 6.10 – Area covered by a small ring of Δr. R – radius of the sensor field, r –
distance to a node from the root node.

Number of nodes in the sensor field = πR2λ
Number of nodes in the small circle at r = 2πrΔrλ

Probability of finding a node at r
λπ
λπ

2

2
R

rr∆
=

P(r) r
R

r
∆= 2

2

r1 and r2 are two independent events and θ is the angle between them. Therefore:

P(r1, r2, θ) θ
π
θ

∆×∆×∆=
2

22
22

2
12

1 r
R
rr

R
r

 θ
π

θ
∆∆∆= 214

212 rr
R
rr (6.3)

Substituting values for d(r1, r2, θ) and P(r1, r2, θ) in Equation 6.1:

214
21

0 0

2

0
21

2)(][drdrd
R

rrrrdE
R R

θ
π

π







+= ∫ ∫ ∫

21
0 0

2

0
21214)(2 drdrdrrrr

R

R R

θ
π

π

∫ ∫ ∫ +=

R
3
4

= (6.4)

Equation 6.4 gives the expected distance between any two nodes that want to

communicate through the cluster tree. Let us extend this analysis to a network that makes

use of the cluster tree and the circular path. As shown in Figure 6.11, depending on the

113

Ɵ

r 2

r2

D Rr1

r 2

D R
r1

r2

D R
r1

r2

D R
r1

r 2

D R
r1 r2

D R
r1

D R
r1D Rr1

r 2

θ

Ɵ

Ɵ

Ɵ

Ɵ

0 ≤ r1 < D
0 ≤ r2 < D
0 ≤ θ ≤ 2π
d = r1 + r2

0 ≤ r1 < D
D ≤ r2 ≤ R
0 ≤ θ ≤ 2π
d = r1 + r2

D ≤ r1 ≤ R
D ≤ r2 ≤ R
0 ≤ θ ≤ α
d = (r1 – D) + (r2 – D)
 + Dθ

D ≤ r1 ≤ R
D ≤ r2 ≤ R
2π - α ≤ Ɵ ≤ 2π
d = (r1 – D) + (r2 – D)
 + D(2π – Ɵ)

D ≤ r1 ≤ R
D ≤ r2 ≤ R
α < Ɵ < 2π - α
d = r1 + r2

D ≤ r1 ≤ R
0 ≤ r2 < D
0 ≤ Ɵ ≤ β
d = (r1 – D) + (D – r2)
 + DƟ

D ≤ r1 ≤ R
0 ≤ r2 < D
2π - β ≤ Ɵ ≤ 2π
d = (r1 – D) + (D – r2)
 + D(2π – Ɵ)

D ≤ r1 ≤ R
0 ≤ r2 < D
β < Ɵ < 2π - β
d = r1 + r2

(a)

(b)

(d)

(c)

(e)

(f)

(h)

(g)

Figure 6.11 – Different positions of a source and a destination node trying to

communicate using the cluster tree and the circular path. R – radius of
the sensor field, D – radius of the circular path, r1 – distance to source
node from the root node, r2 – distance to destination node from the root
node, θ angle between the two nodes.

positions of the source and destination nodes eight different combinations can occur. If

the source node is inside the circular path (Figure 6.11 (a) and (b)), it cannot make use of

the circular path therefore have to purely depend on the cluster tree. If either the source or

both source and destination nodes are outside the circular path, nodes can make use of

both the cluster tree and the circular path. As discussed earlier, message will go through

the circular path only if it provides a better path than the cluster tree. If both source and

114

destination nodes are outside the circular path (D ≤ r1 ≤ R, D ≤ r2 ≤ R), messages will go

through the circular path if they are within a certain angle α (Figure 6.11 (c) and (d)).

Otherwise, the messages will be forwarded through the cluster tree as usual (Figure

6.11(e)). If the source node is outside the circular path (D ≤ r1 ≤ R) and destination node

is inside (0 ≤ r 2 < D), messages will go through the circular path if they are within a

certain angle β (Figure 6.11 (f) and (g)). If not, the messages will be forwarded through

the cluster tree as usual (Figure 6.11(h)).

Following inequalities can be used to determine the critical angles α and β.

When r1, r2 ≥ D

Distance through cluster tree > Distance through cluster tree + Circular path
r1 + r2 > (r1 – D) + (r2 – D) + Dα
r1 + r2 > r1 + r2 – 2D + Dα
0 > D (α – 2)
2 > α
∴α ≤ 2 (6.5)

When r1 ≥ D, r2 < D

Distance through cluster tree > Distance through cluster tree + Circular path
r1 + r2 > (r1 – D) + (D – r2) + Dβ
r1 + r2 > r1 – r2 + Dβ
2r2 > Dβ

β>
D
r22

D
r22

≤∴β (6.6)

Then the distance function that represents all eight cases can be written as:

115





















≤≤−<≤≤≤−+−

≤≤<≤≤≤+−

≤≤−≤≤≤≤−−++
≤≤≤≤≤≤−++

−<<<≤≤≤+

−<<≤≤≤≤+
≤≤≤≤<≤+
≤≤<≤<≤+

=

H
D
rDrRrDDrr

G
D
rDrRrDDrr

FRrDRrDDDrr
ERrDRrDDDrr

D
D
r

D
rDrRrDrr

CRrDRrDrr
BRrDDrrr
ADrDrrr

d

πθπθπ

θθ

πθπθπ
θθ

πθ

πθ
πθ
πθ

222,0,)2(

20,0,

222,,2)2(
20,,2

222,0,

222,,
20,,0
20,0,0

2
2121

2
2121

2121

2121

22
2121

2121

2121

2121

 (6.7)

By adding individual terms, the excepted distance can be determined.

[] [] [] [] [] [] [] []HEGEFEEEDECEBEAEdE +++++++=][(6.8)

Answers to individual terms can be obtained by integrating each term.

[] 4

5

210 0

2

0 21214 3
42

R
Ddrdθθdr)rr(r

πR
AE

D D π
=+⇒ ∫ ∫ ∫

[] { }323
4

2

210

2

0 21214 2
3
2)(2 DDRR

R
Ddrdrdrrrr

R
BE

R

D

D
−+=+⇒ ∫ ∫ ∫ θ

π
π

[] 4

3322

21

22

2 21214 3
242

πR
)D)(RD)(R(πdrdθθdr)rr(r

πR
CE

R

D

R

D

π −−−
=+⇒ ∫ ∫ ∫

−

[] { }323
4

2

210

2
2

2 21214)1217()32(3)43(2
9

)(2 2

2
DDRR

R
Ddrdrdrrrr

R
DE

R

D

D
D
r

D
r πππ

π
θ

π
π

−+−+−=+⇒ ∫ ∫ ∫
−

[] { }323
4

22

21

2

0 21214 34
3

)()2(2 DDRR
R

DRdrdrdrrDDrr
R

EE
R

D

R

D
−−

−
=+−+⇒ ∫ ∫ ∫ π

θθ
π

[] { }323
4

22

21

2

22 21214 34
3

)()}2(2{2 DDRR
R

DRdrdrdrrDDrr
R

FE
R

D

R

D
−−

−
=−+−+⇒ ∫ ∫ ∫ − π

θθπ
π

π

π

[] 4

233

210

2

0 21214 9
)(4)(2 2

R
DDRdrdrdrrDrr

R
GE

D R

D
D
r

π
θθ

π
−

=+−⇒ ∫ ∫ ∫

[] 4

233

210

2
2

2 21214 9
)(4)}2({2

2 R
DDRdrdrdrrDrr

R
HE

D R

D
D
r

π
θθπ

π
π

π

−
=−+−⇒ ∫ ∫ ∫ −

By submitting above answers in Equation 6.8:

4

5

2

332
3

4][
R

D
R
DDRdE

πππ
−+−= (6.9)

To find the minimum expected distance:

116

 4

4

2

2 592][
R
D

R
D

dD
dE

πππ
−+−=









−+−= 4

4

2

2 5921
R
D

R
D

π

() R
Dkwherekk =−+−= 42 5921

π
 (6.10)

Roots can be found by equating Equation 6.10 to zero.

10
419,

10
419

0295 24

+
±

−
±=

=+−

k

kk

RD
k

509.0
509.0
=∴

= (6.11)

The only valid root is k = 0.509, therefore D = 0.509R. When the circular path is placed

at this position, the expected energy consumption of a message will be lower.

Reducing energy of a message does not necessarily increase the network lifetime.

The capacity of the network depends on the bottleneck node. If the circular path is closer

to the root node most of the messages will go through it. Then nodes along the circular

path become the bottlenecks. If the circular path is further away from the root node most

of the messages will go through the root node making it the weakest point. Therefore, the

optimum capacity of the network can be achieved by balancing the workloads of the root

node and nodes along the circular path.

P(message going through root node) = P(message going through a node in circular path)

First four terms, A to D, in Equation 6.7 corresponds to the cases were a message travel

only through the root node. Remaining four terms corresponds to the cases were a

message travel through the circular path and the cluster tree. Then:

117

















−<<<≤≤≤

−<<≤≤≤≤

≤≤≤≤<≤

≤≤<≤<≤

=

L
D
r

D
rDrRrD

R
rr

KRrDRrD
R

rr

JRrDDr
R

rr

IDrDr
R

rr

RP

22
214

21

214
21

214
21

214
21

222,0,2

222,,2

20,,02

20,0,02

)(

πθ
π

πθ
π

πθ
π

πθ
π

 (6.12)

















≤≤−<≤≤≤

≤≤<≤≤≤

≤≤−≤≤≤≤

≤≤≤≤≤≤

=

P
D
rDrRrD

R
rr

O
D
rDrRrD

R
rr

NRrDRrD
R

rr

MRrDRrD
R

rr

CP

πθπ
π

θ
π

πθπ
π

θ
π

222,0,2

20,0,2

222,,2

20,,2

)(

2
214

21

2
214

21

214
21

214
21

 (6.13)

where P(R) is the probability of a message going through the root node and P(C) is the

probability of a message going through the circular path. By adding individual terms, two

probabilities can be determined.

)()()()()(LPKPJPIPRP +++= (6.14)

)()()()()(PPOPNPMPCP +++= (6.15)

Answers to individual terms can be obtained by integrating each term.

4

4

210 0

2

0 214
2

R
Ddrdrdrr

R
P(I)

D D
=⇒ ∫ ∫ ∫ θ

π
π

{ }22
4

2

210

2

0 214
2 DR

R
Ddrdrdrr

R
P(J)

R

D

D
−=⇒ ∫ ∫ ∫ θ

π
π

4

222

21
22

2 214
))(2(2

R
DRdrdrdrr

R
P(K)

R

D

R

D π
πθ

π
π −−

=⇒ ∫ ∫ ∫
−

4

222

210

22
2 214 3

))(43(2 2

2 R
DDRdrdrdrr

R
P(L)

R

D

D
D
r

D
r π

πθ
π

π −−
=⇒ ∫ ∫ ∫

−

4

222

21
2

0 214
)(2

R
DRdrdrdrr

R
P(M)

R

D

R

D π
θ

π
−

=⇒ ∫ ∫ ∫

4

222

21
2

22 214
)(2

R
DRdrdrdrr

R
P(N)

R

D

R

D π
θ

π
π

π

−
=⇒ ∫ ∫ ∫ −

118

4

222

210

2

0 214 3
)(22 2

R
DDRdrdrdrr

R
P(O)

D R

D
D
r

π
θ

π
−

=⇒ ∫ ∫ ∫

4

222

210

2
22 214 3

)(22
2 R

DDRdrdrdrr
R

P(P)
D R

D
D
r

π
θ

π
π

π

−
=⇒ ∫ ∫ ∫ −

By submitting answers in Equations 6.14 and 6.15:

43
2

3
82 4

2

2

R
D

R
D P(R)

πππ
π

−+
−

= (6.16)

43
2

3
82 4

2

2

R
D

R
D P(C)

πππ
+−= (6.17)

Figure 6.12 shows the two probability functions. When D is smaller, most of the

messages go through the circular path. If the angle between two nodes is greater than the

critical angels α and β messages will always go through the root node. Therefore, even

when D → 0, 0.3633 fraction of the messages travel through the root node. When D → R,

all the messages go through the root node. The maximum network lifetime can be

achieved if the workload of the root node and workload of a CH along the circular region

is equal, i.e., they have equal likelihood of dying. Let us assume that the workload on the

circular path is equally divided among all the CHs within the circular path. Then:

Fraction of messages going through circular path = P(C)
E[number of hops each message travel through circular path] = h
Workload on circular path = P(C)h

Workload on a CH that is in the circular path =
m

hCP)(

where h is the expected number of hops that a message travels through the circular path

and m is the number of CHs in the circular path. Therefore:

m
hCPRP)()(= (6.18)

Equation 6.18 is valid only if 5707.0≥m
h . However, m is several times larger than h,

i.e., more CHs available on the circular path than the expected hop count on the circular

119

path. Therefore, we cannot find a D that satisfies Equation 6.18. Based on empirical data

it is possible to find the value of D that maximize the network lifetime. This problem may

be able to solve using constrained minimization.

D/R
0.0 0.2 0.4 0.6 0.8 1.0

Pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

p(R)
p(C)

Figure 6.12 – Probability of a message going through the root node or the circular path.

6.4 Performance Analysis

The HHC scheme is used to build the cluster tree. Messages are send from a

random source node to a random destination node until the first node dies. Hierarchical

address of the destination CH is assumed to be known in advance. PT is the transmission

power used during the cluster formation and R is the corresponding transmission range.

Inter-cluster communication is single-hop; therefore, CH-to-CH transmission range is 3R.

In cross-links based routing, before data transfer each CH sends a broadcast indicating its

hierarchical addresses, so that all the CHs are aware of their neighboring clusters. Results

are based on 100 samples. Refer Appendix A for specific implementation details and

simulation parameters.

Figure 6.13 shows the number of messages delivered by cluster tree based routing

and cross-links based routing. Use of cross-links reduces the workload on the root node

120

therefore doubles the capacity of the network. In all the data samples, the root node failed

first. Generally, for PT = -20dBm a single node can forward ≈15000 messages. From the

figure it can be seen that ≈16500 messages were forwarded by the cluster tree when PT =

-20dBm. This implies that most of the messages were passed through the root node.

Network capacity decreases with increasing PT. Use of higher transmission power

significantly drains energy in CHs therefore network capacity rapidly reduces with

increasing PT. This behavior is clear in Figure 6.14 where energy to send a message

increases rapidly with increasing PT.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f m
es

sa
ge

s

0

5000

10000

15000

20000

25000

30000

35000

Tree only
Tree + Cross-links

Figure 6.13 – Number of messages delivered.

Transmission power (dBm)
-20 -18 -16 -14 -12 -10

En
er

gy
 p

er
 m

es
sa

ge
 (µ

J)

1

2

3

4

5

6

7

Tree only
Tree + Cross-links

Figure 6.14 – Energy required to send a message.

121

Figure 6.15 shows the fraction of energy remaining in the entire network after the

first message is dropped due to lack of energy. Even through cross-links based routing

makes use of more energy, still more than 99% of the energy in the entire network is

unutilized. More energy can be utilized if we allow messages to be routed even after the

failure of couple of nodes/CHs. After the failure of the root node, majority of the new

messages were dropped as they were trying to go through the root node. Though “number

of messages delivered until the first message is dropped” is not a good metric, it easily

pinpoints the bottleneck in hierarchical WSNs.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

R
em

ai
ni

ng
 e

ne
rg

y
(%

)

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

Tree only
Tree + Cross-links

Figure 6.15 – Fraction of energy remaining in the entire network.

To facilitate circular path based routing a ring needs to be formed within the

network by connecting CHs of the same depth. In practice, it is not possible to build a

complete ring because physical shape of clusters is different and CHs of the same depth

may not be in the same neighborhood. For example, though CHs I and N in Figure 6.8 are

at the same depth they cannot form a link because they are not in the same neighborhood

(too far apart). However, a circular band can be build by allowing CHs of two adjacent

levels to share their addresses. Such a band increases the connectivity of the circular path.

122

Figure 6.16 shows the energy consumed by circular path based routing. Depth 0

represents the case where no circular path is present. The scenario where circular path is

formed between root node and its child CHs is indicated with depth 0-1. Similarly, 1-2

indicates the case where circular path is formed between CHs at depth 1 and 2. For PT = -

20dBm, minimum energy is consumed when the circular path is formed between CHs at

depth 5 and 6. Depth 5 and 6 corresponds to CHs that are between ≈120 – 240m from the

root node (Figure 5.24). Therefore, the average distance is around 180m. For PT = -

10dBm minimum energy is consumed when the circular path is between depth 3 and 4.

This corresponds to an average distance of 270m. According to Equation 6.11, D =

0.509R, therefore ideally the circular path needs to be at 254.5m. Results are somewhat

different to the optimum D predicted from the model. CHs are not fully localized

therefore we had to build a band instead of a circular path hence results can be different.

Depth at which circular path is formed

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7

En
er

gy
 p

er
 m

es
sa

ge
 (µ

J)

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

Depth at which circular path is formed

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

En
er

gy
 p

er
 m

es
sa

ge
 (µ

J)

2.4

2.5

2.6

2.7

2.8

2.9

(a) (b)

Figure 6.16 – Circular path based routing - energy required to send a message: (a) – PT =

-20dBm, (b) – PT = -10dBm.

Figure 6.17 shows the number of successfully delivered messages with circular

path based routing. For PT = -20dBm, the peak performance is 2.3 time more than what is

delivered by only the cluster tree. For PT = -10dBm, the network is able to deliver 2.5

123

times more messages. Generally, it was seen that circular path based routing at least

double the network capacity. Depth of 3-4 in Figure 6.16(a) corresponds to an average

distance of 120m while depth of 3-4 in figure 6.16(b) corresponds to 270m. When PT = -

20dBm, in 94% of the samples a CH along the circular path died when the circular path

was closer to the root node, i.e., depth ≤ 2. The root node died in all the samples when the

circular path was further away from the root node, i.e., depth ≥ 4 . When 2 ≤ depth ≤ 3,

25% of the time the root node died. At the optimum point, the root node died 75% of the

time and a CH along the circular path died in the remaining 25%. This behavior confirms

the analytical model though we were not able to find a specific answer.

Depth at which circular path is formed

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

N
um

be
r o

f m
es

sa
ge

s

15000

20000

25000

30000

35000

40000

Depth at which circular path is formed

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7

N
um

be
r o

f m
es

sa
ge

s

2000

3000

4000

5000

6000

7000

8000

(a) (b)

Figure 6.17 – Circular path based routing – number of messages delivered: (a) – PT = -

20dBm, (b) – PT = -10dBm.

Figure 6.18 shows the number of messages delivered by all three routing

mechanisms. When the circular path is placed between the two optimum depths, circular

path based routing delivers the highest number of messages. It also consumes the lowest

energy to send a message and is able to utilize energy available in many CHs. Overhead

of cross-link and circular path formation were not significant and both schemes

consumed similar amount of energy (less than 0.01% of total energy in the network). The

124

network capacity significantly increases when the thickness of circular path is increased.

When PT = -20dBm, a band formed by connecting CHs in depth one to five increase the

network capacity by more than three times. It was also realized that number of messages

that can be delivered is invariant of the network density.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f m
es

sa
ge

s

0

5000

10000

15000

20000

25000

30000

35000

40000

Tree only
Tree + Cross-links
Tree + Circular path

Figure 6.18 – Number of messages delivered by each routing scheme. PT = -20dBm.
Circular path based routing values are based on peak performance.

6.5 Summary

A cluster tree based routing scheme and two extensions based on cross-links

within the cluster tree and circular path in the network was presented. Both cross-links

and circular path at least double the network capacity and has similar overhead in terms

of discovering neighbor information. Routing is based on a hierarchical addressing

scheme that reflects the parent-child relationship among CHs. These addresses

significantly reduce the routing information that needs to be stored at each CH. Cross-

links and circular path based routing make use of hierarchical addresses to determine the

shortest path to a destination. These routing mechanisms are utilized to form and

communicate within VSNs.

125

Chapter 7

TOWARDS VIRTUAL SENSOR NETWORKS

Virtual Sensor Networks (VSNs) is an emerging concept that supports

collaborative, resource efficient, and multipurpose sensor networks that may involve

dynamically varying subset of sensors and users. A VSN combines sensors collaborating

on a specific task(s) into a logical network. VSNs are expected to provide the protocol

support for formation, usage, adaptation, and maintenance of such sensors and/or

networks. However, realization of this concept requires design and implementation of

many algorithms and protocols. As an initial step towards VSNs, a mechanism to form

VSNs by connecting nodes observing the same phenomenon is proposed. We make use

of the HHC based cluster tree and routing schemes to effectively form VSNs and

communicate across them. We simulate a VSN based close loop system to demonstrate

the efficacy of the approach.

Section 7.1 presents the functions that are required to form and manage a VSN. A

cluster tree based mechanism to form VSNs is presented in Section 7.2. Inter-VSN and

intra-VSN communication models are presented in Section 7.3. Section 7.4 presents a

simple analytical model to determine the energy consumption in the network. Finally,

Section 7.5 presents the performance analysis.

126

7.1 Virtual Sensor Network Support Functions

Formation, usage, adaptation, and maintenance of VSNs require implementation

of many functions and protocols. These functions and protocols should be able to get new

nodes into a VSN, remove nodes from a VSN, detect multiple VSNs, merge VSNs

together (e.g., when two chemical plumes merge), split a VSN into multiple VSNs (e.g.,

when a chemical plume splits), and facilitate communication within and across VSNs.

Self-organization of VSN members is the first step. Whenever a node detects a

relevant event for the first time, it should send a VSN formation/discovery message

within the network indicating that it is aware of the particular phenomenon and wants to

collaborate with similar nodes. The node may join an existing VSN (if there is one) or

makes it possible for other nodes that wish to form a VSN, to find it. Therefore, every

node that detects a relevant event for the first time executes the following function and

informs other nodes about its interest to form/discover a VSN.

Form_Discover_VSN(msg)

The message (msg) format should be similar to the following:

struct msg:
source //Node ID of the source node
type //Type of phenomenon, VSN ID
reading //Sensor reading(s)

where phenomenon type indicate a particular VSN.

These messages can be distributed within the network using a random routing

scheme such as Rumor Routing [14], Zonal Rumor Routing [10], or Ant Routing [35].

Though these infrastructure-less approaches are relatively simple to implement, they

incur significant overhead [10, 14] and do not guarantee that two nodes that detects the

same phenomenon are going to identify each other [14]. Alternatively, formation of some

127

structure within the network can easily deliver these messages. Such an approach can

significantly reduce the overhead and it will guarantee that two nodes that detect the same

phenomenon are going to meet with each other.

Intermediate nodes that relay VSN formation/discovery messages need to keep

track of the following VSN routing data to facilitate communication within members of a

VSN:

struct VSN_table:
neighbor //Sender of the VSN msg
type //Type of phenomenon, VSN ID

In multifunctional WSNs, a node may belong to multiple VSNs hence may keep track of

different VSN types for the same neighbor. If a node no longer detects the phenomenon,

it may unsubscribe from the VSN by sending an unsubscribe message to other VSN

members:

Unsubscribe_VSN(msg)

Inter-VSN and intra-VSN communication models are application dependant.

Unicast messages are required when a message needs to be send to a specific VSN

member. For example, if a chemical plume is predicted to be moving towards a certain

direction, node(s) in that region need to be informed. Multicast messages are useful in

delivering messages to all the members of a VSN. For example, if each node

independently calculates the average chemical concentration of a plume, each other’s

data needs to be shared. When VSNs merge or split, it may be required to inform all the

members of existing VSNs, hence broadcast within all the VSNs is also important.

Therefore, following functions are required while maintaining VSNs:

Unicast_VSN(destination, type, data)
Muticast_VSN(type, data)
Broadcast_VSN(data)

128

In addition to these functions, it is required to develop functions that are able to

detect multiple VSNs and handle VSN dynamics such as migrating, merging, and

splitting VSNs. However, for the time being we only present an algorithm to self-

organize VSN members and allow them to communicate with each other.

7.2 Cluster Tree Based Virtual Sensor Network Formation

In VSNs, sensor nodes observing the same phenomenon (i.e., similar events) form

a logical network. Formation of such a logical network is somewhat easier if subset of

nodes that are expected to collaborative with each other is known in advance. For

example, in a smart neighborhood based system all the intruder detection devices and

alarms are known beforehand; therefore, locating/connecting them is somewhat easier.

However, in certain applications a node’s interest on a particular event may vary over

time. For example, nodes that are involved in detecting underground chemical plumes

may vary due to migrating, merging, and splitting plumes [6, 40]. Therefore, it is

important to build this logical network dynamically as nodes get interested in the events.

We form a VSN by connecting nodes observing the same phenomenon through a

virtual tree. We make use of the cluster tree formed by our HHC scheme to deliver VSN

formation/discovery messages and to communicate within and across VSNs. The

algorithm given in Figure 7.1 is used to form such a virtual tree. Whenever a node detects

a relevant event for the first time it sends a VSN formation/discovery message (using the

Form_Discover_VSN(msg) function) towards the root node of the cluster tree, indicating

that it is aware of the phenomenon and wants to collaborate with similar nodes.

Intermediate CHs need to keep track of the following information:

129

struct my_data
cluster_members //List of cluster members
n //No of VSNs
VSNs //Array of VSN IDs
m //No of VSN routing entries
VSN_table //VSN routing table

 Handle_VSN_Message(msg)

1
2
3
4
5
6
7
8
9

10
11
12

//Initially n = 0, m = 0
IF msg.source ∈ my.cluster_members
 IF(msg.type ∉ my_data.VSNs)
 my_data.VSNs[n] ← msg.type
 n ← n + 1
 Forward_To_Parent_CH(msg, my.parent_CH)
 my_data.VSN_table[m] ← (msg.source, msg.type)
 m ← m + 1
ELSE
 IF(msg.type ∉ my_data.VSN_table)
 Forward_To_Parent_CH(msg, my_data.parent_CH)
 my_data.VSN_table[m] ← (child_CH, msg.type)
 m ← m + 1

Figure 7.1 – VSN formation algorithm.

Already know
phenomenon ?

Add sender’s branch
ID to VSN table

Yes

Root node ?

No

Drop message

New event

No

Send to parent CH

Yes

Figure 7.2 – VSN formation steps.

130

A CH executes the Handle_VSN_Message function whenever a VSN

formation/discovery message is received. If the message is from one of its cluster

members, the CH checks its array of VSN (my_data.VSNs[]) entries to determine

whether it is already aware of the VSN (line 2). If not, the CH marks itself as being part

of the VSN (line 3), i.e., its cluster is detecting the phenomenon. Note that, it is possible

for a CH to be part of multiple VSNs, e.g., multifunctional sensor nodes. It then forwards

the message to its parent CH using the Forward_To_Parent_CH function. The CH

further adds the cluster member to its VSN routing table (line 6), regardless of it being

previously aware of the VSN or not. These routing entries are useful when delivering

messages to members of a VSN.

If the received message is from one of the child CHs, the parent CH checks its

VSN routing table to see whether it is already aware of the VSN (line 9). If not, the

message is forwarded to its parent CH so that the parent can also keep track of the VSN

(line 10). Similarly, the message is forwarded up to the root node. The virtual tree is

formed by all the CHs along the path towards the root node keeping track of the VSN,

i.e., by adding the child CH to their VSN routing tables (line 11). Only CHs that are in

the phenomenon mark themselves as part of the VSN and other CHs only support their

communication.

A hypothetical sensor field that tracks chemical plumes is shown in Figure 7.3.

Two chemical plumes are located around clusters E, F, J, K, N, O, and R. Assume that a

node in cluster J first detects the plume. It sends a VSN formation/discovery message

towards the root node. Firstly, the message is forwarded to its own CH J. This is the first

time that J is receiving this information; therefore, it marks its self as detecting the

131

phenomenon (indicated by the circle in Figure 7.3(b)). It then forwards the message to its

parent CH H. H caches the information about the new VSN (i.e., add child CH J to its

VSN routing table) and forwards the message to its parent CH B. Finally, the message is

forwarded to the root node (A). Both the root node and CH B also cache the information

about the new VSN. Suppose that another node in cluster K detects the same

phenomenon therefore forwards its message to the root node. It will follow the path K →

C → A. K, C, and A cache the information about the VSN. However, the root node is

already aware of the phenomenon. Therefore, it does not need to caches the new

information. However, the root node keeps track of the branch (i.e., child CH C) that the

message was received from. Keeping track of such branches enable routing among nodes

that tracks the same phenomenon.

A

K

L

M

D

C

B

N

F

O

G

I

E

J

H

P

Q

R

A

DCB F GE

IH K L

J M

N

OQ PR

(a) (b)

Figure 7.3 – A hypothetical sensor field that tracks chemical plumes: (a) – ideal HHC
clusters detecting two chemical plumes, (b) – two virtual trees that connect
VSN members.

Meanwhile other nodes in the event region will also detect the plume. When

nodes in cluster R detect a plume, they will also send messages towards the root node.

132

When the first message is received from one of the cluster members, CH of R also marks

itself as detecting the phenomenon. The message is then forwarded to its parent CH H.

However, H is already aware of the phenomenon and has already informed its parent CH

B. Therefore, H will not forward the message any further. Nevertheless, H keeps track

that R is also in the phenomenon. The same occurs when cluster members of O detect the

plume. Nodes in clusters J, K, R, and O may need to communicate with each other to

detect migrating, splitting, and merging plumes. Therefore, form a virtual network,

hereafter referred as the virtual tree, on top of the cluster tree. The virtual tree connects

all the CHs that are detecting the same phenomenon (Figure 7.3(b)). These clusters make

use of other CHs in the virtual tree to communicate with each other. Similarly, clusters E,

F, and N can form another logical tree. These two trees belong to the same VSN if they

monitor the same phenomenon. If not, they can be considered as two separate VSNs. Our

approach can also enable multiple VSNs to communicate with each other because each

virtual tree is guaranteed to meet at the root node.

Sending data about an event towards the root node guarantees that two or more

nodes observing the same phenomenon will identify each other. Though random routing

algorithms such as Rumor Routing [14], Zonal Rumor Routing [10], and Ant Routing

[35] can deliver such messages without any infrastructure, they do not guarantee that two

nodes observing similar events will find about each other [14]. Many long lived (i.e.,

significantly higher TTL values) agents are required, even to achieve moderate

probability of successful delivery [14]. These agents need to keep track of the visited

nodes to reconstruct the routing path therefore size of a message increases as an agent

travels [14]. In our approach, a VSN formation/discovery message needs to travel only up

133

to the root node hence require significantly lower TTL than the random routing schemes.

Routing path (virtual tree) is constructed by adding entries to each CH’s VSN routing

table (not to the agent) hence size of a VSN formation/discovery message is fixed.

Therefore, our approach has a much lower overhead and it guarantees to form a VSN by

connecting all the nodes that observe the phenomenon.

Our scheme works regardless of whether the phenomenon is localized or

distributed. Cross-links based routing can be used for intra-VSN communication. For

example, clusters J, K, R, and O are in the same neighborhood therefore they can make

use of cross-links within the cluster tree. Our scheme can also enable multiple VSNs to

communicate with each other because each virtual tree meets at the root node.

When plumes move, split, or merge certain nodes may not be interested in the

phenomenon any more. Such nodes can give-up their VSN membership by sending an

unsubscribe message towards the root node. If a CH realizes that none of its cluster

members (including child CHs) are interested in the phenomenon, it can request its parent

CH not to send any future VSN related messages.

The VSN formation scheme does not need to be event driven. If nodes definitely

know that they are going to be part of a VSN, they can inform others about their interest

to participate in a VSN as they join a cluster. Though the initial cluster and cluster tree

formation phase introduce additional overhead this sort of a VSN formation approach is

more appropriate for long-lived WSNs with dynamically varying subset of sensors. Cost

of VSN formation and management through the cluster tree is lower.

134

7.3 Inter-VSN and Intra-VSN Communication

Inter-VSN and intra-VSN communication models are application dependant. VSN

communication models may need to support the unicast, multicast, and broadcast

functions defined in Section 7.1. While the virtual tree is formed, each CH keeps track of

the child CHs (i.e., branches of the cluster tree) that are members of the VSN. This

information is useful in delivering multicast and broadcast messages without any

addressing scheme. This is similar to the addressless routing scheme in Section 6.1.2.

To facilitate unicast messages within a VSN, CHs needs to know about other CHs

that are detecting the same phenomenon (e.g., CHs E, F, J, K, N, O, and R in Figure 7.3).

Therefore, each CH needs to inform its address to all the member CHs of the VSN. It is

not necessary to keep track of individual cluster members as far as a CH can represent all

its cluster members. Address sharing can be accomplished in several ways. One of the

easiest solutions is to store all the CH addresses at the root node and use it as a lookup

table (similar to the DNS). This approach requires extra control messages and the root

node becomes a single point of failure. Instead, a CH may send a broadcast within the

VSN whenever it forms/discovers a new VSN, allowing other member CHs to cache the

new address. However, the new CH does not know any addresses of the other CHs that

are already in the VSN. Therefore, it has to request those addresses from a CH along the

path towards the root node. If the parent CH is aware of the VSN, it may provide those

addresses. If not, the parent CH can request its own parent CH to provide the addresses.

If none of the CHs along the path towards the root node is aware of any other CH, the

root node can provide those addresses. Similarly, addresses of multiple VSNs can be

135

shared through the root node. Though broadcasts are costly, it does not add significant

overhead if number of CHs in a VSN is small.

7.4 VSN Based Close Loop System

Many sensor network applications allow nodes to use different sampling

schedules depending on the presence of the phenomenon, dynamic nature of the

phenomenon, and application requirements. For example, concentration of a subsurface

chemical plumes can change within several days; however, they tend to migrate very

slowly. Therefore, it is desirable for nodes that are already detecting the plume to sample

everyday while other nodes to sample in every two/four weeks. Nodes that are in the

plume consume more energy while other nodes can save energy by reducing unnecessary

sampling. When the plume migrates to a different area, different set of nodes will be

frequently active allowing previously active nodes to sleep more and save energy. Such

an approach can reduce overall energy consumption of the network. The same idea can

even be extended to fast moving phenomenons such as hazardous gases.

Individual nodes may dynamically determine their sampling rate depending on

presence of the phenomenon. However, this approach fails if nodes closer to the base

station decide to sleep, because they are not detecting the phenomenon. All the messages

generated by the nodes that sample faster will be either extensively delayed or dropped.

Another alternative is the use of a close loop system where some sort of a data analysis

system, prediction system, or a user request group of nodes to change their sampling rate.

Such a system need to send many unicast messages asking individual nodes to change

their sampling rates as the phenomenon moves, hence incur significant overhead. VSNs

136

can facilitate both these schemes while overcoming their inherent problems. A node that

detects the phenomenon forms a path (a VSN) all the way up to the root node and makes

sure all the intermediate CHs are active to deliver its data. As explained in Section 7.1,

VSN can easily deliver multicast messages within VSNs. Hence, if a close loop system

wants to change sampling rate of set of nodes it can send a VSN wide multicast message.

We simulate a subsurface chemical plume monitoring system to demonstrate the

efficacy of our cluster tree based VSN formation scheme. We build a close loop system

by coupling the WSN to a plume model. Design of the system is shown in Figure 7.4. Set

of nodes is grouped into a cluster and set of clusters are connected together through a

cluster tree. The VSN is formed on top of the cluster tree. The root node acts as a base

station and connects rest of the network to the Plume Modeling and Prediction (PMP)

system. Depending on their sampling schedule, nodes periodically test chemical

concentration of the soil. If the chemical concentration is beyond a certain threshold, the

node is considered to be in the plume. Such nodes send the concentration data all the way

up to the PMP system and at the same time form/join a VSN. Such nodes will continue to

report their concentration values as far are they are substantially different from the

previously reported value. Based on the data, PMP will generate a transport model of the

plume. Such a model is useful in predicting plume migration patterns and remedial

treatment. As explained earlier, the PMP system or a user can request a node or group of

nodes to change their sampling rate through the VSN. The VSN changes the active

schedule of the intermediate CHs to match the new sampling rate, while forwarding such

messages. This ensures that the new data will not be dropped or delayed. Nodes may miss

some events if their sampling rate is low than the plume dynamics. Plume predictions can

137

be used to reduce such misses. If the plume prediction model determines that, a node(s)

will be in a plume at time t + ∆t , the PMP system can send an advance request to such a

node(s) asking it to be active at the predicted time. We consider only these three types of

communications in our simulation; however, depending on the application scenario and

use requirements other functions can be incorporated into a VSN.

Plume

Nodes

Clusters & Cluster tree

VSN

Plume model

Chemical concentration
of node x at time t

Node/VSN sample at
rate r

Node x will be in
plume at time t + ∆t

Take sample

Figure 7.4 – Different layers and their interactions in a VSN based close loop system.
Direction of Black arrows indicates direction of data flow.

We further derive an energy model for a VSN based system that delivers data to a

base station. Consider a network where all the nodes occasionally come up at the same

time (Figure 7.5), i.e., at every m∆t. Periodic walk-up of the entire network is required

due to several reasons. If a new node detects the phenomenon at m∆t, it is guarantee to

send it message all the way up to the root node and join the VSN, because all the

intermediate CHs are active at that time. Thereafter, such nodes will increase their

138

sampling rate. Hence, sometimes it is possible that more nodes are active after a network

wide walk-up (e.g., in Figure 7.5 more nodes are active at time ∆t after the first m∆t). In

addition, a network wide walk-up is required to inform different sampling schedules

and/or predictions to nodes that are not in a VSN. Nodes may use their own sampling

schedules within m∆t depending on the presence and dynamic nature of the phenomenon.

When the phenomenon migrates, certain node may realize they are no longer in the

phenomenon hence may reduce their sampling rate. However, those nodes need to make

sure they will walk-up at every m∆t. Although many nodes samples at the same time only

a subset of them will generate new messages. New message generation depends on

intensity of the event and how much is it different from the previously reported value.

Number of nodes
sending data

Number of nodes
sampling

mΔt
Δt

mΔt
Δt

Time

Figure 7.5 – Sampling schedule of different nodes. Length of an arrow is proportional to

the number of nodes involved in the particular action.

Energy consumption in the network can be analyzed under three categories

energy to stay active and sleep, energy to sample, and energy to communicate.

Description of different symbols used in the model is given in Table 7.1.

Energy - Active/Sleep (it
slepactE ∆

/)

The energy consumption is determined by the active (Pa) and sleep (Ps) power

consumption of sensor nodes, node’s duty cycle, and number of nodes detecting the

phenomenon.

139

Table 7.1 – Symbols used in the energy model

Symbol Description

Sensor node related parameters

aP Power consume while the node is active

sP Power consume while the node is sleeping

mP Power consume while sampling

dP Power consume while transmitting

mn Number of samples

mT Time that takes to measure/test a sample

cT Time that a child node is active within it∆

CHT Time that a cluster head is active within it∆
B Bandwidth of the node
Network/VSN related parameters

n Number of nodes in the network, CHc nnn +=

cn Number of child nodes (i.e., cluster members) in the network

CHn Number of cluster heads in the network

ih Node i’s depth in the cluster tree (i.e., number of hops to forward a message)
b Size of a message including the related acknowledgment
Phenomenon related parameters

it
pincn∆

__ Number of child nodes in the phenomenon within it∆
it

pinCHn∆
__ Number of cluster heads in the phenomenon within it∆

it
VSNCHn∆

_ Number of cluster heads that are not in the phenomenon but in the VSN at
it∆ . They are active to facilitate communication

t∆ Duration of a time step
m Number of time steps before everyone come up again
α Changes in concentration level of the phenomenon being tracked– fraction of

times a new message is generated, given that the node is already detecting
the phenomenon. If concentration changes are rapid 1→α , if slow 0→α .

β Spatial dynamics of the phenomenon – fraction of times a new message is
generated, given that the node samples. If phenomenon is fast moving

1→β , if slow moving 0→β .

When it∆ is an integer multiple of tm∆ , every node)(CHc nn + is active for either TC or

TCH seconds. Therefore:

 Energy consumed by cluster members while active = cca nTP

 Energy consumed by all cluster members while sleeping = ccs nTtP)(−∆

140

 Energy consumed by CHs while active = CHCHa nTP

 Energy consumed by all CHs while sleeping = CHCHs nTtP)(−∆

 ∴Total active/sleep energy = CHCHsCHCHaccscca nTtPnTPnTtPnTP)()(−∆++−∆+

= () () CHCHsCHaccsca nTtPTPnTtPTP)()(−∆++−∆+ (7.1)

At any other it∆ , it
pincn∆

__ cluster members and)(___
ii t

VSNCH
t

pinCH nn ∆∆ + CHs are active.

 Energy consumed by cluster members while active = it
pincca nTP ∆

__

 Energy consumed by active cluster members while sleeping = it
pinccs nTtP ∆−∆ __)(

 Energy consumed by CHs while active =)(___
ii t

VSNCH
t

pinCHCHa nnTP ∆∆ +

 Energy consumed by active CHs while sleeping =))((___
ii t

VSNCH
t

pinCHCHs nnTtP ∆∆ +−∆

However, during the same time interval,)(__
it

pincc nn ∆− nodes and

)(___
ii t

VSNCH
t

pinCHCH nnn ∆∆ −− CHs were sleeping. Therefore:

 Energy consumed by sleeping cluster members =)(__
it

pinccs nntP ∆−∆

 Energy consumed bysleeping CHs =)(___
ii t

VSNCH
t

pinCHCHs nnntP ∆∆ −−∆

 ∴Total active/sleep energy =

)()())((

)()(

iiiii

iiii

t
VSNCH

t
pinCHCHs

t
pinccs

t
VSNCH

t
pinCHCHs

t
VSNCH

t
pinCHCHa

t
pinccs

t
pincca

nnntPnntPnnTtP

nnTPnTtPnTP
∆∆∆∆∆

∆∆∆∆

−−∆+−∆++−∆+

++−∆+

() ()
)()(

)()()(

iii

iii

t
VSNCH

t
pinCHCHs

t
pinccs

t
VSNCH

t
pinCHCHsCHa

t
pinccsca

nnntPnntP

nnTtPTPnTtPTP
∆∆∆

∆∆∆

−−∆+−∆

++−∆++−∆+=
 (7.2)

Generally, as PP << therefore if a node is frequently active, energy to stay active is more

dominant. If the node duty cycle is significantly lower, i.e., cc TtT −∆<< sleep power

will dominate. If many nodes are in the phenomenon active power dominates.

Energy - Sampling (it
testE ∆)

Cost of sampling is determined by the power consumed to sense (Pm), time to test a

sample (Tm), number of samples (nm) and number of nodes detecting the phenomenon.

141

 Energy to measure a sample = mmTP

 Energy to measure multiple samples = mmm nTP

Every node)(CHc nnn += samples when it∆ is an integer multiples of tm∆ .

 ∴Energy to test samples by all the nodes = nnTP mmm (7.3)

At any other it∆ , there)(____
ii t

pinCH
t

pinc nn ∆∆ + nodes and CHs sampling for the phenomenon.

 ∴ Energy to sample if detecting phenomenon=)(____
ii t

pinCH
t

pincmmm nnnTP ∆∆ + (7.4)

Energy – Transmission (it
dE ∆)

 Cost per message, per hop = ()B
bPd

 Total cost to relay the message by h-hops = () B
bhPhB

bP d
d =

When it∆ is an integer multiple of tm∆ every node is active. Nodes that are already

detecting the phenomenon will generate a new message if the new concentration of the

phenomenon is significantly different from the previous reported sample, hence depends

on α . Nodes that are not already in the plume generates a new message if they detect the

phenomenon hence depends on β . Therefore:

 Number of nodes that are already detecting the phenomenon
 that generate a new message = α)(____

ii t
pinCH

t
pinc nn ∆∆ +

 ∴Energy consumed by those nodes to forward the message = ∑
∆∆ +

=

α)(

0

it

pinCH
it

pinc nn

i

id

B
bhP

Number of nodes that are not already detecting the phenomenon
 generating a new message = β)(____

ii t
pinCH

t
pinc nnn ∆∆ −−

 ∴Energy consumed by those nodes to forward the message = ∑
∆∆ −−

=

β)(

0

it

pinCH
it

pinc nnn

i

id

B
bhP

 ∴Total energy consumed = ∑∑
∆∆∆∆ −−

=

+

=

+
βα)(

0

)(

0

it

pinCH
it

pinc
it

pinCH
it

pinc nnn

i

id
nn

i

id

B
bhP

B
bhP

Can be simplified to following, if average node depth is considered

142

B
bhPnnn

B
bhPnn aved

t
pinCH

t
pincaved

t
pinCH

t
pinc

iiii βα)()(________
∆∆∆∆ −−

+
+

 (7.5)

)(____
ii t

pinCH
t

pinc nn ∆∆ + nodes and CHs sample the phenomenon at any other it∆ ,. Whether a

node generates a message or not depends on whether new concentration of the

phenomenon is significantly different from the previous sample that generates a new

message.

 Number of nodes that are already detecting the phenomenon
 generating a new message = α)(____

ii t
pinCH

t
pinc nn ∆∆ +

 ∴Energy consumed by those nodes to forward the message = ∑
∆∆ +

=

α)(

0

it

pinCH
it

pinc nn

i

id

B
bhP

 If average node depth is considered =
B

bhPnn id
t

pinCH
t

pinc
ii α)(____

∆∆ +
 (7.6)

Communication cost will be high if the phenomenon is highly dynamic (i.e., high α and

β), message sizes are large, network is very large (i.e., deeper cluster tree) and/or many

nodes are in the phenomenon.

Total Energy Consumption

iii t

d
t

test
t

slepacti EEEtE ∆∆∆ ++=∆ /)((7.7)

When it∆ is an integer multiple of tm∆ :

() ()

B
bhPnnn

B
bhPnn

nnTPnTtPTPnTtPTPtE

aved
t

pinCH
t

pincaved
t

pinCH
t

pinc

mmmCHCHsCHaccscai

iiii βα)()(

)()()(

∆∆∆∆ −−

+
+

+

+−∆++−∆+=∆
 (7.8)

At any other it∆

()
()

B
bhPnn

nnnTP

nnntPnnTtPTP

nntPnTtPTPtE

id
t

pinCH
t

pinct
pinCH

t
pincmmm

t
VSNCH

t
pinCHCHs

t
VSNCH

t
pinCHCHsCHa

t
pinccs

t
pinccscai

ii

ii

iiii

ii

α)(
)(

)()()(

)()()(

∆∆
∆∆

∆∆∆∆

∆∆

+
+++

−−∆++−∆++

−∆+−∆+=∆

(7.9)

143

7.5 Performance Analysis

7.5.1 VSN Formation

VSNs are formed on top of the cluster tree built with our HHC scheme presented

in Section 5.1. Different routing strategies are utilized depending on how events need to

be propagated within a VSN. Three different event regions are considered. In the first

scenario, the phenomenon is localized within region 1 (Figure 7.6). In the second

scenario, the phenomenon is detected in three different regions (Regions 1 to 3). The

third scenario randomly distributes the phenomenon around the entire sensor field.

Randomly picked nodes from those regions are assumed to detect the event. All the event

regions are considered to be parts of the same VSN. Except where noted the simulation

results presented assume 500 nodes detect the same event.

(0, 0) (200, 0)

(200, 200)(0, 200)

Region 1

(0, 70)

(80, 70)

(0, 190) (80, 190)

(120, 200)

(120, 150) (200, 150)

Region 3

Region
2

(20, 150)
(20, 180)

(80, 180)
(80, 150)

Figure 7.6 – Event regions.

Figure 7.7 and 7.8 shows two virtual cluster trees that are formed in scenarios one

and two. In the first scenario, all the nodes that detect the phenomenon are localized

hence only a few branches are required to form the virtual tree. Many branches are required

144

Figure 7.7 – Virtual tree formed by nodes detecting events in a single region. Blue (dark)
squares indicate the nodes that detect the event. Dark lines indicate the
virtual tree that connects members of the VSN. PT = -12dBm.

to form the virtual tree when the phenomenon is distributed in three regions. Different

branches of the cluster tree meet either at the root node or at other CHs.

Figure 7.9 shows the total number of hops travelled by all the VSN

formation/discovery messages. First few messages that propagate towards the root node

have to travel large number of hops. However, they contribute to the formation of most of

145

the branches in the virtual tree. When the phenomenon is localized within a single region,

most of the new nodes that detect the phenomenon do not need to send their VSN

formation/discovery messages all the way up to the root node. They will get to know

about other VSN members from CHs that are along its path. Therefore, the number of

hops travel by a VSN formation/discovery message reduces as more and more nodes

Figure 7.8 – Virtual tree that connects three event regions. Blue (dark) squares indicate
the nodes that detect the event. Dark lines indicate the virtual tree that
connects members of the VSN. PT = -12dBm.

146

detect the phenomenon. When the phenomenon is distributed within three regions, not

many CHs along the path of the VSN formation/discovery messages are aware of the

VSN. Therefore, these messages need to be forwarded several more hops. Most of the

paths towards the root node are distinct, when the phenomenon is fully distributed. As a

result, these messages need to travel a higher number of hops.

Number of event nodes added over the time
0 100 200 300 400 500

To
ta

l n
um

be
r o

f h
op

s

0

200

400

600

800
Scenario 1
Scenario 2
Scenario 3

Figure 7.9 – Total number of hops travelled by VSN formation message.

We further simulate Rumor Routing to compare the probability of two VSN

members discovering each other. We considered the second scenario (Figure 7.8) and

randomly selected node pairs spanning different event regions. Each node then sends a

single agent and tries to discover each other. With Rumor Routing, when TTL is 350, two

nodes were able to figure out each other with a probability of 0.51. The probability

increased to 0.84 when TTL is 600 and it was further increased to 0.91 when TTL is 1000.

These values are comparable with the data given in [14]. However, to form VSNs we

may need all the nodes to figure out each other therefore actual overhead would be

significantly higher. Alternatively, as seen in Figure 7.9, our scheme requires only 553-

hops (896-hops if inter-cluster communication is multi-hop) and it guarantees that all the

147

nodes will identify each other. As realized in Sections 5 and 6 overhead of the HHC

cluster tree formation is 4-5 messages per node. Therefore, our approach is much more

efficient than Rumor Routing, even with the overhead of cluster tree formation.

7.5.2 Inter VSN Communication

Figure 7.10 shows the number of unicast messages that can be exchanged within

the VSN before battery runs out. First scenario delivers the highest number of messages

while the third scenario delivers the lowest number of messages. In the first scenario, all

the communication occurs within a single region. Therefore, the virtual tree uses only a

subset of branches that initiate from the root node. Because events are localized, some of

the source and destination nodes lie on the same branch therefore most message do not

require going through the root node. The network can deliver more and more messages as

the workload of the root node reduces. The virtual tree formed by the third scenario span

across most of the branches of the cluster tree. Communication within those distributed

VSN members require most of the messages to be relayed through the root node.

Therefore, deliver lower number of messages. For the third scenario, capacity of the

network is similar to what was observed with cluster tree based routing (Figure 6.13).

The second scenario utilizes a subset of the branches of the cluster tree therefore delivers

more messages than the third scenario. However, communication across three different

regions increase the workload of the root node hence it cannot deliver as many messages

as the first scenario. Energy requires to send a message significantly increases with the

transmission power (PT) therefore number of messages that the network can deliver

reduces with increasing PT.

148

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f m
es

sa
ge

s

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Scenario 1
Scenario 2
Scenario 3

Figure 7.10 – Number of unicast messages.

Figure 7.11 shows the number of multicast messages that can be delivered within

the VSN. These can be either data delivery messages or VSN control messages.

Multicasts are forwarded to all the VSN members hence it is essentially a broadcast

within VSN(s). At each CH, the multicast messages needs to be forwarded to all the

branches that are in the virtual tree. For each branch, a separate copy of the message is

forwarded. This significantly increases the workload of a CH and drains its energy much

faster. Therefore, number of different multicast messages delivered in the network

significantly reduces. When the phenomenon is localized within a single region, CHs

around that region have to handle many cluster members and child CHs. For each of

them, a separate multicast message needs to be send. This increase the workload on those

CHs therefore reduces their lifetime. As a result, the first scenario delivers the lowest

number of multicast messages. Because many CHs are involved in the third scenario,

workload on each CH is lower, i.e., lower number of cluster members per cluster

observes the same event. Therefore, the third scenario delivers the highest number of

149

multicast messages. Due to extensive overhead, the number of multicast messages that

were delivered are approximately 1/6 of the unicast messages.

Transmission power (dBm)

-20 -18 -16 -14 -12 -10

N
um

be
r o

f m
ul

tic
as

t m
es

sa
ge

s

0

500

1000

1500

2000

2500

3000

3500

Scenario 1
Scenario 2
Scenario 3

Figure 7.11 – Number of multicast messages.

Number of messages that can be relayed within the VSN does not significantly

vary with the number of nodes that are observing the phenomenon (Figure 7.12(a)).

When many nodes detect the phenomenon, it is possible to select many source-

destination pairs. Although this reduces the workload on individual nodes/CHs the root

node is still the bottleneck. Therefore, three scenarios do not vary their network capacity

with increasing number of VSN members. However, number of event nodes has a much

higher negative impact on the multicast messages (Figure 7.12(b)). With increasing

number of VSN members, the multicast messages need to be forwarded to many nodes.

This significantly increases the workload on CHs therefore reduce the network capacity.

This extensive overhead can be reduced by sending a single broadcast instead of sending

multiple messages for each recipient of the multicast message.

Figure 7.13 illustrate the impact on different routing schemes for unicast and

multicast data delivery. These routing techniques are assumed to be available before

150

nodes form their VSNs. Availability of cross-links allows nodes to select better paths to

reach their neighbors without going through the root node. Therefore, cross-links based

routing significantly increase the number of unicast messages in all three scenarios. To

make use of the circular path, VSN members should be outside of the circular path and

needs to be geographically distributed. Therefore, the circular path increases the network

capacity of the third scenario where VSN members are distributed within the entire

network. However, it does not significantly increase the network capacity of scenarios

one and two which have somewhat localized events.

Number of event nodes

250 500 750 1000

N
um

be
r o

f m
es

sa
ge

s

15000

16000

17000

18000

19000

Scenario 1
Scenario 2
Scenario 3

Number of event nodes

250 500 750 1000

N
um

be
r o

f m
ul

tic
as

t m
es

sa
ge

s

2000

2200

2400

2600

2800

3000

3200

3400

3600
Scenario 1
Scenario 2
Scenario 3

(a) (b)

Figure 7.12 – Variation in number of messages with different number of VSN members.
(a) – Unicast messages, (b) – Multicast messages.

Routing scheme
Tree Only Tree + Cross-links Tree + Circular link

N
um

be
r o

f m
es

sa
ge

s

10000

15000

20000

25000

30000

35000

40000

45000

50000

Scenario 1
Scenario 2
Scenario 3

Routing scheme

Tree Only Tree + Cross-links Tree + Circular link

N
um

be
r o

f m
ul

tic
as

ts

1800

2000

2200

2400

2600

2800

3000

3200

3400

Scenario1
Scenario 2
Scenario 3

(a) (b)

Figure 7.13 – Messages delivered with different routing schemes. (a) – Unicast messages,
(b) – Multicast messages.

151

 When cross-links are available during the VSN formation phase CHs always try

to use the shortest path through neighbors to reach the root node. This increases the

number of branches and CHs in the virtual tree. When a multicast message is send, it has

to be forwarded to all these CHs through many branches. This increases the workload on

CHs that are part of the virtual tree, as a result number of multicast messages reduce.

Having a circular path does not provide any advantage during the VSN formation phase

as event messages are forwarded towards the root node. Therefore, both cluster tree and

circular path based routing have the same performance.

It is not essential that a designed node (i.e., root node) initiate the GTC algorithm.

The root node does not need to be placed in the middle of the sensor field. A node that

detects a certain phenomenon can initiate the cluster formation process by itself. Multiple

cluster trees will be formed if several such nodes initiate the cluster formation around

same time. Each such tree can be considered as a separate VSN and can be given

different VSN identifiers. Such two cluster trees are shown in Figure 7.14. For simplicity,

only the CHs are shown. New mechanisms need to be developed to facilitate

communication within these VSNs.

7.5.3 Close Loop System

The close loop system shown in Figure 7.4 is simulated using synthetic data that

simulates the migration pattern of two plumes (Figure 7.15). Refer [8] for specific details

of synthetic data generation. 1000 nodes are randomly placed in a 2500m×2000m sensor

field. Three simulation scenarios are considered. The first scenario simulates a

conventional WSN where all the nodes sample once a day. Second and third scenarios

152

allow nodes to sample once a day or once in every two weeks depending on the presence

of the plume. Cluster members are active for two seconds while CHs are active for 25

seconds to maintain the cluster tree and to diminish issues related to clock skew. In

addition, the third scenario couples PMP system to form a close loop. Plume prediction

model is executed in every eight weeks and it predicts the migration pattern of the plume

for the next eight weeks. Data is collected over three years (1095 days). Results are based

on 100 samples. See Section A.5 for specific simulation parameters.

Figure 7.14 – Event based cluster tree formation. Arrows indicate the root node of each
cluster tree, PT = -20dBm.

153

Figure 7.15 – Position of two migrating plumes at day 238.

Figure 7.16 shows the total energy consumption over three years. Both VSN

based schemes are able to reduce total power by ~20KJ (20J per node). This is achieved

by allowing nodes that are not in a plume to sample slower. Active to sleep power ratio is

3000:1; however, node duty cycle is 2/86400 (or 2/1209600 if samples in every 14 days)

for a cluster member and 25/86400 for a CH. Hence, sleep power dominates in such a

slow phenomenon that is monitored over several years. This is the reason that we do not

see a significant performance improvement in Figure 7.16. With the advancement of

technology, nodes are expected to be more energy efficient; therefore, sleep power will

not be a significant issue in future. Nevertheless, actual overhead of a VSN based system

depends on node’s active power, sampling power, and communication cost. Therefore,

we analyze the incremental power in Figure 7.17. The ~20KJ saving is clearly visible in

Figure 7.17 and this is a 37% improvement over the standard network. VSN and close

154

loop system consume slightly higher amount of energy than the VSN only case, because

of the prediction messages that goes back to the nodes.

Number of days

0 100 200 300 400 500 600 700 800 900 1000 1100

E
ne

rg
y

(K
J)

0

20

40

60

80

100

120

140

160
Standard
VSN
VSN + Close loop

Figure 7.16 – Energy consumed while tracking the plume.

Number of days

0 100 200 300 400 500 600 700 800 900 1000 1100

E
ne

rg
y

sa
m

pl
e

+
co

m
m

un
ic

at
e

+
ac

tiv
e

(K
J)

0

10

20

30

40

50

60

Standara
VSN
VSN + Close loop

Figure 7.17 – Incremental energy consumed while tracking the plume.

Figure 7.18 shows the results from our energy model for a similar network. Both

the simulations and the energy model provide identical results for the standard network.

However, the model underestimates the VSN energy consumption. Instead of using time

dependent values for number of nodes in the plume (it
pincn∆

__), number of CHs in plume (

155

it
pinCHn∆

__), and number of CHs in the backbone (it
VSNCHn∆

_) we use average values

observed from the simulations. This may be the reason that our model under estimates.

To determine the energy saving for a much faster phenomenon, we speedup the

plume migration and assume it to be a hazardous gas cloud. We consider each day in the

synthetic data to be five-minute interval hence simulated over 91.25 hours. Results were

analyzed using both the simulation and energy model. Nodes detecting a hazardous gas

sample in every five minutes while other nodes sample in every 30 minutes. Predictions

are given in every hour and with a prediction window of one hour. All the other

parameters were identical to the plume tracking simulation. Results are shown in Figure

7.19. The VSN based scheme consumes 32.5% less power than the standard network and

saves ~17.75KJ within 91.25 hours. Active and sampling power dominates the sleep

power because nodes now sample at a much higher rate than the plume tracking

simulation (in every five or 30 minutes instead of one or 14 days). 17.75KJ saving over

91.25 hours is much better than 20KJ over the three years. This further strengthens our

claim that VSNs can reduce the power consumption by adapting sampling rates.

Number of days

0 100 200 300 400 500 600 700 800 900 1000 1100

En
er

gy
 (K

J)

0

20

40

60

80

100

120

140

160

Standard
VSN

Figure 7.18 – Energy consumed while tracking the plume based on the energy model.

156

Figure 7.20 show the amount of data transferred between the nodes and the PMP

system. Both the standard and VSN based plume tracking system transfer data only to the

PMP system where as the close loop system also send messages back to the individual

nodes, in the form of predictions. These predictions are useful in reducing the number of

missed events. However, such prediction messages somewhat increase both energy

consumption and the amount of data transfer between the nodes and close loop system. If

predictions are infrequent, as in our plume monitoring case, this overhead is not a

significant issue particularly when it reduces the number of missed events. Initially, all

the nodes in the network report to the PMP system to indicate their presence in the

network. This accounts for the initial ~50KB of data at day 0.

Hours

0 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

(K
J)

0

10

20

30

40

50

60

Standara
VSN
VSN + Close loop

Hours

0 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

(K
J)

0

10

20

30

40

50

60

Standard
VSN

(a) (b)

Figure 7.19 – Energy consumed while tracking hazardous gases. (a) – From simulator, (b)
– From energy model.

7.6 Summary

A VSN is formed by connecting nodes observing the same phenomenon. Such a

node generates a message that indicates its interest to become a member of a VSN. The

message is forwarded towards the root node. As the message travels through the cluster

157

tree it gets to know about other nodes/CHs that are observing the same phenomenon. All

these nodes form a virtual tree that connects one or more VSNs. The logical tree can

facilitate both inter-VSN and intra-VSN communication. When the phenomenon is

localized cluster tree can deliver more unicast messages. Number of multicast messages

significantly reduces with increasing number of nodes that detects the phenomenon. In

certain scenarios, cross-links based routing and circular path based routing increase the

number of unicast and multicast messages. Therefore, capacity of the network is

determined by number of event nodes and how they are distributed within the network.

Our simulation-based results further suggest that VSNs can reduce the energy

consumption of a network.

Number of days

0 100 200 300 400 500 600 700 800 900 1000 1100

Am
ou

nt
 o

f d
at

a
(K

B)

0

50

100

150

200

250

300

350

400

450

Standard
VSN
VSN + Close loop

Figure 7.20 – Amount of data transferred between node and plume monitoring and
prediction system.

158

Chapter 8

SECURE BACKBONE DESIGN

Security is a prime concern in large-scale wireless sensor networks used for

collaborative and mission critical applications. For example, “future earthquake

monitoring systems are expected to be coupled with the electricity grid, gas distribution

systems, elevators, traffic lights, etc. that are to be turned off automatically when an

earthquake is detected” [30]. If not adequately protected, a malicious attacker can

generate false alarms at the sensors and cause massive denial of service. Privacy among

different uses is another key requirement in collaborative WSNs.

In order to achieve these application objectives, WSNs at a minimum should

provide secure and authenticated communication among sensor nodes. Nodes should be

able to communicate securely with each other to relay sensed data and take network wide

decisions. In certain applications, nodes should also build some trust relationships with

neighbors that generate messages and ensure integrity of the sensed data. Secure and

efficient distribution of cryptographic keys is the first step towards achieving these

objectives, on top of which many secure protocols can be implemented.

A secure backbone based on the cluster tree can facilitate secure data delivery,

dynamic key distribution, and re-keying which are some of the fundamental requirements

of secure, large, and collaborative WSNs. Virtual sensor networks can make use of this

159

secure backbone to distribute keys among dynamically varying subset of sensors. We

extend our GTC algorithm to form such a secure backbone using pre-distributed keys.

The secure backbone formation algorithm and how certain desirable

characteristics can be achieved are presented in Section 8.1. Section 8.2 presents the

simulation results.

8.1 Secure Backbone Formation

8.1.1 Secure GTC Algorithm

The GTC algorithm that forms a secure backbone is shown in Figure 8.1.

Extensions to the previous algorithm (Figure 5.1) are underlined. The secure backbone

formation is an integral part of the GTC algorithm therefore; it does not introduce any

additional overhead other than the cost of sharing cryptographic key identifiers. Only the

new changes/additions to the algorithm are described in this section.

As usual, the root node initiates cluster formation by executing the Form_Cluster

function. In addition to cluster formation parameters, the root node also sends its

cryptographic key IDs (keyIDsCH). All other nodes execute the Join_Cluster function and

waits for a cluster formation broadcast. For simplicity, this broadcast is assumed to be

unencrypted. If required, the root node may use a challenge response scheme to

authenticate child nodes. A node hearing this broadcast tries to join the cluster if it is not

already a member of another cluster and within hopsmax. The node has to share at least

one common key with the CH to become a member of the cluster. Common keys are

determined using the Common_Keys function. If no such key exists, the node re-executes

the Join_Cluster function and tries to join a different CH. If a common key exists, the

160

node joins the cluster by setting relevant parameters. Then an acknowledgment (ACK) is

sent to the CH to confirm its cluster membership. In addition to the node ID, distance to

the CH (hops), and properties p1 and p2 the ACK also includes list of child’s key IDs

 Form_Cluster(NIDCH, CIDCH, delay, nCCHs, hopsmax, TTLmax, depth, keyIDsCH)

1
2
3
4
5
6
7
8
9

10
11
12

Wait(delay)
TTL ← TTLmax
Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth, keyIDsCH)
ack_list ← Receive_ACK(NIDchild, hops, P1, P2,keyIDschild, timeoutACK)
IF(ack_list = NULL)
 Join_Cluster()
FOR i = 1 TO nCCHs
 CCHi ← Select_Candidate_CHs(ack_list)
 CIDi ← Select_Next_CID(i)
 delayi ← Select_Delay(i)
 depthi ← depth + 1
 Request_Form_Cluster(CCHi, CIDi, delayi, nCCHs, hopsmax, TTLmax, depthi)

 Join_cluster()

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34

 Listen_Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth, keyIDsCH)
TTL ← TTL – 1
hops ← TTLmax - TTL
IF(hops ≤ hopsmax AND my_CID = 0)
 IF(Common_Keys(my_keyIDs, keyIDsCH) ≠ NULL)
 my_CID ← CIDCH
 my_CH ← NIDCH
 my_depth ← depth + 1
 Send_ACK(my_NID, hops, P1, P2, my_keyIDs)
IF(TTL > 0)
 Wait(Random(timebackoff))
 Forward_Broadcast_Cluster(NIDCH, CIDCH, hopsmax, TTLmax, TTL, depth, keyIDsCH)
 IF(hops ≤ hopsmax)
 Exit()
ELSE
 IF(Common_Keys(my_keyIDs, keyIDsCH) ≠ NULL)
 IF(Wait_Listen_Neighbors(Random(timebackoff)) = FALSE)
 Send_ACK(my_NID, hops, P1, P2)
 IF(Listen_Form_Cluster(CCH, CID, delay, nCCHs, hopsmax, TTLmax, depth,
timeoutCCH) = TRUE)
 Form_Cluster(my_NID, CID, delay, nCCHs, hopsmax, TTLmax, depth,
my_keyIDs)
 Exit()
Join_cluster()

Figure 8.1 – GTC algorithm that forms a secure backbone.

161

(my_keyIDs). The CH receiving the ACK (line 4) adds the node to its acknowledged list

(ack_list). Child’s key IDs are used by the CH to determine a common key.

After sending the ACK the child node forwards the broadcast, if TTL is not

expired. Intermediate nodes just forward the broadcast until TTL expires. The nodes that

forward the broadcast do not need to share a common key with the CH or with its

neighbors, if inter-cluster communication is single-hop. If it is multi-hop, intermediate

nodes along the communication path have to share keys with their neighbors. However, it

is not necessary to share a key if messages are only encrypted/decrypted at the CHs.

Intermediate nodes can just relay the messages without looking into its content.

Therefore, we do not check for any common keys in these intermediate nodes.

If TTL is expired (line 27), the receiving node is a potential child CH. These

nodes have to share a common key with the CH, if they are to be selected as child CHs

(line 28). If a common key exist, a node sends an ACK indicating its interest to become a

child CH. Before sending the ACK, node waits sometime and listens to the channel to

make sure none of its neighbors are interested in becoming a CCH. A node may also send

an ACK if it does not share a common key with the neighbor that already sent an ACK,

i.e., it cannot join the neighbor’s cluster because it does not share a key with the

neighbor. Key IDs of CCHs are also sent as part of the ACK. The CH uses these key IDs

to determine the common key. Some of the CCHs that receive a cluster formation

request, from the parent CH (Listen_Form_Cluster function), form their own clusters.

This process continues until the entire sensor field is covered.

162

8.1.2 Achieving Desirable Characteristics

The solution generated by the algorithm depends on the implementation of

different functions and selection of parameters. Only the parameters and functions related

to secure backbone formation are described here. Refer Sections 4.2 and 5.1 for other

functions and parameters.

Only the nodes that share a common key with the parent CH should be selected as

cluster members and CCHs. In the bottom-up approach, clusters are formed

independently and later connected together to form a cluster tree. Because CH selection is

fully distributed, it is not possible to determine whether two CHs share any common keys

during the cluster formation phase. Therefore, these CHs are not guaranteed to connect

together and form a fully connected cluster tree. Alternatively, top-down cluster

formation allows us to specifically select nodes that share a common key(s) with the

parent CH. This ensures that any parent and child CH pair is connected and can securely

communicate with each other.

Local connectivity defines the fraction of neighbors that a node shares at least one

common key. Higher local connectivity is important to ensure that most of the nodes can

join the closest CH. Therefore, underlying key pre-distribution scheme needs have a

higher probability of sharing at least one key with each neighbor. A CH has to broadcast

all its key IDs during the cluster formation phase so that its neighbors can identify at least

one common key. While sending the ACK a node needs to send only the common key ID

that was selected to communicate with the CH. If the overhead is not significant, it is

desirable to send all the common key IDs to the CH because it is useful in key revocation.

The implementation of Common_Keys function depends on the key pre-distribution

163

scheme. If a random key pre-distribution scheme is used the function needs to compare

the key space of two nodes. If the key pre-distribution scheme is complex, it needs to

implement a function that determines one or more common keys. Such a function for

combinatorial approach is presented in [42].

A better set of CCHs can be selected if the local connectivity of a node is known

in advance. Local connectivity data can be utilized by modifying line 29 of the algorithm:

 29 IF(Wait_Listen_Neighbors(d0/d + Random(timebackoff)) = FALSE)

where d0 is the node degree (i.e., number of neighbors) and d is the number of neighbors

that share at least one key with the given node. If a node shares a key with most of its

neighbors, d0/d will be closer to one. This reduces the waiting time and allows the node to

send the ACK earlier than its neighbors with lower local connectivity. A node with lower

connectivity (higher d0/d) replies only if it does not hear from another CCH. The parent

CH can then select some of these CCHs with higher connectivity as its child CHs. This

allows us to form much larger and less overlapping clusters.

Neighborhood discovery can be active or passive. In the active approach, nodes

get to know about their neighbors either before the cluster formation phase or as part of

the clustering algorithm. In the former case, each node may send a broadcast with its list

of key IDs so that all the neighbors can determine a common key(s). The later approach

uses cluster formation messages to share this information. This increases the complexity

of the clustering scheme and its overhead. A passive approach can be used in cluster

formation solutions such as [33, 67] that cycle over time. Nodes can keep track of their

neighbors’ key IDs whenever broadcasts or ACKs occur in different cycles of the cluster

formation process. Over time, each node can gain better understanding of its

164

neighborhood and their keys. Therefore, after several iterations even these solutions can

form clusters and a secure cluster tree with better characteristics.

Each parent-child cluster pair identifies their common key(s) by the time the

cluster formation phase is completed. Child CH uses the common key to decrypt the

messages encrypted by the parent CH or vice versa. The secure backbone is formed by

securely connecting these parent-child CHs pairs in the cluster tree. Common key used by

each parent-child CH pair may be different. Therefore, a message traveling through

secure backbone needs to be decrypted and re-encrypted at each CH. This approach is

costly therefore should not be used to deliver messages frequently. Instead, end-to-end

encryption can be utilized by assigning a shared key to nodes, CHs, or VSNs that wish to

communicate with each other. This is similar to the Virtual Private Network (VPN)

concept. The secure backbone can be used to securely share the key between two end

points by periodic encryption and decryption at each relay node. It is appropriate to use

the secure backbone for dynamic key distribution because such functions are infrequent.

In VSNs, it would be desirable to use a shared key within the entire VSN. This

provides privacy while preventing periodic encryption/decryption at all the CHs that

facilitates the communication within or across VSNs. However, to ensure security this

VSN wide key needs to be periodically changed. VSNs may also include dynamically

varying subset of sensors. Whenever a new node joins a VSN, it needs to be given the

shared key. When some of the members leave a VSN, shared key may need to change.

Therefore, a secure backbone is essential to distribute such dynamic keys securely. Hence

the secure GTC algorithm is able to provide a secure communication infrastructure that

can be used to dynamically distribute keys within or across VSNs.

165

8.2 Performance Analysis

Two key pre-distribution schemes are used to evaluate the performance of the

secure backbone formation with HHC scheme. The first approach is based on the

Deployment Knowledge based Random key pre-distribution (DKR) scheme [26] and the

second approach is based on the Random Block Merging in Combinatorial Design

(RBMCD) [16]. Both schemes have a much higher local connectivity than most other key

pre-distribution schemes. Based on the simulation parameters (Table A.6), RBMCD

approach shares 3-4 common keys with its neighbors while DKR shares 4-5 common

keys. 5000 nodes are distributed across the network based on a 2-D Gaussian distribution

to facilitate the requirement of DKR. Such a node placement scheme did not alter the

performance of the original GTC algorithm or RBMCD based cluster formation. The

results are based on 100 sample runs (20 random networks × 5 samples per network).

Refer Appendix A for specific simulation parameters. Following acronyms are used to

identify different clustering mechanisms:

• HHC + DKR – HHC clusters and cluster tree formation with

deployment knowledge based random key pre-distribution.

• HHC + DKR-Nei – HHC clusters and cluster tree formation with

deployment knowledge based random key pre-distribution that make use of

neighbor information.

• HHC + RBMCD – HHC clusters and cluster tree formation with

random block merging in combinatorial design.

• HHC + RBMCD-Nei – HHC clusters and cluster tree formation with

random block merging in combinatorial design that makes use of neighbor

information.

166

Figure 8.2 shows the circularity of clusters formed by each solution. HHC clusters

without any key pre-distribution has the highest circularity. Both the random key

selection approach and the combinatorial approach that make use of neighborhood

information form more circular clusters than their standard schemes. Local connectivity

of nodes affects circularity of clusters in several ways. If the connectivity is high, most of

the neighbors can connect to the CH hence circularity increases. If a node does not share

a common key with the CH, it may try to connect to another CH that is within its

transmission range (R). Such a node may also become a CCH if it shares a common key

with another CH that is within 3-hops. It is also possible that a node shares a key with the

CH but may not share a key with its neighbors that are already selected as CCHs. Those

nodes also try to become CCHs. If two nearby CCHs are selected to form clusters, their

cluster will overlap. The RBMCD has a lower local connectivity. These factors reduce

the circularity of clusters. Higher local connectivity in DKR helps it to form clusters that

are more circular. When data about neighbors is available, nodes with higher local

connectivity can be selected as child CHs. Such nodes can form bigger clusters. As a

Transmission power (dBm)

-20 -18 -16 -14 -12

C
irc

ul
ar

ity

40

45

50

55

60

65

70

75

80

85

HHC
HHC + RBMCD
HHC + DKR
HHC + RBMCD-Nei
HHC + DKR-Nei
Hexagonal

Figure 8.2 – Circularity of clusters.

167

result, circularity increases. As observed earlier, circularity reduces with the increase in

transmission power (PT).

Figure 8.3 illustrates the number of clusters formed by each approach. Results are

not significantly different from the hexagonal packing. HHC clustering without any key

pre-distribution produces the lowest number of clusters. Availability of neighborhood

information increases the circularity of clusters. When clusters are more circular, number

of clusters required to cover a given sensor filed reduces. As a result, both RBMCD-Nei

and DKR-Nei produce relatively lower number of clusters than when they do not have

neighbor information. Higher local connectivity in DKR can form more circular and

bigger clusters; therefore, it forms lower number of clusters than the RBMCD. Clusters

become much larger as PT increases therefore number of clusters produce by each

solution reduces with increasing PT.

Transmission power (dBm)

-20 -18 -16 -14 -12

N
um

be
r o

f c
lu

st
er

s
/ C

H
s

100

200

300

400

500

600

700
HHC
HHC + RBMCD
HHC + DKR
HHC + RBMCD-Nei
HHC + DKR-Nei
Hexagonal

Figure 8.3 – Number of clusters and cluster heads.

Cluster size distribution is shown in Figure 8.4. Use of key pre-distribution

somewhat reduces the cluster size. As the transmission power increases area covered by a

cluster increases compared to the reduction in circularity. Therefore, clusters become

168

larger as PT increases. The RBMCD based clusters has the lowest cluster size as it forms

the highest number of clusters (lower circularity). Availability of neighbor information

allows the formation of dense cluster therefore both DKR-Nei and RBMCD-Nei have

relatively higher cluster size.

Transmission power (dBm)

-20 -18 -16 -14 -12

C
lu

st
er

 s
iz

e

5

10

15

20

25

30

35

40 HHC
HHC + RBMCD
HHC + DKR
HHC + RBMCD-Nei
HHC + DKR-Nei
Hexagonal

Figure 8.4 – Number of nodes in a cluster.

Figure 8.5 shows the fraction of nodes that are not in a cluster. Nodes can be

disconnected from rest of the network due to several reasons. In a randomly deployed

network, certain nodes may be isolated from rest of the network due to their location.

Some of the isolated nodes can be connected by increasing transmission range of a node.

Nodes may not hear cluster formation messages due to collisions. Due to these two

reasons around 1-5% of the nodes are anyway disconnected in HHC. In key pre-

distribution based networks, nodes can also be disconnected if they do not share common

keys with neighbors. Therefore, DKR and RBMCD have higher number of disconnected

nodes than HHC without any key requirements. Compared to DKR, 2.5% of additional

nodes are disconnected in RBMCD due to lower connectivity. However, availability of

neighborhood information significantly improves the performance of RBMCD. This is

169

because child CHs are always selected from nodes having the highest connectivity in

their neighborhoods.

Transmission power (dBm)

-20 -18 -16 -14 -12

N
um

be
r o

f d
is

co
nn

ec
te

d
no

de
s

(%
)

1

2

3

4

5

6

7

8
HHC
HHC + RBMCD
HHC + DKR
HHC + RBMCD-Nei
HHC + DKR-Nei

Figure 8.5 – Number of nodes not in a cluster.

From Figures 8.2 to 8.5 it can be seen that these key pre-distribution schemes do

not significantly reduce the performance of the HHC scheme. Higher local connectivity is

an important property in hierarchical cluster formation because local connectivity of the

key pre-distribution scheme directly affects the performance. Availability of

neighborhood information can further improve the performance.

Figure 8.6 shows the control message overhead of each solution. The solutions

that make use of the neighborhood information have the lowest overhead. It is even lower

than the HHC without any key requirements. This was due to the reduction in ACK

messages. Nodes with higher connectivity get higher priority in sending their ACKs as

CCHs. When a node with higher connectivity sends an ACK, most of its neighbors do not

need to send another ACK as they share a key with that node (i.e., if that node is selected

as a child CH most of its neighbors can join the new cluster). This reduces the total

number of ACKs in the network hence reduces the overhead. In RMBCD approach,

170

many broadcasts (many nodes are unable to respond to a broadcast) and ACKs (too many

CCHs) are wasted due to lack of a common key between CHs and neighbors. Therefore,

has a higher overhead. As PT increases number of neighbors of a node increases. If the

local connectivity is lower, most of these nodes may not share a common key with their

neighbors. As a result, there will be many CCHs that generate ACKs. Most of these

ACKs are wasted because only a subset of CCHs is selected to form a new set of clusters.

Therefore, overhead of RMBCD increases with increase in PT.

Transmission power (dBm)

-20 -18 -16 -14 -12

N
um

be
r o

f c
on

tro
l m

es
sa

ge
s

pe
r n

od
e

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

HHC
HHC + RBMCD
HHC + DKR
HHC + RBMCD-Nei
HHC + DKR-Nei

Figure 8.6 – Number of control messages per node.

Figure 8.7 illustrates the control message overhead in terms of message size.

Based on our simulation parameters (Table A.6) overhead is calculated as follows. The

RBMCD needs 16-bits to indicate a single block ID while DKR needs 24-bits to indicate

a key ID. The RBMCD sends four such blocks within a cluster formation broadcast while

DKR has to send 120 key IDs. It is assumed that the ACKs contain only the common key

ID or group ID. Then the overhead can be calculated from the following equation:

Broadcasts × size of key/group IDs + ACKs × size of a key/group ID (8.1)

171

For simplicity, we only consider the contribution of key IDs and group IDs to the

message payload. Message header size and other parameters (NID, CID, depth, etc.) are

independent of the key pre-distribution scheme. Combinatorial approaches use a single

group ID to represent a set of keys; therefore, RBMCD has a significantly lower

overhead than DKR. In WSNs, even reduction of a single bit is important. Therefore, if

the size of a control message is much larger it can significantly affect the performance.

Though overhead of DKR is much higher, it produces clusters with better characteristics

even without neighborhood information. These characteristics may be more important in

long-lived WSNs even through cluster formation overhead is significantly higher.

Transmission power (dBm)

-20 -18 -16 -14 -12

C
on

tro
l m

es
sa

ge
 o

ve
rh

ea
d

pe
r n

od
es

 (B
yt

es
)

0

200

400

600

800

1000

HHC + RBMCD
HHC + DKR
HHC + RBMCD - Nei
HHC + DKR-Nei

Figure 8.7 – Control message overhead.

Though RBMCD supports up to 5550 nodes (Table A.5) we only deployed 5000

of them in our simulations. When all the 5550 nodes were deployed in the network,

RBMCD had much better performance, which was comparable with DKR. In

combinatorial design, we need to depend on prime numbers that determines how many

times to replicate a given key in multiple nodes [16, 42]. Therefore, designing a network

with exact number of sensor nodes is not possible. Local connectivity of RBMCD can be

172

increased by storing more keys in a node. If nodes have enough flash memory to store

150-200 keys, RBMCD based cluster formation would be a better approach than DKR

due to its lower overhead.

Figure 8.8 shows the distribution of CHs in the cluster tree. All the schemes have

somewhat similar CH distribution. The ones with neighborhood information have a lower

depth and higher breadth. This is due to the fact that they form much bigger and uniform

clusters. Nevertheless, these cluster trees include more CHs than the HHC without any

key requirements.

Depth

0 2 4 6 8 10 12 14

N
um

be
r o

f c
lu

st
er

 h
ea

ds

0

10

20

30

40

50

60

70
HHC
HHC + RBMCD
HHC + DKR
HHC + RBMCD-Nei
HHC + DKR-Nei
Hexagonal

Figure 8.8 – Distribution of CHs in the cluster tree.

When a set of nodes are compromised, attacker gets access to all the keys stored

in those nodes. This will directly compromise CHs that uses those keys to secure their

links. In hierarchical networks child CHs make use of parent CHs to forward their data. If

such a parent CH is directly compromised all the child CHs and their cluster members are

indirectly compromised. The impact of random node compromise is shown in Figure 8.9.

173

As claimed in most key pre-distribution algorithms, impact of direct compromise is

lower. However, the indirect compromise is much more significant. When the number of

compromised nodes is lower, DKR has a lower number of compromised CHs (direct and

indirect). It was observed that these compromised CHs are localized within the region

where compromised nodes reside (i.e., in DKR, key pools are overlapped only within

certain regions). Number of compromised CHs within the localized region was much

higher due to higher local connectivity. Therefore, when nodes from multiple regions are

compromised more and more CHs are directly and indirectly affected.

Number of compromized nodes

2 4 6 8 10

N
um

be
r o

f C
H

s
af

fe
ct

ed

0

10

20

30

40

50

60

70

80 HHC + RBMCD - Direct
HHC + RBMCD - Indirect
HHC + DKR - Direct
HHC + DKR - Indirect

Figure 8.9 – Direct and indirect impact of compromised nodes.

All the nodes in RBMCD have equal likelihood of being directly compromised,

regardless of their location. Therefore, the number of nodes that is directly compromised

is lower compared to DKR. It was also observed that number of indirectly affected CHs

in DKR depends on what nodes are compromised. If the compromised nodes are much

closer to the root node, the effect is significant. This is due to the higher connectivity

within a given region, which can easily compromise many level 1 CHs. This behavior is

not so prominent in RBMCD because of the equal likelihood of direct compromise.

174

8.3 Summary

The GTC algorithm is extended to form a secure backbone. The algorithm is

independent of the pre key-distribution scheme. The algorithm retains most of the

desirable cluster and cluster tree characteristics while building a secure cluster tree. Local

connectivity of the key pre-distribution scheme directly affects the performance.

Therefore, it is important to select a key pre-distribution scheme with higher connectivity.

Availability of neighborhood information can further improve the performance. Though

DKR retains most of the cluster and cluster tree characteristics, its control message

overhead is significant. Combinatorial key pre-distribution schemes are more attractive

due to lower overhead. Simulations also suggest that hierarchical networks are more

vulnerable to node capture than non-hierarchical networks.

175

Chapter 9

SUMMARY

Recent technological advances are enabling the deployment of large-scale and

collaborative WSNs. Virtual Sensor Networks (VSNs) is an emerging concept that

supports collaborative, resource efficient, and multipurpose sensor networks that may

involve dynamically varying subset of sensors and users. The goal of the thesis was to

design algorithms and protocols that support the formation, usage, and maintenance of

VSNs. This chapter provides a concluding summary of work presented, key

contributions, and future directions.

9.1 Conclusions

Imposing some structure within the sensor network to effectively achieve

application objectives is an attractive option for the self-organization of large-scale and

collaborative WSNs. Cluster based organization and arranging clusters in the form of a

tree simplify many higher-level functions and distributed application deployments.

However, achieving all the properties within a single cluster and tree formation algorithm

is not trivial.

Generic Top-down Cluster and cluster tree formation (GTC) algorithm was

proposed that achieves most of these properties. The algorithm uses a hybrid top-down

176

cluster formation approach that combines local and neighborhood information. Use of

top-down approach allows the GTC algorithm to control the number of nodes in a cluster,

distances between parent and child CHs, breadth and depth of the cluster tree, and

provides the ability to select nodes that share common cryptographic keys. The algorithm

is configurable, independent of network topology, and does not require a-priory

neighborhood information, location awareness, or time synchronization.

Simple Hierarchical Clustering (SHC) is a special case of GTC algorithm that is

similar to the IEEE 802.15.4 cluster tree [38]. Another special case, Hop-ahead

Hierarchical Clustering (HHC), produces cluster and cluster trees with much better

properties. HHC clusters are more circular compared to the clusters formed by FLOC

[25] and PHC [9]. Receiver Signal Strength Indicator (RSSI) measurements can be

utilized to further improves the properties of the algorithm. The HHC forms more

uniform and circular clusters, a cluster tree with a lower depth, and a more ordered

network. The properties of HHC are comparable with hexagonal packing particularly for

low-density networks and lower transmission power levels. Distance between any parent

and child CH is bounded to 3R, where R is the transmission range of a node. Algorithm

has a message complexity of O(n), where n is the number of nodes in the network;

therefore, it scales well for large networks. Two-step, cluster and cluster tree optimization

phase was designed to further improve the properties. The optimization phase increases

the connectivity of the network and enhances the cluster tree; however, it increases the

overhead of algorithm. Given all these properties HHC is applicable for many large-scale

and collaborative WSNs.

177

Three routing strategies were proposed that make use of the cluster tree produced

by the HHC scheme of the GTG algorithm. A hierarchical addressing scheme that reflects

the parent-child relationship among CHs was designed to facilitate node-to-node

communication. The addressing scheme simplifies routing and significantly reduces the

number of routing entries that needs to be stored in a CH. Variable length hierarchical

addresses are used to reduce the overhead. First routing approach is based on the cluster

tree and hierarchical routing. However, the root node becomes a single point of failure.

Workload on the root node is reduced by forming cross-links within the cluster tree. In

cross-links based routing, CHs make use of their neighbors to deliver messages through

shorter paths and try to avoid the root node whenever possible. The third routing

mechanism, referred to as circular path based routing, makes use of a circular path within

the network to relay messages. Depending on the source and destination nodes, messages

go either through the cluster tree or through a combination of circular path and cluster

tree. Higher number of messages can be delivered by balancing the number of messages

relayed by the root node and a node along the circular path. An analytical model is used

to determine the best position of the circular path. Both cross-links based routing and

circular path based routing at least double the network capacity.

Realization of VSNs requires design and implementation of many algorithms and

protocols. As an initial step, a VSN formation mechanism and data delivery platform

were presented. Nodes observing similar events send their interest to join a VSN towards

the root node. Cluster tree formed with the HHC scheme is used to deliver such

messages. Compared to random routing strategies such as Rumor Routing [14] and Ant

Routing [35] these messages are guaranteed to meet at the root node. As the message

178

travels through the network, it discovers other nodes with similar interest and forms a

virtual tree that connects members of the VSN. Multiple VSNs may form multiple virtual

trees; however, every tree is guaranteed to meet at the root node. This virtual tree can be

used to deliver unicast, multicast, and broadcast traffic within and across VSNs. Due to

extensive overhead, number of multicast messages delivered by the network significantly

reduces. Cross-links based routing scheme was able to at least double the number of

unicast messages. However, it was not effective in delivering multicast messages.

Circular path based routing scheme was not so effective unless the phenomenon being

tracked is distributed. We further demonstrate the efficacy of the approach by simulating

a subsurface chemical plume monitoring system. Though this approach does not utilize

all the energy in the network, it provides the starting point for formation of VSNs and

communication within and across VSNs.

Security is a prime concern in large-scale WSNs used for collaborative and

mission critical applications. Secure and efficient distribution of cryptographic keys is the

first step towards achieving these security objectives, on top of which many secure

protocols can be implemented. Dynamic key distribution is one of the key requirements

in secure VSNs that have a time varying set of VSN members. The GTC algorithm is

further extended to build a secure backbone on top of the cluster tree, which can be used

to distribute network wide or VSN wide keys among different VSNs and users. The

extended GTC algorithm is independent of the key pre-distribution scheme. The

algorithm retains most of its desirable cluster and cluster tree characteristics while

building the secure backbone. Our analysis also shows that hierarchical networks are

more susceptible to node capture than non-hierarchical networks.

179

The goal of the thesis was to design a set of VSN enabling technologies. A cluster

and a cluster tree formation scheme, three routing schemes based on the cluster tree, a

VSN formation and data delivery scheme, and a secure backbone formation scheme were

designed with this objective. A compound solution that combines clustering, cluster tree

based routing, and VSN membership discovery addresses the VSN formation problem

and data delivery problem within and across VSNs.

9.2 Contributions

The contributions of the thesis include:

1) GTC algorithm

• A configurable algorithm that is independent of the network topology, and

does not require a-priory neighborhood information, location awareness,

or time synchronization.

• The HHC scheme, a special case of the algorithm, forms more uniform

and circular clusters and cluster trees with lower depth.

2) Three routing strategies

• Design of a hierarchical addressing scheme.

• Cluster tree based routing.

• Cross-links based routing that at least doubles the network capacity.

• Circular path based routing further increases the network capacity.

3) Secure backbone design

• Extended GTC algorithm that can builds a secure cluster tree using pre-

distributed keys.

• Algorithm is independent of the key pre-distribution scheme and retains

most of its desirable cluster and cluster tree characteristics.

4) Formation of VSNs

180

• A cluster tree based VSN formation and data delivery mechanism.

• Achieved by combining contributions one and two.

• Subsurface chemical plume monitoring demonstrates the efficacy of the

approach.

9.3 Future Directions

As a starting point towards virtual sensor networks, we designed a set of solutions

that facilitate some of the fundamentals requirements of VSNs. However, realization of

VSNs requires design and implementation of many other algorithms and protocols.

Furthermore, it may be possible to improve proposed algorithms/techniques and adapt

them to different applications. Below we discuss some of the possible future research

directions.

To test our algorithms for large-scale networks with thousands of sensors, we had

to build our own simulation platform. By doing so, we did not implement/simulate the

underlying data link layer. It is important to test the performance of our algorithms on a

rigorous simulation platform such as TOSSIM [43]. To simulate using TOSSIM, the

GTC algorithm and routing schemes needs to be ported to TinyOS [61]. This will also

enable us to test the algorithms in an actual testbed such as moteLab [32] before any field

implementations.

It was observed that some of the branches in the cluster tree were longer than

others and therefore had to handle more workload. This can be a major problem if the

network is of an arbitrary shape. After forming the cluster tree, it may need to be

rebalanced, e.g., by shifting the position of the root node, so that most of the branches can

have similar depths. This further requires the reassignment of hierarchical addresses.

181

Though such a tree-balancing phase may require some additional overhead, it may extend

the network life significantly.

Cross-links based routing and circular path based routing at least double the

network capacity. However, these solutions are still not capable of utilizing the energy

available in most of the nodes. All these solutions are too dependent on the cluster tree.

Though formation of a hierarchy simplifies many functions of collaborative WSNs it is

not the best approach when it comes to routing. To our knowledge, not much research has

been carried out to overcome the over dependence on the hierarchy or the cluster tree.

Applications that require in-network communication do not need to be tied to the cluster

tree. Instead, they should maximize the network lifetime by identifying alternative paths

to their destinations. Overhead of identifying such paths should be minimum if

communication pattern is dynamic, e.g., VSNs. These routing strategies should be energy

aware. Allowing CHs to share each other’s information about available power levels can

enable energy aware path selection. Therefore, it is important to design and develop a

routing scheme that maximizes the network lifetime by utilizing most of the energy

available in the network.

Heterogeneous sensor nodes may form their own cluster trees and can be

considered as individual VSNs. Collaboration among these VSNs is required to

effectively achieve each applications objective. For example, consider two different

networks that are deployed to monitor rock sliding and animal crossing in a mountainous

terrain. Both these networks can make use of each other’s cluster tree to deliver their data

effectively. The animal crossing network can be used to deliver data across rockslide-

monitoring networks placed in two mountains. However, combining or connecting these

182

two trees is not straightforward. Some of the challenges include; discovering neighbor

networks, how to connect multiple trees, where to connect them, how to uniquely identify

each CHs address, routing across VSNs without putting extensive burden on each other,

etc. Hierarchical addresses that reflect different networks or VSNs can overcome issues

such as unique addressing. However, other issues such as detecting, combining, and

managing multiple networks are not straightforward and need to be addressed.

VSN membership may change over time due to migrating, merging, splitting, or

fading phenomenons. To reduce energy consumption nodes should be allowed to sleep

while they are not in the event region. However, when the event moves towards those

nodes, they need to be reactivated. The network should be able to predict such changes

and inform those sleeping nodes in advance. Though managing these events in resource

constrained WSNs is not straightforward, these issues are critical and need to be address

to achieve the full potential of VSNs. We demonstrate limited use of such events.

A dynamic key distribution scheme needs to be developed on top of our secure

backbone. Such a scheme should be able to assign VSN wide keys to facilitate secure

communication within and across VSNs. Depending on the application’s security

requirements rekeying may be required as the VSN membership changes. It was observed

that hierarchical networks are more vulnerable to node capture. This can be a major issue

in mission critical larger-scale and collaborative WSNs, hence need to be addressed.

183

Appendix A

SIMULATOR

A.1 Node Placement

A discrete event simulator is developed using C. 2500, 5000, and 7500 nodes are

randomly placed on a L×W grid. For performance analysis in Chapter 4, nodes were

placed on a 101×101 grid with a grid spacing of 10m (1000m×1000m network). Later,

same number of nodes is placed on a circular region with a radius of 500m. The region is

embedded within a 201×201 grid and grid spacing is reduced to 5m. Circular region is

considered to make the comparison with hexagonal packing easier. This network is used

in Chapters 5, 6, and 7. In Chapter 8, to facilitate Deployment Knowledge based Random

key selection (DKR) scheme [26], 5000 nodes are randomly placed based on a 2-D

Gaussian distribution. Grid size is increased to 1001×1001 and grid spacing is reduced to

1m. Distance between two node deployment points in X and Y-axis is 100m. Only the

deployment points that are within the circular region are considered. This sort of a node

placement did not affect the performance of GTC algorithm or Random Block Merging

in Combinatorial Design (RBMCD) [16]. In all the networks the root node is placed in

the middle of the network. For different node densities and network configurations, 100

networks are generated by randomly placing nodes in the grid. Simulation results are

averaged over 100 samples and the pre-generated networks are reused when analyzing

184

each variable of interest. For each simulation, the random function is initialized with a

different seed based on time.

A.2 Cluster And Tree Formation

Single-hop and multi-hop clusters are formed starting from the root node.

Breadth-first spanning tree approach described in Section 4.2 is used to form the cluster

tree. A subset of CCHs is randomly selected as child CHs. The root node selects six

CCHs while all other CHs select three. CHs are assigned hierarchical addresses based on

the scheme described in Section 6.1.1.

Characteristics of GTC clusters are compared with FLOC [25] and Probabilistic

Hierarchical Clustering (PHC) [9]. Two more simulators are developed based on our

network model and parameters given in [8] and [21]. For FLOC, the stretch factor m is

selected as 2 (o-band = 2×i-band). The effective communication range R was selected as

o-band (R = o-band). The random wait-time is chosen from the domain [0…T] and T was

appropriately selected based on the node density. Our multi-hop cluster formation is

compared with PHC. In PHC, probability of selecting CHs and number of hops with a

cluster depends on the area of the sensor field and node density. PHC needs to form 9-

hop clusters for the network parameters described in Section A.1. Such large multi-hop

clusters are not desirable. Therefore, to obtain realistic and comparable results 2500

nodes were placed on a 50×50 grid.

185

A.3 Signal Propagation Model

Circular communication model is assumed for signal propagation. Performance

analysis in Chapter 4 is based on a fixed transmission range without any fading effects

and collisions. Uncertainties in signal strength, fading effect, and collisions are

considered in Chapter 5 therefore a more realistic simulation environment was required.

The free space power that receiver’s antenna receives can be calculated from the

Friis free-space equation [48, 50]. However, the free space mode is an over-idealization

because propagation of signal is affected by reflection, diffraction, scattering, and

environmental conditions (e.g., indoors, outdoors, rain, etc.) [50]. Based on empirical

evidence it is more reasonable to model the receiver power as a log-distance path-loss

model [48, 50]:

σΧ+−=)/log(10)()(000 ddndPdP pR (A.1)

where PR(d) is the receiver power at distance d, P0(d0) is the power at a known reference

point, d0 is the distance to the reference point, np is the path loss exponent, and Xσ is a

zero-mean Gaussian random variable with standard deviation σ. All the power values are

in dBm.

Integer value of PR(d) can be considered as the RSSI. The ChipCon CC2420 radio

[22] uses the following equation to determine the RSSI value:

PR = RSSI_VAL + RSSI_OFFSET (A.2)

where PR is the receiver power, RSSI_VAL is the value of the RSSI register, and

RSSI_OFFSET is an offset. RSSI values increases linearly with increasing receiver power

PR. However, reliability of RSSI is still debatable due to variation in receiver power.

Variability of RSSI is not purely random and tends to increase with the distance [34, 45,

186

57]. We increase σ with distance to model this behavior. Standard deviation is selected

such that:

maxd
kd

=σ
 (A.3)

where k is the variation in RSSI at the receiver sensitivity level, d is the distance, and dmax

is the transmission range derived from Equation A.1 for a given receiver sensitivity level.

Even though RSSI values are noisy, they seem to be time invariant and somewhat stable

when antennas are placed above ground.

The Equation A.2 is used to determine the RSSI values. Other relevant parameters

are listed in Table A.1. Transmission ranges based on these parameters are listed in Table

A.2. Figure A.1 shows the variation in RSSI based on these parameters. It is assumed that

a nodes does not accurately hear a broadcast if it is within the collision region of two

concurrent broadcasts therefore cannot join a cluster.

Table A.1 – Parameters related to signal propagation model.

Symbol Description Value

np Path loss exponent [30, 28] 2.2

k Variation in RSSI at the receiver sensitivity level [41, 30] 6dBm

RSSI_OFFSET RSSI offset [20] -45dBm

RT Receiver sensitivity level [20] -90dBm

Table A.2 – Corresponding transmission ranges for given transmission power levels.

Transmission Power (dBm) Transmission Range (m)

-10 65.46
-12 53.09
-14 43.07
-16 34.94
-18 28.34
-20 22.96

187

Distance (m)

0 10 20 30 40 50 60

R
S

S
I

-10

-5

0

5

10

15

20

25

30

35

No noise
with noise, k = 6dBm

Figure A.1 – Variation in RSSI. PT = -12dBm, k = 6dBm.

A.4 Energy Model

The energy model is similar to the one used in [5] and [7]. Energy expend by the

radio to transmit a m-bit message to a node at distance d can be written as:

{ }pn
ampcircuitT dEEmE += (A.4)

where Ecircuit is the power consumed by the radio (for coding, modulation, filtering, etc.),

Eamp is the power given to the signal, and np is the path loss exponent. Transmission range

in our model is fixed therefore d = R. Radio also consume power to receive a message.

The power expend by the receiver is:

circuitR mEE = (A.5)

Ecircuit tends to dominate the power consumption therefore significantly higher multi-hop

communication is not desirable. Both [5] and [7] doubles the path loss exponent np, if

transmission distance is beyond a certain threshold. Ideally, np should gradually increase.

188

For simplicity, we use the same np. Table A.3 show the parameters related to energy

consumption. Table A.4 shows the different packets sizes used in the simulation.

Table A.3 – Parameters related to energy model.

Symbol Description Value

Ecircuit Power consumed by the radio [29, 62] 50.0 nJ/bit
Eamp power given to the signal [62] 10 pJ/bit/m2
np Path loss exponent [28, 30] -2.2
E Initial energy of a node 2.0 J

Table A.4 – Sizes of different packets.

Description Size (bits)

Data packet 800
Cluster formation broadcast 80
ACK 40
Form new cluster message (during optimization phase) 120
Optimize cluster tree message 40
Join VSN message 120

A.5 Close Loop System

A synthetic data set is generated that simulates the migration pattern of the two

plumes (Figure 7.15). Refer [8] for specific details of synthetic data generation. A

200m×350m×15m sensor field is considered and the plumes migrate from one end of the

sensor field to the other, along the longitudinal axis. Plumes migrate over 1095 days

(three years). To simplify the analysis, the 3-D data set is converted to a 2-D data set by

taking average along the Z-axis. This data set is scaled up to 1000m×1750m and

positioned in the middle of a 2000m×2500m sensor field. Then 1000 sensor nodes are

randomly placed on a 40×50 grid (50% coverage) with a grid spacing of 50m. Ideal

189

wireless network is considered, i.e., no packet losses, delayed packets, corrupted packets,

collisions, etc.

Nodes read relative chemical concentration values from the time varying synthetic

data, based on their location within the sensor field. Initially, each node sends a message

to the Plume Modeling and Prediction (PMP) system to indicate its presence in the

network. Nodes are configured to sample once a day if they are in a plume and once in

every 14 days if they are not in a plume. In each occurrence, five samples are taken and

average concentration is reported to the PMP system. Multiple samples are taken to

reduce the errors due to noisy reading, out of range reading, and stuck readings that are

common to many eco sensors. Plume detection is event drive. If the relative chemical

concentration is above 0.005, the sensing node is considered to be in a plume. Then the

node sends a message to the PMP system and at the same time joins the VSN. Thereafter,

the node sends another message only if the chemical concentration increase/decrease

above/below a predefined threshold. If the relative concentration falls below 0.005, the

node will unsubscribe from the VSN and switch to a lower sampling rate. We consider

Decagon 5TE sensors [24] that are suitable for monitoring subsurface chemical

concentrations. Based on these sensors each sampling process takes 150ms to complete.

Node parameters are identical to TELOSB motes [23, 50]. We assume nodes operate at

their highest transmission power, i.e., 0dB, and have a transmission range of 100m.

Nodes take time to walk-up, take multiple samples, communicate, and go back to sleep

therefore we assume a cluster member is up for 2 seconds. Clock skew is a major

problem in long-lived sensor networks and it can affect the connectivity of the cluster

tree. Crystal used on TELOSB and similar motes tends to have a 1.7 seconds clock skew

190

per day. In our system, some of the CHs only come up in every 14 days hence they are

able to synchronize their clock only in every 14 days. To ensure connectivity we assume

CHs are up for 25 (1.7×14) seconds. Specific simulation parameters are listed in Table

A.5.

Table A.5 – Close loop simulation parameters.

Symbol Description

Sensor node related parameters

aP Active power [50] 3mW

sP Sleep power [50] 1µW

mP Sampling power [24] 36mW

dP Transmission power [50] 45mW

mn Number of samples 5

mT Time that takes to measure/test a sample [24] 150ms

cT Time that a child node is active within it∆ 2s

CHT Time that a cluster head is active within it∆ 25s
B Bandwidth [23, 50] 250 Kbps
Network/VSN related parameters
n Number of nodes in the network 1000
MAC header Size of MAC header [38] 13 bytes
Network header Size of network header [38] 8 bytes

Network payload Size of data including hierarchical cluster ID, node ID, VSN
ID, and chemical concentration 22 bytes

MAC ACK MAC layer acknowledgement frame size [38] 9 bytes
Phenomenon related parameters
c Threshold concentration 0.005

c∆ Change in concentration that generates a new event ± 0.05
t∆ Duration of a time step 24 hours

m Number of time steps before everyone come up again 14 days
Prediction rate Number of days between predictions 8 weeks
Prediction window Number of days predictions are given for 8 weeks
α Changes in concentration level (for energy model) 0.5
β Spatial dynamics of the (for energy model) 0.1

Predictions are given in every eight weeks and they are valid for the next eight

weeks. A plume prediction model is being developed at Center for Experimental Study of

191

Subsurface Environmental Processes (CESEP), Colorado School of Mines. Given the size

of the plume that we consider this model takes several hours to compute. Therefore, for

the time being we derive prefect predictions form the synthetic data. We are already

planning to couple the actual plume prediction model to our VSN based close loop

system.

A.6 Key Pre-distribution

Two key pre-distribution schemes are used to evaluate the performance of the

extended GTC algorithm. The first approach is based on Deployment Knowledge based

Random key selection distribution (DKR) [26] while the second approach is based on the

Random Block Merging in Combinatorial Design (RBMCD) [16]. Both schemes have a

higher local connectivity. Specific parameters of each algorithm are shown in Table A.6.

Based on these parameters, RBMCD approach shares 3-4 keys with its neighbors while

DKR shares 4-5 keys.

Table A.6 – Parameters of each key pre-distribution scheme.

Parameter DKR RBMCD

Size of key pool 100000 4470
Number of nodes 5000 5550
Number of key per node 120 120
DKR specific parameters

N/A
 Number of keys in each group 1777
 Grid size (m×m) 100×100
 Overlaping factor – horizontal/vertical 0.175
 Overlaping factor – diagonal 0.075
RBMCD specifc parameters

N/A

 Number of key per block 30
 Number of blocks merged 4

192

A separate program is used to generate key indexes and key IDs. Randomly

merged key indexes and key IDs are dumped to a file that enables the use of the same key

file against different parameter combinations. From simulation point of view, only key

indexes and key IDs are important; therefore, actual keys are not generated. Key

indexes/IDs are randomly assigned to nodes before the cluster formation phase. The

algorithm given in [42] is used to determine a common key in combinatorial approach.

This algorithm requires calculation of modular inverse. Therefore, the algorithm

presented in [56] is used to calculate the modular inverse. The inbuilt modulus operator

(%) in C does not appropriately calculate modulus of negative numbers; therefore a

separate modulus function is implemented based on Euclidean definition [13].

193

Appendix B

SOURCE CODE

The simulator includes following files:

• types.h - Define data types, simulation parameters, and functions.

• types.c - Implement some of the common functions required by the

simulator

• energy.h - Define energy model related parameters and functions

• energy.c - Implement energy model related functions

• simulator.h - Define specific simulation scenario related parameters and

cluster and cluster tree formation functions.

• simulator.c - Implement cluster and cluster tree formation related functions.

Also include simulation data capture functions.

194

types.h

#define GRIDX 5 //Unit in X direction of grid
#define GRIDY 5 //Unit in Y direction of grid
#define NODESX 201 //No of nodes in X axis
#define NODESY 201 //No of nodes in y axis. Total no of
nodes = NODESX * NODESY
#define MAX_ROUTES 100 // Maximum no of routing entries
#define MAX_VSN_ENTRIES 25 //Maximum number of VSN entries
#define DATA_PACKET_SIZE 800 // Data Packet size in bits
#define CLUSTER_BCAST_SIZE 80 // Cluster formation broadcast size in
bits
#define CLUSTER_ACK_SIZE 40 // ACK size in bits
#define CLUSTER_FORM_SIZE 120 // Cluster formation Size in bits
#define CLUSTER_OPTI_SIZE 40 // Cluster optimization message size
in bits
#define VSN_FORM_SIZE 120 // VSN formation message size in bits
#define NO_COLLISION_NODES 4000 // No of nodes in the collision region
#define MAX_RND_TIME 25 //Maximum random wait time
#define BIAS_POINT 0 //New time will be (Time – Bias
Point). Should be 0 if no RSSI
#define NODEFILE1 "nodes.txt"
#define NODEFILE2 "nodes_opt.txt"
#define CIRCLEFILE1 "circular.txt"
#define CIRCLEFILE2 "circular_opt.txt"
#define NODELIST "input_nodes.txt"
#define ENERGYFILE "energy1.txt" //Store energy status after
cluster formation

typedef unsigned char uchar; //Define uchar
typedef unsigned int uint; //Define uint

typedef struct { //Data structure of hierarchical CID
 uint id[4];
} Hie_CID;

typedef struct { //Data structure of routing entry
 uchar valid; //Valid indicate the status of the routing entry.
//Status is indicated by following combination of bits
 // Low in Energy|Learn from neighbor| Route to Parent
//CH |Valid Route
 // bit is 0 is not set. Is 1 if set.
 // Valid = 0 (0000)- Route is not valid
 // Valid = 1 (0001)- Router is valid
 // Valid = 3 (0011)- Route is valid & towards the
//parent CH
 // Valid = 5 (0101)- Router is valid & lean from
//neighbor
 // Valid = 9 (1001)- Router is valid but should be
//avoided whenever possible
 // Valid = 13(1101) -Router is valid but should be
//avoided whenever possible
// Valid = 11 (1011)- Router is valid & to the parent //CH. But should
be avoided whenever possible

// Valid = 2 (010), 4 (100), 6 (101), 7 (111), 8 //(1000), 10 (1010), 12
(1100), 14 (1110), 15 (1111)- //these status can't exist
 uint NID; //Neighbors NID
 Hie_CID H_CID; //Neighbor Hierarchical CID
 uint learn_from; //Learn from
 uchar hops; //Number of hops to the destination CH
} router_entry;

typedef struct { //Data structure for VSN to CH Mapping
 uchar VSN; //VSN ID
 uint NID;
 uchar node_type ; //Child node (2) or CH (1)
} vsn_entry;

typedef struct { //Data structure of a node
 uint NID;
 uint CID;
 Hie_CID H_CID;
 Hie_CID Link_H_CID;
 uint CH_NID;
 uint parent_CH_NID; //This will be used only if node is a CH
 uchar tree_depth;
 uchar node_depth;
 uchar link_depth;
 uint no_broadcasts;
 uint no_ACKs;
 uint no_child_nodes;
 uchar no_routing_entries;
 uchar no_vsn_entries;
 uint no_msg_forward;
 uint no_CCHs;
 uint CCHs[200]; //Hold the candidate CHs
 router_entry routing_table[MAX_ROUTES];
 vsn_entry vsn_table[MAX_VSN_ENTRIES];
 float energy;
 uchar node_dead; //Will be 1 if node is dead
 uint marked_bcast_by_CID;
 uint last_bcast_for_CID;
 uint heard_ACK_for_CID;
 uchar send_ACK_for_CID;
 uchar send_tree_opt_msg;
 uchar in_event; //Type of event detected
 uchar know_event; //I know about this event type
 uchar send_routing_info;
} node;

typedef struct { //Data structure of a data packet
 uint source_NID;
 Hie_CID source_H_CID;
 uint dest_NID;
 Hie_CID dest_H_CID;
} packet;

typedef struct { //Data structure of neighbor status

195

 uchar hops;
 uint nei_NID;
} nei_status;

typedef struct EVENT{ //Data structure of an event
 struct EVENT *next;
 uchar event_type; //Type of event. 1 - cluster formation, 2 -
 //timeout, 3 - optimization
 uint time;
 uint NID;
 uint CID;
 Hie_CID H_CID;
 uint CH_NID;
 uchar tree_depth;
 uchar node_depth;
 uchar TTL;
 uint parent_CID;
 uint parent_CH_NID;
 Hie_CID parent_H_CID;
} event;

typedef struct { //Data structure of a region
 int minx;
 int maxx;
 int miny;
 int maxy;
} region;

Hie_CID generate_CID(Hie_CID parent_ID, uint child_no, uchar
tree_depth);
uchar hop_distance(Hie_CID source_add, Hie_CID dest_add);
region get_node_region(uint x, uint y, float r);
char CID_to_symbol_mapping(int CID);
uint last_event_time(uchar tree_depth, uchar no_CCHs, uint cluster_time,
uint CCH_delay);
char random_wait_time();
void bubble_sort(nei_status *neigh, int n);

types.c

#include "types.h"
#include <stdio.h>
#include <stdlib.h>

/*--*
 * Following function generates the hierarchical cluster id *
 * based on the parent cluster id & node depth. CIDs are represented *
 * in the following manner *
 * +------------------------+----+------------------+ *
 * | |child2|child1|parent| depth (6- bits) | *
 * +------------------------+----+------------------+ *
 * depth - 6 bits - can represent up to depth of 38 levels *
 * in the tree branching factor (b) - up to 8 branches *

 * (3 bits to represent each branch number. *
 * child id = parent id + (branch no << ((depth -1) * b)+ 6) + depth *
 * with 128-bit CID up to 38 level cluster tree can be represented *
 * however there are no 128-bit integer data structures. So an *
 * array of four 32-bit integers are used. *
 --/
Hie_CID generate_CID(Hie_CID parent_id, uint child_no, uchar depth)
{
 int tmp_id0, tmp_id1, tmp_id2, tmp_id3, tmp_parent_id[4], tmp_depth;
 Hie_CID new_h_cid;

 tmp_parent_id[0] = parent_id.id[0];
 tmp_parent_id[1] = parent_id.id[1];
 tmp_parent_id[2] = parent_id.id[2];
 tmp_parent_id[3] = parent_id.id[3];

tmp_depth = tmp_parent_id[3] & 63;//extract the depth 64 = 111111 in
 // binary
 if ((tmp_depth + 1) != depth) //if child depth != parent depth + 1
 {
 printf("child depth should be equal to parent depth + 1. Child:
%d Parent: %d\n", depth, tmp_depth);
 exit(0);
 }
 if(depth > 38)
 {
 printf("Hierarchical address overflow.\n");
 exit(1);
 }

 if(depth <= 8) //up to depth of 8 can be represented
 //by 32-bits (3 * 8 + 6)
 {
 tmp_id3 = child_no;
 tmp_id3 = tmp_id3 << (((depth -1) * 3) + 6);
 tmp_id3 += tmp_parent_id[3];
 tmp_id3++; //increment depth by 1
 tmp_id2 = 0; //the the last (msb) 32-bits zero
 tmp_id1 = 0; //the the last (msb) 32-bits zero
 tmp_id0 = 0; //the the last (msb) 32-bits zero
 }
 else if((depth > 8) && (depth < 19)) //If within 9 to 18
 {
 tmp_id3 = tmp_parent_id[3];
 tmp_id3++; //Increment depth
 tmp_id2 = child_no; //Move to the other part of the
 //CID and set it
 tmp_id2 = tmp_id2 << ((depth - 9) * 3);//Shift the new no
 tmp_id2 += tmp_parent_id[2]; //Add the MSB9 part of parent
 tmp_id1 = 0; //The the last (MSB) 32-bits
 //zero
 tmp_id0 = 0; //The the last (MSB) 32-bits
 //zero
 }

196

 else if((depth > 18) && (depth < 29))//If within 19 to 28
 {
 tmp_id3 = tmp_parent_id[3];
 tmp_id3++; //increment depth
 tmp_id2 = tmp_parent_id[2];
 tmp_id1 = child_no; //move to the other part of the
 //cid and set it
 tmp_id1 = tmp_id1 << ((depth - 19) * 3);//shift the new no
 tmp_id1 += tmp_parent_id[1]; //add the MSB part of parent
 tmp_id0 = 0; //add the MSB part of parent
 }
 else //If within 29 to 38
 {
 tmp_id3 = tmp_parent_id[3];
 tmp_id3++; //increment depth
 tmp_id2 = tmp_parent_id[2];
 tmp_id1 = tmp_parent_id[1];
 tmp_id0 = child_no; //move to the other part of the
 //cid and set it
 tmp_id0 = tmp_id0 << ((depth - 29) * 3);//shift the new no
 tmp_id0 += tmp_parent_id[0]; //add the MSB part of parent
 }

 new_h_cid.id[0] = tmp_id0;
 new_h_cid.id[1] = tmp_id1;
 new_h_cid.id[2] = tmp_id2;
 new_h_cid.id[3] = tmp_id3;
 return new_h_cid; //return new cid
}

/*--*
 * Following function determines the number of hops between two nodes *
 --/
uchar hop_distance(Hie_CID source_add, Hie_CID dest_add)
{
 uchar source_depth, dest_depth, min_depth, tmp_source_add,
tmp_dest_add, i, hops;

 source_depth = source_add.id[3] & 63; //63 = 111111 in binary
 dest_depth = dest_add.id[3] & 63;

 //If depth > 38 hierarchical address overflow
 if((source_depth > 38) || (dest_depth > 38))
 return 0;

 if(source_depth > dest_depth) //Find minimum depth
 min_depth = dest_depth;
 else
 min_depth = source_depth;
 for(i = 0; i < min_depth ; i++)
 {
 if(i < 8) //If min-depth is within depth of 8. Check
 //only the LSB (32-bits) of the address

 {
 //Remove depth & hierarchical address of parent
 //CHs starting from root node
 tmp_source_add = (source_add.id[3] >> (6 + i * 3));
 tmp_dest_add = (dest_add.id[3] >> (6 + i * 3));
 // 7 = 111 in binary. Extract only branch number
 tmp_source_add = tmp_source_add & 7;
 tmp_dest_add = tmp_dest_add & 7;
 //If a none matching branch is found
 if(tmp_source_add != tmp_dest_add)
 break;
 }
 else if((i >= 8) && (i < 18) //Check the next 32-bits
 {
 //Remove the depth info from address
 tmp_source_add = (source_add.id[2] >> ((i - 8) * 3));
 tmp_dest_add = (dest_add.id[2] >> ((i - 8) * 3));
 // 7 = 111 in binary. Extract only branch number
 tmp_source_add = tmp_source_add & 7;
 tmp_dest_add = tmp_dest_add & 7;
 //If a none matching branch is found
 if(tmp_source_add != tmp_dest_add)
 break;
 }
 else if((i >= 18) && (i < 28))//Check the next 32-bits
 {
 //Remove the depth info from address
 tmp_source_add = (source_add.id[1] >> ((i - 18) * 3));
 tmp_dest_add = (dest_add.id[1] >> ((i - 18) * 3));
 // 7 = 111 in binary. Extract only branch number
 tmp_source_add = tmp_source_add & 7;
 tmp_dest_add = tmp_dest_add & 7;
 //If a none matching branch is found
 if(tmp_source_add != tmp_dest_add)
 break;
 }
 else
 {
 //Remove the depth info from address
 tmp_source_add = (source_add.id[0] >> ((i - 28) * 3));
 tmp_dest_add = (dest_add.id[0] >> ((i - 28) * 3));
 // 7 = 111 in binary. Extract only branch number
 tmp_source_add = tmp_source_add & 7;
 tmp_dest_add = tmp_dest_add & 7;
 //If a none matching branch is found
 if(tmp_source_add != tmp_dest_add)
 break;
 }
 }

 //Distance to common branching point
 hops = (source_depth - i) + (dest_depth - i);
 return hops;
}

197

/*--*
 * Following function determines when the next new cluster event *
 * should start. Starting time is determined based on breadth-first *
 * tree formation. Each event in the next round should be scheduled *
 * after the completion of the last event in the current round *
 * depth -Depth of the event in the next round *
 * no_CCHs -no of candidate CHs *
 * cluster_time -time to form a cluster (timeout) *
 * CCH_delay -Delay for the next child CH for the same parent CH *
 * returns -time of the last event *
---/
uint last_event_time(uchar depth, uchar no_CCHs, uint cluster_time, uint
CCH_delay)
{
 //dt_CH + (no_CCHs -1)(d -1)t_CCH
 return (depth * cluster_time + (no_CCHs - 1) * (depth -1) *
CCH_delay);

}

/*--*
 * Following function return the range of a node *
 * given its communication range *
 * x - x coordinate of node *
 * y - y coordinate of node *
 * r - communication range of node *
 * region - x & y coordinates of the rectangle *
 --/
region get_node_region(uint x, uint y, float r)
{
 region tmp_region;
 int minx, maxx, miny, maxy;

 // 1 hop neighbors are in the range of(x - r) to (x + r)
 minx = x - (r/GRIDX) - 1;
 if (minx < 0) // stay within the grid
 minx = 0;
 maxx = x + (r/GRIDX) + 1;
 if(maxx >= NODESX)
 maxx = NODESX -1;
 // 1 hope neighbors are in the range of(y - r) to (y + r)

 miny = y - (r/GRIDY) - 1;
 if (miny < 0) // stay within the grid
 miny = 0;
 maxy = y + (r/GRIDY) + 1;
 if(maxy >= NODESY)
 maxy = NODESY - 1;

 tmp_region.minx = minx; //set bounds
 tmp_region.maxx = maxx;
 tmp_region.miny = miny;
 tmp_region.maxy = maxy;

 return tmp_region;
}

/*---*
 * Following function generates a random time to wait
 *
 * before taking some action *
 * return - +/- random time *
--/
char random_wait_time()
{
 return (rand() % MAX_RND_TIME) - BIAS_POINT; // +/-random(r)
}

/*---*
 * Following function maps the Cluster ID to the corresponding symbol*
 * that appears on screen *
--/
char CID_to_symbol_mapping(int CID)
{
 char symbol;
 switch (CID)
 {
 case 0:
 symbol = 'o' ;
 break;
 case 1:
 symbol = '1' ;
 break;
 case 2:
 symbol = '2' ;
 break;
 case 3:
 symbol = '3' ;
 break;
 case 4:
 symbol = '4' ;
 break;
 case 5:
 symbol = '5' ;
 break;
 case 6:
 symbol = '6' ;
 break;
 case 7:
 symbol = '7' ;
 break;
 case 8:
 symbol = '8' ;
 break;
 case 9:
 symbol = '9' ;
 break;

198

 case 10:
 symbol = 'A' ;
 break;
 case 11:
 symbol = 'B' ;
 break;
 case 12:
 symbol = 'C' ;
 break;
 case 13:
 symbol = 'D' ;
 break;
 case 14:
 symbol = 'E' ;
 break;
 case 15:
 symbol = 'F' ;
 break;
 case 16:
 symbol = 'G' ;
 break;
 case 17:
 symbol = 'H' ;
 break;
 case 18:
 symbol = 'I' ;
 break;
 case 19:
 symbol = 'J' ;
 break;
 case 20:
 symbol = 'K' ;
 break;
 case 21:
 symbol = 'L' ;
 break;
 case 22:
 symbol = 'M' ;
 break;
 case 23:
 symbol = 'N' ;
 break;
 case 24:
 symbol = 'O' ;
 break;
 case 25:
 symbol = 'P' ;
 break;
 case 26:
 symbol = 'Q' ;
 break;
 case 27:
 symbol = 'R' ;
 break;

 case 28:
 symbol = 'S' ;
 break;
 case 29:
 symbol = 'T' ;
 break;
 case 30:
 symbol = 'U' ;
 break;
 case 31:
 symbol = 'V' ;
 break;
 case 32:
 symbol = 'W' ;
 break;
 case 33:
 symbol = 'X' ;
 break;
 case 34:
 symbol = 'Y' ;
 break;
 case 35:
 symbol = 'Z' ;
 break;
 case 36:
 symbol = '*' ;
 break;
 case 37:
 symbol = '#' ;
 break;
 case 38:
 symbol = '$' ;
 break;
 case 39:
 symbol = '@' ;
 break;
 case 40:
 symbol = '+' ;
 break;
 case 41:
 symbol = '-' ;
 break;
 case 42:
 symbol = '&' ;
 break;
 case 43:
 symbol = '<' ;
 break;
 case 44:
 symbol = '!' ;
 break;
 case 45:
 symbol = '=' ;
 break;

199

 case 46:
 symbol = 'a' ;
 break;
 case 47:
 symbol = 'b' ;
 break;
 case 48:
 symbol = 'c' ;
 break;
 case 49:
 symbol = 'd' ;
 break;
 case 50:
 symbol = 'e' ;
 break;
 case 51:
 symbol = 'f' ;
 break;
 case 52:
 symbol = 'g' ;
 break;
 case 53:
 symbol = 'h' ;
 break;
 case 54:
 symbol = 'i' ;
 break;
 case 55:
 symbol = 'j' ;
 break;
 case 56:
 symbol = 'k' ;
 break;
 case 57:
 symbol = 'l' ;
 break;
 case 58:
 symbol = 'm' ;
 break;
 case 59:
 symbol = 'n' ;
 break;
 case 60:
 symbol = 'p' ;
 break;
 case 61:
 symbol = 'q' ;
 break;
 case 62:
 symbol = 'r' ;
 break;
 case 63:
 symbol = 's' ;
 break;

 case 64:
 symbol = 't' ;
 break;
 case 65:
 symbol = 'u' ;
 break;
 case 66:
 symbol = 'v' ;
 break;
 case 67:
 symbol = 'w' ;
 break;
 case 68:
 symbol = 'x' ;
 break;
 case 69:
 symbol = 'y' ;
 break;
 case 70:
 symbol = 'z' ;
 break;
 default:
 symbol = '?' ;
 break;
 }
 return symbol;
}

/*---*
 * Following function sort the neighbor routing entries in the *
 * increasing order based on hop count. *
 * If 2 neighbors have the same hop count they are swapped by tossing *
 * a coin. This prevents the same neighbor being selected again & *
 * again when they have the same hop count - allow load to be *
 * distributed *
 * neigh - pointer to the neighbor routing array *
 * n - no of entries in the neighbor array *
--/
void bubble_sort(nei_status *neigh, int n)
{
 char swapped;
 int i;
 nei_status tmp;

 do
 {
 swapped = 0;
 for(i = 0; i < (n-1); i++)
 {
 if(neigh[i].hops > neigh[i+1].hops)
 {
 swapped = 1;
 tmp = neigh[i+1];

200

 neigh[i+1] = neigh[i];
 neigh[i] = tmp;
 }
 else if(neigh[i].hops == neigh[i+1].hops)
 {
 //Toss a coin & decide wich entry to use if 0 change if
 //1 keep previous entry
 if((rand() % 2) == 0)
 {
 tmp = neigh[i+1];
 neigh[i+1] = neigh[i];
 neigh[i] = tmp;
 }
 }
 }
 }
 while (swapped == 1); //Repeat until no swapping can be done.
}

enrgy.h

#define E_CIRCUIT 50.0 //Energy consumed by radio circuit for 1 bit.
//Values are in nano Jule
#define E_AMP_FS 0.01 //Energy for nJ/bit/m^2 - this is for the free
//space model. Values are in nano Jule
#define E_AMP_MP 0.0000013//Energy for nJ/bit/m^4 - this is for the
//multi-path fading model. Values are in nano
//Jule
#define E_NODE 2000000000//Initial energy of a node - in nano Jule
//#define T_RANGE 87.7 //Threshold distance to use the multipath
//fading model
#define RF_POWER_LP -20.0 //RF power of the transmeter when at
//Low Power state
#define RF_POWER_HP -20.0 //RF power of the transmeter when at
//High Power state
#define MY_N 2.2 //Path loss exponent
#define REC_SENSITIVITY -90.0 //Receiver sensitivity in dBm
#define USE_NOISE 0 //If 1 - use of noise
#define MY_K 0.0000989 //K if free space equation
#define RSSI_VAR 0.0 //Maximum variation in RSSI

float energy_to_receive(int no_bits);
float energy_to_transmit(int no_bits, float distance);
char RSSI(float distance, unsigned char lp);
float transmission_range(unsigned char lp);
void gaussian_rnd_init();
void gaussian_rnd_remove();

energy.c

#include "energy.h"
#include <math.h>

#include <time.h>
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

gsl_rng *r;
const gsl_rng_type *T;

/*--*
 * Following function calculate the amount of energy required to *
 * receive a data packet of a geven length *
 * no_bits - no of bits *
 --/
float energy_to_receive(int no_bits)
{
 return (float)(no_bits * E_CIRCUIT);
}

/*--*
 * Following function calculate the amount of energy required to *
 * transmit a data packet of given size and to a given distance *

 * If the distance is less than R * CH_CH_R_FACT then free space mode *
 * is used. Otherwise multi=path fading model is used *
 * no_bits - no of bits to transmit *
 * distance - distance between communicating nodes or maximum *
 * transmission range *
 * fs_or_mp - Free space model or multi-path model to use *
 * if fs_or_mp = 0 free space *
 * if fs_or_mp = 1 multi-path *
 --/
float energy_to_transmit(int no_bits, float distance)
{
 float circuit_energy, amp_energy;

 circuit_energy = (float)(no_bits * E_CIRCUIT);
 //Enable commented line if different multi-path fading factors are
 //to be used
/*
 if(distance < T_RANGE) //If below threshold use free space
model
 amp_energy = no_bits * E_AMP_FS * pow(distance, 2);
 else //Else use multipath fading model
 amp_energy = no_bits * E_AMP_MP * pow(distance, 4);
*/
 amp_energy = no_bits * E_AMP_FS * pow(distance, MY_N);
 return (amp_energy + circuit_energy);
}

/*--*
 * Function calculates Received Signal Strength *

201

 * Indicator (RSSI) value based on the equation *
 * P_r(d) = 10log(kP_t) - 10nlog(d) *
 * where P_r is the receiver power in dBm, D_0 is *
 * the close-in distance *
 * n is the path loss exponent *
 * distance - distance between transmitter & receiver *
 * lp - whether to use LP or high power *
---/
char RSSI(float distance, unsigned char lp)
{
 double trans_power, rec_power, diff, sigma, noise;

 if(lp == 0)
 trans_power = pow(10, (RF_POWER_LP/10)); //convert power to mW
 else
 trans_power = pow(10, (RF_POWER_HP/10)); //convert power to mW

 if(USE_NOISE == 0) // No noise is added
 rec_power = 10 * log10(MY_K * trans_power) - 10 * MY_N *
log10(distance);
 else //To add noise
 {
 if(lp == 0)
 sigma = (RSSI_VAR * distance)/(2 * transmission_range(0));
 else
 sigma = (RSSI_VAR * distance)/(2 * transmission_range(1));
 noise = gsl_ran_gaussian(r,sigma);
 rec_power = 10 * log10(MY_K * trans_power) - 10 * MY_N *
log10(distance) + noise;
 }
 diff = fabs(REC_SENSITIVITY) - fabs(rec_power);
 if(diff < 0)
 diff = diff - 1;
 return (char)diff;
}

/*--*
 * Following function determine the transmission range *
 * lp - If 0 use low power else use High power *
 --/
float transmission_range(unsigned char lp)
{
 double trans_power, distance;

 if(lp == 0) //Use Low Power
 {
 trans_power = pow(10, (RF_POWER_LP/10)); //convert power to mW
 distance = pow(10, (10*log10(MY_K * trans_power) -
REC_SENSITIVITY)/(10 * MY_N));
 }
 else //Use High Power
 {
 trans_power = pow(10, (RF_POWER_HP/10)); //convert power to mW

 distance = pow(10, (10*log10(MY_K * trans_power) -
REC_SENSITIVITY)/(10 * MY_N));
 }
 return (float)distance;
}

/*--*
 * Initialize the Gaussian random number generator *
 --/
void gaussian_rnd_init()
{
 unsigned long int seed;

 seed = time(NULL);
 gsl_rng_env_setup();

 T=gsl_rng_default;
 r = gsl_rng_alloc(T);
 gsl_rng_set(r,seed);
}

/*--*
 * Remove the Gaussian random number generator *
 --/
void gaussian_rnd_remove()
{
 gsl_rng_free (r);
}

Simulator.h

#include "types.h"

#define STARTX 100 //x value of the starting node
#define STARTY 100 //y value of the starting node
#define MAX_HOPS 1 //Maximum no of hops within cluster
#define MAX_TTL 3 //Max no of hops to propagate the
 //cluster formation bcast
#define NO_CCHS 6 //No of candidate CHs for level 1
#define CH_CH_R_FACT 3 //Maximum distance between two CHs

#define EVENT_OFFSET_X 10 //used to define event region
#define EVENT_OFFSET_Y 25
#define EVENT_DISTANCE_X 30
#define EVENT_DISTANCE_Y 60
#define NO_EVENT_NODES 50 //Number of nodes reading the same event
#define NO_OF_PACKETS 100000 //Number of packets to send

#define NONODES 5000 //Number of nodes in the network
#define NO_PACKETS 1 //Number of VSN data packets to send

202

//Following 2 parameters need to be set depending on whether
//RSSI is used or not
#define DELAY_CCH 200 //Delay to wait before forming a new cluster
#define TIMEOUT 100 //Time to wait before selecting CCHs
#define RANDOM_WAIT 100 //random time to wait before broadcasting
 //itself as CH
#define SHOW_NODE_DATA 0 //If 1 show node data on terminal
#define USE_NODE_FILE 1 //If 1 use pre-generated node file
#define USE_COLLISIONS 1 //If 1 consider node collisions
#define USE_HP 0 //If 1 use High Power for
 //CH-to-CH communication

void init(uchar use_file);
void add_event(uchar event_type, int start_time, uint nid, uint cid,
uint ch_nid, Hie_CID h_cid, uchar tree_depth, uchar node_depth, uchar
ttl, uint parent_cid, uint parent_ch_nid, Hie_CID parent_h_cid);
void remove_event(uchar event_type, uint start_time, uint nid);
uchar process_event_list();
void add_nodes_to_cluster(uint start_time, uint nid, uint cid, uint
ch_nid, uchar tree_depth, uchar node_depth, uchar ttl);
void forward_bcast_cluster(uint start_time, uint nid, uint cid, uint
ch_nid, uchar ttl, uchar node_depth);
void send_ACK_as_CCH(uint nid, uint cid, uint ch_nid);
void select_child_CHs(uchar event_time, uchar no_cchs, uint parent_cid,
uint parent_ch_nid, Hie_CID parent_h_cid, uchar tree_depth, uchar
node_depth);
void calculate_circularity(uchar file);
void print_nodes(uchar pnt_console, uchar file);
void print_cluster_energy();
void mark_collision_region(uint nid1, uint nid2);
char is_in_collision(uint nid);
void opti_cluster_tree(uint nid, uint CH_nid, uchar tree_depth, uchar
node_depth, uchar ttl);
void opti_none_cluster_nodes();
void update_child_nodes();
void form_my_own_cluster();
double total_energy();

//Following functions are related to routing
int next_hop(Hie_CID dest_add, int current_nid, int sender_nid);
void send_data();
unsigned char send_data_packet(packet data_packet);
void form_vsn();
uchar send_form_vsn_msg(packet data_packet);
void send_vsn_unicast_data();
void send_vsn_multicast_data();
uchar send_vsn_multicast_packet(packet data_packet);
void inform_neighbors();

void form_second_cluster_tree(uchar tree_depth);
void add_ch_to_tree(uint nid, uint parent_nid, uchar tree_depth, uchar
link_depth, Hie_CID h_cid);

void discover_neighbors_of_link(uchar tree_depth);

void send_link_info(uint nid, uchar tree_depth);
void who_died(uchar d);

simulator.c

/*---*
 * Version - 8.2 *
 * By - Dilum Bandara *
 * e-mail - dilumb@engr.colostate.edu *
 * This implementation supports the following functions *
 * Basic HHC algorithm *
 * Breadth First tree formation *
 * Hierarchical naming *
 * Consider node collisions *
 * Noise and RSSI *
 * CCHs send ACK only if they don't hear an ACK from *
 * a neighboring node *
 * Node energy consumption - send/receive *
 * Cluster and Tree optimization phase *
 * Circularity calculation *
 * Routing *
--/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "simulator.h"
#include "energy.h"

node nodes[NODESX][NODESY]; //Hold the node information
event *root; //Root of the CH event list
char msg[100]; //Hold temporary messages
 //before dumping data
uint next_cid = 1; //Next CID
 //List of nodes in the collision region for current time
uint collision_nodes[NO_COLLISION_NODES];
 //Number of nodes in the collision region
uint no_collision_nodes = 0;
 //Last 2 nodes that caused the collision
uint last_collision_set[2] = {0, 0};
uint last_type3_event_time = 0; //Time related to forming my own cluster
 //Hold the list of nodes related to the event
int event_nodes[NO_EVENT_NODES];
uchar optimized = 0; // Node optimization is not done
 //Transmission range based on power & fading factor
float R;

int main()
{
 //initialize nodes & set relevant parameters.
 //Set the 1st event (from root node)

203

 init(USE_NODE_FILE);
 //Process the event list until no events are found
 while(process_event_list());

 //enable/disable following functions based on the properties that
 //needs to be measured
 if(optimized == 0) //If not optimization phase is already run
 {
 calculate_circularity(1); //Dump node circularity info to file
 print_nodes(SHOW_NODE_DATA, 1);//Dump node information to file
 //print_cluster_energy(); //Dump node energy info to file
 optimized = 1; //Set as optimized

 opti_none_cluster_nodes(); //Optimize none cluster nodes
 form_my_own_cluster(); //If can't join a cluster form my own
 //Process the event list until no events are found
 while(process_event_list());
 //Optimze cluster tree
 opti_cluster_tree(nodes[STARTX][STARTY].NID,
nodes[STARTX][STARTY].NID, 0, 0, MAX_TTL);
 //Process the event list until no events are found
 while(process_event_list());
 update_child_nodes(); //Update child nodes depth info

 }

 calculate_circularity(2); //Dump node circularity info to file
 print_nodes(SHOW_NODE_DATA, 2); //Dump node information to file
 //inform_neighbors();
 //discover_neighbors_of_link(4);
 //send_data(); //Send data until packet drops
 //form_vsn();
 //send_vsn_unicast_data();
 //send_vsn_multicast_data();
 //print_nodes(SHOW_NODE_DATA, 1); //Dump node information to file
 //print_cluster_energy(); //Dump node energy info to file
 //form_second_cluster_tree(3); //Form a 2nd cluster tree
 //who_died(4);
 //Free memory allocated for random no generator
 gaussian_rnd_remove();
 exit(0);
}

/*---*
 * Following function initialise the nodes & the event list *
 * Nodes can be either randomly genrated or assigned *
 * based on a pregenerated file. *
 * use_file - if 1 use the pregenerated node id file, else *
 * place nodes randomly *
--/
void init(uchar use_file)
{
 int count, x, y, i, j, start_NID, NID;

 FILE *nodes_fd;
 char str[10];
 Hie_CID root_H_CID;

 count = 0; //Nunber of nodes
 srand(time(NULL)); //Set the seed for rand()
 gaussian_rnd_init(); //Initialize Gaussian random number generator
 R = transmission_range(0); //Determine communication range
based on transmission power

 //Set all the node parameters. Some of the node location may not be
 //used. So they need to be set to 0
 for (i = 0; i < NODESX ; i++) //All nodes in X direction
 {
 for(j = 0 ; j < NODESY ; j++)//All nodes in Y direction
 {
 nodes[i][j].CID = 0; // Initially set all nodes to 0
 nodes[i][j].NID = 0; // Set NIDs from left to right
 nodes[i][j].no_broadcasts = 0;
 nodes[i][j].no_ACKs = 0;
 nodes[i][j].CH_NID = 0;
 nodes[i][j].tree_depth = 0;
 nodes[i][j].node_depth = 0;
 nodes[i][j].link_depth = 255;
 nodes[i][j].parent_CH_NID = 0;
 nodes[i][j].no_child_nodes = 0;
 nodes[i][j].no_routing_entries = 0;
 nodes[i][j].no_vsn_entries = 0;
 nodes[i][j].no_msg_forward = 0;
 nodes[i][j].node_dead = 0;
 nodes[i][j].energy = 0;
 nodes[i][j].marked_bcast_by_CID = 0;
 nodes[i][j].last_bcast_for_CID = 0;
 nodes[i][j].heard_ACK_for_CID = 0;
 nodes[i][j].send_ACK_for_CID = 0;
 nodes[i][j].send_tree_opt_msg = 255;
 nodes[i][j].no_CCHs = 0;
 nodes[i][j].in_event = 0;
 nodes[i][j].know_event = 0;
 nodes[i][j].send_routing_info = 0;
 }
 }

 //if nodes are to be generated randomly
 if(use_file == 0)
 {
 while (1) //Loop forever
 {
 x = rand() % NODESX; //Select random X
 y = rand() % NODESY; //Select random Y
 //If node has not already being assigned
 if(nodes[x][y].NID == 0)
 {
 //Set NIDs from left to right. Start numbering from 1

204

nodes[x][y].NID = y * NODESX + x + 1;
 //Set the node's initial energy
 nodes[x][y].energy = E_NODE;
 count++; //Increment no of nodes generated
 }
 //Break if require no of nodes are generated
 if(count == NONODES)
 break;
 }
 }
 else //if previously generated node file to be used
 {
 nodes_fd = fopen(NODELIST, "r"); //Open file in read-only mode
 if(nodes_fd == NULL) //If file is not open print error message
 {
 perror("ERROR:");
 exit(1);
 }

 for(i = 0; i < NONODES; i++) //Read each node ID from file
 {
 fgets(str, 10, nodes_fd);
 NID = atoi(str); //Convert to integer
 x = (NID - 1) % NODESX; //Given NID determine X & Y
 y = (NID - 1) / NODESX;
 // Set NIDs from left to right on the grid. Set nos from 1
 nodes[x][y].NID = NID;
 nodes[x][y].energy = E_NODE; //Set the nodes initial energy

 }

 fclose(nodes_fd); //Close the file
 }

 //See whether the starting node exist
 if(nodes[STARTX][STARTY].NID == 0)
 {
 printf("Can't continue. Initial node doesn't exist\n");
 exit(1);
 }

 //Add the first event to the event list
 //Determine the NID of the root node
 start_NID = STARTY * NODESX + STARTX + 1;
 root_H_CID.id[0] = 0; //Hierarchical cluster ID of the root node
 root_H_CID.id[1] = 0;
 root_H_CID.id[2] = 0;
 root_H_CID.id[3] = 0;

 //set the 1st cluster formation event. Event type 1.
 //Set start time as 1, CID as 1, no CH_NID since this node is the
 //CH, hierarchical ID is 0 for 1st cluster, depth 0,
 //no parent CH_NID or CID

 add_event(1, 1, start_NID, 1, start_NID, root_H_CID, 0, 0, MAX_TTL,
0, 0, root_H_CID);
 //Add my own routing entry
 nodes[STARTX][STARTY].routing_table[0].valid = 1;
 nodes[STARTX][STARTY].routing_table[0].H_CID = root_H_CID;
 nodes[STARTX][STARTY].routing_table[0].NID = start_NID;
 nodes[STARTX][STARTY].routing_table[0].learn_from = start_NID;
 nodes[STARTX][STARTY].routing_table[0].hops = 0;
 nodes[STARTX][STARTY].no_routing_entries++;
}

/*---*
 * Following function add events to the Events List *
 * Implementation of this function will slightly vary *
 * depending on the tree *
 * formation approach (breadth-first, depth first, etc.) *
 * This implementation is for the Breadth-first *
 * event_type - Inter-cluster or Intra-cluster event *
 * start time - starting time of the event. Events are sorted *
 * nid - node ID of the event related node *
 * cid - CID of the event related node *
 * ch_nid - CH NID. This will be 0 if the event *
 * is related to a new *
 * cluser formation. Will be > 0 if event is within cluster *
 * h_cid - Hierarchical cluster ID of the cluster *
 * tree_depth - depth of the node broadcasting the message *
 * based on cluster tree *
 * node_depth - depth of the node broadcasting the message *
 * ttl - current TTL value of the cluster *
 * formation broadcast *
 * parent_cid - CID of the parent CH *
 * parent_ch_nid - NID of the parent CH *
 * parent_h_cid - Hierarchical CID of the parent *
--/
void add_event(uchar event_type, int start_time, uint nid, uint cid,
uint ch_nid, Hie_CID h_cid,
 uchar tree_depth, uchar node_depth, uchar ttl, uint parent_cid,
uint parent_ch_nid, Hie_CID parent_h_cid)
{
 event *new, *current, *previous;

 if(root == NULL) //If root of the event list is not defined
 {
 root = (event *)malloc(sizeof(event));
 if(root == NULL) //If unable to allocate memory
 {
 perror("Error while allocating memory - in add_event
function\n");
 exit(1);
 }
 root->next = NULL;
 }
 new = (event *)malloc(sizeof(event)); //New event

205

 if(new == NULL)
 {
 perror("Error while allocating memory - in add_event
function\n");
 exit(1);
 }

 //Set the parameters for the new event
 new->event_type = event_type;
 new->time = start_time;
 new->NID = nid;
 new->CID = cid;
 new->CH_NID = ch_nid;
 new->H_CID = h_cid;
 new->tree_depth = tree_depth;
 new->node_depth = node_depth;
 new->TTL = ttl;
 new->parent_CID = parent_cid;
 new->parent_CH_NID = parent_ch_nid;
 if(parent_ch_nid != 0)
 new->parent_H_CID = parent_h_cid;

 if(root->next == NULL) //if event list is blank
 {
 root->next = new;
 new->next = NULL;
 }
 else //if event list contains at least one item
 {
 previous = root;
 current = root->next;

 while(1) //Find the proper location
 {
 if(current->time > start_time)
 {
 new->next = current; //Set the new event
 previous->next = new;
 break;
 }
 else if(current->next == NULL)
 {
 current->next = new;
 new->next = NULL;
 break;
 }
 else
 {
 previous = current;
 current = current->next;
 }
 }
 }
}

/*---*
 * Following function remove the given event from the event list *
 * start_time - remove the event related to the given start time *
 * NID - NID of the node related to the event *
 --/
void remove_event(uchar event_type, uint start_time, uint nid)
{
 event *current, *previous;

 if(root->next == NULL) //If event list is already empty
 {
 printf("Event list is already empty\n");
 exit(1);
 }

 //Locate the event with given time & NID
 previous = root;
 current = root->next;

 while (1)
 {
 //If no more events is found break the loop
 if(current->next == NULL)
 break;

 //if exact event is found break the loop
 if((current->event_type == event_type) && (current->time ==
start_time) && (current->NID == nid))
 break;

 previous = current;
 current = current->next;
 }

 if(current->next != NULL) //If event is the last event
 {
 previous->next = current->next;
 free(current);
 }
 else //if event is the 1st event or in the middle
 {
 previous->next = NULL;
 free(current);
 }
}

/*---*
 * Process the event list starting from
 * the first event, one event at a time *
 * If no more events are available, print data about nodes & exit. *
--/

206

uchar process_event_list()
{
 event *next_event;
 uint x, y, parentx, parenty, parent_nid, next_route_no,
current_time, new_timeout;
 packet data_packet;
 Hie_CID tmp_h_cid;
 uchar result;

 tmp_h_cid.id[0] = 0; //Initialize hierarchical ID
 tmp_h_cid.id[1] = 0;
 tmp_h_cid.id[2] = 0;
 tmp_h_cid.id[3] = 0;

 //If no more events to handle print data & exit
 if(root->next == NULL)
 return 0;
 else
 {
 //Get event at the top of the event list
 next_event = root->next;
 //Set current time to the time of the event
 current_time = next_event->time;
 //X coordinates of node related to event
 x = (next_event->NID - 1) % NODESX;
 //Y coordinates of node related to event
 y = (next_event->NID - 1) / NODESX;

 //event related to a node broadcasting/forwarding
 //a cluster formation broadcast.
 if(next_event->event_type == 1) //Intra-cluster event
 {
 //Check for collisions
 if(next_event->next != NULL) //If there are at least 2
 //events
 {
 //if two nodes are broadcasting at
 // the same time & if collisions to be considered
 if((next_event->time == next_event->next->time) &&
(USE_COLLISIONS == 1))
 mark_collision_region(next_event->NID, next_event-
>next->NID); //Mark the collision region
 //If the node was not in a collision region
 else if(last_collision_set[1] != next_event->NID)
 no_collision_nodes = 0;
 }

 //If node is the CH. Has the highest TTL
 if(MAX_TTL == next_event->TTL)
 {
 //if not assigned to another cluster
 if(nodes[x][y].CID == 0)
 {
 //if not a node trying to form a cluster by it self

 if(next_event->tree_depth != 254)
 add_nodes_to_cluster(current_time, next_event-
>NID, next_event->CID, next_event->NID,
 next_event->tree_depth, next_event-
>node_depth, next_event->TTL);
 else
 add_nodes_to_cluster(current_time, next_event-
>NID, next_event->CID, next_event->NID,
 next_event->tree_depth, next_event-
>node_depth, 1);

 //Mark my last broadcast
 nodes[x][y].last_bcast_for_CID = next_event->CID;
 //I send another broadcasts
 nodes[x][y].no_broadcasts++;
 nodes[x][y].energy -=
energy_to_transmit(CLUSTER_BCAST_SIZE, R); //Consume energy
 if((optimized == 0) && (nodes[x][y].no_child_nodes >
0)) //If able to attract child node(s)
 {
 nodes[x][y].CID = next_event->CID;
//set the CID of the starting node
 nodes[x][y].H_CID = next_event->H_CID;
//set the Hierarchical CID of starting node
 nodes[x][y].CH_NID = next_event->NID;
//set me as my own CH
 nodes[x][y].tree_depth = next_event->tree_depth;
//Set depth based on logical tree
 nodes[x][y].node_depth = next_event->node_depth;
//set depth based on physical tree
 nodes[x][y].parent_CH_NID = next_event-
>parent_CH_NID; //Keep track of parent

 //Add routing entries. Not valid if its root node
 //if not the root node
 if(next_event->parent_CH_NID != 0)
 {
 //Add my own routing entry
 nodes[x][y].routing_table[0].valid = 1;
 nodes[x][y].routing_table[0].H_CID =
next_event->H_CID;
 nodes[x][y].routing_table[0].NID =
next_event->NID;
 nodes[x][y].routing_table[0].learn_from =
next_event->NID;
 nodes[x][y].routing_table[0].hops = 0;
 nodes[x][y].no_routing_entries++;
 //Add parent routing entry
 nodes[x][y].routing_table[1].valid = 3;
 nodes[x][y].routing_table[1].H_CID =
next_event->parent_H_CID;
 nodes[x][y].routing_table[1].NID =
next_event->parent_CH_NID;

207

 nodes[x][y].routing_table[1].learn_from =
next_event->parent_CH_NID;
 nodes[x][y].routing_table[1].hops = 1;
 nodes[x][y].no_routing_entries++;

 //add my entry to parent routing table
 parent_nid = nodes[x][y].parent_CH_NID;
 parentx = (parent_nid - 1) % NODESX;
 parenty = (parent_nid - 1) / NODESX;
 next_route_no =
nodes[parentx][parenty].no_routing_entries;

nodes[parentx][parenty].routing_table[next_route_no].valid = 1;

nodes[parentx][parenty].routing_table[next_route_no].H_CID = next_event-
>H_CID;

nodes[parentx][parenty].routing_table[next_route_no].NID = next_event-
>NID;

nodes[parentx][parenty].routing_table[next_route_no].learn_from =
next_event->NID;

nodes[parentx][parenty].routing_table[next_route_no].hops = 1;

nodes[parentx][parenty].no_routing_entries++;
 }

 //Add a timeout event for this CH
 new_timeout = current_time + TIMEOUT;
 add_event(2, new_timeout, nodes[x][y].NID,
nodes[x][y].CID, nodes[x][y].CH_NID,
 nodes[x][y].H_CID,
nodes[x][y].tree_depth, nodes[x][y].node_depth, 0, 0, 0, tmp_h_cid);
 }
 else if(optimized == 1)
 //Allow single node clusters in optimization phase
 {
 //set the cid of the starting node
 nodes[x][y].CID = next_event->CID;
 nodes[x][y].H_CID = next_event->H_CID;
 //set me as my own CH
 nodes[x][y].CH_NID = next_event->NID;
 nodes[x][y].tree_depth = next_event->tree_depth;
 nodes[x][y].node_depth = next_event->node_depth;
 nodes[x][y].parent_CH_NID = next_event-
>parent_CH_NID;
 }
 }
 remove_event(1, current_time, next_event->NID);
 //remove event
 }
 //If bcast message is within MAX_HOPS, add
 //receiving nodes to cluster

 else if((MAX_TTL - next_event->TTL) < MAX_HOPS)
 {

 //if assigned to same cluster allow to add more nodes
 if(nodes[x][y].CID == next_event->CID)
 {
 //Haven’t send the same broadcast earlier
 if(nodes[x][y].last_bcast_for_CID != next_event->CID)
 {
 add_nodes_to_cluster(current_time, next_event-
>NID, next_event->CID,
 next_event->CH_NID, next_event-
>tree_depth, next_event->node_depth, next_event->TTL);
 nodes[x][y].energy -=
energy_to_transmit(CLUSTER_BCAST_SIZE, R);
 nodes[x][y].last_bcast_for_CID = next_event-
>CID;
 nodes[x][y].no_broadcasts++;
 }
 }
 remove_event(1, current_time, next_event->NID);
 //remove event
 }
 //if out side cluster
 else if((MAX_TTL - next_event->TTL) < (MAX_TTL))
 {
 //if assigned to be bcast by for the same cluster
 if(nodes[x][y].marked_bcast_by_CID == next_event->CID)
 {
 if(nodes[x][y].last_bcast_for_CID != next_event-
>CID)
 {
 forward_bcast_cluster(current_time, next_event-
>NID, next_event->CID,
 next_event->CH_NID, next_event->TTL,
next_event->node_depth);
 nodes[x][y].last_bcast_for_CID = next_event-
>CID;
 nodes[x][y].no_broadcasts++;
 nodes[x][y].energy -=
energy_to_transmit(CLUSTER_BCAST_SIZE, R);
 }
 }
 remove_event(1, current_time, next_event->NID);
 //remove event
 }
 else //I'm suppose to send an ACK as a CCH
 {
 //if assigned to be bcast by for the same cluster &
 //not already heard an ACK from a neighbor
 if(nodes[x][y].marked_bcast_by_CID == next_event->CID)
 send_ACK_as_CCH(next_event->NID, next_event->CID,
next_event->CH_NID);

208

 remove_event(1, current_time, next_event->NID);
 //remove event
 }
 }
 //event related to a CH timeout. Then select CCHs
 else if (next_event->event_type == 2)
 {
 if(nodes[x][y].no_CCHs > 255)
 printf("Error: No of CCHs > 255. Overflow\n");

 select_child_CHs(current_time, nodes[x][y].no_CCHs,
next_event->CID, next_event->CH_NID,
 next_event->H_CID, next_event->tree_depth,
next_event->node_depth);
 //remove event
 remove_event(2, current_time, next_event->NID);
 }
 //Handle cluster optimization events
 else if (next_event->event_type == 3)
 {
 nodes[x][y].energy -= energy_to_transmit(CLUSTER_OPTI_SIZE,
R);
 opti_cluster_tree(next_event->NID, next_event->CH_NID,
next_event->tree_depth,
 next_event->node_depth, next_event->TTL);
 //remove event
 remove_event(3, current_time, next_event->NID);
 }
 //Event related to a VSN multicast
 else if (next_event->event_type == 4)
 {
 data_packet.source_NID = next_event->NID;
 data_packet.dest_NID = next_event->CH_NID;
 data_packet.source_H_CID.id[0] = next_event->H_CID.id[0];
 data_packet.source_H_CID.id[1] = next_event->H_CID.id[1];
 data_packet.source_H_CID.id[2] = next_event->H_CID.id[2];
 data_packet.source_H_CID.id[3] = next_event->H_CID.id[3];
 data_packet.dest_H_CID.id[0] = next_event-
>parent_H_CID.id[0];
 data_packet.dest_H_CID.id[1] = next_event-
>parent_H_CID.id[1];
 data_packet.dest_H_CID.id[2] = next_event-
>parent_H_CID.id[2];
 data_packet.dest_H_CID.id[3] = next_event-
>parent_H_CID.id[3];
 result = send_vsn_multicast_packet(data_packet);
 //Go back to caller & say failed.
 //Caller assume 1 as success so don't give 1
 //remove event
 remove_event(4, current_time, next_event->NID);
 if(result != 0)
 return result + 1;
 }
 else if(next_event->event_type == 5)

 {
 add_ch_to_tree(next_event->NID, next_event->parent_CH_NID,
next_event->tree_depth,
 next_event->node_depth, next_event->H_CID);
 //remove event
 remove_event(5, current_time, next_event->NID);
 }
 else if(next_event->event_type == 6)
 {
 send_link_info(next_event->NID, next_event->tree_depth);
 //remove event
 remove_event(6, current_time, next_event->NID);
 }
 }
 return 1; //More event(s) in list
}

/*--*
 * Following function add nodes to a cluster *
 * Mark all the nodes in the communication range of the broadcasting *
 * node & without a cluster. In 1-hop cluster nid == ch_nid *
 * but this will be different in multi-hop clusters. *
 * start_time - start time of the current event *
 * nid - NID of the node sending the bcast *
 * cid - CID of the new clusters *
 * ch_nid - NID of the CH *
 * depth - depth of the node sending the bcast *
 * ttl - TTL of the bcast *
--/
void add_nodes_to_cluster(uint start_time, uint nid, uint cid, uint
ch_nid, uchar tree_depth,
 uchar node_depth, uchar ttl)
{
 int x, y, minx, miny, maxx, maxy, ch_x, ch_y, l, k;
 float distance;//distance between receiving & transmitting node
 char rec_rssi; //Received signal strength
 uchar new_tree_depth, new_node_depth, new_ttl;
 uint new_start_time;
 Hie_CID tmp_h_cid;
 region my_region;

 x = (nid - 1) % NODESX; //my X, Y coordinates
 y = (nid - 1) / NODESX;
 ch_x = (ch_nid - 1) % NODESX; //X, Y coordinates of CH
 ch_y = (ch_nid - 1) / NODESX;

 my_region = get_node_region(x, y, R); //determine my neighborhood
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 tmp_h_cid.id[0] = 0; //Temporary Hierarchical CID

209

 tmp_h_cid.id[1] = 0;
 tmp_h_cid.id[2] = 0;
 tmp_h_cid.id[3] = 0;

 //As the message travels depth increases & TTL reduces
 new_tree_depth = tree_depth + 1;//Depth in logical tree
 new_node_depth = node_depth + 1;//Depth in physical tree
 new_ttl = ttl - 1; //New TTL

 //set CID for only neighboring nodes
 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 //Cartesian distance. Then determine RSSI for given distance
 distance = sqrt((k - x)*(k-x)*(GRIDX * GRIDX) + (l - y)*(l-
y)*(GRIDY * GRIDY));
 rec_rssi = RSSI(distance, 0);

 // if within communication range, if
 //the node exist & not the same node (distance != 0)
 if ((rec_rssi >= 0) && (nodes[k][l].NID != 0) && (distance
!= 0))
 {
 //if not a member of a cluster or not in
 //the collision region assigned to the current cluster
if((nodes[k][l].CID == 0) && (is_in_collision(nodes[k][l].NID) == 0))
 {
 nodes[k][l].CID = cid;
 nodes[k][l].CH_NID = ch_nid;
 nodes[k][l].tree_depth = new_tree_depth;
 nodes[k][l].node_depth = new_node_depth;
 nodes[ch_x][ch_y].no_child_nodes++;
//Add as a child node of CH
 nodes[k][l].no_ACKs++;
//I'm sending an ACK
 nodes[k][l].energy -=
//energy consumed to receive a message
energy_to_receive(CLUSTER_BCAST_SIZE);
 nodes[k][l].energy -=
energy_to_transmit(CLUSTER_ACK_SIZE, R); //energy consumed to send ACK
 nodes[ch_x][ch_y].energy -=
energy_to_receive(CLUSTER_ACK_SIZE); //Energy to receive the ACK

 //Wait random time before forwarding. Chose
 //one of the Following lines if RSSI is used
 new_start_time = start_time + random_wait_time();
 //new_start_time = start_time + rec_rssi *
 MAX_RND_TIME + random_wait_time();
 if(new_start_time <= start_time)
 new_start_time = start_time + 1;

 //Add to event list based on RSSI value. Add as type 1 event

 if((new_ttl > 0) && (nodes[k][l].marked_bcast_by_CID
!= cid)) //if TTL has not expired
 {
 add_event(1, new_start_time, nodes[k][l].NID,
cid, ch_nid, tmp_h_cid,
 new_tree_depth, new_node_depth, new_ttl, 0,
0, tmp_h_cid);
 nodes[k][l].marked_bcast_by_CID = cid;
 }
 }
 }
 }
 }
}

/*--*
 * Following function forward the cluster formation broadcast *
 * start_time - start time of the current event *
 * nid - NID of the node sending the bcast *
 * cid - CID of the new clusters *
 * ch_nid - NID of the CH *
 * ttl - TTL of the bcast *
---/
void forward_bcast_cluster(uint start_time, uint nid, uint cid, uint
ch_nid, uchar ttl,
 uchar node_depth)
{
 int x, y, minx, miny, maxx, maxy, ch_x, ch_y, l, k;
 float distance;//distance between receiving & transmitting node
 uchar new_ttl;
 char rec_rssi; //Received RSSI
 uint new_start_time;
 Hie_CID tmp_h_cid;
 region my_region;

 ch_x = (ch_nid - 1) % NODESX; //X, Y coordinates of CH
 ch_y = (ch_nid - 1) / NODESX;
 x = (nid - 1) % NODESX; //My X, Y coordinates
 y = (nid - 1) / NODESX;

 my_region = get_node_region(x, y, R); //Get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 tmp_h_cid.id[0] = 0;
 tmp_h_cid.id[1] = 0;
 tmp_h_cid.id[2] = 0;
 tmp_h_cid.id[3] = 0;

 new_ttl = ttl - 1; //As the message forwards, TTL reduces

210

 //set CID for only neighboring nodes
 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 //Distance & corresponding RSSI value
 distance = sqrt((k - x)*(k-x)*(GRIDX * GRIDX) + (l - y)*(l-
y)*(GRIDY * GRIDY));
 //determine the RSSI for the signal for the given distance
 rec_rssi = RSSI(distance, 0);

 // if within communication range & node
 // exist & not the same node (distance != 0)
 if ((rec_rssi >= 0) && (nodes[k][l].NID != 0) && (distance
!= 0))
 {
 //if not a member of a cluster & not used to send
 // the same bcast use it to bcast the message
 if((nodes[k][l].CID == 0) &&
(nodes[k][l].marked_bcast_by_CID != cid)
 && (is_in_collision(nodes[k][l].NID) == 0))
 {
 nodes[k][l].energy -=
energy_to_receive(CLUSTER_BCAST_SIZE); //energy to receive a message

 //Select one of the following lines depending
 // on RSSI based forwarding or not
 new_start_time = start_time + random_wait_time();
/*
 if(new_ttl > 0) //If not at the edge
 new_start_time = start_time + rec_rssi *
MAX_RND_TIME + random_wait_time();
 else
 new_start_time = start_time + (90 - rec_rssi) *
MAX_RND_TIME + random_wait_time();
*/
 if(new_start_time <= start_time)
 new_start_time = start_time + 1;

 add_event(1, new_start_time, nodes[k][l].NID, cid,
ch_nid, tmp_h_cid, 0,
 (node_depth + 1), new_ttl, 0, 0, tmp_h_cid);
 nodes[k][l].marked_bcast_by_CID = cid;
 }
 }
 }
 }
}

/*--*
 * Send an acknowledgement to the CH indicating that *
 * node is a candidate to be a a new CH. Consider all the nodes in *
 * the communication range of broadcasting node & without a cluster. *

 * Nodes that has already heard a neighbor ACK will *
 * not respond to the CH *
 * start_time - start time of the current event *
 * nid - NID of the node sending the bcast *
 * cid - CID of the new clusters *
 * ch_nid - NID of the CH *
 * ttl - TTL of the bcast *
---/
void send_ACK_as_CCH(uint nid, uint cid, uint ch_nid)
{
 int x, y, minx, miny, maxx, maxy, ch_x, ch_y, l, k, i;
 float distance;
 uint tmp_no_CCHs;
 region my_region;
 char rec_rssi;

 x = (nid - 1) % NODESX; //X, Y coordinates of me
 y = (nid - 1) / NODESX;
 ch_x = (ch_nid - 1) % NODESX; //X, Y coordinates of CH
 ch_y = (ch_nid - 1) / NODESX;

 //Make sure that node has not already send a ACK
 //for the same cluster or heard an ACK from a neighbor
 if((nodes[x][y].send_ACK_for_CID != cid) &&
(nodes[x][y].heard_ACK_for_CID != cid))
 {
 //Makesure I have not already ACK
 for(i = 0; i < nodes[ch_x][ch_y].no_CCHs; i++)
 {
 if(nid == nodes[ch_x][ch_y].CCHs[i])
 break;
 }
 //If no match add me as a CCH
 if(i == nodes[ch_x][ch_y].no_CCHs)
 {
 tmp_no_CCHs = nodes[ch_x][ch_y].no_CCHs;
 nodes[ch_x][ch_y].CCHs[tmp_no_CCHs] = nid;
 if(nodes[ch_x][ch_y].no_CCHs > 200)
 {
 printf("No of candidate CHs overflow.
Terminating.....\n");
 exit(1);
 }
 nodes[ch_x][ch_y].no_CCHs = tmp_no_CCHs + 1;
 nodes[x][y].send_ACK_for_CID = cid;
 nodes[x][y].heard_ACK_for_CID = cid;
 //ACK forwarded 3- hops
 nodes[x][y].no_ACKs = nodes[x][y].no_ACKs + 3;
 //Energy to send & receive ACK
 nodes[x][y].energy -= energy_to_transmit(CLUSTER_ACK_SIZE,
R);
 nodes[ch_x][ch_y].energy -=
energy_to_receive(CLUSTER_ACK_SIZE);
 }

211

 else
 return; //if so discard
 }
 else //if so discard
 return;

 my_region = get_node_region(x, y, R); //get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 //Mark the neighbors indicating that they heard my ACK to the CH
 //set CID for only neighboring nodes
 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 distance = sqrt((k - x)*(k-x)*(GRIDX * GRIDX) + (l - y)*(l-
y)*(GRIDY * GRIDY));
 rec_rssi = RSSI(distance, 0);

 // if within communication range & if the node
 //exist & not the same node (distance != 0)
 if ((rec_rssi >= 0) && (nodes[k][l].NID != 0) && (distance
!= 0))
 {
 //if not a member of a cluster & marked
 //to forward the bcast
 if((nodes[k][l].CID == 0) &&
(nodes[k][l].marked_bcast_by_CID == cid)
 && (is_in_collision(nodes[k][l].NID) == 0))
 {
 nodes[k][l].heard_ACK_for_CID = cid;
 nodes[k][l].energy -=
 //Cost of neighbors receiving the ACK
energy_to_receive(CLUSTER_ACK_SIZE);
 }
 }
 }
 }
}

/*--*
 * Following function selects new CHs from list of available CCHs *
 * no_cchs - no of CCHs *
 * depth - depth of the parent CH *
 * parent_cid - CID of the parent CH *
 * parent_h_cid - Hierarchical CID of the parent CH *
 * parent_ch_nid - NID of the parent CH *
---/
void select_child_CHs(uchar event_time, uchar no_cchs, uint parent_cid,
uint parent_ch_nid,

 Hie_CID parent_h_cid, uchar tree_depth, uchar node_depth)
{
 uint no_new_chs, next_ch, j, l, new_time, x, y, cch_x, cch_y;
 uint selected_ch_list[10];
 uint no_selected_chs = 0;
 Hie_CID new_h_cid;

 //if no CCHs are there to be elected, just return back to caller
 if(no_cchs == 0)
 return;

 x = (parent_ch_nid - 1) % NODESX; //my X, Y coordinates
 y = (parent_ch_nid - 1) / NODESX;

 if(tree_depth == 0) //If depth 0 use maximum branching factor
 no_new_chs= NO_CCHS;
 else //else use only half of it
 no_new_chs= NO_CCHS/2;

 if(no_new_chs > no_cchs)//if no of possible CCHs are less than
 //what needs to be created
 no_new_chs = no_cchs;//generate the maximum possible no of CCHs

 //select given no of candidate neighbors as CHs
 for(j = 0; j < no_new_chs; j++)
 {
 while(1)
 {
 //randomly select one of the nodes to be the CH
 next_ch = rand() % no_cchs;
 //check whether it has been already selected
 for(l = 0 ; l < no_selected_chs ; l++)
 {
 if(selected_ch_list[l] == nodes[x][y].CCHs[next_ch])
 break;
 }

 //if already selected diacard & select another
 if(l != no_selected_chs)
 continue;

 //else select it as a new CH
 selected_ch_list[no_selected_chs] =
nodes[x][y].CCHs[next_ch];
 no_selected_chs++; //Increment no of new CHs
 next_cid++; //generate the next cid
 new_h_cid = generate_CID(parent_h_cid, j, (tree_depth + 1));

 //set the timing such that tree is formed using the breadth-
first tree formation. This needs to be changed if depth-first tree
formation is used
 if (j == 0)
 new_time = last_event_time((tree_depth + 1), NO_CCHS,
TIMEOUT, DELAY_CCH) + 1 ;

212

 else
 new_time = last_event_time((tree_depth + 1), NO_CCHS,
TIMEOUT, DELAY_CCH) + j * DELAY_CCH ;
 if(new_time <= event_time) //Make sure new time > old time
 new_time = event_time + 1;

 //add as a new CH event
 add_event(1, new_time, nodes[x][y].CCHs[next_ch], next_cid,
0, new_h_cid,
 (tree_depth + 1), (node_depth + MAX_TTL), MAX_TTL,
parent_cid, parent_ch_nid, parent_h_cid);
 nodes[x][y].no_broadcasts = nodes[x][y].no_broadcasts +3
 //Bcast is send 3-hops
 //Cost of sending the form_cluster function
 nodes[x][y].energy -= energy_to_transmit(CLUSTER_FORM_SIZE,
R);
 //Cost of receiving the form_cluster function
 cch_x = (nodes[x][y].CCHs[next_ch] - 1) % NODESX;
 cch_y = (nodes[x][y].CCHs[next_ch] - 1) / NODESX;
 nodes[cch_x][cch_y].energy -=
energy_to_receive(CLUSTER_FORM_SIZE);

 break;
 }
 }
}

/*--*
 * Following function optimize the cluster tree *
 * by broadcasting cluster *
 * optimization message *
 * nid - NID of the node *
 * CH_nid - NID of the CH sending the bcast *
 * tree_depth - depth of the CH broadcasting the message *
 * node_depth - depth of the node broadcasting or forwarding *
 * the bcast *
 * ttl - TTL of the message *
---/
void opti_cluster_tree(uint nid, uint CH_nid, uchar tree_depth, uchar
node_depth, uchar ttl)
{
 int x, y, minx, miny, maxx, maxy, l, k;
 float distance, r;
 Hie_CID tmp_H_CID;
 region my_region;
 char rec_rssi;

 x = (nid - 1) % NODESX;
 y = (nid - 1) / NODESX;

 if(USE_HP == 0) //If cluster optimization phase is high power
 r = transmission_range(0);
 else

 r = transmission_range(1);

 my_region = get_node_region(x, y, r); //get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 tmp_H_CID.id[0] = 0; //Hierarchical CID of the root node
 tmp_H_CID.id[1] = 0;
 tmp_H_CID.id[2] = 0;
 tmp_H_CID.id[3] = 0;

 if((ttl -1) < 0) //if message expired
 return;

 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 distance = sqrt((k - x)*(k-x)*(GRIDX * GRIDX) + (l - y)*(l-
y)*(GRIDY * GRIDY));
 if(USE_HP == 0)
 rec_rssi = RSSI(distance, 0);
 else
 rec_rssi = RSSI(distance, 1);

 //if in region, node exist and not the same node
 if((rec_rssi >= 0) && (nodes[k][l].NID != 0) && (distance !=
0))
 {
 if(nodes[k][l].NID != nodes[k][l].CH_NID) //if not a CH
 {
 if(((ttl - 1) > 0) && (nodes[k][l].send_tree_opt_msg
> (node_depth + 1)))
 {
 last_type3_event_time++;
 add_event(3, last_type3_event_time,
nodes[k][l].NID, 0, CH_nid, tmp_H_CID,
 tree_depth, (node_depth + 1), (ttl - 1),
0, 0, tmp_H_CID);
 //Broadcast cluster changes to child nodes
 nodes[k][l].no_broadcasts++;
 nodes[k][l].energy -=
energy_to_receive(CLUSTER_OPTI_SIZE); //energy to receive message
 nodes[k][l].send_tree_opt_msg = node_depth + 1;
 }
 }
 else
 {
 //if a CH and current depth is higher
 if(nodes[k][l].node_depth > (node_depth + 1))
 {
 nodes[k][l].tree_depth = tree_depth + 1;

213

 //Set new depth & parent CH
 nodes[k][l].node_depth = node_depth + 1;
 nodes[k][l].parent_CH_NID = CH_nid;
 nodes[k][l].no_ACKs = nodes[k][l].no_ACKs +
(MAX_TTL - ttl);
 nodes[k][l].energy -=
energy_to_receive(CLUSTER_OPTI_SIZE); //energy to receive message
 nodes[x][y].energy -=
energy_to_transmit(CLUSTER_ACK_SIZE, r); //energy to send ACK
 }
 if(nodes[k][l].send_tree_opt_msg >
(nodes[k][l].node_depth)) //If new message is better
 {
 last_type3_event_time++;
 if(USE_HP == 0)
 add_event(3, last_type3_event_time,
nodes[k][l].NID, 0, nodes[k][l].NID, tmp_H_CID,
 nodes[k][l].tree_depth,
nodes[k][l].node_depth, MAX_TTL, 0, 0, tmp_H_CID);
 else
 add_event(3, last_type3_event_time,
nodes[k][l].NID, 0, nodes[k][l].NID, tmp_H_CID,
 nodes[k][l].tree_depth,
nodes[k][l].node_depth, MAX_HOPS, 0, 0, tmp_H_CID);

 //Broadcast cluster changes to child nodes
 nodes[k][l].no_broadcasts++;
nodes[k][l].send_tree_opt_msg = nodes[k][l].node_depth;
 }
 }
 }
 }
 }
}

/*--*
 * Allow nodes that are not in a cluster to join a neighboring cluster*
 --/
void opti_none_cluster_nodes()
{
 int i, j, k, l, minx, maxx, miny, maxy;
 region my_region;
 float distance;
 uchar my_exit = 0;
 char rec_rssi;

 for (j = 0; j < NODESY ; j++) //check for all the nodes
 {
 for(i = 0 ; i < NODESX ; i++)
 {
 //if the node exist but not in a cluster
 if((nodes[i][j].NID != 0) && (nodes[i][j].CID == 0))
 {

 my_exit = 0;

 my_region = get_node_region(i, j, R);//get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++) //in my region
 {
 for (k = minx; k <= maxx; k++)
 {
 distance = sqrt((k - i)*(k - i)*(GRIDX * GRIDX)
+ (l - j)*(l - j)*(GRIDY * GRIDY));
 rec_rssi = RSSI(distance, 0);

 // if within communication range & if the node exist &
 //a CH, join that cluster
 if((rec_rssi >= 0) && (nodes[k][l].NID != 0) &&
(nodes[k][l].NID == nodes[k][l].CH_NID))
 {
 nodes[i][j].CID = nodes[k][l].CID;
 nodes[i][j].CH_NID = nodes[k][l].CH_NID;
 nodes[i][j].tree_depth =
nodes[k][l].tree_depth + 1;
 nodes[i][j].node_depth =
nodes[k][l].node_depth + 1;
 nodes[i][j].no_ACKs++;
 nodes[k][l].no_child_nodes++;
 nodes[i][j].energy -=
energy_to_transmit(CLUSTER_ACK_SIZE, R); //energy to send ACK
 nodes[k][l].energy -=
energy_to_receive(CLUSTER_ACK_SIZE); //energy to receive ACK
 my_exit = 1;//Exit both loops
 break;
 }
 }
 if(my_exit == 1) //exit 1st outer loop
 break;
 }
 }
 }
 }
}

/*--*
 * Following function update the child nodes if parent nodes *
 * changes its location in the cluster tree *
---/
void update_child_nodes()
{
 int k, l, CH_x, CH_y;
 uchar tree_depth_CH, node_depth_CH;

214

 for(l = 0; l < NODESY; l++) //check for all nodes
 {
 for (k = 0; k < NODESX; k++)
 {
 //If I'm in a cluster and if I'm not a CH
 if((nodes[k][l].CID != 0) && (nodes[k][l].NID !=
nodes[k][l].CH_NID))
 {
 CH_x = (nodes[k][l].CH_NID - 1) % NODESX;
 CH_y = (nodes[k][l].CH_NID - 1) / NODESX;
 tree_depth_CH = nodes[CH_x][CH_y].tree_depth;
 node_depth_CH = nodes[CH_x][CH_y].node_depth;

 //My depth & my CH depth don't agree
 if(nodes[k][l].tree_depth != (tree_depth_CH + 1))
 {
 nodes[k][l].tree_depth = tree_depth_CH + 1;
 nodes[k][l].node_depth = node_depth_CH + 1;
 }
 if(nodes[k][l].node_depth != (node_depth_CH + 1))
 {
 nodes[k][l].tree_depth = tree_depth_CH + 1;
 nodes[k][l].node_depth = node_depth_CH + 1;
 }
 }
 }
 }
}

/*--*
* Form my own cluster if unable to join a neighboring cluster *
---/
void form_my_own_cluster()
{
 int k, l, new_time;
 Hie_CID tmp_h_cid;

 tmp_h_cid.id[0] = 0;
 tmp_h_cid.id[1] = 0;
 tmp_h_cid.id[2] = 0;
 tmp_h_cid.id[3] = 0;

 for(l = 0; l < NODESY; l++)
 {
 for (k = 0; k < NODESX; k++)
 {
 //if node exist & not in a cluster
 if((nodes[k][l].NID != 0) && (nodes[k][l].CID == 0))
 {
 new_time = rand() % RANDOM_WAIT;
 add_event(1, new_time, nodes[k][l].NID, next_cid, 0,
tmp_h_cid, 254, 254,

 MAX_TTL, 0, 0, tmp_h_cid);
 next_cid++;
 }
 }
 }
}

/*--*
 * Following functions randomly generate a socue and a destination *
 * node & then sends a message. It count the no of messages *
 * successfully delivered & terminates when the 1st message get *
 * dropped. It indicates the reason why the packet get dropped. *
---/
void send_data()
{
 int s_x, s_y, d_x, d_y, source_CH_x, source_CH_y, dest_CH_x,
dest_CH_y, CH_NID, i;
 uchar result;
 uint no_msg_delivered = 0; //No of successfully delivered messages
 uint no_msg_dropped = 0; //No of messages dropped
 uint no_route = 0; //No of routes not found
 packet data_packet; //Data packet to be transmitted
 double energy_before;

 energy_before = total_energy();
 //for(i = 0 ; i < NO_OF_PACKETS; i++)
 while (1) //Loop until packet get dropped
 {
 while (1) //Generate source node
 {
 s_x = rand() % NODESX;
 s_y = rand() % NODESY;
 //Make sure node is available & in a cluster
 if((nodes[s_x][s_y].NID == 0) || (nodes[s_x][s_y].CID == 0))

 continue;
 //Source node is dead find another
 else if(nodes[s_x][s_y].node_dead == 1)
 continue;
 else //Form the source info of the data packet
 {
 data_packet.source_NID = nodes[s_x][s_y].NID;
 CH_NID = nodes[s_x][s_y].CH_NID;
 source_CH_x = (CH_NID - 1) % NODESX;
 source_CH_y = (CH_NID - 1) / NODESX;
 data_packet.source_H_CID =
nodes[source_CH_x][source_CH_y].H_CID;
 break;
 }
 }
 while (1) //Generate destination node
 {
 d_x = rand() % NODESX;

215

 d_y = rand() % NODESY;
 //Make sure node is available & a member of a cluster
 if((nodes[d_x][d_y].NID == 0) || (nodes[d_x][d_y].CID == 0))
 continue;
 //if both source & destination is equal find another
 else if((s_x == d_x) && (s_y == d_y))
 continue;
 else //Form the destination info of the data packet
 {
 data_packet.dest_NID = nodes[d_x][d_y].NID;
 CH_NID = nodes[d_x][d_y].CH_NID;
 dest_CH_x = (CH_NID - 1) % NODESX;
 dest_CH_y = (CH_NID - 1) / NODESX;
 data_packet.dest_H_CID =
nodes[dest_CH_x][dest_CH_y].H_CID;
 break;
 }
 }

 //Send data from random source to a random destination
 result = send_data_packet(data_packet);
 if(result == 1)//If the message is dropped due to low energy
 {
 no_msg_dropped++;
 break;
 }
 else if (result == 2) //If message drop due to the wrong route
 {
 no_route++;
 break;
 }
 else
 no_msg_delivered++;
 }
 //printf("%d\n", no_msg_delivered);
 //printf("%d\t%d\t%d\n", no_msg_delivered, no_msg_dropped,
 //no_route);
 printf("%d\t%f\t%f\t", no_msg_delivered, energy_before,
total_energy());
}

/*--*
 * Following function try to deliver a message between *
 * a given source & a destination. Function returns: *
 * 0 - On sucess *
 * 1 - when not enough energy to deliver the packet *
 * 2 - When route to destination is not found *
 * data_packet - header of the data packet to be delivered *
---/
unsigned char send_data_packet(packet data_packet)
{
 int s_x, s_y, d_x, d_y, source_CH_x, source_CH_y, dest_CH_x,
dest_CH_y, receiver_x,

 receiver_y, current_x, current_y;
 int neighbor_to_forward, current_NID;
 int msg_send_by; //Node that send the message

 receiver_x = -1;
 receiver_y = -1;
 msg_send_by = 0;

 s_x = (data_packet.source_NID - 1) % NODESX;
 s_y = (data_packet.source_NID - 1) / NODESX;
 d_x = (data_packet.dest_NID - 1) % NODESX;
 d_y = (data_packet.dest_NID - 1) / NODESX;
 source_CH_x = (nodes[s_x][s_y].CH_NID - 1) % NODESX;
 source_CH_y = (nodes[s_x][s_y].CH_NID - 1) / NODESX;
 dest_CH_x = (nodes[d_x][d_y].CH_NID - 1) % NODESX;
 dest_CH_y = (nodes[d_x][d_y].CH_NID - 1) / NODESX;

 //If souce is not a CH. Then forward the message to the CH
 if(data_packet.source_NID != nodes[s_x][s_y].CH_NID)
 {
 nodes[s_x][s_y].energy -= energy_to_transmit(DATA_PACKET_SIZE ,
R);
 if(nodes[s_x][s_y].energy < 0) //If not enough energy
 {
 nodes[s_x][s_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 //If the rceiving CH is dead, drop message
 if(nodes[source_CH_x][source_CH_y].node_dead == 1)
 return 1;

 nodes[source_CH_x][source_CH_y].energy -=
energy_to_receive(DATA_PACKET_SIZE);
 //If not enough energy to receive
 if(nodes[source_CH_x][source_CH_y].energy < 0)
 {
 //Mark node as dead
 nodes[source_CH_x][source_CH_y].node_dead = 1;
 return 1;
 }
 msg_send_by = nodes[s_x][s_y].NID;
 //Another message is forwarded
 nodes[s_x][s_y].no_msg_forward++;
 }

 //if source and destination has the same CH
 if(nodes[s_x][s_y].CH_NID == nodes[d_x][d_y].CH_NID)
 {
 nodes[source_CH_x][source_CH_y].energy -=
energy_to_transmit(DATA_PACKET_SIZE , R);
 //If not enough energy
 if(nodes[source_CH_x][source_CH_y].energy < 0)
 {
 //Mark node as dead

216

 nodes[source_CH_x][source_CH_y].node_dead = 1;
 return 1;
 }
 //Another message
 nodes[source_CH_x][source_CH_y].no_msg_forward++;

 if(nodes[d_x][d_y].node_dead == 1)
 return 1;
 nodes[d_x][d_y].energy -= energy_to_receive(DATA_PACKET_SIZE);
 if(nodes[d_x][d_y].energy < 0) //If not enough energy
 {
 nodes[d_x][d_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 return 0;
 }

 current_NID = nodes[s_x][s_y].CH_NID;// Start forwarding from the CH

 //Loop until destination CH is found
 while(1)
 {
 //Find next hop
 neighbor_to_forward = next_hop(data_packet.dest_H_CID,
current_NID, msg_send_by);
 if (neighbor_to_forward == 0) //No route to destination
 return 2;
 else if(neighbor_to_forward == current_NID)//Same as destination
 break;
 else
 {
 current_x = (current_NID - 1) % NODESX;
 current_y = (current_NID - 1) / NODESX;

 //If is dead can't forward messages
 if(nodes[current_x][current_y].node_dead == 1)
 return 1;

 //Reduce energy to transmit. CH to CH messages are
 //high power with within R*TTL_max
 nodes[current_x][current_y].energy -=
energy_to_transmit(DATA_PACKET_SIZE, (CH_CH_R_FACT * R));
 //If no energy to tranmit
 if(nodes[current_x][current_y].energy < 0)
 {
 //Mark node as dead
 nodes[current_x][current_y].node_dead = 1;
 return 1; //Not enough energy
 }

 receiver_x = (neighbor_to_forward - 1) % NODESX;
 receiver_y = (neighbor_to_forward - 1) / NODESX;
 //Node is dead can't receive messages
 if(nodes[receiver_x][receiver_y].node_dead == 1)

 return 1;

 nodes[receiver_x][receiver_y].energy -=
energy_to_receive(DATA_PACKET_SIZE);
 //Not enough energy
 if(nodes[receiver_x][receiver_y].energy < 0)
 {
 //Mark node as dead
 nodes[receiver_x][receiver_y].node_dead = 1;
 return 1;
 }
 msg_send_by = nodes[current_x][current_y].NID;
 //Another message is forwarded
 nodes[current_x][current_y].no_msg_forward++;
 //Forward packet to neighbor. Neighbor becomes current node
 current_NID = neighbor_to_forward;
 }
 }
 if(current_NID != data_packet.dest_NID)
 {
 //current node x, y values are cacluated in the previous loop
 //Node is dead can't forward message
 if(nodes[receiver_x][receiver_y].node_dead == 1)
 return 1;

 nodes[receiver_x][receiver_y].energy -=
energy_to_transmit(DATA_PACKET_SIZE, R);
 if(nodes[receiver_x][receiver_y].energy < 0)//Not enough energy
 {
 //Mark node as dead
 nodes[receiver_x][receiver_y].node_dead = 1;
 return 1;
 }

 nodes[d_x][d_y].energy -= energy_to_receive(DATA_PACKET_SIZE);
 if(nodes[dest_CH_x][dest_CH_y].energy < 0) //Not enough energy
 {
 nodes[d_x][d_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 //Another message is forwarded
 nodes[receiver_x][receiver_y].no_msg_forward++;
 }
 return 0; //Packet is sucessfully delivered
}

/*--*
 * Following function forms a VSN *
 * Nodes in a given region form a VSN by send a message *
---/
void form_vsn()
{
 int s_x, s_y, source_CH_x, source_CH_y, CH_NID, i, j;

217

 uchar ret_value;
 packet data_packet;

 for(i = 0 ; i < NO_EVENT_NODES; i++)
 {
 while (1) //Generate source node within event region
 {
 s_x = rand() % (EVENT_DISTANCE_X + 1);
 s_y = rand() % (EVENT_DISTANCE_Y + 1);

 s_x += EVENT_OFFSET_X;
 s_y += EVENT_OFFSET_Y;

 //Make sure node is available & in a cluster
 if((nodes[s_x][s_y].NID == 0) || (nodes[s_x][s_y].CID == 0))

 continue;
 //Source node is dead find another node
 else if(nodes[s_x][s_y].node_dead == 1)
 continue;
 else //Form the source info of the data packet
 {
 //shik if same event node is found
 for(j = 0 ; j < i; j++)
 {
 if(event_nodes[j] == nodes[s_x][s_y].NID)
 continue;
 }
 nodes[s_x][s_y].in_event = 1; //In event region
 //Add to list of nodes in event
 event_nodes[i] = nodes[s_x][s_y].NID;

 data_packet.source_NID = nodes[s_x][s_y].NID;
 CH_NID = nodes[s_x][s_y].CH_NID;
 source_CH_x = (CH_NID - 1) % NODESX;
 source_CH_y = (CH_NID - 1) / NODESX;
 data_packet.source_H_CID =
nodes[source_CH_x][source_CH_y].H_CID;

 data_packet.dest_NID = nodes[STARTX][STARTY].NID;
 //Send to root node
 data_packet.dest_H_CID.id[0] = 0;
 data_packet.dest_H_CID.id[1] = 0;
 data_packet.dest_H_CID.id[2] = 0;
 data_packet.dest_H_CID.id[3] = 0;
 break;
 }
 }

 ret_value= send_form_vsn_msg(data_packet);
 if(ret_value == 1)
 printf("Unable to send VSN formation message. Not enugh
energy.\n");
 else if(ret_value == 2)

 printf("Unable to send VSN formation message. No route
towards root node.\n");
 }
}

/*--*
* Following function send a form a VSN message *
* Each node that detects an event sends a message *
* towards the root node *
* If a CH has already send a message it will not send another *
* If two events meet message will stop there & sending *
* node will get info on *
* where they meet (Hierarchical address is send). *
* data_packet - header of the VSN formation message *
* return 0 on sucess, 1 if no energy & 2 is no route *
---/
uchar send_form_vsn_msg(packet data_packet)
{
 int s_x, s_y, source_CH_x, source_CH_y, receiver_x, receiver_y,
current_x, current_y;
 int neighbor_to_forward, current_NID, i;
 int msg_send_by; //Node that send the message
 uchar tmp_vsn_entries;

 receiver_x = -1;
 receiver_y = -1;
 msg_send_by = 0;

 s_x = (data_packet.source_NID - 1) % NODESX;
 s_y = (data_packet.source_NID - 1) / NODESX;
 if(nodes[s_x][s_y].know_event == 1) //If already know event type 1
 return 0;
 else
 nodes[s_x][s_y].know_event = 1;

 source_CH_x = (nodes[s_x][s_y].CH_NID - 1) % NODESX;
 source_CH_y = (nodes[s_x][s_y].CH_NID - 1) / NODESX;

 //If souce is not a CH. Then forward the message to the CH
 if(data_packet.source_NID != nodes[s_x][s_y].CH_NID)
 {
 nodes[s_x][s_y].energy -= energy_to_transmit(VSN_FORM_SIZE , R);

 if(nodes[s_x][s_y].energy < 0) //If not enough energy
 {
 nodes[s_x][s_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 nodes[s_x][s_y].know_event = 1; //Know about event

 //If the rceiving CH is dead, drop message
 if(nodes[source_CH_x][source_CH_y].node_dead == 1)
 return 1;

218

 nodes[source_CH_x][source_CH_y].energy -=
energy_to_receive(VSN_FORM_SIZE);
 //If not enough energy to receive
 if(nodes[source_CH_x][source_CH_y].energy < 0)
 {
 //Mark node as dead
 nodes[source_CH_x][source_CH_y].node_dead = 1;
 return 1;
 }

 //Add child node to VSN table
 tmp_vsn_entries =
nodes[source_CH_x][source_CH_y].no_vsn_entries;
 //Makesure there is no duplicate entries
 for(i = 0 ; i < tmp_vsn_entries; i++)
 {
 //check for event type and NID
 if((nodes[source_CH_x][source_CH_y].vsn_table[i].NID ==
data_packet.source_NID)
 && (nodes[source_CH_x][source_CH_y].vsn_table[i].VSN
== 1))
 break;
 }
 if(i == tmp_vsn_entries)
 {
 if(nodes[source_CH_x][source_CH_y].no_vsn_entries >
MAX_VSN_ENTRIES)
 {
 printf("No of VSN entries overflow. Terminating..\n");
 exit(1);
 }

nodes[source_CH_x][source_CH_y].vsn_table[tmp_vsn_entries].NID =
data_packet.source_NID;

nodes[source_CH_x][source_CH_y].vsn_table[tmp_vsn_entries].VSN = 1;

nodes[source_CH_x][source_CH_y].vsn_table[tmp_vsn_entries].node_type =
2; //Child node
 nodes[source_CH_x][source_CH_y].no_vsn_entries++;
 }

 //Another message is forwarded
 nodes[s_x][s_y].no_msg_forward++;

 //If CH already know event type 1
 if(nodes[source_CH_x][source_CH_y].know_event == 1)
 return 0;
 else
 nodes[source_CH_x][source_CH_y].know_event = 1;
 msg_send_by = nodes[s_x][s_y].NID;
 }

 current_NID = nodes[s_x][s_y].CH_NID;// Start forwarding from the CH

 //Loop until destination CH is found
 while(1)
 {
 //Find next hop
 neighbor_to_forward = next_hop(data_packet.dest_H_CID,
current_NID, msg_send_by);
 if(neighbor_to_forward == current_NID) //Same as destination
 break;
 else if (neighbor_to_forward == 0) //No route to destination
 return 2;
 else
 {
 current_x = (current_NID - 1) % NODESX;
 current_y = (current_NID - 1) / NODESX;

 //If is dead can't forward messages
 if(nodes[current_x][current_y].node_dead == 1)
 return 1;

 //Reduce energy to transmit. CH to CH messages
 //are high power with within R*TTL_max
 nodes[current_x][current_y].energy -=
energy_to_transmit(VSN_FORM_SIZE, (CH_CH_R_FACT * R));
 //If no energy to tranmit
 if(nodes[current_x][current_y].energy < 0)
 {
 //Mark node as dead
 nodes[current_x][current_y].node_dead = 1;
 return 1; //Not enough energy
 }

 //Add parent CH to VSN table
 tmp_vsn_entries =
nodes[current_x][current_y].no_vsn_entries;
 //Makesure there are no duplicate entries
 for(i = 0 ; i < tmp_vsn_entries; i++)
 {
 //check for event type and NID
 if((nodes[current_x][current_y].vsn_table[i].NID ==
current_NID)
 && (nodes[current_x][current_y].vsn_table[i].VSN
== 1))
 break;
 }
 if(i == tmp_vsn_entries)
 {

nodes[current_x][current_y].vsn_table[tmp_vsn_entries].NID =
neighbor_to_forward;

nodes[current_x][current_y].vsn_table[tmp_vsn_entries].VSN = 1;

219

nodes[current_x][current_y].vsn_table[tmp_vsn_entries].node_type = 1;
//CH
 nodes[current_x][current_y].no_vsn_entries++;
 }

 receiver_x = (neighbor_to_forward - 1) % NODESX;
 receiver_y = (neighbor_to_forward - 1) / NODESX;

 //Node is dead can't receive messages
 if(nodes[receiver_x][receiver_y].node_dead == 1)
 return 1;

 nodes[receiver_x][receiver_y].energy -=
energy_to_receive(VSN_FORM_SIZE);
 //Not enough energy
 if(nodes[receiver_x][receiver_y].energy < 0)
 {
 //Mark node as dead
 nodes[receiver_x][receiver_y].node_dead = 1;
 return 1;
 }

 //Add child CH to VSN table
 tmp_vsn_entries =
nodes[receiver_x][receiver_y].no_vsn_entries;
 //Makesure there are no duplicate entries
 for(i = 0 ; i < tmp_vsn_entries; i++)
 {
 //check for event type and NID
 if((nodes[receiver_x][receiver_y].vsn_table[i].NID ==
current_NID)
 &&
(nodes[receiver_x][receiver_y].vsn_table[i].VSN == 1))
 break;
 }
 if(i == tmp_vsn_entries)
 {

nodes[receiver_x][receiver_y].vsn_table[tmp_vsn_entries].NID =
current_NID;

nodes[receiver_x][receiver_y].vsn_table[tmp_vsn_entries].VSN = 1;

nodes[receiver_x][receiver_y].vsn_table[tmp_vsn_entries].node_type = 1;
//CH
 nodes[receiver_x][receiver_y].no_vsn_entries++;
 }
 //Another message is forwarded
nodes[current_x][current_y].no_msg_forward++;
 //If already know event
 if(nodes[receiver_x][receiver_y].know_event == 1)
 return 0;
 else

 nodes[receiver_x][receiver_y].know_event = 1;

 msg_send_by = nodes[current_x][current_y].NID;
 //Forward packet to neighbor. Neighbor becomes current node
 current_NID = neighbor_to_forward ;
 }
 }

 return 0; //Packet is sucessfully delivered

}

/*--*
* Following functions sends VSN data packets from *
* randomly selected node to *
* another randomly selected node. *
* It count the no of messages sucessfully *
* delivered & terminates either when *
* the 1st message get dropped or given number of messages *
* are transmitted *
---/
void send_vsn_unicast_data()
{
 int s_x, s_y, d_x, d_y, source_CH_x, source_CH_y, dest_CH_x,
dest_CH_y, i;
 uint s_nid, d_nid, rnd, ch_nid;
 uchar result;
 uint no_msg_delivered = 0; //No of sucessfully delivered messages
 uint no_msg_dropped = 0; //Nof of messages dropped
 uint no_route = 0; //No fo routes not found
 packet data_packet; //Data packet to be transmitted
 double energy_before, energy_after;

 energy_before = total_energy();
 for(i = 0 ; i < NO_PACKETS; i++) //Send NO_PACKETS
 {
 while(1)
 {
 //Generate source node
 rnd = rand() % NO_EVENT_NODES;
 s_nid = event_nodes[rnd];
 rnd = rand() % NO_EVENT_NODES;
 d_nid = event_nodes[rnd];

 if(s_nid == d_nid) //If source & destination is same
 continue;

 s_x = (s_nid - 1) % NODESX;
 s_y = (s_nid - 1) / NODESX;
 ch_nid = nodes[s_x][s_y].CH_NID;
 source_CH_x = (ch_nid - 1) % NODESX;
 source_CH_y = (ch_nid - 1) / NODESX;

220

 d_x = (d_nid - 1) % NODESX;
 d_y = (d_nid - 1) / NODESX;
 ch_nid = nodes[d_x][d_y].CH_NID;
 dest_CH_x = (ch_nid - 1) % NODESX;
 dest_CH_y = (ch_nid - 1) / NODESX;

 data_packet.source_NID = s_nid;
 data_packet.dest_NID = d_nid;

 data_packet.source_H_CID =
nodes[source_CH_x][source_CH_y].H_CID;
 data_packet.dest_H_CID = nodes[dest_CH_x][dest_CH_y].H_CID;
 break;
 }

 //Send data from source to destination. Send as normal data packets
 result = send_data_packet(data_packet);
 if(result == 1) //If the message is dropped due to low energy
 {
 no_msg_dropped++;
 break;
 }
 else if(result == 2) //If message drop due to the wrong route
 {
 no_route++;
 break;
 }
 else
 no_msg_delivered++;
 }
 energy_after = total_energy();
 //printf("%d\n", no_msg_delivered);
 //printf("%d\t%d\t%d\n", no_msg_delivered, no_msg_dropped,
no_route);
 printf("%d\t%f\t%f\n", no_msg_delivered, energy_before,
energy_after);
}

/*--*
 * Following function generates a VSN multicast packet and *
 * add it for routing *
 * to the event list. *
 * After calling this function process_event() list must *
 * be caled to deliver *
 * multicast messages. Delivery will be handled by *
 * the send_vsn_multicast_data() *
---/
void send_vsn_multicast_data()
{
 int s_x, s_y, d_x, d_y, source_CH_x, source_CH_y, i, j, nid, ch_nid,
des_nid, rnd;
 Hie_CID source_h_cid, dest_h_cid;
 uchar result;

 uint no_msg_delivered = 0; //No of sucessfully delivered messages
 uint no_msg_dropped = 0; //Nof of messages dropped
 uint no_route = 0; //No fo routes not found

 for(i = 0 ; i < NO_PACKETS; i++)
 {
 //Generate source node
 rnd = rand() % NO_EVENT_NODES;
 nid = event_nodes[rnd];
 s_x = (nid - 1) % NODESX;
 s_y = (nid - 1) / NODESX;

 ch_nid = nodes[s_x][s_y].CH_NID;
 source_CH_x = (ch_nid - 1) % NODESX;
 source_CH_y = (ch_nid - 1) / NODESX;

 if(nodes[s_x][s_y].NID != nodes[s_x][s_y].CH_NID) //If not a CH
 {
 source_h_cid.id[0] = 0;
 source_h_cid.id[1] = 0;
 source_h_cid.id[2] = 0;
 source_h_cid.id[3] = 0;
 dest_h_cid = nodes[source_CH_x][source_CH_y].H_CID;

 //Parameters in the event list has following meanings
 //nid - Nid of source node
 //ch_nid - NID of destination node
 //h_cid - Hierarchical CID of source
 //parent_h_cid - - Hierarchical CID of destination
 add_event(4, last_type3_event_time, nid, 0, ch_nid,
source_h_cid, 0, 0, 0, 0, 0, dest_h_cid);
 last_type3_event_time++;
 }
 else //if CH send a seperate packet for each entry in VSN table
 {
 for(j = 0 ; j < nodes[s_x][s_y].no_vsn_entries; j++)
 {
 des_nid = nodes[s_x][s_y].vsn_table[j].NID;
 d_x = (des_nid - 1) % NODESX;
 d_y = (des_nid - 1) / NODESX;

 source_h_cid = nodes[source_CH_x][source_CH_y].H_CID;

 //If destination is a CH
 if(des_nid == nodes[d_x][d_y].CH_NID)
 dest_h_cid = nodes[d_x][d_y].H_CID;
 else //if it's a child node
 {
 dest_h_cid.id[0] = 0;
 dest_h_cid.id[1] = 0;
 dest_h_cid.id[2] = 0;
 dest_h_cid.id[3] = 0;
 }

221

 //Parameters in the event list has following meanings
 //nid - Nid of source node
 //ch_nid - NID of destination node
 //h_cid - Hierarchical CID of source
 //parent_h_cid - - Hierarchical CID of destination
 add_event(4, last_type3_event_time, nid, 0, des_nid,
source_h_cid, 0, 0, 0, 0, 0, dest_h_cid);
 last_type3_event_time++;
 }
 }
 while(1) //Process the event list until no events are found
 {
 result = process_event_list();
 //Actual result is incremented by 1, by the sender
 if(result != 1)
 break;
 }
 if(result == 2) //If the message is dropped due to low energy
 {
 no_msg_dropped++;
 break;
 }
 else if (result == 3) //If message drop due to the wrong route
 {
 no_route++;
 break;
 }
 else
 no_msg_delivered++;
 }
 //printf("%d\n", no_msg_delivered);
 printf("%d\t%d\t%d\n", no_msg_delivered, no_msg_dropped, no_route);
}

/*--*
 * Following function forwards a VSN multicats message *
 * between a given source *
 * & a destination. If the receiver has VSN entries *
 * in it's VSN table new events *
 * are added to the event list. *
 * data_packet - header of the VSN formation message *
 * return 0 on sucess, 1 if no energy & 2 is no route *
---/
uchar send_vsn_multicast_packet(packet data_packet)
{
 int s_x, s_y, d_x, d_y, i, des_nid;
 Hie_CID source_h_cid, dest_h_cid;

 s_x = (data_packet.source_NID - 1) % NODESX;
 s_y = (data_packet.source_NID - 1) / NODESX;
 d_x = (data_packet.dest_NID - 1) % NODESX;
 d_y = (data_packet.dest_NID - 1) / NODESX;

 //receive the message
 //if source is a child node
 if(nodes[s_x][s_y].NID != nodes[s_x][s_y].CH_NID)
 {
 //If is dead can't forward messages
 if(nodes[s_x][s_y].node_dead == 1)
 return 1;

 //Reduce energy to transmit. CH to CH messages are high power
with within R*TTL_max
 nodes[s_x][s_y].energy -= energy_to_transmit(DATA_PACKET_SIZE,
R);
 if(nodes[s_x][s_y].energy < 0) //If no energy to tranmit
 {
 nodes[s_x][s_y].node_dead = 1; //Mark node as dead
 return 1; //Not enough energy
 }

 //Node is dead can't receive messages
 if(nodes[d_x][d_y].node_dead == 1)
 return 1;

 nodes[d_x][d_y].energy -= energy_to_receive(DATA_PACKET_SIZE);
 if(nodes[d_x][d_y].energy < 0) //Not enough energy
 {
 nodes[d_x][d_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 }
 else //if source is a another CH
 {
 //If destination is a child node
 if(nodes[d_x][d_y].NID != nodes[d_x][d_y].CH_NID)
 {
 //If is dead can't forward messages
 if(nodes[s_x][s_y].node_dead == 1)
 return 1;

 //Reduce energy to transmit. CH to CH messages are high
power with within R*TTL_max
 nodes[s_x][s_y].energy -=
energy_to_transmit(DATA_PACKET_SIZE, R);
 if(nodes[s_x][s_y].energy < 0) //If no energy to tranmit
 {
 nodes[s_x][s_y].node_dead = 1; //Mark node as dead
 return 1; //Not enough energy
 }

 //Node is dead can't receive messages
 if(nodes[d_x][d_y].node_dead == 1)
 return 1;

 nodes[d_x][d_y].energy -=
energy_to_receive(DATA_PACKET_SIZE);

222

 if(nodes[d_x][d_y].energy < 0) //Not enough energy
 {
 nodes[d_x][d_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 return 0; //Sucessfully delivered to destination
 }
 else //if destination is a CH
 {
 //If is dead can't forward messages
 if(nodes[s_x][s_y].node_dead == 1)
 return 1;

 //Reduce energy to transmit. CH to CH messages are high
power with within R*TTL_max
 nodes[s_x][s_y].energy -=
energy_to_transmit(DATA_PACKET_SIZE, (CH_CH_R_FACT * R));
 if(nodes[s_x][s_y].energy < 0) //If no energy to tranmit
 {
 nodes[s_x][s_y].node_dead = 1; //Mark node as dead
 return 1; //Not enough energy
 }

 //Node is dead can't receive messages
 if(nodes[d_x][d_y].node_dead == 1)
 return 1;

 nodes[d_x][d_y].energy -=
energy_to_receive(DATA_PACKET_SIZE);
 if(nodes[d_x][d_y].energy < 0) //Not enough energy
 {
 nodes[d_x][d_y].node_dead = 1; //Mark node as dead
 return 1;
 }
 }
 }

 //Now source and destination changes. New destination is
 //what is in my VSN table
 //Code will come this point only if it's a CH.
 s_x = d_x;
 s_y = d_y;

 for(i = 0 ; i < nodes[s_x][s_y].no_vsn_entries; i++)
 {
 des_nid = nodes[s_x][s_y].vsn_table[i].NID;
 //Skip if the entry is for sender. Prevents loops
 if(des_nid == data_packet.source_NID)
 continue;

 d_x = (des_nid - 1) % NODESX;
 d_y = (des_nid - 1) / NODESX;

 source_h_cid = nodes[s_x][s_y].H_CID;

 if(des_nid == nodes[d_x][d_y].CH_NID) //If destination is a CH
 dest_h_cid = nodes[d_x][d_y].H_CID;
 else //if it's a child node
 {
 dest_h_cid.id[0] = 0;
 dest_h_cid.id[1] = 0;
 dest_h_cid.id[2] = 0;
 dest_h_cid.id[3] = 0;
 }

 //Parameters in the event list has following meanings
 //nid - Nid of source node
 //ch_nid - NID of destination node
 //h_cid - Hierarchical CID of source
 //parent_h_cid - - Hierarchical CID of destination
 add_event(4, last_type3_event_time, nodes[s_x][s_y].NID, 0,
des_nid, source_h_cid, 0, 0, 0, 0, 0, dest_h_cid);
 last_type3_event_time++;
 }
 return 0;
}

/*--*
* Following function is used to inform neighboring CHs about *
* a particular CH's *
* Hierarchical address. This help to build corss *
* links along cluster tree *
---/
void inform_neighbors()
{
 int x, y, minx, miny, maxx, maxy, l, k, i;
 region my_region;
 float length, range;

 range = CH_CH_R_FACT * R;

 for(x = 0 ; x < NODESX; x++) //Check for CHs
 {
 for(y = 0; y < NODESY; y++)
 {
 //If node exists and is a CH
 if((nodes[x][y].NID == nodes[x][y].CH_NID) &&
(nodes[x][y].NID != 0))
 {
 nodes[x][y].energy -=
energy_to_transmit(DATA_PACKET_SIZE, (CH_CH_R_FACT * R));
 //determine my neighborhood

 my_region = get_node_region(x, y, range);
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;

223

 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 length = sqrt((k - x)*(k - x)*(GRIDX * GRIDX) +
(l - y)*(l - y)*(GRIDY * GRIDY));

 // If within communication range, if
 //node exists, if node is a CH
 if ((length <= range) && (nodes[k][l].NID != 0)
&& (nodes[k][l].NID ==
 nodes[k][l].CH_NID) && (length != 0))
 {
 //Check whther the routing entry
 //already exit (parent/child will exist)
 for(i = 0; i <
nodes[k][l].no_routing_entries; i++)
 {
 if(nodes[k][l].routing_table[i].NID ==
nodes[x][y].NID)
 break;
 }
 if(i != nodes[k][l].no_routing_entries)
//Skip if CH is already in
 continue;
 else //Else add to the routing table
 {
 if(nodes[k][l].no_routing_entries >
MAX_ROUTES)
 printf("Number of routing entries
overflow.\n");

 nodes[k][l].routing_table[i].NID =
nodes[x][y].NID;
 nodes[k][l].routing_table[i].H_CID =
nodes[x][y].H_CID;
 nodes[k][l].routing_table[i].learn_from
= nodes[x][y].NID;
 nodes[k][l].routing_table[i].valid = 5;
 //Entry learn from neighbor, 5 = 101
 nodes[k][l].routing_table[i].hops = 1;
 nodes[k][l].no_routing_entries++;
 }
 }
 }
 }
 }
 }
 }
}

/*--*
* Following function forms a nother cluster tree based on *
* already existing CHs *
* Multiple such trees can be build by modifiying this *
* function & other related *
* functions *
* Such trees will form a connected graph in the network & can *
* faciliate better *
* node-to-node routing *
* tree_depth - if tree to be formed by combining nodes *
* at a particular depth in *
* the orginal cluster tree. Consider if *
* depth <= CH depth <= depth + 1 *
* Function needs to be modified if depth is not restricted. *
---/
void form_second_cluster_tree(uchar tree_depth)
{
 int x, y, node_list[100], nid;
 uchar no_nodes = 0;
 Hie_CID h_cid;

 for(x = 0; x < NODESX; x++) //Find list of nodes in given depth
 {
 for(y = 0; y < NODESY; y++)
 { //if its a CH & in given depth
 if((nodes[x][y].NID == nodes[x][y].CH_NID) &&
(nodes[x][y].NID != 0)
 && (nodes[x][y].tree_depth == tree_depth))
 {
 printf("%d\n", nodes[x][y].NID);
 if(no_nodes < 100)
 {
 node_list[no_nodes] = nodes[x][y].NID;
 no_nodes++;
 }
 else
 continue;
 }
 }
 }

 nid = node_list[(rand() % no_nodes)]; //Pick a random node
 x = (nid - 1) % NODESX;
 y = (nid - 1) / NODESX;
 h_cid.id[0] = 0;
 h_cid.id[1] = 0;
 h_cid.id[2] = 0;
 h_cid.id[3] = 0;
 nodes[x][y].Link_H_CID = h_cid;
 nodes[x][y].link_depth = 0;
 //Parameters in the event list has following meanings
 //This is a type 5 event
 //nid - Nid of source CH
 //h_cid - Hierarchical CID of source CH

224

 //tree_depth - tree depth in the cluster tree
 //node_depth - tree depth in the new tree
 //parent_nid - nid of the parent CH
 add_event(5, last_type3_event_time, nid, 0, 0, h_cid, tree_depth, 0,
0, 0, 0, h_cid);
 last_type3_event_time++;
 while(process_event_list());
}

/*--*
 * Following function add already existing CHs to a new clustr tree *
 * This function needs to rerun again & again until *
 * tree finish spanning *
 * Will be initially called by the form_second_cluster_tree function. *
 * For simplicity this process is sequential (no parallel events *
 * nid - NID of the CH sending the message *
 * parent_nid - NID of the parent CH *
 * tree_depth - Depth in the original tree *
 * link_depth - depth in the new tree/link *
 * h_cid - Hierarchical CID in the original cluster tree *
---/
void add_ch_to_tree(uint nid, uint parent_nid, uchar tree_depth, uchar
link_depth, Hie_CID h_cid)
{
 int x, y, minx, miny, maxx, maxy, l, k;
 region my_region;
 float length;
 uchar child_no, new_link_depth;
 Hie_CID tmp_h_cid;

 child_no = 0;
 new_link_depth = link_depth + 1;
 tmp_h_cid.id[0] = 0;
 tmp_h_cid.id[1] = 0;
 tmp_h_cid.id[2] = 0;
 tmp_h_cid.id[3] = 0;

 x = (nid - 1) % NODESX;
 y = (nid - 1) / NODESX;
 my_region = get_node_region(x, y, (CH_CH_R_FACT * R));//My region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 nodes[x][y].energy -= energy_to_transmit(CLUSTER_BCAST_SIZE,
(CH_CH_R_FACT * R));
 if(nodes[x][y].energy < 0) //If no energy to tranmit
 {
 nodes[x][y].node_dead = 1; //Mark node as dead
 return ; //Not enough energy
 }

 for(l = miny; l <= maxy; l++) //Check within my region
 {
 for (k = minx; k <= maxx; k++)
 {
 //Concept of RSSI is not applicable here as far as R is known
 length = sqrt((k - x)*(k-x)*(GRIDX * GRIDX) + (l - y)*(l-
y)*(GRIDY * GRIDY));
 // if within communication range
 if((length <= (CH_CH_R_FACT * R)) && (nodes[k][l].NID != 0)
&& (nodes[k][l].NID == nodes[k][l].CH_NID))
 {
 if((nodes[k][l].tree_depth == tree_depth) ||
(nodes[k][l].tree_depth == (tree_depth + 1)))
 {
 if (nodes[k][l].NID != parent_nid) //skip parent
 {
 //Node is dead can't receive messages
 if(nodes[k][l].node_dead == 1)
 continue;
 nodes[k][l].energy -=
energy_to_receive(CLUSTER_BCAST_SIZE);
 if(nodes[k][l].energy < 0) //Not enough energy
 {
 //Mark node as dead
 nodes[k][l].node_dead = 1;
 continue;
 }

 if(nodes[k][l].link_depth > new_link_depth)
 {
 //can't add more than 8 child nodes
 if(child_no < 7)
 {
 nodes[k][l].Link_H_CID =
generate_CID(h_cid, (int)child_no, new_link_depth);
 nodes[k][l].link_depth = new_link_depth;
 child_no++;
 //Parameters in the event list has following meanings
 //This is a type 5 event
 //nid - Nid of source CH
 //h_cid - Hierarchical CID of source CH
 //tree_depth - tree depth in the cluster tree
 //node_depth - tree depth in the new tree
 //parent_nid - nid of the parent CH
 add_event(5, last_type3_event_time,
nodes[k][l].NID, 0, 0,
 nodes[k][l].Link_H_CID,
tree_depth, new_link_depth, 0, 0, nid, tmp_h_cid);
 last_type3_event_time++;
 //send the ACK & its received by the parent
 nodes[k][l].energy -=
energy_to_transmit(CLUSTER_ACK_SIZE, (CH_CH_R_FACT * R));
 nodes[x][y].energy -=
energy_to_receive(CLUSTER_ACK_SIZE);

225

 }
 else
 continue;
 }
 else
 continue;
 }
 else
 continue;
 }
 }
 }
 }
}

/*--*
* Following function discover CHs at a given depth & depth + 1 *
* in the cluster *
* tree. It then initiates sharing of roting information between them. *
* tree_depth - Depth in the original tree *
---/
void discover_neighbors_of_link(uchar tree_depth)
{
 int x, y;
 Hie_CID h_cid;

 h_cid.id[0] = 0;
 h_cid.id[1] = 0;
 h_cid.id[2] = 0;
 h_cid.id[3] = 0;

 for(x = 0; x < NODESX; x++) //Find list of nodes in given depth
 {
 for(y = 0; y < NODESY; y++)
 { //if its a CH & in given depth
 if((nodes[x][y].NID == nodes[x][y].CH_NID) &&
(nodes[x][y].NID != 0) &&
 ((nodes[x][y].tree_depth >= tree_depth) &&
nodes[x][y].tree_depth <= (tree_depth + 1)))
 {
 //Parameters in the event list has following meanings
 //This is a type 6 event
 //nid - Nid of CH sending routing table
 //tree_depth - tree depth in the cluster tree
 add_event(6, last_type3_event_time, nodes[x][y].NID, 0,
0, h_cid, tree_depth, 0, 0, 0, 0, h_cid);
 last_type3_event_time++;
 nodes[x][y].send_routing_info = 0;
 }
 }
 }
 //process untill all events are completed
 while(process_event_list());

}

/*--*
* Following function share routing table info amonge *
* CHs at a given depth & *
* depth + 1 in the cluster tree. Info is shared only *
* if they are neighbors, *
* within the given depth range and if the new info *
* is better than going through *
* the cluster tree (will add entry if same as distance *
* through routing table) *
* nid - node broadcasting its routing table *
* tree_depth - Depth in the original tree *
---/
void send_link_info(uint nid, uchar tree_depth)
{
 int x, y, minx, maxx, miny, maxy, i, j, k, l, data_size;
 region my_region;
 float length;
 uchar hops, depth;
 Hie_CID h_cid;

 h_cid.id[0] = 0;
 h_cid.id[1] = 0;
 h_cid.id[2] = 0;
 h_cid.id[3] = 0;

 x = (nid - 1) % NODESX;
 y = (nid - 1) / NODESX;
 data_size = sizeof(router_entry) * nodes[x][y].no_routing_entries;

 //Discard if no update happened
 if(nodes[x][y].send_routing_info == 1)
 return;

 if(nodes[x][y].node_dead == 1) //Node is dead can't receive messages
 return;
 nodes[x][y].energy -= energy_to_transmit(data_size, (CH_CH_R_FACT *
R));
 if(nodes[x][y].energy < 0) //Not enough energy
 {
 nodes[x][y].node_dead = 1; //Mark node as dead
 return;
 }

 //Get my region
 my_region = get_node_region(x, y, (CH_CH_R_FACT * R));
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++) //Check within my region

226

 {
 for (k = minx; k <= maxx; k++)
 {
 //Node should exist, should be a CH, should be within given depth
 if((nodes[k][l].NID != 0) && (nodes[k][l].NID ==
nodes[k][l].CH_NID) &&
 ((nodes[k][l].tree_depth >= tree_depth) &&
(nodes[k][l].tree_depth <= (tree_depth + 1))))
 {
 length = sqrt((k - x)*(k-x)*(GRIDX * GRIDX) + (l -
y)*(l-y)*(GRIDY * GRIDY));
 // if within communication range
 if((length <= (CH_CH_R_FACT * R)) && (length != 0))
 {
 //Energy to receive
 //Node is dead can't receive messages
 if(nodes[k][l].node_dead == 1)
 return;
 nodes[k][l].energy -= energy_to_receive(data_size);
 if(nodes[k][l].energy < 0) //Not enough energy
 {
 nodes[k][l].node_dead = 1; //Mark node as dead
 continue;
 }

 for(i = 0 ; i < nodes[x][y].no_routing_entries; i++)
//for each routing entry
 {
 depth = nodes[x][y].routing_table[i].H_CID.id[3]
& 63;
 //skip the entries beyound the given depth range
 if((depth < tree_depth) || (depth > (tree_depth
+ 1)))
 continue;
 else if(nodes[x][y].routing_table[i].valid == 0)
//continue if invalid
 continue;
 else //if valid
 {
 //compare with each entry in the receiver
 for(j = 0; j <
nodes[k][l].no_routing_entries; j++)
 {
 depth =
nodes[k][l].routing_table[j].H_CID.id[3] & 63;
 //skip the entries beyound the given depth range
 if((depth < tree_depth) || (depth >
(tree_depth + 1)))
 continue;
 else
if(nodes[k][l].routing_table[j].valid == 0) //skip if invalid
 continue;
 else
if(nodes[k][l].routing_table[j].valid == 3) //skip my parent entry

 continue;
 else if(nodes[x][y].routing_table[i].NID
== nodes[k][l].routing_table[j].NID)
 {
 //if same entry see whether new info is better
 //if new imformation is not useful

if((nodes[x][y].routing_table[i].hops + 1) >=
nodes[k][l].routing_table[j].hops)
 //break inner loop if useless, can't be two matching entries
 break;
 else //if new info is useful
 {

nodes[k][l].routing_table[j].valid = 5; //valid & from neighbor
 nodes[k][l].routing_table[j].NID
= nodes[x][y].routing_table[i].NID;

nodes[k][l].routing_table[j].H_CID = nodes[x][y].routing_table[i].H_CID;

nodes[k][l].routing_table[j].learn_from = nid;

nodes[k][l].routing_table[j].hops = nodes[x][y].routing_table[i].hops +
1;
 //Parameters in the event list has following meanings
 //This is a type 6 event
 //nid - Nid of CH sending routing table
 //tree_depth - tree depth in the cluster tree
 add_event(6,
last_type3_event_time, nodes[k][l].NID, 0, 0, h_cid, tree_depth, 0, 0,
0, 0, h_cid);
 last_type3_event_time++;
 nodes[k][l].send_routing_info =
0;
 break;
 }
 }
 }

 //No matching entry
 if(j == nodes[k][l].no_routing_entries)
 {
 if(nodes[k][l].no_routing_entries <
MAX_ROUTES)
 {
 //determine distance through cluster tree
 hops =
hop_distance(nodes[k][l].H_CID, nodes[x][y].H_CID);
 //if cluster tree distance is >= to what I learn from neighbor
 if(hops >=
(nodes[x][y].routing_table[i].hops + 1))
 {

nodes[k][l].routing_table[j].valid = 5; //valid & from neighbor

227

 nodes[k][l].routing_table[j].NID
= nodes[x][y].routing_table[i].NID;

nodes[k][l].routing_table[j].H_CID = nodes[x][y].routing_table[i].H_CID;

nodes[k][l].routing_table[j].learn_from = nid;

nodes[k][l].routing_table[j].hops = nodes[x][y].routing_table[i].hops +
1;

nodes[k][l].no_routing_entries++;
 //Parameters in the event list has following meanings
 //This is a type 6 event
 //nid - Nid of CH sending routing table
 //tree_depth - tree depth in the cluster tree
 add_event(6,
last_type3_event_time, nodes[k][l].NID, 0, 0, h_cid, tree_depth, 0, 0,
0, 0, h_cid);
 last_type3_event_time++;
 nodes[k][l].send_routing_info =
0;
 }
 }
 else
 printf("Number of routing entries
overflow.\n");
 }
 }
 }
 }
 }
 }
 }
 nodes[x][y].send_routing_info = 1;
}

/*--*
* Follwing function calculates the maximum achievable *
* circularity (MAC) for *
* each cluster & sump circularity to the circularity.txt file *
* this functions works only up to 3-hop clusters. *
* Can be extened to other cases *
* file - if 1 write to 1st file else write to 2nd file *
* (optimization phase) *
---/
void calculate_circularity(uchar file)
{
 int i, j, x, y, minx, miny, maxx, maxy, l, k, retvalue;
 float length, in_cluster, outof_cluster, circularity;
 int nb_list[3][500];
 int level0, level1, level2, n, m, p, q;
 region my_region;

 FILE *circlefd;
 if(file == 1) //which file
 circlefd = fopen(CIRCLEFILE1, "w");
 else
 circlefd = fopen(CIRCLEFILE2, "w");

 if(circlefd == NULL)
 perror("ERROR: No circularity data will be written.....");

 for (i = 0; i < NODESX ; i++) //Check for a CH from all nodes
 {
 for(j = 0 ; j < NODESY ; j++)
 {
 //make sure that the node is a CH
 if((nodes[i][j].NID == nodes[i][j].CH_NID) &&
(nodes[i][j].NID != 0))
 {
 in_cluster = 0; //no of nodes inside cluster
 outof_cluster = 0; //no of nodes outside cluster
 //check no of hops for single & multi-hop clustering
 level0 = level1 = level2 = 0;

 //Get my X, Y coordinates
 x = (nodes[i][j].NID - 1) % NODESX;
 y = (nodes[i][j].NID - 1) / NODESX;
 my_region = get_node_region(x, y, R);//Get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++) //Check within my region
 {
 for (k = minx; k <= maxx; k++)
 {
 //Concept of RSSI is not applicable here as far as R is known
 length = sqrt((k - x)*(k - x)*(GRIDX * GRIDX) +
(l - y)*(l - y)*(GRIDY * GRIDY));
 if((length <= R) && (nodes[k][l].NID != 0))
// if within communication range
 {
 if(nodes[k][l].CID == nodes[i][j].CID)
//If with the same CID, inside
 in_cluster++;
 else
//Else outside
 outof_cluster++;
 nb_list[0][level0] = nodes[k][l].NID;
 level0++;
 }
 }
 }
 //If multi-hop clusters
 if((MAX_HOPS > 1) && (level0 != 0))

228

 {
 for(n=0; n < level0 ; n++)
 {
 x = (nb_list[0][n] - 1) % NODESX;
 y = (nb_list[0][n] - 1) / NODESX;
 //get my region
 my_region = get_node_region(x, y, R);
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++) //within my region
 {
 for (k = minx; k <= maxx; k++)
 {
 length = sqrt((k - x)*(k - x)*(GRIDX *
GRIDX) + (l-y)*(l-y)*(GRIDY * GRIDY));
 if((length <= R) && (nodes[k][l].NID !=
0))
 {
 for(m = 0; m < level0; m++)
//neighbors at level 1
 {
 if(nb_list[0][m] ==
nodes[k][l].NID)
 break;
 }
 for(p = 0; p < level1; p++)
//neighbors at level 2
 {
 if(nb_list[1][p] ==
nodes[k][l].NID)
 break;
 }
 if((m == level0) && (p == level1))
 {
 if(nodes[k][l].CID ==
nodes[i][j].CID)
 //If with same CID in cluster
 in_cluster++;
 else //not in cluster
 outof_cluster++;
 nb_list[1][level1] =
nodes[k][l].NID;
 level1++;
 }
 }
 }
 }
 }
 }
 if((MAX_HOPS > 2) && (level1 != 0)) //if 3 hops or more
 {

 for(n=0; n < level1 ; n++)
 {
 x = (nb_list[1][n] - 1) % NODESX;
 y = (nb_list[1][n] - 1) / NODESX;
 my_region = get_node_region(x, y, R);
 //get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;
 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 length = sqrt((k - x)*(k - x)*(GRIDX *
GRIDX) + (l-y)*(l-y)*(GRIDY * GRIDY));
 if((length <= R) && (nodes[k][l].NID !=
0))
 {
 for(m = 0; m < level0; m++)//level 0
 {
 if(nb_list[0][m] ==
nodes[k][l].NID)
 break;
 }
 for(p = 0; p < level1; p++)//level 1
 {
 if(nb_list[1][p] ==
nodes[k][l].NID)
 break;
 }
 for(q= 0; q < level2; q++) //level 2
 {
 if(nb_list[2][q] ==
nodes[k][l].NID)
 break;
 }

 if((m == level0) && (p == level1) &&
(q == level2))
 {
 if(nodes[k][l].CID ==
nodes[i][j].CID)
 in_cluster++;
 else
 outof_cluster++;
 nb_list[2][level2] =
nodes[k][l].NID;
 level2++;
 }
 }
 }
 }

229

 }
 }
 //circularity = total inside / total nodes in range
 //for multihop clusters a node is considerd to be in range only
 //if there is a path from node to CH
 circularity = (in_cluster/(in_cluster + outof_cluster))
* 100;
 retvalue = sprintf(msg, "%f\n", circularity);
 //retvalue = sprintf(msg, "%d\t%f\n", nodes[i][j].CID,
circularity);
 fputs(msg, circlefd);
 }
 }
 }
 fclose(circlefd); //close file
}

/*--*
* Following function dump remaining energy of each node to a text file*
---/
void print_cluster_energy()
{
 int i, j, retvalue;
 FILE *energyfd;

 energyfd = fopen(ENERGYFILE, "w"); //open file
 if(energyfd == NULL)
 perror("ERROR: No energy data will be written.....");

 //Following code writes node energy to the text file
 for (i = 0; i < NODESY ; i++)
 {
 for(j = 0 ; j < NODESX ; j++)
 {
 if(nodes[j][i].NID != 0) //if node exist
 {
 if(nodes[j][i].energy > 0.0)
 retvalue = sprintf(msg, "%f\n", nodes[j][i].energy);
 else
 retvalue = sprintf(msg, "%f\n", 0.00);
 fputs(msg, energyfd);
 }
 }
 }
 fclose(energyfd); //close file
}

/*--*
* This function either printer the node status on *
* the terminal or print node *
* data to a text file named nodes.txt *
* symbols: *

* '.' - Indicate grid points with nodes *
* 'o' - Indicate nodes with a CH *
* '?' - Indicare nodes clusters that don't have a represnetable symbol*
* Cluster symbol followed by a . indicate CHs *
* pnt_console - print data to console *
* file - which file to use. 1 - 1st file, 2 - 2nd file (optimized) *
---/
void print_nodes(uchar pnt_console, uchar file)
{
 int i, j, retvalue;
 FILE *nodefd;

 if(file == 1) //open file
 nodefd = fopen(NODEFILE1, "w");
 else
 nodefd = fopen(NODEFILE2, "w");

 if(nodefd == NULL)
 perror("ERROR: No node data will be written.....");

 //Following code writes node data to the text file
 for (i = 0; i < NODESY ; i++)
 {
 for(j = 0 ; j < NODESX ; j++)
 {
 if(nodes[j][i].NID != 0)
 {
 //form the text string
 retvalue = sprintf(msg,
"%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", nodes[j][i].NID,
nodes[j][i].CID,
 nodes[j][i].CH_NID, nodes[j][i].parent_CH_NID,
nodes[j][i].tree_depth,
 nodes[j][i].no_child_nodes,
nodes[j][i].no_broadcasts, nodes[j][i].no_ACKs, nodes[j][i].node_depth);

/* retvalue = sprintf(msg,
"%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", nodes[j][i].NID,
nodes[j][i].CID,
 nodes[j][i].CH_NID, nodes[j][i].parent_CH_NID,
nodes[j][i].tree_depth,
 nodes[j][i].no_child_nodes,
nodes[j][i].no_broadcasts, nodes[j][i].no_ACKs, nodes[j][i].node_depth,
 nodes[j][i].in_event, nodes[j][i].know_event);
*/
 fputs(msg, nodefd); //write to file
 }
 }
 }
 fclose(nodefd); //close file

 if(pnt_console == 1) //if needs to print to console
 {
 for (i = 0; i < NODESY ; i++)

230

 {
 for(j = 0 ; j < NODESX ; j++)
 {
 if(nodes[j][i].NID == 0)
 printf(". "); //No node in this location
 else {
 printf("%c",
CID_to_symbol_mapping(nodes[j][i].CID));

 if(nodes[j][i].NID == nodes[j][i].CH_NID)
 printf(".");
 else
 printf(" ");
 }
 }
 printf("\n");
 }
 }
}

/*--*
* Following function add a node to the collision list if its is in the*
* communication range of two broadcasting nodes the same time. *
* nid1 - NID of the first node *
* nid2 - NID of the second node *
---/
void mark_collision_region(uint nid1, uint nid2)
{
 float ch_distance, distance1, distance2;
 int x1, y1, x2, y2, minx, maxx, miny, maxy, l, k, i;
 region my_region;

 //Reset the list if last collision is not related
 if(last_collision_set[1] != nid1)
 no_collision_nodes = 0;

 //Set the last nodes related to the collision
 last_collision_set[0] = nid1;
 last_collision_set[1] = nid2;

 x1 = (nid1 - 1) % NODESX;//X, Y coordinates of node related to event
 y1 = (nid1 - 1) / NODESX;
 x2 = (nid2 - 1) % NODESX;//X, Y coordinates of node related to event
 y2 = (nid2 - 1) / NODESX;

 ch_distance = sqrt((x1 - x2)*(x1 - x2)*(GRIDX * GRIDX) + (y1 -
y2)*(y1 - y2)*(GRIDY)*(GRIDY));
 if(ch_distance <= (2 * R)) //if within each others range
 {
 my_region = get_node_region(x1, y1, R); //get my region
 minx = my_region.minx;
 miny = my_region.miny;
 maxx = my_region.maxx;

 maxy = my_region.maxy;

 for(l = miny; l <= maxy; l++)
 {
 for (k = minx; k <= maxx; k++)
 {
 distance1 = sqrt((k - x1)*(k - x1)*(GRIDX * GRIDX) + (l
- y1)*(l - y1)*(GRIDY * GRIDY));
 if((distance1 <= R) && (nodes[k][l].NID != 0))
 {
 distance2 = sqrt((k - x2)*(k - x2)*(GRIDX * GRIDX) +
(l - y2)*(l - y2)*(GRIDY * GRIDY));
 if((distance2 <= R) && (nodes[k][l].NID != 0))
 {
 //Check for overflows. If needed to change
 //set the value in header file
 if(no_collision_nodes < NO_COLLISION_NODES)
 {
 for(i = 0; i < no_collision_nodes; i++)
//Don't put the same node again & again
 {
 if(collision_nodes[i] ==
nodes[k][l].NID)
 break;
 }
 //if no match found add
 if(i == no_collision_nodes)
 {
 //Add node to the collision region
 collision_nodes[no_collision_nodes] =
nodes[k][l].NID;
 //Increment no of nodes in collision region
 no_collision_nodes++;
 }
 }
 else
 {
 printf("No of collision nodes
overflow...\n");
 exit(0);
 }
 }
 }
 }
 }
 }
}

/*--*
* Following function checks whether a given node is in *
* the collision range *
* nid - NID of the node *
* Return - 1 if in the collision region & 0 if not *

231

---/
char is_in_collision(uint nid)
{
 int i;

 //Check to see whether node is in collsion list
 for(i = 0; i < no_collision_nodes; i++)
 {
 if(collision_nodes[i] == nid) //if so break
 break;
 }
 if(i != no_collision_nodes)
 return 1; //if in collision region
 else
 return 0;
}

/*--*
* Follwoing function returns the NID of the next hop *
* to forward the message *
* If it is for the current cluster same NID is returned *
* If its for a neighboring cluster its NID is returned *
* Otherwice the NID of the next hop is returned based *
* on the entries in the *
* routing table. *
* If no suitable next hop can't be found 0 is returned *
* dest_add - Destination hierarchical address *
* current_NID - NID of the node trying to determine next hop *
* sendder_NID - NID of the node that forwarded the message *
---/
int next_hop(Hie_CID dest_add, int current_nid, int sender_nid)
{
 int x, y, i, j;
 //Hold hop count for each router table entry
 nei_status neighbors[MAX_ROUTES];
 int no_routing_entries;
 uchar result;

 x = (current_nid - 1) % NODESX;
 y = (current_nid - 1) / NODESX;

 no_routing_entries = nodes[x][y].no_routing_entries;
 //For each entry in the routing table
 for(i = 0; i < no_routing_entries; i++)
 {
 //If route is invalid discard
 if((nodes[x][y].routing_table[i].valid & 1) == 0)
 neighbors[i].hops = 255; //Set as unreachable
 //Check whether the destination is my address or neighbor address
 else if((nodes[x][y].routing_table[i].H_CID.id[0] ==
dest_add.id[0]) //neighbor is destination
 && (nodes[x][y].routing_table[i].H_CID.id[1] ==
dest_add.id[1])

 && (nodes[x][y].routing_table[i].H_CID.id[2] ==
dest_add.id[2])
 && (nodes[x][y].routing_table[i].H_CID.id[3] ==
dest_add.id[3]))
 return nodes[x][y].routing_table[i].learn_from;
 else if(nodes[x][y].routing_table[i].hops == 0) //Skip my entry
 neighbors[i].hops = 255; //Set as unreachable
 else
 {
 result = hop_distance(nodes[x][y].routing_table[i].H_CID,
dest_add);
 if(result == 0)
 neighbors[i].hops = 255; //Set as unreachable
 else
 {
 neighbors[i].hops = result +
nodes[x][y].routing_table[i].hops;
 neighbors[i].nei_NID =
nodes[x][y].routing_table[i].learn_from;
 }
 }
 }

 bubble_sort(neighbors, no_routing_entries);//Sort based on hop count

 if(neighbors[0].hops == 255) //No matching next hop found
 return 0;
 else
 {
 //If 2 or best entries skip parent entry
 if((neighbors[0].hops == neighbors[1].hops) &&
(neighbors[0].nei_NID != neighbors[1].nei_NID)
 && (neighbors[0].nei_NID == nodes[x][y].parent_CH_NID)
&& (neighbors[1].nei_NID != sender_nid))
 {
 return neighbors[1].nei_NID;
 }
 //If next hop is not same as the sender
 else if (neighbors[0].nei_NID != sender_nid)
 return neighbors[0].nei_NID;
 else //If so pick the next best node
 {
 //Find a node which is not energy constrained
 for(j = 1 ; j < no_routing_entries; j++)
 {
 if((neighbors[j].hops < 255) && (neighbors[j].nei_NID !=
sender_nid)
 && (neighbors[j].nei_NID != current_nid)) //If found stop
 return neighbors[j].nei_NID;
 }
 if(j == no_routing_entries) //No possible next node
 return 0;
 }
 }

232

 return 0;
}

/*--*
 * Following function add us the total energy remaining in the network*
 * return total energy *
 --/
double total_energy()
{
 int i, j;
 double energy = 0.00;

 for(i = 0 ; i < NODESX; i++)
 {
 for(j = 0 ; j < NODESY; j++)
 {
 if(nodes[i][j].NID != 0)
 energy += (double)nodes[i][j].energy;
 }
 }
 return energy;
}

/*--*
 * Which node died first, root node or a node along the circular link *
 --/
void who_died(uchar d)
{
 int x, y;

 for(x = 0 ; x < NODESX; x++)
 {
 for(y = 0 ; y < NODESY; y++)
 {
 if(nodes[x][y].node_dead == 1)
 {
 if((nodes[x][y].tree_depth == d) ||
(nodes[x][y].tree_depth == (d + 1)))
 printf("0\n");
 else
 printf("1\n");
 }
 }
 }
}

233

REFERENCES

[1] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor
networks,” Journal of Ad Hoc Networks, vol.3, 2005, pp. 325-349.

[2] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research
challenges,” Journal of Ad Hoc Networks (Elsevier), vol. 2, no. 4, Oct. 2004, pp.
351-367.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, Aug. 2002,
pp. 102-114.

[4] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-Min d-cluster
formation in wireless ad-hoc networks,” In Proc. Conference on Computer
Communications (IEEE INFOCOM 2000), Tel Aviv, Mar. 2000. pp. 32-41.

[5] H. M. N. D. Bandara and A. P. Jayasumana, “An enhanced top-down cluster and
cluster tree formation algorithm for wireless sensor networks,” In Proc. 2nd
International Conference on Industrial and Information Systems (ICIIS 2007), Sri
Lanka, Aug. 2007, pp. 37-42.

[6] H. M. N. D. Bandara, A. P. Jayasumana, T. H. Illangasekare, and Qi Han, “A
wireless sensor network based system for underground chemical plume tracking,”
ISTec Student Research Poster Contest - 2008, Colorado State University, Fort
Collins, CO, Feb. 2008, Available: http://hdl.handle.net/10217/1550

[7] H. M. N. D. Bandara, A. P. Jayasumana, and I. Ray, “Key pre-distribution based
secure backbone design for wireless sensor networks”, In proc. 3rd International
Workshop on Practical Issues in Building Sensor Network Applications,
Montreal, Canada, Oct. 2008, To be published.

234

[8] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare, “Cluster tree
based self organization of virtual sensor networks,” In Proc. Wireless Mesh and
Sensor Networks: Paving the Way to the Future or yet Another...?, New Orlens,
Nov. 2008, To be published.

[9] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical clustering
algorithm for wireless sensor networks,” In Proc. 22nd Conference on Computer
Communications (IEEE INFOCOM 2003), vol. 3, San Francisco, Mar.-Apr. 2003.

[10] T. Banka, G. Tandon, and A. P. Jayasumana, “Zonal rumor routing for wireless
sensor networks,” In Proc. International Conference on Information Technology:
Coding and Computing, vol. 02, 2005, pp. 562-567.

[11] K. Barnhart, “Creation of synthetic data,” Center for Experimental Study of
Subsurface Environmental Processes (CESEP), Colorado School of Mines,
Golden, CO 80401, Unpublished.

[12] S. Basagni, “Distributed clustering for ad-hoc networks,” In Proc. International
Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN'99),
Australia, Jun. 1999, pp. 310-315.

[13] R. T. Boute, “The Euclidean definition of the functions div and mod,” ACM
Transactions on Programming Languages and Systems, vol. 14, no. 2, Apr. 1992,
pp. 127-144.

[14] D. Braginsky and D. Estrin, “Rumor routing algorithm for sensor networks,” In
Proc. 1st ACM International Workshop on Wireless Sensor Networks and
Applications, Atlanta, Sep. 2002, pp. 22-31.

[15] S. A. Camtepe and B. Yener, “Key distribution mechanisms for wireless sensor
networks: a survey,” Technical Report TR-05-07, Dept. CS, Rensselaer
Polytechnic Institute, Mar. 2003.

[16] D. Chakrabarti, S. Maitra, and B. Roy, “A key pre-distribution scheme for
wireless sensor networks: merging blocks in combinatorial design,” International
Journal of Information Security, vol. 5, no. 2, Apr. 2006, pp. 105-114.

235

[17] H. Chan and A. Perrig, “ACE: An emergent algorithm for highly uniform cluster
formation,” In Proc. 1st European Workshop on Wireless Sensor Networks,
Germany, Jan. 2004, pp. 154-171.

[18] H. Chan, A. Perrig, and D. Song, “Key distribution techniques for sensor
networks,” Wireless sensor networks, Kluwer Academic Publishers, Norwell,
MA, 2004, pp. 277-303.

[19] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for sensor
networks,” Symposium on Security and Privacy 2003, May 2003, pp. 197-213.

[20] K. S. Chan, H. Pishro-Nik, and F. Fekri, “Analysis of hierarchical algorithms for
wireless sensor network routing protocols,” In Proc. IEEE Wireless
Communications and Networking Conference, vol. 3, New Orleans, Mar. 2005,
pp. 1830-1835.

[21] G. Chen and I. Stojmenovic, “Clustering and routing in mobile wireless
networks,” Technical report, SITE, University of Ottawa, 1999.

[22] Crossbow Technology, “Crossbow MPR/MIB user’s manual,” Rev. A, June 2007.

[23] Crossbow Technology, “TELOSB mote platform,” 6020-0094-02 Rev A.

[24] Decagon Devices, Inc., “5TE water content, EC and temperature sensors,” ver. 1.

[25] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani, “A fault-local self-
stabilizing clustering service for wireless ad-hoc networks,” IEEE Trans. Parallel
and Distributes Systems, vol. 17, no. 9, Sep. 2006.

[26] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key management
scheme for wireless sensor networks using deployment knowledge,” IEEE
INFOCOM 2004, vol. 1, Mar. 2004, pp. 586-597.

[27] X. Du, Y. Xiao, S. Ci, M. Cuizani, and H. Chen, “A routing driven key
management scheme for heterogeneous sensor networks,” In Proc. IEEE
International Conference on Communications, June 2007, pp. 3407-3412.

236

[28] A. Durresi and V. Paruchuri, “Adaptive clustering protocol for sensor networks,”
IEEE Aerospace Conference 2005, Mar. 2005, pp. 1-8.

[29] e-Sense project, Available: www.ist-e-sense.org

[30] J. Elson and D. Estrin, “Sensor networks: a bridge to the physical world,” in
Wireless Sensor Networks, C. S. Raghavendra, K. M. Sivalingam, and T. Znati,
eds., Kluwer Academic Publishers, Norwell, MA, 2004, pp. 3–20.

[31] L. Eschenauer and V.D. Gligor, “A key-management scheme for distributed
sensor networks,” In Proc. 9th ACM Conference on Computer and
Communications Security, Nov. 2002, pp. 41-47.

[32] Harvard Sensor Network Testbed, Available: http://motelab.eecs.harvard.edu

[33] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-
specific protocol architecture for wireless microsensor networks,” IEEE Trans.
Wireless Communications, vol. 1, no. 4, Oct. 2002.

[34] M. M. Holland, R. G. Aures, and W. B. Heinzelman, “Experimental investigation
of radio performance in wireless sensor networks,” IEEE Workshop on Wireless
Mesh Networks, Sep. 2006, pp. 140-150.

[35] O. Hussein and T. Saadawi, “Ant routing algorithm for mobile ad-hoc networks
(ARAMA),” In Proc. IEEE International Conference on Performance,
Computing, and Communications, Apr. 2003, pp 281-290.

[36] T. T. Huynh and C. S. Hong, “A novel multi-layer architecture for wireless sensor
networks,” In Proc. 7th International Conference on Advanced Communication
Technology, vol. 2, 2005, pp. 1143-1146.

[37] J. Ibriq and I. Mahgoub, “A hierarchical key establishment scheme for wireless
sensor networks,” In Proc. 21st International Conference on Advanced
Networking and Applications, 2007, pp. 210–219.

237

[38] IEEE Computer Society, “IEEE.802.15.4: Wireless medium access control and
physical layer specifications for low-rate wireless personal area networks,” Sep.
2006.

[39] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable
and robust communication paradigm for sensor networks,” In Proc. 6th Annual
International Conference on Mobile Computing and Networking, Aug. 2000,
Boston, pp. 56–67.

[40] A. P Jayasumana, Q. Han, and T. Illangasekare, “Virtual sensor networks – a
resource efficient approach for concurrent applications,” In Proc. 4th International
Conference on Information Technology, Las Vegas, Apr. 2007.

[41] J. Kulik, W. Rabiner, and Hari Balakrishnan, “Adaptive protocols for information
dissemination in wireless sensor networks,” In Proc. 5th ACM/IEEE International
Conference on Mobile Computing and Networking, Seattle, Aug. 1999.

[42] J. Lee and D. R. Stinson, “A combinatorial approach to key predistribution for
distributed sensor networks,” In Proc. Wireless Communications and Networking,
vol. 2, Mar. 2005, pp. 1200-1205.

[43] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and scalable
simulation of entire TinyOS applications,” In Proc. 1st international conference
on Embedded Networked Sensor Systems, Los Angeles, Nov. 2003, pp. 126-137.

[44] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless networks,”
IEEE Journal of Selected Areas in Communications, vol. 15, no. 7, Sep. 1997, pp.
1265-1275.

[45] D. Lymberopoulos, Q. Lindsey, and A. Savvides, “An empirical analysis of radio
signal strength variability in IEEE 802.15.4 networks using monopole antennas,”
ENALAB Technical Report 050501.

[46] M. Maeda and Ed Callaway, “Cluster tree protocol (ver. 0.6)”, Apr. 2001,
Available: http://www.ieee802.org/15/pub/2001/May01/01189r0P802-15_TG4-
Cluster-Tree-Network.pdf

238

[47] A, Manjeshwar and D. P. Agrawal, “TEEN: a routing protocol for enhanced
efficiency in wireless sensor networks,” In proc. 15th International Parallel and
Distributed Processing Symposium, Apr. 2001, San Francisco, pp. 2009-2015.

[48] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization
techniques,” International Joirnal of Computer and Telecommunications
Networking, vol. 51 , no. 10 , July 2007, pp. 2529-2553.

[49] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor networks,”
Communications of the ACM, vol. 47, no. 6, June 2004, pp. 53–57.

[50] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power
wireless research,” In Proc. 4th International Symposium on Information
Processing in Sensor Networks (IPSN 2005), Apr. 2005, pp. 364-369.

[51] S. Rao, “Estimating the ZigBee transmission-range ISM band,” EDN, May 2007,
pp. 67-72.

[52] C. Schurgers and M. B. Srivastava, “Energy efficient routing in wireless sensor
networks,” In Proc. Military Communications Conference 2001, vol. 1, Virginia,
Oct. 2001, pp. 357-361.

[53] M. Shehab, E. Bertino, and A. Ghafoor, “Efficient hierarchical key generation and
key diffusion for sensor networks,” In Proc. Sensor and Ad Hoc Communications
and Networks, Sep. 2005, pp. 76-84.

[54] K. Simonova, A. C. H. Ling, and X. S. Wang, “Location-aware key
predistribution scheme for wide area wireless sensor networks,” Security of ad
hoc and Sensor Networks, Virginia, Oct. 2003, pp. 157-168.

[55] Smart dust, Available: http://robotics.eecs.berkeley.edu/~pister/SmartDust

[56] H. J. Smith, Modular inverse, Nov. 2007, Available:
http://www.geocities.com/hjsmithh/Numbers/InvMod.html

[57] K. Srinivasan and P. Levis, “RSSI is under appreciated,” In Proc. 3rd Workshop
on Embedded Networked Sensors, May 2006.

239

[58] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D.
Estrin, “Habitat monitoring with sensor networks,” Communications of the ACM,
vol. 47 , no. 6, June 2004, pp. 34-40.

[59] Texas Instruments, “2.4GHz IEEE 802.15.4/ZigBee-Ready RF transceiver,” Rev.
B,” Mar. 2007.

[60] H. Tian, H. Shen, and T. Matsuzawa, “Random walk routing for wireless sensor
networks,” In Proc. 6th International Conference on Parallel and Distributed
Computing Applications and Technologies, 2005, pp. 196-200.

[61] TinyOS, Availiable: http://www.tinyos.net/

[62] U-City project, Available: http://ucta.or.kr/en/ucity/concept.php

[63] N. Vlajic and D. Xia, “Wireless sensor networks: to cluster or not to cluster?,” In
Proc. International Symposium on World of Wireless, Mobile and Multimedia
Networks, June 2006.

[64] X. Wang and T. Berger, “Self-organizing redundancy-cellular architecture for
wireless sensor networks,” In Proc. Wireless Communications and Networking
Conference, New Orleans, Mar. 2005, pp. 1945-1951.

[65] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “Energy-efficient broadcast
and multicast trees in wireless networks,” Mobile Networks and Applications, vol.
7, no. 6, Dec. 2002, pp. 481-492.

[66] L. Ying and Y. Haibin, “Energy adaptive cluster-head selection for wireless
sensor Networks,” In Proc. 6th International Conference on Parallel and
Distributed Computing Applications and Technologies (PDCAT 05), China, Dec.
2005, pp. 634-638.

[67] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed
clustering approach for ad-hoc sensor networks,” IEEE Trans. Mobile Computing,
vol. 3, no. 4, Oct.-Dec. 2004, pp. 366-379.

240

[68] O. Younis, M Krunz, and S. Ramasubramanian, “Node clustering in wireless
sensor networks: recent developments and deployment challenges,” IEEE
Network, vol. 20, no. 3, May-June 2006, pp. 20-25.

[69] W. Zhang and G. Cao, “Optimizing tree reconfiguration for mobile target tracking
in sensor networks,” In Proc. Conference on Computer Communications (IEEE
INFOCOM 2004), vol. 4, Mar. 2004, pp. 2434–2445.

241

ABBREVIATIONS

ACE Algorithm for Cluster Establishment

ACK Acknowledgment

ACP Adaptive Clustering Protocol

CCH Candidate Cluster Head

CH Cluster Head

CID Cluster IDentifier

CNRL Computer Networking Research Laboratory

DCA Distributed Clustering Algorithm

DKR Deployment Knowledge based Random key selection

DNS Domain Name System

ECC Elliptic Curve Cryptography

FLOC Fast, LOcal Clustering service

GPS Global Positioning System

GTC Generic Top-down Cluster and cluster tree formation

HEED Hybrid Energy-Efficient Distributed clustering

HHC Hop-ahead Hierarchical Clustering

i-band inner-band

ID IDentifier

IEEE Institute of Electrical and Electronics Engineers

LEACH Low Energy Adaptive Clustering Hierarchy

242

LEACH-C Low Energy Adaptive Clustering Hierarchy – Centralized

LSD Least Significant Digit

MAC Media Access Control

NID Node Identifier

o-band outer-band

PAN Personal Area Network

PAN ID Personal Area Network IDentifier

PHC Probabilistic Hierarchical Clustering

PMP Plume Modeling and Prediction system

RBMCD Random Block Merging in Combinatorial Design

RIP Routing Information Protocol

RSSI Receiver Signal Strength Indicator

RHHC Receiver signal strength indicator based Hop-ahead Hierarchical
Clustering

RSHC Receiver signal strength indicator based Simple Hierarchical Clustering

SHC Simple Hierarchical Clustering

SPIN Sensor Protocols for Information via Negotiation

STD STandard Deviation

TEEN Threshold sensitive Energy Efficient sensor Network

TTL Time To Live

VPN Virtual Private Network

VSN Virtual Sensor Network

WSN Wireless Sensor Network

ZRR Zonal Rumor Routing

	ABSTRACT OF THESIS
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1
	INTRODUCTION
	Motivation
	Contributions
	Outline
	Chapter 2
	BACKGROUND AND RELATED WORK
	Clustering In Wireless Sensor Networks
	Hierarchical Wireless Sensor Networks
	Wireless Sensor Network Routing Protocols
	Key Distribution In Wireless Sensor Networks
	Collaborative Wireless Sensor Networks
	Summary
	Chapter 3
	PROBLEM FORMULATION
	Desirable Characteristics Of The Solution
	Desirable Characteristics Of Clusters And Cluster Trees
	Desirable Characteristics Of Routing Protocols
	Desirable Properties Of Secure Backbones

	Network Model
	Problem Statement
	Chapter 4
	CLUSTER AND CLUSTER TREE FORMATION
	Generic Top-Down Cluster And Cluster Tree Formation Algorithm
	Achieving Desirable Characteristics
	Message Complexity Of The Algorithm
	Performance Analysis
	Metrics
	Cluster Characteristics
	Single-hop Clusters
	Multi-hop Clusters
	Cluster Tree Characteristics

	Summary
	Chapter 5
	EXTENDED TOP-DOWN CLUSTER AND CLUSTER TREE FORMATION ALGORITHM
	Extended GTC Algorithm
	RSSI Based Cluster Head Selection
	Cluster And Cluster Tree Optimization Phase
	Depth Of The Cluster Tree
	Performance Analysis
	Cluster Characteristics
	Cluster Tree Characteristics

	Summary
	Chapter 6
	ROUTING
	Cluster Tree Based Routing
	Hierarchical Addressing
	Addressless Routing
	Relative Branch Number Based Addressing

	Cross-links Based Routing
	Circular Path Based Routing
	Performance Analysis
	Summary
	Chapter 7
	TOWARDS VIRTUAL SENSOR NETWORKS
	Virtual Sensor Network Support Functions
	Cluster Tree Based Virtual Sensor Network Formation
	Inter-VSN and Intra-VSN Communication
	VSN Based Close Loop System
	Performance Analysis
	VSN Formation
	Inter VSN Communication
	Close Loop System
	Summary
	Chapter 8
	SECURE BACKBONE DESIGN
	Secure Backbone Formation
	Secure GTC Algorithm
	Achieving Desirable Characteristics

	Performance Analysis
	Summary
	Chapter 9
	SUMMARY
	Conclusions
	Contributions
	Future Directions
	Appendix A
	SIMULATOR
	A.1 Node Placement
	A.2 Cluster And Tree Formation
	A.3 Signal Propagation Model
	A.4 Energy Model
	A.5 Close Loop System
	A.6 Key Pre-distribution
	Appendix B
	SOURCE CODE
	REFERENCES
	ABBREVIATIONS

