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Abstract-In this paper, we describe an algorithm for finding
the exact, nonlinear, maximum likelihood (ML) estimators for the
parameters of an autoregressive time series. We demonstrate that
the ML normal equations can be written as an interdependent
set of cubic and quadratic equations in the AR polynomial
coefficients. We present an algorithm that algebraically solves
this set of nonlinear equations for low-order problems. For high­
order problems, we describe iterative algorithms for obtaining a
ML solution.

I. INTRODUCTION

I N this paper, we derive a new algorithm for computing
maximum likelihood (ML) estimators of the parameters

that characterize a stationary Gaussian autoregressive time
series. The derivation is based on the Gohberg-Semencul
formula for the inverse of a Toeplitz matrix. Our key result
is a set of equations we have labeled the normal equations
of maximum likelihood, to distinguish them from the nor­
mal equations of linear prediction. The normal equations of
maximum likelihood are at most cubic in the autoregressive
parameters, whereas the normal equations of linear prediction
are, of course, linear. We present two approaches for solving
the nonlinear ML normal equations: an algebraically exact al­
gorithm based on the properties of Sylvester resolvent matrices
and approximate solution by iterated map.

Any attempt to summarize the vast literature on autoregres­
sive modeling, or identification of autoregressive time series,
would be futile. Nonetheless, by reviewing the main lines of
research over the past 70 years, we can establish the context
of the results in this paper.

With reference to Table I, we organize work on autoregres­
sive (AR) modeling according to the criterion for identifica­
tion, and the representation used to describe the AR model.
These are the columns and rows of Table I. Beginning in
column 1, we classify Burg's algorithm [4] for identifying
a sequence of reflection coefficients as a recursive linear pre­
diction (RLP) technique that uses a Levinson recursion for the
sequence of approximating AR models. There have been, to
date, no other RLP algorithms based on other representations
of the AR time series. These classifications account for the
first column of the table.
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The literature cited in column 2 has the common objective
of minimizing prediction error variance and is classified as
linear prediction (LP). The work of Yule [21], Walker [20],
and Durbin [8] is classified as linear prediction (LP), using
a Toeplitz representation for the estimated correlation matrix.
Actually, the work of Durbin belongs to two classifications,
because it advocates the use of the Levinson recursions for
the efficient solution of the normal equations. The work of
Morf, et aZ. [15], LeRoux and Gueguen [13], Friedlander et
a!. [9], and Demeure and Scharf [6] is classified as LP, with a
Levinson representation for the inverse correlation matrix. This
work provides fast algorithms for solving the normal equations
of linear prediction when the estimated correlation matrix is
close to Toeplitz. These classifications account for the second
column of the table.

In column 3, the work of Kay [12] is difficult to clas­
sify because it uses two representations for the AR time
series. That is, it uses a Gohberg-Semencul characterization
of R -1, but it uses a Levinson formula to represent the AR
model in the recursive maximization scheme. We classify
this work as recursive maximum likelihood (RML), with a
Gohberg-Semencul formula for the inverse correlation matrix.
The work of Vis and Scharf [19] is classified as RML with a
Levinson formula for the representation of R -1 and the order
increasing AR models. It clarifies the connection between
Kay's work on RML and Burg's work on RLP, and completes
the classification of the literature in the third column of the
table.

In column 4, the theory of exact maximum likelihood
(ML) estimation of AR parameters begins with the work of
Schweppe [18], although he provided no algorithms for the
maximization of likelihood. Akaike [1] and Ansley [2] did
provide such algorithms. This work is classified as ML, based
on a Markovian representation for the time series and its
correlation sequence.

The work of Morf et aZ. [16] provided a link between Mar­
kovian representations and Levinson recursions, leading to the
formulas of Dugre et aZ. [7] for computing likelihood. Neither
[16] nor [7] contained formulas for maximizing likelihood.

The work of Kailath et aZ. [11], Box and Jenkins [3], and this
paper are classified as ML, based on the Gohberg-Semencul
formula for the inverse correlation matrix. No algorithms
were presented in [11] or [3] for maximizing likelihood. Our
contribution is to maximize likelihood by deriving a new set of
nonlinear normal equations, based on the Gohberg-Semencul
formula, and to present algorithms for solving them. The
work of Burg et a!. [5] is not exact ML because it used ML
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TABLE I
CLASSIFICATION OF ALGoRITHMS BY CRrrERrON AND REPRESENTATION OF R- I

Repr. for R, Criterion
R- I , or A(z) RLP LP RML ML

Yule [21]
Toeplitz only NA Walker [20] NA Burg et al..[5]

Durbin [8]
Morf et at. [IS]

Levinson Burg [4]
LeRoux-Gueguen [13] Vis-Scharf [19]

Morf et al. [16]
Friedlander et at. [9] Dugre et al. [7]
Demeure-Scharf [6]

Kailath et al. [11]
Gohberg-Semencul NA NA Kay [12] Box-Jenkins [3]

Mcwhorter-Scharf (22)
Schweppe [18]

Markovian NA NA NA Akiake [I]
Ansley [2]

to estimate a Toeplitz correlation matrix without assuming
a model for the time series. Approximate ML estimates of
the AR coefficients are then obtained by solving the normal
equations of linear prediction using the estimated correlation
matrix. .

This paper is organized as follows. In Section II, we use a
Gohberg-Semencul formula to derive a novel set of normal
equations in the AR coefficients. These normal equations
illuminate both the similarities and the differences between
linear prediction and exact maximum likelihood. In Section
III, we describe an algebraically exact algorithm for solving
the nonlinear normal equations of ML. Sections ill-A and ill­
B describe the algorithm for first- and second-order processes.
Section III-C extends the algebraically exact algorithm to
systems of arbitrary order. Section III-D is concerned with
the computational aspects of this algorithm. In Section IV
we briefly describe some iterative procedures for solving
the normal equations derived in Section II. These iterative
algorithms differ from those of Burg and Kay in that we are
iteratively solving the exact ML normal equations and not
iteratively maximizing an approximation to the true likelihood
function.

II. NORMAL EQUATIONS

Let Y = [Yo Y1 ... YN_1]T be a vector of data from an
autoregressive (AR) time series. That is, assume the time series
is synthesized according to the model of Fig. 1. The wide­
sense stationary time series {Ut} is modeled as a zero-mean
white Gaussian noise process of variance (J'2. The pth-order
polynomial A(z) = 1 + alz-1+ ... + ap.z-P is assumed to be

monic and minimum phase with real-valued coefficients. These
assumptions imply that the snapshot y is distributed N[O,R]
where R E R N x N is the symmetric Toeplitz correlation
matrix

1

A(z)

Fig. I. Synthesis model for an AR time series.

equations for the ML estimators of the input noise variance
(J'2 and the AR coefficients {adf.

Assume that we are given M statistically independent
snapshotsY = [Y1 Y2 ... YM] of a time series synthesized
as in Fig. 1. We assume that each snapshot has N elements.
The log-likelihood function for the data can be written as

MN (M 1~ T -1
L = --2- ln 21f) - 2 1n( IR I) -r- 2' L..Yi R s,

i=l

= _ MN In(21f) _ M In(IRI) _ M tr{R-1S}
2 2 2

where

is the sample correlation matrix. The correlation matrix, R,
is completely described by the AR coefficients and the input
noise variance. The Gohberg-Semencul inversion formulas,
described in [10], provide one way to represent the correlation
matrix in terms of the AR coefficients and noise variance; The
key Gohberg-Semencul formula in our derivation is

11"
R-1 = _Q-1 = -(FFT _ GGT ) (1)

(J'2 (J'2

where F and G are the N x N lower triangular Toeplitz
matrices

We denote any (p + 1) x (p + 1) block on the diagonal of R
by R p • In the remainder of this section we derive the normal

R=

T1

r~-'lTO

T1
T1 TO

1 0
a1 1

p

F = LaiZi = ao =1,
i=O ap

0 ap a1 1
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o o YN-l YN-2 YN-p

p

G = LaiZN-i =
i=l

Y2 = YN-2
YN-l

o

For multiple snapshots, Rp(Y) can be defined by (3). Equiv­
alently, Rp(Y) can be built by using the M snapshots to
construct M matrices with the structure defined in (5) and
then forming their average.

Equation (4) has been derived by Kay [12] and is funda­
mental in the development of the RML algorithm described
in his paper. The matrix Rp(Y) is also important in both
the computation and intuitive understanding of our algorithm.
Accordingly, we now discuss two important properties of
~(Y).

Let B(z) = 1 + b1z-
1 + ... + bpz-P be any pth-order

minimum phase monic polynomial and b = [1 b1 ..• bpjT the
corresponding vector of polynomial coefficients. The deriva­
tion of (4) implies that

bT~(Y)b ~ 0

for all Y = [Yl ... YM] and all minimum phase polynomials
of order less than p + 1. To demonstrate this, create a non­
negative definite Toeplitz correlation matrix, R B , by passing
white noise through the AR system 1/B (z). The derivation of
(4) can be duplicated, substituting B(z) for A(z), to arrive at

M
'""" T -1 T AL.. Yi R B s. = b Rp(Y)b ~ O.
i=1

This property is important because R p(Y) is not necessarily
nonnegative definite [12]. As we will soon show, the maximum
likelihood estimate of (J2 is the quadratic term aTRp(Y)a.
The above property indicates that if the estimated polynomial
A(z) is minimum phase, then the estimated noise variance
will be positive.

Despite the notation, R p(Y) is not, in general, a good
estimator of the (p + 1) x (p + 1) correlation matrix R p •

One deficiency of Rp(Y) is that it is not guaranteed to be
nonnegative definite. Moreover, we now show that Rp(Y) is
a biased estimator of Rp. From (3), it follows that

E{Tij(Y)} = ~tr{ZfE{S}Zj}- ~tr{Z~_iE{S}ZN-j}

1 T 1 { T }= Ntr{Zi RZ j } - Ntr ZN_iRZN-j. (6)

After some algebra, we obtain

E{Rp(Y)} = R p - B

(2)

(5)

(4)

o

YN-l

Zo = I;
o 1

= [8(k,i - j)]i,j;

Yo Yl
Yl Y2

Y 1 = YN-p-l YN-p

YN-2 YN-l
YN-l

tr{R- 1S} = ~tr{Q-1S} = ~tr{[FFT - GGT]S}(J (J
1 1

= 2"tr{FTSF} - 2"tr{GTSG}
(J (J

= :2 tr[t aizr] S[t ajZ j]
>=0 J=O

- :2tr[t aiZ~_i] S [tajZN-j]
>=0 J=O

1 p p

= (J2 LLaiaj[tr{ZfSZj}
i=O j=O

- tr{Z~_iSZN-j}].

The N x N shift matrices Zk are defined by

That is, Zk is zero except for ones on its kth sub-diagonal.
Observe that the data dependent term of the log-likelihood
function can be written as

Define the vector of AR coefficients a = [1 al '" ap]T and
the (p+ 1) x (p+ 1) matrix Rp(Y) = [Tij(Y)] where

Tij(Y) = ~[tr{ZfSZj}-tr{Z~_iSZN-j}]' (3)

For a single snapshot (M = 1), the matrix Rp(Y) has the
form

Then, (2), in conjunction with (3), implies

-1 N T A

tr{R S} = 2"a Rp(Y)a.(J

where the Hankel matrix Y 1 and the Toeplitz matrix Y 2 are

YP
Yp+!
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MN MN T'
---2 +--4a Rp(Y)a=O.

2er 2er

Solving this equation for er2 produces the maximum likelihood
estimate for er2

with respect to the unknown parameters. Here 8 = [1 0
... Of is the first column of the (p + 1) x (p + 1) identity
matrix. Differentiating (9) with respect to cr2 yields the normal
equation

(14)

(13)C~[n

From (12) and (6) through (8), it can be shown that the
(p + 1) x (p + 1) matrix C is equivalent to '

C:= N(Rp - B)

where Rp and B are defined in (7) and (8). The ML normal
equations can now be written as

o 2 T
-In(IQI) = --c· a
Ba, er2 '

o 2
-In(IQI) = --Ca.
8a er2

We are now in a position to derive the normal equations for
the ML estimators of the AR coefficients. The gradient of the
Lagrangian in (9) with respect to the vector a generates the
normal equations

M MN,
-Ca - -R (Y)a = A8er2 er2 p

[
1 ' ] Acr

2

N C - Rp(Y) a =MN8.

and

The result of (11) and the definitions of (12) and (13) can be
used to write

and

(9)

2pro

prp

(p + l)rp - l

(p + 2)rp - 2 . (8)

prp (p + l)rp _ l

o rl
rl 2ro

B = ~ 2r2 3rl
N

These equations indicate that Rp (Y) is a biased estimator of
R p , with bias B. This property is important for gaining an
intuitive understanding of our maximum likelihood algorithm.
We address this topic in the later stages of this section.

At this point, we have established that the log-likelihood
function; ignoring irrelevant constants, is

L = _MN In(er2) _ M In(IQI) _ MNaT~(Y)a.
2 2 2er2

The normal equations of maximum likelihood can be derived
by differentiating the Lagrangian

;: = _MN In(er2 ) _ M In(IQI)
2 2

_ MN aTR (Y)a---; A(aT8 -1)
2er2 p

Define D = diag{O, 1, 2,'" ,p}. Again, the relation Rpa =
er28 can be invoked to establish

1
Ba = N(DRp + RpD)a

1· 2 1
= N D 8er + N RpD a

1
= N R pad

Recall that for an AR time series, Rpa = er28. Therefore,
(15) can be reduced to

[~(Y) + B]a = er2 (1-,~N) 8. (16)

The important nonlinear te~ in these normal equations is

1 r~ ;:0 ::: (p:;frp-1J
Ba= - . a.N' .

p~p (p + i)rp_l 2pro

To simplify this expression, note that the bias matrix has the
equivalent representation

(15)(10)

Define the row vector c[ = [CiD Cil '" Cip] and the matrix
C where

OQ"-l = ~(FFT _ GGT)
Ba, Ba;

= ZiFT + FZ[ - ZN_iGT - GZ%_i'

These results imply

nO In(IQI) = -2tr{Q[ZiFT - ZN_iGT
]}

oo;

2 T T
= -2tr{R[ZiF - ZN-i G ]}

o
p

= --; I:>jtr{R[ZiZJ - ZN-iZ%_j]}'
er j=O

(11)

Therefore, if our estimate of A(z) is minimum phase, the
maximum likelihood estimate of er2 will be nonnegative.

To find the ML estimator of the AR coefficients, first
observe that

O:i In(IQI) = tr{ Q-l ~~ } = -tr{ Q O~~l }

Cij = tr{R[ZiZJ - ZN-iZ%_j]}

= tr{Z;,RZd - tr{Z%_jRZN-d (12)

and
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where ad = Da = [0 al 2a2 '" papjT. The normal equations
can now be reduced to

If we define the (p + 1) x (p + 1) analogs of F and G we
arrive at

(17) (22)

or

(23)

(24)

3 2((N-2)rOI )
p(X)lx=al = x + x (N _ l)r11

_x(Nr11+roo)_ NrOl I =0.
(N - l)r11 (N - l)r11 x=al

The normal equations of (22) are then

[
T TTl TJ' ( _FpFp - GpG p - aa + Nada R p Y)a - 0

[
0 0 ] ,N (l-ai( NNI ) ) Rp(Y)a=O.

The first element of this vector equation is satisfied for all a
and Rp(Y). That is, the first row of Q;I - aa" + I/NadaT
is zero for all pth-order polynomials A(z). We are left with p
equations that must be solved for the p AR coefficients {adf.
We will show in the next section that the normal equations
can be written as an interdependent set of cubic and quadratic
equations in the AR coefficients. We also present algorithms
to solve this set of equations.

We are left with the relevant equation

Kay [12] derived a method to approximately maximize like­
lihood .by estimating a series of reflection coefficients. For
AR processes of order two or higher, the method is an
approximation to exact maximum likelihood. However for a
first-order process, Kay's method should produce the exact ML
estimate of al. The result of (24) corresponds to the first-order
normal equation introduced by Kay. The polynomial of (24)
has either one real and two complex conjugate solutions or

III. EXACT ALGORITHMS

In this section, we present an algorithm for solving the
normal equations of (22). This algorithm is said to be exact
because we characterize the solutions for the AR coefficients as
roots of polynomials. In practice there will be errors associated
with any root finding algorithm so the results will be exact
only in an algebraic sense. We introduce the algorithm for
first- and second-order problems and then describe how it can
be generalized for higher-order systems.

A. First-Order Example

Assume that the polynomial A(z) = 1+aIz- 1 is restricted
to be first-order. For the first-order case ad = [0 al]T and

If we let rij denote the ijth element of Rp(Y), we have the
equivalent polynomial expression

(18)

(19)

or

aTRp(Y)a + ~aTRpad = (7"2 (1 -~N)
2 (7"2 T 2 ( >.)

(7" + N 8 ad = (7" 1 - MN

(7"2 = (7"2 ( 1 - M~ ) =} >. = O.

The ML norrnal equations are therefore

[Rp(Y) + B]a = (7"2{)

The value of the Lagrange multiplier is easily determined from
(17)

These forms of the ML normal equations provide an intuitive
understanding of exact maximum likelihood estimation. Note
that E{Rp(Y) +B} = R p. Thus, in solving the maximum
likelihood problem, we are trying to estimate a set of AR
coefficients that generate a bias matrix B to ameliorate the
deficiencies of Rp(Y) and satisfy the normal equations as
well.

Equation (18) also provides an intuitive connection between
the theory of exact maximum likelihood and the least squares
theory of linear prediction. In the least squares theory, the
normal equations are RLpa = (7"28 where R LP is an estimate
of the correlation matrix R p • Thus, linear prediction and exact
maximum likelihood share a common structure in their respec­
tive normal equations. Linear prediction builds a "reasonable"
quadratic estimate of the correlation matrix solely from the
data and then finds the optimal whitening polynomial. Whereas
exact maximum likelihood builds a quadratic, but deficient,
estimate of the correlation matrix and simultaneously tries to
offset the deficiencies and whiten the "corrected" estimate of
the correlation matrix.

In the remainder of this section we manipulate the ML
normal equations into a form that makes them amenable to
either exact or iterative solution. From (19) we write

Rp(Y)a + ~(7"2Qpad = (7"28

Q;IRp(Y)a + ~ad(7"2 = (7"2Q;1{) = aO"2. (20)

The matrix Qp is the (p + 1) x (p + 1) northwest block of
the matrix Q defined in the Gohberg-Semencul formula of
(1). It is simply the normalized representation for the Toeplitz
matrix Rr . Recall that our maximum likelihood estimate of
(7"2 is aTRp(Y)a. Therefore (20) is equivalent to

[Q;I _ aaT + ~adaTJRp(Y)a = O. (21)



2914 IEEE 1RANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 12, DECEMBER 1995

three real solutions. Kay has demonstrated that in either case
there will be at least one real solution satisfying lall < 1. This
root is the ML estimate of al.

The Sylvester resolvent matrix is also called a resultant matrix
by Heinig and Rost [10], It can be shown that the determinant
of the Sylvester resolvent matrix is

m

or explicitly by

To reiterate, the normal equations indicate that the polynomials
PI(x) and P2(X) share a common root at x = aI, provided the
coefficients are evaluated at the maximum likelihood solution
for a2. Therefore, the Sylvester resolvent matrix'for these two
polynomials must be singular at the ML solution for a2. This
fact can be exploited to obtain the following polynomial 'in a2

p,(y)I,~", ~ det(M) ~ to 1iy'I,~", ~ O. (27)

The coefficients bi} of the polynomial P3(Y) are functions
only of the data. In Section III-D we discuss some methods
for computing these coefficients. Any potential ML solution
for a2 must be a root of the ninth-order polynomial in (27),
The algorithm for the second-order case is then:

Exact Algorithm for a Second-Order AR Process

1) Form the matrix Rp(Y) using the time series data. Note
that the normal equations for the AR coefficients are
invariant to scaling of this matrix.

2) Compute the coefficients {ai(Y)}~ and {(3i(Y)}6 of the
polynomials PI(x ) and P2 (x) using (22).

3) Compute the polynomial P3 (y) using (27) or the tech­
niques outlined in Section III-D.

4) Find all real roots of P3(Y) with magnitude less than
one. These are. the potential ML solutions, {a~i)}, for
the AR coefficient a2.

5) Substitute all potential ML solutions for a2 into (25) or
(26). The real roots of these equations are potential ML
solutions for al. To summarize, at this point we have
the potential ML solution pairs (a~i), a~i)) where both
coefficients are real and la~i) I < 1.

6) Discard all potential solution pairs that do not produce a
minimum phase AR polynomial A(z) = 1 + aii)z~1 +
a~i) z-2 and/or that do not satisfy both normal (25) and
(26). Usually only one pair of solutions will remain and
this is the ML solution for the AR coefficients. In the
numerical trials we have conducted, we have always

det(M) = b';;-, IT a((3k).
k=1

Thus, det (M) = 0 if and only if the polynomials a(x) and
b(x) share at least one root. It is this property that we will
exploit in the algorithm that follows.

The initial step in the algorithm for finding the ML estimates
of al and a2 is to construct the Sylvester resolvent matrix for
the polynomials defined in (25) and (26)

l
ao(y) al(Y) a2(Y) a3(Y) 0]

o ao(Y) al(Y) a2(Y) a3(Y)
M = (3o(Y) (31(Y) (32(Y) 0 0

o (3o(Y) (31(Y) (32(Y) 0
o 0 (3o(Y) (31(Y) (32(Y) y=a2

m

al - ala2( N;/)] R (Y)a = O.
1- a~(NN2) p

m

aO an
ao an 0

0

M= ao an
bo bm

bo bm 0

0
bo bm

and define the vector 7/Jk(X) = [1 X x2 ... xk-IjT. The
Sylvester resolvent matrix, M, can be implicitly defined [17]
by

We can also express these equations as

b(x) = L bixi = bm IT (x - (3i) bm i- 0
i=O i=1

The relevant normal equations can be written as

PI (X)lx=al = x3a3(a2)+x2a2(a2)+Xal (a2)+ao(a2)!x=a,
= 0 (25)

P2(x)lx=a, = x 2(32(a2) + x(3l(a2) + (30(a2)lx=a, = 0 (26)

n n

a(x) = Laixi =anIT(X-ai) ani-O
i=O i=1

where the coefficients {ai} and {(3i} are functions of a2 and
the observed data Rp (Y). To find the maximum likelihood
solution we must solve this interdependent set of equations.
One can interpret (25) and (26) as two polynomials PI(x) and
P2 (x), which share a root at x = al. It is this interpretation that
indicates that the properties of the Sylvester resolvent matrix
might be applicable in the solution of the normal equations. We
first describe the construction and properties of the Sylvester
resolvent matrix before solving (25) and (26).

Let a(x) and b(x) be the polynomials

B. Second-Order Example

In this subsection we assume that the polynomial A(z) =
1+alz- l +a2z-2 is restricted to be second-order. Under this
assumption ad = [0 al 2a2jT and
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obtained at least one minimum phase solution to the ML
normal equations. On occasion, if the number of data
points is small (N = 4,5), we have obtained multiple,
minimum phase, solutions to the ML normal equations.
In these cases, the ML solutions differ by only a small
amount. It may be that, theoretically, these solutions
are identical, but due to numerical inaccuracy we obtain
multiple, approximately equal, solutions.

This concludes our discussion of the exact ML algorithm for
the second-order example. In the next section we generalize
this algorithm for systems with arbitrary order.

C. Exact Algorithm for Higher-Order AR Processes

The general procedure for solving the ML normal equations
is a simple extension of the techniques presented in the
previous section. Recall that the variables were separated by
relying on the fact that two polynomials shared a common
root. The same idea applies in the general procedure. In the
following we present the generalized algorithm for a third­
order system. The algorithm for a general pth-order system is
merely an extension of the procedure we present below.

For a third-order system, use the normal equations of (22)
to generate the three polynomials

Pl(a2) = a~a3 + a~a2 + a2al + ao = 0

P2(a2) = a~132 + a2131 + 130 = 0

P3(a2) =ah2 +a2/1 + ')'0 =0

where the coefficients {ai}, {13i}, and hi} are functions of
the AR coefficients al and a3 and the data. The formulas for
these coefficients can be derived from (22). Now, form two
Sylvester resolvent matrices

[~
al a2 a3

i']ao al a2
M 1 = 130 131 132 0

0 130 131 132
0 0 130 131 132

[a, al a2 a3

~,]
M'~f:

ao al a2
')'1 ')'2 0 o . (28)

')'0 ')'1 ')'2 0
0 ')'0 ')'1 ')'2

The normal equations imply that the polynomials PI (x) and
P2 (x) share a common root at a2. The same assertion is true
for Pl(X) and P3(X). The properties of the Sylvester resolvent
matrix can then be used to obtain the two polynomials

P4(al) = det(Mr) = ai"q + + al"l + "0 = 0 (29)

P5(al) = det(M2 ) = a~~r + + a16 + ~o = O. (30)

The coefficients {"i} and {~i} are now only functions of a3
and the data. These two equations indicate that the polynomials
P4(X) and P5(X) share a root at al. Therefore the Sylvester

Fig. 2. Resultant polynomial orders for second-order system.

PI : [ai ' ~ • a~ J
P4 : [ai ' .~ J

'z

Pz: [·i .~ .•~ ]
[.L,.~ J '1 P6 : [41 ]

Ps :

Fig. 3. Resultant polynomial orders for third-order system.

resolvent matrix

"0 "q
"0 K,q 0

0

M 3=
"0 K,q

~O ~r

~O ~r 0

0

~O ~r

must be singular. This property can be exploited to determine
our last equation

where now the coefficients of this polynomial, {Ail, depend
exclusively on the data. The AR coefficient a3 must be a root
of the polynomial P6(x). The procedure is then to find all roots
of P6(x) that are real and have magnitude less than one. All
roots that satisfy these conditions are potential solutions for a3.
Potential solutions for al are the real roots of either P4 (x) or
P5 (x) with the coefficients of these polynomials formed from
the data and the potential solutions for a3. The solutions for
a2 can be found in a similar fashion from the polynomials
Pl(X), P2(X), or P3(X). This procedure generates a finite
number of potential solution sets for the AR coefficients. The
final step of the procedure is to eliminate all sets of solutions
that do not generate minimum phase A(z) and/or do not satisfy
all three normal equations. It is straightforward to extend this
procedure for systems of arbitrary order. In the following
section we describe procedures for constructing the coefficients
of the polynomials generated by this algorithm.

D. Computational Aspects

The algorithm described in the preceding section requires
the computation of a resultant or equivalently the determinant
of a Sylvester resolvent matrix. This calculation represents
the majority of the computational burden associated with this
algorithm. In this section, we discuss some techniques for
performing this computation.
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Fig. 4. Resultant polynomial orders for fourth-order system.

y~] ..
y~

r = V-TpV-1
x y'

where

Again, this computation can be done efficiently by choosing
the {Xi} and {Yi} to be roots of unity. This technique can
be extended to higher-order problems by careful repeated
application of the Kronecker product operator. To use this

method it is necessary to know the orders of each coefficient
in the resultant polynomial. In Figs. 2-4, we list the order of
resultant polynomials for systems of order two through fOUL In
these figures the superscript on the AR coefficients indicates
the largest degree of the coefficient. It may appear that this
algorithm is intractable for systems of order four because the
final polynomial (in a4) has such large degree; However, we
know that la41 < 1 and that a4 must be real. This additional
information can make it possible to use this technique for
systems of order four. That is, it is only necessary to search for
real roots of PIO with modulus less than one. One can also use
an initial estimate of a4 (say from LP) and a Newton-Raphson

v, = r:a :,]

xZ x~

Then, r satisfies

det{M,(x"Yj)Hl x, ... X ll{J
or equivalently

p,("" a3) ~ dct{M, (aj, a,)} ~ [1", .,. ai]I' [:; ]

where the matrix r depends only on the data Rp (y). Let al

and a3 be variable to obtain

This technique can be extended to higher-order problems.
Consider the polynomial of (29) that arose in the third-order
case. The coefficients {K;i}6 are functions ofthe data and a3.
In fact we can write this polynomial as

~~] [~~] [~:~~~~~~~?]
... ;E ~9 = det{~(Y9)} = c.

(32)
Here, M(Yi) denotes the matrix M with its elements formed
using Y = Yi· If the {Yd5 are chosen to be roots of unity, then
(32) can be solved efficiently using an FFT algorithm.

The highest degree of computational flexibility is main­
tained if we obtain the coefficients of the resultant polynomials
assuming that the elements of Rp (Y) are variables. In this
case the resultant computation has to be performed only once
(offline). The data are then used to compute ~(Y) and
the elements of this matrix can be used to directly form the
coefficients of the polynomials. For example, in the second­
order case, the coefficients of the ninth-order polynomial in
(27) depend exclusively on the data through ~(Y). The
resultant operation, which forms this polynomial, can be
computed once to obtain maps from Rp (Y) to the coefficients
hd8. The resultant computation in this case usually requires
access to a symbolic math software package. However, it
has been our experience that these packages are viable for
computing these resultants only if the dimensions of the two
polynomials are relatively small. Assuming ~(Y) variable,
the symbolic math package we used was easily able to
compute the resultants of (27) (for the second-order case) and
the resultants of (29) and (30) (third-order case). However,
symbolically computing the resultant of (31) was beyond the
capabilities of our computer and/or software package. We
therefore use this technique to compute the resultants for
polynomials of small degree and use the method described
below for computing the resultants of polynomials with larger
degree.

In this section, we assume that the data have been used
to compute numerical values for the elements of ~(Y).
The technique described in this section is easily understood
by way of example. Consider the polynomial of (27). If this
polynomial was evaluated at 10 different values of y and we
knew the result, then the coefficients of the polynomials could
be easily found by solving a linear equation. But we know the
result of the polynomial evaluated at some number Y = Yi.
It is simply the determinant of the corresponding Sylvester
resolvent matrix M, where the elements of M are evaluated

at Y = Yi. Note that there is no symbolic computation involved
in this determinant. The coefficients hd8 can be obtained by
solving the following linear equation

[

I Yo Y5
I YI YI
· . .· . .· . .
1 Y9 y~
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procedure to obtain the ML value for a4. In this case it is not
necessary to root the polynomial PlO.

This algorithm relies on the computation of the determinant
of a Sylvester resolvent matrix (for example to form c or 4'). In
the following we summarize a recursive procedure derived in
[14] for computing these determinants. Let a(x) = L:aixi be
a polynomial of degree n. Let b(x) =L:bixi be a polynomial
of degree m, and assume that n ~ m. Let M denote the
Sylvester resolvent matrix for a(x) and b(x) and define the
resultant R[a(x), b(x)] = det{M}. Then it can be shown
that R[a(x), b(x)] = bmR[c(x), b(x)] where the polynomial
c(x) = a(x) - x(n-m)(an/bm)b(x) now has, at most, degree
n - 1. This procedure can be applied recursively to compute
the determinants.

IV. ITERATIVE ALGORITHMS

In the previous. section we introduced an algorithm for
"exactly" computing the maximum likelihood estimates of the
AR coefficients. The primary disadvantage of this algorithm is
that one must accurately find the roots of a polynomial whose
degree increases exponentially with respect to system order.
In this section, we summarize some iterative algorithms that,
theoretically, can be used to solve the ML normal equations
for AR systems of arbitrary size. These algorithms are used to
iteratively solve the exact ML normal equations. Thus, they
differ from the recursive algorithms of Burg and Kay, which
iteratively maximize an approximation of the true likelihood.

A. Iterative Algorithm for Coupled Systems

In this section, we describe an iterative algorithm that can be
extended inductively to systems of arbitrary order. The idea
behind the iterative procedure is to decompose a pth-order
estimation problem into a (p - l)th-order problem coupled
with a first-order problem. In the following we describe this
procedure for a second-order AR process and then briefly
discuss an inductive extension of the algorithm to higher-order
processes.

Recall from Section III-B that the normal equations for the
AR coefficients of a second-order process can be written as
the following polynomials in al

Pl(x)lx=a,

= x3a3(a2) + x2a2(a2) + xal(a2) + ao(a2)lx=a, =a
(33)

P2(x)lx=a,
= x2!h(a2) + x(3l(a2) + (3o(a2)lx=a, = o. (34)

These normal equations can also be written as polynomials
in a2:

ih(x)lx=ao
= x3c3(al) + x2c2(ad + xCl(ad + co(al)lx=a2 = a

(35)

P2(x)lx=a2
= x3d3(ad + x2d

2(ad + xdl(ad + do(adlx=a2 = o.
(36)

In the following, we describe an iterative procedure for solving
these ML normal equations. For a second-order AR process,
the "exact" algorithm described in Section III-B is easily im­
plemented and this iterative algorithm is not really necessary.
However, this iterative algorithm can be used as an alternative
to the exact procedure. The main intent of this section is to
provide intuition about the general Iterative procedure we will
present in the later stages of this section.

The premise of the iterative algorithm is that, for fixed a2,
(33) can be easily solved for the AR coefficient al. Similarly,
for fixed al, (36) can be easily solved for the AR coefficient
a2. The algorithm alternately fixes al or a2 and then obtains a
new value for the "free" variable by solving only one normal
equation. In essence, this procedure decomposes a second­
order AR problem into two coupled first-order problems.

Fig. 5 illustrates this procedure. For fixed a2, the first normal
(33) can be used to generate three potential solutions for the
AR coefficient al. We discard any potential solutions that
are not real-valued and/or that do not generate a minimum
phase AR polynomial A(z) = I + alz- l + a2z-2. Typically,
only one value will satisfy these criteria. If we vary a2, this
procedure can be used to generate a locus of points in R2
that are potential maximum likelihood solutions. Denote this
locus of points by pI. Similarly, we can vary al and use the
second normal (36) to generate a different locus of potential
ML solutions for a2. Denote this locus of potential solutions
by p2. In Fig. 5, we plot these loci for a typical time series data
set. The time series was constructed using the AR coefficients
al = -2(.95)cos(7f/4) ~ -1.34 and a2 = (.95)2 ~ 0.9.
The input noise variance was set to (72 = I and N = 5 data
points were used to form Rp(Y). The pI and p2 loci must
intersect at the maximum likelihood solution. Note that it is not
necessary to explicitly compute these loci. They are included
in the figure for illustrative purposes only. The curve labeled
"Itr. locus" is the trajectory of the AR coefficients generated by
iterating between the first and second normal equations. In this
example, the initial values of the AR coefficients were obtained
from the correlation method of linear prediction. Note that the
algorithm converges rapidly for this data set. This convergence
characteristic is typical for this algorithm even when the data
record is small. Also note that if the initialization values are
not "sufficiently" close to the ML solution, then the algorithm
may not converge or it may converge to a nonminimum phase
solution.

It is simple to inductively extend this algorithm to systems
of higher-order. Consider this procedure for a third-order
system. Let the normal equation polynomials Pl (al' a2; a3)
and P2(al, a2; a3) comprise system S2 coupled with poly­
nomial P3(a3; e l , a2) as system S1. The iterative algorithm
works as follows. Obtain an initial estimate, ii3 , using for
example linear prediction. Use this estimate and system S2
(which is nOW effectively second-order) to obtain estimates iil
and ii2. Note that the algorithm for the system S2 must be
slightly modified from the algorithm for a true second-order
system. That is, we no longer require Iii21 < I, as this is no
longer a sufficient condition for stability. Instead we require
that iil and ii2 are such that the third-order AR polynomial
A(z) = I + iilz- l + ii2 z- 2 + ii3 z- 3 be stable. The ite~ation
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V. CONCLUSION

In this paper, we have presented a new algorithm for
obtaining the ML estimators of autoregressive time series
parameters. This was accomplished by deriving an original set
of nonlinear normal equations in the AR coefficients. These
normal equations .illustrate both the points of contact •and
divergence between the theory of least squares and the theory
of maximum likelihood for time series problems. We have
also described an algorithm that solves the nonlinear normal
equations for low-order systems. The algorithm consists of
finding the roots of a series of polynomials, and choosing the
appropriate AR coefficients from this finite set of roots. We
have also described some iterative procedures that can be used
to solve the ML normal equations.
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(37)

where the matrix H = [h, .,. hpj has columns

where all quantities are evaluated at a = ~. In practice, the
map of (37) is iterated with a scaled adjustment term qHi1Ei.
Each iteration begins with q = 1, or with a full correction. If
the new value ai+l generates an error vector Ei+l with larger
norm than the previous error Ei, then q is reduced by a factor
of two and the iteration is performed again.

Here, ek is the kth column of the (p + 1) X (p + 1) identity
matrix. It is also apparent that

where

The Newton-Raphson map is then given by

B. Newton-Raphson Maps

Let ai = [1 BfF be the value of the AR coefficients at the
ith iteration. Define .the error vector at the ith iteration to be

is continued by using 0,1 and 0,2 and system Sl to obtain a
new estimate for a3. This procedure is continued until the
estimates of the coefficients converge.
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