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ABSTRACT 
 
 
 

EXPLORING SUMMER COOLING ELECTRICITY CONSUMPTION IN A  
 

MID-SIZED, SEMI-ARID CITY  
 
 
 

As climate change advances, it will threaten urban livability in the summer months through 

elevated temperatures and more severe heat waves. These increased temperatures, coupled with 

urbanization and the introduction of more impervious surfaces, will positively feed into the Urban Heat 

Island (UHI) effect. The combination of hotter temperatures and the inevitable population growth urban 

areas are going to experience will threaten sustainability through the increased demand for cooling energy 

resources. While there are many ways to address sustainable energy consumption in a city, one commonly 

cited method has been through the establishment of urban tree canopy (UTC), which has been shown to 

cool outdoor temperatures and decrease summer energy use through shading and microclimate regulation. 

Additionally, investing in research to understand local drivers of cooling energy use can help inform the 

development of municipal goals and programs for energy reduction. Using household electricity 

consumption, we aimed to understand if UTC and impervious surfaces were impacting summer cooling 

electricity use in single-family homes, and if so, at what distance and orientation around homes were 

these land covers most impactful. We then investigated drivers of summer cooling electricity use with 

additional urban form, building, sociodemographic, and behavioral variables to try to account for cooling 

consumption patterns. We found that our results showed trends that differed from previous studies and 

that east side UTC was the most impactful on cooling use. In addition, impervious surfaces were the most 

impactful when they were closer to the home. However, land cover was minimally impactful on cooling 

use, and additional behavioral, building, urban form, and sociodemographic characteristics explained 

more variability in cooling consumption patterns and highlighted the uniqueness of our study area in 

comparison to previous studies. 
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CHAPTER 1: THE IMPACT OF LAND COVER ON SUMMER COOLING ELECTRICITY 
 
 
 
1 Introduction 
 

As climate change advances, it poses a risk to our society socially, economically, and 

environmentally through elevated temperatures as well as prolonged, more severe heat waves.  These 

rising and extreme temperatures will threaten livability and positively feed into the Urban Heat Island 

(UHI) effect, where urban systems experience higher temperatures than surrounding rural areas, creating 

an “island” of heat (Oke, 1982). Currently, 55% of the global population lives in urban areas, which is 

projected to increase to 68% by 2050 (Ritchie and Roser, 2019), making maintaining livable, cool outdoor 

and indoor areas a priority for cities, especially during the summer months when high temperatures and 

heat waves are more prominent. Due to the rising utility demand that comes with urbanization, population 

growth, and rising temperatures, sustainable energy consumption in urban areas has become an issue of 

discussion. While there are many ways to address energy demand in a city, one commonly cited method 

has been through the establishment of urban tree canopy (UTC), which has been shown to decrease 

summer energy use through shading and microclimate regulation (Ko, 2018). 

Different land cover types in urban areas can impact outdoor environments by altering 

temperatures. It is well known that urban areas can experience UHI, which is commonly associated with 

land modification. The introduction of paved and impervious surfaces through urban development affects 

moisture availability and radiative energy transfer (Mohajerani et al., 2017). The increase of impervious 

surfaces that comes with the growth and densification of cities is an important consideration as energy 

demand in cities increases by 2-4% with every 1 ⁰C increase in temperature (Akbari et al., 2001). One 

well-researched approach to address high temperatures in urban areas is by increasing UTC, as trees can 

alter microclimate through shading and evapotranspiration (Rahmen et al., 2020). UTC has been shown to 

decrease the average near-surface air temperature, improve thermal comfort, and enhance radiative 

cooling (Wang et al., 2018). The impact of UTC on outdoor climate has been documented in reductions in 
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air temperatures up to 3.5 ⁰C during the daytime in the shade underneath Tilia cordata, the Littleleaf 

Linden (Rahman et al., 2017). Additional evidence of reduction in air temperatures up to 2 ⁰C occurred 

when UTC was increased from 10% to 25% in Phoenix, Arizona (Middel et al., 2015). Currently, it is 

estimated UTC provides up to $5.3-12.1 billion in heat-reduction services across the entire U.S. urban 

population, which includes the avoidance of heat-related morbidity and mortality, as well as electricity 

saved (McDonald et al., 2020). 

Given the temperature reductions UTC can provide outdoors, many studies have tried to quantify 

the indoor energy savings from UTC in summer months. Studies have found that trees planted beyond 18 

m of a home do not impact energy by creating shade (McPherson et al., 1988; McHale et al., 2007; 

Donovan & Butry, 2009; Nelson et al., 2012) and that maximum shade benefit comes from larger trees 

planted within 5 m of a home (Gómez-Muñoz et al., 2010; Hwang et al., 2015). Additionally, it is widely 

documented that azimuth can play a role in the impact trees have on energy, and that trees planted on the 

west, east, and south side of homes yield the most energy savings during the cooling season (Simpson & 

McPherson, 1996; McPherson & Simpson, 2003; Donovan & Butry, 2009; Ko & Radke, 2014; Hwang et 

al., 2015). For example, McPherson and Simpson (2003) used a simulated model and projected that 

planting 50 million shade trees to the east or west side of homes would reduce cooling energy use by 

1.1% over 15 years.  

Despite well-documented evidence that UTC provides energy savings in the summer months, the 

magnitude of those savings varies largely throughout the literature. In North America alone, over 40 peer 

reviewed studies have been published that provide substantial evidence to support the energy saving 

effects of trees; however, the range of reducing cooling energy consumption has varied from 2 - 90% (Ko, 

2018). Differences in findings could be due to the dissimilar nature of simulation and empirical methods. 

Simulation studies inherently come with various assumptions depending on the inputs, outputs, and 

software used, and do not necessarily use real-world cases, but are still quite representative in the 

literature. Empirical approaches vary from simulated studies in the data used, variation within this 
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methodology exists, with larger energy saving performances coming from more controlled settings, such 

as treatment and control (tree shade and no shade) studies (Ko, 2018). Other empirical studies use real 

energy consumption data, but results are heavily dependent on the resolution and quality of the data 

obtained (Ko, 2018). Variation in results could also be attributable differences in study locations. Many 

studies that have looked at the impact of UTC have taken place in warmer climates, most notably in 

California. However, even within the same location of Sacramento, California, the annual cooling energy 

saving per tree has ranged between 80 kWh to 180 kWh in simulation studies (Simpson & McPherson, 

1996; Ko et al., 2015). In an entirely different climate, Nelson et al. (2012) concluded that trees did not 

significantly impact summertime energy savings in the heavily forested Raleigh, North Carolina. Very 

few studies have addressed the impact of UTC using empirical data in semi-arid, mid-sized cities, 

highlighting the need for such research.  

Given the potential impact of impervious surfaces on summer electricity use and the high 

variability in the magnitude of energy savings from UTC found in previous studies, we aim to understand 

how land cover at various orientations around single-family homes impacts summer cooling electricity 

consumption using household billing data in our study area. Our goals were to 1) determine if there are 

summertime energy impacts from UTC and impervious surfaces in single-family homes; and 2) if effects 

exist, determine the most impactful location in terms of azimuth and distance from single-family homes 

for both tree canopy and impervious surfaces. We compared our results to other published studies in order 

to determine how impactful tree canopy and/or impervious surfaces are on summertime cooling electricity 

consumption in a mid-size, semi-arid city.  

We expect that, similar to previous studies, single-family homes in the study area will experience 

the greatest summer cooling electricity savings with increased tree canopy on the west side of homes, but 

that the magnitude of this relationship will vary based on the distance from homes. Additionally, we 

expect that with greater impervious cover around the home, summertime cooling electricity consumption 

will increase, regardless of azimuth and distance from homes, due to the role impervious surfaces have in 
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UHI. Using a large sample of empirical data, this study will provide a significant contribution to the body 

of research which looks at the role of land cover, specifically tree canopy and impervious surfaces, on 

energy consumption. Our results will help inform future modeling efforts regarding land cover and energy 

use and can impact city planning and development by revealing where tree canopy and impervious 

surfaces are having the most impact on summertime cooling electricity consumption in single-family 

homes. 

2 Methods 
 
2.1 Study Location 

 

Our study area is a mid-size, growing city of approximately 170,000 people located in northern 

Colorado (City of Fort Collins, 2018). It is situated on the Cache La Poudre River along the Front Range 

of the Rocky Mountains at approximately 5,000 feet (1,524 m) above sea level (City of Fort Collins, 

2019). The city is located in a semi-arid region with average rainfall of 15 inches per year, average 

snowfall of 50 inches per year (NOAA, 2018) and approximately 300 days of sunshine annually (City of 

Fort Collins, 2019). The temperature average in the summer months is about 72 ⁰F but can reach a 

maximum average of 97 ⁰F during the day (NOAA, 2018). While there are a limited number of naturally 

occurring trees, the city has prioritized the maintenance and development of an extensive UTC (City of 

Fort Collins, 2017). The UTC in the study area includes a diversity of deciduous species that are 

adaptable to the climate, such as the Littleleaf Linden (Tilia cordata) and Kentucky Coffeetree 

(Gymnocladus dioica)  (City of Fort Collins, n.d.). Additionally, the city maintains a mapped inventory of 

public trees, documenting over 300 species within the city (City of Fort Collins, 2020). 

2.2 Land Cover Data 

High resolution land cover data (1 m²) was derived from WorldView-2 satellite imagery and 

LiDAR using object-based feature extraction techniques (Zhao & Troy, 2008; Beck et al., 2016; 

Rasmussen et al., 2021). A hybrid-stratified random accuracy assessment with 2400 points calculated the 

overall accuracy of the land cover dataset to be 95% (Congalton & Green, 2019). The land cover dataset 
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consisted of seven cover classes: tree canopy, other vegetation (e.g., grasses, shrubs, etc.), bare soil, 

water, buildings, roads/railroads, and other impervious surfaces (e.g. driveways, sidewalks, etc.) (Figure 

1.1; Table 1.1). For the purposes of this study, we reclassified land cover into three classes: tree canopy, 

impervious surfaces (roads/railroads and other impervious surfaces), and other (buildings, bare soil, 

water, and other vegetation).  

 

Figure 1.1 Land cover classes of the study area (Rasmussen et al., 2021) 
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Table 1.1 Land cover distribution within the study area. The landscape is mostly dominated by other 

vegetation, such as shrubs and grasses, followed by tree canopy and other paved surfaces. 

 

 

 

 

 

In order to determine the maximum cooling benefit UTC had on summer electricity consumption, 

as well as the impact that impervious surfaces had on summer electricity consumption, we generated four 

buffers of 6 m, 12 m, 18 m, and 24 m around single-family homes by using a buildings polygon layer, 

provided by the city. These buffers were then broken into quadrants to account for azimuth (North, South, 

East, and West). Creating buffers and quadrants was an important step to isolate locations of tree canopy 

and impervious surfaces according to their distance and direction from the home (Figure 1.2; Table 1.2).  

 

Figure 1.2 Buffers broken into quadrants. 6 m, 12 m, 18 m, and 24 m buffers were broken down by 

azimuth (North, South, East, and West) resulting in 32 separate quadrants. 

 

 

Land Cover Percentage of Landscape 

Other Vegetation 52% 

Tree Canopy 13% 

Other Paved 13% 

Roads/Railroads 8% 

Buildings 7% 

Water 6% 

Bare Soil 1% 
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Table 1.2 Descriptive statistics of quadrant sizes (m2). Area of quadrants was calculated for every 

azimuth within each buffer distance (6 m, 12 m, 18 m, 24 m). Note that 6 m buffer contains the area over 

the home up to 6 m away, while 12 m buffer is the area 6 – 12 m, the 18 m buffer is the area 12 – 18 m, 

and the 24 m buffer is the area 18 – 24 m.  

 6m 12m 18m 24m 

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

North 60 174 768 115 174 370 171 230 420 228 287 473 

East  63 172 648 116 174 359 173 230 397 229 286 446 

South 60 174 768 115 174 370 171 230 420 228 287 473 

West 63 172 648 116 174 359 173 230 397 229 286 446 
 

We summarized tree canopy and impervious surfaces by percent cover within each quadrant for 

every household to incorporate it into our statistical analysis, resulting in 32 explanatory variables (Table 

1.3). The 6 m quadrants consisted of the area over the home up to 6 m away, the 12 m quadrants were the 

area 6 – 12 m from the home, the 18 m quadrants were the area 12 – 18 m from the home, and the 24 m 

quadrants were the area 18 – 24 m from the home. The distribution of all land cover variables was 

positively skewed, but included a spread across all percentage values, negating the need for any type of 

transformation. 

Table 1.3 Descriptive statistics of tree canopy and impervious surfaces (%) in quadrants.  b where two 

values appear in a cell, the first includes all households, and the second includes only households where 

that variable > 0 

 6m 12m 18m 24m 

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

 TREE CANOPY 

North 0 22/27 100 0 29/33 100 0 23/27 100 0 22/25 100 

East  0 21/26 100 0 28/32 100 0 22/26 100 0 22/25 100 

South 0 25/31 100 0 28/32 100 0 22/26 100 0 22/25 100 

West 0 27/33 100 0 27/32 100 0 22/25 100 0 22/24 100 

 IMPERVIOUS SURFACES 

North 0 20/24 85 0 26/29 100 0 38/42 100 0 39/42 100 

East  0 22/25 85 0 24/27 100 0 36/39 100 0 38/41 100 

South 0 19/23 87 0 26/30 100 0 38/42 100 0 39/42 100 

West 0 20/24 89 0 24/28 100 0 36/40 100 0 39/41 100 
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2.3 Electricity Data 

 

Unlike many other localities, the city is unique because they own their electricity utility, allowing 

us to obtain parcel-level electricity consumption data for the year 2016. For the purpose of our study, we 

wanted to isolate the analysis to single-family detached houses in an effort to reduce the variability in 

consumption patterns that might arise by including commercial and multi-unit properties. Due to 

limitations on electric heating information as well as seasonal variation, we focused on summer, defined 

as June 1st – August 31st, cooling electricity consumption. Annual electricity consumption is known for 

having an “M” type distribution curve, with peaks occurring in summer and winter, making it important 

to analyze the data seasonally to prevent any trends or patterns from being averaged out (Figure 1.3). 

 

Figure 1.3 Average monthly kWh/day across single-family households in the study area. Two peaks are 

observable in the winter and summer months. Months in dark gray are shoulder months, and months in 

orange are peak summer months. The horizontal line represents the average consumption in shoulder 

months. Cooling electricity consumption would be what falls above the line during the months of June, 

July, and August. 

 

To prepare the data for analysis, we isolated single-family residential households using parcel 

information from the city, as well as the county accessor’s office (Larimer County Assessor’s Office, 

2019). We joined unique premise codes of household electricity consumption data to single-family 
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residential parcel polygons and removed parcels that had duplicate information (i.e. multiple premise 

codes per parcel or multiple parcel numbers per premise), incomplete consumption readings, or a change 

in residency during the year, resulting in 24,346 single-family residential parcels.  

To determine average consumption for each household, we used billing information to prorate 

electricity consumption based on read dates and days of service to calculate the average use for each 

calendar month. We then averaged each household’s use for the months June – August and divided by the 

number of days from June 1st – August 31st (92) to get a unique average summer kilowatt hours per day 

(kWh / day) for each household.  

To get cooling electricity use, we used the shoulder months of May and September when electricity 

is less likely to be used for cooling or heating due to milder temperatures. We averaged the kWh / day for 

May and September together and subtracted that from summer kWh / day to get cooling kWh / day (Fig. 

1.3).  We normalized the electricity consumption data by the square footage of the home, documented by 

the assessor’s office, to calculate our response variable as kilowatt hours per day per square foot (kWh / 

day / ft2) (Table 1.4). Our analysis response variable was performed using English units due to the 

preferences of the local utility, however metric conversions are documented in parenthesis.  

Table 1.4 Descriptive statistics of house size and electricity consumption in our study sample. Values in 

parenthesis represent metric conversions (m2). 

Variable Min Mean Max 

House size (ft2) 381 (35.4) 1918 (178.1) 7241 (672.7) 

Cooling electricity use (kWh / day) 0.0006 9.21 63.71 

Cooling electricity use (kWh / day / ft2) 0.0000005 (.000005) 0.005 (.05) 0.013 (.15) 
 

From our initial 24,346 households, we removed 2,866 households that had negative consumption 

patterns, meaning they used more electricity in the shoulder months than in the summer months. This 

could be due to a variety of reasons, such as summer being a common time for vacationing in the city. 

Additionally, we found 432 households to be outliers by removing those with consumption values 1.5 
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times the interquartile range beyond the third quartile and less than the first quartile. Outliers were not 

due to a skewed distribution, but rather individual circumstances due to extremely high average cooling 

electricity consumption, small household square footage, or a combination of both. Once outliers were 

removed, the distribution for the response variable met normality assumptions for analysis (n = 21,048).  

2.4 Correlations 

 

We calculated Pearson’s correlation coefficients for both tree canopy variables (n = 16) and 

impervious surface variables (n = 16), as well as between all land cover variables and summer cooling 

electricity consumption. Correlations between land cover variables and electricity consumption were used 

to identify the direction and magnitude of an existing relationship. Positive correlations indicated that 

with an increase in the land cover variable, there was an increase in cooling electricity consumption, 

while the opposite was true for negative correlations.  

2.5 Linear Regression Models 

 

We performed three Ordinary Least Squares multiple linear regression models (OLS); one with 

just tree canopy variables, one with just impervious surface variables, and a combined model with tree 

canopy and impervious surface variables. Our goal in applying a regression model was not necessarily to 

determine the best model for predicting energy consumption, but rather, to explore the relationship land 

cover variables had with summer cooling electricity consumption and further isolate the most impactful 

location for UTC and impervious surfaces. As such, we did not apply a variable selection process in this 

analysis. Similar to correlations, positive coefficients in these models indicated that an increase in the 

land cover variable coincided with an increase in cooling electricity consumption, while the opposite was 

true for negative coefficients.  
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3 Results 
 
3.1 Correlations 

 
 Results from the correlation analysis among tree canopy variables showed relatively strong, 

positive relationships among all quadrants (6 m, 12 m, 18 m, 24 m) in the same cardinal orientation 

(Figure 1.4). We found a similar pattern in impervious surface variables, excluding the 6m quadrants. 

Meaning, impervious surface quadrants at 12 m, 18 m, and 24 m had strong, positive relationships in the 

same cardinal direction (Figure 1.5). 

 

Figure 1.4 Pearson's correlation coefficients among tree canopy variables (%). The strongest correlations 

occurred in quadrants located in the same cardinal direction, for example 6 m north and 12 m north. 
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Figure 1.5 Pearson's correlation coefficients among impervious surface variables (%). The strongest 

correlations occurred in quadrants located in the same cardinal direction beyond 6 m, for example 12 m 

north and 18 m north. 

  

The correlations between our tree canopy variables and cooling electricity consumption showed 

small, statistically significant negative correlations for most quadrants and orientations (Figure 1.6). The 6 

m and 12 m quadrants in the east and west orientations had relatively stronger correlations than those at 

18 m and 24 m west, 12 m north, and 24 m south. Contrastingly, the correlations between our impervious 

surface variables and cooling electricity consumption displayed small, but statistically insignificant 

positive correlations across all quadrants and orientations (Figure 1.6). Correlations were relatively 

strongest within the 6 m quadrants at all orientations. 
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Figure 1.6 Pearson’s correlation coefficients between tree canopy (left) and impervious surface variables 

(right) and cooling electricity consumption (kWh/day/ft2). All tree canopy variables had a negative 

relationship with cooling electricity consumption, and all impervious surface variables had a positive 

relationship with cooling electricity consumption. Values with * notes statistical significance < .05 

 

3.2 Linear Regression Models 

 

We fit three models to determine, in relationship to one another, what were the most impactful 

orientations for tree canopy and impervious surfaces on cooling electricity consumption. In the tree 

model, many variables had a negative relationship with cooling electricity consumption, with tree canopy 

in the 6 m and 24 m buffers at all orientations, and in the east and west of the 12 m buffer all showing 

statistical significance (Table 1.5). Variables in the tree model that were both significant and had the 

largest impact on cooling electricity use was tree canopy on the eastern side of the home in the 6 m 

buffer, the 12 m buffer and the 24 m buffer (Table 1.5). Negative coefficients indicated that as the 

percentage of tree canopy increased, cooling kWh / day / ft2 consumption decreased. In context, the 

average sized single-family home (1918 ft2 (178.1 m2); Table 1.4) with the average percent of tree canopy 

within 6 m east of the home (21%; Table 1.3), would decrease cooling electricity consumption over the 

course of peak summer about 26 kWh, compared to a home with no tree cover withing 6 m east of the 

home, holding all other tree canopy variables constant.  
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Table 1.5 OLS regression model results using tree canopy variables. Variables are sorted by the 

magnitude of the coefficient and statistical significance, with percent tree canopy at 6 m east having the 

largest, statistically significant coefficient. 

Model 1 - Tree Canopy 

Predictors Estimates CI 

(Intercept) 0.00586384 *** 0.00578747 – 0.00594021 

 6m E  -0.00000702 *** -0.00000980 – -0.00000424 

 24m E  -0.00000684 *** -0.00000976 – -0.00000391 

 12m E  -0.00000529 *** -0.00000810 – -0.00000247 

 12m W  -0.00000466 ** -0.00000747 – -0.00000185 

 6m W  -0.00000455 *** -0.00000686 – -0.00000224 

 24m W  -0.00000414 ** -0.00000710 – -0.00000117 

 24m N  -0.00000360 * -0.00000654 – -0.00000066 

 24m S  -0.00000328 * -0.00000624 – -0.00000032 

 6m S  -0.00000325 ** -0.00000566 – -0.00000085 

 6m N  -0.00000324 * -0.00000596 – -0.00000052 

 12m N  0.000002510 -0.00000030 – 0.00000532 

 18m E  0.000002250 -0.00000103 – 0.00000553 

 18m S  0.000001650 -0.00000167 – 0.00000498 

 18m N  -0.000001510 -0.00000475 – 0.00000173 

 18m W  -0.000002250 -0.00000561 – 0.00000110 

 12m S  -0.000002590 -0.00000537 – 0.00000019 

Observations 21048 

R2 0.056 

* p<0.05   ** p<0.01   *** p<0.001 

 

Results from the impervious surfaces model showed a consistent pattern where impervious 

surfaces in the 6 m buffer at all orientations around the home had the most impactful, positive coefficients 

of all our impervious surface variables (Table 1.6). Positive coefficients for impervious surface variables 

indicated that as the percentage of impervious surface increased, cooling kWh / day / ft2 consumption 

increased as well. In context, the average sized single-family home (1918 ft2 (178.1 m2); Table 1.4) with 

the average percent impervious surface within 6 m west of the home (20%; Table 1.3), would increase 

cooling electricity consumption over the course of peak summer about 54 kWh, compared to a home with 
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no impervious surfaces within 6 m west of the home, holding all other impervious surface variables 

constant. 

Table 1.6 OLS regression model results using impervious surface variables. Variables are sorted by the 

magnitude of the coefficient and statistical significance, with percent impervious surfaces at 6 m west of 

the home having the largest, statistically significant coefficient. 

Model 2 - Impervious Surfaces 

Predictors Estimates CI 

(Intercept) 0.00353010 *** 0.00339263 – 0.00366757 

6m W 0.00001529 *** 0.00001231 – 0.00001826 

6m S 0.00001175 *** 0.00000864 – 0.00001486 

6m E 0.00001028 *** 0.00000731 – 0.00001324 

6m N 0.00000791 *** 0.00000480 – 0.00001102 

18m N 0.00000653 *** 0.00000312 – 0.00000994 

12m N -0.00000544 *** -0.00000863 – -0.00000224 

18m W 0.00000516 ** 0.00000179 – 0.00000852 

18m S 0.00000356 * 0.00000011 – 0.00000700 

12m S -0.00000325 * -0.00000641 – -0.00000009 

24m N -0.00000320 * -0.00000605 – -0.00000035 

18m E 0.00000337 -0.00000000 – 0.00000674 

12m E 0.00000287 -0.00000027 – 0.00000601 

12m W -0.00000012 -0.00000318 – 0.00000294 

24m W -0.00000022 -0.00000304 – 0.00000260 

24m E -0.00000065 -0.00000343 – 0.00000213 

24m S -0.00000104 -0.00000392 – 0.00000183 

Observations 21048 

R2 0.044 

* p<0.05   ** p<0.01   *** p<0.001 

  

Our third model which included both tree canopy and impervious surface variables, showed 

somewhat similar results to both our tree canopy and impervious surfaces models (Table 1.7). Again, tree 

canopy located either in the 6 m buffer, 12 m buffer, or 24 m buffer on the east side of the home, as well 

as the 12 m buffer on the west side and 24 m buffer on the north side, had the largest, significant negative 
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coefficients, with tree canopy in the 12 m buffer on the east and west side, 24 m buffer on the south side, 

and 6 m on the west side also showing statistical significance.  Impervious surfaces in the 6 m buffer on 

the west and south orientations were statistically significant and showed a strong positive relationship 

with cooling consumption. Impervious surfaces in the 18 m buffer on the west side and 6m buffer on the 

north side also had a statistically significant positive relationship. In context, the averaged sized single-

family home (1918 ft2 (178.1 m2); Table 1.4) with the average percent tree canopy in the 24 m buffer on 

the east side (22%; Table 1.3) and average percent impervious surface in the 6 m buffer on the west side 

(20%; Table 1.3) of the home would result in the same magnitude of impact, a 27 kWh decrease and 27 

kWh increase in cooling consumption over the course of peak summer, respectively, compared to a home 

with no tree canopy or impervious surfaces in these quadrants, when all other land cover variables are 

held constant. Our combined model also showed a slightly higher R2 when compared to the separate tree 

canopy and impervious surface models. 

Table 1.7 OLS regression model results using tree canopy (TC) and impervious surface (IS) variables. 

For clarity, impervious surface (IS) variables are shaded in gray in the table.  Variables are sorted by the 

magnitude of the coefficient and statistical significance, with percent impervious surfaces at 6 m west, 

and percent tree canopy at 24 m east having the largest, statistically significant coefficients. 

Model 3 - Tree Canopy & Impervious Surfaces 

Predictors Estimates CI 

(Intercept) 0.00541441 *** 0.00516648 – 0.00566233 

IS 6m W 0.00000763 *** 0.00000437 – 0.00001090 

TC 24m E -0.00000703 *** -0.00001032 – -0.00000374 

TC 24m N -0.00000609 *** -0.00000940 – -0.00000278 

IS 6m S 0.00000600 *** 0.00000260 – 0.00000940 

TC 6m E -0.00000559 *** -0.00000859 – -0.00000258 

IS 12m N -0.00000499 ** -0.00000835 – -0.00000162 

IS 24m N -0.00000498 ** -0.00000813 – -0.00000183 

IS 12m S -0.00000494 ** -0.00000828 – -0.00000161 

TC 12m W -0.00000491 ** -0.00000792 – -0.00000191 

TC 12m E -0.00000477 ** -0.00000774 – -0.00000181 

IS 18m W 0.00000412 * 0.00000051 – 0.00000773 
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TC 24m S -0.00000401 * -0.00000734 – -0.00000068 

IS 6m N 0.00000387 * 0.00000051 – 0.00000723 

TC 6m W -0.00000276 * -0.00000523 – -0.00000029 

IS 18m N 0.00000363 -0.00000008 – 0.00000733 

IS 18m E 0.00000357 -0.00000003 – 0.00000717 

IS 6m E 0.00000313 -0.00000011 – 0.00000638 

TC 12m N 0.00000255 -0.00000045 – 0.00000555 

TC 18m S 0.00000214 -0.00000152 – 0.00000580 

IS 18m S 0.00000201 -0.00000171 – 0.00000573 

TC 18m E 0.0000016 -0.00000199 – 0.00000520 

IS 24m W 0.00000063 -0.00000247 – 0.00000373 

IS 12m E 0.0000001 -0.00000318 – 0.00000337 

TC 18m W -0.0000005 -0.00000418 – 0.00000318 

TC 18m N -0.00000082 -0.00000445 – 0.00000280 

TC 24m W -0.00000151 -0.00000484 – 0.00000182 

TC 6m S -0.00000183 -0.00000442 – 0.00000076 

TC 6m N -0.00000188 -0.00000477 – 0.00000102 

IS 24m S -0.000002 -0.00000518 – 0.00000118 

IS 12m W -0.00000209 -0.00000530 – 0.00000112 

TC 12m S -0.0000023 -0.00000527 – 0.00000068 

IS 24m E -0.00000251 -0.00000558 – 0.00000056 

Observations 21048 

R2  0.061 

* p<0.05   ** p<0.01   *** p<0.001 

  

4 Discussion 
 
4.1 Impact of Tree Canopy and Impervious Surfaces 

 
 Our correlation and regression results indicated that both tree canopy and impervious surfaces 

had an impact on summer cooling electricity consumption in the city. Pearson correlation coefficients 

between land cover variables and cooling electricity consumption, as well as results from all three 

regression models, indicated that increased UTC was generally associated with less energy consumption, 

in contrast to increased impervious surfaces which was associated with more energy consumption. This is 

in line with previous studies that indicate tree canopy can mitigate energy consumption through shading 

and evapotranspiration (Ko, 2018). It is also suggestive of impervious surfaces increasing electricity 
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consumption, possibly due to their role in increasing land surface temperatures in urban environments 

(Chithra et al., 2015).  

4.2 Most Impactful Orientations 

 
 The most impactful orientations for both tree canopy and impervious surfaces did not align with 

our expectations and showed different patterns when compared to previous studies. A well-established 

body of literature on the impact of tree canopy on cooling electricity savings has consistently shown that 

tree canopy on the west sides homes produces the largest savings, followed by the east and south sides 

(Simpson & McPherson, 1996; Donovan & Butry, 2009; Ko & Radke, 2014; Hwang et al., 2015). 

Additionally, it is stated that trees planted beyond 18m of a home do not impact electricity use directly 

through shading (McPherson et al., 1988; McHale et al., 2007; Donovan & Butry, 2009; Nelson et al., 

2012). However, our results challenge this in both the tree canopy model and combined model, where the 

most impactful variables were the 6 m buffer on the east, followed by the 24 m and 12 m buffer east in 

our tree model, and the 24 m east, followed by 24 m north and 6 m east in our combined model.  

 The impact of impervious surfaces around homes and cooling electricity consumption is not well-

documented in the literature, but the role of impervious surfaces in urban environments is, specifically 

when it comes to the heat island effect (Chithra et al, 2015; Estoque et al., 2017). Because of this, we 

expected impervious surfaces to impact cooling electricity consumption regardless of orientation. 

However, our results showed a clear pattern that impervious surfaces within 6 m of the home at all 

orientations were the most impactful in our impervious surfaces model. The combined model showed 

slightly more variation, but impervious surfaces within 6 m of the home on the west and south sides still 

showed high impact and significance. All significant impervious surface variables with a positive 

relationship were within 18m of the home in both the impervious surfaces model and combined model. 

Since increases in impervious surfaces in cities can result in higher ambient temperatures (Weng, 2001), it 

is possible that impervious surfaces closer to the home would have a more significant, immediate impact 

on the microclimate than those located at a further distance.  
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4.3 Comparison to Other Studies 

 
 While previous studies on the impact of orientation of impervious surfaces around homes on 

cooling electricity are scarce, there is plenty of evidence that urban heat island increases ambient 

temperature, which can then impact electricity consumption. However, there is high variation in this 

impact, with the increase in electricity demand per increase in degree of temperature falling between 

0.5% and 8.5% (Santamouris et al., 2015). More specifically in Colorado, data showed that daily 

electricity demand in the Colorado Spring utility district increased 4,000 kW, or about 1%, for every 1 ⁰F 

increase in (Akbari et al., 1992). Because our analysis did not have access to ambient air temperature 

around homes, we cannot directly compare our results to those that have studied temperature changes and 

electricity demand. However, our results do support the notion that impervious surfaces around homes 

have a positive relationship with cooling electricity consumption.  

 The study of the impact of tree canopy on energy use has taken many forms in the literature and 

can be broken down into two broad categories of simulation or empirical studies (Ko, 2018). Within these 

studies there is much variation among sample size, residential building type, location, explanatory and 

response variables, and the method of analysis. For example, in simulation studies, annual cooling has 

been found to be up to 160 kWh / tree on the high end (Simpson & McPherson, 1998) and 80 kWh / tree 

on the lower end (Ko et al., 2015).  This lower end of 80kWh  / tree is comparable to empirical results 

found by Donovan and Butry (2009). However, some empirical studies have also found little to no impact 

of tree canopy on summer energy savings (Abbott & Meentemeyer, 2005; Nelson et al., 2012).  

This variation and subsequent spread in the magnitude of results, as well as how results were 

reported, makes it difficult to draw direct comparisons between our results and other studies. However, 

even compared to the low end of savings found in both simulation and empirical studies, our results show 

a much smaller impact. Our most impactful tree canopy variable common to our tree model and combined 

model was positioned 18 – 24 m east of the home. The average tree canopy in this quadrant was 22%, 

which would be equivalent to about 63 m2, based on the average quadrant size. This area roughly 
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translates to a tree with a 30-foot crown, which would be a common size for a large, deciduous tree in the 

city, such as a Green Ash. Using these calculations, we estimated savings of 27 kWh / tree in our 

combined model and 26 kWh / tree in our tree canopy model over the course of peak summer while 

holding all other variables constant, which is considerably less than the low end of savings, 80 kWh / tree 

annually (Donovan & Butry, 2009; Ko et al., 2015). 

It is likely that the study location and methodology employed are playing a role in how different 

our findings are compared to previous studies. Our methodology included a large sample size at 21,048 

single-family households, giving us an extensive pool of data to work with. Additionally, our explanatory 

variables were calculated using high resolution spatial data which did not discriminate between individual 

trees, their heights, or their species. These differences in methodology and assumptions are important to 

consider, as they could be contributing to differences in results.  

Our study area is a semi-arid city where most trees are not naturally occurring. Central air 

conditioning in the city has historically been less common due to cooler temperatures and low humidity, 

which contrasts to study locations in warmer climates, like Sacramento. In addition to being semi-arid, the 

study area is located close to the Rocky Mountains, which could have climatic impacts altering the 

relative importance of UTC on summer cooling electricity. In contrast to somewhat older, larger, and 

more established cities, our study area is a relatively young, mid-size city. This age and size difference 

could be reflected in the age of homes, how they were developed, or the overall design of homes in the 

study area, ultimately impacting the overall role UTC plays on cooling electricity consumption. 

Based on our study, which used a large amount of high-resolution data for both the explanatory 

and response variables, the impact of tree canopy on summer cooling electricity is comparatively less than 

studies that are often referenced for energy savings provided by trees. For context, running a 10W LED 

lightbulb instead of a 60W incandescent lightbulb for 5 hours / day over the course of the summer would 

save you about 23 kWh, just shy of the 26 kWh / tree savings in our study area. Despite low cooling 

energy savings, it is important to note that UTC provides other ecosystem services such as removing 
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particulate matter from the air, sequestering carbon, reducing noise, improving water quality, and 

reducing outdoor water use, enhancing its overall value to urban ecosystems (Herrington, 1974; Dwyer et 

al., 1992; Scholz, Hof, & Schmitt, 2018; Rasmussen et al., 2021). 

4.4 Caveats and Future Research  
 

A component that our analysis omits is tree species, which can impact the cooling effectiveness 

of trees. Tree growth rates, Leaf Area Index (LAI) and crown size have all been found to impact cooling 

effects in urban areas (Rahman et al., 2015; Armson et al., 2013; Speak et al., 2020). This type of analysis 

would be especially helpful in the study area, where most trees are not naturally occurring, and it takes 

good planning and care to ensure the health and sustainability of the UTC. 

Looking at electricity data seasonally is important to prevent averaging out of trends, however, it 

leaves out the impact that trees or impervious surfaces have on winter energy use. Our data set is solely 

for electricity use, so applying a similar analysis to winter would not account for homes that may use 

natural gas for heating. There is evidence that trees, especially those planted on the south side, can hinder 

passive solar warming during the heating season and increase energy use (Heisler, 1986; Hwang et al., 

2015). This is an important consideration to consider for future analysis to fully understand the role that 

land cover can play in energy use in single family homes.  

While the purpose of this study was solely to see if tree canopy and impervious surfaces are 

impacting summer cooling electricity use in the city, the lack of explanation of variance in our models, as 

indicated by low R2 values, suggests that there is much more to investigate. Our future work will expand 

on drivers of summer cooling electricity consumption in the city by bringing in more explanatory 

variables such as urban form, building, sociodemographic, and behavioral characteristics. This could help 

identify major contributors to cooling electricity use which could be targeted for policy or program 

intervention.  
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5 Conclusion 
 

Energy consumption is an aspect of urban ecosystems that is the result of a variety of drivers. 

Urban form, such as land cover, has been found to impact energy consumption in urban environments. 

Specifically, impervious surfaces can impact ambient temperatures in cities, but the impact around homes 

is not well-documented. Tree canopy can reduce outdoor temperatures through shading and 

evapotranspiration which can impact nearby homes resulting in cooling energy savings; however, the 

magnitude of these savings varies greatly in the literature. 

In our study area, we found that impervious surfaces had the strongest impact on single-family 

electricity consumption within 6 m of the home. Additionally, these relationships were consistently 

positive, indicating that increasing impervious surfaces close to homes resulted in an increase in cooling 

electricity consumption.  

In regard to tree canopy, we found our results contrasted to previous studies both in the most 

impactful orientation and in the magnitude of savings. Our most impactful tree canopy variables were 

positioned within 6 m and between 18 – 24 m on the east side of the home, as well as between 6 – 12 m 

on the west side. These results contrast with results of previous studies that have found the most 

significant cooling energy savings occur when trees are planted on the west side of homes. Additionally, 

our findings oppose other findings that trees do not directly impact energy consumption beyond 18 m of 

the home. Lastly, the impact on cooling electricity from tree canopy we found was significantly less than 

low-end estimates found in other studies.  

While our study has contrasting conclusions to those of previous studies, it is difficult to provide 

direct comparisons due to the variation in methodology, study location, and reporting of results. However, 

our results do indicate that tree canopy and impervious surfaces are having a negative and positive impact 

on electricity consumption, respectively, and significant orientations result in different magnitude of 

savings. 
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CHAPTER 2: DRIVERS OF COOLING ELECTRICITY CONSUMPTION 
 
 
 
1 Introduction 
 

As global population grows and shifts to urban living, household energy consumption, without 

changes to utility resources, will result in higher carbon dioxide emissions and increasingly impact 

climate change. Globally, urban consumption accounts for between 71-76% of energy-related CO2 

emissions (Seto et al., 2014). In the United States, about 81% of the population currently lives in urban 

areas and residential energy consumption accounts for about 20% of energy related CO2 emissions (US 

Census Bureau, 2010; EIA, 2019). As climate change advances, it poses a risk to our society through 

impacts such as increased energy demand to maintain comfortable spaces in elevated temperatures, 

reduced air quality, and unequitable distribution of resources to help with climate change mitigation. 

Given the imminent need to address climate change though societal transformations, growing cities have 

the capacity to explore sustainable solutions for reductions in energy consumption. In order to address 

energy efficiency in sustainability goals and programs, it’s important to understand what underlies 

patterns of energy use in our cities.  

Many studies have embarked on determining drivers of energy consumption with a general 

consensus that urban form, building characteristics, and sociodemographics can all play significant roles. 

Urban form consists of a variety of structures within an urban landscape, for example, land cover 

composition, street orientation, and house and population density. Land cover composition, such as tree 

canopy or nearby greenspace, has been shown to impact energy consumption in multiple studies. Tree 

canopy can reduce energy consumption anywhere from 2-90% in cooling and 1-20% in heating through 

shading effects in the summer and wind-break effects in the winter (Ko, 2018). Additionally, nearby and 

higher densities of green space, such as parks, have been found to influence energy demand (Silva et al., 

2017). Higher green space density has statistically significant effects on reducing summer cooling 

consumption (Ko & Radke, 2014), and the presence of greenery can impact energy consumption by 
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reducing outdoor air temperatures up to 2 ⁰C (Wong et al., 2011). Other land cover, such as dark, 

impervious surfaces can impact consumption as well by altering urban thermal efficiency and 

contributing to the Urban Heat Island (UHI) effect (Ko, 2013).  

Aside from land cover, community layout and street orientation are other urban form variables 

that have been found to have a significant impact on energy consumption. Community layout, especially 

the position of the building, can impact the amount of sunlight exposure a building receives. North facing 

buildings receive the least sun in northern latitudes, while east or west facing buildings receive the most, 

resulting in more direct heat in the morning or afternoon (Ko, 2013).  Street orientation is another way of 

looking at community and building layouts. Ko & Radke found that north-south, northwest-southeast, and 

northeast-southwest, when compared to east-west street configurations, tended to have a higher cooling 

electricity use (2014). This is likely because east-west oriented streets mean buildings are north-south 

oriented, which result in less direct sun exposure. Li et al. corroborated Ko and Radke’s findings that 

street configuration had a significant impact on summer electricity use, and also found street orientation 

to be significant for annual and winter electricity use (2018).  

One of the most important urban form characteristics studied in energy consumption dynamics 

has to do with density. Density can be defined in two main ways: density of the built environment or 

density of people living in a given area (Silva et al., 2017 ). Density impacts overall urban energy demand 

by altering transportation times, but also by influencing UHI through the distribution of urban surfaces 

(Silva et al., 2017). Stone and Rodgers are often cited when discussing density, as they found that lower 

density development patterns contributed more radiant heat to UHI formation than higher density patterns 

(2001). In addition to UHI, sprawling counties have been found more likely to have residents that lived in 

larger single-family detached houses when compared to more compact counties, leading to higher energy 

use (Ewing & Rong, 2008).  Multiple studies have gone on to affirm the findings that higher density, both 

housing and population, generally results in less energy consumption (Wilson, 2013; Ko and Radke, 

2014; Güneralp et al., 2017; Osario et al., 2017; Chen et al., 2018; Li et al., 2018).  
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Building characteristics have also been shown to play a large role in electricity consumption. 

Larger home size has been one of the more important building characteristics, which is linked to higher 

energy consumption, and in some cases has been one of the most important factors in explaining the 

variability in energy consumption (Nelson et al., 2012; Huebner et al, 2016). In addition to the size of the 

home, the number of rooms or bedrooms has often been used as a proxy for conditioned spaced when 

precise information about the size of the home is limited. The impact of room number has varied and has 

ranged from having no impact to having a significant positive influence on energy use (Wiesmann et al., 

2011; McLoughlin et al., 2012; Wilson, 2013). A similar sentiment has been used regarding the number 

of floors, or stories of a home, with the idea that increased number of floors typically means increased 

amount of area to be conditioned.  Again, the impact of the number of floors has varied, and has been 

found to be insignificant in some cases but contributed to higher electricity use in other cases (Wilson, 

2013; Huang, 2015; Jones & Lomas, 2015).  

Aside from variables describing the size of a building, the age of the building has also commonly 

been used in studies looking to understand drivers of energy consumption. However, the impact of 

structure age has often been more important on heating energy, having little to no effect on cooling (Kaza, 

2010; Huebner et al., 2016). The housing type, such as single-family detached homes or multi-family 

attached units, also significantly impacts energy use, with single-family detached homes typically using 

more energy than all other dwelling types, possibly due to size, number of occupants, or other structural 

factors (Yohanis et al., 2008; Kaza 2010; McLoughlin et al., 2012).   

The number of appliances present, as well as their relative efficiency can be considered both 

characteristics of a particular home and be associated with behavioral tendencies which can impact 

electricity use. For example, Iwafuna and Yagita found that the use of appliances, such as a water server, 

portable humidifiers, and air purifiers had positive impacts on cooling use, suggesting that households 

that can afford extra appliances prefer heavy AC use (2016). More evidence available that occupant 

behaviors can impact electricity consumption has been found with increased use being associated with 
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individuals that reported being less comfortable in the summer and individuals that were home during the 

day (Nelson et al., 2012). 

Sociodemographic characteristics such as the number of occupants or household size, tenure, 

income, and age of occupants have all been found to be significant predictors of energy consumption 

(Weismann et al., 2011; Nelson et al., 2012; Wyatt, 2013; Xu et al., 2020). In multiple studies, older 

adults have been found to use less energy when compared to younger inhabitants (Weismann et al., 2011; 

Chen et al., 2018). Additionally, it is well documented that larger household sizes or increased number of 

occupants are associated with increased in energy demand. (Weismann et al., 2011; Wilson 2013; Wyatt, 

2013; Iwafune & Yagita, 2016). Household income has had a varying relationship with energy use but has 

generally been associated with increased consumption (Yohanis et al., 2008; Wilson, 2013). Ownership of 

the property is another characteristic that has had a varying relationship, with some results showing 

owners have increased energy use compared to those who rent but other results indicating that renters use 

more (Kaza 2010; Weismann et al., 2011; Valenzuela et al., 2014). 

Our study investigated the drivers of summer cooling electricity consumption using household 

electricity data from single-family homes in a mid-sized, semi-arid city in Colorado. Our goal was to 

determine which urban form, building, sociodemographic and behavioral characteristics were driving 

summer cooling electricity, and compare their relative importance for explaining cooling consumption 

variability. We expected that a combination of urban form, except for land cover, building, 

sociodemographic, and behavioral characteristics would explain cooling consumption due to our previous 

analysis showing land cover having a minimal impact, as well as the overall prevalence of all these 

variables in the body of literature that explores drivers of electricity consumption. However, we 

anticipated that the relative importance of these characteristics would vary given the unique qualities of 

our study area.  
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2 Methods 
 
2.1 Study Location 

 

Our study area is a mid-size city of approximately 170,000 people located in northern Colorado 

(City of Fort Collins, 2018). However, in the coming years it is expected to experience significant 

population growth and urban development. The study area is situated near the base of the Rocky 

Mountains along the Front Range, at approximately 5,000 feet (1,524 m) above sea level (City of Fort 

Collins, 2019a). Located near the Cache La Poudre River, the city is in a semi-arid region with nearly 300 

days of sunshine annually, and average rainfall and snowfall of 15 and 50 inches per year, respectfully 

(NOAA, 2018). On average, the temperature in the summer months is about 72 ⁰F but can reach a daytime 

maximum average of 97 ⁰F (NOAA, 2018). While there are a limited number of naturally occurring trees 

in the area, the city has prioritized the maintenance and development of an extensive urban forest (City of 

Fort Collins, 2017). 

The local municipality has been working to prioritize environmental impact within the 

community, with goals to have 100% renewable electricity by 2030 and to be carbon neutral by 2050 

(City of Fort Collins, 2020b). To reach these goals, addressing energy use is of upmost importance, as 

energy emissions make up more than 70% of the community’s total greenhouse gas emissions (City of 

Fort Collins, 2019b). Currently, most of the electricity for the community is generated through the use of 

coal and hydropower, but an increasing amount of wind and solar resources are being added to the 

portfolio (City of Fort Collins, 2019b).  In addition, numerous initiatives exist for residents to engage in 

more energy efficient measures, such as investing into community shared solar and solar rebate programs 

(City of Fort Collins, 2019b).   

2.2 Electricity Data  

 
Unlike many other localities, the city owns their electricity utility, allowing us to obtain parcel-level 

electricity consumption data for the year 2016. For the purpose of our study, we wanted to isolate the 

analysis to single-family detached houses in an effort to reduce the variability in consumption patterns 
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that might arise by including commercial and multi-unit properties. Due to limitations on electric heating 

information as well as seasonal variation, we focused on summer, defined as June 1st – August 31st, 

cooling electricity consumption. Annual electricity consumption is known for having an “M” type 

distribution curve, with peaks occurring in summer and winter, making it important to analyze the data 

seasonally to prevent any trends or patterns from being averaged out (Figure 2.1).  

 

Figure 2.1 Average monthly kWh/day across single-family households in the study area. Two peaks are 

observable in the winter and summer months. Months in dark gray are shoulder months, and months in 

orange are peak summer months. The line represents the average consumption in shoulder months. 

Cooling electricity consumption would be what falls above the line during the months of June, July, and 

August. 

 

To prepare the data for analysis, we isolated single-family residential households using parcel 

information from the city, as well as the county accessor’s office (Larimer County Assessor’s Office, 

2019). We joined unique premise codes of household electricity consumption data to single-family 

residential parcel polygons and removed parcels that had duplicate information (i.e. multiple premise 

codes per parcel or multiple parcel numbers per premise), incomplete consumption readings, or a change 

in residency during the year, resulting in 24,346 single-family residential parcels.  
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To determine average consumption for each household, we used billing information to prorate 

electricity consumption based on read dates and days of service to calculate the average use for each 

calendar month. We then averaged each household’s use for the months June – August and divided by the 

number of days from June 1st – August 31st (92) to get a unique average summer kilowatt hours per day 

(kWh / day) for each household.  

To get cooling electricity use, we used the shoulder months of May and September when electricity 

is less likely to be used for cooling or heating due to milder temperatures. We averaged the kWh / day for 

May and September together and subtracted that from summer kWh / day to get cooling kWh /day (Fig. 

2.1).  We normalized the cooling consumption data by the square footage of the home, documented by 

the county assessor’s office, to calculate our response variable as kilowatt hours per day per square foot 

(kWh / day / ft2) (Table 2.1). Our analysis response variable was performed using English units due the 

preferences of the local utility, however metric conversions are documented in parenthesis.  

Table 2.1 Descriptive statistics of summer cooling electricity consumption and house size in our study 

sample. Values in parenthesis represent metric conversions (m2). 

Variable Min Mean Max 

Cooling electricity use (kWh / day) 0.0006 9.24 63.71 

Cooling electricity use (kWh / day /ftt2) 0.0000005 (.000005) 0.005 (.05) 0.013 (.15) 

House Size  (ftt2) 381(35) 1917 (178) 7241 (673) 
 

From our initial 24,346 households, we removed 2,866 households that had negative consumption 

patterns, meaning they used more electricity in the shoulder months than in the summer months. This 

could be due to a variety of reasons, such summer being a common time for vacationing in the city. We 

also removed 421 households due to incomplete or errored assessor’s data for our explanatory variables 

of interest. Additionally, we found 432 households to be outliers by removing those with consumption 

values 1.5 times the interquartile range beyond the third quartile and less than the first quartile. Outliers 

were not due to a skewed distribution, but rather individual circumstances resulting from extremely high 

average cooling electricity consumption, small household square footage, or a combination of both. Once 



 

30 
 

outliers were removed, the distribution for the response variable met normality assumptions for analysis 

(n = 20,627).  

2.3 Urban Form 

Land cover data (1 m²) was derived using WorldView-2 satellite imagery and LiDAR with 

object-based feature extraction techniques (Zhao & Troy, 2008; Beck et al., 2016;  Rasmussen et al., 

2021). The overall accuracy of the land cover dataset was found to be 95% using a hybrid-stratified 

random accuracy assessment with 2400 points (Congalton & Green, 2019). The land cover dataset 

consisted of seven cover classes: tree canopy, other vegetation (e.g., grasses, shrubs, etc.), bare soil, 

water, buildings, roads/railroads, and other impervious surfaces (e.g. driveways, sidewalks, etc.) For the 

purposes of this study, we reclassified land cover into three classes: tree canopy, impervious surfaces 

(roads/railroads and other impervious surfaces), and other (buildings, bare soil, water, and other 

vegetation).  

In order to isolate the possible impact of land cover on cooling electricity consumption, we 

created four buffers of 6 m, 12 m, 18 m, and 24 m around single-family homes by using a buildings 

polygon layer provided by the city. The 6 m buffer consisted of the area over the home up to 6 m away, 

the 12 m buffer was the area 6 – 12 m from the home, the 18 m buffer was the area 12 – 18 m from the 

home, and the 24 m buffer was the area 18 – 24 m from the home. These buffers were then broken into 

quadrants to account for azimuth (North, South, East, and West) (Figure 2.2). We summarized tree 

canopy and impervious surfaces by percent cover within each quadrant for every household, resulting in 

32 explanatory variables (Table 2.2).  
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Figure 2.2 Buffers broken into quadrants. 6 m, 12 m, 18 m, and 24 m buffers were broken down by 

azimuth (North, South, East, and West) resulting in 32 separate quadrants. 

 

Table 2.2 Descriptive statistics of land cover variables represented as a percent (%). Percentages were 

calculated as % land cover (tree canopy or impervious surfaces) of the entire quadrant area.  

 6m 12m 18m 24m 

 Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

 TREE CANOPY 

North 0 22/26 100 0 29/33 100 0 23/27 100 0 22/24 100 

East  0 21/26 100 0 28/32 100 0 22/26 100 0 22/25 100 

South 0 25/30 100 0 28/32 100 0 22/26 100 0 22/25 100 

West 0 27/33 100 0 27/32 100 0 21/25 100 0 22/24 100 

 IMPERVIOUS SURFACES 

North 0 20/24 85.4 0 26/29 100 0 38/42 100 0 39/42 100 

East  0 22/25 85.2 0 24/27 100 0 36/39 100 0 38/41 100 

South 0 19/23 86.6 0 26/30 100 0 38/42 100 0 39/42 100 

West 0 20/25 88.6 0 24/28 100 0 37/40 100 0 39/41 100 

 

Average land surface temperature (LST) was provided by Rasmussen et al. (2021). It was derived 

using imagery for five dates in 2016 (May 29, June 14, July 16, August 1, and August 17) from United 

States Geological Survey Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

to create a mean composite image of surface temperature, resampled from a 100 m² spatial resolution to a 

30 m² resolution (Rasmussen et al., 2021). Using the centroids from the building shapefile provided by 
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the city, the values of LST were extracted to the points to get a unique LST for each household (Table 

2.3). 

Table 2.3 Descriptive statistics of continuous numerical explanatory variables. Variables came at varying 

resolutions depending on the dataset they were obtained from. Census block group data was 

disaggregated to apply to each household within that block group. Metric conversions are in parenthesis 

where applicable (gallons to liters; ft2 to m 2 ) 

 

House density and population density were calculated at a census block group resolution using 

the 2016 American Community Survey 5-year Estimates for the city (U.S. Census Bureau, 2016). Both 

variables were calculated by dividing the population value or housing unit number of the census block 

group by the area of the census block group in hectares (Table 2.3).   

Variable Resolution Min Mean Max 

Age of Home (years) Household 1 30 131 

Average Water Use (gallons/month) Household 
383 

(1450) 
8451 

(31,991) 
54,475 

(207,232) 
Average Annual Electricity Use 

(kWh/day/ft2) Household 
0.001 
(0.01) 

0.014 
(0.15) 

0.212 
(2.28) 

Bedroom Count Household 1 4 8 

House Footprint (m2) Household 28 210 1087 

House Perimeter (m) Household 22 64 204 

Distance from Foothills (m) Household 2556 8365 15,458 

Distance from street (m) Household 6 24 108 

Room Count Household 1 7 19 

House Size (ft2) Household 381(35) 1917 (178) 7241 (673) 

% 3+ Person Household Census Block Group 0.00 1.51 11.69 

% College Graduates Census Block Group 2.70 20.95 34.41 

% Family Households Census Block Group 2.21 24.79 35.52 

% Married Household Census Block Group 2.18 20.40 31.47 

% Renter Census Block Group 1.27 11.44 53.66 

% Single Person Household Census Block Group 1.47 7.69 38.76 
Housing density per hectare 

 (10,000 m2) Census Block Group 0.44 5.19 29.13 

Median Household Income ($) Census Block Group 15,833 78,187 132,361 
Population Density per hectare 

(10,000 m2) Census Block Group 1.01 13.02 68.00 

LST (°F) 
100 m2 (resampled to 

30 m2) 80 93 101 
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Distance from foothills and distance from the street were both calculated using the Near tool in 

ArcGIS Pro 2.7 using the building centroids derived from the building polygons provided by the city. For 

distance from the foothills, a 6000 ft (1828.8 m) contour was created from a 30 m2 resolution Ground 

Surface Elevation dataset (USGS, 2013) and used as the near feature for the building centroids (Table 

2.3). This elevation was chosen because it lies well within what is considered the foothills ecosystem in 

Colorado (CNHP, 2010).  Distance from the street was determined by using street centerlines provided by 

the city as the near feature for the building centroids (Table 2.3). 

Street orientation was determined in a similar fashion to distance from the street. Using the Near 

tool in ArcGIS Pro 2.7, street centerlines were used as the near features for the building polygons, and the 

angle ranging continuously from -180 degrees to 180 degrees was documented rather than the distance. 

This angle was reclassified into four categories of street orientation (East-West, North-South, Northeast-

Southwest, Northwest-Southeast) (Table 2.4).  

Table 2.4 Descriptive statistics of categorical variables. Categorical variables were recategorized based 

on distribution and similar categories. Actual building values was converted to a categorical variable to 

account for skewed distribution and easier interpretation. All categorical variables were at a household 

resolution. 

Category Variable Resolution Household Count (%) 

Actual Building Value ($) < 350,000 Household 3858 (19) 

 350,000 - 450,000 Household 8777 (43) 

 450,001 - 550,000 Household 4785 (23) 

  > 550,000 Household 3207 (16) 

HVAC Type Central Air to Air Household 13679 (66) 

 Forced Air Household 6186 (25) 

 Electric Baseboard Household 270 (1) 

  Other Household 492 (2) 

Roof Type Gable Household 18051 (88) 

 Hip Household 1636 (8) 

  Other Household 940 (5) 

Roof Cover Composition Household 17643 (86) 

 Wood Household 2769 (13) 

  
Other Household 215 (1) 
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House Type 

 
2 story 

 
Household 10248 (50) 

 Ranch Household 6542 (32) 

 Split Level Household 2848 (14) 

  Other Household 989 (5) 

Street Orientation East-West Household 5373 (26) 

 North-South Household 4584 (22) 

 Northeast-Southwest Household 5085 (25) 

  Northwest-Southeast Household 5585 (27) 

Building Stories 1 Household 6549 (32) 

  2 Household 14078 (68) 

 

2.3 Building Characteristics 

 
Building footprint and building perimeter were based off of the building polygon layer provided 

by the city (Table 2.3). The rest of the building characteristics were obtained from county assessor’s data. 

Numerical variables from the assessor’s data included room count, bedroom count, square footage, and 

building age (Table 2.3). Building value was initially a numerical continuous variable but was categorized 

into four categories due to skew in its distribution (Table 2.4). House type, HVAC type, roof type, roof 

cover and building stories were additional categorical variables included from the assessor’s data and 

were recategorized based on category counts and category similarities (Table 2.4). The Other category for 

house type contained modular and bi level 2 story types. The Other category for HVAC type contained 

homes with air exchange, electric radiant, floor/wall furnace, heat pump, hot water baseboard, or none. 

The Other category for roof type contained flat, gambrel, hip/gable combo, irregular, or shed types. The 

Other category for roof cover contained clay tile, built up rock, concrete tile, formed seam metal, 

preformed metal, and slate types. Composition roof cover contained composition shingle, composition 

shingle heavy and composition roll. Wood roof cover contained wood shake and wood shingle.  

2.4 Sociodemographic and behavioral characteristics  

 
Sociodemographic characteristics were obtained from the American Community 5-year Survey 

for the year 2016 at a block group scale and disaggregated to apply to each household (U.S. Census 
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Bureau, 2016). These included median household income, percent renter, percent college graduate, 

percent single person household, percent 3+ person household, percent married households, and percent 

family households (Table 2.3). 

 Both average yearly electricity consumption (kWh /day / ft2) and average monthly water 

consumption (gallons / month) were used as a proxy for behavioral characteristics (Table 2.3). Average 

yearly electricity consumption was calculated from the same dataset as our response variable, pulling 

from the entire year of complete data for each household. Average monthly water consumption (gallons / 

month) was provided by the local water utility and prepared by Rasmussen et al. (2021). Only a subset of 

water data was available for the homes in our analysis (n = 13,492) 

2.6 Bivariate Models  

 
 We analyzed the relationship between every explanatory variable and summer cooling electricity 

consumption using a simple bivariate linear regression. By investigating individual relationships, we 

could better understand the association each explanatory variable had with cooling consumption without 

bringing in the complexity of multiple variables. In these bivariate models, positive coefficients in our 

continuous variables indicated that an increase in the variable coincided with an increase in cooling 

electricity consumption and for categorical variables indicated an increase when compared to the 

reference category, while the opposite was true for negative coefficients. These bivariate models also 

ensured relationships were present before including explanatory variables into a multivariate model, and 

overall gave us more context when interpreting our multivariate model.  

2.7 Linear Regression Model 

 
We performed an Ordinary Least Squares multiple linear regression model (OLS) with all of our 

variables we looked at in our bivariate models, with the exception of water use. Water use was omitted 

due to its limited sample size in comparison to our electricity data. The remaining variables were chosen 

due to their prevalence in previous studies showing impact on electricity consumption, so we had no need 

to go through a variable selection process. Our goal in applying a regression model was to determine how 
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much of summer cooling electricity use can be described by urban form, building, sociodemographic, and 

behavioral characteristics. We used Cohen’s f2 to understand each variable’s effect size within the context 

of the model. An f2 ≥ 0.02 represents small effect size, f2 ≥ 0.15 represents moderate effect size, and f2 ≥ 

0.35 represents large effect sizes (Cohen, 2013). Similar to our bivariate models, positive coefficients in 

our continuous variables indicated that an increase in the variable coincided with an increase in cooling 

electricity consumption and for categorical variables indicated an increase when compared to the 

reference category, while the opposite was true for negative coefficients.  

3 Results 
 
3.1 Bivariate Models 

 
Results from our bivariate analysis showed that all of our land cover variables had a significant 

relationship with summer cooling electricity consumption, but with low R2 (Table 2.5). All tree canopy 

variables showed a negative relationship with summer cooling electricity, and impervious surfaces 

showed a positive relationship, determined by the sign of the coefficient. The tree canopy variables with 

the highest R2 were those located in 6 m and 12 m east and west. Impervious surface variables with the 

highest R2 were in 6 m south and west and had lower R2 than the highest tree canopy variables.  

Table 2.5 Bivariate results from land cover variables. TC stands for tree canopy and IS stands for 

Impervious surfaces. Negative coefficients in blue and imply a relationship that an increase in the 

variable results in a decrease in summer cooling electricity. The opposite relationship is true for positive 

relationships in red. 

Variable Coefficient CI R2  p value 

TC 6m N  -0.0000208 -0.00002260 – -0.00001890 0.023 <0.001 
TC 6m E  -0.0000244 -0.00002631 – -0.00002252 0.030 <0.001 
TC 6m S  -0.0000193 -0.00002090 – -0.00001762 0.025 <0.001 
TC 6m W  -0.0000195 -0.00002096 – -0.00001795 0.030 <0.001 
IS 6m N  0.0000220 0.00000470 – 0.00000778 0.016 <0.001 
IS 6m E  0.0000233 0.00002094 – 0.00002575 0.017 <0.001 
IS 6m S  0.0000250 0.00002264 – 0.00002741 0.020 <0.001 
IS 6m W  0.0000270 0.00002474 – 0.00002926 0.026 <0.001 

TC 12m N  -0.0000158 -0.00001736 – -0.00001415 0.018 <0.001 
TC 12m E  -0.0000195 -0.00002107 – -0.00001794 0.028 <0.001 
TC 12m S  -0.0000171 -0.00001868 – -0.00001552 0.021 <0.001 
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TC 12m W  -0.0000203 -0.00002182 – -0.00001869 0.030 <0.001 
IS 12m N  0.0000062 0.00000470 – 0.00000778 0.003 <0.001 
IS 12m E  0.0000100 0.00000828 – 0.00001162 0.007 <0.001 
IS 12m S  0.0000077 0.00000620 – 0.00000924 0.005 <0.001 
IS 12m W  0.0000115 0.00000981 – 0.00001312 0.009 <0.001 
TC 18m N  -0.0000149 -0.00001660 – -0.00001323 0.014 <0.001 
TC 18m E  -0.0000162 -0.00001797 – -0.00001451 0.016 <0.001 
TC 18m S  -0.0000151 -0.00001677 – -0.00001336 0.014 <0.001 
TC 18m W  -0.0000186 -0.00002033 – -0.00001680 0.020 <0.001 
IS 18m N  0.0000033 0.00000213 – 0.00000445 0.002 <0.001 
IS 18m E  0.0000040 0.00000274 – 0.00000525 0.002 <0.001 
IS 18m S  0.0000040 0.00000281 – 0.00000512 0.002 <0.001 
IS 18m W  0.0000063 0.00000508 – 0.00000756 0.005 <0.001 
TC 24m N  -0.0000175 -0.00001938 – -0.00001562 0.016 <0.001 
TC 24m E  -0.0000182 -0.00002014 – -0.00001632 0.017 <0.001 
TC 24m S  -0.0000175 -0.00001934 – -0.00001557 0.016 <0.001 
TC 24m W  -0.0000175 -0.00002073 – -0.00001687 0.016 <0.001 
IS 24m N  0.0000022 0.00000095 – 0.00000355 0.001 <0.001 
IS 24m E  0.0000027 0.00000130 – 0.00000401 0.001 <0.001 
IS 24m S  0.0000034 0.00000214 – 0.00000472 0.001 <0.001 
IS 24m W  0.0000053 0.00000392 – 0.00000663 0.003 <0.001 

 

 Most of our numerical variables resulted in significant bivariate models as well (Table 2.6). 

Variables that were not statistically significant included house footprint, house perimeter, and distance 

from the street. Among significant bivariate models, our behavioral variable of average annual electricity 

use had the highest R2 at 0.112 and positive relationship with cooling electricity, followed by LST with an 

R2 of .0397, which also had positive relationship with cooling electricity. Our subset of samples with 

water consumption data showed an R2 of 0.028, as well as a positive relationship with cooling electricity 

use.  

Table 2.6  Bivariate results from numerical variables. Negative coefficients are in blue and imply a 

relationship that an increase in the variable results in a decrease in summer cooling electricity. The 

opposite relationship is true for positive relationships in red. 

Variable Coefficient CI R2  p value 

Age of Home (years) -0.00004349 -0.00004602 – -0.00004096 0.052 < 0.001 

Average Water Use 
(gallons/month) 0.00000013 0.00000011 – 0.00000014 0.028 < 0.001 

Average Annual Electricity 
Use (kWh/day/ft2) 0.12880000 0.12385770 – 0.13376982 0.112 < 0.001 
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Bedroom Count 0.00025920 0.00021115 – 0.00030717 0.005 < 0.001 
House Footprint (m2) -0.00000018 -0.00000082 – 0.00000046 0.000 1.000 
House Perimeter (m) -0.00000090 -0.00000430 – 0.00000249 0.000 1.000 

Distance from Foothills (m) 0.00000017 0.00000015 – 0.00000018 0.026 < 0.001 
Distance from street (m) -0.00000797 -0.00001616 – 0.00000021 0.000 < 0.1 

Room Count 0.00018970 0.00016782 – 0.00021164 0.014 < 0.001 
House Size (ft2) 0.00000016 0.00000010 – 0.00000023 0.001 < 0.001 

% 3+ Person Household -0.00022110 -0.00024025 – -0.00020205 0.024 < 0.001 
% College Graduates 0.00002936 0.00002154 – 0.00003718 0.003 < 0.001 
% Family Households 0.00005133 0.00004256 – 0.00006010 0.006 < 0.001 
% Married Household 0.00005069 0.00004298 – 0.00005841 0.008 < 0.001 

% Renter -0.00005105 -0.00005609 – -0.00004600 0.019 < 0.001 
% Single Person Household -0.00005913 -0.00006926 – -0.00004901 0.006 < 0.001 

Housing density per hectare 
(10,000 m2) -0.00012510 -0.00013628 – -0.00011388 0.023 < 0.001 

Median Household Income 0.00000002 0.00000002 – 0.00000002 0.019 < 0.001 

Population Density per 
hectare (10,000 m2) -0.00005064 -0.00005542 – -0.00004586 0.020 < 0.001 

LST (°F) 0.00022610 0.00021090 – 0.00024125 0.040 < 0.001 
  

Other variables of note included distance from the foothills, median household income, and room 

count, all of which had significant, positive relationships with cooling electricity. In addition, percent 3+ 

person household, housing density, population density, and percent renter all had significant, negative 

relationships with summer cooling electricity consumption. 

All categorical bivariate models were significant, and were interpreted based on the reference 

category, listed as the first category in each variable which lacks a coefficient (Table 2.7). HVAC type 

had the highest R2 out of all the categorical variables at .0397, on par with other variables such as LST. 

For HVAC, the reference category was central air, and all other categories used less summer cooling 

electricity comparatively, as noted by negative coefficients.   

House types had the second highest R2 of categorical variables, with all categories of homes using 

less summer electricity consumption when compared to 2 story homes. A similar finding occurred with 

house stories, where homes with 2 stories used more cooling electricity than single story homes. The 

remaining categorical variables had significant relationships, but relatively low R2 . Homes with higher 
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assessed value used more cooling electricity than homes valued less than $350,000. When it comes to 

roofs, homes with wood or other types of roof cover used less cooling electricity than homes with 

composition roof cover, and homes with hip roof types used less cooling electricity than homes with 

gable. Lastly, homes on streets oriented north-south used less electricity than homes on streets oriented 

east-west, and homes that were oriented on streets northeast-southwest and northwest-southeast used 

more compared to homes on streets oriented east-west. 

Table 2.7 Bivariate results from categorical variables. Negative coefficients are in blue and imply a 

relationship that an increase in the variable results in a decrease in summer cooling electricity. The 

opposite relationship is true for positive relationships in red. 

Variable Category Coefficient CI 

Actual Building Value ($) < 350,000     
R2: 0.0007 350,000 - 450,000 0.00005064 -0.00006435 – 0.00016563 

p value: <.01 450,001 - 550,000 0.00005064 -0.00001015 – 0.00024746 
  > 550,000 0.00024860 0.00010636 – 0.00039086 

HVAC Type Central Air to Air     
R2: 0.0396 Forced Air -0.00110600 -0.00119531 – -0.00101648 

p value: <.001 Electric Baseboard -0.00210000 -0.00245828 – -0.00174100 
  Other -0.00214200 -0.00241016 – -0.00187459 

Roof Type Gable     
R2: 0.003 Hip -0.00036490 -0.00051837 – -0.00021133 

p value: <.001 Other 0.00061470 0.00041579 – 0.00081363 

Roof Cover Composition     
R2: 0.006 Wood -0.00069350 -0.00081482 – -0.00057214 

p value: <.001 Other -0.00043800 -0.00084532 – -0.00003069 

House Type 2 story     
R2: 0.024 Ranch -0.00055820 -0.00065134 – -0.00046513 

p value: <.001 Split Level -0.00097700 -0.00110166 – -0.00085240 
  Other -0.00174500 -0.00194091 – -0.00154911 

Street Orientation East-West     
R2: 0.0009 North-South -0.00010460 -0.00022433 – 0.00001502 

p value: <.001 Northeast-Southwest 0.00016030 0.00004389 – 0.00027679 
  Northwest-Southeast 0.00004129 -0.00007245 – 0.00015504 

House Stories 1     
R2: .0014 2 0.00024011 .00015111 – 0.00032912 

p value: <.001       
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3.2 Linear Regression Model 

 
Our multiple linear regression OLS model had 38 urban form variables, 12 building variables, 

and 7 sociodemographic and behavioral variables and explained about 24% of the variability in summer 

cooling consumption (R2 = 0.24) (Table 2.8). The variables had a range of no effect to medium effect size 

on summer cooling electricity consumption as indicated by their Cohen’s f2 values, ranging from 0 to 

0.17.  

Table 2.8 Results from the OLS multiple linear regression model ordered from variables with the highest 

Cohen’s f2 to variables with the lowest Cohen’s f2 . Categorical variables are grouped together and have 

one Cohen’s f2 value. An f2 ≥ 0.02 represents small effect size, f2 ≥ 0.15 represents moderate effect size, 
and f2 ≥ 0.35 represents large effect sizes. Negative coefficients are in blue and imply a relationship that 

an increase in the variable results in a decrease in summer cooling electricity. The opposite relationship 

is true for positive relationships in red. The overall model had an R2 of 0.240. 

Variable Coefficient CI Cohen's f2 

(Intercept) -0.00519126 * -0.00928812 – -0.00109439   
Average Annual Electricity 

Use (kWh/day/ft) 0.14636337 *** 0.14145492 – 0.15127182 0.1668 
Age of Home -0.00000665 ** -0.00001087 – -0.00000243 0.0628 
Room Count 0.00008704 *** 0.00005534 – 0.00011874 0.0210 

HVAC [Electric Baseboard] -0.00370835 *** -0.00404369 – -0.00337302 0.0181 

HVAC [Forced Air] -0.00066804 *** -0.00075395 – -0.00058213   

HVAC [Other] -0.00101499 *** -0.00126717 – -0.00076282   
Distance from Foothills 0.00000009 *** 0.00000007 – 0.00000010 0.0109 
% 3+ Person Household -0.00008782 *** -0.00011479 – -0.00006085 0.0079 

LST  0.00005334 *** 0.00003341 – 0.00007327 0.0054 

House Type [Other] -0.00048887 *** -0.00067972 – -0.00029803 0.0045 

House Type [Split Level] -0.00033136 *** -0.00046012 – -0.00020259   
House Type [Ranch] 0.00071604 -0.00103420 – 0.00246627   

TC 6m E  -0.00000519 *** -0.00000795 – -0.00000244 0.0033 

Roof Cover [Wood] -0.00020689 *** -0.00032915 – -0.00008463 0.0017 
Roof Cover [Other] 0.00023359 -0.00013117 – 0.00059835   

% Family Households -0.00001667 -0.00003442 – 0.00000108 0.0014 
House Size -0.00000019 * -0.00000035 – -0.00000003 0.0014 
TC 6m N  -0.00000044 -0.00000311 – 0.00000222 0.0013 
TC 6m W  -0.0000021 -0.00000436 – 0.00000016 0.0012 
IS 18m N  -0.00000471 ** -0.00000779 – -0.00000162 0.0009 

% College Graduates 0.00002537 *** 0.00001621 – 0.00003452 0.0009 
House Footprint -0.00000461 *** -0.00000670 – -0.00000251 0.0007 

IS 6m W  -0.00000283 * -0.00000559 – -0.00000008 0.0006 
TC 6m S  -0.00000188 -0.00000425 – 0.00000049 0.0006 
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Street [North-South] -0.00004857 -0.00018550 – 0.00008836 0.0005 

Street [Northeast-Southwest] 0.00011569 * 0.00000289 – 0.00022848   
Street [Northwest-Southeast] 0.00001919 -0.00009066 – 0.00012904   

TC 18m W  0.00000370 * 0.00000069 – 0.00000671 0.0005 
Population Density -0.00001255 -0.00003814 – 0.00001304 0.0004 

TC 24m W  0.00000139 -0.00000199 – 0.00000477 0.0003 
IS 18m W  0.00000064 -0.00000231 – 0.00000360 0.0003 
IS 12m E  -0.00000321 * -0.00000624 – -0.00000017 0.0002 
TC 24m E  0.00000450 ** 0.00000115 – 0.00000785 0.0002 
IS 18m S  -0.00000264 -0.00000569 – 0.00000042 0.0002 

Roof Type [Hip] -0.00001488 -0.00015699 – 0.00012724 0.0002 
Roof Type [Other] 0.00004634 -0.00013616 – 0.00022884   

TC 12m W  -0.00000041 -0.00000378 – 0.00000296 0.0001 
IS 6m E  -0.00000320 * -0.00000592 – -0.00000047 0.0001 

Distance from Street  0.00001070 * 0.00000150 – 0.00001991 0.0001 
House Stories 0.00105902 -0.00069112 – 0.00280917 0.0001 

IS 12m W  0.00000016 -0.00000291 – 0.00000324 0.0001 
IS 24m W  0.00000189 -0.00000095 – 0.00000474 0.0001 
IS 18m E  -0.00000034 -0.00000334 – 0.00000266 0.0001 
IS 24m E  -0.00000173 -0.00000454 – 0.00000108 0.0001 
IS 24m N  -0.00000183 -0.00000472 – 0.00000106 0.0001 
TC 18m N  0.00000308 -0.00000000 – 0.00000617 0.0001 

Bedroom Count 0.00000592 -0.00005384 – 0.00006568 0.0001 
IS 6m N  0.00000148 -0.00000127 – 0.00000423 0.0001 

% Married Household 0.00001144 -0.00000540 – 0.00002827 0.0001 
TC 12m S  0.00000255 -0.00000081 – 0.00000590 0.0000 
TC 24m N  0.00000059 -0.00000286 – 0.00000405 0.0000 

% Single Person Household -0.00002578 ** -0.00004174 – -0.00000981 0.0000 
TC 12m E  0.00000299 -0.00000030 – 0.00000628 0.0000 

Value [350,000 - 450,000] -0.00004474 -0.00015771 – 0.00006823 0.0000 
Value [450,001 - 550,000] -0.00010983 -0.00026694 – 0.00004728   

Value [> 550,000] -0.00010392 -0.00032369 – 0.00011586   
% Renter 0.0000023 -0.00000650 – 0.00001110 0.0000 
TC 18m E  0.00000109 -0.00000189 – 0.00000407 0.0000 

House Density 0.00004395 -0.00001935 – 0.00010726 0.0000 
IS 12m N  -0.00000045 -0.00000351 – 0.00000261 0.0000 
IS 6m S  -0.00000072 -0.00000346 – 0.00000201 0.0000 

IS 12m S  -0.00000059 -0.00000368 – 0.00000249 0.0000 
TC 24m S  0.00000005 -0.00000343 – 0.00000354 0.0000 
TC 12m N  -0.00000083 -0.00000415 – 0.00000249 0.0000 
TC 18m S  0.00000001 -0.00000313 – 0.00000315 0.0000 
IS 24m S  0.00000005 -0.00000288 – 0.00000298 0.0000 

House Perimeter 0.00002078 *** 0.00001129 – 0.00003028 0.0000 

Observations 20627   

R2 / R2 adjusted 0.240 / 0.237   
* p<0.05   ** p<0.01   *** p<0.001 
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Based on the full model, average annual electricity use (Cohen’s f2 = 0.16) had the greatest effect 

size, although still only moderate, on the model and showed statistical significance. Age of the home and 

number of rooms showed small effect sizes greater than or equal to .02 but were statistically significant 

variables. Higher annual electricity consumption and increased number of rooms were both associated 

with higher cooling electricity use, whereas increased age of the home was associated with less cooling 

electricity use.  

Additional urban form, building, and sociodemographic variables were also statistically 

significant but had small to no effect size on the model, indicated by small to zero Cohen’s f2 values. 

(Table 2.8). Urban form variables that were significant and had a positive relationship with summer 

cooling electricity consumption included distance from the foothills, distance from the street, street 

orientation of northeast-southwest compared to those with east-west street orientation, and LST. Tree 

canopy was significant at 6 m east, 18 m west, and 24 m east with a varying relationship where 6 m east 

had a negative relationship, but 18 m west and 24 m east had a positive relationship. Impervious surfaces 

at 18 m north,  6 m east and west, and 12 m east all had a negative relationship with summer cooling 

electivity (Table 2.8).  

Building characteristics aside from room count and age of the home that were significant in the 

OLS model included HVAC type, house type, roof cover, house size, house footprint, and house 

perimeter. All HVAC types were associated with less summer electricity consumption when compared to 

homes with central air, and split level and other types of homes also were associated with less summer 

electricity consumption, when compared to 2 story homes. Wood roof cover had a negative relationship to 

summer cooling electricity use when compared to homes with composition roof cover. House size and 

house footprint both had a negative relationship with cooling electricity, whereas house perimeter had a 

positive relationship (Table 2.8). 

Significant sociodemographic characteristics included percent 3+ person household, percent 

college graduates, and percent single person households, where an increase in percent college graduates 
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were associated with more cooling electricity use, and an increase in percent single person households, as 

well as percent 3+ person household were associated with less cooling electricity use (Table 2.8).  

4  Discussion 
 
4.1 Urban form  

 
 Our bivariate models using urban form variables showed similar findings to other studies, where 

both population density and housing density decreased electricity use (Wilson, 2013; Ko and Radke, 

2014; Güneralp et al., 2017; Osario et al., 2017; Chen et al., 2018; Li et al., 2018). In addition, all tree 

canopy variables were associated with less summer cooling electricity use, where the opposite was true 

for impervious surfaces. Street orientation, where studies have found that east-west streets use less than 

all other orientations, was somewhat corroborated by our findings (Ko & Radke, 2014; Li et al., 2018). In 

our bivariate model, homes on east-west oriented streets used less summer cooling electricity when 

compared to other home orientations, with the exception of north-south.  

 In the full model, the function of urban form complicated some, but many variables held the same 

relationship as they did in the bivariate models, such as distance from the foothills and LST. LST had the 

greatest effect size of the urban form variables, as indicated by its higher Cohen’s f2 value. This is not 

surprising and indicates that temperature is highly correlated summer cooling electricity use, a finding 

that has been documented in other studies (Beccali et al., 2008; Psiloglou et al., 2009; Kavousian et al., 

2013).   

Other urban form variables became insignificant in the full model or their relationship with 

summer cooling electricity switched. Northeast-southwest street oriented homes were the only homes that 

used significantly more electricity than those on east-west streets. Population density and housing density 

became statistically insignificant, which contrasts with other findings that have found a significant 

relationship showing that denser urban development lends to less energy use (Wilson, 2013; Ko and 

Radke, 2014; Güneralp et al., 2017; Osario et al., 2017; Chen et al., 2018; Li et al., 2018). 
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The relationship that land cover variables had with cooling use varied and showed significant 

impervious surfaces variables reducing electricity use and some tree canopy variables increasing use, 

opposite of what was found in bivariate models. However, the most significant tree canopy variable, 6 m 

east, in the OLS also had the highest R2 value in its bivariate model but had a low overall effect size. This 

finding is similar to our previous study which solely looked at land cover variables and summer cooling 

electricity consumption and found tree canopy on the east side to be significant, although minimally 

impactful (Chapter 1). This contrasts with other findings, which have found that trees located on west side 

of homes result in the most cooling electricity savings (Donovan & Butry, 2009; Ko & Radke, 2014).  

Our results with tree canopy and street orientation, two commonly cited variables that have an 

impact on summer cooling electricity use, differ from previous findings. This difference could be a 

function of the unique location of our study area just east of the foothills of the Rocky Mountains. 

Distance from the foothills was significant in both the bivariate and multivariate models, where it was 

found that as distance increased, cooling use increased as well. This finding suggests there could be 

factors impacting climate, such as cooler temperatures due surrounding areas, prevailing winds, or 

western afternoon shading occurring from the foothills. 

4.2 Building Characteristics 

 
 Aside from house footprint and house perimeter, all building characteristics were significant in 

the bivariate models. The building characteristic variable in the OLS model that had the greatest effect 

size was home age. This was surprising considering previous studies found home age little to no impact 

on cooling electricity use (Kaza, 2010; Huebner et al., 2016). However, the pattern we found of increased 

age being associated with a decrease summer cooling electricity use has been documented previously 

(Chong, 2012). This could be attributed to older homes often lacking central air or having less appliances 

for cooling space conditioning. Central Air was associated with using more summer cooling electricity 

when compared to all other HVAC types in both the bivariate and full model, which is to be expected, 

and could also suggest why older homes tend to use less cooling electricity. 
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Increased room count had the second highest effect size of the building characteristics in the full 

model and was associated with increased summer cooling electricity, consistent with previous findings 

that room count generally means increased space to condition (McLoughlin et al., 2012; Wilson, 2013), 

The relationship house size had with cooling electricity use not only changed between the bivariate and 

full model, but also had very low explanatory power and effect size. Because of this, room count may be a 

more reliable indicator of cooling electricity use, regardless of the size of the home. A more partitioned 

home may require a more extensive HVAC system to maintain conditioning throughout, or more AC 

appliances to circulate cooling air into all living spaces.  

 House type maintained statistical significance from its bivariate models to the full model. The 

type of single-family homes and the relationship to energy consumption has not been well-documented in 

the literature, and most house type research has compared single-family attached, detached, or 

multifamily units, rather than the actual architecture of the home (Kaza, 2010; Li et al., 2018). Split level 

homes used less cooling electricity than 2 story homes. Split level homes usually have one level partially 

underground, whereas 2 story homes are completely above ground level. This could be impacting summer 

cooling electricity use as having walls partially in the ground results in a higher level of moisture, which 

can induce evaporative cooling, a mechanism that can help maintain cooler temperatures in drier climates. 

 The roof cover is another building characteristic that maintained statistical significance in both 

the bivariate and full model . Although roof cover showed relatively low effect size in the full model, the 

results pointed to wood roofs using less summer cooling use when compared to composition roofs, which 

are commonly made from materials such as fiberglass and asphalt. Looking into roof assemblies, 

Winandy et al. found that the temperature of fiberglass shingles was up to 20 °C hotter than wood 

shingles in the summer months (2004). That much of a temperature difference could be impacting the 

indoor environment of homes with composition roofs, requiring them to use more cooling electricity to 

maintain the same indoor temperatures as homes with wood roofs.  
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4.3 Sociodemographics and Behavior 

 
 Percent 3+ person households had a negative relationship with cooling electricity use in both the 

bivariate and full model and had the highest effect size in the OLS model of all the sociodemographic 

variables. Generally, studies have found that increased household sizes and occupants increases 

consumption (Wilson, 2013; Huang, 2015; Iwafune & Yagita, 2016;). 3+ person households in this case 

refers to unrelated inhabitants occupying the same housing unit, which is not necessarily the same metric 

used in previous findings. However, increased percent single person households used less cooling 

electricity, which is more in line with previous findings of increased occupancy increasing use. Increased 

percent college graduates was associated with more cooling electricity use but had very low R2 in the 

bivariate model and relatively low effect size in the full model. This result contrasts with findings that 

increased education is associated with less energy because they may be more aware of energy-saving 

opportunities or generally more environmentally conscious (Leahy and Lyons, 2010; Nelson et al., 2012; 

Xu et al., 2020) 

 Overall, the variable with the largest R2 of the bivariate models and the largest effect size in the 

full model is average annual electricity use, used as a behavioral proxy. Households that use more 

electricity throughout the year are associated with increased summer cooling electricity use. Another 

behavioral characteristic, average water use, had the same relationship where households who used more 

water also were associated with more summer cooling electricity use. Our results coincide with previous 

findings that behavioral characteristics are fundamental to understanding energy consumption. Studies 

that have examined the role of behavior in driving energy use have included variables such as daytime 

occupancy, selection of energy efficient appliances, environmental attitudes, energy conservation habits, 

and thermostat settings (Nelson et al., 2012; Sanquist et al., 2012; Wilson, 2013; Ko & Radke, 2014; Xu 

et al., 2020). Ko and Radke used a similar metric to our annual electricity use for a behavior proxy, and 

found that it also had the dominant impact on summer cooling electricity use (2014).  
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4.4 Caveats and Future Research 

 
It is important to point out that the resolution of some of our explanatory variables makes the 

impact and interpretation of their role in summer cooling electricity use more complex. The resolution of 

our sociodemographic variables, as well as population and housing density, were coarser than all other 

variables, including our response. This results in duplicate values for every home located within the same 

block group, and do not accurately represent each household’s unique situation. In the future, obtaining 

more accurate parcel-level sociodemographic information, may increase the overall explanation of the 

variance in our response variable.  

Additional high resolution household behavioral characteristics were not available for our study 

but would be a future direction to undertake which would likely yield a more nuanced understanding of 

what is driving cooling electricity use and overall consumption patterns. This is especially important 

considering the nature of the study area, where during the summer months renter turnover is high and it is 

common to vacation.  

Aside from the addition of higher resolution sociodemographic and behavioral variables, future 

directions should consider a quantile regression, which has been applied before to understand the 

determinants of household electricity consumption (Kaza, 2010; Valenzula et al., 2014; Huang, 2015). 

This type of analysis would be able to sort out the effects of variables across the spectrum of consumption 

and could better isolate what variables are important to different consumers. Results from a quantile 

regression could reveal possible opportunities for reductions in consumption in high energy consuming 

households.  

5 Conclusion 
 

Electricity consumption is a function of multiple drivers including urban form, building 

characteristics, sociodemographic attributes, and behavioral tendencies. Electricity demand can peak in 

the summer, raising the need to look at drivers seasonally to understand what underlies existing patterns 

of energy use in our cities. While there is a general consensus among the drivers of electricity use, the 
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relationship these drivers have can vary in the significance, effect size, and relationship they have with 

electricity use.  

In our study area, we found that behavioral, building, and urban form characteristics were vital to 

explaining variation in summer electricity cooling consumption. Our behavioral proxy of overall annual 

electricity had the strongest explanatory power among our variables. After behavior, select building 

characteristics were important to the model: home age, room count, and HVAC type. Most land cover had 

little explanatory power and were insignificant in the full model, however, distance from the foothills, a 

variable describing urban form, suggested that homes further from the foothills consumed more summer 

cooling electricity. This points to the uniqueness of the study area, as this type of variable has not been 

included in previous studies. LST was also important as a driver of cooling electricity use and is an 

important consideration as climate change advances and increases temperatures and urban heat islands. 

Our results are in line with previous studies that have found multiple variables to be important in 

the explanation of energy consumption. However, the overall impact of these variables has varied 

throughout the literature, possibly due to differences in study location, response variable, or resolution of 

data. This highlights the need to continue to study individual localities rather than looking to previous 

studies to determine what the most important variables are for understanding patterns of electricity use.  

Further research needs to be done to unveil more patterns in summer cooling electricity use. The 

addition of more behavioral variables and higher resolution sociodemographic variables may increase the 

understanding of what is driving summer cooling electricity. Additionally, a quantile regression could 

reveal what variables are important for the spectrum of cooling electricity. These findings could then help 

inform local sustainability policy and programs targeted at energy efficiency and energy conservation 

measures.  
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