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ABSTRACT 
 
 
 

EXOSOMES: A POTENTIAL NOVEL SOURCE OF BIOMARKERS FOR TUBERCULOSIS 
 
 
 

One of the major problems in the control of Tuberculosis (TB) is the lack of an effective 

diagnostic tool. The most commonly used test for TB diagnosis is the examination of sputum 

samples using light microscopy. This test has shown sensitivity rates as low as 40%. The current 

gold standard for TB diagnosis is the bacterial culture from sputum samples, which usually 

takes between 3 to 12 weeks on solid media. Inaccurate and delayed diagnosis increases the 

likelihood of transmission of Mycobacterium tuberculosis (Mtb) and impairs proper treatment. 

Consequently, 10.4 million TB cases and 1.4 million deaths were reported in 2015. The need 

for new TB biomarkers is urgent. Strategies avoiding the use of sputum will improve the 

current capacity to diagnose TB, specifically in children and HIV co-infected patients. The 

analysis of serum-derived TB biomarkers represents a promising alternative, however, the 

highly abundant proteins found in human serum (albumin, immunoglobulins, and transferrin 

among others) hinder the identification of the TB biomarkers, drastically affecting the 

development of potential routine tests. 

Exosomes (a type of extracellular vesicles) have emerged as a great alternative source of 

biomarkers for several diseases since they can be obtained from almost all biological fluids. 

Virtually all nucleated cells in the human body produce and release exosomes to the 

extracellular space in a constitutive manner. Interestingly, the exosome composition depends 

on the cells of origin as well as the physiological status of the host. Several studies have 

demonstrated that exosomes released from Mtb-infected cells contained mycobacterial proteins. 
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More importantly, previous studies in our laboratory, suggested that exosomes from TB 

patients could carry peptides derived from M. tuberculosis. Considering the biology of the 

exosomes, it is possible that the host exosomal proteome can change because of infectious 

processes. 

The host proteome has not been explored in the context of Mtb infection. Our first set of 

experiments demonstrate that the infection with Mtb influences change in the protein 

composition of exosomes released from infected cells. Comparative proteomic analysis 

revealed significant differences between exosomes from infected and control cells. Forty-one 

proteins were significantly more abundant in exosomes from infected cells. We sought to 

explore the differential abundance of membrane associated proteins since they represent a more 

accessible set of targets for the downstream development of a biomarker assay; 63% (26/41) of 

the proteins that were significantly more abundant in exosomes from infected cells were also 

membrane associated. These results were obtained from an in vitro model of infection. 

In the next step, we aimed to discover proteins showing significantly different abundances 

amongst different TB disease states in serum-derived exosomes. We analyzed three groups of 

samples from TB endemic regions: smear and culture positive, smear negative and culture 

positive, and TB suspects without microbial evidence of disease, as well as a healthy group from 

a non-TB endemic area (as a control). For these experiments, we used a novel proteomic 

approach known as Hyper Reaction Monitoring-Sequential Windowed Acquisition of All 

Theoretical Fragment Ions Mass Spectrometry (HRM-SWATH-MS). In HRM, spectral libraries 

containing information of the peptides present in the samples were generated. Each sample was 

processed by SWATH-MS. The spectral libraries, as well as the fragment ion maps obtained 

from SWATH-MS, contained a set of the standard synthetic peptides which elute across the 
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whole range of retention times (RT) of the chromatographic column. The information from the 

standard peptides (iRT) was used to generate normalized RT values for each peptide identified. 

Nine proteins showed a very distinct dynamic profile across the study groups, FCGR3A, 

lysozyme C and allograft inflammatory factor 1, showed a step-wise increase, while fetuin-A, 

angiotensinogen, coagulation factor XII, PGRP-L, CBG, and CPN2, showed a step-wise 

decrease. This study demonstrated that a set of human proteins concentrated in serum exosomes 

follow a dynamic pattern that is linked with TB disease. Our findings suggest that exosomes 

from human serum are a source for TB biomarkers. 

Considering the large number of potential TB biomarker candidates obtained from proteomic 

studies and the challenges of selecting some of them for validation studies, in chapter #4, we 

aimed to develop a predictive model to discriminate TB positive samples from TB negative 

samples using proteomic analysis from serum-derived exosomes. We tested the regression model 

developed by Tibshirani in 2006, least absolute shrinkage and selection operator (Lasso). 

Additionally, we tested a modified version known as adaptive Lasso which improves the stability 

in the selection of predictors. Lasso generates a subset selection producing simpler models that 

are relatively easy to interpret. We obtained a regression model with nine predictors that allowed 

us to segregate TB positive from TB negative samples. To further evaluate the discriminatory 

capacity of this protein signature, we calculated the area under the curve (AUC) of the receiver 

operating characteristic curves (ROC). The AUC-ROC was 0.75. The predictors selected using 

adaptive Lasso included three proteins of the complement system, two immunoglobulin chains, 

the acute-phase plasma protein A1AG1, the anti-inflammatory metalloproteinase CBPN, the 

glucose binding protein glucokinase GCK, and the protein Sex hormone-binding globulin 

SHBG. Additionally, we tested a group of the suspect samples which had previously been 
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classified negative for TB based on microscopic examination of sputum and culture. However, 

these samples demonstrated one or more Mtb peptides by MRM/MS assay in parallel studies 

conducted by our laboratory. Nine samples were categorized as TB-negative by the adaptive 

Lasso regression model. 

Two of the proteins identified in this study (Fetuin A and SHGB) have shown promising results 

as TB biomarkers in previous studies. Fetuin A (chapter #3) and SHGB (chapter#4) have shown 

differential expression in different discovery studies (2D-electrophoresis and LC-MS/MS, 

respectively) further validated by ELISA. Based on our findings we hypothesize that fetuin A 

and SHGB could be concentrated in the exosome-rich fraction of human serum. If this 

hypothesis is true, the evaluation of exosomes instead of whole serum will increase the 

predictive power of these proteins. 

Finally, our results suggest that exosomes derived from serum samples carry information that 

could improve the identification of TB patients. However, the current evidence suggests that 

there is not a single approach to find the “perfect biosignature” for TB diagnosis. Perhaps the 

design of algorithms combining bacterial and host derived markers from serum-derived 

exosomes can result in a stronger tool that definitively helps to improve the current situation of 

TB worldwide. 
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Chapter 1: Literature review and overview of the dissertation 

 

 

 

1.1 Diagnosis of Tuberculosis (TB): from history to current strategies 

 

Diagnosis of Tuberculosis (TB) was for many centuries based on clinical observations. One of 

the first reports of a clinical diagnosis of TB are described in the Hippocratic aphorisms (~ 400 

BC) in which a set of pulmonary symptoms—pleurisy with suppuration, expectoration of blood 

and pus—affecting individuals between 18 to 35 years of age, were collectively referred as 

phthisis or consumption (1). In the middle ages, though there were no significant advances in 

the clinical diagnosis of TB, there were a pertinent number of reports about scrofula, a highly 

prevalent manifestation of extrapulmonary TB that was described by many medieval physicians 

as inflammatory tumors principally affecting the neck (2, 3). Significant advances in the clinical 

diagnosis of TB did not occur until 1816 when Rene Laennec discovered the stethoscope. This 

improved the accuracy of clinical diagnosis since Laennec could associate the chest sounds of 

TB patients with subsequent post-mortem pathological findings (4). In this way, Laennec 

enabled the discrimination between pulmonary and extra pulmonary TB.  

The next advance in the diagnosis of TB was made possible by two amazing achievements in 

the history of human science: the development and improvement of the microscope and the 

acceptance of the germ theory of disease. Based on the previous works of Galileo Galilei, two 

different types of microscope were invented during the last decades of the 17th century. Their 

inventors Robert Hook and Antonj van Leeuwenhoek, working independently, could describe 

and publish the observations of minute structures from corks, seeds and insects. More 

importantly, van Leeuwenhoek’s studies included the report of animalcule, confirming for the 

first time the existence of microorganism in nature (5). Soon after the Leeuwenhoek’s 
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observations, Benjamin Marten (a medical doctor often neglected by historians) stated, perhaps 

for the first time, that consumption or phthisis was caused by an animalcule infecting the lungs 

(6). A fact confirmed only 163 years later by Robert Koch. On April 10th of 1882 the Die 

Ätiologie der Tuberkulose was published, where Dr. Koch demonstrated in the most elegant 

manner that the “tubercle bacillus” was the causal agent of TB (7). More importantly for the 

purpose of this dissertation, Dr. Koch described the first technique to stain and microscopically 

visualize Mycobacterium tuberculosis (M. tuberculosis) (7). The demonstration that M. 

tuberculosis was visible by microscopy opened the door for brilliant scientists to improve this 

visualization. Franz Ziehl and Friedrich Neelsen followed the work of Dr. Koch, using a 

mordant, heat and a decolorizing reagent to reproducibly stain the bacillus. Even though this 

staining technique is generally known as Ziehl-Neelsen, it is important to mention that, this 

technique was the result of independent efforts initiated by Paul Ehrlich, then, Ziehl, and 

finally, the combination of these previous works by Neelsen (8). Microscopic detection of M. 

tuberculosis using this technique, developed from 1882 to 1887, is still in use in many countries 

for TB diagnosis. Though the basis of this staining technique has remained the same, several 

modifications have been made. One such modification made by Joseph J. Kinyoun around 1896 

(formally published in 1914) (9) is currently the most utilized. The Kinyoun method differs 

from the Ziehl-Neelsen method in that it is a cold staining procedure for acid-fast bacilli. Later 

in 1938, Hagemann developed a fluorescent method for detecting M. tuberculosis staining with 

auramine (10). After several improvements of the original Hagemann’s method, Truant 

developed one the most important alternative methods for TB diagnosis: the auramine- 

rhodamine staining in 1962. This fluorescent staining of M. tuberculosis, follows the same 

principles of acid-fast staining but replaces fuchsine dye with the fluorochrome dyes auramine 
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O and rhodamine B (11). Microscopic examination of sputum provides notable advantages for 

diagnosis of TB: low cost, modest infrastructure requirements and relatively rapid results. 

However, some of its disadvantages are the low sensitivity (ranging from 20% to 60%) and the 

expertise needed to interpret results (12). 

1.1.1 Culture-based methods for TB diagnosis 

 

The findings of Dr. Koch also established the basis for two additional tools essential for the 

control of TB: the tuberculin skin test and bacterial culture which allow confirmation of 

exposure to the microorganism (7). The tuberculin skin test will be discussed in greater detail 

later in this chapter. The culture of M. tuberculosis remains the gold standard for the diagnosis 

of TB and the evaluation of treatment response (13). Dr. Koch in his initial experiments used a 

very simple solid medium made of cow or sheep serum to grow M. tuberculosis. The only 

special component of Dr. Koch’s protocol was the patience to wait at least 10 days for the 

mycobacteria to form macroscopically visible colonies (7). Several modifications to the original 

medium used by Dr. Koch have since been developed. Initially, M. tuberculosis was grown in 

multiple formulations of agar-based and egg-based solid media (14). The egg-based medium, 

originally proposed by Wessely and Lowenstein in 1931, and modified for Jensen in 1932; 

Lowenstein- Jensen (LJ media) is currently one of the most widely used culture media 

worldwide (15). LJ medium contains malachite green which inhibits the growth of 

microorganisms other than mycobacteria making this medium very useful for specific 

evaluation of sputum samples in clinical settings. Two modifications of LJ media are 

commonly used in developing countries. The first one, developed by Ogawa in 1950 (Ogawa 

media) and the second one, a modified version of Ogawa (Ogawa-Kudoh) developed by Kudoh 

and Kudoh in 1974. In both of these modified versions, the addition of asparagine is omitted 
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making the preparation less expensive (16). Proskauer and Beck set the basis for the 

development of a liquid synthetic medium (PB media) that contained asparagine as the sole 

nitrogen source and glycerol as the sole carbon source in 1894. PB media is still used, mostly 

for experiments where albumin and/or Tween 80 need to be avoided (17). Finally, one of the 

most significant contributions for the improvement of the culture of M. tuberculosis, is the work 

done by Rene Jules Dubos and Gardner Middlebrook during the 1940’s. They developed the 

formulation for the agar-based medium Middlebrook 7H11, and the liquid medium 

Middlebrook 7H9 (18, 19). Both media are widely used in research and clinical settings today. 

The development of a liquid medium for growth of M. tuberculosis allowed the design of 

several semi and fully-automated methodologies used in TB diagnosis. The SEPTI-CHEK™ 

AFB Mycobacteria Culture System was developed in late 1990’s. This system combined 7H9 

and three solid media: 7H11, egg-based medium and chocolate-agar in a closed system (20). 

Later, a semi-automated, radiometric system, BACTEC 460, was launched by Becton-

Dickinson. In this system, the growth of M. tuberculosis is determined by quantifying 14CO2 

released after the metabolism of a 14C-labeled substrate in the medium (21). Similar to the 

BACTEC 460, three additional culture-based systems using different sensors to detect 

mycobacterial growth have been developed. First, the Versa TREK (Trek Diagnostic Systems) 

is a semi-automated system in which M. tuberculosis growth is evaluated by detecting changes 

in the pressure inside the culture tube (22). Second, the BacT/ALERT MB (bioMérieux) which 

contains a gas permeable sensor that changes color as CO2 is produced by growing 

microorganisms (23). Finally, the BACTEC Mycobacteria Growth Indicator Tube-MGIT-960 is 

a fully-automated system that uses a ruthenium pentahydrate oxygen sensor that fluoresces in 

the presence of aerobic metabolizing bacteria (24). Automated systems are extensively used in 
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hospital settings and have been adapted to perform drug susceptibility tests. Unfortunately, due 

to the slow-growth of M. tuberculosis, culture-based TB diagnosis is still a lengthy process even 

when using the MGIT method (~ 4 days). 

1.1.2 The use of molecular biology in TB diagnosis 

 

Molecular biology-based methods represent a promising alternative for rapid and specific 

detection of M. tuberculosis infection. Several different types of Nucleic Acid Amplification 

Tests (NAAT) have been developed. First, a transcription mediated amplification assay, known 

as Amplified M. tuberculosis Direct Test (MTD; Hologic Gen-Probe), that targets bacterial 

rRNA and produces results in 2.5 to 3.5 hours on direct sputum samples (25). The second 

NAAT is a loop mediated isothermal amplification test (TB-LAMP) which targets a species-

specific DNA sequence (gyrB) and the universal 16S ribosomal DNA for Mycobacterium genus 

(rDNA); the test generates results as rapidly as 1 hour (26). In 2016, TB- LAMP was 

recommended by the World Health Organization (WHO) as a replacement for microscopy (TB-

LAMP performance was 40% better than microscopy). Additionally, this test can be used as a 

follow up test for sputum-smear negative patients. Finally, one of the most advanced and 

widely used NAAT for TB diagnosis is the Xpert MTB/RIF. This test utilizes a hemi-nested 

polymerase chain reaction targeting the M. tuberculosis specific-sequence of the rpoB gen. A 

great advantage of the Xpert MTB/RIF is its capacity for detecting rifampicin resistance in the 

same assay (12). A completely different molecular-based approach is the implementation of 

matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) 

to detect a spectrometric pattern specific for M. tuberculosis. In the MALDI- TOF MS assay, 

pure strains of M. tuberculosis are used to generate spectral libraries. Then, the unknown 

sample is processed, and the spectra is compared to the library for identification (27). The 



6 
 

problem with this approach is the necessity for culturing the specimen before analysis. Overall, 

the high cost and need for complex infrastructure are the biggest obstacles in implementation of 

these molecular-based approaches to diagnosis TB in a general setting. 

1.1.3 Immunology-based methods for TB diagnosis 

 

Most of the approaches for TB diagnosis mentioned above depend on the microscopic 

visualization and culturing of M. tuberculosis. Additionally, all these tests require sputum 

samples, where the living bacteria are concentrated. Unfortunately, obtaining a sputum sample 

imposes the risk of spreading the bacteria to health care personnel and is practically impossible 

to obtain from children younger than 5 years old (28). Additionally, Mtb-HIV-coinfected 

patients normally have very low bacterial load (paucibacillary) in their sputum (29). There are 

alternative approaches where, instead of looking directly for the microorganism, infection with 

or exposure to M. tuberculosis is determined by studying the host immune response. The bases 

for immunology-based tests were stablished by Dr. Koch in 1890 (30). Initially, Dr. Koch 

considered that the injection of a preparation from M. tuberculosis culture (tuberculin) could be 

a potential treatment for TB. Soon after, it was demonstrated to be inefficacious as a treatment, 

however, tuberculin was considered a potential diagnostic strategy due to the strong reaction 

produced in some individuals after its injection (30). The findings from tuberculin injection 

were further studied by Von Pirquet and resulted in the development of a skin test (tuberculin 

was scratched in the skin) in 1907 (31). Thereafter, Charles Mantoux proposed the intradermal 

injection of tuberculin (30). Several studies to standardized tuberculin composition were done 

to obtain the final composition, currently known as Purified Protein Derivative (PPD), by 

Florence Seibert in 1934 (30, 32). Tuberculin Skin Test (TST) is based on a type-IV 

hypersensitivity reaction where CD4+ T lymphocytes, previously challenged with 
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mycobacterial antigens, migrate to the site of PPD injection (33). TST is used to determine M. 

tuberculosis infection, however, TST could yield a positive reaction in non-infected individuals 

vaccinated with Bacillus Calmette-Guérin (BCG) and/or exposed to non-tuberculous 

mycobacteria (NTM). Another limitation of TST is the inability to discriminate active from 

latent M. tuberculosis infection (32, 34). Interferon gamma released assays (IGRAs), which 

provide more specificity, can be used as alternatives for TST. Two commercially available 

IGRAs are widely used in clinical settings: QuantiFERON-TB Gold In-Tube test (QFT-GIT) 

and T-SPOT TB test (T-Spot). QTF-GIT uses a combination of antigens of the mycobacterial 

proteins ESAT-6, CFP10 and TB7.7. These antigens are not present in BCG and most of the 

NTM. For the test, the blood of an individual is mixed with the antigens and the exposure to M. 

tuberculosis is determined based on interferon gamma concentration (35, 36). The T-Spot test 

determines M. tuberculosis infection based on the number of cells producing interferon gamma 

using an enzyme-linked immuno-spot assay. This test uses the antigens ESAT-6 and CFP10, 

separately (37). In addition to IGRAs, several serum-based tests have been developed looking 

for antibodies specific for a variety of Mtb proteins: 38KDa, HspX, ESAT-6, Ag85 among 

others (38, 39). Most of these serological tests have shown poor performance for TB diagnosis 

with sensitivities ranging from 0.97% to 59%. Even worse, in 2011, WHO declared that the 

data associated with the evaluation of serological tests have low quality and the amount of 

false-positive and false-negative results had an adverse impact on patient outcome. Eventually, 

WHO recommended that clinicians not use serological tests for the evaluation of TB suspects 

(40). 

A different approach for diagnosis of TB is the direct evaluation of bacterial antigens in patient 

samples. Lipoarabinomannan (LAM), a major constituent of the cell envelope of M. 
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tuberculosis, has been found in urine samples of TB patients showing different patterns of 

sensitivity depending on the HIV status of the patients (41). Clearview TB is an enzyme-linked 

immunosorbent assay (ELISA) that allows for a quantitative detection of LAM in urine with 

higher sensitivity when the urine is 100-fold concentrated (42). An alternative version of a 

LAM- based detection assay is the Alere Determine™ TB-LAM-Ag. This is a lateral flow assay 

that can be used as point-of-care test due to its simplicity: removing the need for specific 

infrastructure, while providing rapid results with a facile protocol (41, 43). The sensitivity of 

LAM tests is low in HIV-negative patients (10% to 20%) but is increased in HIV-positive 

patients with an average of 56% (43). The sensitivity of LAM test is even higher (66.7%) in 

HIV-positive patients with very low T-cell CD4+ counts (50 cells/µl) (44, 45). Overall, other 

than IGRA, most diagnostic tests have focused on M. tuberculosis detection or mycobacterial 

derivatives such as proteins, lipoglycans and/or nucleic acids. The evaluation of host-derived 

markers could increase the capacity for TB diagnosis and the identification of other stages of 

infection. 

1.2 TB burden and current diagnostic challenges 

 

According to WHO, about 5.2 million pulmonary TB cases were reported in 2015 by the 

national TB programs worldwide. A little over half of these cases were bacteriologically 

confirmed while the rest were clinically diagnosed without bacterial confirmation (WHO 2016 

Global report). Since the number of estimated TB cases for 2015 was 10.4 million, the 

significant gap between reported cases and the actual number of cases is quite evident. Two 

main reasons account for this gap: lack of efficient reporting systems and more accessible, 

sensitive and accurate diagnostic tools. As of 2015, the two main tools for the bacteriological 

confirmation of TB cases continued to be sputum microscopy and culture with a majority of the 
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3 million TB cases being confirmed using microscopy only. Another important component 

contributing to the TB epidemic is the large proportion of latent TB infection (LTBI) cases. In 

fact, the data obtained from the consensus study done by Christopher Dye et al., back in 1999, 

remains validμ “it is estimated that 32% of the global population is infected with M. 

tuberculosis” (46). Currently, there is no test for the diagnosis of asymptomatic people latently 

infected with the bacterium. LTBI detection is particularly important in HIV positive patients 

since they are at higher risk of TB reactivation (47). Unfortunately, the two available 

identification strategies for LTBI, TST and IGRA, are T- cell dependent immunological assays 

and immunosuppression severely affects their accuracy making them insufficient for detecting 

LTBI. Indeed, as the CD4+ cell count decreases, the effectiveness of IGRA declines (48). WHO 

has recommended the use of the lateral flow test for LAM detection in urine to screen for LTBI 

in HIV infected individuals (13). Another focal group for LTBI testing is children younger than 

5 years old living in proximity to active TB patients (49). For children living in endemic areas, 

LTBI diagnosis is more complicated since TST often generates false positive results from BCG-

vaccinated individuals. This is important, considering that about 90% of countries have a policy 

for universal BCG vaccination (50). Neither TST nor IGRA are useful to discriminate active TB 

from LTBI. It is evident that diagnosis of active disease mainly depends on M. tuberculosis 

while the identification of LTBI cases is based on host response. The combination of host and 

bacterial markers could improve both active TB diagnosis as well as diagnosis of LTBI 

individuals. 

The control, reduction, and elimination of TB is a multidimensional task, requiring the 

development of new efficacious treatments and protective vaccines in addition to overcoming 

the described challenges related to diagnosis. The necessity for new drugs to treat TB is urgent, 
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mainly, due to the spread of drug resistant mycobacteria and the lack of treatment adherence 

due in part to the length of the current regimens (51). Accordingly, clinical trials to test efficacy 

of new drug-candidates demand the development of tests to accurately assess treatment 

response. An important contribution to the number of TB cases each year is derived from people 

with LTBI who convert to active disease. It is expected that 5-10% of individuals with LTBI 

will progress to active TB during their lifetime (52). A test to identify these LTBI cases with a 

higher risk of progression to active disease is a limiting factor in accurately providing 

preventive treatment. 

Table 1.1 Current assays in development for the diagnosis of TB. 
Test Description Status 

Quantitative PCR for M. tuberculosis. Automated 

system (BD MAX) 

Initial validation: 100% sensitivity, 97.1% specificity 
(53) 

Portable real time PCR (Genedrive 

MTB/RIF) from Epistem 
Showed 45.4% sensitivity in 2016 (54) 

Line probe assay for isoniazid and 

rifampicin resistance (Genotype 

MTBDRplus) from Hain Lifescience 

 
Recommended by WHO after FIND evaluation (55) 

Line probe assay for resistance to 

fluoroquinolones and second-line injectable drugs 

(Genotype MTBDRsl) from Hain Lifescience 

Recommended by WHO (available at: 
http://www.who.int/tb/ 
WHOPolicyStatementSLLPA.pdf?ua=1) 

Closed-tube real time PCR (MeltPro) from 

Zeesan Biotech 

Sensitivity to detect resistance to rifampicin (94.2%), 
isoniazid (84.9%), ofloxacin (83.3%), amikacin (75%), 
kanamycin (63.5%). (56) 

Line probe assay for isoniazid and rifampicin 

resistance (NTM+MDRTB) from Nipro 
Recommended by WHO after FIND evaluation (55) 

Automated real time PCR for Mtb (RealTime 

MTB/TB MDx m2000) from Abbott 
Sensitivity 100% in smear-positive samples (57) 

Chip-based NAAT with real time PCR on 

handheld device for Mtb (Truenat MTB) 
In current evaluation by FIND and ICMR 

Next-generation cartridge-based detection 

Mtb + rifampicin resistance (Xpert MTB 

/RIF Ultra) 

Recommended by WHO (March 2017) (available at: 
http://who.int/tb/features_archive/Xpert-Ultra/en/) 

Single –cartridge mobile platform (Xpert Omni) 

Cepheid 
FIND study pending 

http://www.who.int/tb/
http://who.int/tb/features_archive/Xpert-Ultra/en/
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NAAT (Xpert XDR)-Cepheid FIND study pending (anticipated end: 2018) 

 
Urine dipstick for TB Lipoarabinomannan-Alere 

Recommended by WHO in people with HIV with CD4 
count ≤100 cells/µl (Available atμ http://www.who.int/tb/ 
areas-of- 
work/laboratory/policy_statement_lam_web.pdf) 

 

1.3 TB biomarkers: discovery, applications and current state 

 

The detection of a M. tuberculosis molecules (protein, lipid, nucleic acid) in a biological sample 

derived from a clinical suspect can be used to diagnose TB. In the same way, immunological 

markers unequivocally linked to M. tuberculosis infection can also be used for diagnostic 

purposes. Collectively, biological markers that allow for the identification of patients 

undergoing a pathological process are denoted diagnostic biomarkers (58). A comprehensive 

definition of biomarkers according to the Office of Science Policy-National Institutes of Health 

(NIH) isμ “Biological marker (biomarker)μ a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (58). The principal features of an ideal 

biomarker are: objectivity, accuracy and reproducibility. Biomarkers have been widely studied 

as surrogate endpoints in clinical trials (59). However, they can also play important roles in 

different scenarios of biomedical research including the evaluation of disease progression 

(prognosis) or disease state. In a simplistic explanation of the “life cycle” of M. tuberculosis, the 

initial infection is established by the inhalation of aerosolized sputum droplets loaded with 

bacteria from an active TB patient (60). It is hypothesized that a very few individuals can clear 

the infection and continue, as if they have never encountered the bacterium (61). Usually, M. 

tuberculosis invades alveolar macrophages, in the lower lung (60), establishes an intracellular 

infection and is fully contained by the immune response leading to LTBI. The individual can 

maintain the latent state of infection for decades. However, a person with LTBI can become an 

http://www.who.int/tb/
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active TB patient with the potential of spreading the mycobacteria, again in sputum droplets 

(60, 61). A third possibility happens when after the establishment of the intracellular infection, 

the immune system of the patient is not able to control the bacterium, and the patient develops 

active TB disease. Active TB patients after receiving treatment can become LTBI cases or get a 

complete sterilizing cure (62). None of the states during M. tuberculosis infection fit a perfect 

dichotomous classification. Instead, the transition from LTBI to active disease and from active 

TB to definitive cure or LTBI again (after treatment), is a continuum of stages (62). To improve 

the control of TB, it is important to discover diagnostic biomarkers: to identify active TB 

patients, early prediction of successful treatment, LTBI cases at a higher risk of reactivation, 

and LTBI cases in general (Figure 1.1).  

 
Figure 1.1 Biomarkers for Tuberculosis. To effectively control TB, there is a need for the 
discovery of new diagnostic biomarkers not only for active disease but for the identification of 
Latent TB infection (LTBI). Additionally, new prognostic biomarkers to identify LTBI cases at 
higher risk to become active TB are imperative. Finally, with the ascending number of drug 
resistant TB cases, the discovery of surrogate endpoint biomarkers to evaluate treatment 
response, is a worldwide priority. *Estimated numbers in 2016 according to WHO.Biomarkers 
for active disease and latent infection. 
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In the context of infectious diseases biomarkers can be pathogen-derived, as well as, host- 

derived. In addition to the already mentioned pathogen-derived diagnostic biomarker: M. 

tuberculosis and mycobacterial DNA from sputum and LAM from urine, several studies have 

tested mycobacterial biomolecules as potential markers of active disease or latent infection. The 

fibronectin-binding mycolyltransferases (Ag85) were found in plasma of TB patients 

complexed to immunoglobulins and fibronectin (63). Surprisingly, there are no recent studies 

testing for presence of Ag85 in blood from active TB patients, except from a recent study 

conducted by Kruh-Garcia et al (64). From the host side, Sartain et al., proposed an improved 

version of a serological assay to discriminate different stages of TB disease. Sartain and 

colleagues, developed a protein microarray assay for the simultaneous detection of serological 

reactivity to several proteins from M. tuberculosis. In this strategy, they generated a library of 

960 simple fractions from cytosol and supernatant of M. tuberculosis, that were tested against 

sera samples from a heterogeneous group: PPD+ patients (as LTBI cases), cavitary TB (an 

advanced form of active TB characterized by an open granuloma from which the necrotic center 

was ejected via the bronchial tree (65)), non-cavitary TB, HIV/TB coinfection and HIV+ TB 

negative patients. They found four antigens exclusively associated with cavitary TB (Psts1, 

HspX, Mpt64 and TrxC) and 11 antigens (including SodC and BfrB) that generated the 

strongest response in cavitary and non-cavitary TB (66). A different serum-based approach to 

identify active TB or LTBI is based on the characterization of circulating microRNAs (67, 68). 

One study, showed that 59 microRNAs (including miR93* and miR29a) were upregulated in 

active TB patients. Further evaluation demonstrated that miR29a had an area under the 

receiving operator characteristic curve (ROC) of 0.83, suggesting it as a great potential 

diagnostic biomarker (69). In the context of host-derived diagnostic biomarkers, it was found 
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that serum amyloid A and transthyretin showed diagnostic accuracy ranging from 78% to 90%, 

using surface-enhanced laser desorption ionization time of flight-MS (SELDI-MS) and 

immunoassays (70). Another study compared TB patients (HIV+ and HIV-) with LTBI, patients 

with other respiratory diseases (ORD) and negative for TB. They initially found 165 proteins 

differentially expressed in TB patients (HIV-) compared to LTBI/uninfected by shotgun 

proteomics. Interestingly, they removed from the analysis proteins known to be part of the acute 

phase response in various infectious diseases. Finally, they performed a multiplexed SRM 

study, searching for 87 proteins from the discovery phase and from other studies with similar 

designs. The final analysis showed that 10 proteins could discriminate TB/HIV- and from ORD 

(area under ROC 0.96), while 8 proteins discriminated TB/HIV+ from ORD (area under ROC 

0.96). CD14 and the extracellular glycoprotein SEPP1 were common to both groups (71). 

Finally, one of the most recent fields for discovery of new biomarkers is the identification and 

quantification of small molecules (<1.5KDa) involved in all stages of cellular function, in a 

process known as metabolomics (72). Metabolites from the pathogen and from the host, have 

been studied as potential biomarkers of TB. Regarding metabolites from M. tuberculosis, 

several authors have used in vitro culture for initial identification to avoid the difficulties 

associated with host matrix interference. The compound tuberculostearic acid (TBSA) was 

identified in different samples of active TB patients (73). Unfortunately, TBSA showed low 

sensitivity and specificity (54% and 80%, respectively, in the Sezguin’s study) and high cost for 

its detection (73, 74). Overall, cell wall lipids (specifically mycolic acids) are under intense 

research in this field. Presence/absence of different classes of mycolic acids has showed 

potential to discriminate between M. tuberculosis and other important group of clinically 

relevant NTM (Mycobacterial ID System (MYCO-LCS) (72, 75). Regarding host-derived 
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metabolites, plasma metabolites showed promising capacity to discriminate active TB patients 

from uninfected controls and patients with pneumonia. Specifically, the presence of ceramide 

showed sensitivity and specificity higher than 0.85 for TB diagnosis (76). One study compared 

serum metabolites from TB patient and healthy controls, using nuclear magnetic resonance 

spectroscopy (NMR). Thirteen metabolites were significantly upregulated and four down 

regulated in the patient’s group. According to this metabolic- signature the most affected 

process during infection was protein biosynthesis (77). One well characterized method to detect 

metabolites as diagnostic biomarker of TB involved the development of an “electronic nose” 

able to distinguish mycobacteria species in laboratory settings, however, the test showed low 

sensitivity (75%) and specificity (67%) in clinical settings (72). One of the major challenges of 

metabolomics studies in the field of TB diagnosis is their translational application due to the use 

of complex and expensive technologies.  

Several researchers have tried to apply a diverse type of proteomic approaches to find TB 

biomarkers in serum/plasma and other alternative samples to sputum (78). The concentration of 

proteins in different body fluids can reflect pathological processes. Several proteins are 

currently used as markers of normal/disease conditions in routine clinical settings: albumin, 

hemoglobin, and liver transaminases, among others. These proteins are normally present in high 

abundance in human plasma, which has allowed the development of simple, cheap, and high-

throughput detection assays (ELISA, colorimetric reactions, etc.) (79). Many proteins involved 

in cellular processes can circulate in the blood stream, consequently, the study of the plasma (or 

serum) proteome, can reflect clinically relevant disease conditions (80). Mass spectrometry 

represent a robust tool to complete a comprehensive analysis of proteins in plasma, generating 

biosignatures (arrays of protein/peptides) associated to disease status. Unfortunately, due to the 



16 
 

extremely wide dynamic range of protein concentration in the human plasma (or serum) (>10 

orders of magnitude) the identification of low abundant proteins is a significant challenge (81). 

A general preclinical workflow biomarker discovery includes biomarker identification, often in 

a cell culture or animal system, qualification-verification and validation phases, before the 

clinical evaluation (81). The discovery phase is frequently developed using “shotgun 

proteomics”. This phase normally includes the unbiased analysis of a low number of samples, 

and the identification of hundreds or thousands of protein candidates (81). A shotgun approach 

for discovery of biomarkers will include, the digestion of proteins into peptides (commonly 

using trypsin), that will be resolved by reverse phase liquid chromatography. The resulting 

peptides are injected in the mass spectrometer into gas phase, via electrospray ionization. Then, 

the mass/charge ratio of the peptides is determined (full MS scan of precursor ions) followed by 

the selection of a set of precursor ions, based on its abundance, to undergo fragmentation (82). 

The resulting fragments provide information of amino acid sequence, this information, and the 

one from the precursor ions are used for protein identification and relative quantification, using 

specialized software that compares the in-silico processing of a date base with the experimental 

data. The new generation of instruments can survey several thousand of individual peptides in a 

fraction of second. However, several limitations make shotgun proteomics not to be suitable for 

accurate quantification of specific targets with clinical relevance. First, there is a bias in shotgun 

proteomics towards the more abundant peptides in a sample, hampering the identification the 

very low abundant components in the sample. Second, only a fraction of the excessive number 

of peptides in a complex sample is analyzed. This, in addition to the stochastic nature of the 

selection of peptides for analysis decreases reproducibility of the results (82). Overall, the 

discovery phase allows the identification of a set of candidate proteins significantly more or less 
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abundant between two or more conditions. In 2014, Kruh-Garcia et al., reported several 

mycobacterial proteins in serum with the potential of identifying TB positive patients: Ag85b, 

Ag85c, Mpt32 (Apa), BfrB, GlcB, HspX, KatG and Mpt64. The identification of M. 

tuberculosis proteins in serum was not significantly affected due to HIV status of the patient. In 

this study, shotgun proteomics was used to select 76 peptides corresponding to 33 candidate 

proteins. From these, 29 peptides corresponding to 17 proteins were identified by Multiple 

Reaction Monitoring (MRM) assay in TB positive patients (64). In a recent study, the MRM 

methods utilized by Kruh-Garcia were optimized into two multiplexed MRM assays. Based on 

previous discoveries the MRM assays were developed to include isotopic-labeled peptides. 

They identified 35/40 patients with active TB, based on the presence of at least one peptide out 

of 18. When comparing TB positive with healthy individuals, four peptides from the proteins, 

Cfp2, Mpt32, Mpt64 and BfrB were significantly associated with TB patients (83). The last two 

studies used a unique fraction from sera samples enriched with nanovesicles secreted by the 

cells known as exosomes. The use of exosomes not only aided with the elimination of most of 

the heavily abundant human serum proteins but concentrated the bacterial proteins (64, 83). 

1.4 Exosomes as potential source of TB biomarkers 

 

The relatively easy sampling of exosomes from several biofluids such as serum, urine, 

bronchoalveolar lavage and milk among others (84-86), and the modification of their 

composition based on the cell of origin, make exosomes an attractive biomarker of disease. 

Even though several proteins are found in most of the exosomes: tetraspanins, actins, and 

annexins, the total composition of the vesicles is dependent on the cells of origin (85). In 2007, 

Bhatnagar et al., showed that cells infected with different intracellular pathogens: M. 

tuberculosis, M. bovis, Toxoplasma gondii and Salmonella typhimurium, released exosomes 
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loaded with pathogen associated molecular patterns (87). The proteomic analysis of exosomes 

released from the mouse-macrophages J774 infected with M. tuberculosis, showed the presence 

of 41 bacterial proteins, including, KatG, Ag85, Cfp10, HspX and others (88). These studies, 

set the basis for the hypothesis that exosomes from TB patients could be potential source of 

biomarkers. Initial studies of Kruh-Garcia evaluated the presence of mycobacterial proteins in 

bronchoalveolar lavage of mice infected with M. tuberculosis, at several time points during 

infection. Some proteins like Ag85A, Ag85B, HspX and Mpt64 were present at all time points 

(89). From that, the two studies described above at the end of session 1.3.1 have stablished the 

utility of exosome as a source of bacterial molecules with potential biomarker application. The 

host proteome has not been explored in the context of M. tuberculosis infection, it is possible 

that a combination of pathogen-derived and host-derived proteins loaded in exosomes from TB 

patients could represent a stronger predictive power for diagnostic purposes. 

1.5 Hypothesis and specific aims 

 

The need for new TB biomarkers is urgent. Strategies avoiding the use of sputum will 

improve the current capacity to diagnose TB, specifically in children and HIV co-infected 

patients. Exosomes have two unique features, their composition changes depending of the 

status of the patient and they are retrievable from blood and urine, which make them 

promising candidates to fill the gap in knowledge described above. The study of the proteome 

of exosomes from serum of TB patients could reveal a novel set of host-derived diagnostic 

biomarkers. Additionally, the use of exosomes will aid to overcome the problem associated 

with the large dynamic range of proteins present in serum. For those reasons, we stated the 

following hypothesis for this doctoral project: Exosomes released from Mtb-infected patients 

have a distinct set of proteins that can be exploited as biomarkers for TB. The analysis of the 
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significantly abundant host proteins in exosome from infected patients will reveal new aspects 

of the host pathogen interaction during TB infection. To test the hypothesis, we defined the 

following three aims: 

Aim 1: to demonstrate that exosomes released from Mtb-infected cells exhibit a characteristic 

proteome compared to uninfected cells. 

Aim 2: to evaluate the host protein variation in serum-derived exosomes from TB positive 

patients, TB suspects, TB negative patients, and healthy controls. 

Aim 3: to develop a predictive model to discriminate TB positive human samples from TB 

suspects, TB negative, and healthy controls. 
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Chapter 2: Changes in the host proteome of exosomes released from human macrophages 

 

 after Mycobacterium tuberculosis infection1 
 
 
 

2.1 Introduction 

 

Since the original description of exosomes, it was noticeable that the protein composition of 

these extracellular vesicles was related to the cell of origin. Initial studies demonstrated that 

reticulocyte-derived exosomes were enriched with the transferrin receptor (1, 2). Several studies 

regarding exosome biogenesis have established that these vesicles are formed from several 

cycles of inward budding of the limiting membrane of late endosomes to form multi-vesicular 

bodies (MVB), in a process assisted by the endosomal sorting complex for transport (ESCRT) 

(3). Additionally, exosomes can be also originated from an ESCRT-independent mechanism, in 

which sphingolipids–concentrated in membrane microdomains—are converted to ceramide 

inducing membrane budding (4). Subsequently, the membrane of MVB fuses with the plasma 

membrane releasing the exosomes to the extracellular milieu (3). The transport of the MVB to 

the plasma membrane is mainly mediated by Rab GTPases: Rab11, Rab27a, Rab27b and rab35 

(3, 5). While the fusion of MVB membrane and plasma membrane is assisted by proteins of the 

soluble-NSF-attachment-protein-receptor (SNARE) complex, localized in the plasma membrane 

(pSNAREs) and in the vesicle membrane (VAMP7) (6). The mechanisms mediating exosome 

cargo remain unknown. The presence of cellular chaperons such as Hsc-70 and Hsp-90 in 

exosomes, suggests that protein loading could be mediated by the interaction of chaperons with 

the exosomal membrane (3). Additionally, several members of ESCRT-complex and other 

                                                      
1 This chapter is partially presented in Diaz G, Wolfe LM, Kruh-Garcia NA, Dobos KM. Changes in the 
Membrane-Associated Proteins of Exosomes Released from Human Macrophages after Mycobacterium 
tuberculosis Infection. Sci Rep. 2016; 6:37975. 
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proteins involved in exosome biogenesis, such as TSG101, Vsp4, and Allix, are normally found 

in exosomes (7). Further studies demonstrated that exosomes from different cell types carry 

cell/tissue-specific proteomic signature (7, 8). A comparative study analyzed the proteomic 

composition of exosomes from urine, mast cells and different colorectal cancer cell types, 

identifying that, 20 proteins are exclusively present in exosomes from colorectal cancer cells and 

seven proteins are exclusively present in urine derived exosomes (9). Other studies showed that 

exosomes derived from professional antigen presenting cells carry MHC II molecules (10) and 

CD86 (B7.2) (11). In a similar way, the composition of exosomes can be affected by 

pathological conditions. 

Exosomes isolated from urine of prostate cancer patients were loaded with transcripts encoding 

the prostate biomarkers PCA-3 and TMPRSS2:ERG (12). As stated in Chapter 1, one scenario in 

which exosome composition changes is during intracellular infections; exosomes can be 

modified by carrying pathogen-derived molecules (13-15) and second, the host exosomal 

proteome could change as a result of the infectious process (16). 

Regarding changes in the host proteome of cells infected with M. tuberculosis, it is important to 

consider that during the intracellular infection, several organelles such as: mitochondria, 

endoplasmic reticulum, and the phagosome, have shown proteomic changes (17-19). 

Particularly, M. tuberculosis alters phagosomal maturation by several ways including: 1. 

inhibition of the “Rab conversion” a process characterized by the shifting from a phagosome 

enriched with Rab5 to Rab7 (20), 2. stimulation the fusion of early endosome with the 

phagosome, in a process mediated by the bacterial phosphatidylinositol mannoside (PIM) (21), 

and 3. inhibition of the phagosome-lysosome fusion affecting the regulatory trafficking 

molecule, phosphatidylinositol-3 phosphate (PIP-3) by either: the mycobacterial acid 
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phosphatase SapM (19) and/or lipoarabinomannan (LAM) (22). Considering the exosome 

plasticity regarding protein content under pathological conditions and the evident effect of M. 

tuberculosis on the endocytic pathway of infected macrophages (MΦ), we hypothesized that 

intracellular M. tuberculosis infection will impact the protein composition of exosomes. 

Additionally, since protein localization within the exosome can play an important role in 

function of these vesicles, we implemented a novel biotinylation scheme to differentiate the 

surface-exposed proteins within the exosome membrane from those protected within the vesicle. 

This work is presented as a proof-of-concept that intracellular M. tuberculosis affects the protein 

composition of exosomes released from host cells. In view of that, the host protein composition 

of exosomes from individuals infected with M. tuberculosis could be evaluated as a source of 

biomarkers for the different stages of the M. tuberculosis infection. 

2.2 Materials and methods 

 

2.2.1 Human monocytes growth and activation 

 

THP-1 human monocytes (American Type Culture Collection, ATCC/TIB-202) were cultured at 

37 °C at 5% CO2 in complete RPMI (cRPMI) media. This media contained RPMI 1640 base 

medium (ATCC) supplemented with 2-mercaptoethanol (Gibco) at a final concentration of 

0.05 mM and 10% exosome-depleted fetal bovine serum (EXO-FBS, SBI). Monocytes (2.5 × 105 

cells/ml) were activated to MΦ using 200 nM of Phorbol 12-myristate 13-acetate (PMA) (Sigma-

Aldrich) for 72 h. After the activation, unbound cells and remaining media were removed, and 

the adherent cells were washed three times using phosphate buffer saline (PBS). 

The cells were incubated in cRPMI for 12 to 14 hours before infection. 
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2.2.2 M. tuberculosis strain and macrophage infection 

 

All procedures involving live M. tuberculosis were completed in a biosafety level 3 laboratory 

at Colorado State University. Infectivity stocks of M. tuberculosis strain H37Rv were thawed 

and spun down at 1,200 × g for 10 minutes. The pellet was suspended in cRPMI and bath- 

sonicated for 1 minute to disrupt bacteria clumps. The THP-1 MΦ previously prepared were 

infected with M. tuberculosis at a 1μ5 ratio (MΦμ Bacteria) for 4 h at 37 °C/5% CO2. After 

infection, the THP-1 MΦ were washed three times with PBS and then 25 ml of fresh cRPMI was 

added. The cells were returned to culture conditions for 24 h for the production of exosomes. 

Identical flasks of THP-1 MΦ were treated in the same way but without M. tuberculosis to 

produce control exosomes. Every experiment with M. tuberculosis infected   and uninfected 

THP-1 MΦ was done in triplicate and three independent experiments (at different days) were 

done as biological replicates. In order to obtain the best number of viable cells after exosome 

harvesting, the infection model of THP-1 MΦ was standardized by testing: 1) different 

concentrations of monocyte for activation, and 2) different times of incubation for exosome 

production. 

2.2.3 Exosome purification 

 

Approximately, 25 ml of supernatant from infected and control THP-1 MΦ were collected   after 

24 h of infection and filtered through a 0.2 μm membrane to remove cellular debris, potential 

membrane fragments from lysed cells, large vesicles (>500 nm), and whole bacteria. The 

collected material was filtered and concentrated using an Amicon centrifugal filter unit with a 

molecular weight cut-off (MWCO) of 100 KDa (EMD Millipore) to 2 ml to remove  most of the 

soluble proteins. The exosome-rich retentate was diluted to 15 ml with PBS and filtered again 

through the 100 KDa to elute remaining soluble proteins. After this, the retained sample was 
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centrifuged at 18,000 × g for 30 min to pellet larger vesicles. The resultant supernatant was 

mixed with 400 μl of ExoQuick-TC (SBI) and incubated at 4 °C overnight to precipitate 

exosomes. After this, the mix was centrifuged at 2,600 × g for 30 min. The exosome rich pellet 

was suspended in 1 ml of PBS and the total protein concentration was measured using the 

microbicinchoninic acid assay (microBCA, Thermo Scientific). The exosomes were aliquoted 

(50 μg/vial) and stored at −20 °C until further analysis. 

2.2.4 THP-1 MΦ viability test after infection with M. tuberculosis 

 

To guarantee the accurate comparison between exosomes from M. tuberculosis-infected and 

control cells, the viability of cells in both conditions, was evaluated after exosome collection. 

After each experiment, the cells were washed with PBS and detached from the flask using 5 ml 

of 0.25% trypsin-EDTA (Gibco) at 25 °C for 10 min. Five ml of cRPMI were added, to 

neutralize the trypsin reaction, then, the cells were centrifuged at 600 × g per 10 min and 

washed with cRPMI once. Afterward, cells were resuspended in cRPMI to perform the viability 

assay Alamar Blue (Invitrogen). For this, 100 µl of control and infected cell suspension were 

added to a 96 wells plate in triplicate. Subsequently, 10 μl of Alamar Blue reagent was added to 

each well and the plate was incubated at 37 °C/5%CO2 for 4 h in the dark. After incubation, the 

plate was read in spectrophotometer at 570 nm and 600 nm. The viability was calculated as a 

function of the amount of resazurin that was reduced to resorufin for the metabolically active 

cells. To do this the percentage of reduction of Alamar blue was calculated using the following 

equation: 
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%Reduced = ሺεOXሻλʹAλͳ  − ሺεOXሻλͳAλʹሺεREDሻλͳA′λʹ −  ሺεREDሻλʹA′λͳ 

Ȝ1μ 570; Ȝ2: 600; AȜ1μ Absorbance of test well at 570 nm; AȜ2: Absorbance of test well at 600 
nm; A′Ȝ1μ Absorbance of negative control well at 570 nm; A′Ȝ2: Absorbance of negative control 
well at 600 nm; (εOX)Ȝ1: Molar extinction coefficient for the oxidized form at 570   nm 
= 80,586; (εOX)Ȝ2: Molar extinction coefficient for the oxidized form at 600 nm =   117,216; 
(εRED)Ȝ1μ Molar extinction coefficient for the reduced form at 570 nm = 155,677; (εRED)Ȝ2: Molar 
extinction coefficient for the reduced form at 600 nm = 14,652. The viability of the infected cells 
was reported relative to the control cells. Negative control only contains media and Alamar blue 
reagent. 
 
2.2.5 Confirmation of M. tuberculosis infection after exosome purification 

 

Ten μl of infected cells suspension were pipetted onto a microscope slide, fixed with 

paraformaldehyde 4% for 24 h, stained with the Kinyoun acid-fast method and microscopically 

evaluated. Then, the remaining infected THP-1 MΦ were pelleted and lysed using 0.05% SDS 

for 3 min. The SDS treatment was enough to lyse the THP-1 MΦ but not the intracellular 

bacteria. The resulting suspension was centrifuged at 1,200 × g for 10 min and the pellet was 

diluted in Middlebrook 7H9 medium. Seven 10-fold serial dilutions were plated on 7H11 quad-

plates and incubated at 37 °C for 3 weeks for colony forming units (CFU) enumeration to verify 

the number of infecting bacteria after exosome production. 

2.2.6 Characterization of exosomes 

 

2.2.6.1 Light scattering analysis 

 

The concentration and size distribution of the exosomes were evaluated by nanoparticle tracking 

analysis (NTA) using the NanoSight NS300 (Malvern Instruments). The instrument utilizes a 

laser that passes through the sample and the particles in suspension scatter light. The Brownian 

motion of the particles is used for the software to determine the size of each particle. The 

analysis was standardized at 5 μg/ml of total protein for each exosome-sample. Each sample was 

analyzed in triplicate. 
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2.2.6.2 Western blot (WB) analysis 

 

Exosome samples (50 μg) were resuspended in Laemmli buffer (which contains: 2- 

Mercaptoethanol 5%, Bromophenol blue 0.01%, Glycerol 10%, SDS 2% and Tris-HCl, 63 mM) 

and heated at 100 °C for 5 minutes. Then, the samples were resolved in a polyacrylamide gel 

electrophoresis using NuPAGE Novex 4–12% Bis-Tris Gel (Life Technologies) and transferred 

to a nitrocellulose membrane, 0.2 μm (Bio-Rad). Afterward, the membrane was blocked with 

bovine serum albumin 2% for 1 h, washed, and incubated with the primary antibody for 1 h. 

Subsequently, the conjugated secondary antibody was added and finally the membrane was 

exposed to the developer reagent. For exosome characterization the primary antibodies: anti- 

CD63 (SBI), anti-CD81 (SBI) and anti-Rab5B (A-20) (Santa Cruz Biotechnology) were used. 

For validation of the proteomics results, the primary antibodies: anti-Coronin 1 C (G-R2) (Santa 

Cruz Biotechnology), anti-Moesin (Life Technologies), anti-Vimentin Antibody (9E7E7) (Santa 

Cruz Biotechnology) and anti-HSP 90 (F8) (Santa Cruz Biotechnology) were used. Two 

different HRP-conjugated antibodies were used: Goat Anti-Rabbit F(ab)2 fragment (Thermo 

Scientific) and Goat anti-Mouse IgG (H + L) (Thermo Scientific) depending on the source of the 

primary antibody. For the WB detecting moesin and HSP 90, the colorimetric substrate 4- 

Chloro-1-Naphtol (Sigma) was used. For the analysis of the other proteins the chemiluminescent 

substrate Super Signal West Pico (Thermo Scientific) was used. WB images and band intensities 

were determined using the Chemi-Doc XRS+ with Image Lab software version 3.0 (Bio-Rad). 

For some of the assays, after transferring the protein to the nitrocellulose membrane, a Ponceau S 

stain was done to verify the efficiency of the transfer. For this, the membrane was soaked in 

Ponceau S solution (Ponceau S 0.2%, Acetic acid 3% in distilled water) for 5 minutes, washed 

with distilled water for approximately 5 minutes to remove unspecific staining and the scan of 
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the membrane was recorded. After this, the membrane was washed with PBS 1X for 5 minutes, 3 

times. Then, the WB procedure was followed as described above. 

2.2.6.3 Transmission electron microscopy 

 

Exosome samples from M. tuberculosis-infected and control cells were prepared following the 

protocol described by Théry et al., (23) with some modifications. Briefly, exosome samples were 

fixed using 4% paraformaldehyde (PFA) (1:1 ratio PFA:sample) overnight at 4 °C. Then, a 

formvar/carbon coated grid (Electron Microscopy Science) was placed on top of a drop of 10 µl 

of fixed-exosomes for 20 min. The grid was then washed by transferring it to 100 µl of PBS, and 

then, a second fixation step was done by transferring the grid to a 50 µl drop of glutaraldehyde 

1% for 5 min. After this, the grid was washed 7 times with 100 µl drop of distilled water. Next, 

the grid was negatively stained on top of a 50 µl drop of uranyl-oxalate for 5 min. Finally, the 

grid was transferred to a 50 µl drop of methylcellulose/uranyl acetate (9μ1 ratio) for 10 min on 

ice. After this, excess of methylcellulose/uranyl acetate was removed by blotting on Whatman 

#1. The grids were air dried and observed in the transmission electron microscope JEOL 

2100 F at 200 kV. 

2.2.7 Biotinylation of exosome proteins 

 

In order to determine the localization of the proteins either exposed to the external leaflet or in 

the lumen of the exosome, a double biotinylation labelling protocol was developed. Two 

different types of biotin reagents were used in this experiment. Sulfo-NHS-Biotin (Thermo 

Scientific), containing a shorter, 13.5 Å spacer arm biotin was used, to label the proteins in the 

lumen or in the internal leaflet of the exosomal membrane and Sulfo-NHS-LC-LC-Biotin 

(Thermo Scientific) was used, to label the proteins exposed to the external leaflet of intact 

exosomes and contains a larger, 30.5 Å spacer arm between the biotin and amine reactive linker. 
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The size of this linker helps to overcome steric hindrance and increases labeling efficiency at the 

crowded exosome surface. Two hundred μg of intact exosomes were mixed with 10 mM Sulfo- 

NHS-LC-LC-Biotin at room temperature for 30 min. Four conditions were taken into account 

during this experiment: (a) an excess of Sulfo-NHS-LC-LC-Biotin was used to favor a complete 

saturation of exposed lysine residues and potential N-terminus, (b) the presence of the sulfonate 

group in Sulfo-NHS-LC-LC-Biotin blocks the reagent from penetrating the exosomal membrane, 

(c) Sulfo-NHS-LC-LC-Biotin has an spacer arm of 30.5 Å which improves the biotinylation of 

proteins in their natural conformation, and (d) amino acids labeled with Sulfo-NHS-LC-LC- 

Biotin will have an increase in mass of 452 Da. After incubation, the excess of Sulfo-NHS-LC- 

LC-Biotin was removed using a 10 KDa MWCO filtration device. Biotinylated exosomes were 

washed with 10X volumes of 1X PBS and concentrated to a final volume of 30 μl. Biotinylated 

exosomes were lysed with 300 µl of RIPA buffer (Thermo Scientific) for 1 h, followed by three 

freeze and thaw cycles. After lysis, buffer exchange was done to replace RIPA buffer with 1X 

PBS; RIPA buffer contains primary amines that interfere with the next biotinylation step. Lysed- 

biotinylated exosomes were exposed to 10 mM Sulfo-NHS-Biotin (Thermo Scientific), at room 

temperature for 30 min, for labeling of remaining free amines. Excess of biotin was removed as 

mentioned above. Peptides modified with the second biotin will have an increase in mass of 

226.3 Da. 

2.2.8 In gel digestion of exosomal proteins 

 

2.2.8.1 Unlabeled exosomes 

 

Exosomes (50 μg) were mixed with Laemmli SDS-PAGE buffer and heated at 100 °C for 

5 minutes. After this, the samples were resolved in a NuPAGE Novex 4–12% Bis-Tris Gel (Life 

Technologies) for 5 min. Then, the gels were stained with Coomassie Blue (Invitrogen) for 1 h to 
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visualize the localization of the proteins and destained briefly in water to clarify protein bands. 

Afterwards, the entire lane of gel containing the proteins was excised and cut into 1 mm3 pieces 

that were transferred to an Eppendorf tube and mixed with distaining solution (60% acetonitrile 

(ACN) in ammonium bicarbonate 0.2 M) for 1 hour at 37 °C, twice. After distaining, the gel 

pieces were vacuum dried. Dried gel pieces were mixed with trypsin (Roche) in 0.2 M 

ammonium bicarbonate at a ratio of 50:1 (sampleμ trypsin) at 37 °C, overnight. The next day, the 

tryptic peptides were extracted by adding 100 μl of 60% ACN, 0.1% trifluoroacetic acid in 

HPLC-grade water and incubated at 37 °C for 1 hour, twice. The extracted peptides were vacuum 

dried, suspended in Solvent A (3% ACN and 0.1% formic acid in HPLC-grade water), 

centrifuged at 13,000 × g for 5 min to pellet larger debris, the supernatant was carefully 

transferred into auto-sampler vials (Agilent technologies), and stored at −20 °C until analysis by 

LC-MS/MS. 

2.2.8.2 Biotinylated exosomes 

 

Labeled exosome lysates (50 μg) were subject to gel electrophoresis and staining as described 

above. The biotin label binds to the free amine group of lysine residues, thus, interfering with 

one of the cleavage sites for trypsin; as an alternative, the endoproteinase AspN (Roche) was 

used for protein digestion. After obtaining the dried and destained gel pieces as described above, 

protein samples were reduced with 5 mM dithiothreitol (Sigma) for 20 min at 50 °C and 

alkylated with 15 mM iodoacetamide (Sigma) at 25 °C for 15 min in the dark, following the 

AspN manufacturer’s recommendations. Then, proteins were digested with AspN in 0.2 M 

ammonium bicarbonate using a 50:1 ratio (w/w-sample: enzyme). Subsequent steps for peptide 

extraction after enzymatic digestion were similarly performed as described before. 
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2.2.9 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

 

Approximately 1 μg of digested peptides for each sample was injected using an EASY nanoLC- 

II system (Thermo Scientific, San Jose, CA). Peptides were purified and concentrated using an 

on-line enrichment column (EASY-Column, 100 μm ID × 2 cm ReproSil-Pur C18). Subsequent 

chromatographic separation was performed on a reverse phase nanospray column (EASY- 

Column, 3 μm, 75 μm ID × 100 mm ReproSil-Pur C18) using a 90 min linear gradient from 5– 

45% solvent B (100% ACN, 0.1% formic acid) at a flow rate of 400 nanoliters/min. Peptides 

were eluted directly into the mass spectrometer (Thermo Scientific Orbitrap Velos). The 

instrument was operated in Orbitrap-LTQ mode where precursor measurements were acquired in 

the Orbitrap (60,000 resolution) and MS/MS spectra (top 20) were acquired in the LTQ ion trap 

with a normalized collision energy of 35%. Mass spectra were collected over a m/z range of 

400–2000 Da using a dynamic exclusion limit of 2 MS/MS spectra of a given peptide mass for 

30 s (exclusion duration of 90 s). Compound lists of the resulting spectra were generated using 

Xcalibur 2.2 software (Thermo Scientific) with an S/N threshold of 1.5 and 1 scan/group. 

2.2.10 Data analysis 

 

Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by ProteoWizard 

(MSConvert version 3.0). Raw data files were converted to mzXML format and submitted to the 

Sorcerer2 integrated data analysis platform (Sage-N Research, version 5.0.1); subsequent 

MS/MS analysis was performed using SEQUEST (Sage-N Research, Milpitas, CA, USA; 

version v. 3.5). SEQUEST was set up to search the Uni-Prot Homo sapiens Reference Proteome 

(ID: UP000005640, 70076 entries) assuming the enzymatic digestion with trypsin (after Arg or 

Lys) or AspN (before Asp or Glu) depending on which enzyme was used. SEQUEST was 

searched with a fragment ion mass tolerance of 1.00 Da and a parent ion tolerance of 50 PPM. 
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Oxidation of methionine (+15.99) and carbamidomethyl of cysteine (+57.02) were specified in 

SEQUEST as variable modifications for the unlabeled experiment. Biotin (+226) and LC-LC 

Biotin (+452) in lysine and N-termini were also included as variable modification for the 

labeling experiment. Scaffold (version Scaffold_4.5.1, Proteome Software Inc., Portland, OR) 

was used to validate MS/MS based peptide and protein identifications. Peptide identification 

thresholds were set such that a peptide FDR of 1% and a peptide confidence threshold of 95% 

was achieved based on hits to the reverse database (24). Protein identifications were accepted if 

they could be established at greater than 99.0% probability to achieve an FDR less than 1.0% and 

contained at least 2 identified peptides. Protein probabilities were assigned by the Protein 

Prophet algorithm (25). Proteins that contained similar peptides and could not be differentiated 

based on MS/MS analysis alone were grouped to satisfy the principle of parsimony. Proteins 

were annotated with GO terms from NCBI (downloaded Dec 31, 2015) (26). The mass 

spectrometry proteomics data were deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (27), with the 

dataset identifier PXD004062 and DOI 10.6019/PXD004062. The presence of membrane 

associated proteins were also explored using the free online software TMHMM (Version 2.0) 

(28, 29). Differences in protein abundances between exosomes from M. tuberculosis-infected 

MΦ versus control cells were evaluated by t-test, using the normalized spectral abundance factor 

(NSAF) (30). P values < 0.05 were accepted as statistically significant. For validation of the 

proteomics results a subset of proteins that were significantly higher in exosomes from infected 

cells were evaluated by western blot as described in section 2.2.6.2. 
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2.3 Results and discussion 

 

2.3.1 Standardization of culture conditions to obtain exosomes from M. tuberculosis 

 

infected cells 
 

Decreasing the initial number of seeded cells from 1x106 to 5x105 monocytes/ml improved the 

number of viable cells obtained for exosome production (Figure 2.1). We hypothesized that a 

lower number of cells in the flask allowed a better attachment of the growing MΦ.  

2.3.2 General characterization of exosomes 

 

The Nanoparticle Tracking Analysis (NTA) allowed the quantification and size measurement of 

vesicles in suspension in five micrograms of isolated exosomes. The nanovesicle concentration 

when normalized by total protein was not statistically different between samples, ranging from 

2 × 108 to 6 × 108 particles per ml (t-test, p = 0.299) (Figure 2.2a). Exosomes from infected MΦ 

appeared to be slightly larger; however, the size difference was not statistically significant (t-

test, p = 0.236) (Figure 2.2b). 

 
Figure 2.1 Percentage of recovered THP-1 cells after 72 hours of activation. The proportion of 
recovered cells is significantly higher (t-test, p=0.006) when the initial number of monocytes is 
50% lower. Results from two independent experiments. 
 

https://www.nature.com/articles/srep37975#f1
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Figure 2.2 Concentration (a) and size (b) distribution of the vesicles obtained from M. 
tuberculosis-infected cells and uninfected controls. Results from 3 technical replicates from three 
independent experiments. Five micrograms of protein per sample were evaluated. 
 

In addition to size and concentration, the presence of the exosome hallmark proteins: CD63, 

CD81, Hsp70 and Rab-5B was confirmed by western blot in all biological replicates (Fig. 2.3 

a/b). Abundance of these proteins was invariant amongst all samples, except for Hsp70 which 

appeared more abundant in exosomes from infected cells (Figure 2.3a). A major limitation with 

most of the protocols used for exosome isolation is the loss of integrity of the vesicles during 

the process. Here, the integrity of the vesicles was confirmed by electron microscopy (Figure 

2.3c). Overall, these findings confirmed that the nanovesicles in this study were consistent with 

exosomes. 

To determine the viability of M. tuberculosis-infected cells and controls cells after exosome 

collection, we did an assay based on the reducing capacity of viable cells. The proportion of 

viable infected cells relative to their corresponding control ranged from 92% to 114% confirming 

that the viability of infected cells was comparable to that from controls.  
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Figure 2.3 Characterization of exosomes. a. Western blot showing the presence of CD63, 
Hsp70, CD81 and Rab 5B in exosomes. b. Densitometry analysis of the relative abundance of 
each protein. c. Representative TEM images of exosomes from infected cells (upper picture) 
and control cells (lower picture). d. THP-1 MΦ infected with M. tuberculosis stained after 
exosome collection 100X magnification (Modified Kinyoun and hematoxylin staining). 
Exosomes from infected cells, lanes: 1, 2 and 3. M: Molecular weight marker. Exosomes from 
control cells lanes: 4, 5 and 6. RUI: relative units of intensity. 
 
Finally, we confirmed the extent of bacterial infection after exosome production 

microscopically (Figure 2.3d) and by bacterial enumeration. The average number of colony 

forming units (CFUs) was 1.05 × 107 ± 5 × 106 CFU/ml. This average represents the 33.8% 

resident bacilli from the initial bacterial inoculum. Both results allowed us to confirm that the 

isolated exosomes were produced from M. tuberculosis-infected cells. 
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2.3.3 Proteome of exosomes released from MΦ infected with M. tuberculosis 

 

A total of 355 proteins were identified in the exosomes from M. tuberculosis infected and control 

cells (a comprehensive list of all the proteins identified can be found in the publication of Diaz et 

al. (16)). More than 60% of the identified proteins are predicted to be membrane-associated, and 

the majority of them, are involved in binding, immunological and metabolic processes according 

to the Gen Ontology-GO annotations from the NCBI database (Figure 2.4a/b). These processes 

have been previously associated with potential roles for exosomes (31-33). 

2.3.4 Comparative proteomic analysis reveals significant differences between exosomes 

from infected and control cells 

As we predicted, the infection of MΦ with M. tuberculosis impacted the protein composition of 

exosomes. The relative abundance of each protein was determined using the spectral counts 

divided by the length of each individual protein (Spectral Abundance Factor-SAF), then, each 

SAF is divided by the sum of the SAF for all proteins in the experiment to obtain the Normalized 

SAF (NSAF) as previously described (30). This normalization process allowed the accurate 

comparison of individual protein abundances among the two sample categories: infected versus 

control. Forty-one proteins were significantly more abundant in exosomes from infected cells 

(Table 2.1), a subset of these were confirmed by western blot (Figure 2.5), including: HSP90, 

vimentin, Coronin 1 C and moesin. Previous studies have shown that some of these proteins play 

important roles during M. tuberculosis infection. Shekhawat et al., showed that human HSP 

proteins (including Hsp90) were increased in sera from individuals with a high risk of being 

latently infected with M. tuberculosis, suggesting HSP proteins as potential biomarkers for LTBI 

(34). We observed that HSP90 was significantly higher in exosomes from infected cells. In this 

study, we also found that infected MΦ produced exosomes with a higher concentration of 
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vimentin compared with control cells. Vimentin is a ligand for NKp46, a receptor in Natural 

Killer (NK) cells.  

 
Figure 2.4 Function and localization of the proteins found in exosomes. a. Subcellular 
localization of most of the proteins found in the MΦ-derived exosomes. b. The top 15 identified 
molecular functions and biological process associated with the proteins found in exosomal 
samples. Information obtained directly from the NCBI database. 
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Figure 2.5 Western blot validation for proteins significantly more abundant in exosomes from 
M. tuberculosis infected cells by LC-MS/MS. a. Hsp90, Moesin and Vimentin were detected 
using a chromogenic substrate. The intensity of the bands was evaluated relative to the intensity 
of CD63. b. Coronin 1C was detected using a chemiluminescent substrate. The intensity of the 
bands was evaluated relative to the intensity of CD63. Results from three independent 
experiments. Exosomes from infected cells, lanes: 1, 2 and 3. M: Molecular weight marker. 
Exosomes from control cells lanes: 5, 6 and 7. RUI: relative units of intensity. 

The interaction between NKp46 and vimentin mediates the lysis of M. tuberculosis-infected NK 

cells (35). Exosomes enriched with vimentin could interfere in the interaction of NKp46 with the 

cell membrane associated vimentin (from MΦ), thus delaying the killing of M. tuberculosis 

infected cells. In this way, intracellular mycobacteria could be modulating the loading of 

vimentin in exosomes as a defense mechanism. Further investigations into this phenomenon 

could give us new insights about the complex host-pathogen interaction in TB. Lastly, L-amino 

acid oxidase (LAAO) was more abundant in exosomes from M. tuberculosis-infected MΦ in our 

study. This protein plays important roles in the innate immune response acting as an antibacterial 

enzyme that catabolizes the deamination of L-amino acids producing H2O2 and ammonia (36). 

Our results suggest that M. tuberculosis-infected cells could be using exosomes to export 

endogenous antimicrobial molecules as a defense mechanism. This phenomenon has been 
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previously observed with IFNα that could be transported between cells via exosomes (31). 

Collectively, these changes in exosomes because of M. tuberculosis infection reveals important 

information regarding the host-pathogen interaction. 

Table 2.1 Proteins significantly more abundant between exosomes from infected and control 
MΦ. 
 
Identified Proteins 

 
Infected 

NSAF 

 
Control 

NSAF 

p value* 

NSAF-inf 

versus 

NSAF-

control 60S acidic ribosomal protein P0 0.064 0.000 0.00012 
Coronin-1C 0.023 0.000 0.00017 
Lupus La protein 0.023 0.000 0.00019 
Heterogeneous nuclear ribonucleoprotein K 0.075 0.003 0.00029 
Heat shock 70 kDa protein 4 0.013 0.000 0.00031 
Alanine--tRNA ligase, cytoplasmic 0.006 0.000 0.00035 

Calreticulin 0.017 0.000 0.001 
Protein disulfide-isomerase A3 0.040 0.000 0.002 
L-amino-acid oxidase 0.018 0.000 0.003 
Moesin 0.151 0.062 0.0032 
Nucleolin 0.063 0.007 0.0032 
Vimentin 0.251 0.072 0.0034 

Protein disulfide-isomerase A6 0.046 0.003 0.0035 
Spliceosome RNA helicase DDX39B 0.027 0.000 0.0039 
Fermitin family homolog 3 0.046 0.002 0.0047 
Programmed cell death 6-interacting protein 0.005 0.000 0.0047 
S-adenosylmethionine synthase isoform type-

2 

0.029 0.000 0.0048 
Glyceraldehyde-3-phosphate dehydrogenase 0.293 0.201 0.0059 
ATP-dependent RNA helicase A 0.005 0.000 0.0068 
60 kDa heat shock protein, mitochondrial 0.013 0.000 0.0082 
Cytosol aminopeptidase 0.041 0.000 0.0084 
Ubiquitin-like modifier-activating enzyme 1 0.056 0.007 0.0089 
ITIH4 protein 0.011 0.000 0.01 
Serine/threonine-protein phosphatase 

2A 65 kDa regulatory subunit A alpha 

isoform 

0.011 0.002 0.011 

Tryptophan--tRNA ligase, cytoplasmic 0.031 0.000 0.011 

Transketolase 0.082 0.015 0.012 
Zyxin (Fragment) 0.007 0.000 0.012 
Heat shock protein HSP 90-beta 0.361 0.221 0.014 
Tyrosine--tRNA ligase, cytoplasmic 0.014 0.000 0.017 



45  

6-phosphogluconate 

dehydrogenase, decarboxylating 

0.075 0.021 0.024 

X-ray repair cross-complementing protein 6 0.061 0.004 0.026 
78 kDa glucose-regulated protein 0.109 0.047 0.028 

Eukaryotic initiation factor 4A-I 0.115 0.038 0.028 
Thrombospondin-4 0.011 0.002 0.028 
Bifunctional purine biosynthesis protein 

PURH 

0.028 0.000 0.028 
Staphylococcal nuclease domain-

containing protein 1 

0.012 0.001 0.031 

Heat shock cognate 71 kDa protein 0.443 0.273 0.036 
Integrin beta-1 0.006 0.000 0.046 
UDP-glucose 6-dehydrogenase 0.013 0.000 0.046 

Purine nucleoside phosphorylase 0.039 0.000 0.048 
Lamin-B1 0.021 0.003 0.049 

*p value of the t-test comparing the averages of the normalized spectral abundance factor-NSAF 
(30) of exosomal proteins from infected and control cells. Results from three independent 
experiments. 
 

2.3.5 Significant changes of the exosome membrane proteome after infection with 

M. tuberculosis 

Exosomes are an important source of biomarkers for TB by virtue of the discovery of 

mycobacterial molecules packaged within these vesicles (14, 15, 37, 38). Here, the effect of the 

infection on host exosomal protein composition illustrates another potential opportunity to 

exploit exosomes as biomarkers of TB. In this regard, we sought to explore the differential 

abundance of membrane associated proteins since they represent a more accessible set of targets 

for downstream development of a biomarker assay. Using GO-term annotation analysis, we 

found that 63% (26/41) of the proteins that were significantly more abundant in exosomes from 

infected cells were also membrane associated. To better characterize this subset of proteins we 

used transmembrane helix prediction software and found that 31% of the 26 proteins contained at 

least one probable transmembrane domain or residues that were potentially membrane associated 

(Table 2.2). To further ascertain the localization of proteins significantly more abundant in 

exosomes from infected cells, we conducted an experiment to differentially label proteins based 
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on their localization within the exosome. First, intact exosomes were exposed to NHS-Sulfo-LC- 

LC-Biotin, a negatively charged molecule unable to permeate biological membranes, to label 

proteins that were exclusively facing-out of the exosomal membrane. NHS-Sulfo-LC-LC-Biotin 

binds amino-terminus and lysine residues, increasing the molecular mass of the labeled peptide 

by 452 Da. The fact that this molecule has a spacer arm of 30.5 Å improves its accessibility to 

folded proteins in the membrane of intact exosomes. After cleaning the excess of NHS-Sulfo- 

LC-LC-Biotin, the biotinylated exosomes were lysed followed by secondary labeling of proteins 

on the internal-face of the exosomal membrane or within the lumen of the exosome, using a 

different biotin reagent (Sulfo-NHS-Biotin) that increases the molecular weight of the labelled 

residues by 226 Da. This labeling strategy allowed for the identification and differentiation of 

protein populations by mass spectrometry analysis, including determination of protein domains 

exposed to the external side of the exosome. Our labeling studies demonstrated that 6 of 26 

differentially abundant membrane proteins identified by GO-term analysis were differentially 

labeled with LC-LC biotin, and thus are surface exposed (Table 2.2). In addition, this technique 

afforded the identification of one additional surface exposed protein, a nucleoside diphosphate 

kinase (Ndk) (Table 2.2). Interestingly, Mycobacterium-derived Ndk has been associated with a 

greater survival of infected MΦ (39). Ndk metabolizes extracellular ATP which plays important 

roles during the inflammatory response and MΦ activation via P2X7 receptor (40). Although 

human derived-Ndk has been mostly related with intracellular vesicle trafficking (40), the 

human-derived Ndk secreted in exosomes could be acting as an ectoenzyme that modulates MΦ 

activation and survival in an ATP-dependent manner; favoring mycobacterial persistence. Three 

of the seven LC-LC biotin labeled proteins (Table 2.2) were also labeled with the shorter biotin 

(226 Da label) (Table 2.2); these are indicative of transmembrane proteins with both external and 
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internal segments. In the same way, the presence of proteins exhibiting only the small biotin 

implies that the protein was confined to the exosome lumen. Our biotinylation strategy represents 

an original approach that allows for a more detailed characterization of exosomes, specifically 

the identification of the peptide present in the outer leaflet of the exosomal membrane could 

drive targeted assays to produce epitope-specific antibodies to capture a selected population of 

exosomes. However, it is important to underscore the low number of peptides that were 

identified with our strategy, the extra weight of peptides with multiple biotin molecules could be 

negatively impacting the selection of those peptides for identification, additional standardization 

of the methods is needed. 

Table 2.2 Membrane associated proteins significantly more abundant in exosomes from M. 
tuberculosis-infected cells and their biotinylation pattern showing the specific peptide 
labelled with LC-LC biotin. 

 
Membrane associated protein‡ 

Proteins with 

AA residues in 

transmembrane 

domains** 

 
LC-LC Biotinylated 

peptides 

 
Biotin 

60S acidic ribosomal protein P0 X   
Coronin-1C X   
Heterogeneous nuclear 

ribonucleoprotein K 
   

Alanine-tRNA ligase, cytoplasmic    
Calreticulin X   
Protein disulfide-isomerase A3 X   
Moesin  EEAkEALLQASR  
Nucleolin    
Vimentin  DVRQQYESVAAkNLQEA X 

Protein disulfide-isomerase A6 X   
Fermitin family homolog 3    
Programmed cell death 6-interacting 

protein 
   

Glyceraldehyde-3-P-dehydrogenase  DNFGIVEGLMTTVHAITA
TQkTV 

X 

ATP-dependent RNA helicase A X   
60 kDa heat shock protein, 

mitochondrial 
   

Cytosol aminopeptidase    
Serine/threonine-protein phosphatase 

2A 65 kDa regulatory subunit A alpha 
   

Transketolase X   
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Heat shock protein HSP 90-beta  ERIMkAQALR  
78 kDa glucose-regulated protein    
Eukaryotic initiation factor 4A-I  EVQkLQMEAPHIIVGTPGR

VF 
X 

Bifunctional purine biosynthesis 

protein PURH 
   

Staphylococcal nuclease domain- 

containing protein 1 
   

Heat shock cognate 71 kDa protein  DPVEkALR  
Integrin beta-1 X   
Lamin-B1    
Nucleoside diphosphate kinase  ERTFIAIkP  

‡Classification based on the Go-term annotations from the NCBI database. **Based on 
TMHMM Server V. 2.0 prediction of transmembrane helices in proteins (AA: Aminoacids). k: 
designates a lysine residue with the LC-LC biotin modification. 

2.4 Conclusions 

 

Our study demonstrates that the infection with M. tuberculosis influences changes in the protein 

composition of exosomes released from infected cells. Even though our findings do not have an 

immediate translational application they represent the proof-of-concept that M. tuberculosis- 

infected cells will produce exosomes with a characteristic proteome. The confirmation of these 

phenomena in a clinically relevant sample set (i.e. TB-patient sera derived exosomes) will 

advance our knowledge about M. tuberculosis-host interactions and will offer a potential source 

for new TB biomarkers. 
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Chapter 3: Walking through the spectrum of tuberculosis, what can the proteome 

 
of host exosomes tell us? 

 
 
 

3.1 Introduction 

 

Historically, Tuberculosis (TB) was classified as active disease or latent TB infection (LTBI), 

and TB patients after receiving complete treatment were declared “cured”. However, the fact that 

some of the LTBI and “cured” individuals develop active TB (reactivation and recurrence, 

respectively), suggests that LTBI and “cured” stages represent a range of disease states (1). 

Recent studies based on positron emission tomography (PET) combined with computed 

tomography (CT), demonstrated that individuals with LTBI exhibited a wide range of 

pathological features that correlate with TB reactivation (2). Similar results were observed in 

patients who completed treatment, were declared “cured”, and developed recurrent disease (3). 

In most imaging-based studies, the differentiation of each state of disease was determined by the 

activity of inflammatory cells, which was evaluated by the uptake of 18F-fluorodeoxyglucose 

(18F-FDG). It is possible that pathological manifestations occurring at the cellular level are 

reflected in serum markers with a potential to predict reactivation or treatment response. In this 

regard, Jacobs et al., recently published that a set of plasma markers including C-reactive 

protein, serum amyloid protein, IP10 and the vascular endothelial growth factor among others, 

were significantly higher in active TB patients compared with patients with other respiratory 

diseases. The same proteins were significantly reduced after TB treatment completion (4). 

Kruh-Garcia and colleagues used a unique approach to fractionate serum by polyethylene glycol 

(PEG) precipitation allowing the detection of M. tuberculosis peptides indicative of LTBI (5, 6). 

PEG precipitates an exosome-rich pellet partially purified from heavily abundant serum proteins 
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(7, 8). A similar approach was used in Chapter 2 to demonstrate that the proteome of exosomes 

derived from M. tuberculosis-infected macrophages was significantly different compared to 

uninfected cells (9). Together these studies support the notion that serum exosomes from TB 

patients show a set of proteins reflective of the stage of infection. Proteomic mass spectrometry 

is a powerful tool for the discovery and subsequent evaluation of serum-derived biomarkers. 

Discovery frequently uses data dependent acquisition (DDA) methods commonly called shotgun 

proteomics. However, in DDA methods, the selection of peptides for fragmentation is based on a 

preselected set of conditions (normally choosing the more abundant precursors). The selected 

precursors are a small fraction of the total amount of peptides generated from a sample; this 

makes the analysis inherently stochastic, impairing the reproducibility and sensitivity of the 

method (10). An alternative to overcome the limitations of shotgun proteomics is data 

independent acquisition (DIA). In DIA, the fragmentation is independent of the precursor, which 

means that all peptides in a determined range of m/z (isolation window) will be fragmented in a 

cyclic manner across the whole LC retention time range (Figure 3.1) (11). 

In 2012, Gillet et al., developed a novel DIA-based proteomic analysis called Sequential 

Windowed Acquisition of All Theoretical Fragment Ions Mass Spectrometry (SWATH-MS). In 

SWATH-MS a predefined spectral library is used to get information about a targeted peptide; the 

DIA- derived fragmentation map is queried looking for matching information (11). The spectral 

library is obtained from a shotgun proteomic experiment. Ideally, the same samples that will be 

analyzed by SWATH-MS should be processed by LC-MS-MS in DDA mode to generate 

information for the libraries. To partially overcome the already known limitations of shotgun 

proteomics, each sample is highly fractionated and multiple injections (up to ten injections) to 

get a plateau in the peptide protein identification (12)  
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Figure 3.1 Data-independent acquisition (DIA). All precursors in the predefined SWATH 
(precursor isolation window) are fragmented. In the figure, the SWATH is 26 Da width and 
increases consecutively covering a precursor m/z range from 400 to 1,200 Da, to complete a 
cycle which is repeated across the LC retention time. Adapted from (11), the final version of the 
figure is free according to Creative Commons CC-BY license. 
 
It is noteworthy to understand that the data that can be targeted for a DIA assay is dependent on 

the data present in the spectral library. A newer version of SWATH-MS known as Hyper 

Reaction Monitoring (HRM) showed a higher capacity for peptides/proteins identification, 

higher reproducibility, and higher precision to quantify and detect differentially abundant 

proteins when compared to shotgun proteomics (12). In HRM, the DIA fragmentation map is 

interrogated against the whole spectral library. The completeness of the data set generated for 

HRM was higher than 98% while with shotgun proteomics it was about 49%. This is particularly 

important because missing values challenge the statistical analysis of data sets (Figure 3.2) (12). 

In this chapter, we aimed to discover serum exosome proteins using HRM SWATH-MS to show 

significantly different abundances amongst different TB disease states. 
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Figure 3.2 Comparison of data completion with hyper reaction monitoring (HRM) and shotgun 
proteomics. The intensity of the peptides is presented vertically across the 8 samples (each with 3 
replicates). Adapted from: Bruderer R, et al. (12), the final version of the figure is free according 
to Creative Commons CC-BY license. 

For this purpose, we analyzed three groups of samples from TB endemic regions: smear and 

culture positive, smear negative and culture positive, and TB suspects without microbial 

evidence of disease, as well as a healthy group from a non-TB endemic area (as a control). 

3.2 Materials and methods 

 

3.2.1 Sample classification 

 

Serum samples from TB endemic regions were obtained from the Foundation for Innovative 

Novel Diagnostics (FIND) specimen repository (Geneva, Switzerland) and included three 

categories: TB patients-1 (TB-1) smear negative and culture positive, TB patient-2 (TB-2) whose 

sputum contained detectable M. tuberculosis by microscopy and culture, and TB suspects. TB 

suspects are defined as people who visited healthcare facilities and were found to have 

pulmonary symptoms indicative of TB; consequently, their sputum was collected, screened and 
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found to be negative for M. tuberculosis by either microscopy or culture evaluation of sputum 

samples. An additional set of samples were donated by healthy individuals from non-endemic 

regions (Table 3.1); these samples were collected and provided by the laboratory of Dr. David 

Lewinsohn at Oregon Health & Science University. 

Table 3.1 Clinical classification of the samples in the study. 
 

Sample Group 

(N=10 per group) 
Smear Culture HIV+ HIV- 

TB-1 positive negative 3 7 

TB-2 positive positive 3 7 

TB suspects negative negative 4 6 

Healthy N/A N/A  0 10 

 
3.2.2 Exosome enrichment from human sera samples 

 

Sera samples were defrosted at 4 °C and spun at 18,000 X g per 15 min. twice, to pellet 

largerparticles. Then, the concentration of protein in the sample was quantified by Bicinchoninic 

acid assay (BCA, Thermo). 20 mg of sample were used for exosome isolation. Exosomes were 

purified using CaptoCore 700 (GE Healthcare Life Sciences). Briefly, 1.3 ml of CaptoCore 700 

slurry was added to an empty column and washed with 10 ml of PBS. Samples were diluted in 

300 µl of PBS and run through CaptoCore 700 column by gravity. The collected material was 

reapplied to the column which was washed with 500 µl of PBS. The eluate was quantified using 

MicroBCA (Thermo). The exosome enriched samples were dried by centrifugal evaporation 

under vacuum, resuspended at 2 mg/ml in a lysis salt buffer provided by Biognosys and shipped 

frozen to Biognosys laboratories for HRM-MS analysis. 

3.2.3 Spectral library generation 

Samples were reduced using Biognosys’ reduction solution for 1 h at 37 °C and alkylated using 

Biognosys’ alkylation solution for 30 min at room temperature in the dark. Subsequently, 
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digestion of proteins was carried out using trypsin (Promega) overnight at 37 °C at a ratio of 50:1 

(protein: protease). Then, the peptides were desalted using a C18 Micro Spin-plate (The Nest 

Group) according to the manufacturer’s instructions and dried down using a SpeedVac system. 

Peptides were resuspended in 15 μl solvent A (1 % acetonitrile, 0.1% formic acid (FA)) and 

spiked with Biognosys’ HRM kit calibration peptides. Then, the samples were pooled by TB 

status (Healthy and TB suspects vs. TB patients group 1 and 2) by combining equal volumes of 

each sample, and the resulting pools were fractionated by high pH reversed-phase 

chromatography (HPRP). For HPRP fractionation, equal sample volumes were pooled according 

to sample group (Healthy/TB suspects and TB patient groups 1 and 2). The two pools were each 

diluted 4x in 0.2 M ammonium formate (pH 10) and applied to a C18 Micro spin column (The 

Nest Group). The peptides were then eluted with buffers containing 0.05 M ammonium formate 

and increasing acetonitrile concentrations (5, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30 and 70%). The 

eluates were dried down, resolved in 17 μl solvent A and spiked with Biognosys’ HRM kit 

calibration peptides prior to mass spectrometry analyses. The final peptide concentrations in all 

samples and fractions were determined using a UV/VIS Spectrometer (Spectro STARnano, 

BMG Labtech). 

For the LC-MS/MS shotgun measurements, 1 μg of peptides (3 μg for fractions 5%) were 

injected to an in-house packed C18 column (Dr. Maisch ReproSilPur, 1.9 μm particle size, 120 Å 

pore size; 75 μm inner diameter, 50 cm length, New Objective) on a Thermo Scientific Easy nLC 

1200 nano-liquid chromatography system connected to a Thermo Scientific Q ExactiveHF mass 

spectrometer equipped with a standard nano-electrospray source. Twelve fractions of each pool 

were measured once in shotgun MS mode (24 measurements in total). A modified TOP15 

method was used as described elsewhere (13). 
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3.2.4 Hyper reaction monitoring/SWATH-MS 

 

One μg of peptides per sample was injected into an identical in-house packed C18 column as the 

one used for shotgun analysis. Similarly, the same LC and MS systems were used. A DIA 

method with one full range survey scan and 14 DIA isolation windows were used. HRM mass 

spectrometric data were analyzed using Spectronaut 11 software (Biognosys). The false 

discovery rate on peptide level was set to 1%, data was filtered using row based extraction. The 

total peptide inventory obtained from the spectral library was searched in the DIA fragmentation 

maps from the entire sample set. An additional high-quality SWATH spectral library for M. 

tuberculosis developed by Schubert et. al 2015 (14) was used to increase the detection of M. 

tuberculosis proteins, the spectral library is available at: http://www.swathatlas.org/ LC solvents 

were A: 1% acetonitrile in water with 0.1% FA; B:15% water in acetonitrile with 0.1% FA. The 

nonlinear LC gradient was 1–52% solvent B in 60 minutes followed by 52-90% B in 10 seconds 

and 90% B for 10 minutes. All solvents were HPLC-grade from Sigma-Aldrich and all chemicals 

where not stated otherwise were obtained from Sigma-Aldrich. 

3.2.5 Data analysis 

 
The mass spectrometric data from the shotgun proteomic strategy were analyzed using 

MaxQuant 1.5.6.5 software (maxquant.org), the false discovery rate on peptide and protein level 

was set to 1%. A human UniProt.fasta database (Homo sapiens, 2015-08-28) was used together 

with a M. tuberculosis database (MtbRv_Rev_R20.fasta), allowing for 2 missed cleavages and 

variable modifications (N-term acetylation, methionine oxidation, lysine/arginine carbamylation, 

asparagine/glutamine deamidation). The HRM measurements were analyzed with the software 

Spectronaut 11 (Biognosys) peptide intensities were normalized using local regression 

normalization (15). Data post processing was carried out in the statistical package R. The heat 

http://www.swathatlas.org/
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map was generated using Spectronaut post analysis perspective and distance was calculated 

using the “Manhattan” method with clustering using “ward.D”. Differences in protein 

abundances between groups were evaluated by t-test using GraphPad Prism 7.03. 

3.3 Results and discussion 

 

3.3.1 Spectral library generation 

 

The samples were pooled by TB status (Healthy and TB suspects vs. TB patient 1 and 2) by 

combining equal volumes of each sample, and the resulting pools were fractionated by high pH 

reversed-phase chromatography (HPRP). Twelve fractions of each pool were each measured 

once in shotgun MS mode (24 measurements in total). Manual inspection of the total ion current 

chromatograms shows stable acquisition duration over the whole gradient and strongest peaks 

were above expected intensity (Figure 3.3). The number of identified proteins and peptides per 

fraction corresponded to expected sample complexity (Table 3.2). In total 9,360 precursors and 

994 proteins were included in the library. An additional spectral library specific for M. 

tuberculosis previously generated by Schubert et al. (14), was used simultaneously for the 

analysis of the DIA-fragments maps of the samples in this study. From this comprehensive 

spectral library, Spectronaut 11 software identified: 48,036 precursors and 3,826 proteins. 

3.3.2 Proteomic profiling of exosome-enriched samples obtained from serum of patients 

with different TB status and healthy individuals 

We generated a sequential window acquisition of all theoretical mass spectra-SWATH-MS 

fragment map, from each sample described in table 3.2. A total of 40 samples were randomly 

processed in DIA mode. Then, using Spectronaut 11 (Biognosys AG, Switzerland), the 

SWATH-MS maps were mined with all the peptides present in the spectral libraries. The 

information contained in the spectral libraries for each peptide, such as the relative intensity 
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Figure 3.3 Total ion current chromatograms of the 12 fractions obtained from TB-1 and TB-2 
pooled samples. The X axis shows retention time and Y axis relative abundance. Strongest peaks 
were above expected intensity. The relative abundance in each chromatogram depicts a scale 
from 0 to 100. NL: Normalized Level. 
 
Table 3.2 Number of proteins and peptides identified in each fraction. 

Sample pool ID F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 

TB Positive Proteins 66 113 144 171 194 208 183 197 217 203 208 223 

Peptides 142 277 377 477 578 648 668 697 820 816 916 1231 

TB Negative Proteins ND 122 151 217 232 290 241 239 241 177 222 216 

Peptides ND 242 393 724 868 1109 1036 1062 1118 553 1074 1274 

ND: No data 
 

and fragment ion signal as well as the retention time (RT) were used to identify and relatively 

quantify, in a very specific manner, the targeted peptides in the SWATH-MS fragment map (11). 

Considering that RT is an important variable for peptide identification, the samples used to generate 

spectral libraries, or the samples processed by SWATH-MS, were spiked with a set of standard 

non-naturally occurring synthetic peptides (iRT standards-Biognosys AG, Switzerland). The 

standard peptides have a stable RT and elute across the whole range of RT of a chromatographic 

column. The information from the iRT standards was used to generate normalized RT for each 
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peptide identified (16). The combination of the SWATH-MS and the use of iRT for data extraction 

was defined by Bruderer et al., as Hyper Reaction Monitoring (HRM) (12). A false discovery rate 

was set to 1% at the peptide level, only proteins present in all the samples (Q-sparse filter in 

Spectronaut software) and proteins identified with at least two peptides were considered for further 

analysis. Normalization of the peptide intensity data was performed to compensate for loading and 

instrument performance fluctuations. Acquisition stability was high and only minor normalization 

adjustments were carried out (Figure 3.4). The normalized response was used for analysis.  Each 

sample group (Healthy, TB suspects, TB-1, and TB-2) had ten biological replicates; the healthy 

group showed the lowest variability in protein identification across biological replicates, 

however, the four groups showed a highly variable response (Figure 3.5). Overall, 369 Q-sparse 

filtered proteins were identified (present in all 40 samples), 19% (69/361) of these were 

identified by a single peptide, and consequently, were not considered for further analysis. With 

the resulting 278 proteins, a heat map was generated, and unsupervised clustering was used for 

two dimensions (protein level data set, sparse filtering). Clusters obtained by unsupervised 

clustering partially reconstruct the sample groups (Figure 3.6) 

3.3.3 Proteins significantly different between sample categories 

 

We pursued the identification of proteins showing significant differential abundances between 

sample groups by pair wise t-test. The number of significantly different proteins between healthy 

and the other groups increased with the detectability of M. tuberculosis. When comparing 

healthy versus TB suspects, (TB suspects were patients from TB endemic regions showing 

undetectable M. tuberculosis by either smear or culture) 118 proteins were significantly different. 

In the case of healthy versus TB-1 patients, which had a bacterial infection undetectable by 

microscopy (paucibacillary TB) but culture positive, 154 were significantly different. 
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Figure 3.4 Normalization of intensities for the peptides identified. The left panel shows normal 
fluctuations in the intensities of identified peptides due to variability in the sample loading and/or 
machine performance. Right panel shows that normalization corrected such variations. 
 
 

 
Figure 3.5 Protein coefficient of variation (CV) distribution per condition. There was no 
statistically significant difference between the distributions of CV for protein identification 
across conditions. The protein identification was variable among the ten biological replicates of 
each condition. Box plots show the 5-95 percentile. 
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Figure 3.6 Heat map of protein intensity. The log2 of sparse-filtered protein intensity was plot for 
every sample run, the unsupervised clustering, partially reconstructed the sample group as 
depicted in the color bar. 
 
Finally, from the comparison between healthy versus the group of patients with smear and 

culture positive (TB-2), there were 167 differential abundant proteins was. It is important to 

emphasize, that these differences are only considering human proteins, this could be inferred by 

the Q-sparse filter that only included proteins present in all sample groups. The comparison 

between TB suspects versus TB-1 and TB-2 showed a similar trend with 15 and 26 different 

proteins respectively. As expected, the two TB patient groups were the least variable (Table 3.3). 

Table 3.3 Pair wise comparison showing the number of proteins statistically different. The higher 
and lower columns refer to the first group of each pair. Difference was considered statistically 
significant by t-test with a p<0.05. 

Groups pairs 
Higher 

abundance 

Lower 

abundance 

Healthy - TB suspects 45 73 
Healthy - TB1 59 95 
Healthy - TB2 66 101 
TB suspects - TB1 6 9 
TB suspects - TB2 18 12 
TB1 - TB2 9 4 
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From all the proteins (more than 160) that showed a significantly different abundance between 

healthy individuals versus TB suspects, TB1 and TB2 (t-test, p<0.05), the five showing the 

greatest distance (up and down, determined by fold change) between each pair were individually 

analyzed. Clusterin (CLU) and Galectin-3 binding protein, were constantly lower in healthy 

individuals compared with TB suspects and TB patients (Figure 3.7a). Previous studies identified 

CLU in exosomes derived from human cells (17-20). CLU is a secreted chaperone glycoprotein 

activated under cellular stress, recognized for its cyto-protective function, it prevents apoptosis 

and is involved in inflammatory processes (18). One study showed that the levels of secreted 

CLU increased when blood cells of TB patients were exposed to M. tuberculosis antigens (21). 

Zhang et al., demonstrated that the plasma levels of CLU increased in patients with pulmonary 

TB complicated by diabetes mellitus (22). These findings suggest a potential association between 

increased CLU plasma levels and TB. Regarding Galectin 3 binding protein, several studies 

showed that this is a protein commonly found in exosomes, in fact, it is heavily concentrated in 

ovarian carcinoma cell-derived exosomes and prostasomes (a type of exosome) (19, 20, 23).  

Galectin 3bp is a sialoglycoprotein with immunomodulatory functions, such as inhibition of 

neutrophil activation (24) and it has been suggested as an inflammatory mediator during acute 

dengue viral infection (25). There are no reports about a potential role of Galectin 3bp during M. 

tuberculosis infection. On the other hand, the levels of transthyretin (TTR) were constantly 

higher in healthy individuals compared with TB suspects and TB patients (Figure 3.7b). TTR has 

been identified in bovine serum exosomes (19). TTR also known as pre-albumin is normally 

measured to evaluate nutritional status, since its plasma levels are associated with malnutrition 

(26). TTR among other functions is a plasma transporter for retinol binding protein, interestingly, 

in our analysis, the levels of retinol binding protein correlate with TTR levels (figure 3.7).  



65 
 

 
Figure 3.7 Top five proteins showing higher and lower abundances between healthy individuals 
and TB suspects, TB-1 and TB-2. The log2 of sparse-filtered protein intensity were used for 
analysis. a) Proteins significantly lower in healthy individuals. b) Proteins significantly higher in 
healthy individuals. Differences were considered significant for p< 0.05, the error bars represent 
mean with IC 95%. N=10, per category. 
 

A similar pair wise analysis was developed between TB suspects and TB-1 and TB-2 patients 

(Figure 3.8). Surprisingly, the differences among TB suspects and TB-1 patients were 

considerably low, none of the proteins increased in TB-1 compared to TB suspects have been 

previously related to TB infection. However, kallistatin a protein involved in vascular 

remodeling that has been found in urine-derived exosomes (19), was significantly higher in TB 

suspects versus TB-1 (Figure 3.8b), additionally, this protein was significantly higher in healthy 

individuals compared to TB-1 (p=0.0007) and TB-2 patients (p<0.0001). De Groote et al., 

recently published a set of serum biomarkers to detect active pulmonary TB; kallistatin was 
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among the top markers, compared to TB suspects patients (27). In another study from the same 

groups, kallistatin showed a significant increase after 8 weeks of TB treatment (28). Our results 

are in line with these previous reports. The evaluation between TB patient groups (TB-1 versus 

TB-2) showed that the adhesion molecule CD44 was statistically elevated in TB-2 patients 

(p=0.03). This molecule also was significantly higher in TB-2 compared to TB suspects (Figure 

3.8a). It is possible that plasma levels of CD44 are related with the severity of mycobacterial 

infection. Several studies have showed that CD44 is involved in leukocytes migration to the site 

of infection and mediates the phagocytosis of M. tuberculosis (29, 30). In fact, this molecule was 

highly expressed in lymphocytes T accumulated in granulomas of the lungs of M. tuberculosis 

infected mice (29). Additionally, is important to note that CD44 has been identified in exosomes 

released from several cell types (Lymphocytes B, T and dendritic cells among others) (19, 20). 

3.3.4 Proteins showing a persistent decrease (or increase) profile, from healthy 

individuals to TB-2 patients 

To find a set of proteins that could be indicative of the dynamics of TB progression we set an 

analysis to evaluate proteins increasing or decreasing in a step-wise manner along each group of 

study. We assumed that the four groups in this study partially resemble the spectrum of TB 

disease. The healthy group represent the base line of protein intensity in the total absence of M. 

tuberculosis exposure. The TB suspects group were samples from patients living in TB endemic 

areas with high likelihood of exposure to M. tuberculosis. TB-1 were samples from patients with 

confirmed infection (culture positive) but negative smear evaluation suggesting that these 

patients had a very low bacterial count. Finally, TB-2 samples were from patients with smear and 

culture positive, which is indicative of a high bacterial burden. With this consideration, we found 

that three proteins (FCGR3A, lysozyme C and allograft inflammatory factor 1) showed 
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increasing levels in a step wise manner from the base line (healthy group) up to TB-2 (Figure 

3.9a). FCGR3A or low affinity immunoglobulin gamma Fc region receptor III-A (also known as 

CD16), showed a significant increase from healthy to TB suspects (p=0.02), TB-1 (p=0.01) and 

TB-2 (p<0.0001). One study showed that TB patients had high levels of circulating CD16+ 

monocytes (31). These cells seemed to be important for the control of M. tuberculosis infection 

since they produced high levels of interferon-gamma and were highly susceptible to apoptosis 

(31). If TB patients have high levels of circulating CD16+ cells, this could be associated with a 

higher number of exosomes containing CD16+. Lysozyme C, not only was significantly different 

between healthy versus TB-1 and TB-2 (p=0.0016 and p<0.0001, respectively) but also showed a 

significant difference among TB suspects and TB-2 (p=0.0019). Lysozyme C is a bacteriolytic 

enzyme, indicator of macrophage activation, and it has been found highly expressed in 

granulomas of mice infected with the Bacillus Calmette-Guerin (32). Finally, allograft 

inflammatory protein factor 1, was significantly higher in TB suspects (p=0.0022), TB-1 

(p=0.0002) and TB-2 (p<0.0001) compared to the healthy group. This protein is involved in 

macrophage activation and inflammatory responses (33). 

The opposite tendency (step wise decreasing values from healthy to TB-2) was observed in six 

proteins: Alpha2-HS-glycoprotein (AHSG, or fetuin-A), angiotensinogen, coagulation factor XII, 

N-acetylmuramoyl-L-alanine amidase (PGRP-L), corticosteroid-binding globulin (CBG), and 

Carboxypeptidase N subunit 2 (CPN2) (Figure 3.9b). Fetuin-A is highly abundant plasma 

glycoprotein, which mainly functions as scavenger/carrier protein. Fetuin-A has anti- 

inflammatory properties, inhibits the tumor necrosis factor alpha, and is considered a negative 

acute phase protein showing an inverse relationship with C-reactive protein (34).  

Our results showed that, fetuin-A was significantly lower in TB suspects (p=0.012), 
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Figure 3.8 Top five proteins showing higher and lower abundances between TB suspects versus 
TB-1 and TB-2 patients. The log2 of sparse-filtered protein intensity were used for analysis. a) 
Proteins significantly lower and b) Proteins significantly higher in TB suspects patients. 
Differences were considered significant for p< 0.05, the error bars represent mean with IC 95%. 
N=10, per category. 
 
TB-1 (0.002), and TB-2 (p<0.0001) compared to the healthy group. The same trend was 

observed between TB suspects and TB-2 patients (p=0.04) (Figure 3.9b). Our findings agree with 

the results obtained by Tanaka et al., in 2011, they found that blood levels of fetuin-A were 

significantly lower in TB patients versus uninfected controls by ELISA (21). PGRP-L is a 
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pattern recognition molecule, which acts as peptidoglycan hydrolase with no bacteriolytic 

function. There are no reports about the plasma concentration of this protein but it is known that 

is highly expressed in liver cells. PGRP-L is mainly localized in the cell membrane or in 

intracellular vesicles (35). It is possible that PGRP-L is secreted in exosomes or another type of 

intracellular vesicles reaching systemic circulation. PGRP-L was significantly lower in TB 

suspects (p=0.012), TB-1 (p<0.0001) and TB-2 patients (p<0.0001), compared to healthy 

controls. The protein was also significantly lower in TB-2 compared to TB suspects patients 

(p=0.0418). Finally, coagulation factor XII was significantly lower in TB suspects (p=0.0097), 

TB-1 (p=0.0002) and TB-2 (p<0.0001) to healthy group. It was suggested by Levi et al., that 

potential low levels of coagulation factor XII could be resembling a “negative acute phase” 

effect, during meningococcal septicemia (36). There is no information regarding TB disease and 

plasma levels of coagulation factor XII. 

3.4 Conclusions 

 
To date, this study is the first evaluation of exosome-enriched samples from the serum of TB 

patients searching for proteins potentially associated with the state of TB disease. We did a 

comprehensive proteomic profile of the samples using a state of the art methodology known as 

Hyper Reaction Monitoring (HRM), that combines the DIA based SWATH-MS method with the 

use of synthetic peptides to generate retention time normalized spectral libraries. Our sample set 

included three different groups across the TB disease spectrum. First, samples from a group of 

TB suspects patients from TB endemic areas, which suggests a high probability that these 

patients have been in contact with TB patients. Second (TB-1), samples from a group of patients 

with active TB, undetectable by microscopy which implies a very low bacterial concentration in 

the sputum (less than 10,000 organisms/ml sputum are practically undetectable by microscopic 
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examination (37). Finally, (TB-2) samples from patients with higher bacterial load: smear and 

culture positive for TB. Additionally, we included a control group of healthy individuals from 

non TB endemic regions. Nine proteins showed a very distinct dynamic profile along the study 

groups, FCGR3A, lysozyme C and allograft inflammatory factor 1, showed a step wise increase, 

while fetuin-A, angiotensinogen, coagulation factor XII, PGRP-L, CBG, and CPN2, showed a 

step wise decrease. From the healthy group to the TB-2 group. Several proteins that showed a 

profile associated with TB disease or health status (CLU, TTR, kallistatin, CD16, and fetuin-A) 

in the present study, have been found in previous studies, exhibiting similar profiles among TB 

and control patients.  

Although proteins showing statistically different mean values among disease and control group 

could be considered potential biomarker candidates, it is important to recognize that many of 

these significantly different proteins could fail to discriminate the two conditions evaluated due 

to overlapping distributions. The pathway to discover a true biomarker requires the evaluation of 

its sensitivity and specificity based on statistically derived cut-off values (38).  

This study demonstrated that a human set of proteins potentially concentrated in exosomes 

derived from sera samples, followed a dynamic tendency that is linked with TB disease. Our 

findings, suggests that exosome from human serum could be a source for TB biomarkers; further 

validation of these results is forthcoming. 
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Figure 3.9 Proteins showing a step wise decrease or increase along the study groups. The log2 of 
sparse-filtered protein intensity were used for analysis. a) Proteins showing increased b) 
decreased, levels in step wise manner. Differences were calculated by one-way ANOVA and the 
Tukey's multiple comparisons test. Significance was accepted for p< 0.05, the error bars 
represent mean with IC 95%. N=10, per category. * 0.01<p<0.05; ** 0.001<p<0.01; 
***0.0001<p<0.001 and **** p<0.0001. 
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Chapter 4: Identification and evaluation of an exosome-derived proteomic biosignature 

 

 associated with active tuberculosis disease 

 
 
 

4.1 Introduction 

 

The diagnosis of Tuberculosis (TB) remains a great obstacle to control this disease worldwide. 

The need for a novel, accurate, easy-to-do, and inexpensive test is imperative especially in low 

and middle-income countries where TB burden accounts for more than 95% of the total number 

of cases and deaths globally. At the same time, the main tool for routine TB diagnosis in these 

countries is the microscopic examination of sputum (1). The microscopic detection of 

Mycobacterium tuberculosis in sputum has several limitations including its low and variable 

sensitivity (from 20% to 60%) (2, 3). Recently, a comprehensive review from the World Health 

Organization (WHO) demonstrated that an alternative sputum-based test for TB diagnosis, TB- 

LAMP, performs better than microscopy (sensitivity 78% and 63%, respectively) at identifying 

pulmonary TB suspects. TB-LAMP detects bacterial DNA from sputum samples using a loop 

mediated isothermal amplification reaction. WHO has recommended the use of TB-LAMP as a 

replacement of microscopy for the diagnosis of pulmonary TB (4). While an improvement in 

detection of TB cases is expected, the inherent limitations of using sputum will remain. 

Consequently, the diagnosis of children who do not produce sputum, and patients with miliary 

TB or HIV-coinfection, which normally have low/no bacterial load in their sputum, is going to 

continue to be a great challenge to overcome (5) without a TB diagnostic test independent of a 

sputum sample. 

The study of systemic changes in the human proteome associated to TB status represents a 

promising opportunity for the discovery of new biomarkers and the design of alternative 
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diagnostic tools that can be based on serum or plasma samples. In the last decade, several studies 

have reported proteomic changes in human serum proteins associated with TB (6-11). 

Unfortunately, none have been translated to a diagnostic test (12, 13). Thus, the bridge that 

allows these biomarkers to go from “bench to bedside” has not been completed. Several 

limitations, such as variability among study designs, differences among technologies, 

geographical localization of patients and controls, and improper statistical analyses have affected 

the results, leading to a lack of consensus of TB biomarkers among different studies (7, 13, 14). 

The evolution of MS technologies allowed the identification of thousands of proteins from a 

single analysis, however, most studies—specifically during discovery phase—are designed with 

too few samples to accurately capture the number of potential predictors (15). Usually, the 

selection of candidate proteins is achieved by analyzing differences among group means and fold 

change (12). This strategy for candidate selection is well accepted, although all potential 

candidates must be validated (Figure 4.1). 

 
Figure 4.1 Differences of means and biomarkers. In the discovery phase of one study, even 
though the mean of a protein is significantly different among disease and control groups, the 
distribution of the marker among the population can be very wide, then the range of uncertainty 
will make very difficult to use that marker to distinguish a test patient. "Reprinted with 
permission from Joshua LaBaer; J. Proteome Res. 2005, 4, 1053-1059. Copyright 2005 
American Chemical Society." 
 
The number of biomarker proteins to predict a specific condition (i.e. TB case) must be trimmed 

from hundreds of candidates to a finite number prior to translation to a relevant clinical assay. 

Mathematical models are crucial for the selection of a subset of predictors with higher 
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discriminatory power. One strategy is the application of subset selection methods, but it has been 

proven that these methods perform poorly in large data sets when significant multicollinearity is 

present (16, 17). In 1996, Dr. Tibshirani developed a regression model that shrinks some of the 

variables while others are set to zero, this method is known as the least absolute shrinkage and 

selection operator (Lasso). Lasso generates a subset selection producing simpler models that are 

relatively easy to interpret (17). 

Recent studies showed that Lasso can generate an inconsistent selection of predictors from the 

same data sets, thus, generating inconsistent predictive models. In 2006, Zou developed a 

variation of Lasso, the adaptive Lasso, which generates more stable models (18). We hypothesize 

that Lasso and adaptive Lasso can aid in the selection of potential TB biomarker candidates. 

In Chapter 3 of this dissertation, we found a set of proteins with significantly different expression 

between four groups: healthy, TB-suspects, TB-1, and TB-2. These results strengthened the idea 

that exosome-enriched fractions from human serum are a source of biomarkers to discriminate 

TB patients from healthy individuals and/or from TB-suspects living in TB endemic regions. In 

this chapter, we identified two predictive models, lasso and adaptive lasso which were able to 

discriminate TB patients from healthy individuals and TB-suspects. To select the proteins. The 

regression models were then applied to an unique set of TB suspect samples in which Mtb 

proteins had been previously identified. 

4.2 Materials and methods 

 

4.2.1 Development of predictive regression models using lasso and adaptive lasso, 

to discriminate TB from TB suspects, TB from Healthy, TB-1 versus TB-2 

The 276 proteins identified from the HRM-MS analysis of the 40 samples of chapter 3 were 

utilized to develop the Lasso regression models. The strategy is summarized in figure 4.2. 
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Figure 4.2 General description of model regression development. The sample groups were 
split into training (80% of each group N=8 per group) and test (20% of each group N=2 per 
group) using arbitrary randomization. 

Initially, the forty samples were randomly assigned to a training (80%) and test (20%) sets. The 

training set was used to develop both conventional and adaptive Lasso. All procedures were done 

following the algorithms developed by Tibshirani in 1996 (17). In both cases, the selection of 

predictors depends on a tunable factor (Lambda). Briefly, if all the available predictors were used 

to solve the model, the sum of the absolute value of the coefficients would be t0, if that sum were 

restricted to a t value lower than t0, some of the predictors would be shrunk towards zero and 

some of them will be zero. For larger values of t, many predictors will be included in the model 

(overfit model), and the predictive error will be high. Conversely, with very small values of t, 

few predictors will be included in the model (under fit model) and again the predictive error will 

be high. There is a value for t that minimizes the predictive error. That value can be calculated 

by a cross-validation analysis. For the cross-validation process, the training set was divided into 

10 parts; 9 parts were used to set a model determined by a lambda value that allowed a maximum 
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number of predictors (overfit model) and the remaining 1 part (1/10th of the complete set) was 

used to test the prediction error of such model (Figure 4.2). The process was repeated changing 

the 1 “test” part of the complete sample set every time, until all iterations of sample sets for 

predicting and testing had been applied. The result is a distribution of prediction errors for the 

specific value of lambda. Then, the value of Lambda was consecutively changed, to produce 

each time models with fewer predictors, and the whole validation process was repeated. Finally, 

the lambda that minimizes the prediction error (best lambda) was selected and the corresponding 

coefficients determined. Since we anticipated that different randomization of the training data 

will produce a variation of the selected predictors, the whole process was run 500 times, 

selecting each time the best lambda; the average of “best lambda” was used to define the final 

predictive model. The main difference in the adaptive Lasso is that, before the cross-validation 

process, different weights are assigned to each coefficient, following the algorithm proposed by 

Zou (18), then, the resulting weighted model is processed as the conventional Lasso. Finally, 

both models 1 and 2 were evaluated with the test set to determine their discriminatory power 

(figure 4.2). 

4.2.2 Description of TB suspects and serum processing to obtain an exosome-

enriched fraction 

Ten serum samples from TB-suspects, as defined in chapter 3, were obtained from the FIND 

specimen repository and exosomes isolated as described in chapter 3. Mycobacterial peptides 

were identified in all 10 of these samples by Multiple Reaction Monitoring Mass Spectrometry 

(MRM-MS) as described previously, with modifications (manuscript in preparation). Exosomes 

were also resuspended in a lysis buffer provided by Biognosys and shipped frozen to Biognosys 

AG (Schlieren, Switzerland) for HRM-MS analysis. 
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4.2.3 Hyper reaction monitoring/SWATH-MS of TB suspect samples 

The TB-suspect sample set was processed following the same procedure described in chapter 3. 

One μg of peptides per sample was injected into a C18 column. Similarly, the same LC and MS 

systems were used. A DIA method with one full range survey scan and 14 DIA isolation 

windows were used. The false discovery rate on peptide level was set to 1%, data was filtered 

using row based extraction. The total peptide inventory obtained from the spectral library 

generated in chapter 3, was searched in the DIA fragmentation maps of this sample set. 

4.2.4 Data analysis 

 
The HRM measurements were analyzed with the software Spectronaut 11 (Biognosys) peptide 

intensities were normalized using local regression normalization (21). The regression models 

Lasso and adaptive Lasso and the Receiving Operating Characteristic (ROC) curves to test the 

predictive models, were developed using R version 3.2.4 (2016, The R foundation for Statistical 

Computing), with the package “glmnet” ver. 2.0-5 developed by Friedman J. et al (22). 

4.3 Results and discussion 

4.3.1 Regression model development 

 

The development of a regression model that accurately predicts the condition of an unknown 

sample requires a minimum of three important groups of data: training data, test data, and a 

confirmation/validation data set. In this study, a pre-classification of the samples was achieved 

by gold standard methodologies (smear microscopy and culture); this information was used to 

define which set of proteins (predictors) would be able to discriminate one condition from the 

other. Previously (in chapter 3) we identified several proteins that were significantly different by 

pair wise analysis of variance, among the four evaluated groups. Using the 276 proteins 

identified by HRM-MS with FDR 1% and minimum 2 peptides per protein, we calculated 
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regression models to identify protein signatures with the strongest discriminatory power to 

classify TB cases. 

4.3.2 Regression model to individually differentiate the groups: healthy, TB 

suspects, TB-1 and TB-2 

We initially attempted to find a model able to discriminate each group of study (healthy, TB 

suspects, TB-1 and TB-2). Unfortunately, due to the small number of replicates per group 

(n=10), the cross-validation process was unable to find a fitting model (Figure 4.3). To run this 

analysis, the data was split in 80% for training and 20% for testing. Consequently, the number of 

replicates for the training set in each category was eight. For the cross-validation process, each 

group of eight was randomly reassigned for model development or testing while error model was 

calculated. There was not any value of lambda that produced a model with a minimized error. 

Similarly, it was not possible to obtain a model using pair-wise data, for instance, healthy versus 

TB suspects or TB suspects versus (TB-1+TB-2 as a single group). Overall, every time we used 

one of the groups separately, the low number of replicates impaired the capacity for cross-

validation analysis to produce an ideal lambda (Figure 4.3). 

4.3.3 Model regression to discriminate TB from not TB 

 

Due to the limited number of samples per condition, we decided to regroup them into two major 

categories: TB-neg (healthy and TB suspects) and TB-pos (TB-1 and TB-2) to increase the 

strength of statistical analysis. We randomly split the samples into training and test sets. First, we 

ran a cross-validation process to find the lambda that produced the model with minimal 

predictive error (best lambda). Since it has been proven that Lasso can generate inconsistent 

selection of predictors we decided to run the cross-validation process 500 times to estimate the 

range of variability of “best lambda” values (Figure 4.4a). It is important to emphasize that for 
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each lambda a slightly different model is expected. The figure 4.4a shows that the variation of 

model selection based on the number of predictors ranges from models with 1 predictor (under 

fitted) to models with up to 13 predictors. In the case of adaptive Lasso (Figure 4.4b), most 

selected models are in the range of 8 to 15 predictors. A higher number of selected overlapping 

predictors is observed in this adaptive model, suggesting a higher stability in model selection by 

using the adaptive Lasso, which is in accordance with previously published work (18). 

 
Figure 4.3 Cross-validation process to find the best lambda to generate a model to discriminate 
among healthy, TB suspects, TB-1 and TB-2 samples. The y axis shows the multinomial 
deviance as a measure of the cross-validation error. The upper side of the figure shows the 
polynomial grade of each model tested. The x axis shows the value for lambda (Lasso shrinkage 
parameter) lower values of lambda generate a model with higher polynomial grade.  
 
From each analysis, the mean of “best lambda” value was picked to generate the corresponding 

predictive model. The coefficients of each model are listed in table 4.1. Conventional Lasso 

generated a model with 11 predictors while the Adaptive Lasso generated a model with nine 

predictors. 
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Figure 4.4 Cross-validation process distribution of “best lambda” values. The y axis shows the 
number of predictors for each value of lambda. a. Conventional Lasso and b. Adaptive Lasso.  
 
Five proteins were common to both (Table 4.1). Eleven out 15 proteins included in either model 

have been found in exosomes in previous studies (Table 4.1). Both models selected a number of 

proteins associated with the humoral immune response. Interestingly, recent evidence has 

pointed out that individuals with active TB can be differentiated from LTBI cases by the type of 

circulating antibodies (23). Differences in the glycosylation pattern and the binding selectivity of 

immunoglobulins in LTBI individuals account for the more relevant differences compared to the 

antibodies from active TB individuals (23). Our results suggest a potential role of 

immunoglobulin fractions to identify active TB. A deeper analysis of the protein KV116 

(P04430, the variable domain of immunoglobulins that participates in antigen recognition), may 

reveal information associated with TB infection. The adaptive Lasso model included the alpha1-

acid-glycoprotein1 (A1AG1), which is a strong acute phase protein associated with anti-TB 

treatment response (24). In experimental TB models, it was shown that A1AG1 may be involved 

in disease progression by having a negative modulatory effect on cellular immunity (25). 

Additionally, adaptive Lasso selected the sex hormone-binding globulin (SHBG). This protein 

was found to be differentially expressed in TB patients in a previous serum-based biomarker 
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study using MALDI-TOF-MS. An independent evaluation of SHBG in serum by ELISA showed 

promising results classifying positive TB patients (26). 

Table 4.1 Coefficients of the two predictive models generated by Lasso and adaptive Lasso 
methodologies. 

Predictors (protein name) 
Conventional 

Lasso 

Adaptive 

Lasso 

Previously found 

in exosomes 

Complement factor H (CFAH)  -2.7474625 Yes (27) 

Alpha-1-acid glycoprotein 1 (A1AG1)  0.7089016 Yes (27, 28) 

Phosphotransferase (C9JQD1) Glucokinase GCK  0.4066641 No 

Sex hormone-binding globulin (I3L145)  -0.7959483 Yes (29) 

Complement component C8 gamma chain (CO8G) -0.042171855 -0.8973755 Yes (27, 28) 

Immunoglobulin kappa variable 3-20 (P04206) 0.015242731 0.1546919 Yes (27, 28, 30) 

Carboxypeptidase N catalytic chain (CBPN) -0.507612713 -0.3402092 No 

Immunoglobulin kappa variable 1-16 (KV116) 1.295639168 3.9621907 Yes (28) 

Complement factor H-related protein 1 (FHR1) 0.052614187 0.1113752 Yes (28) 

Coagulation factor XII (FA12) -0.491144475  Yes (27, 28) 

Immunoglobulin lambda variable 3-25 (IGLV3-25) 0.026861277  Yes (28) 

Complement factor D (K7ERG9) -0.175230434  No 

Plasma protease C1 inhibitor (SERPING1, IC1) -0.058153259  Yes (27, 28) 

Immunoglobulin kappa variable 3-7 (IGKV3-7) 0.11675631  No 

Immunoglobulin lambda variable 2-11 (LV211) 0.002149055  Yes (28) 

Intercept -9.98 -16.53  

 
The predictive power of each model was evaluated using the test group of samples. The test set 

was defined randomly and included samples from each category: healthy, TB suspects, TB-1 and 

2. The output of each prediction represents the probability of a sample to be TB-pos. Both 

models partially discriminated the samples according to their actual classification (Table 4.2 and 

Figure 4.5). The sample TB suspects_1 was misclassified by both models generating a wide 

distribution of response in the TB-neg group (Figure 4.5). The sample TB suspects_1 may be an 

undiagnosed patient. Due to the low number of samples evaluated it is not possible to derive 

further conclusions. Additionally, the conventional Lasso model classified the sample TB-1 in 

the borderline probability between TB-pos and TB-neg. Overall, adaptive Lasso showed stronger 

power to discriminate the test-set into the two categories: TB-neg and TB-pos (Figure 4.5). 
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Table 4.2 Probability of being TB-pos of each sample in the testing group. 
  PROBABILITY OF BEING TB-POS 

 
Sample group Conventional Lasso Adaptive Lasso 

 
 

TB-NEG 

Healthy_3 0.1351899 0.04651185 

Healthy_7 0.06130411 0.04693872 

TB suspects_1 0.91642564 0.99597535 

TB suspects_6 0.17668854 0.03327371 

 
 

TB-POS 

TB-1_2 0.87502483 0.93547903 

TB-1_7 0.4941328 0.73388035 

TB-2_9 0.59158918 0.98346325 

TB-2_10 0.95269967 0.99139639 
 

 

 
Figure 4.5 Discrimination of test-set samples by TB-status using two different predictive models. 
Box-plots show the mean and max and min values. TB-pos: samples from TB-1 and TB-2 
Groups. TB-neg: samples from Healthy and TB suspects groups.  N=4 per groups. 
 
Even though both models were designed to perform a binomial distribution of the samples as 

either TB-neg or TB-pos, we explored the use of these models to calculate the probability of 

each test sample to be TB-pos and initially plotted the result according to the four groups of this 

study (Figure 4.6). Despite the very low number of samples per category, surprisingly, the 

adaptive Lasso model showed a very strong power to separate the healthy group from the TB-2 

group (Figure 4.6). The proteins selected by each model could segregate the samples according 

to their clinical classification. 
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Figure 4.6 Classification of the test-samples into the four groups of study by the two predictive 
models. The boxplots show the average and max and min values. N=2 samples per group. 
 
Specifically, the adaptive Lasso model could correctly categorize all TB positive samples. To 

further evaluate the discriminatory capacity of each protein signature, we calculated the AUC-

ROC. In ROC curves, true positive results are plotted against the false positive rate (1-

specificity). The AUC-ROC for the conventional Lasso was 0.81 and 0.75 for the adaptive 

Lasso. The lower AUC for the adaptive Lasso model is explained by the sample TB suspects_1 

which had a very high probability of being TB-pos. We evaluated the training set with the 

adaptive Lasso model to verify how samples were classified using only nine proteins. This 

procedure is not ideal, since the model will have a bias towards a correct discrimination of the 

samples that were used to develop the model. As expected the discrimination of the samples was 

100% accurate (Figure 4.7) 
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Figure 4.7 Classification of the training-set into different categories using the adaptive Lasso 
model. The boxplots show the average and max and min values. A. N=16 samples per group. B. 
N=8 samples per group. 
 
4.3.4 Proteomic characterization of MRM+-TB-suspect group by HRM-SWATH-MS 

 

HRM-SWATH-MS of the 10 MRM+-TB-suspect samples identified 223 proteins. Acquisition of 

spectral maps, identification, and quantification of proteins were generated as previously 

described in chapter 3 of this dissertation. Data were normalized to correct for variations among 

biological replicates (Figure 4.8). The normalized response was used for analysis. 

4.3.5 Classification of MRM+-TB suspects according to the linear regression model 

 

The adaptive Lasso model was used to evaluate the probability of the 10 MRM+-TB suspect 

samples being classified as TB-pos. The suspect samples were obtained from patients with 

clinical manifestations of TB who visited health care facilities and were remitted for healthcare 

personnel to routine TB diagnosis. They were classified as negative for TB based on microscopic 

examination of sputum and culture. However, these samples demonstrated one or more M. 

tuberculosis peptides by MRM/MS assay (data not shown). Nine samples were categorized as 

TB-neg by the adaptive Lasso regression model (Figure 4.9), five samples showed less than 1% 

probability of being TB-pos and only one sample showed 56% probability of being TB-pos. 
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Figure 4.8 Normalization of intensities of identified peptides. The left panel shows the 
fluctuations in the intensities of identified peptides due to variability in the sample loading and/or 
machine performance. Right panel shows the normalized values. 
 
4.4 Conclusions 

 

Here we proposed a complementary modeling approach that can be applied very early in 

research and development studies, to select candidate TB biomarkers from proteomic 

experiments. Theoretically, the Lasso regression analysis allows the selection of the best 

predictors from large data sets. However, when the data contain collinear variables Lasso will 

select one of them. We tested here that changes in the randomization of the data led us to select 

different models, which can introduce selection bias. This variation in model selection was 

decreased by using adaptive Lasso (18). 
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Figure 4.9 Prediction of MRM+-TB suspects by a model regression generated with adaptive 
Lasso method. The y axis showed the probability of a sample to be TB positive. The line at 0.5 is 
an arbitrary threshold based on the dichotomic classification of the model. TB-pos defined by 
TB-1 and TB-2 samples and TB-neg defined by healthy and TB suspects samples. 
 
A major limitation of our study was the low number of samples, especially for the training set. 

Still, the adaptive Lasso model correctly classified 87.5% of the test samples (7/8) and within 

this, 100% (4/4) of the TB positive samples. 

The selection of potential candidates is a complicated task in proteomic studies, because of the 

large number of explanatory variables. In the case of serum-derived biomarkers, the 

physiological interaction among the proteins could lead to high collinearity. Some proteins are in 

higher abundance because they are transported by (or interacting with) other candidates. For 

example, the retinol binding protein (RBP) is transported in plasma by transthyretin (TTR); thus, 

high levels of RBP could be in direct proportionality to TTR levels (31). Consequently, an 

informative look for collinear predictors and evaluation of their relevant biological meaning 

should be included prior to final selection of the Lasso predicted candidates to be tested in 

validation studies. Validation of the candidates found in this study is warranted. MRM-MS will 

allow the testing of all candidate markers found here in an independent cohort of patients. To this 

end, it is important to consider the evaluation of protein variants (defined by proteomics studies) 

rather than the canonical protein, as advised by Agranoff in 2006 (7).  
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Next steps should involve the combination of two or more sets of models predicting active TB 

patients or LTBI individuals. For instance, the combination of the human protein signature (as 

the one found in the present study) with Mycobacterium proteins identified by MRM-MS assays 

could improve the overall predictive capacity of such tests. In a preliminary attempt of this 

strategy, we decided to evaluate a sample set of TB suspects that were negative by sputum and 

culture and positive by an MRM-MS assay detecting mycobacterial peptides. Our results showed 

that the predictive model confirmed the diagnosis obtained by routine diagnostic tests in 9 of 10 

samples. 
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Chapter 5: Concluding remarks and future direction 

 
 
 

The findings of Dr. Robert Koch set the basis for the current gold standard diagnostic tool 

(culture of sputum) and for the most widely used routine diagnostic test for TB in low-and- 

middle-income countries (microscopic examination of sputum) (1, 2). These tests fulfill two 

important considerations for the diagnosis of TB, they are relatively easy-to-do and inexpensive. 

Unfortunately, several studies have demonstrated that sputum-based diagnostic tests for TB have 

significant disadvantages including low sensitivity (2, 3). Novel sputum independent TB 

diagnostic tools are urgently needed. Several reasons support the study of circulating exosomes 

as a promising alternative to overcome the need for sputum in TB diagnosis. First, the 

composition of exosomes changes depending on the health status of the patient and depending on 

the cell of origin (4-6). Second, the separation of exosomes from serum aids in removing most of 

the highly abundant proteins in this biofluid, and improves biomarker discovery. Finally, recent 

studies demonstrated that exosomes carry mycobacterial proteins (7, 8). In this dissertation, I 

decided to focus on the changes of the host proteome of exosomes upon Mycobacterium 

tuberculosis infection, a gap of knowledge. We found that M. tuberculosis altered the protein 

composition of exosomes released from in vitro infected human macrophages. These findings 

suggest that a similar phenomenon occurs during in vivo infection. Therefore, we decided to 

explore the changes in the exosomal proteome as source of biomarkers to identify active TB 

patients. An important limitation of the work proposed in this dissertation was the lack of a 

robust method to isolate a pure exosome sample from serum. In our initial in vitro experiments, 

we attempted to concentrate sub-populations of exosomes using immunoprecipitation assays 

targeting abundant proteins including Cathepsin D and Coronin 1A and 1C. Unfortunately, none 

of our results from immunoprecipitation assays were successful. Figure 5.1 and table 5.1, 
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summarize an example of one of the immunocapture assays. Proteomic analysis revealed that 

most of the captured material were contaminants such as keratin. Alternatively, to purify 

exosome rich fractions from sera samples, we decided to use size exclusion chromatography, to 

avoid most of the common limitations observed with ultracentrifugation and precipitation 

methods. 

 
Figure 5.1 Immunocapture of exosomes targeting cathepsin D. Exosomes from M. tuberculosis- 
infected THP1 cells (100µg/well) were seeded in a 96 wells plate pre-coated with three different 
concentrations of CatD (2µg/ml, 3µg/ml and 4µg/ml). a. After 24 hours of incubation at 4 °C the 
supernatant was retrieved for analysis, the number of vesicles in the sample before and after the 
incubation was not significantly different. b. Approximately 25 µg of exosomes were run in 
SDS-PAGE and stained with simply-blue Coomassie stain. There was not difference in the 
protein load before (Lane 1) and after binding (Lanes 3, 4, 10 and 11: 2µg/ml, lane 5, 6, 12 and 
13: 3µg/ml and lane 7, 8, 14 and 15: 4µg/ml). lane 2: protein molecular weight ladder. c. After 
retrieving the supernatant from the plates, the potential bound exosomes were detached from the 
plate using a solution of acetic acid 1M (pH=2.49) the material was further lysed using RIPA 
buffer. An aliquot was run in SDS-PAGE and stained with simply-blue. 

 

Table 5.1 Proteins found by LC-MS/MS in the captured material using a plate coated with anti- 
cathepsin D. 

Identified Proteins Accession 
# 

C4- 
TSC 

TB3- 
TSC 

TB4- 
TSC 

Keratin, type II cytoskeletal 1 P04264 13 33 35 
Keratin, type I cytoskeletal 9 P35527 1 24 37 
Keratin, type I cytoskeletal 10 P13645 25 14 13 
Serum albumin P02768 35 20 25 
Hemoglobin subunit alpha P69905 14 14 6 
Fibronectin P02751-17 6 0 14 
Keratin, type II cytoskeletal 2 epidermal 35908 6 2 7 
Alpha-2-macroglobulin * P01023 0 0 15 
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Actin alpha skeletal muscle* A6NL76 0 0 10 
Trypsin inhibitor heavy chain H2 P19823 0 0 7 
Matrix metalloproteinase-9 * P14780 0 0 5 
Adenylyl cyclase-associated protein 1 * Q01518 0 0 2 

*proteins previously found in exosomes. C4: Control (no capture antibody). TB3 and TB4: 
Samples seeded in antibody-coated wells. TSC: total spectral counts. 
 
In the future, the immunocapture assays may be improved by adapting the labeling strategy that 

we developed in chapter 2 to identify protein epitopes readily available on the surface of intact 

exosomes. This information could lead the design of antibodies to develop a capture platform of 

specific subpopulation of exosomes of interest. The fact that the label molecule binds to the 

naturally folded protein in the membrane of intact exosomes, suggests that labeled peptides are 

accessible for antibody targeting. 

An alternative scenario in the study of exosomes in the context of TB infection could be to 

evaluate the impact of M. tuberculosis on exosomes biogenesis during macrophage infection. It 

was demonstrated that M. tuberculosis interrupts the fusion of phagosomes with lysosomes in a 

process mediated by lipoarabinomannan (LAM). On the other hand, the bacterium stimulates the 

fusion of early endosomes with the phagosome, using phosphatidylinositol mannoside (PIM) 

(14, 15). It was also demonstrated that PIM stimulates the accumulation of membrane proteins in 

the phagosome (14). Since LAM and PIM evidently affect the vesicle trafficking of infected cells 

they may affect exosome biogenesis. The study of these effects could reveal novel mechanisms 

of exosomes regulation during intracellular infection.  

One limitation while studying exosomes during mycobacterial infection is the fact that M. 

tuberculosis actively releases membrane vesicles (16) that could co-isolate with exosomes. We 

considered identifying proteins exclusively loaded in M. tuberculosis membrane vesicles (MTB-

EVs) to either rule out co-purification with host exosomes or allow the separation of MTB-EVs 

via affinity purification. We ran a set of preliminary experiments to identify proteins exclusively 
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loaded in MTB-EVs and other soluble proteins from supernatant of M. tuberculosis cultures. 

These results are presented at the end of this dissertation (Appendix I). Further confirmation of 

the presented findings and future work to evaluate the role of MTB-EVs during TB infection is 

currently ongoing.  

In chapter 3, we reported for the first time, changes in the host proteome of serum-derived 

exosomes from active TB patients compared to TB-negative patients and healthy individuals. We 

evaluated three different groups, TB1: paucibacillary TB (sputum-, culture+), TB2: active TB 

(sputum+, culture+), TB suspects (sputum-, culture-), and a group of healthy individuals from 

non-endemic regions for TB. Three proteins, FCGR3A, lysozyme C and allograft inflammatory 

factor 1, showed a step wise increase and six proteins: fetuin-A, angiotensinogen, coagulation 

factor XII, PGRP-L, CBG, and CPN2, showed a step-wise decrease, from the healthy group to 

the TB-2 group. An important limitation of our study was the low number of samples per 

category, due to this, we could not develop separated analysis based on HIV status. As a partial 

solution to this limitation, we included HIV positive and negative samples in each group.For the 

selection of potential candidate TB biomarkers, we must consider their associated clinical 

applications. For instance, here we found that the protein transthyretin (TTR) was always 

significantly higher in healthy individuals versus the other three groups. TTR has previously 

been reported as potential TB-biomarker (17). However, considering the clinical application of 

the TTR measurement (marker to evaluate nutritional status (18)), this protein must be taken 

with care. Since most people suffering TB will have a weakened nutritional status, TTR will be 

decreased, however extreme poverty and many other conditions common in TB endemic areas 

will also affect the nutritional status of the evaluated population, and consequently TTR would 

be also decreased. 
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An influential factor to improve the finding of accurate TB biosignatures will be the 

characterization of a “universal proteomic profile of TB” as was stated by Haas in 2016 (19). 

However, I would hypothesize that there is not a unique universal proteomic profile for TB 

patients, instead, several profiles could be defined based on different geographical localizations, 

HIV-status, and even age groups. The use of HRM-SWATH-MS, proposed by Bruderer (20) and 

used in chapter 3, could represent an interesting alternative to solve the problem. The HRM 

approach involves the generation of retention time-normalized spectral libraries using a set of 

synthetic peptides (iRT peptides) (21). Since these libraries are obtained by shotgun proteomics 

(Data Dependent Acquisition-DDA analysis) the proteome- coverage of such selected TB sample 

groups will depend on fractionation and multiple-run processing (20). A suitable strategy could 

be achieved by pooling samples from epidemiologically compatible patients (for instance, 

Spectral library X: active TB/HIV+/Peru- South America/5 to 10 years old). Then, each pool 

could be fractionated (10 to 20 fractions) and run 6 times maximizing the peptide-protein 

coverage. This sounds expensive, technically challenging, and time consuming. However, the 

information generated could be stored in internet-based repositories (virtually forever) such as, 

http://www.peptideatlas.org/speclib/ and could be used in multiple studies, to extract information 

from SWATH-MS ion-maps obtained using standardized protocols and iRT normalization. 

Overall, the development of iRT-spectral libraries will improve comparability across laboratories 

and identification of potential TB-biomarkers. This strategy could decrease the high variability 

of TB biomarkers among studies. An important problem for the discovery of disease predictors 

using proteomics studies is the large amount of proteins that are found per sample. Due to the 

complex interaction among several groups of proteins, the selection of the “best predictors” for 

further evaluation is challenging. In this dissertation, we used two approaches to identify 

http://www.peptideatlas.org/speclib/
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potential biomarkers for active TB. In chapter 3 we conducted ANOVA analysis to identify 

proteins showing statistically different intensities among the groups of study. This approach is 

widely used, however the number of potential candidates selected is very large. For example, in 

our data set the proteins significantly different between healthy and TB2 were 167. Out of this 

number, we normally select the proteins with higher distance among means by fold change 

analysis. Alternatively, in chapter 4, we proposed the use of a regression model initially 

developed by Tibshirani and later improved by Zou (Lasso and Adaptive respectively) to select a 

subset of predictor (22, 23). Lasso regression allowed–in a continuous manner—the elimination 

of collinear predictors with smaller predictive power. We finally obtained a regression model 

with nine predictors that allowed to segregate TB positive from TB negative samples. A 

limitation with this approach is the variation in predictor selection at different randomization 

patterns. We confirmed that adaptive Lasso decreased the variation among models. We 

hypothesize that including a larger sample set will stabilize even further the model selection. 

After this, we concluded that the combination of the two approaches will generate the best set of 

potential candidates for independent testing experiments. The final model included three proteins 

of the complement system, two immunoglobulin chains, the acute-phase plasma protein A1AG1, 

the anti- inflammatory metalloproteinase CBPN, the glucose binding protein glucokinase GCK, 

and the protein Sex hormone-binding globulin SHBG. In addition to the previous proteins, the 

nine proteins found in chapter #3 could be further tested as possible TB biomarkers, using a 

multiplex approach such as SRM-MS, in an independent sample group. Two of the proteins 

identified in this study have shown promising results as TB biomarkers in previous studies. 

Fetuin A and SHGB showed differential expression in different discovery studies (2D-

electrophoresis and LC- MS/MS, respectively) and both proteins were validated in each study by 
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ELISA (24, 25). Our findings suggest that Fetuin A and SHGB could be concentrated in the 

exosome-rich fraction of human serum, if this hypothesis is true, the evaluation of exosomes 

instead of whole serum, will increase the predictive power of these proteins. A next step could be 

the evaluation of these proteins (found in three independent studies) in exosome samples from 

TB patients and controls by ELISA.  

There are two relevant scenarios where exosomes from serum could play a significant role, 

identification of individuals with latent TB infection-LTBI, (especially those at higher risk of 

conversion to active TB), and surrogate end points to evaluate treatment response. Reactivation 

of LTBI is one the major sources of active TB cases every year. A major cause of LTBI came 

from active TB patients who received efficacious treatment but did not achieve complete 

sterilization which means that some bacilli remained in the lungs in a quiescent state contained in 

granulomas. Another common cause for LTBI is when healthy individuals get in contact with the 

bacillus and without the development of symptoms, but the individual remains infected for 

decades. It is also known that people with a weakened immunological system (HIV-AIDS, 

pregnancy, aging among others) are at higher risk of TB reactivation. However, the definition of 

a biomarker to identify individuals at higher risk of reactivation is still a worldwide priority. 

Regarding treatment response, the most widely used surrogate endpoint biomarker for treatment 

effect in TB is the 2-month sputum conversion (26). It could be a single measurement in solid 

media (LJ) at 8 weeks, or several time points during treatment. Recent data demonstrated the 

limited capacity of this biomarker to predict relapse-free cure (27). Alternatively, liquid media- 

based systems such as MGIT have been used, showing similar results to LJ (28). Another 

alternative is the detection of mycobacterial DNA in sputum samples by Xpert MTB/RIF as a 

replacement of culture. However, Friedrich et al., evaluated Xpert MTB/RIF assay in the clinical 
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trial REMoxTB, showing that Xpert MTB/RIF had very low specificity (47%) compared to 

culture (29). Alternatively, the evaluation of host-derived biomarkers to predict treatment 

response is under intense research. One study showed that, Apolipoprotein B could be a potential 

biomarker of treatment adherence and had potential to predict clinical outcome (30). A 

transcriptomic study revealed an increased expression of genes involved in cell-mediated 

cytotoxicity: perforin, granulysin, rab27A, and fas-ligand, in patients who initially had TB 

treatment success but experienced relapse within the two following years (31). The evaluation of 

immune markers had shown that the concentration of interferon-inducible protein 10 (IP-10), and 

vascular endothelial growth factor (VEGF), significantly decreased after treatment completion 

(32, 33). An important number of additional host-derived biomarkers has been tested: levels of 

heme oxygenase-1 (lower following anti-TB therapy) (34), CD27 and serum amyloid A (35). 

Even urine metabolites have shown capacity to predict early response to TB treatment (36). 

Overall, there are not published studies evaluating serum-derived exosomes as surrogate 

endpoints of treatment response. Our findings from chapter 3 showed that several proteins seem 

to be associated with different stages of TB disease as well as health status. It could be possible 

that proteomic changes in exosomes of TB patient receiving treatment, have the potential to 

predict treatment outcome. 

Finally, our results suggest that exosomes derived from serum samples carry information that 

could improve the identification of TB patients. However, the current evidence suggests that 

there is not a single approach to find the “perfect biosignature” for TB diagnosis. The design of 

algorithms including two or more approaches, when is technically feasible, for instance, the 

combination of bacterial and host-derived markers from serum-derived exosomes, could result in 

a stronger tool that definitively help to improve the current situation of TB worldwide. 
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Appendix I: Alternative application of a method to isolate exosomes to purify extracellular 

 

 vesicles released from Mycobacterium tuberculosis. 

 
 
 

Introduction 

The study of membrane vesicles (MV) derived from the genus Mycobacterium is relatively new. 

MVs released from M. ulcerans were first described in 2007 (1). Later Prados-Rosales et al., 

developed a comprehensive characterization of MVs from a variety of mycobacteria species, 

including M. bovis and M. tuberculosis (2). The function of MVs is unknown but it has been 

demonstrated that MVs or extracellular vesicles (EV) from M. tuberculosis (MTB-EVs) have 

agonist effect on TLR2-dependent signaling which is related to their high content of lipoproteins 

(2). The function of MTB-EVs has been linked with iron acquisition (3). One study in 2013, 

demonstrated that the biogenesis of MTB-EVs could be genetically regulated (4). The isolation 

of MTB-EVs has been done following consecutive centrifugation steps (5). Considering our 

experience with isolating exosomes, we found that ultracentrifugation–a very common method 

used to isolate exosomes—generates exosome samples highly contaminated with soluble 

proteins what also are pelleted at high g force. Here, we tested the isolation of MTB-EVs using a 

size exclusion chromatographic resin which has two features: size exclusion and irreversible 

binding. We have previously tested this resin (CaptoCore 700) to isolate exosomes with 

promising results (unpublished data). Additionally, to evaluate which proteins were exclusively 

present in the soluble part of the secreted proteome of M. tuberculosis a MTB-EV-depleted 

fraction was obtained. 
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Materials and methods 

Production of culture filtrate from M. tuberculosis H37Rv 

Four different replicates of stocks of M. tuberculosis strain H37Rv were grown in solid media 

7H11 for 21 days. Later, bacteria from each replicate were inoculated in one litter of Glycerol 

alanine salts (Gas) media and incubated at 37 °C at constant agitation. The culture filtrate (CF) 

was collected after 10 days of incubation to minimize the amount of lysis products in the 

collected material. The CF was filtered through 0.2 µm membrane for sterilization. The total 

protein concentration of CF samples was measured using the bicinchoninic acid assay (BCA, 

Thermo Scientific). 

Isolation of membrane vesicle (MTB-EVs) 

Five grams of total protein of each CF were concentrated using an Amicon centrifugal filter unit 

with a molecular weight cut-off (MWCO) of 3 KDa (EMD Millipore) to 2 ml. The 

concentrated CF was processed through a column with the resin CaptoCore (CaptoCore 700, 

GE Healthcare Life Sciences). CaptoCore is resin of beads cross-linked agarose of 90 µm 

diameter with holes with a MWCO of 700 KDa. The inner core of the beads is functionalized 

with octylamine. When the sample pass-through CaptoCore soluble proteins (smaller than 700 

KDa) are capture in the inside of the beads while the MTB-EVs are collected in the flow-

through. The column was washed twice with 1 ml of PBS 1X and the collected material 

(about 3 ml) was concentrated using a Amicon of 100 KDa MWCO (EMD Millipore) to 500 

µl. The total protein concentration was measured using BCA.  

Production of MTB-EVs-depleted CF (CF-D) 

Five grams of total protein of each CF were concentrated using an Amicon centrifugal filter unit 

with a molecular weight cut-off (MWCO) of 3 KDa (EMD Millipore) to 2 ml. The 
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concentrated CF was further filtered using an Amicon of 300 KDa MWCO, to elute most of 

the soluble proteins in the CF but capturing the MTB-EVs in the membrane. The membrane 

was washed twice with 1ml of PBS to maximize the elution of the soluble proteins.  the eluted 

material (about 3 ml) was concentrated using a Amicon of 3 KDa MWCO (EMD Millipore) to 

500 µl. The total protein concentration was measured using microBCA. 

The concentration and size distribution of the vesicles in MTB-EVs and CF-D, were evaluated 

by nanoparticle tracking analysis (NTA), using the NanoSight NS300 (Malvern Instruments). 

One µg of each sample was evaluated. 

Proteomic analysis of MTB-EVs and CF-D and statistical analysis 

Five micrograms of CF-D and 9x109 MTB-EVs were processed for in gel digestion with trypsin 

as described in chapter 2 section 2.2.8.1. Digested peptides for each sample was injected using 

an EASY nanoLC-II system (Thermo Scientific, San Jose, CA). Peptides were purified and 

concentrated using an on-line enrichment column (EASY-Column, 100 μm ID × 2 cm ReproSil-

Pur C18). Subsequent chromatographic separation was performed on a reverse phase nanospray 

column (EASY-Column, 3 μm, 75 μm ID × 100 mm ReproSil-Pur C18) using a 90 minutes linear 

gradient from 5–45% solvent B (100% ACN, 0.1% formic acid) at a flow rate of 400 

nanoliters/min. Peptides were eluted directly into the mass spectrometer (Thermo Scientific 

Orbitrap Velos). The instrument was operated in Orbitrap-LTQ mode where precursor 

measurements were acquired in the Orbitrap (60,000 resolution) and MS/MS spectra (top 20) 

were acquired in the LTQ ion trap with a normalized collision energy of 35%. Mass spectra were 

collected over a m/z range of 400–2000 Da using a dynamic exclusion limit of 2 MS/MS spectra 

of a given peptide mass for 30 s (exclusion duration of 90 s). Compound lists of the resulting 

spectra were generated using Xcalibur 2.2 software (Thermo Scientific) with an S/N threshold of 
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1.5 and 1 scan/group. Tandem mass spectra were extracted, charge state deconvoluted and 

deisotoped by ProteoWizard (MSConvert version 3.0). Raw data files were converted to mzXML 

format and submitted to the Sorcerer2 integrated data analysis platform (Sage-N Research, 

version 5.0.1); subsequent MS/MS analysis was performed using SEQUEST (Sage-N Research, 

Milpitas, CA, USA; version v. 3.5). SEQUEST was set up to search the M. tuberculosis database 

TBv3_reverse_042110 database (042110, 181470 entries) assuming the enzymatic digestion with 

trypsin (after Arg or Lys). SEQUEST was searched with a fragment ion mass tolerance of 

1.00 Da and a parent ion tolerance of 50 PPM. Scaffold (version Scaffold_4.5.1, Proteome 

Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein 

identifications. Peptide identification thresholds were set such that a peptide FDR of 1% and a 

peptide confidence threshold of 95% was achieved based on hits to the reverse database (6). 

Protein identifications were accepted if they could be established at greater than 95.0% 

probability to achieve an FDR less than 1.0% and contained at least 2 identified peptides. Protein 

probabilities were assigned by the Protein Prophet algorithm (7). Proteins that contained similar 

peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy 

the principle of parsimony. Differences in protein abundances between MTB-EV and CF-D were 

evaluated by t-test, using the normalized spectral abundance factor (NSAF) (8). P values < 0.05 

were accepted as statistically significant. 

Results 

We found nine proteins that were significantly more abundant in MTB-EVs compared to the 

fraction of the CF that was depleted of MTB-EVs. The MTB-EVs were enriched with 

lipoproteins as it has been reported in previous publications (2, 4)  
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Figure 1 Light scattering analysis of MTB-EV and CF-D samples. Concentration and size 
distribution of nanovesicles present in MTB-EV and CF-D samples. Due to the low 
concentration of protein in MTB-EV samples the analysis was based on dilution factor. MTB-EV 
were processed at 1:2,000 dilution and CF-D at 1:100 dilution. 
 

Table 1 Proteins significantly higher in MTB-EVs compared to CF-D. 
Identified Proteins  

T-test 
p-value 

CF-D1 CF-D2 CF-D3 
MTB-
EV1 

MTB-
EV2 

MTB-
EV3 

Lipoprotein LpqH  0.0029 9 34 8 55 123 81 

Superoxide dismutase [Cu-Zn] SodC 0.015 0 0 1 18 21 53 

Probable conserved lipoprotein LppZ  < 0.00010 5 5 3 4 11 10 

Lipoprotein LprA  0.011 1 3 3 7 16 8 

Putative phthiocerol dimycocerosate 
transporter LppX 

0.013 0 0 0 6 17 7 

Putative diacylated glycolipid transporter 
LprF  

0.00017 0 0 0 3 9 7 

Lipoarabinomannan carrier protein LprG  0.043 0 0 0 1 9 5 

Putative integration host factor MihF*  0.14 0 0 0 2 3 0 

Probable conserved lipoprotein DsbF  0.024 0 1 0 2 6 2 

50S ribosomal protein L28-2  0.14 0 0 0 0 5 3 

The statistical analysis was done using the normalized spectral abundance factor while the 
information presented in the table is the total spectral count. *this protein was not statistically 
different but was exclusively detected in MTB-EVs. 
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Table 2 Comprehensive list of Proteins found in MTB-EVs and CF-D. 

Identified Proteins 
MW 

T-Test  
p-value 

Profile 
Accession 
Number 

CF-
D1 

CF-
D2 

CF-
D3 

MTB
-EV1 

MTB
-EV2 

MTB
-EV3 

Lipoprotein LpqH  
GN=lpqH  

15 kDa 0.0029 
MTB-
EV high 

LPQH 9 34 8 55 123 81 

Superoxide dismutase [Cu-
Zn]  GN=sodC  

24 kDa 0.015 
MTB-
EV high 

SODC 0 0 1 18 21 53 

Probable conserved 
lipoprotein LppZ  GN=lppZ  

39 kDa 
< 
0.0001 

MTB-
EV high 

I6Y293 5 5 3 4 11 10 

Lipoprotein LprA  GN=lprA  
25 kDa 0.011 

MTB-
EV high 

LPRA 1 3 3 7 16 8 

Putative phthiocerol 
dimycocerosate transporter 
LppX  GN=lppX  

24 kDa 0.013 
MTB-
EV high 

LPPX 0 0 0 6 17 7 

Putative diacylated 
glycolipid transporter LprF  
GN=lprF  

27 kDa 0.00017 
MTB-
EV high 

LPRF 0 0 0 3 9 7 

Lipoarabinomannan carrier 
protein LprG  GN=lprG  

25 kDa 0.043 
MTB-
EV high 

LPRG 0 0 0 1 9 5 

Probable conserved 
lipoprotein DsbF  GN=dsbF  

19 kDa 0.024 
MTB-
EV high 

I6XYM2 0 1 0 2 6 2 

Immunogenic protein 
MPT64 GN=mpt64  

25 kDa 0.0016 
CF-D 
high 

MP64 134 118 141 4 7 15 

Alanine and proline-rich 
secreted protein Apa  
GN=apa  

33 kDa 0.0026 
CF-D 
high 

APA 76 136 118 0 0 0 

10 kDa chaperonin  
GN=groS  

11 kDa 0.037 
CF-D 
high 

CH10 89 74 105 4 10 18 

Catalase-peroxidase  
GN=katG  

81 kDa 0.0064 
CF-D 
high 

KATG 74 54 50 0 0 5 

FHA domain-containing 
protein FhaA  GN=fhaA  

57 kDa 0.021 
CF-D 
high 

FHAA 27 36 65 0 0 0 

Immunogenic protein 
MPT63  GN=mpt63  

17 kDa 0.0019 
CF-D 
high 

MP63 50 41 64 0 0 0 

ESAT-6-like protein EsxB  
GN=esxB  

11 kDa 0.004 
CF-D 
high 

ESXB 27 42 28 0 2 1 

Diacylglycerol 
acyltransferase/mycolyltrans
ferase Ag85B  GN=fbpB  

35 kDa 0.0095 
CF-D 
high 

A85B 30 27 51 0 0 0 

Dihydrolipoyl 
dehydrogenase  GN=lpdC  

49 kDa 0.011 
CF-D 
high 

DLDH 40 31 28 0 0 4 

ESX-1 secretion-associated 
protein EspA  GN=espA  

40 kDa 0.0031 
CF-D 
high 

ESPA 32 25 19 0 0 0 

Ferritin BfrB  GN=bfrB  
20 kDa 0.0094 

CF-D 
high 

BFRB 24 22 18 1 0 2 

Succinate-semialdehyde 
dehydrogenase [NADP(+)] 1  
GN=gabD1  

49 kDa 0.00013 
CF-D 
high 

GABD1 22 25 19 0 0 0 

Ferredoxin  GN=fdxC  
12 kDa 0.00037 

CF-D 
high 

O50433 24 24 18 0 0 0 

Alpha-crystallin  GN=hspX  
16 kDa 0.046 

CF-D 
high 

ACR 12 30 25 0 1 3 

27 kDa antigen Cfp30B  
GN=cfp30B  

27 kDa 0.00072 
CF-D 
high 

CF30 24 24 17 0 0 0 

Immunogenic protein 
MPT70  GN=mpt70  

19 kDa 0.003 
CF-D 
high 

MP70 20 25 34 0 0 0 

Soluble secreted antigen 
MPT53  GN=mpt53  

18 kDa 0.001 
CF-D 
high 

MPT53 15 21 23 0 0 0 

Thioredoxin  GN=trxA  
13 kDa 0.0088 

CF-D 
high 

THIO 27 14 18 0 0 0 
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Aminopeptidase N  
GN=pepN  

94 kDa 0.0077 
CF-D 
high 

L7N655 11 6 12 0 0 0 

60 kDa chaperonin 2  
GN=groEL2  

57 kDa 0.0055 
CF-D 
high 

CH602 4 7 4 0 0 0 

Transcription elongation 
factor GreA  GN=greA  

18 kDa 0.013 
CF-D 
high 

GREA 12 11 5 0 0 0 

Peptidyl-prolyl cis-trans 
isomerase A  GN=ppiA  

19 kDa 
< 
0.0001 

CF-D 
high 

PPIA 13 15 15 0 0 0 

Pilin  GN=mtp  
11 kDa 0.0039 

CF-D 
high 

PILIN 13 8 9 0 0 0 

50S ribosomal protein 
L7/L12  GN=rplL  

13 kDa 0.0006 
CF-D 
high 

RL7 12 11 15 0 0 0 

Transaldolase  GN=tal  
41 kDa 0.013 

CF-D 
high 

TAL 6 4 9 0 0 0 

ESAT-6-like protein EsxL  
GN=esxL  

10 kDa 0.048 
CF-D 
high 

ESXL 4 5 1 0 0 0 

Sulfite reductase [ferredoxin]  
GN=sir  

62 kDa 0.0011 
CF-D 
high 

SIR 6 7 9 0 0 0 

Adenylate kinase  GN=adk  
20 kDa 0.013 

CF-D 
high 

KAD 11 5 11 0 0 0 

Dehydrogenase  GN=htdY  
30 kDa 0.015 

CF-D 
high 

I6YBZ8 5 4 2 0 0 0 

Penicillin-binding protein  
GN=ponA2  

85 kDa 0.0052 
CF-D 
high 

I6YGX2 8 10 5 0 0 0 

Proteasome subunit beta  
GN=prcB  

30 kDa 0.039 
CF-D 
high 

PSB 4 5 11 0 0 0 

Conserved protein  
GN=Rv1906c PE=1 SV=3 

16 kDa 0.0073 
CF-D 
high 

O07726 10 10 5 0 0 0 

Prokaryotic ubiquitin-like 
protein Pup  GN=pup  

7 kDa 0.0024 
CF-D 
high 

PUP 6 6 9 0 0 0 

Membrane protein  
GN=Rv1887 PE=1 SV=3 

40 kDa 0.033 
CF-D 
high 

O07745 2 6 3 0 0 0 

Protein Rv2204c  
GN=Rv2204c  

13 kDa 0.0006 
CF-D 
high 

Y2204 5 7 5 0 0 0 

4-aminobutyrate 
aminotransferase  GN=gabT  

47 kDa 0.042 
CF-D 
high 

GABT 6 3 2 0 0 0 

Probable cutinase Rv1984c  
GN=Rv1984c  

22 kDa 0.017 
CF-D 
high 

CUT1 2 2 4 0 0 0 

Probable cold shock protein 
A  GN=cspA  

7 kDa 0.022 
CF-D 
high 

CSPA 5 3 2 0 0 0 

Uncharacterized protein 
Rv2302  GN=Rv2302  

9 kDa 0.0095 
CF-D 
high 

Y2302 6 4 3 0 0 0 

Peptidase S1  GN=pepD  
46 kDa 0.0053 

CF-D 
high 

O53896 3 4 2 0 0 0 

Low molecular weight 
antigen MTB12  GN=mtb12  

17 kDa 0.11  MTB12 98 102 80 0 11 23 

ESAT-6-like protein EsxK  
GN=esxK PE=3 SV=1 

11 kDa 0.34  ESXK 25 57 42 7 10 17 

Meromycolate extension 
acyl carrier protein  
GN=acpM  

13 kDa 0.44  ACPM 49 59 57 3 13 17 

Glutamine synthetase 1  
GN=glnA1  

54 kDa 0.07  GLNA1 44 43 33 1 0 9 

Malate synthase G  
GN=glcB  

80 kDa 0.17  MASZ 38 29 48 0 0 11 

Chaperone protein DnaK  
GN=dnaK  

67 kDa 0.075  DNAK 7 25 43 0 0 0 

DNA topoisomerase 1  
GN=topA  

102 
kDa 

0.16  TOP1 0 0 0 4 7 42 

Phosphate-binding protein 
PstS 1  GN=pstS1  

38 kDa 0.18  PSTS1 20 12 18 7 4 33 
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Single-stranded DNA-
binding protein  GN=ssb  

17 kDa 0.24  SSB 3 9 5 5 48 2 

Superoxide dismutase [Fe]  
GN=sodB  

23 kDa 0.31  SODF 25 23 17 0 0 8 

Acetyl-CoA 
acetyltransferase  GN=fadA3  

43 kDa 0.73  O53422 16 9 13 3 0 0 

6 kDa early secretory 
antigenic target  GN=esxA  

10 kDa 0.7  ESXA 19 17 13 2 6 0 

Low molecular weight T-cell 
antigen  GN=TB8.4  

11 kDa 0.052  O50430 19 14 13 0 3 1 

Isocitrate dehydrogenase  
GN=icd2  

83 kDa 0.12  O53611 0 7 9 0 0 0 

Adenosylhomocysteinase  
GN=ahcY  

54 kDa 0.57  SAHH 5 13 7 0 0 4 

Glycogen accumulation 
regulator GarA  GN=garA  

17 kDa 0.83  GARA 8 10 9 1 0 4 

Putative lipoprotein LppO  
GN=lppO  

17 kDa 0.1  LPPO 15 16 6 1 0 0 

Phosphoenolpyruvate 
carboxykinase [GTP]  
GN=pckG  

67 kDa 0.19  PCKG 10 0 4 0 0 0 

Siderophore exporter 
MmpL4  GN=mmpL4  

105 
kDa 

0.37  MMPL4 0 2 0 0 0 0 

Phosphoserine 
aminotransferase  GN=serC  

40 kDa 0.74  SERC 11 3 5 0 1 3 

Bacterioferritin  GN=bfr  18 kDa 0.13  BFR 5 12 1 0 0 0 

Conserved protein  
GN=Rv1211 PE=1 SV=3 

8 kDa 0.062  O05312 13 7 3 0 0 0 

MPT51/MPB51 antigen  
GN=mpt51  

31 kDa 0.37  MPT51 0 0 7 0 0 0 

Transcriptional regulatory 
protein KdpE  GN=kdpE  

25 kDa 0.37  KDPE 0 0 0 4 0 0 

Uncharacterized protein 
Rv2557  GN=Rv2557  

24 kDa 0.062  Y2557 6 1 6 0 0 0 

Glucose-6-phosphate 
isomerase  GN=pgi  

60 kDa 0.26  G6PI 14 0 3 0 0 0 

Putative thiosulfate 
sulfurtransferase  GN=cysA1  

31 kDa 0.12  THTR 0 5 6 0 0 0 

Transketolase  GN=tkt  76 kDa 0.37  TKT 0 0 4 0 0 0 

Uncharacterized 
oxidoreductase Rv2971  
GN=Rv2971  

30 kDa 0.061  Y2971 1 3 5 0 0 0 

Putative cystathionine beta-
synthase Rv1077  GN=cbs  

49 kDa 0.12  Y1077 3 3 0 0 0 0 

Uncharacterized protein  
GN=Rv0333  

13 kDa 0.077  O33273 11 6 2 0 0 0 

Putative integration host 
factor MihF  GN=mihF  

21 kDa 0.14  P71658 0 0 0 2 3 0 

Cell surface lipoprotein 
MPT83  GN=mpt83  

22 kDa 0.099  MP83 0 3 0 2 1 8 

Conserved protein  
GN=Rv1498A  

8 kDa 0.76  I6XY36 7 4 1 0 0 5 

O-succinylhomoserine 
sulfhydrylase  GN=metZ  

43 kDa 0.11  METZ 2 6 1 0 0 0 

UPF0603 protein Rv2345  
GN=Rv2345  

70 kDa 0.15  Y2345 0 4 2 0 0 0 

ESX-1 secretion-associated 
protein EspB  GN=espB  

48 kDa 0.37  ESPB 0 0 6 0 0 0 

DNA polymerase I  
GN=polA  

98 kDa 0.37  DPO1 0 0 0 0 0 4 
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Ribonuclease VapC21  
GN=vapC21  

16 kDa 0.39  VPC21 0 1 0 3 0 0 

Probable conserved 
membrane protein  
GN=Rv3587c PE=1 SV=3 

27 kDa 0.22  O53572 2 0 7 0 0 0 

Probable conserved 
lipoprotein LpqN  GN=lpqN  

24 kDa 0.064  O53780 5 1 3 0 0 0 

50S ribosomal protein L28-2  
GN=rpmB2 PE=3 SV=1 

9 kDa 0.14  RL28B 0 0 0 0 5 3 

Serine 
hydroxymethyltransferase 1  
GN=glyA1 PE=1 SV=2 

46 kDa 0.13  GLYA1 0 2 3 0 0 0 

Acid phosphatase  
GN=sapM  

32 kDa 0.059  O53361 1 2 4 0 0 0 

Phosphate-binding protein 
PstS 2  GN=pstS2  

38 kDa 0.21  PSTS2 0 2 6 0 0 0 

30S ribosomal protein S7  
GN=rpsG  

18 kDa 0.37  RS7 0 0 0 0 3 0 

Alanine dehydrogenase  
GN=ald  

39 kDa 0.37  DHA 0 0 4 0 0 0 

UPF0098 protein Rv2140c  
GN=Rv2140c  

19 kDa 0.37  Y2140 0 0 3 0 0 0 

Resuscitation-promoting 
factor RpfA  GN=rpfA  

40 kDa 0.37  RPFA 0 3 0 0 0 0 

The statistical analysis was done using the normalized spectral abundance factor while the 
information presented in the table is the total spectral count. 

Conclusions 

The results presented here suggest that CaptoCore is suitable strategy to purify MTB-EVs. The 

purity of MTB-EV is evaluated based of the proportion vesicle: protein. In this study, the total 

concentration of protein of MTB-EV samples was undetectable by Micro-BCA which has a 

lower limit of detection of 0.5 µg/ml. It is important to underline that the MicroBCA assay was 

run diluting the sample 1:15, to avoid the use of the whole collected material only for protein 

quantification. The light scattering analysis showed a very high and pure (mono dispersion figure 

1) concentration of MTB-EVs. In average, we found 5x108 vesicles in an estimated amount of 

protein lower than 0.5 µg. The concentration of nanovesicles in the CF-D is the normal readout 

of background material which is characterized by poly-dispersion and very low concentration of 

vesicles (Figure1).  

We found that MTB-EVs were enriched in lipoproteins which is in line with previous reports (2). 

In this preliminary experiment, for the first time, is described the presence of Cu, Zn super oxide 



114 
 

dismutase SodC in MTB-EV, in fact, this protein was almost exclusively present in the vesicles. 

In 2001, was demonstrated that SodC is used by M. tuberculosis to resist against superoxide 

toxicity and macrophages producing oxidative burst (9). It is possible that one the function of 

MTB-EVs during intracellular infection is the protection from oxidative burst.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

References 
 
 
 

1. Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, et al. 
Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli 
ulcer pathogenesis. PLoS Pathog. 2007;3(5):e62. 
2. Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan 
U, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a 
TLR2-dependent manner in mice. J Clin Invest. 2011;121(4):1471-83. 
3. Prados-Rosales R, Weinrick BC, Piqué DG, Jacobs WR, Casadevall A, Rodriguez GM. 
Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol. 
2014;196(6):1250-6. 
4. Rath P, Huang C, Wang T, Li H, Prados-Rosales R, Elemento O, et al. Genetic regulation 
of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci 
U S A. 2013;110(49):E4790-7. 
5. Prados-Rosales R, Brown L, Casadevall A, Montalvo-Quirós S, Luque-Garcia JL. 
Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria 
and mycobacteria. MethodsX. 2014;1:124-9. 
6. Käll L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified 
by tandem mass spectrometry using decoy databases. J Proteome Res. 2008;7(1):29-34. 
7. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying 
proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646-58. 
8. Zhang Y, Wen Z, Washburn MP, Florens L. Refinements to label free proteome 
quantitation: how to deal with peptides shared by multiple proteins. Anal Chem. 
2010;82(6):2272-81. 
9. Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA. Cu,Zn 
superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated 
macrophages that are generating an oxidative burst. Infect Immun. 2001;69(8):4980-7. 

 



116 
 

List of Abbreviations 

 

 

 
AUC-ROC Area under the curve of the receiver operating characteristic curve  

CF-D Culture filtrate depleted 

DDA Data dependent acquisition  

DIA Data independent acquisition 

ELISA Enzyme-linked immunosorbent assay  

FA Formic acid 

HRM Hyper reaction monitoring 

HRPR High ph reversed-phase chromatography  

LAM Lipoarabinomannan  

LASSO Least absolute shrinkage and selection operator  

LC-MS/MS Liquid chromatography-tandem mass spectrometry 

MRM Multiple reaction monitoring  

MTB-EV Mycobacterium tuberculosis extracellular vesicle 

MΦ Macrophage 

NSAF Normalized spectral abundance factor 

PEG Polyethylene glycol  

PIM Phosphatidylinositol mannoside  

RT Retention time 

SRM Selected reaction monitoring 

SWATH-MS  Sequential windowed acquisition of all theoretical fragment ions  

TB  Tuberculosis 
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