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ABSTRACT

We consider gradient adjustment in an axisymmetric vortex. From
an initially unbalanced state, the final adjusted state is obtained.
Initially, the geopotential is flat i.e. ¢o(r0)= 1 and the velocity
field is given by the Rankine vortex
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We derive a system of equations governing the final adjusted state.
This system of equations is solved numerically using the shooting
method. We also present solutions for the geostrophic adjustment
problem and compare these to the solutions for the gradient adjustment
problem.
In the gradient adjustment case, the results indicate that
(i) the geopotential decrease at the centre is
porportional to e/a.
(ii) the decrease of the maximum tangential wind is
dependent on € for smaller a(a<1). For
a>1, the decrease is independent of €.
(iii1) the stretching is proportional to €/a.
(iv) the mass removed from within a given region tends
to ¢ for large r.
Comparison between the solutions for the geostrophic and gradient

adjustment problems shows significant differences for small a.
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1. INTRODUCTION

The problem of understanding the mechanisms by which pressure and
wind fields mutually adjust has received much attention since it was
first studied by Rossby (1938) and independently by Obukhov (1949).
Rossby's study was primariiy directed to the relationship between the
initially unbalanced state and the final geostrophically adjusted state,
while Obukhov's dealt with the transient solution in two dimensions.
Mihaljan (1963) obtained the exact solution of the Rossby adjustment
problem and Cahn (1945) studied the linear transient adjustment in one
dimension. For a general review of the geostrophic adjustment problem,
the publication by Blumen (1972) is excellent.

Much emphasis was placed on the geostrophic adjustment problem
because it is believed that, for large-scale motions, the non-linear
terms describing the accelerations of air particles associated with the
curvature of the trajectories are small and may therefore be neglected
in the equations of motion. In the present study, the problem of
gradient adjustment in an axisymmetric vortex is considered. We con-
sider only the relationship between the initially unbalanced state and
the final adjusted state under gradient balance. We also obtain solu-
tions for the linear adjustment problem and compare these to the non-
linear solutions. The solution of the linear probiem described here

is the one developed by Schubert and Hack (1978).



The initial velocity field is defined by the Rankine vortex

er
o r <a
a2 °
rv._ =
00
> a
€ ry 2

where o is the initial position of a fluid particle, Vo is the initial
tangential velocity, € is a constant and a is the radius of maximum
wind. For large radii, the assumption is made that a fluid particle
does not move. This seems reasonable since there must exist a finite
region within which the effect of the adjustment process is felt.

We derive a system of equations for the final adjusted state. It
is found convenient to use S as the independent variable instead of r
where S = 42, The dependent variables are mo(So(S)), ¢(S) and SO(S)
where m, and ¢ represent the absolute angular momentum and geopotential
respectively and S0 is proportional to the original mass within radius
o The system of equations representing the final adjusted state is
solved numerically using the shooting method. Finally, we obtain solu-
tions for the tangential wind (v), the geopotential (¢), the mass re-

moved (proportional to %(r? - ré)) and the relative vorticity (z) as

functions of r (radial distance).



2. GOVERNING EQUATIONS

Consider a rotating, homogeneous, incompressible fluid which lies
above a flat boundary and has a free surface of mean height H. The
equations which govern the motion of this fluid are the shallow water
equations. In circular cylindrical coordinates with the axisymmetric

assumption the shallow water equa*ions can be written as

au du _ v 39
st tUse - (Fry)v+go=0, (2.1)
v v v -
-B_Tt—+ u ar + ( f + r ) u = 0, ( 2'2 )
30 , , 8, , 3(ru) -
ot tu ar e ror 0, (2.3)

where u represents the radial component of velocity, v represents the
tangential component of velocity, f is the coriolis parameter, ¢ repre-
sents the geopotential and r is the radial distance.

Equations (2.1) - (2.3) can be made dimensionless by defining

t' = ft : dimensionless time
r' = rf/c : dimensionless radial distance

(u',v') = (u/c, v/c) : dimensionless velocity components
o' = ¢/gH : dimensionless geopotential

In the above definitions
1
¢ = (gH)™ is the speed of a pure gravity wave
If we drop the primes and let t, r, u, v and ¢ represent dimensionless

variables, equations (2.1) - (2.3) become

au au A 3% _
+u (1+ = ) v + St 0,
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Transient solutions of this system of equations have recently been
studied by Schubert and Hack (1978). Here our objective is to find the
final adjusted state rrom an initial unbalanced state. For this pur-
pose it is more convenient to take a Lagrangian point of view as was
used by Rossby (1938) and Mihaljan (1963). Thus, let us define ro(r)

as the initial position of a fluid column which ends up at r. Then the

mass continuity relation takes the form

¢0rodr0 = o¢r dr, (2.7)

where ¢0rodr0 is proportional to the initial fluid mass between o and
Yo dro. Equation (2.7) states that this mass must be conserved.
We now use (2.5) to obtain an equation for the conservation of

angular momentum. Multiplying equation (2.5) by r we get

é%‘ (rv + 4r2) +u g%v(rv + 4r?) = 0. (2.8)

Integrating equation (2.8) we obtain

rv(r) = ro(r)vg (v (r)) =2 [r (r)? - r?], (2.9)

0

where *Vo is the initial relative angular momentum and rv is the final

relative angular momentum.



In the final adjusted state gradient balance exists and the

gradient wind equation becomes

%% = (1+¥)v, (2.10)

This equation can be written as

rd %% = {ev +r?)ry (2.11)
or
2
rd %% + 5r% = (rv + Lr2) | (2.12)

The angular momentum equation (2.9) can be written as

(rv + %r?) = (rovg + %rl)

or
m(r) = mo( ro(r)) .

The system of equations representing the final adjusted state may now

be written as

P Sl gt o () (2.13)
m(r) = m (r0 (r)) (2.14)
dr_(r)
0 - ¢ (r)r
dr ¢0(rogr))r0(r) (2.15)

POTENTIAL VORTICITY
From (2.9) we can derive the potential vorticity equation. Dif-

ferentiating (2.9) with respect to r and dividing by r we get



r
afrv) 8 rovo) "o dro Y [ 3 (r2) -2 dry
rar redy I dr rgdry © r dr

d R 9 = 9
— (rv) (r v) = -1
ror ¢o roaro 00 ¢0
9 - b o _3_
(For (rv) +1) = 3 ( roar, (rgve) *+ 1)
Let
== (rv) = ¢
and
iy (Ma%o) = %o
Then (2.18) becomes
(g +1) _ (co +1)
¢ 4

which expresses the conservation of potential vorticity.

INITIAL CONDITIONS

The initial vortex is the Rankine vortex given by

er?
a? 0
rv =
00
€ r >a

(2.19)

(2.20)



The initial geopotential is flat, i.e.,
¢p (rylr)) = 1. (2.21)

We now formulate the problem using a new independent variable S.

Let

S = Lp?
and

S, = kr,’?
Then

Equation (2.12) becomes

452 QL%éil = m (5,(5)) - * (2.22)
and (2.15) becomes
ds_(s)

—5— = ¢(5). (2.23)

With S as the independent variable, we have the following system of

equations for the final adjusted state.

Qj%éél. =y TQ_SEQEEEE. -1 ‘ _ (2.24)
52
ds (S)
gs = ¢(S) (2.25)

where ms is a specified function of So‘



BOUNDARY CONDITIONS

and




3. GEOSTROPHIC ADJUSTMENT

It would be very instructive to compare the linear and non-linear
adjustment problems. Therefore, we now obtain solutions fcr the
geostrophic adjustment problem on a resting basic state. Following

Schubert and Hack, (2.4) - (2.6) become

u 9 _ [
=t v+ o 0 {3.1)
aVv _
5t + u= 0 (3.2)
3¢ 9 _
55t vor (ru) 0 (3.3)

It is important to note that in the above equations u, , and ¢ repre-
sent perturbation quantities.

From (3.2) we derive the vorticity equation

g% ('F%F (rv)) + F%F (ru) = 0. (3.4)

Combining (3.4) with (3.3) we obtain the potential vor%icity equation

2 (v - 4) = 0. (3.5)

If we assume that the final adjusted state is one of geostrophic

balance, (3.5) may be written as

d

S (rv(r®) - 0 (re) = S (rv(r,0)) = ¢ (r0) . (3.6)

rdr

With

.g% (r,oo) = V.(l",°°), (3.6) becomes
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d’¢ (ry=) , do(r,»)
dr? Y oordr - o) =

Where

z(r,0) = F%F (rv(r,o0))

is the initial vorticity. For the initial conditions

2
er- r<a
aZ
rv(r,0) =
€ r>a
and
¢(r,0) = 0,

the initial potential vorticity is given by

2 r<a
a2

g(r,0) - ¢(r,0) =
0 r>a.

= g(r,0) - ¢(r,0).

(3.7)

(3.8)

(3.9)

(3.10)

The solution of (3.7) and (3.10) which remains bounded at the origin

and at infinity and which possesses continuous ¢ (r, ) and v(r,«) at

r=ais
-55[-} K. (a) Io(r)] r
¢ (r,») =
‘—gi Il(a)Kp(r) r>a

(3.11)
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%? K1(a)11 (r) r<a
vire) = $(re) = (3.12)
Za_e: I (a)K (r) r>a.
1 1

The final vorticity is given by

2
;F-Kl(a) I, (r) r<a
t(re) = o (rv(r, =) = (3.13)
159 Il(a) Ko (r) r>a.

In (3.11) - (3.13), Iv(r) is the modified Bessel function of the first
kind of order v and Kv(r) is the modified Bessel function of the
second kind of order v.

The solutions ¢{(r,») and v(r,») are shown by the dashed curves in
the figures given in Chapter 4. Figures 18 and 25 show the final

vorticity z(r,=) for the linear adjustment case.



4. GRADIENT ADJUSTMENT

4.1 Method of Solution

The solution of the system of equations (2.24) - (2.25) can be
treated as a boundary-value problem. By using the Shooting Method,
we can reduce the boundary-value problem to the iterative solution
of an initial- value brob1em.

We select the point S=0 as the initial point. At this point,
the value of ¢(o0) is assumed since it is unknown. The assumed value
of ¢(o) is obtained as follows.

Let ¢(o) (upper) and ¢(o) (Tower) be the upper and lower bounds
of ¢(0) respectively. We know that ¢(o) lies between one and zero.

The initial guess is computed from the formula.

¢(0) = [¢(0) (upper) + ¢(o) (1ower)]/ 2 (4.1)
The initial value problem is now solved using the Fourth-Order
Runge-Kutta method and the numerical solution at the outer boundary
compared to the outer boundary condition. Since we solve the problem
numerically, we have to terminate the integration at some S=Smax'
The outer boundary condition is then somewhat different from

1im So

S+ 2 = 1.

S
The outer boundary condition used is

S0 Sax!

Smax

If the numerical solution for So(smax) differs greatly from
»Smax’ a new value of ¢(o) is assumed and the process repeated until
the computed value of so(smax) and Smax are approximately equal.
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The new assumed value of ¢(0) is obtained in the following manner. If
the computed value of S (S, ) is less than S, then ¢(o) (Tower) is

set equal to ¢(o). If 50(5 ) (computed) is greater than S_. , then

max
¢(0) (upper) is set equal to ¢(o). Equation (8.1) then gives the new
(o).

In using the Fourth-Order Runge-Kutta method to solve a system of
first order differential equations, the derivatives have to be evaluated
at the initial point. In our problem, one of the derivatives involves
the indeterminate quantity 502 /S? at S=0. To overcome this problem,
we employ the concept of Timits.

The initial absolute angular momentum is given by

My = To¥o * %roz ) (4.2)

Using (2.20), we get

2e 2
(a2+1) Sy s, < a/2
m, = (4.3)
. 2
(e +5,) So 2 a%/2 .
Hence (2.24) may be written as
‘ '(g__s_ N 1)2 52
a? 0
Y -1 S < a?/2
I $2 °
dels) -1 (4.4)
(e +5,.)°
| —2— - 1 S5, >a%/2 .
| s? 0

Now

S0 dS 5+0

(2_9”250:
Tim  do(s) _ Tim %’ a’ -1
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(35 + 1) S:
Tim  de(s) . lim }\a? _ lim
S0 745 S+0

i 452 >+0

Using L'Hospital's Rule, we obtain

S dS
i o(s) 2 1im °?§g
Tim  do(s = [2¢ _a
$*0 gs (az t 1) s+0| 83 i
But
dS (o)
0 =
—— ¢(o0) .
Hence

. . (dS
Tim  do(s) . 2¢e Tim o) _
-0 ds “( : * 1) #(0) S+0(_dS) 5

a

Finally, we obtain the relationship

T U (e e

a?

%.
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4.2 Results

For the Rankine vortex

2
er
-2 r/a<1
a2 0
rovo(ro) =
€ ro/a 21,
we can write
r
0
— r/ac<1l
vo(ro) _ a 0
vo(a)
a )
o r/a>T
o 0
Figure 1 shows a plot of vo(ro) as a function of ro/a.
v (a
0

In Figures 2-3, we show the final geopotential as a function of
r/a for £¢=0.05 and a=0.2, 0.5, 1.0. We find that the geopotential
decrease at the centre is inversely proportional to a.

Figures 4-5 show the final adjusted tangential wind for e= 0.05
and a=0.2, 0.5, 1.0. These graphs indicate that the decrease of the
maximum wind is dependent on €.

Figures 6-8 show the mass removed as a function of r/a for €=0.05
and a = 0.2, 0.5, 1.0 respectively. These plots show a rather interest-
ing feature of the solution. For large radius, the mass removed tends
to €. This means that for r>>1, the mass pushed beyond radius r is
constant. We shall now show that this result can be expected by con-
sidering the relationship between the circulation and the mass removed

from within the region‘bounded by radius r for r>>1.
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The initial circulation, Co’ around radius o is given by

2m

C0 = ’ rovode (4.6)
0

Co = ZwPOVO

c _ ' .

f% =V, . (4.7)

The results show that for large r, rv<<ir?. Hence (2.9) can be written

as

% (r?- rg) = TV, (4.8)

or

S-S = rv_ . (4.9)

From the mass continuity equation, we can obtain an equation for the

mass removed from within any region. From (2.25) we can write

d (S~S))
'—‘?ﬁf_il' = 1 - ¢(s). (4.10)
Integrating (4.10) we get
S S
l d——(s—-lsﬁds' = ] (1 - ¢(s)) ds’
0 ds 0 _
i.e.,
S
(s-5,) - (S-5,) = ] (1 - o(s)) ds'.
S=0 0
But (S-So) = 0.

S=0
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Hence the mass removed is given by

(S - So) = js (1 - ¢(s)) s . (4.1)
0
From (3.7) and (3.9) we get
‘ 3
C0 .
3 = (1-4¢(s)) ds . (4.12)
0 ,
. ) co
For the Rankine vortex, I - Yo% = € for large o Hence the mass'

removed from within a given region for large r is constant and equal
to €.

Figure 9 shows a;/z;o as a function of r/a for €=0.05 and a=0.2,
0.5, 1.0 where Lo and z are the initial and final vorticity respectively.

The initial vorticity field is

2¢
a(r v ) Y rofa <1
% ° r gro = 2 (4.13)
0% 0
0 rQ/a31 .

We note that the final vorticity increases outward from the centre
until the discontinuity is reached. Beyond this point, the vorticity
is negative and approaches zerc for large r/a.

Figures 10-17 show the final adjusted state for the various fields
described above, but for e=0-1. Thesé enable us to further describe
the final adjusted state in terms of ¢ and a. For the geopotential
field, we.find that the larger value of € results in a larger decrease
of the geopotential at the centre. We can then conclude that the

geopotential decrease at the centre is proportional to ¢/a.



18

For the final adjusted tangential wind, we find that the decrease.
of the maximum wind is dependent on € for a-less than 1. For a>1, it
appears that the decrease of the maximum tangential wind is independent
of €.

In the case of the vorticity profiles, we note that the stretching
is proporfional to € and inversely proportional to a. Hence the
stretching is proportionaI to £/a. We remark that this is consistent
with the decrease of the geppotential at the centre.

We now compare the linear and non-linear solutions. We find that
for e= 0.05, the final adjusted geopotential is significantly differ-
ent for a=0.2. For a> 0.5, there is little difference for all
practical purposes. The same is true for e= 0.1.

For the final adjusted tangential wind, we find that for a=0.2,
the maximum wind for the geostrophic case is larger than that for the
gradient case, This is consistent with the final adjusted geopotential
field. For larger values of a, the difference between the two adjusted
wind fields is small. Again, the same is true for €=0.1.

Comparison of the final vorticity for the two cases shows that for
the gradient adjustment problem, the vorticity is smaller in magnitude
than that for the geostrophic adjustment problem.

These results indicate that the differences between the gradient
and geostrophic adjustment problems are more pronounced for small a.

In figures 19-22, we show the final adjusted fields of geopotential
and tangential wind for a=0.1, 0.15, 0.25 and €¢=0.05, 0.1. The
differences between the linear and non-linear adjustment problems are

significant.
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Figures 23-24 show the final adjusted vorticity in the gradient
case for a=0.1, 0,15, 0.25 and €=0.05, 0.1, Fiqure 25 shows the final
adjusted vorticity in the geostrophic case for a=0.1, 0.15, 0.25,
Comparison of the final vorticity in these two cases shows that, in
general, the geostrobhic approximation overestimates the final vorticity.

It should be noted that for small ¢ and large a, the geostrophic
and gradient solutions should be approximately equal. Therefore, agree-
ment between the two solutions for small ¢ and large a is a good check

on the validity of the solution for the gradient adjustment problem.
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5. SUMMARY AND CONCLUSIONS

We have derived a system of equations for the final adjusted state
under gradient balance in an axisymmetric vortex. The initial unbal-
anced state is one of a flat geopotential and a velocity profile given

by the Rankine vortex

Er
_0_ R ro < a
a2
rOVO =
€ >
> ro = a

A redistribution of mass occurs until the pressure and wind fields are
in gradient balance. Solutions of the system of equations for the
final adjusted state are obtained numerically using the shooting method.
The results indicate that the geopotential decrease at the centre
is proportional to e/a while the decrease in the maximum tangential
wind is dependent on €. The final vorticity increases with radius
from the centre until the discontinuity is reached. Beyond this dis-
continuity, the vorticity is negative and approaches zero for large r.
An interesting feature of the solution is the apparent non-conservation
of mass. We have shown that for large radius, the mass removed is
constant. It is believed that the gravity-inertia waves that develop
as a result of the adjustment process cause oscillations of the free
surface at large radii. We recall that in the Rossby-Mihaljan problem,
energy is not conserved and that conservation of mass is due to the
symmetry of the problem. If such symmetry does not occur in our
problem then it should not be surprising that within the domain of

integration mass is not conserved.
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In chapter 3, we have presented solutions for the final adjusted
state under geostrophic balance. A comparison between the linear and
non-linear solutions shows that significant differences appear only
for small a.

It would be appropriate at this point to consider a value of the
Rossby radius of deformation. Recall that the dimensionless radial
distance r' is given by

v rf
T

where r is the dimensional radial distance. For r'=1, we get

= L -
L A

where )\ is the Rosby radius of deformation. At 20°N latitude %-“ 5.6
hours. Following Kasahara (1976), we can obtain a value for C. For

a six-layer model atmosphere the equivalent height for the second mode

is 823 m. This gives a value of C = 90 ms™L,

1

Hence at 20°N latitude
and for C ~ 90 ms ~, A = 1800 km.

In conclusion, it appears that for large scale disturbances which
are not very intense the geostrophic approximation can be useful for a
description of such disturbances. However, for smaller and more in-
tense disturbances the departure from geostrophy may be more pronounced.

It would therefore be necessary to consider the non-linear effects in

the adjustment process.
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16. Abstracts continued

In the gradient adjustment case, the results indicate that
(i) the geopotential decrease at the centre is proportional to
- g/a.

(ii) the decrease of the maximum tangential wind is dependent on
e for smaller a{(a<1). For a>1, the decrease is independent
of €. -

(iii) the stretching is proportional to e/a.

(iv) the mass removed from within a given region tends to ¢ for
for large r.

Comparison between the solutions for the geostrophic and gradient
adjustment problems shows significant differences for small a.
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