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ABSTRACT 

We consider gradient adjustment in an axisymmetric vortex. From 

an initially unbalanced state, the final adjusted state is obtained. 

Initially, the geopotential is flat i.e. ¢
0
(r

0
) = 1 and the velocity 

field is given by the Rankine vortex 

sr ;. 
0 

a2 

r > a . 
0-

We derive a system of equations governing the final adjusted state. 

This system of equations is solved numerically using the shooting 

method. We also present solutions for the geostrophic adjustment 

problem and compare these to the solutions for the gradient adjustment 

problem. 

In the gradient adjustment case, the results indicate that 

(i) the geopotential decrease at the centre is 

porportional to s/a. 

(ii) the decrease of the maximum tangential wind is 

dependent on s for sma 11 er a (a < 1) . For 

a_:_ 1, the decrease is independent of E:. 

(iii) the stretching is proportional to £/a. 

(iv) the mass removed from within a given region tends 

to s for large r. 

Comparison between the solutions for the geostrophic and gradient 

adjustment problems shows significant differences for small a. 
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1. INTRODUCTION 

The problem of understanding the mechanisms by which pressure and 

wind fields mutually adjust has received much attention since it was 

first studied by Rossby (1938) and independently by Obukhov (1949). 

Rossby's study was primari~y directed to the relationship between the 

initially unbalanced state and the final geostrophically adjusted state, 

while Obukhov's dealt with the transient solution in two dimensions. 

Mihaljan (1963) obtained the exact solution of the Rossby adjustment 

problem and Cahn (1945) studied the linear transient adjustment in one 

dimension. For a general review of the geostrophic adjustment problem, 

the publication by Blumen (1972) is excellent. 

Much emphasis was placed on the geostrophic adjustment problem 

because it is believed that, for large-scale motions, the non-linear 

terms describing the accelerations of air particles associated with the 

curvature of the trajectories are small and may therefore be neglected 

in the equations of motion. In the present study, the problem of 

gradient adjustment in an axisyIT1T1etric vortex is considered. We con-

sider only the relationship between the initially unbalanced state and 

the final adjusted state under gradient balance. We also obtain solu-

tions for the linear adjustment problem and compare these to the non-

1 inear solutions. The solution of the linear problem described here 

is the one developed by Schubert and Hack (1978). 
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The initial velocity field is defined by the Rankine vortex 

r v = 0 0 

e::r2 
0 

a2 

£ 

r < a 
0 

r > a 0 -

where r 0 is the initial position of a fluid particle, v
0 

is the initial 

tangential velocity, E is a constant and a is the radius of maximum 

wind. For large radii, the assumption is made that a fluid particle 

does not move. This seems reasonable since there must exist a finite 

region within which the effect of the adjustment process is felt. 

We derive a system of equations for the final adjusted state. It 

is found convenient to use S as the independent variable instead of r 

where S = ~r2 • The dependent variables are m
0

(S
0

(S)), ¢(S) and S
0

(S) 

where m
0 

and ¢ represent the absolute angular momentum and geopotential 

respectively and S
0 

is proportional to the original mass within radius 

r
0

. The system of equations representing the final adjusted state is 

solved numerically using the shooting method. Finally, we obtain solu-

tions for the tangential wind (v), the geopotential (¢),the mass re-

moved (proportional to ~(r 2 - r~)) and the relative vorticity (s) as 

functions of r (radial distance). 



2. GOVERNING EQUATIONS 

Consider a rotating, homogeneous, incompressible fluid which lies 

above a flat boundary and has a free surface of mean height H. The 

equations which govern the motion of this fluid are the shallow water 

equations. In circular cylindrical coordinates with the axisyrrmetric 

assumption the shallow water equations can be written as 

~+ au f+'i.) v + ~ = 0, ( 2.1 ) u - -at ar r ar 

lY_ + av + f + .Y.. ) u = 0, 2.2 at u ar r 

E_! + ~ + ¢ a ( ru) 
at u ar rar = 0, ( 2.3 ) 

where u represents the radial component of velocity, v represents the 

tangential component of velocity, f is the coriolis parameter, ¢ repre-

sc~ts the geopotential and r is the radial distance. 

Equations (2.1) - (2.3) can be made dimensionless by defining 

t 1 = ft dimensionless time 

r' = rf/c dimensionless radial distance 

(u' ,v•) = (u/c, v/c) dimensionless velocity components 

¢' = ¢/gH dimensionless geopotential 

In the above definitions 
~ c = {gH) 2 is the speed of a pure gravity wave 

If we drop the primes and let t, r, u, v and ¢ represent dimensionless 

variables, equations (2.1) - (l.3) become 

~+ u 2.!!._ ( 1 +.Y..) v +21= 0 at ar r ar ' 
( 2.4 ) 
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~ + u .£.y_ + ( 1 + ~, u = 0 at ar r ' (2.5) 

.9..4. + u ~ + ¢ a(ru) = o. at ar rar (2.6) 

Transient solutions of this system of equations have recently been 

studied by Schubert and Hack (1978). Here our objective is to find the 

final adjusted state from an initial unbalanced state. For this pur-

pose it is more convenient to take a Lagrangian point of view as was 

used by Rossby (1938) and Mihaljan (1963). Thus, let us define r 0 (r) 

as the initial position of a fluid column which ends up at r. Then the 

mass continuity relation takes the form 

¢ r dr = ¢ r dr , 
0 0 0 

(2. 7) 

where ¢ r dr is proportional to the initial fluid mass between r
0 

and 
0 0 0 

r
0 

~ dr
0

. Equation (2.7) states that this mass must be conserved. 

We now use (2.5) to obtain an equation for the conservation of 

angular momentum. Multiplying equation (2.5) by r we get 

a 
at (rv + ~r 2 ) + u ;r (rv + ~r 2 ) = 0. 

Integrating equation (2.8) we obtain 

(2.8) 

where r v is the initial relative angular momentum and rv is the final 
0 0 

relative angular momentum. 
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In the final adjusted state gradient balance exists and the 

gradient wind equation becomes 

_Qt= (1+Y-)v dr r · (2.10) 

This equation can be written as 

r 3 1r = { Y-V + r 2 
) rv (2.11) 

or 

r 3 1r + ~ r 4 = ( rv + ~ r 2 
{ (2.12) 

The angular momentum equation (2.9) can be written as 

( rv + ~ r 2 ) = ( r v + i..: r 2 ) 
0 0 2 0 

or 

The system of equations representing the final adjusted state may now 

be written as 

r3 d~{r} 
dr + ~ r'+ = m2 (r) (2.13) 

m ( r) = m
0 

( r 
0 

( r)) (2.14) 

dr 
0 

( r) 
= ¢ {r}r (2.15) dr ¢ 0 rr 0 ( r) ) r 0 ( r) 

POTENTIAL VORTICITY 

From (2.9) we can derive the potential vorticity equation. Dif-

ferentiating (2.9) with respect to r and dividing by r we get 



a( rv) _ 
rar 

Using (2.7) we get 

Let 

and 

r~r (rv) - --!-- r ~r 
'¥0 0 0 

d ( --- ( rv ) + 1 ) rar 

a rar ( rv) = l; 

Then (2.18} becomes 

( r; + 1) 
¢ 

6 

[ 
a r dr o a J = ~ ( ro2 

) r
0 

-d r - r a r ( r 2 
) • r 0 ar0 

(r v ) 
0 0 

= ~ - 1 
cpo 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

which expresses the conservation of potential vorticity. 

INITIAL CONDITIONS 

The initial vortex is the Rankine vortex given by 

r v 
0 0 = 

e: r2 
0 

a2 
r < a 

0 

r > a o-

(2.20) 
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The initial geopotential is flat, i.e., 

(2.21) 

We now formulate the problem using a new independent variable S. 

Let 

s = ~r2 
and 

so = k r 2 
2 0 

Then 

d d 
dr = r dS 

Equation (2.12) becomes 

4 S2 d ~ (s} = m2 (S (S)) - S2 
dS 0 0 

(2.22) 

and (2.15) becomes 

dS
0

(S) 
dS = cf> (S) • (2.23) 

With S as the independent variable, we have the following system of 

equations for the final adjusted sta~e. 

d ¢ ( s ) = l mo2 ( so ( s) ) - 1 I 
dS ~ s2 ( 2 •, 24) 

dS (S) 
o = <t> (S) 
dS 

{2.25) 

where m
0 

is a specified function of S
0

. 
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BOUNDARY CONDITIONS 

s = 0 : so (0) = 0 

and 

l im S
0

{S) 
= 1 . S +co s 



3. GEOSTROPHIC ADJUSTMENT 

It would be very instructive to compare the linear and non-linear 

adjustment problems. Therefore, we now obtain solutions fc~ the 

geostrophic adjustment problem on a resting basic state. Following 

Schubert and Hack, (2.4) - (2.6) become 

au - v + ~. = o at )r 

av + u = 0 at 

~+a ( }= o. at rar ru 

(3.1) 

(3.2) 

{3.3) 

It is important to note that in the above equations u, 

sent perturbation quantities. 

~}, and cp repre-

From (3.2) we derive the vorticity equation 

(3.4) 

Combining (3.4) with (3.3) we obtain the potential vor~icity equation 

3at ( r ~ r ( r v ) - cp ) = O • 

If we assume that the final adjusted state is one of geostrophic 

balance, (3.5) may be written as 

(3.5) 

r~r (rv(r,00 )) - ¢ (r,oo) = r~r (rv(r,o)) - ¢ (r,o). (3.6) 

With 

~ (r,oo) = v(r,oo), (3.6) becomes 
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d2 cp (r,oo) + 
dr 2 

d ~~ ~ ' 00

) - ct> ( r , 00 ) = d r , o ) - cp ( r , o ) . 

Where 
d c; (r,o) = rdr (rv(r,o)) 

is the initial vorticity. For the initial conditions 

rv(r,o) = 

and 

cp(r,o) = 0, 

e:r2 
a2 

r < a 

r~a 

the initial potential vorticity is given by 

c;(r,o) - cp(r,o) = 

2£ 
a2 

0 

r < a 

r~a. 

(3. 7) 

(3.8) 

(3.9) 

(3.10) 

The solution of (3.7) and (3.10) which remains bounded at the origin 

and at infinity and which possesses continuous <P (r, 00 ) and v(r, 00 ) at 

r = a is 

-2£ [ ~ - K (a) I (r)] r < a - a 1 0 

¢(r,oo) = (3.11) 
-2£ I 

1 
(a} K

0 
( r) r~a -a 
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2c: K (a) I ( r) r < a a i i 

v(r,oo) = fr (r,oo} = (3.12) 
2c: I (a) K ( r) a 1 1 

r 2. a . 

The final vorticity is given by 

r;(r,oo) = r~r (rv(r,oo}) = (3.13) 

r > a. 

In (3.11) - (3.13), I (r} is the modified Bessel function of the first 
\) 

kind of order v and K)r) is the modified Bessel function of the 

second kind of order v. 
The solutions ¢(r,00 ) and v(r,00)· are shown by the dashed ,curves in 

the figures given in Chapter 4. Figures 18 and 25 show the final 

vorticity ~(r,00 ) for the linear adjustment case. 



4. GRADIENT ADJUSTMENT 

4.1 Method of Solution 

The solution of the system of equations {2.24) - {2.25) can be 

treated as·a boundary-value problem. By using the Shooting Method, 

we can reduce the boundary-value problem to the iterative solution 

of an initial· value problem. 

We select the point S=O as the initial point. At this point, 

the value of ¢(0} is assumed since it is unknown. The assumed value 

of ¢(0) is obtained as follows. 

Let ¢(0) (upper} and '(o) (lower} be the upper and lower bounds 

of ¢(0) respectively. We know that ¢(0) lies between one and zero. 

The initial guess is computed from the fonnula. 

cp(o) = [ cp(o) (upper) + cp(o) (lower)] I 2 (4.1) 

The initial value problem is now solved using the Fourth-Order 

Runge-Kutta method and the numerical solution at the outer boundary 

compared to the outer boundary condition. Since we solve the problem 

numerically, we have to tenninate the integration at some S=Smax· 

The outer boundary condition is then somewhat different from 

lim S 
5_. 00 so = 1. 

The outer boundary condition used is 

5o(5max) 
5max 

= 1 . 

If the numerical solution for S0 (Smax> differs greatly from 

Smax' a new value of ¢(0) is assumed and the process repeated until 

the computed value of S0 (Smax> and Smax are approximately equal. 
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The new assumed value of cp(o) is obtained in the following manner. If 

the computed value of S
0

(Smax> is less than Smax' then cp(o) (lower) is 

set equal to cp(o). If S0 (Smax> (computed) is greater than Smax' then 

cp(o) (upper) is set equal to cp(o}. Equation (4.1) then gives the new 

<f>(o). 

In using the Fourth-Order Runge-Kutta method to solve a system of 

first order differential equations, the derivatives have to be evaluated 

at the initial point. In our problem, one of the derivatives involves 

the indeterminate quantity s; /5 2 at S = O. To overcome this problem, 

we employ the concept of limits. 

The initial absolute angular momentum is given by 

mo = r o v o + J.z r o 2 • 

Using (2.20), we get 

= 

Hence (2.24) may be written as 

Now 

d cp (s) 
dS 

~ [ (~ + :t s~ - 1 l 
= 

S < a2 /2 0 

(4.2} 

(4.3) 

(4.4} 
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lim d<f>(s) 
S-+ 0 dS l ( 2E + 1)2·5 21 = 1 im a2 _ 

0 _ 1 im 
S-+ 0 45 2 : S-+ 0 ~ . 

Using L'Hospital 1 s Rule, we obtain 

lim d¢(s) =. (2e: + 1)2 lim I 50 ~I 
S-+ 0 dS a 2 S-+ 0 45 J - ~ . 

But 

cp{o) • 

Hence 

lim dcp(s) (2E )2 lim (d5o) S-+ 0 dS = ~ -;; + l ¢{ o) S-+ 0 dS - ~ • 

Finally, we obtain the relationship 

lim d<P(s) [(2e: \2 { 2 ] s +o as - = ~ -;; + 1) 4> 0 > - 1 · (4.5) 



4.2 Results 

For the Rankine vortex 

I 
e:r 2 

0 

a2 
rovo{ro) = 

e: 

we can write 

ro 
vo(ro) a 
v

0
(a) = 

a 
ro 

15 

r /a > 1 , 0 -

Figure 1 shows a plot of vo(ro) as a function of r
0
/a. 

v
0

(a) 

In Figures 2-3, we show the final geopotential as a function of 

r/a for e: = 0.05 and a= 0.2, 0.5, 1.0. We find that the geopotential 

decrease at the centre is inversely proportional to a. 

Figures 4-5 show the final adjusted tangential wind for e: = 0.05 

and a= 0. 2, O. 5, 1. 0. These graphs indicate that the decrease of the 

maximum wind is dependent on e:. 

Figures 6-8 show the mass removed as. a function of t/a for e: = 0.05 

and a= 0.2, 0.5, 1.0 respectively. These plots show a rather interest-

ing feature of the solution. For large radius, the mass removed tends 

toe:. This means that for r>>l, the mass pushed beyond radius r is 

constant. We shall now show that this result can be expected by con-

sidering the relationship between the circulation and the mass removed 

from within the region bounded by radius r for r>>l. 
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The initial circulation, C0 , around radius r
0 

is given by 

27rr v 
0 0 

(4.6) 

(4. 7) 

The results show that for large r, rv<<J2r2 • Hence (2.9) can be written 

as 

(4.8) 

or 

(4.9) 

From the mass continuity equation, we can obtain an equation for the 

mass removed from within any region. From (2.25) we can write 

= 1 - cp(s). (4.10) 

Integrating (4.10) we get 

s s 
j 

0 

d (S-S0 ) 1 = 
---dS 

dS
1 

j 
0 

( 1 - cf> ( s)) dS I 

i . e. , 
s 

(S - S ) - (S - S ) = 
o o S=O j 

0 

I 

(1 - cp(s)) dS . 

But ( S - S
0

) = 0. 
S=O 
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Hence the mass removed is given by 

- 4>(s)) dS 

From (3.7) and {3.9) we get 

s 
CQ s I 2iT" :;: ,Cl -4>(s)) dS • 

0 

I 

{4.11) 

(4.12) 

. c 
Forthe Rankine vortex, 2~ = r

0
v

0 
= e for large r

0
• Hence the mass 

removed from within a given region for large r is constant and equal 

to e. 

Figure 9 shows r../r;
0 

as a function of r/a for e = 0.05 and a= 0.2, 

0.5, 1.0 where r;
0 

and r; are the initial and final vorticity respectively. 

The initial vorticity field is 

I 
2£ 
a2 

0 

(4.13) 

We note that the final vorticity increases outward from the centre 

until the discontinuity is reached. Beyond this point. the vorticity 

is negative and approaches zero for large r/a. 

Figures 10-17 show the final adjusted state for the various fields 

described above, but for e = O · 1. These enable us to further describe 

the final adjusted state in tenns of £ and a. For the geopotential 

field. we.find that the larger value of E results in a larger decrease 

of the geopotential at the ~entre. We can then conclude that the 

geopotential decrease at the centre is proportional to e/a. 
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For the final adjusted tangential wind, we find that the decrease 

of the maximum wind is dependent on £ for a· less than 1. For a~ 1, it 

appears that the decrease of the maximum tangential wind 1s independent 

of £. 

In the case of the vorticity profiles, we note that the stretching 

is proportional to £ and inversely proportional to a. Hence the 

stretching is proportional to £/a. We remark that this is consistent 

with the decrease of the geopotential at the centre. 

We now compare the linear and non-linear solutions. We find that 

for£=. 0.05, the final adjusted geopotential is significantly differ-

ent for a=0.2. For a~ Q.5, there is little difference for all 

practical purposes. The same is true for £ = 0.1. 

For the final adjusted tangential wind, we find that for a= 0.2, 

the maximum w1nd for the geostrophic case is larger than that for the 

gradient case. This is consistent with the final adjusted geopotential 

field. For larger values of a, the difference between the two adjusted 

wind ff elds is smal 1. Again, the same is true for £ = 0.1. 

Comparison of the final vorticity for the two cases shows that for 

the gradient adjustment problem, the vorticity is smaller in magnitude 

than that for the geostrophic adjustment problem. 

These results indicate that the differences between the gradient 

and geostrophic adjustment problems are more pronounced for small a. 

In figures 19-22, we show the final adjusted fields of geopotential 

and tangential wind for a= 0.1, 0.15, 0.25 and e: = 0.05, 0.1. The 

differences between the linear and non-linear adjustment problems are 

significant. 



19 

Figures 23-24 show the final adjusted vorticity in the gradient 

case for ~=0.1, 0.15, 0.25 and E=0.05, 0.1.. Figure 25 shows the final 

adjusted vorticity 1n the geostrophic case for a=0.1, 0.15, 0.25. 

Comparison of the final vorticity in these two cases shows that, in 

general, the geostrophit approximation overestimates the final vorticity. 

It should be noted that for small E and large a, the geostrophic 

and gradient solutions should be approximately equal. Therefore, agree-

ment between the two solutions for small E and large a is a good check 

on the validity of the solution for the gradient adjustment problem. 



0 
:t -
0 
N 

>-0 
1--Q:l - ·-uo a 
-1 w 
> 
_;@ 
a: .. ;:o 
...... z 
~ 

0 
:t 
0 

a 
N .. 
0 

0 
0 

20 

00~:-00~~2-:_0_0 __ ~4~~0-0~~6-~-o-o~~s~:o-0-....--1-0-.-00~-_-12.oo 
RZERO/R 

Figure 1. Nonnalized initial tangential wind (v
0
/v

0
(a)) 

· as a function of r /a. 
0 



0 
0 . 

\I\ 
O'> . 
0 

0 
O") 

0 

l/) 
QQ 

0 

. 

21 

-- 41flfJJl~NT 

- - - - - C4E OSTltOPHI C 

..... o 
f 

ln 
t-i-.. 

0 

' 0 

ln 
lO 
Cl 

0 
(Q 

·-+-------.....---------------------...._...-----------------
00~00 2..00 'l. 00 6. 00 8.00 10.0D 12.00 

RIA 

Figure 2. Final adjusted geopotential for both geostrophic 
and gradient adjust11ent. E = 0. 05 and a= O. 2, O. 5. 



22 

0 
0 
..... 

\.n 
..... 
O'l , 
0 

/ 
ln 

°' Q 

"' N 
01 

t 

0 

0 
O'\ . 

MO :c 
0.. 

\n 
ti--. 
CM:) . 
0 

~ 
.-i....~~~.,.-~~~~~~-,-~~~.-~~---,~---~-, 
0o~ 00 t. 00 2. 00 3. 00 4-. 00 s. 00 6. 00 'RIA 

Figure 3. Final adjusted geopotential for both geostrophic 
and gradient adjustment. e: = 0.05 and a= 1.0. 



~ . ..... 

LI') 
Q .... 

~ . 
0 

\n 

" Q I - I c:c 
~ I co ato I 
W(,() I 
N. I <:O I > 

""' ::I' 

0 

c 
C¥"l 

I 

0 

""' P'4 . 
0 

0 
0 

°o~oo 

Figure 4. 

I 
I 

A 
1' 

l 
I \ 
I 

I 

1.00 

- ~ - - - CU~OSTADPMIC 

2.00 3.00 
R/R 

ll.. 00 s.oo 6.00 

Normalized final tangential wind (v/v (a)) for 
both geostrophic and gradient adjustm8nt. 
£ = 0. 05 ~nd a = 0. 2, 0. 5. 



0 
N 

lt) 
0 

' 

0 en . 
0 

-$ 

~fS 
N • >o s 

ln 
~ . 
0 

I 

0 

IJl ..... 
ci 

1. 00 . 

24 

____ -r GEOSr1toPH IC . 

3.00 RIA 
l.l.00 s.oo 6.00 

Figure 5. Nonnalized final tangential w;nd {v/v0 (a)) for 
both geostrophic and gradient adjustment. 
£ = 0. 05 and a = 1. 0. 



N 
'ft\ -o N. :o 
m 
'¥ 
N 
:t. 
~. 

C¥ -"' .. 
0 
0 

a 
0 

25 

. -~---r----r---.-----,.-----------. 
0 0.QQ I 4.00 8.00 12.00 16.00 20.00 24.00 

RIA 

Figure 6. Mass removed as a function of r/a. e: = 0.05 
and a= 0.2. 



0 

..,, 

.:t 
0 
a 

8 

?.fi 

--"-~~---.,~~~.....-~--~---~~-------~--~~~ 0o. 00 2: 00 lt-. 00 6. 00 9 .. 00 10. 00 12. 00 
R/R 

Figure 7. Mass removed as a function of r/a. e: = 0.05 
and a= 0.5. 



27 

8 
0 

8 
• -~~~---T~~~-.,.-~~~~l~~~---r~~~--.--~---., 

0 0.00 1.00 2.00 3.00 q.oo S.00 6.00 
RIA 

Figure 8. Mass removed as a function of r/a. c = 0.05 
and a= 1.0. 



0 

0 o.s LO 

28 

1.S 
R/F' 

l.0 2.5' 3.0 

Figure 9. No_rmalized fi~al gradient vorticity (~/~0 (o)). 
e: - 0. 05 and a - 0. 2, 0. 5, 1. 0, 



29 

0 
0 

' 
~ 

/' 
l!) / 
O"> 
0 

0 
O'J _____ Gt;osrfl. 0Pu1c 
Q 

Ln 
00 

' 0 

~ . I 
..... 0 I 
:c 
~ 

ln 

" . 0 

0 

"" 0 

ll'l c.o 
0 

g 

I 
I 

I 
# 

~~~~--~~~--~~~....-~~~--~~~---~~~I 
0 0.00 2.00 4.00 6.00 8.00 10.00 12.00 

R/R 

Figure 10. Final adjusted geopotential for both geostrophic 
and gradient adjustment. e: = 0.1 and a= 0.2, 0.5. 



8 

l.,.) 
jt-. " 

~t 

. ---c 
t 

.. 
0 

ti) 
00 
0 

Ln 
N 
00 
0 

~ 
o· 

i 

o.oo 

/. 
I 

/ 
I 

/. 
•'' 

I 

1.00 2,00 

3J 

. 3,,00 
R/R 'l.00 5#00 6.00 

Figure 11. Final adjusted geopotential for bDth geostroph1c 
and gradient adjustment. E = 0.1 and a= l.O. 



31. 

0 
N 
~ 

ll'I 
0 
..... 

A ~l('ADIENT 
/I 

0 I \ Qi _____ ~EoSTRof'lf IC . I I 0 
I \ 

I ' I I 'I \ 
It') I I \ . ,...... I I 

0 I I 
~ I I a: I / "-' 
0 I I 

~~ I I 

(::0 I I 
I I > t I 

I I 
Lil 1' ::f' . I I 
0 I f 

t I , , 
0 f I 
m t I ' 0 ti ,, 

1,' 
l.n 1, - ,, 
0 

8 . -~---...,.._---....,...---""T"-----r-----r------,1 
0o~oo 1.00 2.00 3.00 4.00 5.00 6.00 

R/A 

Figure 12. Nonnalized final tangential ~ind (v/v
0

(a).) for 
both geostrophic and gradient adjustment. 
e: = O. 1 and a = O. 2 , O. 5 • 



0 
N . 

ln 
0 . 
.-4 

0 en 
0 

. 
0 

,........, 

3 
0 
~o 
WlO N. 
>o ....... 
> 

\.n 
::Jt 
0 

. 
0 

Ln -. 
0 

32 

-- ~RA.DIENT 

1.00 2.00 3 .. 00 ll-.00 5.00 6.00 
RIA 

Figure 13. Nonnalized final tangential wind (v!~0 (a)) for 
both geostrophic and gradient adjusunent. 
e: = O . 1 and a = 1. O . 



.:. .... 
' a 

::J' ....... 
0 

N .... 
0 

0 
~ . 
0 

"' ~~ 
N• •o 
ii 
() 
Ql 
UJ 

~8 
I • No 
II 
II 

°' ..._, 
;tt 
0 
0 

"' a 
0 

0 
0 

0 o. 00 
I 

4.00 

33 

8.00 12.00 
RIA 

16.00 20.00 

Figure 14. Mass removed as a function of r/a. e: = 0.1 
and a= 0.2. 

24-.. 00 



Ul .... . 
0 

~ _, 
ci 

N ..... 
0 

0 ... 
0 

N 
'CO ,....0 
('I. 
1'0 ,, 
0 
at 
UJ 

~8 ' . No .. 
I. 

$ 
d' 
0 . 
Q 

rJ 
0 
0 

8 
0o~oo 2.00 

34 

4. 00 6 .. 00 R/A 
8.00 10.00 

Figure 15. Mass removed as a function of r/a. e:=0.1 
and a= O. 5. 

12. 00 



. 
0 

. 
0 

0 

0 ..... 

35 

0-t-~~~~~~~~~~~~~~~~~~ 

g 
0 

"' 0 
0 

LOO 2.00 3. 00 ll.00 5.00 R/R 

Figure 16. Mass removed as a function of r/a. e: = 0.1 
and a= LO. 

6.00 



0 

:j" 

,_o 
0 
tJ.J 
,...J 
1-4 
..J 
~~ 
~o 
0 
6 
>-

36 

t- I t;o .......__ _______________ - ~--- ---·-·-----------------.,... 
t-
~ 
0 > 

0 o.s t. 0 1. 5 
R/A 

2.0 2.5 3.0 

Figure 17. Nonnalized final gradient vorticity (~/~0 (o)). e: = O .1 and a= 0. 2, O. 5, 1. O. 



37 

o.s 

O·b 

O·'i 

~ ol--~~~~~~~-+~~~~~~~~~~--~~~~~~ 

'""'· 1-
tii! 
0 
> 

-Q-'t 

-o.b 
0 o.s 1·0 

R/A 

Figure 18. Nonnalized final geostrophic vorticity for 
a= 0.2, 0.5, 1.0. 

>·o 



Cl 
0 

Lf1 
rn 
0 

0 en 
0 

lf'l 
CX'..l 

0 

. 
0 

I 

0 

Lf1 
lD 

a 

a 
lD 

38 

-~ --- _,.,,,.,... - -

-------
- --

--- - --

GiRA!>tENT 

GrEOSTR.OPH IC. 

•--+-~~~--~~~--.-~~~--~~~--~~~--,--~~~~ 

0 0.00 1. 00 
R/R 

2.00 

Figure 19. Final adjusted geopotential for both geostrophic 
and gradient adjustment. e=0,05 and a=0.10, 
0.15, 0.25. 



0 r..o . 

a .:r 
I ,....., 

a 
N 

CJ a 

CI 

ID 
cuo 
WCIJ 
N., 
>o 
...... 
> 

a w 
0 

D 
.:r 
0 

0 
N . 
0 

a 
0 

0 0.00 

Figure 20. 

39 

LOO 
RIA 

~RAnreNT 

GEOST~OPH&C 

2.00 

Nonnalized final tangential wind (v/v (a)) for 
both geostrophic and gradient adjustmSnt .. 
e:=0.05 and a=0.10, 0.15, 0.25. 



0 
0 

0 en 
0 

0 
OC' - -
0 - - - -

0 r-... 
0 

0 
(,0 

0 
lf) 

0 

0 r:n 
D 

--- - -- -

40 

--
---

LOO 
P./R 

-

GRADIENT 

- - C4EOSTROPHtC. 

2.00 

Figure 21. Final adjusted geopotential for both geostrophic 
and gradient adjustment. e = 0.10 and a= 0.10, 
0.15' o. 25 .. 



0 
N 

0 
0 

cr 
ID 
Ck'.O 
W<XJ 
N • >o 
........ 
> 

0 
u::i 

0 

0 
::t' . 
0 

Cl 
N 

0 

a 
0 

0 0.00 

I~ 
,1 

II 

/I 
111 

I/; 
~ 

41 

/':-. 1,X.\ 
11, ,''------- Q..:o·10 /I \, 

111 \ \\ 

/II '"'"''~----Q.-.:0·15 
/I; 

/I 
111 

/I/ 
l'l' 

LOO 
R/R 

2.00 

Figure 22. Normalized final tangential wind (v/v0 (a)) for 
both geostrophic and gradient adjustment. 
E = 0 .10 and a = 0 .10, 0 .15, 0. 25. 



a 
Cl 
,........ 

Cl 
\l' 

C) 

C) 
\.D . 
0 

Q 
.:r 

,_...., C) 
0 
w 
N 
......... 
_JC) 
CLN 
:L 
OlO 
0 z 
)--
1-o -a 
U, -I-
aL 
D 
> 

I 

0 
N 

0 .:r 

0 

"° 

42 

q -:::o.2S" 

a..~o· 

Q..::o-.t.o 

~-~~~--~~~---~~~--~~~--~~~--~~~~ 

I 0. 0 0 LOO 
R/A 

2.00 

Figure 23. Nonnalized final gradient vorticity (~/~0 {o)). e: = 0.05 and a= 0.10, 0.15, 0.25. 



43 

Cl 
Cl 

I 

....... 

Cl 
~ 

Cl 

Q.: 0-~5' 
Cl 
\D 

a 
Q.-=.O• 5" 

Cl .:r 
,.......0 
Cl w 
N .,..._.. 
_JC) 
CLN 
l:: 
alC) 
0 z 
)-

1-o -a U, - I I-
a.! 
0 
> 

0 
N 

0 
~~-~~~--..-~~~--.-~~~--.-~~~--..-~~~-,-~~~-, 
I 0. 0 0 1. 00 

!?/A 
2.00 

Figure 24. Normalized final gradient vorticity (s/~0 (o)). e:=0.10 and a=0.10, 0.15, 0.25. 



44 

1:0 n-~.7 

Q.~ o·r~ 

0..-c: o•:ZS" 

o.ci 

o-6 

O·'t 

[___ Cl :.. O· ta 

0. ~ O·l.5" 

-o-2 
Gt. ~ O•l.S 

-o ... 

. -o.& 
0 i·O 2·0 

RIA 

Figure 25. Nonnalized final geostrophic vorticity for 
a=0.10, 0.15, 0.25. 



5. SUMMARY AND CONCLUSIONS 

We have derived a system of equations for the final adjusted state 

under gradient balance in an axisymnetric vortex. The initial unbal~ 

anced state is one of a flat geopotential and a velocity profile given 

by the Rankine vortex 

= 

e:r 2 
0 

a2 

A redistribution of mass occurs until the pressure and wind fields are 

in gradient balance. Solutions of the system of equations for the 

final adjusted state are obtained numerically using the shooting method. 

The results indicate that the geopotential decrease at the centre 

is proportional to e:/a while the decrease in the maximum tangential 
wind is dependent on e:. The final vorticity increases with radius 

from the centre until the discontinuity is reached. Beyond this dis-

continuity, the vorticity is negative and approaches zero for large r. 

An interesting feature of the solution is the apparent non-conservation 

of mass. We have shown that for large radius, the mass removed is 

constant. It is believed that the gravity-inertia waves that develop 

as a result of the adjustment process cause oscillations of the free 

surface at large radii. We recall that in the Rossby-Mihaljan problem, 

energy is not conserved and that conservation of mass is due to the 

symnetry of the problem. If such synmetry does not occur in our 

problem then it should not be surprising that within the domain of 

integration mass is not conserved. 



46 

In chapter 3, we have presented solutions for the final adjusted 

state under geostrophic balance. A comparison between the linear and 

non-linear solutions shows that significant differences appear only 

for small a. 

It would be appropriate at this point to consider a value of the 

Rossby radius of defonnation. Recall that the dimensionless radial 

distance r' is given by 

I r _ rf - T 
where r is the dimensional radial distance. 

r = .£ = A f 

I For r = 1 , we get 

where A is the Rosby radius of defonnation. At 20°N latitude } ~ 5.6 

hours. Following Kasahara (1976), we can obtain a value for C. For 

a six-layer model atmosphere the equivalent height for the second mode 

is 823 m. This gives a value of C ~ 90 ms-1. Hence at 20°N latitude 
-1 and for C ~ 90 ms , A = 1800 km. 

In conclusion, it appears that for large scale disturbances which 

are not very intense the geostrophic approximation can be useful for a 

description of such disturbances. However, for smaller and more in-

tense disturbances the departure from geostrophy may be more pronounced. 

It would therefore be necessary to consider the non-linear effects in 

the adjustment process. 
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We consider gradient adjustment-in an axisyrrmetric vortex. From an initially 
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is flat i.e. <t>0 (r0 ) = 1 and the velocity field is given by the Rankine vortex 
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equations is solved numerically using the shooting method. We also present solution; 
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16. Abstracts continued 

In the gradient adjustment case, the results indicate that 
(i) the geopotential decrease at the centre is proportional to 

t./a. 
{ii)" the decrease of the maximum tangential wind is dependent on 

e: for smaller a (a < 1). For a> 1, the decrease is independent 
of e:. -

(iii) the stretching is proportional to e:/a. 
(iv) the mass removed from within a given region tends to £ for 

for large r. 
Comparison between the solutions for the geostrophic and gradient 

adjustment problems shows significant differences for small a. 


	FACF_0301_Bluebook_001
	FACF_0301_Bluebook_002
	FACF_0301_Bluebook_003
	FACF_0301_Bluebook_004
	FACF_0301_Bluebook_005
	FACF_0301_Bluebook_006
	FACF_0301_Bluebook_007
	FACF_0301_Bluebook_008
	FACF_0301_Bluebook_009
	FACF_0301_Bluebook_010
	FACF_0301_Bluebook_011
	FACF_0301_Bluebook_012
	FACF_0301_Bluebook_013
	FACF_0301_Bluebook_014
	FACF_0301_Bluebook_015
	FACF_0301_Bluebook_016
	FACF_0301_Bluebook_017
	FACF_0301_Bluebook_018
	FACF_0301_Bluebook_019
	FACF_0301_Bluebook_020
	FACF_0301_Bluebook_021
	FACF_0301_Bluebook_022
	FACF_0301_Bluebook_023
	FACF_0301_Bluebook_024
	FACF_0301_Bluebook_025
	FACF_0301_Bluebook_026
	FACF_0301_Bluebook_027
	FACF_0301_Bluebook_028
	FACF_0301_Bluebook_029
	FACF_0301_Bluebook_030
	FACF_0301_Bluebook_031
	FACF_0301_Bluebook_032
	FACF_0301_Bluebook_033
	FACF_0301_Bluebook_034
	FACF_0301_Bluebook_035
	FACF_0301_Bluebook_036
	FACF_0301_Bluebook_037
	FACF_0301_Bluebook_038
	FACF_0301_Bluebook_039
	FACF_0301_Bluebook_040
	FACF_0301_Bluebook_041
	FACF_0301_Bluebook_042
	FACF_0301_Bluebook_043
	FACF_0301_Bluebook_044
	FACF_0301_Bluebook_045
	FACF_0301_Bluebook_046
	FACF_0301_Bluebook_047
	FACF_0301_Bluebook_048
	FACF_0301_Bluebook_049
	FACF_0301_Bluebook_050
	FACF_0301_Bluebook_051
	FACF_0301_Bluebook_052
	FACF_0301_Bluebook_053
	FACF_0301_Bluebook_054
	FACF_0301_Bluebook_055
	FACF_0301_Bluebook_056

