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ABSTRACT

In recent years, numerical weather prediction models have progressed from finite dif-
ference methods to spectral methods in order to obtain more accurate forecasts in less
computational time. A switch from “pure” finite difference to “pure” spectral techniques,
however, may not be the best approach in all cases. Indeed, for some problems a mixed
approach with finite difference approximations in one coordinate and spectral approxi-
mations in the remaining coordinates may provide comparably accurate results in less
computational time than either pure method alone. This is particularly evident for the
case of a hurricane where a state of near-circular symmetry typically prevails. For such a
problem, a semi-spectral (SS) method using finite difference approximations in the radial
direction and spectral methods in the azimuthal direction is a natural choice.

While the effectiveness of pure methods for certain problems in fluid dynamics and
atmospheric dynamics is well documented, comparatively little work has been undertaken
to examine the effectiveness of SS schemes. This is particularly evident in problems con-
cerning the vorticity dynamics of the hurricane near-core region. Because of the nearly
circular flow of a strong hurricane, we hypothesize that SS formulations may prove useful
in helping to elucidate the asymmetric vorticity dynamics in the hurricane’s near-core re-
gion. This study examines the effectiveness of the semi-spectral approach for two classes
of problems. The first problem concerns the redistribution of vorticity anomalies within
a “master” vortex possessing a vorticity profile which decreases monotonically with ra-
dius. The second problem concerns barotropic instability, vortex breakdown, and vorticity
mixing that is observed in mature hurricanes.

For simplicity, we confine our attention to barotropic nondivergent dynamics on an

Fplane. The particular SS model used is an extension of the linear model of Montgomery
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and Kallenbach (1997) to include the nonlinear advective terms. We compare the results
of this model against finite difference (FD) and spectral (SP) model predictions.

In the first set of experiments, predictions of the SS model were virtually identical to
those of the SP and FD models on all scales including the evolution of the vorticity field,
changes in the mean profiles, and structure and intensity of the endstate. Additionally,
the SS model produced these results in significantly less computer time than both the SP
and FD models for the numerical parameters chosen. In the second set of experiments,
the SS model performed nearly as well in simulating barotropic instability and vorticity
mixing in a mature hurricane-like vortex modeled as an annular ring of elevated vorticity.
The results obtained in this case are a bit more realistic than the results of Schubert, et
al. (1999) in which a similar but larger vortex was examined. In our case, the elevated
value of vorticity was higher, and the corresponding growth rates were stronger. This
resulted in a 14 h mixing period with a pressure drop of 12 mb as compared to a 36 h
mixing period and an 8 mb pressure drop observed in the Schubert, et al. simulation.
Our simulated mixing time is believed a more realistic estimate of the mixing timescale
for mature hurricanes. As with the first experiment, the SS model achieved these results
in less computer time than the SP model for the numerical parameters chosen.

Based on these results and other analyses, we then assess the strengths and weaknesses

of the SS approach in simulating diverse aspects of hurricane near-core vorticity dynamics.
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Chapter 1

INTRODUCTION

In 1950 Charney, Fjortoft, and von Neumann produced the first successful numerical
weather forecast of the nondivergent barotropic vorticity equation using meteorological
data. Their achievement ushered in a new era in atmospheric science which relies heavily
on computers. Since then, a significant portion of atmospheric research has focused on
the exploitation of computer resources to better understand and more accurately predict
atmospheric motions. This is especially true in the field of hurricane research where
forecast errors can be costly. Researchers are constantly striving to develop models that
produce better forecasts while using the least amount of computer time. In this effort,
they have the choice of employing either finite difference methods or spectral methods to
approximate the differential equations governing atmospheric motions.

What if one were to incorporate both methods into a single model and take advantage
of the simplicity of finite difference approximations and the near-exactness of spectral
methods? Could this produce a better model which is faster with comparable accuracy?
Would it be a useful tool for hurricane research? The answers to these questions and
others are the subjects of this thesis.‘ The focus of our study is an examination of a
“hybrid” numerical model that incorporates finite difference and spectral methods into a
single model of the hurricane near-core region. We assess the effectiveness of this scheme
in simulating near-core vortex dynamics as compared to “pure” schemes for two classes of
vortices, a tropical depression-like vortex and a mature hurricane-like vortex.

For simplicity, we restrict our focus to the barotropic nondivergent vorticity dynamics
on an f-plane. The two “pure” models, which are the controls for our study, are a finite

difference and a spectral model that represent the vorticity evolution on a Cartesian grid



and use finite differences and spectral transforms in each coordinate, respectively. Our
“hybrid” model, which will be referred to as the “semispectral” (SS) model, is formulated
on a cylindrical coordinate grid and employs finite difference approximations in the radial
coordinate and spectral transforms in the azimuthal coordinate. It is an extension of the
linear model that Montgomery and Kallenbach (1997- henceforth MK) used in their study
of hurricane spiral bands and intensity changes, to include nonlinear advective terms. Part
of the reason we expect this scheme to be beneficial in modeling hurricane-like vortices is
because we are taking advantage of the near-cylindrical symmetry of observed hurricane
flow.

A similar approach was adopted for a barotropic fluid with a free surface by Willoughby
(1988, 1992, 1990, 1994, 1995) and by Montgomery, Mdeller, and Nicklas (1999) in their
studies of hurricane motion on a 3 plane. In these works, the focus was on the dynamics
of hurricane motion and not on the numerics, per se. In this thesis, we place equal empha-
sis on determining the performance characteristics of the SS model and in obtaining new
insight into the vortex dynamics of the near-core region of tropical cyclone-like vortices.
To determine how our SS technique performs relative to other numerical methods, we
compare the SS Iﬁodel to a finite difference (FD) model and a spectral (SP) model.

An outline of this thesis is as follows. We begin with a summary of the three models
utilized for our comparisons. We next point out the basic differences between the models
and explain how each is initialized. We then motivate and describe the experiments that
are to be performed and present the main results for each experiment. Finally, we assess

how the SS model performs as compared to the FD and SP models.



Chapter 2

DESCRIPTION OF MODELS

2.1 Introduction

This chapter describes the numerical models used in our study. Beginning with the
governing equation of motion, the essential characteristics of each model are summarized
including the model domains, numerical methods employed to compute spatial derivatives,

time-stepping algorithm, boundary conditions and others.

2.2 Governing Equation

The governing equation is the vorticity equation for two-dimensional nondivergent
barotropic flow. The vorticity equation is derived from the two-dimensional barotropic

nondivergent momentum and continuity equations for a Navier-Stokes fluid on an fplane:

ou Ou 10p

Ou "
5;+ua—x+va;—fv+;5;—VVu (2.1)
Ov ov = Ov 10p o
at+u6$+vay+fu+pay—uv'v (2.2)

Ou Ov

where u and v are the eastward and northward components of velocity, respectively, f
is the constant Coriolis parameter, p is the constant density, p is the pressure, v is the
constant kinematic viscosity, and V? = §%/8z% + §°/0y? is the Laplacian operator. Cross
differentiating the momentum equations eliminates the pressure gradient from the dynam-

ics. Using the continuity equation yields the vertical vorticity equation:
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where ( = Ov/dz — du/dy. Defining a streamfunction ¢ such that v = —9¢/dy and
v = Oy/dx ensures that (2.3) is satisfied. The vorticity is related to the streamfunction

via a Poisson equation:

Vi =¢, (2.5)

referred to colloquially as the invertibility principle. Given ¢ one can deduce the winds by

solving (2.5) for the streamfunction:

=V, (2.6)

where V2 is the inverse of the Laplacian. Using our definition of the streamfunction,

(2.4) becomes:

9 A , I

2
5% " 9y 00 %ay_vv ¢, (2.7)
or
o¢ oy,
x agg}uw%, (2.8)
where 0(¢,()/0(z,y) = (0v/0z)(0(/dy) — (9v¢/dy)(d(/dz) is the Jacobian of ¥ and ¢

with respect to z and y. Eq. (2.8) may be written equivalently as:

D
B¢ =¥V (2.9)

where

D 8 9 8 8 o Bya
Do Yz ey T o By 67 oz 9y’ (2.10)

Eq. (2.9) states that the material rate of change of vorticity is altered by horizontal

diffusion of vorticity.



2.3 Model Domains

The SS model is formulated in cylindrical coordinates while the SP and FD models are
formulated in Cartesian coordinates. As a result, the domain of the SS model is chosen
to be a circle whose diameter is equal to the length of the longest diagonal in the two.
Cartesian models. For all results presented here, the domains of the SP and FD models
are assumed to be square, and the SS domain is the circle that circumscribes this square
(see Fig. 2.1). This ensureé that the longest distance represented in the SP and FD models

is also the longest distance represented in the SS model.

Figure 2.1: Schematic showing the relationship between the domain shapes of the models.
The solid line indicates the shape of the outer boundary of the SP and FD models, while
the dashed line shows the shape of the outer boundary of the SS model. The domain of
the SS model is the circle that circumscribes the square domain of the SP and FD models.

2.4 Common Model Features

2.4.1 Time-Stepping Algorithm

All three models in this study employ a fourth order Runge Kutta time-stepping

algorithm as described in Haltiner and Williams (1980).



2.4.2 Initialization

All models are initialized with a field of vorticity expressed as the sum of basic state (or
azimuthal mean) and perturbation components. Derived quantities such as streamfunc-
tion and/or winds based on this initial condition are obtained by solving the invertibility

relation (Eq. (2.6)).
2.4.3 Vorticity Corrections

For the FD and SP models, the doubly periodic nature of their domains (see Sections
2.5 and 2.6) requires that the initial vorticity have zero net circulation. The initial vor-
ticity is consequently corrected by first computing the correction factor C' = —% J¢dA
(where A is the area of the domain) and then adjusting the vorticity by ((corrected) =
¢ (uncorrected) + C.

Since it is based on a cylindrical polar grid, the SS model does not need such a
correction. However, to maintain consistency among the models, the initial vorticity field

for the SS model is also corrected for zero net circulation.
2.4.4 Diffusion

Diffusion in all three models is accomplished via V? diffusion with a viscosity coef-
ficient of v = 100 m?s~!. This value was chosen to be consistent with the experiments
performed by Schubert et al. (1999; hereafter S99) in their study of polygonal eyewall
dynamics and vorticity mixing processes for a mature hurricane-type vortex modeled as

an annular region of elevated vorticity.

2.5 The Spectral Model

The first of our controls is the fully SP model used by S99. This particular model
utilizes Fourier modes in both z and y on a doubly periodic Cartesian domain. The
number of resolved modes is determined by the number of gridpoints in each direction.
For example, if 2M gridpoints are used in z and 2N gridpoints are used in y, the model
will resolve M and N modes in z and y, respectively. However, the user must specify the

number of resolved modes to be kept in each direction to ensure fully dealiased calculations



of the quadratic advective terms in (2.7). In general, this requires at least %M and %N

modes to be kept in z and y, respectively.
2.5.1 Accuracy of Spatial Derivatives

In the SP model, Fourier methods are used to represent the streamfunction and

vorticity:

((z,y,t) = Z Cm’n(t)ei(mz+ny)’ (2.11)

and

P(z,y,t) = Z 'J’m,n(t)ei(mz‘*‘ny), (2.12)

inj<N
Im|<M

where fm,n is the vorticity amplitude, gz:m,n is the streamfunction amplitude, n is the
wavenumber in z, m is the wavenumber in y, N is the truncation in z, and M is the
truncation in y. For a given truncation, the derivatives of the streamfunction and vorticity

are computed exactly. As an illustration, consider the derivative of { with respect to z:

o “ .
LY. > imlma ()™, (2.13)
oz In|<N

fmj<M

The invertibility principle (2.5) is also solved exactly:

N —(m? + 0D ()T = N G (t)ettmetny), (2.14)
In|<N In|<N
jm|<M jm|<M

or, for a given m and n (not both zero),

Fmn(t) = — e Cmm(t). (2.15)

(m2 + n2)
2.5.2 Boundary Conditions

Since the SP model is formulated on a doubly periodic domain, the “boundary con-

ditions” are simply periodicity in z and y.



2.5.3 Linearity

The SP model performs fully non-linear calculations and, due to its geometry, does

not admit a simple linearization for a circular basic state vortex.

2.6 Finite Difference Model

The second control model is an FD model developed specifically for this study. It uses
finite difference approximations in both z and y and assumes a doubly periodic Cartesian

domain.

2.6.1 Accuracy of Spatial Derivatives

Spatial derivatives in the FD model are specified to be second order accurate. As
such, the Jacobian is computed via Arakawa’s (1966) second order advection scheme.

To invert the vorticity for the streamfunction (Eq. (2.6)), a fast elliptic solver devel-
oped by Paul Swarztrauber and Roland Sweet of the National Center for Atmospheric Re-
search is employed. This solver is available on the internet at Attp: \\www.netlib.org\toms\541.

See Swarztrauber and Sweet (1975), Chap. L., for documentation on this routine.
2.6.2 Boundary Conditions

Since the FD model is formulated on a doubly periodic domain, the “boundary con-

ditions” are simply periodicity in z and y.
2.6.3 Linearity

The FD model performs fully non-linear calculations and, due to its geometry, does

not admit a simple linearization for a circular basic state vortex.

2.7 The Semi-Spectral Model

The SS model is a simple extension of MK to include the nonlinear advective terms
in the vorticity equation. Although the model was first summarized in Appendix B of
Montgomery and Enagonio (1998-hereafter ME), the details of its derivation are presented

here for completeness.



The model domain is chosen such that it circumscribes the square domains of the FD
and SP models (see Fig. 2.1). The governing equation is subsequently based on the polar

representation of Eq. (2.7):

% 13¢6§ 13¢3§
ot ra)\ar r Or O\

=V (2.16)
Writing the streamfunction () and vorticity ({) as sums of perturbation components
(¢'(r, A, t) and ¢'(r, \,t)) and azimuthal means ({(r,t) and %(r,t)), which do not depend
on A, we obtain the following tendency equation for the perturbation vorticity:

¢ 1o e 18y'a¢ 1999 199 ¢

19¢' 8¢ 18y 8¢ 18y 8 ,
5 =ronor roran roner rarant VO (2.17)

where the terms involving the azimuthal derivatives of the mean vorticity and mean
streamfunction vanish by construction. We next convert (2.17) from advective to flur

form by noting that:

18/ 8¢ 1 AN

=R - (2.18)
and

109/0¢ 10 00 ¢ 0%

o= Bt Tara (2.19)

Substituting (2.18) and (2.19) into (2.17) yields our tendency equation in flux form:

ac 1 , 0 L0900 A oY o ,
B T [61"( )~ aA( W)“La,\ﬁ‘afﬁ]”v?c' (2:20)

The first two terms on the right hand side of Eq. (2.20) represent the nonlinear advection
of perturbation vorticity by perturbation winds. The next two are both linear terms rep-
resenting the advection of mean vorticity by perturbation winds and perturbation vorticity
by mean winds, respectively. The last term is the diffusion term.

Since ¢’ = V2’ we may rewrite (2.20) as

+ vV (2.21)

o' e O\ WO 050
Vg(’aw?)zl[a (Cazi) a,\( azﬁ)Jraif\ai dfai
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In the SS method, we use Fourier modes to compute the azimuthal derivatives and finite
difference approximations to compute the radial derivatives. The perturbation vorticity
and streamfunction are therefore represented semi-spectrally. Suppressing the subscript

notation for the discrete radial points, we write:

P (r 0t =Y di(r ), _ (2.22)
[LI<N
and
Crmht)= Y (mlrt)e™, (2.23)
|m|<N

where 7; and (, are the Fourier amplitudes for the perturbation streamfunction and

perturbation vorticity, respectively. Substituting (2.22) and (2.23) into (2.21), we obtain:

¢ = ! 19.(¢ 4 ¢(m i(m 8¢
( L%::N(zb,eu)}) _ ;{IH%]: [215;(4,,,1/;,6( HI) i + 1) (Gem 0> Brl)]

8T O

+ |¢§N (zlﬂple l’\)g - Im%N(szme A)Er_}

+ VVZ[ 3 (émeim*)]. (2.24)
mi<N

Mulitplying Eq. (2.24) by e~***, where n is an arbitrary integer, then yields:

( L;A;N (b e’”)]) e %{ '”2:; (e"("h”-")A [z‘l% (Gmtht) — ilm + 1) (Gn S %W )D
[migN
Ty et BZ s F i{m—n 3@
' NEN(ZZW (l )A)E—m%zv(zmcme( ") 5;}
+ yvz[ > (C"meim)\)] einh (2.25)
[m|<N

We next azimuthally integrate from A = 0 to A = 27. Because of the periodic nature of
the complex exponential function, the only non-zero terms in this integral are those for

which the exponent is zero. Eq. (2.25) therefore reduces to:
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O, A
Vi(%) = { IHZ:N [Zl_' Cn—l"wbl (gn { ¢l)]

[n—T|<N
.. 0 . ;0 .
+ zn"ﬁnb—i “‘3”4117;-_’/,)'} + VV?;Cna (2.26)
for ne{—N,—N +1,...,0,...,N — 1, N}. Here
10 &2 n?

Vi=-

ot ¢ (2:27)

is the horizontal Laplacian operator in azimuthal Fourier space. Formally inverting our

prognostic equation for the streamfunction amplitude yields:

O oo p
o = Va Fa(r1) (2.28)
where
3 1 Ny oy . . 8 2
Fo(r,t) = T{I,JL%N [zl - (¢,§n_,) inlp_j—— o ] iz i ~in2 - Cn}—H/VnCn (2.29)

Note that a distinction has been made between 15 and fo, and ¥ and ¢. The former are
the predicted increments in azimuthal mean streamfunction and vorticity, respectively,
from one timestep to the next. These incremental changes are transferred to ¥ and ¢ at
the end of each time step, and then set to zero before the next time step. Therefore, terms

in (2.29) involving v and (; make no contribution to the sum.
2.7.1 Accuracy of Spatial Derivatives

The radial derivatives in the SS model are specified to be second order accurate and
are computed via centered differences. The azimuthal derivatives are by Fourier methods
and, as in the SP model, are computed exactly for the given wavenumber truncation.

Inversion of the vorticity for the streamfunction is accomplished via a standard tri-
diagonal solver. Unlike the SP model, the number of modes resolved in the azimuthal
direction is entirely at the discretion of the user which allows for greater flexibility of the

SS model in this regard.
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2.7.2 Boundary Conditions

The boundary conditions for the SS model are as follows:

4
%_gb;g(r,t) =

Ynzo(ryt) =

where 8t /Or is the incremental change in azimuthal mean tangential wind and n is the

g } at r = 0, rmay, (2.30)

streamfunction amplitude for wavenumber n. The first boundary condition ensures the
conservation of total circulation and forces the basic state winds to remain zero at the
center of the vortex (since they are initially set to zero and singularities in the vorticity
field are not allowed). The second boundary condition prohibits inflow/outflow across
the domain boundary r = rpax and, at the center of the domain, is a result of Taylor
expanding the streamfunction about » = 0. Since we do not allow singularities at » = 0,

the expansion requires zﬁn#o(r =0,t) =0.
2.7.3 Linearity

The SS model generally performs fully non-linear calculations. However, the non-
linear advective terms may be switched off allowing for linear and/or wave-mean flow

simulations, a unique characteristic of the SS model.
Linear Simulations

For the linear calculations, we neglect products of perturbation quantities. Conse-
quently, the basic state profile is unchanged (i.e., 4/8t = 0). In this case the governing
equation for the asymmetric part of the flow is simply the linearized approximation of Eq.

(2.17):
2(W _ 1OV 1658 Ly,
V(%) = rma o et (231

In (2.31), the cylindrical polar geometry of the model provides a physically useful linear
limit that is natural for vortex dynamics problems. In azimuthal spectral space, the
governing equations for the asymmetric (n # 0) modes are:
o 1(. .8 .09 2
Vf,( ;") = (Zn¢”5§ - zn(na—¢) +vV2(,. (2.32)

r T
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Wave-Mean Flow Simulations

For the wave-mean flow calculations we allow the basic state to be modified through
the self-interaction of azimuthal modes, but prohibit the interaction of modes with different

azimuthal wavenumbers. The governing equations in this case are as follows. For n # 0,

O\ 1(. . 8 . ;0 )
V%( T ) == (mwna—f - anna—f) +vV2la, (2.33)
while for n =0,
o 1 L0 s
37370 = [zzg(g_m)]. (2.34)



Chapter 3

AXISYMMETRIZATION OF NEARBY VORTICITY ANOMALIES ON A
MONOPOLAR VORTEX

3.1 Introduction

In this chapter, we present the results of the first set of experiments performed on
the three models. The physical problem being studied is the axisymmetrization of nearby
vorticity anomalies on a basic stva.te vortex whose initial vorticity distribution decreases
monotonically and smoothly with radius. This particular choice of basic state can be
likened to a developing tropical depression, while the vorticity perturbation is intended to
be a parametrization of the cyclonic vorticity produced by a convective “blow-up” near the
radius of maximum winds (RMW) of the incipient basic state vortex (Gray, 1998; ME).
As MK predicted and ME later verified, such a perturbation near a vortex monopole
will excite vortex Rossby waves which disperse on the vortex monopole and progressively
become sheared by the mean swirling vortex flow. As the waves disperse, they spin-up the
interior of the parent vertex by ingesting like sign vorticity toward the center and spin-
down the periphery of the vortex by ejecting opposite sign and like sign vorticity to the
periphery as vorticity filaments that orbit the vortex. The goal of this set of experiments,
then, is to determine if the SS model correctly simulates the axisymmetrization process as
well as the interaction of the waves with each other and with the mean flow. We accomplish
this goal by examining several diagnostic quantities from the simulations including domain
plots of the total vorticity field, radial plots of the changes in mean quantities, and plots
of domain-integrated quantities (i.e., total energy, enstrophy, angular momentum, and

palinstrophy) as functions of time. Finally, we present statistics regarding the amount of
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computer time required for each run. Based on these results, we give an assessment of the

SS model’s effectiveness for this type of vortex flow.

3.2 Initialization

3.2.1 Basic State

The basic state used for this experiment is a Gaussian-shaped vorticity monopole

given by:

C(r) = Cpaxe™ ("/raecar)’, (3.1)

where 7 is the radius from the center of the vortex, {pa = 1.0x 1073 571, and rqecay = 47
km. This choice of parameters yields a vortex possessing maximum tangential winds of
16.5 ms™! at a radius of approximately 60 km (see Fig. 3.1a) and a minimum central

pressure of approximately 991 mb (Fig. 3.1d), not unlike typical values for a tropical

depression.
20 Y 0.0006 L 0.0012 £ 1010 E
15 (O) i’; (b) ~ 0.0010 (C) 1005 (d)
N = 0.0004 n T
p . ~  0.0008 £ 1000
E 10 5 £ 0.0006 >
> " 0.0002 £ 2 g95
3 s 3 S 0.0004 3
3 : > 0.0002 g 9%
: & 0.0000 i o a
5 £ op.0000 985
-5 -0.0002 -0.0002 980
0 80 160 240 0 80 160 240 0 80 160 240 0 80 160 240
r (km) r (km) r (km) r (km)
maox=16.4694 ms™ max=4,8502E-04 5™ max=9.7768E-04 s min=991.136 mb

Figure 3.1: Initial profiles of azimuthal mean (a) tangential winds (Tian), (b) angular

rotation rate (€ = Tian/r), (c) relative vorticity (¢), and (d) pressure (p) as functions
of radius from the center of the parent vortex. All models are initialized with the mean
vorticity profile given in (c¢). The remaining quantities are diagnosed from the ¢ profile.

3.2.2 Stability Characteristics of the Monopole Profile

Since the basic state radial vorticity gradient does not change sign as one proceeds
from the center outward, the basic state satisfies Rayleigh’s sufficient condition for expo-
nential stability (Gent and McWilliams, 1986; see Fig. 3.2 for a plot of d{/dr). This does

not mean that perturbations to the vorticity cannot initiate wave activity within the flow.
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Indeed, MK predicted and ME verified that perturbations to the basic state initiate out-
ward propagating vortex Rossby waves that redistribute the vorticity perturbation as the
vortex equilibrates. In the process, perturbation cyclonic vorticity is transported inward
and perturbation cyclonic and anticyclonic vorticity is ejected outward. Together, this

spins-up the interior and spins-down the periphery of the vortex.

d¢ /dr

0.5 T

TTTT

0.0 .................................................

o ;
QE 7
o 5 .
> —05F -
S - .
§ -1.0 = 3
° _15F E
IS - ]
2 C ]
s ~20p E
o - 1 1 1 L
0 40 80 120 160 200 240
r (km)

Figure 3.2: Gradient of vorticity for the monopole experiments.

3.2.3 Vortex Rossby Waves

As evident from Figs. 3.1c and 3.2, the radial gradient of initial basic state vorticity is
smooth and nonzero out to a radius of approximately 120 km from the center of the vortex.
Much like planetary Rossby waves that owe their existence to the non-zero gradient of
planetary vorticity, vortex Rossby waves should exist in this region where d{/dr # 0. The
restoring mechanism for vortex Rossby waves is the gradient of storm relative vorticity,
or the so-called Rossby restoring mechanism (MK; Guinn and Schubert, 1993-henceforth
GS). It was shown in GS, MK, and ME that these waves will tend to resist departures
from axisymmetry (i.e., perturbations) until they are sheared by the mean flow. During
this time, the waves redistribute perturbation vorticity until an axisymmetric (or nearly-

axisymmetric) state is established.
3.2.4 Perturbation

To study vortex Rossby waves, we introduce a vorticity anomaly to the basic state

flow. This is a reasonable course of action since we are simulating the dynamics of a
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developing tropical depression. As such, we simulate the effects of convection that are
likely to occur in the domain of the vortex. ME showed that a convective burst in a
hurricane-type vortex can be idealized by an impulse of cyclonic vorticity in the lower
troposphere. Following in this vein, our perturbation vorticity profile is a Gaussian with.
a similar structure as Eq. (3.1) but with the perturbation maximum (¢/,,,) and radius of
decay (Tdecay) 2djusted as follows:

Tdecay (Perturbation) = %rdecay (basic state). )
See Figs. 3.3b,c for plots of Eq. (3.2) and the total field of vorticity (( = ( + ¢’). Note
the maximum of ¢’ is 0.5 .., a finite amplitude perturbation relative to the basic state,

with a shorter e-folding distance. Also note that the maximum of (' is located just inside

the RMW indicated by the dashed line in Fig. 3.3b.

3.3 Model Setup

The following table summarizes the numerical parameters used in the monopole ex-

periment for the FD, SP, and SS models:

FD SP SS
Viscosity () 100 m*s~1 100 m?s~! 100 m%s~1
No. gridpoints z: 300, y: 300 z: 300, y: 300 r: 426
Gridspacing dr=dy=2km | dz =dy=2km dr =1km
No. of modes n/a z:100, y:100 A:16
Timestep 30s 30 s 30s
Degrees of Freedom | (300)% = 90,000 | (300)2 = 90,000 | (426)(32)=13,632

Table 3.1: Numerical parameters used in the SP, FD, and SS models for the monopole
experiments.

Although we present grid spacings for the SP model in Table 3.1, a more realistic
estimate of the resolution is the wavelength of the smallest resolvable Fourier mode (3
times the grid spacing; S99, Sect. 3) which is 6 km.

In the SS model, a more realistic estimate of the resolution in the azimuthal direction

is the wavelength of the smallest resolvable Fourier mode at the RMW. For the monopole,
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this is approximately 22.8 km. In the radial direction, we assume the wavelength of the
smallest resolvable mode is 4 times the radial grid spacing. This yields an effective radial
resolution of 4 km for the SS model.

In the FD model, we also assume the wavelength of the smallest resolvable Fourier

mode is 4 times the grid spacing. This yields an effective resolution of 8 km.

3.4 Expected Results

As a result of our perturbation and due to the restoring mechanism resisting depar-
tures from axisymmetry, we expect to see vortex Rossby waves develop in the flow. These
waves will then transport anomalously high vorticity toward the center of the vortex and
anomalously low and high vorticity outward to the edges of the domain in the process of
equilibrating. As the waves propagate outward, we expect that they will become progres-
sively sheared by the differential rotation rate of the basic state vortex (MK).

Furthermore, we expect to see a spin-up of the vortex if we examine plots of changes in
mean quantities over the course of the simulation. This spin-up (as predicted by MK and
verified by ME) should occur near the radius of the asymmetry and should be accompanied

by a smaller but notable spin-down at larger radii.

3.5 Results

3.5.1 Nonlinear Runs

The following figures show the results of this first set of experiments. The FD model
results are shown first followed by the SP and the SS models. In all cases, we plot data
for a 200 km x 200 km subset of the entire domain. We concentrate only on the region of
the vortex where most of the dynamics occur.

We examine first the evolution of the total vorticity field given by Figs. 3.4, 3.5 and
3.6. Immediately, we see that all three models are producing nearly identical results. One
would expect this to be the case for the FD and SP plots since these models are formulated
on Cartesian grids with exactly the same structure. However, what is surprising is the

striking similarity between the SS and SP schemes. One might not expect such agreement
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Figure 3.7: Time evolution of integrated (a) total energy (E = [ [1 ; v Y- vy dA),
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value. Note the scale changes from (c) to (d). In (a), (b), and (c) the FD curve is not
visible because it is covered by the SP curve.

3.8). As expected, we see a spin-up of the vortex near the radius of the initial asymmetry
due to vortex Rossby wave dynamics. If we compare all three models, we again find
virtually identical results. Granted, there are some differences in the shapes of the curves
and their maximum values, but these differences are slight. Note the maximum spin-up

1. Also noteworthy is

in all three cases (as measured by A%) is approximately 0.4 ms~
the plot of AC which shows that high vorticity is transported inward near the center of
the vortex, and low and high vorticity is ejected outward past the radius of the initial
asymmetry. This has been confirmed by analyzing Lagrangian trajectories of particles
placed within the fluid (not shown).

From the above analysis the SS model appears to give reliable results for the axisym-

metrization of nearby vorticity anomalies.
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3.5.2 Linear and Wave-Mean Flow Runs

In addition to the fully nonlinear calculations performed by each model, we also per-
formed linear and wave-mean flow calculations using the SS model. Figs. 3.9 and 3.10
show the evolution of the vorticity field for the linear and wave-mean flow experiments,
respectively. Comparing these figures with the field plots of the nonlinear evolution (Figs.
3.4, 3.5, and 3.6), we see a strong similarity. Just as in plots of the nonlinear simulation,
vortex Rossby waves develop and redistribute the vorticity field such that high vorticity is
transported inward and low and high vorticity is ejected outward in the process of equili-
brating to an approximate monopole. However, the linear and wave-mean flow dynamics
are not able to fully resolve the region of highest vorticity (black). This is to be expected
since wave-wave interactions are not allowed in the linear run, and wave interactions with

the basic state only are allowed in the wave-mean flow run.
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On the whole, though, the wave-mean flow and linear dynamics are reproducing
the basic aspects of the vortex evolution. This result suggests that the dynamics of
the monopole vortex are mostly linear in nature. We might also expect this to be the
case for even larger amplitude perturbations, with a small caveat. If the maximum of
the perturbation wefe twice the basic state maximum, the resultant vorticity field would
evolve as though the perturbation (since it is larger in amplitude) were actually the basic
state and the basic state actually the perturbation. In this case, we would see an evolution
nearly identical to the monopole case just presented (assuming the spatial scales are the

same).

3.5.3 Timing Data

MODEL | RUN TIME (CPU)
SP 579 min
FD 2272 min
SS 248 min

Table 3.2: Timing data for the three monopole runs based on the amount of CPU time
required for each to run to completion for a 35 h vortex simulation.

We finally examine timing statistics for each run. The SS model is able to run to
completion in nearly half the time required by the SP model and nearly one-tenth that

required by the FD model for the numerical parameters chosen.

3.6 Tropical Depression Simulation Conclusions

Based on the timing statistics and the fact that the results among all three models
are nearly identical, we conclude that the semi-spectral formulation is at least as good as,
if not superior to, traditional formulations in simulating the axisymmetrization of finite

amplitude vorticity anomalies near the RMW of a monopole vortex.



Chapter 4

RING VORTEX

4.1 Introduction

In Chapter 3 we found that the SS model yielded nearly identical results to the FD
and SP models for the case of a circular vortex monopole perturbed by a finite amplitude
vorticity anomaly near the RMW of the parent vortex. As far as timing considerations
are concerned, the SS model strongly outperformed the FD model and was competitive
with the SP model for the numerical parameters chosen.

A more extreme test of the SS model is furnished by examining the problem of
barotropic instability and breakdown of an idealized hurricane-like vortex. For our pur-
pose, the hurricane-like vortex is modeled as a ring of elevated vorticity just inside the
RMW. Eliassen and Lystad (1977) showed that the maximum vertical velocity at the top
of the boundary layer in a hurricane is located just inside the RMW due to frictional stress.
Convection is organized by the vertical velocity into an annular ring near the RMW. The
convection induces vortex stretching which enhances the vorticity in the ring and leads
to an area of strong cyclonic shear on the inner edge of the convection. This shear zone
can be thought of as a ring of elevated vorticity with sharp gradients on its edges (599).
Unlike the perturbed monopole, the vorticity dynamics of this vortex are highly nonlinear
and lead to extensive vorticity mixing with repeated stretching and folding of vorticity
contours, an extreme testbed for the SS model.

Since the FD model was significantly slower than both the SP and FD models in the
previous experiment, we elect not to simulate the evolution of the vortex ring with the

FD model. This is justifiable because the baseline performance of each model and the
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relative performance characteristics between models have already been determined with

the perturbed monopole experiment.

4.2 Initialization

4.2.1 Basic State

In this set of experiments, we simulate the unforced evolution of a perturbed hurricane-
like vortex possessing a ring of elevated cyclonic vorticity just inside the RMW. To yield
a vortex possessing hurricane-strength winds, we desire a radial profile of vorticity that

results in maximum tangential winds of approximately 55 ms™! at a radius near 30 km.
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Figure 4.1: Original (S99) and modified radial profiles of (. The maximum value of { in
the elevated region for the modified profile is a little more than twice that of the original
profile.

A similar but larger vortex was used in S99 consisting of a continuous distribution of
vorticity with low values in a region near the center, high values in a region centered around
50 km,' and zero values beyond that radius (see Fig. 4.1, solid curve). This “elevated ring”
profile results in maximum tangential winds of approximately 55 ms~! at an RMW near
60 km. In order to obtain an RMW of 30 km while preserving the essential characteristics
inherent with the S99 profile, we modified the radial distribution such that the non-zero
vorticity values occurred over half the radial distance as the original profile and still

yielded the desired 55 ms~! maximum tangential winds. This latter property was fulfilled
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by increasing the maximum vorticity in the ring to nearly twice the value used by S99 (see

Figs. 4.1 and 4.2).
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Figure 4.2: Radial profiles of Ui, resulting from Fig. 4.1. The maximum values are
approximately ecual, while the RMW for the modified profile is near 30 km compared
near 60 km for the original profile.

The function used to create the smooth distribution of ¢ shown in Fig. 4.1 is:

(1, 0<r<r-d
(15((7" -7 +d1)/2d1) +<2S((’I‘1 +d; —T)/2d1), r—di <r< r1 +d;

C(rit=0)=< (o r+d <r<ro—ds
C2S((r — r2 + d2)/2d2), ro—dy <1 <13 +dyp
0, 7o +ds <71 < 00,

(4.1)
where 7, ro, di1, da, (1, and {3 are specified constants. In our case r; = 18.75 km,
ro = 28.75 km, d; = dp = 3.75 km, (; = 4.1825x 10™* 571, and ¢, = 7.0 x 103 s~1. Also,
S(s) =1—3s%+ 253 is a function satisfying $(0) = 1, S(1) =0, §’(0) =0, and 5'(1) =0,
which guarantees the profile and the first derivative of the profile are continuous at the
transition points (S99). See Fig. 4.3 for the corresponding initial profiles of #iay (1), Q(r),
and p(r).

In S99 two parameters of the basic state profile surfaced as being key to delineating
the stability characteristics of the vortex. These parameters are § = ry/r2 and v = (1 /(ay,
where (5, = 2uta5(r2)/72. For the original S99 profile, § ~ 0.652 and v ~ 0.20, while for the
modified profile § ~ 0.652 and vy ~ 0.10. Based on Fig. 2 of S99, a plot of dimensionless
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growth rates in (4, ) space, these parameters predict the most unstable mode for the
original S99 profile will be a superposition of n = 3 and n = 4, while, for the modified

profile, the most unstable mode is predicted to be n = 3.

Y= 040 L 0.008 { 1010 L
T 0.004 .
0 @] ~ ®] -~ (©) oo ©)
N £ 0.0030 ", 0.006 ,_g
4] ~ 0
g 40 2 > 0.004 < 9
~ o & -
£ \ ® 0.0020 3 ¢ o80
g ® o0.0010 § 0002 g 970
[ " .
> o @ 0.000 L
0 S 0.0000 ¢ 960
-0.002 850
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
r (km) ¢ (km) r (km) r (km)
max=55.0783 ms™ mox=1.8862E-03 s max=6.9306E-03 s~ min=969.881 mb

Figure 4.3: Initial profiles of azimuthal mean (a) tangential winds (Tian), (b) angular
rotation rate (Q = Tian/7), (c) relative vorticity (¢), and (d) pressure (p) as functions of
radius from the center of the vortex. The SP and SS models were initialized with the
vorticity profile given in (c). The remaining quantities were inferred from the ¢ profile.

4.2.2 Stability Analysis of Vortex Ring Profile

Rayleigh’s and Fjegrtoft’s Theorems

In order to assess the stability of the basic state vortex, we first determine whether the
necessary conditions for barotropic instability are met. If these conditions are satisfied,
the ring vortex is then potentially unstable to small amplitude perturbations. If any one
of the conditions is not met, the profile will be exponentially stable.

We begin with the first of these conditions known as Rayleigh’s theorem (Rayleigh,
1880). When applied to a circular basic state flow, Rayleigh’s theorem says that for
exponential instability, the radial vorticity gradient d¢/dr must change sign at least once
in the flow. The profile of d(/dr (Fig. 4.4a) shows that the radial vorticity gradient is
positive inside the ring and negative outside, thereby satisfying the necessary condition.

The second condition is known as Fjgrtoft’s theorem (Fjgrtoft, 1950). When applied

to a circular basic state flow, the necessary condition is:

(@) - ) 32(r) <0, (4.2
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somewhere in the flow (Edwards, 1994; Gent and McWilliams, 1986). Here {(r) is the
mean angular rotation rate at radius r, and s = (r;) is the mean angular rotation rate
at the radius r; where the mean vorticity gradient changes sign (i.e., d{/dr = 0).

From Fig. 4.4a, we see that d{/dr = 0 at a radius of approximately r = 24 km. Figure
4.4b is a plot of Q(r) — Q(r = 24 km). Upon examining Figs. 4.4a and b, it is apparent
that (4.2) holds in two distinct regions, 15 km < r < 23 km and 25 km < 7 < 33 km.

Thus, Fjertoft’s necessary condition is also met.
Interpretation of Necessary Conditions by Vortex Rossby Wave Theory

As we noted in the previous subsection, the radial profile of d{/dr (Fig. 4.4a) indicates
that the gradient of storm relative vorticity is non-zero in two distinct regions of the initial

basic state profile. More precisely:

4.7 <
47> 0, 15km_r<23km} (43)

47 <0, 25km<r <33 km.

-
Since d(/dr # 0 as indicated in Eq. (4.3) above, if the flow is perturbed we expect to
see vortex Rossby waves propagating in these two regions. Furthermore, since the sign
of d(/dr is opposite in these two regions, we expect to see counter-propagating vortex
Rossby waves. In the inner region (15 km < r < 23 km), the waves will tend to prograde
relative to Ty,, and, in the outer region (23 km < r < 32 km), retrograde relative to Ty,p.
When the angular rotation rates of the two wave types are the same, phase locking can
occur, and, if properly configured, the two waves can amplify each other (S99). This is
the essence of barotropic instability. /

Unstable vortex Rossby waves excited in the flow are then the vehicles that initiate

the process of redistributing the fluid into a stable monopole.
Eigen- Analysis

To determine the most unstable perturbations, we perform an eigen-analysis of our
initial basic state profile following the numerical method of Gent and McWilliams (1986).

Assuming modal solutions for the perturbation streamfunction and vorticity:
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Figure 4.4: Plots of (a) gradient of storm vorticity (d¢/dr) and (b) Q(r) — Q(r = 24 km)
for the modified profile. The dashed vertical line show the location where r=24 km.

Growth Rate vs. Wavenumber for Ring Profile

0.0010 -

original S99 profile _

0.0008 e modified profile 1 %)

: : £

\‘{]/ T T E

2 —427.8~~

5 : ()]

e " ;

30 —41.7 &

: . £

o . ;

B 8333
0.0000 L ‘ | l

1 2 5 : : 6

wavenumber
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P(r, A1) = gy (r)el (4.4)

and

CI(T’ X, t) — fn (,r)ei(‘n/\-*’l/t)’ (45)

we then substitute these solutions into the linearized inviscid form of Eq. (2.17). An
eigen-analysis of the resultant equation subject to the boundary conditions (2.30) is next
performed given the mean vorticity profile ( specified in (4.1) to determine the eigenfre-
quencies and eigenstreamfunctions. The imaginary part of the eigenfrequency is a measure
of the growth rate for each discrete wavenumber. Fig. 4.5 is a plot of the imaginary part of
the eigenfrequencies for wavenumbers 1 through 6 (the growth rates for all other wavenum-
bers were found to be zero) for the modified ring profile (dotted curve) and for the original
S99 profile (solid curve).

According to Fig. 4.5, thé most unstable mode for the original S99 profile is n = 4.
This analysis is in agreement with the results of S99 where a wavenumber 4 feature devel-
oped during the initial stages of the vortex evolution (see S99, Fig. 3a) at approximately
the same rate predicted by this eigen-analysis.

In the modified profile, while n = 4 is clearly the most unstable mode, the growth
rate for n = 3 is also quite similar. The growth rate is approximately 6.1 x 10~* s~! for
n = 3 and approximately 6.6 x 107* s~! for n = 4. In contrast to S99, the initial stages of
the ring vortex evolution are expected to contain a superposition of wavenumbers 3 and
4.

Fig. 4.6 is a plot of the perturbation vorticity field for n = 3 and n = 4. For
each wavenumber, the vorticity anomalies near the elevated ring (indicated by the shaded
region) are phase shifted such that they reinforce each other by advecting basic state vor-
ticity. The positive anomalies (solid contours) on the inside (outside) of the ring induce a
cyclonic circulation which advects positive basic state vorticity into the positive anomalies
on the outside (inside) of the ring, reinforcing the positive perturbation vorticity there.

A similar argument holds true for the negative perturbation vorticity anomalies. By this
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mechanism, the asymmetric vorticity fields for n = 3 and n = 4 feed off the basic state
flow and grow.

Fig. 4.7 is a plot of the angular phase speeds (c,» = Re[v]/n) determined from the
eigen-analysis. It shows that n = 2 has the fastest angular velocity, with n = 3, 4, and 5
having comparable values in both the modified and original S99 profiles. The phase speeds
for the modified profile are also substantially faster (by about a factor of 2) than those for
the original S99 profile for all wavenumbers with non-zero growth-rates (i.e., ne{2, 3, 4,
5}). We observe that the maximum phase speed for the modified profile is approximately
1.5%1073 57! while the maximum angular rotation rate throughout the vortex (Fig. 4.3b)
is approximately 1.9x1073 s~!. This means that the unstable waves retrograde relative
to the fastest rotating part of the fluid, a feature already anticipated by vortex Rossby
wave theory.

Based on this analysis, we expect to see a faster route to vorticity mixing in the

modified case as compared to S99.
4.2.3 Perturbation

The basic state circular flow is perturbed with the following perturbation vorticity :

0, 0<r<ri—d
8 S((T1+d1+1—7‘)/2d1), ri—di<r<ri+d;
((r,¢,t=0)=( D cos(mg)q 1, ri+dy <r<ry—dy
m=1 S((r — 2 + d2)/2dp), ro—dy ST <1y +dy
0, ro +dy <71 < 00.

(4.6)
In our case, ¢ = 0.01 ., = 7.0 x 1075 s™1. Summing over all 8 wavenumbers leads to a
maximum perturbation vorticity of ¢/ ,, = 0.08 (. = 5.6 x 107 s~ centered at A = 0
and r = 50 km (see Fig. 4.8). Similar to the perturbation in the monopole experiment,
this perturbation is intended to simulate a convective disturbance near the RMW, but in
this case the perturbation is smaller in amplitude (8% of Zmax as opposed to 50% of Zmax
in the monopole experiments).
Plots of (4.6) and the total field of ¢ for a 100 km x 100 km subset of the entire

domain are given by Figs. 4.8b and c, respectively. Note the maximum of ¢’ just inside

the RMW.
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4.3 Model Setup

The following table summarizes the numerical parameters used in the ring experiment

for the SP and SS models:

SpP SS
Viscosity (v) 100 m?s™" 100 m?s~*
No. gridpoints z: 900, y: 900 r: 640
Gridspacing dr =dy =0.5km dr = 0.5 km
No. of modes z: 300, y: 300 A 32
Timestep 4s 2s
Degrees of Freedom | (900)? = 810,000 | (640)(64)=40,960

Table 4.1: Numerical parameters used in the SP and SS models for the ring experiments.

Note from Table 4.1 that the SP model is run with 300 modes in z and y, while the
SS model is run with only 32 azimuthal modes. Also note that the timestep for the SP
model is twice that for the SS model. Through the course of this study, we empirically
determined that the CFL stability condition (Courant-Friedrichs-Lewy; see Press, et al.,
1992 for details) for the SP model requires a time step on the order of one-half the advective
time scale, (1/2)A/Uian,max Where Vtan max is the maximum tangential wind speed and A
is the grid spacing. For the SS model with 32 azimuthal modes, the stability boundary
was found to be on the order of one-fourth the advective time scale, (1/4)A/Tian,max- This
yields At’s of approximately 4 s and 2 s for the SP and SS models, respectively.

As in Section 3.3, a more realistic estimate of the resolution for the SP model is the
wavelength of the smallest resolvable Fourier mode which is approximately 1.5 km (three
times the grid spacing between collocation points; S99, Sect. 3).

For the SS model, a more realistic estimate of the azimuthal resolution is the wave-
length of the smallest resolvable Fourier mode at the RMW. This is approximately 5.9 km
for the ring experiment. In the radial direction, we assume the wavelength of the smallest
resolvable mode will be equal to 4 times the grid spacing. This yields an effective radial

resolution of 2 km for the SS model.
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4.4 Expected Results

Since we initialize our models in a somewhat similar fashion to S99, we expect to see
a somewhat similar evolution. That is, we expect unstable vortex Rossby waves to develop
in the flow and break the ring into vortical eddies. From Sect. 4.2.2 these eddies should
initially take on a superposed pattern of wavenumbers 3 and 4. We expect the eddies
to mix high vorticity inward and low and high vorticity outward via an active enstrophy
cascade. And we expect that the endstate will be an approximate monopole similar to the

endstate achieved in S99.

4.5 Results

4.5.1 QObserved Growth Rates

Here we examine the actual growth rates observed in the simulation as a function of
wavenumber and compare them to the growth rates predicted in Sect. 4.2.2. Since our
eigen-analysis was for the linearized form of Eq. (2.17), we compare the growth rates that
occur in the simulation while the vortex evolution is linear in nature. From Figs. 4.11 and
4.12 we observe that the evolution is still linear up to 1 h into the simulation (panel b in
both figures) but becomes nonlinear somewhat after this time (as evident by the stretched
and folded contours at ¢ = 1.5 h). As a result, we compare observed growth rates at ¢ =
1 h to see if they agree with the exponential growth rates predicted in Fig. 4.5.

Figure 4.9 shows the time evolution of the maximum Fourier amplitude én,ma.x through
t = 4 h for wavenumbers 1 through 5. Figure 4.10 shows the evolution of the observed
growth rates (1/Cnmax)d/dt(Cnmax) from t = 0.25 h to £ = 1.5 h. The two dashed ver-
tical lines in Fig. 4.10 indicate the interval in which the growth rates are approximately
constant, a distinguishing attribute of exponential growth. We only examine the growth
rates for n = 3 and n = 4 since these modes have the highest growth rates in this interval
and were predicted to be the largest in Sect. 4.2.2. For n = 4 the observed growth rate is
approximately 6.4x10~% s~1, while for n = 3, the observed growth rate is approximately

6.0x10% s~1. These values are in good agreement with the values in Fig. 4.5 where we
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predicted growth rate of approximately 6.6x10™* s™! and 6.1x10™* s~! for n = 4 and

n = 3, respectively.
4.5.2 Vortex Evolution

The following figures show the results of this set of experiments. The SP model results
are shown first (Fig. 4.11) followed by the SS model results (Fig. 4.12).

We first examine the evolution of the total field plots of vorticity given by Figs. 4.11
and 4.12. Notice the striking similarity between the two models. Both models initially
develop an instability pattern (a superposition of wavenumber 3 and 4) a short time into
the run. This instability eventually develops into vortical eddies which, in turn, initiate
the vorticity redistribution into an approximate monopole.

By comparing the two figures, we get a sense that the SS model is performing very
well at capturing the essence of the vortex evolution. The main discrepancy between the
models shows up in the form of numerical dispersion errors that are obvious beginning
with Fig. 4.12d. These errors are the result of the finite difference approximations in the
radial coordinate. Unlike the continuous case for a simple wave equation where all the
waves have the same phase speed, the finite difference representation of ‘derivatives results
in a spectrum of waves that have slightly different phase speeds. These waves are therefore
dispersive and lead to “dispersion errors.” This problem can be minimized with a more
accurate finite differencing scheme (e.g., fourth order versus second order) or a finer radial
grid mesh.

A second numerical error is observed by examining the normalized maximum values
(N_max) located in the upper-left corner of all panels. It is evident that the SS model tends
to increase (overshoot) the maximum value of the vorticity while the SP model generally
decreases this maximum over the course of the run with no noticeable overshoot. This
error is partly due to the finite difference approximation of the radial derivatives and
also to the severe azimuthal truncation for small-scale vorticity structures that develop
in the azimuthal direction in a flow with extensive mixing (Gibbs phenomenon). As with
the previously observed dispersion errors, this error can be reduced by employing a more

accurate differencing scheme, a finer mesh grid, or increased azimuthal resolution.
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Figure 4.11: SP model vorticity evolution for the ring experiment from ¢ = 0 to 5 h. In
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Figure 4.11: continued Vorticity from ¢ = 6 to 14 h.
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Figure 4.12: continued Vorticity from ¢ = 6 to 14 h.
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Changes in Mean Quantities
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Figure 4.14: Changes in the azimuthal mean (a) tangential wind (Tian), (b) angular rota-
tion rate (), (c) vorticity ({), and (d) pressure (P) over the course of the run for the SP
model (solid) and SS model (dash-dot). The units for the £ and the ¢ plots are 1073 s71.

We next examine changes in the mean quantities that are a result of the lifecycle of the
instability (Fig. 4.14). The plots show that nearly identical results are obtained with each
model. The SS model yields a final vorticity maximum that is 94% of the initial maximum,
while the SP model yields a final vorticity maximum that is 84.3% of the initial maximum.
The corresponding pressure deepening is slightly stronger in the SS model than the SP
model. Nevertheless, the overall nature of the changes (i.e., location and general strength)
are very similar. This is further illustrated in the plots of the evolving radial profiles of
these quantities shown in Fig. 4.13. With as little as 32 azimuthal modes (compared to

the 300 x 300 modes required for the SP model), the SS model produces nearly the same

endstate as the SP model.
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Domain-Integrated Quantities

As in Chapter 3, we examine area-integrated quantities (Fig. 4.15). The SS model
appears to more nearly conserve energy, enstrophy, and angular momentum than does
the SP model, which was also observed in the monopole case. Also note that the plots
of palinstrophy show a slight difference between the models in terms of the maximum
values obtained. These discrepancies notwithstanding, we observe similar results. As in
the previous chapter, this further suggests that the SS scheme is adequately representing

the dynamics of the vortex evolution.
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Figure 4.15: Time evolution of integrated (a) total energy (E = [ [ 4 2 7 Y- VY dA),
(b) angular momentum (AM = [ [r?(dA), (c) enstrophy (V = [ [3(?dA), and (d)

palinstrophy (P = [ [ 1 (- v(dA) over the course of the run for the SP model (solid)
and the SS model (dash-dot). Values are normalized based on the initial value. Note the
scale changes from (b) to (c) and (c) to (d).

4.5.3 Timing Data

Finally, we examine computer time requirements for each model to run to completion

for the unstable ring configuration. Table 4.2 shows that the SS model formulation was
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MODEL | RUN TIME (CPU)
SP 14,625 min (~10 days)
SS 5,764 min (~4 days)

Table 4.2: Timing data for the two ring runs based on the amount of CPU time required
for each model to run to completion for a 14 h vortex simulation.

able to obtain the endstate in less than half the time required by the SP model for the

numerical parameters chosen.
4.5.4 Comparison With Some of the Principle Results of S99

The initial vortex for this set of experiments was a modification of the S99 vortex
in which the RMW was reduced from 60 km to 30 km and the maximum vorticity was
nearly doubled. A more realistic hurricane-like vortex was thus obtained with stronger
initial vorticity gradients and hiéher instability growth rates than S99. As a result and
perhaps most importantly, the duration of the mixing was reduced from approximately 36
h to approximately 14 h, a more realistic estimate of the timescale for vorticity mixing in
hurricane-like vortices.

It is also interesting to note the low vorticity lobes that circle the vortex center
beginning at approximately ¢ = 7 h (panel h in Figs. 4.11 and 4.12). These two regions
orbit the center for the remaining 7 h of the evolution with no apparent effect on the shape
of the central vorticity region. A similar feature was noted in S99 expect that the core of
the low-vorticity region was ejected en masse from the center without any breakup.

A further difference between S99 and the present simulation regards the change in the
central pressure of the vortex. A deepening of approximately 8 mb is evident in Fig. 9c
of S99 while a 12 mb pressure drop is observed in Fig. 4.14, a 50% change in the pressure
deficit.

These differences are ultimately attributable to the higher wind shear and the stronger
vorticity gradient on the edges of the ring in the modified vortex. Additionally, from the
standpoint of the linear instability theory of Section 4.2.2, the maximum growth rates
and angular phase speeds for the most unstable modes of the modified vortex are roughly

twice as large as for the S99 vortex, causing the onset of mixing to occur sooner.
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We thus believe the evolution presented, although still highly idealized, is a bit more
representative of the vorticity mixing processes in the eye region of real-world hurricanes

that are weakly forced and satisfy the sufficient condition for barotropic instability.

4.6 Ring Vortex Conclusions

For the ring experiment, we have éhown that the SS model provides reasonably ac-
curate results with fewer modes and in less time than the SP model for the numerical
parameters chosen. In this simulation (and others not shown), the SS model produced
notable numerical dispersion and overshoot errors in the vorticity field. Nevertheless, the
gross nature of the evolving vorticity field and final endstates still approximately matched

the SP simulation.



Chapter 5

CONCLUSIONS

In this study we have examined a semispectral (SS) numerical model for its effec-
tiveness in simulating the dynamics of vortex flows, particularly hurricanes. The term
“semispectral” implies a model formulated in a cylindrical coordinate system and incor-
porating both finite difference and spectral methods. Here, we have limited the focus of
this study to determining how this hybrid method performs relative to “pure” methods
(a finite difference (FD) model and a spectral (SP) model) in terms of computational
accuracy and speed. We proceeded by simulating two classes of problems: (1) the redis-
tribution of vorticity anomalies within a parent “master” vortex whose vorticity profile
decreases monotonically with radius and (2) the vorticity mixing processes akin to what
is observed near the eye region of mature hurricanes. We then analyzed the output and
timing data and were able to draw conclusions on the effectiveness of the SS scheme in
simulating these two types of vortices, relative to the FD and SP schemes.

In the first set of experiments, we simulated the axisymmetrization of nearby vorticity
anomalies on a basic state “master” vortex whose vorticity decreases monotonically with
radius (as in ME). We found that the SS model performed very well. It was able to
generate virtually identical results to both the FD and SP schemes on nearly all scales.
The evolution of the vortex, the changes in the mean quantities (AT, AQ, A, and Ap),
and the time evolution of area-integrated quantities (kinetic energy, angular momentum,
and enstrophy) calculated by the SS model were virtually identical to those calculated
by the FD and SP models. Furthermore, the amount of computer time required for the
SS model to run to completion was less than half that required of the SP model and

nearly one-tenth that of the FD model for the numerical parameters chosen. Thus, when
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simulating tropical depression-like vortices with a monopolar vorticity structure, the SS
scheme generally provides highly accurate results in less time required by either the FD
or SP numerical schemes.

Our second set of experiments provided a more stringent test of the SS model by
simulating the barotropic instability and breakdown of a mature hurricane-like vortex
possessing an elevated vorticity maximum at a finite radius from the vortex center. This
set of experiments is motivated by the recent work of S99 who employed the SP model
to analyze the lifecycle of such unstable ring profiles. Since the baseline performance of
each model and the relative performance characteristics between models had already been
established in the perturbed monopole experiment, only the SP model was employed as a
control.

This second set of experiments showed that the SS model was again able to reproduce
the overall evolution of the vortex as compared to the SP model. However, some prob-
lems with numerical dispersion and overshoot of the maximum vorticity in the fluid were
observed. Barring these local errors, the SS model adequately simulated the essence of
the dynamics including locations of relative maxima and minima well into the nonlinear
mixing phase and achieved these results in less than half the time required by the SP
model for the numerical parameters chosen. Furthermore, and perhaps most importantly
from the standpoint of predicting mean flow structure and intensity changes, the SS model
predicted the final endstate to a high degree of accuracy.

It is important to note that the results obtained in the second set of experiments are
considered a bit more realistic for mature hurricanes than the S99 results. In our case,
the vortex was smaller, the elevated value of vorticity was greater, and the growth rates
for the most unstable modes were larger. This resulted in a mixing duration of 14 h with
a pressure deepening of 12 mb. The simulated mixing time is believed a more realistic
estimate of the mixing timescale in mature hurricanes.

Some of the questions posed in Chapter 1 can now be answered. The SS scheme,
taking advantage of the near-circular symmetry of the hurricane and using Fourier modes

in the azimuthal direction and finite difference approximations in the radial direction, has
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been shown to be a useful research tool for examining the near-core vortex dynamics of
tropical cyclone-like vortices. Particular instances in which this method may be desir-
able over other methods are: (1) when quick results are needed, (2) when computer time
is limited, and (3) to perform many different runs with varying initial conditions (i.e.,
sensitivity tests and ensemble forecasts). The SS method is especially advantageous for
modeling processes which generate low azimuthal wavenumber vortex Rossby waves and
when the structure of the endstate is the main goal of the numerical experiment. In sum-
mary, the SS model is a natural and effective tool that should be exploited by researchers

in studying the near-core dynamics of hurricane-type vortices.
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