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ABSTRACT 

 

 

 

NATIONWIDE DECADAL SOURCE APPORTIONMENT OF PM2.5  

WITH A FOCUS ON IRON 

 

 

Fine particulate matter pollution (PM2.5) has detrimental effects on human health, visibility, and 

the environment. One component of PM2.5, aerosol-phase iron, also has a multi-faceted effect on 

climate. In its largely insoluble iron oxide form, found in dust aerosol, it absorbs shortwave 

radiation. Emissions from anthropogenic processes, primarily industry and coal combustion, also 

contain iron, with most of that iron in soluble forms. Soluble iron is an important phytoplankton 

nutrient and thus its atmospheric abundance is intertwined with carbon sequestration. To 

ascertain the various sources of PM2.5 as well as aerosol-phase iron across the contiguous United 

States, we used the ME-2 version of PMF to obtain a 10-factor source apportionment solution 

using IMPROVE data from 2011-2019. The percentage of anthropogenic iron at various sites 

during that time span varied from nearly none in the inter-mountain West to over 50% over the 

eastern half of the US. The percentage of total iron detected that was classified as soluble iron 

reached over 20% along coastal sites but was only around 3% of the total iron emitted. Trends in 

PM2.5 component factors showed a pronounced decrease in PM2.5 from coal combustion and 

various industrial sources during the time period, but trends were mixed and not significant for 

other sources. Further research is needed applying source apportionment to nationwide speciated 

datasets like IMPROVE, and a more comprehensive global PM2.5 observation network would 

enable source apportionment on a global scale. 
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CHAPTER 1: INTRODUCTION 

 

 

 

1.1 Effects of PM2.5  

Particulate matter, specifically that which has a diameter of less than 2.5 µm (PM2.5), has 

numerous health and environmental impacts. In sufficient concentrations, PM2.5 has been 

associated with numerous respiratory and cardiovascular problems, including premature death in 

those with underlying heart or lung disease (Wang et al., 2015). In fact, ambient PM2.5 is 

estimated to cause approximately 4.2 million deaths per year; globally, 9 out of 10 people 

breathe air containing unhealthy PM2.5 levels, mostly in developing countries (Forouzanfar, 

2016). PM2.5 is also efficient at reducing visibility, because many of these particles have 

diameters of the same order of magnitude as visible sunlight. The visibility reduction process, 

Mie scattering, is very efficient with respect to mass in the accumulation mode (100 nm < Dp < 1 

µm), so a small amount of PM2.5 can greatly degrade visibility (Hand et al., 2014). In addition, 

when PM2.5 settles out due to dry or wet deposition, depending on its chemical composition, it 

can have wide-ranging environmental effects: acid rain, soil nutrient imbalance, and loss of 

ecosystem diversity, to name a few (Rai, 2016). For these reasons, the U.S., and the field of 

atmospheric chemistry in general, have devoted many years of research in order to understand 

and characterize PM2.5 to provide the scientific basis for development of regulations of PM2.5 

emissions. As a result, atmospheric concentrations of PM2.5 have generally decreased in the U.S. 

over the last couple of decades (Hand et al., 2012; Hand et al., 2013). However, both 

understanding of sources and policies for active management lag in some developing nations. 

Now and for the foreseeable future, PM2.5 remains one of the most pressing global issues. 
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1.2 Particulate Iron 

Climate change is another pressing global issue that scientists are tasked with 

understanding. One important and still uncertain climate change forcing is that of short-wave 

absorbing PM2.5. Most PM2.5 scatters visible sunlight rather than absorbing it, causing a net 

cooling effect on Earth’s climate (Hartmann, 2016). A minority of PM2.5, such as elemental 

(black) carbon and particulate iron in crustal matter, absorbs most incident sunlight (Derimian et 

al, 2008). This absorption contributes to Earth’s warming, mainly through positive feedbacks 

like the snow-albedo effect (Qu and Hall, 2007).  

We focus on iron in fine atmospheric particulate matter in this study because iron is of 

interest to climate forcing for an additional reason beyond its optical properties: some 

atmospheric iron is soluble. In certain emissions, like those associated with oil combustion and 

wood smoke, the iron is in a chemical form that can be readily dissolved in seawater (Mahowald 

et al., 2009; Fu et al., 2014; Li et al., 2017; Conway et al., 2019). There, it serves as an important 

nutrient for phytoplankton (Mahowald et al., 2009; Li et al., 2017). The prevalence and 

distribution of phytoplankton is, again, relevant to climate change. Phytoplankton play a critical 

role in sequestering atmospheric CO2 and transporting it to the deep ocean (Falkowski, 2012). 

This multi-faceted nature of atmospheric iron means that although there is very little of it relative 

to total PM2.5, iron remains integral to the deeper understanding of Earth’s climate, and by 

extension, climate change. For this reason, it is important to understand the spatial variability of 

both anthropogenically-emitted and soluble atmospheric iron. 
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1.3 Source Apportionment 

In order to tease out sources of PM2.5 that have health and visibility effects—and 

atmospheric iron for climate effects—we used the technique of source apportionment. Source 

apportionment consists of using a method or algorithm to find several physical “factors” that can 

explain observations of speciated composition, and based on the nature of those factors, they can 

be tentatively assigned to likely sources. Most published source apportionment methods are 

linear matrix decomposition models like principal component analysis (PCA) or Positive Matrix 

Factorization (PMF), but there is potential for source apportionment using some other approach, 

even a non-linear, machine learning approach (Liu et al., 2019; Li et al., 2019; Toms et al., 

2020). Most source apportionment approaches are on the site-specific or regional scale, and the 

history of nationwide, long-term source apportionment is fairly limited. The evolution of this 

type of source apportionment has mainly been tied to advances in computational power. Blifford 

and Meeker used a traditional rotated factor analysis (FA) in the first nationwide PM2.5 source 

apportionment study (Blifford and Meeker, 1967). They were able to identify some factors (e.g., 

traffic emissions) but could not attribute mass to factors because of their method. In the mid-

1980s, studies began to emerge using PCA to ascertain source apportionment nationwide—this 

time using the results in a comprehensive mortality analysis (Thurston and Spengler, 1985; 

Ozkaynak and Thurston, 1987). In 2011, Thurston et al. iterated on this approach by combining 

FA and PCA techniques to create a more detailed look at U.S. PM2.5 pollution (Thurston et al., 

2011). What all three of these studies lacked, however, was a way to incorporate measurement 

uncertainty into source apportionment; Thurston himself laments this in his 2011 work. In this 

study, we attempt to solve these aforementioned science questions by incorporating measurement 

uncertainty and using more sophisticated source apportionment techniques on a nationwide scale. 
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CHAPTER 2: METHODS 

 

 

 

2.1 Positive Matrix Factorization 

We used the Positive Matrix Factorization (PMF) technique to identify and apportion 

mass concentrations to sources. At its core, PMF is a more refined version of non-negative 

matrix factorization (NMF), a quick and well-understood method of matrix factorization. Both 

PMF and NMF constrain their input and output to positive, non-zero values, as required since 

chemistry data are physically positive and non-zero. PMF uses an algorithm to solve the equation 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘𝑓𝑘𝑗 + 𝑒𝑖𝑗𝑝
𝑘=1  

where 𝑥𝑖𝑗 is the concentration dataset with 𝑗 number of variables (constituents in this analysis) 

and 𝑖 number of data points. The right-hand side of the equation shows that PMF decomposes the 

data into an array of 𝑝 factors, with the number of factors chosen by the user. The process by 

which 𝑝 is chosen will be discussed later. The 𝑓𝑘𝑗 matrix shows how much of each constituent 𝑗 

is in each factor 𝑘, while the 𝑔𝑖𝑘 matrix determines how much of each factor 𝑘 is in each data 

point 𝑖. The residual 𝑒𝑖𝑗 is any data in 𝑥 that could not be explained by the 𝑝 factors. The specific 

algorithm in PMF minimizes the objective function Q through gradient descent: 

𝑄 =  ∑ ∑ [𝑥𝑖𝑗 − ∑ 𝑔𝑖𝑘𝑓𝑘𝑗𝑝𝑘=1𝜎𝑖𝑗 ]𝑚
𝑗=1

𝑛
𝑖=1  

The specifics of PMF are discussed in greater detail in Paatero and Tappert (1994) and Paatero 

(1997). Importantly, both 𝑥𝑖𝑗 and 𝜎𝑖𝑗, the uncertainty of every data point, are required to run a 

PMF analysis. This differs from most other source apportionment methods, including its 

predecessor, NMF. For this analysis, we used the Multilinear Engine 2 (ME-2) version of PMF 
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(Paatero, 1999) running on the EPA PMF 5.0 wrapper (Paatero et al., 2014). This package 

available from the EPA has been used in many prior PM2.5 source apportionment studies (Viana 

et al., 2007; Ulbrich et al., 2009; S. Lee et al., 2018). 

2.2 IMPROVE Data and Preprocessing 

The chemical composition of atmospheric aerosols can provide clues to the sources 

impacting air quality at a measurement site. The IMPROVE network (Figure 2.1) represents a 

long-term, speciated aerosol composition dataset with a large number of sites across the U.S. 

 

Figure 2.1. IMPROVE and IMPROVE Protocol sites as of 2016. This figure is from the 

IMPROVE website: http://vista.cira.colostate.edu/Improve/improve-program/ 

 

http://vista.cira.colostate.edu/Improve/improve-program/
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IMPROVE sites monitor in federal Class I areas, usually national parks. IMPROVE protocol 

sites are separately sponsored by state, regional, tribal, and national organizations, and may be 

located in urban regions. They employ the same instrumentation, monitoring, and analysis 

protocols as IMPROVE, expanding the coverage of the sampling. Data from the network have 

been used in a large number of studies of trends in visibility and emissions (e.g., Hand et al., 

2012, 2013, 2019; Sickles II and Shadwick, 2015; Prenni et al., 2016, Malm et al., 2017). Iron is 

among the elements analyzed in the fine particle fraction (PM2.5), and thus the IMPROVE 

dataset is ideal for purposes of further understanding atmospheric concentrations and sources of 

iron. Although the network was started in 1988, we used data only from the period 2011-2019, 

avoiding data collected across changes in analytical protocols that were implemented starting in 

2011 (Indresand and Dillner, 2012).  

IMPROVE data advisories are issued to alert users to changes in protocols, sampling and 

analysis anomalies, and other data quality issues. They are published at 

http://vista.cira.colostate.edu/Improve/data-advisories/. We reviewed all advisories issued in the 

2011-2019 time frame for applicable adjustments to the dataset before using it as input to PMF. 

In accordance with the recommendation from a published IMPROVE advisory, we reduced the 

reported vanadium concentrations from January 2011 to October 2017 by 23% 

(http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0038/da0038_V_advisory.pdf)

. Total reported elemental and organic carbon concentrations did not have corresponding 

uncertainties in the database before 2017. Only the fractions themselves (EC1, EC2, EC3, OP, 

OC1, OC2, OC3, OC4) had uncertainties and minimum detection limits (MDL). The IMPROVE 

Standard Operating Procedure (SOP) had some of the information required to back out pre-2017 

uncertainties (Hyslop and White, 2009; IMPROVE SOP #351, 

http://vista.cira.colostate.edu/Improve/data-advisories/
http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0038/da0038_V_advisory.pdf
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http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/06/IMPROVE-SOP-351_Data-

Processing-and-Validation_06.2019.pdf). The uncertainty and MDL of the fractions and post-

2017 total EC and OC concentrations are given in the SOP as:   

 𝜎 = 1000 𝑛𝑔𝜇𝑔 ∗ √(𝑀𝑎𝑥(𝜎𝑑𝑓𝑏,𝑡))2+(𝑓∗(𝐴−𝐵))2𝑉𝐶 𝑚𝑜𝑑𝑢𝑙𝑒  (1) 

 𝑚𝑑𝑙 = 1000 𝑛𝑔𝜇𝑔 ∗ 𝑀𝑎𝑥((95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝐹𝐵−𝐵),𝑡)𝑉𝐶 𝑚𝑜𝑑𝑢𝑙𝑒  (2) 

These equations reduce down to a simple form: 

 𝜎 = √(𝛿 ∗ 𝑀𝐷𝐿𝐸𝐶,𝑂𝐶)2 + (𝑓 ∗ 𝐶)2 (3) 

where 

                                𝑀𝐷𝐿𝑂𝐶 = √𝑀𝐷𝐿𝑂𝐶12 + 𝑀𝐷𝐿𝑂𝐶22 + 𝑀𝐷𝐿𝑂𝐶32 + 𝑀𝐷𝐿𝑂𝐶42 (4) 

 𝑀𝐷𝐿𝐸𝐶 =  √𝑀𝐷𝐿𝐸𝐶12 + 𝑀𝐷𝐿𝐸𝐶22 + 𝑀𝐷𝐿𝐸𝐶32 (5) 

and 𝐶 is the concentration of EC or OC in 
𝜇𝑔𝑚3, 𝑓 is a fractional uncertainty parameter given by 

the IMPROVE SOP, and 𝛿 is a parameter that must exist because 𝑚𝑑𝑙 ≠ 𝜎𝑑𝑓𝑏, the standard 

deviation for the field blank measurements. The MDL is held to a higher standard than one 

standard deviation, but its precise value is not reported in the SOP. We backed out 𝛿 by using the 

EC and OC uncertainties reported after 2017 and manipulating the above equation to solve for 𝛿. 

These values were 𝛿 ≈ 0.481 for EC and 𝛿 ≈ 0.642 for OC. Notice that the MDL for organic 

pyrolized carbon (OP) is not accounted for in the total EC or OC uncertainty calculation. 

However, the mass from OP carbon is added to OC and subtracted from EC. 

 Table 2.1 lists the species reported for each sample, which are obtained every three days. 

The bolded species were used for source apportionment in this study. These elements and 

http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/06/IMPROVE-SOP-351_Data-Processing-and-Validation_06.2019.pdf
http://vista.cira.colostate.edu/improve/wp-content/uploads/2019/06/IMPROVE-SOP-351_Data-Processing-and-Validation_06.2019.pdf
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molecules were chosen both to paint a clearer picture of source apportionment and to account for 

a large portion of total PM2.5 mass. The choice of chlorine vs. chloride and 3*sulfur vs. sulfate 

followed recommendations from the IMPROVE team as well as those in recent published work 

(e.g., Correal et al., 2020). We included every site in CONUS that had continuous measurements 

from 2011 through 2019. Zero or negative concentrations were set to a random number between 

zero and the MDL. The uncertainties of those concentrations were recalculated according to the 

IMPROVE SOP. We removed any data points that had one or more missing values for any of our 

selected components, either in concentration or uncertainty.  

 

Table 2.1. IMPROVE species considered for source apportionment. Bolded species were used in 

the PMF analysis. 

 

Aluminum Arsenic Bromine Calcium Elemental 

Carbon 

Organic 

Carbon 

Chlorides Chlorine Chromium Copper 

Iron Lead Magnesium Manganese Total PM2.5 

Total PM10 Coarse mass Nickel Nitrates Phosphorous 

Potassium Rubidium Selenium Silicon Sodium 

Sulfur Sulfate Titanium Vanadium Zinc 

 

Ultimately, this approach included 148 sites and yielded approximately 176,000 samples. 

The ME-2 engine can only calculate 100,000 samples at a time (Paatero, personal 

communication), so we split the data in half using the Python pandas “sample” method with 

random seed 125. Additionally, we created a separate bootstrapped version of our data with 

8,000 samples and the same pandas method. This was used for the EPA PMF 5.0 software’s 
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uncertainty calculations and was necessary to accommodate its input limitations. The results of 

those uncertainty calculations were robust (Figure A.1). 

2.3 PMF Setup  

The first crucial component of PMF setup is to determine which variables are “weak” and 

“bad”; that is, which elements should have their uncertainties tripled or be excluded entirely, 

respectively. We consulted the EPA PMF 5.0 user’s manual for this information 

(https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf). We 

set variables whose signal-to-noise ratio (S/N), calculated by the EPA PMF 5.0 software, was 

between 0.5 and 1.0 to “weak”, and those less than 0.5 to “bad”. Uncertainties were therefore 

tripled for Cr, Ni, and Se. As and Rb were ultimately removed entirely using this method, as 

noted in Table 2.1. Additionally, we set total PM2.5 as a weak total variable, tripling its 

uncertainty as well.  

The second crucial component of PMF setup is to determine how many factors to choose. 

The choice is largely subjective, but there are some objective methods. As suggested by Ulbrich 

et al. (2009), we chose the objective method of finding the “elbowing point”, or second 

derivative maximum, of a plot of number of factors vs. Q/Qexp. Q is the same objective function 

that PMF tries to minimize, while Qexp is the expected Q if all PMF factors were perfect at 

explaining the data. Both Q and Qexp are given by the PMF output and the second derivative was 

calculated with a finite centered difference: 

         𝑓′′(𝑥) ≈ 𝑓(𝑥+ℎ)−2𝑓(𝑥)+𝑓(𝑥−ℎ)ℎ2     (6) 

where 𝑓(𝑥) is Q/Qexp at some factor number 𝑥 and ℎ is a factor difference of one. Essentially, 

this is a way to normalize Q to the number of factors. Using this analysis, we found that either 9 

or 10 factors is the optimal number (Figure 2.2). We chose 10 factors for this analysis because all 

https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf
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10 made physical sense and were intuitive. Once the 10-factor solution was deemed optimal, we 

ran 20 PMF runs initialized with random seed 125 and let the software choose the optimal run 

based on lowest Q. The results presented herein are the factors produced in that optimal run. 

 

 

Figure 2.2. “Elbowing point”, or second derivative maximum of Q/Qexp when plotted against 

number of factors. The greatest drop in fitness parameter with respect to factor increase is shown 

to be either 9 or 10 factors. The blue line indicates the average values among 20 runs, each 

having a slight perturbation, while the black line indicates just the minimum Q value among the 

20 runs, which was the run used for analysis. 

 

2.4 Trend Analysis  

To investigate trends in the factors, we employed the Theil-Sen Regressor. We chose to 

do this firstly for consistency between trend analyses compared to prior work with IMPROVE 

data (Hand et al., 2012), and secondly because this method is insensitive to outliers compared to 

a simple ordinary least squares regression (Sen, 1968). With interannual variability quite high for 

multiple factors and only a 9-year dataset, we deemed a non-parametric estimator best. The 
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Theil-Sen estimator is defined as the median of the slopes of all pairs of sample points (Theil, 

1992): 

 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑦𝑗−𝑦𝑖𝑥𝑗−𝑥𝑖}            (7) 

Our sample points are annual mean PM2.5 contribution (𝑦𝑖,𝑗) from the factor k versus year (𝑥𝑖,𝑗) 

for every IMPROVE site. The Theil-Sen regressor was computed using Python’s SciPy library. 
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CHAPTER 3: RESULTS AND DISCUSSION 

 

 

 

3.1 Factor Composition and Source Interpretation 

The distribution of the included species, including Fe (labeled FEf in the figure), into the 

ten factors is best viewed through a fingerprint plot (Figure 3.1) which is closely linked to the 

factor matrix 𝑓𝑘𝑗. The compositions (factor profiles) of the ten factors are provided in Table 3.1 

and Table A.1. Based on both the dominant species included in each factor and prior work on 

typical source profiles (Thurston and Spengler, 1985; Ozkaynak and Thurston, 1987, Thurston et 

al., 2011) we assigned the indicated source types. Each is discussed further below. 

 

 

Figure 3.1. Factor Fingerprints, 10 factors: For each of the 23 variables, 22 of which nearly sum 

up to total PM2.5, this plot shows the percentage of each element associated with each factor. 
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Table 3.1. Factor profiles (𝑓𝑘𝑗 matrix) for the ten-factor solution. The units are µg/m3 per 

standard deviation of the factor. Species which were key in identifying each factor are given in 

bold. This table is shown with alternate units of percentage of species sum in Table A.1. 

 

 

3.1.1. Bromides Factor 

The Br-rich (bromides) factor, shown in Figure 3.2, seems to be spatially uniform 

throughout the contiguous U.S. The majority of particulate bromine was present in this factor, 

along with some trace metals. Of the species loaded into the factor in this work, Ca and Pb were 

also loaded into a “bromide” factor in the results reported by Lee et al. (1999). Those authors 

conducted a PMF analysis on speciated PM10 samples collected from 1992-1994 in Hong Kong, 

 
Comb. Second. 

Nitrates 

Coal 

Comb. 

Silicon-

Dust 

K-rich Br-rich Oil 

Comb. 

Industry Calcium-

dust 

Sea Salt 

Al 0 1.98E-05 1.36E-03 4.16E-02 1.96E-03 2.65E-03 0 0 1.52E-03 6.62E-04 

Br 9.20E-05 4.32E-05 1.80E-05 0 0 1.28E-03 0 5.03E-05 0 4.51E-05 

Ca 9.44E-04 1.27E-04 1.06E-03 2.20E-03 8.27E-05 0 0 1.27E-03 3.35E-02 1.21E-03 

Chl. 1.31E-04 1.06E-03 0 1.43E-04 8.77E-04 3.09E-03 0 2.21E-03 0 7.00E-02 

Cr 1.54E-06 2.32E-06 9.06E-06 3.13E-05 0 8.25E-06 5.50E-06 4.19E-05 0 1.04E-06 

Cu 0 0 0 3.94E-05 0 6.73E-05 2.77E-05 2.66E-04 6.10E-06 0 

Fe 6.29E-04 2.45E-04 0 2.78E-02 0 0 1.08E-03 5.61E-03 1.09E-03 0 

Pb 0 2.39E-05 1.33E-04 0 2.84E-05 1.47E-04 0 2.52E-04 1.62E-05 5.67E-06 

Mg 0 0 0 0 0 1.28E-04 7.96E-03 0 4.29E-03 2.54E-03 

Mn 4.32E-05 3.40E-06 2.28E-05 5.15E-04 3.21E-05 0 1.17E-05 2.23E-04 1.07E-04 4.11E-06 

PM2.5 1.76E+00 2.77E-01 1.10E+00 4.68E-01 5.99E-02 5.97E-02 1.93E-01 0 1.44E-01 1.51E-01 

Ni 1.40E-06 9.12E-07 2.19E-05 1.91E-05 2.53E-07 5.43E-06 2.10E-05 2.06E-05 0 6.86E-07 

NO3 5.13E-03 3.19E-01 0 2.11E-03 1.40E-03 0 1.26E-02 3.07E-03 0 0 

K 3.14E-03 0 0 4.53E-06 2.62E-02 0 3.59E-03 8.20E-04 2.67E-03 5.58E-04 

Se 7.79E-06 5.53E-06 9.33E-05 0 0 2.87E-05 9.76E-08 9.89E-06 5.47E-06 4.51E-06 

Si 1.30E-03 0 0 9.54E-02 2.26E-03 3.68E-03 5.55E-05 1.15E-04 1.19E-02 2.01E-04 

Na 0 0 0 0 0 0 3.78E-02 0 0 2.50E-02 

SO4 0 1.79E-02 6.49E-01 5.61E-03 0 0 5.64E-02 0 7.41E-03 5.89E-03 

Ti 6.08E-05 1.95E-06 1.72E-05 2.57E-03 7.76E-05 5.19E-05 1.12E-04 1.88E-04 0 0 

Zn 3.28E-06 1.27E-04 4.80E-05 0 2.63E-04 4.64E-05 0 1.99E-03 0 1.17E-05 

V 0 0 4.63E-05 4.87E-05 0 1.75E-06 3.83E-05 6.05E-07 0 0 

EC 8.80E-02 5.72E-03 3.69E-03 0 0 0 0 4.38E-02 2.60E-04 5.27E-04 

OC 8.36E-01 0 0 1.89E-02 7.98E-03 1.84E-02 4.65E-02 0 0 0 
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and they identified a bromine-rich factor associated with vehicle/road dust emissions. This 

source definition would be consistent with the widespread and uniform occurrence of this factor 

in our analysis. However, we note that vehicular and road dust emissions would be expected to 

differ between the U.S. and Hong Kong based on differences in vehicle fleet and fuel 

composition, and those emissions would have also varied between the early 1990’s and the time 

period of our analysis. However, more recently, Jain et al. (2017) also found Br to be associated 

with vehicular emissions. In our study, very little mass was encapsulated in this factor, with 

average daily PM2.5 ranging from 20-50 ng/m3, depending on the site. 

 

 

Figure 3.2. Percentage of PM2.5 from the bromides factor. The size of the circle indicates average 

concentration of PM2.5 from this factor at each site, while the color indicates the percentage of 

the total fine mass concentration attributed to this factor. This factor has low concentration 

everywhere, so note the color scale of 0-5%, which differs from the other plots in this section. 

 

3.1.2 Combustion (elemental- and organic-carbon-rich) factor 
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This factor is associated with the most gravimetrically-measured PM2.5 in the PMF model 

(average over all sites of 41%; Figure 3.3), and contains mainly EC and OC. There are some 

trace metals alongside carbon, but not nearly as much as we might expect for biomass burning or 

other combustion processes. A possible mechanism for this is that particle-phase OC can be 

formed by secondary chemical processes occurring in biogenic and anthropogenic emissions. 

Thus, although this factor was labeled as “combustion” it also likely represents contributions 

from secondary organic aerosol (SOA), including biogenic emissions and their respective SOA. 

There is also likely some contribution from traffic given the high elemental carbon fraction in the 

factor. “Combustion” therefore is used as a shorthand, recognizing that a number of sources 

contribute to this EC- and OC-rich factor. 

 

Figure 3.3. Percentage of PM2.5 from the combustion factor. The size of the circle indicates 

average concentration of PM2.5 from this factor at each site, while the color indicates the 

percentage of the total fine mass concentration attributed to this factor. 

 

3.1.3 K-rich factor 
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The K-rich factor contains most of the potassium, a typical tracer for primary emissions 

from biomass burning, but K is also found in soils (Pachon et al., 2013). K emissions from 

biomass burning are typically associated with flaming rather than smoldering combustion of 

wood and plant fuels (Lee et al., 2010) and are not expected to necessarily correlate with 

secondary organic aerosol (here, as OC). The contributions from this factor, shown in Figure 3.4, 

could be summed with those from the combustion factor to estimate total contributions from 

biomass burning and other OC sources. Both of these factors show similar spatial variability, 

with the highest percentage of total PM2.5 from combustion occurring in the Pacific NW. There is 

high potassium in the desert Southwest as well, though that may be associated with soil. 

 

Figure 3.4. Percentage of PM2.5 from the K-rich factor. The size of the circle indicates average 

concentration of PM2.5 from this factor at each site, while the color indicates the percentage of 

the total fine mass concentration attributed to this factor. This factor has low concentration 

everywhere, so note the color scale of 0-5%, which differs from the other plots in this section. 

 

3.1.4 Secondary nitrate factor 
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Particulate NO3 is a secondary aerosol formed via NOx reactions, and it also requires the 

presence of ammonia (or another cation; see T. Lee et al., 2008) to form. This factor contributed 

significantly to PM2.5 mass concentrations in regions of intensive agriculture, such as the 

Midwest and San Joaquin Valley where NO3 accounts for almost 40% of PM2.5 (Figure 3.5). In 

the desert Southwest, nitrate may be associated primarily with soil in the coarse mode (Lee et al., 

2008), but is measured here only in the fine mode. 

 

Figure 3.5. Percentage of PM2.5 from the secondary nitrate factor. The size of the circle indicates 

average concentration of PM2.5 from this factor at each site, while the color indicates the 

percentage of the total fine mass concentration attributed to this factor. 

 

3.1.5 Coal combustion factor 

The coal combustion factor had a unique and easily-identifiable signature (Thurston et 

al., 2011), namely the presence of SO4 and Se. The east-west gradient for this factor (Figure 3.6), 

in both total mass contributed and the percentage of fine mass that it represents, was expected, 

with increases toward the eastern seaboard in regions where energy generation relied on coal 
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combustion during the time period. There, coal combustion accounted for approximately 50%, or 

2 µg/m3, of modeled mass. West of the Rockies, those numbers dip to around 20% and 0.5 

µg/m3, respectively. 

 

Figure 3.6. Percentage of PM2.5 from the coal combustion factor. The size of the circle indicates 

average concentration of PM2.5 from this factor at each site, while the color indicates the 

percentage of the total fine mass concentration attributed to this factor. 

 

3.1.6 Oil combustion (shipping) factor 

The oil combustion factor relied on primarily nickel and vanadium as identifiers, pointing 

toward the shipping industry as the major source (Corral et al., 2020). Some Na and Mg that 

likely originated from sea salt, as well as spatial variability with the highest mass contributions at 

the coasts (Figure 3.7), confirmed the likely contributions from shipping. Although both Ni and 

V are trace metals and are measured and predicted with lower S/N, PMF generated this factor 

with surprising consistency. Along the coasts, up to 20% of the PM2.5 modeled could be 

predicted by this factor. 
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Figure 3.7. Percentage of PM2.5 from the oil combustion factor. The size of the circle indicates 

average concentration of PM2.5 from this factor at each site, while the color indicates the 

percentage of the total fine mass concentration attributed to this factor. 

 

3.1.7 Industrial emissions factor 

The industrial emissions factor contained very little mass but many important trace 

metals associated with anthropogenic activity. High Cu and EC indicate traffic emissions; Zn and 

Pb, metal smelting; and Fe and Mn, steel production (Thurston et al., 2011). Apart from a couple 

of outlier sites near large industrial operations, most sites had only a small contribution from this 

factor (Figure 3.8). 
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Figure 3.8. Percentage of PM2.5 from the industrial emissions factor. The size of the circle 

indicates average concentration of PM2.5 from this factor at each site, while the color indicates 

the percentage of the total fine mass concentration attributed to this factor. 

 

3.1.8 Sea salt factor  

The sea salt factor consisted mainly of sodium and chloride, and represented both fresh 

and reacted sea salt. As one might expect, this factor was found primarily near the coasts (Figure 

3.9). There, as low as 10% and as high as 50% (Point Reyes, CA) of PM2.5 mass was attributed 

to this source. 
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Figure 3.9. Percentage of PM2.5 from the sea salt factor. The size of the circle indicates average 

concentration of PM2.5 from this factor at each site, while the color indicates the percentage of 

the total fine mass concentration attributed to this factor. 

 

3.1.9 Dust factors 

Two dust factors were identified: silicon-rich and calcium-rich dusts (Figures 3.10 and 

3.11). The highest concentrations of Si-based dust were found mainly in the desert Southwest 

and comprised, on average, 20% of the PM2.5 mass concentrations. Crustal elements, including 

Al, Fe, Si, and Ti, were the primary components loaded into this factor. The Ca-rich dust factor 

also had its highest concentrations in the desert Southwest, with some other locations of 

relatively high concentrations in the Midwest likely associated with agricultural activity. In the 

Southwest, Ca-based dust represented a smaller faction (5%) of PM2.5 concentrations than did Si-

based dust (note the scale for the bubble sizes is about a factor of three smaller for the Ca-rich 

dust factor). 
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Figure 3.10. Percentage of PM2.5 from the silicon-rich dust factor. The size of the circle indicates 

average concentration of PM2.5 from this factor at each site, while the color indicates the 

percentage of the total fine mass concentration attributed to this factor. 

 

 

Figure 3.11. Percentage of PM2.5 from the calcium-rich dust factor. The size of the circle 

indicates average concentration of PM2.5 from this factor at each site, while the color indicates 
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the percentage of the total fine mass concentration attributed to this factor. Note the 

concentration scale (circle size) is different from that in Figure 3.10. 

 

3.2 Factor Residual Analysis 

To assess how well PMF accounted for individual data point variability, we tested 

predicted values 𝑔𝑖𝑘 ∗ 𝑓𝑘𝑗 against the data 𝑥𝑖𝑗, similar to the PMF definition equation in section 

2.1, isolating the residual 𝑒𝑖𝑗. We made scatter plots of these variables, tested goodness-of-fit 

with both ordinary least squares (OLS) and RANSAC (Fischler and Bolles, 1981, in order to 

reduce the weight of outliers) regressors, and computed an r2 for the OLS fit. These results are 

shown in Figure 3.12. Most elements were predicted quite well by PMF. We were able to 

reconstruct gravitationally-measured PM2.5 to an r2 of 0.934. Though most of the speciated 

elements measured by IMPROVE are included in the PMF model, the calculated mass is an 

underestimation by nearly 50% on average. This is expected, since the reconstruction did not 

account for ammonium ions that are certainly present in association with sulfate and nitrate; this 

species is not measured with its associated uncertainty by IMPROVE. Also, assumptions about 

mineral oxygen and other elemental constituents are used to rebuild the dust mass concentration 

from key elements, which are reliable on average but may not be applicable at a particular site 

and were not included here. Similarly, the organic carbon (OC) concentrations provided are only 

representative of the C mass concentrations, and the hydrogen and oxygen contents of the OC 

have not been included. Finally, the gravimetric measurements are not made at a consistently low 

relative humidity 

(http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0035/da0035_IncreasedRH.pdf

). Since the atmospheric aerosol is hygroscopic, to varying degrees depending on composition, 

http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0035/da0035_IncreasedRH.pdf
http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0035/da0035_IncreasedRH.pdf
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the gravimetric mass concentration includes some aerosol water that is not included in the 

reconstruction. 

 

Figure 3.12. Predicted (sum of all speciated components of PMF factors) vs. observed 

(IMPROVE) for gravitationally-measured PM2.5. 

 

We also created spatial variability maps to assess where and with what elements PMF 

clustered either well or poorly. In general, most elements with high S/N (>2), were well-

predicted (r2 > 0.7). Some noisy elements, especially those with S/N < 1, which we set to “weak” 

for the PMF runs, had poor predictive capabilities—this was true for Cr, Cu, Pb, Ni, Se, and V. 

Figure 3.13 shows the site-specific analyses for iron (Fe), since apportionment of Fe to various 
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sources is a focus of this work. Overall, ~94% of the variability was predicted (Figure 3.14); r2 > 

0.8 were achieved at nearly all sites, with a few clear exceptions. We note that r2 in this sense 

only predicts the ability of the PMF algorithm to cluster the input species and does not imply the 

accuracy of these factors. The sites in Alabama and Georgia are IMPROVE protocol sites, 

operated as urban air quality sites, with measurements that likely include local sources that are 

not well represented by the nationally-averaged analysis performed in this work. 

Reasons for the lower r2 at the more rural sites in Idaho, Virginia, and Minnesota are less 

clear. As shown in the Appendix, the Idaho site is located close to a major molybdenum mine, 

the Minnesota sites are located close to iron mines (Figure A.2), and Minnesota and Virginia are 

among the nation’s larger producers of non-fuels metals (Figure A.3). Depending on the 

IMPROVE site’s location, meteorology, and siting and nature of the particular metals operations, 

the measurements may be influenced by sources that are also not well represented by the 

nationally-averaged source factors. 
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Figure 3.13. Site-specific iron r2, comparing Fe mass concentrations for observed (IMPROVE) 

vs. predicted (reconstruction with PMF factors). The color of the circle indicates the r2 value. 

The size of the circle corresponds with average total particulate iron mass concentration 

measured at the site. 
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Figure 3.14. Predicted (sum of all PMF factors’ iron) vs. observed (IMPROVE) for iron in PM2.5. 

The RANSAC regressor, which is insensitive to outliers, lies nearly on the 1:1 line. 

 

3.3 Apportionment of PM2.5 Fe 

In this section, we use the PMF results, shown in Figure 3.15, to explore the sources of 

atmospheric fine particulate Fe in more detail. Iron was associated with 6 factors, with varying 

degrees of prevalence: combustion (0-5%), Ca-dust (0-5%), and NO3 (0-5% of total iron) were 

all relatively minor sources. Of note is combustion Fe, which is usually soluble (Mahowald et al., 

2009; Fu et al., 2014; Ito et al., 2019). The site- and time-averaged concentration associated with 

that source was around 1 ng/m3. An important form of soluble Fe often comes from oil 

combustion, which comprised 10%-50% of the total Fe concentrations at coastal sites. Iron 

concentrations for this factor ranged from 1-4 ng/m3. The Fe associated with industry sources 

varied greatly across the U.S. Some urban sites, like the ones in Pittsburgh, Birmingham, and 
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Seattle, had the vast majority of observed Fe associated with this source, and the specific 

industry was likely steel production (Luo et al., 2008). However, most Eastern sites had around 

half of the observed Fe concentrations attributed to this factor, likely representing a variety of 

industries. West of the Rockies, save for a few urban sites, Fe attributed to the industry factor 

was nearly non-existent. The final and most dominant Fe factor was that of Si-dust, which is the 

source of most of the dust in the global atmosphere. Most of the West had nearly all of the 

observed Fe apportioned to dust, while in the East, a minority of Fe came from this factor. 

Interestingly, Miami, FL, which sees many Saharan dust plumes, looks more like the West in this 

regard. 
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Figure 3.15. Percentage of iron from the six indicated factors: (top row) oil combustion, 

combustion; (middle row) Ca-Dust, NO3; (bottom row) industry, Si-Dust. The size of the circle 

indicates average mass concentration of Fe in PM2.5 at each site from each factor, while the color 

indicates how much of the total measured Fe was attributed to that factor.  

 

To compute the total anthropogenically-derived Fe, we summed the Fe associated with 

the following factors: nitrate, oil combustion, coal combustion, and industry (Figure 3.16). With 

these assumptions, most of the PM2.5 iron in the Northeast and along the West Coast was 

apportioned as coming from an anthropogenic source. Apart from the coast, most of the West 
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and Florida had little to no anthropogenic influence, reflecting the dominant contribution of dust 

sources to measured fine particulate Fe at those locations. 

 

Figure 3.16. Percentage of measured fine particulate Fe from anthropogenic sources. The size of 

the circle indicates average amount of total anthropogenic PM2.5 Fe at each site, while the color 

indicates the percentage of the total fine particulate Fe attributed by PMF to anthropogenic 

sources. 

 

Soluble iron is a specific interest of this work. We made the approximation that 

potentially-soluble iron was equal to Fe from the combustion and oil combustion factors 

(Mahowald et al., 2009; Ito et al., 2019); further, since coarse mass is largely contributed by dust, 

we assume very little soluble Fe is missed by the lack of speciation for coarse-mode aerosols 

(Gao et al., 2019). Figure 3.17 shows the spatial distribution of soluble Fe under these 

assumptions. The highest mass concentrations are now clearly associated with coastal regions, 

pointing to the strong contributions from shipping (e.g., Corral et al., 2020). Along coastal 

regions, some sites have up to 40% of Fe in a soluble form. The majority of soluble Fe from this 

analysis was in the form of oil combustion iron, comprising around 3% of the total Fe across all 
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sites. The combustion (EC- and OC-rich) factor, which includes biomass burning, only captured 

1.7% of the total Fe across all sites (Table A.1). Note that most IMPROVE sites are in the 

Intermountain West, which sees little oil combustion emissions. The Fe available for deposition 

over phytoplankton areas is likely closer to the values along coastal sites (e.g. 2-4 ng/m3). 

 

Figure 3.17. Percentage of measured fine particulate Fe from potentially soluble sources (oil 

combustion and “combustion”). The size of the circle indicates average amount of potentially 
soluble measured PM2.5 Fe at each site, while the color indicates the percentage of the total fine 

particulate Fe attributed by PMF to soluble sources. 

 

3.4 Comparison with Measured and Modeled Anthropogenic and Soluble Fe  

Rathod et al. (2020) present an emissions inventory for anthropogenic combustion-

derived Fe, with a specific aim to represent soluble Fe to assess deposition fluxes. In Rathod et 

al. (2021, in preparation), they expand on this work to simulate source-resolved atmospheric 

concentrations of Fe using global meteorology for the year 2010. Although outside our time 

period of 2011-2019, here we provide comparisons between our averaged observations and their 

model predictions. Figure 3.18 presents their predictions of the fraction of observed PM2.5 Fe that 
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was attributed to anthropogenic sources. Comparing with Figure 3.16, fractions are highest in the 

northeastern U.S. for both studies, although Rathod et al. predicted >80% due to anthropogenic 

sources. The PMF predictions are generally lower, but still >50%. Figure 3.19 shows a 

comparison of the mass concentrations, which are within a factor of 2 over 2 orders of 

magnitude, again with Rathod’s model having larger values than the PMF estimates. Figure 3.20 

shows the mass concentrations of PM2.5 Fe from one source, oil combustion, as estimated from 

the PMF results, and compares these with the CAM6 transport model simulations of Rathod et 

al. (2021). This source of atmospheric Fe is generally soluble but represents a minority of 

anthropogenic Fe. 

 

Figure 3.18. Modeled (Rathod et al., 2021) percentage of anthropogenic (defined as Total Fe – 

Fire Fe – Dust Fe) relative to total PM2.5 iron. Compare with Figure 3.16, which has the same 

color scale. 
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Figure 3.19a,b. Comparison between anthropogenic iron predicted by Rathod et al. (2021) and 

our PMF estimates (see Figure 3.17). The units are in µg/m3.  

 

 

Figure 3.20. Comparison of oil combustion iron concentrations predicted by Rathod et al. (2021) 

(y-axis) and this PMF analysis (x-axis). The black line is a 1 to 1 comparison, and the dashed red 

lines are an order of magnitude difference. The black points use CAM6 atmospheric transport 

while the blue points use a Rathod et al’s (2021) chemical mass balance (CMB) inferred oil 

combustion iron; CMB methods and results are not discussed herein.  
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3.5 Trend Analyses 

Because we have 9 years of data, it was possible to perform trend analyses on some 

factors to gauge how certain sources of PM2.5 pollution might be changing regionally across the 

U.S. We chose a Theil-Sen regressor to estimate linear trends and significance at each site, 

following Hand et al. (2012). Results of some of the trend analyses are shown in Figures 3.21 

through 3.24, with some of the other trend figures shown in the Appendix. In these figures, the 

magnitude of the trend (as % change per year) is shown by the symbol color; symbols edged in 

white denote that the trend is not statistically significant, whereas symbols edged in black denote 

statistically-significant trends (p-value < 0.05). 

Between 2011-2019, trends in the West for the biomass burning-related K-rich factor 

were positive, which would be expected due to increased wildfire activity (Figure A.4). 

However, as shown in Figure 3.21, no site had a statistically significant trend of an increase or 

decrease of combustion-derived PM2.5, likely due to high interannual and spatial variability in 

fire seasons (Figure 3.22) as well as the multiple sources that the combustion factor reflects.  

The bromides factor had interesting trend characteristics (Figure A.5), with decreasing 

values on the order of 5%/year over the Southern Plains at a 95% confidence level. Bromine is 

used in some agricultural pesticides, and these trends may reflect changes in application of such 

compounds. The trend for the industry factor (Figure A.6) was decreasing in most locations 

except for in the Sierras, where emissions (presumably from the San Joaquin Valley and Bay 

Area) caused a positive anthropogenic trace metal trend. Conversely, for the nearby Fresno site, 

NO3 emissions were decreasing at a relatively high and significant rate of change. Similar 

downward trends in the nitrate factor were seen over the Great Plains where the highest nitrate 
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concentrations typically occurred (Figure A.7). There is a likely linkage to agricultural practices, 

but these are not explored further here. 

 

 

Fig 3.21. Trends in the combustion factor: PM2.5 from combustion does not show a significant 

trend over any site, likely due to high inter-annual variability. Color of the circle shows linearly-

modeled mass change per year from this factor, circle size indicates decadal-average mass per 

site from coal combustion, and the outline of the circle (white or black) indicates significance at 

the 95th percentile. 
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Figure 3.22. Wildfire burned acreage per year (source: National Interagency Fire Center) 

overlaid with PM2.5 from the combustion factor (arbitrary scale) over all sites. The thin blue lines 

show the interannual variability for each site, and the black line is the mean over all sites. 

 

The most clear and statistically-significant trends were the decreasing ones in 

concentrations associated with the coal combustion factor (Figure 3.23). With a decrease of 

nearly 10% per year over much of the Eastern U.S., every site east of 100 deg W had a 

decreasing trend significant at the 95% confidence level. Even many sites west of 100 deg W had 

a statistically significant decreasing trend in this factor. These decreases can also be seen in a 

plot of the annually-averaged coal combustion PM2.5 concentration time series, constructed for 

all sites (Figure A.8). Hand et al. (2012) showed a similar trend in sulfates from the early 1990s 

through 2010; Chan et al. (2018), from 2000 through 2015; and Hand et al. (2019), from 2005 

through 2016. These findings also mirror trends in coal-fired electricity generation, showing 

around a 3.5% nationally-averaged decrease per year (Figure A.8 and Table A.2). 
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Fig 3.23. Trends in coal combustion factor. Color of the symbol shows the linearly-modeled 

percentage mass change per year from this factor, circle size indicates decadal-average mass per 

site from coal combustion, and the outline of the circle (white or black) indicates significance at 

the 95th percentile. 

 

Figure 3.24 shows the trends computed for the mass concentrations associated with the 

oil combustion factor, which is a good proxy for soluble iron along the coasts as mentioned in 

Section 3.3. There were only a few sites that had statistically-significant trends, most notably, the 

Martha’s Vineyard site in Massachusetts. This site had a trend of -2.5%/year as well as some of 

the largest contributions to fine mass concentrations from this factor. However, overall, coastal 

sites did not show statistically significant increases or decreases in fine mass from oil 

combustion, suggesting that soluble iron from this source also remained relatively unchanged 

over the time period. As discussed in Spada et al. (2018), major changes in regulations covering 

the types of fuels burned in shipping operations occurred in 2010 and 2015. They found large 

decreases in coastal V concentrations between 2011 and 2015, suggesting these were attributable 

to changes in bunker fuel emissions. It is interesting that our study did not find a statistically-
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significant linear trend in the oil combustion factor, which constituted about 30% of the observed 

V concentrations (Figure 3.1). One possible explanation is that increases in shipping activity 

over this period, if correctly captured in our oil combustion factor, may dominate over changes 

in fuel composition. However, to isolate trends in shipping-related Fe, similar to those found for 

V, additional work is needed. 

 

Fig 3.24. Trends in oil combustion factor. Color of the symbol shows linearly-modeled mass 

change per year from this factor, circle size indicates decadal-average mass concentration per site 

from oil combustion, and the outline of the circle (white or black) indicates significance at the 

95th percentile. 
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CHAPTER 4: SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 

 

 

In this study, we used 2011-2019 IMPROVE data from multiple sites across the U.S. to 

identify a 10-factor PMF solution with physically-interpretable factors. Though some factors had 

mixed interpretations (e.g. the combustion factor comprising anthropogenic primary emissions, 

biomass burning primary emissions, and multiple secondary OC sources), most were easily 

identifiable as coming from a single source. Factors that included substantial amounts of Fe were 

primarily reflective of a single source type, except for the industrial factor, in which many 

anthropogenic sources (steel production, smelting, traffic, etc.) were rolled into one. An analysis 

with more factors could separate these anthropogenic factors further at the potential risk of 

overfitting.  

Results were presented herein as averages over the entire study period. Additional 

information that may shed light on sources contributing to each factor may be gained through 

seasonal analyses. For example, wildfire and prescribed burns generally occur during specific 

seasons that vary with location across the U.S., while industry and traffic-related sources are 

expected to be constant. Agricultural operations that may contribute to dust emissions also 

follow specific seasonal patterns and might be identifiable in seasonal variability of dust factors. 

Further, restricting sites to non-urban locations and performing PMF on a regional rather than a 

national scale may refine some of the factors. 

This study had a particular focus on determining sources and concentrations of soluble 

iron because of its effects on biogeochemistry and the carbon cycle. We were able to 

quantitatively show the spatial and temporal variability of soluble and anthropogenic iron 

through interpretation of sources associated with each factor. In addition, performing a trend 
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analysis on these factors proved possible; and there are other analyses that one can perform on 

this solution.  

An interesting extension of this work is to apply a different source apportionment 

solution, to explore the next evolution of source apportionment. Whether it is a simple clustering 

algorithm such as factor analysis or principal component analysis, k-means clustering, or a non-

linear model, the problem of source apportionment should not be confined to one algorithm. 

During this project, there were many computational limitations that had to be overcome that 

could be mitigated through the use of other approaches. 

Extending this study worldwide would require long-term, speciated PM2.5 datasets with 

point uncertainties in other regions of the world outside the United States. There are some long-

term datasets in Europe and Asia that are speciated that may be applicable. An approach for 

source apportionment would be either to estimate uncertainties using an equation similar to that 

in the IMPROVE Standard Operating Procedure, if uncertainties are not provided, or to use a 

source apportionment technique other than PMF. 
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APPENDIX  

 

 

 

Table A.1. Factor profiles (𝑓𝑘𝑗 matrix) for the ten-factor solution. The units are percentages of 

the total element. Species which were key in identifying each factor are given in bold. This table 

is shown with units of µg/m3 in Table 3.2. 

 

 

  

 
Comb. Second. 

Nitrates 

Coal 

Comb. 

Silicon-

Dust 

K-

rich 

Br-

rich 

Oil 

Comb. 

Industry Calcium-

dust 

Sea 

Salt 

Al 0 0.04 2.74 83.58 3.94 5.32 0 0 3.06 1.33 

Br 6.04 2.83 1.18 0 0 83.69 0 3.3 0 2.96 

Ca 2.34 0.31 2.64 5.44 0.2 0 0 3.14 82.92 3 

Chl. 0.17 1.37 0 0.18 1.13 3.98 0 2.86 0 90.31 

Cr 1.53 2.3 8.98 30.98 0 8.18 5.45 41.56 0 1.03 

Cu 0 0 0 9.71 0 16.57 6.82 65.41 1.5 0 

Fe 1.73 0.67 0 76.26 0 0 2.97 15.39 2.99 0 

Pb 0 3.94 21.95 0 4.68 24.23 0 41.59 2.68 0.94 

Mg 0 0 0 0 0 0.86 53.39 0 28.73 17.02 

Mn 4.48 0.35 2.37 53.49 3.34 0 1.22 23.2 11.13 0.43 

PM2.5 41.76 6.58 26.11 11.13 1.42 1.42 4.57 0 3.42 3.58 

Ni 1.53 1 24 20.94 0.28 5.95 22.97 22.58 0 0.75 

NO3 1.5 92.92 0 0.62 0.41 0 3.66 0.9 0 0 

K 8.51 0 0 0.01 70.83 0 9.7 2.22 7.22 1.51 

Se 5.02 3.56 60.09 0 0 18.47 0.06 6.37 3.52 2.91 

Si 1.13 0 0 83.03 1.97 3.2 0.05 0.1 10.34 0.17 

Na 0 0 0 0 0 0 60.24 0 0 39.76 

SO4 0 2.41 87.44 0.76 0 0 7.6 0 1 0.79 

Ti 1.98 0.06 0.56 83.44 2.52 1.69 3.63 6.12 0 0 

Zn 0.13 5.09 1.93 0 10.57 1.86 0 79.95 0 0.47 

V 0 0 34.1 35.91 0 1.29 28.26 0.45 0 0 

EC 61.96 4.03 2.6 0 0 0 0 30.86 0.18 0.37 

OC 90.11 0 0 2.03 0.86 1.99 5.01 0 0 0 
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Table A.2. Coal production and consumption statistics from the U.S. Energy Information 

Administration (https://www.brookings.edu/wp-content/uploads/2019/01/H.Gruenspecht_U.S.-

Coal-Sector_Final_Jan_20191.pdf) showing an approximately 3.5% decrease per year in coal 

consumption. 

 

 

https://www.brookings.edu/wp-content/uploads/2019/01/H.Gruenspecht_U.S.-Coal-Sector_Final_Jan_20191.pdf
https://www.brookings.edu/wp-content/uploads/2019/01/H.Gruenspecht_U.S.-Coal-Sector_Final_Jan_20191.pdf
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Figure A.1. (left) Displacement error estimation results (see 

(https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf) and 

(right) base model results for the bootstrapped 8,000-sample subset. All 20 runs converged and 

no factor swaps occurred during error estimation. 

 

 

 

 

 

 

 

 

 

https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf
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Figure A.2. Major metals operations in the United States (National Mining Association, 

https://nma.org/2018/09/02/map-major-metals-operations-in-the-united-states/). The Idaho 

molybdenum mine in question is near the IMPROVE site and may affect the iron variability. 

There are also two iron mine sites near the IMPROVE sites with low predictability in Minnesota. 

 

 

https://nma.org/2018/09/02/map-major-metals-operations-in-the-united-states/
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Figure A.3. Value of nonfuel minerals produced by state in 2016 (USGS, 

https://www.usgs.gov/news/top-5-mineral-producing-states). Minnesota and Virginia both have 

higher-than-average values, though the relationship between this and iron variability seems 

tenuous. 

 

https://www.usgs.gov/news/top-5-mineral-producing-states
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Fig A.4. Trends in the K-rich factor: PM2.5 from this factor shows an increase over the Sierras, 

possibly due to increases in biomass burning, and a decrease over New Mexico, possibly due to a 

high fire year in 2011 (http://www.emnrd.state.nm.us/SFD/FireMgt/Historical.html). The color 

of the circle shows linearly-modeled mass change per year from this factor, circle size indicates 

decadal-average mass per site from coal combustion, and the outline of the circle (white or 

black) indicates significance at the 95th percentile. 

 

 

 

http://www.emnrd.state.nm.us/SFD/FireMgt/Historical.html
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Fig A.5. Trends in the Br-rich factor: PM2.5 from this factor shows a decrease over some of the 

Midwest and Plains. The color of the circle shows linearly-modeled mass change per year from 

this factor, circle size indicates decadal-average mass per site from coal combustion, and the 

outline of the circle (white or black) indicates significance at the 95th percentile. 
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Fig A.6. Trends in the industry factor: PM2.5 from this factor shows an increase over the Sierras 

and a decrease over much of the U.S. The color of the circle shows linearly-modeled mass 

change per year from this factor, circle size indicates decadal-average mass per site, and the 

outline of the circle (white or black) indicates significance at the 95th percentile. 
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Fig A.7. Trends in the secondary nitrates factor: PM2.5 from this factor shows an increase over 

parts of the Pacific Northwest and a decrease over the San Joaquin Valley and some of the 

Plains. The color of the circle shows linearly-modeled mass change per year from this factor, 

circle size indicates decadal-average mass per site from coal combustion, and the outline of the 

circle (white or black) indicates significance at the 95th percentile. 
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Figure A.8. U.S. coal-fired electricity generation (source: U.S. Energy Information 

Administration, https://www.eia.gov/todayinenergy/detail.php?id=43675) overlaid with PM2.5 

from the coal combustion factor (arbitrary scale) over all sites. The thin blue lines show the 

interannual variability for each site, and the black line is the mean over all sites. 

 

 

https://www.eia.gov/todayinenergy/detail.php?id=43675

