
DISSERTATION

THE GROUP OF THE MONDELLO BLT-SETS

Submitted by

Eric M. Nelson

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2012

Doctoral Committee:

Advisor: Tim Penttila

Anton Betten
Richard Eykholt
Alexander Hulpke



Copyright by Eric Monroe Nelson 2012

All Rights Reserved



ABSTRACT

THE GROUP OF THE MONDELLO BLT-SETS

A BLT-set is a set of (q + 1) points of a Q(4, q) parabolic quadric with a collinearity

condition. There are many infinite families of BLT-sets, all of which have had their stabiliz-

ers computed except for the Mondello BLT-sets of Penttila [42]. Following an introduction

to, and survey of BLT-sets and their related geometries, we compute the group stabilizing

the Mondello BLT-sets.
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1. INTRODUCTION

Finite geometry is the study of finite configurations with an incidence structure. For this

thesis, the focus is objects called BLT-sets. Preceding and following the construction of

BLT-sets in 1990 by Bader, Lunardon and Thas [1], there has been much activity in the

geometrically related areas of elation generalized quadrangles, flocks of the quadratic cone,

translation planes, q-clans, and hyperbolic fibrations. Most recently, BLT-sets have been

related to hemisystems as well as association schemes [5]. Therefore, despite this paper’s

focus on BLT-sets, the work contained is related to many other areas within finite geometry.

For many years, the main focus was on construction of new examples. In the post-BLT

era, many constructions of infinite families of elation generalized quadrangles associated

with flocks, and hence BLT-sets, have been given: the Subiaco family of Cherowitzo et al.

in 1996, the Mondello family of Penttila in 1998, the family of Law and Penttila in 2001,

the Adelaide family of Cherowitzo et al. in 2003. These added to the pre-BLT era infinite

families of Fisher, Fisher-Thas/Walker, Kantor semifield, Kantor likeable, Kantor-Payne

monomial, and Ganley. Further information, including references to original papers, can

be found in Payne’s survey paper of the area [38].

Today, there are many currently sporadic examples of BLT-sets. Hence, some focus has

shifted from construction to categorization. One way to do this is by parameterizing exam-

ples into infinite families. All infinite families have had their groups computed, with the

single exception of the Mondello family (introduced in Section 4.1.1). In most cases (and

all recent ones), the approach to the calculation of the groups has been via the fundamental

theorem of q-clan geometry of Payne [37]. This explains the omission of the Mondello

examples, as Payne “worked out a q-clan representation of this BLT-set, but it seems too
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involved to be helpful” [38]. For this reason, this paper’s approach will not be in terms of

q-clans, but instead will use BLT-sets.

BLT-sets are subsets of the points of the PΩ(5, q) polar space. Therefore, the stabilizer

of a BLT-set, which after this point will be called the group, will be a subgroup of the

stabilizer of the whole space, PΓO(5, q). Subgroups of PΓO(5, q) are known due to work

by H.H. Mitchell [34] as well as W. Kantor and R. Liebler [27]. Thus, we have a list of

all possible groups of BLT-sets. This knowledge provides a superior approach towards the

group computations. We start the computation of the group of a Mondello BLT-set using

this knowledge (Chapter 5).

The groups of the associated generalized quadrangles, flocks, Thas-Walker planes and

hyperbolic fibrations can be computed from those of the BLT-sets. This is a result of Payne

and Thas [40] and others. How to transfer the group information between configurations

is explained in Section 2.4.1. Thus, doing the group computation for the BLT-set is just

as useful as the group computation for any of the related objects. But, working with the

objects as BLT-sets, we gain a subgroup list.

We begin by providing necessary background knowledge in Chapter 2. This includes

information on the projective and polar spaces and quadrics we will encounter. It also has a

brief survey of the currently known infinite families of BLT-sets. In Chapter 3, we provide

a nice construction of a family of BLT-sets from twisted cubics. In Chapter 4, we begin

studying the Mondello BLT-sets in earnest, by presenting the model in which they were

first given. This chapter includes what turns out the be the group of the Mondello BLT-set.

The remaining chapters are needed to prove this fact.

From the original paper on the Mondello BLT-sets [42], the group is known to be tran-

sitive. Starting with transitivity, in Chapter 5, we characterize the Fisher-Thas/Walker BLT-

sets as the only BLT-sets admitting a transitive group acting irreducibly on the underlying

five dimensional vector space (Theorem 5.2.1). It follows directly that the group of the

Mondello BLT-sets act reducibly (Corollary 5.2.2). In Chapter 6 we prove that for q != 11
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the group of a Mondello BLT-set fixes a hyperplane (Lemma 6.1.2). Knowing that this

hyperplane is fixed, we continue on in that chapter by looking at the group’s action on this

fixed hyperplane. We prove that for q != 11 the group fixes a pair of perp external lines

(Lemma 6.2.3). Finally, in this chapter, we prove for q != 9 or 11, that the pair of external

lines the group fixes are within the model of the Mondello BLT-sets (Lemma 6.2.5). In

Chapter 7 we put together the results of previous chapters to prove the main theorem of this

paper. This is the first proof that the Mondello BLT-sets (and related objects) are in fact

distinct.

Theorem 1.0.1. The stabilizer in PΓO(5, q) of a Mondello BLT-set P , for q = ph > 11, is

isomorphic to Cq+1 !C2h. The group is generated by the permutations φ and ψ where φ is

the map (x, y, a) "→ (η2x, η3y, a) for a fixed η ∈ GF(q2) with |η| = q+ 1 and ψ is the map

(x, y, a) "→ (εxp, εyp, ap) for ε = 1 if
√
5 ∈ GF(p) and ε = −1 if

√
5 !∈ GF(p).
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2. BACKGROUND

To study BLT-sets, one needs an understanding of the underlying spaces, namely projective

and polar spaces. As this thesis is interested in the group of a Mondello BLT-set, we also

need to know the automorphisms of the ambient space. This section is intended to give

a foundation in these areas, as well as to provide knowledge that will be useful in the

computation of the group of a Mondello BLT-set.

2.1 Finite Projective and Polar Spaces

In this thesis, we are concerned with geometric spaces containing a finite number of points.

These spaces arise from vector spaces of dimension n+1 over a finite field, GF(q), of order

q. We define a projective space, PG(n, q), to be the subspaces of this vector space where

incidence is symmetric inclusion. We also define non-zero scalar multiples of vectors to be

equivalent. Points of a projective space are elements of dimension 1 of the vector space,

dimension 0 of the projective space. Similar definition can be given for lines and higher

dimensional spaces. Hyperplanes are defined to be subspaces of codimension 1.

In 1916, Veblen and Young [49] gave axioms for finite projective spaces in terms of

points and lines.

1. Any two points lie on a unique line.

2. Any line contains at least three points.

3. Any line which meets two sides of a triangle, not at a vertex, also meets the third

side.
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Any finite geometry of dimension greater than 2 is PG(n, q) for some integer n and

some power of a prime q. For dimension 2, there exist finite projective planes not isomor-

phic to PG(2, q). For a thorough treatment of projective spaces, the author recommends

Beutelspacher and Rosenbaum’s text [9].

Projective geometries satisfy a duality principle. That is, any statement that is true of

a projective geometry is also true if inclusion is inverted and dimension is replaced by

codimension. This duality will be revisited after looking at automorphism of projective

spaces.

An automorphism of a projective space needs to preserve the underlying structure,

namely the incidence structure or collinearity. For this reason, the group of those actions

on the space that preserve collinearity are called the collineation group. These actions on

the underlying vector space, V , come from semilinear transformations. A transformation

ϕ : V → V is called semilinear if there exists a field automorphism of α of GF(q) such that

ϕ(v + w) = ϕ(v) + ϕ(w) and ϕ(cv) = α(c)ϕ(v) for all v, w ∈ V and c ∈ GF(q). All in-

vertible semilinear transformations are collineations of the corresponding projective space

PG(n, q). The group of all invertible semilinear transformations is denoted PΓ(n+ 1, q).

When defining the projective space we had an equivalence relation on vectors, so here

we will need to mod out elements of PΓ(n + 1, q) which fix points of PG(n, q) via scalar

multiplication. These elements are the center of the PΓ(n + 1, q), Z = {v "→ cv : c ∈

GF (q), c != 0}. Thus, the collineation group of PG(n, q) is the projective semilinear

group PΓL(n+ 1, q) ∼= ΓL(n+ 1, q)/Z.

Theorem 2.1.1 (Fundamental Theorem of Projective Geometry). Assuming that n is at

least two, the automorphism group of PG(n, q) is PΓL(n+ 1, q).

Instead of automorphisms, collineations, of a projective geometry, let us look at actions

that use the duality principle. Elements that are inclusion-reversing bijections of the space.

The group that is generated by all such inclusion-reversing bijections is called the correla-

tion group. For the purpose of this paper, we wish to look at those correlations of a space

5



that have order 2, called polarities. These polarities will give rise to geometries called

polar spaces. Polar spaces are where BLT-sets live.

Let ρ be a polarity of a projective space that arises from a finite field. Those subspaces,

W of PG(n, q),withW ⊆ ρ(W ) are called totally isotropic. The set of all totally isotropic

subspaces for a given polarity, where incidence is inherited from the projective space, is

called a polar space. Over the next few paragraphs we will explain another way to view

these polar spaces.

Semilinear transformations lead to collineations of PG(n, q). What types of transfor-

mations lead to polarities of PG(n, q)? This question was answered by Birkhoff and von

Neumann in 1936 [10].

Theorem 2.1.2. Every duality of PG(n, q), for n ≥ 2, arises from a non-degenerate

sesquilinear form on the underlying vector space.

Lemma 2.1.3. The duality arising from a non-degenerate sesquilinear form is a polarity if

and only if that form is reflexive.

A sesquilinear form on a vector space V is a function f from (V, V ) to GF(q) that is

linear in the first variable and semilinear in the second variable. If the function is linear in

the second variable, the form is called bilinear. The radical of a form is Rad(f) = {v ∈

V : f(v, w) = 0 for all w ∈ V }. A form is called nondegenerate, if the radical is {0}.

The form is called reflexive, if for all v, w ∈ V, f(v, w) = 0 implies that f(w, v) = 0.

As stated earlier, polar spaces come from the totally isotropic subspaces of a projective

space. But, we can define them in terms of their point set, rather than by their subspaces.

A quadratic form on V is a functionQ that takes V to GF(q) such thatQ(cv) = c2Q(v)

for all v ∈ V and all c ∈ GF(q) such that f(v, w) = Q(v + w)−Q(v)−Q(w) is bilinear.

f is a symmetric bilinear form, i.e. f(v, w) = f(w, v). A vector v ∈ V is singular if

Q(v) = 0. The singular radical ofQ is {v ∈ Rad(f) : Q(v) = 0}. The quadratic form Q is

called non-degenerate, if the singular radical is {0}.
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The set Q of points 〈v〉 of PG(n, q) satisfying Q(v) = 0 form a quadric. When this

set of points inherits the subspaces of PG(n, q) that satisfy Q(v) = 0 for all v in a given

subspace, then Q is an orthogonal polar space arising from the quadratic form.

Therefore, one can think of polar spaces as either coming from a reflexive non-degenerate

sesquilinear form or from a non-degenerate quadratic form. In 1974 Buekenhout and Shult

[8] gave an axiomatization of non-degenerate polar spaces similar to what Veblen and

Young gave for projective spaces. These are the classical polar spaces.

1. Every line contains at least three points.

2. No point is collinear with all other points.

3. Two points are on at most one line and every point is on at least three lines.

4. If a point P is not on a line l, then either P is collinear with exactly one point of l or

P is collinear with all points of l.

A polar space has rank 2 if “all” never arises in the fourth axiom; otherwise the rank is

greater than 2. Just as with projective spaces, there is a classification of polar spaces.

Theorem 2.1.4 (Tits 1974 [48]). A finite polar space of polar rank greater than 2 is a

classical polar space.

There exists non-classical polar spaces of rank 2 (generalized quadrangles. The author

recommends Payne and Thas’ book on finite GQs [41]. Other non-classical generalized

quadrangles are mentioned in Section 2.4.

Specifically for this thesis, there are two polar spaces of importance. The first po-

lar space (where a BLT-set lies) is Q(4, q), a parabolic quadric. There is a unique non-

degenerate quadratic form on GF(q)5, up to similarity. Also in this paper, the polar space

Q+(3, q), a hyperbolic quadric, will arise as the intersection of a hyperplane of PG(4, q)

and Q(4, q). Both of these polar spaces are orthogonal spaces.
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The parabolic quadric Q(4, q) arises from a non-degenerate quadratic form with asso-

ciated symmetric bilinear polar form. For example the sum of squares:

Q(x, y, z, w, v) = x2 + y2 + z2 + w2 + v2

and

f(u, v) = Q(u+ v)−Q(u)−Q(v).

The automorphism group of Q(4, q) is PΓO(5, q), the projective semilinear group. In-

deed, the automorphism group of any non-degenerate classical polar space of rank at least

two (apart from PΩ+(4, q) spaces) is the corresponding classical projective semisimilarity

group.We will need some facts aboutQ(4, q) later in the thesis. First, we will look at an in-

variant of orthogonal spaces over fields of odd characteristic. Second ,we will viewQ(4, q)

as a generalized quadrangle.

The invariant of orthogonal spaces we will use is called the discriminant. Some intro-

duction is necessary. As q is odd, then GF(q)∗ is a (multiplicative) group with subgroup

the squares ! = {f 2 : f ∈ GF (q)∗} and the other coset, the non-squares " = {f : f !=

g2 for any g ∈ GF(q)∗}. For a non-degenerate orthogonal space V over GF(q), q odd, there

is a corresponding quadratic form Q and its related polar form f . Let B be the nonsingular

matrix, with respect to some basis for V , associated with f : f(u, v) = uBvT .

We define the discriminant of Q to be disc(Q) = det(B)!. Now we must show that

this is an invariant. Suppose that we had two isometric orthogonal spaces V1 and V2 with

corresponding quadratic forms Q1 and Q2. There exists an isometry ϕ taking V1 to V2. To

each quadratic form there is a nonsingular matrix with respect to some basis for V1 and

V2, call them B1 and B2 respectively. Then there exists a matrix A that corresponds to ϕ

that takes B1 to B2, namely B2 = ATB1A. As detB2 = det(A)2 · detB1, we see that

up to a square, the determinants are equal. Therefore, disc(Q) is an invariant. In fact,

for non-degenerate spaces, it is a complete invariant. In other words, two non-degenerate
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orthogonal spaces over GF(q), q odd, are isometric if and only if their quadratic forms have

the same discriminant.

Q(4, q) is a polar space, but it is also a generalized quadrangle. This fact can be used

to prove that a BLT-set is of maximal size given the BLT-set property. We will take a short

diversion into the axioms of a generalized quadrangle.

A generalized quadrangle, GQ, is an incidence structure with points and lines and

symmetric incidence satisfying:

1. Each point is incident with a constant number (t+1) of lines, and two distinct points

are incident with at most one line.

2. Each line is incident with a constant number (s+ 1) of points, and two distinct lines

are incident with at most one points.

3. For a non-incident point-line pair (P, l), there is a unique point Q and a unique line

m such that P is incident withm which is incident with Q which is incident with l.

We call (s, t) the order of the GQ. The number of points of a GQ is (s+1)(st+1) and the

number of lines is (t+1)(st+1). As Q(4, q) is a generalized quadrangle of order (q, q), it

has (q + 1)(q2 + 1) points and lines.

The other polar space we will encounter in this paper isQ+(3, q), a hyperbolic quadric.

It has collineation group PΓO+(4, q). A hyperbolic quadric is also a GQ and has order

(q, 1). Therefore, it has (q + 1)2 points and 2(q + 1) lines. The lines split exactly in

half into two reguli - 2 sets of skew lines such that each line of the opposite regulus is a

transversal. In Section 4.3 and Section 6.2.2 we will need the number of lines of PG(3, q)

that are external to Q+(3, q) (i.e. they do not intersect Q+(3, q)).

Lemma 2.1.5. There are q2(q − 1)2/2 external lines to Q+(3, q).

Proof. Lines of PG(3, q) are incident withQ+(3, q) in 0, 1, 2, or (q+1) points. Let l0, l1, l2,

and lq+1 denote the number of these line types. There are (q2 + 1)(q2 + q + 1) lines of
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PG(3, q) so

l0 + l1 + l2 + lq+1 = (q2 + 1)(q2 + q + 1).

The lines lq+1 are the lines ofQ+(3, q), so lq+1 = 2(q+1). The l2 lines meet the hyperbolic

quadric in two points. They can be counted by first choosing two points of Q+(3, q) and

then removing those pairs of points that lie on a line of the quadric. So l2 =
(
(q+1)2

2

)

−

2(q+1)
(
q+1
2

)

. The l1 lines are tangent lines to Q+(3, q). On each point there are q2+ q+1

lines. For a point on the quadric, 2 of these lines are of type lq+1 and 2q are of type l2.

Thus, on each point of the quadric there are q2 + q + 1 − 2 − 2q = q − 2 tangent lines.

Thus, in total l1 = (q − 2)(q + 1)2. Knowing l1, l2, and lq+1 we can subtract to find that

l0 = q2(q − 1)2/2.

2.2 BLT-Sets

BLT-sets were introduced in a paper by Bader, Lunardon, and Thas [1], although the

nomenclature is due to Kantor [26]. They arose as a way to create new flocks from old.

But, the intermediary step, a BLT-set, was a worthwhile object to study as it is a more

general object than a flock. A BLT-set is a setB of q+1 points of the generalized quadran-

gle Q(4, q) for odd q with an incidence condition. As Q(4, q) is the PΩ(5, q) polar space,

BLT-sets can be thought of in either setting.

Definition 2.2.1. A BLT-set B is a set of q + 1 points of Q(4, q), such that for any three

points of B, there is no point of Q(4, q) that is collinear (in a line of Q(4, q)) with all three

of the points.

Let us now explore further the size of a BLT-set, as well as the condition that q is odd.

LetB be a set of points ofQ(4, q)with the BLT-set property: no point ofQ(4, q) is collinear

(in Q(4, q)) with more than two points of B. We will prove in two different ways that the

maximum size B can take on is q + 1.
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First, we give a proof via double counting. Let B be a subset of size b of points of

Q(4, q). Remember that Q(4, q) is a GQ of order (q, q). Let t1 be the number of points of

the GQ without B that are collinear with a point of B. Let t2 be the number of points of the

GQwithoutB that are collinear with two points ofB. Let (P, T ) be a pair of collinear points

where P is in B and T is in the GQ without B. Then, by double counting, t1 + 2t2 = 2bq.

Let (P,Q, T ) be a set of unordered triples where P and Q are distinct points of B and T is

a point of the GQ without B and each of P and Q are collinear with T . Then, by double

counting, 2t2 = 2b(b− 1). Solving for t1, we get t1 = 2bq− 2b(b− 1) = 2b(q+1− b) ≥ 0

and thus, b ≤ q + 1. Therefore, a set with the BLT-set property is of maximal size if

b = q + 1.

Next, we present a proof using the properties of a GQ. Assume two points P and Q of

B were collinear. A third point of B would lie on a unique line intersecting the line PQ at

a point R. But then the pointR would be collinear with more than two points of a BLT-set,

a contradiction. Thus, no two points of a BLT-set are collinear (another property of BLT-

sets). Now consider a line intersecting B at a point P . By the GQ axioms, every other point

of B must be on a unique line meeting the original line in a point. These points must be

unique, as if they were not, they would provide a point that is collinear with 3 points of the

BLT-set. A line of Q(4, q) has size q + 1, and thus, the maximum size of B is q + 1.

Now we will prove that for a BLT-set to exist, q needs to be odd. Let l be a line not

meeting a BLT-set B, and let P be a point on l. Assume P is contained in a line m which

meets B in the point R. To each point of m we can associate a distinct point of B. As R

is on m and R will be associated with R, P must be associated with another point of B.

Hence, each point on a line not intersecting B must be collinear with either 0 or 2 points of

B. These points of intersection cannot overlap as that would run counter to the axioms of

a GQ. Therefore, the points of B can be partitioned into disjoint pairs by the points of an

external line to B. Thus, q + 1 must be even which forces q to be odd.

As stated above, no point of Q(4, q) can be collinear with three points of B. This is
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equivalently stated as the perp of the span of three distinct points of B is an external line to

Q(4, q). For a set {x, y, z} of points to be a subset of a BLT-set, Bader, O’Keefe and Penttila

[2], using that the discriminant is a complete invariant of a non-degenerate quadratic form

in odd characteristic, gave an extremely useful criterion for testing whether or not a set is a

BLT-set.

Theorem 2.2.1. If x, y, and z are pairwise linearly independent vectors of Q(4, q) then

〈x, y, z〉⊥ is an external line to the quadric (i.e. {x, y, z} form a partial BLT-set) if and

only if
−2f(x, y)f(x, z)f(y, z)

disc(Q)
= ",

where Q is the quadratic form defining Q(4, q) and f is the associated bilinear form.

The triple condition, when combined with a result of Johnson [22], reduced the test

from all possible triples, to all triples containing a fixed point. This quicker test was im-

plemented by Law and Penttila when searching for BLT-sets [32]. Also, as will be seen in

Chapter 5, essentially the same computer search was put into use in this thesis.

Lemma 2.2.2 ([2]). Let B be a set of at least 3 points of Q(4, q). If there exists an x ∈ B

such that {x, y, z} is a partial BLT-set for all {y, z} ∈ B\{x}, then B is a partial BLT-set.

2.3 Known BLT-Sets

There are nine infinite families of BLT-sets known. Other, presently sporadic, examples are

known for small field orders. It is possible that these examples may one day be included in

an infinite family. One can see an up to date list, with explicitly given data, of all known

BLT-sets with field order less than a certain number (currently classified up to q = 67) on

Betten’s webpage [6].

As stated in the introduction, many of the following BLT-set families are known to

have nice presentations in terms of their related q-clans. Hence, those families with known
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q-clan presentations, will be given as q-clans. The triples (at, bt, ct) give the q-clan

C =













at
1
2bt

1
2bt ct




 : t ∈ GF(q)








.

These q-clans, for the quadratic form x1x5 + x2x4 − x2
3 give the following BLT-set

B =

{(

1, ct,
−bt
2

, at,

(
bt
2

)2

− atct

)

: t ∈ GF(q)

}

∪ (0, 0, 0, 0, 1).

Along with the q-clan, the order of the stabilizer of the BLT-set in PΓO(5, q) will be given

for large enough q = ph. If a characterization of the family is known, the characterization

will be given in terms of both the flock and the BLT-set.

The following theorem is not used in any computations in this paper, but explains the

number of corresponding flocks of an infinite family of BLT-sets. Bader, Lundardon, and

Thas [1] proved the following, in their original paper on derivation of flocks.

Theorem 2.3.1. The number of distinct, non-isomorphic flocks arising from a BLT-set is

equal to the number of orbits of the stabilizer of the BLT-set in PΓO(5, q).

Thus, if the group is transitive, there is only one corresponding flock. If the group is not

transitive, the number of corresponding non-isomorphic flocks will be given. For a more

detailed working of the known infinite families, see Law’s thesis [30] or Payne’s survey

[38].

The Classical BLT-sets

(t, 0,−nt) for n a non-square.

They give the linear flocks, the classical GQs, namely H(3, q2), the Desarguesian Thas-

Walker planes and the André planes via hyperbolic fibrations. The group is known to be

transitive with order 2h(q − 1)q(q + 1)2.
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The Fisher-Thas/Walker (FTW) BLT-sets

(t, 3t2, 3t3), q ≡ 2 (mod 3)

These BLT-sets were first found by Walker [50] as a flock and a plane, by Fisher-Thas [16]

as a flock and a plane, and by Kantor [23] as a GQ. The group, as will be shown in this

paper, is transitive and irreducible. For q = 5 the group is S6. For q > 5 the group is

PΓL(2, q) which has order h(q − 1)q(q + 1).

Thas in 1993 proved a characterization of the Fisher-Thas-Walker flocks using q-arcs.

In general, a k-arc of PG(d, q) is a set of k points such that any (d + 1) points of the set

span the whole space. In this paper, he proved that any q-arc of PG(3, q), q odd and q > 83,

is extendable to a unique (q+1)-arc. He then used this lemma to prove the following FTW

flock characterization.

Theorem 2.3.2 (Thas [46]).

• Let F = {C1, C2, . . . , Cq} be a flock of the quadratic cone K of PG(3, q), q ≥ 4.

Also, assume that in PG(3, q) each q-arc is extendable to a (q + 1)-arc (q > 83).

Then F is the flock of FTW if no four of the planes πi, with Ci ⊂ πi, have a point in

common.

• With the same conditions on q, a set of q + 1 points of Q(4, q) is a FTW BLT-set if

and only if it is a (q + 1)-arc.

As a corollary of the results of Chapter 5, we have a new (complete) characterization of

the FTW BLT-sets.

Theorem 2.3.3. The only infinite family of BLT-sets whose group acts transitively on the

BLT-set and irreducibly on GF(q)5 is the Fisher-Thas-Walker family. There are two other

transitive irreducible BLT-sets (both due to Law-Penttila): one in Q(4, 29) with group S6

and one in Q(4, 59) with group S5.
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The Fisher BLT-sets

They were first given by Fisher [16] as a flock and a plane as well as a GQ by Thas [45].

Their q-clan presentation is complex, but as we will see in Section 4.2, the Fisher BLT-sets

when viewed in a different model are simple. The representation given here is from [36].

For all odd q, let ζ be a primitive element of GF(q2), so ω = ζq+1 is a primitive element

of GF(q) and hence a nonsquare of GF(q). Let i = ζ (q+1)/2, so i2 = ω, and iq = −i.

Let z = ζq−1 = a + bi, so z has order q + 1 in the multiplicative group of GF(q2). Then

the triples are (t, 0,−ωt) for those t ∈ GF(q) with t2 − 2(1 + a)−1 a square in GF(q) and

(−a2j , 2b2j ,−ωa2j) for 0 ≤ j ≤ (q − 1)/2 and

ak =
zk+1 + z−k

z + 1

bk =
i(zk+1 − z−k)

z + 1
.

The group acts transitively and has order 2h(q + 1)2 for q > 7.

In a work from 1991, Payne and Thas proved a characterization of the Fisher flocks by

using intersections of the associated planes.

Theorem 2.3.4 (Payne-Thas [39]).

• For π a plane of P = PG(3, q), q odd, and x be a point of P − π, consider a

nonsingular conic C in π, and the cone K with vertex x and containing C. The

Fisher flock is the unique nonlinear flock F of K for which at least (i.e. exactly)

(q − 1)/2 of the planes associated with the flock contain a common line.

• The Fisher BLT-set is the only BLT-set which meets a classical BLT-set in (q + 1)/2

points.

The Kantor Likeable BLT-sets

(t, t2, t3/3− nt5 − t/n), q = 5h for n a non-square
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They were first constructed as a plane by Kantor [24] and recognized in the flock setting

by Gevaert-Johnson [17]. This group’s action is not transitive. Each BLT-set gives rise to 2

non-isomorphic flocks. The group has order 2hq for q > 5.

The Ganley BLT-sets

(t, t3,−(nt + t9/n)), q = 3h for n a non-square

They were first constructed as a plane by Ganley [14] and recognized as a flock by Gevaert-

Johnson [17]. This group action is also not transitive and derives to 2 non-isomorphic flocks

(one semifield and one non-semifield). The group has order 2hq for q > 27.

The Kantor Semifield BLT-sets

(t, 0,−ntσ) for non-prime q, n a non-square, and σ a nontrivial automorphism of GF(q)

They were constructed first as a GQ by Kantor [25] and later were recognized as a flock

by Thas [45]. The group of these BLT-sets are transitive. If σ2 != 1 the group has order

2hq(q − 1)q(q + 1) and if σ2 = 1 != σ the group has order 4h(q − 1)q(q + 1).

In a 1987 work, Thas characterized the Kantor semifield flocks again via intersections

of the associated planes.

Theorem 2.3.5 (Thas [45]).

• If all planes of a nonlinear flock F intersect in a common point, then F is a Kantor

semifield flock.

• The points of the Kantor semifield BLT-set span a hyperplane of PG(4, q) which

meets Q(4, q) in a hyperbolic quadric.

The Kantor Monomial BLT-sets

(t, 5t3, 5t5), q ≡ ±2 (mod 5)
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They were first given as a GQ by Kantor [25] and were later related to BLT-sets by Thas

[45]. They have a non-transitive group and derive to 2 non-isomorphic flocks. The group

has order 2h(q − 1) for q > 13.

The Mondello BLT-sets

They were given and named by Penttila [42] and are a BLT-set family with no useful q-clan

representation that arises for q ≡ ±1 (mod 10). A full presentation of the Mondello BLT-

sets is given in Chapter 4. Their groups are transitive and we will show their groups have

order 2h(q + 1) for q > 11.

The Law-Penttila BLT-sets

(t,−t4 − nt2,−n−1t9 + t7 + n2t3 − n3t), q = 3h for n a non-square

They were first given by Law and Penttila [31]. Payne [38] has a paper with the exact

number of non-isomorphic derived flocks, in general there are many. The group has order

2h for q > 7.

There are two currently sporadic examples that are transitive and irreducible. Both ex-

amples are due to Law and Pentilla: one in Q(4, 29) with group S6 and another in Q(4, 59)

with group S5 [32].

There are also known transitive but reducible BLT-sets that are currently sporadic.

Three examples are due to Royle and Penttila [43]: one in Q(4, 19) with a group of or-

der 20 acting regularly, one in Q(4, 23) with a group of order 1152, and in Q(4, 23) with

a group of order 24 acting regularly. Another example is due to De Clerck and Penttila

in Q(4, 47) with a group of order 2304 (unpublished [13]). Lastly, there is an example in

Q(4, 41) due to Betten with a group of order 84 [7].

This list of sporadic examples, along with the above families, is believed to be a com-

plete list of all known transitive BLT-sets.
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2.4 Related Configurations

The history for BLT-sets is more abundant than one might assume for an object named as

recently as 1991. This richness is due to the geometric correspondences between BLT-sets

and objects that have been studied as early as the 1950’s. What follows is a brief history of

the objects that are directly related to BLT-sets.

What follows is how Bader, Lunardon, and Thas [1] first described the objects now

called BLT-sets. They were searching for new constructions of flocks. They started with

a flock in PG(3, q). They embeded that projective space in PG(4, q) and relate the flock

to a set of (q + 1) points of a parabolic quadric of PG(4, q). From each of those (q + 1)

points, a new flock arises. The flocks found in this way are called derived flocks. Flocks of

quadratic cones are also related to certain generalized quadrangles and translation planes.

Let B be a BLT-set and let b be a point of B. The set of points of Q(4, q) collinear with

b form a quadratic cone in the polar hyperplane of b. The polar hyperplanes coming from

the points of B, other than b, form the flock of the quadratic cone given by b. The converse

construction also holds (i.e. going from a flock of a quadratic cone to a BLT-set). Choosing

a different starting point has the possibility of leading to a new non-isomorphic flock.

The following diagram is a pictorial representation of derivation of flocks. Remember

that, although this picture is continuous, the objects being described are discrete.

π1

πq

PG(4, q)

PG(3, q)

Q(4, q)

π⊥1

π⊥q
b
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In 1976, Walker [50], and independently, at about the same time, Thas (unpublished),

constructed an ovoid of Q+(5, q) from a flock of a quadratic cone. Via the Klein corre-

spondence this ovoid is equivalent to a spread of lines of PG(3, q). This spread of lines

gives rise to a translation plane via the André/Bruck-Bose construction. This construction

involves embedding the flock in the Klein quadric as a hyperplane, taking the union of the

perps of the planes of the flock, and then applying the Klein correspondence.

Between 1998-2005, Baker, Dover, Ebert, Wantz [3] and Baker, Ebert, and Penttila

[4] found another connection between flocks, hence BLT-sets, and translation planes. A

hyperbolic fibration is a partition of PG(3, q) into q − 1 hyperbolic quadrics and 2 lines.

Choosing one of the two reguli on each of the hyperbolic quadrics gives 2q−1 spreads and

so 2q−1 translation planes.

In this case, isomorphism of hyperbolic fibrations corresponds to orbits of the stabilizer

of the BLT-set B arising from the flock on ordered pairs of points of B. These spreads of

lines are in general different that those created via the Thas-Walker construction.

Between 1980 and 1987, Kantor, Payne and Thas [23, 35, 25, 45] laid the groundwork

for and constructed elation generalized quadrangles, EGQs, of order (q2, q) from flocks of

Miquelian Laguerre planes. Their work used the notation of q-clans and showed that to

every flock there is a corresponding EGQ, and conversely. Knarr [29] gives a geometric

construction of the EGQ directly from the BLT-set.

The most recent connection of BLT-sets to other geometric objects is from Bamberg,

Giudici, and Royle [5]. They proved that every flock generalized quadrangle contains a

hemisystem. They also showed that a hemisystem gives rise to a cometric 4-class associa-

tion scheme.

2.4.1 Groups of Related Configurations

The motivations for the study of BLT-sets are manifold: many projective planes (in two es-

sentially different ways), generalized quadrangles, hemisystems, and association schemes
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all arise from BLT-sets. Our computation of the group of a Mondello BLT-set is of use

to each of these different areas, as there are known conversions between groups of these

configurations.

Each of these related configurations have automorphism groups. Using the construc-

tions going back and forth between these objects, we can transfer the group information.

Therefore, computing the group of a Mondello BLT-set is equivalent to computing the

group of any of the related objects.

The group of a flock is the stabilizer of the disjoint conics (and hence the vertex/ distin-

guished point) and it must preserve the original quadratic cone. We can think of this group

as the subgroup of the stabilizer of the degenerate quadric (the cone) fixing these conics

(or, equivalently, the planes subtending them). The group of the (degenerate) polar space

arising from a conic turns out to be the stabilizer of the cone in PΓL(4, q). For a given

BLT-set, there is a flock corresponding to each point of the BLT-set. This distinguished

point is the vertex of the cone. Because of this, the subgroup of the group of the BLT-set

which fixes the distinguished point is the group of the corresponding flock. Thus, the order

of the group of the flock depends upon the number of orbits on points of the BLT-set. These

group computations follow directly from the original BLT paper [1].

In 1991, Payne and Thas [40] related the group of a BLT-set and the group of the related

generalized quadrangle. To each BLT-set there corresponds only on GQ. Each collineation

of the GQ gives an element of PΓO(5, q)which fixes the BLT-set. The points of the BLT-set

correspond to the lines through (∞) of the GQ. Therefore, the group of the BLT-set corre-

sponds to the subgroup of the automorphism group of the GQ that acts on the lines through

(∞) modulo the kernel. The kernel has q5 elations and q − 1 collineations. Therefore,

the group of the GQ is q6 − q5 times larger than the group of the BLT-set. The preceding

statements do not hold true if the BLT-sets are Classical or Kantor-semifield. In these two

families, there exists elements of the kernel which act non-trivially on the BLT-set.

The groups of BLT-sets and hyperbolic fibrations were related by Baker, Ebert, and
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Penttila [4]. BLT-sets with a distinguished point give a flock, and each plane of the flock

determines a hyperbolic fibration. As each point different than the distinguished point cor-

responds to a plane, equivalence of hyperbolic fibrations corresponds to orbits on ordered

pairs of points of a BLT-set under the group of the BLT-set. The order of the group of a hy-

perbolic fibration is 2(q + 1) times larger than the group of the related BLT-set. The group

of the hyperbolic fibration is known to be a subgroup of the group of the corresponding

spreads of lines of PG(3, q), although it is not known whether in general they are equal.

In the simultaneous papers [17, 18], Gevaert, Johnson, and Thas proved the relationship

between the groups of corresponding translation planes, spreads of PG(3, q), and flocks of

the quadratic cone. An important result is: a spread of PG(3, q) that consists of the union

of q reguli arises from the Thas-Walker construction of a flock of the quadratic cone of

PG(3, q). Also, there are no further reguli, if it is not a regular spread. Equivalently, if the

spread comes from a non-classical flock, then there are no further reguli. The spread acts

on the set of q reguli, and the group fixing each reguli has order q. Therefore, the group

of the spread is q times larger than the group of the flock. The group of the corresponding

translation plane is q5 − q times larger than the group of the spread.

2.5 Group Theoretic Background

The group of PSL(2, q)will frequently show up during computations in the following chap-

ters. Thankfully, the subgroups of PSL(2, q) are known from books by Dickson and Hup-

pert [15, 20]. The following list is from Cameron et.al. [12].

Theorem 2.5.1. The subgroups of PSL(2, q) = PSL(2, ph), p odd, are as follows:

i) q(q ∓ 1)/2 cyclic subgroups Cd of order d where d | (q ± 1)/2.

ii) q(q2 − 1)/(4d) dihedral subgroups D2d of order 2d where d | (q ± 1)/2 and d > 2

and q(q2 − 1)/24 subgroupsD4.

iii) q(q2 − 1)/24 subgroups A4.
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iv) q(q2 − 1)/24 subgroups S4 when q = 7(mod 8).

v) q(q2 − 1)/60 subgroups A5 when q = ±1(mod 10).

vi) ph(p2h − 1)/(pm(p2m − 1)) subgroups PSL(2, pm) where m | h.

vii) The elementary Abelian group of order pm form ≤ h.

viii) A semidirect product of the elementary Abelian group of order pm and the cyclic

group of order d where d | (q − 1)/2 and d | pm − 1.

Specifically when proving that the FTW-BLT-sets are equivalent to the BLT-set con-

struction in Chapter 3, we need some basic group theory lemmas.

Lemma 2.5.2. Let G act transitively on a set B of size q + 1. Let A = G(∞) and B = Ab

for b ∈ B. Then [A : B] divides q + 1.

Proof. As A is normal inG, then A is also normal in AGb. An isomorphism theorem states

that [AGb : Gb] = [A : B] = m for some integerm. As G acts transitively on B, we know

the index ofGb inG is q+1. Therefore, as [AGb : Gb] · [G : AGb] = m · [G : AGb] = q+1

thenm = [A : B] divides q + 1.

Lemma 2.5.3. The centralizer of PSL(2, q) in PΓL(2, q) is trivial.

Proof. PSL(2, q) acts transitively on PG(1, q). Therefore, G = CPΓL(2,q)(PSL(2, q)) acts

semiregularly on PG(1, q). Hence, the order of G must divide q + 1.

Suppose the order of G is neither 1 nor q + 1. Then the orbits of G form a non-trivial

system of imprimitivity for PSL(2, q) on PG(1, q). This is a contradiction as PSL(2, q) is

2-transitive and thus, primitive.

Next, assume that |G| = q + 1. Then G is transitive, so CPGL(2,q)(G) is semiregular. It

follows that the order of CPGL(2,q)(G) must divide q + 1. This leads to a contradiction as

PSL(2, q) ≤ CPGL(2,q)(G) and |PSL(2, q)| > q + 1.

Therefore, G = CPΓL(2,q)(PSL(2, q)) = 1.
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Lemma 2.5.4. G is absolutely irreducible if and only if CGL(d,q)(G) ∼= Cq−1.

Proof. This proof, albeit in slightly different forms, can be found in Isaacs [21] Theorem

9.2 as well as in Kleidman and Liebeck [28] Lemma 2.10.1.

Lemma 2.5.5. If H1 and H2 are irreducible subgroups of PGO(5, q) and conjugate in

PGL(5, q) then they are conjugate in PGO(5, q).

Proof. As H1 ∼ H2 in PGL(5, q) then there exists a g ∈ PGL(5, q) such that H2 =

gH1g−1. Let π be the polarity coming from the quadratic form giving PGO(5, q). As

g−1πgH1(g−1πg)−1 = g−1πH2π−1g = g−1H2g = H1 then g−1πg also centralizes H1. By

Kleidman and Liebeck [28] Lemma 2.10.3, π = gπg−1 which implies that g ∈ CPGL(5,q)(π) =

PGO(5, q).

We will further use the fact that the stabilizer of a point of a BLT-set inside of PSL(2, q)

forces PSL(2, q) to act transitively on the set. Using Lemma 2.5.2 with A = PSL(2, q) and

B = Ab for b a point of the BLT-set B, it follows that [A : B] must divide q + 1. Thus,

we need to search for subgroups of PSL(2, q) with index dividing q + 1. What follows is a

case by case look at the subgroups of PSL(2, q).

i) Cd of order d has index q(q ∓ 1) which doesn’t divide q + 1.

ii) D2d of order 2d has index q(q ∓ 1) which doesn’t divide q + 1.

D4 has index (q + 1)q(q − 1)/8 which doesn’t divide q + 1.

iii) A4 doesn’t have index dividing q + 1 for q > 3.

iv) S4 when q = 7(mod 8) doesn’t have index dividing q + 1.

v) A5 when q = ±1(mod 10) doesn’t have index dividing q + 1.

vi) PSL(2, pm) doesn’t have index dividing q + 1 unlessm = h.
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vii) The elementary Abelian group of order pm has index (q + 1)ph−m(q − 1)/2 which

doesn’t divide q + 1.

viii) A semidirect product of the elementary Abelian group of order pm and the cyclic

group of order d where d | (q − 1)/2 and d | pm − 1.

a) If m != h then the index doesn’t divide q + 1.

b) Ifm = h and d != (q− 1)/2 then the index is divisible by (q+ 1)(q− 1)/2d so

doesn’t divide q + 1.

c) If m = h and d = (q − 1)/2 then the index is q + 1.

Thus, the point stabilizer B = Ab must be a semidirect product of the elementary

Abelian group of order q and C(q−1)/2 or PSL(2, q). Either way q′ = q and the index of B

in A is q + 1, so A must be transitive on B.

2.6 A Matrix Model of PGO+(4, q)

Later in this thesis, we will need to know about the action of PGL(2, q) × PGL(2, q) on

PG(3, q). One way of viewing this action is by imposing a matrix model on the space. Take

the points of PG(3, q), homogeneous vectors of length 4 over GF(q), and turn them into a

two by two matrix by

(a, b, c, d) "→






a b

c d




 .

Let this set of two by two matrices be denoted by PM(2, q). ForA andB in GL(2, q) define

the map from PM(2, q) to PM(2, q) by

φ(A,M) : PM(2, q) "→ PM(2, q)

by X "→ AXBT .
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The determinant is a quadratic form, ad − bc, so those points with determinant zero

define a hyperbolic quadric, a Q+(3, q) space. φ(A,B) fixes Q+(3, q) for all A and B in

GL(2, q). If det(X) = 0 then det(AXBT ) = det(A) det(X) det(B) = 0. The transpose

ofX in the previous map also preserves elements ofQ+(3, q), in fact, it switches the reguli.

φ(A,B) for A and B in PGL(2, q) is isomorphic to PGL(2, q) × PGL(2, q). We can

show this by looking at the reguli of the hyperbolic quadric. The reguli are given by

R1 = {l1a,b : (a, b) ∈ GF(q)2\(0, 0)} for l1a,b = {(a, b,λa,λb) : λ ∈ GF(q)} ∪ {(0, 0, a, b)}

R2 = {l2a,b : (a, b) ∈ GF(q)2\(0, 0)} for l2a,b = {(a,λa, b,λb) : λ ∈ GF(q)} ∪ {(0, a, 0, b)}

The set {φ(A, I) : A ∈ PGL(2, q)} ∼= PGL(2, q)} is the linewise stabilizer of R1. The

set {φ(I, B) : B ∈ PGL(2, q)} ∼= PGL(2, q)} is the linewise stabilizer of R2. It can now

be checked that PGL(2, q) × PGL(2, q) is isomorphic to the direct product of these two

groups.

For a givenX ∈ PM(2, q) not in the hyperbolic quadricQ+(3, q), det(X) = det(cX) =

c2 det(X). Thus, points have a well defined non-zero determinant modulo the squares in

GF(q) for odd q.

By a similar argument to above, φ(A,B) for A and B in PSL(2, q) is isomorphic to

PSL(2, q) × PSL(2, q). φ(A,B) for A and B in PSL(2, q) will preserve the determinant

of the point/matrix being acted on. Therefore, PSL(2, q) × PSL(2, q) will have two orbits

on points not of the hyperbolic quadric, namely those points with det = ! and those with

det = ". Knowing that there are q3 + q2 + q + 1 points of PG(3, q) and (q + 1)2 points of

Q+(3, q) then these orbits are of size (q3 − q)/2.

The same argument holds for φ(A, I) forA in PSL(2, q) and φ(I, B) forB in PSL(2, q).

They both have orbits of length (q3 − q)/2 on points not of Q+(3, q). These orbit lengths

will be useful in Section 6.2.1.
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3. FISHER, THAS, AND WALKER REVISITED

This chapter can stand alone as an interesting construction of an infinite family of BLT-

sets, although, the construction is not the sole purpose of this chapter. It will be shown in

Chapter 5 that the BLT-sets constructed here are equivalent to the FTW BLT-sets.

The last chapter of Lüneburg’s [33] text on translation planes has a section devoted to

twisted cubics. Here proofs can be found for the following statements and lemmas.

A set of points of PG(3, q) that can be mapped by an element of PΓL(4, q) onto the set

C = {(s3, s2t, st2, t3) : s, t ∈ GF(q), (s, t) != (0, 0)}

is called a twisted cubic. This is slightly non-standard. An alternate definition would be a

non-singular cubic curve of PG(3, q) not lying in a plane.

Lemma 3.0.1. The stabilizerG of a twisted cubic C of PG(3, q) is isomorphic to PΓL(2, q)

and acts triply transitivly, assuming q > 3.

Triple transitivity will be useful later to reduce the computations needed to prove the

construction of a BLT-set from a twisted cubic.

Lemma 3.0.2. There exists a symplectic polarity π of PG(3, q), q > 2 and characteristic

not 3, such that for all P ∈ C, P π is the osculating plane. There is exactly one such

polarity.

The osculating plane, is the tangent plane to a point. The symmetric form

f(x, y) = x1y4 − x4y1 − 3x2y3 + 3x3y2
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defines a symplectic polarity with the desired properties.

3.1 Converting a Twisted Cubic into a BLT-Set

To each point on the twisted cubic we can define a unique tangent line using a theorem due

to Segre [44].

Theorem 3.1.1. A q-arc of PG(2, q) (q ≥ 5, q-odd) completes uniquely to an oval (a

(q + 1)-arc).

Given the twisted cubic lying in PG(3, q), take one point P of the twisted cubic and look

at PG(3, q)/P ∼= PG(2, q). The twisted cubic will become a set of q points of PG(2, q),

no three collinear, so a q-arc. Using Segre’s theorem, let Q denote the unique completion

of the q-arc to an oval. We define the line PQ in PG(3, q) to be the tangent line. These

tangent lines are disjoint.

As PΓL(2, q) acts triply transitively on points of the twisted cubic, it also acts triply

transitively on the tangent lines to C. Thus, we have a transitive action on a set of q + 1

objects. Using the Klein correspondence, we can turn this set of q + 1 lines into a set of

q + 1 points of the dual space. This, it turns out, will result in a BLT-set of the dual space,

Q(4, q).

For any three points of a BLT-set B, there are no points ofQ(4, q) collinear (in a line of

Q(4, q)) with all three points. We now rephrase this under our polarity; for any three lines

of the set, there does not exist a transversal. This test will decide whether or not the set of

q + 1 tangent lines to the twisted cubic is a BLT-set after dualizing.

Once we find one tangent line, we can use the group, as it acts transitively on the tangent

lines, to find all of the other tangent lines. Let P = (1, 0, 0, 0). The twisted cubic modulo

P in PG(2, q) lies within the oval given by y2 − xz for points (x, y, z). The point that

completes the q-arc to an oval is the point Q = (1, 0, 0). The line connecting P and Q

in PG(3, q) is t1 = {(a, b, 0, 0) : a, b ∈ GF(q)}. Therefore, t1 is the tangent line to C at
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(1, 0, 0, 0). Using the group, we find that t2 = {(0, 0, c, d) : c, d ∈ GF(q)} is the tangent

line at (0, 0, 0, 1), and t3 = {(3e, 2e+ f, e + 2f, 3f) : e, f ∈ GF(q)} is the tangent line at

(1, 1, 1, 1).

We need to test whether or not there exists a transversal through any three tangent lines.

Without loss of generality, we have chosen t1, t2, and t3. There exists a transversal if and

only if there exists a, b, c, d, e, f such that the following three equations, which comes from

the symmetric form above, equal zero simultaneously. A solution will relate to the non-

existence of BLT-sets.

f(t1, t2) = ad− 3bc = 0

f(t1, t3) = 3af − 3be− 6bf = 0

f(t2, t3) = −3de+ 3cf + 6ce = 0

After homogenizing coordinates and noting that no variable can be zero, we arrive at

f(t1, t2) = d− 3b = 0

f(t1, t3) = 3f − b− 6bf = 0

f(t2, t3) = −d+ 3f + 2 = 0

The solutions to this system of equations are b = 3±
√
−3

6 . If −3 is a square then there

exists a transversal, so there is not a BLT-set. Thus, a BLT-set exists if −3 is a non-square

in the field.

Lemma 3.1.2. In a finite field (not of characteristic 3), −3 is a square when the order of

the field is congruent to 1 modulo 3.

Proof. −3 is a square if and only if x2+x+1 = 0 has solutions. There are solutions if and

only if x3 = 1 has solutions for x != 1. This occurs if and only if there exists a primitive
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cube root of unity in GF(q)∗. There is a primitive cube root of unity in GF(q)∗ if and only

if 3 divides q− 1. q− 1 being divisible by 3 is equivalent to q being congruent to 1 modulo

3.

Therefore, we have created an infinite family of BLT-sets which only exists for q ≡ 2

mod 3.

From Lüneburg [33], we know that the group stabilizing the twisted cubic is PΓL(2, q)

for q > 3, q odd. PΓL(2, q) has a unique orbit of length q + 1, namely the points of the

twisted cubic. Each point has a unique tangent line, so therefore, PΓL(2, q) has a unique

orbit of length q + 1 on the tangent lines to the twisted cubic. Stated in another way, there

is a unique orbit of length q + 1 on the totally isotropic points of the Sp(4, q) polar space,

and hence, a unique orbit of length q + 1 on the points arising from the tangent lines in the

dual space (via the Klein correspondence).

The last term of the derived series of PΓL(2, q) is PSL(2, q). Using the subgroups

of PSL(2, q) and arguments from Section 2.5, PSL(2, q) must act transitively on a set of

q + 1 points, namely the tangent lines (points of dual space). Thus, we have a subgroup

H = PSL(2, q) of PΩ(5, q), which, after dualizing, stabilizes the set of tangent lines to the

twisted cubic. We have shown that these objects being stabilized are BLT-sets. All twisted

cubics are equivalent, thus, their groups are conjugate in PGL(3, q), and hence conjugate

in PGL(5, q).

Consider the following centralizer C = CGL(5,q)H . Let Z = Z(GL(5, q)) ∼= Cq−1.

Then C/Z dualized is a subgroup of PΓL(2, q). But, by Lemma 2.5.3, CPΓL(2,q)(H) = 1.

As elements of C/Z must both centralize H and be members of PΓL(2, q), C/Z = 1,

giving C = Z. Thus, by Lemma 2.5.4, since C = Z = Cq−1, then H = PSL(2, q) (in

GL(5, q)) is absolutely irreducible.

In Section 5.1.1, we will prove that the BLT-sets just created are the FTW BLT-sets.

We have just proven that the group stabilizing these BLT-sets, PΓL(2, q), has a subgroup,

PSL(2, q), which acts irreducibly on GF(q)5. This, it turns out, is enough to prove the
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equivalence of the BLT-sets just constructed and the FTW BLT-sets.
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4. THE (GF(q2),GF(q2),GF(q))MODEL

A BLT-set is a subset of the points of Q(4, q). Q(4, q) is itself a subset of the points of

PG(5, q). Usually the points of a BLT-set are given by a set of (q+1) homogenized vectors

of length five over GF(q). But, viewing a BLT-set in this manner does not display, or make

visible, the symmetries in specific infinite families. By changing the way a BLT-set is

specified, certain symmetries become obvious. Forcing the symmetries into the model has

the added benefit of making the presentation far simpler.

In this chapter, the model first described by Penttila [42] will be explained in Section

4.1. Originally the model was devised as a way to give a cleaner description of the Fisher

BLT-sets, but it also provided the path toward finding the Mondello BLT-sets. In Section

4.1.1, we will prove the infinite family of Mondello BLT-sets are in fact BLT-sets using this

model. As well, the infinite families which fit nicely into this model and their groups, in

the model, will be given in Section 4.2. Lastly, in Section 4.3, the group of the model will

be investigated. This will result in Lemma 4.3.1, which will be useful when computing the

full group of the Mondello BLT-sets.

4.1 The Model

The model given by Penttila [42] uses the isomorphism between GF(q)2 and GF(q2) as

GF(q) vector spaces to force a cyclic group of order (q + 1) to become visible in the

description of a BLT-set (as will be described later). Instead of thinking of the points of

PG(5, q) being of the form {(x, y, z, w, v) : x, y, z, w, v ∈ GF(q)}, we can think of them
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as being in

V = {(x, y, a) : x, y ∈ GF(q2), a ∈ GF(q)}.

For a description of a BLT-set to be given, we need to attach a quadratic form to define

our polar space Q(4, q). Let

Q(x, y, a) = xq+1 + yq+1 − a2 = N(x) +N(y)− a2

be the quadratic form with its associated bilinear form

f((x, y, a), (z, w, b)) = T (xzq) + T (ywq)− 2ab

where T (x) = x+ xq and N(x) = xq+1. Note that this quadratic form varies slightly from

that in the original paper: Q(x, y, a) = xq+1 + yq+1 + a2.

V is the orthogonal direct sum of {(x, 0, 0) : x ∈ GF (q2)}, {(0, y, 0) : y ∈ GF (q2)},

and {(0, 0, a) : a ∈ GF (q)}. Therefore, the discriminant of Q equals the product of the

discriminants of Q restricted to these subspaces. The first two subspaces are isometric

and thus have the same discriminant. The third subspace has discriminant −2. Therefore,

disc(Q) = −2!. Using this, the theorem of Bader, O’Keefe, and Penttila [2] (from Section

2.2) becomes:

Theorem 4.1.1. Let B be a set of at least 3 points of Q(4, q) with the quadratic form:

Q(x, y, a) = xq+1+ yq+1−a2. Then B is a partial BLT-set if and only if for all x, y, z ∈ B

f(x, y) · f(x, z) · f(y, z) = ",
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4.1.1 The Mondello BLT-sets

Theorem 4.1.2. Let η ∈ GF(q2) be an element of order q + 1. Then

B = {(2η2j, η3j,
√
5) : 0 ≤ j ≤ q}

is a BLT-set in (V,Q) for q ≡ ±1(mod 10).

The proof of this theorem will come in four sections. First, we will prove the necessary

congruence condition on the characteristic of the finite field. Then, we will show that B

has the correct size and the points of B are points of Q(4, q). Finally, we will show that the

points of B satisfy the triple/discriminant condition given in Theorem 4.1.1.

For B to be a BLT-set,
√
5 needs to exist. If

√
5 = 0, (i.e. GF (q) has characteristic 5)

the BLT-set will lie in a hyperplane and Thas proved if a BLT-set lies in a hyperplane it is

either Classical or Kantor Semifield [45]. So, we will rule out GF(q) having characteristic

5. As the following lemma proves, 5 is a square if the characteristic is congruent to 1 or 9

modulo 10.

Lemma 4.1.3. For q odd and q !≡ 0 (mod 5), 5 = ! if and only if q ≡ ±1 (mod 10).

Proof. We will split this proof into three cases: q is prime and q is an odd or even power of

a prime.

Assuming that q is a prime, we can use quadratic reciprocity. 5 = !(mod q) if and only

if q = !(mod 5). The squares modulo 5 are 1 and 4. But, q is odd so q ≡ ±1(mod 10).

Now assume that q = ph for p an odd prime and h odd. We will prove that 5 = ! (in

GF (p)) if and only if 5 = ! (in GF (ph)). The forward direction is obvious. For the other

directions assume that x2 − 5 factorizes over GF (ph) but is irreducible over GF (p). This

forces an even extension, i.e. h even, which is a contradiction.

Next, assume that q = ph for p an odd prime and h even. An odd number to an even

power is always equivalent to 1,5, or 9 modulo 10. As q is not of characteristic 5, then
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q = ph ≡ ±1(mod10).

In conclusion, assuming q is not characteristic 5, 5 is a square iff q is equivalent to 1 or

9 modulo 10.

For B to be a BLT-set, B must have size q + 1.

Lemma 4.1.4. |B| = q + 1

Proof. As η has order q+1, 2η2j has order (q+1)/2 and η3j has order (q+1) or (q+1)/3

(depending upon whether of not (q + 1) is congruent to three). As the least common

multiple of (q + 1)/2 and either (q + 1) or (q + 1)/3 is (q + 1), B has size q + 1.

For B to be a BLT-sets, all points of B need to be points of Q(4, q).

Lemma 4.1.5. For all b ∈ B, b ∈ Q(4, q).

Proof.

Q(2η2j , η3j,
√
5) = (2η2j)q+1 + (η3j)q+1 − 5 = 2q+1 + 1− 5 = 4 + 1− 5 = 0

For B to be a BLT-set, all triples of points need to satisfy the discriminant condition.

First, we will prove a lemma to simplify this computation.

Lemma 4.1.6. Let η be an element ofGF (q2) of order q+1 and α be an element ofGF (q2)

with α2 = η. If l is odd, 4T (η2l)+ T (η3l)− 10 = T (αl)2 · (T (αl)2+5)2 which is a square.

If l is even (and non divisible by q+1), 4T (η2l)+T (η3l)−10 = (T (αl)2−4) ·(T (αl)2+1)2

which is a non-square in GF (q).

Proof. We will repeatedly use the following facts:

T (x2) = T (x)2 − 2N(x) for all x ∈ GF (q2)
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T (x3) = T (x)3 − 3N(x)T (x) for all x ∈ GF (q2)

N(α) = −1

Suppose l is odd. Then

4T (η2l) + T (η3l)− 10 = 4(T (ηl)2 − 2) + T (ηl)3 − 3T (ηl)− 10

= T (ηl)3 + 4T (ηl)2 − 3T (ηl)− 18

= (T (αl)2 + 2)3 + 4(T (αl)2 + 2)2 − 3(T (αl)2 + 2)− 18

= T (αl)6 + 10T (αl)4 + 25T (αl)2

= T (αl)2 · (T (αl)2 + 5)2

Suppose l is even and not divisible by q + 1. Then

4T (η2l) + T (η3l)− 10 = 4(T (ηl)2 − 2) + T (ηl)3 − 3T (ηl)− 10

= T (ηl)3 + 4T (ηl)2 − 3T (ηl)− 18

= (T (αl)2 − 2)3 + 4(T (αl)2 − 2)2 − 3(T (αl)2 − 2)− 18

= T (αl)6 − 2T (αl)4 − 7T (αl)2 − 4

= (T (αl)2 − 4) · (T (αl)2 + 1)2

The minimal polynomial of αl overGF (q) is x2−T (αl)x+N(αl) = x2−T (αl)x+1.

Since αl is not in GF (q), it follows that the discriminant of this polynomial, T (αl)2 − 4, is

a nonsquare in GF (q).

Lemma 4.1.7. The points of B satisfy the triple/discriminant condition, Theorem 4.1.1, for

a partial BLT-set.

Proof. We need to prove that

f(x, y) · f(x, z) · f(y, z) = f((2η2i, η3i,
√
5), (2η2j, η3j,

√
5)

·f((2η2i, η3i,
√
5), (2η2k, η3k,

√
5)

·f((2η2j, η3j,
√
5), (2η2k, η3k,

√
5)
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is a non-square. Using

f((2η2i, η3i,
√
5), (2η2j, η3j,

√
5) = T (4η2(i+qj)) + T (η3(i+qj))− 10

= 4T (η2(i−j)) + T (η3(i−j))− 10,

we get that

f(x, y) · f(x, z) · f(y, z) = 4T (η2(i−j)) + T (η3(i−j))− 10

·4T (η2(i−k)) + T (η3(i−k))− 10

·4T (η2(j−k)) + T (η3(j−k))− 10.

The set {i− j, i− k, j− k} is either a set of two odd numbers and one even number, or

a set of three even numbers. Thus, the proof splits into two final cases.

If the set has two odds and one even, then, by using Lemma 4.1.6,

f(x, y) · f(x, z) · f(y, z) = (T (αl)2)− 4)
︸ ︷︷ ︸

"

·! = ".

If the set consists of three evens, then, by using the product of three non-squares is a

non-square and Lemma 4.1.6,

f(x, y) · f(x, z) · f(y, z) = (T (αl)2)− 4)
︸ ︷︷ ︸

"

· (T (αm)2)− 4)
︸ ︷︷ ︸

"

· (T (αn)2)− 4)
︸ ︷︷ ︸

"

·! = ".

Thus, we have proved that f(x, y) · f(x, z) · f(y, z) = ".

Having proven that B exists for q ≡ ±1 (mod 10), is of the right size, consists of points

of Q(4, q), and satisfies the triple/discriminant condition, we have proven Theorem 4.1.2.
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4.2 Stabilizer in the Group of the Model

In this section we will look at the groupM of the given model,

V = {(x, y, a) : x, y ∈ GF(q2), a ∈ GF(q)}.

The stabilizer inM of a BLT-set is not guaranteed to be the full group of the BLT-set. The

full group could possibly, and will in general, be larger than the stabilizer inM .

The group of the model is

M = ((Cq+1 ! C2) 4 C2) !C2
C2h.

The cyclic group of order (q+1)maps (x, y, a) "→ (ηx, y, a) for an η ∈ GF(q2) with order

q+1. The cyclic group of order 2 paired with Cq+1 maps (x, y, a) to (xq, y, a). The wreath

product with a cyclic group of order two swaps the first two coordinates, allowing those

actions on the first coordinate to also be done on the second. The cyclic group of order

2h maps (x, y, a) to (xp, yp, ap). Finally, the subdirect product glues two maps (x, y, a) "→

(xq, yq, aq) together. Combining these groups, we arrive at the group of the model which

has order 8h(q + 1)2.

As stated in the introduction to this chapter, there are infinite families, other than the

Mondello family, that have nice descriptions within this model. Those families which fall

into this category are: the Classical BLT-sets, the Fisher BLT-sets, and The FTW BLT-sets.

For ease of computing the group within the model of these BLT-sets, the possible elements
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of the stabilizer inM are the following (as well as powers and products of these elements):

g1 : (x, y, a) "→ (y, x, a)

g2x : (x, y, a) "→ (xq, y, a)

g2y : (x, y, z) "→ (x, yq, a)

g3 : (x, y, a) "→ (ζαx, ζβy, a)

g4 : (x, y, a) "→ (ζαxp, ζβyp, ap)

for ζ ∈ GF(q2) with order of ζ = q + 1.

The Classical BLT-sets

The Classical BLT-sets are given in (V,Q) by

B = {(x, 0, 1) : x ∈ GF (q2), N(x) = 1}.

The element g1 does not stabilize B.

The element g2x does stabilize the set, but it will generate a subgroup of the cyclic group

generated by g4. The element g2y trivially stabilizes the set.

For the Classical BLT-sets, an element of type g3 acts onB as g3 : (x, 0, 1) "→ (ζαx, 0, 1).

As

N(ζαx) = N(ζα) ·N(x) = N(ζ)α ·N(x) = 1α · (1) = 1,

any ζ and all α stabilize the BLT-set. Let g3′ : (x, 0, 1) "→ (ζx, 0, 1), then g3′ is a generator

of a cyclic group of order q + 1.

The possible group element type g4 acts on B as g4 : (x, 0, 1) "→ (ζαxp, 0, 1). This

element is a product of an element of type g3 and the to map (x, y, a) "→ (xp, yp, ap). Thus,

without loss of generality, we can assume α = 0. AsN(xp) = 1 and x ∈ GF(q2) this group

element has order 2h (xp2h = xph
2

= xq2 = x). Therefore, g4 with α = 0 will generate a

cyclic group of order 2h.
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In conclusion, the stabilizer of a Classical BLT-set in M has order 2h(q + 1) and has

two cyclic subgroups; one with order 2h and the other with order q + 1.

The Fisher BLT-sets

For a fixed b != 1 with N(b) = 1, the Fisher BLT-sets are given in the model by

B =

{

(b2i, 0, 1) : 0 ≤ i ≤
q + 1

2

}

∪
{

(0, b2i, 1) : 0 ≤ i ≤
q + 1

2

}

.

The element g1 preserves the BLT-set and contributes an involution to the stabilizer of

B inM .

The elements g2x and g2y will be subgroups of the cyclic group generated by an element

of type g4.

The element g3 splits into two possible elements types: g31 : (b2i, 0, 1) "→ (ζαb2i, 0, 1)

and g32 : (0, b2i, 1) "→ (0, ζβb2i, 1). By symmetry, the proofs that they both lead to cyclic

groups of order (q+1)/2 are identical. Therefore, we will focus on g31 . b is fixed and both

ζ and b are of norm 1, so without loss of generality, ζ = b. We can now rewrite an element

of type g31 as g3′1 : (b
2i, 0, 1) "→ (b2i+α, 0, 1). As long as α is even, we generate stabilize B.

All possible α can be generated by α = 2. So, both g3′
1
and g3′

2
, with α = 2, β = 0 and

α = 0, β = 2 respectively, generate cyclic groups of order (q + 1)/2.

The elements of type g4 will lead to a cyclic group of order 2h. Elements of type g4 act

on B as (b2i, 0, 1) "→ (ζα(b2i)p, 0, 1) and (0, b2i, 1) "→ (0, ζα(b2i)p, 1). Once again, without

loss of generality, we can let α = 0 and β = 0. Let g4′ map (x, y, a) to (xp, yp, ap). Then

g4′ in its action on the BLT-set, generates a cyclic subgroup of order 2h.

In conclusion, the stabilizer in M of a Fisher BLT-set is of order h(q + 1)2 with four

cyclic subgroups; one has order 2, one has order 2h, and the other two have order (q+1)/2.

The FTW BLT-sets

The FTW BLT-sets are given in the model by

B = {(ax, bx2, 1) : N(x) = 1}
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where N(a) = 4/3, N(b) = −1/3, and q ≡ 2 (mod 3).

Switching of the first two coordinates is not an element of the stabilizer inM .

The elements g2x and g2y do not stabilize the set.

Without loss of generality let ζ = x. Then g3 acts onB as (ax, bx2, 1) "→ (ax1+α, bx2+β , 1).

To stabilize the set, the exponent of x in the second coordinate needs to equal twice the ex-

ponent of x in the first coordinate. So, 2(1 + α) = 2+ β, and 2α = β. Once again, we can

get all possible elements of this type by letting α = 1 and taking powers of this element

of type g2. There are q + 1 such elements. Let g2′ : (ax, bx2, 1) "→ (ax2, bx4, 1), then g2′

generates a cyclic group of order q + 1.

The map g4′ on B takes (ax, bx2, 1) to (ζαapxp, ζβbpx2p, 1). Once again, without loss

of generality, we can let α = 0 and β = 0. As 4/3 and−1/3 are both necessarily in GF(p),

ap and bp remain elements of norm 4/3 and −1/3 respectively. Thus, the map of type g4

with α, β = 0 preserves the set and generates a cyclic group of order 2h.

In conclusion, the stabilizer in M of a FTW BLT-sets is of order 2h(q + 1) with two

cyclic subgroups; one has order 2h, and the other has order (q + 1).

The Mondello BLT-sets

The Mondello BLT-sets are given by

P = {(2η2j, η3j ,
√
5) : 0 ≤ j ≤ q}

for fixed η ∈ GF(q2) with order q + 1 and q ≡ ±1( mod 10).

From here until the end of the paper, we will use P to denote the Mondello BLT-sets.

The element g1 does not stabilize P .

Both of the elements g2x and g2y stabilize the set, but will be subgroups of the cyclic

group arising from elements of type g4.

For an element of type g3, without loss of generality, let ζ = η as |η| = q+1. Then this

40



element of type g3 acts on P as

(2η2j, η3j,
√
5) "→ (ηα · 2η2j, ηβ · η3j,

√
5) = (2η2j+α, η3j+β,

√
5).

We can get all solution by taking powers of an element of this type with α = 2 and β = 3.

Let q3′ : (x, y, a) "→ (η2x, η3y, a). Then g3′ generates a regular cyclic subgroup of order

q + 1, and is an element of the stabilizer inM .

Whether or not g4 : (x, y, a) "→ (ζαxp, ζβyp, ap) stabilizes P depends upon whether

or not
√
5 is in GF (p). Independent of where

√
5 lives, the element coming from g4

will always generate a cyclic group of order 2h for q = ph. Once again, without loss of

generality, let ζ = η. This element of type g4 acts on P as

(2η2j, η3j,
√
5) "→ (ηα · (2η2j)p, ηβ · η3jp,

√
5 p) = (2η2jp+α, η3jp+β,

√
5 p).

If
√
5 is in GF (p), then

√
5 p =

√
5 and

g4(2η
2j , η3j,

√
5) = (2η2jp+α, η3jp+β,

√
5).

The powers on η need to be respectively, 2 and 3 times the same parameter. Let α = 0

and β = 0. Elements without α = β = 0 can be gotten from a product of an element

of type g4 with an element of type g3. The element of type g4 preserves P and becomes

(x, y, a) "→ (xp, yp, ap). For q = ph, the 2hth power of g4 is the identity. Thus, this element

of type g4 generates a cyclic group of order 2h.

If
√
5 is not in GF (p), then

√
5 p = −

√
5.

g4(2η
2j, η3j,

√
5) = (2η2jp+α, η3jp+β,−

√
5) = (2η2jp+α+(q+1)/2, η3jp+β+(q+1)/2,

√
5).

The last equality holds as scalar multiples are equal and η(q+1)/2 = −1. Once again,
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without loss of generality, let α = β = 0. Thus, in this case, let g4′ : (x, y, a) "→

(η(q+1)/2xp, η(q+1)/2yp,−ap) = (−xp,−yp,−ap). The element g4′ restricted to its action

on P has order 2h.

In conclusion, the stabilizer inM of a Mondello BLT-set has order 2h(q + 1) with two

cyclic groups: one has order q + 1 and the other has order 2h. This group fixes the point

(0, 0, 1) and the two lines {(x, 0, 0) : x ∈ GF(q2)} and {(0, y, 0) : y ∈ GF(q2)}.

Letting A =< g3′ >∼= Cq+1 and B =< g4′ >∼= C2h, then the stabilizer in M of

a Mondello BLT-set is generated by A and B. Let G be this stabilizer in M of B. The

intersection of A and B is empty as A is a regular cyclic group and B fixes the element

(2, 1,
√
5). Also, A is normal in G as g4′g3′g−1

4′ : (x, y, a) "→ (ζ2px, ζ3py, a). Therefore, the

stabilizer inM is the semidirect product of A and B.

G = A!B = 〈g3′, g4′ : g
q+1
3′ = g2h4′ = 1, g4′g3′g

−1
4′ = gp3′〉 ∼= Cq+1 ! C2h.

Theorem 4.2.1. The stabilizer in M of a Mondello BLT-set is isomorphic to Cq+1 ! C2h.

The group is generated by two permutations φ and ψ where φmaps (x, y, a) to (η2x, η3y, a)

for a fixed η ∈ GF(q2) with |η| = q + 1 and ψ maps (x, y, a) to (εxp, εyp, ap) for ε = 1 if
√
5 ∈ GF(p) and ε = −1 if

√
5 !∈ GF(p).

4.3 Geometry of the Model

In the previous section, it was shown that the model contains two cyclic group of order q+1.

What will be shown in this section is a further characterization of the model in its action on

a hyperplane. The groupM of the (GF(q2),GF(q2),GF(q)) model is the stabilizer of two

perp external lines and a point: {{(x, 0, 0) : x ∈ GF(q2)}, {(0, y, 0) : y ∈ GF(q2)}, (0, 0, 1)}.

M clearly is a subgroup of the stabilizer of this set, but as we will show in the next few

paragraphs, in fact it is the whole stabilizer.

M fixes the point (0, 0, 1). Fixing a point fixes the perp of the point, which in this case
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is the hyperplane H = {(x, y, 0) : x, y ∈ GF(q2)}. This hyperplane meets Q(4, q) in a

hyperbolic quadric. As we are studying BLT-sets, we are working within the stabilizer of

Q(4, q) which is PΓO(5, q). As H ∩ Q(4, q) is the hyperbolic quadric, it must be fixed.

Therefore, the stabilizer of the point, in PΓO(5, q), contains the stabilizer of the hyperbolic

quadric which is PΓO+(4, q). The order of PΓO+(4, q) is h(q + 1)2q2(q − 1)2 for q = ph.

The reflection inH , (x, y, z, w, v) "→ (−x,−y,−z,−w, v), is not contained in PΓO+(4, q)

but acts trivially on the hyperplane. Adding on this element of order two, the order of the

stabilizer of (0, 0, 1) in PΓO(5, q) becomes 2h(q + 1)2q2(q − 1)2.

Next, we need to add the lines l = {(x, 0, 0) : x ∈ GF(q2)} and m = {(0, y, 0) : y ∈

GF(q2)}. Both lines are inH and are external to the hyperbolic quadricQ+(3, q). ByWitt’s

theorem, as all external lines are isometric, the isometry group GO+(4, q) acts transitively

on external lines. Therefore, the subgroup fixing (0, 0, 1) and l will have index equal to the

number of external lines to Q+(3, q) in the stabilizer of (0, 0, 1) in PΓO(5, q).

From Lemma 2.1.5, the orbit of external lines toQ+(3, q) has size q2(q−1)2/2. There-

fore, the subgroup stabilizing {(0, 0, 1), l} has order 4h(q + 1)2. Lastly, to stabilizem, we

add on an element of order two that switches l andm. Thus, the stabilizer of {(0, 0, 1), l, m}

in PΓO(5, q) has order 8h(q + 1)2. The group of the model also has order 8h(q + 1)2 and

stabilizes the same point and lines, therefore we have the following lemma.

Lemma 4.3.1. M , the group of the model, is the stabilizer of the set

{

{(x, 0, 0) : x ∈ GF(q2)}, {(0, y, 0) : y ∈ GF(q2)}, (0, 0, 1)
}

.
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5. REDUCIBILITY

The main theorem of this chapter is that the group of a Mondello BLT-set acts irreducibly

on GF(q)5. The way we will prove this result is to show that the only infinite family of

BLT-sets whose group acts irreducibly on GF(q)5 and transitively on the set, is the FTW

family. This, by itself, is a new complete characterization of the FTW family.

The way we get to this characterization of the Mondello BLT-sets is by using the

collineation group ofQ(4, q): PΓO(5, q). As this group is a classical group, much is known

about its subgroups. Due to Mitchell [34], and Kantor and Liebler [27], we know all maxi-

mal subgroups of PΓO(5, q). Knowing all subgroups is equivalent to knowing all possible

groups of a BLT-set. Thus, for this chapter, we will parse this list to see which subgroups

could act transitively on a BLT-set and act irreducibly on GF(q)5.

5.1 PΓO(5, q)

Define Ω(5, q) to be O(5, q)′, so that PΩ(5, q) is simple for q ≥ 2. Using the exceptional

isomorphism PΩ(5, q) ∼= PSp(4, q) and Kantor and Liebler’s [27] paper as well as H.H.

Mitchell’s [34] paper, listing the maximal subgroups of ΓSp(4, q) and PSp(4, q) respec-

tively, we get the following list of subgroups for ΓO(5, q). Note thatK(∞) denotes the last

term of the derived series.

Theorem 5.1.1. Let K ≤ ΓO(5, q), q odd, then one of the following holds.

1. K(∞) = Ω(5, q′) with GF(q′) ⊆ GF(q).

2. K fixes a t.s. line or a t.s. point or pair of non-collinear t.s. points, or a non-
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degenerate point with perp a hyperbolic quadric.

3. K fixes a non-degenerate point with perp an elliptic quadric.

4. K fixes a normal rational curve over GF(q′) ⊆ GF (q), the characteristic is greater

than 3 andK(∞) = SL(2, q′).

5. K fixes an anisotropic (i.e. external) line.

6. K ∩ GO(5, q) ≤ Cq−1 4 S5.

7. K(∞) is 2.A5 or 2.A6.

8. K(∞) is 2.A7 in characteristic 7.

The search in this chapter is for BLT-sets with groups that acts transitively on the set

and irreducibly on GF(q)5. Thus, this list can be pared down for our purposes. By the

orbit-stabilizer theorem, for a group to act transitively on a BLT-set, the order of the group

must be divisible by q + 1, the size of the BLT-set. More specifically, it must have an orbit

of length q + 1. Using this divisibility condition and irreducibility of action, the following

groups are removed as not being able to admit the BLT-sets we are searching for.

• Case 1: Assume q = ph then q′ = pk for some m such that mk = h. Then for

q + 1 = ph + 1 = pmk + 1 to divide | Ω(5, q′) |= 1
2p

2k(p4k − 1)(p4k − p2k) either

q′ = q or q′ = √
q. All orbits of Ω(5, q) and Ω(5,√q) have length greater than q +1,

and therefore, cannot admit a transitive BLT-set.

• Case 2: The group action is reducible on GF(q)5 as it fixes a line or a point. There-

fore, it can be ignored for our search.

• Case 3: The group action is reducible on GF(q)5 as it fixes a point. Therefore, it can

be ignored for our search.
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• Case 5: The group action is reducible on GF(q)5 as it fixes a line. Therefore, it can

be ignored for our search.

The cases that remain after these reductions are cases 4, 6, 7, and 8. They will be dealt

with in depth in the following sections. Due to cases 6,7, and 8 being restricted by group

size, they will not be able to admit an infinite family of BLT-sets. Hence, case 4 is the only

case that can possibly admit an infinite family.

5.1.1 Special Linear Group over a Subfield

Lemma 5.1.2. For q > 7 and q odd, there is a unique conjugacy class of subgroups of

PΩ(5, q) which act irreducibly on GF(q)5 whose elements are isomorphic to PSL(2, q).

Proof. PSL(2, 5) is a subgroup of A5 and A6 and PSL(2, 7) is a subgroup of A7. Thus, we

restrict the cases further with q > 7. That restriction along with irreducibility forces Case

4 from the above list of subgroups of Ω(5, q).

From this lemma, we know that any copy of PSL(2, q) that acts irreducibly on GF(q)5

will produce equivalent BLT-sets. It is known that a PSL(2, q) subgroup of PΩ(5, q) sta-

bilizes the FTW BLT-sets.

Lemma 5.1.3. The PSL(2, q) that stabilizes a FTW BLT-set acts irreducibly on GF(q)5.

Proof. Let H be the PSL(2, q) stabilizing a FTW BLT-set. Let C = CGL(5,q)(H) and

Z = Z(GL(5, q)) ∼= Cq−1, H has a unique orbit of length q + 1 on totally singular points

of O(5, q) polar space (the FTW BLT-set B), so its normalizer stabilizes B. Known re-

sults say that the stabilizer B in PΓO(5, q) is PΓL(2, q) (for q > 5, for q = 5, it is S6).

Since CPΓL(H) = 1, then C = Z = Cq−1 resulting in H (in GL(5, q)) being absolutely

irreducible.

We then arrive at the following corollary.
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Corollary 5.1.4. The Fisher-Thas/Walker BLT-sets, but no others, admit

K(∞) = SL(2, q′)

Going back to Chapter 3, this also shows that the BLT-sets created from the twisted

cubic are equivalent to the FTW BLT-sets.

5.1.2 Imprimitive Case

For a BLT-set to be transitive, q+1 needs to divide |Cq−1 4S5|. Also, as q is odd, the greatest

common divisor of q− 1 and q+ 1 is 2. Therefore, the most that the base group, Cq−1, can

contribute, for large enough q, is a C2. So, q + 1 must divide 25 · 5!. This restricts possible

field orders to be from the set

q ∈ {3, 5, 7, 9, 11, 19, 23, 31, 47, 59, 79, 127, 191, 239, 383, 479, 1279}.

We can think of the C2 as acting by negation on the coordinate entries of a point and the

S5 action permutes the entries of the point. Let the quadratic form be the sum of squares,

Q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5, with polar form f(x, y) = Q(x+ y)−Q(x)−Q(y). The

group action of C2 4H (for H a subgroup of S5) preserves the resulting parabolic quadric.

The details provided here will be for points of the form (1, a, b, c, d), a point with no

zero entries. The points (0, 1, a, b, c), (0, 0, 1, a, b), (0, 0, 0, 1, a), and (0, 0, 0, 0, 1), a, b, or

c possibly zero, can be dealt with in a similar fashion. These are the only points that need

to be tested, as to force irreducibility, we must have at least C5 acting on the entries.

For the search, we will us the discriminant/triples condition of Bader, O’Keefe, and

Penttila for BLT-sets [2]. For (1, a, b, c, d) a general point with no zero entries, let the C2
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act on the first two entries to get two more points:

x = (1, a, b, c, d)

y = (−1, a, b, c, d)

z = (1,−a, b, c, d).

Then

f(x, y) = 4a2 + 4b2 + 4c2 + 4d2

f(x, z) = 4 + 4b2 + 4c2 + 4d2

f(y, z) = 4b2 + 4c2 + 4d2

and

−2f(x, y)f(x, z)f(y, z) = −2(4a2 + 4b2 + 4c2 + 4d2)(4 + 4b2 + 4c2 + 4d2)

(4b2 + 4c2 + 4d2)

= −2 ∗ 64(−1)(−a2)(−1− a2)

= 128a2(1 + a2).

For this set of three to be contained in a BLT-set, we need 128a2(1 + a2) to be a non-

square. As both 128 and a2 are squares in the possible list of field orders, we need 1 + a2

to be a non-square.

Using the same x as above, but now negating the remaining possible pairs of entries we

find that 1+ b2, 1+ c2, 1+ d2, a2+ b2, a2+ c2, a2+ d2, b2+ c2, b2+ d2, and c2+ d2 all need

to be non-square. These conditions narrow the search field far enough to make a computer

search feasible. What follows is the code that was run in MAGMA [11] to show that no

such BLT-sets exists admitting this group.
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q:=pˆh;

d:=(q-1)/2;

F:=GF(q);

V:=VectorSpace(F,5);

Q:=func<x|x[1]ˆ2+x[2]ˆ2+x[3]ˆ2+x[4]ˆ2+x[5]ˆ2>;

f:=func<x,y|Q(x+y)-Q(x)-Q(y)>;

The following creates N as the set of elements f such that 1 + f 2 is a non-square.

N:=[];

for f in F do

if not IsSquare(F!(1+fˆ2)) then N:=Include(N,f);

end if; end for;

The following function builds all possible C2 actions on a fixed point, i.e. it forms the

orbit of a point under the C2 action.

c2:=function(X);

Y:=[];

for a,b,c,d,e in {1,-1} do

if a*b*c*d*e eq 1 then

y:=V![a*X[1],b*X[2],c*X[3],d*X[4],e*X[5]];

Y:=Include(Y,y);

end if; end for;

return Y;

end function;

The following is a function to test the discriminant/triple condition. It is code modified

from the code run by Law and Penttila [32].
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BLT:=function(B);

if #B ge 3 then b:=B[1];

for i in {2..#B-1} do c:=B[i];

flag:=true;

for j in {3..#B} do d:=B[j];

flag:=(F!(-4*f(b,c)*f(b,d)*f(c,d)))ˆd eq F!(-1);

if not flag then break;

end if; end for;

if not flag then break;

end if; end for;

return flag;

else return true;

end if; end function;

The actual search.

for a,b,c in N do

if IsSquare(F!(-(1ˆ2+aˆ2+bˆ2+cˆ2))) then

for d in {SquareRoot(F!(-(1ˆ2+aˆ2+bˆ2+cˆ2))),

-SquareRoot(F!(-(1ˆ2+aˆ2+bˆ2+cˆ2)))} do

if not IsSquare(F!(aˆ2+bˆ2)) then

if not IsSquare(F!(aˆ2+cˆ2)) then

if not IsSquare(F!(aˆ2+dˆ2)) then

if not IsSquare(F!(bˆ2+cˆ2)) then

if not IsSquare(F!(bˆ2+dˆ2)) then

if not IsSquare(F!(cˆ2+dˆ2)) then

x:=V![1,a,b,c,d];

B:=c2(x);

if BLT(B) then b;
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end if; end if; end if; end if; end if; end if;

end if; end for; end if; end for;

As nothing results after running this code in MAGMA [11] for all possible q, we know

that no BLT-sets exists under these specific conditions. Points of the form (0, 1, a, b, c),

(0, 0, 1, a, b), (0, 0, 0, 1, a), and (0, 0, 0, 0, 1) can be dealt with in a similar fashion with no

BLT-sets being returned.

Lemma 5.1.5. No transitive irreducible BLT-sets exist that admit

K ∩GO(5, q) ≤ Cq−1 4 S5

.

5.1.3 Alternating Groups

K(∞) is 2.A5

As q + 1 needs to divide |2.A5| = 120, then q ∈ {3, 5, 7, 9, 11, 19, 23, 29, 59}. These field

orders are all covered by Betten’s BLT-set list [6]. The only example exists inQ(4, 59) and

is due to Law and Penttila [32] with group S5.

Lemma 5.1.6. For q = 59 an example due to Law-Penttila exists with group S5 which acts

transitive and irreducibly. For q != 59, no transitive irreducible BLT-sets exist that admit

K(∞) to be 2.A5.

K(∞) is 2.A6

As q + 1 needs to divide |2.A6| = 720, then

q ∈ {3, 5, 7, 9, 11, 17, 19, 23, 29, 47, 59, 71, 79, 89, 179, 239, 359, 719}.
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Since we are looking for transitive BLT-sets, q + 1 must also be the size of an orbit. We

will look at elements of GF(q)6 with Q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 that are in

the perp of (1, 1, 1, 1, 1, 1). As Q(1, 1, 1, 1, 1, 1) != 0 these elements are the elements of

Q(4, q). Possible orbit lengths are as listed. These orbit lengths come from elements of the

shape (distinct letters represent distinct elements of GF(q)).

Shape Stabilizer in S6 Orbit Length

aaaaaa S6 1

aaaaab S5 6

aaaabb S4 × S2 15

aaabbb S3 × S3 20

aaaabc S4 30

aaabbc S3 × S2 60

aaabcd S3 90

aabbcc S2 × S2 × S2 120

aabbcd S2 × S2 180

aabcde S2 360

abcdef 1 720

Therefore, we are left with the field orders q ∈ {5, 19, 29, 59, 89, 179, 359, 719}.For q ≤ 67

Betten’s list [6] is complete. The known examples for q ≤ 67 are inQ(4, 5)where the FTW

BLT-set has group S6 and in Q(4, 29) where an example by Law and Penttila has group S6.

Therefore, we need to test q ∈ {89, 179, 359, 719}.

In MAGMA [11], we first created elements of GF(q)6, such that they were in the space

defined above and fit the proper shape for the field/orbit/stabilizer size. Then we applied

the results of discriminants/triples, where elements of the possible BLT-sets were elements

in the orbit (under A6 or S6) of the starting point. No BLT-sets resulted from the search.

The following is the code that was run for the q = 359 case.

Q:=func<x|x[1]ˆ2+x[2]ˆ2+x[3]ˆ2+x[4]ˆ2+x[5]ˆ2+x[6]ˆ2>;
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f:=func<x,y|Q(x+y)-Q(x)-Q(y)>;

F:=GaloisField(359);

V:=VectorSpace(F,6);

for b,c,d in GF(359) do

if 2+bˆ2+cˆ2+dˆ2+(-2-b-c-d)ˆ2 eq 0 then

x:=V![1,1,b,c,d,-2-b-c-d];

for y in Orbit(AlternatingGroup(6),x) diff {x} do

for z in Orbit(AlternatingGroup(6),x) diff {x,y} do

if not BLT({x,y,z}) then break g; end if;

end for;

x; end for;

end if;

end for;

for c,d in GF(359) do

if 1+cˆ2+dˆ2+(-1-c-d)ˆ2 eq 0 then

x:=V![0,0,1,c,d,-1-c-d];

for y in Orbit(AlternatingGroup(6),x) diff {x} do

for z in Orbit(AlternatingGroup(6),x) diff {x,y} do

if not BLT({x,y,z}) then break g; end if;

end for;

x; end for;

end if;

end for;

Simple changes can be made to run the other cases, all resulting in no BLT-sets.
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Lemma 5.1.7. For q = 5 the FTW BLT-set has group S6 and for q = 29 an example by

Law and Penttila also has this group. For q != 29 no transitive irreducible BLT-sets exist

that admitK(∞) to be 2.A6.

K(∞) is 2.A7 with q ≡ 0 (mod 7)

The condition that q+1 needs to divide |2.A7| = 5040 is much more restrictive in this case.

The only possible field order admitted is q = 7, where no examples exists with this group.

Lemma 5.1.8. No transitive irreducible BLT-sets exist that admitK(∞) to be 2.A7.

5.2 Conclusion

By looking at BLT-sets in their natural context, having subgroups of PΓO(5, q) as their

stabilizers, we are able to do a case by case search of BLT-sets by their structure. Here

the focus was on transitive groups with an irreducible action on GF(q)5. This led to the

following theorem and corollary.

Theorem 5.2.1. The only infinite family of BLT-sets that act transitively and admit an

absolutely irreducible group (on GF(q)5) is the Fisher-Thas/Walker BLT family. The only

other transitive irreducible BLT-sets are both due to Law-Penttila: q = 29 with group S6

and q = 59 with group S5.

Proof. Most important to the theorem is the subgroups list of PΓO(5, q) derived from

Mitchell’s [34], and Kantor and Liebler’s [27] papers. Using this, we first narrowed our

search by seeing which subgroups could admit a transitive group with irreducible action

on GF(q)5. That list had one subgroup admitting an infinite family of BLT-sets, namely

the FTW BLT-sets. There can only be one such family, as there is a unique orbit of length

q + 1. The other possible subgroups were done on a case by case basis. The only other

BLT-sets with the given property are those listed in the theorem.
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Because there is only one infinite family admitting an absolutely irreducible group that

acts transitively on the BLT-set, we arrive at the following corollary.

Corollary 5.2.2. The group of the Mondello BLT-sets is reducible in its action on GF(q)5.

That a Mondello BLT-set has a reducible group is far too weak to completely determine

the group. In the following chapter, Chapter 6, we will look at the group’s action on a

distinguished hyperplane. Is this hyperplane fixed? If it is fixed, is the groups action on the

hyperplane reducible or irreducible? These questions will be answered there. The answers

will lead to the computation of the group of a Mondello BLT-set.

55



6. ACTION ON THE DISTINGUISHED HYPERPLANE

From the results in the previous chapter, we know that the full group of a Mondello BLT-

seta acts reducibly on the underlying vector space. We also know from the results in Chap-

ter 4, that the stabilizer inM only fixes the following subspaces: a point (0, 0, 1) and two

lines {(x, 0, 0) : x ∈ GF(q2)} and {(0, y, 0) : y ∈ GF(q2)}. This forces restrictions upon

the action by the full group. As it acts reducibly on GF(q)5, at least one of the subspaces

that is fixed by the stabilizer inM must remain fixed.

The first section will deal with the case where only one of the lines is fixed. If this is

the case, then q = 11. The second section is the case where the point is fixed. This will

force the full group to fix an unordered pair of perp external lines. If these two lines are not

the lines fixed by the stabilizer inM , then q = 9. Otherwise, we have forced the full group

to be be a subgroup of the group of the model.

There originally seems to be more cases, but they all reduce to the two listed. If both

lines are fixed, their span and its perp are fixed, but the perp of their span is the point, so

all three are fixed. If the point and one of the lines were fixed, then the intersection of their

perps (the other line) is fixed. So, if more than one line or the point is fixed, all three are

fixed, and we are within the group of the model.

6.1 Hyperplane not fixed by Group

In this section, the point (0, 0, 1) is not fixed, only one of the lines, either {(x, 0, 0) : x ∈

GF(q2)} or {(0, y, 0) : y ∈ GF(q2)}, is fixed. We will call the fixed line l and the non-fixed

linem. Let π be the plane which is the span of the point and the non-fixed line, π = 〈p,m〉.
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By looking at the action of the group on this plane, we will be able to prove that this case

does not occur unless q = 11.

Let X be the projection of the Mondello BLT-set from l to π. If l = {(x, 0, 0) : x ∈

GF(q2)} then X = {(0, η3i,
√
5)} and has size q + 1 if (q + 1) !≡ 0 (mod 3) and size

(q + 1)/3 if (q + 1) ≡ 0 (mod 3). If l = {(0, y, 0) : y ∈ GF(q2)} then X = {2η2i, 0,
√
5)}

and has size (q + 1)/2.

For q != 11 the size of X will be greater than 4. A set of 5 points, no 3 collinear, lie on

a unique conic. Therefore, if no three points of X are collinear, then X is contained in a

unique conic.

Lemma 6.1.1. No three points of X are collinear in π.

Proof. We will split this proof into two cases. The first case is when {(x, 0, 0) : x ∈

GF(q2)} is fixed and X = {(0, η3i,
√
5)}. The second case will be when l = {(0, y, 0) :

y ∈ GF(q2)} then X = {2η2i, 0,
√
5)}.

If three points of X = {(0, η3i,
√
5)} were collinear, there would exists a GF(q) linear

combination of two points of X to get a third point of X . Equivalently, this can be stated

as, does a(0, η3i,
√
5) + b(0, η3j,

√
5) = (0, η3k,

√
5) have solutions for a and b in GF(q)

and 3i not equivalent to 3j not equivalent to 3k modulo (q + 1)? By looking at the third

component, b = 1− a. Then, using the first component we can solve for a. The solution,

a =
η3k − η3j

η3i − η3j

does not lie in GF(q), therefore no three points are collinear.

Similarly, if three points of X = {2η2i, 0,
√
5)} were collinear, then

a(2η2i, 0,
√
5) + b(2η2j , 0,

√
5) = (2η2k, 0,

√
5)

has a solution for a, b ∈ GF(q) where 2i !≡ 2j !≡ 2k (mod (q+1)). Once again, b = 1− a.
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In a similar fashion to the preceding case,

a =
η2k − η2j

η2i − η2j

is not in GF(q), so no three points of X are collinear.

By the immediately preceding two statements, if q != 11,X lies on a unique conic, CX .

Therefore, both the projection of the stabilizer inM and the full group must stabilize this

conic. They must also stabilize the conic C that is the intersection of Q(4, q) and π. As

these groups stabilize these two conics, they will also stabilize the pencil of conics with

basis {CX , C}.

The two conics are disjoint, as no point of X lies on C and the group acting on C is

transitive. We also know that the projection of the stabilizer inM fixes the line m and the

point (0, 0, 1). By the classification of pencils of quadrics (listed in Hirschfeld’s text [19]),

the pencil of conics arising fromC andCX consists of (q−1) conics, a point (corresponding

to a line pair in GF(q)2), and a repeated line. The point and line from the pencil must be

the point and line that are stabilized by the projection of the stabilizer in M . As stated,

the projection of the full group must also stabilize this pencil. Therefore, the projection of

the full group stabilizes the point (0, 0, 1) and the linem, contradicting the assumption that

only l was fixed.

For q != 11, the point (0, 0, 1) is now known to be fixed.

Lemma 6.1.2. The group of a Mondello BLT-set, for q != 11, fixes the point (0, 0, 1) and

the points perp, a distinguished hyperplane.

We will explore what that means for the group in the next section.

For q = 11 it can be shown that the full group only fixes the line {(x, 0, 0) : x ∈

GF(q2)}. Both the line {(0, y, 0) : y ∈ GF(q2)} and the point (0, 0, 1) have orbits of length

3 under the full group of this BLT-set. This BLT-set was first given by De Clerck and

Herssens [47].
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Theorem 6.1.3. The stabilizer in PΓO(5, q) of the Mondello BLT-set for q = 11 has

order 144. The group is generated by the permutations (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),

(1, 11)(2, 10)(3, 9)(4, 8)(5, 7), and (2, 11)(3, 6)(7, 10). The labeling corresponds directly

to the indexing in P = {(2η2j, η3j,
√
5) : 0 ≤ j ≤ 11}.

6.2 Hyperplane fixed by Group

From Lemma 6.1.2, we know the full group of a Mondello BLT-set (q != 11) fixes the point

P = (0, 0, 1) and therefore stabilizes its perp, the hyperplane P⊥. As we are working inside

of PΓO(5, q), the stabilizer of Q(4, q), the intersection of P⊥ and Q(4, q), a hyperbolic

quadric H , must also be stabilized. The reguli of this hyperbolic quadric are given by

R1 = {(x, βx, 0) : x ∈ GF(q2)∗} and R2 = {(x,−βqxq, 0) : x ∈ GF(q2)∗} where

N(β) = −1.

Over the course of this argument, we will need to know a property of the projection of

a Mondello BLT-set onto P⊥. What follows are two different approaches to proving the

result we need: the projection is a set of points external to P⊥.

The line connecting P with a point of a Mondello BLT-set will be of the form

(2aη2i, aη3i,
√
5 + b) for a fixed i ∈ {0, . . . , q} and a, b ∈ GF(q). This lines intersection

with P⊥ (the projection) will then be (2aη2i, aη3i, 0). These points do not satisfy xq+1 +

yq+1 = 0, and thus, are not on the hyperbolic quadric.

The next proof has a more geometric flavor and begins with a lemma about tangent

lines to Q(4, q) through P .

Lemma 6.2.1. A line l on P = (0, 0, 1), is tangent to the parabolic quadricQ(4, q), (given

by Q(x, y, a) = xq+1 + yq+1 − a2) if and only if the intersection of l and P⊥ is a point of

the intersection of P⊥ and Q(4, q), a hyperbolic quadricH .

Proof. Assume l ∩H = R is a point of H . Then R is perp to R, and R is perp to P , so R

is perp to the span of R and P which is l. Therefore, l is singular. But, l is not contained in
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Q(4, q) as it contains P which is not contained in Q(4, q). Thus, l is tangent to Q(4, q).

Assume l is on P and tangent toQ(4, q) at a pointR. As l is tangent at R, l is contained

in R⊥. So P is perp to R as it is contained in l. But, l is not contained in P⊥. If it were

then l would be contained in both P and R perp, so it would be contained in the perp of

their span. l is the perp of their span so l would be contained in l perp, but l cannot be in

Q(4, q) as P is contained in l and P is not singular. So, l is not contained in P⊥. Thus, the

intersection of P⊥ and l is the point R, so R is on the hyperbolic quadric.

Using this lemma, consider a point B of a Mondello BLT-set and the line l connecting

P and B. Then B is not on the hyperbolic quadric, but B is on Q(4, q), so l is not tangent

to Q(4, q). But, l contains B a point of Q(4, q), so l must be secant to Q(4, q). P is non-

degenerate, so P⊥ intersected with l is also non-degenerate. Therefore, the projection of

B, from P onto P⊥, is not on H .

6.2.1 Group is Non-Solvable

We begin by looking at the group induced on the hyperplane and ask whether that group

is solvable or non-solvable. In this section we will assume the full group G of a Mondello

BLT-set is non-solvable. LetG1 beG intersected with PGL(5, q). G1 remains non-solvable.

After this intersection we have lost a possible cyclic group of order h off the top of the

group. Let G2 be G1 induced on the hyperbolic quadric H . G2, will also remain non-

solvable. Here we have lost a possible 2 on the bottom of the group, the reflection in

the hyperplane. Let G3 be the intersection of G2 with the stabilizer of the reguli of H .

Once again losing a possible 2 on the bottom interchanging the reguli but remaining non-

solvable. Now we have a groupG3 which must be a non-solvable subgroup of the stabilizer

of the reguli, PGL(2, q) × PGL(2, q). The reguli of this hyperbolic quadric are given by

R1 = {(x, βx, 0) : x ∈ GF(q2)∗} and R2 = {(x,−βqxq, 0) : x ∈ GF(q2)∗} where

N(β) = −1.

The maps (x, y, a) "→ (η2x, η3, y, a) and (x, y, a) "→ (xq, yq, a), which come from the
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stabilizer inM , preserve the reguli of the hyperbolic quadric. The first mapping has order

(q + 1)/2 as (x, βx, 0) "→ (η2x, ηβ(η2x), 0), (x,−βqxq, 0) "→ (η2x,−βqη3−2q(η2x)q, 0)

and η2 has order (q + 1)/2. The second mapping has order 2 as expected. Therefore, the

intersection of the stabilizer inM with PGL(2, q)×PGL(2, q) forces each of the projections

to contain a dihedral group of order (q + 1).

For the group to be non-solvable, at least one of the projections needs to be non-

solvable. Using the subgroups of PGL(2, q), which can be derived from the subgroups

of PSL(2, q) in Section 2.5.1, at least one of the projections is eitherA5, PSL(2, q), or all of

PGL(2, q). A5 could occur for q = 9, but cannot occur for any other finite field, as it does

not have dihedral subgroups of order (q + 1) for any other q permissible by a Mondello

BLT-set.

Thus, at least one of the projections must contain PSL(2, q). Using results from the

matrix model of PGL(2, q) × PGL(2, q) introduced in Section 2.6, none of these groups

have orbits short enough on external points. Thus, the group cannot be non-solvable.

Lemma 6.2.2. The group of a Mondello BLT-set is solvable.

6.2.2 Group is Solvable and Fixes a Pair of Perp External Lines

We now know that the full group of a Mondello BLT-set is solvable. Once again, let G1 be

G intersected with PGL(5, q). G1 will remain solvable. LetG2 be the group induced on the

hyperbolic quadrics H . G2 will remain solvable. Finally, let G3 be the intersection of G2

and PΩ+(4, q) ∼= PSL(2, q)× PSL(2, q). G3 will remain solvable, and the projection onto

each factor must also be solvable. We can use the list of subgroups of PSL(2, q), listed in

Section 2.5, to list all admissible subgroups.

The stabilizer inM once again enforces a divisibility condition. As in the non-solvable

case, the projections must contain a dihedral group of order (q + 1). The dihedral group of

order (q + 1) is maximal in PSL(2, q). Therefore, the projections are both Dq+1, and the

group G3 must be Dq+1 ×Dq+1.
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The groupDq+1×Dq+1 is the stabilizer in PGL(2, q)×PGL(2, q) of an unordered pair

of perp lines that are external to the hyperbolic quadric. From Lemma 2.1.5, we know that

there are q2(q − 1)2/2 external lines to the hyperbolic quadric. Also, by Witt’s theorem,

all external lines are isometric and are therefore acted on transitively by the stabilizer of

the hyperbolic quadric. Thus, the stabilizer in PGO(4, q) of a line l has order 4(q + 1)2,

by orbit stabilizer. The stabilizer of {l, l⊥} is twice as big as the stabilizer of l (there

exists an element switching l with l⊥). The stabilizer of l has index 2 in D2(q+1) 4 C2, so

D2(q+1) 4C2 is the stabilizer of the pair of unordered perp external lines {l, l⊥}. Restricting

to PSL(2, q)× PSL(2, q), we know that G3 = Dq+1 ×Dq+1 stabilizes an unordered pair of

perp external lines, and hence the full group must also stabilize this pair of lines.

Lemma 6.2.3. The group of a Mondello BLT-set fixes an unordered pair of perp external

lines to the hyperbolic quadric.

Now we know that the group is solvable and fixes a pair of perp external lines. If

this pair of lines is the pair fixed by the model, {l = {(x, 0, 0) : x ∈ GF(q2)}, m =

{(0, y, 0) : y ∈ GF(q2)}}, then we are inside the group of the model, and our computations

are completed. If not, we know from the model that l and m are not interchanged by the

full group of Mondello as that switch is visible but does not stabilize the set. Thus, the

question becomes: can there exist two other lines that are interchanged by the full group of

Mondello? Equivalently, does the full group of Mondello act irreducibly on the hyperplane

P⊥?

Assuming that the full group of Mondello acts irreducibly on P⊥, then there exists a

subgroup of index two that swaps the two lines. Intersecting with the stabilizer in M , we

still have a subgroup of index two. This subgroup will map (x, y, a) "→ (η4x, η6y, a) "→

(η8x, η12y, a). As we know that P⊥ is fixed, these lines must lie in {(x, y, 0) : x, y ∈

GF(q2)}. If this map were to fix a line then (η8x, η12y, 0) is a GF(q)-linear combination of

(x, y, 0) and (η4x, η6y, 0).
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a(x, y, 0) + b(η4x, η6y, 0) = (η8x, η12y, 0)

So, ax + bη4x = η8x and ay + bη6y = η12y. We know these lines are different from l

andm, so x != 0 and y != 0, and we can divide by x and y respectively to get: a+ bη4 = η8

and a + bη6 = η12. Thus, η4 and η6 both satisfy the quadratic equationX2 = bX + a over

GF(q). Therefore, η4 and η6 are conjugate over GF(q), so η4q = η6. Thus, q + 1 divides

4q−6, so q+1 divides 4(q+1)− (4q−6) = 10. The only possible q, given the constraint

on a Mondello BLT-set’s field order, is q = 9.

If q = 9 theMondello BLT-set is also a Fisher BLT-set. The two halves of classical BLT-

sets that lie within are given by letting the parameter in the Mondello BLT-set definition be

even or odd.

Theorem 6.2.4. The stabilizer in PΓO(5, q) of the Mondello BLT-set for q = 9 has order

400. The group is generated by the permutations (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (3, 9)(5, 7),

(1, 9)(2, 8)(3, 7)(4, 6), and (2, 6, 8, 4)(3, 7, 9, 5). The labeling corresponds directly to the

indexing in P = {(2η2j, η3j,
√
5) : 0 ≤ j ≤ 9}.

Lemma 6.2.5. The group of a Mondello BLT-set, for q !∈ {9, 11}, is a subgroup ofM , the

group of the model.
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7. CONCLUSIONS

Piecing together the results stated in the previous chapters, we are able to compute the

group of a Mondello BLT-set and arrive at the main theorem of this thesis.

Theorem 7.0.6. The stabilizer in PΓO(5, q) of a Mondello BLT-set P , for q = ph > 11, is

isomorphic to Cq+1 !C2h. The group is generated by the permutations φ and ψ where φ is

the map (x, y, a) "→ (η2x, η3y, a) for a fixed η ∈ GF(q2) with |η| = q+ 1 and ψ is the map

(x, y, a) "→ (εxp, εyp, ap) for ε = 1 if
√
5 ∈ GF(p) and ε = −1 if

√
5 !∈ GF(p).

Proof. The computation of a Mondello BLT-sets group began with the knowledge, from

the original paper [42], that the group acts transitively on the BLT-set. The group of a BLT-

set is also forced to be a subgroup of PΓO(5, q). Combining these two results, we began

to look at how the group acts on the underlying vector space. In Chapter 5 it was shown

that the group must act irreducibly on GF(q)5 (Corollary 5.2.2). The visible group of a

Mondello BLT-set (Section 4.2) fixes three subspaces: a point P = (0, 0, 1) and two lines

l = {(x, 0, 0) : x ∈ GF(q2)} and m = {(0, y, 0) : y ∈ GF(q2)}. We then to looked at all

possible cases where a subset of the point and lines are fixed. If only one line is fixed, we

proved that q = 11 (Theorem 6.1.3). From this, we proved that the point and its perp, a

hyperplane, must be fixed (Lemma 6.1.2).

Now we are able to restrict the groups action to this hyperplane. The hyperplane in-

tersects the parabolic quadric of the BLT-set in a hyperbolic quadric. As we are working

within the stabilizer of the parabolic quadric, this hyperbolic quadric, and its reguli, must

also be fixed. We are able to prove that the group must be solvable (Lemma 6.2.2), and its

action must fix a pair of perp external lines to the hyperbolic quadric (Lemma 6.2.3). If this
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pair of lines is not the pair of lines visible in the model, then q = 9 (Theorem 6.2.4). The

group of the model is the stabilizer of {P, l,m} (Lemma 4.3.1). Thus, we have forced the

group of a Mondello BLT-set to be a subgroup of the group of the model. In Section 4.2,

generators were given for the stabilizer of a Mondello BLT-set in the group of the model.

The group generated by these permutations is the full group.

Using the information contained in Section 2.4.1, we can compute the group orders of

the corresponding configurations. For q = ph > 11:

• the group of the Mondello flock of the quadratic cone has order 2h,

• the group of the Mondello GQ has order (q6 − q5) · (2h(q + 1)),

• the group of the Mondello hyperbolic fibration has order 2(q + 1) · 2h(q + 1),

• the group of the spread arising from the Thas-Walker construction from the Mondello

flock has order 2hq, and

• the group of the translation plane arising from the Thas-Walker construction from the

Mondello flock has order 2hq(q5 − q4).

It is an immediate consequence of these group calculations that the Mondello objects

are inequivalent to objects arising from other infinite families for q > 9.

We reiterate that the groups of a Mondello BLT-set over GF(9) and GF(11) have extra

symmetries. They are given in the following theorems.

Theorem 7.0.7. The stabilizer in PΓO(5, q) of the Mondello BLT-set for q = 9 has order

400. The group is generated by the permutations (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (3, 9)(5, 7),

(1, 9)(2, 8)(3, 7)(4, 6), and (2, 6, 8, 4)(3, 7, 9, 5). The labeling corresponds directly to the

indexing in P = {(2η2j, η3j,
√
5) : 0 ≤ j ≤ 9}.

Theorem 7.0.8. The stabilizer in PΓO(5, q) of the Mondello BLT-set for q = 11 has

order 144. The group is generated by the permutations (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
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(1, 11)(2, 10)(3, 9)(4, 8)(5, 7), and (2, 11)(3, 6)(7, 10). The labeling corresponds directly

to the indexing in P = {(2η2j, η3j,
√
5) : 0 ≤ j ≤ 11}.

There remain many open problems in the area of BLT-sets and their related configura-

tions. Two questions that fall in line with this thesis are:

• Can transitive BLT-sets with full stabilizer not regular be classified?

• Can a geometric argument be given to show that the stabilizer of a Mondello BLT-

set (q > 11) fixes a line? This would give a geometrically more satisfying proof of

the main result of this thesis, and perhaps also a geometric characterization of the

Mondello BLT-sets.
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[33] H. Lüneburg. Translation planes. Springer-Verlag, Berlin, 1980.

69

http://cage.ugent.be/geometry/theses.php


[34] H. H. Mitchell. The subgroups of the quaternary abelian linear group. Trans. Amer.

Math. Soc., 15(4):379–396, 1914.

[35] S. E. Payne. Generalized quadrangles as group coset geometries. In Proceedings

of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and

Computing (Florida Atlantic Univ., Boca Raton, Fla., 1980), Vol. II, volume 29, pages

717–734, 1980.

[36] S. E. Payne. The Thas-Fisher generalized quadrangles. In Combinatorics ’86 (Trento,

1986), volume 37 of Ann. Discrete Math., pages 357–366. North-Holland, Amster-

dam, 1988.

[37] S. E. Payne. The fundamental theorem of q-clan geometry. Des. Codes Cryptography,

8(1-2):181–202, 1996.

[38] S. E. Payne. Flock generalized quadrangles and related structures: an update.

Proceedings of the Academy Contact Forum, 20 October 2000.

[39] S. E. Payne and J. A. Thas. Conical flocks, partial flocks, derivation, and generalized

quadrangles. Geom. Dedicata, 38(2):229–243, 1991.

[40] S. E. Payne and J. A. Thas. Generalized quadrangles, BLT-sets, and Fisher flocks.

In Proceedings of the Twenty-second Southeastern Conference on Combinatorics,

Graph Theory, and Computing (Baton Rouge, LA, 1991), volume 84, pages 161–192,

1991.

[41] S. E. Payne and J. A. Thas. Finite generalized quadrangles. EMS Series of Lectures in

Mathematics. European Mathematical Society (EMS), Zürich, second edition, 2009.
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